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Abstract 

 

A predictive 3D similarity workflow approach has been developed using a set of modular 

Java computer programs that implement algorithms that aim to capture the key 

components of a 3D similarity search and aim to incorporate methods that address both 

the similar property principle and molecular recognition paradigms. This approach will 

expect as input a single query molecule conformation (at least one conformer is required 

per molecule) and will identify molecules that are similar to it when compared with a target 

database of 3D conformations.  

 

This workflow is achieved by first mapping each of the molecular conformation’s geometric 

coordinates, together with atomic property data, to abstract representative models 

referred to as fuzzy pharmacophore objects.  A geometric partitioning approach maps full 

geometric atomic coordinates to a reduced point representation for a molecule in order to 

capture the overall global shape of the molecule in relatively few points. This sort of 

“reduced points” approach for molecular representation was first suggested by (Glick  et 

al., 2002) in the context of Protein active site identification. Pharmacophore classifications 

are applied to the molecular fragments via mapping of internal constituent group atoms 

and their properties in order to assign the amount of potential interaction type present. 

The classifications are Hydrophobic, Aromatic, Acceptor, Donor and Hydrophilic and each 

atom can be mapped to several of these type definitions. Thus we have assigned a 

biologically relevant code to each of the fragments.  These fuzzy pharmacophore object 

abstract representations will naturally provide a summary level description of a whole 

molecule in a relatively small number of geometric points. 

 

Two such objects are then aligned to minimise the RMSD between points and the volume 

and properties overlap is evaluated in order to derive global 3D similarity scores for each 

alignment. One alignment method is to systematically align representations and is in 

essence a triangle and tetrahedron matching search technique. The second alignment 

method is based on graph theory and parameterised maximal common substructure or 

clique detection is applied to a correspondence graph constructed using two 

representations, followed by minimal RMSD alignment of the evaluated Bron-Kerbosch 

cliques with the Kabsch rotation algorithm. This provides an alternative and more efficient 

approach to systematic alignment since the systematic approach is limited to aligning four 
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points maximum. A volume and property overlap scoring function is used to compare two 

such fuzzy pharmacophore objects and the resultant Tanimoto coefficient is used for 

ranking. Initially representations of similar size and with equivalent numbers of points 

(typically three to six points) are compared and are considered shape searches. 

Subsequently, objects of different scales and representations are compared in a sub-shape 

search sense, whereby a smaller object could feasibly be searched for within a larger 

object. The graph theoretical approach to alignment and clique detection facilitates shape 

and sub-shape search automatically by including the entire representation or just the 

cliques in scoring. 

 

In principle there are many potential ways to overlay two molecules and the sub-shapes or 

fragments contained within each molecule. Each alignment can score differently and 

certain alignment orientations will maximise or minimise certain aspects of the scoring 

criteria. Hence, several key alignments are feasible between two conformations which may 

define some or all of each molecule that is biologically active in a given context. An 

alignment and associated maximal volume and properties overlap score is used to rank 

order the molecules by normalised similarity. When applied to a target database evaluated   

similarity measures are used to order the list for proposed biological activity. The overall 

workflow is thus described as a hybrid shape / properties comparison and fragment based 

biosteric similarity search. The volume distribution and by implication shape, as well as 

mass derived pharmacophore feature density overlap scores, are determined and thus this 

aims to capture both shape and pharmacophore search. 
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Chapter 1 - Introduction 

1.1 - Biological molecules and medicinal chemistry 

 

Human beings and many higher order animals are constituted from and intrinsically rely 

upon naturally occurring carbon and heteroatom based molecules as well as some heavy 

metals such as calcium, iron, zinc and of course the most ubiquitous of substances, water. 

Thus, there has been an innate need for a variety of such organic molecules by people 

throughout human history. Based on this need, more recently humans have observed and 

then copied nature directly, creating synthetic organic molecules and thus the academic 

subject of organic chemistry has emerged. Furthermore, organic molecules which can be 

used as human and animal medicines in order to relieve inflictions and to cure illness and 

stop disease and suffering have been of particular high priority. Thus an understanding of 

molecular structure and function within the context of animal cell models is a key research 

area. The core concepts of molecular structure and the transformative chemical reactions 

found within organic chemistry form the basis for biology and biochemistry theories since 

many of the naturally observed molecules are pivotal to the internal mechanisms and 

correct functioning of living organisms via chemical reactions. The correct operation of cells 

is controlled directly by protein found within the aqueous cell environment. In order to 

sustain life, these proteins are in a constant equilibrium state with each other and many 

other dissolved small organic compounds in the cell (Teague  et al., 2003). Disease often 

arises when normal functioning is interrupted and this can occur due to both genetic and 

environmental factors. Thus, the field of medicinal chemistry has emerged which attempts 

to apply rational concepts, in order to discover new drug molecules whose inherent 

properties correct or regulate errant biological processes. The primary concern in this area 

is with molecular structure and the functional rationalisation of the intrinsic shape and 

properties of biologically active molecules. Although often leading to complex behaviour, 

the chirality or handedness of molecules can be a predominant feature. Protein active sites 

are inherently chiral due to their constitution of amino acids each of which is also chiral. 

This is shown by the Thalidomide case which exemplifies that molecular recognition is a 

three dimensional (3D) concept and that effects are based upon the 3D shape and property 

distribution of a molecule (Corey  et al., 2007; Stryer  et al., 1995). 

 As an inventive species, in more recent times, human beings have developed synthetic 

chemistry techniques in order to create useful medicinal molecules, hopefully for the 
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benefit of society. As such, we are primarily concerned with the classes of organic 

molecules that can act as drugs. There are many classes of chemical compounds that have 

the physical structural and functional properties to interact with proteins within enzyme 

reaction mechanisms. Important classes of molecules include the amino acids, alkaloids, 

heterocyclic molecules, vitamins and steroids. One method of identifying potential drug 

molecules is to try and synthesise and test natural product mimics. In particular, molecules 

found from animal, vegetation and marine sources have been found to have profoundly 

interesting structures and equally extreme effects on the human body and have been used 

effectively by many early civilisations for healing purposes. The synthesis of these and 

similar molecules is now a highly prized and often an academically challenging endeavour 

(Nicolaou  et al., 1996). The reactions encountered during such challenges are often then 

published and applied to create new synthetic molecules of interest. Thanks to many 

advances in synthetic organic chemistry techniques, many chemical transformations are 

well documented and are available for general use.  

Modern drug discovery efforts and the pharmaceuticals industry can now use some of the 

more robust reactions to routinely synthesise complex organic molecules which can be 

entirely novel. It is often stated that the number of known synthesised organic molecules is 

considerably smaller than the number that it might be possible to synthesise. The actual 

possible chemical space is effectively infinite and there are more molecules feasible than 

matter in the universe available to construct them (Fink  et al., 2007). More recently, solid 

phase combinatorial chemistry techniques have been developed in order to facilitate even 

more efficient molecule production methods and as a result a greater variety of synthetic 

molecules can be created, often using simple synthetic transformations. Molecules of 

interest are tested for biological activity and this is often referred to as screening. Putative 

active molecules can have their structures modified to optimise their properties in order to 

become drug candidates and this is referred to as lead optimisation. Clinical trials with 

animal and humans are often the next phases in order to develop a viable medicine. 

However despite these scientific advances, drug discovery is an economically inefficient 

exercise largely due to the fact that vast numbers of molecules need to be tested and thus 

material costs are high and the end result is often relatively few active molecules that are 

developed into acceptable marketable drugs.  

In conjunction with the medicinal chemistry efforts described above, rational drug design 

and computational chemistry techniques have also been developed that aim to apply 
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additional logic and relevant mathematical concepts to the field of drug discovery. Often 

such techniques can be applied using very powerful computers to complete the 

calculations involved and as such the virtual screening paradigm has evolved. Virtual 

screening attempts to emulate on a computer the predictive equivalent to high throughput 

screening. The term covers a variety of computational methods that can be applied in order 

to prioritise compounds for biological screening with the aim of increasing the chance of 

finding active compounds compared to screening compounds at random. Rational drug 

design commences with the identification of a protein structure to regulate. Often the aim 

is to decrease the protein’s activity in an errant biological process within organisms cells. If 

it is possible to modulate the protein’s natural function by using a small molecule then such 

proteins are often referred to as being “druggable” (Brenke  et al., 2009). Organic 

molecules that are considered as potential drugs should be “drug-like” in terms of their 

solubility and ease of transport to the affected cells within the organism. These properties 

are often summarised by drug-like filters such as the Lipinski rule of five (Lipinski  et al., 

2001).  

The core principles used to provide a sensible framework for modelling organic molecules 

within rational drug design are the similar property principle and 3D molecular recognition. 

The similar property principle states that molecules that have similar structural properties 

should have similar biological activities (Johnson  et al., 1990). Thus given a molecule of 

known activity, similarity search can be used to rank order a dataset of molecules on 

similarity to the active. The top scoring candidates are then good candidates for testing. 

Molecular recognition is based on the fundamental assumption of the lock and key concept 

(Walsh  et al., 1979), which assumes that any given molecule that interacts favourably with 

a receptor will have, to some extent,  exhibit complementary shape and property 

distributions to that receptor’s active site based upon 3D atomic positions. An active site is 

a critical portion of a biological molecule that acts as an interface to other molecules over 

space.  Organic molecules act as regulators which control enzyme reaction mechanisms and 

protein conformation populations which are in equilibrium and are integral to biological 

activity cascade pathways in the cell (Teague  et al., 2003). This interaction controls the 

behaviour and morphology of the complex and the change of shape of the protein from an 

active form to an inactive form and vice versa.  Small molecules are recognised in a highly 

selective manner by proteins and this status has evolved over a very long time period since 

the beginnings of life on our primitive Earth (Stryer  et al., 1995).  
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3D similarity methods aim to capture the shape and 3D properties of molecules based on 

the concept of molecular recognition. For a small molecule to be able to bind to a protein it 

should have complementary size, shape electron density to the active site of the protein. 

Although many 3D similarity methods have been developed, the complexity of modelling 

molecular recognition is such that the methods are limited in their accuracy. As such it is a 

difficult task to develop an approach that accurately correlates 3D molecular structure with 

biological activity. Hence, it is not considered to be a currently solved problem, due to the 

inherently complex electronic nature of molecules (Fukui  et al., 1997).  

The primary aim of the work described in this thesis is to develop a novel 3D similarity 

method for comparing two molecules and deriving a numerical similarity index. Given an 

input query organic molecule of biological interest, the method can be used to iteratively 

process and score a set of target organic molecules. The molecules can then be rank 

ordered on similarity to the query.  The effectiveness of the method is evaluated by 

measuring the extent to which known active molecules are ranked higher than inactive 

compounds, often referred to as decoys. Molecules are numerically evaluated on their 

similarity to the query molecule in terms of basic 3D shape and property distribution. The 

rationale is that molecules evaluated to be similar to the query defined by such 3D criteria, 

should exhibit approximately equivalent biological behaviour and thus should be good 

candidates for biological testing.  

1.2 – Thesis structure 

 

The structure of this thesis is as follows. Chapter 2 explores virtual screening concepts and 

approaches in further detail. The virtual screening techniques that have evolved into 

operation are reviewed in order to place similarity search in general context. Chapter 3 

reviews the existing 3D similarity search techniques and discusses representation, 

alignment, scoring and flexible search in order to set the scene for the following chapter. 

Chapter 4 explains in detail the approach developed to complete the rigid molecule shape 

and sub-shape 3D similarity search method. Chapter 5 presents the results of the rigid 

scoring function for two different alignment methods as applied to sets of virtual screening 

test data. Chapter 6 presents conclusions followed by suggestions for how these methods 

might be extended and improved. 



17 

 

Chapter 2 – An overview of virtual screening 

2.1 - Introduction 

 

Virtual screening is the application of computational techniques to prioritise molecules 

(either real or virtual) for biological testing. Virtual screening includes both ligand and 

structure based approaches. A ligand based approach is when only small molecule data is 

available and thus the nature of the protein active site can only be inferred by the set of 

active molecules available. A structure based approach is when information about the 

protein receptor is available to consider and this is usually in the form of protein crystal 

coordinates with or without a ligand bound in the active site. The availability of data largely 

dictates which virtual screening approach can be adopted (Wilton  et al., 2003). It is the job 

of the virtual screening protocol to prioritise a set of compounds such that those selected 

for testing have a greater chance of exhibiting activity than a random selection of 

compounds. There are numerous virtual screening approaches and the key classes of 

approach are presented below. A review of virtual screening in the context of real 

screening can be found here (Walters  et al., 1998).  

 

 

2.2 – Virtual screening techniques 

2.2.1 - Ligand based virtual screening 

 

In the absence of protein structural data, then virtual screening is referred to as ligand 

based. When known data is limited to a single active molecule then substructure search 

and similarity search methods are the most relevant screening approaches to adopt. If an 

active series of molecules is available then pharmacophore elucidation may be attempted 

to derive the best query for a subsequent search. If both active and inactive molecules are 

known, then machine learning methods can be used to derive a model which can then be 

used to predict the activities of unknown compounds.  
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2.2.2 - Substructure search 

 

Graph based substructure search is a 2D method (more recently extended to 3D) of 

searching for molecules that contain a given fragment and are therefore potentially part of 

the same chemical series and so should adhere to the similar property principle and 

produce biologically similar molecules. A substructure search will return a list of molecules 

that contain the substructure with no notion of ranking. A substructure search can produce 

a diverse set of molecules from a single query and the same substructure can be found in 

both simple and complex molecules. A substructure search is usually composed of two 

stages. First a fast screen is completed using a fragment based fingerprint to eliminate 

~99% of molecules that cannot match followed by a detailed subgraph matching 

procedure. One downside of this method is that if a molecule identified by this approach is 

already patented then it is likely all the other hits are too as it is normal for an entire series 

of molecules to be patented. Patents are often submitted as “Markush” structures which 

normally are constructed as a core structural template with connected points of variation. 

Graph theoretical methods and substructure search are reviewed extensively by Leach 

(Leach  et al., 2007c). Substructure search use in virtual screening is reviewed by (Merlot  et 

al., 2003). 

 

2.2.3 - Similarity search 

 

The similar property principle (Johnson  et al., 1990) was introduced in chapter 1 and states 

that molecules with similar structures are  likely to have similar biological properties and 

activities. There are many possible ways to represent molecules and compare similarity 

between two molecules and much research has been completed on systematic molecular 

similarity comparisons (Good  et al., 1998; Martin  et al., 2002; Willett  et al., 1998). 

However, while the general principle holds there are also many counter examples where 

similarity does not correlate with biological activity well. This is exemplified by so called 

activity cliffs that are examples of pairs of molecules that by most derived similarity indexes 

are determined to be highly similar but due to the absence of a single key functional group, 

the actual biological activity is highly diminished between the two molecules (Leach A  et 

al., 2001b; Tropsha  et al., 2008). Activity cliffs do however highlight the key nature of 

specific molecular recognition which is described above. Similarity search usually involves 

the use of global similarity indexes to compare and rank molecules on the assumption that 
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rank order reflects or relates to biological activity. Similarity search is usually adopted at 

the initial stages of drug discovery projects when data is limited, to a single, or several 

active molecules.  

 

The similarity between two different molecules is an abstract concept with no absolute 

measure in existence, the closest concept to real physical similarity perhaps being the 

continuous charge distribution field (Carbo  et al., 1980). Similarity search therefore relies 

upon the generation and use of numerical descriptors to represent the molecules. 

Similarity search descriptors are sometimes classified as 1D, 2D and 3D which infers 

increasing sophistication in the representation of the molecules. As complexity of the 

descriptors increases so does the computation required to derive that representation. A 

study of the effectiveness of simple descriptors is given by (Bender  et al., 2005). 2D 

fingerprint descriptors are usually represented as binary vectors where each bit represents 

a substructural fragment. For a given molecule, a bit is set to one if the substructure is 

present in the molecule otherwise it is set to zero. Examples of 2D fingerprints include 

DAYLIGHT, MACCS and UNITY fragment based fingerprints (Wild  et al., 2000). Topological 

shape indices are another example of molecular descriptors that are based on molecular 

connectivity (Hall  et al., 2001; Leach  et al., 2007a). 3D descriptors are arguably the most 

sophisticated descriptors and allow comparisons based on molecular surface area, volume 

and shape. 3D similarity methods are discussed in chapter 3.  

 

A similarity coefficient is required in order to quantify the similarity of a pair of molecules 

based on the chosen molecular descriptors. There are a number of such coefficients in 

common use which are constructed from the descriptors in slightly different ways and thus 

can potentially give different results. Perhaps the most common coefficient in use is the 

Tanimoto coefficient. For molecules A and B represented by binary fingerprints the 

Tanimoto coefficient is given by c / (a+b-c) where c is the number of bits set to one in 

common, a is the number of bits set to one in molecule A and b is the number of bits set to 

one in molecule B (Willett  et al., 1998). A comparison of the derivation and merits of 

different similarity coefficients related to molecular size is discussed by (Holliday  et al., 

2003). A review of similarity search and some useful descriptors is given by (Glen  et al., 

2006). Which descriptors are most relevant to biological activity is still under debate with 

one area of focus being on competing 2D and 3D representations (Brint  et al., 1987a).  
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2.2.4 - Pharmacophore classification and elucidation 

 

A pharmacophoric feature is a functional group which is classified in terms of potential 

interaction behaviours with other groups. Several fundamental pharmacophore type 

classifications are established which are listed as follows (Wolber  et al., 2008). The 

Hydrophobic classification is any atom or group of atoms that do not mix well with water, 

typically carbon in any hybridisation state or any of the halogens. Hydrophobic groups tend 

to mix together to exclude water as typified by micelles. The Aromatic type is any group of 

atoms such as carbon or indeed heteroatoms (O,N) that are considered by the Huckel rules 

to be part of an aromatic system. Aromatic groups can interact with each other via π 

stacking orbital interactions in several orientations. Hydrogen bond donors are any group of 

atoms that can donate a Hydrogen bond. Typically this means an electronegative atom with 

a hydrogen atom attached usually limited to N, O. Hydrogen bond acceptors are atoms that 

can accept a Hydrogen bond. Typically this means any atom that has at least one electron 

pair that it can donate to form an H-bond with an appropriate donor. Hydrophilic is a 

further classification that describes affinity for water and is essentially similar to acceptor. 

Atoms or functional groups which contain a formal charge are also sometimes used as 

pharmacophore features. 

 

A pharmacophore is the 3D arrangement (Leach  et al., 2010) of such functional groups that 

are required for activity or binding to a protein. Different functional groups that interact in 

the same way are referred to as being biosteric, for example NH and OH or Cl and CF3. An 

early recognition of pharmacophore groups was made by Ehlrich in 1909 who commented 

that a pharmacophore is “a molecular framework that carries the essential features 

responsible for a drug’s biological activity”. A more modern definition of a pharmacophore 

by Nicklaus in 1998 is “The minimum structural features necessary for enzyme binding” 

(Milne  et al., 1998). Pharmacophores can be defined in 2D or 3D whereby 2D topological 

pharmacophores are defined by biosteric groups that are separated by bond distances. 

However 3D pharmacophores, as defined by feature distance constraints, are considered to 

be a more realistic interpretation since molecular recognition as described above is known 

to be a 3D event. A pharmacophore can be derived from a series of active molecules and 

normally involves generating a 3D alignment of the molecules in order to attempt to 

identify the geometry of the features they have in common. The pharmacophore can then 

be used as a query in database search.  
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The alignment is usually completed using the most rigid molecule as a template and then 

increasingly flexible molecules, according to rotational bond count. Molecules are aligned 

according to their common features and the best alignment is chosen by evaluating a 

scoring function which usually consists of several terms almost always including a volume 

and energy term. Many approaches to pharmacophore elucidation exist, the first being the 

active analogues approach (Marshall  et al., 1979), and more recent examples are 

GALAHAD (Richmond  et al., 2006) MOE’s GUI and alignment methods (Labute  et al., 2001) 

and PHASE (Dixon  et al., 2006). If a protein structure is available then docking is the most 

popular virtual screening method of choice employed (see below), however, alternative 

ways to build structural data into similarity and pharmacophore methods are increasingly 

being explored (Ebalunode  et al., 2008). For example, excluded volume information can be 

used in query construction to avoid steric clash between the ligand and protein. 

2.2.5 - Pharmacophore database search 

 

The primary use of an elucidated pharmacophore is in a database search so as to identify 

molecules that contain the same features in the same geometric arrangement. This can be 

achieved using 3D substructure searching with the query being defined by the 

pharmacophore. Similar to 2D substructure search, 3D substructure search is best 

approached by first completing a fast screening step using 3D fingerprints in order to 

eliminate molecules that cannot match as they simply do not have a particular geometric 

arrangement of features. 3D fingerprints are binary fingerprints that indicate the presence 

or absence of geometric features such as a pair of atoms at a specified distance, or a 

valence or torsion angle for a given pattern of atoms. Database molecules that pass the 

screening step are subjected to a more intensive geometric search which usually involves a 

subgraph isomorphism substructure search for example using the Ullmann algorithm 

(Ullmann  et al., 1976). Conformation flexibility of the database structures is handled either 

by generating an ensemble of conformers each of which is treated as rigid or by 

implementing a flexible search method (Brint  et al., 1987a; Leach  et al., 2007c; Sheridan  

et al., 1989; Warr  et al., 1998). 
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2.2.6 - Machine learning methods 

 

Machine learning is a relatively recent concept which is employed when activity data is 

available for both active and inactive molecules. The molecules with known activities form 

a training set that is input to the machine learning method which then attempts to learn a 

model which best separates the training set into actives and inactives. Once the optimum 

model is determined it is possible to apply it to predict the probabilities of activity of 

molecules in a given test set. Two common examples of machine learning methods are 

Binary Kernel Discrimination (BKD) and Support Vector Machines (SVM). In the case of BKD 

a chemical similarity kernel function is trained. The relative success of this method is 

reported as being dependent upon the number of false actives in the training set and the 

choice of similarity coefficient used in the kernel function (Chen  et al., 2006a). For SVM’s a 

hyper-plane is defined which separates active and inactive observations for a given 

descriptor. Unclassified points (molecules in the test set), are assigned as active or inactive 

based upon distance and sign relative to the hyper-plane. Molecules that are furthest on 

the positive side of the defined hyper-plane have highest predicted activity (Warmuth  et 

al., 2003). 

2.2.7 - Structure based virtual screening 

 

The static and dynamic 3D structure of proteins can be obtained by using techniques such 

as X-ray crystallography or NMR spectroscopy. Many structures have been resolved to date 

and many more will be in future with the availability of the synchrotron light source. Much 

of this data is compiled and available for use from the Protein Data Bank (RCSB  et al., 

2010). If the crystal structure data of the protein is available then this can be incorporated 

into the virtual screening approach. In the case of pharmacophore search, if a bound ligand 

exists then this can be used to define a pharmacophore query and knowledge of the active 

site can be used to define excluded volumes so as to build into the query an effective size 

and shape constraint. However, the most popular structure-based virtual screening method 

is protein-ligand docking which is discussed further below. Proteins can exhibit 

homogeneous or heterogeneous activity and are categorised as such to help explain the 

level of structural diversity shown within their set of known actives. 
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2.2.8 - Docking and scoring 

 

Frequently when protein structural information is available then docking is employed in 

order to determine the estimated binding affinity between a given small molecule and a 

protein structure. Docking is a general term which encapsulates methods that predict the 

likely interaction pose of two molecule conformations and score the pose according to 

predicted free energy change of binding. The docking problem can be thought of as a 

combination of a search strategy to traverse the six degrees of freedom in the search space 

and a scoring function which attributes an energy value to a complex formed between 

protein and ligand in a particular pose state. Docking programs are evaluated using known 

protein-ligand complexes where the target pose is typically that of the natural substrate 

bound crystal structure and generally any method that can reproduce the same pose within 

2 Å root mean square deviation (RMSD) is considered to be accurate.  

 

Docking is useful for predicting the binding mode of known actives and for the 

identification of new molecules that are predicted to bind well which is how it is used in 

virtual screening, The state of the art docking treats each ligand as flexible and proteins as 

semi-flexible. The best methods predict experimental pose data ~70% of time (Leach  et al., 

2006; Warren  et al., 2006). However they are more limited in the ability to predict binding 

affinities accurately over an entire active series. Picking the correct docking program for a 

given target can produce better results with a particular class of proteins. Building the 

correct physical chemistry model is a key aspect of docking. The original docking tool, 

‘DOCK’ (Moustakas  et al., 2006) uses spheres to define an active site and then sphere 

centres are mapped to atom centres in a small molecule. Examples of much cited docking 

tools which consider protein side chain flexibility are GOLD and FlexX and a study which 

compares these approaches is given by (Sato  et al., 2006). Several reviews of docking are 

available (Taylor  et al., 2002; Warren  et al., 2006).  

2.2.9 – QSAR 

 

Many of the virtual screening techniques described previously are employed at the lead 

generation phase to suggest new molecules for enquiry. Quantitative structure-activity 

relationship (QSAR) techniques are often used during the later lead optimisation stage, 

when sets of actives and inactives are already well defined. A QSAR model can be 

constructed which aims to capture the exact nature of the relationship between the 
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numerical descriptors (real or calculated) and the biological activity in terms of a linear or 

non-linear numerical correlation (Cramer  et al., 1988). If a suitable model is derived it can 

be used to assess new molecules for predicted activity and when used in a predictive way is 

a type of virtual screening. The early days of QSAR were dominated by Corwin Hansch who 

pioneered the use of physical properties such as log P (Logarithm of Octanol:water 

partition ratio, considered to relate to cell permeability) and physical constants such as 

NMR resonance effect parameters and adopted the established Hammett equations for use 

in building correlation models against biological activity using such physical variables 

(Hansch  et al., 2011; Hansch  et al., 1991). 

Comparative Molecular Field Analysis (Cramer  et al., 1988) is a  grid-based QSAR approach 

which can be used to correlate molecular field data with biological activity in order to 

determine a QSAR model. Partial least squares is used to define the relationship between a 

molecule’s field grid representation and its biological activity. A 3D grid is constructed 

around a molecule so that the 3D Cartesian coordinates of all atoms are entirely enveloped 

by it. As such the molecule is represented as a scalar field. At each lattice point, two 

interaction energy values are evaluated to model the steric and electrostatic fields for the 

entire molecule (over all atoms) with a probe sp3 Carbon atom and a +1 charge. The steric 

contribution is modelled using the Lennard-Jones (6-12) potential parameterised using the 

Tripos force field. The electrostatic or coulombic interaction is modelled using 1/r and 

assigned Gasteiger/Marselli atomic charges.  Two molecular field grids are aligned and 

compared by fixing one and traversing the degrees of freedom of the other. A technique 

termed “Field fitting” is used, that drives the alignment, based on the minimisation of 

RMSD of both of the evaluated interaction energies over all lattice points and as such 

molecules are aligned according to how similar they are with respect to the two interaction 

characteristics.  

2.2.10 – Evaluation of virtual screening methods 

 

A predictive virtual screening method will produce a list of molecules to test in a relevant 

biological assay. This list will either be in ranked order in the case of a similarity search or 

docking experiments, or simply a “Boolean” hit list in the case of a substructure or 

pharmacophore search. The next step in the process is to test the molecules for biological 

activity in the relevant assay and use the results in a new round of virtual screening to 

determine if the results correlate with the predictions. This type of iterative feedback 
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mechanism is standard practice in scientific approaches, used to refine hypotheses. Ideally 

one might compare virtual screening predictions to real assay results in order to evaluate 

the effectiveness of different methods at identifying new drug molecules. However, this is 

often untenable in terms of the material cost associated and so standard test sets of 

molecules with known associated biological activity referred to as “actives” can be used to 

test the effectiveness of a given virtual screening method. Example sets available are the 

DUD (Huang  et al., 2006), WOMBAT (Good  et al., 2008) and MUV (Rohrer  et al., 2009) 

data sets. Further to this, non-active “decoys” can be introduced, to determine if the 

protocol is identifying the correct molecules and enrichment rates, relative to a random 

selection. Thus it is possible to quantify how useful a method is at identifying active 

molecules. The Enrichment factor (EF), Recall and Area under curve (AUC) measures 

employed in chapter 5 are discussed in a recent evaluation of 3D ranking methods in virtual 

screening (Kirchmair  et al., 2008). A good evaluation of the performance and limitations of 

3D similarity search using the DUD set is given by (Venkatraman  et al., 2010). Please also 

see section 3.5 which presents an evaluation of 2D and 3D methods. 

2.3 - Summary 

 

This chapter has described an overview of virtual screening approaches. Often when data is 

limited to a few actives a ligand based approach is adopted, such as similarity search. If an 

active series is available then a pharmacophore elucidation might be possible. If protein 

structural information is available then pharmacophore search can be extended to include 

or exclude volume and also then docking experiments are possible. If inactives are also 

known then machine learning methods can be used for building a predictive model. The 

next chapter describes the methods used for 3D similarity searching in more detail.  
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Chapter 3 - 3D similarity search methods  

 

3.1 - Introduction 

 

This chapter presents a discussion of three dimensional (3D) similarity approaches that 

have been developed to date for use in virtual screening experiments. A variety of 

approaches have been introduced and then further developed concurrently by different 

authors, over a number of years. Thus this review is organised by method rather than 

chronologically. Each method is broadly categorised on four key attributes and thus the aim 

is to present concepts and components and how they are interleaved in the various 

methods. Firstly, the molecular representation and any operations required in order to 

map a molecule to the internal molecular, structural or spatial representation. Second, the 

search and alignment method employed to superpose two molecular representations, if an 

alignment is required. Third, the scoring function(s) used to evaluate the quality of the 

alignment of two representations or, more generally, if no superposition is applied, the 

scoring function used to indicate the quantitative similarity of the two molecules. The last 

aspect is the method by which conformational flexibility is optionally handled.  Method 

performance is also mentioned briefly if it is obvious that a substantial number of 

operations are being executed to achieve the similarity calculation.  

3D similarity searching is a relatively new phenomenon essentially derived from the 

fundamental idea that if molecules exhibit similar electron density over space, then they 

will have similar characteristic properties, as originally proposed by Carbo (Carbo  et al., 

1980). 3D similarity approaches vary in complexity. At the simplest level 3D features are 

captured as binary vectors which represent the presence or absence of geometric features. 

The binary vectors can then be compared using a similarity coefficient to give an alignment-

independent similarity method. Alignment methods are computationally more complex 

since they require a superposition step. Various approaches have been developed including 

graph representations and representing the surface, shape and electrostatic field 

properties of molecules. This chapter begins with a discussion of alignment-independent 

methods which are then followed by methods that require an alignment step. Each 

similarity search program normally requires as input a query molecule or a pre-aligned 

active series of molecules which is then mapped to an internal representation to use as the 

query (if several active molecules are available, this query might be the result of a 
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pharmacophore elucidation or other superposition process). A target database of drug-like 

molecules is converted to conformers to search. Each conformer is converted to a format 

that is directly comparable with the query molecule representation. A comprehensive 

discussion on alignment dependence of similarity search methods is given previously by 

Lemmen (Lemmen  et al., 2000). 

Chirality, or optical isomerism, is a highly important consideration in drug design. 

Handedness is born out of the fact that a tetravalent Carbon atom with four different 

bonded attachments always has two mirror image forms referred to as enantiomers (Corey  

et al., 2007). This is a result of the tetrahedron shape it forms through the necessary sp3 

hybridisation state required for the four covalent bonds. Proteins are constructed from a 

small set of amino acids all of which are chiral except for the simplest Glycine. This leads to 

the fact that proteins themselves contain many chiral centres and thus any protein and its 

active sites are likely to have diastereoisomeric properties where diastereoisomers are 

molecules that contain more than one chiral centre and are not meso compounds. Thus, 

small molecule enantiomers can exhibit remarkably different biological properties within a 

given active site. The most often cited example of the biological effects of chirality is the 

thalidomide tragedy. Unresolved enantiomers administered as a mixture resulted in foetal 

abnormalities caused by one of the enantiomers (the other enantiomer cured morning 

sickness). To avoid complications often drug companies will aim to develop symmetrical 

heterocyclic molecules or employ asymmetric synthesis techniques (Procter G  et al., 1996). 

Other forms of isomerism have a less dramatic effect on the activity (Corvalan  et al., 2009). 

It is now an FDA requirement for the chirality of a drug molecule to be absolutely defined. 

3D similarity search scores should inherently consider the difference between enantiomeric 

forms of the same molecule but it is possible that some approaches will not. 
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3.2 – Alignment-independent 3D similarity methods 

 

Several 3D similarity methods are alignment-independent, i.e. they are based on 

descriptors of molecules that can be compared independent of a molecular alignment step. 

This can lead to significantly faster processing compared to alignment-dependent methods 

since achieving a relevant alignment is normally a computationally intensive phase, see 3.3 

below. Examples of methods that are independent of an alignment step are discussed here. 

Several alignment-independent 3D similarity methods use a representation generated from 

a molecular surface definition. Atoms are modelled as intersecting spheres of different radii 

(typically Van Der Waals radii) centred at the atomic nuclei with the union of spheres giving 

rise to a hypothetical molecular surface (and volume). 

Pharmacophore keys employ bit string vector representations generated by mapping 

distance restrained 3 or 4 point configurations which are extracted from a molecule and 

binned into a bit string vector. The approach has been extended from 3 to 4 points which 

encode stereochemistry but require a longer vector. In this approach, all the possible 

arrangements of pharmacophore typed atoms (donor/acceptor) and the distances that 

define the relationship between these annotated points are determined (there can be 

several extracted from a single conformer) and binned into a binary (1 or 0) vector for a set 

of conformers that represent the molecule. As such the molecule is represented by the 

presence or not of specific arrangements of typed points within a range of distance 

tolerances. Pharmacophore keys can be compared using a similarity coefficient without the 

need for any further superposition or alignment making this potentially a very rapid 

approach. The representation is a pharmacophore distribution and hence the similarity 

score is a global measure since it considers whole molecules (Leach A  et al., 2001a). In a 

related approach Autocorrelation vectors use eight atomic properties, two examples of 

which are VDW radii and Electronegativity. Heavy atom (any atom, except Hydrogen and 

often is one of C,N,0,S) pairs are allocated to discrete bins which represent a specified bond 

separation count / distance. Partitioning which represents the distance between atomic 

properties (between 0-20.3 Å) for all property combinations yields the autocorrelation 

vector representation.  Auto-correlation vectors of equal dimensions can be compared 

rapidly by Euclidean distance difference over all elements and rigid search is implemented 

without alignment and by using a sum of element distance score (Rhodes  et al., 2006). 
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Representations can be constructed using the concept of pharmacophore points as 

discussed in the previous chapter. In the SQUID approach the concept of Potential 

Pharmacophore Points (PPPs) is used. Each derived PPP represents the centre of one of six 

feature types which include cationic, anionic, polar, hydrogen bond donor, acceptor and 

hydrophobic (Renner  et al., 2004). An associated radius which defines both feature 

fuzziness and model resolution is defined. PPPs represent local feature density maxima 

which have defined cluster radii which control the fuzziness of the representation in terms 

of size and numbers of points. This has a direct effect on the feature weighting, since 

feature density is weighted based upon local atom membership within the defined 

proximity. A correlation vector of 420 dimensions is constructed from a set of PPPs and the 

inter-point distances between them. Twenty evenly spaced distance bins each contain 

character classifications based upon combinations of possible PPP interaction types.  All 

PPP pair combinations are mapped to suitable bins in order to give the correlation vector 

representation. No alignment is necessary between two correlation vector representations 

which can be compared using a similarity coefficient.  

Reduced point representations are found in several alignment-independent based 

methods. An example of a reduced point representation (non-pharmacophore) is in the 

Ultra fast Shape Recognition approach (USR), where a molecule is considered as a 3D 

system of bound particles. A binning of inter-atomic distances is completed for four defined 

reference points within the molecule. These points include the centroid and several 

extrema relative to the centroid. The distances to all other atoms are used as the basis for a 

distribution with characteristic mean, variance and skewness values. For each of the four 

points, statistical measures are determined and a shape vector of length 12 real valued 

elements is constructed. USR is alignment-independent and all derivation is completed on 

internally sampled atomic coordinates. The speed of the method is “ultra fast” due to the 

independence of a computationally demanding molecular alignment stage. The Manhattan 

distance is used to compare two vector representations with 1 being the most similar and 0 

being most dissimilar (Ballester  et al., 2011). 

The solvent accessible molecular surface is defined using a probe sphere with a radius 

equivalent to a water molecule which is rolled over the VDW surface spheres as defined 

above. The locus defined by the moving sphere centre defines the solvent accessible 

surface (Richards  et al., 1983). The Connolly molecular surface or re-entrant surface is 

similar to the above definition except it is the inward facing path traced by the probe 
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sphere surface rather than one defined by the sphere centre (Connolly  et al., 1983). 

Accurate VDW radii have been determined from various X-ray crystallography experiments. 

Correlation with the De-Broglie equation suggests the VDW radius of an atom corresponds 

to the distance between the nuclei and outermost electron (Bondi  et al., 1964). 

In the Ray tracing approach to similarity searching, a solvent accessible surface is defined 

for a molecule. The surface is triangulated using an algorithm which partitions the surface 

into evenly spaced triangles. A ray is projected from a random chosen triangle on the 

surface and is optically reflected using the correct incidence angle onto a different path 

which then interacts with new surface elements in the ray’s path. This is allowed to 

continue until a specified number of valid reflections are completed giving a distribution of 

items referred to as “ray-trace segments”.  In this way the internal volume occupied by the 

molecule is traced out, until some termination criterion has been met. Segment culling is 

also applied which deliberately removes ray segments that define local reflections and do 

not contribute to global shape distributions. The set of ray traced segments for a molecule 

are then represented as a distance based distribution histogram which bins each segment 

according to length. Two such histograms can then be compared and scored using a 

similarity measure based on relatively simple “difference” statistics. The histograms 

effectively represent shape as defined by the bounded surface area. The method was 

extended to capture inverse protein surface properties. Although no alignment is necessary 

to compare two molecules, it can be a computationally intensive approach if a fine 

resolution of the representation is used (Zauhar  et al., 2003).   

In the Molprint3d method, molecular surface points are characterised according to 

interaction energies which are evaluated at each point on the defined surface based on a 

number of different probe types. These energies are mapped from continuous values to 

discrete ones in order to construct a binary vector which is a surface interaction fingerprint 

of the molecule. Two fingerprint vectors can be compared using the Tanimoto coefficient 

(Bender  et al., 2004). 
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3.3 – Alignment-dependent 3D similarity methods 

 

3.3.1 - Overview 

 

Molecular alignment is a general term used to describe the approach of overlaying 

chemical structures in order to facilitate evaluation of a similarity score or to derive a 

pharmacophore hypothesis by establishing common feature overlap (Richmond  et al., 

2006). A useful review of molecular alignment methods was compiled by (Lemmen  et al., 

2000) who categorises alignment approaches in terms of the molecular representation, as 

either atom centred (Gaussian) or point based scalar fields, the scoring function to optimise 

over all space (RMSD or overlap integral) and how flexibility is modelled - rigid or flexible 

(ensemble or dynamic rotational) in the search. Most methods are based on 

representations of whole molecules. However, it is clear that sub-shape alignment is 

becoming an increasingly important concept since frequently only portions of molecules 

are involved in molecular recognition. Principal moment alignment is a common way of 

placing molecules into a normalised form such that each molecule’s principal moment 

extends down a common axis and each molecule’s second moment exists in a common 

plane – this provides a good starting point for further comparisons but is not guaranteed to 

give the ideal alignment in terms of potential interaction overlap. A recent discussion on 

molecular alignment (Chen  et al., 2006b) suggests that the final accuracy of an alignment is 

primarily dependent upon the choice of initial template molecule, used as query, often this 

is chosen to be the least flexible molecule.  

 

In alignment-dependent similarity searching, often the optimal alignment is determined 

using a scoring function. In order to maximise the value of a scoring function in the least 

number of steps, two molecular representations are often first aligned by superimposing 

their geometric or mass weighted centroids and this is often referred to as putting the 

molecules into the same frame of reference. The internal principal moments can also be 

aligned with the axes. Subsequently, derived superpositions are scored iteratively after 

local transformations (rotational/translational) are applied by the search protocol which 

can be implemented in either a deterministic or non-deterministic (random) fashion. In 

order to make alignment tenable, the continuous nature of superposition must be made 

discrete by conducting the search at a specified resolution. Thus, a local maximum score at 
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a specified resolution can be obtained. There is no known analytical method of determining 

if the true global maximum has been observed at any point in a search and as such, search 

approaches need to be either completed exhaustively, or terminated after a given number 

of operations or if some threshold value in the score is achieved. Implementing 

computational parallelisation using hardware and software, randomisation elements or use 

of pertinent information about the search states already observed (i.e. Genetic Algorithms, 

Simplex optimiser, Quasi-Newton) can also achieve maxima more rapidly. 

3.3.2 – Graph theoretical methods 

 

Many alignment-based approaches employ graph theoretical techniques and in particular 

clique detection methods are prevalent. A clique is defined as a fully connected graph 

(Johnston  et al., 1976). Each clique represents a mapping between a set of points in one 

representation query Q and a set of points in the other representation target T. When 

comparing two molecules, a correspondence graph, which is a node/vertex mapping 

between two graphs, is constructed and maps equivalent points in the two graph 

representations according to node type. Thus each node in the correspondence graph 

represents a pair of nodes, one from each molecule. Edges are formed in the 

correspondence graph if the corresponding distances within the original graphs are within 

some tolerance. The Bron-Kerbsoch algorithm (Bron  et al., 1973) is a well established and 

rapid method for the identification and extraction of all the cliques that exist in a 

correspondence graph (Brint  et al., 1987b). The Bron-Kerbosch method grows cliques via 

search pruning (Calzals  et al., 2008).  

CLIP (Candidate Ligand Identification Program) is a 3D similarity approach which compares 

pharmacophore points using graph theoretical methods (Rhodes  et al., 2003). Sets of 

pharmacophore points are identified within a molecule based upon mappings of atom 

types to pharmacophores such as Oxygen or Nitrogen to donor/acceptor and represented 

as the nodes of a graph. The mappings identified by the cliques are then scored based on 

the number of nodes in the mapping. 

The Bron-Kerbsoch algorithm is a key component of the methods described in the thesis 

chapter 4. 
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3.3.3 – Surface area representation 

 

Several examples of clique detection algorithms can be found with molecular surface 

representations. The surface patch alignment method defines surface patches on a 

Connolly molecular surface. Each point and associated circular patch is classified as 

belonging to one of six classes of surface type based upon local maximum and minimum 

curvature. Curvature is defined as the rate of change of angle at a point with respect to 

distance travelled along a trajectory that is on the local surface. Molecules are represented 

as sets of characterised surface points. A correspondence graph is constructed between 

two surface point representations according to the node classifications. The Bron-Kerbosch 

clique detection algorithm is then applied in order to identify the sets of matching patches 

between two molecular surface representations. The cliques extracted are then used to 

align the two molecules by similar surface patch overlap using a suitable transformation. 

This is reported as local search rather than a global comparison since it is only possible to 

overlap a fraction of each surface which is assumed to share binding characteristics to the 

protein surface. RMSD of the mappings represented by cliques found gives a partial shape 

match index (Cosgrove  et al., 2000).  

In the Surfcomp tool a solvent accessible molecular surface is subject to an initial 

triangulation and is partitioned into approximately equal sized patches each represented 

by a point (Hofbauer  et al., 2004). Critical points are defined as convex, concave and saddle 

points by use of a canonical curvature surface fitting technique. The point set representing 

the molecular surface is then relaxed in order to give a uniform distribution of points about 

the surface of equal area. Points are chemically typed using local atomic properties such as 

donor, acceptor and electrostatic potential. Surface regions defined in the proximity of the 

critical points are mapped from 3D to 2D using harmonic shape filtering in order to derive a 

circular representation of the surface characteristics. A correspondence graph is 

constructed between two critical point representations that are to be assessed for 

similarity. Nodes are mapped to each other based on a fuzzy chemical environment 

similarity criterion between 0 and 1. The 2D surface region patches represent a 3D 

potential energy surface and are also compared for similarity using a correlation coefficient 

at the node equality stage. A distance criterion between nodes is also implemented to 

define edges in the correspondence graph. The Bron-Kerbosch algorithm is applied to 

extract the cliques formed in the correspondence graph. The nodes mapped in the cliques 

identified are aligned using least squares fitting for subsequent scoring.  Cliques of typically 
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2-4 points were identified for scoring by the search stage. The two critical point sets that 

constitute the clique are aligned via centre of gravity superposition and a rigid body 

transformation used to minimise RMSD. Typically alignments below 2 Å total RMSD are 

retained for solution clustering and the final RMSD is effectively the score index, with a 

smaller RMSD indicating a better solution. Similarity scoring occurs at the node equality 

stage of the correspondence graph construction and is intrinsically part of the final score. 

The authors concluded that the method was best suited for partial surface similarity 

matching.  

Further approaches that compare molecular surface representations by alignment and 

scoring exist. In the Surface point matching approach two uniform surface point 

representations of molecules are compared using a function of RMSD to give a similarity 

coefficient between two molecules. The Kabsch algorithm (Kabsch  et al., 1976), which 

defines a rotation to align two sets of points, is used to generate the transformation 

required to align sets of surface points with the minimal RMSD. It is stated that either 

clique detection of surface points via correspondence graph or substructure overlay of 

small sets of atoms would give the best starting alignment for input into the Kabsch 

alignment (Baum  et al., 2006).  

The Kabsch algorithm is a key component of the methods described in the thesis chapter 4. 

3.3.4 – Spherical grid field representation 

 

An early example of use of a spherical icosahedral grid is Superposition by PERMutation 

(SPERM). Atomic properties such as steric, electrostatic and hydrophobic contributions for 

each atom in the molecule are projected on to the points of an icosahederal approximation 

of a sphere. The distance between the defined VDW surface and each tessellation point is 

used in the calculation which assigns a property magnitude to each point. The effect of the 

molecule’s atoms can be evaluated at each node in the icosahederal in a spherical manner 

which encapsulates the whole molecule. Two such icosahedral grids are aligned by origin 

and one is fixed in orientation. Both molecules are evaluated initially at their principal 

moment aligned superposition. The query molecule is transformed through many 

rotational states to provide a set of grids for comparison to a target. An approach is 

adopted that eliminates degenerate rotations using the symmetry properties of the 

icosahederal. The RMSD difference between each property integrated over all grid points is 

calculated and the alignment chosen that minimises RMSD. An RMSD score of 0 means the 
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two molecules are equivalent at that rotational state and any other RMSD is a measure of 

dissimilarity and thus is convertible into a measure of similarity (Perry  et al., 1992). 

In the Spherical Harmonics approach, an icosahedral spherical grid is used in order to 

provide sample points in space near to the molecular surface and at each vertex the all 

atom probability density function is evaluated in order to indicate the proximity of mass to 

surface area (Mavridis  et al., 2007; Ritchie  et al., 1999). A 3D molecular surface envelope 

defined by a characteristic radial distance function can be approximated using the 

expansion of a set of spherical harmonic basis functions up to a specified resolution and 

about an origin such as the centre of mass of a molecule. The spherical harmonics functions 

are a known set of complex tabulated trigonometric/exponential functions that operate on 

the spherical polar coordinates that define spherical projections such as the set that define 

a surface approximation. The spherical harmonic functions operate upon the spherical 

coordinates defined for each vertex and the assigned probability density at each vertex to 

“stretch” the “real” molecular surface on to the sphere. A high probability density will 

indicate the propensity for a local “knob” near a vertex and a low density a “hole”. The low 

order harmonics define spheres and ellipsoids and finally complex lumpy shapes emerge 

simulating globular molecular surfaces. With a slight re-arrangement of the expression a 

vector of characteristic coefficients for the expansion can be extracted that define surface 

and shape as a set of global descriptors. Two such vector representations of different 

molecules can be compared and scored using a simple distance difference function over 

each element. A Quasi-Newton method is used to search and define the minimal distance 

between the coefficients and the maximal overlap of the surfaces. The descriptors 

evaluated can be rotated during the search and surface overlay optimised. The nature of 

the expansion ensures that each element is directly comparable. Low order spherical 

harmonics can capture the main features of a molecular surface for the purposes of fast 

shape search and surface similarity comparison.  

3.3.5 – Grid field representation 

 

There are several approaches that use non-spherical or rectangular grids to encapsulate 

field based representations. BRUTUS is a grid field rigid body molecular superposition and 

similarity search method. A field based alignment of charge distribution and defined VDW 

shape are completed. Representations are rectangular grids and interpolation (constructing 

new data points based upon existing data points) is used to define a further intermediate 
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grid by which nearest neighbour points are mapped. This new grid, located ‘between grids’ 

can then used with an alignment to evaluate similarity. Different atomic partial charge 

distribution models are used and compared and the study concluded that it is possible to 

use relatively coarse grids effectively for similarity searching. An initial set of starting 

alignments are determined systematically using coarse transformations and then gradient 

based optimisation is employed to determine the optimal solutions. The search is 

implemented by holding one of the molecular energy fields static while rotating and 

translating the other molecule field grid representation. In this way it is stated that the field 

should not need to be re-evaluated after each rotation/transformation. The Brutus method 

uses the Hodgkin index, shown in figure 3.1, which is defined as twice the common 

descriptor overlap normalised by the properties of the two objects, as the similarity 

coefficient of two grid energy field representations of different molecules (Ronkko  et al., 

2006; Tervo  et al., 2005).  

Tanimoto 
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Figure 3.1 - The most commonly used Similarity coefficients Tanimoto, Carbo and 

Hodgkin/Dice are defined for reference. Q and T are identity overlap and C is the 

evaluated common overlap of Q and T. 

3.3.6 – Atom and reduced points field representation 

 

SEAL Steric and Electrostatic Alignment is an electrostatic grid based approach with atoms 

represented as weighted Gaussian functions. The Gaussian pre-factor is set to the sum of a 

number of terms which involve the product of the partial charges and the VDW radii from 

each contributing atom which is raised by an integer power to further differentiate atom 

type volumes. The search is implemented using rotations and translations of one molecule 

with respect to the other in an exhaustive fashion. All transformations are about the centre 

of mass (not the geometric centroid) which for both molecules are initially mapped to the 
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origin. Quaternions are utilised to apply rotations in conjunction with a rational function 

optimisation and “golden section search”.  The search is reported as being computationally 

demanding. Maximal volume and point charge alignment is the primary aim of the tool and 

good results were observed with the approach (Kearsley  et al., 1992; Smith  et al., 1991). 

As such a volume overlap and electrostatic overlay score is combined within a single 

expression and summed over all atom combinations. Similarity values are reported in the 

range from -1 to 0 where -1 is a perfect alignment. A later report describes how multiple 

molecule overlays are achieved by scoring composite super molecules with successive 

molecules in a series (Feher  et al., 2000).  

Gaussian approximations of atomic electron density were used by Good et al, in order to 

compare two molecules on electrostatic overlap. Electrostatic potential is normally 

evaluated outside of the VDW defined surface. Electrostatic potential is the potential 

between an H+ ion at a point in space and all points of interest (charged atoms). Atom 

based Gaussian approximation with 2 or 3 Gaussian terms are used to model Molecular 

Electrostatic Potential for atoms at specified distance in space. A Gaussian expansion 

approximates a coulombic type 1/r expression. Representations are aligned using simple 

rules and least squares fitting to judge the best fit for scoring. The scoring employs the 

Hodgkin index (figure 3.1), equivalent to the Dice coefficient (Good  et al., 1992; Good  et 

al., 1993).  

Accurate, high-order, hard-sphere overlap approximations to volume and surface area 

were originally defined by (Gibson  et al., 1987) but these are computationally exensive to 

compute. Grant et. al. recognised that the volume of a molecule could be calculated much 

more efficiently if the atoms are modelled by Gaussian functions (with the function 

decaying rapidly so that the atoms are treated as “soft” spheres) rather than using hard 

spheres such as those in a CPK space-filling model. They then developed a shape based 

similarity method in which Gaussian representations are used to enable volume overlap of 

two molecules to be calculated rapidly (Grant  et al., 1995). A review article on the cross 

over from grid based to Gaussian based evaluation of MEP and volume overlap is given by 

(Good  et al., 1998). Molecules can be treated as atom based field representations using 

Gaussian or radial distribution functions to model local electron density, whereby each 

atomic nucleus has a characteristic mathematical decay function negating the need for 

large computationally intensive grid representations. Thus, grid based field approximations 

have been subsequently replaced by Gaussian based approximations to a field and also 
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hybrid approaches have been defined.  In a given molecule, atoms are modelled as 

intersecting spheres of different radii centred at the atomic nuclei.  

Reduced grids or field graph based representations such as FBSS (Field Based Similarity 

Search) employ clique detection alignment. The search is implemented and explored using 

two different combinations of representation and search approach. FBSS MEP using GA 

uses atom based Gaussian representations and is scored for MEP overlap and similarity 

after an alignment using a genetic algorithm based search. A genetic algorithm is used to 

control and explore the rotations and translations of the rigid search in order to determine 

the optimal alignment for similarity scoring between molecules. The Carbo index (figure 

3.1) is used to score, which is the common descriptor overlap divided by the root of the 

product of the identities (Wild  et al., 1996). FBSS MEP using Field Graphs employs the 

concept of a field graph. The field graph consists of maximal positive and negative MEP 

vertices extracted from the grid representation of the MEP. Two field graphs are compared 

using the Bron-Kerbosch maximal common subgraph isomorphism algorithm giving a field 

graph alignment as determined by the set of cliques evaluated. Effectively a smart search 

strategy is built around Gaussian based MEP similarity scoring (Thorner  et al., 1996; 

Thorner  et al., 1997).  

FlexS is a similarity search method which is built around the alignment technology RIGFIT - 

(Rigid body Superposition). The representation is based upon Gaussian functions as applied 

to model volume and four physio-chemical properties of atoms. Steric (VDW) contribution, 

partial charge, hydrophobic and hydrogen bond potential weightings are used to represent 

a molecule which is partitioned into rigid fragment constituents. The tool will align multiple 

sets of Gaussian fields one fragment at a time. The function is optimised using a three 

phase search which optimises rotations and translations. The RIGFIT search is the most 

complex part. After an initial process to determine a number of starting point orientations, 

the first two phases are executed and described as separate rotational and translational 

optimisations in Fourier space. Rotations are applied by quaternions and translations 

completed by the application of Fourier transforms. A further real space optimisation is 

then completed in order to fine tune the approximate alignments. The RIGFIT approach is 

that of rigid fragment placement and alignment which will align fragments and 

subsequently whole molecules. The Hodgkin index (figure 3.1) is used as a suitable 

normalised guide to optimised alignment of the Gaussian function overlap. For the latter, 
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the index indicates how chemically similar two molecules are. FlexS and RIGFIT are 

reported separately (Lemmen  et al., 1998a; Lemmen  et al., 1998b). 

The FieldAlign program by Cresset is a field graph approach which uses a reduced form of a 

grid using points defined at interaction energy extrema. An Oxygen probe atom is used to 

evaluate a scalar interaction value at 120 initial field points placed on a solvent accessible 

molecular surface. Four potential physical interactions types are evaluated at each grid 

point using equations that operate on atomic distance and charge as defined by the XED 

force field. Each point is characterised with steric, electrostatic (+/-) and hydrophobic type 

interactions thus the field point extrema are assigned an evaluated magnitude. The 

representation can thus be considered as a potential interaction grid. This initial grid is 

reduced to define a set of extrema points for each interaction type. Two field graphs 

representing two molecules are first aligned using a clique detection algorithm followed by 

least squares fitting in order to give a set of best possible starting alignments.  

The nodes are matched by type and a penalty applied for distance deviation between two 

points in the correspondence graph.  The initial alignments are simplex optimised in order 

to give the field super-position that maximises the similarity coefficient. Similarity is 

measured using a normalised field overlay measure based on the Dice coefficient which 

takes into account the magnitudes of the potential energy at the points. Points in one field 

are used to sample points in another field. This approach models potential molecular 

behaviour over space as oppose to structural similarity and thus the method is reported as 

being applicable to scaffold hopping over several target classes (Cheeseright  et al., 2006).  

In the ShaEP method, field points are annotated around a molecule according to some 

simple geometric rules such as ring normal and bond projections. At each point in the grid, 

all atoms in the molecule are used to compute an electrostatic potential using Coulomb’s 

law and a shape density value using a Gaussian representation for each atom. The 

continuous values are mapped to discrete ones in order to label the nodes and the 

representation is considered as a minimal potential interaction grid. Two field graphs are 

compared using a maximally connected common subgraph isomorphism (clique detection) 

algorithm. Vertices and edges are first compared for compatibility during correspondence 

graph construction which defines node equality by a tolerance of 0.5 between electrostatic 

potential and the dot product of the shape descriptor greater than 0.86. A distance 

tolerance of less than 1 Å for edge tolerance is applied. The cliques are optimally aligned 

using the scoring function as guide and the superposition amended using “dual 
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quaternions” which simulate a “screwing” motion of one graph relative to another. The 

aligned field points identified and mapped during the clique detection stage are scored 

using a combined weighted Gaussian/volume overlap and electrostatic score. The 

weighting used is the difference between the electrostatic potential score evaluated at 

each mapped point. These are normalised in order to give a comparable similarity measure. 

The tool is reported to overlay many crystal bound ligand coordinates with themselves with 

over half having accuracy of under 0.5 RMSD (Vainio  et al., 2009). 

An alignment dependent method, developed at Sheffield referenced in chapter 5 is 

summarised here. A molecular field representation generated by the GRID program 

(Goodford  et al., 1985) and is mapped to a wavelet thumbnail extrema representation via 

a compression algorithm that is widely utilised in the area of electronics and signal analysis. 

Input fields calculated using different probe types and at arbitrary molecular orientations 

are transformed into the compressed representation, which is subsequently aligned using 

the Bron-Kerbosch clique detection algorithm. The alignments with the smallest RMSD are 

retained as solutions to score and scoring is achieved by constructing a Tanimoto 

coefficient (figure 3.1) of the two aligned representations which yields the overall similarity 

score of query and target molecule. Compression extent was initially examined in order to 

ensure that key field information is retained in the representation (Martin  et al., 2010). 

 

3.3.7 – Shape and hybrid approaches 

 

3D Shape based methods are based on the assumption that two molecules that have the 

same volume (defined by Gaussian atom representations) are also considered to be 

equivalent in terms of shape (OpenEye, 2002; OpenEye 2008). These approaches have used 

the atom based Gaussian functions in the construction of the molecular representation. 

ROCS or Rapid Overlay of Chemical Structures is such a 3D similarity shape search method. 

Individual atoms are modelled as simple characteristic spherical Gaussian functions that are 

suitably parameterised to reflect the specific electron decay characteristics of each atom. 

This representation can be used to define an overlap between two atom types 

parameterised by distance. Once converted to a spherical coordinate representation, 

integration to give an expression for volume overlap between such atom types is 

completed.  As such obtaining the volume overlap between two atom types over discrete 

distances is relatively fast from a list of pre-evaluated volume overlap values. Both the 
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query and target molecules are initially aligned by geometric centroid. The six degrees of 

freedom (three rotational and three translational) are traversed systematically by affine 

transformations of one of the molecules and the volume overlap scoring function re-

evaluated for each superposition until a maximum is found. Clearly, this sort of alignment 

approach is potentially highly demanding computationally although ROCS addresses this 

with the use of fast look up table. A normalised Tanimoto shape similarity coefficient 

between 0 and 1 is used to score the alignment. An extension to the basic approach is 

ROCS (colour) which includes user defined chemical property overlap and similarity using 

the colour force field which is described as the “Mills and Dean” implementation (Mills  et 

al., 1996). Six types of chemical functionality are identified (donor, acceptor, cation, anion, 

hydrophobe and ring system) using Simplified Molecular Arbitrary Target Specification 

(SMARTS) and included in the alignment to give a chemical overlap score. A pH of 7 is 

assumed for the protonation state and additional bespoke Simplified Molecular Arbitrary 

Target Specification (SMARTS) definitions can be included by the user. This approach has 

been widely adopted in the industry to compare the shape similarity or volume overlap of 

two molecules (OpenEye, 2002; OpenEye 2008). In a recent development and associated 

enrichment study, the negative images of several protein active sites were extracted using 

a detailed geometric casting algorithm. This data structure termed a “pseudo ligand” was 

used to build queries in the tool Shape4 which is a shape property search tool created using 

the ROCS shape toolkits. When compared to ROCS and ROCS (colour for several target 

proteins the results were reported as comparable. This approach is an early adopter of 

integrating protein structural data into a 3D similarity approach (Ebalunode  et al., 2008). 

Some approaches are effective hybrids of grid and Gaussian field representations. 

CatShape is an example of a multi stage method that employs a volume overlap followed 

by surface fitting stage. Initially a shape database for all conformers is created that 

captures key volume and moment information for a fast shape search screen, which is used 

to rapidly filter molecules. Each molecule is orientated by its three principal moments and 

bounded in a suitable box. A set of indices including the principal moments and volume are 

generated to represent a molecule as a fingerprint and this is referred to as a shape filter 

database which is the basis for the comparative screening of molecules in terms of size and 

shape. A relatively limited search is conducted in order to maximise the volume overlap 

between two molecules. Since the molecules are already aligned, further adjustments in 

alignment are required for fine tuning and this is termed the grid based electrostatic fit 

stage of the filtered molecules. A grid is deployed and points defined within the VDW 
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surface of the molecule, as defined by a compound of spheres at each atom as well as 

points defined on the surface, are used to define a molecular volume.  The surface defined 

is subsequently used as a boundary definition in an electrostatic fitting operation. Thus at 

each surface and volumetric grid point a potential interaction energy consisting of a VDW 

and electrostatic term is assigned. The search consists of 6 minor rotations of ~5 degrees 

each and translations of ~0.5 Å. The second stage of scoring involves fitting volumetric grid 

points of one molecule into the surface bounded space and determining the VDW and 

electrostatic interaction energy between the volume grid of one molecule and the surface 

grid of another (Hahn  et al., 1997).  

Feature Map Vectors (FMV) is another example where both grid and Gaussian constructs 

are used in the representation. A grid is placed around a canonically orientated molecule 

(PMA) and grid points evaluated and assigned values according to their proximity to a VDW 

surface. Further terminal points defining shape/dimension extremes and skeleton points 

defining the molecule’s “back bone” are determined and assigned one of six chemical 

feature types as well as vectors based upon local principal moments. Chemical feature 

points are represented in 3D space each characterised by a weighted Gaussian function. A 

systematic alignment of all combinations of triangles as extracted from the terminal and 

skeleton points is completed. Geometric triangle matching (using side length and angle 

criterion) are then used to rapidly eliminate dissimilar molecules based upon vertex RMSD. 

Triangle pairs that survive this phase are promoted for feature, direction, (sub-) shape 

scoring and similarity scoring. A simple chemical feature score at each vertex for Boolean 

chemical type matching thus further eliminates alignments. A direction score is applied to 

the vectors assigned at each vertex in order to measure their divergence using the angle 

between them. The vectors represent local moments and volume distribution. A detailed 

Shape/Volume alignment scoring using the scalar field grid points is employed in order to 

determine a Tanimoto score between 0 and 1. A final feature map vector score between 

two feature maps is defined by the proximity of the overlap of weighted Gaussian 

representation aligned by sub-shape alignment. A Tanimoto coefficient is used in scoring. A 

pharmacophore elucidation and alignment phase for molecules of quite different sizes are 

found to be equivalent and indeed many active series crystal structures show large 

variation in size and features.  The feature map alignments were reported as being close to 

those of the reported crystal structure (Landrum  et al., 2006; Putta  et al., 2003).  
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3.3.8 – Pharmacophore and reduced points concepts 

 

Some alignment-based similarity approaches employ the concept of pharmacophore 

classification in their construction as well as the concept of reduced points. In the MOE 

flexible pharmacophore alignment module from the Chemical Computing Group 

(www.chemcomp.com) an approach for the alignment of small molecules is stated. This 

method is a 3D similarity approach whereby molecules are aligned and scored in a multi-

objective fashion. Atoms are represented as a set of spherical Gaussians each with an 

assigned pre-factor weighting to model a particular property. Properties such as volume, 

donor/acceptor, Aromaticity, Surface exposure and physical properties such as log P and 

molar refractivity are assigned as weights (Booleans or Percentages) to each atom giving it 

a characteristic vector of features to be modelled as feature densities that decay with 

distance. Two Gaussian representations can be superposed and the feature density overlap 

can be determined using an integrated exponential product overlap expression over all 

atom combinations between each molecule. The first stage of alignment involves an initial 

overlay of three random atoms from each molecule. A random Incremental Pulse Search is 

implemented which is described as a hybrid of a random search with an energy 

minimisation. For each comparison a ceiling number of tests are defined and RMSD value is 

used to determine if a better alignment has been achieved. A good alignment is deemed as 

one that yields a maximal overlap of volume as well as all the pharmacophore and other 

properties with a minimal amount of internal strain energy. A vector of Tanimoto 

coefficients is output as a fingerprint with a similarity index between 0 and 1 for each 

pharmacophore property type. Different alignments can yield different maxima across all 

properties. A particular parameterisation whereby emphasis is placed on volume, aromatic 

and donor/acceptor feature types is reported to replicate crystal structures well (Labute  et 

al., 2001).  

A pharmacophore concept is also used in the FEPOPS (Feature Point Pharmacophores) 

method, which uses reduced point representation of a molecule (Jenkins  et al., 2004). The 

3D coordinates of each conformation are partitioned by the K-means algorithm, up to four 

points. Each point is assigned 5 features according to atom group membership. Feature 

types include physical assignments such as LogP and pharmacophore classification such as 

donor/acceptor. Four feature points are used since it is claimed these more adequately 

describe the shape than three points while retaining chirality information. Conformers are 

generated using enumerated protonation states and a suitable partial charge model 
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assigned. Conformers are merged into representatives using the clustering algorithm K-

medoids. A representative set of conformers is then mapped to vector representations 

which encode the feature types as pharmacophore type classifications such as partial 

charge and log P in addition to donor/acceptor. FEPOPS does not carry out a full alignment, 

instead alignment is simulated by imposing an order on the features in the vector according 

to the sum of charge magnitude at each point, which is used to map or align similar points 

in the query and target representations. This alignment then facilitates a Pearson 

correlation coefficient scoring approach with a linear score index between -1 and 1. 

Reduced point representations have been used in 2D similarity search methods (Gillet  et 

al., 2003) where rings and linkers were used to construct the representation. Rings are 

defined as aromatic or aliphatic rings and linkers are variable size aliphatic chains that 

connect rings and other functional groups.  

3.3.9 – Triangle matching using geometric hashing 

 

LigMatch is a ligand based reduced points method which aims to systematically match 

triangles with atom typed vertices but is related to a more complex method that also 

involves a grid representation of a protein active site. The reduced point representation is 

all the heavy atom triplets, which are extracted from the query and target “atom 

constellations” within a specified atomic distance cut-off. This yields two sets of triangle 

coordinates to be compared with each vertex containing an array of atom types present 

which are element matched using a geometric hashing approach. These atom types are 

limited to [C,N,O,S,P]. All triplets are aligned using a least squares routine which derives a 

rotational and translational matrix to align two triangles with minimal RMSD. The score is 

derived using the number of incident atoms between each triangle vertex after alignment 

and is referred to as the atom-atom score (Kinnings  et al., 2009). 

3.4 – Conformations and molecular flexibility 
 

Sir Derek Barton was an early pioneer to attribute observed molecular properties directly 

to observed molecular conformation (Barton  et al., 1956). In general a single molecule can 

adopt many distinct (and in principle, an infinite possible number of) 3D arrangements. If 

one also considers the possible tautomeric and protonation states for a molecule then this 

further increases the different 3D arrangements possible. Considering a small molecule in 

isolation (vacuum) then the rotational bonds can potentially provide complete free rotation 
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of one fragment or functional group with respect to another and thus the global flexibility 

of a molecule is often considered to be related to the number of rotational bonds present. 

However, the actual number of conformers is likely to be considerably less due to potential 

energy or steric barriers to rotation when large groups are eclipsed, whereby one fragment 

effectively physically blocks the free rotation of the other. In addition, intra-molecular 

interactions whereby a stable arrangement is adopted by forming non-bonding interactions 

between atoms or groups in the same molecule over potentially a relatively large distance 

can also control the conformations adopted. Considering the small molecule in solvent is 

also required since this is the medium in which it is normally found. Solvent effects are 

highly influential on the actual conformations adopted in solution, for example, water 

molecules can “bridge” an intra-molecular interaction. If we consider the small molecule in 

the context of approaching the receptor active site then the so called inductive effect might 

also operate. The conformation of the small molecule is changed based on its proximity to 

the receptor possibly instigated initially by long range forces such as Van der Waals. The 

electron density is gradually polarised / perturbed in the presence of the large molecule. 

Clearly, the natural conformers that are adopted by a molecule are complex to model and 

the discrete poses are often rationalised using a conformational energy argument which 

may consider several of the effects mentioned here (Leach  et al., 2007b; Smellie  et al., 

1995).  

 

Chemical databases typically consist of molecules stored as 2D topological representations 

(Leach  et al., 2007c). Chemical databases in 2D can be converted to 3D conformers by 

using a structure generation program such as CONCORD or CORINA (Sadowski  et al., 1994). 

Conformational analysis techniques are applied to generate 3D conformers using QM/MD 

and molecular mechanics techniques. Conformer generation is a computationally intensive 

process which is usually only completed once with the conformers stored. A description of 

a typical molecular mechanics force field for conformer generation is given by (Leach  et al., 

2007b). The number of conformers produced is often controlled by an energy threshold.  

 

The recent resurgence of interest in many 3D virtual screening approaches is largely the 

result of the emergence of accurate force fields  which facilitate the rapid generation of 

vast databases of artificial 3D molecular conformations (Halgren  et al., 1998). A typical 

drug-like molecule can potentially map to several hundred different discrete conformations 

over all space. Conformation generation carefully places the atom in space depending, 
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often considering both bonding and longer range non-bonding interactions. Artificial 

conformer generation protocols should reproduce the static bioactive poses as determined 

by X-ray crystallography within the ensemble of allowed conformations produced  else few 

relevant poses will be discovered (Bostrom  et al., 2003). Ideally, conformations are 

generated that consider intra-molecular and solvent effects. If such considerations are 

absent then such approaches may not be ideal for virtual screening if they do not consider 

the conformations adopted in solution.  

The methods by which conformational flexibility is handled, is thus a further facet of many 

3D similarity search approaches and a common aim is to extend standard rigid search to 

incorporate flexible search, to account for inherent molecular flexibility. In this way, it is 

assumed that the molecules are being modelled more accurately by including some or all of 

the possible conformations they can adopt. Flexibility is normally modelled in one of two 

ways. The first method, implements single torsional bond rotations at a specified resolution 

in order to define the possible conformers of a single molecule and this is often completed 

at program run time.  Examples of tools that adopt this flexible search approach are 

FlexS/RIGFIT, MOE (random or pre-defined rotations are inherent in the search strategy), 

FEPOPS (VDW clash are eliminated and similar conformers merged) and FBSS (torsional 

angle steps are built into GA chromosomes) which all implement flexible search in this way.  

The alternative and more often adopted approach is to use a set of conformers which are 

enumerated in advance and this is usually termed as the “ensemble approach”. Such 

conformers are often required to be significantly different, normally using RMSD or energy 

as a measure of the difference of each individual conformer and thus a representative set 

of conformers is possible. Each conformer is then individually scored using a rigid search 

method and results summarised. Examples of tools that adopt this approach are ROCS, 

SEAL / Catshape (a diverse representative set is used in both these cases), ShaEP, LigMatch, 

Feature map Vectors, Surface patch alignment, Pharmacophore keys (ensembles of 

conformers are mapped to bins) and FBSS (field graphs). Flexibility adds significant 

computational overhead since more data states are required to be processed. In theory, 

flexible search is a more accurate model of possible real molecule behaviours but in reality 

the gain in accuracy is currently difficult to quantify. The accuracy of the molecular overlay 

of several important approaches is discussed relative to experimentally derived X-ray 

crystal structures and initial choice of query template is found to be more influential than 

the actual alignment method. Further to this, the accuracy of molecular overlay can 

actually decrease dramatically when introducing flexible search (Chen  et al., 2006b).  
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3.5 – Evaluation and comparison of 2D and 3D methods 
 

Despite the 3D nature of molecular recognition, an important study has shown that 2D 

representations such as DAYLIGHT, UNITY2D and MACCS show a greater propensity to 

resolve actives from decoys in virtual screening experiments when compared to 3D 

similarity methods (Brown  et al., 1996). Of the 3D methods investigated, interestingly it 

was noted that the 3D potential pharmacophore points (PPP) approach which encodes 

atoms that can form non-covalent interactions and other inherently 2D information into 

three point triangle representations, tended to give results comparable to 2D descriptors.  

ROCS and the colour force field is considered as another bench mark method for 3D 

similarity searching. This approach is based upon molecular volume overlap additionally 

including Nitrogen and Oxygen chemical properties. The accuracy of ROCS, FlexS and SEAL 

are compared and discussed in the study by (Chen  et al., 2006b). The first two approaches 

(ROCS/FlexS) are found to be equivalent in terms of method overlay accuracy and the 

quality of the input query molecule used as template was determined as the most 

important factor in achieving sensible replication of the X-ray determined ligand 

coordinates. A comparison of several field based (Gaussian and grid based) search tools 

CatShape, FBSS, ROCS is given by (Moffat  et al., 2008). It was shown that ROCS colour and 

UNITY 2D fingerprints actually gave the best results and also that flexible search only yields 

marginal improvements over rigid search. The method FEPOPS, which also employs a PPP 

approach (with four points deemed as appropriate to resolve chirality) is stated as giving 

results that are comparable to 2D methods such as DAYLIGHT and MACCS fingerprints 

(Jenkins  et al., 2004).  Molprint3D results are reported as being comparable to 2D 

fingerprints (Bender  et al., 2004). 

3.6 – Summary 
 

This chapter has aimed to discuss 3D similarity concepts and present an overview of a 

range of 3D similarity approaches that have been developed and adopted in rational drug 

design. The majority of 3D similarity methods aim to achieve an alignment of surface, 

volume (and by implication shape) or chemical properties such as electrostatic fields. A few 

are alignment independent and have been developed with an often stated increased 

performance as a significant benefit. However, it is questionable if any of these methods 

resolve chirality sufficiently. Summary level approaches that aim to introduce speed 
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enhancements are also emerging but their use is questionable, since accuracy relative to 

the full atom shape description and scores is not apparent (Nicholls  et al., 2010).  

Application of flexible search often does not improve results. Sub-shape search methods 

are rapidly emerging since frequently only fragments of a given active molecule are actually 

involved in the molecular recognition and binding with the rest of the molecule being 

solvated in water. This is a particularly important consideration in a pharmacophore 

hypothesis or elucidation phase since a global similarity alignment may not achieve the 

correct contextual pharmacophore overlay. The use of rectilinear grids for representing 

fields has been replaced by atom based mathematical functions which simulate molecular 

fields by modelling electron density. The introduction of “field graphs”, molecule grid 

representations of extrema points, which are relatively reduced in size and only include key 

energetic points over space, is another more efficient way to model the interaction 

potential and spatial environment about a molecule. The next chapter presents a novel 3D 

similarity summary level approach that aims to compare molecular volume and biological 

property distribution (Pharmacophores) overlap using two distinct alignment methods. A 

further discussion on evaluating the effectiveness of similarity search methods is briefly 

mentioned in chapter 5 of this thesis before results are presented and discussed. 
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Chapter 4 - Reduced points fuzzy pharmacophore vector 

representations and their usage in 3D similarity scoring functions and 

molecule correlation vectors 

4.1 – Introduction and method context 

 

This chapter presents a novel ligand-based 3D similarity search approach which endeavours 

to solve the problem of identifying 3D equivalences, between biologically active molecules. 

This approach is suggested as a hybrid shape/pharmacophore search method and is 

described in terms of the molecular representation, the alignment methods applied to pairs 

of such representations and the scoring function applied to two superposed 

representations which evaluates the quality of the alignment. The molecular 

representation is described as “Reduced points fuzzy pharmacophore vectors” and is a 

summary description of a molecule in terms of shape and pharmacophoric properties 

distributions. Since there will generally be fewer points in the representation than atoms in 

the molecule this is considered a reduced point representation. The term “fuzzy” is used 

since the representation reflects an amount of pharmacophore type character in a 

specified region of space (volume) and thus crudely models the presence of electronic 

characteristics relevant to biological interactions. An alignment-based approach is 

considered necessary in order to be able to resolve the important drug-like molecule 

property of chirality (Leach  et al., 2010) by the use of volume (implied shape) and 

properties overlap. The defined points generally represent molecular fragments, each with 

a specific amount of pharmacophore type character, rather than atoms or functional 

groups as is the case with many other similarity methods (OpenEye  et al., 2002; Rhodes  et 

al., 2003).  

The use of K-means to derive a reduced representation is also employed in the FEPOPS 

method as described in chapter 3 (Jenkins  et al., 2004). FEPOPS alignment and scoring 

features make it significantly different to the method described in this chapter, confirming 

the novelty of this approach (Please refer to the description in section 3.3.8). The main 

difference in this approach is that a full alignment is carried out with the resulting 

alignment scored on volume and property overlap. Also FEPOPS is restricted to four point 

representations, whereas here represenations of up to six points are explored in order to 

investigate the optimum level of reduction. The field graph approach described in chapter 3 
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by (Thorner  et al., 1997) is also based on reduced points and although there are similarities 

with the alignment methods used, the representations are completely different. Here all 

atoms are represented whereas the field graph approach is based on extrema, extracted 

from the molecular electrostatic potential.  

4.2 – Overview of method 

 

Initially, the atomic coordinate data for a given molecule are partitioned in 3 dimensions 

using a deterministic K-means algorithm into a user-defined number of K atom clusters 

each represented as a point in 3D space.  Each point defined by the K-means is the 

geometric centroid of the atomic coordinates of the cluster. Each point is represented as a 

sphere with radius determined as the average distance from the centroid to the 

constituent atoms in the given cluster. Each point also has an associated data vector which 

describes the key information about the point including the amount of potential interaction 

behaviour classified by five pharmacophore types which are hydrophobic, aromatic, 

acceptor, donor and hydrophilic. For each point and each pharmacophore type a 

percentage by mass of the atoms present that can exhibit such behaviour is derived using 

the mass of each atom in the cluster. By varying K, different levels of representation are 

possible ranging from a single point and associated vector (K=1) representing a whole 

molecule, up to as many points and associated vectors as there are atoms in the molecule 

so that each point can represent a molecule, a molecular fragment or an atom.   

Any number of target molecules T of interest can be represented in a similar way and then 

pair-wise comparison to a query molecule Q is possible via a suitable alignment approach 

and scoring method. Two pair-wise alignment methods are implemented and investigated. 

One is a systematic exhaustive approach which is based upon iterative triangle and 

tetrahedron matching. The other method, which is potentially more efficient and scalable, 

implements two well established algorithms in Chemoinformatics. A correspondence graph 

is constructed between two reduced point representations (simple graphs) and the Bron-

Kerbosh algorithm (Bron  et al., 1973)  is used to search the correspondence graph and 

identify cliques which represent mappings between the representations. The Kabsch 

algorithm (Kabsch  et al., 1976) is then used to align the representations to a minimal RMSD 

arrangement based on the clique mapped points. In both cases the resulting alignments are 

scored using both a simple geometric volume (sphere overlap) and a volume score that is 

weighted by pharmacophore properties.  



 

Figure 4.1 below presents an illustration of the basic representation employed. The more 

alike two molecule objects are in terms of their size, volume (and by

increasing K) and chemical property distribution, at any specified level of description, then 

the higher the similarity score should evaluate to at that level. A fundamental assumption 

is that volume, shape and distribution 

 

 

Figure 4.1 - From random starting 

constructed for the query Q and target T molecule.

latter molecule is aligne
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Figure 4.1 below presents an illustration of the basic representation employed. The more 

alike two molecule objects are in terms of their size, volume (and by implication shape with 

increasing K) and chemical property distribution, at any specified level of description, then 

the higher the similarity score should evaluate to at that level. A fundamental assumption 

is that volume, shape and distribution of properties contribute directly to biological activity. 

 
 

  

From random starting molecular orientation, weighted graph

for the query Q and target T molecule. Examples are HSP90 and COX2.

aligned and scored for properties overlap in figure 4.

Figure 4.1 below presents an illustration of the basic representation employed. The more 

implication shape with 

increasing K) and chemical property distribution, at any specified level of description, then 

the higher the similarity score should evaluate to at that level. A fundamental assumption 

contribute directly to biological activity.  

 

 

eighted graphs are 

Examples are HSP90 and COX2.The 

properties overlap in figure 4.24.  



 

4.3 – Molecular representation

4.3.1 - K-means basic partitioning approach

 

The K-means is a general purpose algorithm used in statistics and machine learning which 

can be used to find the natural

basic set of 3D points to represent a molecule, its heavy atom

partitioned using the basic K

points each of which represents 

3D reduced points molecular representations was implemented by 

order to identify active sites within protein structures. See figure 4.2 below for application 

of K-means to a 3D molecule

retain natural pharmacophore elements such as rings 

possible that atoms that constitute 

reduced points. Single atom clusters are 

figure 4.2 it does a reasonable job depending upon the 

the effects of this phenomenon can be found in 

Figure 4.2 - The molecule 

K-means algorithm (heavy atoms

average cluster distance.

There are two ways in which the K

conditions and these are

approach, K random seed points 

iteratively refined. However 
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Molecular representation 

means basic partitioning approach 

means is a general purpose algorithm used in statistics and machine learning which 

can be used to find the natural cluster centres of a given data set. In order to derive the 

basic set of 3D points to represent a molecule, its heavy atomic coordinate

partitioned using the basic K-means algorithm. This effectively defines the molecule as K 

which represents one cluster of atoms. The first use of K

3D reduced points molecular representations was implemented by (Glick  et al., 2002)

order to identify active sites within protein structures. See figure 4.2 below for application 

means to a 3D molecule. The K-means partitioning approach is not 

retain natural pharmacophore elements such as rings or chemical functional groups

that constitute such substructures can be separated

ingle atom clusters are another possible artefact. In most

a reasonable job depending upon the judicious choice of K.

the effects of this phenomenon can be found in the results chapter 5. 

 

The molecule “Nevariprine” is partitioned into 4 points using 

(heavy atoms only (non-Hydrogen)). The sphere radi

average cluster distance. 

There are two ways in which the K-means algorithm is approached depending upon starting 

are deterministic and non-deterministic. In the non

approach, K random seed points are generated in the vicinity of the molecule and are 

owever when random starting points are used a different solution 

means is a general purpose algorithm used in statistics and machine learning which 

cluster centres of a given data set. In order to derive the 

coordinates are initially 

means algorithm. This effectively defines the molecule as K 

atoms. The first use of K-means to generate 

(Glick  et al., 2002) in 

order to identify active sites within protein structures. See figure 4.2 below for application 

not guaranteed to 

functional groups. It is 

be separated into different 

most cases such as 

choice of K. A discussion of 

using the deterministic 

radii are derived from 

means algorithm is approached depending upon starting 

deterministic. In the non-deterministic 

generated in the vicinity of the molecule and are 

random starting points are used a different solution 
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(from a possible set of solutions) is possible each time the algorithm is run - one of which 

may be the deterministic solution. The “Lloyds” algorithm (Lloyd  et al., 1982) is a 

deterministic approach that always produces the same solution and so is the more suitable 

option for this method during algorithm development. The set of K points is determined in 

an iterative (deterministic) fashion as follows. In the case where K equals one then a single 

point is simply the geometric centroid of all atoms determined by the average coordinate 

over each of the three dimensions x,y,z as in equation 4.1 below. 

Equation 4.1 

K���������x�, y�, z�� = $�x�n
�

�&'
, y�n , z�n� 

Where K�������� is the derived geometric centroid with coordinates, x�, y�, z�	and n is the 

number of atoms in the molecule. x�, y� and z� are the ith atomic coordinates. 

If K>1 an iterative refinement procedure is performed to identify successive points that 

succinctly represent the input molecule in terms of natural data clusters.  

1. The initial seed point (K=1) used in the partitioning is the geometric centroid 

(equation 4.1) determined over all atoms and thus all atoms are members of the 

initial cluster. 

2. Next, the atom is identified that is furthest from its parent centroid point and is 

considered as the next seed point. 

3. All atoms are then re-assigned to the point that they are closest to. In this way new 

cluster membership is defined including assigning atoms to the new seed cluster 

point. 

4. Each point K is then re-positioned to be the geometric centroid of the atoms that it 

now represents  

5. Steps 3 and 4 are then iteratively repeated until the points converge, that is until 

step 4 (above) no longer produces any change in the K point placements. The 

variance is the within-cluster sum of squares and is a minimum as specified in 

equation 4.2. Each cluster point k in K has an exclusive set of atom elements j 

associated with it. Each atom can only belong to a single cluster and sharing is not 

permitted between clusters in the standard algorithm.  For each new level of K the 

process starts again at step 2. 
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The basic K-means approach can naturally lead to fragments in the molecule that are quite 

different in size and thus comparative scores between molecules may become artificially 

low. Suggested extensions to the basic K-means approach are described in chapter 6 as 

such improved annotations are likely to be an immediate next requirement for 

substantially improving the results for this approach. The K means algorithm minimises the 

variation in the set at each point and Equation 4.2 is effectively minimised over all points K 

in order to achieve a global optimum solution. 

Equation 4.2   

J = 	 �$$‖a�+ − μ+‖-
./

�&'

0

+&'
�	

Where J is the within-cluster sum of squares, K is the number of cluster points used to 

represent a molecule, S+ is the set of atoms in cluster k and a�+ is the ith atom in S+.  

4.3.2 - Fuzzy Pharmacophore point classification vector (characterisation) 

 

Each point k of K is assigned a characteristic vector which describes the pharmacophoric 

character of the point based on the atoms that the point represents. Five categories of 

pharmacophore classification are considered and contributions are derived by summing 

over each atom in the cluster. These are hydrophobic, aromatic, acceptor, donor and 

hydrophilic. In order to model the amount of pharmacophore at a point k, heavy atom 

(non-Hydrogen) atomic masses are used to contribute to a percentage by mass for each 

pharmacophore type classification. This approach is used in the first instance, since it is 

assumed atomic mass is a reasonable method to model the proportional amounts of 

constituent atoms and thus matter composition or density within a sphere. A complexity is 

that atoms can contribute to more than one type in a single point, a typical example being 

aromatic carbon which is both hydrophobic and aromatic. Mappings from atoms to 

classification types are achieved using the SMARTS definitions. In addition the x, y and z 

coordinates for the point and the scalar radius value r are also stored in the vector. The 

latter is the radius of the sphere centred at the point and is evaluated as the average 

distance from the point to each member atom. In the relatively rare case where a point 

represents a single atom then the VDW radius for the atom type is used as default radius. 

This vector of attributes is subsequently required in calculations at both the search, 

alignment and scoring phases which follow in this method. Each pharmacophore type has a 
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value between 0 and 100% which is the mass of the atoms that can match the type divided 

by the mass of all the atoms represented by the point. For example a benzene ring would 

yield 100% in both the aromatic and hydrophobic classes and 0% in the other three classes 

i.e. the values assigned across all classes do not sum to 100%.  There is no “charged” 

pharmacophore type defined, rather it is suggested later that assigned charges should be 

treated separately in order to derive a complementary field based score for each point k 

(see chapter 6 on suggestions for further work). In summary, each point k in a molecule’s 

representation is characterised as shown in figure 4.3 below. A summary of the steps to 

generate the representation is depicted in the flow diagram in figure 4.4.  

Hydrophobic - Carbon in any hybridisation state and any Halogen (Cl,Br,I and F) atoms PHO.  

Aromatic - Aromatic Carbon, Nitrogen, Oxygen or Sulphur atoms ARO. 

Acceptor – Nitrogen, Oxygen or Sulphur atoms with/without implicit H atoms ACC. 

Donor - Nitrogen and Oxygen only with implicit H atoms DON. 

Hydrophilic - Nitrogen and Oxygen atoms PHI. 

	[x, y, z, r, 4%PHO9, 4%ARO9, 4%ACC9, 4%DON9, 4%PHI9] 
Figure 4.3 - Pharmacophore classes and the characteristic vector defined for each point. 

Heavy atoms such as Chlorine and Iodine are included in the hydrophobic pharmacophore 

classification. Inclusion of these atoms could have a significant effect on the % by mass 

value assigned for a point and subsequently the evaluated scores and observed results. The 

occurrence of Iodine in drug-like molecules is relatively low and so it is assumed this effect 

would be relatively rare but Chlorine atoms occur frequently (Corey  et al., 2007). Effects 

relating to Chlorine/Iodine are discussed in the results chapter 5 for data sets containing 

those atoms.   

 

  



 

 

 

Figure 4.4 - Flow diagram for the assignment of a characteristic vector for each reduced 

point from initial input molecule or existing representation.

SMARTS definitions indicates 

atoms. 
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Flow diagram for the assignment of a characteristic vector for each reduced 

point from initial input molecule or existing representation. Atom capitalisation

indicates aliphatic atoms whereas lower case indicates aromatic 

 

Flow diagram for the assignment of a characteristic vector for each reduced 

Atom capitalisation in the 

lower case indicates aromatic 
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4.4 - Search and alignment approaches employed 

4.4.1 – Two alignment methods are investigated 

 

Two alignment methods are compared in this study. Each alignment method is applied to a 

pair of “Reduced point fuzzy pharmacophore vector” representations in order to identify a 

suitable superposition to score. The first approach can be considered to be an exhaustive 

triangle and tetrahedron alignment which uses the Euclidean origin 0 as well as the 

common axes (+Z) and planes (+YZ) as reference alignments. In order to compare two 

different (potentially scalene, different sides and angles) triangles (3 points) exhaustively 

where one is held static and the other is moved requires consideration of six separate 

alignments with potentially different associated scores. In order to compare two 

tetrahedrons (4 points) exhaustively, each of which contains 4 triangles, requires 4 * 4 * 6 = 

96 discrete alignments.  Above 4 points the number of alignments is too large to consider 

exhaustively and thus the systematic approach only deals with three or four point 

representations in this study. Aligning triangles in this way is significantly faster than the 

clique approach described below hence it provides a useful alternative method with which 

to compare to the clique approach. 

The second method is a combination of applied graph theoretical techniques and the 

Kabsch alignment algorithm. In this method a correspondence graph between two reduced 

representations is processed by the Bron-Kerbosch clique detection algorithm to identify 

cliques. The molecules are aligned by applying the Kabsch algorithm which operates on a 

set of mapped clique points to determine the transformations required in order to 

minimise the RMSD between the points defined by the clique mapping. The transformation 

is applied to the entire representation of one molecule in order to align it with the other 

molecule. The graph based approach is applicable to any number of points in the 

representation and so can align and score representations consisting of more than four 

points. These algorithms are introduced and discussed in chapter 3. 
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4.4.2 – Alignment method using clique detection and Kabsch algorithm 

4.4.2.1 - Correspondence graph(s) 

 

In order to generate an alignment for scoring, a correspondence graph is constructed using 

the reduced point representations of two molecules. The two input molecular 

representations can each be thought of as simple graphs. The correspondence graph is a 

representation of all the possible valid mappings between the two input representations at 

a specified parameterisation. The correspondence graph is based upon node and edge 

equivalence rules. Each node in the correspondence graph represents a pair-wise mapping 

of points: one from each input reduced point representation. Edges are placed in the 

correspondence graph if the user-defined distance tolerance is satisfied by the node 

member points.   

4.4.2.2 - Node type equivalence 

 

Each node in one input graph is compared with each node in the other based on the vector 

of properties assigned at each node, which include the pharmacophore properties and the 

sphere radii. Different levels of node equivalence are possible. Figures 4.5 to 4.8 describe 

the equivalence modes. Successfully mapped input graph nodes represent a single node in 

the correspondence graph. The ‘~’ operator used below denotes the specified test, if both 

are equal to zero or both are > 0%. 

Volume mode - No pharmacophore equivalence constraints are enforced for any node 

mapping. This is the least strict setting which will generate many node mappings in the 

correspondence graph. See figure 4.5 below. In order to limit the score to spheres of a 

similar size a radius tolerance is specified. 

 

 

 

 

 



 

Figure 4.5 - Volume mode defined

Radius tolerance - A radius tolerance is used in the node equality test so that the 

difference in radii between the two points is within a certain specified tolerance (figure 

4.6). Thus spheres that have dissimilar radii are not valid mappings and do not result in 

nodes in the correspondence graph. 

Figure 4.6 - Radius tolerance

Partial mode – The node equivalence test treats each pharmacophore type as a Boolean 

value with true indicating that the % by mass for that type is > 0 and false indicating that % 

by mass is 0. The numerical values are used later in scoring. Partial mode then treats two 

nodes A and B as equivalent if the Boolean values for PHO or ARO are the same and 

of the Boolean values for 

AND/OR logic implemented
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Sphere	S	 � 	 2x, y, z, r@ 

 

Volume mode defined. 

A radius tolerance is used in the node equality test so that the 

between the two points is within a certain specified tolerance (figure 

hat have dissimilar radii are not valid mappings and do not result in 

nodes in the correspondence graph.  

  SD~SF	if	|rD � rF| J 	 r��K��L��� 

 

adius tolerance defined. 

The node equivalence test treats each pharmacophore type as a Boolean 

value with true indicating that the % by mass for that type is > 0 and false indicating that % 

. The numerical values are used later in scoring. Partial mode then treats two 

nodes A and B as equivalent if the Boolean values for PHO or ARO are the same and 

of the Boolean values for ACC, DON or PHI are the same. See figure 4.7 which 

AND/OR logic implemented. A radius tolerance is also (optionally) specified as in figure 4.6. 

A radius tolerance is used in the node equality test so that the 

between the two points is within a certain specified tolerance (figure 

hat have dissimilar radii are not valid mappings and do not result in 

The node equivalence test treats each pharmacophore type as a Boolean 

value with true indicating that the % by mass for that type is > 0 and false indicating that % 

. The numerical values are used later in scoring. Partial mode then treats two 

nodes A and B as equivalent if the Boolean values for PHO or ARO are the same and if any 

ee figure 4.7 which depicts the 

specified as in figure 4.6.  



 

�PHOD~PHOF	OR	ARO

Figure 4.7 - Partial mode defined

Exact mode – The node equivalence test also treats each pharmacophore type as a Boolean 

value (present or absent). Two nodes A and B are considered equivalent if the values for all 

five pharmacophore types are the same. This is the strictest setting which should

the fewest node equivalences and smallest correspondence graphs. S

shows the AND/OR logic implemented

figure 4.6.  

�PHOD~PHOF	AND	ARO

 

 

Figure 4.8 - Exact mode
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SD~SF	IF 

AROD~AROF�	AND	�ACCD~	ACCF	OR	DOND~DON

 

 

Partial mode defined. 

The node equivalence test also treats each pharmacophore type as a Boolean 

value (present or absent). Two nodes A and B are considered equivalent if the values for all 

five pharmacophore types are the same. This is the strictest setting which should

the fewest node equivalences and smallest correspondence graphs. See figure 4.8 which 

shows the AND/OR logic implemented. A radius tolerance is also (optionally

SD~SF	IF 

AROD~AROF	AND	ACCD~	ACCF	AND	DOND~DON

 

Exact mode defined. 

DONFOR	PHID~PHIF) 

The node equivalence test also treats each pharmacophore type as a Boolean 

value (present or absent). Two nodes A and B are considered equivalent if the values for all 

five pharmacophore types are the same. This is the strictest setting which should generate 

ee figure 4.8 which 

optionally) specified as in 

DONFAND	PHID~PHIF� 



 

4.4.2.3 - Edge distance tolerance   

 

Edges are formed between nodes in the correspondence graph based upon distances in the 

input graphs and using a specifie

shows two correspondence graph nodes. Node A1

A1 in molecule A and node B1 in molecule B. Similarly another mapping exists between A2 

in molecule A and B2 in mole

difference in distance between the nodes A1 and A2 in molecule A

between nodes B1 and B2 in molecule B

Figure 4.9 - Edge tolerance defines if an edge is placed in the correspondence graph

It is important at this stage that 

form.  An edge cannot be placed under any circums

either of the input graphs (figure 4.10).

 

Figure 4.10 - Self reference nodes are invalid and are not allowed to form

Figure 4.11 shows a flow diagram of events to generate a correspondence graph.
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Edge distance tolerance    

Edges are formed between nodes in the correspondence graph based upon distances in the 

input graphs and using a specified distance tolerance d��K��L��� parameter

shows two correspondence graph nodes. Node A1-B1 represents a mapping between node 

A1 in molecule A and node B1 in molecule B. Similarly another mapping exists between A2 

in molecule A and B2 in molecule B. An edge is formed in the correspondence graph if the 

distance between the nodes A1 and A2 in molecule A, 	dD	
between nodes B1 and B2 in molecule B, 	dF	, is less than the specified distance tolerance

  dD~dF	if	|�dD − dF�| 	J 	d��K��L��� 

 

dge tolerance defines if an edge is placed in the correspondence graph

It is important at this stage that edges involving self referencing nodes are not allowed to 

n edge cannot be placed under any circumstances for a node back to itself from 

either of the input graphs (figure 4.10). 

elf reference nodes are invalid and are not allowed to form

Figure 4.11 shows a flow diagram of events to generate a correspondence graph.

Edges are formed between nodes in the correspondence graph based upon distances in the 

parameter. Figure 4.9 

B1 represents a mapping between node 

A1 in molecule A and node B1 in molecule B. Similarly another mapping exists between A2 

cule B. An edge is formed in the correspondence graph if the 

	, and the distance 

is less than the specified distance tolerance:  

 

dge tolerance defines if an edge is placed in the correspondence graph. 

self referencing nodes are not allowed to 

tances for a node back to itself from 

 

elf reference nodes are invalid and are not allowed to form. 

Figure 4.11 shows a flow diagram of events to generate a correspondence graph. 



 

Figure 4.11 - Flow diagram for

Vertex and edge equality rules are described in 4.4.2.2 and 4.4.2.3.

The construction of a correspondence graph from two input graphs is illustrated in figure 

4.12 below.    

Figure 4.12 - A correspondence graph

specified node and edge tolerance

for mapping with each node in representation B (B1

for distance tolerance 

case are A1-B1,A1-B3,A1
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ow diagram for correspondence graph node and edge mapping logic

dge equality rules are described in 4.4.2.2 and 4.4.2.3. 

The construction of a correspondence graph from two input graphs is illustrated in figure 

correspondence graph is formulated using both representations 

node and edge tolerances. Each node in representation A (A1

for mapping with each node in representation B (B1-B4). Surviving nodes

ce tolerance yielding the correspondence graph (orange). Failing nodes in this 

B3,A1-B4,A2-B1,A2-B2,A2-B3,A3-B1,A3-B2,A3-B4,A4

 

node and edge mapping logic. 

The construction of a correspondence graph from two input graphs is illustrated in figure 

 

formulated using both representations and user 

s. Each node in representation A (A1-A4) is compared 

. Surviving nodes are then tested 

Failing nodes in this 

B4,A4-B1,A4-B2,A4-B4. 



 

Finally the correspondence graph is available for input into the Bron

detection algorithm to search and identif

prior to point alignment and overlap scoring.

4.4.2.4 - Bron-Kerbosch clique detection algorithm

 

The set of maximal cliques as identified by the Bron

is then extracted from the correspondence graph for subsequent alignment and scoring.  

The maximal cliques are defined as the set of cliques that 

cliques. The Java implementation for the Bron

(Samudrala  et al., 1998)

algorithms is given by (Johnston  et al., 1976)

identification. 

 

Figure 4.13 - The set of 

correspondence graph.

4.4.2.5 - Kabsch pair-wise

 

The Kabsch algorithm (Kabsch  et al., 1976)

vector that will align two sets of points for which a 1:1 mapping exists so that the RMSD of 

the mapped points is minimised. The translation vector superimposes the geometric 

centroids of the points represented in the extracted clique since the geometric centroids 
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Finally the correspondence graph is available for input into the Bron-Kerbosch clique 

algorithm to search and identify all the maximal connected sub

prior to point alignment and overlap scoring. 

Kerbosch clique detection algorithm 

he set of maximal cliques as identified by the Bron-Kerbosch (Bron  et al., 1973)

is then extracted from the correspondence graph for subsequent alignment and scoring.  

ues are defined as the set of cliques that are not subgraph

ava implementation for the Bron-Kerbosch algorithm used is that of

(Samudrala  et al., 1998). A further detailed account of Bron-Kerbosch and clique 

(Johnston  et al., 1976). Figure 4.13 aims to demonstrate clique 

The set of maximal cliques is identified and extracted from the 

correspondence graph. In this case, the isolated green triangle shown 

wise alignment algorithm 

(Kabsch  et al., 1976) identifies both a rotation matrix and translation 

will align two sets of points for which a 1:1 mapping exists so that the RMSD of 

the mapped points is minimised. The translation vector superimposes the geometric 

centroids of the points represented in the extracted clique since the geometric centroids 

Kerbosch clique 

y all the maximal connected subgraphs or cliques 

(Bron  et al., 1973) algorithm 

is then extracted from the correspondence graph for subsequent alignment and scoring.  

ubgraphs of any other 

Kerbosch algorithm used is that of 

Kerbosch and clique 

e 4.13 aims to demonstrate clique 

 

identified and extracted from the 

 is a maximal clique.  

both a rotation matrix and translation 

will align two sets of points for which a 1:1 mapping exists so that the RMSD of 

the mapped points is minimised. The translation vector superimposes the geometric 

centroids of the points represented in the extracted clique since the geometric centroids 
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must be first aligned in order to determine the correct rotation matrix U. The maths 

required to extract this rotation is relatively straightforward and is quite well known in this 

field and is briefly described below. The Kabsch algorithm has been used more extensively 

in Bioinformatics than Chemoinformatics applications and was briefly mentioned in 

Chapter 3 as a component of another 3D alignment method (Baum  et al., 2006). The sets 

of points in each representation that constitute the clique mapping are aligned from their 

respective starting positions so that the RMSD between the mapped points is minimised. 

The Kabsch algorithm is achieved by completion of the following steps: 

1. Let CQ be the n by 3 matrix whose rows are the x,y,z coordinates of the mapped 

points in Q and CT be the n by 3 matrix whose rows are the x,y,z coordinates of the 

mapped points in T, where n is the size of the clique. CQ and CT are placed in the 

same reference frame by translating the centroid of each to the origin 0. 

2. A 3 × 3  covariance matrix M = CP	Q	CQ is formed (NB T   indicates matrix transpose). 

M will capture the extent to which the ordered input data CQ and CT exhibit 

variance. The singular value decomposition theorem (Press  et al., 2007) states that 

M can be written as in equation 4.3.  

Equation 4.3 

M = V. S.WQ 

Where V is the left singular vectors (eigenvectors or MMQ), W is the right singular 

vectors (eigenvectors of MQM). S is the square roots of the eigenvalues of either 

MQM or MMQ. S (or the diagonal of S) is known as the non-zero Singular values. 

3. The sign of the determinant d of M is then extracted. 

Equation 4.4 

d � sign�determinant�M�� 
Where M is the covariance matrix. 

4. Matrices from the singular value decomposition are re-cast to give the required 

matrix U, also called the “rotation vector” U in equation 4.5. The rotation is 

subsequently applied to the target representation to minimise the RMSD with the 

query.   

 



 

Equation 4.5  

Where matrix U defines 

Figure 4.14 illustrates the 

 

 

Figure 4.14 - Diagram depicting K

from each four point representation

4.4.2.6 - Overall workflow using Bron

alignment 

 

In summary, in order to generate an alignment for scoring two “Reduced 

pharmacophore vector” objects  the two simple graph representations are input into a 

correspondence graph construction stage, with specified user parameterisation (node 

equivalence and edge distance tolerance). Next, the correspondence graph is

the Bron-Kerbosch clique detection algorithm and the set of maximal cliques which are 

greater than or equal to size 3 are extracted. Finally all sets of paired points in the cliques 

identified above are input into the Kabsch algorithm and the
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U = 	W. Z1 0 00 1 00 0 d] . V
Q 

defines the required rotation to align CT with CQ with minimum RMSD

Figure 4.14 illustrates the Kabsch alignment as described by the steps above. 

Diagram depicting Kabsch alignment of clique contributing nodes

representation.  

orkflow using Bron-Kerbosch clique detection followed by Kabsch 

In summary, in order to generate an alignment for scoring two “Reduced 

pharmacophore vector” objects  the two simple graph representations are input into a 

correspondence graph construction stage, with specified user parameterisation (node 

equivalence and edge distance tolerance). Next, the correspondence graph is

Kerbosch clique detection algorithm and the set of maximal cliques which are 

greater than or equal to size 3 are extracted. Finally all sets of paired points in the cliques 

identified above are input into the Kabsch algorithm and the resulting minimal RMSD 

with minimum RMSD.  

steps above.  

 

absch alignment of clique contributing nodes (green) 

Kerbosch clique detection followed by Kabsch 

In summary, in order to generate an alignment for scoring two “Reduced point fuzzy 

pharmacophore vector” objects  the two simple graph representations are input into a 

correspondence graph construction stage, with specified user parameterisation (node 

equivalence and edge distance tolerance). Next, the correspondence graph is treated with 

Kerbosch clique detection algorithm and the set of maximal cliques which are 

greater than or equal to size 3 are extracted. Finally all sets of paired points in the cliques 

resulting minimal RMSD 



 

alignments are scored according to the volume and property scoring functions discussed in 

section 4.5. A summary diagram of the overall workflow is given in figure 4.15. 

Figure 4.15 - Flow diagram for

alignment. 

4.4.3 - Systematic exhaustive alignment

4.4.3.1 – Alignment up to 

 

An exhaustive systematic alignment approach was also developed in order to align two 

representations by points/sphere centroids. This was achiev

origin, axes and planes as common alignment references prior to scoring. In this way an 

alternative search method could act as a comparative benchmark for the graph based 

alignment approach for 3 and 4 point representations.  It i

representations above 4 points would become computationally very difficult indeed since 

the number of combinations of possible alignments soon expands to an untenable number 

of comparisons. For each level of representation the ali

optimisation approach was also implemented and is discussed. 

the alignment of up to 3 or 4 points easily and in this context can be thought of as triangle 

or tetrahedron matching

adopted both historically and in more contemporary methods

Kinnings  et al., 2009; Mason  et al., 1999a; Mason  et al., 1999b)
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alignments are scored according to the volume and property scoring functions discussed in 

. A summary diagram of the overall workflow is given in figure 4.15. 

Flow diagram for correspondence graph, clique detection and Kabsch 

Systematic exhaustive alignment 

Alignment up to four points 

An exhaustive systematic alignment approach was also developed in order to align two 

representations by points/sphere centroids. This was achieved by using the Euclidean 

origin, axes and planes as common alignment references prior to scoring. In this way an 

alternative search method could act as a comparative benchmark for the graph based 

alignment approach for 3 and 4 point representations.  It is clear that to align two 

representations above 4 points would become computationally very difficult indeed since 

the number of combinations of possible alignments soon expands to an untenable number 

of comparisons. For each level of representation the alignment is described below. An 

optimisation approach was also implemented and is discussed. Systematic search will allow 

the alignment of up to 3 or 4 points easily and in this context can be thought of as triangle 

or tetrahedron matching. Three and four point molecular representations have been 

both historically and in more contemporary methods (Jenkins  et al., 2004; 

Kinnings  et al., 2009; Mason  et al., 1999a; Mason  et al., 1999b). 

alignments are scored according to the volume and property scoring functions discussed in 

. A summary diagram of the overall workflow is given in figure 4.15.  

 

detection and Kabsch 

An exhaustive systematic alignment approach was also developed in order to align two 

ed by using the Euclidean 

origin, axes and planes as common alignment references prior to scoring. In this way an 

alternative search method could act as a comparative benchmark for the graph based 

s clear that to align two 

representations above 4 points would become computationally very difficult indeed since 

the number of combinations of possible alignments soon expands to an untenable number 

gnment is described below. An 

Systematic search will allow 

the alignment of up to 3 or 4 points easily and in this context can be thought of as triangle 

representations have been 

(Jenkins  et al., 2004; 



 

4.4.3.2 – Single point alignment

 

The query is aligned to the target molecule by placing each point on the universe origin via 

a single translation of each representation to the origin 0 

 

Figure 4.16 - Single point (

4.4.3.3 – Two point alignment

 

Two molecule representations are aligned by placing one point on the universe origin and 

the other point/node projecting along the +Z

required to compare two representations for this level 

can be rotated about its mid

applied by nudging the smaller of the two representations along the +Z

larger of the two representations and then re

a single translation and two

configurations. See figure 4.17.

Figure 4.17 - Two point (
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nt alignment 

The query is aligned to the target molecule by placing each point on the universe origin via 

a single translation of each representation to the origin 0 – see figure 4.16.

 

Single point (K=1) alignment.  

ignment 

Two molecule representations are aligned by placing one point on the universe origin and 

the other point/node projecting along the +Z-axis. There are two possible arrangements 

required to compare two representations for this level whereby one of t

can be rotated about its mid-point by π and re-aligned. Simple optimisation can also be 

applied by nudging the smaller of the two representations along the +Z

larger of the two representations and then re-scoring. A two point representation requires 

a single translation and two rotations in order to initially align correctly both possible 

configurations. See figure 4.17. 

 

Two point (K=2) alignment. 

The query is aligned to the target molecule by placing each point on the universe origin via 

see figure 4.16. 

Two molecule representations are aligned by placing one point on the universe origin and 

axis. There are two possible arrangements 

one of the representations 

. Simple optimisation can also be 

applied by nudging the smaller of the two representations along the +Z-axis within the 

scoring. A two point representation requires 

rotations in order to initially align correctly both possible 



 

4.4.3.4 – Three point alignment

 

Two molecule representations are aligned by placing one point/node on the universe o

0 with another point/node projecting down the +Z

the +YZ plane. There are 

triangle is scalene (no equal sides or angles) and that each point/node 

follows that if one triangle is held static

to superimpose another 

nudging the smaller of the two representations defined on 

the two representations and then re

translation and two rotations followed by a torsion angle plane rotation in order to initially 

align correctly for each configurati

 

Figure 4.18 - Three point (

4.4.3.5 – Four point alignment using sets of three points

 

Two molecule representations are aligned by placing one point/node on the universe origin 

0 with another point/node projecting dow

plane. Finally the fourth point will exist somewhere else in the 3D Euclidean space. As 

described above, there are 

three point representations.

in nature. In each tetrahedron there are 4 triangles and thus 

compare all combinations of triangles 
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Three point alignment 

Two molecule representations are aligned by placing one point/node on the universe o

0 with another point/node projecting down the +Z-axis and the third point/node placed in 

plane. There are six possible ways to place a single triangle, assuming that the 

triangle is scalene (no equal sides or angles) and that each point/node is different. It 

that if one triangle is held static then there are six possible combinations 

superimpose another three point representation. Optimisation can also be applied by 

nudging the smaller of the two representations defined on the +Z-axis within the larger of 

the two representations and then re-scoring. A three point representation requires a single 

translation and two rotations followed by a torsion angle plane rotation in order to initially 

align correctly for each configuration. See figure 4.18. 

 

Three point (K=3) alignment. 

Four point alignment using sets of three points 

Two molecule representations are aligned by placing one point/node on the universe origin 

0 with another point/node projecting down the +Z-axis and a third point placed in the +YZ 

plane. Finally the fourth point will exist somewhere else in the 3D Euclidean space. As 

described above, there are six possible arrangements to align and compare two different 

three point representations. An assumption is made that all points are potentially different 

In each tetrahedron there are 4 triangles and thus 4 * 4 * 6 = 

compare all combinations of triangles in one tetrahedron with all combinations in another

Two molecule representations are aligned by placing one point/node on the universe origin 

axis and the third point/node placed in 

to place a single triangle, assuming that the 

is different. It 

combinations required 

can also be applied by 

axis within the larger of 

scoring. A three point representation requires a single 

translation and two rotations followed by a torsion angle plane rotation in order to initially 

Two molecule representations are aligned by placing one point/node on the universe origin 

axis and a third point placed in the +YZ 

plane. Finally the fourth point will exist somewhere else in the 3D Euclidean space. As 

possible arrangements to align and compare two different 

n assumption is made that all points are potentially different 

= 96 possible ways to 

with all combinations in another. 



 

A four point representation requires a single translation and 

torsion angle plane rotation in order to initially align each triangle correctly within each 

tetrahedron. See figure 4.19.

Figure 4.19 - Four point (

4.4.3.6 – Torsion angle for alignment of two planes

 

In the case of 3 and 4 point representations a torsion angle is required which is defined 

between two planes in order to rotate the plane defined by 3 points into the +YZ plane. 

This requires finding the surfa

the +Z-axis and the point that is to be aligned with the +YZ plane. Both planes share the 

common vector +Z-axis at this stage in the processing and the angle between the planes 

defines the rotation required. See equation 4.

Equation 4.6 

Where ω is the angle defined between two planes

n_F respectively.  

4.4.3.7 – Optimisation along the +Z

 

As mentioned an optional optimi

than 1 i.e. 2, 3 and 4. One set of points that is placed on the +Z

a defined increment and the scoring re
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oint representation requires a single translation and two rotation

torsion angle plane rotation in order to initially align each triangle correctly within each 

tetrahedron. See figure 4.19.  

 

Four point (K=4) alignment. 

Torsion angle for alignment of two planes 

In the case of 3 and 4 point representations a torsion angle is required which is defined 

between two planes in order to rotate the plane defined by 3 points into the +YZ plane. 

This requires finding the surface normal between the +YZ plane and the plane defined by 

axis and the point that is to be aligned with the +YZ plane. Both planes share the 

axis at this stage in the processing and the angle between the planes 

equired. See equation 4.6. 

cosω = 	n_D.		n_F 

is the angle defined between two planes A and B with normal unit vectors 

Optimisation along the +Z-axis 

As mentioned an optional optimisation step is possible for representation levels greater 

than 1 i.e. 2, 3 and 4. One set of points that is placed on the +Z-axis can be nudged along by 

a defined increment and the scoring re-evaluated. This can actually occur for every triangle 

rotations followed by a 

torsion angle plane rotation in order to initially align each triangle correctly within each 

In the case of 3 and 4 point representations a torsion angle is required which is defined 

between two planes in order to rotate the plane defined by 3 points into the +YZ plane. 

ce normal between the +YZ plane and the plane defined by 

axis and the point that is to be aligned with the +YZ plane. Both planes share the 

axis at this stage in the processing and the angle between the planes 

normal unit vectors n_D and 

sation step is possible for representation levels greater 

axis can be nudged along by 

evaluated. This can actually occur for every triangle 



 

and tetrahedron alignment ensuring the optimisation is attempted for all alignments. The 

default setting for this increment is currently 0.01. Figure 4.20 illustrates this additional 

translation of the representation along the Z

Figure 4.20 - Optimisation along the +Z

increment. 

  

4.5 - Scoring function and similarity 

4.5.1 – Scoring method and alignments

 

Given two aligned representations 

the quality of the alignment. This is achieved by evaluating either a volume

a volume and properties overlap 

clique size is also reported and will be ident

score, since the cliques are extracted prior to scoring. Since three points are needed in 

order to generate an alignment, cliques of size less than three are eliminated with scores 

set to zero. These score se

compared for the given alignment. 

alignments irrespective of how the alignment was achieved. The best score witnessed for 

each of the volume and property objectives is retained and reported hence it is possible 

that the maximal volume and properties scores are obtained from different alignments, 

however all scores will be based on the same clique size. It is important to distinguish 

between the ways the scoring might be employed for the shape and sub

the Clique / Kabsch approach. The sub

scoring whereas the shape mode considers the entire representation. The variation 

possible within the basic scoring model is now elucidated.
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edron alignment ensuring the optimisation is attempted for all alignments. The 

default setting for this increment is currently 0.01. Figure 4.20 illustrates this additional 

translation of the representation along the Z-axis in order to optimise the alignme

Optimisation along the +Z-axis by shifting one representation by a small 

Scoring function and similarity coefficient 

Scoring method and alignments 

Given two aligned representations then the superposition obtained can be scored to assess 

the quality of the alignment. This is achieved by evaluating either a volume

properties overlap score. For the Clique / Kabsch approach the identified 

clique size is also reported and will be identical in size for both the volume and properties 

score, since the cliques are extracted prior to scoring. Since three points are needed in 

order to generate an alignment, cliques of size less than three are eliminated with scores 

set to zero. These score sets measure the 3D similarity between the two molecules being 

compared for the given alignment. The scoring scheme is applied in an identical way to all 

alignments irrespective of how the alignment was achieved. The best score witnessed for 

me and property objectives is retained and reported hence it is possible 

that the maximal volume and properties scores are obtained from different alignments, 

however all scores will be based on the same clique size. It is important to distinguish 

the ways the scoring might be employed for the shape and sub

the Clique / Kabsch approach. The sub-shape mode considers only the clique spheres in 

as the shape mode considers the entire representation. The variation 

ithin the basic scoring model is now elucidated. 

edron alignment ensuring the optimisation is attempted for all alignments. The 

default setting for this increment is currently 0.01. Figure 4.20 illustrates this additional 

axis in order to optimise the alignment. 

 

by shifting one representation by a small 

ined can be scored to assess 

the quality of the alignment. This is achieved by evaluating either a volume overlap score or 

For the Clique / Kabsch approach the identified 

ical in size for both the volume and properties 

score, since the cliques are extracted prior to scoring. Since three points are needed in 

order to generate an alignment, cliques of size less than three are eliminated with scores 

ts measure the 3D similarity between the two molecules being 

in an identical way to all 

alignments irrespective of how the alignment was achieved. The best score witnessed for 

me and property objectives is retained and reported hence it is possible 

that the maximal volume and properties scores are obtained from different alignments, 

however all scores will be based on the same clique size. It is important to distinguish 

the ways the scoring might be employed for the shape and sub-shape scoring in 

shape mode considers only the clique spheres in 

as the shape mode considers the entire representation. The variation 



 

4.5.2 – Sphere volume overlap function

 

For an alignment of two

derived from two molecules, query Q and target T then a

sphere overlap is defined by equation 4.

Equation 4.7 

Where x,y,z and r are the coordinates and radii of spheres

The radius of each sphere i

atoms in the cluster point. If the two spheres do not overlap then they do not contribute to 

the overlap score and SOV
Equation 4.8 

Where d is the distance between two spheres j and k and

Figure 4.21 - No overlap

If two spheres overlap, then the common overlap volume is based upon the distance

between the two sphere centroids and the radius of each sphere. This volume can be 

thought of as the sum of the two lens cap contributions that define the discus of the sphere 

intersection as illustrated in figure 4.22. 

defined as shown in equation 4.

Equation 4.9  
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Sphere volume overlap function 

an alignment of two “Reduced point fuzzy pharmacophore vector” 

derived from two molecules, query Q and target T then a simple initial “Boolean” tes

sphere overlap is defined by equation 4.7. 

(xb – x+�2 + (yb – y+)2 + (zb – z+)2   < (rb+ r+)2 

Where x,y,z and r are the coordinates and radii of spheres j and k, one from each molecule.

The radius of each sphere is defined by the average distance between the centroid and the 

atoms in the cluster point. If the two spheres do not overlap then they do not contribute to 

SOVb+ � 0. Equation 4.8 is satisfied and figure 4.21 shows the case.

d   >= rb+ r+ 

distance between two spheres j and k and rband r+ are the 

 

No overlap and no score contribution. 

If two spheres overlap, then the common overlap volume is based upon the distance

between the two sphere centroids and the radius of each sphere. This volume can be 

thought of as the sum of the two lens cap contributions that define the discus of the sphere 

intersection as illustrated in figure 4.22. The distance between the centroids 

equation 4.9. 

d = [(xc – x+)2 + (yb – y+)2 + (zb – z+)2 ]1/2 

representations 

simple initial “Boolean” test for 

, one from each molecule. 

s defined by the average distance between the centroid and the 

atoms in the cluster point. If the two spheres do not overlap then they do not contribute to 

is satisfied and figure 4.21 shows the case. 

are the radii of j and k 

If two spheres overlap, then the common overlap volume is based upon the distance 

between the two sphere centroids and the radius of each sphere. This volume can be 

thought of as the sum of the two lens cap contributions that define the discus of the sphere 

The distance between the centroids for j and k is 



 

Where d is the distance and x,y and z are the coordinates of two spheres j and k

respectively. Two spheres give a volume overlap

4.10 which is derived from a simpler 2D circle

al.). 

Equation 4.10  

SOVb+ � πer

Where d is a non-zero distance 

spheres j and k respectively

Figure 4.22 - Sphere overlap geometry

If two spheres overlap, and the sphere centroids are exactly aligned as in figure 4.23, then 

the common overlap volume is the volume of the smaller of the two spheres based upon 

the radius of each sphere.

Equation 4.11 

If	the

If	the
Where rband r+	 are the radii of two spheres j and k respectively

Figure 4.23 - Sphere centroids are exactly aligned
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distance and x,y and z are the coordinates of two spheres j and k

Two spheres give a volume overlap SOVb+	according to the following equation 

which is derived from a simpler 2D circle-circle intersection approach

erb � r+ � df-�d- + 2drb � 3rb- � 2dr+ � 6rb � r
12d

distance as defined in equation 4.9 and rband r+	

respectively. SOVb+ is the volume overlap.  

 

Sphere overlap geometry. 

If two spheres overlap, and the sphere centroids are exactly aligned as in figure 4.23, then 

the common overlap volume is the volume of the smaller of the two spheres based upon 

the radius of each sphere. One of the variants in equation 4.11 below is used.

the	expression	r+ 	i 	 rb	is	true	then		SOVb+ �
4
3
	π	

the	expression	rb 	i 	 r+	is	true		then	SOVb+ �
4
3
	π	

are the radii of two spheres j and k respectively 

 

Sphere centroids are exactly aligned. 

distance and x,y and z are the coordinates of two spheres j and k 

according to the following equation 

circle intersection approach (Weisstein  et 

r+ � 3r+-�
 

	 are the radii of two 

If two spheres overlap, and the sphere centroids are exactly aligned as in figure 4.23, then 

the common overlap volume is the volume of the smaller of the two spheres based upon 

below is used. 

	r+l 

	rbl 
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A molecule overlap volume (MOVPQ) is thus definable as a summation of sphere overlap 

values over all spheres in query (Q) and target (T). as shown in equation 4.12 below. 

Equation 4.12  

MOVPQ = $$SOVb+
0

+&'
	

c

b&'
 

Where MOVPQ is the summation over all combinations of points J and K in the query Q and 

target T, respectively. 

4.5.3 – Normalising the volume scores and Tanimoto coefficient 

 

Finally the molecule overlap volume is normalised in order to give a Tanimoto index 

norm_MOVPQ as in equation 4.15, with a value between 0 and 1. The query and target 

volumes (VP,VQ) used in this equation are the summation of sphere volumes as in equation 

4.13 and 4.14.  

Equation 4.13 

VP = $Volume	eQbf		
c

b&'
 

Where VPis the total volume, J is the number of spheres defined, for query molecule Q.  

Equation 4.14  

VQ =$Volume	(T+)
0

+&'
 

Where VQ is the total volume, K is the number of spheres defined, for target molecule T. 

Equation 4.15  

norm_MOVPQ = MOVPQVP + VQ −MOVPQ 

Where norm_MOVPQ is the Tanimoto or normalised coefficient for overlap of molecules Q 

and T. VP and VQ are described above. norm_MOVPQis referred to as the volume score V, in 

chapter 5.  
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4.5.4 – Percentage pharmacophore type weighted overlap function 

 

In addition to a pure volume overlap score, a properties overlap score can also be derived 

by using the % by mass value for each pharmacophore type in each of the points in the 

“Reduced point fuzzy pharmacophore vector” representations. Thus, the notion of a fuzzy 

property distribution is modelled and scored, by multiplying the volume overlap of two 

spheres using the percentage by mass for each pharmacophore type. If no such interaction 

type exists (% by mass equals zero in either representation) then a score of zero will be 

evaluated for that interaction type. This scoring should give a good indication of the 

overlap of biological property distribution for each alignment. The overlap volume of 

spheres j and k weighted by property is given in equation 4.16. 

Equation 4.16  

PHO_SOVb+ = Qb%massqrs × T+%massqrs × SOVb+ 

Where PHO_SOVb+ is the mass weighted volume overlap using Qb and T+ % by mass for the 

Hydrophobic (PHO) pharmacophore type. 

The overlap of molecules Q and T weighted by pharmacophore property is achieved by 

summation over all spheres, to give the molecule score as shown in equation 4.17 below. 

Equation 4.17 

PHO_MOVPQ = $$PHO_SOVb+
0

+&'
	

c

b&'
 

Where PHO_MOVPQ is the summation over all combinations of points j and k in the query Q 

and target T respectively and PHO_SOVb+ is the mass weighted volume overlap of the j th 

and k th spheres, for the Hydrophobic (PHO) pharmacophore type. 

This score is then normalised to between 0 and 1 by evaluating the identity equivalent of 

the pharmacophore type for the query Q and target T (equation 4.18, 4.19 and 4.20).  

Equation 4.18 

PHO_MOVP = $Qb.%bymassqrs- × Volume	eQbf		
c

b&'
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Where PHO_MOVP is the volume of the query molecule Q. 

Equation 4.19 

PHO_MOVQ = $T+. %bymassqrs- × Volume	(T+)G
0

+&'
 

Where PHO_MOVQ  is the identity volume of the target molecule T. 

Equation 4.20 

norm_PHO_MOVPQ = PHO_MOVPQPHO_MOVP 	+ PHO_MOVQ − PHO_MOVPQ 

Where norm_PHO_MOVPQ is the Tanimoto or normalised coefficient for overlap of 

molecules Q and T, for the Hydrophobic (PHO) pharmacophore type. 

This process is repeated for each of the five pharmacophore types (PHO, ARO, ACC, DON 

and PHI) to give a set of 5 pharmacophore coefficients (each between 0 and 1) which are 

then summed to give a final property score P with value between 0 and 5 (identity = 5). 

Without prior knowledge of the activity class, it is reasonable that no further weighting 

scheme is applied to any particular pharmacophore class. See equation 4.21. 

Equation 4.21  

P = (norm_PHO_MOVPQ + norm_ARO_MOVPQ	 + norm_ACC_MOVPQ + norm_DON_MOVPQ 

+ norm_PHI_MOVPQ) 

Where P is the sum over all pharmacophore types giving a value between 0 and 5. 

4.5.5 – Scoring the systematic alignment 

 

Two representations are aligned exhaustively by attempting all possible superpositions and 

then scored. The best scores evaluated for volume and properties (V and P) over all 

possible alignments are retained and reported for each query and target comparison. The 

best volume and properties scores may in fact be from two different alignments. Both the 

volume V and properties P scoring schemes derived can be applied directly after both 

alignment methods.  
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4.5.6 – Scoring the clique and Kabsch alignment 

 

In the clique and Kabsch alignment approach it is possible to differentiate between shape 

and sub-shape modes. In “Shape” mode, after the alignment all the points in each 

representation are considered in the scoring phase. The best scores evaluated for volume 

and properties (V and P) over all possible alignments are retained and reported for each 

query and target comparison. The volume and properties scores may be from two different 

alignments.  For Sub-shape scoring, only the clique portions of the representations are 

included in scoring irrespective of the rest of either the query or target. In both cases, the 

clique size is also reported.  

Equation 4.22 

MOVPQ = $ $ SOVb+
vK�wx�	0

+&'
	

vK�wx�	c

b&'
 

PH4_MOVPQ = $ $ Qb.%bymassyz{ × T+.%bymassyz{ × SOVb+
vK�wx�	0

+&'
	

vK�wx�	c

b&'
 

Where this example is generalised and PH4 represent all five pharmacophore types. 

 

4.5.7 – Evaluated similarity coefficients 

 

For each alignment method, a set of similarity coefficients for the best volume and 

properties scores observed are reported.  For the systematic alignment, the first element of 

the vector is the maximum volume objective found MAX(V)	and the second element is the 

maximum properties sum is also reported MAX(P). As can be seen from the previous 

equations, the properties score is highly dependent upon the volume scores so in reality 

they are closely related and in many cases they will be from the same alignment.  

Equation 4.23 shows the output for systematic coefficients observed. 

Equation 4.23 

Coef|icients � }2MAX�V� ,MAX�P�]� 
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Where V is in the range 0 to 1 and P is in the range 0 to 5. 

In the case of Clique/Kabsch alignment in the third element the clique size is also reported. 

This may also help to indicate the extent of the commonality between the structures. 

Equation 4.24 shows the output coefficients. Both Shape and sub-shape correlation vectors 

are identical in structure in that the clique size and identity will be equivalent for these two 

modes. Please see figure 4.24 below for some example alignments and scores.  

 Equation 4.24 

Coef|icients � 2MAX�V� , MAX�P�,MAX	�clique	size�] 
Where V is in the range 0 to 1 and P is in the range 0 to 5. 
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COX2 query aligned with ZINC active, clique size of 4 and property score  P=3.56 

 
 

 

 

GR query aligned with ZINC active, clique size of 4 and property score P=3.72 

  
 

 

SAHH query aligned with ZINC active, clique size of 4 and property score P=4.06 

   

 

Figure 4.24 - Several crystal query structures (from DUD) are aligned (clique/Kabsch) and 

scored in shape mode with high scoring actives found for the set. Parameters are K=4, 

distance tolerance=2.0, radius tolerance=2.0, node match mode=EXACT). 
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4.6 - Implementation details 

 

4.6.1 - Data pre-processing steps required 

 

Initially molecules require some pre-processing prior to mapping to the “Reduced point 

fuzzy pharmacophore vector” representation. This pre-processing simply ensures that the 

representation mapping protocol will consistently receive suitable 3D conformation data 

points with the desired protonation state and that each atom is correctly represented by a 

suitable SMARTS encoding which is then used to correctly assign pharmacophore type 

information. Molecules are read in from SDF files and handled using ChemAxon’s basic 

molecule instantiation. Each molecule is aromatized and further de-protonated. Normal 

usage would expect just the heavy atoms since H atoms in isolation map to no 

Pharmacophore type. During enrichment studies the input data might be crystal derived 

data in which case minimal further treatment should be applied. However, if the molecule 

is from a 2D source originally at least one 3D conformation is required and thus should 

need to be generated and this can be achieved initially using an available 3D function to 

map from 2D to 3D coordinates. After this simple treatment, which primarily will aromatize 

and add implicit hydrogen atoms to Heteroatoms and then present heavy atoms for 

partitioning, the data is in a suitable state to map to the internal representation. The basic 

workflow of events that can occur is based upon two simple Boolean input parameters, 

“IsCrystalStructure” and “IncludeHAtoms”, as depicted in figure 4.25. During any 

enrichment studies “IsCrystalStructure” is set to true because the data is experimental 

crystal data and thus should not be treated with any 3D force field. Also “IncludeHAtoms” 

is set to false and this means that H atoms will not be included in the points derivation 

rather just the heavy atoms are included – see figure 4.25 for pre-processing events. 

 



 

 

Figure 4.25 - Molecule pre

4.6.2 - Software platforms and libraries

 

In the development and testing of this approach the following softwa

been used: Java SE v1.6, Java3D and NetBeans v6.5, jchem.jar molecule file handling 

libraries (ww.chemaxon.com), Jgrapht graph libraries (

Jama Matrix libraries (http://math.nist.gov/javanumerics/jama/

“MAPS3D” (Molecular Alignment and Pharmacophore Search 3D) is the accompanying tool 

which implements the methods described in chapter 4. 

reports V, as well as each of the five 

Diagrams in this document were created 

created using a molecular viewer tool which was created 

package and Instant JChem (IJC) were also used during results processing in chapter 5.
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Molecule pre-processing flow diagram. 

Software platforms and libraries 

In the development and testing of this approach the following software and libraries have 

: Java SE v1.6, Java3D and NetBeans v6.5, jchem.jar molecule file handling 

maxon.com), Jgrapht graph libraries (http://jgrapht.sourceforge.net/

http://math.nist.gov/javanumerics/jama/). The executable jar file  

“MAPS3D” (Molecular Alignment and Pharmacophore Search 3D) is the accompanying tool 

plements the methods described in chapter 4. The associated 

each of the five pharmacophore scores as well as the sum value

Diagrams in this document were created using Power Point and the molecular images were 

molecular viewer tool which was created by the author

package and Instant JChem (IJC) were also used during results processing in chapter 5.

 

re and libraries have 

: Java SE v1.6, Java3D and NetBeans v6.5, jchem.jar molecule file handling 

http://jgrapht.sourceforge.net/) and 

). The executable jar file  

“MAPS3D” (Molecular Alignment and Pharmacophore Search 3D) is the accompanying tool 

The associated “MAPS3D” tool also 

scores as well as the sum value P. 

molecular images were 

by the author. The R statistics 

package and Instant JChem (IJC) were also used during results processing in chapter 5. 
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4.7 – Chapter summary 

 

This chapter has described a new approach to 3D similarity search based upon a reduced 

points representation, two alignment methods and a volume and pharmacophoric 

properties overlap scoring scheme. This new approach pertains to be approaching a logical 

hybrid of shape and pharmacophore search and is able to identify and score both shape 

and sub-shape matches. The next chapter presents and discusses the results of the two 

alignment methods and the scoring functions for several data sets in terms of the rank 

order measures Enrichment Factor (EF), Recall and AUC (area under curve).  

In figure 4.24 several discrete alignments are displayed using the method described in 

chapter 4. The visualisation of the query and target with the associated P scores shows that 

this method provides quite reasonable results in terms of the scores generated and the 

equivalence to the visual alignment of the query and target molecules for these scores. 

Molecules of similar scale and representation can be aligned and scored well with this 

method. Two of the classes (independently identified) in the figure, COX2 and SAHH, were 

noted by the authors of a recent article, as “better suited” to three dimensional 

approaches. They concluded that some sets of actives are chemically or topologically 

similar and probably bind to the same active site via a similar mechanism (Venkatraman  et 

al., 2010).   
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Chapter 5 – Results for rigid search of two alignment methods using 

the DUD data set of actives and decoys 

 

5.1 - Introduction 

 

This chapter presents the results of applying the 3D similarity approaches introduced in 

chapter 4 to some known virtual screening validation data sets, which cover a broad range 

of protein classes. The validation sets contain compounds that are known to be active 

together with decoy compounds which are presumed inactive. The rank ordered lists 

generated by applying the method were evaluated on how well the actives are ranked with 

high order relative to the decoys. Several evaluation measures were used to determine the 

optimum parameters for the method and then enable a direct comparison to other known 

approaches. The methods have been applied to a Thrombin data set (Hendlich  et al., 2003) 

and the DUD data set (Huang  et al., 2006). Use of the latter more comprehensive DUD data 

set, allowed the method’s effectiveness to be determined directly relative to other existing 

methods which have also been validated using this set. In this chapter, we first describe the 

data sets and the experimental details in terms of the parameters and then review the 

generated results of several parameterisations as applied to the Thrombin data set and 

then the DUD data set for each experimental state. 

 

5.2 - Experimental details 
 

5.2.1 – Validation data sets used for virtual screening experiments 

 

Various data sets were used in these virtual screening experiments. The first of these is 

referred to  as the Thrombin set and consists of 18 actives originally obtained from 

Relibase+ and processed using the MOE protonation routine, which adds explicit hydrogen 

atoms (Hendlich  et al., 2003). In the experiments, seven of the active compounds were 

used as queries to search against the rest of the actives and an additional 143 decoy 

molecules from the ZINC database (Irwin  et al., 2005). This set was compiled by Martin 

(Martin  et al., 2010) and comprises handpicked actives known for exhibiting four recurrent 
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hydrogen bond interactions with the Thrombin protein backbone and which contain a large 

number of potential hydrogen bond donors and acceptors.  

 

The second of these sets is the Directory of Useful Decoys or DUD data as compiled by 

Huang (Huang  et al., 2006). This set consists of 40 query classes each with an associated 

variable number of actives and decoys sourced from the ZINC database (Irwin  et al., 2005). 

The decoys for each activity class were carefully chosen to contain molecules with similar 

physical properties (e.g. molecular weight, calculated LogP) but with dissimilar topology 

(connectivity) to the actives. For each activity class, the primary crystal structure reference 

molecule was used as the query in the conformation extracted from the protein-ligand 

complex. The actives and decoys which were used as target molecules were processed with 

no further conformers generated. A third data set was also employed, which was a reduced 

set of eight of the DUD classes each with a well defined set of queries, actives and eight 

times as many decoys as actives per set. For each of these, the results were averaged over 

the multiple queries, to allow comparison with experiments reported by Martin (Martin  et 

al., 2010). 

 

The tests were rigid search only and the starting orientations which were used to generate 

the representations were directly read in from the SDF files without any initial 

randomisation. In the case of the DUD set it was noted that some minor valence errors 

existed in some of the queries and these required modification by addition of a +1 charge 

to certain N atoms, however the methods under scrutiny here do not consider charge and 

so this had no effect on the results. In the case of the Thrombin set some 1120 distinct 

similarity comparisons were completed for each experimental parameterisation. In the 

case of the DUD set some 106939 distinct similarity comparisons were completed for each 

experimental parameterisation. 

  

5.2.2 – Method variables and parameters 

 

The following aspects of the methodology were considered as variables in these virtual 

screening experiments. Two distinct alignment methods were compared. The first was 

systematic alignment (with incremental optimisation) as discussed in Chapter 4 which 

contains no internal parameters. This method aligns two representations with equal 
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numbers of points where the number of points K was three or four.  The systematic 

alignment optimisation increment was set to 0.01 Å.   

The second alignment method was the clique method discussed in Chapter 4. This 

approach has several associated variables which need to be parameterised. The variables 

associated with a correspondence graph are the edge distance tolerance (D), radius 

tolerance (R) and node equivalence mode (M) all of which are important when defining the 

nodes in the graph. For the clique alignment approach, it is also possible to distinguish 

between shape and sub-shape mode by including all nodes when scoring the superposition 

(shape) or by limiting the scoring to the nodes of the clique (sub-shape).  For these 

experiments the radius tolerance was constant at 2.0 Å. The edge distance tolerance was 

varied with K as indicated in section 5.3.2. The equivalence modes considered in the 

correspondence graph construction were partial and exact. For the clique alignment 

method, K was varied from three to six points inclusively. Each comparison was based on 

the same K level representation for both the query and target molecule in all experiments.  

For both alignment methods, two scoring functions were employed once a superposition 

had been achieved and were used to indicate the numerical quality of the alignment. The 

first of these considered the volume overlap V of the two aligned representations. The 

second included within the volume overlap the concept of weighted pharmacophoric 

properties P (by atom mass) for each point in the representation of the molecule. The 

volume V and properties P scoring functions used are as described in chapter 4 and were 

the same for both alignment methods allowing the direct comparison of the alignment 

methods. 

To summarise, the experimental variables are: systematic or clique based alignment 

method; representation level K; shape or sub-shape mode; volume only, V, or volume and 

property, P, score and the correspondence graph parameters associated with the clique 

alignment method.  
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5.2.3 – Evaluation measures 

 

Several measures were used to indicate the effectiveness of active retrieval and are 

defined here. The active ratio is defined in equation 5.1 first since it is used as part of other 

definitions.  

Equation 5.1  

Active ratio = 
D������

D������������� 

Where “Actives” is the number of known actives and “Decoys” is the number of known 

decoys in the experimental data set. 

The enrichment factor (EF) is defined in equation 5.2 and is based upon the top 10 

positions of the ranked list with the higher number of actives “a” found giving better 

scores. This measure does not consider the entire ranked set and thus is not easily 

comparable if different sized data sets are used (Kirchmair  et al., 2008).  

Equation 5.2  

Enrichment Factor (EF) = (a / 10) / (Active ratio) 

Where “a” is the number of actives found in the top 10 ranked positions and “active ratio” 

is defined in equation 5.1 above. 

The recall is defined in equation 5.3 as the percentage of the total actives found in the top 

X percent of the ranked list (the sum of actives and decoys). Recall values for the 

experiments are reported for the top 5% and 10% of the ranked lists. Recall values are in 

the range of 0 to 100 % inclusive.  

Equation 5.3  

Recall@X% = (a found in top X of ranked list * 100) / Actives 

Where “Actives” is the number of known actives and X is the number of positions defined 

to include by either the top 5% or 10% constraint of the entire ranked list count. 

The final measure is Area Under the Curve (AUC) as defined in equation 5.4 where Se 

denotes selectivity (the true positive rate) and Sp denotes specificity (the false positive 

rate).  The AUC varies from 0.5 to 1.0, with the value of 0.5 indicating that the actives are 
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distributed at random throughout the ranked list. This is a useful property of this measure 

since it can assist in building statistical significance arguments using 0.5 as the null 

hypothesis (random) and values greater than it as the alternative hypothesis (non-random). 

The AUC measure considers the entire ranked list of molecules. 

Equation 5.4  

AUC = ∑ �Se��'��&' )(Sp��'	 −	Sp�) 
Where n is the total number of items in the ranked list, Selectivity “Se” is the “true positive 

rate” and Specificity “Sp” is the “false positive rate”. 

In virtual screening, it is often the top one or two percent of the list that is of interest 

rather than the whole list. However the AUC is used in the experiments reported here to 

allow comparison of the method developed in chapter 4 with more established methods 

reported in the literature.  

All measures were coded in Java according to the equations defined above except for AUC 

in equation 5.4. A version of the AUC measure is defined in equation 5.4 and is similar to 

the trapezoid rule numerical integration (Kirchmair  et al., 2008). The R software was used 

to calculate the “Wilcoxon” AUC values reported in these results (R Core Team  et al., 

2012).   
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5.3 - Thrombin 

 

5.3.1 – Thrombin data set 

 

The seven different queries (table 5.1) from the Thrombin data set described above were 

processed along with a number of ZINC actives and decoys. In each case 143 decoys were 

present along with the designated query and 17 other actives giving a total of 161 

compounds. No Iodine atoms are found in any of the molecules although a small number 

(5% of total) contain Chlorine.  

 

Query  Query filename (sdf) 

2a2x LIMNA9_501_pdb2a2x_1 

1k21 LIMIGN_999_pdb1k21_1 

1mu6 LIMCDA_201_pdb1mu6_1 

1ae8 LIMAZL_600_pdb1ae8_1 

1nzq LIM162_179_pdb1nzq_1 

2feq LIM34P_1_pdb2feq_1 

2bvx LIM5CB_1246-H_pdb2bvx_1 

 

Table 5.1 – Table of Thrombin active references used 

5.3.2 – Thrombin results and discussion 

 

In total 18 separate experiment parameterisations were completed for each of the 7 

queries in table 5.1. The alignment method was either systematic or clique and for the 

latter both shape and sub-shape matching was included. K is the level of representation 

used for both query and each target molecule. Each experiment yields both a volume V and 

properties P normalised overlap score. The correspondence graph parameter radius R is 

constant at 2.0 Å. D was set at 2.0 Å for K=3,4 and for K=5,6 D of 1.0 Å was used. The 

equivalence modes exact and partial were also examined and these modes differ in the 

logic that is applied at the graph node matching stage with exact implementing a slightly 

stricter matching criterion than partial mode.  
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Results are displayed in table 5.2 below in terms of EF (top 6.25% of rank order), Recall at 

5% and 10% and AUC measures averaged over the seven queries. The raw data for each of 

the 7 queries and for all the experiments can be found in appendix A. A discussion of the 

observed data is given below.  

Alignment 

( Mode)0 

K D EF V EF P Recall V 

@ 5% 

Recall P 

@ 5% 

Recall V  

@10% 

Recall P 

@10% 

AUC V AUC P 

System - 

shape 

 

 

3 n/a 6.32 6.46 36.14 39.50 46.22 41.18 0.57 0.58 

4 n/a 7.40 6.59 40.34 36.97 56.30 48.74 0.91 0.76 

Clique 

Shape 

(Exact) 

3 2 4.03 4.03 25.21 25.21 25.21 25.21 0.58 0.58 

4 2 6.05 6.05 33.61 32.77 39.5 39.5 0.67 0.67 

5 1 6.05 6.18 33.61 34.45 38.65 38.65 0.64 0.63 

6 1 7.26 6.59 38.66 37.82 52.94 46.22 0.75 0.75 

Clique 

Sub-shape 

(Exact) 

3 2 4.03 4.03 25.21 25.21 25.21 25.21 0.58 0.58 

4 2 5.91 6.05 32.77 31.93 40.34 39.5 0.67 0.67 

5 1 4.57 5.24 24.37 28.57 36.97 37.81 0.63 0.63 

6 1 6.05 6.86 31.93 36.97 48.74 52.94 0.75 0.75 

Clique 

Shape 

(Partial) 

3 2 6.59 6.59 36.98 40.34 44.54 44.54 0.69 0.69 

4 2 7.53 7.26 41.18 40.34 52.94 51.26 0.77 0.75 

5 1 7.93 7.26 42.02 37.82 67.23 53.78 0.89 0.84 

6 1 8.47 8.20 42.86 42.86 68.91 59.66 0.88 0.85 

Clique 

Sub-shape 

(Partial) 

3 2 6.59 6.59 36.98 40.34 44.54 44.54 0.69 0.69 

4 2 3.76 5.78 21.01 30.25 37.82 45.38 0.69 0.7 

5 1 2.55 4.84 14.29 25.21 22.69 36.97 0.67 0.72 

6 1 2.55 3.63 14.28 21.85 17.65 27.73 0.56 0.62 

 

Table 5.2 – Thrombin average results over the seven queries defined in table 5.1. 

Definitions of EXACT and PARTIAL are given in chapter 4, p57 and 58. For K=3, shape and 

sub-shape scores are identical as expected.   

The systematic alignment method gives increasing scores from K=3 to K=4 for all (except 

one) of the observed measures – the four point volume score is very high using the AUC 

measure and might be considered an outlier. Systematic alignment seems to be at least of 
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a comparable order with the clique approaches at K=3 and K=4 (based on partial node 

matching). Only a shape mode is considered since sub-shape is not applicable for this 

method. The data is plotted in the shape mode graphs 5.1 to 5.4 below (V denoted blue 

and P denoted red). The volume V scores appear to be better than the properties P scores.  

For the clique alignment, when K=3, the shape and sub-shape modes should generate the 

same result since the minimum number of nodes necessary to generate an alignment and 

score is three. This is confirmed to be the case and this data is highlighted in yellow in table 

5.2 Further results are plotted in graphs 5.1 to 5.4 for shape mode and 5.5 to 5.8 for sub-

shape mode for this alignment method. The shape mode EF, AUC and Recall measures 

increase from K=3 to 6 (graphs 5.1 to 5.4) and presumably might continue to rise above six 

points, although these experiments were not conducted. Over all parameters and queries, 

AUC is often much greater than 0.5 suggesting this method is significantly better than 

random (at 0.5) with the best AUC score ~0.9 . Some high EF and recall values are also 

witnessed, the best EF being ~8.5 and recall @ 10% being ~69% (all highlighted in green in 

table 5.2).  

The best scores were found, across all measures when using partial match, shape mode 

with K=5 or 6. Conversely, if we examine the sub-shape graphs for partial mode, K=3 is the 

most discriminating and the effect drops with K (sub-shape are graphs 5.5 to 5.8). This 

suggests that extracting and scoring sub-shapes does not work well in this mode. This 

might be rationalised by considering that the decoy sub-shape scoring might actually 

improve here and thus the retrieval measure value decreases as false actives are found and 

scored highly. The clique alignment exact mode will exclude clique sizes of less than three 

and so many actives and decoys may be eliminated during processing with an assigned zero 

score and with an effect on the measures.  For exact sub-shape mode we also see a general 

trend towards increasing values of the retrieval measures with increasing K (graphs 5.5 to 

5.8). The properties scores P have little apparent effect in shape mode but an increased 

effect in sub-shape mode relative to the volume only V score. The number of actives 

retrieved for each query using the exact mode, in the top 10 rank slots is tabulated below 

in table 5.3. The representation of the structure of the three best scoring queries at K=4 

from table 5.3 can be observed in figure 5.1 below. In this instance it appears that natural 

pharmacophores and rings largely remain intact often encompassed within a larger 

fragment (COOH, NH and hydrophobic groups), with an even volume distribution over the 

spheres in the representation. The JKlustor ‘compr’ (ChemAxon  et al., 2012) clustering 
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method from ChemAxon was used to compute a dissimilarity index on these sets. The 

actives and decoys are evaluated dissimilar (0.68), the actives are quite similar (0.55) and 

the decoys are quite dissimilar (0.64) indicating this method is identifying a cluster of 

actives in a diverse target set. Chlorine was present in one query (2bvx) but not in the other 

bad performers (1ae8/1mu6) so logically is exerting no detrimental effects here. 

 
 

 
 

 

Figure 5.1 - The queries for four results (highlighted in green in table 5.3) using K=4. The 

sphere size is generated using the computed radius. 

Overall this data set has helped show both alignment methods in a relatively good light, 

since we see good results for both alignment methods at K=4. In the clique case the results 

are then subsequently improved upon by the clique alignment with an increased 

representation level K=5 and 6. Shape /partial mode works well but the sub-shape mode 

shows an oddly converse effect indicating a bias towards shape only search. For Exact 

mode shape and sub-shape mode show more similar behaviours. Behaviour tending 

towards a filtering mechanism with K=4 is feasible to be used with exact search mode to 

pick out true positives in over half of cases (light green Table 5.3 below). Other indications 

suggest a strict clique criterion like Exact mode in conjunction with sub-shape and 

properties scoring can also be used effectively to distinguish actives from decoys (graphs 

5.5 to 5.8).  
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Query filename (sdf) K=3 

(Exact) 

K=4 

(Exact) 

K=5 

(Exact) 

K=6 

(Exact) 

LIMNA9_501_pdb2a2x_1 
6 9 9 10 

LIMIGN_999_pdb1k21_1 
6 9 9 8 

LIMCDA_201_pdb1mu6_1 
3 3 3 5 

LIMAZL_600_pdb1ae8_1 
1 3 2 6 

LIM162_179_pdb1nzq_1 
6 9 9 9 

LIM34P_1_pdb2feq_1 
6 9 9 9 

LIM5CB_1246-H_pdb2bvx_1 
2 3 4 7 

  

Table 5.3 – Thrombin actives found in top 10 for each of the seven stated queries using 

exact shape mode (D=2,R=2). 2bvx does contain Chlorine atom, 1ae8/1mu6 do not. 

Results for this data set are now placed in context relative to work completed by Martin et 

al at Sheffield (Martin  et al., 2010) discussed in chapter 3. The average AUC results for the 

GRID / wavelet compression approach for this Thrombin set were reported in the range 

0.749 to 0.979 dependent upon probe type selected, as seen in table 4.2 of that thesis 

(Martin  et al., 2010). A value of 0.991 was further evaluated using the ROCS colour 

method.  A similar summary of AUC values for best alignment methods and K level 

(highlighted in green in table 5.2) for the methods presented here is AUC values of 0.65 to 

0.89 indicating that this approach is less effective at retrieving actives than the reported 

method, although there are clearly some parameterisations, where the AUC ranking 

measures do overlap significantly. 
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Graph 5.1 – Thrombin set: K vs AVG (EF) – shape 

 

Graph 5.2 – Thrombin set: K vs AVG (AUC) – shape 

 

0

1

2

3

4

5

6

7

8

9

3 4 5 6

AV(EF)

K

K vs AVG (EF) - shape

System V

System P

Partial/Clique V

Partial/Clique P

Exact/Clique V

Exact/Clique P

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

3 4 5 6

AVG(AUC)

K

K vs AVG(AUC) - shape 

System V

System P

Partial/Clique V

Partial/Clique P

Exact/Clique V

Exact/Clique P



93 

 

Graph 5.3 – Thrombin set: graph of K vs AVG (Recall@5%) – shape 

 

Graph 5.4 – Thrombin set: graph of K vs AVG (Recall@10%) – shape 
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Graph 5.5 – Thrombin set: graph of K vs AVG (AUC) sub-shape 

 

 

Graph 5.6 – Thrombin set: graph of K vs AVG (EF) sub-shape 
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Graph 5.7 – Thrombin set: graph of K vs sub-shape AVG (Recall@5%) – sub-shape 

 

Graph 5.8 – Thrombin set: graph of K vs sub-shape AVG (Recall@10%) – sub-shape 
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5.4 - DUD  
 

5.4.1 – DUD experiments 

Forty different protein active classes exist within the DUD data set. In each class there 

exists a single query for each class (named xtal-lig in all cases). In these experiments this 

single molecule was used as the query and processed against a variable number of ZINC 

actives (DUD lead like set) and decoys (Irwin  et al., 2005). The query molecule was 

compared to all of the available actives and decoys in the set of experiments, hence 

(actives+decoys) comparisons were completed for each experimental parameterisation and 

for each target class and then the results averaged and discussed below. The different 

protein classes and associated numbers are tabulated in the table 5.4 below. 

The JKlustor ‘compr’ clustering method from ChemAxon was used to compute a 

dissimilarity index on these sets. The actives and decoys are evaluated very dissimilar 

(0.74), the actives are also quite dissimilar (0.71) and the decoys are very dissimilar (0.74) 

indicating this method is attempting to identify diverse actives from a diverse target set, 

the most challenging arrangement. This data set was also determined to contain a small 

amount of Iodine atoms (0.67% of all actives and decoys). Specifically the classes ALR2, 

EGFR, COX2 and AMPC showed most significant amounts with ~2% of the molecules in each 

class containing Iodine. Also, 16% of the DUD actives contain Chlorine atoms and 21% of 

the DUD decoys contain Chlorine atoms. 

 

Protein class from DUD Actives Decoys Total 

ACE - Angiotensin-converting enzyme 46 1796 1842 

ACHE - Acetylcholine esterase 
99 

3859 

 
3958 

ADA - Adenosine deaminase 23 927 950 

ALR2 - Aldose reductase 26 986 1012 

AmpC - AmpC beta lactamase 21 786 807 

AR - Androgen receptor 68 2848 2916 

CDK2 - Cyclin dependent kinase 2 47 2070 2117 

COMT - Catechol O-methyltransferase 11 468 479 

COX-1 - Cyclooxygenase 1 23 910 933 
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COX-2 - Cyclooxygenase 2 212 12606 12818 

DHFR - Dihydrofolate reductase 190 8350 8540 

EGFr - Epidermal growth factor receptor kinase 365 15560 15925 

ER_agonist - Estrogen receptor agonist 63 2568 2631 

ER_antagonist - Estrogen receptor antagonist 18 1058 1076 

FGFr1 - Fibroblast growth factor receptor kinase 71 3462 3533 

FXa - Factor Xa 64 2092 2156 

GART - glycinamide ribonucleotide transformylase 8 155 163 

GPB - Glycogen phosphorylase beta 52 2135 2187 

GR - Glutocorticoid receptor 32 2585 2617 

HIVPR - HIV protease 4 9 13 

HIVRT - HIV reverse transcriptase 34 1494 1528 

HMGR - Hydroxymethylglutaryl-CoA reductase 25 1423 1448 

HSP90 - Human heat shock protein 90 kinase 23 975 998 

InhA - Enoyl ACP reductase 57 2707 2764 

MR - Mineralcorticoid receptor 13 636 649 

NA - Neuraminidase 49 1713 1762 

P38 - P38 mitogen activated protein kinase 137 6779 6916 

PARP - Poly(ADP-ribose) polymerase 31 1350 1381 

PDE5 - Phosphodiesterase V 26 1698 1724 

PDGFrb - Platlet derived growth factor receptor kinase 124 5603 5727 

PNP - Purine nucleoside phosphorylase 25 1036 1061 

PPARg - Peroxisome proliferator activated receptor gamma 6 40 46 

PR - Progesterone receptor 22 920 942 

RXRa - Retinoic X receptor alpha 18 575 593 

SAHH - S-adenosyl-homocysteine hydrolase 33 1346 1379 

SRC - Tyrosine kinase SRC 98 5679 5777 

Thrombin - Thrombin 23 1148 1171 

TK - Thymidine kinase 22 891 913 

Trypsin - Trypsin 9 718 727 

VEGFr2 - Vascular endothelial growth factor receptor kinase 48 2712 2760 

 

Table 5.4 – DUD protein class and active, decoys and total counts [Contains Iodine] 
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Each experiment conducted for the DUD data is indicated by a row in the table 5.5 below. 

In total 10 separate parameterisation experiments were completed and averaged over 

each of the 40 queries above. (The sub-shape experiments are omitted). The alignment 

method is either systematic or clique. K is the level of representation used for both query 

and each target molecule. Each experiment yields both a volume V and properties P 

normalised overlap score. The correspondence graph parameter radius R is constant at 2 Å. 

The graph distance parameter D was set to 2.0 Å or 1.0 Å as shown in the table. The 

equivalence modes exact and partial are also examined. Results are displayed in table 5.5 

below in terms of Recall at 5 and 10% and AUC measures averaged over the 40 queries and 

sets in table 5.4.  

 

5.4.2 – DUD results and discussion 

The results for the set of experiments in terms of the Recall and AUC measures are defined 

in table 5.5 below. The raw data for each of the 40 queries and for all the experiments can 

be found in appendix B. A discussion of the observed data is given below the table.  

Alignment 

(mode) 

K D Avg 

Recall 

V 5% 

Avg 

Recall 

P 5% 

Avg 

Recall 

V 10% 

Avg 

Recall 

P 10% 

Avg 

AUC  

V 

Avg  

AUC  

P 

System- 

shape 

3 n/a 20.14 20.55 26.36 28.2 0.63 0.65 

4 n/a 20.16 22.55 28.76 28.71 0.63 0.65 

Clique 

shape 

Exact 

3 2 14.96 14.51 15.75 15.77 0.56 0.56 

4 2 20.21 20.92 24.84 25.98 0.59 0.59 

5 1 23.21 24.03 28.84 29.89 0.61 0.61 

6 1 25.24 23.61 36.16 33.65 0.65 0.65 

Clique 

shape 

Partial 

3 2 19.16 20.4 24.4 25.72 0.64 0.64 

4 2 16.74 19.91 23.16 24.86 0.61 0.62 

5 1 17.9 18.84 23.42 25.13 0.60 0.62 

6 1 17.62 17.23 23.78 23.92 0.60 0.61 

 

Table 5.5 – DUD average results over the 40 stated queries for ten experimental 

parameterisations. The best observed values are highlighted in green. 
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From graph 5.9 we observe, the systematic alignment shape method gives approximately 

equivalent AUC values for K=3 and K=4 which are comparable with the best clique result 

observed at K=6, ~0.65. The best observed AUC scores were seen with this approach and 

the properties are superior to the volume scores. Exact mode shows significantly different 

behaviour than partial mode. In graph 5.9 we can see that in partial shape mode as K 

increases, then the AUC value appears to steadily decrease which is perhaps contrary to 

expectation and is inconsistent when compared to the single class Thrombin result. Exact 

mode shows a steady almost linear increase with K in line with what was observed for 

Thrombin. Graphs 5.10 and 5.11 similarly show that the recall values decline slightly with 

increasing K for partial mode. Exact mode shows a steady almost linear increase with K in 

line with what was observed for Thrombin and exact mode from graph 5.9, indicating this 

mode becoming more effective as K increases. Properties scores are better than the 

volume equivalents. By extrapolation for this parameterisation K=7 or 8 could be a better 

level of representation with exact mode. The recall values for systematic alignment, 

increase from K=3 to K=4 can be seen in graphs 5.10 and 5.11. For the exact clique 

alignment method, the recall values also increase for increasing K and at K=5 and 6 they 

exceed the values seen for the systematic alignment reaching 25% and 35% for @5% and 

@10% respectively. This is most likely due to an increase in the discrimination of the 

representation applied to each molecule. Again, properties scores are often superior to the 

volume scores indicating pharacophore weighting is a useful paradigm.  

There is a lot of variation over the 40 classes and it may be that we witness some of the 

effects of the diversity of the actives and decoys in each class. We can see from graphs 5.12 

that a large spread of results is seen for any given parameterisation. Other methods 

applied to the DUD set can similarly show much variation in results as discussed recently 

(Venkatraman  et al., 2010). Overall the magnitude of the best results is AUC ~0.65 to 2 

decimal places which is witnessed for three parameterisations, two of which were the 

systematic alignment method. These AUC results are on average better than random (0.5). 

Contributing to this spread of AUC values observed from 0.5 to 0.9 will be artefacts of the 

partition algorithm applied which can give non-ideal, uneven sized cluster points for some 

molecules and values of K.  
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Graphs 5.9 – K vs AVG (AUC) for DUD results  

 

 

 

 

 

 

 

 

 

 

 

 

0.54

0.56

0.58

0.6

0.62

0.64

0.66

3 4 5 6

AUC

K

K vs AVG AUC - shape

System V

System P

Partial/Clique V

Partial/Clique P

Exact/Clique V

Exact/Clique P



101 

 

Graph 5.10 – K vs AVG (Recall@5%) for DUD results 

 

 

Graph 5.11 – K vs AVG (Recall@10%) for DUD results 
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Graphs 5.12 –Spread of AUC results for 40 DUD classes, K=4, Volume and Properties 

scores for both Parital/Clique/Shape and Systematic alignments 
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the clique method from 0.7 to 0.75 and 0.79. It seems the K-means is behaving relatively 

well for this query in that it captures the shape and internal heteroatom functionality to 

some extent despite not representing rings perfectly. In the case of AR we see AUC 

decrease from 0.78 to 0.71 and then 0.67 with increasing K. The shape is perhaps slightly 

more correctly captured for K=4. We might also be witnessing the effects of an uneven 

volume distribution and again points offset from the ring centres. In all cases we can see 

some tendency for the points not to sit inside rings and this undoubtedly will decrease the 

effectiveness of our representation. The representation could be modified to share bridge 

atoms, as suggested in chapter 6 which should give a more accurate representation. These 

examples reflect the general observation in graph 5.9 for partial match mode. 

K RXR SAHH AR 

3 

0.75 
0.7 0.78 

4 

0.69 
 

0.75 
 

0.71 

5 

0.54 0.79 
0.67 

 

Table 5.6 – Selected DUD query RXR, SAHH and AR representation for K=3,4,5. AUC values 

for (V score, Clique/Partial Mode) are shown in bottom centre of each cell. The best 

observed AUC values are highlighted in green.  
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In table 5.7 below, for the PDGFRB query we see the P score recall @10% values increase 

with K from 11.29% to 12.90% and 21.77%. One might say the K=5 is the best 

representation because it defines the rings well with points placed fairly neatly in the ring 

centres and the amide linker.  The scale is captured well using even sized spheres 

distributed over the whole molecule. In the case of PARP query, the P score recall @10% is 

equivalent for K= 3 and 4 at 19.35% and rises for K=5 to 32.36%. In this case the rings and 

pharmacophore groups are being captured more correctly and there is a relatively even 

volume distribution over the entire molecule. In the case of Trypsin query, we notice the P 

score recall @10% rise from K=3 at 44.44% to K=4 at 66.67% followed by a sudden drop off 

at K=5 to 11.11%. This might be rationalised by the rings and linkers being quite well 

represented at K=3 and 4. At K=5 there are too many small cluster points which will reduce 

the possible overlap scores. One of the ring points is also not well represented, breaking up 

a natural pharmacophore and placing the points the “wrong way round”. 

Any apparent effects of a potential bias in the scoring due to large Iodine mass can be 

deduced by considering the classes COX2, EGFR, ALR2 and AMPC all of which contain high 

levels of Iodine in the decoy sets as well as having the two highest actives and decoy counts 

over the entire DUD set. COX2 gave good AUC scores over most of the parameterisations 

whereas the other three did not exhibit good AUC values. Hence, a logical deduction that 

Iodine is not a major factor that affects the observed results can be concluded. Please see 

5.4.1 which discussed Iodine composition in the DUD set. Ten percent of the forty classes 

contain Iodine with each of the four cases containing ~2%, predominantly (99%) are seen in 

the decoys set.  

The conclusion for this data set is complex, considering the amount of variability in the 

observed result of a single parameterisation and over all K. Scale and ideal K representation 

which captures correctly the whole molecule, without splitting pharmacophores and that 

of comparing molecules of different “ideal K” should assist in better retrieval and 

distinguish of actives. The number of points in a representation is less important than the 

fact that we should only use a single point per ring system, with the points placed in the 

ring centroids. Small cluster points will have a detrimental effect on volume overlap. For 

example PDGFRB at K=5 is a good representation and one might imagine a better 

representation of Trypsin for K=4 and above. The sharing of bridge atoms will help towards 

a better partition approach. All the molecules in table 5.6 exemplify this to some extent. 
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K PDGFRB PARP Trypsin 

3 

 

 
11.29 

 

19.35 

 

 
44.44 

4 

 

12.90 

 

19.35 

 

 
 

66.66 

5 

 

21.77 

 

 
32.36 

 

 

11.11 

 

Table 5.7 – Selected DUD query PDGFRB, PARP and Trypsin representation for K=3,4,. 

Percentage recall @10% values for (P score, Clique/Partial Mode) are shown in bottom 

centre of each cell. The best observed recall@10% values are highlighted in green. 
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5.5 – Results of eight targets from DUD 

5.5.1 – Further eight DUD experiments 

The results from the DUD set showed a large amount of variability and thus a reduced 

subset of eight targets as seen in Table 5.8 below, were chosen to apply the method to, in 

order to help further understand the behaviour for selected targets. Each of these target 

sets contained seven different queries, all of which are active for that target. For each of 

the seven queries a number of additional actives were used as well as eight times that 

number of decoys. A total of 7 * (actives + decoys) comparisons were completed for each 

experimental parameterisation and for each target class and then the results averaged for 

each class and discussed in each section below. 

The JKlustor ‘compr’ clustering method from ChemAxon was used to compute a 

dissimilarity index on these sets. The actives, decoys and actives vs decoys are evaluated 

and the numerical values displayed in brackets in table 5.8 for convenience. Relatively high 

diversity is shown, particularly for actives vs decoys with the latter also being more diverse. 

Four of the DUD classes contain moleciules with Iodine atoms: the percentage of molecules 

that contain Iodine within each of these classes is as follows: COX2 (1.5%), EGFR (1%), SRC 

(1.6%) and VEGFR2 (0.4%). All of the DUD classes contain Chlorine atoms: the percentages 

of molecules within a class range from 6 to 42 %. This will be considered during the 

discussion 5.5.2. 

Protein class from DUD 

Actives 

(a vs a) 

Decoys 

(d vs d) 

Total 

(a vs d) 

COX-2 - Cyclooxygenase 2 44(0.65) 352(0.69) 396(0.74) 

EGFr - Epidermal growth factor receptor kinase 40(0.61) 320(0.70) 360(0.75) 

InhA - Enoyl ACP reductase 23(0.59) 182(0.66) 205(0.72) 

P38 - P38 mitogen activated protein kinase 20(0.45) 160(0.67) 180(0.71) 

PDE5 - Phosphodiesterase V 22(0.64) 174(0.64) 196(0.70) 

PDGFrb - Platlet derived growth factor receptor kinase 22(0.56) 174(0.67) 196(0.70) 

SRC - Tyrosine kinase SRC 21(0.61) 168(0.67) 189(0.72) 

VEGFr2- Vascular endothelial growth factor receptor kinase 31(0.64) 248(0.68) 279(0.70) 

 

Table 5.8 –DUD reduced sets used for these experiments [Contains Iodine] 
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5.5.2 – Discussion of eight experiments 

For these eight DUD classes this discussion now aims to assess the method retrieval rates in 

terms of two simple indicators: Does any single data point actually represent a good 

retrieval in terms of any of the measures or parameterisations and do any of the protein 

classes exhibit the overall behaviour witnessed for the well behaved Thrombin set in terms 

of K. Full results are shown in graphs 5.13 to 5.20 and the best AUC value for each data set 

is shown in table 5.9 alongside the best results reported by Martin for the wavelet method 

(Martin  et al., 2010)  and the evaluated ROCS colour (OpenEye  et al., 2002) result. 

Protein 

class 

(Graphs) 

Best observed 

MAPS3D method 

(C or S@K(V/P)) 

Best 

observed 

Wavelet 

(Dry/AUC) 

ROCS 

colour 

Comparable to method? 

COX2 (5.13) 0.74 
(C@K=3,4,5,P) 

0.89 0.75 ROCS 

EGFR  

(5.14) 

0.60 
(S@K=4 V & 
C@K=6,P) 

0.60 0.81 Wavelet 

INHA (5.15) 0.74 
(S@K=3,P) 

0.73 0.59 Wavelet 

P38 (5.16) 0.77 
(C@K=5,V) 

0.83 0.79 ROCS 

PDE5 (5.17) 0.79 
(S@K=3,V & 
C@K=3,V) 

0.75 0.88 Wavelet 

PDGFRB  

(5.18) 
0.67 

(S@K=4,P) 
0.85 0.76 x 

SRC  (5.19) 0.80 
(S@K=3,V) 

0.91 0.88 ROCS 

VEGFR2 

(5.20) 
0.64 

(S@K=3,P) 
0.84 0.80 x 

 

Table 5.9 – Assessment of 8 DUD classes in graph sets 5.13 to 5.20.  Data from Martin 

thesis tables 8.4 and 8.10 are re-produced in table 5.9 alongside the best noted scores 

from this approach with the associated parameterisation.  

KEY : Clique/Systematic@K=n,Volume/Properties. AUC >0.7, 0.69>=AUC> 0.6 and 

AUC=<0.6. Error of 0.05 AUC units is assumed. 
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The classes that show the best response are INHA, P38, PDE5, COX2 and SRC (green in table 

5.9) and to some extent PDGFRB and VEGFR2 (yellow in table 5.9). The one that showed 

poorest response is EGFR (red in table 5.9). The COX2 and P38 are also useful in that they 

show that the five point representation can outperform the systematic alignment at K=3,4 

even without an optimisation step. There are also examples of properties scores that are 

better than the volume scores and associated retrieval of actives. Logically, the presence of 

Iodine has little or no detrimental effects if we consider that PDGFRB (no Iodine) and 

EGFR/VEGFR2 (small amounts) and the fact that COX2 (good result) has the most at 1.5%. 

Similarly COX2 (42%) and PDE5 (6%) contain the extrema of Chlorine content yet are both 

relatively close and have reasonably good scores.  

Many of the observed results are significantly better than random (0.5) and the colour 

coding explained in table 5.9 attempts to qualitatively assess how good each score can be 

categorised. The best observed ‘COX2’ AUC result is 0.74, obtained using Clique alignment 

and with K=3,4 or 5 and  is directly comparable to ROCS colour 0.75 but the best wavelet 

result is significantly better than either at 0.89. The best observed ‘EGFR’ AUC result is 0.60 

obtained using either alignment method and is comparable with the wavelet result 0.60 

but the best ROCS colour result is significantly better than either at 0.81. The best observed 

‘INHA’ AUC result is 0.74 obtained using the systematic alignment K=3 and shows an 

improvement on ROCS colour 0.59 and is similar to the wavelet result 0.73. The best 

observed ‘P38’ AUC result is 0.77 obtained using parameters Clique alignment K=5 which is 

the same order as the best ROCS colour result 0.79 but the wavelet result is slightly better 

still at 0.83. The best observed PDE5 result is 0.79 obtained using either alignment method 

at K=3 and is the same order of magnitude as the ROCS colour and wavelet result. ROCS 

colour is best at 0.88 and the wavelet score is 0.75. The best observed ‘PDGFRB’ result is 

0.67 obtained using systematic alignment parameters K=4 which is less than ROCS colour 

0.76 with the wavelet approach significantly better 0.85.  The best observed ‘SRC’ result is 

0.80 obtained using the systematic alignment K=3. This result is good but does not improve 

upon either the ROCS colour 0.88 or wavelet approaches 0.91. The best observed ‘VEGFR2’ 

result is 0.64 obtained using the systematic alignment parameters K=3. This result is 

significantly worse than either ROCS colour 0.80 or the wavelet approach 0.84 which show 

good results here. The JKlustor values do not assist in any rational argument in this case 

since we can see relatively close dissimilarity conditions for (COX2, SRC) and (EGFR, 

VEGFR2), (highlighted in yellow in table 5.8) which score relatively well and poorly 

respectively.  
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We now should consider the parameterisations observed that led to the best scores for this 

method reported in table 5.9 and summarise any observed trends. The systematic 

alignment is equal to or better than the clique detection method for six of the eight activity 

classes and the K level of 3 occurs as the best level more frequently than 4 or 5. Volume 

and properties appear almost equally in the best results – these observations concur with 

the larger DUD set with properties only slightly more prevalent. The best parameterisation 

overall could be concluded to be systematic triangle matching (3 point representation) with 

either volume or properties scores used – further to this another useful configuration is 

Clique shape mode with K=3 or 5 with either volume or properties – these 

parameterisation ‘templates’, appear to give the best results for these data sets and with 

the K-means representation, which as noted previously can give less than ideal 

representations, depending upon K.  

The Wilcoxon signed-rank (paired) test was completed using the R tool (R Core Team  et al., 

2012) implementation ("wilcox.test(vec1,vec2,paired=TRUE)"). The input to this test is two 

vectors of values that are paired by vector index. In this case the pairing order is based on 

the protein class (column 1) in table 5.9. In this test, the p-value can be used to determine 

if one should accept the null hypothesis H0 and conclude the numbers are from the same 

populations or if not, to invoke the alternative hypothesis H1, that they are from different 

populations. If the p-value evaluated is greater than 0.05 then the sets of paired inputs are 

considered to come from the same population (H0) with 0.05 significance level else p-value 

is less than  0.05 the alternative hypothesis (H1) is the logical conclusion. This test was 

completed three times, once for each of the combinations of AUC columns found in table 

5.9. The method described in chapter 4 MAPS3D, was compared with the wavelet method 

(column 2, column 3 in table 5.9) and gave p-value=0.1069 and compared with ROCS colour 

(column 2, column 4 in table 5.9), p-value=0.07593. Both comparisons conclude that the 

null hypothesis is accepted, indicating that values generated by this method (for certain 

parameters) are statistically considered to be from the same population as the other two 

methods within the 0.05 significance level. For completeness, the final test wavelet vs 

ROCS colour (column 3, column 4 in table 5.9) evaluated a p-value=0.5276, indicating a 

significantly higher probability that the values are from the same population than any other 

comparison. The table 5.10 below displays and suggests how slight differences in 3D 

coordinates can significantly affect the outcome, for this method. 
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It should be stated that one of the other two approaches always produced an actual better 

result, with one exception class ‘INHA’. In many cases this method was very close to the 

other results, for example P38, PDE5 and to a lesser extent COX2, SRC, PDGFRB and 

VEGFR2. EGFR which scored relatively poorly compared to ROCS colour. Three point 

representations feature a lot, as do four and five but these are not as prominent as 

compared to Thrombin which shows a smooth rise for increasing K. Properties scores 

feature slightly more than volume but for the best noted scores however one might 

conclude that volume and properties are synonymous. Trends are less comparable to the 

Thrombin set but are consistent with the average DUD observations. Two queries from the 

INHA set are aligned and scored for K=3 points as explained in table 5.10. The 

representations generated are dependent upon the specific input coordinates, with a single 

atom having a large effect on the outcome. This phenomenon is suggested to be an 

artefact of the K-means. 

 

Bad – ring split Good - rings and linkers 
Reasonable – alignment and 

score 

 

Table 5.10 – Example of two INHA queries aligned and scored using K=3, scoring V=0.67 

and P=2.89. The Volume and internal functionality is aligned reasonably well with three 

points. However, one can see with the red spheres the rings and linkers are captured well 

however with the white spheres this is not the case and a ring is disrupted. The subtle 

difference is an extra atom in the linker in the case of red and for white one of the rings is 

not aromatic and is “more 3D” as a result. Hence even in this case with very small atomic 

differences, volume overlap will be unnecessarily lost for this alignment and this is 

certainly reflected in these scores.  
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Graphs 5.13 – COX2 results 
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Graphs 5.14 – EGFR results 
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Graphs 5.15 – INHA results 
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Graphs 5.16 – P38 results 
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Graphs 5.17 – PDE5 results 
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Graphs 5.18 – PDGFRB results 
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Graphs 5.19 – SRC results 
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Graphs 5.20 – VEGFR2 results 
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5.6 – Conclusion of overall method effectiveness over these data sets 

The Thrombin results show improving results for increasing levels of representation, which 

might be considered the intuitive behaviour for an apparently well behaved homogeneous 

data set. The magnitude of the results and the trends are generally encouraging compared 

to other methods reported in the literature indicating that for this data set this method can 

work well. All the stated measures for shape comparison show an increase for increasing 

levels of representation K, with the partial matching mode giving the best results. The 

clique/partial alignment method outperforms the systematic alignment method with 5 

points and above but the systematic alignment also gives good results for 3 and 4 points. 

The volume scores V more often outperform the properties P and perhaps the converse is 

closer to expectation, since the inclusion of properties attempts to improve the chemical 

representation. The sub-shape scores are less conclusive and show the behaviour of 

decrease with K, thus indicating that whole molecule matching is preferable. 

The whole DUD set exhibits a lot of variation across the 40 protein classes with some 

showing good response and others showing little or no response and this seems to be no 

different to other 3D methods applied to this data set which can also show a large spread 

of AUC values. For the systematic alignment we see K=3,4 gave approximately the same 

AUC values but both recall measures increase from K=3 to 4. Exact mode results increase 

almost linearly with K for AUC and recall. Partial mode shows a drop off with increasing K. 

The properties scores are always better than the volume scores which is a more 

encouraging conclusion, assuming pharmacophore properties are exerting an effect. The 

systematic alignment gives the better results than clique alignment (K=3 to 6).  

All data reported initially are averaged and hence it is not as clear cut as the Thrombin case 

which is for a single activity class. The partitioning algorithm yielding non-perfect 

representations at certain K levels and the possible need for a clique optimisation might 

contribute to the difference. The recall data does tend to portray a slightly better picture of 

the average results than AUC showing generally increasing values over increasing K, similar 

to Thrombin.  

Examining eight of the DUD protein classes in detail we find that several of the classes 

show some good results. The method performed best on P38, PDE5, PDGFRB and to some 

extent COX2, INHA and SRC. VEGFR2 and EGFR show relatively poor response. This method 
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has been directly compared to Sheffield wavelet thumbnail and ROCS colour in this chapter 

and the compared results showed no significant difference within a 0.05 significance level.  

It was observed that the clique alignment method with K=5 can outperform the systematic 

alignment K=3,4 for some of these sets but not often. This might lead to the conclusion that 

basic three point representation and ‘Triangle matching’, scoring using either volume or 

properties is actually on average the most effective method. Example of other triangle or 

three point representation based methods are defined in the literature (Bonachera  et al., 

2006; Kinnings  et al., 2009).  The presence of Iodine or Chlorine was shown not to have any 

detrimental or bias effects on the results. The results were not as good as those exhibited 

by ROCS colour or the wavelet method, however triangle alignment can be very fast and so 

there is some utility as a faster pre-screening step. 

Both alignment methods have some utility and of course the systematic alignment is only 

able to deal with three or four points, so for larger molecules based on scale, the clique 

alignment method should be the dominant option. One of the major over-sights of this 

approach was not considering scale appropriately and always matching similar levels of 

representation without considering, the three internal principal moments which help to 

identify the relative sizes of molecules. The shape mode seems to be more effective in 

resolving actives and decoys which makes sense also since in the entire representation 

(more information) is being considered (sub-shape can give false actives).  

A limitation of the K-means algorithm was identified, it was shown that the K-means can 

naturally produce artificially small points that contain only 1 or 2 atoms and this can also be 

detrimental to performance, since the available overlap volume can reduce sharply. Also 

non-ideal “ring breaker” representations are possible.  It appears that the level of K used 

will only be beneficial to the scoring if the number of points represents the major rings and 

fragments correctly and it is clear that comparing molecules with the same K is incorrect if 

scale is not considered suitably. Suggestions for improvement of the partition algorithm are 

made in the next chapter 6. 
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Chapter 6 – Conclusions and future work 

 

6.1 – Conclusions 

 

This thesis has included a literature search in the areas of virtual screening, rational drug 

design and 3D similarity search. The development of a novel three dimensional similarity 

searching method is then described. A set of Java programs has been developed that 

executes the method workflows described in Chapter 4.   This method has been applied to 

some industry standard test data sets and the results observed and discussed in Chapter 5. 

The rest of this chapter describes suggested ways to improve on the basic methods and 

approaches defined in chapter 4. 

The previous chapter 5 described three sets of experiments that have aimed to validate the 

method described in chapter 4. The first experimental set was the single target class of 

Thrombin actives and showed that the method behaves largely as might be presumed for a 

homogeneous set of actives. As the number of points increased then the retrieval 

increased however perhaps more surprising was the properties scores often did not 

outperform the volume scores. The sub-shape scores were also less discriminating.  

The second experimental set examined was the forty DUD targets. This data set showed a 

lot of variation with this method in that some classes showed promise with actives scoring 

well with the queries and with visual alignments and associated scores that seem quite 

reasonable to analysis and visual inspection (Figure 4.24). The trends on the whole show 

properties scores to be more discriminating than volume but it is much less clear about the 

best level of representation for the entire set. Some of the classes showed very little 

propensity to be resolved via this method at all and so at best it would appear it could be 

used for only some of the protein classes in this set. The alignment methods proved to be 

largely comparable with some cases where the clique approach with K>4 gave better 

results than the systematic approach, particularly with the exact mode. 

The final set of experiments concentrated on eight of the DUD classes which were also 

used in validation experiments of other 3D similarity methods reported in the literature. In 

some cases, the method compared well with the established methods with the values 

showing some clear overlap and also a fairly normal distribution of response was observed 

over the eight targets with several relatively good, several average and some poor results 
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observed. In most cases, this method does not perform to the same standard as the bench 

mark ROCS colour method but in most cases it is of the same order of magnitude. In one of 

the eight cases it did outperform ROCS colour in terms of AUC scores (INHA). Looking in 

more detail at the components of the method we can describe potential improvements 

that could be investigated.  

• The K-means representation used proved to be useful to some extent in some 

cases and parameterisations. The concept of scale was not well implemented in 

that identical levels of representation K, were always compared irrelevant of 

molecular size. Using a standard unit size sphere, for example using the radius of a 

six member ring as standard, could be used to place points in a new 

representation. The K-means can give representations with non-ideal point 

placements as Table 5.10 shows in the simplest of cases with minor structural 

modifications a detrimental effect is seen using K-means (rings split). Comparing 

molecules represented by different numbers of “ring units” is likely to give 

markedly improved results and in particular the sub-shape results should also 

improve with a better implementation of scale.  

• Both alignment methods and scoring approaches seem perfectly reasonable to 

investigate further with a possible improved representation. Assuming that some 

larger molecules will certainly have to be represented with more than four points 

then the clique method would certainly be required in the alignment step.  

• The scoring functions used could be tuned further to include more atom or 

chemical information or extended with alternative scoring such as simple counts of 

pharmacophore typed atoms rather than using atomic masses. 

• Flexible search was not investigated here and indeed would be unlikely to improve 

the picture until such a time as the representation or partitioning approach is 

improved upon. Representative (extrema and average) conformers are a 

reasonable input for this.  

• Alignment of three point representations just using the Kabsch algorithm is another 

possible avenue to investigate. 
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There is evidence to suggest the method is working as intended with trends being observed 

which are reasonable with some data sets. Does the method identify biologically similar 

molecules as was the original intention? Yes, there is evidence to suggest this is occurring 

in some cases with visual and numerical evidence to support this. Does the method 

discriminate sufficiently between different molecules? To some extent the retrieval rates 

show some good discrimination for some classes but this method by no means out 

performs other established similarity methods. Is there any correlation with the scores and 

biological activity? The method shows some correlation with biological activity but certainly 

with open questions. Is the method fast enough for real sized searches? For a real 

environment with very large data sets this method as currently implemented would 

struggle to perform to an acceptable standard. Fingerprinting the representation does help 

speed up method execution. Processing of the cliques was noted in particular as the rate 

determining step for that alignment method and the systematic alignment method did 

perform significantly faster (matching triangles with this method is rapid). Overall, it can be 

said that this approach is novel relative to its peers and does show some initial promise. 

The next sections describe ways in which the method and performance may be improved 

to achieve better results. From the author’s perspective it has certainly been a considerable 

learning experience in the field. 
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6.2 – Suggestions for future work 

 

6.2.1 – Extending the partitioning approach 

Alternative reduced graphs in two dimensions have been applied to 2D similarity search 

where the performance is comparable to Daylight fingerprints (Gillet  et al., 2003). The 

reduction schemas applied are based on ring systems and functional groups defined using 

SMARTS strings. It should be possible to extend the 2D graph representation to 3D, which 

could then form the input to the alignment methods developed here. The K-means 

algorithm does not always result in the partitioning of molecules into fragments of similar 

sizes and can in some cases give less than ideal centroid placements. Spheres that are of 

different sizes have a detrimental effect on similarity comparison (in some cases the K-

means assigns a single atom to a point). The K-means is potentially good to identify an 

initial set of well distributed seed starting points that can then be used as initial conditions.  

Such extension schemes could include rules to allow the sharing of atoms across clusters 

(bridge atoms), ensuring ring systems are always retained intact where possible with ring 

centred points and also smarter ways to identify successive points in the representation 

generation. Further to this the points are derived geometrically to start with but could be 

weighted so as to reflect the centre of mass of the atoms. Figure 6.1 below shows an 

example of a point that is not aligned with the ring centroid since the points cannot share 

the bridge atoms. 

 

Figure 6.1 - The K-means does not accommodate bridge sharing of atoms (the group 

membership is currently mutually exclusive). 

6.2.2 – Use of smart search algorithm and non-deterministic representation set 

The K-means can be non-deterministic if seeded with K random coordinate starting points. 

This in turn leads to a set of solutions, one of which was always observed as equal to the 
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deterministic solution. Speculation on the nature of the deterministic solution always 

appearing in the solution set for non-deterministic algorithm is not analysed further here. 

Clearly there could be scope to investigate a set of non-deterministic representations 

generated in conjunction with a smarter search algorithm which might be used to 

determine representations that approach ideal.  The ideal value for the number of points 

required to represent a (drug-like) molecule is also part of the research question, however 

other approaches suggest 3, 4 and possibly 5 point pharmacophores are assumed to give 

an adequate level of description. However one must consider that pharmacophores are 

normally considered a substructure and thus these heuristics might not apply to 

partitioned whole molecules but might apply to portions of active “sub-shapes”. The 

representation is essentially molecular fragments which are not discrete classical chemical 

functional groups that are identified by a SMARTS.  

6.2.3 - Comparing molecules of different K representations 

The current method is restricted to comparing molecules that are reduced to the same 

number of K points. While this may be a reasonable approach for molecules that are of 

similar sizes it is unlikely to be optimal where the query and target molecules are 

significantly different in size. A more effective approach may be to choose K so that each 

node represents a different structural feature such as a ring or aliphatic fragment or so that 

each K represents a fixed number of atoms. Thus the level of reduction would be molecule 

dependent. Since the clique alignment approach can accept any number of points for query 

and target this could be used directly with any new representation of any number of points 

for either. An example of where the K-means does a provide a reasonable representation is 

the molecule Gleevec shown in Figure 6.2 below. 

 

 

Figure 6.2 - The molecule Gleevec represented (relatively well) by the K-means at K=5. 
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6.2.4 – Flexible search 

 

A suggested way to include flexible search in this approach is to build information about 

inherent molecular flexibility into the representation so that there is still only a single 

representation object to handle for each molecule within any given search context.  This 

could potentially reduce the search time for flexible search relative to employing the 

ensemble approach or exhaustively searching through rotational bonds, both of which 

become less tractable as the inherent flexibility increases. As such, flexible search as 

described here should add little or no additional over-head since the radius r value is the 

only term modified. The approach requires that some representative conformers are 

generated similar to the ensemble approach. Two important criteria regarding any 

molecule’s flexibility are the number of rotational bonds present and the associated RMSD 

for an ensemble of conformations. The latter is derived experimentally.  

For each sphere, k a flexibility weighting could be applied to the radius according to the 

number of rotatable bonds present in its constituent atoms. A suggested function is 

defined below in equation 6.1 which shows a function that should return a simple number 

that slightly increases the size of the local sphere representation based upon the fractional 

number of rotational bonds present and thus provides a basis for investigation. 

Equation 6.1 

k. |lexible	r = f �k. r	 ∗ �1 +	k.Rotatable	bond	countk. Total	bond	count ��	
Where “k.r” is the kth sphere radius and the other terms are the sums of rotatable and 

non-rotatable bond counts defined in the kth sphere 

A common way of handling conformational flexibility is the ensemble approach where a 

representative set of conformations is used to represent a flexible molecule. Within any 

ensemble set there is usually an RMSD value associated with each conformer relative to 

some reference lowest energy conformation for that molecule.  Thus a useful numerical 

index for flexibility is defined by the average RMSD or average internal strain energy value 

of the range of conformers from the minimal or lowest energy instance and helps indicate 

the amount of variability over the set of atoms in the molecule.  
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Each conformation is a query in its own right however, the interest is mainly how similar 

molecules behave irrespective of the ensemble of conformations. In order to derive a single 

representation object for search, we should still need to generate a small number of 

representative conformers with the ensemble approach and then use the RMSD 

information in the construction of the flexible representation.  Given an ensemble of 

conformers and an associated maximal RMSD for a set of conformers we can build the 

global flexibility into each member sphere radii as well as incorporating the local flexibility 

as defined above. A simple function to combine both “local” and “global” flexibility is 

suggested in equation 6.2 below. 

Equation 6.2 

k. |lexible	r
= 	f �k. r	 ∗ �1 +	k. Rotatable	bond	countk. Total	bond	count � + �1 + k. Heavy	Atom	Count ∗ 	RMSDHeavy	Atom	Count �2 �	
Where “k.r” is the kth sphere radius and the other terms are the sums of rotatable and 

non-rotatable bond counts and the heavy atom count defined in the kth sphere, the global 

heavy atom count and the RMSD defined for the ensemble, if it exists. 

The issue is then where to position the centroid of the sphere and one option would be to 

use the group centroid. This is of course a speculative research question and it has been 

noted in chapter 3 that flexible search often adds absolutely no observed value to similarity 

type approaches. 

6.2.5 - Gaussian function to model rigid or flexible fragment  

During group level scoring exactly when hard or soft sphere should be employed is likely to 

be related to the distance between two points during any given overlap comparison (Grant  

et al., 1995).The original Grant/Pickup work suggested that a choice between the two 

representations was actually based upon the distance between two points. It is also 

pertinent to consider the use of soft sphere representations to model flexible groups. Since 

it is difficult to parameterise a non-spherical Gaussian to represent a fragment perhaps a 

spherical Gaussian can be used to model flexibility at the fragment level i.e. the spherical 

Gaussian parameterisation for a fragment is derived in conjunction with the modified 

flexible index above so that the effects of matter over the flexible space decays in some 

fashion and is not uniform. This seems a more realistic way to model a fragment that is 
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mobile and rapidly moving or rotating in space and thus exerts some form of centripetal 

force. One might expect more mass to be found closer to the source of rotation rather than 

further away, to some extent.  The Gaussian function parameterisation can be extracted by 

using the hard sphere rigid or flexible radius in order to give a spherical Gaussian 

representation in 3D with a density component. This representation may be integrated 

quickest in conjunction with a look up table which stores the parameterisation and 

evaluated integrals. See equation 6.3 below. 

Equation 6.3  

��� = 2.7 ∗ � 	
���
� �-�� ∗ � sin �	���

� ∗ � ��-�
�  

Where r is the sphere radius and b is the required Gaussian pre-factor and Vhs is the hard 

sphere volume. 

6.2.6 - Use of radial distribution functions at atom level for superposition query 

generation 

Use of an active series alignment, to derive pharmacophore hypotheses is a well known 

technique, the original being termed the active analogue approach (Marshall  et al., 1979) 

with many other similar approaches such as GASP, GALAHAD, CATALYST and DISCO (Patel  

et al., 2002), which are all well established methods of deriving accurate query data for any 

given search problem domain. Many molecules are geometrically aligned, compared and 

scored in order to compile a dense object for logical hypotheses extraction. Ultimately, the 

reduced point representation of a molecule is run to “completion” we end up dealing with 

an all atom representation. Query derivation or elucidation might yield a denser “super 

molecule” object for input into the database search process. This data object sourced from 

a set of coordinates and might be the result of an active series alignment perhaps based 

upon a similar overlap scoring function and alignment approach to the database search. An 

all atom comparison and score during an elucidation phase followed by a reduced points 

extraction method to derive a query object clearly exists using this approach. In the past 

atoms have been represented as hard spheres and soft spheres and any discussion of the 

merits of using a soft sphere approach primarily include a more accurate depiction of 

electron density decay with distance from a specific atomic nucleus. At the group or 

fragment level the use of spherical or non-spherical Gaussians electron density might be 

difficult to parameterise correctly and at the atomic level a simple Gaussian may not reflect 
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more complex higher atomic number atoms very well which also contain non-spherical 

atomic orbitals. Characteristic single atom density decay can be more accurately 

approximated by use of radial distribution functions which are higher forms of the Gaussian 

function which include power series in with an additional �� term. The alignment and 

comparison of two or more molecules in order to maximise the volume and properties 

overlap of an active series might be based upon the use of radial distribution functions to 

represent atoms. Clearly, in this approach atoms and fragments will require different 

functional forms and parameterisations. This could provide a super molecule object which 

could be used for subsequent combinatorial extraction of speculative hypothesis source for 

“Reduced point fuzzy pharmacophore vectors”. Once an alignment is complete one will 

have a dense set of points to which we can apply our representation approaches in order to 

derive a set of objects as query. Use of the all atom density overlap criterion to generate 

the dense point set which is then used to derive the representation source will require 

scoring of all representative conformers in an active series. Figure 6.3 shows the use of an 

exponential function to model an S orbital.  
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Figure 6.3 - Radial distribution function ���� = �� ∗ � 
¡���� 	can be used to model a 

Hydrogen 1s orbital and for use as higher orbital representation. The overlap of these 

functions could be used to score an elucidation / alignment method. 

Please see equation 6.4 for associated integral. 

Equation 6.4  

¢f�x, y, z�	dv =	�

� � f�r, θ, ω�	dv�


� = � Ae
¤��
� r�dr ∗ � sinθ	dθ¥

� ∗ � dω-¥
�  

Where n is an integer and A and b are characteristic exponential factors.  This is the 

spherical coordinates form of the integral. 
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6.2.7 - Use of a field graph at the fragment level 

Since it is a difficult task to correctly parameterise and construct a (non-spherical) Gaussian 

function that correctly represents an arbitrary fragment as a field then it might be 

pertinent to employ an icosahedral field graph approximation for each point (k)  in order to 

simulate a local scalar or vector field. It is assumed that this sort of treatment might be a 

way to extend the scoring for molecules that exhibit high volume and property overlap. The 

VDW and electrostatic contribution of each fragment could be determined at each vertex 

and a scalar (VDW) or vector (electrostatic) field defined using a [+1,0,-1] probe. It is 

suggested that this platonic solid is scaled such that each vertex sits upon a sphere that is 

slightly larger (1 Å) than the maximal distance between the centroid and furthest atom 

member in each cluster point and in fact an alternative radius such as in equation 6.1 could 

be used here. Clearly such an approach could use existing formal charge or would require 

the use of a partial charge assignment algorithm for the heavy atoms. Alignment of a net 

dipole vector for each fragment is also another possible avenue to explore. Heavy atom 

partial charge could be assigned using the orbital electronegativity plug-in, for example 

from ChemAxon. Please see equation 6.5 below which describes a possible scoring 

approach. 

Equation 6.5  

¦§��� = $$[+1	,0,−1]¨ ∗	©ª4«¬��ª¨-
�

¨&'


ª&'  

 

Where ©ª is kth point charge, �ª¨  is distance between kth point and j th probe evaluation 

point and ¬� is a vacuum permittivity constant. 

 

6.2.8 – Using Structural and active site data for included or excluded volume 

If a protein structure is available, an active site shape could be extracted by taking a “cast” 

of the active site and mapping this point set to an “inverse object” or “pseudo ligand” that 

is contained with the convex hull of what is effectively a 3D graph of the active site. 

Inversion of these characteristics in the space defines an ideal complementary set of points 

in terms of required interactions. It seems that one way this could be achieved is by taking 

the geometric mid-points between all atom combinations and then applying a slightly 
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modified version of the representation generation approach in order to define the effective 

inverse. This could then be included in an active series alignment as the starting point 

template prior to active series overlay in rotational bond or biological activity order, for 

example. This could be thought of as a simple kind of pharmacophore or fragment level 

whereby an active site inverse template is derived and used as a 

alignments (Ebalunode  et al., 2008). This would then become a 

structure based 3D similarity approach with the aim to enhance the accuracy of the queries 

extracted (Goto  et al., 2004). Such data could also be incorporated into an 

active series alignment and elucidation stage such as described in 6.2.1 above. Complex 

al water molecules can be treated as discrete points also in this approach and treated 

and used in mass weighting in the H-bond donor/acceptor categories. 

Extracting an active site negative image. The midpoints of all chords formed 

all active site atoms can be used as the dense data set to be partitioned and 

then used as a K point ‘spacer template’ which can be incorporated into an elucidation or 

modified version of the representation generation approach in order to define the effective 

the starting point 

activity order, for 

harmacophore or fragment level 

s derived and used as a 

. This would then become a 

aim to enhance the accuracy of the queries 

Such data could also be incorporated into an 

active series alignment and elucidation stage such as described in 6.2.1 above. Complex 

this approach and treated 

 

 

. The midpoints of all chords formed 

all active site atoms can be used as the dense data set to be partitioned and 

then used as a K point ‘spacer template’ which can be incorporated into an elucidation or 
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6.3 – Conclusion 

 

Some ways to extend the methods in chapter 4 are suggested here. Partitioning scheme 

modifications are suggested as the primary change, in order to create a more accurate or 

effective representation that does not split up natural ring pharmacophoric ring systems. 

Modified representations generated and compared at different K levels are almost 

certainly a crucial next step for the existing representation. Alternatively, another reduced 

point representation can be used with the alignment and scoring methods discussed in 

Chapter 4. In addition the non-deterministic K-means could be investigated in conjunction 

with a genetic algorithm. A flexible search approach can be defined using rotational bond 

and RMSD data but it was noted in the literature that often this will yield no improvements. 

The use of a look up table to pre-compute each representation prior to alignment will yield 

a performance increase.  A field based approach could be annotated using icosahedral 

approximations and an electrostatic scoring function to model charge distribution which is 

not included in the current model. The negative image of a protein active site could be 

extracted and built into the query. Some simple data fusion rules might be used with 

different alignments and scores to derive indexes that correlate better with observed 

biological activity. Deriving an accurate query using multiple molecule overlay and accurate 

radial distribution atomic functions is also possible. 
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Appendix A – Thrombin results data 

EF & AUC LIMNA9_501_pdb2a2x_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 7.53 7.53 0.77 0.77 17 143 160 

3 2 2 1 sub-shape 7.53 7.53 0.77 0.77 17 143 160 

3 2 2 2 shape 5.65 5.65 0.62 0.62 17 143 160 

3 2 2 2 sub-shape 5.65 5.65 0.62 0.62 17 143 160 

3 4 2 1 shape 7.53 7.53 0.81 0.83 17 143 160 

3 4 2 1 sub-shape 7.53 7.53 0.81 0.83 17 143 160 

3 0 0 0 shape 7.53 7.53 0.56 0.60 17 143 160 

4 2 2 1 shape 8.47 8.47 0.77 0.78 17 143 160 

4 2 2 1 sub-shape 2.82 7.53 0.69 0.72 17 143 160 

4 2 2 2 shape 8.47 8.47 0.77 0.77 17 143 160 

4 2 2 2 sub-shape 8.47 8.47 0.77 0.77 17 143 160 

4 0 0 0 shape 8.47 8.47 0.93 0.78 17 143 160 

5 1 2 1 shape 9.41 8.47 0.95 0.92 17 143 160 

5 1 2 1 sub-shape 1.88 5.65 0.69 0.80 17 143 160 

5 1 2 2 shape 8.47 8.47 0.72 0.72 17 143 160 

5 1 2 2 sub-shape 7.53 8.47 0.72 0.72 17 143 160 

6 1 2 1 shape 9.41 8.47 0.95 0.92 17 143 160 

6 1 2 1 sub-shape 3.76 6.59 0.64 0.69 17 143 160 

6 1 2 2 shape 9.41 7.53 0.78 0.77 17 143 160 

6 1 2 2 sub-shape 6.59 7.53 0.78 0.78 17 143 160 
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EF &AUC LIMIGN_999_pdb1k21_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 7.53 7.53 0.74 0.74 17 143 160 

3 2 2 1 sub-shape 7.53 7.53 0.74 0.74 17 143 160 

3 2 2 2 shape 5.65 5.65 0.61 0.61 17 143 160 

3 2 2 2 sub-shape 5.65 5.65 0.61 0.61 17 143 160 

3 4 2 1 shape 7.53 7.53 0.80 0.82 17 143 160 

3 4 2 1 sub-shape 7.53 7.53 0.80 0.82 17 143 160 

3 0 0 0 shape 6.59 7.53 0.58 0.63 17 143 160 

4 2 2 1 shape 8.47 8.47 0.73 0.72 17 143 160 

4 2 2 1 sub-shape 3.76 7.53 0.66 0.67 17 143 160 

4 2 2 2 shape 8.47 8.47 0.77 0.77 17 143 160 

4 2 2 2 sub-shape 8.47 9.41 0.77 0.77 17 143 160 

4 0 0 0 shape 7.53 8.47 0.87 0.76 17 143 160 

5 1 2 1 shape 8.47 9.41 0.88 0.87 17 143 160 

5 1 2 1 sub-shape 2.82 6.59 0.67 0.75 17 143 160 

5 1 2 2 shape 8.47 8.47 0.72 0.72 17 143 160 

5 1 2 2 sub-shape 8.47 8.47 0.72 0.72 17 143 160 

6 1 2 1 shape 8.47 9.41 0.90 0.86 17 143 160 

6 1 2 1 sub-shape 1.88 3.76 0.55 0.66 17 143 160 

6 1 2 2 shape 7.53 9.41 0.84 0.85 17 143 160 

6 1 2 2 sub-shape 7.53 7.53 0.84 0.84 17 143 160 
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E & AUC LIMCDA_201_pdb1mu6_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 6.59 6.59 0.61 0.61 17 143 160 

3 2 2 1 sub-shape 6.59 6.59 0.61 0.61 17 143 160 

3 2 2 2 shape 2.82 2.82 0.54 0.54 17 143 160 

3 2 2 2 sub-shape 2.82 2.82 0.54 0.54 17 143 160 

3 4 2 1 shape 6.59 6.59 0.60 0.59 17 143 160 

3 4 2 1 sub-shape 6.59 6.59 0.60 0.59 17 143 160 

3 0 0 0 shape 6.59 6.59 0.60 0.52 17 143 160 

4 2 2 1 shape 4.71 4.71 0.54 0.50 17 143 160 

4 2 2 1 sub-shape 3.76 3.76 0.56 0.57 17 143 160 

4 2 2 2 shape 2.82 2.82 0.60 0.60 17 143 160 

4 2 2 2 sub-shape 2.82 2.82 0.60 0.60 17 143 160 

4 0 0 0 shape 5.65 5.65 0.89 0.69 17 143 160 

5 1 2 1 shape 7.53 6.59 0.91 0.83 17 143 160 

5 1 2 1 sub-shape 3.76 5.65 0.67 0.63 17 143 160 

5 1 2 2 shape 2.82 3.76 0.51 0.51 17 143 160 

5 1 2 2 sub-shape 1.88 2.82 0.53 0.51 17 143 160 

6 1 2 1 shape 5.65 4.71 0.75 0.68 17 143 160 

6 1 2 1 sub-shape 3.76 2.82 0.55 0.53 17 143 160 

6 1 2 2 shape 4.71 3.76 0.66 0.64 17 143 160 

6 1 2 2 sub-shape 4.71 5.65 0.65 0.66 17 143 160 
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EF & AUC LIMAZL_600_pdb1ae8_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 3.76 4.71 0.76 0.77 17 143 160 

3 2 2 1 sub-shape 3.76 4.71 0.76 0.77 17 143 160 

3 2 2 2 shape 0.94 0.94 0.50 0.50 17 143 160 

3 2 2 2 sub-shape 0.94 0.94 0.50 0.50 17 143 160 

3 4 2 1 shape 3.76 4.71 0.76 0.77 17 143 160 

3 4 2 1 sub-shape 3.76 4.71 0.76 0.77 17 143 160 

3 0 0 0 shape 3.76 5.65 0.55 0.55 17 143 160 

4 2 2 1 shape 6.59 7.53 0.78 0.79 17 143 160 

4 2 2 1 sub-shape 1.88 3.76 0.61 0.63 17 143 160 

4 2 2 2 shape 2.82 2.82 0.54 0.54 17 143 160 

4 2 2 2 sub-shape 1.88 2.82 0.54 0.54 17 143 160 

4 0 0 0 shape 7.53 3.76 0.91 0.74 17 143 160 

5 1 2 1 shape 5.65 4.71 0.77 0.74 17 143 160 

5 1 2 1 sub-shape 1.88 2.82 0.64 0.66 17 143 160 

5 1 2 2 shape 1.88 1.88 0.51 0.51 17 143 160 

5 1 2 2 sub-shape 1.88 1.88 0.51 0.51 17 143 160 

6 1 2 1 shape 8.47 9.41 0.93 0.93 17 143 160 

6 1 2 1 sub-shape 0.94 0.94 0.52 0.53 17 143 160 

6 1 2 2 shape 5.65 4.71 0.76 0.76 17 143 160 

6 1 2 2 sub-shape 6.59 6.59 0.78 0.77 17 143 160 
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EF & AUC LIM162_179_pdb1nzq_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 7.53 7.53 0.65 0.65 17 143 160 

3 2 2 1 sub-shape 7.53 7.53 0.65 0.65 17 143 160 

3 2 2 2 shape 5.65 5.65 0.62 0.62 17 143 160 

3 2 2 2 sub-shape 5.65 5.65 0.62 0.62 17 143 160 

3 4 2 1 shape 7.53 7.53 0.80 0.81 17 143 160 

3 4 2 1 sub-shape 7.53 7.53 0.80 0.81 17 143 160 

3 0 0 0 shape 7.53 7.53 0.58 0.56 17 143 160 

4 2 2 1 shape 8.47 8.47 0.83 0.81 17 143 160 

4 2 2 1 sub-shape 4.71 6.59 0.77 0.78 17 143 160 

4 2 2 2 shape 8.47 8.47 0.77 0.77 17 143 160 

4 2 2 2 sub-shape 8.47 7.53 0.77 0.77 17 143 160 

4 0 0 0 shape 9.41 8.47 0.92 0.78 17 143 160 

5 1 2 1 shape 9.41 9.41 0.96 0.96 17 143 160 

5 1 2 1 sub-shape 3.76 7.53 0.82 0.92 17 143 160 

5 1 2 2 shape 8.47 8.47 0.77 0.76 17 143 160 

5 1 2 2 sub-shape 5.65 7.53 0.75 0.76 17 143 160 

6 1 2 1 shape 9.41 9.41 0.93 0.91 17 143 160 

6 1 2 1 sub-shape 2.82 4.71 0.52 0.65 17 143 160 

6 1 2 2 shape 8.47 7.53 0.82 0.81 17 143 160 

6 1 2 2 sub-shape 5.65 6.59 0.81 0.82 17 143 160 
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EF & AUC LIM34P_1_pdb2feq_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 6.59 6.59 0.65 0.65 17 143 160 

3 2 2 1 sub-shape 6.59 6.59 0.65 0.65 17 143 160 

3 2 2 2 shape 5.65 5.65 0.61 0.61 17 143 160 

3 2 2 2 sub-shape 5.65 5.65 0.61 0.61 17 143 160 

3 4 2 1 shape 6.59 6.59 0.82 0.82 17 143 160 

3 4 2 1 sub-shape 6.59 6.59 0.82 0.82 17 143 160 

3 0 0 0 shape 5.65 4.71 0.57 0.54 17 143 160 

4 2 2 1 shape 8.47 8.47 0.84 0.82 17 143 160 

4 2 2 1 sub-shape 5.65 7.53 0.78 0.80 17 143 160 

4 2 2 2 shape 8.47 8.47 0.72 0.72 17 143 160 

4 2 2 2 sub-shape 8.47 8.47 0.72 0.72 17 143 160 

4 0 0 0 shape 8.47 8.47 0.91 0.76 17 143 160 

5 1 2 1 shape 9.41 8.47 0.98 0.88 17 143 160 

5 1 2 1 sub-shape 0.94 3.76 0.56 0.67 17 143 160 

5 1 2 2 shape 8.47 8.47 0.73 0.72 17 143 160 

5 1 2 2 sub-shape 4.71 5.65 0.71 0.71 17 143 160 

6 1 2 1 shape 9.41 8.47 0.84 0.81 17 143 160 

6 1 2 1 sub-shape 1.88 2.82 0.56 0.62 17 143 160 

6 1 2 2 shape 8.47 8.47 0.73 0.73 17 143 160 

6 1 2 2 sub-shape 6.59 7.53 0.72 0.72 17 143 160 
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EF & AUC LIM5CB_1246-H_pdb2bvx_1 

K D R M SHAPE EF(V) EF(P) R_AUC(V) R_AUC(P) ACTIVES DECOYS TOTAL 

3 2 2 1 shape 6.59 5.65 0.63 0.64 17 143 160 

3 2 2 1 sub-shape 6.59 5.65 0.63 0.64 17 143 160 

3 2 2 2 shape 1.88 1.88 0.53 0.53 17 143 160 

3 2 2 2 sub-shape 1.88 1.88 0.53 0.53 17 143 160 

3 4 2 1 shape 6.59 5.65 0.65 0.65 17 143 160 

3 4 2 1 sub-shape 6.59 5.65 0.65 0.65 17 143 160 

3 0 0 0 shape 6.59 5.65 0.56 0.63 17 143 160 

4 2 2 1 shape 7.53 4.71 0.87 0.81 17 143 160 

4 2 2 1 sub-shape 3.76 3.76 0.74 0.73 17 143 160 

4 2 2 2 shape 2.82 2.82 0.51 0.51 17 143 160 

4 2 2 2 sub-shape 2.82 2.82 0.51 0.51 17 143 160 

4 0 0 0 shape 4.71 2.82 0.92 0.80 17 143 160 

5 1 2 1 shape 5.65 3.76 0.76 0.66 17 143 160 

5 1 2 1 sub-shape 2.82 1.88 0.61 0.61 17 143 160 

5 1 2 2 shape 3.76 3.76 0.50 0.50 17 143 160 

5 1 2 2 sub-shape 1.88 1.88 0.50 0.50 17 143 160 

6 1 2 1 shape 8.47 7.53 0.86 0.85 17 143 160 

6 1 2 1 sub-shape 2.82 3.76 0.61 0.64 17 143 160 

6 1 2 2 shape 6.59 4.71 0.69 0.68 17 143 160 

6 1 2 2 sub-shape 4.71 6.59 0.68 0.68 17 143 160 
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Thrombin 7 datasets, Recall@5% 

K D R M SHAPE RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 2 2 1 shape 41.18 41.18 17 143 160 

3 2 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 41.18 41.18 17 143 160 
4 2 2 1 shape 47.06 47.06 17 143 160 

4 2 2 1 
sub-

shape 
17.65 41.18 17 143 160 

4 2 2 2 shape 47.06 47.06 17 143 160 

4 2 2 2 
sub-

shape 
47.06 47.06 17 143 160 

4 0 0 0 shape 47.06 47.06 17 143 160 
5 1 2 1 shape 47.06 47.06 17 143 160 

5 1 2 1 
sub-

shape 
5.88 35.29 17 143 160 

5 1 2 2 shape 47.06 47.06 17 143 160 

5 1 2 2 
sub-

shape 
35.29 41.18 17 143 160 

6 1 2 1 shape 47.06 47.06 17 143 160 

6 1 2 1 
sub-

shape 
11.76 35.29 17 143 160 

6 1 2 2 shape 47.06 47.06 17 143 160 

6 1 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 2 2 1 shape 41.18 47.06 17 143 160 

3 2 2 1 
sub-

shape 
41.18 47.06 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 41.18 47.06 17 143 160 

3 4 2 1 
sub-

shape 
41.18 47.06 17 143 160 

3 0 0 0 shape 41.18 47.06 17 143 160 
4 2 2 1 shape 47.06 47.06 17 143 160 

4 2 2 1 
sub-

shape 
23.53 35.29 17 143 160 

4 2 2 2 shape 47.06 47.06 17 143 160 

4 2 2 2 
sub-

shape 
47.06 47.06 17 143 160 

4 0 0 0 shape 41.18 47.06 17 143 160 
5 1 2 1 shape 47.06 47.06 17 143 160 



149 

 

5 1 2 1 
sub-

shape 
17.65 29.41 17 143 160 

5 1 2 2 shape 47.06 47.06 17 143 160 

5 1 2 2 
sub-

shape 
47.06 47.06 17 143 160 

6 1 2 1 shape 47.06 47.06 17 143 160 

6 1 2 1 
sub-

shape 
11.76 23.53 17 143 160 

6 1 2 2 shape 47.06 47.06 17 143 160 

6 1 2 2 
sub-

shape 
41.18 47.06 17 143 160 

3 2 2 1 shape 41.18 41.18 17 143 160 

3 2 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 2 2 2 shape 17.65 17.65 17 143 160 

3 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 41.18 41.18 17 143 160 
4 2 2 1 shape 29.41 29.41 17 143 160 

4 2 2 1 
sub-

shape 
23.53 23.53 17 143 160 

4 2 2 2 shape 17.65 17.65 17 143 160 

4 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

4 0 0 0 shape 35.29 35.29 17 143 160 
5 1 2 1 shape 41.18 29.41 17 143 160 

5 1 2 1 
sub-

shape 
23.53 29.41 17 143 160 

5 1 2 2 shape 17.65 23.53 17 143 160 

5 1 2 2 
sub-

shape 
11.76 17.65 17 143 160 

6 1 2 1 shape 29.41 29.41 17 143 160 

6 1 2 1 
sub-

shape 
23.53 17.65 17 143 160 

6 1 2 2 shape 23.53 17.65 17 143 160 

6 1 2 2 
sub-

shape 
29.41 29.41 17 143 160 

3 2 2 1 shape 11.76 29.41 17 143 160 

3 2 2 1 
sub-

shape 
11.76 29.41 17 143 160 

3 2 2 2 shape 5.88 5.88 17 143 160 

3 2 2 2 
sub-

shape 
5.88 5.88 17 143 160 

3 4 2 1 shape 11.76 29.41 17 143 160 

3 4 2 1 
sub-

shape 
11.76 29.41 17 143 160 

3 0 0 0 shape 11.76 35.29 17 143 160 
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4 2 2 1 shape 35.29 41.18 17 143 160 

4 2 2 1 
sub-

shape 
11.76 17.65 17 143 160 

4 2 2 2 shape 11.76 11.76 17 143 160 

4 2 2 2 
sub-

shape 
11.76 11.76 17 143 160 

4 0 0 0 shape 41.18 23.53 17 143 160 
5 1 2 1 shape 29.41 23.53 17 143 160 

5 1 2 1 
sub-

shape 
11.76 11.76 17 143 160 

5 1 2 2 shape 11.76 11.76 17 143 160 

5 1 2 2 
sub-

shape 
11.76 11.76 17 143 160 

6 1 2 1 shape 41.18 47.06 17 143 160 

6 1 2 1 
sub-

shape 
5.88 5.88 17 143 160 

6 1 2 2 shape 23.53 29.41 17 143 160 

6 1 2 2 
sub-

shape 
29.41 35.29 17 143 160 

3 2 2 1 shape 41.18 47.06 17 143 160 

3 2 2 1 
sub-

shape 
41.18 47.06 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 41.18 47.06 17 143 160 

3 4 2 1 
sub-

shape 
41.18 47.06 17 143 160 

3 0 0 0 shape 41.18 47.06 17 143 160 
4 2 2 1 shape 47.06 47.06 17 143 160 

4 2 2 1 
sub-

shape 
29.41 35.29 17 143 160 

4 2 2 2 shape 47.06 47.06 17 143 160 

4 2 2 2 
sub-

shape 
41.18 41.18 17 143 160 

4 0 0 0 shape 47.06 47.06 17 143 160 
5 1 2 1 shape 47.06 47.06 17 143 160 

5 1 2 1 
sub-

shape 
17.65 41.18 17 143 160 

5 1 2 2 shape 47.06 47.06 17 143 160 

5 1 2 2 
sub-

shape 
23.53 35.29 17 143 160 

6 1 2 1 shape 47.06 47.06 17 143 160 

6 1 2 1 
sub-

shape 
17.65 29.41 17 143 160 

6 1 2 2 shape 47.06 47.06 17 143 160 

6 1 2 2 
sub-

shape 
29.41 41.18 17 143 160 

3 2 2 1 shape 41.18 41.18 17 143 160 
3 2 2 1 sub- 41.18 41.18 17 143 160 
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shape 
3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 35.29 29.41 17 143 160 
4 2 2 1 shape 47.06 47.06 17 143 160 

4 2 2 1 
sub-

shape 
29.41 41.18 17 143 160 

4 2 2 2 shape 47.06 47.06 17 143 160 

4 2 2 2 
sub-

shape 
47.06 41.18 17 143 160 

4 0 0 0 shape 47.06 47.06 17 143 160 
5 1 2 1 shape 47.06 47.06 17 143 160 

5 1 2 1 
sub-

shape 
5.88 17.65 17 143 160 

5 1 2 2 shape 47.06 47.06 17 143 160 

5 1 2 2 
sub-

shape 
29.41 35.29 17 143 160 

6 1 2 1 shape 47.06 47.06 17 143 160 

6 1 2 1 
sub-

shape 
11.76 17.65 17 143 160 

6 1 2 2 shape 47.06 47.06 17 143 160 

6 1 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 2 2 1 shape 41.18 35.29 17 143 160 

3 2 2 1 
sub-

shape 
41.18 35.29 17 143 160 

3 2 2 2 shape 11.76 11.76 17 143 160 

3 2 2 2 
sub-

shape 
11.76 11.76 17 143 160 

3 4 2 1 shape 41.18 35.29 17 143 160 

3 4 2 1 
sub-

shape 
41.18 35.29 17 143 160 

3 0 0 0 shape 41.18 35.29 17 143 160 
4 2 2 1 shape 35.29 23.53 17 143 160 

4 2 2 1 
sub-

shape 
11.76 17.65 17 143 160 

4 2 2 2 shape 17.65 11.76 17 143 160 

4 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

4 0 0 0 shape 23.53 11.76 17 143 160 
5 1 2 1 shape 35.29 23.53 17 143 160 

5 1 2 1 
sub-

shape 
17.65 11.76 17 143 160 

5 1 2 2 shape 17.65 17.65 17 143 160 

5 1 2 2 
sub-

shape 
11.76 11.76 17 143 160 
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6 1 2 1 shape 41.18 35.29 17 143 160 

6 1 2 1 
sub-

shape 
17.65 23.53 17 143 160 

6 1 2 2 shape 35.29 29.41 17 143 160 

6 1 2 2 
sub-

shape 
23.53 35.29 17 143 160 
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Thrombin 7 datasets, Recall@10% 

K D R M SHAPE RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 2 2 1 shape 47.06 47.06 17 143 160 

3 2 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 47.06 47.06 17 143 160 

3 4 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 0 0 0 shape 47.06 47.06 17 143 160 
4 2 2 1 shape 58.82 52.94 17 143 160 

4 2 2 1 
sub-

shape 
41.18 52.94 17 143 160 

4 2 2 2 shape 58.82 58.82 17 143 160 

4 2 2 2 
sub-

shape 
58.82 52.94 17 143 160 

4 0 0 0 shape 58.82 52.94 17 143 160 
5 1 2 1 shape 76.47 58.82 17 143 160 

5 1 2 1 
sub-

shape 
17.65 52.94 17 143 160 

5 1 2 2 shape 52.94 52.94 17 143 160 

5 1 2 2 
sub-

shape 
52.94 52.94 17 143 160 

6 1 2 1 shape 76.47 76.47 17 143 160 

6 1 2 1 
sub-

shape 
23.53 52.94 17 143 160 

6 1 2 2 shape 58.82 52.94 17 143 160 

6 1 2 2 
sub-

shape 
58.82 52.94 17 143 160 

3 2 2 1 shape 47.06 47.06 17 143 160 

3 2 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 47.06 47.06 17 143 160 

3 4 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 0 0 0 shape 52.94 47.06 17 143 160 
4 2 2 1 shape 52.94 52.94 17 143 160 

4 2 2 1 
sub-

shape 
41.18 52.94 17 143 160 

4 2 2 2 shape 58.82 58.82 17 143 160 

4 2 2 2 
sub-

shape 
58.82 58.82 17 143 160 

4 0 0 0 shape 52.94 58.82 17 143 160 
5 1 2 1 shape 58.82 58.82 17 143 160 
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5 1 2 1 
sub-

shape 
17.65 47.06 17 143 160 

5 1 2 2 shape 52.94 52.94 17 143 160 

5 1 2 2 
sub-

shape 
52.94 52.94 17 143 160 

6 1 2 1 shape 70.59 58.82 17 143 160 

6 1 2 1 
sub-

shape 
11.76 29.41 17 143 160 

6 1 2 2 shape 58.82 58.82 17 143 160 

6 1 2 2 
sub-

shape 
58.82 64.71 17 143 160 

3 2 2 1 shape 41.18 41.18 17 143 160 

3 2 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 2 2 2 shape 17.65 17.65 17 143 160 

3 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 47.06 41.18 17 143 160 
4 2 2 1 shape 29.41 35.29 17 143 160 

4 2 2 1 
sub-

shape 
23.53 23.53 17 143 160 

4 2 2 2 shape 17.65 17.65 17 143 160 

4 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

4 0 0 0 shape 41.18 35.29 17 143 160 
5 1 2 1 shape 70.59 58.82 17 143 160 

5 1 2 1 
sub-

shape 
29.41 35.29 17 143 160 

5 1 2 2 shape 23.53 23.53 17 143 160 

5 1 2 2 
sub-

shape 
17.65 23.53 17 143 160 

6 1 2 1 shape 52.94 35.29 17 143 160 

6 1 2 1 
sub-

shape 
23.53 17.65 17 143 160 

6 1 2 2 shape 47.06 29.41 17 143 160 

6 1 2 2 
sub-

shape 
35.29 41.18 17 143 160 

3 2 2 1 shape 41.18 41.18 17 143 160 

3 2 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 2 2 2 shape 5.88 5.88 17 143 160 

3 2 2 2 
sub-

shape 
5.88 5.88 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 41.18 35.29 17 143 160 
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4 2 2 1 shape 52.94 47.06 17 143 160 

4 2 2 1 
sub-

shape 
23.53 29.41 17 143 160 

4 2 2 2 shape 17.65 17.65 17 143 160 

4 2 2 2 
sub-

shape 
23.53 23.53 17 143 160 

4 0 0 0 shape 58.82 41.18 17 143 160 
5 1 2 1 shape 58.82 41.18 17 143 160 

5 1 2 1 
sub-

shape 
17.65 17.65 17 143 160 

5 1 2 2 shape 11.76 11.76 17 143 160 

5 1 2 2 
sub-

shape 
11.76 11.76 17 143 160 

6 1 2 1 shape 58.82 64.71 17 143 160 

6 1 2 1 
sub-

shape 
5.88 5.88 17 143 160 

6 1 2 2 shape 47.06 41.18 17 143 160 

6 1 2 2 
sub-

shape 
47.06 52.94 17 143 160 

3 2 2 1 shape 47.06 47.06 17 143 160 

3 2 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 47.06 47.06 17 143 160 

3 4 2 1 
sub-

shape 
47.06 47.06 17 143 160 

3 0 0 0 shape 47.06 47.06 17 143 160 
4 2 2 1 shape 58.82 64.71 17 143 160 

4 2 2 1 
sub-

shape 
41.18 52.94 17 143 160 

4 2 2 2 shape 52.94 52.94 17 143 160 

4 2 2 2 
sub-

shape 
52.94 52.94 17 143 160 

4 0 0 0 shape 64.71 64.71 17 143 160 
5 1 2 1 shape 82.35 82.35 17 143 160 

5 1 2 1 
sub-

shape 
35.29 52.94 17 143 160 

5 1 2 2 shape 52.94 52.94 17 143 160 

5 1 2 2 
sub-

shape 
52.94 52.94 17 143 160 

6 1 2 1 shape 76.47 70.59 17 143 160 

6 1 2 1 
sub-

shape 
17.65 41.18 17 143 160 

6 1 2 2 shape 52.94 52.94 17 143 160 

6 1 2 2 
sub-

shape 
47.06 58.82 17 143 160 

3 2 2 1 shape 47.06 47.06 17 143 160 
3 2 2 1 sub- 47.06 47.06 17 143 160 
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shape 
3 2 2 2 shape 35.29 35.29 17 143 160 

3 2 2 2 
sub-

shape 
35.29 35.29 17 143 160 

3 4 2 1 shape 47.06 41.18 17 143 160 

3 4 2 1 
sub-

shape 
47.06 41.18 17 143 160 

3 0 0 0 shape 47.06 35.29 17 143 160 
4 2 2 1 shape 64.71 58.82 17 143 160 

4 2 2 1 
sub-

shape 
52.94 58.82 17 143 160 

4 2 2 2 shape 52.94 52.94 17 143 160 

4 2 2 2 
sub-

shape 
52.94 52.94 17 143 160 

4 0 0 0 shape 64.71 58.82 17 143 160 
5 1 2 1 shape 82.35 52.94 17 143 160 

5 1 2 1 
sub-

shape 
5.88 29.41 17 143 160 

5 1 2 2 shape 52.94 52.94 17 143 160 

5 1 2 2 
sub-

shape 
47.06 47.06 17 143 160 

6 1 2 1 shape 70.59 52.94 17 143 160 

6 1 2 1 
sub-

shape 
17.65 17.65 17 143 160 

6 1 2 2 shape 58.82 52.94 17 143 160 

6 1 2 2 
sub-

shape 
52.94 52.94 17 143 160 

3 2 2 1 shape 41.18 41.18 17 143 160 

3 2 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 2 2 2 shape 11.76 11.76 17 143 160 

3 2 2 2 
sub-

shape 
11.76 11.76 17 143 160 

3 4 2 1 shape 41.18 41.18 17 143 160 

3 4 2 1 
sub-

shape 
41.18 41.18 17 143 160 

3 0 0 0 shape 41.18 35.29 17 143 160 
4 2 2 1 shape 52.94 47.06 17 143 160 

4 2 2 1 
sub-

shape 
41.18 47.06 17 143 160 

4 2 2 2 shape 17.65 17.65 17 143 160 

4 2 2 2 
sub-

shape 
17.65 17.65 17 143 160 

4 0 0 0 shape 52.94 29.41 17 143 160 
5 1 2 1 shape 41.18 23.53 17 143 160 

5 1 2 1 
sub-

shape 
35.29 23.53 17 143 160 

5 1 2 2 shape 23.53 23.53 17 143 160 

5 1 2 2 
sub-

shape 
23.53 23.53 17 143 160 
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6 1 2 1 shape 76.47 58.82 17 143 160 

6 1 2 1 
sub-

shape 
23.53 29.41 17 143 160 

6 1 2 2 shape 47.06 35.29 17 143 160 

6 1 2 2 
sub-

shape 
41.18 47.06 17 143 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

 

Appendix B - 40 DUD queries  

Shape AUC Volume and Properties values 

QUERY/CLASS K D R M AUC (V) AUC (P) 
ACE 3 4 2 1 0.691438 0.67427 
ACE 3 4 2 2 0.501393 0.501393 
ACE 3 0 0 0 0.605165 0.630822 
ACE 4 2 2 1 0.603076 0.611184 
ACE 4 2 2 2 0.562947 0.562014 
ACE 4 0 0 0 0.616604 0.590838 
ACE 5 1 2 1 0.585927 0.601072 
ACE 5 1 2 2 0.502368 0.504311 
ACE 6 1 2 1 0.578697 0.568669 
ACE 6 1 2 2 0.629181 0.614909 

ACHE 3 4 2 1 0.657332 0.6433 
ACHE 3 4 2 2 0.579045 0.579683 
ACHE 3 0 0 0 0.528525 0.516175 
ACHE 4 2 2 1 0.609302 0.660629 
ACHE 4 2 2 2 0.767535 0.77029 
ACHE 4 0 0 0 0.585356 0.657022 
ACHE 5 1 2 1 0.590435 0.664471 
ACHE 5 1 2 2 0.693503 0.691404 
ACHE 6 1 2 1 0.565997 0.651821 
ACHE 6 1 2 2 0.769726 0.766984 
ADA 3 4 2 1 0.633275 0.676621 
ADA 3 4 2 2 0.531857 0.531857 
ADA 3 0 0 0 0.567894 0.613563 
ADA 4 2 2 1 0.5241 0.560851 
ADA 4 2 2 2 0.509439 0.509807 
ADA 4 0 0 0 0.622664 0.544989 
ADA 5 1 2 1 0.53714 0.556038 
ADA 5 1 2 2 0.52627 0.524603 
ADA 6 1 2 1 0.607217 0.510118 
ADA 6 1 2 2 0.639285 0.629191 
ALR2 3 4 2 1 0.654998 0.597189 
ALR2 3 4 2 2 0.581988 0.581927 
ALR2 3 0 0 0 0.648165 0.622843 
ALR2 4 2 2 1 0.525244 0.55205 
ALR2 4 2 2 2 0.66066 0.659098 
ALR2 4 0 0 0 0.578212 0.525166 
ALR2 5 1 2 1 0.546701 0.527763 
ALR2 5 1 2 2 0.619249 0.626904 
ALR2 6 1 2 1 0.57294 0.625693 
ALR2 6 1 2 2 0.661927 0.68116 
AMPC 3 4 2 1 0.578721 0.572328 
AMPC 3 4 2 2 0.500637 0.500637 
AMPC 3 0 0 0 0.518734 0.651431 
AMPC 4 2 2 1 0.603094 0.59906 
AMPC 4 2 2 2 0.503185 0.503185 
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AMPC 4 0 0 0 0.594359 0.574841 
AMPC 5 1 2 1 0.537701 0.616894 
AMPC 5 1 2 2 0.503817 0.503817 
AMPC 6 1 2 1 0.516257 0.514377 
AMPC 6 1 2 2 0.511355 0.511673 

ANP/SRC 3 4 2 1 0.551336 0.53794 
ANP/SRC 3 4 2 2 0.53375 0.53394 
ANP/SRC 3 0 0 0 0.761952 0.773009 
ANP/SRC 4 2 2 1 0.51885 0.510868 
ANP/SRC 4 2 2 2 0.576967 0.581592 
ANP/SRC 4 0 0 0 0.533148 0.576627 
ANP/SRC 5 1 2 1 0.583679 0.527182 
ANP/SRC 5 1 2 2 0.544151 0.544716 
ANP/SRC 6 1 2 1 0.546624 0.528962 
ANP/SRC 6 1 2 2 0.500588 0.503071 

AR 3 4 2 1 0.778106 0.798138 
AR 3 4 2 2 0.541983 0.541682 
AR 3 0 0 0 0.587236 0.727583 
AR 4 2 2 1 0.705887 0.678413 
AR 4 2 2 2 0.622237 0.616597 
AR 4 0 0 0 0.618334 0.686496 
AR 5 1 2 1 0.668255 0.597872 
AR 5 1 2 2 0.638696 0.638626 
AR 6 1 2 1 0.668699 0.526848 
AR 6 1 2 2 0.763704 0.737192 

CDK2 3 4 2 1 0.65707 0.686538 
CDK2 3 4 2 2 0.530048 0.529601 
CDK2 3 0 0 0 0.553197 0.550122 
CDK2 4 2 2 1 0.513322 0.52012 
CDK2 4 2 2 2 0.538615 0.538872 
CDK2 4 0 0 0 0.563136 0.617145 
CDK2 5 1 2 1 0.527755 0.533406 
CDK2 5 1 2 2 0.50925 0.509307 
CDK2 6 1 2 1 0.511754 0.522541 
CDK2 6 1 2 2 0.501327 0.507522 
COMT 3 4 2 1 0.502141 0.502141 
COMT 3 4 2 2 0.5 0.5 
COMT 3 0 0 0 0.698184 0.64308 
COMT 4 2 2 1 0.62663 0.656706 
COMT 4 2 2 2 0.531633 0.528908 
COMT 4 0 0 0 0.736218 0.68795 
COMT 5 1 2 1 0.612906 0.623613 
COMT 5 1 2 2 0.550029 0.550905 
COMT 6 1 2 1 0.626436 0.513724 
COMT 6 1 2 2 0.539031 0.538544 
COX1 3 4 2 1 0.504545 0.519181 
COX1 3 4 2 2 0.5 0.5 
COX1 3 0 0 0 0.592383 0.61506 
COX1 4 2 2 1 0.547253 0.645904 
COX1 4 2 2 2 0.518917 0.518917 
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COX1 4 0 0 0 0.556668 0.542108 
COX1 5 1 2 1 0.503707 0.549376 
COX1 5 1 2 2 0.567907 0.567308 
COX1 6 1 2 1 0.55522 0.678971 
COX1 6 1 2 2 0.682594 0.660165 
COX2 3 4 2 1 0.924634 0.931038 
COX2 3 4 2 2 0.508479 0.509295 
COX2 3 0 0 0 0.821387 0.716973 
COX2 4 2 2 1 0.809729 0.775932 
COX2 4 2 2 2 0.62008 0.620236 
COX2 4 0 0 0 0.742389 0.724361 
COX2 5 1 2 1 0.757596 0.746411 
COX2 5 1 2 2 0.63666 0.636043 
COX2 6 1 2 1 0.708154 0.688295 
COX2 6 1 2 2 0.72855 0.734075 
DHFR 3 4 2 1 0.52287 0.582374 
DHFR 3 4 2 2 0.53302 0.532434 
DHFR 3 0 0 0 0.509206 0.660208 
DHFR 4 2 2 1 0.509937 0.526579 
DHFR 4 2 2 2 0.515597 0.517504 
DHFR 4 0 0 0 0.589048 0.620461 
DHFR 5 1 2 1 0.551585 0.575491 
DHFR 5 1 2 2 0.560594 0.559536 
DHFR 6 1 2 1 0.519995 0.598663 
DHFR 6 1 2 2 0.680004 0.700721 
EGFR 3 4 2 1 0.641054 0.666528 
EGFR 3 4 2 2 0.501779 0.501779 
EGFR 3 0 0 0 0.666681 0.695826 
EGFR 4 2 2 1 0.524347 0.536231 
EGFR 4 2 2 2 0.512528 0.503661 
EGFR 4 0 0 0 0.573495 0.546496 
EGFR 5 1 2 1 0.517974 0.571867 
EGFR 5 1 2 2 0.572179 0.573304 
EGFR 6 1 2 1 0.523503 0.543195 
EGFR 6 1 2 2 0.509905 0.502631 

ER_AGONIST 3 4 2 1 0.850975 0.874055 
ER_AGONIST 3 4 2 2 0.511851 0.512617 
ER_AGONIST 3 0 0 0 0.758148 0.891465 
ER_AGONIST 4 2 2 1 0.761314 0.850777 
ER_AGONIST 4 2 2 2 0.586957 0.596799 
ER_AGONIST 4 0 0 0 0.642662 0.844804 
ER_AGONIST 5 1 2 1 0.821767 0.851704 
ER_AGONIST 5 1 2 2 0.775301 0.779092 
ER_AGONIST 6 1 2 1 0.8228 0.851852 
ER_AGONIST 6 1 2 2 0.812296 0.822876 

ER_ANTAGONIST 3 4 2 1 0.581536 0.550373 
ER_ANTAGONIST 3 4 2 2 0.570777 0.570916 
ER_ANTAGONIST 3 0 0 0 0.699238 0.640387 
ER_ANTAGONIST 4 2 2 1 0.697376 0.694512 
ER_ANTAGONIST 4 2 2 2 0.686367 0.687034 
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ER_ANTAGONIST 4 0 0 0 0.777744 0.632242 
ER_ANTAGONIST 5 1 2 1 0.724647 0.684838 
ER_ANTAGONIST 5 1 2 2 0.621066 0.621595 
ER_ANTAGONIST 6 1 2 1 0.534249 0.588485 
ER_ANTAGONIST 6 1 2 2 0.67155 0.670355 

FGFR 3 4 2 1 0.514371 0.508928 
FGFR 3 4 2 2 0.504334 0.504334 
FGFR 3 0 0 0 0.638749 0.559067 
FGFR 4 2 2 1 0.54649 0.506072 
FGFR 4 2 2 2 0.547015 0.546992 
FGFR 4 0 0 0 0.506566 0.549654 
FGFR 5 1 2 1 0.552429 0.552033 
FGFR 5 1 2 2 0.54102 0.540691 
FGFR 6 1 2 1 0.534941 0.520803 
FGFR 6 1 2 2 0.536552 0.537331 
FXA 3 4 2 1 0.632921 0.650212 
FXA 3 4 2 2 0.531198 0.531758 
FXA 3 0 0 0 0.507715 0.568689 
FXA 4 2 2 1 0.540744 0.565047 
FXA 4 2 2 2 0.5519 0.545696 
FXA 4 0 0 0 0.5481 0.543674 
FXA 5 1 2 1 0.573578 0.650085 
FXA 5 1 2 2 0.640685 0.639242 
FXA 6 1 2 1 0.542096 0.529128 
FXA 6 1 2 2 0.66079 0.664033 

GART 3 4 2 1 0.671672 0.630682 
GART 3 4 2 2 0.581169 0.581169 
GART 3 0 0 0 0.677354 0.524351 
GART 4 2 2 1 0.63474 0.627029 
GART 4 2 2 2 0.536932 0.525346 
GART 4 0 0 0 0.549919 0.670049 
GART 5 1 2 1 0.655438 0.719562 
GART 5 1 2 2 0.6447 0.656221 
GART 6 1 2 1 0.700893 0.659497 
GART 6 1 2 2 0.752995 0.760829 
GPB 3 4 2 1 0.711016 0.723428 
GPB 3 4 2 2 0.683166 0.68194 
GPB 3 0 0 0 0.506159 0.575414 
GPB 4 2 2 1 0.593013 0.536533 
GPB 4 2 2 2 0.744469 0.759408 
GPB 4 0 0 0 0.564604 0.781207 
GPB 5 1 2 1 0.522799 0.533528 
GPB 5 1 2 2 0.854163 0.849024 
GPB 6 1 2 1 0.733621 0.766149 
GPB 6 1 2 2 0.776945 0.758146 
GR 3 4 2 1 0.581107 0.557228 
GR 3 4 2 2 0.536913 0.537019 
GR 3 0 0 0 0.705965 0.542148 
GR 4 2 2 1 0.620291 0.627279 
GR 4 2 2 2 0.526287 0.526287 
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GR 4 0 0 0 0.679928 0.675959 
GR 5 1 2 1 0.519411 0.510464 
GR 5 1 2 2 0.595838 0.595801 
GR 6 1 2 1 0.589742 0.582935 
GR 6 1 2 2 0.579148 0.578942 

HIV-PR 3 4 2 1 0.6875 0.59375 
HIV-PR 3 4 2 2 0.75 0.75 
HIV-PR 3 0 0 0 0.65625 0.5625 
HIV-PR 4 2 2 1 0.609375 0.59375 
HIV-PR 4 2 2 2 0.5 0.5 
HIV-PR 4 0 0 0 0.555556 0.8125 
HIV-PR 5 1 2 1 0.84375 0.96875 
HIV-PR 5 1 2 2 0.765625 0.765625 
HIV-PR 6 1 2 1 0.796875 0.6875 
HIV-PR 6 1 2 2 0.5 0.5 
HIVRT 3 4 2 1 0.739638 0.708531 
HIVRT 3 4 2 2 0.586896 0.604732 
HIVRT 3 0 0 0 0.642223 0.555627 
HIVRT 4 2 2 1 0.518813 0.55117 
HIVRT 4 2 2 2 0.505486 0.504078 
HIVRT 4 0 0 0 0.665104 0.535135 
HIVRT 5 1 2 1 0.573395 0.508481 
HIVRT 5 1 2 2 0.527708 0.525757 
HIVRT 6 1 2 1 0.615372 0.574936 
HIVRT 6 1 2 2 0.551884 0.550855 
HMGA 3 4 2 1 0.577243 0.63384 
HMGA 3 4 2 2 0.658263 0.671533 
HMGA 3 0 0 0 0.563924 0.637131 
HMGA 4 2 2 1 0.67305 0.673313 
HMGA 4 2 2 2 0.539072 0.522588 
HMGA 4 0 0 0 0.581294 0.698158 
HMGA 5 1 2 1 0.548833 0.523066 
HMGA 5 1 2 2 0.732519 0.73948 
HMGA 6 1 2 1 0.529395 0.512855 
HMGA 6 1 2 2 0.799831 0.784346 
HSP90 3 4 2 1 0.887319 0.865967 
HSP90 3 4 2 2 0.630793 0.630956 
HSP90 3 0 0 0 0.778135 0.719674 
HSP90 4 2 2 1 0.674583 0.612657 
HSP90 4 2 2 2 0.641096 0.642587 
HSP90 4 0 0 0 0.708345 0.636993 
HSP90 5 1 2 1 0.523681 0.618555 
HSP90 5 1 2 2 0.592358 0.570932 
HSP90 6 1 2 1 0.701701 0.642005 
HSP90 6 1 2 2 0.702504 0.693978 
INHA 3 4 2 1 0.603571 0.52949 
INHA 3 4 2 2 0.50567 0.505696 
INHA 3 0 0 0 0.542994 0.534355 
INHA 4 2 2 1 0.679805 0.708181 
INHA 4 2 2 2 0.553275 0.555105 
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INHA 4 0 0 0 0.619173 0.629354 
INHA 5 1 2 1 0.512768 0.589243 
INHA 5 1 2 2 0.570841 0.571854 
INHA 6 1 2 1 0.512682 0.562193 
INHA 6 1 2 2 0.601015 0.601163 
MR 3 4 2 1 0.565657 0.606787 
MR 3 4 2 2 0.503937 0.503937 
MR 3 0 0 0 0.947184 0.824292 
MR 4 2 2 1 0.912417 0.829468 
MR 4 2 2 2 0.651992 0.656184 
MR 4 0 0 0 0.921563 0.688221 
MR 5 1 2 1 0.829921 0.730346 
MR 5 1 2 2 0.725694 0.722746 
MR 6 1 2 1 0.685403 0.574358 
MR 6 1 2 2 0.825136 0.795008 
NA 3 4 2 1 0.74373 0.745561 
NA 3 4 2 2 0.528157 0.539405 
NA 3 0 0 0 0.573837 0.600214 
NA 4 2 2 1 0.62292 0.597909 
NA 4 2 2 2 0.542743 0.548787 
NA 4 0 0 0 0.670644 0.642154 
NA 5 1 2 1 0.589488 0.61853 
NA 5 1 2 2 0.504743 0.505746 
NA 6 1 2 1 0.655839 0.628192 
NA 6 1 2 2 0.504932 0.50768 
P38 3 4 2 1 0.538847 0.546829 
P38 3 4 2 2 0.548656 0.549127 
P38 3 0 0 0 0.502848 0.509631 
P38 4 2 2 1 0.579719 0.547261 
P38 4 2 2 2 0.503503 0.507317 
P38 4 0 0 0 0.527243 0.617622 
P38 5 1 2 1 0.641622 0.617147 
P38 5 1 2 2 0.58436 0.57924 
P38 6 1 2 1 0.540136 0.524044 
P38 6 1 2 2 0.588735 0.584344 

PARP 3 4 2 1 0.575588 0.504113 
PARP 3 4 2 2 0.539324 0.538272 
PARP 3 0 0 0 0.599034 0.502702 
PARP 4 2 2 1 0.601306 0.543533 
PARP 4 2 2 2 0.586575 0.587102 
PARP 4 0 0 0 0.500813 0.663239 
PARP 5 1 2 1 0.538284 0.67737 
PARP 5 1 2 2 0.639284 0.646148 
PARP 6 1 2 1 0.620017 0.755566 
PARP 6 1 2 2 0.73371 0.810194 
PDE5 3 4 2 1 0.727914 0.729738 
PDE5 3 4 2 2 0.518268 0.518268 
PDE5 3 0 0 0 0.518574 0.6213 
PDE5 4 2 2 1 0.532761 0.594012 
PDE5 4 2 2 2 0.505496 0.505462 
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PDE5 4 0 0 0 0.534779 0.61671 
PDE5 5 1 2 1 0.586963 0.542111 
PDE5 5 1 2 2 0.536082 0.536161 
PDE5 6 1 2 1 0.568141 0.555687 
PDE5 6 1 2 2 0.586555 0.591576 

PDGFRB 3 4 2 1 0.619564 0.611092 
PDGFRB 3 4 2 2 0.535893 0.536109 
PDGFRB 3 0 0 0 0.704699 0.644979 
PDGFRB 4 2 2 1 0.534314 0.50517 
PDGFRB 4 2 2 2 0.535737 0.541592 
PDGFRB 4 0 0 0 0.666894 0.608104 
PDGFRB 5 1 2 1 0.504985 0.523412 
PDGFRB 5 1 2 2 0.50664 0.501216 
PDGFRB 6 1 2 1 0.566537 0.566671 
PDGFRB 6 1 2 2 0.508154 0.500961 

PNP 3 4 2 1 0.567769 0.581256 
PNP 3 4 2 2 0.539111 0.539111 
PNP 3 0 0 0 0.527852 0.50742 
PNP 4 2 2 1 0.516174 0.523382 
PNP 4 2 2 2 0.553431 0.572 
PNP 4 0 0 0 0.598106 0.5297 
PNP 5 1 2 1 0.70858 0.624678 
PNP 5 1 2 2 0.738647 0.746976 
PNP 6 1 2 1 0.556618 0.569565 
PNP 6 1 2 2 0.745952 0.755053 

PPAR 3 4 2 1 0.602564 0.561966 
PPAR 3 4 2 2 0.508547 0.510684 
PPAR 3 0 0 0 0.903846 0.965812 
PPAR 4 2 2 1 0.651709 0.65812 
PPAR 4 2 2 2 0.512821 0.512821 
PPAR 4 0 0 0 0.944444 0.878205 
PPAR 5 1 2 1 0.606838 0.551282 
PPAR 5 1 2 2 0.538462 0.538462 
PPAR 6 1 2 1 0.564103 0.606838 
PPAR 6 1 2 2 0.594017 0.619658 

PR 3 4 2 1 0.533139 0.593753 
PR 3 4 2 2 0.50596 0.505911 
PR 3 0 0 0 0.589376 0.566995 
PR 4 2 2 1 0.512291 0.751632 
PR 4 2 2 2 0.542391 0.542391 
PR 4 0 0 0 0.631319 0.625155 
PR 5 1 2 1 0.500346 0.635844 
PR 5 1 2 2 0.524457 0.524457 
PR 6 1 2 1 0.637773 0.635548 
PR 6 1 2 2 0.54837 0.523939 

RXR 3 4 2 1 0.745403 0.77555 
RXR 3 4 2 2 0.807673 0.806547 
RXR 3 0 0 0 0.724303 0.855038 
RXR 4 2 2 1 0.691444 0.690718 
RXR 4 2 2 2 0.802711 0.813964 
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RXR 4 0 0 0 0.667212 0.709565 
RXR 5 1 2 1 0.540505 0.601045 
RXR 5 1 2 2 0.78794 0.800329 
RXR 6 1 2 1 0.725319 0.774729 
RXR 6 1 2 2 0.894406 0.911973 

SAHH 3 4 2 1 0.702382 0.646615 
SAHH 3 4 2 2 0.596211 0.596211 
SAHH 3 0 0 0 0.762874 0.830087 
SAHH 4 2 2 1 0.754492 0.77829 
SAHH 4 2 2 2 0.616224 0.616735 
SAHH 4 0 0 0 0.766403 0.799115 
SAHH 5 1 2 1 0.790014 0.809784 
SAHH 5 1 2 2 0.74105 0.742988 
SAHH 6 1 2 1 0.586982 0.740539 
SAHH 6 1 2 2 0.802076 0.815124 

Thrombin 3 4 2 1 0.591865 0.598328 
Thrombin 3 4 2 2 0.502161 0.502502 
Thrombin 3 0 0 0 0.684091 0.721732 
Thrombin 4 2 2 1 0.612714 0.655794 
Thrombin 4 2 2 2 0.663148 0.663394 
Thrombin 4 0 0 0 0.623157 0.716993 
Thrombin 5 1 2 1 0.595391 0.596206 
Thrombin 5 1 2 2 0.525321 0.525549 
Thrombin 6 1 2 1 0.574713 0.508472 
Thrombin 6 1 2 2 0.540673 0.54327 

TK 3 4 2 1 0.593871 0.624438 
TK 3 4 2 2 0.640679 0.640577 
TK 3 0 0 0 0.530005 0.641599 
TK 4 2 2 1 0.591905 0.602656 
TK 4 2 2 2 0.732083 0.762436 
TK 4 0 0 0 0.560981 0.547651 
TK 5 1 2 1 0.530746 0.669842 
TK 5 1 2 2 0.722957 0.742467 
TK 6 1 2 1 0.533657 0.669178 
TK 6 1 2 2 0.770761 0.783631 

Trypsin 3 4 2 1 0.619092 0.636913 
Trypsin 3 4 2 2 0.545328 0.545328 
Trypsin 3 0 0 0 0.574384 0.833023 
Trypsin 4 2 2 1 0.595665 0.666822 
Trypsin 4 2 2 2 0.712847 0.718116 
Trypsin 4 0 0 0 0.611266 0.648845 
Trypsin 5 1 2 1 0.648381 0.634976 
Trypsin 5 1 2 2 0.562529 0.562064 
Trypsin 6 1 2 1 0.556563 0.599179 
Trypsin 6 1 2 2 0.622579 0.611731 
VEGFR2 3 4 2 1 0.570511 0.562969 
VEGFR2 3 4 2 2 0.500434 0.501226 
VEGFR2 3 0 0 0 0.517245 0.506374 
VEGFR2 4 2 2 1 0.582649 0.564206 
VEGFR2 4 2 2 2 0.584113 0.582807 
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VEGFR2 4 0 0 0 0.597612 0.623463 
VEGFR2 5 1 2 1 0.593434 0.529801 
VEGFR2 5 1 2 2 0.537413 0.534504 
VEGFR2 6 1 2 1 0.530966 0.57224 
VEGFR2 6 1 2 2 0.502328 0.507354 
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DUD 40 Shape Volume/Properties and Recall@5% and 10% 

K D R M 
RECALL 

(V) 
5% 

RECALL 
(P) 
5% 

RECALL 
(V) 

10% 

RECALL 
(P) 

10% 
ACTIVES DECOYS TOTAL 

3 4 2 1 4.35 4.35 4.35 4.35 46 1796 1842 
3 4 2 2 2.17 2.17 2.17 2.17 46 1796 1842 
3 0 0 0 17.39 10.87 19.57 15.22 46 1796 1842 
4 2 2 1 8.7 6.52 8.7 8.7 46 1796 1842 
4 2 2 2 15.22 15.22 23.91 23.91 46 1796 1842 
4 0 0 0 10.87 13.04 13.04 15.22 46 1796 1842 
5 1 2 1 4.35 6.52 10.87 6.52 46 1796 1842 
5 1 2 2 8.7 13.04 15.22 15.22 46 1796 1842 
6 1 2 1 6.52 13.04 13.04 15.22 46 1796 1842 
6 1 2 2 15.22 10.87 34.78 26.09 46 1796 1842 
3 4 2 1 22.22 17.17 33.33 23.23 99 3859 3958 
3 4 2 2 21.21 21.21 21.21 21.21 99 3859 3958 
3 0 0 0 19.19 18.18 26.26 22.22 99 3859 3958 
4 2 2 1 17.17 26.26 30.3 35.35 99 3859 3958 
4 2 2 2 41.41 40.4 54.55 55.56 99 3859 3958 
4 0 0 0 19.19 28.28 26.26 38.38 99 3859 3958 
5 1 2 1 15.15 21.21 21.21 30.3 99 3859 3958 
5 1 2 2 35.35 35.35 43.43 45.45 99 3859 3958 
6 1 2 1 14.14 19.19 24.24 31.31 99 3859 3958 
6 1 2 2 30.3 31.31 51.52 39.39 99 3859 3958 
3 4 2 1 17.39 13.04 21.74 21.74 23 927 950 
3 4 2 2 4.35 4.35 4.35 4.35 23 927 950 
3 0 0 0 8.7 13.04 13.04 17.39 23 927 950 
4 2 2 1 13.04 13.04 17.39 17.39 23 927 950 
4 2 2 2 13.04 13.04 17.39 17.39 23 927 950 
4 0 0 0 13.04 13.04 13.04 17.39 23 927 950 
5 1 2 1 4.35 4.35 13.04 4.35 23 927 950 
5 1 2 2 4.35 4.35 4.35 8.7 23 927 950 
6 1 2 1 4.35 8.7 26.09 8.7 23 927 950 
6 1 2 2 39.13 13.04 43.48 39.13 23 927 950 
3 4 2 1 15.38 7.69 19.23 11.54 26 986 1012 
3 4 2 2 26.92 26.92 26.92 26.92 26 986 1012 
3 0 0 0 11.54 7.69 11.54 11.54 26 986 1012 
4 2 2 1 11.54 3.85 19.23 7.69 26 986 1012 
4 2 2 2 23.08 19.23 42.31 42.31 26 986 1012 
4 0 0 0 7.69 3.85 11.54 11.54 26 986 1012 
5 1 2 1 15.38 11.54 19.23 19.23 26 986 1012 
5 1 2 2 23.08 23.08 26.92 23.08 26 986 1012 
6 1 2 1 11.54 7.69 11.54 11.54 26 986 1012 
6 1 2 2 11.54 11.54 30.77 34.62 26 986 1012 
3 4 2 1 9.52 9.52 9.52 9.52 21 786 807 
3 4 2 2 4.76 4.76 4.76 4.76 21 786 807 
3 0 0 0 9.52 9.52 9.52 9.52 21 786 807 
4 2 2 1 9.52 9.52 9.52 14.29 21 786 807 
4 2 2 2 4.76 4.76 4.76 4.76 21 786 807 
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4 0 0 0 9.52 14.29 9.52 19.05 21 786 807 
5 1 2 1 4.76 4.76 9.52 9.52 21 786 807 
5 1 2 2 9.52 9.52 9.52 9.52 21 786 807 
6 1 2 1 4.76 4.76 14.29 14.29 21 786 807 
6 1 2 2 9.52 9.52 14.29 14.29 21 786 807 
3 4 2 1 32.35 38.24 38.24 45.59 68 2848 2916 
3 4 2 2 10.29 10.29 10.29 10.29 68 2848 2916 
3 0 0 0 26.47 38.24 30.88 45.59 68 2848 2916 
4 2 2 1 36.76 42.65 42.65 50 68 2848 2916 
4 2 2 2 29.41 29.41 29.41 29.41 68 2848 2916 
4 0 0 0 30.88 41.18 35.29 52.94 68 2848 2916 
5 1 2 1 30.88 33.82 41.18 33.82 68 2848 2916 
5 1 2 2 33.82 33.82 33.82 33.82 68 2848 2916 
6 1 2 1 32.35 10.29 47.06 14.71 68 2848 2916 
6 1 2 2 33.82 25 52.94 35.29 68 2848 2916 
3 4 2 1 8.51 6.38 14.89 8.51 47 2070 2117 
3 4 2 2 4.26 4.26 6.38 6.38 47 2070 2117 
3 0 0 0 14.89 8.51 17.02 19.15 47 2070 2117 
4 2 2 1 8.51 4.26 12.77 8.51 47 2070 2117 
4 2 2 2 4.26 4.26 6.38 6.38 47 2070 2117 
4 0 0 0 4.26 6.38 14.89 8.51 47 2070 2117 
5 1 2 1 6.38 6.38 6.38 10.64 47 2070 2117 
5 1 2 2 6.38 6.38 6.38 6.38 47 2070 2117 
6 1 2 1 4.26 4.26 10.64 6.38 47 2070 2117 
6 1 2 2 10.64 8.51 12.77 17.02 47 2070 2117 
3 4 2 1 9.09 9.09 9.09 9.09 11 468 479 
3 4 2 2 9.09 9.09 9.09 9.09 11 468 479 
3 0 0 0 36.36 18.18 36.36 27.27 11 468 479 
4 2 2 1 9.09 9.09 9.09 9.09 11 468 479 
4 2 2 2 9.09 9.09 18.18 18.18 11 468 479 
4 0 0 0 36.36 9.09 36.36 9.09 11 468 479 
5 1 2 1 9.09 9.09 9.09 18.18 11 468 479 
5 1 2 2 27.27 18.18 27.27 27.27 11 468 479 
6 1 2 1 9.09 18.18 9.09 18.18 11 468 479 
6 1 2 2 27.27 27.27 27.27 27.27 11 468 479 
3 4 2 1 21.74 21.74 21.74 26.09 23 910 933 
3 4 2 2 4.35 4.35 4.35 4.35 23 910 933 
3 0 0 0 21.74 30.43 21.74 30.43 23 910 933 
4 2 2 1 21.74 17.39 21.74 17.39 23 910 933 
4 2 2 2 8.7 8.7 8.7 8.7 23 910 933 
4 0 0 0 21.74 26.09 30.43 30.43 23 910 933 
5 1 2 1 21.74 26.09 26.09 26.09 23 910 933 
5 1 2 2 26.09 21.74 26.09 26.09 23 910 933 
6 1 2 1 21.74 26.09 21.74 34.78 23 910 933 
6 1 2 2 26.09 13.04 34.78 26.09 23 910 933 
3 4 2 1 59.91 67.45 75.47 76.42 212 12606 12818 
3 4 2 2 24.53 24.53 25.47 25.94 212 12606 12818 
3 0 0 0 58.49 42.45 62.74 50 212 12606 12818 
4 2 2 1 31.6 30.66 44.34 45.75 212 12606 12818 
4 2 2 2 27.36 27.36 27.36 27.36 212 12606 12818 
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4 0 0 0 34.43 24.06 46.7 36.32 212 12606 12818 
5 1 2 1 26.42 31.6 36.32 43.4 212 12606 12818 
5 1 2 2 30.66 30.66 32.55 32.55 212 12606 12818 
6 1 2 1 39.15 39.15 43.87 44.34 212 12606 12818 
6 1 2 2 34.91 34.91 43.87 41.51 212 12606 12818 
3 4 2 1 4.74 10 9.47 21.58 190 8350 8540 
3 4 2 2 2.63 2.63 7.89 8.42 190 8350 8540 
3 0 0 0 4.21 17.37 7.89 30.53 190 8350 8540 
4 2 2 1 8.42 16.32 12.63 18.42 190 8350 8540 
4 2 2 2 2.63 3.68 7.89 8.42 190 8350 8540 
4 0 0 0 11.05 14.21 20 22.11 190 8350 8540 
5 1 2 1 11.58 14.21 18.42 27.37 190 8350 8540 
5 1 2 2 13.16 13.68 21.58 21.58 190 8350 8540 
6 1 2 1 10 20.53 16.32 30.53 190 8350 8540 
6 1 2 2 16.32 34.21 35.26 43.68 190 8350 8540 
3 4 2 1 4.93 1.92 8.77 3.56 365 15560 15925 
3 4 2 2 0.82 0.82 0.82 0.82 365 15560 15925 
3 0 0 0 5.75 4.11 8.22 6.85 365 15560 15925 
4 2 2 1 5.21 8.77 10.68 13.15 365 15560 15925 
4 2 2 2 8.22 10.96 13.42 18.63 365 15560 15925 
4 0 0 0 4.93 3.01 9.04 10.96 365 15560 15925 
5 1 2 1 4.66 8.22 9.59 17.81 365 15560 15925 
5 1 2 2 18.63 17.81 24.66 23.29 365 15560 15925 
6 1 2 1 5.75 5.48 9.59 8.49 365 15560 15925 
6 1 2 2 9.04 8.49 17.26 14.79 365 15560 15925 
3 4 2 1 46.03 60.32 68.25 74.6 63 2568 2631 
3 4 2 2 12.7 12.7 12.7 12.7 63 2568 2631 
3 0 0 0 25.4 58.73 44.44 71.43 63 2568 2631 
4 2 2 1 36.51 55.56 52.38 63.49 63 2568 2631 
4 2 2 2 22.22 26.98 26.98 30.16 63 2568 2631 
4 0 0 0 23.81 63.49 38.1 74.6 63 2568 2631 
5 1 2 1 34.92 36.51 47.62 60.32 63 2568 2631 
5 1 2 2 44.44 46.03 63.49 60.32 63 2568 2631 
6 1 2 1 38.1 60.32 52.38 69.84 63 2568 2631 
6 1 2 2 41.27 63.49 71.43 71.43 63 2568 2631 
3 4 2 2 1.41 1.41 33.33 33.33 71 3462 3533 
3 0 0 0 19.72 5.63 27.78 27.78 71 3462 3533 
4 2 2 1 11.27 4.23 44.44 55.56 71 3462 3533 
4 2 2 2 1.41 1.41 44.44 44.44 71 3462 3533 
4 0 0 0 9.86 7.04 50 50 71 3462 3533 
5 1 2 1 16.9 14.08 61.11 44.44 71 3462 3533 
5 1 2 2 1.41 2.82 55.56 38.89 71 3462 3533 
6 1 2 1 12.68 1.41 38.89 38.89 71 3462 3533 
3 4 2 1 33.33 33.33 33.33 33.33 18 1058 1076 
3 4 2 2 27.78 27.78 50 50 18 1058 1076 
3 0 0 0 33.33 44.44 15.49 11.27 18 1058 1076 
4 2 2 1 38.89 38.89 1.41 1.41 18 1058 1076 
4 2 2 2 50 50 19.72 14.08 18 1058 1076 
4 0 0 0 33.33 33.33 19.72 7.04 18 1058 1076 
5 1 2 1 44.44 33.33 1.41 1.41 18 1058 1076 
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5 1 2 2 38.89 38.89 21.13 8.45 18 1058 1076 
6 1 2 1 33.33 22.22 25.35 32.39 18 1058 1076 
6 1 2 2 44.44 44.44 2.82 2.82 18 1058 1076 
3 4 2 1 12.68 9.86 15.49 8.45 71 3462 3533 
6 1 2 2 5.63 4.23 8.45 12.68 71 3462 3533 
3 4 2 1 12.5 12.5 25 26.56 64 2092 2156 
3 4 2 2 12.5 12.5 12.5 12.5 64 2092 2156 
3 0 0 0 15.63 14.06 20.31 21.88 64 2092 2156 
4 2 2 1 4.69 7.81 9.38 10.94 64 2092 2156 
4 2 2 2 10.94 15.63 20.31 20.31 64 2092 2156 
4 0 0 0 7.81 10.94 14.06 17.19 64 2092 2156 
5 1 2 1 6.25 25 10.94 32.81 64 2092 2156 
5 1 2 2 31.25 29.69 35.94 35.94 64 2092 2156 
6 1 2 1 6.25 10.94 9.38 12.5 64 2092 2156 
6 1 2 2 37.5 37.5 37.5 37.5 64 2092 2156 
3 4 2 1 12.5 12.5 12.5 12.5 8 155 163 
3 4 2 2 12.5 12.5 12.5 12.5 8 155 163 
3 0 0 0 12.5 12.5 25 12.5 8 155 163 
4 2 2 1 25 37.5 37.5 37.5 8 155 163 
4 2 2 2 25 25 25 37.5 8 155 163 
4 0 0 0 25 37.5 37.5 50 8 155 163 
5 1 2 1 25 37.5 37.5 37.5 8 155 163 
5 1 2 2 37.5 50 50 62.5 8 155 163 
6 1 2 1 25 12.5 37.5 12.5 8 155 163 
6 1 2 2 37.5 37.5 50 37.5 8 155 163 
3 4 2 1 13.46 9.62 17.31 25 52 2135 2187 
3 4 2 2 44.23 44.23 48.08 48.08 52 2135 2187 
3 0 0 0 9.62 13.46 11.54 17.31 52 2135 2187 
4 2 2 1 1.92 9.62 5.77 15.38 52 2135 2187 
4 2 2 2 36.54 44.23 51.92 55.77 52 2135 2187 
4 0 0 0 11.54 34.62 21.15 51.92 52 2135 2187 
5 1 2 1 7.69 15.38 9.62 19.23 52 2135 2187 
5 1 2 2 38.46 36.54 55.77 53.85 52 2135 2187 
6 1 2 1 15.38 25 26.92 40.38 52 2135 2187 
6 1 2 2 17.31 13.46 40.38 30.77 52 2135 2187 
3 4 2 1 18.75 21.88 21.88 21.88 32 2585 2617 
3 4 2 2 15.63 15.63 15.63 15.63 32 2585 2617 
3 0 0 0 43.75 18.75 43.75 28.13 32 2585 2617 
4 2 2 1 25 21.88 28.13 25 32 2585 2617 
4 2 2 2 12.5 12.5 12.5 12.5 32 2585 2617 
4 0 0 0 40.63 25 43.75 28.13 32 2585 2617 
5 1 2 1 28.13 25 31.25 28.13 32 2585 2617 
5 1 2 2 25 25 25 25 32 2585 2617 
6 1 2 1 31.25 25 31.25 28.13 32 2585 2617 
6 1 2 2 25 25 25 25 32 2585 2617 
3 4 2 1 25 25 25 25 4 9 13 
3 4 2 2 25 25 25 25 4 9 13 
3 0 0 0 25 25 25 25 4 9 13 
4 2 2 1 25 25 25 25 4 9 13 
4 2 2 2 25 25 25 25 4 9 13 
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4 0 0 0 25 25 25 25 4 9 13 
5 1 2 1 25 25 25 25 4 9 13 
5 1 2 2 25 25 25 25 4 9 13 
6 1 2 1 25 25 25 25 4 9 13 
6 1 2 2 25 25 25 25 4 9 13 
3 4 2 1 14.71 17.65 29.41 23.53 34 1494 1528 
3 4 2 2 5.88 5.88 8.82 8.82 34 1494 1528 
3 0 0 0 11.76 8.82 26.47 14.71 34 1494 1528 
4 2 2 1 11.76 8.82 20.59 14.71 34 1494 1528 
4 2 2 2 14.71 11.76 17.65 20.59 34 1494 1528 
4 0 0 0 23.53 14.71 32.35 17.65 34 1494 1528 
5 1 2 1 26.47 14.71 29.41 20.59 34 1494 1528 
5 1 2 2 17.65 17.65 20.59 17.65 34 1494 1528 
6 1 2 1 32.35 11.76 32.35 23.53 34 1494 1528 
6 1 2 2 14.71 8.82 26.47 14.71 34 1494 1528 
3 4 2 1 20 32 28 36 25 1423 1448 
3 4 2 2 40 40 44 44 25 1423 1448 
3 0 0 0 16 8 28 32 25 1423 1448 
4 2 2 2 44 40 48 48 25 1423 1448 
4 4 2 1 4 12 16 24 25 1423 1448 
4 0 0 0 4 28 12 44 25 1423 1448 
5 1 2 1 12 32 16 32 25 1423 1448 
5 1 2 2 52 48 56 56 25 1423 1448 
6 1 2 1 8 8 8 12 25 1423 1448 
6 1 2 2 60 48 68 64 25 1423 1448 
3 4 2 1 52.17 52.17 60.87 56.52 23 975 998 
3 4 2 2 34.78 34.78 34.78 34.78 23 975 998 
3 0 0 0 26.09 47.83 34.78 52.17 23 975 998 
4 2 2 1 17.39 30.43 30.43 30.43 23 975 998 
4 2 2 2 39.13 43.48 43.48 43.48 23 975 998 
4 0 0 0 17.39 26.09 30.43 30.43 23 975 998 
5 1 2 1 21.74 17.39 26.09 17.39 23 975 998 
5 1 2 2 21.74 21.74 30.43 30.43 23 975 998 
6 1 2 1 26.09 13.04 30.43 13.04 23 975 998 
6 1 2 2 26.09 17.39 43.48 30.43 23 975 998 
3 4 2 1 10.53 15.79 15.79 28.07 57 2707 2764 
3 4 2 2 8.77 8.77 8.77 8.77 57 2707 2764 
3 0 0 0 5.26 21.05 15.79 21.05 57 2707 2764 
4 2 2 1 5.26 8.77 5.26 10.53 57 2707 2764 
4 2 2 2 19.3 21.05 22.81 22.81 57 2707 2764 
4 0 0 0 8.77 14.04 10.53 21.05 57 2707 2764 
5 1 2 1 22.81 21.05 26.32 29.82 57 2707 2764 
5 1 2 2 22.81 22.81 22.81 22.81 57 2707 2764 
6 1 2 1 19.3 17.54 24.56 26.32 57 2707 2764 
6 1 2 2 26.32 28.07 29.82 29.82 57 2707 2764 
3 4 2 1 38.46 38.46 38.46 46.15 13 636 649 
3 4 2 2 7.69 7.69 7.69 7.69 13 636 649 
3 0 0 0 53.85 38.46 92.31 69.23 13 636 649 
4 2 2 1 46.15 46.15 84.62 61.54 13 636 649 
4 2 2 2 46.15 46.15 46.15 46.15 13 636 649 
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4 0 0 0 76.92 53.85 100 53.85 13 636 649 
5 1 2 1 53.85 46.15 61.54 53.85 13 636 649 
5 1 2 2 61.54 53.85 61.54 61.54 13 636 649 
6 1 2 1 38.46 23.08 53.85 30.77 13 636 649 
6 1 2 2 38.46 38.46 76.92 61.54 13 636 649 
3 4 2 1 24.49 26.53 40.82 40.82 49 1713 1762 
3 4 2 2 4.08 4.08 4.08 4.08 49 1713 1762 
3 0 0 0 20.41 20.41 28.57 30.61 49 1713 1762 
4 2 2 1 14.29 18.37 26.53 28.57 49 1713 1762 
4 2 2 2 6.12 6.12 8.16 8.16 49 1713 1762 
4 0 0 0 14.29 24.49 32.65 34.69 49 1713 1762 
5 1 2 1 16.33 12.24 22.45 18.37 49 1713 1762 
5 1 2 2 4.08 6.12 12.24 12.24 49 1713 1762 
6 1 2 1 22.45 20.41 32.65 22.45 49 1713 1762 
6 1 2 2 10.2 8.16 14.29 16.33 49 1713 1762 
3 4 2 1 25.55 28.47 28.47 32.85 137 6779 6916 
3 4 2 2 16.06 16.79 18.25 18.25 137 6779 6916 
3 0 0 0 28.47 24.09 32.85 28.47 137 6779 6916 
4 2 2 1 10.22 5.11 16.79 11.68 137 6779 6916 
4 2 2 2 4.38 4.38 4.38 4.38 137 6779 6916 
4 0 0 0 11.68 5.11 17.52 8.76 137 6779 6916 
5 1 2 1 17.52 14.6 38.69 29.93 137 6779 6916 
5 1 2 2 32.12 22.63 32.12 31.39 137 6779 6916 
6 1 2 1 13.14 7.3 27.74 19.71 137 6779 6916 
6 1 2 2 18.25 8.03 23.36 21.9 137 6779 6916 
3 4 2 1 16.13 19.35 19.35 19.35 31 1350 1381 
3 4 2 2 9.68 9.68 12.9 12.9 31 1350 1381 
3 0 0 0 6.45 16.13 9.68 19.35 31 1350 1381 
4 2 2 1 6.45 9.68 9.68 19.35 31 1350 1381 
4 2 2 2 22.58 22.58 29.03 29.03 31 1350 1381 
4 0 0 0 32.26 32.26 35.48 45.16 31 1350 1381 
5 1 2 1 22.58 25.81 29.03 32.26 31 1350 1381 
5 1 2 2 35.48 35.48 38.71 38.71 31 1350 1381 
6 1 2 1 32.26 48.39 35.48 51.61 31 1350 1381 
6 1 2 2 32.26 22.58 38.71 51.61 31 1350 1381 
3 4 2 1 15.38 7.69 19.23 19.23 26 1698 1724 
3 4 2 2 3.85 3.85 3.85 3.85 26 1698 1724 
3 0 0 0 15.38 7.69 15.38 7.69 26 1698 1724 
4 2 2 1 7.69 11.54 7.69 11.54 26 1698 1724 
4 2 2 2 3.85 3.85 11.54 11.54 26 1698 1724 
4 0 0 0 3.85 15.38 11.54 15.38 26 1698 1724 
5 1 2 1 19.23 7.69 23.08 15.38 26 1698 1724 
5 1 2 2 7.69 11.54 19.23 19.23 26 1698 1724 
6 1 2 1 7.69 11.54 11.54 15.38 26 1698 1724 
6 1 2 2 11.54 19.23 26.92 26.92 26 1698 1724 
3 4 2 1 8.87 8.87 8.87 11.29 124 5603 5727 
3 4 2 2 12.1 12.9 14.52 14.52 124 5603 5727 
3 0 0 0 8.87 9.68 10.48 12.1 124 5603 5727 
4 2 2 1 3.23 8.87 7.26 12.9 124 5603 5727 
4 2 2 2 11.29 18.55 17.74 24.19 124 5603 5727 
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4 0 0 0 6.45 8.06 8.87 12.9 124 5603 5727 
5 1 2 1 4.03 15.32 15.32 21.77 124 5603 5727 
5 1 2 2 10.48 16.13 16.13 18.55 124 5603 5727 
6 1 2 1 2.42 4.84 4.03 12.1 124 5603 5727 
6 1 2 2 9.68 9.68 16.94 15.32 124 5603 5727 
3 4 2 1 8 8 12 12 25 1036 1061 
3 4 2 2 12 12 12 12 25 1036 1061 
3 0 0 0 16 16 20 28 25 1036 1061 
4 2 2 1 12 12 12 20 25 1036 1061 
4 2 2 2 20 20 20 20 25 1036 1061 
4 0 0 0 28 20 44 20 25 1036 1061 
5 1 2 1 8 8 8 16 25 1036 1061 
5 1 2 2 44 56 60 60 25 1036 1061 
6 1 2 1 16 12 24 24 25 1036 1061 
6 1 2 2 56 60 60 64 25 1036 1061 
3 4 2 1 16.67 16.67 16.67 16.67 6 40 46 
3 4 2 2 16.67 16.67 16.67 16.67 6 40 46 
3 0 0 0 16.67 16.67 16.67 16.67 6 40 46 
4 2 2 1 16.67 16.67 16.67 16.67 6 40 46 
4 2 2 2 16.67 16.67 16.67 16.67 6 40 46 
4 0 0 0 16.67 16.67 16.67 16.67 6 40 46 
5 1 2 1 16.67 16.67 16.67 16.67 6 40 46 
5 1 2 2 16.67 16.67 16.67 16.67 6 40 46 
6 1 2 1 16.67 16.67 16.67 16.67 6 40 46 
6 1 2 2 16.67 16.67 33.33 16.67 6 40 46 
3 4 2 1 18.18 13.64 18.18 18.18 22 920 942 
3 4 2 2 9.09 9.09 9.09 9.09 22 920 942 
3 0 0 0 18.18 9.09 27.27 22.73 22 920 942 
4 2 2 1 13.64 13.64 22.73 13.64 22 920 942 
4 2 2 2 9.09 9.09 9.09 9.09 22 920 942 
4 0 0 0 13.64 13.64 31.82 13.64 22 920 942 
5 1 2 1 18.18 9.09 27.27 9.09 22 920 942 
5 1 2 2 9.09 9.09 9.09 9.09 22 920 942 
6 1 2 1 9.09 4.55 18.18 4.55 22 920 942 
6 1 2 2 9.09 9.09 9.09 9.09 22 920 942 
3 4 2 1 22.22 38.89 33.33 50 18 575 593 
3 4 2 2 72.22 61.11 72.22 72.22 18 575 593 
3 0 0 0 16.67 50 22.22 72.22 18 575 593 
4 2 2 1 5.56 22.22 5.56 33.33 18 575 593 
4 2 2 2 33.33 27.78 55.56 50 18 575 593 
4 0 0 0 22.22 50 50 55.56 18 575 593 
5 1 2 1 16.67 16.67 16.67 27.78 18 575 593 
5 1 2 2 11.11 22.22 27.78 44.44 18 575 593 
6 1 2 1 22.22 33.33 33.33 55.56 18 575 593 
6 1 2 2 38.89 44.44 66.67 66.67 18 575 593 
3 4 2 1 27.27 24.24 30.3 30.3 33 1346 1379 
3 4 2 2 6.06 6.06 6.06 6.06 33 1346 1379 
3 0 0 0 33.33 33.33 51.52 42.42 33 1346 1379 
4 2 2 1 30.3 48.48 60.61 60.61 33 1346 1379 
4 2 2 2 36.36 39.39 39.39 39.39 33 1346 1379 
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4 0 0 0 36.36 54.55 51.52 60.61 33 1346 1379 
5 1 2 1 57.58 51.52 60.61 60.61 33 1346 1379 
5 1 2 2 57.58 60.61 60.61 60.61 33 1346 1379 
6 1 2 1 39.39 48.48 42.42 66.67 33 1346 1379 
6 1 2 2 60.61 63.64 72.73 78.79 33 1346 1379 
3 4 2 1 6.12 5.1 8.16 8.16 98 5679 5777 
3 4 2 2 10.2 10.2 10.2 10.2 98 5679 5777 
3 0 0 0 7.14 4.08 7.14 8.16 98 5679 5777 
4 2 2 1 16.33 13.27 17.35 20.41 98 5679 5777 
4 2 2 2 17.35 19.39 25.51 25.51 98 5679 5777 
4 0 0 0 10.2 12.24 16.33 16.33 98 5679 5777 
5 1 2 1 4.08 4.08 8.16 15.31 98 5679 5777 
5 1 2 2 14.29 14.29 16.33 16.33 98 5679 5777 
6 1 2 1 2.04 8.16 9.18 11.22 98 5679 5777 
6 1 2 2 12.24 10.2 17.35 15.31 98 5679 5777 
3 4 2 1 4.35 4.35 8.7 4.35 23 1148 1171 
3 4 2 2 4.35 4.35 4.35 4.35 23 1148 1171 
3 0 0 0 4.35 4.35 17.39 13.04 23 1148 1171 
4 2 2 1 8.7 8.7 8.7 8.7 23 1148 1171 
4 2 2 2 4.35 4.35 4.35 4.35 23 1148 1171 
4 0 0 0 13.04 4.35 17.39 4.35 23 1148 1171 
5 1 2 1 4.35 4.35 4.35 4.35 23 1148 1171 
5 1 2 2 4.35 4.35 8.7 8.7 23 1148 1171 
6 1 2 1 4.35 4.35 8.7 13.04 23 1148 1171 
6 1 2 2 13.04 4.35 17.39 17.39 23 1148 1171 
3 4 2 1 9.09 13.64 13.64 22.73 22 891 913 
3 4 2 2 36.36 31.82 40.91 40.91 22 891 913 
3 0 0 0 18.18 18.18 27.27 27.27 22 891 913 
4 2 2 1 18.18 27.27 18.18 31.82 22 891 913 
4 2 2 2 31.82 36.36 45.45 50 22 891 913 
4 0 0 0 18.18 18.18 22.73 27.27 22 891 913 
5 1 2 1 13.64 27.27 13.64 40.91 22 891 913 
5 1 2 2 13.64 27.27 36.36 50 22 891 913 
6 1 2 1 13.64 22.73 13.64 40.91 22 891 913 
6 1 2 2 40.91 31.82 45.45 63.64 22 891 913 
3 4 2 1 33.33 44.44 44.44 44.44 9 718 727 
3 4 2 2 11.11 11.11 11.11 11.11 9 718 727 
3 0 0 0 44.44 44.44 44.44 55.56 9 718 727 
4 2 2 1 55.56 66.67 55.56 66.67 9 718 727 
4 2 2 2 44.44 44.44 44.44 55.56 9 718 727 
4 0 0 0 55.56 44.44 55.56 55.56 9 718 727 
5 1 2 1 11.11 11.11 11.11 11.11 9 718 727 
5 1 2 2 11.11 11.11 33.33 33.33 9 718 727 
6 1 2 1 22.22 11.11 33.33 22.22 9 718 727 
6 1 2 2 11.11 11.11 44.44 22.22 9 718 727 
3 4 2 1 10.42 8.33 16.67 16.67 48 2712 2760 
3 4 2 2 10.42 6.25 10.42 10.42 48 2712 2760 
3 0 0 0 18.75 12.5 27.08 22.92 48 2712 2760 
4 2 2 1 16.67 18.75 22.92 22.92 48 2712 2760 
4 2 2 2 12.5 14.58 16.67 16.67 48 2712 2760 
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4 0 0 0 12.5 12.5 25 22.92 48 2712 2760 
5 1 2 1 6.25 8.33 18.75 10.42 48 2712 2760 
5 1 2 2 2.08 2.08 6.25 10.42 48 2712 2760 
6 1 2 1 6.25 2.08 12.5 6.25 48 2712 2760 
6 1 2 2 6.25 6.25 8.33 10.42 48 2712 2760 
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Appendix C - DUD 8 reduced sets – averages EF, AUC and Recall @10%  

COX2 EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 2.83 4.5 44 352 396 0.58 0.63 

 
3 4 2 0 3.09 4.11 44 352 396 0.76 0.69 

 
3 4 2 1 3.34 4.5 44 352 396 0.71 0.74 

 
3 4 2 2 3.09 3.34 44 352 396 0.55 0.55 

 
4 0 0 0 4.11 5.91 44 352 396 0.62 0.69 

 
4 2 2 0 4.24 6.04 44 352 396 0.63 0.74 

 
4 2 2 1 5.01 5.66 44 352 396 0.72 0.74 

 
4 2 2 2 6.17 6.3 44 352 396 0.68 0.68 

 
5 1 2 0 4.24 5.53 44 352 396 0.6 0.72 

 
5 1 2 1 5.4 5.53 44 352 396 0.71 0.74 

 
5 1 2 2 6.56 6.3 44 352 396 0.66 0.66 

 
6 1 2 0 3.73 5.27 44 352 396 0.64 0.68 

 
6 1 2 1 4.11 5.01 44 352 396 0.67 0.67 

 
6 1 2 2 5.91 6.17 44 352 396 0.67 0.67 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 2.7 5.79 44 352 396 0.63 0.74 

 
4 2 2 1 4.5 4.89 44 352 396 0.69 0.73 

 
4 2 2 2 6.56 6.3 44 352 396 0.68 0.68 

 
5 1 2 2 6.43 5.79 44 352 396 0.66 0.65 

 
6 1 2 2 4.5 4.11 44 352 396 0.66 0.65 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 2.83 4.5 12.66 20.78 44 352 396 
3 4 2 0 3.08 4.11 14.61 21.75 44 352 396 
3 4 2 1 3.34 4.49 18.51 24.03 44 352 396 
3 4 2 2 3.08 3.33 12.99 13.64 44 352 396 
4 0 0 0 4.11 5.91 22.73 30.52 44 352 396 
4 2 2 0 4.23 6.03 24.03 36.04 44 352 396 
4 2 2 1 5 5.64 28.9 34.42 44 352 396 
4 2 2 2 6.16 6.29 34.41 36.36 44 352 396 
5 1 2 0 4.23 5.51 20.13 33.44 44 352 396 
5 1 2 1 5.39 5.52 25.65 33.44 44 352 396 
5 1 2 2 6.54 6.29 34.74 35.06 44 352 396 
6 1 2 0 3.72 5.26 22.73 30.52 44 352 396 
6 1 2 1 4.1 5 25.65 30.2 44 352 396 
6 1 2 2 5.9 6.16 32.14 27.92 44 352 396 
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EGFR EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 4.11 4.24 40 320 360 0.58 0.53 

 
3 4 2 0 4.37 3.6 40 320 360 0.63 0.58 

 
3 4 2 1 3.21 3.09 40 320 360 0.53 0.54 

 
3 4 2 2 2.57 2.06 40 320 360 0.55 0.54 

 
4 0 0 0 3.6 2.7 40 320 360 0.6 0.56 

 
4 2 2 0 3.09 2.06 40 320 360 0.6 0.57 

 
4 2 2 1 2.57 2.06 40 320 360 0.59 0.57 

 
4 2 2 2 2.83 3.09 40 320 360 0.57 0.57 

 
5 1 2 0 2.19 3.09 40 320 360 0.54 0.54 

 
5 1 2 1 2.57 3.09 40 320 360 0.55 0.57 

 
5 1 2 2 3.21 3.73 40 320 360 0.53 0.53 

 
6 1 2 0 2.7 3.34 40 320 360 0.54 0.54 

 
6 1 2 1 3.6 3.34 40 320 360 0.55 0.6 

 
6 1 2 2 2.96 3.34 40 320 360 0.54 0.54 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 1.29 1.54 40 320 360 0.56 0.55 

 
4 2 2 1 1.03 1.8 40 320 360 0.57 0.57 

 
4 2 2 2 1.93 2.06 40 320 360 0.57 0.57 

 
5 1 2 2 2.31 2.7 40 320 360 0.53 0.53 

 
6 1 2 2 2.57 2.19 40 320 360 0.55 0.54 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 4.11 4.24 27.14 18.93 40 320 360 
3 4 2 0 4.36 3.59 26.07 20.36 40 320 360 
3 4 2 1 3.21 3.08 18.21 15 40 320 360 
3 4 2 2 2.57 2.05 12.86 12.5 40 320 360 
4 0 0 0 3.6 2.7 21.07 18.21 40 320 360 
4 2 2 0 3.08 2.05 17.5 18.93 40 320 360 
4 2 2 1 2.56 2.05 15 15.71 40 320 360 
4 2 2 2 2.82 3.08 16.07 16.43 40 320 360 
5 1 2 0 2.18 3.08 11.79 16.43 40 320 360 
5 1 2 1 2.57 3.08 14.29 18.93 40 320 360 
5 1 2 2 3.21 3.72 16.07 17.14 40 320 360 
6 1 2 0 2.69 3.33 13.21 16.07 40 320 360 
6 1 2 1 3.59 3.33 16.07 16.43 40 320 360 
6 1 2 2 2.95 3.33 15.71 16.43 40 320 360 

 

 

 



178 

 

INHA EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 5.6 4.71 23 182 205 0.72 0.74 

 
3 4 2 0 5.22 3.82 23 182 205 0.72 0.74 

 
3 4 2 1 4.2 3.31 23 182 205 0.59 0.61 

 
3 4 2 2 2.16 2.16 23 182 205 0.54 0.54 

 
4 0 0 0 4.71 4.46 23 182 205 0.66 0.64 

 
4 2 2 0 4.2 3.57 23 182 205 0.62 0.59 

 
4 2 2 1 3.57 3.44 23 182 205 0.61 0.59 

 
4 2 2 2 2.8 2.93 23 182 205 0.56 0.56 

 
5 1 2 0 3.18 3.82 23 182 205 0.62 0.58 

 
5 1 2 1 3.82 3.44 23 182 205 0.64 0.63 

 
5 1 2 2 2.93 2.93 23 182 205 0.54 0.54 

 
6 1 2 0 4.71 3.18 23 182 205 0.67 0.59 

 
6 1 2 1 3.82 3.06 23 182 205 0.61 0.54 

 
6 1 2 2 3.31 3.31 23 182 205 0.56 0.55 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 2.42 2.93 23 182 205 0.58 0.59 

 
4 2 2 1 3.31 3.31 23 182 205 0.6 0.61 

 
4 2 2 2 2.93 3.05 23 182 205 0.56 0.56 

 
5 1 2 2 3.06 3.18 23 182 205 0.54 0.54 

 
6 1 2 2 3.18 3.44 23 182 205 0.55 0.55 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 5.6 4.71 39.75 36.02 23 182 205 
3 4 2 0 5.19 3.8 34.16 32.92 23 182 205 
3 4 2 1 4.18 3.29 30.43 26.71 23 182 205 
3 4 2 2 2.15 2.15 11.18 11.18 23 182 205 
4 0 0 0 4.71 4.46 32.92 26.71 23 182 205 
4 2 2 0 4.18 3.55 27.95 20.5 23 182 205 
4 2 2 1 3.55 3.42 25.47 21.12 23 182 205 
4 2 2 2 2.79 2.91 15.53 15.53 23 182 205 
5 1 2 0 3.17 3.8 22.98 21.74 23 182 205 
5 1 2 1 3.8 3.42 24.84 25.47 23 182 205 
5 1 2 2 2.91 2.91 16.77 18.01 23 182 205 
6 1 2 0 4.69 3.17 30.43 19.88 23 182 205 
6 1 2 1 3.8 3.04 25.47 17.39 23 182 205 
6 1 2 2 3.29 3.29 20.5 19.25 23 182 205 
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P38 EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 4.63 4.11 20 160 180 0.56 0.62 

 
3 4 2 0 4.37 3.86 20 160 180 0.7 0.7 

 
3 4 2 1 3.86 3.47 20 160 180 0.68 0.68 

 
3 4 2 2 2.57 2.44 20 160 180 0.53 0.53 

 
4 0 0 0 4.5 5.27 20 160 180 0.71 0.72 

 
4 2 2 0 3.47 3.86 20 160 180 0.62 0.58 

 
4 2 2 1 4.24 4.63 20 160 180 0.66 0.64 

 
4 2 2 2 3.6 3.34 20 160 180 0.59 0.59 

 
5 1 2 0 5.4 5.27 20 160 180 0.72 0.73 

 
5 1 2 1 5.14 5.27 20 160 180 0.77 0.75 

 
5 1 2 2 5.79 5.27 20 160 180 0.66 0.65 

 
6 1 2 0 4.76 4.63 20 160 180 0.7 0.71 

 
6 1 2 1 4.89 4.63 20 160 180 0.71 0.67 

 
6 1 2 2 5.27 4.63 20 160 180 0.68 0.67 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 3.21 3.34 20 160 180 0.59 0.56 

 
4 2 2 1 4.11 4.24 20 160 180 0.64 0.63 

 
4 2 2 2 3.47 3.47 20 160 180 0.59 0.59 

 
5 1 2 2 5.14 5.79 20 160 180 0.66 0.66 

 
6 1 2 2 4.5 4.24 20 160 180 0.67 0.66 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 4.63 4.11 31.43 24.29 20 160 180 
3 4 2 0 4.35 3.84 29.29 27.86 20 160 180 
3 4 2 1 3.84 3.45 23.57 23.57 20 160 180 
3 4 2 2 2.56 2.43 15 14.29 20 160 180 
4 0 0 0 4.5 5.27 35 35 20 160 180 
4 2 2 0 3.45 3.84 23.57 26.43 20 160 180 
4 2 2 1 4.22 4.61 27.86 30.71 20 160 180 
4 2 2 2 3.58 3.33 26.43 24.29 20 160 180 
5 1 2 0 5.37 5.24 36.43 35.71 20 160 180 
5 1 2 1 5.12 5.25 38.57 36.43 20 160 180 
5 1 2 2 5.76 5.24 38.57 35 20 160 180 
6 1 2 0 4.73 4.61 34.29 32.14 20 160 180 
6 1 2 1 4.86 4.61 33.57 31.43 20 160 180 
6 1 2 2 5.25 4.61 35.71 30.71 20 160 180 
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PDE5 EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 6.37 3.82 22 174 196 0.79 0.68 

 
3 4 2 0 5.35 4.2 22 174 196 0.82 0.79 

 
3 4 2 1 4.84 3.94 22 174 196 0.79 0.76 

 
3 4 2 2 1.65 1.65 22 174 196 0.52 0.52 

 
4 0 0 0 3.82 3.69 22 174 196 0.75 0.72 

 
4 2 2 0 3.43 3.44 22 174 196 0.63 0.63 

 
4 2 2 1 3.94 3.44 22 174 196 0.67 0.65 

 
4 2 2 2 3.18 3.18 22 174 196 0.57 0.57 

 
5 1 2 0 3.18 3.56 22 174 196 0.68 0.65 

 
5 1 2 1 3.69 3.94 22 174 196 0.71 0.66 

 
5 1 2 2 2.67 2.67 22 174 196 0.55 0.55 

 
6 1 2 0 3.18 2.92 22 174 196 0.63 0.59 

 
6 1 2 1 3.31 3.31 22 174 196 0.64 0.6 

 
6 1 2 2 3.05 3.05 22 174 196 0.57 0.56 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 3.05 2.92 22 174 196 0.59 0.57 

 
4 2 2 1 3.44 3.18 22 174 196 0.59 0.58 

 
4 2 2 2 2.8 2.92 22 174 196 0.57 0.56 

 
5 1 2 2 2.54 2.54 22 174 196 0.55 0.55 

 
6 1 2 2 2.67 2.67 22 174 196 0.57 0.57 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 6.37 3.82 48.7 27.92 22 174 196 
3 4 2 0 5.32 4.18 38.96 33.12 22 174 196 
3 4 2 1 4.81 3.93 37.66 28.57 22 174 196 
3 4 2 2 1.65 1.65 8.44 9.09 22 174 196 
4 0 0 0 3.82 3.69 28.57 25.97 22 174 196 
4 2 2 0 3.42 3.42 28.57 25.97 22 174 196 
4 2 2 1 3.93 3.42 29.87 25.97 22 174 196 
4 2 2 2 3.17 3.17 20.13 19.48 22 174 196 
5 1 2 0 3.17 3.54 22.08 21.43 22 174 196 
5 1 2 1 3.67 3.92 26.62 25.33 22 174 196 
5 1 2 2 2.66 2.66 16.23 15.58 22 174 196 
6 1 2 0 3.17 2.91 22.73 23.38 22 174 196 
6 1 2 1 3.29 3.29 25.32 22.08 22 174 196 
6 1 2 2 3.04 3.04 21.43 21.43 22 174 196 
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PDGFRB EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 5.6 4.84 22 174 196 0.56 0.6 

 
3 4 2 0 4.58 4.33 22 174 196 0.56 0.58 

 
3 4 2 1 4.71 4.58 22 174 196 0.57 0.58 

 
3 4 2 2 1.14 1.14 22 174 196 0.51 0.51 

 
4 0 0 0 5.35 5.22 22 174 196 0.61 0.67 

 
4 2 2 0 4.33 4.58 22 174 196 0.6 0.62 

 
4 2 2 1 4.33 4.71 22 174 196 0.61 0.62 

 
4 2 2 2 2.8 2.67 22 174 196 0.55 0.55 

 
5 1 2 0 3.31 3.94 22 174 196 0.59 0.58 

 
5 1 2 1 3.94 3.82 22 174 196 0.6 0.59 

 
5 1 2 2 3.31 3.18 22 174 196 0.57 0.57 

 
6 1 2 0 3.82 3.18 22 174 196 0.59 0.6 

 
6 1 2 1 3.69 2.93 22 174 196 0.58 0.56 

 
6 1 2 2 3.82 3.94 22 174 196 0.63 0.62 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 2.92 3.31 22 174 196 0.59 0.61 

 
4 2 2 1 2.92 3.43 22 174 196 0.58 0.62 

 
4 2 2 2 2.92 2.92 22 174 196 0.55 0.55 

 
5 1 2 2 3.18 3.69 22 174 196 0.57 0.57 

 
6 1 2 2 3.94 3.82 22 174 196 0.65 0.65 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 5.6 4.84 33.11 29.87 22 174 196 
3 4 2 0 4.56 4.3 27.92 26.62 22 174 196 
3 4 2 1 4.69 4.56 27.27 27.27 22 174 196 
3 4 2 2 1.14 1.14 5.85 5.85 22 174 196 
4 0 0 0 5.35 5.22 40.26 38.31 22 174 196 
4 2 2 0 4.3 4.56 33.12 34.41 22 174 196 
4 2 2 1 4.31 4.69 35.06 34.42 22 174 196 
4 2 2 2 2.79 2.66 14.94 16.23 22 174 196 
5 1 2 0 3.29 3.93 24.03 25.32 22 174 196 
5 1 2 1 3.93 3.8 27.27 25.97 22 174 196 
5 1 2 2 3.29 3.17 20.13 19.48 22 174 196 
6 1 2 0 3.8 3.16 24.67 22.73 22 174 196 
6 1 2 1 3.67 2.91 24.68 19.48 22 174 196 
6 1 2 2 3.8 3.93 27.27 26.62 22 174 196 
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SRC EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 7.46 5.27 21 168 189 0.8 0.74 

 
3 4 2 0 5.91 4.24 21 168 189 0.74 0.71 

 
3 4 2 1 3.98 3.47 21 168 189 0.63 0.62 

 
3 4 2 2 1.93 1.93 21 168 189 0.53 0.53 

 
4 0 0 0 5.66 4.11 21 168 189 0.73 0.71 

 
4 2 2 0 3.98 3.21 21 168 189 0.66 0.62 

 
4 2 2 1 3.6 3.73 21 168 189 0.63 0.63 

 
4 2 2 2 3.34 3.21 21 168 189 0.56 0.56 

 
5 1 2 0 3.73 3.21 21 168 189 0.64 0.64 

 
5 1 2 1 3.6 3.6 21 168 189 0.6 0.6 

 
5 1 2 2 3.98 3.85 21 168 189 0.58 0.58 

 
6 1 2 0 4.11 2.44 21 168 189 0.63 0.58 

 
6 1 2 1 3.08 2.96 21 168 189 0.6 0.58 

 
6 1 2 2 3.6 2.95 21 168 189 0.58 0.57 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 2.44 2.44 21 168 189 0.58 0.59 

 
4 2 2 1 3.08 3.21 21 168 189 0.62 0.63 

 
4 2 2 2 3.34 3.21 21 168 189 0.56 0.56 

 
5 1 2 2 3.73 3.47 21 168 189 0.58 0.58 

 
6 1 2 2 2.31 2.44 21 168 189 0.57 0.57 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 7.46 5.27 53.06 36.05 21 168 189 
3 4 2 0 5.88 4.22 38.1 34.02 21 168 189 
3 4 2 1 3.97 3.45 27.89 27.21 21 168 189 
3 4 2 2 1.92 1.92 10.89 10.89 21 168 189 
4 0 0 0 5.66 4.11 36.74 31.97 21 168 189 
4 2 2 0 3.97 3.2 27.21 23.81 21 168 189 
4 2 2 1 3.58 3.71 26.53 24.49 21 168 189 
4 2 2 2 3.33 3.2 18.37 18.37 21 168 189 
5 1 2 0 3.71 3.2 27.21 25.17 21 168 189 
5 1 2 1 3.58 3.58 23.13 23.13 21 168 189 
5 1 2 2 3.97 3.84 23.13 22.45 21 168 189 
6 1 2 0 4.09 2.43 27.89 17.69 21 168 189 
6 1 2 1 3.07 2.94 23.81 19.05 21 168 189 
6 1 2 2 3.58 2.94 23.13 21.77 21 168 189 
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VEGFR2 EF, AUC 

shape K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
3 0 0 0 6.69 5.91 31 248 279 0.64 0.64 

 
3 4 2 0 5.14 5.27 31 248 279 0.65 0.65 

 
3 4 2 1 5.14 4.88 31 248 279 0.63 0.63 

 
3 4 2 2 2.18 2.18 31 248 279 0.51 0.51 

 
4 0 0 0 3.86 3.6 31 248 279 0.61 0.61 

 
4 2 2 0 2.95 2.83 31 248 279 0.6 0.56 

 
4 2 2 1 3.34 3.34 31 248 279 0.61 0.58 

 
4 2 2 2 2.7 2.57 31 248 279 0.53 0.53 

 
5 1 2 0 4.11 3.34 31 248 279 0.6 0.57 

 
5 1 2 1 4.49 3.47 31 248 279 0.58 0.57 

 
5 1 2 2 2.7 3.08 31 248 279 0.53 0.53 

 
6 1 2 0 4.24 3.47 31 248 279 0.62 0.58 

 
6 1 2 1 3.08 3.21 31 248 279 0.6 0.56 

 
6 1 2 2 3.6 3.08 31 248 279 0.55 0.55 

sub-
shape 

K D R M EF(V) EF(P) ACTIVE DECOY TOTAL AUC(V) AUC(P) 

 
4 2 2 0 2.05 2.31 31 248 278.71 0.55 0.55 

 
4 2 2 1 2.31 2.95 31 248 278.71 0.58 0.57 

 
4 2 2 2 2.7 2.57 31 248 278.71 0.53 0.53 

 
5 1 2 2 2.83 3.6 31 248 278.71 0.53 0.53 

 
6 1 2 2 3.08 3.6 31 248 278.71 0.55 0.55 

 

Recall@10% 

K D R M EF(V) EF(P) RECALL(V) RECALL(P) ACTIVES DECOYS TOTAL 
3 0 0 0 6.69 5.91 38.71 35.94 31 248 279 
3 4 2 0 5.13 5.25 27.19 27.19 31 248 279 
3 4 2 1 5.13 4.87 25.35 24.88 31 248 279 
3 4 2 2 2.18 2.18 7.84 7.84 31 248 279 
4 0 0 0 3.86 3.6 23.96 26.73 31 248 279 
4 2 2 0 2.95 2.82 18.89 18.89 31 248 279 
4 2 2 1 3.33 3.33 20.28 20.74 31 248 279 
4 2 2 2 2.69 2.56 11.52 11.98 31 248 279 
5 1 2 0 4.1 3.33 20.74 20.28 31 248 279 
5 1 2 1 4.48 3.46 23.04 20.28 31 248 279 
5 1 2 2 2.69 3.07 15.21 16.59 31 248 279 
6 1 2 0 4.23 3.46 22.58 18.89 31 248 279 
6 1 2 1 3.08 3.2 17.97 18.43 31 248 279 
6 1 2 2 3.59 3.08 23.5 21.66 31 248 279 

 


