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ABSTRACT 

 
In the first part of this paper we looked at the evaluation of proficiency test (PT) data, both in terms of the precision (random error effects) 

of submitted results but specifically in terms of the relative bias (systematic error effects) when compared against the assigned value for a given 

analyte, determined as the consensus of submitted results.  Due to absence of defined reference materials, it is not currently possible to assess or 

correct for bias in routine amino acid racemization (AAR) analysis.  This does not affect the technique’s application as a relative dating method 

but hinders comparability of data between laboratories and limits its wider applications such as the development of inter-regional or even global 

aminostratigraphies and palaeoclimte reconstruction.  Because of these difficulties, measurement uncertainty (MU) in AAR geochronology is 

currently reported using precision estimates. Precision and bias are both essential elements of “Top-down” approaches to uncertainty 

determination.  However, without evidence of the absence of bias, uncertainty estimates based solely on precision are probably currently being 

underestimated.   

In Part 2 we now consider how the uncertainty of a measurement result is the product of a hierarchy of random and systematic error effects, 

referred to as “The ladder of errors”, and how different approaches to MU evaluation are able to account for different levels of error.  Proficiency 

test data is recognised as providing a valuable contribution to uncertainty measurement yet there is little information available and few examples 

on how this should actually be done.  Here we evaluate uncertainty estimates using the results of the proficiency test study, using four different 

approaches, i) solely as precision estimates from replicate data, ii) using precision and bias data to give a combined estimate for a single PT 

result, iii) using precision and bias data to give a combined estimate over a series of PT results, iv) using ANOVA to derive reproducibility 

precision as an estimate of the overall uncertainty. 

 

1 INTRODUCTION 

1.1 Measurement Uncertainty (MU)  

For the majority of users of analytical data, the information 

provided by a measurement value is assumed to be the real value or 

true value.  However, a single measurement or even a group of 

measurements simply represents one (or several) of many possible 

values for the given measurand.  If the same analysis was to be 

repeated again by the same person or even a different person then the 

results may be very slightly, or sometimes even quite significantly 

different.  The result is thus only a representation of our best estimate 

given the limitations of the equipment, conditions, expertise etc, the 

true value remains unknown.  For this reason it is necessary to assess 

the dispersion of other possible values of our estimate for the same 

measurand and report it alongside our measurement result.  This 

parameter is known as the measurement uncertainty and provides a 

quantitative expression of the level of doubt associated with a 

reported result.   

In 1978, the Comite International des Poids et Mesures (CIPM), 

recognised the lack of uniformity in the handling of uncertainty 

measurement.  After fifteen years of international collaboration, a set 

of common fundamental principles were established with the 

publication of the first authoritative document; the Guide to the 

Expression of Uncertainty in Measurement in 1993. 

The Guide or GUM as it has come to be known is still 

commonly accepted as the international definitive guidance document 

for uncertainty measurement, although since then various supporting 

documents have been written to assist in its interpretation and 

implementation at bench level and several other alternative 

methodological approaches have been proposed.  However it was the 

publication of the GUM that has resulted in the global consensus on 

reporting uncertainty associated with measurements and has enabled 

comparison and standardisation of those results in calibration, 

accreditation, and analytical service around the world. 

According to the VIM 2.26 (JCGM 200:, 2008), measurement 

uncertainty (MU) is defined as a “non-negative parameter 

characterizing the dispersion of the quantity values being attributed to 

a measurand, based on the information used”.  MU includes both 

systematic and random error effects.  Contributions are characterized  

 

 

by standard deviations and may arise from statistical 

distributions of repeated measurements (Type A components) or 

evaluated from probability density functions based on experience or 

other information such as certificates and specification sheets (Type 

B components).  It is important for individual components (standard 

uncertainties) to be evaluated and expressed in a standardized way so 

that they can be more easily combined using normal procedures for 

combining variances.  The recommended expression of MU is termed 

the Expanded uncertainty (U), and requires the combined uncertainty 

estimate (uc) to be multiplied by a value known as the coverage 

factor, (k).  The coverage factor reflects the level of confidence or 

probability level required for the measurement result.  An expanded 

uncertainty estimate should accompany every measurement result, 

and may be expressed either as an absolute value or as a relative 

percentage, and specify the value of k used (EURACHEM / CITAC, 

2000, JCGM 100:, 2008).   

1.2 “Bottom-up”, the GUM approach to MU. 

Initially the recommended method for determining the 

uncertainty due to error was to carry out an exhaustive audit of 

individual standard uncertainty contributions from every part of the 

measurement system.  This approach, referred to as the “bottom-up” 

approach, was often criticized for underestimating the combined 

standard uncertainty as for all but the simplest analytical models, 

error effects often went unaccounted for, took too long and was too 

labour intensive.  Accurate determination of MU must encompass all 

error contributions at all stages of the measurement system. 

Consequently an alternative method known as the “top-down” 

approach was introduced.  This recognizes that individual random 

and systematic error influences are reflected in the results of an 

analytical measurement and looks at evaluating the overall 

contribution, looking down from above as it were.  A summary of the 

different approaches adopted for uncertainty evaluation is shown in 

Figure 1. 

The next three methods can all be described as “top-down” 

approaches to uncertainty evaluation; single or intra-laboratory 

method validation, the collaborative trial or inter-laboratory method 

validation and proficiency testing.  Each will now be considered in 

turn. 
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1.3 “Top-down” approaches to MU. 

For any analytical measurement there are a number of sources of 

error, composed of both random and systematic error effects.  These 

can be classified as a hierarchy, sometimes referred to as “the ladder 

of errors” (Thompson, 2000), see Figure 2  Strictly speaking we can’t 

actually know the true value, just our best estimate with a stated 

region representing the range of other possible determinations of the 

measurand’s value, under the influence of error. 

The Royal Society of Chemistry’s Analytical Methods 

Committee (1995), help to explain that any measurement value (x), is 

the result of the effect of the error contributions on the true value (μ), 

thus; 

 

                         

 

Where         is the method bias,      is the laboratory bias, 

     is the run bias and ε is the random error component or 

repeatability.  Therefore, in order to express a measurement result 

correctly, our estimate of these error effects must be reflected in the 

final expression of the result, that is; our best estimate of the true 

value with an associated uncertainty. Therefore we now have; 

 

           and 

 

                                        

 

Where u(method) is the uncertainty due to method bias, u(lab) is 

the uncertainty due to laboratory bias, u(run) is the uncertainty due to 

run bias and u(ε) is within-run repeatability uncertainty due to 

random error effects.   

1.3.1 Intra-Laboratory Method Validation approach. 

It was recognised that much of this information was already 

being determined by laboratories carrying out precision and bias 

experiments as part of routine internal method validation procedures 

and so required little additional time, effort or expense on the parts of 

the analysts.  Precision assess random error effects, expressed as the 

within run (repeatability) or between run standard deviation, whilst 

bias assess systematic error effects. 

Occasionally there are situations where internal control is all that 

is required and absolute accuracy is not necessary (or possible), then 

method and laboratory bias components can be ignored, such as in 

factory production monitoring (AMC, 1995).  The inability of AAR 

geochronology laboratories to currently evaluate bias routinely due to 

the absence of defined reference materials is another scenario where 

the uncertainty on the measurement results is simply expressed as a 

precision estimate.  In this case it is the combined repeatability 

uncertainty and the run to run uncertainty, expressed as standard 

deviations;  

 

                     

 

Repeatability uncertainty,     , includes weighing and 

measuring errors, heterogeneity of sample portions, preparation and 

extraction stages and random instrumental effects.  The run effect, 

      , reflects day to day differences in the analytical system such 

as reagents used, the analysts, temperature effects and even 

instruments.  These are seen as systematic error influences on all the 

samples in the whole run. Therefore for a single run, the run bias is 

fixed, but when viewed from a higher level, i.e., over a number of 

successive runs, the run to run biases can be seen as a random 

variable and characterized by a standard deviation describing the run 

to run precision, see Figure 3(a). Both of these effects are usually 

determined from precision experiments carried out as part of a single-

laboratory’s method validation, and expressed as standard deviations, 

taking to account matrix and concentration differences (Barwick and 

Ellison, 2000a). Further, when taken together, they can provide an 

indication of overall precision or reproducibility standard deviation 

(sR) for a single laboratory.  Reproducibility is most often associated 

with inter-laboratory precision estimates, therefore to make the 

distinction between within or intra-laboratory precison (sRw) it is 

sometimes referred to as the Intermediate precision.  Note, when a 

measurement result is expressed as a mean of repeated 

measurements, the standard uncertainty should be more correctly 

expressed as the standard error of the mean (also referred to as the 

standard uncertainty of the mean or standard deviation of the 

experimental mean) , Thus; 

 

         
        

 
 

 

Where, u(ε)=   
    is the standard uncertainty of the mean, 

(where (n) is the number of replicates) and u(run)=srun. 

To date, AAR uncertainty estimates have been limited to simple 

expressions of precision such as the within run standard deviation    

or possibly the between run standard deviation     .  Whilst 

individual laboratory precision and consistency may be all that is 

required for the method’s application as a relative dating technique, 

in the absence of bias control, correction or bias uncertainty 

contributions, data will not be reproducible between laboratories at 

this level.  Further, any numerical ages thus determined may grossly 

underestimate uncertainty estimates and associated confidence 

intervals reported up till now (Westaway, 2009). 

Bias experiments performed as part of a single laboratory 

trueness evaluation will provide important information about an 

individual laboratory’s combined method and laboratory bias.  Where 

suitable matrix-matched certified 

reference materials are available, 

the difference between the mean 

result (  ) of repeated analyses of 

a CRM and the certified value 

(    ) will provide an estimate of 

the combined bias.  When 

evaluating bias, it is usual to 

assess its significance using a 

student’s t-test [ref].  Any 

measurement result should 

normally be corrected for 

significant bias, unless otherwise 

stated for example in the case of 

Figure 1; Routes for measurement uncertainty determination 

(2) 

(3) 

(5) 

(4) 

Figure 2; The Ladder of 

Errors.  For each rung of 
the ladder, the measurement 

result accumulates increasing 

uncertainty contributions. 
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empirical methods.  Bias is usually corrected for by the use of 

reference materials such as an internal standard, spiking and/or 

calibration.   

 

                                           

 

The standard uncertainty of the bias, u(bias), is then the 

uncertainty associated with the mean of replicate values,      , i.e.; 

the standard deviation of the mean;        , plus the uncertainty of 

the reference material or CRM,        . Thus 

                       
                    

 

             
 

          
  

 

Combining equations 5 and 7b, we now have an expression for 

the combined uncertainty for a single laboratory; 

 

      
  

 

        
  

   
 

          
            

 

        
            

 

It should be noted that where the uncertainty of the CRM is 

small, perhaps less than 10% of the analytical uncertainty, it will have 

a negligible effect on the overall uncertainty of the bias and can be 

omitted [ref].  It should also be noted that when both precision and 

bias are being determined in the same analytical run, there is the risk 

of double counting uncertainty due to random error effects since 

           [ref]. If repeatability precision is small compared to the 

between run component, then again, this need not be of concern, 

otherwise the combined uncertainty will need to be adjusted 

appropriately.   

It is therefore conceivable that under certain circumstances, the 

two bias uncertainty components may be omitted from the combined 

uncertainty calculation, which would simply then be equivalent to the 

intermediate precision estimate; 

 

     
  

 

        
  

   
 

          
      

   

 

Consequently any variability due to individual 

laboratory/method bias in this context, will be reflected in the 

precision estimate.   

However, it was observed that often a pre-occupation with intra-

laboratory precision neglected important contributions from the 

higher order laboratory and method biases (RSC Analytical Methods 

Committee, 1995), when determining performance characteristics for 

a method. Consequently a double edged approach is generally 

advocated (refs) when determining uncertainty estimates as part of 

method validation requirements; that is both the intra-laboratory 

estimates together with a method specific inter-laboratory 

collaborative trial in order to obtain inter-laboratory precision values. 

1.3.2 Inter-Laboratory Method Validation or 

Collaborative trial approach 

A collaborative trial is a method specific inter-laboratory study 

whose purpose is to characterize the performance of an analytical 

method for specified materials and often at specified analyte 

concentrations, across different laboratories.  Because it is method 

prescriptive, and the best estimate of the true value is derived as the 

consensus of participating results, method bias and its uncertainty 

contribution are zero.  Thus; 

 

                             

 

Individual laboratory biases are incorporated into the run or 

between laboratory precision estimates, in the same way as the run 

bias became a random variable in the previous section.  So whilst 

laboratory bias for an individual laboratory may be a fixed value in 

any given run, when biases for several laboratories are considered, 

from a higher level, these too can be viewed as a random variable and 

once again, described using precision estimates (refs) (see Figure 

3(b)),.  Precision estimates in a collaborative trial are derived using a 

one-way analysis of variance, abbreviated to ANOVA. 

Full details on the calculations of   ,    and    can be found in 

(ISO 5725, 1994, ISO 21748, 2010).  However, in summary, 

precision estimates are calculated using ANOVA, thus; 

 

         

                 

Where; MSw within groups mean square and MSb is the between 

groups mean square and n is the number of replicates. 

In this context, the standard deviation of repeatability, sr, is the 

equivalent of the within laboratory precision estimate, and the 

between laboratory precision, sL, is the run plus the laboratory 

components. Thus; 

 

       

 

         
      

  

 

The overall expression of uncertainty is the reproducibility 

standard deviation, sR, and incorporates both the above terms; 

 

       
    

  

 

So, it can be seen that the reproducibility standard deviation is 

also equivalent to the intermediate precision estimate from single 

laboratory precision studies, but with the added laboratory effect, i.e.;  

(7a) 

(7b) 

(8a) 

(8b) 

(11) 

(12) 

(13) 

(14) 

(15) 

Figure 3; Relationship between Intra 

and Inter-laboratory Random and 

Systematic Error Effects.. (a) The 

systematic uncertainty within a single run 

(X1) is a fixed level, but when viewed as 

one of a number of successive runs (X1, 

X2, X3 etc), it becomes a random variable 

with variance     
 . (b) Similarly for a 

particular laboratory (X), the bias is fixed 

but when seen as one of a number of 

laboratories (X, Y, Z etc), again it becomes 

a random variable with variance     
  

(a.) (b.)

(6) 

(9) 

(10) 
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 . 

 

In this context, in the absence of method bias, the reproducibility 

standard deviation (SR), the overall uncertainty of the analytical 

system and can be used directly in place of the combined standard 

uncertainty, providing that the laboratory’s own uncertainty estimates 

can equal or better the published repeatability value. Thus; 

 

        
                

 

Because collaborative trials are regarded as giving unbiased 

precision estimates, reproducibility values are often used as a 

benchmark in uncertainty determination since they describe any 

laboratory’s expectation of uncertainty for the stated method when 

applied to a specified matrix, usually at a given analyte concentration. 

It is therefore often helpful to compare a laboratory’s own uncertainty 

estimates with those from a collaborative trail.  If the laboratory’s 

individual estimates are much smaller than the reproducibility 

precision estimates, then it is likely that significant sources of 

uncertainty have been overlooked by the laboratory.   

However, collaborative trials on their own generally fail to give 

the whole picture as they don’t include the higher levels of 

uncertainty at the top of the ladder; the method bias, (unless a CRM 

was used as the candidate test material), or matrix effects.   

1.3.3 Inter-Laboratory Proficiency test approach 

Proficiency testing (PT) focuses on the evaluation of analytical 

trueness or bias as an indicator of accuracy and performance.  This is 

especially valuable in the absence of CRMs, other reference materials 

or collaborative trail data.  Like a collaborative trial, the best estimate 

of the true value is often taken as the consensus of submitted results, 

however unlike a collaborative trial, a proficiency test is method non-

specific and participants are encouraged to use their routine methods 

of analysis.  Thus a proficiency test can provide valuable information 

on individual laboratory bias by comparing a participants’ submitted 

result with the consensus or other reference value, but also on method 

bias if sufficient laboratories submit method specific results, and if 

evaluated across different matrices, even matrix effects.  Proficiency 

test results therefore potentially and uniquely reflect all of the errors 

of analysis combined, i.e.; the worst case scenario.  However, these 

additional levels of uncertainty are not generally utilized.   

Method bias and it’s uncertainty, relate to the level of agreement 

between different methods.  Generally speaking, it will be unlikely 

that different methods will be employed by a single laboratory for the 

same measurement determination and therefore tends not to be 

evaluated routinely.  (Note, that this is not the same as analytical bias 

which may be associated with a single method analysis and detected 

for instance, using bias experiments during method validation and 

later corrected).  The exception to this would be in the case of 

empirical methods where there may be some interest in knowing the 

extent to which methods vary between each other.   

Generally, a validated method is defined by its matrix or class of 

materials and perhaps a concentration range, where the conditions of 

validation hold. However the effect of matrix variation within the 

defined class of materials is little understood, (eg, terrestrial or 

marine mollusk shells, egg shell, coral etc, within the class of calcitic 

biominerals). In principle, this is not difficult to evaluate (refs). 

However, the difficulty arises in determining the individual biases in 

the absence of reference values if matrix-matched CRMs are not 

available. For this reason, validated methods will tend to be matrix 

and or analyte specific, often with a defined concentration range 

which together describes the scope of validation and avoids the need 

to evaluate higher level uncertainties. 

The use of proficiency test data in determining measurement 

uncertainty will be further expended on throughout the rest of this 

paper. 

Thus it can be seen, that the uncertainty from a set of repeated 

measurements (      , in reality is far from simply being just the 

standard deviation of the results on their own, or even the standard 

deviation (uncertainty) of the mean,       , but should reflect 

analytical uncertainty contributions resulting from between run, 

laboratory, method and even matrix and concentration bias. Often, 

single-laboratory method validation is insufficient to characterize all 

of these components, requiring a further inter-laboratory 

collaborative trial to account for the laboratory bias (expressed as the 

inter-laboratory precision; see text).  Proficiency test data, is usually 

seen as being limited to evaluations of trueness however, quite 

uniquely, it can also provide insight into the combined effect from all 

uncertainty sources. 

1.3.4 Monte Carlo approach 

One final approach to MU evaluation shown in Figure 1 but has 

not so far been mentioned and without which this section would not 

be complete, is that which uses a Bayesian statistical approach to 

model the propagation of theoretical uncertainty distributions, known 

as Monte Carlo methods.  Although these techniques are not new, 

they have only been introduced into the realms of measurement 

uncertainty estimation relatively recently as a supplement to the 

original GUM document [ref].  However, this method has not been 

utilized in the context of the current study and interested readers are 

encouraged to refer to the GUM supplement for further information. 

1.4 Expanded Uncertainty (U). 

The final step in determining the measurement uncertainty and 

for a measurement to be reported correctly, an expanded uncertainty 

(U) should be given, where the standard uncertainty is multiplied by 

the relevant coverage factor (k), (EURACHEM / CITAC, 2000, 

JCGM 100:, 2008).thus;  

 

             

 

As a generalization, k = 2 is often used by laboratories to 

represent a 2 standard deviation or approximately 95% confidence 

interval.  For large data sets, perhaps where n=30 or more (Currell 

and Dowman, 2005), where the distribution of mean values conform 

with the expectation of normality, this would be acceptable.  The 2 

standard deviation upper and lower confidence limits either side of 

the true or population mean, μ, is therefore; 

 

     
 

  
                    

 

  
  

 

However for decreasing values of n, the characteristic bell 

shaped curve of the normal distribution broadens and flattens 

reflecting the reduced confidence in the value    as the best estimate 

of the true mean μ, and our uncertainty estimate increases.  To 

compensate for the use of the sample standard deviation, s, rather 

than the population standard deviation σ, k=2 is replaced by the 

critical t-value as a correction term.  The value of t depends on the 

value of n and the required level of confidence and can be read from 

any two-tailed t-table found in statistical texts. Figure 4 illustrates the 

relationship between a normal and a t distribution.  Thus for n=4 

(degrees of freedom=4) at 95% confidence level (α=0.05), t=3.18 

compared to the original value of k=2.  For a pair of replicates; n=2, 

df=1, t=12.7 and the expanded uncertainty becomes over six times 

larger than otherwise predicted if k=2! Thus the range in which the 

true value lies with 95% confidence broadens and becomes; 

 

                 
 

  
                                

 

  
  

 

Results should be expressed as;     ± U (at 95% confidence, 

using k=2, or k=t(2,0.05,df) and n=the number of data points). 

(16) 

(17) 

(18) 

(20) 

(19) 
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Because a combined uncertainty brings together uncertainty 

contributions from different sources, determining k becomes a little 

more tricky when there is no single value for the degrees of freedom.  

One approach is to calculate an effective degree of freedom using the 

Welch-Satterthwaite formula where the effective degree of freedom 

is less than or equal to the sum of the individual values, i.e.; (     
   ) . The use of this equation is covered in detail in Annex G of the 

Guide to Uncertainty Measurement or “GUM”; (JCGM 100:, 2008). 

However, Eurachem make the following recommendation; 

“Where the combined standard uncertainty is dominated by a single 

contribution with fewer than six degrees of freedom, it is 

recommended that k be set equal to the two-tailed value of the 

Student’s t for the number of degrees of freedom associated with that 

contribution and for the level of confidence required…” 

(EURACHEM / CITAC, 2000). 

2 MU FROM PT DATA; SINGLE RESULTS. 

2.1 MU in the absence of Bias. 

We have already discussed how equations 4 and 5 describe 

uncertainty estimation in the absence of bias and how this scenario 

reflects the current situation regarding uncertainty evaluation in AAR 

geochronology.  Whilst it is perhaps, a little optimistic to expect bias 

to be completely absent from AAR data, it is not beyond the realms 

of possibility for bias and its associated uncertainty to be so small so 

as to be negligible.  From the results of the proficiency study given in 

Part 1, clearly this is not actually the case, and bias would appear to 

play an important part in the accuracy of D/L values, even if at 

present it cannot be routinely determined by laboratories.  

Nonetheless, if hypothetically, bias was effectively negligible, the 

uncertainty of an individual laboratory’s result would simply be the 

equivalent of their intermediate precision (sRw), determined during in-

house method validation, for that particular matrix / analyte / 

concentration combination.  However, this information was not 

provided by participants of the study. 

In many instances, reported AAR uncertainty estimates are 

simply expressed as the standard deviation of results.  Where these 

results were determined in a single run, an estimate of the run to run 

variability needs to also be included in any uncertainty estimate, 

otherwise uncertainty values will only represent the repeatability 

component and will most likely underestimate overall precision. In 

many cases, uncertainty estimates for AAR data are incompletely 

expressed either as the standard deviation of repeated measurements 

or the CV% equivalent.   

In situations, where the only data available is a set of replicate 

values, and the analytical result is determined as the mean of these 

replicates, any standard uncertainty estimate would be more correctly 

reported as the standard uncertainty (or standard deviation of the 

mean, or standard error) (EURACHEM / CITAC, 2000, JCGM 100:, 

2008), i.e.; u(ε)=   
    see section 1.3.1.   

To demonstrate how measurement uncertainty could be 

calculated assuming replicate results were the only information 

available, standard uncertainties were calculated from the proficiency 

test results, for each participant for all amino acids in every test 

material.  Standard deviations (s) for each participant’s replicate data, 

were used to calculate the standard uncertainty of the mean in each 

case; i.e.;      s⁄√n, where n is the number of replicates. Relative 

standard uncertainties were then determined as;               
        .   

To illustrate the effect of the expanded uncertainty on 

participants’ results, expanded relative uncertainties were calculated 

as;          , using coverage factors k=2 and k=t(0.05,df) for 

comparison, where the degrees of freedom were based on the number 

of replicate values in each case. These were then used to derive upper 

and lower confidence limits for participant’s results. Full details and 

charts, are given in the reports for each amino acid in each test 

material, available at www.neaar.co.uk.  As an example, Figure 5 

illustrates this for alanine data in Mollusc (B) test material.  5(a) 

shows replicate values submitted by participants for rpHPLC, and as 

the mean and standard deviation for GC data.  Comparison of charts 
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Figure 5; Critical t-values compared to a Normal distribution 

at 95% confidence level. (a) Shows correction values required to 

return a t-distribution back to Normal and it’s dependence on 

sample size (degrees of freedom). (b) illustrates how expanded 

uncertainty can be significantly improved (distance ‘b’ giving the 

greatest gain compared to distance ‘a’) by increasing the sample 

size from n=2 to n=3. 
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Figure 4; Effect of Expanded uncertainty on Participants’ mean 

Alanine D/L values in Mollusc(B) test material. (a) Shows 

individual laboratories’ rpHPLC replicate D/L values or GC D/L 

means and standard deviations determined, (b) Laboratories’ mean 

D/L values and expanded confidence limits using k=2 (c) 

Laboratories’ mean D/L values and expanded confidence limits 

using k=t(0.05,df) . 
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5(b) using a coverage factor k=2, with 5(c) using k=t(0.05,df) clearly 

highlights the problem of using small data sets; the smaller the value 

of n, the larger the t-value and the bigger the expanded uncertainty.  It 

will always be a trade-off between quality or precision and laboratory 

resources both financially and in machine and analyst time.  In this 

case, the greatest gain will be had by increasing the number of 

replicates from 2 to 3 see Figure 4(b).  Subsequent replicate analyses 

will still make reductions in the expanded uncertainty but at a 

diminishing rate.   

Regardless, repeatability is perhaps one of the least variable of 

the uncertainty components associated with a measurement result, 

and conceivably, one of the smallest.  In practice, additional 

repetitions of analysis at this level is likely to have little if any 

influence on the final combined standard uncertainty estimate and it 

is far better to focus limited resources at higher level uncertainty 

components to give better precision estimates, such as increasing the 

number of site samples, where greater variability might be expected.   

In routine analysis however, it would be completely 

unreasonable to expect a laboratory to carry out a full precision 

analysis, including run to run and day to day variability (let alone a 

bias evaluation) with every batch of samples. This is one reason why 

estimates of intermediate precision or intra-laboratory reproducibility 

derived during method validation are so useful.  Providing that an in 

run check on repeatability is in agreement with validation data, 

intermediate precision estimates can be used with each batch of 

samples, whose matrices fall within the scope of the validated 

method. Intermediate precision represents a typical uncertainty 

estimate that could be achieved on any particular day, with any 

instrument, analyst or batch of reagents etc, depending on the 

reproducibility conditions employed.   

Note that depending on the specified conditions, additional 

uncertainty contributions may be required to reflect uncertainty due 

to sampling, which is often outside the control of a laboratory 

technician.  Uncertainty due to sampling is beyond the scope of the 

current paper and readers are directed to the joint 

Eurachem/EUROLAB/CITAC/Nordtest/AMC guidance document 

(Ramsey and Ellison, 2007).  In the current context, imprecision 

associated with heterogeneity of the test materials might be 

considered a sampling uncertainty.  However it is proposed that any 

variability between the individual test materials will be reflected in 

the uncertainty of the assigned value or between-laboratory precision 

estimates subsequently derived, and need not be counted separately. 

Intermediate precision is only a part of the combined uncertainty 

estimate. This now needs to be combined with bias uncertainty 

contributions.  The evaluation of bias from proficiency test data was 

the subject of Part 1 of this paper.  The next section will now look in 

more detail at the evaluation of uncertainty due to bias and how this 

can be used with precision data to provide an overall combined 

standard uncertainty, uc. 

2.2 MU using Precision and Bias Components 

Bias (bias) and its associated uncertainty (u(bias)) are often 

evaluated as part of a laboratory’s method validation process by 

analysis of a certified reference material (CRM) or from spiking and 

recovery experiments. Bias uncertainty, together with the 

determination of intermediate precision estimates (or intra-laboratory 

reproducibility standard deviation (SRw), also derived from method 

validation precision experiments, can define the overall combined 

uncertainty for a measurement system (uC), as already shown by 

equations 8a and 8b.  This is referred to as the ‘top-down’ approach 

to measurement uncertainty determination (Barwick and Ellison, 

2000b). 

Where method validation data is available, performance in a 

proficiency test can provide verification of a laboratory’s own 

uncertainty estimates, which should be comparable with the spread of 

their own PT results over time.  However in the absence of reference 

materials or validation data, PT results can provide a valuable 

indication of the combined method and laboratory bias in routine 

analysis in its own right, which together with an estimate of the 

laboratory’s intermediate precision, (SRw), can provide a value for the 

combined standard uncertainty (uc). 

It should be recognised that due to the bias uncertainties 

associated with a PT, any combined uncertainty estimate is likely to 

be larger than that resulting from the analysis of a certified reference 

material (CRM) by an individual laboratory.  It is recommended that 

long term bias trends are observed to lessen the impact from a single 

proficiency test result and at least 6 rounds of testing are used to 

evaluate bias estimates (Magnusson et al., 2004) 

In addition, it is recommended that intra-laboratory precision 

estimates (SRw) are determined from replicate analyzes of samples 

under reproducibility conditions over an extended period of time to 

take account of between run and general day to day variability.  To 

simply use the repeatability standard deviation from replicate results 

submitted for the proficiency test is not a realistic representation of 

the overall precision and may contribute to smaller expanded 

uncertainties than might be otherwise be expected.   

It is widely recognised that evaluation of PT data can be a 

valuable addition to the determination of measurement uncertainty.  

However, there is very little information provided by the main 

guidance documents on exactly how this should be done (JCGM 

100:, 2008, EURACHEM / CITAC, 2000).  In the Eurachem guide, it 

is suggested that the standard deviation of the normalized differences 

should be used.  However the method adopted here has been derived 

from two main sources; the Nordtest Report TR 5371  (Magnusson et 

al., 2004) that was produced as a handbook for the Nordic 

environmental testing laboratories and Eurolab’s Technical reports2 

Nos 1/2006 and 1/2007 (EUROLAB, 2006, EUROLAB, 2007).  All 

documents are freely downloadable and recommended for further 

reading on the subject. 

The information thus presented should perhaps be considered 

more as an information exercise than a definitive measure of 

uncertainty. This is due to a number of reasons; such as the relatively 

small number of submitted results, uncalibrated data, and the 

potentially empirical nature of the methods, all of which increase the 

uncertainty of the assigned values.  Also because of the absence of 

true intra-laboratory precision estimates (SRw) and the fact that not all 

laboratories supplied analytical replicate values.  Nonetheless, the 

                                                                 
1  http://www.nordicinnovation.net/nordtestfiler/tec537.pdf 
2  http://www.eurolab.org/pub/i_pub.html 

x

x1

x2
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x4

Standard deviation 
(s)

Standard uncertainty of 
the mean  (u(    = s/√n )   

(x

x
Bias =  x - X 

Standard uncertainty of the 
Assigned Value  (u(X) = σ/√m)

Mean 
(of lab x replicate values)

Assigned Value
(consensus of labs x, y, z etc, mean values )

(μ)
true value

Uncertainty 
due to Bias

Precision

Figure 6; Bias and Precision 

Components derived from 

Proficiency test data, used in 

Measurement Uncertainty 

Estimation. 

http://www.nordicinnovation.net/nordtestfiler/tec537.pdf
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data presented demonstrates how it can be possible to determine 

measurement uncertainty using proficiency test data which provide 

some interesting indicative values. 

For those readers unfamiliar with measurement uncertainty 

estimation, distinguishing the various uncertainty components can be 

somewhat baffling. Figure 6 below helps to illustrate the sources and 

relevance of the different contributions due to precision and 

particularly those elements due to bias.   

2.2.1 Standard uncertainty due to Bias (        ). 

The simplest expression for the bias uncertainty (u(bias)) is the 

experimental uncertainty of the laboratory mean       plus the 

uncertainty of the assigned value       where        . Note; if a 

CRM was used as the test material,       can be taken from the 

specifications directly. 

                        
   

   

 

 
  

   

 

 

Where     = standard deviation of a laboratory’s submitted result, 

    = number of laboratory replicates,    = standard deviation of the 

assigned value, and     = number of laboratories’ results contributing 

to the assigned value. 

In routine analysis, bias should be accounted for and corrected 

for significant systematic effects.  However in circumstances where 

this is not done by convention and the method is said to be empirical, 

any significant uncorrected bias should contribute to the combined 

uncertainty budget.  Bias is determined as              or as a 

relative value; 
    

  
  

     

  
   Where    = laboratory result (or the 

mean of replicate values) and    = the assigned value. 

 

 

To determine whether the observed bias is significant or not, the 

t statistic is calculated and compared to the 2-tailed critical value for 

n-1 degrees of freedom.  If t is greater than or equal to the critical 

value, tcrit , then the bias is significant and an additional term to 

account for uncorrected bias in the result needs to be included in the 

combined uncertainty estimate (EURACHEM / CITAC, 2000). 

t is calculated as;  

 

   
     

      
   

 

where ;            and usually represents the recovery 

associated with the analysis of a CRM, and        is the same as 

u(bias) given above. 

If          , Rec is significantly different from 1 and the result 

   remains uncorrected, a bias correction term needs to be included in 

the combined uncertainty estimate. 

However, this scenario is to some extent academic as the 

uncertainty of the assigned value in a proficiency test is likely to be 

much larger than that of a CRM (if one were available) and it is 

recommended to include the bias contribution in the uncertainty 

evaluation at all times regardless of whether          or not 

(Magnusson et al., 2004). 

Thus, the bias uncertainty now becomes; 

 

                   
   

   

 
 

  

   

 
                    

 

                                
 
  

 

The combined uncertainty is now calculated as; 

 

         
                         

 

Ideally, each laboratory’s own amino acid / matrix specific 

intermediate precision estimate should be used.  However this 

information wasn’t available so each laboratory’s own standard 

deviation taken from submitted results was used as a measure of 

precision, expressed as the CV.  All components were calculated as 

the relative or normalized values, and expressed as percentages.  

Combined uncertainty estimates, uc, were derived and Expanded 

uncertainties, U, for each participant were determined using a 

coverage factor k=2.  This was to simplify the calculations whilst 

considering uncertainty components from various sources but also in 

order to enable direct comparability between laboratories and across 

analytes. 

2.2.2 Results and Discussion. 

Full details of these evaluations can be found in the individual 

reports from this study. However, Figure 7 (a-d:i), provide examples 

of histograms used to demonstrate the relative contributions to 

uncertainty from the various precision and bias components for each 

participant’s results.  For laboratories who did not provide replicate 

values, precision estimates could not be determined and so CV% 

contributions, shown as the black bars, are not present.  Where both 

precision and bias components are present however, the combined 

standard uncertainty for each laboratory is shown with a cross.  

Figure 7 (a-d:ii), then illustrate the effect that expanding the 

combined standard uncertainties have on the mean of laboratories’ 

replicate values, using a coverage factor k=2 in all cases.  The arrows 

on the error bars indicate the extent of the upper and lower 

confidence interval equivalent to 2 standard deviations.  Laboratory 

values shown without error bars in the (ii) figures, are those who 

provided only a single D/L result (n=1).   

Figure 7 (a) gives isoleucine (D-Allo/L-Ile) results in Standard 

Solution test material.  As perhaps might be expected, all uncertainty 

contributions are very small.  Relative bias results given here have 

been calculated using the assigned value derived from ALL 

participants’ results, that is rpHPLC, HPLC-IE and GC data taken 

together.  Thus the higher relative biases observed for the GC are due 

to a median based predominantly on rpHPLC.  Whether this is the 

true value for this amino acid in this test material is not known, it’s 

just the best estimate from the available information.  GC data would 

perhaps suggest the true value is a little higher, but this cannot be 

confirmed without additional GC data. 

Because there have been no preparation steps involved other 

than rehydration of the sample vial, what little variation there is 

between the rpHPLC data will be due to laboratory bias, instrumental 

effects and the rehydration stage, rather than actual method or matrix 

error influences.  More significant bias effects are observed for the 

GC values and highlight method effects, although as previously 

mentioned, which one is in error is a matter of debate. For isoleucine 

in standard solution (D/L approximately 0.5), the combined 

uncertainty (uc) range for GC data is between 3.6-10.5%, (Expanded 

uncertainty values will be double this, i.e. 7.2-21%).  For reverse-

phase data in the same test material, the combined uncertainty ranges 

are much smaller, between 0.71-2.5% for all participants. 

Figure 7 (b) show data, again for isoleucine, but in ostrich egg 

shell test material; OES (A).  Figure 7 (b.i) clearly shows the effect 

on standard uncertainty estimates due to sample preparation (method 

plus laboratory error contributions) and matrix effects, when 

compared to the standard solution data discussed previously.  In this 

case, there is very little difference observed between GC or rpHPLC  

() 
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Figure 7; Precision and Bias Standard uncertainty contributions, their combined and expanded effect on submitted 

results.  Figure (a) is for A/I in Standard Solution test material, (b) is A/I in OES(A) test material, (c) is A/I in Mollusc (B) 

test material and (d) is for aspartic acid in Mollusc (B) test material.  Figures (i) demonstrate the relative contributions 

from the precision and different uncertainty sources.  Figures (ii) show the effect on the participants’ submitted replicate 

means, of expanding (k=2) these combined standard uncertainties, shown against the assigned value for the analyte. 
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data because the level of agreement both within and between 

laboratories is far more variable leading to larger (im)precision 

estimates and biases, masking the smaller ones.  In the majority of 

cases, the biggest contribution is due to the actual bias component.  

For OES (A), the combined uncertainty range is between 5.2-34%.  

Thus it can be seen that if the analytical bias can be corrected, then 

the overall uncertainty estimate could be greatly improved.  The 

combined and expanded uncertainties have been calculated as 

relative percentages, therefore, when translated into numerical 

confidence limits, the extent of the confidence interval is entirely 

dependent on the mean D/L value applied.  For ostrich egg shell test 

materials the amino acid mean D/Ls are generally very low.  So 

although the overall relative uncertainties may be fairly wide, the 

effect on the mean D/L value is minimal as shown in Figure 7 (b.ii).   

In contrast to this, Figure 7 (c.i & ii) show uncertainty data once 

again for isoleucine, but this time in Mollusc (B) test material.  From 

the histogram (c.i), individual uncertainty components, expressed as 

relative percentages, are of a similar scale to those for OES (A), if 

perhaps a little larger.  The combined uncertainty range for 

isoleucine in Moll(B) is 12-39%.  However, because the mean D/L 

value for most of the amino acids in Mollusc (B), are much higher, 

the effect on the expanded confidence limits is far more noticeable.  

So, although in relative terms, in some situations uncertainty 

estimates may be similar, however in practice this translates to wider 

numerical uncertainty estimates for samples with higher D/L values, 

i.e.; those which are older or have a warmer temperature history. 

The last two charts in Figure 7, (d.i & ii), show uncertainty data 

this time for aspartic acid but again in Mollusc (B) test material.  

These figures help to demonstrate the differences observed between 

different amino acids within the same matrix.  (d.i) shows that the 

within and between laboratory agreement for aspartic acid is 

generally excellent and considerably better than the isoleucine 

looked at so far.  Even in a complex matrix, where there will be 

method, laboratory and matrix effects all contributing to the 

uncertainty estimates, the combined uncertainty range is between 

1.2-8.1%.  This time, when these relative values are applied to an 

even higher mean D/L value, the effect on the confidence limits is 

not nearly so severe (Figure 7 (d.ii)).   

So not only is uncertainty matrix and concentration dependent, 

it is also highly variable between different amino acids too. 

3 MU FROM PT DATA; COMBINING 

MULTIPLE RESULTS 

3.1 MU in the absence of Bias 

Whilst it can be informative to visualize the uncertainty 

contributions from different sources, the greatest gain is to be had 

from observing bias performance over time. 

For a “well-behaving” (performance is within the satisfactory 

range) single laboratory who has participated in several different 

rounds of proficiency testing for the same or similar analyte in the 

same or similar matrix, there will be no overall bias (    ).  Where 

the uncertainty of the assigned values,       and the uncertainty of 

replicate values,       are small compared to the intermediate 

precision estimate    , determined through a laboratory’s own 

method validation, then the standard uncertainty derived from 

results falling within the satisfactory range, could be said to be 

equivalent to the target standard deviation,   , used for the 

assessment of the data, i.e.; because results comply with the target 

precision estimate in the absence of bias. 

However, in this report, no values for target standard deviation, 

  , have been given. Under these circumstances and assuming the 

absence of bias described above still holds for results falling within 

the satisfactory range, the uncertainty of a specific laboratory’s 

submitted results would simply be equivalent to that laboratory’s 

own intermediate precision or intra-laboratory reproducibility 

standard deviation    , etc., as previously discussed in section 2.1.   

Because the absence of bias is an ideal scenario, and 

unrealistic, uncorrected bias and the uncertainty due to bias should 

always be included in the uncertainty budget, even if their overall 

contribution is small, at least until the analyst is confident that 

analytical results are free from systematic effects.   

3.2 MU using Precision & Bias Root Mean Square 

The procedure requires the calculation of the bias root-mean-

square (       %,) expressed as a percentage.  When multiple 

results are being combined (i.e.; from a series of proficiency tests or 

in our case from a set of laboratories), the contribution due to bias 

(bias) and the uncertainty due to bias (     ), (i.e.; the standard 

uncertainty of the mean), can be directly replaced by the bias 

       %.  (EUROLAB, 2007).  Note that the uncertainty of the 

reference material or assigned value still needs to be included in the 

overall calculation of the total uncertainty due to bias (u(bias)).  
 

                 
            and 

 

                  
 

   

 

Where p is the number of proficiency test results being 

combined,                from equation 7 , and       
    

     
  

The average standard deviation for the assigned values,     ,  and 

the average number of participants across all the tests,     , can be 

determined and used to calculate an average uncertainty       for 

the tests. 

From equation….. the combined uncertainty (uc) now becomes; 

 

        
         

          

3.2.1 Amino Acid uncertainty estimates. 

In order to evaluate the effect of uncertainty on an individual 

laboratory’s series of PT results, an estimate of that laboratory’s 

intermediate precision is first required.  However this information 

was not provided by participants.  An estimate of the average 

standard uncertainty of the mean of replicate values could be used 

but as already discussed, this would be an underestimation of that 

laboratory’s overall precision and is therefore not ideal. 

Therefore rather than evaluating a series of results for a single 

laboratory, a series of results for a single amino acid have been used.   

Thus, for every amino acid in each test material, the combined 

uncertainty has been determined using all of the participants’ 

submitted results for that particular amino acid in a given matrix.  

The    , has been replaced by the standard deviation of the 

assigned value (  ), (i.e.; sMAD), as the precision estimate,        is 

simply the uncertainty of the assigned value for that amino acid and 

the         is derived using all the PT results for each amino acid 

in the test material.  Results have also been evaluated for rpHPLC 

subset, due to a separate assigned value being available.  Following 

this, the Expanded uncertainty (U) can be derived using an 

appropriate coverage factor, such as k=2, as has been used in these 

examples. 

3.2.2 Results and Discussion. 

Table 1 presents the results of this evaluation.  All values are 

represented as the relative percentage.  This data provides an  
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Table 1: Standard uncertainty contributions, plus the combined and expanded uncertainties, for every amino acid in each test material, averaged across all 

submitted results. 
 

amino acid  Opercula Test Material  OES(A)  OES(B) 

    as 
RSD% 

    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 
    as 

RSD% 
    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 
    as 

RSD% 
    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 

Asx D/L-all
a
  1.02 0.28 4.97 5.08 10.16  3.84 0.99 6.96 8.01 16.02  4.14 1.07 12.12 12.85 25.71 

Asx D/L-rpHPLC  1.17 0.35 1.70 2.09 4.19  3.76 1.13 3.14 5.03 10.06  3.47 1.05 5.84 6.87 13.74 

Glx D/L-all
a
  1.47 0.41 8.82 8.95 17.90  8.32 2.15 9.69 12.95 25.90  6.85 1.90 12.98 14.80 29.60 

Glx D/L-rpHPLC  1.29 0.39 6.41 6.55 13.10  12.72 3.83 9.45 16.30 32.61  5.88 1.77 13.91 15.20 30.41 

Ser D/L-rpHPLC  1.41 0.43 1.39 2.03 4.05  1.27 0.38 3.35 3.60 7.20  3.57 1.08 2.27 4.36 8.72 

Arg D/L-rpHPLC  21.76 7.25 22.2 31.92 63.83  11.55 3.85 15.6 19.79 39.58  7.10 2.37 7.49 10.59 21.18 

Ala D/L-all
a
  5.15 1.43 4.25 6.83 13.66  12.25 3.27 10.99 6.78 33.56  16.09 4.15 13.88 21.65 43.30 

Ala D/L-rpHPLC  5.14 1.55 3.58 6.45 12.90  10.24 3.09 7.12 12.85 25.71  8.34 2.51 7.9 11.76 23.52 

Val D/L-all
a
  6.99 1.94 8.25 10.99 21.98  14.13 3.65 16.46 22.00 43.99  11.49 2.97 18.12 21.66 43.32 

Val D/L-rpHPLC  7.58 2.28 5.5 9.64 19.27  13.23 3.99 9.22 16.61 33.22  2.14 0.64 8.74 9.02 18.04 

Phe D/L-all
a
  2.87 0.79 4.94 5.77 11.53  5.14 1.33 9.05 10.49 20.98  9.49 2.74 7.26 12.26 24.52 

Phe D/L-rpHPLC  3.01 0.91 4.54 5.52 11.04  3.12 0.94 4.38 5.46 10.92  5.51 1.66 7.91 9.78 19.56 

D-Aile/L-Ile-all
b
  35.21 9.09 26.48 44.99 89.97  20.37 4.94 21.45 29.99 59.98  14.82 3.59 17.95 23.55 47.11 

D-Aile/L-Ile -rpHPLC  16.94 5.11 20.44 27.03 54.07  18.92 5.71 24.1 31.17 62.33  7.28 2.19 19.05 20.51 41.02 

Leu D/L-all
a
  16.12 5.10 16.21 23.42 46.84  18.81 5.22 18.87 27.15 54.30  10.18 2.94 11.84 15.89 31.78 

Leu D/L-rpHPLC  7.86 2.78 12.9 15.36 30.72  8.24 2.75 15.32 17.61 35.22  8.36 2.96 8.43 12.24 24.48 

Tyr D/L-rpHPLC  1.99 0.89 4.78 5.25 10.50  6.89 2.61 6.48 9.81 19.63  10.20 3.86 5.32 12.13 24.27 

a
 = rpHPLC and GC data   

b
 = rpHPLC, GC and HPLC-IE data 
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Error! Reference source not found. (continued). 
 

amino acid  Standard solution Test Material  Mollusc(A)  Mollusc(B) 

    as 
RSD% 

    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 
    as 

RSD% 
    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 
    as 

RSD% 
    ) as 
RSU% 

RMSBias

% 
Combined/Expanded

                  k=2 

Asx D/L-all
a
  2.02 0.54 13.58 13.74 27.48  2.24 0.65 3.05 3.84 7.68  2.58 0.78 3.55 4.46 8.92 

Asx D/L-rpHPLC  0.48 0.15 1.35 1.44 2.88  2.24 0.68 3.12 3.90 7.80  2.55 0.81 3.72 4.58 9.17 

Glx D/L-all
a
  2.94 0.79 7.84 8.41 16.82  2.57 0.74 7.58 8.04 16.08  6.00 1.81 9.15 11.09 22.18 

Glx D/L-rpHPLC  1.50 0.47 1.54 2.20 4.40  2.39 0.72 6.89 7.33 14.66  4.16 1.32 10.08 10.98 21.97 

Ser D/L-rpHPLC  2.38 0.75 1.47 2.89 5.79  4.38 1.32 11.89 12.74 25.48  5.60 1.77 11.44 12.86 25.72 

Arg D/L-rpHPLC  4.76 1.68 11.09 12.19 24.37  22.93 8.11 21.93 32.75 65.50  20.49 7.24 22.13 31.02 62.04 

Ala D/L-all
a
  6.12 1.64 12.62 14.12 28.24  9.52 2.75 14.34 17.43 34.87  6.98 2.01 8.24 10.99 21.97 

Ala D/L-rpHPLC  1.28 0.40 12.42 12.49 24.98  9.35 2.82 7.35 12.22 24.45  5.97 1.89 4.50 7.71 15.41 

Val D/L-all
a
  1.90 0.53 7.36 7.62 15.24  11.45 3.30 11.89 16.83 33.67  10.06 3.03 12.74 16.52 33.03 

Val D/L-rpHPLC  1.49 0.47 8.18 8.33 16.65  11.85 3.57 10.57 16.27 32.55  11.01 3.48 10.43 15.56 31.11 

Phe D/L-all
a
  1.53 0.41 1.77 2.38 4.76  8.27 2.39 9.84 13.07 26.14  2.51 0.76 8.52 8.92 17.83 

Phe D/L-rpHPLC  0.85 0.27 1.02 1.36 2.71  7.04 2.12 8.67 11.37 22.74  1.91 0.60 8.34 8.58 17.16 

D-Aile/L-Ile-all
b
  2.69 0.70 3.15 4.20 8.40  24.75 6.62 39.55 47.12 94.25  30.69 8.51 33.33 46.10 92.19 

D-Aile/L-Ile -rpHPLC  1.01 0.32 1.57 1.89 3.79  27.56 8.31 34.3 44.78 89.56  17.51 5.54 32.75 37.55 75.09 

Leu D/L-all
a
  3.71 1.12 5.6 6.81 13.62  13.60 4.30 15.42 21.01 42.01  15.47 5.47 13.59 21.31 42.61 

Leu D/L-rpHPLC  1.13 0.40 2.41 2.69 5.38  17.25 6.10 13.85 22.95 45.89  12.44 5.08 15.21 20.29 40.59 

Tyr D/L-rpHPLC  - - - - -  0.57 0.26 7.03 7.06 14.12  3.10 1.55 3.47 4.90 9.80 

a
 = rpHPLC and GC data   

b
 = rpHPLC, GC and HPLC-IE data 
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indication of typical uncertainty estimates which a laboratory might 

be expected to achieve for each amino acid.  It provides a 

convenient comparison between the different matrices for any given 

amino acid, and assists in the comparison of overall uncertainty for 

different amino acids in the same test material.   

Table 1 presents the combined and expanded uncertainty values 

for amino acids in different test materials and demonstrates how 

different uncertainty contributions need to be considered.  For each 

amino acid in each test material, data have been evaluated using all 

submitted results and also separately for rpHPLC data only, where 

separate assigned value uncertainty estimates were also determined.  

In nearly every case, the uncertainty estimates were made worse by 

the inclusion of all methods, as might be expected, therefore the 

following account relates only to the rpHPLC data, unless otherwise 

stated, so as to provide a single method comparison.  Figure 8 helps 

to summarize this data and shows the rpHPLC expanded uncertainty 

values ranked in order of increasing uncertainty; position 1 being the 

most precise, or the least variable data.  

Figure 8(a) presents data for Opercula and Standard Solution 

test materials.  In the Standard Solution test material (D/L ≈ 0.5), in 

the majority of cases, the expanded uncertainty values (U%) ranged 

between 2.7-5.8%, with phenylalanine and aspartic acid giving the 

lowest values of less than 3%.  Uncharacteristically for isoleucine, 

the reverse-phase data was remarkably well-behaved. It was no 

surprise to see that arginine was amongst the poorest performers 

however it was unexpected to find that alanine gave the widest 

uncertainty overall with U=25%, and valine not far behind with 

U=16.7%.  For some time arginine has been suspected of having 

stability issues which may be responsible for the variability in 

observed data, but these results would also strongly suggest that 

alanine and possibly valine may be experiencing similar 

complications when in solution. 

For bleached opercula test material, this time serine and 

aspartic acid are the best performers with expanded uncertainties 

hovering just above 4%.  Tyrosine, phenylalanine, alanine, and 

glutamic acid then group together with estimates of U ranging 

between 10.5-13%, followed by valine at 19.3%, leucine 31%, and 

finally isoleucine and arginine both giving estimates over 50%.   

Figure 8(b) compares the ostrich egg shell test materials 

(OES(A) and OES(B)). In both test materials, serine had the lowest 

uncertainty, in both cases being less than 10% with aspartic acid not 

too far behind with expanded uncertainties of 10.1% and 13.7% 

respectively.  In the bleached OES(A), phenylalanine’s expanded 

uncertainty was close to aspartic acid with U = 11%. Following this 

came tyrosine (U=20%) and alanine (U=26%) and then glutamic 

acid, valine and leucine grouped at around 33-35%.  Arginine then 

second to last with 40% and isoleucine lastly with U greater than 

60%.  By comparison, the majority of amino acids in OES(B), were 

in fairly close agreement with each other, ranging from 18-24.5% 

(valine, phenylalanine, unusually arginine, alanine, tyrosine and 

leucine).  However, glutamic acid was particularly variable 

(U=30.4%) by comparison to the other amino acids in unbleached 

OES, which appeared to improve on bleaching by moving the Glx 

position higher up the ranking in OES(A). Finally once again the 

widest uncertainty estimate in OES(B) was that of isoleucine with 

41%.  It is interesting to observe the similarity in ordering between 

the bleached Opercula amino acids and those of the bleached 

OES(A), with the exception of tyrosine and phenylalanine with 

swap over.  

The last chart is Figure 8(c) and compares bleached Mollusc 

shell (A) test material with unbleached Mollusc shell (B).  In both 

cases, the ordering of amino acids is almost identical, with only 

glutamic acid and alanine swapping positions, alanine showing less 

agreement in bleached mollusk shell and glutamic acid showing 

better.  For both test materials, aspartic acid have the smallest 

expanded uncertainties; OES(A), 10% and OES(B), 13.7%.  The 

next best amino acid was tyrosine followed by the others with 

steadily increasing uncertainty estimates, to end with arginine with 

over 60% and finally isoleucine with 90% in the case of Mollusc (A) 

or 75% for Mollusc (B).  

To summarize therefore, whilst there are some unusual 

exceptions observed in the data, it would appear that in the majority 

of cases, aspartic acid and serine provide the closest agreeing data; 

that is the smallest overall uncertainties, whilst isoleucine is 

generally the most variable amino acid by rpHPLC, closely followed 

by arginine and then leucine.  The remaining amino acids; glutamic 

acid, alanine, valine, phenylalanine, and tyrosine then order 

themselves inbetween, depending on the matrix and treatment 

carried out but also on the concentration of the amino acid, 

remembering all the time that these are relative uncertainty 

estimates. 

Ironically, the bleaching carried out in order to isolate a closed 

system of amino acids, does not appear to significantly improve the 

uncertainty estimates, either in terms of the precision, (i.e.; the  
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Figure 8; Ranked Amino Acids based on rpHPLC 

derived Expanded Uncertainties (U%) in the six 

different Test Materials. (a) Plots Opercula and Standard 

Solution test material data.  Note the unusually tight isoleucine data 

(A/I) in position 3 in Standard Solution, and the unusually wide alanine 
data in position 9.  Note also that tyrosine was not present in the 

Standard solution. (b) compares the bleached test material OES (A) 

with the unbleached OES (B). Note the “well-behaved” arginine data 
and wide glutamic acid in OES (B). (c)  then compares the bleached 

Mollusc (A) test material with the unbleached Mollusc (B). 
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Figure 9; RMSBias% Histograms showing individual participant’s standard uncertainties due to analytical 

bias, evaluated across all six test materials. (a) aspartic acid, (b) glutamic acid, (c) alanine, (d) serine, (e) valine, 

(f) phenylalanine, (g) isoleucine, (h) leucine 
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standard deviation of the assigned value; sMAD) or in terms of the 

observed bias as seen in Table 1.  Close examination of the 

tabulated data shows that bleaching will reduce uncertainty 

estimates for some amino acids, expand uncertainty estimates for 

others and occasionally make little if any difference at all.   

Table 1 presents if you like, a worst case scenario, reflecting 

both inter-laboratory and method error effects.  Strictly speaking, 

the uncertainty of the assigned value,     ), is unnecessary as it is 

already incorporated in to the standard deviation of the assigned 

value    (or sMAD), used as our precision estimate.  However, the 

contribution is generally small by comparison and not likely to 

significantly influence the combined uncertainty estimate, but it’s 

inclusion serves as a reminder to include reference value 

uncertainties   From the data it can be seen, that generally speaking, 

it is the analytical bias (RMS%) that contributes the largest 

component to the combined uncertainty estimate and the uncertainty 

of the assigned value or the uncertainty of the reference value that is 

generally the smallest.  Control of bias is paramount in producing 

accurate and reliable data.  It can therefore be appreciated how 

correction of significant bias could reduce this element substantially, 

and reduce overall uncertainty estimates for each amino acid.  

3.2.3 Individual Laboratory RMSBias estimates. 

Although, for reasons already discussed, it is not possible to 

fully evaluate individual laboratory’s uncertainties, we can however 

determine and compare the RMSbias% component, using their own 

results across all six test materials.  Each laboratory’s RMSbias% 

results have been calculated and are plotted as histograms in Figure 

9.  It is recognised that there will be some differences in biases 

observed between different matrices, for example, biases in standard 

solution tend to be much smaller than those in mollusc shell.  

However, these effects will be common to all the participants who 

submitted results for all six test materials, and is still a valid basis 

for comparison.  The only complication arises for those participants 

where p ≠ 6, and a more matrix specific comparison is 

recommended from the specific PT reports. 

3.2.4 Results and Discussion 

Individual laboratory’s RMS% have been evaluated for every 

amino acid, combining data from each of the six test materials.  

These results have been arranged in an ordered manner and are 

presented as histograms in Figure 9.   

In spite of the small numbers of participants providing GC and 

IE data, there is a strong indication from the data presented in Figure 

9, that for aspartic acid, alanine, valine, and possibly phenylalanine 

(with the exception of a single high rpHPLC laboratory) GC data 

quantify slightly higher than the rpHPLC results, and even for 

glutamic acid, it would appear that GC results, 6.2 and 7.2 are also 

consistently high.  Interestingly GC results 6.1 and 7.1 were 

determined using peak area data, whilst 6.2 and 7.2 used peak height 

data.  Knowing this it can also be seen that GC peak height D/L 

values appear to quantify higher than the peak area data for aspartic 

acid, glutamic acid and valine.  By comparison, for isoleucine, GC 

peak height data quantify much lower than everything else, whilst 

the GC peak area values and HPLC-IE fall centrally together.  

Whilst it is possible that once again we are observing empirical 

differences it is not clear whether these differences are significant or 

simply that they fall towards the upper end (or lower end) of normal 

distributions.  If D/L quantification was not method dependent, then 

it would be expected that results of both rpHPLC, GC and IE would 

be randomly distributed.  Both leucine and isoleucine data are more 

suggestive of this.  Interestingly, for isoleucine, both GC peak area 

data and HPLC-IE data, cluster together, and demonstrate the close 

agreement between these methods, on which the development of the 

technology has been based. 

4 MU FROM PT DATA; ANOVA (RSDR% ) 

4.1 Bias as a random variable 

So far, the methods looked at for determining measurement 

uncertainty from proficiency test data, have considered precision 

and bias as independent components, which together give an overall 

estimate of the combined standard uncertainty.  However, Section 

1.3.2 has already discussed how individual laboratory biases, when 

viewed from a higher perspective, can be seen as a random variable 

describing between laboratory precision.  It is this unique 

relationship between precision and bias which is utilized in the 

assessment of inter-laboratory collaborative trial data using a one-

way ANOVA, (analysis of variance) to determine method precision 

estimates (Horwitz, 1995, AOAC, 2000, RSC Analytical Methods 

Committee, 1995). ANOVA allows us to evaluate independent 

sources of uncertainty in a single step, separating the random error 

components from the laboratory effect. 

ANOVA is used to determine the within laboratory or 

repeatability precision (sr) and the between laboratory precision (sL) 

which together provide an estimate of the overall precision for a 

given method, the reproducibility standard deviation (sR).   

Within laboratory precision is expressed as the repeatability 

standard deviation,   , and represents an inter-laboratory 

approximation of random error effects.  Often the    is more 

conveniently represented as the relative repeatability standard 

deviation and expressed as a percent, (      .   
   is the reproducibility standard deviation and a measure of 

the overall precision for an analyte in the specified test material.  

Again, this is more conveniently expressed as the relative standard 

deviation of reproducibility, (      .     incorporates both the 

within laboratory random error effects and the between laboratory 

bias, the later being conveniently expressed as a precision estimate, 

and is a single measure of the (im)precision or uncertainty of the 

measurement procedure.  

Conventionally, between laboratory precision estimates,   , 

tend not to be used on their own. Uncorrected bias will exaggerate 

the between laboratory variance component, resulting in wider 

      values. 

Because a collaborative trail is method prescriptive, it is 

assumed that method bias and its uncertainty are zero. In principle 

the same technique could be used as a novel approach to 

determining overall uncertainty from proficiency test data.  If 

ANOVA was applied to participants’ replicate data from a 

proficiency study, incorporating all the method variability, the 

reproducibility values would now reflect the additional uncertainty 

due to routine method differences too; i.e., one rung higher up the 

ladder of errors.  

 

ANOVA calculations were carried out for all the amino acids 

in each test material, allowing for unequal numbers of replicates 

(Miller and Miller, 2005).   

All submitted results were included in this evaluation without 

removal of outliers as would otherwise be done with collaborative 

trail data. On this occasion it was the intention to observe the 

behavior of all submitted results rather than to define best practice. 

Because GC data were reported as the mean and standard deviation, 

individual replicate data were not available and so ANOVA has not 

been carried out on any GC data.  However all rpHPLC amino acids 

have been assessed and HPLC-IE results have also been evaluated 

separately for isoleucine, albeit with limited data.  Table 2 therefore 

summarizes method specific repeatability and reproducibility 

precision estimates for each amino acid.  The mean D/L values have 

been determined as the average from all individual replicate values 

and are likely to be more sensitive to extreme values and vary 

slightly from the assigned values determined as the median of 

submitted results. 
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Table 2: Summary of Inter-Laboratory Precision Estimates (Repeatability & Reproducibility) determined using a  

One-Way ANOVA from Participants’ submitted replicate results. 

amino acid Opercula Test Material  OES(A)  OES(B) 

p N 1mean D/L RSDr% RSDR%  p N 1mean D/L RSDr% RSDR%  p N 1mean D/L RSDr% RSDR% 

Asx D/L-rpHPLC 11 29 0.564 0.54 2.43  11 26 0.364 1.04 4.22  11 26 0.210 0.40 8.16 

Glx D/L-rpHPLC 11 29 0.157 0.52 6.23  11 25 0.085 4.83 10.95  11 26 0.056 0.47 15.46 

Ser D/L-rpHPLC 11 29 0.656 1.12 1.77  11 27 0.329 0.70 2.69  11 26 0.111 0.82 3.05 

Arg D/L-rpHPLC 9 17 0.776 19.53 27.95  9 15 0.139 3.96 14.09  9 15 0.101 3.75 8.68 

Ala D/L-rpHPLC 11 29 0.268 2.01 4.72  11 27 0.094 3.29 7.10  11 26 0.063 10.21 11.27 

Val D/L-rpHPLC 11 29 0.135 4.33 6.93  11 27 0.029 7.61 12.22  11 27 0.019 4.72 11.05 

Phe D/L-rpHPLC 11 29 0.306 5.18 5.90  11 27 0.077 4.40 6.37  11 26 0.053 2.35 8.29 

D-Aile/L-Ile -rpHPLC 11 29 0.194 13.65 34.51  11 27 0.035 5.04 29.65  11 27 0.026 4.21 29.94 

D-Aile/L-Ile -HPLC-IE 2 4 0.137 2.45 2.90  2 5 0.031 6.04 6.04  2 4 0.024 0.00 0.00 

Leu D/L-rpHPLC 8 24 0.289 8.11 14.60  9 24 0.063 4.81 18.52  8 23 0.050 11.16 12.80 

Tyr D/L-rpHPLC 5 10 0.273 2.24 5.42  7 11 0.078 1.07 7.18  7 11 0.059 3.44 7.49 

amino acid Standard solution Test Material  Mollusc(A)  Mollusc(B) 

p N 1mean D/L RSDr% RSDR%  p N 1mean D/L RSDr% RSDR%  p N 1mean D/L RSDr% RSDR% 

Asx D/L-rpHPLC 10 23 0.499 0.84 1.60  11 28 0.412 0.71 4.63  10 26 0.390 0.53 4.93 

Glx D/L-rpHPLC 10 23 0.553 0.67 1.70  11 28 0.214 1.70 9.94  10 26 0.188 1.11 15.56 

Ser D/L-rpHPLC 10 23 0.402 0.97 1.71  11 28 0.490 2.58 22.98  10 26 0.395 2.37 18.04 

Arg D/L-rpHPLC 8 16 0.376 3.24 11.49  8 14 0.659 24.41 27.07  8 14 0.650 24.10 25.73 

Ala D/L-rpHPLC 10 23 0.489 0.69 12.31  11 28 0.420 2.86 6.54  10 26 0.356 2.45 4.38 

Val D/L-rpHPLC 10 23 0.438 0.43 6.53  11 28 0.198 5.56 10.27  10 26 0.167 5.79 10.16 

Phe D/L-rpHPLC 10 23 0.492 0.75 1.17  11 28 0.266 8.57 13.86  10 26 0.235 8.57 16.01 

D-Aile/L-Ile -rpHPLC 10 23 0.561 0.75 1.55  11 28 0.233 11.42 36.65  10 26 0.187 10.84 37.61 

D-Aile/L-Ile -HPLC-IE 2 4 0.576 0.11 0.29  2 4 0.186 0.81 4.41  2 4 0.154 3.91 3.91 

Leu D/L-rpHPLC 8 18 0.597 1.76 3.21  8 23 0.312 13.35 16.40  6 20 0.240 13.69 16.44 

Tyr D/L-rpHPLC - - - - -  5 9 0.239 2.33 6.11  4 8 0.218 1.89 4.20 

p = no of sets of results N = total no of replicate values  1 = mean of the participants’ individual replicate D/L values 
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4.2 Results and Discussion 

Because this assessment has been carried out using participants’ 

results for individual amino acids in each test material, RSDR% 

values presented in Table 2, will be directly comparable to the amino 

specific combined standard uncertainties given previously in Table 1.  

Potentially they may also be comparable to the inter-laboratory CV% 

from Part 1 Table 2 too, although the CV% is perhaps closer to the 

between laboratory precision (sL), rather than being a true 

representation of the overall uncertainty.   

However, the relative repeatability standard deviations, RSDr%, 

should also be comparable to the average intra-laboratory CV% given 

in Part 1; Table 2, as both measurements are reflections of the 

imprecision due to random error effects only. 

With only a few exceptions, generally, it would appear that both 

the RSDr% and RSDR% values quantify slightly higher than the intra 

and inter-laboratory CV% equivalents (Part 1; Table 2), whilst 

RSDR% values quantify slightly lower than the combined uncertainty 

estimates from Table 1.  However, all three precision values (i.e.; 

inter-lab CV%, RSDR% and uc as RSU%), for any particular amino 

acid were of a similar scale, suggesting that whilst ANOVA carried 

out this way may be a novel approach for evaluating the combined 

uncertainty, it would appear not to be an unreasonable one, in many 

instances lying midway between the other two approaches. 

4.3 Predicting Reproducibility 

In many instances the precision of chemical analysis is often 

dependent on concentration, i.e.; the observed standard deviation 

increases as analyte concentrations increase.  Figure 10 illustrates this 

relationship using some theoretical data.  In this example, it can be 

seen that the standard deviation increases with D/L value, but 

decreases when expressed as a relative value. It can be seen that 

initially this decrease is steep (since even a small difference at a low 

concentration can have a big effect), and then plateaus out.  William 

Horwitz was the first to report on this relationship between precision 

and concentration (Horwitz, 1982).  It was found that the 

reproducibility standard deviation values obtained from collaborative 

trial data for a particular group of analytes, varied in a predictable 

manner with analyte concentration.  This relationship, referred to as 

the Horwitz curve or the Horwitz equation, has been found to be 

widely applicable to many different analytes and is used widely in 

other sectors for predicting target values for standard deviation by 

proficiency test providers and in quality control.   

The Horwitz equation requires concentration to be expressed as 

a mass fraction, and so is not universally applicable.  However, it was 

considered that an evaluation of the amino acid RSDR values relative 

to the D/L values, may be insightful, possibly indicating similar 

relationships within our own test materials, in spite of the additional 

variability due to method differences in the current study.  

For each amino acid, mean D/L values from all six test materials 

were plotted on the same chart, against their respective precision 

estimate.  Figure 11 (a), (b) and (c) presents precision data for 

isoleucine, aspartic acid and valine respectively, as examples.  

Figures (i) and (ii) use reproducibility data determined using 

ANOVA; Figures (i) shows how the standard deviation of 

reproducibility (sR) changes with D/L value, whilst Figures (ii) shows 

how the relative standard deviation of reproducibility (RSDR%) (data 

from Table 2) relates to D/L.  For comparative purposes, GC and IEx 

inter-laboratory precision data for ILC-A, B and C originally 

presented by Wehmiller (1984) and expressed as (inter-laboratory) 

CV% are plotted in Figures (iii).  Lastly, results of an ANOVA 

carried out on the PT test material homogeneity data as a measure of 

intra-laboratory repeatability, i.e.; in the absence of inter-laboratory 

bias, are given in Figures (iv). 

Initially, plotted data appeared confusing, especially for some 

amino acids, which showed no obvious correlations.  However, on 

further inspection, relationships between the predominantly calcitic 

matrices, (opercula and the two ostrich egg shell test materials), 

became clearly visible in all amino acids.  Further, in many instances, 

trend lines could be drawn between these three data points and the 

Standard Solution test material, which gave curves characteristic of 

those suggested in Figure 10.  Figure 11(a, ii.), isoleucine RSDR% is 

the exception to this as it is known to exhibit poor reproducibility by 

rpHPLC.  However, isoleucine by GC or IEx (Figure 6(a, iii)) and 

intra-lab isoleucine by rpHPLC (Figure 6(a, iv) agree with 

expectations.   

Mollusc shell behavior however, was not quite so obvious and in 

most cases was set apart from the calcite data.  Submitted results for 

the two mollusc shell test materials were the most widely variable of 

all the six test materials, the matrix clearly being more challenging.  

Mollusc shell data will therefore reflect these larger precision 

estimates, which in turn are likely to interfere with any predictable 

patterns in this matrix.  Wehmiller’s GC data clearly indicate there 

are correlations within the three ILC mollusc shell materials used in 

the original trial, but these are not directly super-imposable over the 

calcitic curves.   

The results for the ANOVA on the homogeneity D/L data 

(Figures (iv)) act as a control and allow us to observe the behavior of 

the data under more controlled repeatability conditions, i.e.; without 

the influence of method or laboratory bias affecting the data.  Overall 

intra-laboratory precision values thus determined are much smaller 

than their inter-laboratory reproducibility equivalent values and give 

an indication of the improvement that might be expected once 

method and laboratory bias have been brought under tighter control.  

However there remains insufficient data to clarify the behavior of 

mollusc shell matrix.   

These differences in predictive precision between the calcitic 

matrices (opercula and ostrich egg shell) and the calcitic/arogonitic 

mollusc shell, suggest differences in position and functionality of 

amino acids in the biomineral proteins and their racemization 

tendency.  It should be recognised that the data used in this analysis 

includes additional variability due to method differences in the 

proficiency study and that far tighter estimates are likely to be 

achievable if data from a method specific interlaboratory 

collaborative trial were available.  Species specific differences in the 

D/L value have been reported for opercula (refs……) and it would be 

an interesting extension to see whether these differences are carried 

across to the precision estimates or whether in fact, reproducibility is 

predictable across species sharing a common biomineral matrix. 

5 CONCLUSIONS 
In Part 2 of this paper we have introduced the concept of a 

hierarchy of accumulating error contributions, known as the “ladder 

of errors” and considered how precision and sources of bias 

contribute to uncertainty determination.  The most common 

approaches to measurement uncertainty evaluation have been 

Figure 10 Theoretical relationship between analyte level, 

standard deviation (s) and relative standard deviation 

(RSD%). 10(a) shows increasing standard deviation with increasing 
analyte level, 10(b) shows how the standard deviation decreases relative 

to the analyte level, so at low levels, the standard deviation actually 
becomes more significant. 

(a.)

(b.)
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summarized with particular emphasis on the “Top-down” approaches 

and how different methods account for different levels of uncertainty, 

eg; intra-laboratory method validation will evaluate precision and 

single laboratory + method bias but doesn’t account for inter-

laboratory bias, a collaborative trail will reflect inter-laboratory bias 

but doesn’t include method bias etc.  Proficiency test data, quite 

uniquely has the potential to account for all the levels of error, if 

evaluated across participants results reflecting typical variations in 

routine methods. 

Precision and bias estimates obtained from proficiency test data, 

presented in Part 1, have been used to derive combined and expanded 

uncertainty estimates.  Examples for calculating uncertainty related to 

a single proficiency test result have been given in section 2, whilst 

section 3 demonstrated how it could be possible to derive a 

representative uncertainty estimate across a series of results.  To 

illustrate how this could be done, analyte specific combined 

uncertainty estimates were determined, using the RMSBias approach 

on laboratories’ submitted results.  In practice this technique would 

usually be applied by individual laboratories to monitor uncertainty 

across a series of proficiency tests.  However, to do this requires 

knowledge about the individual laboratory’s intermediate precision 

estimate from in-house precision studies, usually done as part of the 

method validation, alternatively the target value for standard 

deviation used to assess data in the proficiency test could be used for 

laboratories whose results lay within the satisfactory range.  As 

neither of these pieces of information were available it was not 

possible to determine combined uncertainty estimates for each 

laboratory.  However, it was possible to determine each individual 

laboratory’s RMSBias contribution using their own results for each of 

the six test materials. These were presented as ordered histograms to 

show how the uncertainty contribution due to bias affected different 

laboratories for the various amino acids.   

Finally, a novel approach to evaluating analyte uncertainty using 

ANOVA was presented.  This approach is more commonly applied to 

collaborative trial data and evaluates bias contributions as a random 

variable.  Where participants in a proficiency test have provided 

replicate results, the reproducibility standard deviation RSDR, can 

provide an estimate of the overall standard uncertainty.  When 

assessing PT data derived using different methods, this can provide a 

unique way of incorporating the elusive method bias into an 

uncertainty estimate, representing one of the highest rungs of the 

“ladder of errors”. This could conceivably be extended to include 

matrix and even concentration effects in the same way.  However, 

laboratory accreditation and method validation will usually specify 

method, matrix, analyte and even concentration range, which 

generally avoids the need to include these higher level errors in 

uncertainty estimates. 

 

It can be seen from the data presented in Table 2, that, with the 

exclusion of arginine, isoleucine and leucine, (known to be 

analytically problematic by rpHPLC), the analytical or instrumental 

repeatability standard deviation is better than 1% for all other amino 

acids in Standard Solution, increasing to perhaps 1.5% when 

expanded to 2 standard deviations.  The overall uncertainty as 

RSDR%, ranges from 1.2 – 12.3% (1 std dev).  In comparison, the 

matrix bound amino acids have much wider uncertainties reflecting 

method bias (from preparation and extraction stages) as well as 

matrix specific effects.  Interestingly, the ostrich egg shell whose 

submitted results were the tightest of all the sets of data, gave relative 

uncertainty estimates of a similar scale to those of the mollusc shell, 

whose distribution of submitted results was the most variable.  This 

will, at least in part, be because of the low level of D/L values in the 

ostrich egg shell.  D and L concentrations will be heading towards the 

limit of quantification for the method and the instrument’s resolution 

capability.  Thus even a small variation in D/L value at a low level 

will have an unusually large effect.  ANOVA repeatability 

uncertainty estimates for amino acids in biomineral matrices range 

from <1% up to 12%, and for reproducibility uncertainty, from about 

2% up to 23%. 

Inspite of these estimates having been evaluated across 

laboratories carrying out the same or very similar rpHPLC methods, 

these results and those of the performance assessments carried out in 

Part 1, suggest there is still considerable variability observed between 

reported values for the same test material.  The inability to correct for 

bias in routine analysis due to the absence of reference materials for 

calibration and quality control is a serious issue which needs urgent 

attention.  Accurate uncertainty determination could be achieved 

through a method prescriptive collaborative trial, where method bias 

is effectively zero.  Only then will the true level of variability, that 

any laboratory could reasonably expect to achieve for a given amino 

acid in a specific matrix, be determined.  Remaining test materials 

could then be used as fit-for-purpose reference materials with 

reference values derived from the consensus of the laboratory results 

and repeatability and reproducibility uncertainty values having been 

determined. 

True measurement uncertainty evaluation can be a very 

uncomfortable issue for any analyst who naturally wants reliably tight 

data.  Instrumental precision estimates, can give very small standard 

deviations and coefficients of variation, but these represent only one 

of the smallest and lowest contributions to uncertainty on the “ladder 

of errors”. 
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(a.i.) (a.ii.) (a.iii.) (a.iv.)

(b.i.)

(c.i.)

(b.ii.)

(c.ii.)

(b.iv.)(b.iii.)

(c.iii.) (c.iv.)

Figure 11; Examples of the Relationship between D/L value and precision. 6(a) relates to isoleucine data, 6(b) relates to aspartic acid data and 6(c) relates to valine data. Figures a, 

b & c (i) and (ii) illustrate how D/L values relate to ANOVA inter-laboratory reproducibility precision estimates; (i) shows the reproducibility standard deviation (sR) and (ii) gives the 

relative reproducibility standard deviation (RSDR%).  Figures a, b & c (iii) relate D/L with original GC and IEx inter-laboratory precision estimates for ILC-A powder data (Wehmiller 

1984) and Figures a, b & c (iv) present the intra-laboratory relative reproducibility standard deviation (RSDR%) or intermediate relative precision derived using ANOVA on the PT 

homogeneity data. 
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