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ABSTRACT 

This study explores the effects of natural and sustainable materials including vegetation, 

green roof systems and green walls on outdoor noise control in urban areas. The concept 

of this study starts with a hypothesis that well-planned use of the natural materials on 

building and urban surfaces can achieve useful reductions in noise levels and 

reverberation in urban spaces. Firstly, this study examines random-incidence absorption 

and scattering coefficients of vegetation through a series of measurements in a 

reverberation chamber in order to characterise the effects of various designable factors 

such as soil depths, soil water content and vegetation densities. This data is used later in 

acoustic computer simulations. To quantify the scattering effect of trees and to allow 

including it in numerical predictions, a series of measurements are carried out for 

individual trees in an open field. Green roof systems are placed on a low profiled 

structure to examine sound transmission through the vegetated low barrier. To suggest 

noise abatement schemes in relatively small urban spaces, the acoustic effects of 

landscape designs using vegetation in a courtyard are studied through a case study. As a 

preliminary study on the noise reduction effect of vegetation in relatively large urban 

spaces, field measurements are carried out at outdoor spaces in high-rise apartment 

complexes. Based on the measurement results, the noise reduction effect of vegetation 

in apartment complexes is also predicted. The overall results for each research topic can 

be summarised as follows: It is shown that low-growing vegetation can be an effective 

measure for absorbing/scattering sound energy, especially at high frequencies. Results 

of field measurements show that tree reverberation exerts an influence only on 

frequencies above 1 kHz. At 4 kHz, RT (reverberation time) can be as long as 0.28 sec. 

Measurements made near the same deciduous tree with and without leaves indicate that 
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leaves increase reverberation at 4 kHz by 0.08 sec. The results on sound transmission 

over the low barrier with green roof systems suggest that SPL attenuation increases with 

the increasing green roof areas. The extra SPL (sound pressure level) attenuation caused 

by green roof systems could be up to 9.5 dB at certain frequencies. With well-planned 

application of landscape designs in a courtyard, speech levels and RT at 500 Hz are 

decreased by 9.3 dBA and 81 %, respectively. In outdoor spaces of apartment 

complexes, RT is generally rather long, over 4 sec at 500 Hz, influenced by many 

factors such as openness, source-receiver distance and building height. In terms of SPL 

distribution, the measured SPL is up to 8 dB higher compared to the semi-free field 

situation. It is also found that vegetation at the apartment complex can be effective in 

reducing RT by 0.95 sec (46 % decrease). 
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Chapter 1. Introduction 

1 

 

1 Introduction 

1.1 Research background 

Detrimental effects of noise pollution in urban areas have become a major 

environmental problem in recent years. Urban noise sources appear in various forms; 

construction work, human endeavours, industrial activity and traffic, etc. Road traffic 

has been reported as the dominant noise source affecting a number of people. In the 

European Union, about 44 % of the population is exposed to road traffic noise levels 

over 55 dBA in the daytime and 20 % of the population is exposed to levels exceeding 

65 dBA (Berglund et al., 1999). A growing body of evidence confirms that urban noise 

pollution produces direct and cumulative adverse health effects such as cardiovascular 

disease, cognitive impairment, sleep disturbance, tinnitus and annoyance (Fritschi et al., 

2011). Therefore, reducing road traffic noise is an important part of improving 

residential, social, working, and learning environments with corresponding economic 

and wellbeing impacts. 

Currently, typical measures for noise abatement in urban areas focus on traffic speed 

limits, reductions in noise exposure on the building façades through noise barriers and 

tunnels, improvements of window and façade insulation, and applications of low-noise 

road surface, etc. However, sustainable approaches to outdoor noise control have rarely 

been paid attention. 

In urbanised cities, allocation for green spaces is a key element in addressing 

sustainable development but, due to the scarcity of land, urban developers are currently 

searching for other possible areas to plant vegetation. For this reason the greening of 
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building façades and the rooftops is gaining in popularity. The widespread use of 

vegetation on external building surfaces provides many ecological and environmental 

advantages. For example, the vegetated surfaces can reduce storm water runoff and the 

rate at which it enters surface water systems. They can increase urban bio-diversity, 

mitigate the urban heat island and reduce air pollution (Alexandri et al., 2008; Fioretti et 

al., 2010; Getter et al., 2006; Gregoire et al., 2011; Mentens et al., 2006; Takebayashi et 

al., 2007). The measures using vegetation instead of acoustically reflective surfaces 

(i.e., bricks, concrete, asphalts and glass) could also moderate noise pollution. Greening 

external building surfaces to tackle noise issues can therefore be considered as a highly 

sustainable goal. 

1.2 Aims and objectives 

This study aims to investigate the effects of natural/sustainable materials on outdoor 

noise control in urban spaces. The main objectives can be stated briefly as follows:  

1) Review previous works on noise reduction by vegetation (Chapter 2) 

2) Examine the acoustic properties of low-growing vegetation (Chapter 3) 

3) Characterise the sound scattering by a single tree (Chapter 4) 

4) Investigate potential use of green roof systems on a low barrier (Chapter 5) 

5) Suggest noise abatement schemes using vegetation in courtyards (Chapter 6) 

6) Examine measurement methodology for sound propagation in an apartment 

complex (Chapter 7) 

7) Examine factors affecting outdoor reverberation, and vegetation effect in various 

apartment complexes (Chapter 8) 
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1.3 Thesis structure 

The methods to achieve the objectives for each chapter are described as follows: 

Chapter 2, ‘Literature Review’, presents a literature review on sound propagation in an 

urban environment, as well as noise reduction mechanisms by an individual or 

combined use of vegetation/trees/green roofs in open fields and urban situations. Firstly, 

sound propagation in an urban environment is covered by reviewing publications on site 

measurements, physical scale modelling and numerical modelling. Followed by the 

interaction of vegetation/trees with sound waves, including absorption, scattering (or 

diffusion), reflection, ground effect, and noise reduction by tree belts. Lastly 

publications on the effects of vegetation in urban situations on noise control are 

reviewed. 

Chapter 3, ‘Random-incidence Absorption and Scattering Coefficients of  

Vegetation’, describes experimental results on the characteristics of sound absorption 

and scattering by low-growing vegetation. This study presents the quantified data for 

the acoustic properties of vegetation, which can also be used in acoustic computer 

simulations. A series of measurements has been carried out in a reverberation chamber 

to examine the absorption and scattering coefficients of vegetation, by considering 

various factors such as: soil depth, soil moisture content and the level of vegetation 

coverage. 

Chapter 4, ‘Quantifying Scattered Sound Energy from a Single Tree by means of 

Reverberation Time’, is about the investigation of sound scattering by a single tree in 

open field. This effect is quantified by means of decay curves, closely linked to the 
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calculation of RT, according to the ground condition, receiver heights, tree crown shape 

and size, amount and condition of foliage, and source-receiver angle and distance. 

Chapter 5, ‘Noise Reduction using Green Roof Systems at Street Levels’, systematically 

explores the effects of various designable parameters of green roof systems, on a low-

profiled structure on noise reduction through sound transmission. A series of 

measurements have been carried out in a semi-anechoic chamber using green roof 

systems. Numerical simulations (Finite element method) have also been carried out. 

Studied parameters include the structure, area, depth, type and position of the green roof 

system, and the type of vegetation. 

Chapter 6, ‘A Case Study on Controlling Sound Fields by Landscape Designs in a 

Courtyard’, focuses on how applicable landscape designs can contribute to noise control 

in a relatively small urban space, a courtyard. Through a case study, differences between 

courtyard sound fields were examined by in-situ measurements before and after 

applying a practical landscape design using vegetation, wood decking and street 

furniture. In addition, computer simulations were carried out to explore the acoustic 

effects of applicable landscape designs using vegetation, including: climbing Ivy, green 

wall, grass and bedding plants. 

Chapter 7, ‘A Preliminary Study on Acoustic Characteristics of Outdoor Spaces in an 

Apartment Complex’, investigates the accuracy of the measurement method using a 

starting pistol to examine the acoustic characteristics of outdoor spaces surrounded by 

multi-storey apartment buildings. In-situ measurements, in three outdoor spaces were 

carried out, to evaluate the acoustic parameters, including RT, EDT, RASTI and SPL 

distribution. 
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Chapter 8, ‘A Parametric Study on Reverberation Time in Outdoor Spaces of Apartment 

Complexes’, studies the influential factors for RT in outdoor spaces surrounded by 

buildings with complicated topographical conditions. A series of measurements were 

carried out for 15 outdoor spaces in 6 apartment complexes with different building 

layouts. The 15 outdoor spaces were categorised into 5 types as: linear, parallel, L, U 

and □ (courtyard type) building layouts. An empirical method considering the openness, 

averaged ray length and building high was also suggested, to predict RT approximately 

in the outdoor spaces. Initial results showing the vegetation effect are also presented.  

Chapter 9, ‘Conclusions and Future Work’, concludes the thesis, summarising the new 

findings from the original research. Limitations and future work of this thesis are also 

addressed. 

In summary, this thesis consists of three key parts of original research work; 1) Part I: 

Acoustic properties of vegetation/tree, 2) Part II: Green roof systems on a low barrier, 

and 3) Part III: Vegetation in urban situations. The overall structure of this study is 

described in Figure 1.1. 
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Fig. 1.1 Diagram showing overall structure of this study
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2 Literature Review 

This chapter aims to review previous studies on outdoor sound propagation, and the 

individual or combined effect of vegetation/trees on noise reduction in open fields as 

well as urban situations. Section 2.1 reviews previous publications on sound 

propagation in urban environments where multipath propagation is observed. Section 

2.2 reviews mechanisms for noise reduction by vegetation to reveal individual and 

physical aspects of the interaction between vegetation and sound waves, including 

absorption, scattering, reflection and ground effect. Section 2.3 covers previous studies 

on sound propagation through tree belts to understand the combining effects of 

individual trees, mainly against road traffic noise. In Section 2.4, previous works on 

noise control by using the natural materials such as vegetation in urban situations are 

addressed. 

2.1 Sound propagation in an urban environment 

Reducing background noise levels is important to create a comfortable acoustic 

environment in an urban area (Berglund et al., 2006; Yang et al., 2005). However, 

outdoor background noise level is increased due to complicated physical phenomena 

including multiple reflections, diffraction and diffusion by building façades during 

sound propagation between a source and receiver. As a result, the quantification of a 

surrounding’s influence in increasing noise levels has been an important topic. In a case 

where multipath propagation is observed, arrival patterns and amplitude of the 

reflections can be seen through an impulse response in the time domain (Albert et al., 
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2010). The impulse response also gives useful information on decay of transient sound 

levels, which is closely linked to reverberation. The amount of reverberation is 

quantified by RT; and is defined as the time taken for the energy in an initially-steady 

reverberant sound field to attenuate by 60 dB, given the slope of the level function. 

Generally, a long reverberation time means relatively strong influence of multiple 

reflections on loudness in comparison with a direct sound. Furthermore, it could have an 

adverse effect on the perceived spatial impression and speech transmission index in 

urban spaces.  

Due to the reasons outlined above, numerous studies have been carried out to 

investigate sound propagation in urban spaces through measurements and numerical 

modelling. This section reviews these previous studies. 

2.1.1 Site measurements 

In the past few decades, several site measurements of sound propagation in urban spaces 

have been conducted since the first work performed in 1940s to determine an optimal 

location of air raid sirens (Ball, 1942; Jones, 1946; Volkmann et al., 1942). In terms of 

the sound propagation in streets, Wiener et al. (1965) conducted the first measurements 

on both noise level and reverberation as well as speech intelligibility. In 1970s, Aylor et 

al. (1973) measured reverberation in a city street to investigate the absorption 

coefficients of ivy grown on building façades. Sound field in built-up areas was also 

measured by the researchers (Steenackers et al., 1976; Yeow, 1976, 1977). Ko and Tang 

(1978) attempted to predict reverberation in built-up areas using an empirical method 

based on the bounded volume, which shows the proportional relationship between the 
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reverberation and the volume bounded by the buildings. Picaut et al.(2005) also carried 

out a systematic measurement in a street canyon by considering source-receiver 

distance, source height and back scattering effect, etc. The recent measurement result 

(Mijic et al., 2012) shows that reverberation in urban spaces can be as long as 7, or 

more sec due to multiple reflections. The results from the previous works can be 

summarised as follows; noise levels and reverberation in urban areas are increased by 

multiple reflections which are influenced by many factors such as boundary conditions, 

topological conditions, source-receiver distances, street width, building height, and gaps 

between buildings, etc.  

2.1.2 Physical scale modelling 

Experiments using scale modelling have also been carried out to investigate sound 

propagation in urban spaces. In comparison with computer simulation, a notable 

advantage of scale modelling is that some complex acoustic phenomena such as 

diffraction and diffusion by buildings can be examined more accurately. Scale 

modelling can also investigate the factors affecting sound propagation in urban spaces 

under a more controlled environment compared with full-scale measurements. Due to 

the reasons above, several laboratory measurements using scale modelling has been 

conducted to investigate the role of multiple reflections, diffusion, absorption and 

diffraction by building facades on sound propagation in urban areas (Delany et al., 

1972; Horoshenkov et al., 1999; Ismail et al., 2005; Iu et al., 2002; Kang, 1996b; 

Kerber et al., 1981; Lyon, 1974; Mulholland, 1979; Picaut et al., 2001). 

2.1.3 Numerical modelling 
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Many investigations have attempted to develop theoretical and numerical models of 

sound propagation in urban areas using an image source model or a diffuse reflection 

model; as well as, wave-based models including: acoustic finite element method (FEM), 

boundary element method (BEM), finite difference time domain method (FDTD) and 

parabolic equation (PE) method. The development of theoretical models for sound 

propagation in urban areas was conducted in the 1970s by several researchers (Lee et 

al., 1975; Lyon, 1974; Schlatter, 1971; Steenackers et al., 1976). However, these early 

studies ignored the possibilities of ground interference and a diffusion effect between 

two parallel walls. Kang (2000, 2002b, 2005) investigated acoustic parameters such as: 

RT, EDT and sound attenuation in urban streets and squares through the comparison of 

geometrical and diffuse boundary conditions using image source and radiosity methods. 

The results showed that the RT and sound attenuation in a single street canyon depends 

on boundary conditions, and in particular, the importance of façade diffusion in urban 

spaces was demonstrated. Kang (2001, 2002a, 2002d, 2007) also investigated the effect 

of architectural and urban design on the sound field, including boundary absorption, 

boundary pattern and building arrangement. Using a scale model measurement, Ismail 

and Oldham (2005) suggested that the scattering coefficient of building façades with 

irregular surfaces is relatively low with a range between 0.1 and 0.15 for the 

configurations tested. Through a simplified model, Onaga and Rindel (2007) estimated 

the sum of absorption and scattering coefficients of facades in urban streets were within 

the range of 0.1 to 0.25. 

2.2 Noise reduction mechanisms by vegetation 
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In the last few decades, studies on sound propagation through vegetation/trees have 

been a popular research topic, since the pioneering work by Eyring (1946). Since then, 

there have been a number of studies to demonstrate the effect of vegetation on noise 

reduction. Various numerical and experimental methods have also been used to 

investigated and characterise the influential factors affecting sound propagation through 

forests and vegetation. In summary, previous works suggest that absorption, scattering, 

reflection and ground effect by vegetation play an important role in sound propagation 

through vegetation. An additional effect is, while atmospheric refraction leads to higher 

sound levels over grassland, the levels in forests are comparatively unaffected. 

(Swearingen et al., 2007; Tunick, 2003).  

The way vegetation affects sound propagation can generally be split into three different 

frequency ranges (Cox, 2009). At low frequencies, ground effect, which is the result of 

interference between direct and ground-reflected sound is dominant. The scattering 

effect from trunks, branches and leaves is small due to their relatively small size in 

comparison with the wavelength. In addition to this, absorption from the leaves 

themselves is negligible at these low frequencies. At mid frequencies, around 1 kHz, the 

trunks and large branches begin to scatter the sound energy. At high frequencies, 

typically above 1 kHz, scattering is still important, and in addition, the foliage 

attenuates the sound by viscous friction. Publications related to each mechanism have 

been reviewed in detail in the following sections. 

2.2.1 Absorption 

Sound energy impinging on soil and leaves is absorbed by thermo-viscous effects at the 
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surface. Furthermore, an individual leaf contributes to the sound attenuation by its 

compliant mechanical vibrations at certain resonant frequencies, thus dissipating the 

sound energy into heat (Martens et al., 1981). 

Previous studies examined the vibration velocity of leaves using a laser vibrometer 

system and accelerometer in anechoic chambers. Martens and Michelsen (1981) 

measured the vibration of leaves for four plant species: Ligustrum, Betula, Corylus and 

Quercus. Similar measurements utilising a light-weight accelerometer were carried out 

by Tang et al. (1986) on the leaves of six plant species: Acalyphia, Ficus, Lonicera, 

Cratoxylon, Lonicera and Erythrina. Embleton (1963) also used accelerometers to study 

oscillations of branches.  

Embleton (1963) measured oscillations of branches of deciduous trees at 300 Hz for 

lower (big) branches. Near the top of a tree, smaller branches appear and resonance 

frequencies were measured up to 1100 Hz. These frequencies were inversely 

proportional to the branch length. 

Martens (1981) suggested that leaves behave as linear systems when driven by sound 

and noise at SPL up to 100 dB. The experimental results indicated that the re-emission 

of sound from a leaf is very small for two reasons. Firstly, the vibration velocity of the 

leaves is smaller than the vibration velocity of the air particles. This means that only a 

part of the sound energy reaching the leaf will cause the leaf to vibrate. The other part of 

the sound energy is reflected and diffracted around the leaf. Secondly, the complex 

vibration mode of a leaf causes the different areas of the leaf to be out of phase, 

cancelling the pressure variation generated by these areas. As a result, the sound energy 
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causing vibrations in a leaf is effectively absorbed by the leaf tissue and converted into 

heat. 

Tang (1986) showed the vibrational modes of leaves clustered into two groups by 

simplifying the frequency-absorption curves to two superimposing Gaussian curves. 

The first group of modes is associated with the length of the leaves, and the second 

group of modes is linked to the width of the leaves. Correspondingly, these modes 

generate the longitudinal and transverse vibrations of the leaf with two-dimensional 

surface. The lower frequency Gaussian curve is related to the longitudinal vibration 

mode while the upper frequency curve is induced by the transverse mode. It seems that 

the transverse mode is more pronounced, leading to a higher degree of absorption. 

Given the dimensions of the leaves of typical trees, sound waves lower than 1 kHz do 

not excite such vibrations so that for frequencies below 1 kHz there is little sound 

absorption. 

Few studies have also measured the effects of vibrations and thermo-viscous absorption 

of leaves, trunks and branches in reverberant situations. Burns (1979) discusses effects 

of thermo-viscous absorption and resonances of branches and needles in parts of pine 

trees. The branch velocity was smaller than the air particle velocity. Fundamental needle 

resonances were measured at very low frequencies, from 4 Hz (8 cm needles) to 49 Hz 

(2.3 cm needles). 

Aylor (1973) examined the effect of Ivy covered on the facades in a  street canyon on 

reverberation. The experimental result showed that the effect of the ivy on reverberation 

in the street was negligible except around 4 kHz. For a sound frequency of 4 kHz, an 
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effective absorption coefficient was calculated as 0.5. It was expected, however, that 

this effect could also be attributed to increased scattering by the ivy. 

Yamada (1996) measured absorption coefficients of four kinds of trees in a 

reverberation chamber; two conifers and two broad leaves, were used in the 

measurements. It has been shown that the absorption coefficient values of the broadleaf 

are comparatively greater than those of the conifers. Results showed that acoustic 

attenuation is independent of the leaf surface area and mainly derived from the leaves 

and not the trunk. It was also shown that the absorption coefficient increases 

proportional to the square of the frequency. The maximum absorption coefficient of the 

trees was approximately 0.2 at 10 kHz. 

Wong et al. (2010) examined the absorption coefficient of vertical greenery systems 

with 10 m
2
 area of vegetation in a reverberation chamber. The vertical greenery system 

consisted of plants called Nephrolepis exaltata in pots and wooden frames. With 

different greenery coverage (41 %, 71 % and 100 %), the pots were placed within 

wooden frames. Results showed that the absorption coefficient is increased with 

increasing greenery coverage at all frequencies (100 Hz to 5 kHz). At low frequencies, 

the differences in sound absorption coefficients between different greenery coverage are 

small, while after 1 kHz, the differences in sound absorption coefficients were found to 

be fairly constant. 

Random-incidence absorption coefficients of some common outdoor materials were 

also measured in a reverberation chamber by Kaye (1940). This study investigated the 

absorption coefficients of gravel, turf, sand, ashes, railway-track ballast and snow with 
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10 feet × 10 feet specimen size. The results showed that the absorption coefficients are 

increased with increasing frequency. The absorption coefficient values were found to be 

relatively high. 

Reethof (1977) measured normal incident absorption coefficients of tree bark using an 

impedance tube. Six species of the tree bark were tested: Quercus rubra, Carya, Fagus, 

eastern white pine, eastern hemlock and Quercus subra. It was seen that the absorption 

coefficients were generally less than 0.1 at frequencies between 400 Hz and 1.6 kHz. 

For most species, the absorption coefficients are frequency independent. 

2.2.2 Scattering and reflection 

Sound is reflected and scattered by all parts of vegetation/trees such as leaves, twigs, 

branches and trunks. The amount of scattering increases with increasing frequency, and 

becomes an important factor in acoustic propagation when the wavelength approaches 

the size of the scattering/reflecting obstacles. 

In an anechoic chamber, Martens (1980) measured sound transmission through four 

model forest situation. Three models consisted of three different plant species, and the 

fourth model forest consisted of a mixture of tropical plant species. In this experiment, 

sound attenuation mainly by scattering effect was measured even though even in the 

presence of a small degree of absorption effect. SPL in absence of vegetation were 

compared to the situations with vegetation. The main conclusion of this work was that 

plant canopies can act as sound amplifier in the mid frequencies. Starting from 2 kHz, a 

rapid increase in the sound attenuation was observed by 10 dB at 4 kHz, depending on 
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the mixture of species. 

Martens et al. (1985) studied the sound reflection of a plant leaf by comparing an 

aluminium disc. Furthermore, the plant leaf reflection was measured as a function of 

leaf mass. The result indicated that the reflection of the leaf and the aluminium disc are 

linearly dependent on frequency. The reflection of a plant leaf was dependent on leaf 

mass. It was concluded that leaf dimension and leaf mass are important parameters for 

sound reflection of a plant leaf. 

Price et al. (1988) predicted the sound attenuation by the scattering effect of trunks and 

foliage in woodland; this work used an empirically modified multiple scattering 

approach by reducing the number density of trees by 60% to obtain a better fit to data. 

Trunks and foliage were represented by perfectly reflecting large and partly absorbing 

small vertical cylinders, respectively. This worked reasonably well in predicting the 

shape of the attenuation spectrum. But it is necessary to adjust several parameters to 

predict the levels accurately. For example, the density, surface impedance, and radius of 

the small scatterers representing the acoustical effect of the foliage were adjusted to fit 

the measured attenuation data. It was found that foliage has an important effect above 1 

kHz and the foliage attenuation increased approximately in a linear fashion with 

frequency. 

Lyon et al. (1977) carried out field studies and laboratory scale-model experiments to 

investigate the effect of trees on scattered sound energy. Field studies were undertaken 

measuring sound propagation through a line of maple trees in leaf and leafless 

condition. The measurement results showed that observed spectra with and without 
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leaves begin to diverge above 2.5 kHz, corresponding to a wavelength of the leaf size. It 

was also found that at the position below the canopy, leaves scatter some additional 

high-frequency sound to the microphone, resulting in reduced or even negative 

attenuation. Scale-model experiments were conducted to study interaction between 

sound scattering by trees and shadowing by barriers. It was shown that planting a single 

row of trees on top of a barrier can have a negative effect in the barrier's effectiveness. 

Experientially, the well-audible reverberation in a forest demonstrates the scattering 

effect of the trees and branches. There have been few attempts to measure reverberation 

within forests and to relate such measurements to theoretical predictions. Huisman et al. 

(1991) dealt with scattering by tree trunks using a stochastic particle bounce model, and 

found acceptable agreement between measurement and theory even though the 

theoretical model was inadequate at mid frequencies and higher receiver positions. 

Padgham (2004) measured the reverberation decay and frequency attenuation within 

two forests. The results showed that source-receiver distance is the most influential 

factor affecting rate of reverberation decay. Generally, the RT was increased with the 

decrease of source-receiver distances. Between 1 and 3 kHz, reverberation varied 

relatively little with source-receiver distances in comparison with other frequencies. 

Increasing the source height generally reduces reverberation, while increasing the 

receiver height generally reduces attenuation. 

2.2.3 Ground effect 

Sound propagation above ground is influenced by the acoustical properties of the 
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ground surface. The porous ground surface absorbs sound energy, and changes the 

phase and amplitude. Thus, there is interference between direct and ground reflected 

sound, known as the ground effect, which is dependent on the acoustic properties of the 

ground, the position of the source and receiver (Cox, 2009).  

The ground effect results in constructive and destructive interference causing increase 

and decrease of SPL, respectively. For acoustically rigid surface (i.e., concrete and 

asphalt), the amplitude of sound is increased or decreased due to the strong interference 

effect. For porous surfaces (i.e., soil, sand, grass and snow), the ground effect can 

influence at relatively low frequencies. However, at high frequencies, sound can be 

absorbed through porous ground so the surface reflection is changed in phase and 

amplitude (Attenborough, 1988). 

In a forest, the ground effect could be more important at low frequencies due to 

decomposing vegetation on the floor. Thus, the ground effect in a forest gives an excess 

attenuation maximum at low frequencies. This phenomenon often causes an 

insignificant effect of tree belts alongside traffic road on noise reduction as a 

constructive interference is appeared at around 1 kHz for traffic noise (Attenborough et 

al., 2007). 

2.3 Noise reduction by tree belts 

2.3.1 Measurement results 

It is generally stated that trees have no practical part to play in noise control (Kragh, 

1981; Tang et al., 1988). Kragh (1981) concluded that tree belts near the roads with a 
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width between 3 and 25 m result in only little attenuation for traffic noise. Tang and 

Ong (1988) also reported that trees in an urban canyon do not significantly influence 

traffic noise at ground level. However, it has been demonstrated that tree belts can cause 

sound reduction compared with open grassland, provided a wide tree belt is used, say 

greater than 30 m (Reethof, 1973).  

Aylor (1972) made a series of measurements to look at sound propagation over dense 

reeds (Phragmites), above a water surface. Ground attenuation can therefore be easily 

calculated. It was concluded that vegetation should be dense and broadleaf would 

attenuate noise effectively. 

Huisman et al. (1991) showed how the sound from a typical traffic noise spectrum is 

attenuated by the presence of a 100 m tree belt of pine trees and open pasture, in 

comparison with the free field level. The pine forest attenuated the overall A-weighted 

sound level by 10 dB more than the pasture. 

Pal et al. (2000) measured the extra attenuation in eight tree belts near two coalfields, 

and found that the average density and height of the plants has only a limited effect on 

the noise reduction. Larger plant heights could even be negative, probably due to 

increased downward scattering towards receivers. Vertical and horizontal light 

penetration was found to be major parameters. The excess attenuation by the tree belts 

with a depth of 50 m was 3.3-6.0 and 3.6-5.7 dBA in the two coalfields, respectively. 

Fang et al. (2003) measured the noise reduction effect of 35 evergreen  tree belts using a 

speaker generating traffic noise spectrum at 1.2 m high. Factors affecting the noise 
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reduction included visibility, width, height and length of the tree belts. Multiple 

regression analysis on the measured data showed that the visibility and width of the tree 

belts were the major parameter determining the extra attenuation, while height and 

length of the tree belts were the less significant factors affecting the noise reduction. 

The overall results showed that with low visibility and high density of tree belts, extra 9 

dBA attenuation can be achieved or more at 20 m source-receiver distance. However, 

this result seems to be overestimated due to the use of a point source at 1.2 m high 

which is not a true reflection of traffic noise, which would normally be represented by  a 

line source. 

The measurement result from the work by Tyagi (2006) showed that tree belts with a 

depth of 15 m can provide an extra attenuation at 3.15 kHz in one-third octave bands 

more than 24 dB. At low frequencies between 315 Hz and 400 Hz, the extra attenuation 

was observed by 16 dB. 

Van Renterghem et al. (2012) applied the 3D-finite difference time-domain method to 

predict sound propagation through an infinitely long and 15 m deep vegetation belt 

along a traffic road. The results showed that the presence of a forest floor alone, 

compared to sound propagation over grassland, reduces traffic noise level by around 3 

dBA. With increasing tree stem diameter, traffic noise was decreased. It was found that 

spacing parallel to the road was important in determining road traffic noise shielding. 

With reference to grassland, shrubs gave an average road traffic noise insertion loss of 

4.7 dBA. It was also estimated that downward scattering from tree canopy has negative 

effect from -0.8 to -0.4 dBA. 
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It has been shown that strategic tree and shrub arrangements are important for the 

effective noise reduction. In linear and random arrangements of trees, the noise 

reduction by scattering of trunks and branches could be relatively small in comparison 

with well-planned arrangements like sonic crystals (Umnova et al., 2006). Sonic 

crystals could be formed from trees, since trees can be arranged in periodic arrays. At 

mid-frequencies around 1 kHz, a part of trees including trunks and branches begin to 

scatter the sound out of the path between source and receiver. Due to the constructive 

interference by the ground effect, however, it has been seen that there is little difference 

in the attenuation between the grassland and forest. Therefore, it has been suggested 

that, by arranging the trees in particular arrangements to form sonic crystals, it could 

lead to the reduction in transmitted sound at these crucial mid-frequencies (Martínez-

Sala et al., 2006). 

2.3.2 Prediction schemes 

In prediction schemes for outdoor sound propagation such as ISO 9613-2, Nord 2000 

and Harmonoise, the excess attenuation by a forest is estimated using empirical and 

semi-empirical methods. 

ISO 9613-2 (ISO, 1996) gives the attenuation values in Table 2.1 for sound propagation 

through dense foliage. For distances less than 20 m, the values given are absolute dB. 

For distances between 20 and 200 m, the values given are dB/m and for distances 

greater than 200 m, the value for 200 m is used. However, measured attenuation rates 

are greater than predicted one according to ISO 9613-2 (Attenborough et al., 2007). 
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Nord 2000 (Kragh et al., 2002) allows for prediction of sound propagation through 

forests by considering two main effects. This model takes account of the reduced 

coherence between direct and reflected sound at mid frequencies and the attenuation 

effect at high frequencies. Tarrero et al. (2008) showed that predicted reduction of the 

ground effect dip due to loss of coherence is in reasonable agreement with the 

experimental results. At high frequencies, however, the agreement was poor in most 

cases. 

Table 2.1 Attenuation Af of an octave band of noise due to propagation a distance df through 

dense foliage 

 Octave band centre frequency (Hz) 

63 125 250 500 1000 2000 4000 8000 

Af (dB) for 10m≤ dƒ ≤20m 0 0 1 1 1 1 2 3 

Af (dB/m) for 20m ≤ dƒ ≤200m 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.12 

2.4 Vegetation in urban situations 

2.4.1 Measurement and prediction results 

Use of green spaces instead of impervious surfaces is becoming important to improve 

sustainability of cities. Greening urban spaces with vegetation such as green roofs and 

walls provides numerous ecological and economic benefits, including stormwater 

management, energy conservation, mitigation of the urban heat island effect, and 

increased longevity of roofing membranes, as well as providing a more aesthetically 

pleasing environment in which to work and live (Getter et al., 2006). Recently, there 

have also been attempts to investigate the acoustical benefits of greening buildings and 
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urban spaces (Connelly, 2011; Tang et al., 1988; Van Renterghem et al., 2008a, 2009, 

2011; Van Renterghem et al., 2013; Wong et al., 2010). 

The presence of acoustically hard materials in urban areas (asphalts, bricks, concrete, 

windows, etc.) leads to the increase of noise levels and reverberation due to multiple 

reflections between buildings (Aylor et al., 1973; Kang, 2000, 2005; Ko et al., 1978; 

Lyon, 1974; Mijic et al., 2012; Picaut et al., 1999; Steenackers et al., 1976; Wiener et 

al., 1965; Yeow, 1976, 1977). The results from the previous works can be summarised 

that reverberation in urban spaces can be as long as over 7 sec with reverberation gain 

of 2-7 dB (Mijic et al., 2012) due to multiple reflections which are influenced by many 

factors such as boundary conditions, topological conditions, source-receiver distances, 

street width, building height, and gaps between buildings, etc. These results imply the 

possibilities of vegetated roofs, walls and ground to urban streets, squares and roadside 

courtyards for noise abatement. 

In urban contexts, natural and sustainable materials including trees, shrubs, bushes, 

grass and seasonal flowers represent the common vegetation growing on the ground. 

Recently, the concept of greening in cities has been extended to roof and vertical 

gardens on buildings by means of green roofs and walls.  

Green roofs are vegetated layers sitting on top of the conventional waterproofed roof 

surfaces of a building. The type of green roofs can be categorized as intensive or 

extensive, depending mainly on the depth of the growing medium. Extensive green 

roofs (see Figure 2.1) are composed of lightweight layers of free-draining material that 

support low-growing, hardy, drought-tolerant vegetation. The depth of the growing 
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media is less than 15 cm. Intensive green roofs consist of large perennial herbaceous 

plants and, occasionally, shrubs and small trees. The depth of growing media on an 

intensive green roof is usually over 20 cm (Dunnett et al., 2004).  

A green wall is defined as a structure which is placed on building façades with 

vegetation. Green walls include green facades consisting of climbing leafy plants 

growing on a wall. Another type of green wall (see Figure 2.2) is the ‘living wall’ 

consisting of modular steel containers, geotextiles, irrigation systems, a growing 

medium and vegetation. Greening buildings with green roofs and walls can provide 

improved visual appearance especially in urban settings. They can also provide a habitat 

for wildlife including birds and beneficial insects. In comparison of roofs and walls 

consisting of concrete and glass, acoustic properties of green roofs and walls are rather 

absorptive and diffusive. Through sound absorption on the greening surface, green roofs 

and walls also have the potential to reduce urban noise pollution. 

 

Fig. 2.1 Extensive green roof on top of a building at the University of Sheffield 
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Fig. 2.2 Modular of the green wall containing substrate (left) and an example of the application 

(right). Copyright of the figures: Canevaflor, http://www.canevaflor.com 

Vegetation could be more effective in urban areas such as street canyons and squares 

where a strong amplification of the emitted sound from road traffic noise is observed 

due to multiple reflections. The increased sound levels could be reduced by replacing 

geometrically reflecting surfaces with absorptive and diffusive vegetation. In urban 

courtyards, the amount of sound energy propagating over rooftops from noisy sides to 

quite sides is mainly determined by the height, width and shape of buildings (Hornikx et 

al., 2007, 2009; Kang, 1996c; Van Renterghem et al., 2006). In this case, green roof 

systems on top of buildings can act as absorbers especially for diffracted sound waves 

between parallel streets and for that, parametric studies have been carried out (Van 

Renterghem et al., 2008a, 2009, 2010, 2011), showing that green roof systems are 

effective on noise mitigation, and therefore creating quiet sides. Moreover, it has been 

shown that green roofs can be used to effectively increase the sound insulation of light-

weight roof structures (Kang et al., 2009). 

http://www.canevaflor.com/
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Van Renterghem and Botteldooren (2008a) predicted sound propagation over intensive 

and extensive green roofs on a building between street canyons by using the finite-

difference time domain method. The result showed that the presence of a green roof 

results in an important decrease in SPL at the non-exposed side of a building. The effect 

of a green roof, relative to a rigid one, increases with increasing octave band centre 

frequency, and amounts to 10 dB decrease at 1000 Hz. The width-height ratio of the 

street canyon has only a limited influence. A good overall efficiency is observed near 

the maximum layer thickness of extensive green roofs, which is between 15 and 20 cm. 

With a substrate layer thickness exceeding 20 cm, positive effects are not influenced 

anymore by substrate thickness. 

For the different building configurations, the effect of green roofs in reducing total A-

weighted road traffic noise level was predicted according to the traffic speed (Van 

Renterghem et al., 2009). It was found that a green roof in a terrace-like configuration 

reduced road traffic noise level by approximately 5 dB, just above the terrace level. In a 

street canyon configuration, the acoustical façade load in the non-exposed canyon is 

largely influenced by both the roof slope and the presence of a green roof. With 

increasing traffic speed, the green roof effect increases for light vehicles rather than 

heavy vehicles. 

In-situ measurements of sound propagating over flat, extensive green roofs showed that 

green roofs may lead to a useful sound reduction at locations where only diffracted 

sound waves arrive (Van Renterghem et al., 2011). Among the single diffraction cases, 

green roofs reduced sound levels by 10 dB, over a wide frequency range. For the double 
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diffraction cases, positive effects in reducing noise levels were found up to 10 dB. 

2.5 Summary (Justification for the research work) 

2.5.1 Acoustic properties of vegetation (Chapter 3) 

Previous studies reviewed above examined absorption and scattering properties of 

vegetation, usually by means of free field and impedance tube methods. In acoustic 

computer simulations, based on ray tracing and radiosity, however, random-incidence 

absorption coefficient could be more appropriate acoustic properties for predicting 

diffuse sound fields accurately, rather than normal-incidence absorption coefficient 

(Cox, 2009). Unfortunately, up to now only limited measurements have been carried out 

using vertical greenery systems (Wong et al., 2010), gravel, turf, sand, snow (Kaye et 

al., 1940) and bedding plants (Smyrnova et al., 2010) in a reverberation chamber. 

Moreover, it is still essential to characterise the absorption coefficient of each of the 

components such as soil and leaf systematically. 

Random-incidence scattering coefficient, the ratio between non-specularily reflected 

sound energy and total reflected energy from boundaries, has been well recognised as an 

essential factor for improving the accuracy of sound field predictions (Zeng et al., 

2006). Previous studies on sound propagation in urban spaces such as street canyons 

(Kang, 2000) and urban squares (Kang, 2005), also suggest that scattering properties of 

boundaries, such as building façades play an important role in determining the acoustic 

parameters such as RT. Therefore, the random-incidence scattering coefficient of 

vegetation becomes more important as it is increasingly grown on building façades and 
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the neighbouring ground. Unfortunately, no previous data for the scattering coefficient 

of vegetation have been found. 

Therefore, Chapter 3 examines random-incidence absorption and scattering coefficients 

of vegetation through a series of measurements in a reverberation chamber in order to 

characterise the effects of various designable factors such as soil depths, soil water 

content and vegetation densities. 

The use of green walls has become popular as a tool for sustainable urban 

developments. However, few studies have attempted to measure acoustic properties of 

green walls. In Chapter 3, therefore, a series of measurements in a reverberation 

chamber has been conducted to examine the absorption coefficient of a green wall 

without vegetation by considering different moisture contents. 

2.5.2 Sound propagation through a single tree (Chapter 4) 

Although previous works reviewed above have been carried out in forests (groups of 

trees), it is important to examine sound scattering by a single tree. This is useful to 

validate theoretical models for predicting sound propagation through forests. In 

reverberant urban spaces such as street canyons and courtyards, it is also expected that 

trees might influence acoustic characteristics including RT and sound level distribution. 

Information on the reverberation effect from a single tree would be useful for a better 

understanding of acoustic effects of trees in urban environments. 

In Chapter 4, therefore, a series of measurements are carried out to investigate the effect 

of a single tree in open field on sound scattering and reverberation, and to examine what 
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parameters are relevant. 

2.5.3 Acoustic effect of green roof systems (Chapter 5) 

As reviewed above, natural and sustainable materials can be a useful tool to moderate 

noise pollution in urban areas. Previous studies showed that green roof systems can 

reduce noise levels for diffracted sound waves between parallel streets. At street level, 

various kinds of green roof systems can also be used, for example, on the top of 

underground car parking spaces. In particular, semi-extensive green roof systems can be 

installed in many places instead of grass land at street level due to various reasons such 

as better visual effects and maintenance. There is a potential that green roof systems on 

low barriers can be developed to an innovative and sustainable low barrier using natural 

materials for reducing traffic noise. However, studies on the use of green roof systems at 

street level have not been reported yet. In Chapter 5, therefore, a series of measurements 

in a semi-anechoic chamber has been carried out to explore systematically the effects of 

various designable parameters of green roof systems on a low barrier at street level on 

noise reduction. 

2.5.4 Effect of landscape designs in courtyards on noise reduction (Chapter 6) 

Some previous studies estimated the effects of green roof systems on rooftops in 

reducing traffic noise through case studies, which is helpful to create quiet side. On the 

other hand, when background noise from external spaces is reduced, sounds from within 

an outdoor space in residential buildings (i.e., courtyard) such as from social activities 

and conversation could become more important as sources of noise annoyance. 

Therefore, it is useful to study methods employing landscape designs to reduce sound 
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energy propagation within small and large outdoor spaces in residential buildings. To 

estimate the effect of vegetation in controlling sound field in relatively small outdoor 

spaces, Chapter 6 investigates the acoustic effect of landscape designs using vegetation 

through a case study in a courtyard located in an accommodation building. 

2.5.5 Acoustic characteristics in outdoor spaces of residential areas (Chapter 7&8) 

As reviewed above, previous studies focused mainly on sound propagation in urban 

street and squares. As with street canyons and urban squares, reducing noise levels and 

reverberation in outdoor spaces of residential areas could be more important. The 

reasoning behind this is that residents require environments with a high level of acoustic 

comfort due to their long-term and frequent use. In many countries, a percentage of the 

population lives in multi-storey apartment buildings due to the scarcity of available land 

space. In Korea, in particular, it is estimated that over 50 % of dwellings are multi-

storey apartment buildings. Therefore, it is still necessary to carry out further research 

on acoustic characteristics of outdoor spaces in apartment complexes. In Chapter 7 and 

8, a series of field measurements have been conducted to characterise the factors 

affecting sound fields in outdoor spaces of apartment complexes. 

In Chapter 7 and Chapter 8, the acoustic characteristics of relatively large outdoor 

spaces in apartment complexes have been measured, with particular interests in SPL 

attenuation and reverberation. On a basis of the measurement results, noise reduction 

effects of vegetation placed in outdoor spaces of apartment complexes have been 

predicted by using acoustic computer simulations in Chapter 8. 
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3 Random-incidence Absorption and Scattering 

Coefficients of Vegetation 

The aim of this chapter is to examine random-incidence absorption and scattering 

coefficients of vegetation through a series of measurements in a reverberation chamber 

in order to characterise the effects of various designable factors such as soil depths, soil 

water content and vegetation densities. It begins with a description of the research 

background in Section 3.1. In Section 3.2, measurement and calculation methods for 

those coefficients are explained. In Section 3.3, measurement results are described as: 1) 

absorption coefficient of soil with and without vegetation, 2) absorption and scattering 

coefficients of leaves and stems, and 3) absorption coefficients of the green wall. In 

Section 3.4, key findings of this research work are addressed. 

3.1 Introduction 

The greening of buildings and surrounding spaces is important for sustainable urban 

design (Jim, 2004). A previous study suggested that environmental impact can be 

reduced with a better selection of acoustic materials/components (Yu et al., 2009), and 

as acoustically sustainable materials, vegetation can be placed on building façades, 

roofs, or at ground level, which all might influence the sound fields (Van Renterghem et 

al., 2008a; Wong et al., 2010). It was shown that vertical greenery systems are effective 

in reducing sound levels as well as absorbing sound energy (Wong et al., 2010). Also, 

green roof systems on rooftops can reduce noise levels by over 10 dB over a wide 

frequency range (Van Renterghem et al., 2008a). At street level, green roof systems can 

be used as vegetative low barriers (see Chapter 5 of this thesis). In terms of subjective 
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evaluation, this in turn can also contribute to reducing noise annoyance and improving 

soundscape (Veisten et al., 2012). It is therefore important to examine systematically 

how vegetation can absorb and scatter sound. 

Previous studies suggest that vegetation can absorb and scatter sound through ground 

effect, thermo-viscous absorption at the soil and at the surface of leaves, scattering by 

stems and leaves, and damping by vibrating vegetation elements (Attenborough, 1988; 

Martens et al., 1981; Martens et al., 1985; Price et al., 1988; Tang et al., 1986). Price et 

al. (1988) found that scattering by foliage can contribute to noise attenuation especially 

above 1 kHz. Martens et al. (1985) studied acoustic reflection characteristics of 

deciduous plant leaves, showing the importance of leaf dimension and leaf mass for 

sound reflection. Measurements for leaf vibration induced by sound showed that 

absorption from leaves is important at high frequencies above 1 kHz, whereas below 1 

kHz there is little sound absorption from leaves (Martens et al., 1981; Tang et al., 1986). 

Ground effect is the result of interference between the direct sound and reflection from 

the ground. In a forest, particularly, this results in a more pronounced noise reduction at 

low frequencies due to a porous layer consisting of decomposing vegetation on the 

ground (Attenborough, 1988). 

To characterise each mechanism, sound absorbing and scattering properties of 

vegetation were examined, usually using the free field and impedance tube methods. 

Although free field data can be converted to random-incidence coefficients 

approximately using theoretical models (Makita et al., 1988), they are based on an 

idealised situation and thus, it is still necessary to carry out direct measurements in a 

diffuse sound field where sound is likely to be incident from all directions onto 
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boundaries. In acoustic computer simulations, based on ray tracing and radiosity, for 

example, random-incidence absorption coefficient is one of the important acoustic 

properties needed for predicting sound fields accurately (Cox, 2009). Unfortunately, up 

to now only limited measurements have been carried out using vertical greenery 

systems (Wong et al., 2010), gravel, turf, sand, snow (Kaye et al., 1940) and bedding 

plants (Smyrnova et al., 2010) in a reverberation chamber. Moreover, it is still essential 

to characterise the absorption coefficient of each of the components such as soil and leaf 

systematically. 

In room acoustics, random-incidence scattering coefficient, the ratio between non-

specularily reflected sound energy and total reflected energy from boundaries, has been 

well recognised as a factor for improving the accuracy of sound field predictions (Zeng 

et al., 2006). Previous studies on sound propagation in urban spaces such as street 

canyons (Kang, 2000) and urban squares (Kang, 2005) also suggest that scattering 

properties of boundaries such as building façades play an important role in determining 

the acoustic parameters such as RT. In internal spaces with acoustic defects such as 

echoes and long reverberation, selecting suitable scattering properties of boundaries is 

also important to improve speech intelligibility (Kang, 1996a, 2002c). Therefore, the 

random-incidence scattering coefficient of vegetation becomes more important as it is 

increasingly grown on building façades and the neighbouring ground. Unfortunately, no 

previous data for the scattering coefficient of vegetation have been found. 

The aim of this chapter is therefore to examine random-incidence absorption and 

scattering coefficients of vegetation through a series of measurements in a reverberation 

chamber in order to characterise the effects of various designable factors such as soil 
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depths, soil water content and vegetation densities. Such data are also useful for 

acoustic computer simulations. The absorption coefficient of soil without vegetation 

was measured with different levels of soil depth and moisture content. The combined 

effect of soil and low-growing vegetation on the absorption coefficient was also 

investigated with different vegetation densities. Then the absorption and scattering 

coefficients of the aboveground vegetation components only (i.e., without the effect of 

soil and roots), such as stems and leaves, were measured using three different plant 

species, considering different levels of vegetation coverage. Finally, the absorption 

coefficient of a green wall without vegetation was measured, considering different 

moisture contents. 

3.2 Methodology 

3.2.1 Measurement method 

Random-incidence absorption coefficient was measured and calculated according to 

ISO 354 (ISO, 2003) in a reverberation chamber of 216 m
3
. A 01dB acquisition system 

was used, connected to a 01dB DO12 omni-directional speaker with a M700 power 

amplifier and two ½” microphones (G.R.A.S type MCE 201) with 01dB-Stell Pre 12H 

preamplifiers. An MLS (maximum length sequence) signal was generated for the 

measurement. RTs in one-third octave bands were averaged over 12 source-receiver 

positions (three source and four receiver positions) and three repeated tests for each 

source-receiver position. The RT was calculated with the decay curve between 5 dB and 

25 dB from the initial level, using the DIRAC analysis program from B&K (2010) 

which has a noise compensation function to reduce the effect of background noise on 

RT calculation. The signal to noise ratio was greater than 46 dB across frequencies in an 
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unweighted value. 

Measurements for random-incidence scattering coefficient were carried out based on 

ISO 17497-1 (ISO, 2004). The principle of the measurement method is to extract the 

specular energy by synchronised (phase-locked) averaging of the impulse responses 

obtained for different sample orientations. By synchronised averaging of the pressure 

impulse responses, the specular components add up in phase, whereas the scattered 

sound interferes destructively. To obtain impulse responses for different sample 

orientations, the scattering coefficient is measured using a circular rotatable turntable. 

The turntable used in this chapter has a 3 m diameter baseplate of area 7.07 m
2
 over an 

air gap of 220 mm to mount a drive motor. Made from 18 mm thick plywood, the 

baseplate is mounted on a central bearing and is supported by twelve wheels. A 

perimeter wall of height 200 mm constructed from 12 mm thick MDF board is attached 

to the baseplate and the inside has a waterproof liner made from 1 mm thick EPDM 

rubber. To determine the impulse response from which the RT can be calculated using 

the Schroeder methods, an MLS signal was again used. The angular step for the 

measurement of the scattering coefficient was determined as 5 °, corresponding to 72 

measurements during one continuous rotation of the turntable. One complete rotation of 

the turntable took approximately 12 minutes, a short enough time to suggest that any 

effect of variations in temperature and relative humidity on the measurement of 

scattering coefficient would be small. In this experiment, eight measurements consisting 

of two source and four microphone positions were conducted with the same equipment 

used for the measurement of random-incidence absorption coefficient. Figure 3.1 shows 

the schematic diagram of the experimental condition. In Figure 3.2, a photo of the 

measurement setup for the baseplate with water is shown. 
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Fig. 3.1 Schematic diagram of the experimental arrangement 

 

Fig. 3.2 Photo of the measurement setup for the baseplate with water 

3.2.2 Calculation method for the absorption and scattering coefficients 

Impulse responses were measured without and with the test sample on the non-rotating 

turntable, giving reverberation times T1 and T2, respectively. The random-incidence 

absorption coefficient is then determined by the difference between T1 and T2 (ISO, 

2003). 

The result of the measurement with the continuously rotating turntable without the test 
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sample is reverberation time T3 and the result for the rotating turntable with the test 

sample is reverberation time T4. 

The scattering coefficient, s, can be derived using the random-incidence absorption 

coefficient, αs, and the specular absorption coefficient, αspec (ISO, 2004): 
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where, αs: Random-incidence absorption coefficient 

αspec: Random-incidence specular absorption coefficient 

V: Volume of the reverberation room (m
3
) 

S: Surface area of test sample (m
2
) 

c: Speed of sound (m/s) 

T: Reverberation time (s) 

The scattering coefficient can then be calculated using the following formula: 
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Eq. 3.3 

 

While the scattering coefficient should be between 0 and 1, actual measurements could 

deliver a scattering coefficient greater than 1 due to the edge effect. The calculation 

method of the scattering coefficient for the test sample compensates the one of the 

baseplate alone based on Eq. 3.2. This enables the scattering coefficient of the test 

sample to be less than that of the baseplate. 

3.2.3 Measurement of absorption coefficient for soil without vegetation 

Topsoil is the naturally occurring uppermost layer of soil (above subsoil and underlying 
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rock) that is relatively high in organic matter and nutrients (Tucker et al., 1995). When 

there is vegetation, the topsoil contains most of the plant roots. Topsoil used for 

measuring the absorption coefficient was placed on a polythene sheet on the floor of the 

reverberation chamber and within a rectangular perimeter frame constructed from MDF 

board. External dimensions of the frame were 3.8 m (L) × 2.7 m (W) × 200 mm (H) and 

its walls were 36 mm thick, giving the soil a surface area of 10 m
2
. There were no air 

gaps between the soil sample and the floor or perimeter frame. At the maximum soil 

depth of 200 mm the frame supported two cubic-metres of topsoil weighing 

approximately 3000 kg. The porosity and density of the topsoil tested were 0.39 and 

1255 kg/m
3
, respectively (Benkreira et al., 2011). 

Soil depths of 50 mm, 100 mm, 150 mm and 200 mm were tested. Some compaction of 

soil (reducing porosity) was expected due to its own weight on lower layers but no 

additional pressure was applied. Accordingly, it is expected that this could result in a 

relatively high absorption coefficient even with a thin layer of the topsoil, due to the low 

compactness. 

With a 200 mm soil depth, soil moisture content was increased from the initial in-bag 

level with a saturation of 12.5 %, by adding measured volumes of water manually by 

watering can. To help in the even distribution of water a grid of ten equal rectangles was 

marked on the soil surface with string and the watering can was fitted with a rose to 

create a spray. Also, thirty minutes were allowed each time for the water to soak down 

into the soil before starting the measurements. Sound absorption was measured for the 

sample with no watering and for seven increases in moisture content: 0.003, 0.007, 0.01, 

0.013, 0.017, 0.02, 0.033 litres of water in total added per 1 kg of soil. Corresponding 
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volumetric soil moisture levels, measured with a Delta-T HH2 meter and SM200 probe 

just before each set of acoustical measurements, were 12.5±0.5, 17.0±0.6, 20.4±1.9, 

23.8±2.6, 25.4±2.9, 26.3±1.9, 28.9±2.0 and 34.1±2.4 %, respectively. These were 

measured in the top layer of soil. The total amount of moisture added to the soil (10 

litres/m
2
) was equivalent to 10 mm of rainfall. Figure 3.3 shows the experimental 

condition of topsoil with a 50 mm depth. 

 

Fig. 3.3 Topsoil of 50 mm depth 

3.2.4 Measurement of absorption coefficient for soil with vegetation 

Random-incidence absorption coefficient for different levels of soil vegetation coverage 

were measured using specimens of eight plant species normally used in urban planting 

and landscaping schemes. Table 3.1 shows the plants’ dimensional characteristics and 

the proportion of each species. The maximum level of vegetation coverage (100 %) 

used 264 plants. All plants were individually potted (pot diameter 130-180 mm) and 

sunk into 200 mm of soil so that the rim of the pot was approximately 15 mm below the 

soil surface. The moisture content of topsoil was 12.5 %, at the initial in-bag level. To 



Chapter 3. Random-incidence Absorption and Scattering Coefficients of Vegetation 

41 

 

remove a plant its pot was lifted out and the cavity filled-in with more topsoil to restore 

the general surface. Approximate values for total leaf area were calculated from digital 

images of individual leaves and the number of leaves on a plant from each species. The 

final column in Table 3.1 shows relative contributions of different plant species to the 

total leaf area which was estimated at 17.5 m
2
 for the maximum vegetation coverage 

level tested. 

Table 3.1 Characteristics of 264 plants of eight species providing soil vegetation coverage 

Plant 

 

Leaf area 

per plant 

(m2) 

Plant 

max. 

height 

(mm) 

Plant 

max. 

diameter 

(mm) 

Number of 

plants used 

for 100% of 

max. coverage 

Percentage of 

all plants in 

sample 

(%) 

Percentage of 

total leaf area 

in sample  

(%) 

Origanum 

Vulgare Aureum 

0.038 90 220 3 1 1 

Ceratostigma 

Plumbagincides 

0.173 240 280 18 7 18 

Spiraea Japonica 0.076 230 230 84 32 36 

Hebe Great Orme 0.070 200 200 72 27 29 

Azalea 0.125 150 260 6 2 4 

Hylotelephium 

telephium 

0.014 120 140 32 12 3 

Cistus 

Dansereaui 

0.082 300 320 11 4 5 

Helianthemum 0.020 100 220 38 14 4 
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Fig. 3.4 200 mm topsoil with eight plant species: (a) 40 % vegetation coverage (106 plants); (b) 

100 % vegetation coverage (264 plants) 

To examine its effect on sound absorption vegetation coverage was gradually reduced 

by removing plants in a way that maintained the original proportions of different species 

while keeping the distribution of plants reasonably even across the soil surface. Sound 

absorption was measured for six levels of vegetation coverage: 264 plants (100 % of 

maximum coverage); 211 plants (80 % coverage); 158 plants (60 % coverage); 106 
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plants (40 % coverage); 53 plants (20 % coverage); and no plants (0 % coverage). 

Figure 3.4(a) shows the experimental condition of 200 mm topsoil with 40 % of 

maximum vegetation coverage. 

3.2.5 Leaves and stems 

Buxus (Buxus Sempervirens), Holly (Ilex aquifolium) and Ivy (Hedera helix), which are 

commonly used for green landscaping in Europe, were selected to measure random-

incidence absorption and scattering coefficients of aboveground components of plants 

such as leaves and stems. These species have different sizes of leaf for examining the 

effect of leaf size on absorption and scattering. 

With the test sample consisting of living plants in pots (Buxus and Holly) and the 

requirement to measure only the aboveground plant structure it was necessary to fill the 

void space between pots with an acoustically hard and flat material to reduce the 

absorption and scattering coefficients of the baseplate. Thus, the plant pots holding the 

root ball and soil were excluded from the measurements by submerging them in water, 

leaving only the plant stems and leaves above the water surface. They were positioned 

with an even distribution across the baseplate/water surface. 

To examine its effect on random-incidence absorption and scattering coefficients of 

Buxus and Holly, the density of vegetation coverage was gradually reduced by 

removing plants and replenishing the water. Six steps of vegetation coverage for Buxus 

were considered as 100 % of maximum coverage (110 plants), 80 % (88 plants), 60 % 

(66 plants), 40 % (44 plants), 20 % (22 plants), and 0 % (no plants). For Holly, the 

density of vegetation coverage was changed in a similar way with 100 % (123 plants), 

80 % (98 plants), 60 % (74 plants), 40 % (49 plants), 20 % (25 plants) and 0 % (no  
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Fig. 3.5 Measurement conditions of random-incidence scattering coefficient: (a) Buxus with 

100 % vegetation coverage using 110 plants; (b) Holly with 100 % vegetation coverage using 

123 plants; (c) Ivy prunings of 200 mm depth 



Chapter 3. Random-incidence Absorption and Scattering Coefficients of Vegetation 

45 

 

Table 3.2 Physical properties of Buxus, Holly and Ivy 

Plant  Area per 

leaf 

(cm2) 

Leaf area 

per plant 

(m2) 

Plant max. 

height 

(mm) 

Plant max. 

diameter 

(mm) 

Height 

of pot 

(mm) 

Diameter 

of pot 

(mm) 

Buxus  0.98 0.048 300 230 150 190 

Holly 14.1 0.027 200 210 100 90 

Ivy (prunings) 38.5 - - - - - 

plants). In the case of Ivy, three different levels of vegetation density were considered 

using 100 % (200 mm depth), 50 % (100 mm depth) and 25 % (50 mm depth) layers of 

fresh prunings, all evenly distributed on the baseplate. The 200 mm of Ivy was assumed 

as a maximum depth growing on building façades and grounds. In Figure 3.5, 

measurement setups for the scattering coefficient of Buxus, Holly and Ivy with the 

maximum vegetation coverage and density are shown. Table 3.2 describes the plant 

properties used for this experiment. 

3.2.6 Green wall 

Figure 3.6 shows a green wall made of a substrate from Canevaflor 

(http://www.canevaflor.com/), as located in the reverberation chamber for 

measurements. The size of the green wall was 10 m
2
 (2 m high by 5 m long). The wall 

has a depth of 200 mm and contains approximately 750 kg of substrate (in-bag 

condition with no water added). It comprises a modular system of five identical 

galvanized steel frames designed to clad a building. These frames rested on the floor of 

the reverberation chamber and were fixed to a section of flat wall. Geotextile linings 

within the steel mesh hold the substrate – coconut fibres with some perlite and a water-

retaining polymer. The porosity of the substrate is 0.76, which is much higher than that 

of topsoil, 0.39. The substrate has a density of 250 kg/m
3
, which is much lighter than 

http://www.canevaflor.com/
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that of topsoil, 1255 kg/m
3 

(Benkreira et al., 2011). 

Irrigation came through five horizontal drip pipes embedded in the substrate and 

running the full width of the wall. Connection to the mains water supply was via a flow 

meter which enabled accurate control of the increases in substrate moisture content. 

Two factors allowed greater time for water to be absorbed more evenly throughout the 

substrate: flow rate from the supply was regulated at 170 litres per hour (<3 litres/min.) 

and, following each increase in moisture content, measurements commenced after a 30 

minute delay.  

Substrate moisture content was increased from its initial in-bag level with a saturation 

of 37.8 % in volumetric moisture level by adding 1, 5, 15, 30, 60 litres of water in total 

per square metre of wall which is equivalent to 0.01, 0.07, 0.2, 0.4 and 0.8 litres of 

water added per 1 kg of substrate. Eventually, with 600 litres of water added, there was 

some pooling at the base of the wall which was enclosed by an impermeable membrane 

suggesting the substrate was saturated. The procedure of measurements of RT was the 

same as with the topsoil measurement. 

 

Fig. 3.6 Green wall without vegetation, mounted on a flat wall of reverberation chamber 



Chapter 3. Random-incidence Absorption and Scattering Coefficients of Vegetation 

47 

 

3.3 Measurement results 

3.3.1 Soil without vegetation 

Figure 3.7 shows random-incidence absorption coefficients for topsoil of four different 

depths of 50 mm, 100 mm, 150 mm and 200 mm. The result suggests that even the thin 

soil layer with a depth of 50 mm provides a absorption coefficient at mid and high 

frequencies with an absorption coefficient over 0.9 at around 1 kHz. Also there were 

only slight changes in the absorption coefficient of about 0.1 with increased soil depth. 

In comparison with 50 mm depth, a slight increase in the absorption coefficient is found 

with increased soil depth at low and mid frequency ranges. On the other hand, a slight 

decrease in the absorption coefficient can be seen at high frequencies over 2 kHz due to 

the increase in soil compaction with increasing soil depths. Overall, the results indicate 

that increasing soil depth does not significantly increase the absorption coefficient in the 

case of topsoil with a depth over 50 mm. The main reason for this result is that topsoil is 

of low permeability with a relatively low porosity and small pores, making the acoustic 

penetration depth very small. Therefore, increasing the layer depth beyond 50 mm has 

insignificant influence on the measured absorption coefficient. It is expected that the 

effect of soil depth on the absorption coefficient depends more on the soil conditions 

such as porosity and flow resistivity. 

In Figure 3.8, a decrease in the absorption coefficient of about 0.2-0.6 at different 

frequencies was observed with the increase in soil moisture content. It can be seen that 

the absorption coefficient is rapidly decreased after the initial application of water to the 

soil surface, especially at mid and high frequencies, since this reduces the porosity and 

effective pore size of topsoil. A comparatively large increase in moisture content when 
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the total water added went from 6 litres/m
2
 to 10 litres/m

2
, namely 12.5 % to 34.1 % in 

terms of moisture content, produced a small decrease in sound absorption, indicating a 

nearly saturated surface layer. Such results are comparable to the previous work 

(Horoshenkov et al., 2006) showing the effect of moisture on the acoustic admittance of 

porous sands and sandy soils. 

 

Fig. 3.7 Absorption coefficient of topsoil with different soil depths 

 

Fig. 3.8 Absorption coefficient of 200 mm topsoil with different soil moisture content (%) 
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3.3.2 Soil with vegetation 

Figure 3.9 shows the absorption coefficient of topsoil with six different levels of 

vegetation coverage. The result indicates that with increasing vegetation coverage, the 

absorption coefficient increased by about 0.2 at low and mid frequencies. This is likely 

because viscous friction losses and the inertia effect of vegetation affect sound 

absorption at low and mid frequencies. This result is similar to that of a parallel study 

(Benkreira et al., 2011), which shows that vegetation with relatively large leaves (i.e., 

Primrose) can increase normal-incidence absorption coefficient at low frequencies when 

it is planted in soil. Generally speaking, the increase of absorption at low and mid 

frequencies can be regarded as a result of the increased thickness and density of the 

porous materials on top of the topsoil. However, when it comes to frequencies around 2 

kHz the changes in vegetation coverage appear to have no effect on sound absorption. 

Over 2 kHz, the absorption coefficient was slightly decreased by about 0.1 with the 

increase in vegetation coverage. This is perhaps due to the increased reflection with 

increased leaf surface areas, and the effect of soil absorption becomes relatively less. 

 

Fig. 3.9 Absorption coefficient of topsoil with different levels of vegetation coverage 
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Overall, these results imply that there is a possibility to choose suitable leaf types, sizes, 

and densities to reduce noise levels by considering the spectrum of sound sources. 

3.3.3 Absorption by leaves and stems 

Figure 3.10 shows the absorption coefficient of aboveground components such as stems 

and leaves for three different types of vegetation including Buxus, Holly and Ivy. 

Different levels of vegetation density of coverage were considered for each type of 

vegetation. As shown in Figure 3.10(a) and 3.10(b), the maximum absorption 

coefficient for Buxus and Holly are about 0.2 at 5 kHz with 100 % vegetation coverage. 

With increasing vegetation coverage, generally speaking, the absorption coefficient is 

gradually increased for both species. It can also be seen that Buxus and Holly have a 

slightly higher absorption coefficients at high frequencies than that at low frequencies. 

The result in Figure 3.10(c) shows that the absorption coefficient of Ivy increases with 

increasing vegetation density of coverage, especially at above 1.6 kHz. The maximum 

absorption coefficient is 0.49 at 5 kHz with the maximum coverage (200 mm depth). 

Ivy with a depth of 50 mm, which can be regarded as a more realistic depth growing on 

building façades, has a maximum absorption coefficient of 0.39 at 4 kHz. In comparison 

with Buxus and Holly, the maximum absorption coefficient for Ivy is considerably 

higher, possibly due to the larger size and amount of leaves. Similar to Buxus and Holly, 

with Ivy, with increasing frequency, the absorption also becomes higher. The overall 

results suggest that the absorption coefficient of vegetation is increased with increasing 

vegetation coverage and leaf sizes, especially at high frequencies. 
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Fig. 3.10 Absorption coefficient of vegetation with different levels of vegetation 

coverage/density: (a) Buxus; (b) Holly; (c) Ivy 
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3.3.4 Scattering of leaves and stems 

The scattering coefficient of the baseplate itself is an important factor determining the 

measurement accuracy for the scattering coefficient of the test sample. In ISO 17497-1 

(ISO, 2004), the maximum scattering coefficient of the baseplate alone is specified with 

frequency-dependent values in one-third octave bands from 100 Hz to 5 kHz, in order to 

ensure the quality of the experimental arrangement. Figure 3.11 shows the scattering 

coefficient of the baseplate containing water of depth 200 mm. It can be seen that the 

scattering coefficient of the baseplate is generally below the ISO maximum values.  

 

Fig. 3.11 Scattering coefficient of the baseplate containing water with 200 mm depth 

In Figure 3.12, the scattering coefficient of leaves and stems for Buxus, Holly and Ivy is 

shown. It can be seen that in general, the scattering coefficient increases with increasing 

vegetation coverage for all three plant species. The scattering coefficient is also higher 

at high frequencies, perhaps due to the size of leaves and stems. The maximum 

scattering coefficient of Buxus is 0.26 at 5 kHz, and for Holly, the maximum scattering 

coefficient is 0.33 at 5 kHz. The result for Ivy shows that the vegetation density 
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Fig. 3.12 Scattering coefficient of vegetation with different levels of vegetation 

coverage/density: (a) Buxus; (b) Holly; (c) Ivy 
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of coverage plays an important role in increasing the scattering coefficient, especially 

above 1 kHz. The maximum scattering coefficient is 0.43 at 2.5 kHz for 100 % density 

(200 mm depth). In comparison with Buxus and Holly, Ivy can scatter sound energy at 

relatively lower frequencies, say from 1 kHz, due to its relatively larger size and density 

of leaves. 

3.3.5 Green wall 

Figure 3.13 shows the absorption coefficient of the unplanted green wall, considering 

different amounts of water added to the substrate. It can be seen that the absorption 

coefficient gradually decreases with increasing substrate moisture content, especially at 

low frequency, and the total decrease is about 0.2. However, the variation in the 

absorption coefficient for the green wall is considerably less in comparison with that for 

topsoil. This result is comparable with the previous study using an impedance tube 

(Benkreira et al., 2011). The main reason is that the substrate of the green wall, which 

consists of very porous and lightweight materials including a water-retaining polymer, 

can absorb more water in comparison with topsoil while keeping a considerable level of 

porosity. The two measurement results at the water level of 60 litres per square metre, 

which were carried out on consecutive days with a 16 hour interval, show that there is 

an insignificant variation in the absorption coefficient. It is noted that at lower 

frequencies than 100 Hz, the absorption coefficient goes down to zero abruptly. 

A previous study based on impedance tube measurement suggested that the green wall 

with vegetation can give a higher absorption coefficient compared to that without 

vegetation (Horoshenkov et al., 2011). 
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Fig. 3.13 Absorption coefficient of the green wall with different levels of substrate moisture 

content, shown in terms of water added. 

3.4 Summary 

In this chapter, a series of measurements were carried out in a reverberation chamber to 

examine random-incidence absorption coefficients and scattering coefficients of 

vegetation, by considering various factors such as soil depth, soil moisture content, the 

level of vegetation coverage and leaf size. 

Measurements for different depths (50, 100, 150, 200 mm) of soil without vegetation 

have shown that even a relatively thin soil layer with a depth of 50 mm provides an 

absorption coefficient of about 0.9 at around 1 kHz and there are only slight changes of 

the absorption coefficient of about 0.1 with increased soil depth. A decrease in 

absorption coefficient, by about 0.2-0.6 at different frequencies, has been observed with 

the increase of soil moisture content. A rapid decrease in absorption has been shown 

after adding a small amount of water on a relatively dry soil surface, especially at mid 

and high frequencies. On the other hand, there is an insignificant change in sound 
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absorption when the soil is nearly saturated. Different from topsoil, the result for the 

green wall shows that it can absorb sound effectively at mid and high frequencies with 

the absorption coefficient over 0.6 even if the substrate is nearly saturated. 

The experiment results for soil with different levels of vegetation coverage have 

suggested that with increasing vegetation coverage, the absorption coefficient increases 

by about 0.2 at low and mid frequencies, whereas over about 2 kHz the absorption 

coefficient could be slightly decreased by about 0.1. 

It has been shown that the aboveground vegetation components such as leaves and 

stems can absorb sound, especially at high frequencies. Generally speaking, the 

absorption coefficient is increased with increasing vegetation coverage and density. The 

maximum absorption coefficients of Buxus, Holly and Ivy are 0.18, 0.20 and 0.49 at 5 

kHz, respectively. The aboveground components can also scatter sound energy at high 

frequencies. With increasing vegetation coverage and density, the scattering coefficient 

increases gradually. The scattering coefficients of Buxus and Holly can reach 0.26 and 

0.33 at 5 kHz with 100% vegetation coverage, where the maximum scattering 

coefficient of Ivy is 0.43 at 2.5 kHz.  
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4 Quantifying Scattered Sound Energy from a Single 

Tree by means of Reverberation Time 

The aim of this chapter is to investigate the effect of a single tree in open field on sound 

scattering by means of RT, and to examine which parameters are relevant. Therefore, a 

series of field measurements involving five single trees of different species and crown 

sizes were carried out. It starts, in Section 4.1, with a review of previous studies 

allowing the research background to be defined. In Section 4.2, it explains the principle 

of quantifying scattered sound energy from a single tree by means of reverberation time. 

Measurement methods and reliability are examined in Section 4.3 and Section 4.4, 

respectively. In Section 4.5, measurement results are described as: 1) tree sizes with and 

without foliage, 2) source-receiver angles, and 3) source-receiver distances. Lastly, 

Section 4.6 summarises key findings of this chapter. 

4.1 Introduction 

In the last few decades since the pioneering work by Eyring (1946), studies on the 

acoustic effect of trees have been focused on sound propagation through forests and tree 

belts. A number of studies have demonstrated the effect of forests and tree belts on noise 

reduction (Embleton, 1963; Fang et al., 2003; Fricke, 1984; Kragh, 1981; Tyagi et al., 

2006; Van Renterghem et al., 2012). Various numerical and experimental methods have 

also been investigated to characterise the influential factors affecting sound propagation 

through forests. Previous work suggests that ground effect, sound scattering, and sound 

absorption by tree elements (trunks, branches, stems, leaves, etc.) play a role in sound 

propagation through forests (Aylor, 1972; Burns, 1979; Fan et al., 2010; Heimann, 
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2003; Martínez-Sala et al., 2006; Martens, 1980; Martens et al., 1981; Price et al., 1988; 

Swearingen et al., 2007; Van Renterghem et al., 2002, 2008b; Watanabe et al., 1996; 

Wunderli et al., 2009; Wunderli, 2012). Ground effect is the result of interference 

between direct sound and sound reflected from the ground. It depends on the acoustic 

properties of the ground, as well as the positions of the source and receiver. At 

frequencies above 1 kHz, trees contribute to sound attenuation increasingly with 

frequency due to sound scattering by trunks and branches, as well as foliage scattering 

and absorption by viscous friction and damped vibrations. There have also been a few 

attempts to show that forests induce a reverberant sound field, indicating the importance 

of sound scattering by tree elements (Huisman et al., 1991; Padgham, 2004; Richards et 

al., 1980). 

While there have been numerous studies involving groups of trees, it is also worth 

examining sound scattering by a single tree. Firstly, this helps validate theoretical 

models for predicting sound propagation through forests. Secondly, in reverberant urban 

spaces such as street canyons and courtyards, trees are expected to influence sound field 

characteristics including RT and sound level distribution. Compared to open field, the 

effect of trees could even be enhanced since there are multiple passages through the 

trees due to multiple reflections between building façades (Kang, 2000, 2002b; Van 

Renterghem et al., 2006). Thus, information on sound scattering from a single tree 

would be useful for better understanding acoustic effects of trees in these urban 

environments. 

Previously, Ding et al. (2010) attempted to examine sound scattering from a single tree 

by performing time-domain analysis as well as comparing early and late scattered sound 
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energy. Although these analysis methods are useful to explain the characteristics of a 

single tree on sound scattering, it is still needed to suggest a suitable acoustic indicator 

to directly compare the amount of sound energy scattered from various types of a single 

tree with different conditions, and to validate numerical modelling of sound propagation 

through a single tree. It is expected that the scattered sound energy is appeared at the 

late part of an impulse response. Therefore, it is assumed that the method for RT 

calculation can be applied to examine the effect of a single tree on sound scattering, as 

stronger scattered sound energy produces longer RT. 

The aim of this chapter is therefore to investigate the effect of a single tree in open field 

on sound scattering by means of RT, and to examine which parameters are relevant. The 

effect of a single tree on sound scattering is expected to depend on many factors such as 

the tree canopy size and species, the amount and seasonal condition of foliage, source-

receiver angle and distance, ground condition, and source and receiver heights. 

Consequently, a series of field measurements involving five single trees of different 

species and crown sizes were carried out. 

4.2 Principle of quantifying scattered sound energy from a single tree 

by means of reverberation time 

As shown in Figure 4.1, sound propagating near a single tree can arrive at a receiver by 

a number of paths, including direct sound, ground reflected, purely scattered, and 

scattered in combination with ground reflection. This shows complex mechanisms of 

sound scattering produced by a single tree. 
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Fig. 4.1 Diagram for sound paths through a single tree from a point source to a receiver 

Figure 4.2 shows two impulse responses measured in open field in the presence and 

absence of a single tree (Tree 5 in Figure 4.3). The measurement was carried out at a 

source-receiver distance of 60 m for a point source (starting pistol) at 1.5 m height and a 

receiver at 1.5 m height. The result with the tree has considerably stronger sound energy 

in the late part of the impulse response in comparison with the result without the tree. 

Correspondingly, this would bring an increase in RT. 

 

Fig. 4.2 Impulse responses measured in open field in the absence and presence of a single tree 

4.3 Measurement method 

4.3.1 Experimental conditions 
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Measurements were carried out six times in the Park at Chatsworth House near 

Sheffield, United Kingdom, between September 2010 and March 2012. Five individual 

trees of different species and sizes were selected to examine the importance of sound 

scattering (see Figure 4.3). To suppress late reflections, the selected trees stood alone on 

flat grassland with sufficiently large distances (over 70 m) to other trees and obstacles. 

The sound scattered by a targeted tree decays 35 dB from the initial amplitude within 

150 ms, or 51 m assuming a sound speed of 340 m/s. Therefore, a maximum source-

receiver distance of 60 m was determined to provide a sufficient time interval between 

scattered sound from a tree and late reflections from other obstacles.  

Table 4.1 describes properties of the five individual trees named from Tree 1 to Tree 5 

on the basis of increasing size. The areas of imaginary surfaces enclosing the tree 

crowns, with their complex shapes, were calculated using Google’s SketchUp 

programme with a function to adjust scale on the basis of a reference object (i.e., a 

human figure in this study). Table 4.2 provides meteorological conditions during the 

measurements. Humidity and temperature were measured 1.5 m above the ground with 

a CEM DT-615 meter just before and after each set of acoustical measurements. Wind 

speed 2.5 m above the ground was recorded with a Testo 405-V1 meter at the same 

times. Temperatures and relative humidity levels were quite similar during the 

measurements, except on Days 2 and 6. This inconsistency might have caused different 

atmospheric absorption especially at high frequencies due to the rather long travelling 

path in a tree crown. However, the atmospheric attenuation coefficient α (dB/m) at 4 

kHz for each measurement day, calculated based on ISO 9613-1 (ISO, 1993), indicates 

that the difference in temperature and humidity has a negligible contribution to the 

variation in scattered sound for the considered distances. The wind speed was less than 
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4 m/s, implying low background noise by wind and the rustling of leaves. This has been 

confirmed by checking INR (impulse-to-noise ratio). In Figure 4.3, the condition for 

each tree with foliage is shown. 

Table 4.1 Dimensional properties of the trees 

 Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 

Species Oak 

(Q. robur) 

Oak 

(Q. petraea) 

Cherry 

(P. avium) 

Maple 

(A. pseudoplatanus) 

Lime 

(T. × europaea) 

Tree height (m) 7.7 9.2 11.5 14.9 20.6 

Tree diameter (m) 6.9 12.3 15.7 19.5 21.5 

Crown surface 

area (m2) 

30 43 88 161 218 

Leaf size (cm) 12.0(L) × 

7.5(W) 

12.0(L) × 

7.5(W) 

15.0(L) × 

6.0(W) 

12.0(L) × 

15.0(W) 

10.0(L) × 

10.0(W) 

Trunk diameter 

(m) 

0.14 0.40 0.42 0.51 0.56 

Distance from 

ground to bottom 

of crown (m) 

1.9 1.8 1.9 2.0 2.0 

 

Table 4.2 Meteorological conditions for each measurement day 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Date 21st Sep. 

2010 

20th Apr. 

2011 

14th Oct. 

2011 

26th Oct. 

2011 

13th Mar. 

2012 

14th Mar. 

2012 

Temperature 

(°C) 

20.3 28.2 16.3 15.0 15.6 9.9 

Relative 

humidity 

(%) 

62.0 34.1 65.8 65.1 56.7 74.3 

Wind speed 

(m/s) 

<1.0 <1.4 <3.0 <2.3 <2.5 <4.0 

Atmospheric 

attenuation 

coefficient α at 

4000 Hz 

(dB/m) 

0.025 0.031 0.027 0.028 0.031 0.031 
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Fig. 4.3 Conditions for five trees with foliage on Day 3 
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4.3.2 Measurement setup 

A similar measurement methodology was used as reported before in the work by Ding 

et al. (2010). Shots from a starting pistol were used as acoustic excitation. Five 

consecutive shots were released and the results averaged out, yielding a sufficient 

reproducibility for this type of sound source (Van Renterghem et al., 2011). The 

recording systems comprised 1/2” microphones (BSWA MP 231 and G.R.A.S. MCE 

201) and preamplifiers (BSWA MA231T and 01dB-Stell Pre 12H) connected 

respectively to a 4-channel Edirol R-44 recorder and a 2-channel 01dB Symphonie unit. 

Sampling frequency and bit depth for both systems were 48 kHz and 24-bit. 

 

Fig. 4.4 Measurement conditions, where dr is the trunk-receiver distance, ds is trunk-source 

distance, hr is the receiver height, and hs is the source height 
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Figure 4.4 shows the cross-section and top-view of the measurement condition, where 

the source and receiver distance from a tree trunk is represented as ds and dr, 

respectively, while hs and hr are the heights of the sound source and receiver. The 

source-receiver angle is defined with θs-r, indicating the difference in angle between ds 

and dr. Therefore, θs-r=180° means a straight sound propagation path connecting source, 

trunk and receiver.  

4.4 Validation for measurement and data analysis methods 

4.4.1 Data analysis method 

In this chapter, RT based on the impulse responses recorded from the field measurement 

was analysed using the Dirac programme from B&K (B&K, 2010). RT is derived from 

the decay curve between 5 dB and 15, 25, 35 dB below the initial level. From the 

corresponding slope, T10, T20 and T30 are calculated as the times to reach -60 dB 

relative to the initial level. EDT (early decay time), derived from the decay curve 

between 0 dB and 10 dB below the initial level, is an inadequate descriptor to evaluate 

the scattered sound from trees as there is relatively weak energy in comparison with a 

direct sound. DIRAC has the time reversed filtering function to enable accurate 

measurement of very short RT which is needed for this study. 

4.4.2 Impulse response to noise ratio 

The INR (impulse response to noise ratio) is an important parameter, providing 

information about the quality of the measurement for RT. It is defined as the ratio of the 

maximum impulse response level and background noise level, reflecting the decay 

range. According to ISO 3382 (ISO, 2008), the INR should be at least 35 dB and 45 dB 
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for accurate measurement of T20 and T30, respectively. 

At the source-receiver distance of 60 m (dr=30 m, ds=30 m, θs-r=180°), the INR 

measured for Tree 2 on Day 3 was 22.2±2.2 dB at 63 Hz, 36.8±2.8 dB at 125 Hz, 

45.0±2.7 dB at 250 Hz, 48.8±2.5 dB at 500 Hz, 48.4±2.9 dB at 1000 Hz, 56.6±1.5 dB at 

2000 Hz and 54.0±2.5 dB at 4000 Hz. The standard deviation indicates the variation in 

the INR for five consecutive pistol shots. The maximum standard deviation of 2.9 dB at 

1000 Hz suggests that the measurement method using starting pistol shots is reliable. 

The result suggests that the INR is sufficiently high to calculate T10 and T20 for source-

receiver distances within 60 m, which is the maximum source-receiver distance 

considered in this study. However, it can be seen that the INR at some frequencies 

including 63 Hz, 125 Hz and 250 Hz is insufficient to calculate T30. Therefore, it is 

appropriate to use T10 or T20 in terms of data reliability although the INR at 63 Hz is 

still insufficient for calculating T20. 

4.4.3 Determination of RT 

In Figure 4.5, decay curves in octave band frequencies from 125 Hz to 4 kHz are 

shown for sound propagating in the presence and absence of Tree 3 with foliage. In 

this measurement, the source and receiver were positioned at ds=10 m, dr=10 m, 

hr=0.2 m, hs=0.2 m and θs-r=180°. The measurement without the tree was carried 

out at the same conditions, except with a slightly different source-receiver distance 

of ds=13 m and dr=13 m which has a negligible contribution to the variation in RT. 

The result for open field without the tree indicates that RT at low frequency is 

rather long, mainly because of the filters applied during the post-processing of the 

time responses. This cannot be avoided, and thus some ghost RT that has no 
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physical meaning will always be measured at very low frequencies. However, the 

filter effect induces negligible ghost RT for T10 and T20 less than 0.02 sec. On the 

other hand, decay curves in the presence of Tree 3 show that above 1 kHz, trees 

clearly introduce reverberation. It is also noticeable that weak scattering sound at 

500 Hz is produced after -25 dB below the initial level, which can cause variation 

in RT with different decay ranges, especially for T30.  

 

 

Fig. 4.5 Comparison of decay curves in the absence and presence of a single tree (Tree 3) 
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Fig. 4.6 RT with the three decay ranges corresponding to T10, T20 and T30: (a) Open field; (b) 

Tree 3 with foliage 

Figure 4.6 shows RT with the three different decay ranges for the decay curves in 

Figure 4.5. The standard deviation in Figure 4.6 indicates the variation in RT for 

five consecutive pistol shots. The result for the presence of Tree 3 shows that RT 

generally increases with increasing frequency. This corresponds with prior 

knowledge that sound energy is more effectively scattered by vegetation and trees 

at high frequencies than at low frequencies, yet RT remains less than 0.2 sec. It is 

noticeable that T30 at 500 Hz is considerably different from T10 and T20 due to 

weak scattering of the direct sound but relatively important sound levels arriving 

after 10 ms. RT measured in open field suggests that the DIRAC programme is 

accurate for calculating impulse responses with very short RT although T30 is 
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slightly longer compared to T10 and T20. It is also noted that RT at low 

frequencies is not caused by the tree because the results with and without the 

single tree are similar. In this study, therefore, the decay range for T20 is used to 

investigate the sound scattering effect of a single tree. 

4.4.4 Repeatability of the measurement method 

Repeatability of the measurement method was examined on Day 3 and Day 4, with a 12 

day interval. The temperature and humidity on both days were rather similar, as can be 

seen in Table II. The measurement was carried out for Tree 2 with foliage at the source-

receiver distance of 20 m (dr=10 m, ds=10 m). The measurement condition for source 

and receiver was hr=0.2 m, hs=0.2 m and θs-r=180°. It was estimated that the maximum 

difference in RT20 between the two days is 0.03 sec at 500 Hz, which indicates the 

repeatability of the measurement and analysis methods. 

To examine uniformity of sound scattering, RT20 for the six straight lines (θs-r=180°) 

with 60° interval, meaning one rotation in reference to the tree trunk, was measured for 

Tree 2 with foliage. The source-receiver distance and height were the same as described 

above. The maximum difference in RT20 between the results measured at the six 

different straight lines positions was 0.02 sec. Thus, Tree 2 can be considered as a 

uniform scatterer in the horizontal plane. It is expected that other trees could also scatter 

sound uniformly as the canopies are approximately symmetric. 

4.4.5 Ground conditions and receiver heights 

Differences in ground conditions can affect RT20 due to the variation in the amplitude 

of reflected sound. Although field measurements were carried out at the same source 
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and receiver configurations, the ground condition for each tree could be different due to 

many factors such as root structure, soil composition, moisture content, and seasonal 

influences. Therefore, it is necessary to investigate the effect of ground condition on 

sound scattering. For this, the decay curve for grassland (assumed as soft ground) is 

compared with that for three different ground conditions using 2 mm thick hard plastic 

panels covering the source-receiver line from the tree trunk. The four different ground 

conditions were: (1) bare grassland all around the tree, (2) 11 m long by 2 m wide hard 

cover on the receiver R side, (3) 11 m long by 2 m wide hard cover on the source S side, 

(4) these hard covers on the S and R sides simultaneously. The measurement was 

conducted for Tree 2 on Day 6 with dr=10 m, ds=10 m and θs-r=180°. The effect of 

receiver height on the decay curve was also examined at hr=0.2, 1.5, 3.0 and 4.0 m with 

the same source height of hs=0.2 m. In Figure 4.7, decay curves with the different 

ground conditions at the receiver height of 0.2 m for Tree 2 are shown from 500 Hz to 4 

kHz.  

The result in Figure 4.7 indicates that the different ground conditions play an important 

role in the characteristics of the decay curves, especially at 500 Hz and 1 kHz. At 500 

Hz, in comparison with soft grassland, the amplitude near 10 ms with the hard ground 

on the receiver side is rather high. At 1000 Hz, relatively strong sound energy for soft 

ground near the receiver can be found at rather late parts of decay curves in comparison 

with hard ground. At higher frequencies, on the other hand, the variation in the 

characteristics of the decay curves with different ground conditions is insignificant. This 

is consistent with the fact that ground effects, averaged over full-octave bands, are not 

present anymore (ISO, 1996) at these frequency bands. Hard ground on the source side 

seems to have less influence. This lack of reciprocity remains unexplained. 
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Fig. 4.7 Decay curves with the four different ground conditions at the receiver and source 

heights of 0.2 m for Tree 2. Each figure shows the decay curves in octave band frequencies from 

500 Hz to 4 kHz 

Figure 4.8 shows the effect of the ground conditions and receiver heights on RT20 for 

Tree 2. The standard deviation again indicates the difference in RT20 for five 

consecutive pistol shots. The result in Figure 4.8 shows that the different ground 

conditions produce variations in RT20 at all receiver heights, especially at 500 Hz and 1 

kHz for the considered source-receiver geometry, while there is an insignificant 

difference in RT20 at lower and higher frequencies. The results also show that receiver 

heights can affect the variation in RT20 at certain frequencies. 
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Fig. 4.8 Effect of the different ground conditions on RT20 for Tree 2 with different receiver 

heights from 0.2 m to 4.0 m (source height 0.2 m) 

4.5 Measurement Results 

4.5.1 Effects of tree size with and without foliage 

The trees considered in this study have five different heights between 7.7 m and 20.6 m. 

The diameters of the five tree crowns are between 6.9 m and 21.5 m. To examine the 

effect of tree crown size on scattered sound energy, measurements were carried out with 

a source-receiver distance of 20 m (dr=10 m, ds=10 m) and θs-r=180° for the five trees 

with and without foliage. The height of both source and receiver was 0.2 m. The 

measurements for the five trees with and without foliage were carried out on Day 3 and 

Day 5, respectively. For the five trees with foliage, Figure 4.9 shows the decay curves in 

octave band frequencies from 500 Hz to 4 kHz. Decay curves at low frequencies are not 

shown here because there is insignificant sound scattering by the trees. 
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The result in Figure 4.9 indicates that the RT20 proportionally increases with increasing 

size of the trees because a larger tree produces relatively stronger sound scattering and 

longer sound paths through the crown. Above 500 Hz, it can be seen that the 

characteristics of decay curves depend on the tree size. For relatively small trees like 

Tree 1, Tree 2 and Tree 3, the scattered sound energy at 500 Hz is weak relative to direct 

sound. The results at high frequencies show that the slope of decay curves is rather 

linear with a slow decrease of sound energy. The decay time at 4 kHz for Tree 4 is 

approximately 120 ms at -25 dB below the initial level, indicating long travelling paths 

in the tree crown. 

 

Fig. 4.9 Decay curves for the five trees with foliage. Each figure shows the decay curves in 

octave band frequencies from 500 Hz to 4 kHz 
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Figure 4.10 shows RT20 according to the surface area of the trees with and without 

foliage in octave band frequencies from 500 Hz to 4 kHz. Above 500 Hz, RT20 is 

gradually increased with the increasing surface area of the trees. The maximum RT20 is 

0.26 sec at 4 kHz for Tree 4 with foliage. It is noted that the RT20 at 4 kHz is decreased 

above around 200 m
2
. This was because a large number of leaves on Tree 5 were fallen 

on Day 3 due to the season, as shown in Figure 4.3. However, the result from another 

measurement, obtained on Day 1, indicates that RT20 at 4000 Hz can reach 0.28 sec 

when Tree 5 is in full leaf. It can also be seen that single trees without foliage can 

contribute to the increase in RT20 with increasing tree crown size. Compared to the 

trees with foliage, RT20 for the relatively small trees (Tree 1, Tree 2 and Tree 3) without 

foliage is higher at 500 Hz and 1 kHz due to different ground conditions between Day 3 

and Day 5. Since the sound source is low (hs = 0.2m), interference patterns only appear 

for relatively high frequencies, i.e., above 500 Hz. Thus, this leads to some important 

uncertainties in the analysis of the effect of trees without and with foliage due to 

different ground conditions. 

The leaves on the five single trees studied here have widths and lengths below 15 cm. 

This size corresponds to the wavelength of sound at 2250 Hz, and thus it is expected 

that foliage has an influence mainly on sound scattering at or above this frequency. At 4 

kHz, it is shown that RT20 for trees with foliage is higher than those without foliage. In 

particular, RT20 by Tree 4 is increased by 0.08 sec in the presence of foliage, 

confirming that foliage scattering occurs at high frequencies. As for Tree 5, RT20 at 4 

kHz can be increased by 0.08 sec when in full leaf. Overall, the results indicate that 

leaves increase RT20 at high frequencies. The size and thickness of leaves as well as 

LAI (Leaf Area Index) and LAD (Leaf Area Density) could also play a role, but this was 
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not studied here. 

 

 

Fig. 4.10 Effect of the surface area of tree crown with and without foliage on RT20. Each figure 

shows RT20 in octave band frequencies from 500 Hz to 4 kHz 

4.5.2 Source-receiver angle 

The characteristics of decay curves are influenced by source-receiver angle (θs-r) (see 

Figure 4.4). In this experiment, the effect of source-receiver angle on the decay curve is 

examined using Tree 2 without foliage on Day 2. The measurement condition was ds=13 

m, dr=13 m, hs=1.5 m and hr=1.5 m. The source-receiver angles were 0, 90, 135 and 

180°. The source-receiver angle of 0° was used to estimate the back scattered sound 

energy (or reflection), which was measured with ds=40 m and dr=10 m arranged in a 

line without the tree between the source and receiver.  

In Figure 4.11, the decay curves for Tree 2 without foliage with different source-

receiver angles are shown at different frequencies. The result shows that decay curves  
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Fig. 4.11 Decay curves for Tree 2 without foliage with different source-receiver angles. Each 

figure shows the decay curves in octave band frequencies from 125 Hz to 4 kHz 

for the source-receiver angle of 135° (45° in reference to 180°) is similar to that for 

180°. This is because the time interval between direct and scattered sound is very short 

for both source-receiver angles due to the relatively close receiver distance from the 

edge of the tree crown. For the source-receiver angle of 90°, there is a plateau between 
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direct and scattered sound with the time interval of approximately 15 ms (5.1 m for a 

speed of sound of 340 m/s). This is caused by the difference in distance for the direct 

sound path (18.4 m) with scattered sound paths (21.5m ~ 26.0 m) from the edge of the 

crown and the trunk. The decay curve for the source-receiver angle of 0° (back 

scattering) suggests that the tree can reflect sound energy backwards effectively. It can 

be seen that there is a pronounced plateau with the time interval of approximately 50 ms 

(17.0 m) between direct and reflected sound, which indicates strong reflection from the 

vicinity of the tree trunk. The relative SPL vs. time in Figure 4.11 suggests that Tree 2 

without foliage can reflect sound at frequencies above 250 Hz. In summary, the source-

receiver angle can affect characteristics of the decay curve, especially for 0° and 90°. 

Calculation of RT20 is omitted here due to the long-time interval between direct and 

reflected sound. 

4.5.3 Source-receiver distance 

Measurements for the five individual trees with foliage on Day 3 were conducted to 

investigate the effect of source-receiver distance on RT20. Values for ds (source-trunk 

distance) were 10 m, and for dr (receiver-trunk distance) 5, 10, 20 and 30 m. Therefore, 

the angle subtended by the tree crown at the receiver points ranges between 18°-62° for 

Tree 1, 20°-66° for Tree 2, 24°-70° for Tree 3, 29°-74° for Tree 4, and 37°-78° for Tree 

5. The source, tree and receiver were arranged in a straight line with θs-r=180 °. 

Therefore, the range of source-receiver distances was between 15 m and 40 m. The 

height of the source and receiver was 0.2 m. Figure 4.12 presents RT20 measured with 

ds =10 m for different frequencies as a function of dr=5, 10, 20, 30 m. At 125 Hz and 

250 Hz, RT20 is under 0.03 sec and independent of source-receiver distance. It can be 
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seen that the source-receiver distance plays an insignificant role on RT20 above 500 Hz, 

except in the case of Tree 5. The variation in RT20 for Tree 5 might be due to the 

relatively thick trunk and low leaf density, and measurement locations slightly deviating 

from the straight line between source and receiver. Therefore, it can be concluded that 

the different source-receiver distances studied here have an insignificant effect on the 

variation in RT20. 

 

Fig. 4.12 RT20 with different source-receiver distances from 15 m to 40 m, with ds=10 m and 

dr=5, 10, 20, 30 m for each tree. Each figure shows the decay curves in octave band frequencies 

from 500 Hz to 4 kHz 

4.6 Summary 

This chapter has shown that sound scattering is an important aspect of the interaction 
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between sound waves and trees. This effect is quantified by means of decay curves, 

closely linked to the RT, as influenced by the ground condition, receiver heights, tree 

crown shape and size, the amount and condition of foliage, and source-receiver angle 

and distance. Repeatability for the measurement using a starting pistol has also been 

confirmed. 

The results quantify the amount of scattered sound energy from a single tree at different 

frequencies. At very low frequencies, below 250 Hz, no difference in RT20 has been 

found compared to the same measurement setup and post-processing in absence of a 

tree (open field). At higher frequencies, the amount of scattered sound energy is 

generally increased with increasing frequency. It has been found that tree crown size is 

the most important factor in relation to scattering of sound energy. With increasing 

surface area of the crown (area of an enclosing surface), RT20 is increased up to 0.28 

sec at 4 kHz. A tree without foliage also produces a similar amount of scattered sound 

energy as a tree with foliage. Presence of leaves increases RT20 starting from 2 kHz, by 

0.08 sec at 4 kHz. The characteristics of decay curves are influenced by source-receiver 

angle, especially for 0 and 90 °. Back scattering (or reflection) from a tree has also been 

observed at frequencies above 250 Hz. It has been observed that distance between 

source and receiver (within 40 m) under the same angle has insignificant effect on the 

variation in RT20. Ground condition can contribute to the variation in decay and RT20 

at certain frequencies depending on the tree size and source-receiver geometry. 

However, for the source-receiver geometry of this study the effect is important 

especially at low and mid frequencies where sound scattering is of relatively limited 

importance. 
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Although many field measurements have been carried out in this study, further work is 

still needed to characterise the effect of other factors such as leaf size, leaf shape and 

thickness, but also the distribution of biomass over the crown, quantified by LAD (Leaf 

Area Density). Numerical modelling of scattering of sound energy by trees (as initiated 

by Van Renterghem et al. (2012) and Hornikx et al. (2011), as well as scale modelling 

could further clarify the physical phenomena involved and allow evaluation of potential 

applications. A previous study (Haron et al., 2009) showed only a slight effect (less than 

1.5 dB) on sound reduction by the presence of trees in street canyons. On the other 

hand, trees in street canyons could be important in RT distribution since a slight 

increase in the scattering coefficient of building façades reduces street canyon 

reverberation, as shown in previous studies (Kang, 2002a, 2002b, 2007; Onaga et al., 

2007). Thus, it is necessary to suggest effective planting patterns of trees in urban 

situations to reduce noise levels. Optimisation of planting schemes was shown to be 

essential, e.g. in the context of tree belts (Van Renterghem et al., 2012), to achieve 

useful noise reduction.  



 

 

 

 

 

 

PART II. 

GREEN ROOF SYSTEMS ON A LOW BARRIER
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5 Noise Reduction by Green Roof Systems at Street 

Level 

The aim of this chapter is to explore the effects of various designable parameters of 

green roof systems at street level on noise reduction. Green roof systems were placed on 

a low barrier in a semi-anechoic chamber for measurements. Studied parameters include 

the structure, area, depth, type and position of the green roof system, and the type of 

vegetation. Section 5.1 discusses the background to the research by reviewing acoustic 

benefits of green roof systems. In Section 5.2, acoustic properties of green roof systems 

as well as measurement methods are described. Section 5.3 deals with results for the 

effects on noise reduction of area, depth, type and position of the green roof systems. 

Results also include the effect of different vegetation types on noise reduction. Section 

5.4 concludes key findings of this chapter. 

5.1 Introduction 

Along with the strong movement towards sustainable urban environments, green roof 

systems have become widely used in urban spaces since they have numerous ecological 

and environmental advantages. For example, green roof systems can reduce storm water 

runoff, increase urban bio-diversity, and mitigate the urban heat island and air pollution 

(Alexandri et al., 2008; Fioretti et al., 2010; Getter et al., 2006; Gregoire et al., 2011; 

Mentens et al., 2006; Takebayashi et al., 2007). 

In terms of acoustic benefits, green roof systems have been regarded as an effective 

structure to reduce noise pollution in urban spaces arising from road, rail and air traffic 

(Dunnett et al., 2004). Such sustainable materials using natural means can also 
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contribute to the reduction of environmental impact as well as the improvement of 

soundscapes (Kang et al., 2010; Yu et al., 2009). In street canyons and courtyards, the 

amount of sound energy propagating over rooftops from noisy sides to quite sides is 

mainly determined by the height, width and shape of buildings (Hornikx et al., 2007, 

2009; Kang, 1996c; Van Renterghem et al., 2006). In this case, green roof systems on 

the top of buildings can act as absorbers especially for diffracted sound waves between 

parallel streets and for that, parametric studies have been carried out (Van Renterghem 

et al., 2008a, 2009, 2010, 2011), showing that green roof systems are effective on noise 

mitigation, and therefore creating quiet sides. Moreover, it has been shown that green 

roofs can be used to effectively increase the sound insulation of light-weight roof 

structures (Kang et al., 2009). 

At street level, various kinds of green roof systems can also be used, for example, on the 

top of underground car parking spaces. In particular, semi-extensive green roof systems, 

which support low-growing, tough, and drought-resistant vegetation (Dunnett et al., 

2004), can be installed in many places instead of grass land at street level due to various 

reasons such as better visual effects and maintenance. There is a potential that green 

roof systems on low-profiled structures can be developed to an innovative and 

sustainable low barrier using natural materials for reducing traffic noise (Baulac et al., 

2005; Baulac et al., 2008). However, studies on the use of green roof systems at street 

level have not been reported yet. 

The aim of this chapter is therefore to explore systematically the effects of various 

designable parameters of green roof systems at street level on noise reduction. A series 

of measurements have been carried out in a semi-anechoic chamber using green roof 
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systems which consist of the Zinco (brand name of green roof substrate) and limestone-

based substrates. They are placed on a box with a height of 1200 mm. Numerical 

simulations have also been carried out for selected cases. Studied parameters include the 

structure, area, depth, type and position of the green roof system, and the type of 

vegetation. 

5.2 Methodology 

5.2.1 Physical properties of the green roof system 

The green roof systems in this experiment were comprised of 600 mm × 400 mm × 280 

mm (outer dimension) plastic trays. Figure 5.1 shows the components of the tray: a 30 

mm drainage layer on the bottom and plastic panels as walls; a geotextile membrane 

filter layer to prevent obstruction of the drainage layer by small particles of growing 

media; and growing media of Zinco or limestone-based substrates. In Figure 5.2 Zinco 

and limestone-based substrates used in this experiment are shown. The Zinco substrate 

was a mixture of Zinco sedum carpet substrate and Zinco roof garden substrate, with a 

ratio of 1:1. Table 5.1 describes detailed product data for these components. The 

limestone-based substrate consists of 60 % limestone (< 3.35 mm particle size), 20 % 

loam and 20 % organic matter. The physical properties of Zinco and limestone-based 

substrates are given in Table 5.2. 
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Fig. 5.1 Components of the tray 

  

Fig. 5.2 Zinco (left) and limestone-based substrates (right) used in the experiment 

Table 5.1 Product data of the sedum carpet and roof garden substrate used for Zinco substrate 

 Sedum carpet substrate Roof garden substrate 

Granules of < 0.063 mmØ ≤ 7 % ≤ 20 % 

Granules of < 4 mmØ ≥ 25 % - 

Organic content ≤ 4 % - 

Porosity 63 % 64 % 

Dry weight 980 kg/m3 930 kg/m3 

Saturated weight 1240 kg/m3 1400 kg/m3 

Maximum water capacity 25 % 46 % 

Air content at saturation 38 % 18 % 

Water permeability ≥0.1 cm/s ≥0.034 cm/s 

* Source: Alumasc product data sheet 
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Table 5.2 Physical properties of the Zinco substrate and limestone-based substrates 

In the experiment, 3 different substrate conditions were used: Zinco substrate with 

depths of 50 mm and 100 mm, and limestone-based substrate with a depth of 100 mm. 

For Zinco substrate, 20 trays for each depth condition were used. The mean weight for 

each tray of Zinco substrate with depths of 50 mm and 100 mm was recorded as 11.3 kg 

and 24.0 kg, respectively. For the limestone-based substrate, 18 trays with a mean 

weight of 29.1 kg per tray were used. In the spring of 2007, each tray was planted with 

9 native forbs individuals originating from calcareous grassland habitat. However, few 

plants with 0~10 % vegetation coverage for each tray remained due to unfavourable 

planting season. Therefore, the substrate dominates the effect of SPL attenuation. 

To examine the acoustic effect of vegetation growing on green roof systems, pruned 

fresh leaves (Buxus sempervirens) and 100 % polyester cotton were applied 

respectively, as shown in Figure 5.3. Here the polyester cotton, with a mean weight of 

159.5 g per tray, was used to simulate an extreme condition in terms of sound 

absorption by vegetation. The pruned Buxus sempervirens, for simulating dense leaf 

conditions on green roof systems (although it is noted that the loose leaves and twigs 

could lead to some vibration-related effects such as free vibration), have leaf sizes 

ranging from 8 mm to 30 mm long and 5 mm to 13 mm wide, and mean weight of 606.8 

 Loose bulk 

density 

(g/cm3) 

Bulk density 

at saturation 

(g/cm3) 

Increase in 

bulk density 

(%) 

Air filled 

porosity 

(%) 

Water holding 

capacity 

(%) 

Zinco 1.02 1.26 23.5 33.5 26.6 

Limestone-based 1.43 1.80 26.2 12.0 29.8 
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g per tray. For both of pruned fresh leaves and polyester cotton, the filling depth in the 

trays was 120 mm approximately, representing a relatively thick layer of vegetation 

planted in a common green roof system. 

  

 

Fig. 5.3 Pruned fresh leaves (top) and polyester cotton (bottom) used in the experiment 

5.2.2 Absorption coefficient of the substrates 

The random-incidence absorption coefficient for the 3 different substrates in dry 

conditions was measured using an area of 4.8 m
2
 in a reverberation chamber. As shown 

in Figure 5.4, the limestone-based substrate has a relatively low absorption above 200 

Hz compared to the Zinco substrate when the depth is the same, possibly due to the 

differences in density and porosity between the two materials. By comparing Zinco 

substrate with depths of 50 mm and 100 mm, it can be seen that there are considerable 
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differences below 400 Hz. With a greater depth the low frequency absorption is 

increased, as expected. It is noted that absorption coefficient over 1 is observed due to 

the strong edge effect, and this is further enhanced due to the smaller sample size of 4.8  

m
2
 compared with standard 10 m

2
 (Cox, 2009; Makita et al., 1988). As peak 

performance of them in sound absorption is found around 1 kHz, the green roof systems 

are subjectively beneficial to noise control against road traffic which shows the peak 

level around 1 kHz in A-weighted value. 

Measurements for normal-incidence absorption coefficient under dry condition were 

carried out using an impedance tube. Figure 5.5 shows the results for the three types of 

substrate. Again, it can be seen that the Zinco substrate has relatively high normal-

incidence absorption coefficients compared to the limestone-based substrate, although 

the difference is greater than that in random-incidence absorption coefficient. The depth 

of Zinco substrate strongly affects the absorption coefficient below 400 Hz, which is 

also similar to the results for random-incidence absorption coefficient. 

 

Fig. 5.4 Random-incidence absorption coefficient of studied substrates in dry condition 
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Fig. 5.5 Normal-incidence absorption coefficient of the studied substrates in dry condition 

5.2.3 Experimental setup 

The experiment was carried out in a semi-anechoic chamber which had a size of 3500 

mm (W) × 3500 mm (L) × 2400 mm (H). To simulate a low profiled structure at street 

level, a box of 1600 mm (W) × 3000 mm (L) × 1200 mm (H) was located on the centre 

of the floor. The green roof trays were positioned on top of the box with a maximum of 

5 rows by 4 columns. Figure 5.6 shows the schematic diagrams of the experimental 

condition. The box was made with MDF (medium-density fibreboard) boards to stop 

sound transmission through the box. For the front and rear walls, additional extended 

MDF boards were installed to prevent the sound transmission through side paths of the 

box. 

The 01dB two-channel Symponie system was used for data acquisition. The two 1/2 

inch microphones were positioned at a 200 mm distance from the rear wall, and the 

height of the receivers was 1600 mm and 1000 mm, which can be regarded as an 

average person’s standing and sitting heights on street, respectively. An omni-directional 
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loudspeaker, which was connected to an amplifier to generate white-noise, was located 

on the floor with vibration isolation materials and it was at 100 mm from the box, to 

examine the effect of green roof systems on diffracted sound waves. 

 

 

Fig. 5.6 Schematic diagrams of the cross section (top) and ground plan (bottom) for the 

experimental condition 
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5.2.4 Examination of the geometrical effect using FEM 

Due to the installation of the green roof systems on the box, there are variations in 

configuration, namely, with two different additional heights of 130 mm (100 mm 

substrate + 30 mm drainage layer) and 80 mm (50 mm substrate + 30 mm drainage 

layer).  

The configuration also varies according to the number of rows of the green roof system. 

Therefore, extra attenuation can be produced by the change of configuration, referred to 

as geometrical effect below. 

To quantify the geometrical effect in idealised situations, difference in SPL by the 

change of configuration was predicted with FEM (finite element method) using 

COMSOL. The numerical models were constructed by considering the experimental 

condition in Figure 5.6. Due to the limitation in computing power, the calculation was 

performed up to 500 Hz. To simulate free-field, PML (perfectly matched layer) was 

used as the external sub-domain with a hemispherical shape. A point source was located 

at a distance of 200 mm and height of 200 mm from the box and floor, respectively. 

The accuracy of prediction using FEM for the geometrical effect was examined by the 

comparison between measured and predicted SPL with the installation of a panel of 300 

mm high, 1200 mm long and 20 mm wide on the top edge of the box, as shown in 

Figure 5.7. In Figure 5.8, the measured and predicted extra SPL attenuation, relative to 

the box without the panel, are shown. It can be seen that the agreement is very good, 

with an accuracy of about 1.6dB. 
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Fig. 5.7 Cross-section of the modelling condition with a panel of 300 mm high 

 

Fig. 5.8 Comparison between measured and predicted extra SPL attenuation by the panel with a 

300mm height 

One of the main interests is how absorption of substrate affect noise reduction when 

sound propagates over the green roof systems. This could be approximately obtained by 

subtracting the predicted geometrical effect from the measured SPL attenuation. To 

provide baselines, in Figure 5.9 and Figure 5.10, the FEM predicted extra SPL 

attenuation by the geometrical effect is shown with different number of rows, 

considering two green roof heights, 130 mm and 80 mm. The boundary condition of the 

configuration is assumed as acoustically hard.  
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Fig. 5.9 Predicted SPL attenuation due to the geometrical effect for a height of 130 mm 

according to the number of rows at two receivers with a height of 1600 mm (top) and 1000 mm 

(bottom) 



Chapter 5. Noise Reduction by Green Roof Systems at Street Levels 

94 

 

 

 

Fig. 5.10 Predicted SPL attenuation due to the geometrical effect for a height of 80 mm 

according to the number of rows at two receivers with a height of 1600 mm (top) and 1000 mm 

(bottom) 

5.2.5 Experimental parameters 

Overall, five main experimental parameters have been considered, as shown in Table 5.3 

and described below:  

(1) Structure of the empty trays. SPL attenuation due to the physical shape of the empty 

trays should be measured in order to obtain the effect of substrates. In this chapter, 
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experiments were carried out with empty trays from 1 to 5 rows, as shown in Figure 

5.11. To examine the geometrical effect, measurements of SPL attenuation due to 

different heights of plastic panels surrounding the periphery of the trays were carried 

out, where two heights of plastic panels, 80mm and 130mm were installed at 1
st
 row 

using 4 trays, as shown in Figure 5.12. 

(2) Green roof area (number of rows). The number of rows of the trays used in the 

experiment was from 1 to 5, which means that the number of trays was from 4 to 20, as 

shown in Figure 5.13. 

(3) Depth and type of substrates. Experiments were conducted using 3 different 

substrate conditions, as mentioned above, to examine the effects of substrate depth 

(Zinco substrate with depths of 50 mm and 100 mm), as well as substrate type 

(comparing Zinco and limestone-based substrates with a depth of 100 mm). 

(4) Position of the green roof system. This was investigated using 1 row of the trays 

with pruned fresh leaves, at three positions, namely the front (1
st
 row), centre (3

rd
 row) 

and end part (5
th

 row) of the box. 

(5) Types of vegetation. Pruned fresh leaves and polyester cotton were used to examine 

the acoustic effect of vegetation on the growing media. The experiments were carried 

out using 1 row only at 1
st
 row, as shown in Figure 5.14. 
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Fig. 5.11 Measurement of SPL for empty trays with 5 rows 

 

Fig. 5.12 Empty trays with plastic panels surrounding the periphery parts 

 

Fig. 5.13 Experimental condition with different areas of the green roof system 
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Fig. 5.14 Experimental conditions to demonstrate the acoustic effect of vegetation with pruned 

fresh leaves (top) and polyester cotton (bottom) 

Table 5.3 Parameters considered in the experiment 

Parameters Purpose 

Structure of the empty trays Verification for SPL attenuation due to the shielding effect of the 

empty trays 

Green roof area 

(number of rows) 

Investigation on the effect of green roof area on SPL attenuation 

according to the number of rows 

Depth and type of substrates Experiments using 3 different substrate conditions to verify the effect 

of depth and type of substrates on SPL attenuation 

Position of the green roof 

system 

Measurement for the effect of the position of the green roof system 

equipped on the low-profiled structure 

Types of vegetation Measurement of the acoustic effect of vegetation on the growing 

media 
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5.3 Results 

5.3.1 SPL attenuation by empty trays 

In Figure 5.15, the extra SPL attenuation by the empty trays with 1 row to 5 rows is 

shown at a receiver height of 1600 mm. It can be seen that the empty trays have a strong 

effect on SPL attenuation, up to about 10 dB at above 1 kHz. Moreover, it can be 

observed that generally speaking, the effect of the empty trays on the SPL attenuation is 

gradually increased with the increasing number of rows. On the other hand, some 

negative effects on SPL attenuation are observed at lower frequencies.  

 

Fig. 5.15 Measured extra SPL attenuation by the empty tray at the receiver height with 1600 

mm 

The experiment to verify the geometrical effect which causes extra SPL attenuation was 

performed using 80 mm and 130 mm plastic panels surrounding the periphery parts of 

the trays as illustrated in Figure 5.12. Figure 5.16 shows the measurement results, 

relative to the empty trays without the plastic panels. It can be seen that the plastic 

panels with both heights play an important role in SPL attenuation above 1 kHz. In 
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comparison with the 80 mm plastic panels, the effects of the 130 mm plastic panels shift 

to relatively lower frequencies, as expected. 

 

Fig. 5.16 Measured extra SPL attenuation by plastic panel with 80 mm and 130 mm height at 

the receiver height with 1600 mm 

5.3.2 Green roof area 

Figure 5.17 shows the measured SPL attenuation according to the area of the green roof 

system, relative to the box without empty trays, where the effects are due to the 

absorption by the substrate, shielding effect by the empty trays, and the geometrical 

effect by the increased height of the green roof structures. It reveals that the green roof 

system on the low profiled structure can reduce SPL, even by more than 20 dB 

approximately at high frequency for diffracted sound. With the results at various 

frequencies, the effect of a given source type can be derived. The effect on SPL 

attenuation against a typical road traffic spectrum with 70 km/h (Nota et al., 2005) is 

considered here to represent a relatively worse condition, and it is gradually increased 

with the increasing green roof area from 4.8 dBA to 9.7 dBA at the receiver height of 
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1600 mm, and from 3.8 dBA to 7.7 dBA at the receiver height of 1000 mm. However, it 

is noted that some negative effects are still observed at lower frequencies, at both 

receiver heights. 

 

 

Fig. 5.17 Measured SPL attenuation with increasing area of the green roof system at two 

receivers with a height of 1600 mm (top) and 1000 mm (bottom) 

To compare the SPL attenuation between filled and empty trays, Figure 5.18 shows the 

difference in SPL between Figure 5.17 and Figure 5.15. In other words, the result in 

Figure 5.18 is due to the geometrical and absorption effects of the green roof system. It 

can be seen that the extra SPL attenuation occurs over 250 Hz, whereas at lower 
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frequencies the green roof system has an insignificant impact on SPL attenuation and 

some limited low-frequency amplification seems to be consistent with increasing 

number of rows (also seen in Figure 5.19). As expected, considerable variations in the 

extra SPL attenuation are observed at difference frequencies, but generally speaking, the 

SPL attenuation increases with the increased rows, and for typical road spectrum with 

70 km/h the increase is from 0.8 dBA to 4.0 dBA at the receiver height of 1600 mm, and 

-0.2dBA to 6.0dBA at the receiver height of 1000 mm. 

 

 

Fig. 5.18 Difference in measured SPL between the empty tray (result in Figure 5.15) and green 

roof system (result in Figure 5.17) at two receivers with a height of 1600 mm (top) and 1000 

mm (bottom) 
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                                           (a) 1 row                                                                                (b) 2 rows 

 

                                            (c) 3 rows                                                                             (d) 4 rows 

 

(e) 5 rows 

Fig. 5.19 Comparison of relative SPL for the geometrical effect (predicted result in Figure 5.9, 

dotted line) and the geometrical+absorption effects (measured result in Figure 5.18, solid line) 

at the receiver height of 1600 mm. The difference in SPL between dotted and solid lines 

indicates the absorption effect by the substrate 
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To examine the effects of substrate absorption, in Figure 5.19 the simulated value using 

FEM for the geometrical effect only as shown in Figure 5.9 and the measured values as 

shown in Figure 5.18 are compared at the receiver height of 1600 mm. It can be seen 

that with the increase in the number of rows from 1 to 5 the SPL attenuation caused by 

absorption is increased, and this occurs mainly from 315 Hz, up to about 8.6 dB. At the 

receiver height of 1000 mm, the tendency of SPL attenuation is similar, with a 

maximum SPL attenuation of 9.5 dB. 

5.3.3 Depth and type of the substrates 

The effects of the depth and type of the substrates are shown in Figure 5.20 and Figure 

5.21, considering the receiver height of 1600 mm and 1000 mm, respectively. The 

figures show the SPL attenuation by the substrates relative to the condition of empty 

trays, considering different rows of green roof systems. For Zinco substrate with a depth 

of 100 mm, it is slightly more effective in reducing noise, especially at the frequency 

range below about 500 Hz, compared to Zinco substrate with a depth of 50 mm, but 

generally speaking, the differences between the two substrate depths are not significant 

and systematic. This corresponds to the fact that Zinco substrate with a depth of 50 mm 

has relatively low absorption coefficients and geometrical effect at low frequencies. 

With Zinco and limestone-based substrates with the same depth of 100 mm, the SPL 

attenuation is similar although at relatively low frequencies, say below 500 Hz, the 

limestone-based substrate, which has a higher density and smaller particles than Zinco 

substrate, is relatively effective on SPL attenuation compared to Zinco substrate. 

Overall, it seems that the effects of the depth and type of substrates are relatively small 

compared to the effects of other experimental parameters. 
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                                            (a) 1 row                                                                               (b) 2 rows 

 

                                          (c) 3 rows                                                                            (d) 4 rows 

Fig. 5.20 Measured SPL attenuation with different types and depths of substrates at the receiver 

height of 1600 mm 

5.3.4 Position of the green roof system 

Figure 5.22 shows the experimental results on the effect of the position of 1 row of the 

trays, where pruned leaves were used on the green roof system. It can be seen that the 

SPL attenuation has different patterns according to the position of the trays of 1 row, 

depending on frequency ranges. At the receiver height of 1600 mm, the sound 

attenuation for traffic noise is 4.9 dBA, 6.2 dBA and 3.1 dBA for the front, centre and 

end line, respectively. Therefore, it is useful to consider the optimum location according 

to the spectra of sound sources. Moreover, the effect of the position of the green roof 

system is rather sensitive at the receiver height of 1600 mm which is perhaps due to  
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                                          (a) 1 row                                                                                (b) 2 rows 

 

                                           (c) 3 rows                                                                             (d) 4 rows 

Fig. 5.21 Measured SPL attenuation with different types and depths of substrates at the receiver 

height of 1000 mm 

interference shifts relative to the reference case, whereas the variation of SPL 

attenuation at the receiver height of 1000 mm is relatively insignificant since the 

receiver is at acoustical shadow zone. 

5.3.5 Vegetation 

The measured extra SPL attenuation with pruned fresh leaves and polyester cotton on 1 

row of the green roof system at the front line is shown in Figure 5.23, considering the 

two receiver heights. It can be seen that the pruned fresh leaves only have a slight effect 

on noise attenuation above about 3.15 kHz, perhaps due to the leaf scattering,  
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(a) Receiver at 1600 mm         

 

(b) Receiver at 1000 mm 

Fig. 5.22 Measured SPL attenuation with different position of the green roof system for 1 row 

unclamped leaf vibration and boundary layer absorption. The experimental result with 

the cotton suggests that there are still possibilities to reduce noise level further, by about 

3-4 dBA for traffic noise due to high absorption if the vegetation layer is better 

designed. 
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(a) Receiver at 1600 mm        

 

(b) Receiver at 1000 mm 

Fig. 5.23 Measured SPL attenuation considering possible effects of vegetation types 

5.4 Summary 

In this chapter, measurements have been carried out to examine the acoustic effects of 

green roof systems on a low-profiled structure at street level, and numerical simulation 

has also been carried out for selected cases. The results on the effect of green roof area 

suggest that SPL attenuation generally gradually increases with the increasing number 

of rows of the green roof trays although there are variations due to the geometrical 
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effect. The extra SPL attenuation caused by substrates, compared to the geometrical 

effect only (i.e., with panels surrounding the periphery of the trays, of the same height 

as the substrate), could be up to 9.5dB at certain frequencies. Within the ranges of the 

parameters considered, the effects of the depth and type of substrates are smaller 

compared to that of the overall configurations of the system. In terms of the acoustic 

effects of the position of the green roof system, the measurement results suggest that 

they affect the pattern of SPL attenuation at different frequency ranges. The 

experimental results with the pruned leaves show positive effects of vegetation on noise 

mitigation above 4 kHz and there is still a scope for further improvements by about 

4dBA if the vegetation layer is better designed. It is therefore useful, in the future work, 

to study more systematically the effects of vegetation condition, as well as the effects of 

other factors such as water contents of substrates. 

Based on the results for the experiment and prediction, general design methods of green 

roof systems on a low barrier can be recommended as follows: 

1) Increase the area of green roof systems for effective noise control; 

2) Locate green roof systems on a low barrier by considering frequency spectrum of 

noise sources; 

3) Use dense/absorbent vegetation growing on the green roof substrate; 

4) Install ground diffusers (i.e., rib-like structures such as green roof trays) to increase 

ground diffusion. 
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6 A Case Study on Controlling Sound Fields by 

Landscape Designs in a Courtyard 

The aim of this paper is therefore to investigate the acoustic effect of applicable 

landscape designs in courtyards, with a particular attention on the acoustic effects of 

vegetation, through a case study. Firstly, the research background is defined after 

reviewing relevant publications in Section 6.1. In Section 6.2, site and experimental 

conditions are explained. Section 6.3 describes the measurement results showing how a 

practical landscape design reduces noise levels and reverberation. Acoustic effects of 

different landscape schemes using vegetation are predicted using acoustic computer 

simulation in Section 6.4. Section 6.5 summarises key findings of this chapter. 

6.1 Introduction 

A growing body of evidence confirms that urban noise pollution produces direct and 

cumulative adverse health effects such as cardiovascular disease, cognitive impairment, 

sleep disturbance, tinnitus and annoyance (Fritschi et al., 2011). These health effects, in 

turn, can lead to social handicap, reduced productivity, decreased performance in 

learning, absenteeism in the workplace and school, increased drug use and accidents 

(Berglund et al., 1999). Noise could also have economic impacts such as loss of 

property and landscape values (Carles et al., 1999; Jim et al., 2006; Luttik, 2000; 

Navrud, 2002; Wardman et al., 2004; Wilhelmsson, 2000). 

In urban residential areas, road traffic noise is a main source affecting sleep disturbance 

and annoyance. Therefore, courtyards have been widely used to prevent direct exposure 

of building façades to road traffic noise (Ettouney et al., 1973; Öhrström et al., 2006; 
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Oldham et al., 1979). Numerous studies have attempted to predict the sound energy 

propagating over rooftops from a trafficked road to a courtyard using numerical and 

experimental methods (Hornikx et al., 2007, 2009; Van Renterghem et al., 2010). The 

results suggest that courtyards play a role in reducing background noise levels from 

road traffic. On the other hand, when background noise from external spaces is reduced, 

sounds from within a courtyard such as from social activities and conversation could 

become more important as sources of noise annoyance. Therefore, it is useful to study 

methods employing landscape designs to reduce sound energy propagation within a 

courtyard. 

The sound field in a courtyard is influenced by many designable factors such as the 

shape and volume of the space, building layout and the materials forming the building 

façade, etc. These affect the characteristics of sound fields described by acoustic 

parameters such as RT and SPL distribution. However, most courtyards have been 

designed without any acoustic consideration, which often leads to acoustic defects such 

as strong flutter echoes, long RT and increased sound levels due to geometrically 

reflecting façades with acoustically hard surfaces (Kang, 2000, 2002b). These acoustic 

defects result in increased noise annoyance for occupants, especially in summer when 

the courtyard is used more, and windows are open for natural ventilation. Therefore, it 

is important to absorb and diffuse sound energy propagating in a courtyard. It is also 

important in the design of a suitable sound field for a comfortable courtyard soundscape 

to consider pleasant sounds such as fountains and bird song (Kang, 2007). 

The typical method to control sound fields is to use acoustic absorbers and diffusers on 

the wall, ground and ceiling of a space. In enclosed spaces such as concert halls, 
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absorbers and diffusers can be installed relatively easily since they are not contaminated 

by rain and dust, a reason why it is more difficult to mount commercial devices in open 

courtyards. Therefore, it is useful to identify outdoor acoustic materials for controlling 

the sound field by landscape designs. 

Currently, vegetation grown on green roofs and walls has become popular in urban 

spaces due to numerous environmental benefits (Getter et al., 2006; Ksiazek et al., 

2012; Mentens et al., 2006; Veisten et al., 2012). Previous studies have also reported 

that vegetation can contribute to the mitigation of noise pollution, which suggests its 

potential use in controlling the sound fields of courtyards by landscape designs (Oldham 

et al., 2011; Van Renterghem et al., 2008a, 2009, 2011; Van Renterghem et al., 2013; 

Wong et al., 2010; Yang et al., 2012). With regard to soundscape concepts, greening 

inner courtyards with vegetation can also moderate noise annoyance by improving the 

aesthetic/natural appearance (Gidlöf-Gunnarsson et al., 2007, 2010; Langdon, 1976). 

In general, vegetation consists of two main components: plant structures (leaf, stem and 

root) and the growing media (soil or substrate). Previous studies have shown that the 

plant structures can absorb and diffuse sound energy, especially at high frequencies 

(Martens et al., 1981; Watanabe et al., 1996; Yang et al., 2013). It has also been found 

that soil has similar properties to those of a porous material for absorbing sound energy 

(Kaye et al., 1940; Yang et al., 2013)). 

The aim of this chapter is therefore to investigate the acoustic effect of landscape 

designs using vegetation. This is done through a case study in a courtyard located in an 

accommodation building of the University of Seoul, where a quiet sound environment is 

required. The acoustic effect of landscape designs using vegetation has been examined 
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using two methods: (1) In-situ measurements before and after applying a practical 

landscape design; (2) Computer simulation for applicable landscape designs using 

vegetation in the courtyard. The acoustic parameters considered here are the extra SPL 

attenuation and RT20. Based on the extra SPL attenuation in octave bands, a difference 

in speech levels before and after applying landscape designs is also calculated. 

6.2 Methodology 

6.2.1 Description of the study site 

The courtyard investigated in this chapter is located at the accommodation building in 

the University of Seoul, Seoul, South Korea. The courtyard has a rectangular shape with 

dimensions of 32.4 m (L) × 8.2 m (W). The site is surrounded by building façades with 

different heights, 7.1 m (3 façades) and 24.4 m (1 façade), as shown in Figure 6.1. 

Figure 6.2 illustrates the cross section and ground plan for the accommodation building. 

  

Fig. 6.1 Site conditions before (left) and after (right) the refurbishment using vegetation, wood 

decking and street furniture 
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Fig. 6.2 Cross section (top) and ground plan (bottom) for the accommodation building (Unit: m) 

As Figure 6.1 shows, there was a refurbishment of the inner courtyard using vegetation, 

wood decking and street furniture in January 2011. Before the refurbishment, the 

building façade and ground of the courtyard had geometrically reflecting surfaces with 

acoustically hard materials such as marble and glass. Therefore, it was expected that 

there would be acoustic defects such as strong flutter echoes, long RT and increased 

sound level due to multiple reflections, which can cause increased noise annoyance for 

occupants in the courtyard. Sound levels in front of the windows at different floor levels 
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play an important role in determining the life quality of the occupants. In particular, 

students in bedrooms from the 1
st
 to 7

th
 floor facing towards the courtyard have 

expressed strong complaints about noise from the courtyard. Noise annoyance is mainly 

due to excessive sound levels for conversation, the sound energy of which is increased 

by multiple reflections between geometrically reflecting facades. Therefore, 

architectural treatments using appropriate acoustic materials to reduce sound levels in 

front of the accommodation building are also required. 

To improve the students’ living environment, the university office has decided to 

refurbish the whole ground and a part of the building façades using low-growing 

vegetation, small trees, wood decking and street furniture, as shown in Figure 6.1. The 

wood decking consists of several layers including 3 mm waterproof membrane, 1 mm 

root barrier, 50 mm drainage layer, 200 g/m
2 
nonwoven fabric, 60 mm air cavity and 15 

mm wood frame. The fabric layer is a type of porous material, which can absorb sound 

energy through the slits with 5 mm between wood frames. Figure 6.3 shows the drawing 

for the cross-section of the wood decking. 

 

Fig. 6.3 Cross-section of the wood decking (Unit: mm) 

In the courtyard after the refurbishment, there are several species of low-growing 

vegetation including Miscanthus sinensis, Aquilegia buergeriana, Carex ligulata, 
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Phalaris arundinacea, etc. The low-growing vegetation is planted in the growing media 

with a depth of 100 mm consisting of Sedum mat with lightweight expanded aggregate 

used as mulch. The diameter of the lightweight expanded aggregate is 5 mm to 15 mm. 

A few small trees including Comus kousa and Styrax japonica are also planted in the 

growing media with a depth of 500 mm. Approximately, 70 % of the whole ground area 

is covered by the wood decking. The remaining 30 % is comprised of the vegetation. 

Street furniture such as tables, benches and lighting is also there. 

Although designed apparently without any acoustic consideration, the courtyard 

presents a good experimental condition to investigate how a practical landscape design 

affects the characteristics of sound fields in such reverberant courtyards. Therefore, in-

situ measurements were carried out before the refurbishment (in November 2010) and 

after the refurbishment (in March 2011) to examine the effect of the landscape design on 

acoustic parameters such as sound levels and RT. Differences in temperature and 

relative humidity between the two measurements dates (firstly 8.9 °C and 58 %, then -

0.1 °C and 54.5 %) are generally insignificant. 

6.2.2 Measurement and analysis methods 

To determine an impulse response from which RT can be calculated using the Schroeder 

methods, an MLS (maximum length sequence) signal was used. The impulse response 

at each receiver point was recorded using the 2-channel 01dB Symphonie system with 

1/2” microphones (G.R.A.S. Type 40AF) and preamplifiers (01dB-Stell Pre 12H). Leq 

for 10 seconds with different source-receiver distances was also examined using a 

RION NA-28 portable sound level meter to examine sound attenuation. The sound 

source for the measurement of sound attenuation was white noise generated from an 
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omni-directional loudspeaker (FP120, CESVA) connected to an amplifier (AP600, 

CESVA). The measurements for the impulse response and Leq were repeated three times 

to confirm the repeatability.  

Figure 6.4 shows the ground plan of the measurement conditions. For the sound source 

1 m from the building façade (Figure 6.4a) there were 15 receivers along the centreline 

of the courtyard. With the sound source in the centre (Figure 6.4b), 7 receivers lay along 

the centreline between the source and one end of the courtyard. The sound source and 

receivers all had a height of 1.5 m, and neighbouring receivers were 2 m apart. 

RT for the impulse response recorded from the in-situ measurement was analysed using 

the Dirac programme from B&K, which has a noise compensation function to reduce 

the effect of background noise on RT calculation. RT is derived from the decay curve 

 

 

Fig. 6.4 Ground plan of the measurement conditions: (a) Source point located at 1m from the 

façade; (b) Source point located in the centre 
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section between 5 dB and 25 dB below the initial level, which is represented as RT20. 

The signal-to-noise ratio of the steady-state sound source (white noise) was greater than 

18 dB across frequencies in an unweighted value. 

6.3 Measurement results 

As mentioned above, sound levels and RT20 were measured in the two conditions, 

before and after the refurbishment in the courtyard, to estimate the effect of the practical 

landscape design on variations in the acoustic characteristics. 

Figure 6.5 shows a difference in sound levels before and after the refurbishment, 

according to source-receiver distances illustrated in Figure 6.4(a). The relative SPL in 

Figure 6.5 is with reference to SPL at 1 m from the sound source. In the near field from 

the source, it can be seen that a difference in SPL between the two landscape designs is 

insignificant, which indicates a strong influence of a direct sound. Conversely, a  

 

Fig. 6.5 SPL measured before and after the refurbishment according to receiver distances from 

the source point at 1 m from the façade 
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increase of source-receiver distances. The maximum difference in sound levels before 

and after the refurbishment is 3.1 dB in an unweighted overall value. The SPL 

attenuation is due to the increased absorption, scattering and diffraction effect of the 

ground after the refurbishment (Kang, 2007). This result implies that the refurbishment 

using vegetation, wood decking and street furniture can slightly moderate noise 

annoyance of the occupants in the courtyard. 

 

 

Fig. 6.6 RT20 averaged over all receiver points measured at the two different source points 

according to the refurbishment: (a) Source point at 1 m from the wall, (b) Source point in the 

centre of the courtyard 
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In Figure 6.6, results for RT20 averaged over all receiver points measured at both source 

points are shown from 125 to 4000 Hz in octave bands. The standard deviation means a 

difference in RT20 at each receiver point, which also indicates the RT distribution in the 

courtyard. The result on RT20 before the refurbishment shows that RT20 is relatively 

long over 2.5 sec at 500 Hz for both source points due to the large number of late 

reflections. After the refurbishment, RT20 becomes less than 1.5 sec at 500 Hz (47 % 

decrease). It is noticeable that RT20 is decreased especially at low frequencies by 2.3 

sec at 125 Hz (77 %), due to the combined effect of absorption, scattering and 

diffraction by the wood decking, vegetation, low-profiled garden and street furniture. 

6.4 Computer simulations 

In-situ measurement results showed that the practical landscape design can reduce 

sound levels and RT20 in the courtyard. Therefore, it is useful to carry out a systematic 

study on how landscape designs using acoustically sustainable materials can be applied 

more effectively to improve sound environments in the courtyard through computer 

simulations. In this section, prediction using a computer simulation programme has 

been done to examine the acoustic effect of vegetation in the courtyard and at different 

floor levels of the accommodation building. Acoustic parameters predicted here are the 

extra SPL attenuation and RT20. Based on the extra SPL attenuation, the variation in 

speech levels by vegetation is calculated because conversation in the courtyard is one of 

the main sources of noise. 

6.4.1 Computer model calibration 

In this chapter, the computer simulation programme ODEON v.11.23 is used for 

predicting the acoustic effect of vegetation in the courtyard. This programme employs a 
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hybrid algorithm combining the image source method and ray tracing for predicting 

sound fields. It considers both specular and diffuse reflections, as well as diffraction. 

The absorption coefficient of the model surfaces before the refurbishment, mainly 

consisting of glass and marble, was selected within the ranges given in the programme. 

The scattering coefficient of the ground and façade was determined as 0.01 at 707 Hz as 

they have geometrically reflecting surfaces. In ODEON, the scattering coefficient for 

each octave band is calculated on a basis of the value at 707 Hz using interpolation or 

extrapolation. A source generated 300,000 rays. The impulse response time was set to 

5000 ms. Figure 7 illustrates the computer model for the courtyard before the 

refurbishment. 

 

Fig. 6.7 Computer model for the courtyard before the refurbishment 

To calibrate the computer model, the squared impulse response measured at R15 in 

Figure 6.4(a) is compared to the predicted one, as shown in Figure 6.8(a). The result 

shows that the characteristics of measured and predicted impulse responses are 

comparable to each other. In Figure 6.8(b), RT20 averaged over the 15 receiver points in 



Chapter 6. A Case Study on Controlling Sound Fields by Landscape Designs in a  

                  Courtyard 

122 

 

Figure 6.4(a) is also compared between the measured and predicted one. The standard 

deviation indicates a difference in RT20 at each receiver point. The calibration goal was 

set to a difference of less than 5 % across frequencies in the averaged RT20 between the 

existing courtyard and computer model because the just noticeable difference (JND) is 

typically given as 5 % for RT (Bork, 2000). 

6.4.2 Landscape design schemes using vegetation 

It is important to use reliable absorption and scattering coefficient values of vegetation 

for accurate prediction of how it affects the characteristics of sound fields in the 

courtyard. Since the courtyard has a relatively reverberant sound field, it is desirable to 

use random-incidence absorption and scattering coefficients of vegetation. Those 

coefficients are collected from the published data for four types of vegetation including 

grass (Kaye et al., 1940), bedding plants, green wall (Cheal et al., 2011) and Ivy (Data 

in Chapter 3) which can typically be used in such courtyards. Grass consisted of rough 

turf on 25 cm of compressed gravel. The bedding plants comprised eight plant species 

in 20 cm of topsoil. The (horizontal) depth of the green wall was 20 cm consisting of 

porous substrate without vegetation. Ivy had a depth of 10 cm and consisted only of 

leaves. Grass and bedding plants are assumed as the type of vegetation for the ground 

treatment. Ivy and green wall are selected for the façade treatment. Table 6.1 presents 

the absorption coefficient of the vegetation used for the prediction. Based on the data in 

Chapter 3, the scattering coefficients of Ivy and bedding plants were determined as 0.06 

and 0.02 at 707 Hz, respectively. The scattering coefficient of the grass and green wall 

was assumed as 0.01 at 707 Hz, which is the same as the surface without vegetation. 
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Fig. 6.8 Comparison between measured and predicted data in the landscaping condition before 

the refurbishment: (a) Squared impulse response at the receiver point, R15; (b) RT20 averaged 

over 15 receiver points 

Table 6.1 Absorption coefficient of the vegetation used for the computer simulation 

Landscape 

design 

Vegetation Frequency (Hz) 

125 250 500 1000 2000 4000 

Ground 

treatment 

Grass 0.15 0.25 0.40 0.55 0.60 0.60 

Bedding plants 0.56 0.81 0.89 0.98 0.92 0.76 

Façade 

treatment 

Green wall  0.62 0.61 0.70 0.67 0.68 0.73 

Ivy 0.00 0.00 0.13 0.14 0.21 0.49 
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In this chapter, the acoustic effect of vegetation in the courtyard and at different levels 

of the accommodation building has been investigated by employing 100 % of 

vegetation coverage on the façade with 7.1 m high (except for windows and doors) and 

ground. Thus, the areas of the vegetation on the façade and ground are 361 m
2
 and 266 

m
2
, respectively. Three applicable landscape design schemes are considered as 

vegetation on the façade only (Case I), ground only (Case II), and on both the façade 

and ground (Case III). Table 6.2 describes the three landscape design schemes. 

Table 6.2 Landscape design schemes using vegetation 

 Case I Case II Case III 

Location of vegetation Façade Ground Both façade and ground 

Cross section of the landscape 

design in the courtyard 

(green bold line: with vegetation, 

black dashed line: without 

vegetation)  

   

Area of  

vegetation 

361 m2 266 m2 627 m2 

6.4.3 Simulation results in the courtyard 

6.4.3.1 Vegetation on the façade (Case I) 

In Figure 6.9, the extra SPL attenuation by the Ivy and green wall on the façade is 

shown in octave bands at three receiver points, R1, R8 and R15 in Figure 6.4(a). The 

distances of R1, R8 and R15 from the source are 1 m, 15 m and 29 m respectively, 

corresponding to the first, centre and end points. The height of the source and receiver 

was 1.5 m. The extra SPL attenuation is a relative value showing a difference in SPL 

with and without the vegetation. 

In Figure 6.9(a), it can be seen that the extra SPL attenuation by the Ivy is increased 
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with the increase of source-receiver distances at mid and high frequencies by 5.2 dB at 

4000 Hz. At low frequencies, on the other hand, some negative effects are observed due 

to the relatively high scattering coefficient of the Ivy in comparison with that of the 

façade without vegetation, whereas the absorption coefficients at low frequencies are 

similar to each other. Based on the speech spectrum for a male speaking normally (IEC, 

2003), the Ivy can reduce the speech level by 1.3 dBA at R15. This result indicates that 

  

 

Fig. 6.9 Predicted extra SPL attenuation in octave bands at three receiver points by the 

vegetation on the façade: (a) Ivy; (b) Green wall 



Chapter 6. A Case Study on Controlling Sound Fields by Landscape Designs in a  

                  Courtyard 

126 

 

the vegetation with only leaves has a limited effect in moderating noise annoyance for 

speech in such courtyards. As for the green wall in Figure 7(b), the extra SPL 

attenuation is also increased with the increase of source-receiver distances at all 

frequencies. The green wall can reduce sound levels at R15 by 9.9 dB at 500 Hz and 

speech level by 9.3 dBA. Therefore, it can be said that the green wall can play an 

important role in reducing the speech level in the courtyard. 

The result for variation in RT20 caused by the vegetation is shown in Figure 6.10. RT20 

is a value averaged over 15 receiver points in Figure 6.4(a), and thus the standard 

deviation indicates differences in RT20 between the points. The result shows that the 

Ivy and green wall can reduce RT20 at 500 Hz by 52% (1.3 sec) and 81 % (2.1 sec), 

respectively. This result indicates that the vegetation on the façade is effective at 

controlling RT in such reverberant courtyards. 

 

Fig. 6.10 Predicted RT20 averaged over 15 receiver points according to the landscape design 

with and without the Ivy and green wall on the façade 



Chapter 6. A Case Study on Controlling Sound Fields by Landscape Designs in a  

                  Courtyard 

127 

 

6.4.3.2 Vegetation on the ground (Case II) 

The extra SPL attenuation by the grass and bedding plants on the ground is predicted at 

three receiver points, R1, R8 and R15. As shown in Figure 6.11, the extra SPL 

attenuation by the vegetation is increased with increasing receiver distance from a 

source. It can be seen that the grass and bedding plants can reduce sound levels at R15 

by 1.0 dB and 2.5 dB at 1000 Hz, respectively. It is calculated that the speech level at  

 

 

Fig. 6.11 Predicted extra SPL attenuation in octave bands at three receiver points by the 

vegetation on the ground: (a) Grass; (b) Bedding plants 
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R15 can be decreased by the grass and bedding plants by up to 0.9 dBA and 2.2 dBA, 

respectively. This implies that landscape designs using highly absorptive vegetation on 

the ground play an insignificant role in moderating noise annoyance caused by speech 

in the courtyard. This is mainly because most ground-reflected sound waves propagate 

towards the ‘open ceiling’, with the help of non-diffusively reflecting façades. With 

diffusely reflecting façades and a covered ceiling, it is expected that the ground with 

absorptive vegetation can play a more important role in reducing sound levels (Kang, 

2007). 

In Figure 6.12, RT20 averaged over the 15 receiver points is predicted according to the 

landscape design with and without the grass and bedding plants on the ground. The 

standard deviation indicates differences in RT20 between receiver points. The result 

shows that the bedding plants increase RT20 by 12 % (0.3 sec) at 500 Hz even though 

the ground is covered with the highly absorptive vegetation. This is perhaps because the 

early part of decay has a steeper curve due to the absorption by the vegetation on the  

 

Fig. 6.12 Predicted RT20 averaged over 15 receiver points according to the landscape design 

with and without the grass and bedding plants on the ground 
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ground. The large standard deviation at low and mid frequencies also indicates that 

RT20 distribution is uneven in the courtyard with the absorptive vegetation on the 

ground. Correspondingly, the difference in RT20 with and without vegetation increases 

with the increase of source-receiver distance. 

6.4.3.3 Combined use of vegetation on the façade and ground (Case III) 

The result in Figure 6.13 shows the predicted extra SPL attenuation at the three receiver 

points by the combined use of the green wall and bedding plants on the façade and 

ground. As they have high absorption coefficient values, the green wall and bedding 

plants are selected to examine the maximum effect of vegetation on the extra SPL 

attenuation. With increasing receiver distance from a source, it can be seen that the extra 

SPL attenuation is also increased. At the receiver point, R15, the maximum decrease in 

SPL is 11.4 dB at 500 Hz. As for the speech level, it is reduced by 10.7 dBA at R15. 

Therefore, it can be said that the bedding plants on the ground do not contribute  

 

Fig. 6.13 Predicted extra SPL attenuation in octave bands at three receiver points by the 

combined use of the green wall and bedding plants on the façade and ground 
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importantly to the extra SPL attenuation when used with the green wall on the façade 

which itself can reduce the speech level by 9.3 dBA. 

The result in Figure 6.14 shows that the combined use of the green wall and bedding 

plants can reduce RT20 at 500 Hz by 82 % (2.2 sec) in comparison with the same space 

without the vegetation. The decrease in RT20 by the combined use of the vegetation is 

similar to that achieved by the green wall alone, which indicates that the bedding plants 

on the ground have an insignificant effect on reducing RT20. 

 

Fig. 6.14 Predicted RT20 averaged over 15 receiver points according to the landscape design 

with and without the combined use of the green wall and bedding plants on the façade and 

ground 

6.4.4 Simulation result at different floor levels in the accommodation building 

Figure 6.15 shows the extra SPL attenuation by vegetation in front of the bedrooms 

facing towards the courtyard at the 1
st
, 4

th
 and 7

th
 floors (see building cross-section in 

Figure 6.2). The three landscape designs considered are green wall on the façade, 

bedding plants on the ground, and combined use of the green wall and bedding plants  
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Fig. 6.15 Predicted extra SPL attenuation at the 1st, 4th and 7th floors in the accommodation 

building by the three landscape designs of the inner courtyard: (a) Green wall on the façade; (b) 

Bedding plants on the ground; (c) Combined use of a) and b) 



Chapter 6. A Case Study on Controlling Sound Fields by Landscape Designs in a  

                  Courtyard 

132 

 

on both the façade and ground. The receiver points are positioned at 0.2 m from the 

windows of bedrooms at the 1
st
, 4

th
 and 7

th
 floors in the shortest vertical line from the 

source located in the centre of the courtyard as shown in Figure 6.4(b). In Figure 

6.15(a), it can be seen that the green wall on the façade can reduce sound levels at all 

floors. At the 1
st
 floor, especially, it reduces sound levels by 4.0 dB at 500 Hz by 

absorbing multiple reflections between the parallel façades. As for the speech level, 3.8 

dBA is removed by the green wall. In Figure 6.15(b), the bedding plants on the ground 

also reduce sound levels at all floors. At the 7
th

 floor, particularly, sound level is 

decreased by 3.4 dB at 1000 Hz. As for the speech level, 3.0 dBA is removed at the 7
th

 

floor by the bedding plants. It seems that at high floor levels, the sound energy from the 

multiple reflections between the parallel façades is relatively weak in comparison with 

that from ground reflections. With the combined use of the green wall and bedding 

plants, as shown in Figure 6.15(c), the maximum extra SPL attenuation is 5.8 dB at 500 

 

Fig. 6.16 Predicted RT20 averaged over 3 receiver points at the 1st, 4th and 7th floors in the 

accommodation building according to the three landscape designs using vegetation on the 

façade (green wall), ground (bedding plants), and façade (green wall)+ground (bedding plants) 
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Hz which can be seen at the 4
th

 floor. It can also reduce the speech level by 5.5 dBA. 

Figure 6.16 shows RT20 averaged over three receiver points at the 1
st
, 4

th
 and 7

th
 floors 

according to the three landscape designs. The small standard deviation indicates similar 

RT20s at the 1
st
, 4

th
 and 7

th
 floors. It can be seen that the vegetation on the façade plays 

an important role in reducing RT20 at 500 Hz by 66 % (1.1 sec). On the other hand, the 

vegetation on the ground has a limited effect in reducing RT20. 

6.5 Summary  

In this chapter, in-situ measurements and computer simulations were carried out to 

investigate how applicable landscape designs can contribute to the variation in sound 

levels and RT in a courtyard and at different floor levels in an adjacent accommodation 

building. 

In-situ measurements were conducted before and after applying the practical landscape 

design on the ground using low-growing vegetation, trees, wood decking and street 

furniture. The results showed subsequent sound levels had reduced by 3.1 dB in an 

unweighted overall value. RT20 at 500 Hz was decreased by 47 % (1.5 sec). Also, the 

practical landscape design is relatively effective in reducing RT20 at low frequencies in 

comparison with high frequencies due to the increased absorption, scattering and 

diffraction effects of the ground. 

Computer simulations showed that the extra SPL attenuation by the vegetation on the 

façade was increased for larger source-receiver distances in the courtyard. The leafy Ivy 

decreased sound levels at high frequencies, by 5.2 dB at 4000 Hz. As for the speech 

spectrum, 1.2 dBA was removed by the Ivy, indicating a limited effect of leaves on the 
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façade in moderating noise annoyance for speech in such reverberant courtyards. With 

the Ivy, RT20 at 500 Hz was also decreased by 52 % (1.3 sec). The green wall on the 

façade decreased sound levels by 9.9 dB at 500 Hz and 9.3 dBA for the speech 

spectrum. It also reduced RT20 at 500 Hz by 81 % (2.1 sec). Therefore, it can be said 

that vegetation with porous growing media such as the green wall can be effective in 

moderating noise annoyance in such reverberant spaces. With the grass and bedding 

plants on the ground, the speech level was decreased by 0.9 dBA and 2.2 dBA, 

respectively, with the increase of RT20 by 12 % (0.3 sec) even though they have 

relatively high absorption coefficient values. With the combined use of vegetation on 

the ground and façade, it was vegetation on the façade that played the more important 

role in reducing sound levels and RT20. Therefore it is recommended that landscape 

designers use absorptive vegetation on facades rather than the ground to control sound 

fields in courtyards. 

Vegetation on the façade is predicted to reduce sound levels more effectively at lower 

floors than at higher floors, showing the importance of multiple reflections in increasing 

sound levels nearer the ground. The predicted result showed that the green wall on the 

façade decreased the speech level by 3.8 dBA at the 1
st
 floor. On the other hand, 

vegetation on the ground was more effective in reducing sound levels at the higher 

floors than at the lower floors. With bedding plants on the ground, the speech level at 

the 7
th

 floor was decreased by 3.0 dBA. With combined use of the green wall and 

bedding plants on the façade and ground, the speech level was decreased by 5.5 dBA at 

the 4
th

 floor. The green wall on the façade reduced RT20 by 66 % (1.1 sec), while 

bedding plants on the ground had a limited effect on reducing RT20. 
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The overall results indicate that sound environments in reverberant courtyards as well as 

in rooms in adjacent buildings can be improved by strategic landscape designs using 

sustainable materials such as vegetation. 

Based on the results for the experiment and prediction, general design methods of 

landscape design in courtyards can be recommended as follows: 

1) Use sustainable acoustic materials on façades instead of ground for effective noise 

control in courtyards with non-diffuse surfaces; 

2) Install vegetation consisting of porous growing media (soil or substrate) as leaves are 

effective in absorbing/scattering sound energy at high frequencies; 

3) Place vegetation both on ground and façade if the purpose of landscape designs is to 

reduce noise levels in rooms at high floors of adjacent buildings; 

4) Locate garden furniture such as tables and benches to increase ground diffusion as 

well as diffraction effect. 
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7 A Preliminary Study on Acoustic Characteristics of 

Outdoor Spaces in an Apartment Complex 

The aim of this chapter is to carry out a preliminary study on sound propagation within 

outdoor spaces of high-rise apartment buildings, after examining reproducibility and 

signal to noise ratio for the measurement methodology which will be applied to later 

large-scale work in Chapter 8. In Section 7.1, the importance of comfortable outdoor 

sound environments in apartment complexes is defined through reviews of previous 

studies. Methodology is validated in Section 7.2. Section 7.3 describes the results for 

the characteristics of sound fields examined at three outdoor spaces. In Section 7.4, key 

findings of this chapter are addressed. 

7.1 Introduction 

In many countries, a significant percentage of the population lives in multi-storey 

apartment buildings due to the scarcity of available land space. In Korea, in particular, it 

is estimated that over 50 % of dwellings are multi-storey apartment buildings. 

Therefore, there have been continuous efforts to improve the sound environment in 

multi-storey apartment buildings, especially in terms of the noise level in the interior 

spaces. 

In recent years, outdoor spaces in typical apartment complexes are also receiving great 

attention, partly because the available space has been enlarged through increased 

underground car parking according to sustainable-built and eco-friendly design 

principles. This leads residents to occupy outdoor spaces more for leisure, rest, or 

conversation (Baik, 2003), where the acoustic characteristics play an important role in 
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improving the overall environmental quality (Yang et al., 2005; Yu et al., 2009; Yu et 

al., 2010). 

Outdoor spaces in apartment complexes are generally surrounded by multi-storey 

buildings with different sizes and dispositions. Therefore, the presence of buildings 

induces many complicating acoustic effects such as multiple reflections, diffraction, and 

diffusion, which depend on the size, irregularity and material property of building 

façades and ground surfaces, etc. 

Variation of the sound field due to buildings affects decay of transient sound levels 

which is related to RT, as well as the steady-state noise levels such as from road traffic 

noise. In the past few decades, several site measurements of sound propagation in urban 

spaces have been conducted to evaluate the effect of buildings on the RT and noise 

levels, especially for road traffic noise (Aylor et al., 1973; Ko et al., 1978; Picaut et al., 

2005; Steenackers et al., 1976; Wiener et al., 1965; Yeow, 1976, 1977). To overcome 

the limitation of full scale measurements, scale models have also been used to validate 

sound propagation in urban spaces (Delany et al., 1972; Horoshenkov et al., 1999; 

Kang, 1996b; Kerber et al., 1981; Mulholland, 1979). In summary, the results from site 

and scale model measurements suggest that buildings in urban spaces contribute to 

increases in noise levels due to multiple reflections which are influenced by various 

factors such as street width and acoustic characteristics of building façades and ground 

surfaces, including absorption, diffusion and diffraction. 

Many investigations have been carried out on theoretical and numerical models of 

sound propagation in urban spaces using an image source model or diffuse reflection 

model (Davies, 1978; Kang, 2000, 2002b, 2005; Picaut et al., 1999). Kang (2000, 
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2002b, 2005) investigated acoustic parameters such as RT, EDT and sound attenuation 

in urban streets and squares through the comparison of geometrical and diffuse 

boundary conditions using the image source and radiosity methods. The results showed 

that the RT and sound attenuation in a single street canyon depend on boundary 

conditions, and in particular, the importance of façade diffusion in urban spaces has 

been demonstrated. With geometrical boundaries, the RT at 500 Hz is about 4 sec at 60 

m from a point source and it increases with increasing source-receiver distance; and the 

EDT at 500 Hz is about 1.5 sec at 60 m from a point source and also increases with 

increasing source-receiver distance. With diffusely reflecting boundaries, the RT is 

considerably shorter in comparison with that of geometrically reflecting boundaries, and 

EDT is longer than RT beyond a certain source-receiver distance. Kang also 

investigated the effect of architectural and urban design on the sound field, including 

boundary absorption, boundary pattern and building arrangement (Kang, 2001, 2002a, 

2002d, 2007). Consequently, the results from both measurement and prediction allow 

the assessment of acoustic treatments to reduce noise levels and RT in urban spaces. 

Outdoor spaces in apartment complexes have various types and sizes. Although there 

are many common features with urban streets, squares and built-up areas, further 

research on the acoustic characteristics of outdoor spaces in apartment complexes is still 

required due to the differences in building disposition, material, and façade 

configuration, etc. In this chapter, therefore, in-situ measurements for three types of 

outdoor space in an apartment complex were carried out to evaluate the acoustic 

parameters, including RT, EDT, rapid speech transmission index (RASTI), and SPL 

attenuation with distance. Along with measurements at street level, acoustic parameters 

at the different floor levels in an apartment building were also evaluated. 
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7.2 Methods 

In-situ measurements were conducted to investigate the acoustic characteristics of 

outdoor spaces in an apartment complex which is located in Seoul metropolitan city, 

South Korea. The apartment complex, as shown in Figure 7.1, consists of 15 apartment 

buildings which have 9 - 15 floors for each building. The buildings are arranged along a 

major traffic road and two side pedestrian roads which have a width of approximately 

13 m in total. The building façades are comprised of concrete walls and windows which 

can be regarded as geometrically reflecting boundaries. 

   

Fig. 7.1 The studied apartment complex 

In order to characterise sound fields in urban spaces, it is essential to measure 

simultaneously the sound attenuation and the sound decay at different locations. This 

can be performed by measuring the impulse response at many receiver points in an 

urban space for various points of sound source. Then, SPL in steady-state and the RT 

can be extracted from the impulse response. RT has been demonstrated to be a useful 

index to examine geometrical parameters such as street width, average height, and 

façade roughness (Lyon, 1974). Thomas et al. (2013) estimated that information on 

reverberation in urban streets is useful to predict the increased SPL by multiple 
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reflections. It has also been experimentally proven that with a given SPL, noise 

annoyance is greater with a longer reverberation time in a space (Kang, 1988). EDT, 

which is highly correlated with speech intelligibility, is also a useful index to 

characterise the early part of the sound energy decay (Bradley, 1986). STI could be a 

good indicator to determine the location of PA systems. Due to the reasons above, in this 

work, acoustic parameters including sound attenuation, RT, EDT and STI are measured. 

These acoustic parameters are also useful to validate numerical modelling for sound 

propagation in urban spaces. 

Sound attenuation with distance was measured using portable sound level meters 

(RION, NA-28) with a receiver height of 1.5 m. The sound source for the measurement 

was white noise generated from an omni-directional loudspeaker with a height of 1.5 m. 

The background noise level for measurements was 60 dB in unweighted overall level, 

which is 38 dB lower in comparison with the steady-state signal level measured at 1 m 

from the source. The signal-to-noise ratio at 120 m from the source was about 4 dB. RT 

was examined using a starter pistol as the sound source which, compared to the omni-

directional speaker, can emit higher sound levels against background noise. The impulse 

responses for the starter pistol were recorded using the 2 channel Symphonie system 

(01dB). Five gun shots were generated for each measurement to consider the 

repeatability. All microphones were calibrated before the measurements. The 

measurements were conducted with an average temperature of 11.1 °C, relative 

humidity of 56.5 %, and wind speed less than 3.3 m/s.  

Four source points, named S1, S2, S3 and S4 below, were used to evaluate the acoustic 

characteristics including RT and sound attenuation of the outdoor spaces. The number 
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and location of the sources were determined by considering the type of outdoor spaces 

and site conditions. S1 was positioned at an outdoor space with a long length and 

narrow width which is a comparable space to street canyons. S2 was set up at an 

opposite side of S1 in the same outdoor space to investigate the effect of source 

position. S3, located in an outdoor space with a single-side of building façades along a 

street, was selected to compare the results measured at S1 and S2 which were in the 

outdoor space with building façades on both sides. S4 was set up to measure acoustic 

parameters in an outdoor space surrounded by apartment buildings, which can be 

regarded as an urban square with complex building dispositions. With the source at S2, 

impulse responses at six different floor levels were recorded to analyse acoustic 

parameters according to receiver heights. Overall, the outdoor spaces investigated in 

this chapter can be categorised into 3 zones as shown in Figure 7.2. 

 

Fig. 7.2 Three zones of outdoor spaces and the position of each source (S1, S2, S3, S4) 
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Receivers for S1 and S2 were located along a line-of-sight between S1 and S2 based on 

log scale source-receiver distance within 120 m to evaluate the effect of distance on RT 

and sound attenuation. Receivers for S3 were set up based on log scale source-receiver 

distance up to 80m. In the outdoor space where S4 was located, receiver points were 

determined to measure the effect of distance and position on acoustic parameters. In 

Figure 7.3, receiver points at each zone are illustrated. The number below and above the 

symbol indicates source-receiver distance in metres. Table 7.1 shows the source-

receiver distance and the height for each source. Site conditions at each source position 

are also shown in Figure 7.4. 

 

(a) Receiver points for S1 and S2 (S1: circle, S2: triangle) 

  

                                           (b) Receiver points for S3                                                 (c) Receiver points for S4 

Fig. 7.3 Receiver points for each source position including source-receiver distances 
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Table 7.1 Source-receiver distance 

Source Symbol in Fig. 7.3 Source-receiver distance (m) 

S1 Circle 1, 5, 10, 20, 40, 80, 120 

S2 Triangle 

Horizontal: 1, 5, 10, 20, 40, 80, 100, 120 

Vertical: 2nd, 4th, 6th, 8th, 10th, 12th floor 

S3 Square 1, 5, 10, 20, 40, 80 

S4 Diamond 1(C), 6(C), 10(L), 12(R), 20(R) 

*C: Centre, L: Left, R: Right 

    
                                              (a) S1                                                                          (b) S2 

    
                                                (c) S3                                                                        (d) S4 

Fig. 7.4 Site conditions for each source position 
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Acoustic parameters including the RT, EDT and RASTI were calculated using the 

DIRAC analysis program which has a noise compensation function to reduce the effect 

of background noise on RT calculation. The calculation method of RT was based on T20 

in one-octave bands from 125 Hz to 4000 Hz, considering that this was an outdoor field 

measurement with relatively high background noise level. During the acoustic 

measurement, all obstacles on streets including vehicles and construction materials were 

removed. The fountain sound, as shown in Figure 7.4(d) was stopped to reduce 

background noise. 

7.3 Results 

7.3.1 Impulse Responses and Decay Curves at S1 

To validate the effect of apartment buildings on multiple reflections, Figure 7.5 shows 

the pressure squared impulse responses measured at receiver distances of 10 m and 40 

m from S1. Because of strong reflections from building façades, it can be seen that there 

are several peaks with strong sound energy arriving after the direct sound with visible 

time delay, which could cause acoustic defects including echoes. Between the peaks due 

to strong reflections, sound energy with relatively low amplitude can be observed, 

which is due to reflected and diffused sound energy from other boundaries and obstacles 

such as trees. It is noted that the strong reflections can play an important role in 

increasing RT and noise levels for transient and steady-state sound sources, which are 

related to spatial impression and noise annoyance. Therefore, it can be said that it is 

important to control the reflected impulses with strong sound energy using suitable 

acoustic material and configuration design of building façades. 

In Figure 7.6, decay curves at 500 Hz are shown, which were measured at source-
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receiver distances of 1 m to 120 m from S1. The range of the Y-axis is 0 dB to -25 dB 

for RT20 calculation. It is noted that the decay curves are decreased in a linear shape, 

indicating that the value of RT30 is similar to that of RT20. The decay curves are 

analysed using WINMLS 2004 software using Schroeder integration and automatic 

truncation of impulse responses based on automatic detection of noise floor margin of 5 

dB. The result from decay curves indicates that the RT at 500 Hz is relatively long, and 

gradually increases with increasing source-receiver distance. 

 

Fig. 7.5 Impulse responses at two source-receiver distances: (a) 10 m; (b) 40 m 

 

Fig. 7.6 Decay curves at 500 Hz according to source-receiver distance from 1 m to 120 m 
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7.3.2 Acoustic Characteristics of the Long Outdoor Spaces (S1, S2, S3) 

As mentioned above, S1, S2 and S3 were positioned in the relatively long outdoor 

spaces. S1 and S2 were at a long outdoor space surrounded by building façades along 

both sides of a street so that it was expected that the sound field was relatively 

reverberant in comparison with the outdoor space where S3 is located. Therefore, it is 

useful to compare acoustic parameters measured at S1, S2 and S3 to evaluate the effect 

of source position and building façade conditions. In Figure 7.7, the RT20 measured at 

S1, S2 and S3 at octave bands from 125 to 4000 Hz is shown according to source-

receiver distance, with regression curves and correlation coefficients. The calculation 

method of the regression curve is determined by considering the correlation coefficient 

which has the highest value. In case of the polynomial regression curve, 2
nd

 order 

equation is selected. 

The result in Figure 7.7 shows that the maximum value in RT20 is over 4 sec at 500 Hz 

and 1000 Hz, and the RT20 increases with increasing source-receiver distance above 

500 Hz. On the other hand, it can be seen that the RT20 is relatively short, less than 2 

sec at 125 Hz, which might indicate the effect of diffraction due to the gap between 

buildings. At 125 Hz, it can be seen that the RT20 is very short, down to about 0 sec at 

far source-receiver distances over 80 m. This is perhaps because the reflective sound 

energy at 125 Hz is relatively weak in comparison with that of first-arrived sound due to 

diffraction. As the measurements were carried out in winter, most of windows were 

closed, which implies an insignificant effect of absorption by façades on reducing RT20, 

although windows have a relatively high absorption at low frequencies. The comparison 

of the RT20s measured at S1 and S2 indicates that the tendency of regression curves is  
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Fig. 7.7 RT20 measured at 3 source positions (S1, S2, S3) according to source-receiver distance, 

with regression curves (S1: ── , S2:  ─ , S3: ----) and correlation coefficients R2: (a) 125 

Hz; (b) 250 Hz; (c) 500 Hz; (d) 1000 Hz; (e) 2000 Hz; (f) 4000 Hz 
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similar at all frequencies. However, visible differences in RT20 are observed below 

1000 Hz, by 1.2 sec at 500 Hz, showing the effects of different building dispositions 

relative to the source points. On the other hand, the difference in RT20 above 2000 Hz 

is insignificant. The RT20s measured at S3 are 1.8 sec less at 500 Hz in comparison 

with the RT20s measured at S1 and S2. This suggests that building façades can strongly 

affect the acoustic characteristics of outdoor spaces, as expected. 

 

 

Fig. 7.8 RT20 and EDT measured at S1, with regression curves (EDT: ── , RT20:  ─ ) and 

correlation coefficients R2: (a) 500 Hz; (b) 1000 Hz 
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A comparison between the RT20 and EDT measured at S1 is shown in Figure 7.8 for 

500 Hz and 1000 Hz. It can be seen that above a certain distance, say 40 m, EDT is 

longer than RT20 at both frequencies. This is perhaps because the direct sound affects 

the relatively short EDT in comparison with RT20 within short source-receiver 

distances. On the other hand, EDT is longer than RT20 beyond 40 m, perhaps due to the 

narrow gap with a width of 13 m at 40 m from S1, as this can reduce the effect of 

reflected sound from boundaries, so as the sound energy loss at the late part of decay 

curve.  

In an apartment complex, acoustic parameters related to speech index such as RASTI 

can be useful in terms of the use of PA (public address) systems as well as soundscape 

applications (Davies et al., 2009). RASTI is evaluated as 5 grades: 0 - 0.3, bad; 0.3 - 

0.45, poor; 0.45 - 0.6, fair; 0.6 - 0.75, good; 0.75 - 1.0, excellent (IEC, 2003). In Figure 

7.9, the RASTI measured at S1, S2 and S3 is shown according to the source-receiver 

distance, where the measurement results which were influenced by strong background 

noise are excluded. It can be seen that RASTI measured at S1 and S2 is from 0.7 to 0.4 

approximately within 120 m, and the value decreases with the increase of distance. On 

the other hand, RASTI measured at S3 has a range between 0.8 and 0.65 within 40 m, 

relating to its shorter RT20, compared to S1 and S2. It is noted that while the results are 

presented as a function of distance from the source, with signal-to-noise ratio ignored, 

speech intelligibility in such outdoor spaces could often be dominated by background 

noise, especially at far source-receiver distances. 
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Fig. 7.9 RASTI according to source-receiver distance at S1, S2 and S3 with regression curves 

(S1: ── , S2:  ─ , S3: ----) and correlation coefficients R2 

Figure 7.10 shows a comparison between sound attenuation calculated in semi-free field 

with hard ground and that measured at S1, S2 and S3. The sound levels are with 

reference to the SPL at 1 m. In the near field, the difference between semi-free field 

condition and measured sound attenuation is insignificant, which indicates the strong 

influence of the direct sound. The difference between measured values at S1 and semi-

free field theoretical values becomes more important with the increase of source-

receiver distance, up to 8 dB, which indicates the effect of multiple reflections between 

building façades. On the other hand, the effect of building façades on increasing sound 

levels at S3 is about 5 dB in maximum within 80 m, which correspond to Kang’s (2007) 

results based on simulation. 
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Fig. 7.10 Sound attenuation according to source-receiver distance at S1, S2 and S3 

7.3.3 Acoustic Parameters of the Outdoor Square (S4) 

The outdoor space where S4 is located can be regarded as a square with complicated 

building dispositions. In Figure 7.11, the RT20 and EDT for 5 receiver points are 

presented. The result shows that the RT20 generally increases with increasing source-

receiver distance and the RT20 value is about 3.4 sec at 500 Hz. Moreover, the RT20 is 

relatively long compared to the EDT. With the increased source-receiver distance, the 

EDT also increases. In comparison with the result in the outdoor space with building 

façades on both sides, EDT is approximately 1 sec less at the same source-receiver 

distance with 20m due to different building layout. The RASTI at the 5 receiver points 

is shown in Figure 7.12. It can be seen that RASTI decreases from 0.8 to 0.5 with 

increased source-receiver distance, corresponding to increased reverberation. 
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Fig. 7.11 RT20 and EDT according to source-receiver distance measured at S4: (a) RT20; (b) 

EDT 

 

Fig. 7.12 RASTI according to source-receiver distance at S4 with a regression curve and 

correlation coefficient R2 
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7.3.4 Acoustic Parameters with Different Receiver Heights (S2) 

With the source position of S2, the measurement of acoustic parameters including 

RT20, EDT and RASTI was carried out along the building height. The result in Figure 

7.13 shows RT20 is insignificantly changed according to the receiver height, which 

suggests RT20 is dominated by the late part of impulse response with similar decay 

pattern according to the receiver height. The RT20 at 500 Hz is approximately 3 sec, 

which is similar to that in a previous study using a scale modelling test (Lee et al., 

2007). On the other hand, the  

 

 

Fig. 7.13 RT20 and EDT at different floor levels: (a) RT20; (b) EDT 
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Fig. 7.14 RASTI at different receiver heights with S2, and a log regression and correlation 

coefficient R2 

EDT is strongly influenced by the receiver height, generally increasing with increasing 

receiver height from 1.4 sec to 3.2 sec at 500 Hz, suggesting the importance of the 

direct sound energy on the early part of decay curve according to the receiver height. 

Correspondingly, RASTI generally decreases with increasing receiver height from 0.6 to 

0.4, as shown in Figure 7.14. 

7.4 Summary 

In this chapter, in-situ measurements in three outdoor spaces in an apartment complex 

have been carried out to evaluate acoustic parameters, including the RT20, EDT, RASTI 

and SPL distribution. These acoustic parameters are selected to characterise the sound 

field in the outdoor spaces, which are also be used to validate the acoustic computer 

simulation programme, ODEON, used in Chapter 8. 

The measurement methodology using a starter pistol showed good reproducibility of the 

RT20 above 500 Hz. It has also been confirmed that signal to noise ratio of the starter 
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pistol is enough to measure RT20 within the source-receiver distance of 120 m. 

Therefore, it can be said that the measurement methodology is applicable to large-scale 

parametric work in Chapter 8. 

The results show that the RT20 in a long outdoor space with two-side building façades 

is over 4 sec at 500 Hz and 1000 Hz, which suggests the requirement for acoustic 

treatments using appropriate façade material and building layout. The RT20 increases 

with increasing source-receiver distance above 500 Hz. The EDT is longer than the 

RT20 beyond a certain source-receiver distance, at about 40 m. The RT20 in the long 

outdoor space with a single-side façade is about 1.8 sec less at 500 Hz in comparison 

with the long space with two-side building façades. In comparison with the situation in 

a semi-free field, the measured SPL is about 5 dB and 8 dB higher in the outdoor spaces 

surrounded by one-side and two-side building façades, respectively. In the outdoor 

square, the RT20 and EDT also increase with the increase of source-receiver distance. 

In comparison with the result in the long outdoor space surrounded by two-side building 

façades, the EDT is shorter at the same source-receiver distance. The RASTI also 

decreases with increasing source-receiver distance. The measurement results at different 

receiver heights from the 2nd to 12th floors show that the receiver height plays an 

insignificant role in the RT20. On the other hand, the EDT increases with increasing 

receiver height, especially at high frequencies. The RASTI also decreases with 

increasing source-receiver distance. 

Although the experimental results derived from the in-situ measurement suggest useful 

data to understand sound propagation in apartment complexes, it is still necessary to 

study more systematically by considering various factors such as different building 
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configuration, disposition and size, etc. In upcoming work, a series of field 

measurements and predictions will be carried out according to the various factors 

mentioned above to provide a more accurate description of the reverberation and sound 

attenuation in the outdoor spaces of apartment complexes. 
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8 A Parametric Study on Outdoor Reverberation in 

Apartment Complexes 

The aim of this chapter is to clarify the designable factors affecting outdoor 

reverberation. A series of field measurements were carried out for 15 outdoor spaces in 

6 apartment complexes. The 15 outdoor spaces were categorised into 5 types of building 

layouts for a parametric study. Based on the field measurements, an empirical method to 

approximate RT using AutoCAD has also been suggested. After a review of previous 

studies in Section 8.1, Section 8.2 describes the methodology used for this chapter. With 

five types of building arrangements, measurement results are examined in Section 8.3. 

By using the measurement data, an empirical method to determine outdoor 

reverberation is proposed in Section 8.4. In Section 8.5, initial results for the vegetation 

effect on RT are covered. Section 8.6 summarises key findings of this chapter. 

8.1 Introduction 

High-rise apartment buildings have been universally built for residential purposes due to 

increasing population density in urbanised cities. An apartment complex consists of 

several numbers of apartment buildings in a limited boundary of land with various types 

of building layouts and blocks. Outdoor spaces in an apartment complex are planned by 

considering many architectural, environmental and social factors such as car parking, 

natural lighting and outdoor activities (Baik, 2003). Recently, the importance of the 

outdoor spaces for leisure and rest is being paid attention too, especially with the 

increase of the available land for such uses due to underground car parking. Therefore, 

designing comfortable sound environments in the outdoor spaces can contribute to 
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improving the living quality of residents. 

Previous studies indicate that RT is an important parameter for characterising sound 

fields in urban spaces because the decay rate determining RT is influenced by the 

complicate acoustic phenomenon such as multiple reflections, diffraction and diffusion 

due to surrounding buildings (Lyon, 1974). RT also plays a role in determining spatial 

impression of urban spaces (Jeon et al., 2011). 

Due to the reasons outlined above, numerous studies have been carried out to predict RT 

in street canyons and urban squares with different boundary conditions and sizes (Kang, 

2000, 2005; Picaut et al., 1999). A series of in-situ and scale modelling measurements 

have also been conducted to investigate sound propagation and RT in urban spaces 

(Aylor et al., 1973; Ko et al., 1978; Picaut et al., 2005; Steenackers et al., 1976; Wiener 

et al., 1965; Yeow, 1976, 1977).  

In comparison with street canyons and squares, RT in outdoor spaces of apartment 

complexes could be more important because residents require high level of comfortable 

sound environments for leisure and rest. Therefore, it is important for architects to 

understand how architectural designs can affect RT in the outdoor spaces. In this 

chapter, a series of field measurements were carried out for 15 outdoor spaces in 6 

apartment complexes. The 15 outdoor spaces were categorised into 5 types of building 

layouts for a parametric study. Based on the field measurements, an empirical method to 

approximate RT using AutoCAD has also been suggested in this chapter. Lastly, the 

effect of vegetation on sound field control in an apartment complex is investigated by 

using acoustic computer simulation. 
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8.2 Methodology 

8.2.1 Studied sites 

In this chapter, a series of field measurements were conducted to investigate RT in 15 

outdoor spaces of six apartment complexes in Korea. The apartment complexes were 

selected by taking the type of building layouts and blocks into account. Figure 8.1 

shows the bird’s-eye views for each apartment complex. In Figure 8.2, photographs for 

each site are shown. Table 8.1 describes the site and measurement conditions for each 

apartment complex. 

As shown in Figure 8.1 and 8.2, it can be seen that each apartment complex has 

different building layouts, blocks, size and height. On the other hand, most of building 

façades consists of acoustically reflective surfaces with concrete walls and window 

balcony, which can result in relatively long RT and strong echoes. 

  

   

Fig. 8.1 Bird’s-eye views for each apartment complex: (a) Site 1; (b) Site 2; (c) Site 3; (d) Site 

4; (e) Site 5; (f) Site 6 
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Fig. 8.2 Photographs for each apartment complex: (a) Site 1; (b) Site 2; (c) Site 3; (d) Site 4; (e) 

Site 5; (f) Site 6 

Table 8.1 Site and measurement conditions for each apartment complex 

 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Name Jeon-Nong Shin-Jung 

2nd 

Shin-Jung 

5th 

Pa-Ju Jeung- 

Pyung 

Chon-Wang 

No. of 

buildings 

15 20 8 11 6 13 

No. of flats 867 471 238 648 504 1044 

No.of 

floors 

9~15 3~7 9~15 12~25 10~15 9~18 

Measurement 

date 

13th.Nov. 

2010 

24th.May. 

2011 

24th.May. 

2011 

23rd.Aug. 

2011 

26th.Aug. 

2011 

7th.Oct. 

2011 

Temp. (°C) 11.1 21.5 21.5 24.3 26.4 21.2 

Humidity 

(%) 

56.5 39.5 39.5 60.1 57.5 57.5 

Wind speed 

(m/s) 

< 3.3 < 2.0 < 2.0 < 2.1 < 1.5 < 2.1 
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In Figure 8.3, 15 measurement zones in the apartment complexes are shown. The 

building layouts surrounding outdoor spaces are categorised into 5 types as linear-

shaped (i.e., –), parallel-shaped (i.e., =), L-shaped, U-shaped and □-shaped types. The 

building blocks also have 4 different types which can be categorised as linear, L, U and 

Y types. The number of source and receiver points at each measurement zone is 

described in Table 8.2, with a total of 209 points being used. The source-receiver 

distance for each measurement zone was determined by considering the size of the 

outdoor spaces. 

 

 

Fig. 8.3 Ground plan and measurement zones for each apartment complex: (a) Site 1; (b) Site 2; 

(c) Site 3; (4) Site 4; (5) Site 5; (6) Site 6 
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Table 8.2 Details for site and measurement conditions for each measurement zone 

 Name of 

zone 

No. of 

sources 

No. of 

receiver 

Total No. of 

measurement points 

Type of 

building layout 

Site 1 Z1-1 1 5 5 U 

Z1-2 1 5 5 □ 

Z1-3 1 6 6 ̶ 

Z1-4 1 5 5 □ 

Site 2 Z2-1 4 5 20 U 

Z2-2 4 5 20 U 

Z2-3 2 5 10 = 

Site 3 Z3-1 3 6 18 □ 

Site 4 Z4-1 4 6 24 U 

Z4-2 4 5 20 L 

Z4-3 4 6 24 = 

Site 5 Z5-1 3 4 12 L 

Z5-2 2 4 8 = 

Site 6 Z6-1 4 5 20 = 

Z6-2 3 4 12 ̶ 

8.2.2 Measurement method 

RT was measured with an impulsive sound source, a starter pistol, which can produce 

strong signal to noise ratio. The signal to noise ratio of the starter pistol was estimated 

from Chapter 7. The impulse response for the starter pistol was captured using the two 

channel Symphonie system (01dB) with ½” microphone (G.R.A.S. Type MCE 201) and 

preamplifiers (01dB-Stell Pre 12H). The four channel Harmonie system (01dB) was 

also used with ½” microphone (G.R.A.S. Type 40AF) and preamplifiers (G.R.A.S Type 

26AG). Figure 8.4 illustrates the experimental condition. Gun shots for each 

measurement were repeated five times and averaged to calculate RT. RT for the impulse 

responses recorded from the field measurement was analysed using Dirac programme 

from B&K. In this chapter, the decay range is selected as T20 (-5 dB to -25 dB)  
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Fig. 8.4 Illustration for the experimental condition 

8.3 Measurement results 

8.3.1 Overall characteristics and distribution of RT 

In Figure 8.5, maximum, average and minimum RT20 measured at each measurement 

zone are shown with different frequencies from 125 Hz to 4000 Hz in octave bands to 

examine the overall characteristics and distribution of it in the outdoor spaces. The 

result shows that differences in RT20 between maximum and minimum values for each 

measurement zone are important at all frequencies, which indicates the unevenly 

distributed RT20 in the outdoor space. It can be seen that maximum, average and 

minimum RT20 is different according to each measurement zone as well, which implies 

the importance of architectural design in terms of RT20. It is noted that RT20 is 

relatively long at 500 Hz and 1000 Hz in comparison with other frequencies. Maximum 

RT20 at 500 Hz is found at Z1-2 with about 4 sec. 

Figure 8.6 shows the overall averaged RT20 for maximum, average and minimum 

values measured at the 15 measurement zones. The results indicate that RT20 at mid 

frequency (500 Hz and 1000 Hz) is relatively high in comparison with low and high 

frequencies. This is perhaps due to the energy sinking through gaps between buildings 
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by diffraction at low frequency, and atmospheric absorption and diffusion at high 

frequencies. For the maximum value in Figure 8.6, RT20 with about 2.7 sec at 1000 Hz 

indicates that sound field in the outdoor spaces is reverberant. 

 

 

 

Fig. 8.5 Maximum, average and minimum RT20 with frequency at the 15 outdoor spaces: (a) 

125 Hz; (b) 250 Hz; (c) 500 Hz; (d) 1000 Hz; (e) 2000 Hz; (f) 4000 Hz 
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Fig. 8.6 Overall averaged RT20 for maximum, averge and minimum values measured at the 15 

outdoor spaces 

In urban spaces, source-receiver distance is one of the important factors determining 

RT20. In Figure 8.7, therefore, RT20 measured at different source receiver distances in 

the 15 measurement zones is presented. The result suggests that RT20 is considerably 

different according to each measurement zone although the source-receiver distance is 

the same. This implies that different architectural designing can affect RT20. 

 

Fig. 8.7 Overall RT20 at 500 Hz with different source-receiver distances measured at the 15 

measurement zones 
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In summary, the results for the overall characteristics and distribution of RT20 suggest 

that architectural design can affect RT20, and there is a possibility to control RT20 by 

determining suitable source-receiver distance, building layouts and building blocks. 

8.3.2 RT for the linear-shaped building layout 

Among the 15 measurement zones studied here, there are two measurement zones with 

the linear building layout. Z1-3 and Z6-2 has the linear building layout with different 

types of building blocks. In Figure 8.8, RT20 is shown with source-receiver distance 

and frequency for the two measurement zones. The source and receiver points were 

located in a line of sight to examine the effect of source-receiver distance on RT20. The 

result in Figure 8.8(a) shows that RT20 is increased to about 2 sec with increasing 

source-receiver distance for both measurement zones. It is shown that RT20 at the 

receiver points near a sound source is relatively short due to the strong effect of direct 

sound. On the other hand, the variation in RT20 is rather insignificant above a certain 

distance, say about 10 m. In terms of the regression curves, it can be seen that the 

gradient is similar to each other. 

In Figure 8.8(b), RT20 at the source-receiver distance of around 20 m is examined with 

frequencies from 125 Hz to 4000 Hz in octave band. The standard deviation error bar 

indicates the variation in the RT20 for the five repetitions of the measurement. The 

result shows that RT20 at 1000 Hz is relatively long in comparison with that for other 

frequencies for Z1-3. On the other hand, RT20 for Z6-2 has the highest value at 500 Hz. 

In comparison with Z6-2, RT20 for Z1-3 has rather high values at all frequencies by 1.4 

sec at 1000 Hz. 
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Fig. 8.8 RT20 for the linear building layout: (a) RT20 at 500 Hz with different source-receiver 

distances; (b) RT20 with frequency at the source-receiver distance with 20 m 

8.3.3 RT for the parallel-shaped building layout 

RT20 for the parallel building layout is dealt with in 3 measurement zones; Z2-3, Z4-3 

and Z6-1. Figure 8.9(a) shows RT20 at 500 Hz with different source-receiver distances. 

The result shows that RT20 is increased with increasing source-receiver distance. In 

comparison with Z2-3, RT20 at Z4-3 and Z6-1 is relatively long, about 2 sec at the 

source-receiver distance of 20 m. This is thought to be mainly due to wide distance 

between the parallel buildings, although surrounding building topology can affect RT20. 
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However, it is noticeable that the gradient of the regression curves for the 3 

measurement zones are similar to each other. It can also be seen that the maximum 

RT20 for the parallel building layout is 2.4 sec. 

Figure 8.9(b) shows RT20 with frequency at the source-receiver distance of around 20 

m. It can be seen that RT20 at 500 Hz is relatively long in comparison with that at other 

frequencies for Z4-3 and Z6-1. On the other hand, RT20 for Z2-3 is similar at all 

frequencies, being about 1 sec. The difference in RT20 between Z4-3 and Z2-3 is about 

1.2 sec at 500 Hz. 

 

 

Fig. 8.9 RT20 for the parallel building layout: (a) RT20 at 500 Hz with different source-receiver 

distances; (b) RT20 with frequency at the source-receiver distance with 20 m 
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8.3.4 RT for the L-shaped building layout 

In Figure 8.10(a), RT20 at 500 Hz is examined according to different source-receiver 

distances for Z4-2 and Z5-1 with the L-shaped building layout. The source and receiver 

was located in a line-of-sight. The result shows that RT20 is increased with increasing 

source-receiver distance, although there is a difference in RT20 by 1.6 sec between the 

two measurement zones. It is thought that the reason for the difference in RT20 is that 

Z4-2 is surrounded by another building reflecting sound energy back to the 

measurement zone. At the near field from a sound source, it can be  

 

 

Fig. 8.10 RT20 for the L-shaped building layout: (a) RT20 at 500 Hz with different source-

receiver distances; (b) RT20 with frequency at the source-receiver distance with 20 m 
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seen that RT20 is rapidly changed with the increasing source-receiver distance. On the 

other hand, there is an insignificant effect of the source-receiver distance beyond 15 m 

on RT20. It is noticeable that the gradient of the logarithm curves for Z4-2 is relatively 

rapid in comparison with that for Z5-1. The maximum RT20 for the studied L-shaped 

building layouts is about 3 sec indicating a reverberant sound field.  

In Figure 8.10(b), RT20 for the 2 measurement zones is examined with frequency in 

octave bands at the source-receiver distance of 20 m. It can be seen that RT20 for Z4-2 

has higher values at all frequencies than that for Z5-1. The maximum difference in 

RT20 between Z4-2 and Z5-1 is found at 500 Hz with 1.6 sec. It is also shown for Z4-2 

that RT20 at 500 Hz is relatively long in comparison with that of other frequencies. On 

the other hand, RT20 at high frequency is similar to that at mid frequency for Z5-1. 

8.3.5 RT for the U-shaped building layout 

With source-receiver distance and frequency, RT20 for the U-shaped building layouts is 

evaluated in Figure 8.11. The measurement zones with the U-shaped building layout are 

Z1-1, Z2-1, Z2-2 and Z4-1. In Figure 8.11(a) showing RT20 at 500 Hz, it can be seen 

that increasing source-receiver distance plays an important role in increasing RT20, 

especially at near field from a sound source. The regression curves show that RT20 is 

increased with the increasing source-receiver distance logarithmically. It is also shown 

that there is a difference in RT20 according to each measurement zone. In particular, 

RT20 for Z2-2 is relatively short by 1.4 sec at around 20 m in comparison with Z1-1 due 

to different sizes of the outdoor spaces. It can also be seen that RT20 can be increased to 

3.2 sec. It is noted that the gradient of the 4 regression curves is similar to each other, 

especially from above 10 m. 
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In Figure 8.11(b), showing RT20 at the source-receiver distance of 20 m, RT20 for Z1-1 

and Z4-1 is relatively long at most of frequencies in comparison with that for Z2-1 and 

Z2-2. It can be seen that RT20 at mid frequency (500 Hz and 1000 Hz) has relatively 

high values in comparison with low and high frequencies. This implies that RT20 at mid 

frequencies can play an important role in determining reverberance in the outdoor 

spaces with the U-shaped building layout. 

 

 

Fig. 8.11 RT20 for the U-shaped building layout: (a) RT20 at 500 Hz with different source-

receiver distances; (b) RT20 with frequency at the source-receiver distance with 20 m 

8.3.6 RT for the □ -shaped building layout 
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RT20 for the 3 measurement zones with the □-shaped building layout is studied here 

with source-receiver distance and frequency. The 3 measurement zones are Z1-2, Z1-4 

and Z3-1. In Figure 8.12(a), RT20 at 500 Hz is shown with different source-receiver 

distances. The result shows that RT20 is increased with the increasing source-receiver 

distance logarithmically for the 3 measurement zones. The difference in RT20 between 

Z1-2 and Z3-1 is found to be 2.2 sec at the source-receiver distance of 5 m. It is shown 

 

 

Fig. 8.12 RT20 for the □ -shaped building layout: (a) RT20 at 500 Hz with different source-

receiver distances; (b) RT20 with frequency at the source-receiver distance with 20 m 

that the gradient of the regression curves is similar each other, especially from above 10 



Chapter 8. A Parametric Study on Outdoor Reverberation in Apartment Complexes 

173 

 

m. The maximum RT20 in Figure 8.12(a) is about 4 sec for Z1-2 indicating a very 

reverberant sound field. 

Figure 8.12(b) shows that RT20 at mid frequency is relatively long in comparison with 

that at low and high frequencies. It can be seen that the graphs for the 3 measurement 

zones have a similar tendency with a shape of bell. 

8.4 Empirical method to estimate RT 

In the last few decades, acoustic simulation programmes have been developed to predict 

sound field using different numerical methods. To use acoustic simulation programmes, 

however, architects need to learn some special techniques and knowledge on acoustics. 

Therefore, it could be useful for architects to predict RT in outdoor spaces of apartment 

complexes as simple as possible using AutoCAD during the design process. In this 

section, a method of how to predict RT approximately in outdoor spaces is proposed by 

combining AutoCAD and empirical methods based on the experimental data. 

It is well known from Sabine’s equation that absorption power and volume of a space 

play an important role in determining RT. In comparison with enclosed spaces, outdoor 

spaces have different sound fields mainly due to open ceiling and gaps between 

buildings, which can be treated as boundaries with the absorption coefficient of 1.0. 

Generally, apartment buildings consist of concrete walls and windows with acoustically 

flat and reflective surface. Therefore, it is expected that openness of an outdoor space is 

an important factor determining RT. In terms of volume, the size of an outdoor space as 

well as the building height can have an influence on RT. To evaluate the openness and 

size-related parameter of an outdoor space, in this chapter, a ray-tracing technique is 
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applied by drawing 360 rays (1 degree between rays) emitted from a sound source, 

which can be easily drawn on AutoCAD. The openness of an outdoor space is 

calculated by the percentage of the effective rays reached on building façades for the 

360 rays. Averaged ray length for the effective ray is also used to evaluate the size of 

outdoor spaces. Therefore, the openness and averaged ray length can be calculated by 

Eq. 8.1 and Eq. 8.2. Figure 8.13 shows the example of the method for drawing effective 

rays at Z1-1. Table 8.3 describes the openness, and averaged ray length and building 

height for each measurement zone. 

(%) 100
360

n
Openness   

Eq. 8.1 

(m) 
n

L

lengthray  Averaged

n

1i

i
  

Eq. 8.2 

where, n: Number of the effective rays 

            L: Length of the effective ray (m) 

In Figure 8.14, the relationship of RT20 with openness and averaged ray length is 

shown. RT20 in Figure 8.14 is the value measured at the source-receiver distance of 

around 20 m at which RT20 is insignificantly changed with increasing source-receiver 

distance. The regression curve in Figure 8.14(a) shows that RT20 is decreased with the 

increasing openness. On the other hand, it can be seen that RT20 is increased with the 

increasing averaged ray length. Although both regression curves show the effect of 

openness and averaged ray length on RT20 reasonably, the correlation coefficients are 

relatively low less than 0.16. 
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Fig. 8.13 Example of the calculation method for effective ray and openness at Z1-1 

Table 8.3 Openness, averaged ray length and building height for each measurement zone 

Measurement zone Openness 

(%) 

Averaged ray length 

(m) 

Averaged building height 

(m) 

Z1-1 23.1 39.2 39 

Z1-2 9.7 37.4 39 

Z1-3 42.2 44.8 39 

Z1-4 6.9 35.2 39 

Z2-1 2.2 16.1 21 

Z2-2 0.0 13.8 12 

Z2-3 38.3 39.7 12 

Z3-1 3.1 23.6 36 

Z4-1 34.2 51.6 63 

Z4-2 5.6 39.4 70 

Z4-3 21.1 54.8 45 

Z5-1 29.7 32.0 42 

Z5-2 29.7 58.7 42 

Z6-1 35.0 34.3 41 

Z6-2 50.6 22.8 45 
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Fig. 8.14 Relationship of RT20 with openness and averaged ray length 

To improve the correlation coefficient between RT20 and parameters, weighted ray 

length and area are introduced, which can be calculated using Eq. 8.3 and Eq. 8.4 

below. The weighted ray length is the parameter considering openness and averaged ray 

length. On the other hand, the weighted area is the parameter considering openness, 

averaged ray length and averaged building height. In Figure 8.15, the relationship of 

RT20 with the weighted ray length and area is shown. 

(m)length ray  Averaged
100

Openness)-(100
lengthray  Weighted   

Eq. 8.3 
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)(mheight  building Averagedlengthray  Averaged
100

Openness)-(100
area Weighted 2

 

Eq. 8.4 

 

 

 

Fig. 8.15 Relationship of RT20 with the weighted ray length and area 

In Figure 8.15(a), it can be seen that the correlation coefficient for the weighted ray 

length is improved to 0.33. The correlation coefficient for the weighted area has a 

relatively high value with 0.47 in comparison with other parameters. Table 8.4 describes 

the empirical formula of the regression curve as well as the correlation coefficient for 

each parameter. Therefore, RT20 at the source-receiver distance with 20 m can be 

predicted approximately using the empirical formula. 
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Table 8.4 Empirical formula and correlation coefficient for each parameter 

Parameter Empirical formula Correlation coefficient (R2) 

Openness (%) y = -0.0009x2 + 0.0259x + 2.4441 0.16 

Averaged ray length (m) y = -0.0010x2 + 0.0914x + 0.5706 0.15 

Weighted ray length (m) y = -0.0015x2 + 0.1242x + 0.1921 0.33 

Weighted area (m2) y = -0.0000x2 + 0.0019x + 1.0315 0.47 

From the empirical formula for the weighted area in Table 8.4, RT20 at the source-

receiver distance of 20 m can be approximated. As shown in Figure 8.8(a), 8.9(a), 

8.10(a), 8.11(a) and 8.12(a), RT20 is generally increased with the increasing source-

receiver distance logarithmically. Therefore, RT20 at different source-receiver distances 

can be predicted empirically if two factors (gradient of logarithmic curve and RT20 at 

the source-receiver distance with 20 m) are known. In Table 8.5, the formula for the 

regression curves in Figure 8.8(a), 8.9(a), 8.10(a), 8.11(a) and 8.12(a) are given to 

obtain the gradient for each measurement zone. The gradients are also averaged with the 

same building layouts. The averaged gradient for the 15 measurement zone is also 

calculated. By selecting the suitable gradient considering building layouts, RT20 can be 

predicted approximately according to source-receiver distance easily. For example, 

RT20 at the source-receiver distance of 5 m for the □-shaped building layout can be 

predicted approximately by the 5 steps below; 

1. Calculate the weighted area using AutoCAD 

2. Calculate RT20 at a source-receiver distance with 20 m using the empirical formula 

in Table 8.4: y = -0.0000x
2
 + 0.0019x + 1.0315 (x: weighted area, y: RT20) 

3. Select the gradient for the courtyard building layout in Table 8.5: 

y=0.5189ln(x)+a (x: source-receiver distance, y: RT20, a: constant) 
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4. Calculate constant a using RT20 calculated from Step 2 

5. Calculate RT20 at the source-receiver distance at 5 m (x=5 in Step 3) 

Although the proposed empirical method to predict RT20 approximately in outdoor 

spaces of apartment complexes has a limitation in terms of accuracy, this simply 

calculation method could provide a useful tool for architects to presume in the design 

stage about how much the outdoor space is reverberant. Moreover, this method would 

be able to valid for similar conditions to one studied here. 

Table 8.5 Empirical formula for RT20 in outdoor spaces of apartment complexes 

Building 

layout 

Measurement 

zone 

Empirical formula Correlation 

coefficient (R2) 

Averaged gradient 

Each type Total 

̶ Z1-3 y = 0.2427ln(x) + 

1.3409 

0.92 0.2809ln(x) 0.4048ln(x) 

 Z6-2 y = 0.3191ln(x) + 

0.8197 

0.75   

= Z2-3 y = 0.5008ln(x) + 

0.6059 

0.98 0.3068ln(x)  

 Z4-3 y = 0.2360ln(x) + 

1.4697 

0.55   

 Z6-1 y = 0.1835ln(x) + 

0.5109 

0.94   

L Z4-2 y = 1.0608ln(x) - 

0.1002 

0.94 0.6219ln(x)  

 Z5-1 y = 0.1829ln(x) + 

0.8381 

0.51   

U Z1-1 y = 0.3283ln(x) + 

2.0695 

0.96 0.2955ln(x)  

 Z2-1 y = 0.2107ln(x) + 

1.1235 

0.95   

 Z2-2 y = 0.1523ln(x) + 

1.1074 

1.00   

 Z4-1 y = 0.4906ln(x) + 

1.3870 

0.61   

□ Z1-2 y = 0.2948ln(x) + 

2.8101 

0.86 0.5189ln(x)  

 Z1-4 y = 0.6397ln(x) + 

1.5017 

0.98   

 Z3-1 y = 0.6221ln(x) + 

0.4834 

0.93   
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8.5 Vegetation in the outdoor spaces 

To predict the effect of vegetation in reducing RT20 in an outdoor space, the computer 

simulation programme, ODEON v.11.23, is used. It is assumed that green walls are 

placed on the whole surface of building façades, except for windows. Absorption 

coefficient of the green wall is the value measured in Chapter 3. The absorption and 

scattering coefficients of building materials such as concrete and glass were selected 

within the ranges given in the programme. Figure 8.16 illustrates the computer model 

for the apartment complex studied in Chapter 7. As shown in Figure 8.17, prediction of 

RT20 is carried out for the receivers within 120 m of the source, S1. 

 

Fig. 8.16 Computer model for the apartment complex studied in Chapter 7 

 

Fig. 8.17 Points of source and receivers 
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Fig. 8.18 Measured (without green wall) and predicted (with and without green wall) results at 

125 Hz to 4 kHz in octave bands 

Figure 8.18 shows the measured (without green wall) and predicted (with and without 

green wall) results at 125 Hz to 4 kHz in octave bands. It can be seen that in comparison 

with the measured value, the predicted value is rather inaccurate with discrepancies over 

5 % (Bork, 2000), except at 4 kHz. This is due to inaccuracies in modelling of the 
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apartment complex, indicating further work on the modelling calibration. The predicted 

results show that façades with green walls are effective in reducing RT20 at relatively 

close distances from the source, say within 40 m. At 500 Hz, the maximum difference in 

RT20 between building façades with and without green wall is 0.95 sec, which is a 46 % 

decrease in sound energy. Although this initial work showed the effectiveness of 

vegetation in reducing RT20, further work will be carried out to investigate the effect of 

vegetation in reducing noise level and RT systematically, by considering different 

landscape schemes at various apartment complexes with different building layouts, 

openness, building heights, etc. 

8.6 Summary 

In this chapter, a series of field measurements for RT20 were carried out for the 15 

outdoor spaces in 6 apartment complexes, which were determined by considering 

different building layouts, blocks, sizes and height for a parametric study. The result for 

the overall characteristics and distribution of RT20 indicated that RT20 is influenced by 

source-receiver distance, building layout and sizes. It was also demonstrated that, 

generally, RT20 at mid frequency (500 Hz and 1000 Hz) is relatively long in 

comparison with that at low and high frequencies. The overall averaged RT20 for the 

maximum value in the outdoor spaces was 2.7 sec at 1000 Hz, which shows the outdoor 

spaces have a reverberant sound field. With increasing source-receiver distance, RT20 is 

generally increased logarithmically. It was also found that RT20 is rapidly changed at 

near field from a sound source due to the strong effect of direct sound. On the other 

hand, there is an insignificant change in RT20 above a certain source-receiver distance, 

say about 15 m. 
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For the studied cases, RT20 for the linear-shaped building layout is increased with the 

increasing source-receiver distance to about 2 sec at 500 Hz. In case of the parallel-

shaped building layout, RT20 is strongly influenced by the width between parallel 

buildings, which causes the difference in RT20 of 1 sec. Maximum RT20 at 500 Hz for 

the parallel building layout was 2.4 sec. The result for the L-shaped building layout 

suggested that RT20 can be changed with different surrounding building conditions by 

1.6 sec. Maximum RT20 for the studied L-shaped building layout is about 3 sec. For the 

U-shaped building layout, RT20 was changed by 1.4 sec with different sizes of the 

measurement zones. It was also shown that RT20 can be increased to 3.2 sec. It was 

found that RT20 at 500 Hz was about 4 sec at maximum for the □-shaped building 

layout.  

The results suggest that an empirical method considering openness, averaged ray length 

and building height can be used to predict RT20 approximately in the outdoor spaces, 

which enables architects to presume RT20 during the design process. 

As for the vegetation effect in reducing RT20, it was seen that building façades with 

green wall can reduce RT20 at 500 Hz by 0.95 sec (46 % decrease) compared to that 

without green wall. 

Although RT20 is a useful index to examine the influence of surrounding geometries on 

sound field, it is still necessary to carry out more systematic studies on acoustic 

parameters for evaluating acoustic comfort in urban situations based on subjective 

evaluation. The importance of this future work is discussed in Chapter 9. 
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9 Conclusions and Future Work 

This thesis studied the effects of natural and sustainable materials including vegetation, 

green roof systems and green walls on noise reduction and sound field control in urban 

spaces. The concept of this study started with a hypothesis that well-planned use of 

natural materials can provide useful reductions in noise levels and reverberation in 

urban spaces.  

For a better understanding of the interaction between sound waves and vegetation/trees, 

this study investigated the acoustic properties of low-growing vegetation and a single 

tree. Application of green roof systems on a low barrier was implemented to examine 

the effect of a vegetated low barrier on noise reduction at street level. Through a case 

study, a practical method for noise control by using vegetation in a courtyard was also 

suggested. Measurement results for outdoor sound propagation in high-rise residential 

buildings were presented. Use of vegetation for outdoor noise control in apartment 

complexes was also investigated. In the following sections, key findings of each 

research topic are addressed. Limitations and worthwhile future works are also 

discussed. 

9.1 Contributions of the thesis 

9.1.1 Examination on the acoustic properties of vegetation 

Sound absorbing and scattering properties of vegetation become more important as it is 

increasingly grown on building façades and the ground in urban spaces. Vegetation 

consists of mainly two components including the growing media (soil) and the plant 

(leaf, stem and root), which play different roles in absorbing and scattering sound. 
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Therefore, it is necessary to characterise systematically how each or combined 

components become effective.  

In Chapter 3, a series of measurements were carried out in a reverberation chamber to 

examine random-incidence absorption and scattering coefficients of vegetation, by 

considering various factors such as soil depth, soil moisture content and the level of 

vegetation coverage.  

The results for different soil depths (50, 100, 150, 200 mm) showed that even the thin 

soil layer with a depth of 50 mm provided a absorption coefficient of about 0.9 at 

around 1 kHz and there were only slight changes of absorption coefficient of about 0.1 

with increased soil depth. A decrease in absorption coefficient by about 0.6 was 

observed with the increase in soil moisture content. With increasing vegetation 

coverage, the absorption coefficient increased by about 0.2 at low and mid frequencies, 

whereas over about 2 kHz the absorption coefficient was slightly decreased by about 

0.1. It was shown that the stronger effect on sound absorption and scattering by 

aboveground vegetation components (excluding roots and soil) was found at higher 

frequencies with increasing vegetation coverage. The maximum absorption and 

scattering coefficients of aboveground vegetation studied here were 0.49 at 5 kHz and 

0.43 at 2.5 kHz, respectively. It was also found that a green wall with highly porous 

substrate kept a relatively high absorption coefficient of about 0.6 even though it was 

nearly saturated. 

The overall results indicate that vegetation can be used as an effective measure for 

absorbing/scattering sound energy propagating through urban areas. Thus, it is expected 

that well-planned use of vegetation will reduce noise levels and RT in urban spaces. 
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9.1.2 Quantification of scattered sound energy from a tree 

In urban spaces surrounded by buildings, trees may be effective in dispersing sound 

energy, and this could affect sound level distribution and street canyon reverberation. To 

quantify this effect of trees and to allow it to be included in numerical predictions, 

Chapter 4 examined sound scattered from a single tree in open field by means of RT. 

Five trees of different species and crown sizes were considered. The influence of ground 

condition, receiver height, crown size and shape, foliage condition, and source-receiver 

angle and distance has been assessed. 

The results showed that RT is proportional to the tree size, which is the most 

determining factor. The maximum RT measured was 0.26 sec at 4 KHz for the studied 

trees when they were in leaf. The presence of leaves increased RT at high frequencies, 

typically by 0.08 sec at 4 kHz. It was also demonstrated that the source-receiver angle 

can affect the characteristics of decay curves. With increasing source-receiver distance 

within 40 m, RT was slightly changed. It was shown that ground condition and receiver 

height affect the decay curves, especially at low and mid frequencies, where scattering 

is of relatively limited importance. 

The overall results indicate that trees can play an important role in outdoor sound 

propagation in urban spaces, especially at high frequencies and with large trees. Based 

on the measured data, it is expected that downward scattering from trees can increase 

sound levels at ground level in urban street canyons, especially at high frequencies.     

9.1.3 Examination of potential use of green roof systems on a low barrier 

Green roof systems have become commonly used in urban spaces due to numerous 
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ecological and environmental benefits. Various kinds of green roof systems can also be 

used at street level, on the top of underground car parks for example. In this situation, it 

is important to systematically examine the acoustic effects of designable parameters, 

especially for diffracted sound waves. 

In Chapter 5, therefore, a series of measurements were carried out in a semi-anechoic 

chamber using green roof systems consisting of Zinco and limestone-based substrates. 

They were placed on a box with a height of 1200 mm. Numerical simulations were also 

carried out for selected cases. Studied parameters included the area, depth, type and 

position of the green roof system, and the type of vegetation.  

The results showed that such green roof systems can reduce SPL effectively at the 

receiver side of the boxes. Within the ranges of the parameters considered, the effect of 

the depth and type of substrates is relatively small compared to that of the overall 

configurations of the system. By adding pruned leaves on the green roof there is only a 

small noise reduction above 4 kHz but optimised absorption treatment could bring up to 

4 dBA noise reduction for traffic noise. The position of the green roof system affects the 

pattern of SPL reduction differently at different frequency ranges. 

9.1.4 Verification on noise reduction effects of vegetation in a courtyard 

Courtyards surrounded by buildings often have acoustic defects such as strong flutter 

echoes and long RT that can increase noise annoyance. Therefore, it is important to 

absorb and diffuse sound energy propagating such places. 

Chapter 6 investigated how applicable landscape designs can contribute to controlling 

sound fields in a courtyard. Through a case study, differences between courtyard sound 
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fields were examined by in-situ measurements before and after applying a practical 

landscape design using vegetation, wood decking and street furniture. In addition, 

computer simulations were carried out to explore the acoustic effects of applicable 

landscape designs using vegetation including climbing Ivy, green wall, grass and 

bedding plants.  

The results for the in-situ measurements showed reductions in sound levels and RT at 

500 Hz of 3.1 dB and 40 % (1.0 sec), respectively. The results for the computer 

simulation showed that the green wall on the façade can reduce speech levels and RT at 

500 Hz by 9.3 dBA and 81 % (2.1 sec), respectively. The bedding plants on the ground 

decreased the speech level by 2.2 dBA and increased RT at 500 Hz by 12 % (0.3 sec). 

At different floor levels in the accommodation building, the speech level and RT at 500 

Hz were decreased by the vegetation by up to 5.5 dBA and 66 % (1.1 sec), respectively. 

Results highlight that landscape designs using vegetation in courtyards can provide 

acoustic benefits such as reductions in sound levels and RT. Thus, it is expected that 

overall residential environments could be improved in terms of noise reduction with the 

help of effective landscape designs. 

9.1.5 Investigation of sound propagation in high-rise apartment complexes  

Many apartment complexes in Korea feature underground car parks thus releasing more 

of the landscape for residents’ leisure, rest, or socialising. The acoustic characteristics of 

these outdoor spaces can therefore make a contribution to the overall quality of the 

environment. 

Experimental study in Chapter 7 investigated the acoustic characteristics of outdoor 
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spaces surrounded by multi-storey apartment buildings. In-situ measurements in three 

positions were carried out to evaluate the acoustic parameters, including RT, EDT, 

RASTI and SPL distribution. 

The results showed that RT was generally rather long, over 4 sec at 500 Hz. On the 

other hand, RT at 125 Hz and 250 Hz was relatively short, about 0 to 3 sec. Above 500 

Hz, RT increased with increasing source-receiver distance. EDT was longer than RT 

over a certain source-receiver distance at about 40 m. In terms of sound distribution, 

measured SPL was up to 8 dB higher compared to the semi-free field situation, 

indicating the effects of multiple reflections. The above results imply that sound fields 

in outdoor spaces surrounded by high-rise residential buildings need to be controlled by 

means of architectural treatments using sustainable acoustic absorbers and diffusers 

such as vegetation. 

9.1.6 Evaluation of parameters on reverberation in apartment complexes 

A comfortable sound environment in the outdoor spaces of apartment complexes 

contributes to the improvement of the overall environmental quality. It is expected that 

RT of outdoor spaces surrounded by multi-storey buildings depends on many designable 

factors such as the openness, volume and building layouts, vegetation, etc.  

Chapter 8 therefore investigated the influential factors for RT in outdoor spaces 

surrounded by buildings with complicated topographical conditions. A series of 

measurements were carried out for 15 outdoor spaces in 6 apartment complexes with 

different building layouts. In particular, the effect of source-receiver distance on RT was 

also investigated for each site. The 15 outdoor spaces were categorised into 5 types as 

linear, parallel, L, U and courtyard building layouts. 
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The result showed that RT20 at 500 Hz and 1 kHz is relatively long compared to that at 

low and high frequencies. With increasing source-receiver distance, RT20 increases 

logarithmically. For the studied cases, the maximum RT20 at 500 Hz was about 4 sec. 

An empirical method considering the openness, averaged ray length and building height 

was also suggested, to predict RT20 approximately in outdoor spaces. It was also shown 

that vegetation in the apartment complex is effective in reducing RT20. 

The overall results suggest that RT in outdoor spaces of apartment complexes is  

influenced by source-receiver distance, building layouts and vegetation. Based on the 

empirical method considering openness, averaged ray length and building height, it 

would be possible to predict RT approximately in the outdoor spaces, which enables 

architects to presume RT during the design process. 

9.2 Future work 

9.2.1 Prediction of random-incidence absorption and scattering coefficients 

While a series of measurements have been carried out in Chapter 3, it is still necessary 

to be able to determine random-incidence absorption and scattering coefficients of 

vegetation using methods which are simpler and quicker than direct measurement in a 

reverberation chamber using relatively large specimens. 

Previous studies suggested that normal-incidence absorption coefficients can be 

converted to a random-incidence absorption coefficient approximately using theoretical 

models (Makita et al., 1988). Thus, prediction methods based on normal-incidence 

absorption coefficients of vegetation need to be modelled to characterise various factors 

affecting random-incidence absorption coefficients.  
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Recently, a method based on FDTD has been proposed for predicting the random-

incidence scattering coefficient, which could also be applied for predicting the 

scattering coefficient of vegetation (Redondo et al., 2009; Redondo et al., 2007). By 

using the prediction method, various factors affecting the scattering coefficient of 

vegetation could be clarified. 

9.2.2 Numerical modelling of scattering of sound by trees  

Although many field measurements have been carried out in Chapter 4, further work is 

still needed to characterise the effect of factors such as leaf size, leaf shape and 

thickness, but also the distribution of biomass over the crown. Numerical modelling of 

scattering of sound by trees, as well as scale modelling could further clarify the physical 

phenomena involved, and allow evaluation of potential applications. 

9.2.3 Noise reduction by vegetated low barriers in real urban situations 

As experiments were carried out in a semi-anechoic chamber with a point source 

located near the barrier, it does not simulate real urban situations. It would therefore be 

useful, in future work, to study the effects of green roof systems on noise reduction 

more systematically, by taking real urban situations into account. 

9.2.4 Practical landscape designs in a courtyard 

To further advance the research, it is necessary to consider various factors of landscape 

designs affecting the sound field in courtyards. Previous studies showed that sound 

absorption distribution and boundary conditions have an influence on sound attenuation 

and RT in street canyons and urban squares (Kang, 2000, 2001, 2005). With a given 

amount of vegetation, therefore, there is a need to suggest a method to determine cost-
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effective landscape design schemes according to different boundary conditions. 

Acoustic properties of vegetation are influenced by many factors such as substrate type, 

composition, depth and moisture content as well as the species and coverage of plants 

(Horoshenkov et al., 2006; Horoshenkov et al., 2011; Yang et al., 2013). Therefore, a 

systematic study is necessary to clarify the effects of these factors individually on sound 

field control. 

At different floors of adjacent buildings, noise reduction by landscape designs could be 

influenced by meteorological factors dependent on local statistics for wind speed, wind 

direction and temperature gradients (Blumrich et al., 2002; Van Renterghem et al., 

2005). This suggests the need further studies on sound attenuation by landscape designs 

according to different meteorological conditions. 

It is expected that vegetation is also effective in controlling the sound fields of enclosed 

reverberant spaces such as lobbies, atriums, underground stations and shopping malls. 

Therefore, vegetation may also be useful if it is installed in such indoor spaces to 

improve speech transmission index and speech privacy (Kang, 1996a, 1998; Rindel, 

2010). 

9.2.5 Application of vegetation in outdoor spaces of apartment complexes 

Although the initial work has been started, it is important to examine the effect of 

vegetation on noise reduction and reverberation in different types of apartment 

complexes. Based on the measured data in Chapter 7 and Chapter 8, the sound field can 

be predicted and calibrated through computer simulation programmes. As the size of the 

model is relatively large, programmes based on ray-tracing or radiosity methods are 
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suitable for predicting SPL distribution and RT. It is also expected that noise mapping 

programmes can also be used for predicting sound propagation in outdoor spaces, as 

well as examining the acoustic effects of vegetation. 

9.2.6 Acoustic parameters for evaluating acoustic comfort in urban situations 

In contrast to the study on sound quality in concert halls and classrooms, little has been 

attempted to examine acoustic parameters for designing urban spaces where the pattern 

of arrival of reflected sound is different, in comparison with the enclosed spaces. 

As stated in Chapter 7 and 8, sound environments in outdoor spaces of residential areas 

play an important role in improving overall life quality. Therefore, it is useful to 

examine the relationship of various acoustic parameters with noise annoyance of 

residents.  

Although sound attenuation and RT have been used to characterise sound fields in urban 

spaces, it is still needed to investigate the relationship of spatial impression and noise 

annoyance with various acoustic parameters related to energy (i.e., G-strength, D50, 

C80 and Ts), reverberation (i.e., EDT and RT) and binaural response (i.e., apparent 

source width ASW, listener envelopment LEV and IACC) in urban situations. Based on 

the subjective evaluation, it is expected that suitable acoustic parameters as well as 

acoustic targets can be recommended to design comfortable sound environments in 

outdoor spaces of urban areas. 
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