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Abstract 

This thesis is focused on the development of synthesis and characterisation 

protocols for two different nanoparticulate materials; hydroxyapatite (HA), a 

biomaterial well recognised as chemically akin to human bone, and CaO, a material 

often used for the sequestration of CO2 at elevated temperatures. For the analysis of 

these materials various bulk and particle level characterisation techniques have been 

employed, which are complemented by the versatile analytical methods available in 

the transmission electron microscope (TEM). 

The first chapter of results reveal that a hydrothermal synthesis route achieved 

phase-pure nanoparticulate HA with Ca/P atomic ratios close to the stoichiometric 

target (1.67). Impure HA nanopowders were produced by a sol-gel synthesis route 

with analysis by X-ray diffraction (XRD) revealing secondary phases of calcium 

phosphates, CaCO3 and CaO. 

The Ca/P ratios of each powder were determined at the particle level using 

TEM with energy dispersive X-ray spectroscopy (TEM-EDX), having first 

established a threshold electron fluence below which significant electron-beam-

induced alteration of the composition of HA does not occur. Results showed a 

greater variability of particle composition from the sol-gel preparation route 

compared to the hydrothermal route. This technique provides results in reasonable 

agreement to bulk Ca/P ratio analysis carried out by X-ray fluorescence (XRF) and 

laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). 

The second component of the thesis relates to the production of 

nanoparticulate CaO powder sorbents for the sequestration of CO2 gas. The CaO 

nanopowders were produced by the thermal decomposition of calcium acetate 
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hydrate (CaAc); this process was analysed by thermogravimetric analysis (TGA) 

and by in-situ hot-stage XRD. The CO2 uptake capability of the CaO powder 

sorbents was analysed by TGA following the reaction: 

CaO + CO2 ↔ CaCO3 (A.1) 

Results showed a molar conversion ratio, χ (of CaO to CaCO3) of 0.92, after 15 

minutes of carbonation with structural analysis by SEM and TEM showing 

consistent growth and densification of rounded CaCO3 crystals upon carbonation. 

Multiple cycles of carbonation and decarbonation were then carried out by TGA to 

investigate sorbent regenerability. A 0.32 decrease in χ was found after 9 cycles 

which is attributed to the sintering (reduction in surface area) of the sorbent with 

progressive decarbonations at 800 °C. Structural analysis of decarbonated samples 

extracted from the TGA, by XRD, SEM and TEM, highlighted the issue of sorbent 

hydration upon storage, sample preparation and analysis. 

 A TEM based technique has been developed for the structural analysis of 

multicycle CO2 capture using an ex-situ environmental cell (E-cell). This technique 

allows for multicycle capture to be carried out and then analysed in the TEM with 

minimal exposure to the atmosphere, therefore providing a closer microstructural 

match to what occurs in the TGA. Results showed that slow, low-vacuum 

decarbonation (in the E-cell) creates a densified ‘skeleton’ of CaO, consistent with 

the drop in capture capacity observed by TGA.  

 Finally, modifications of CaO sorbents using spacer materials has been carried 

out with the aim of declining the decay in sorbent performance during multiple 

cycles of carbonation and decarbonation in the TGA. Promising results were found 

using CaO sorbents modified a commercial YSZ powder and also with 

CaZrO3/ZrO2. 
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Chapter 1. Introduction 

There is a significant push for the synthesis of nanoparticles with highly 

desirable properties that can be utilised in increasing applications, from biomedical 

materials through to industrial processes such as carbon capture and storage (CCS). 

In order to optimise the performance of nanoparticles it is important to develop 

commercially viable particle synthesis routes for producing a range of pure or 

chemically modified nanoscale materials. It is also therefore essential to develop 

careful characterisation protocols with which the chemical and physical properties of 

nanomaterials can be fully understood, both at the bulk and particle levels.  

1.1. Aims 

 The overall aim of this project is to explore methods of nanoparticle 

characterisation. The first part of this project investigates two techniques for the 

synthesis of nanoparticulate hydroxyapatite (HA); hydrothermal and sol-gel 

synthesis. The aim of this study is to develop a protocol for the careful 

characterisation of the HA nanoparticles both in bulk and at the individual 

nanoparticle level. The latter achieved by developing a novel low-fluence analytical 

technique in the TEM that allows for the critical determination of particle 

composition (Ca/P ratio) without damaging the material by electron irradiation. Two 

phase pure and near-stoichiometric composition HA samples (Ca/P ratio = 1.67), 

prepared by the hydrothermal synthesis route, were subsequently exposed to in-vitro 

cell lines to measure their impact on cell viability (for potential biomedical 

applications).  
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The second part of this project is focussed on the development of CaO based 

nanoparticulate sorbents for the capture of CO2 gas. The principle aim of this part of 

the study is to utilise various bulk and particle level analytical techniques to fully 

understand the thermal decomposition of calcium acetate hydrate, and also the 

carbonation and decarbonation processes of the resulting CaO. Firstly, the thermal 

decomposition of calcium acetate hydrate for the preparation of nanoparticulate CaO 

sorbents is assessed and understood. The multicycle carbonation-decarbonation 

performance of the decomposed CaAc was then measured and the products 

analysed. Finally the use of secondary particulate spacer-materials was utilised to 

modify the CaO powder sorbents with the aim of improving sorbent regenerability, 

by reducing sorbent sintering, upon multiple cycles of carbonation and 

decarbonation. For nanoscale analysis, a TEM technique will be developed utilising 

a self contained ex-situ environmental cell (‘E-cell’) that allows for multicycle CO2 

capture to be analysed on the same particle areas.  

1.2. Objectives 

 To prepare hydroxyapatite powders following hydrothermal and sol-

gel synthesis routes. 

 To characterise the HA powders prepared in-house using bulk and 

particle level techniques, and compare to a commercially available HA 

powder.  

 To develop a new low fluence EDX technique for the representative 

compositional analysis of HA in the TEM. 

 To examine HA powders prepared by the hydrothermal method for 

potential cytotoxicity to in-vitro cell lines. 
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 To analyse the thermal decomposition of calcium acetate for the 

production of nanoparticulate calcium oxide. 

 To analyse the CO2 capture capacity of nanoparticulate calcium oxide 

powder sorbents produced by the thermal decomposition of calcium 

acetate, using TGA. 

 To examine the performance of nanoparticulate calcium oxide powder 

sorbents for CO2 capture using a multicycle carbonation/decarbonation 

method by TGA.  

 To develop an ex-situ TEM based technique (using an environmental 

cell) for the direct observation of the structural changes of a 

nanoparticulate calcium oxide powder sorbent during multicycle 

carbonation and decarbonation. 

 To improve sorbent regenerability during the multicycle CO2 capture 

process by modifying nanoparticulate calcium oxide powder sorbents 

with second phase, particle spacer, materials.  

 

1.3. Chapter overview 

This thesis presents a total of six Chapters. Chapter 1 provides an introduction 

to the work, with a subsequent outline of the project objectives. Chapter 2 presents a 

detailed review of previous work reporting the properties, synthesis techniques, 

characterisation and toxicity of nanoparticulate hydroxyapatite. This is followed by 

an overview of carbon capture and storage, and a review of the production and 

performance of current nanoparticulate CaO sorbents. The synthesis methods of 

both nanoparticulate hydroxyapatite and CaO sorbents are explained in Chapter 3, 
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along with the background science of the key characterisation techniques to be 

employed. Chapter 4 presents and discusses the results of the synthesis and 

characterisation of the hydroxyapatite powders produced in-house, and compares 

these to a commercial hydroxyapatite powder. The appendix of Chapter 4 presents 

and discusses results of nanotoxicity analysis performed on two hydrothermally 

synthesised hydroxyapatite powders exposed to in-vitro cell lines. The assays we 

undertaken by an undergraduate research group in the Faculty of Biological 

Sciences here at Leeds. Chapter 5 presents and discusses results of the production of 

nanoparticulate CaO powder sorbents used for the capture of CO2. The recyclability 

of CaO powder sorbents during multicycle CO2 capture is the discussed and sorbent-

modifications are carried out with the aim of improving overall CO2 capture 

performance. Additional research into the effects of hydration of nanoparticulate 

CaO is also discussed. Final conclusions and potential future work for this research 

are presented in Chapter 6. 
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2. Chapter 2. Literature review 

2.1. Hydroxyapatite 

2.1.1. Properties of hydroxyapatite  

Hydroxyapatite (HA), Ca10(PO4)6(OH)2, is a form of calcium phosphate which 

most commonly exists, in a chemically modified form, as the main mineral found 

within bone and tooth enamel. Bone is typically composed of a combination of 

various apatitic materials, of which HA constitutes to about 70% in weight [1]. 

Additional components of bone include ions of carbonate (CO3
2-

), 

hydrogenophosphate (HPO4
2-

), sodium (Na
+
), potassium (K

+
), magnesium fluoride 

(MgF2) and chloride (Cl
-
) [1, 2]. 

 Stoichiometric HA has a composition of 39.68 wt% Ca, 18.45 wt% P with a 

Ca/P weight ratio of 2.15 and Ca/P atomic ratio of 1.67, and within a pH range of 

4.2 - 12.0 it exhibits a greater stability in aqueous media and at ambient 

temperatures compared to other calcium phosphate ceramics [3, 4]. Table 2.1 

displays Ca/P ratios for alternative calcium phosphates compounds [4, 5]. 

Amorphous calcium phosphate (ACP, Cax(PO4)y nH2O) is missing from the table as 

it is regarded as a microcrystalline mixture of other calcium phosphate compounds, 

and it has been suggested to be the initial phase formed in the early stages of HA 

mineralisation [2]. Amorphous calcium phosphate can most commonly exist in the 

form Ca9(PO4)6 where the Ca/P ratio is 1.50 [6], however varying Ca/P ratios for 

ACP have been reported in the range 1.20 - 2.20 [4, 5]. 
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Table 2.1: Ca/P ratios for various calcium phosphate compounds 

Compound name Molecular formula Ca/P ratio 

Monohydrate calcium phosphate (MCPH) Ca(H2PO4)2·H2O 0.50 

Monocalcium phosphate (MCP) Ca(H2PO4)2 0.50 

Dicalcium phosphate dihydrate (DCPD) Ca(HPO4)·2H2O 1.00 

Dicalcium phosphate anhydrate (DCPA) Ca(HPO4) 1.00 

Octacalcium phosphate (OCP) Ca8H2(PO4)6·5H2O 1.33 

Tricalcium phosphate (TCP) α- and β- Ca3(PO4)2
* 

1.50 

Hydroxyapatite (HA) Ca10(PO4)6(OH)2 1.67 

 *
α-TCP = monoclinic form, β-TCP = rhombohedral form 

 

The compositional similarities with bone provide HA with excellent 

biocompatibility properties and therefore it is utilised in many biomedical 

applications related to bone substitution and repair, however the mechanical 

properties of sintered HA, as displayed in Table 2.2, render the material unsuitable 

for load bearing applications: the fracture toughness (KIc) of HA does not exceed of 

1.0 MPa m
½
, whereas human bone = 2 – 12 MPa m

½
. Additionally, the Weibull 

modulus (n) is low in wet environments (n = 5 – 12) which indicates a low reliability 

of HA implants [3]. A low Weibull modulus indicates a greater variability in the 

strength across seemingly identically produced samples mechanically tested under 

fixed conditions (i.e. there is increased likelihood of flaws and defects within the 

material) [7]. Therefore, HA is primarily utilised in non-load bearing applications, 

such as bioactive coatings or as materials for the development of scaffolds for bone 

tissue engineering [3, 8, 9].  
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Table 2.2: Mechanical properties of hydroxyapatite [3, 5, 10]. 

 

 

 

 

 

 

 

 

 

 

 

  

Property Typical Values 

Density (g cm
-3

) 3.15 

Young’s modulus (GPa) 85-90 

Knoop Hardness (MPa) 3450 

Tensile Strength (MPa m
-2

) 120 

Poisson Coefficient 0.3 

Thermal Expansion 11 

Melting Point (°C) 1660 

Specific Heat (cal g
-1

 K
-1

) 0.15 

Thermal Conductivity (W cm
-1

 K
-1

) 0.01 

Fracture Toughness (MPa m
½
) < 1.0 

Weibull Modulus 5.0 - 12.0 
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The interest in the use of HA as a material for bone implantation increased in 

the 1980’s and 1990’s, leading HA to be utilised in various areas including spinal 

fusion, craniomaxillofacial reconstruction, treatment of bone defects, fracture 

treatment, total joint replacement (bone augmentation) and revision surgery [11-16]. 

More recent applications of HA include tissue scaffolds [17-19], tubule infiltration 

in dentine [20, 21], enamel and dentine remineralisation [22], dental and orthopaedic 

implants and coatings [3, 23] and as matrices for controlled drug release [24, 25]. 

Hydroxyapatite is also utilised in many non-biomedical applications such as packing 

media for column chromatography, gas sensors, catalysis and as host materials for 

lasers [26, 27].  

Many applications of synthetic HA require careful control of the particle size, 

shape and phase. The use of nano-scale HA allows for better tissue integration and 

heightened biocompatibility with bone which itself contains nano-scale HA crystals 

ordered within a collagen fibre matrix [28].  

Global interest in HA synthesis and it’s applications, most notably with 

regards to biomedical uses, has significantly increased in recent years as shown from 

the rising numbers of HA-based papers currently being published per year (Figure 

2.1); since 2008 over 4,000 papers have been published per year, in comparison to < 

2,000 papers per year from 2000 to 2008, and < 1000 papers per year prior. 
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Figure 2.1: Approximate number of papers published per year on hydroxyapatite from 1970 to 2011. 

Data collected from Thomson Reuters Web of Knowledge, keyword: “hydroxyapatite”. 
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2.1.2. The structure of hydroxyapatite 

In 1926, de Jong was the first to report the similarities between the X-ray 

diffraction patterns of bone mineral and the calcium phosphate compound, 

hydroxyapatite [29].  

The crystallographic structure of HA was first identified in the 1930’s, with the 

structure shown to comprise of units of Ca
2+

, (PO4)
3-

 and OH
-
 [30-32]. Further 

refinement of the HA structure was carried out in the 1950’s and 1960’s where it 

was found that the presence of carbonate in bone and tooth mineral and HA can be 

observed directly using infrared spectroscopy and indirectly using X-ray diffraction 

[11, 33-36]. Figure 2.2 displays the powder X-ray diffraction reference (ICDD) file 

for hydroxyapatite as reported by Sudarsanan and Young in 1969 [37].  

Figure 2.2: XRD peak data for hydroxyapatite from ICDD ref: 01-074-0566 [37]. 
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Hydroxyapatite exhibits a hexagonal space group P63/m where a = b ≠ c (a = 

0.943 nm and c = 0.688 nm), α = β = 90° and γ = 120° [34, 36]. Figure 2.3 displays 

the hexagonal nature of hydroxyapatite as produced using the CrystalMaker 

software [36, 38]. One distinctive feature of the HA structure are columns of OH, 

which occur parallel to the c axis at the edges of the unit cell [36]. These columns 

pass through the centres of alternating Ca atoms with 3-fold trigonal planar 

coordination, at z = ¼ and ¾, and successive rotations of 60° observed about the c 

axis, see Figure 2.3b. The repetition of this pattern leads an OH-channel where the 

building unit is formed by two monopyramidal polyhedra; each with a triangular 

base (labelled i and ii in Figure 2.3b) and occupied by three Ca atoms and one OH 

[38]. These equivalent Ca atoms are termed Ca(I) in Figure 2.3, with 6 Ca(I) atoms 

found per unit cell [27, 38].  

Additional Ca atoms (termed Ca(II)) are equivalent at z = 0 an ½. These Ca(II) 

atoms form columns which pass through the centre of alternating triangles of O 

atoms (termed O(I) and O(II) atoms), see Figure 2.3c. In total, crystalline HA has 10 

cation (Ca
2+

) sites arranged in two non-equivalent positions within the unit cell, six 

Ca(I) atoms and four Ca(II) atoms [38]. The Ca(II) and OH columns within the 

hexagonal symmetry subsequently give rise to a honeycomb structure centred 

around the OH-columns as visible in Figure 2.3a [38].  

Another notable feature of the HA structure is the tetrahedral form of 

phosphate (PO4
3-

), see Figure 2.3a. These tetrahedra form basic structural units that 

do not corner share oxygen atoms, they are held together, instead, by the bridging 

Ca(II) atoms [34, 39, 40]. The HA unit cell comprises of six PO4 tetrahedrons, with 

the central P atoms found at z = ¼ and ¾, see Figure 2.3a [27, 38].  
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Figure 2.3: Pure HA structural model: (a) plan view with unit cell highlighted by red line, (b) 

amplified side view of adjacent (i and ii) Ca(I)- hydroxyl monopyramidal polyhedra with fractional 

heights of atoms labelled, and (c) amplified plan and side view of Ca(II) column, with fractional 

heights of atoms labelled. Data modified using CrystalMaker® from [36, 38]. 

 

 

 

 

 

(i) 

(ii) 

(a) 

(b) (c) 
Ca(I) 

O 

H 

Ca(II) 

O(I) 

O(II) 

(a) 

0.00  

¼  

¾  

½   

(plan view) 

(side view) (side view) 

¾  

¼  
0.06  

0.20  

0.70  
0.56  

PO4 

tetrahedron 

 

H 

 

O 

 

O(III) 

 

O(II) 

 

O(I) 

 

Ca(II) 

 

Ca(I) 

 

120°  

P atom at centre of 

tetrahedron, z = ¼  

 

P atom at centre of 

tetrahedron, z = ¾ 

 



13  

 

One of the main structural characteristics of HA is its ability to allow a large 

amount of isomorphic substitutions whilst always maintaining its hexagonal space 

group [41]. The Ca
2+

, OH
-
 and (PO4)

3-
 ions within the HA structure can be 

substituted for divalent cations including Zn
2+

, Fe
2+

, Cu
2+

, Mg
2+

, Ni
2+

, Cr
2+

, Mn
2+

, 

Co
2+

, Sr
2+

, Pb
2+

 and Cd
2+

, and anions including F
-
, Cl

-
, CO3

2-
 and VO4

3- 
[38]. Such 

substitutions modify the thermal stability, the solubility, textural properties and the 

surface reactivity of HA [38]. Table 2.3 highlights some other possible substitutions, 

with respect to the following general formula:  

Me10(XO4)6(Y)2 (2.1) 

Imbalances in charge of the substituting ion can generate disorder within the HA and 

require a change in total anionic charge to maintain charge balance [11, 42]. 

Table 2.3: Some examples of substitutional ions in the HA structure [11, 38, 42, 43] 

Me XO4 Y 

REE
3+

 Ca
2+

 Na
+
 SiO4

4-
 PO4

3-
 SO4

2-
 CO3

2-
 OH

-
 O2

-
 

 Sr
2+

 K
+ 

 AsO4
3-

 HPO4
2-

 S2
2-

 F
-
 H2O 

 Pb
2+

   CO3F
3-

 CO3
2-

 O
2-

 Cl
-
 N2 

 Mg
2+

   VO4
3-

   I
-
  

 Ba
2+

      Br
-
  

 

Mn
2+ 

Zn
2+ 

Fe
2+ 

Cu
2+ 

Ni
2+ 

Cr
2+ 

Co
2+ 

Pb
2+ 

Cd
2+
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2.2. Hydroxyapatite synthesis  

There are two principal methods for the synthesis of hydroxyapatite: solid-

state synthesis and wet chemical methods. Well crystallised powders are often 

produced via solid-state [44, 45] reactions however these require high temperatures 

(typically 1000 °C or higher) and long heat treatment times (> 24 hours). Wet-

chemical methods offer lower temperature synthesis reactions from component 

oxides/carbonates, these include: precipitation [46-48], hydrothermal synthesis [49-

58] and solution-gelation (sol-gel) [1, 26, 59-73]. Hydrothermal and sol-gel 

techniques will be discussed further in Sections 2.2.1 and 2.2.2 respectively. 

Low temperature precipitation techniques (typically < 100 °C) can provide 

nanoparticulate HA of various morphology (blade, rods, needles or equiaxed shaped 

particles) however the Ca/P ratio and crystallinity of these powders is highly 

dependent on the preparation conditions, with most cases reporting Ca/P ratio’s 

lower than the stoichiometric target (1.67) [3, 46-48].  

Alternate preparation techniques include electro-crystallisation, spray-

pyrolysis, freeze-drying [74], microwave irradiation [75, 76], mechano-chemical 

methods and emulsion processing [3]. 

 

2.2.1. Hydrothermal synthesis 

Hydrothermal synthesis describes a nano-particle preparation route which 

utilises heat and pressure to instigate a reaction between reagents dissolved in water, 

or solvent (solvothermal), often carried out within a sealed hydrothermal pressure 

vessel [52, 53]. These conditions open up reaction chemistry not accessible under 

ambient conditions, and crystalline HA can be produced without the requirement for 
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post reaction calcination. The technique is beneficial due to its low running cost and 

simple operation, and is attractive for HA synthesis as it produces regular nanosized 

particles with minimal or no agglomeration [49]. 

 Hydrothermal pressure vessels are typically thick-walled steel cylinders 

designed to operate at mild reaction temperatures and high pressure, and are Teflon 

lined to work inertly with respect to water and solvents. A typical general purpose 

Parr produced hydrothermal reactor has a maximum working temperature of 350 °C, 

and maximum working pressure of 200 bar [77].  

A high degree of crystallinity and stoichiometry in HA can be obtained 

through hydrothermal methods [3]. Needle or blade shaped HA particles are often 

reported ranging from the nano to the micrometer scale in size [3, 49-58]. Particle 

size is controlled by the low temperature (often < 100 °C) hydrolysis of the 

phosphate precursor during preparation and it is often found that stoichiometry is 

inconsistent after hydrolysis, with Ca/P ratios ranging from 1.50 to 1.71 [3]. 

Increasing the pH of the starting suspensions has demonstrated more controlled 

growth of smaller crystalline HA particles, with improved stoichiometry [56, 57]. 

Particle morphology is considered more controllable by the hydrothermal route in 

comparison to alternate methods, such as solid-state and wet-chemical processes, 

with greater particle homogeneity often achieved [52]. 

Typical hydrothermal routes for HA synthesis utilise preparation temperatures 

between 100 and 200 °C and pressures between 1 and 2 MPa; these conditions 

produce HA with rod, needle or whisker morphologies ranging in lengths from < 

100 nm to > 1 μm [49-58]. The technique offers high particle crystallinity and a 

Ca/P ratio close to the stoichiometric target (1.67) [49, 78].  
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2.2.2. Solution-gelation synthesis  

Solution-gelation (sol-gel) chemistry describes the process of metal alkoxides 

converted to amorphous gels of metal oxides via hydrolysis and condensation 

reactions [79]. The sol-gel process was first identified by Ebelman in 1846 [80] and 

has since been utilised for the production of ceramic powders, coatings and also bulk 

materials such as glasses [81]. 

 Hydroxyapatite can be typically produced via a widely used sol-gel method 

whereby chemical reactions take place between calcium and phosphorus ions under 

a controlled pH and solution temperature [26]. Many calcium and phosphorus 

precursors have been used for HA synthesis all of which vary in chemical activity 

(hydrolysis, polycondensation etc); most commonly these include calcium 

diethoxide, calcium acetate and calcium nitrate, and triethyl phosphate, triethyl 

phosphite and ammonium dihydrogen phosphate [26, 60-62]. It is recognised that 

the temperature required to develop the apatitic structure is dependent on the 

chemical activity of the precursors used in the sol, with reports of a typical gel 

calcination temperature range of 300 - 1100 °C to produce a crystalline 

stoichiometric (Ca/P = 1.67) apatitic structure, depending on the precursors used [1, 

26, 60-66, 68-71]. 

Deviations from stoichiometry in the final product can often occur through fast 

titration of the phosphate solution, and Ca-deficient HA can often form in low pH (< 

9) solutions [26]. However, this can prove advantageous as Ca-deficient materials, 

such as TCP (Ca/P = 1.50), are more resorbable by bone than HA and have 

displayed beneficial properties with regards to the promotion of bone regrowth [67]. 
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Phosphorous alkoxides are popular precursors for sol-gel HA preparations, 

with triethyl phosphite (C6H15PO3) [26, 65-69] and triethyl phosphate (C6H15PO4) 

[1, 60] most commonly utilised. Triethyl phosphite is often preferred over triethyl 

phosphate due to its higher hydrolysis activity and a shorter time period needed to 

develop the HA phase [26]. Development of the HA phase during sol-gel synthesis 

methods is promoted by solution aging, for example phosphorus-31 nuclear 

magnetic resonance (31P NMR) spectroscopy has shown a valence transition from P 

(III) to P (V) upon aging a solution of triethyl phosphite and calcium diethoxide, at 

the formation of HA after 24 hours [68]. This suggests a nucleophilic addition of 

negatively charged OH
-
 groups to the positively charged metal P that subsequently 

leads to an increased coordination number of the phosphorus atom, and is indicative 

of a polymerisation reaction [26, 68].  

Sol-gel synthesis can involve either an ethanol-based or aqueous-based 

preparation route. Ethanol based synthesis has been shown to provide a thermally 

stable HA phase, whereas aqueous-based preparation can result in a calcium-

deficient material [26]. A typical aqueous-based synthesis route is described in [69]. 

Triethyl phosphite is firstly diluted in a fixed amount of water and stirred vigorously 

until completion of hydrolysis. A stoichiometric amount of calcium nitrate is diluted 

in 25 ml of water and subsequently added drop-wise into the phosphite sol with 

continuous stirring for a further 4 min and then statically aged at 50 °C for 125 

minutes. Further treatment at ~85 °C results in a dry white gel which can be ground 

with a pestle and mortar and subsequently calcined in a furnace at desired 

temperatures. Similarly, HA has also been prepared using triethyl phosphate and 

calcium acetate precursors [79].  

Sol-gel synthesis offers a greater flexibility over solid state reaction, 

hydrothermal and wet precipitation techniques with respect to molecular level 
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mixing of the calcium and phosphorus precursors, which allows for improved 

homogeneity of the resulting HA to a significant extent [26]. Sol-gel methods are 

often preferred for the production of HA used for prosthesis coatings as the 

technique allows for the production of crystalline and phase pure coatings with good 

adhesive properties and which are thin enough (typically < 1 μm) to avoid 

complications such as cracking and delamination [68, 81]. Furthermore, sol-gel 

offers a lower temperature preparation route (typically < 800 °C) for HA coatings 

than alternative methods such as thermal spraying (typically > 1000 °C) [81-83], 

avoiding complications with structural instability which HA experiences at higher 

temperatures [68].  

The thermal spraying method for preparing HA coatings utilises a plasma or 

ionised gas (typically argon) to partially melt and carry hydroxyapatite particulates 

in a high-temperature plasma-gas stream. This gas-stream is then accelerated 

towards the substrate; creating a coating which typically contains a mixture of 

crystalline HA, amorphous HA and tricalcium phosphate phases to a thickness of 

between 50 and 200 μm [81, 84, 85]. Several disadvantages of the technique include 

poor adhesion, non-uniform thickness, poor crystallinity, poor integrity, uneven 

resorption, mechanical failure and increased prosthesis wear [5]. 

2.3. Hydroxyapatite characterisation  

Various bulk and particle level analysis techniques have been utilised for HA 

characterisation; bulk compositional characterisation methods include X-ray 

diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared 

spectroscopy (FTIR) and laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS). X-ray diffraction provides details of the crystal phases 

present in a sample (phase purity) and also the materials crystallinity [86]. Fourier 
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transform infrared spectroscopy typically identifies functional groups present within 

a sample, and it is often used for the identification of carbonate within apatitic 

materials [87, 88]. X-ray fluorescence and ICP-MS are typically employed in HA 

characterisation for the determination of the bulk Ca/P ratio [89, 90].  

At a particle level, scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) techniques are employed for direct nanoparticle 

imaging, providing details of particle size, shape and atomic configuration (in the 

TEM) [91, 92]. Spectroscopic techniques such as energy dispersive X-ray analysis 

(EDX) in the SEM and TEM can provide estimates of a samples elemental 

composition. Electron diffraction in the TEM provides a useful tool for the 

confirmation of a materials structure and crystallinity [93]. Analysis by TEM offers 

a greater resolution (~0.1 nm) than in the SEM (~10 nm) and, with a smaller 

interaction volume of the electron beam with the sample, TEM-EDX can allow for 

the analysis of individual nanoparticles, enabling structural and compositional 

variability that may not be detected by SEM or the bulk characterisation techniques 

such as XRD, XRF, FTIR and LA-ICP-MS, to be identified.  

The principles of these characterisation methods are discussed in more detail in 

Chapter 3. 

  

2.3.1. Electron fluence 

Electron fluence can be defined as the number of electrons per unit area 

(electrons nm
-2

) which, in a TEM, can be controlled using a condenser aperture, spot 

size and exposure time. With respect to many materials, including HA, exposure 

using a high energy (typically > 5 keV) electron beam can induce damage in terms 

of changes in structure (e.g. atomic displacement) and composition [93-95]. Work 
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by Eddisford et al (2008) investigated the effects of electron fluence on the Ca/P 

atomic ratio in HA, and showed that a fluence above 100 x 10
6
 electrons nm

-2
 at 200 

keV induces a radiolytic damage process involving phosphorus and oxygen loss, 

amorphisation and eventual re-crystallisation to calcium oxide (CaO) [94]. The 

damage is the result of ions in the HA structure, excited by electrons, not returning 

to their original electronic state upon de-excitation i.e. crystallinity is lost beyond a 

recoverable limit due to the extensive movement of the atoms once chemical bonds 

have been broken by the excitation. The bond breaking subsequently results in mass 

loss, particularly amongst lighter atoms such as hydrogen, oxygen, and even 

phosphorus [95]. 

Results collected by Eddisford are shown in Figure 2.4 and display the Ca/P 

ratio of HA as a function of cumulative fluence for current densities varying 

between 0.2 A/cm
2
 and 24 A/cm

2
, measured on a high density field emission gun 

(FEG-) TEM (FEI CM200). The change in Ca/P ratio is observed as relatively 

constant up to a electron fluence of 100 x 10
6
 electrons nm

-2
, beyond this ‘threshold’ 

the Ca/P ratio can be seen to rapidly increase from the expected stoichiometric HA 

baseline (~1.67) as radiolytic damage accelerates [94]. 
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Figure 2.4: EDX Ca/P ratio in HA plotted as a function of cumulative electron fluence [47]. 
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2.4. Nanoparticle toxicity 

There have always been nanoparticles in the environment that provide risk to 

human health, these include airborne salts, sands, soils and also pollens, and it has 

long been recognised that exposure to dusts can lead to ill health and lung disease, 

most notably for those involved in mining [96]. Growing scientific interest is now 

leading to the increasing production of a broad range of ‘engineered nanoparticles’, 

examples include carbon based nanoparticles (e.g. carbon black, graphite, graphene, 

carbon nanotubes and buckyballs), metals (e.g. Al, Fe, Co, and Ag), metal oxides 

(e.g. TiO2, ZnO, SiO, Fe2O3, and Al2O3), clays (e.g. Mg3Al2(SiO4)3) and quantum 

dots (e.g. Au and Si), and it is well recognised that exposure to these can lead to 

detrimental effects to human health, however these are currently being examined on 

a case-by-case basis [97-100]. 

The production of nanoparticles is projected to rise from an estimated 2,300 

tonnes in 2008 to 58,000 tonnes in 2020 [101], and with ever increasing biomedical 

applications there is an essential need to understand the nature of nanoparticle 

toxicology on a cellular level [102, 103]. It is recognised that nanoparticles can 

display toxicity despite the material in bulk being considered more inert; this effect 

is likely to be caused by a higher surface area to volume ratio of particles as a 

greater proportion of ‘surface’ atoms change the surface chemistry of the material, 

tending to make it more chemically reactive [96, 102-104]. In the chemical industry 

this principle provides the basis for the production of heterogeneous nano-catalysts 

(e.g. platinum catalysts) [96]. An example of particle size dependent toxicity has 

been demonstrated by Donaldson et al (1999) where 14 nm sized carbon black 

particles were approximately 3 times more toxic than 50 nm sized carbon black 
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particles and 10 times more toxic than 250 nm sized carbon black particles [96, 

105]. 

Nanoparticles can enter the human body by various means: inhalation 

(respiratory tract), ingestion (gastrointestinal tract), injection (blood circulation) and 

dermally (skin), which can cause problems including adverse respiratory effects 

(e.g. pulmonary inflammation), fibrosis and oxidative stress [102, 104].  

Nano- (and micro-) particles of HA are known proinflammatory’s in a number 

of pathological conditions such as vascular calcification and HA deposition disease; 

and these particles can typically enter the body as wear debris from coated implants 

[103]. Research by Motskin et al (2009) suggests that toxicity of HA nanoparticles 

varies with method of synthesis, with HA prepared by a gel method showing the 

greatest toxic effects at concentrations between 31 - 500 μg ml
-1

, with a co-

precipitated HA showing toxic effects only at high doses > 250 μg ml
-1 

[103]. The 

amount of particle uptake was shown to correlate directly with cytotoxicity, however 

no individual particle characteristic was shown to control the degree of uptake [103]. 

Cell viability (MTT) assays carried out using hydroxyapatite (prepared by a 

hydrothermal method) particle doses in the range 10 - 100 μg ml
-1 

have shown no 

adverse affect on the viability of a gastric cancer cell line; effects of higher doses 

were unreported [106]. A study by Shi et al (2009) showed that cytotoxicity of 

nanoparticulate HA is dependent on particle size, with larger particles (> 200 nm 

length) producing a higher percentage of apoptosis (death of cells) of MG-63 

(human osteoblast) cells [107]. Hydroxyapatite particles ~20 nm in size were 

observed to pass through the cell membrane, inhibiting apoptosis and also promoting 

cell growth [107]. 
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2.5. Carbon capture and storage (CCS) using calcium based 

particulates 

2.5.1. Preface 

As of 2010, fossil fuels account for 86% of the worlds energy supply [108] and 

the increasing use of fossil fuels to satisfy the worlds growing energy needs has led 

to higher emissions of CO2 and other pollutants (e.g. NOx and SOx) [109]. Carbon 

dioxide is considered the most important of these anthropogenic gases, accounting 

for up to 64% of an enhanced greenhouse effect [108]. Current energy solutions 

involve coupling current fossil-fuel energy systems with economical capture, 

transport and safe storage schemes of CO2 gas emissions with longer term strategies 

for low or zero carbon-emission technologies including nuclear power, hydrogen 

generation and renewable sources (e.g. solar, hydro, wind, biomass and geothermal) 

[108]. Carbon capture and storage (CCS) technologies have gained significant 

interest due to the recognised effects of global warming caused by emissions of CO2 

and other greenhouse gases; such effects have led to the 1997 Kyoto Protocol which 

set a target for 37 industrialised countries, and the European community, to reduce 

greenhouse gas emissions by an average of 5% (against 1990 levels) over the five-

year period 2008 - 2012 [110]. The concentration of CO2 in the atmosphere has risen 

from about 280 ppm before the industrial revolution, to 355 ppm in 1990, and 380 

ppm in 2010 [108, 109, 111]. At the current carbon emission growth rate, the 

concentration of CO2 in the atmosphere is predicted to reach 580 ppm within 50 

years [108] and consequently the G8 nations have set a minimum worldwide target 

of a 50% reduction in CO2 emissions (against 1990 levels) by the year 2050 for 

which CCS will play a pivotal role in helping to achieve this [112, 113].  
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The concept of CCS is not new [114] but there is a recent acceptance to drive 

towards cost-reductions and provide more energy efficient improvements in CCS 

systems [115, 116]. Strategies include capturing CO2 from flue gases as well as 

developing renewable energy sources, of which hydrogen is regarded as a promising 

environmentally friendly energy carrier [117]. A proposed technique for H2 

production is steam gasification of methane or biomass; feedstock undergoes a 

reforming and catalysed water-gas-shift reaction at elevated temperatures, giving H2 

and CO2 as products. The ability to remove CO2 using a powder sorbent shifts the 

reaction to more favourable thermodynamics, thereby increasing the efficiency of 

hydrogen production [117, 118].  

The technique currently considered the most commercially viable for CO2 

capture is amine scrubbing; which was first developed in 1930 and was successfully 

trialled on gas and coal power stations on a small scale in the early 1980’s [119]. 

This technique utilises an aqueous solution of amine that can absorb CO2 gas at near 

ambient temperatures. The amine is then regenerated by steam at ~100 °C to 120 °C 

and then condensed to leave pure CO2 which can be compressed and geologically 

stored [108, 119]. However, due to various operational (e.g. corrosion) and 

environmental disadvantages, there is a drive to develop greener and more cost-

effective methods [120]. Alternate technologies include absorption with soluble 

carbonate, adsorption with activated carbon and capture using an ionic liquid [121, 

122], but these are not easily applied at temperatures above 500 °C, which would be 

necessary for incorporation into coal power plants where temperature conditions for 

coal combustion (and therefore CO2 emission) are typically in the range 550 – 750 

°C [108, 122-124]. 
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2.5.2. Calcium oxide & CO2 sequestration  

Metal-oxide based sorbents (particularly calcium oxide, CaO) are well 

recognised materials for effective high-capacity capture and storage of CO2 at a 

higher temperature range (550 – 950 °C) [125-130]. The concept of using lime based 

slurries for CO2 capture was first applied into two British power plants in 1936; 

however the poor performance, reliability and high capital cost of lime-based CO2 

capture rendered the technology as less beneficial than amine scrubbing [119]. The 

study of limestone for CO2 capture has continued to gain interest, with small scale 

applications trialled in US power plants in the 1980’s, however these failed to gain 

government support and consequently work on CaO and other metal oxide sorbents 

for CO2 capture has predominantly been pursued in research, with amine scrubbing 

expected to be the dominant technology pursued in industry until at least 2030 [119, 

131]. 

Calcium oxide is a material known to be unstable at ambient and high 

temperature conditions due to its tendency to react with atmospheric moisture and 

CO2 to form more stable compounds, calcium hydroxide (Ca(OH)2) or calcium 

carbonate (CaCO3) [132]. This high surface activity of CaO makes it suitable for a 

range of applications including as a catalyst for the production of biodiesels, and as 

a key component in cement manufacture [132]. Further owing to its high reactivity, 

calcium oxide can be utilised for the sequestration (capture and storage) of CO2. 

Calcium oxide based precursors (e.g. limestone, CaCO3) can be found naturally and 

in great quantity, and when decomposed to CaO they are considered ideal candidates 

as sorbent materials for CO2 capture due to a high CO2 sorption capacity [133]. 

 Calcium oxide is known to absorb CO2 in a flue gas to produce calcium 

carbonate, CaCO3 (carbonation); a process which is reversible. Once the metal oxide 
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has reached its ultimate conversion, thermal regeneration can be utilised whereby 

CaCO3 is heated beyond its calcination temperature (~750 °C) to reform CaO and 

CO2 gas [109, 134-136].  

CaO (s) + CO2 (g) ↔ CaCO3 (s) (2.2) 

  1023 K
° =  168.5 k  mol 1 

The gas-solid reaction, between CO2 and CaO, is most commonly carried out 

at temperatures between ~550 - 700 °C, with a temperature of 650 °C considered as 

the most effective for the highest carbonation conversion of a CaO sorbent produced 

by the thermal decomposition of precipitated calcium carbonate (PCC) [108, 109]. 

The kinetics of carbonation are well recognised to occur firstly by a rapid, linear 

reaction at the particle surface [136-139]. This progresses to slower diffusion-

controlled phase as a product layer of CaCO3 develops on the outer region of the 

CaO particle; subsequent carbonation then occurs by the diffusion of the reacting 

species (CO2) through the CaCO3 product layer, gradually slowing down the overall 

reaction rate due to limitations in solid-state diffusivity [140]. This leads to an 

incomplete conversion of CaO, with reported figures suggesting an ultimate 

conversion of up to 90% [109]. Regeneration of CaO from CaCO3 typically occurs 

at temperatures > 800 °C. 

A study by Lu et al (2006) compared the CO2 uptake of four CaO sorbents 

formed by the decomposition calcium acetate monohydrate, CaAc 

(Ca(CH3COO)2·H2O), calcium carbonate (CaCO3) calcium hydroxide (Ca(OH2)) 

and calcium nitrate tetrahydrate (Ca(NO3)2·4H2O). Each CaO sorbent was subject to 

carbonation at 600 °C in CO2 (20 ml min
-1

) and it was found that the CaO formed 

from calcium acetate decomposition exhibited a carbonation conversion rate of 97% 

from CaO to CaCO3. This result was attributed to a high surface area and large pore 
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volume of the CaO sorbent. The CaO produced from the decomposition of calcium 

nitrate exhibited only a 2.5% conversion and those from calcium hydroxide and 

calcium carbonate displaying 63% and 66% conversion respectively [128]. 

The low CO2 uptake of CaO formed by the decomposition of calcium nitrate is 

reported to be caused by melting since calcium nitrate melts at just 45°C. This 

melting causes the formation of a solid solution during calcination, instead of a 

powder, a process which prevents the formation of pores upon the decomposition to 

CaO [128]. This in turn creates a very small surface area of the particles in 

comparison to the other sorbents, making subsequent CO2 uptake difficult [128]. 

The decomposition of each calcium precursor was carried out in a helium 

atmosphere so as to prevent a reaction with airborne CO2, which would likely form 

an intermediate phase of CaCO3 [128]. The study by Lu et al (2006) concluded that 

superior CO2 capture performance was obtained using a CaO sorbent produced by 

the decomposition of calcium acetate [128]. Therefore, in this study, calcium acetate 

will be sourced commercially (Acros Organics, 99%, extra pure) and will be utilised 

here for the production of CaO powder sorbents. Calcium acetate hydrate is 

synthesised by the reaction of calcium carbonate and acetic acid, however complete 

details of the reaction procedure are not disclosed by the supplier*. The following 

reaction is proposed for the production of calcium acetate monohydrate: 

CaCO3 + 2(CH3COOH) → Ca(CH3COO)2·H2O + CO2 (2.3) 

It should be emphasised here that this research will focus on exploring the CO2 

uptake capabilities of nanoparticulate CaO sorbents, rather than proposing a specific 

route for their preparation.   

                                                 

* From discussion with Kate Jackman, Thermo Fisher Scientific (parent company for 

Acros Organics). 
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Using thermogravimetric analysis (TGA), Niu et al (2010) investigated the 

decomposition of CaAc in air and found that a temperature of ~750 °C is required to 

decompose this phase to complete CaO. Figure 2.5 shows the TGA and DTG 

(differential thermogravimetry) results of this study [141].  

 

 

 

 

 

 

 

 

Figure 2.5: TGA and DTG (differential thermogravimetry) curves for the three step thermal 

decomposition of calcium acetate [141]. 

 

The thermal decomposition of CaAc occurs in three stages: 

1) at 500 K – dehydration; 

2) at 650 K – CaCO3 formation; 

3) at 1000 K – CaO formation. 
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2.5.2.1. Multicycle operations 

For industrial carbon capture operations, it is required that CaO sorbents be 

used repeatedly in a continuous looping system of carbonation and decarbonation 

cycles; this allows for the regeneration of CaO by thermal decomposition of CaCO3 

and could offer significant cost reductions in CO2 capture applications [109, 136, 

142-144]. It is however widely accepted that perfect reversibility, with regards to 

recarbonation, is not possible due to structural property changes created during the 

cycling process [125, 136, 142, 145-150]. Figure 2.6 highlights the typical decay in 

overall CO2 capture capability of a typical CaO sorbent precursor (produced by the 

thermal decomposition of CaCO3) with multiple carbonation and decarbonation 

cycles, with the largest decrease in the carbonation of CaO, observed after the initial 

reaction [151]. 

 

Figure 2.6: Temperature program and weight change in a typical TGA CO2 multicycle process [151]. 
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Maximum conversion (CO2 diffusivity) of the CaO sorbent decreases per cycle 

due to densification of the material upon decarbonation and therefore a decrease in 

particle surface area available for the subsequent carbonation reaction [136]. It is 

acknowledged that the maximum carbonation capacity is strictly a function of the 

number of calcination/carbonation cycles [147]. This trend is typically replicated by 

various experiments on cyclic CO2 capture using different CaO and natural 

limestones as sorbents [126, 138, 147, 152, 153]. A simple schematic that highlights 

the behaviour of a limestone-based sorbent during the multicycle process has been 

presented by Lysikov et al [151], and is shown here in Figure 2.7. This diagram 

shows that upon the first decomposition a highly porous and dispersed CaO sorbent 

is produced. Upon the first recarbonation, conversion is observed to be incomplete, 

which is likely due to blocking of pores, and potentially small amounts of sintering 

[151, 154]. Progressive recarbonations show an overall decline in CaO conversion, 

and this has been attributed to some of these pores occluding and not re-opening 

upon decarbonation. Coupled with progressive sintering, the sorbent surface area 

continually decreases with progressive cycles until an eventual interconnected 

‘skeleton’ of CaO has formed [151, 154]. 

 

Figure 2.7: The multicycle CO2 capture process on the textural transformation of the CaO sorbent. 

The CaCO3 phase is shown by dark grey, and CaO is shown by light grey [151, 154]. 
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2.5.3. Particle Spacers  

 There have been numerous attempts to improve the overall CO2 capture 

capacity over multiple cycles by sorbent modification, with promising results 

currently being shown by regenerating the sorbent by hydration to Ca(OH)2 with 

each cycle, before decarbonation back to CaO; this is reported to improve sorbent 

porosity and limit progressive sintering [149, 155-157]. 

Alternative approaches utilise inert particle spacer materials that are intimately 

mixed with the CaO sorbent. These include MgO, Al2O3, ZrO2, MgAl2O3 and 

Ca12Al14O33 (mayenite) [130, 158-160]. Particle spacers aim to reduce CaO 

densification by separating the CaO/CaCO3 particles. The volume fraction of the 

inert spacer powder is likely to scale with improved durability of the CaO sorbent; 

however this will be a compromise with the initial uptake capacity of CO2.  

 

2.5.3.1. Yttria stabilised zirconia (YSZ)  

Zirconia (ZrO2) is a material notable for its ability to change its solid crystal 

phase at given temperatures, a phenomenon which is commonly employed to arrest 

the propagation of cracks (transformation toughening) in many ceramic materials 

[161]. Zirconia exhibits a high melting temperature of ~2700 °C, and upon cooling it 

will undergo a series of phase transitions, from an initial cubic phase to a tetragonal 

phase (at 2400 °C) and then to a monoclinic phase (at 1050 °C) [162]. When 

stabilised with yttria (Y2O3), the ability for the retention of the metastable tetragonal 

phase is possible at ambient conditions, rather than the stable monoclinic phase as 

displayed in the ZrO2-YO1.5 phase diagram in Figure 2.8 [162, 163]. For 

transformation toughening, this phase transformation can be triggered by the onset 

of a crack. The phase change creates a volume increase and internal compressive 
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stresses then generate around the crack subsequently restricting its propagation 

[164]. Inducing such local stresses in a CaO-YSZ skeleton similar to that in Figure 

2.7 could produce microcracks that open up the structure of the skeleton and actually 

improve its subsequent CO2 sorption capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Phase diagram for the ZrO2-Y2O3 system. C, M and T refer to the cubic, monoclinic and 

tetragonal polymorphs of zirconia, and their solid solutions, ss. Y = yttria, Y2O3 [162].  

 

Various methods for the synthesis of ZrO2 and YSZ have been reported, 

including hydrothermal [165-172], sol-gel [173, 174], spray pyrolysis [175] and 

microwave-based preparation [176, 177], with many reporting particle sizes < 10 

nm. Such nanoparticulate materials with a tetragonal-monoclinic phase transition 

between CaO carbonation and decarbonation temperature could be used to provide 

an active spacer for CaO sorbent powders. 
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Chapter 3. Experimental methods 

3.1. Hydroxyapatite 

3.2. Hydrothermal HA synthesis 

For the hydrothermal method [49, 58], 1.00 M stock solutions of calcium 

nitrate tetrahydrate (Ca(NO3)24H2O; Fisher Scientific, reagent grade; 11.807 g) and 

di-ammonium hydrogen phosphate ((NH4)2HPO4, Fisher Scientific, analytical 

reagent grade; 6.603 g) were prepared using distilled water (50 ml), and 

subsequently diluted further to create 0.10 M solutions. A precipitate was formed by 

the drop-wise addition of the di-ammonium hydrogen phosphate solution (30 ml) to 

the calcium nitrate tetrahydrate solution (50 ml), with continuous stirring, until a 

nominal Ca/P ratio of 1.67 is reacted in the mixed solution. The pH of the resulting 

suspension was ~5.1, however the drop-wise addition of ammonium hydroxide 

(NH4OH; Sigma-Aldrich, ACS reagent grade) during the mixing phase, allowed the 

pH to be raised to pH = 11.0 (monitored using a Hanna pH Checker). The addition 

of ammonium hydroxide to the synthesis solution allows for the control of pH, but 

also has an added benefit of preventing the formation of carbonate during synthesis 

[178, 179]. An increase of OH
- 

ions in the solution is also known to speed up the 

transformation rate from amorphous calcium phosphate (ACP) to hydroxyapatite, 

via a secondary octacalcium phosphate (OCP) phase [180-182]. 

Vigorous stirring of the resulting solution was carried out for a further 10 

minutes. The solution was then transferred into a 125 ml Teflon-lined hydrothermal 

reactor (Model 4748, Parr Instruments) which was heated at 200 °C for 24 hours, 
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generating a pressure of between 1 and 2 MPa. Once air-cooled to room 

temperature, the particulate product was collected by centrifugation and washed to 

remove unwanted co-products by re-suspending the powder in distilled water, using 

ultrasonic agitation, for 5 min and then sedimenting the particles by means of 

centrifugation at 6000 rpm for 5 min. This process was repeated at least 6 times, 

until the pH of the solution has neutralised to ~7, which suggests the complete 

removal of ammonia. A final wash was carried out using methanol so as to limit 

particle agglomeration in the final dried powder. Drying was carried out in an oven 

at ~50 °C for ~4 hours [49]. 

 

3.3. Solution gelation (sol-gel) HA synthesis 

Sol-gel synthesis of HA [26, 69], involved the hydrolysis of triethyl phosphite 

(C2H5O)3P; Aldrich 98%; 10 ml) in distilled water (60 ml). The mixture is sealed 

immediately with parafilm in a glass beaker and stirred vigorously. After a few 

minutes, the cloudy solution turns clear to signal the completion of hydrolysis. A 

stoichiometric amount (Ca/P ratio = 1.67) of calcium nitrate tetrahydrate (Fisher 

Scientific, reagent grade; 19.683 g) was dissolved in 50 ml anhydrous ethanol, and 

subsequently added drop-wise into the hydrolyzed phosphite solution, followed by 

10 minutes of more vigorous stirring. The resulting solution was clear and 

subsequently aged at room temperature for 16-24 hours before drying. The ageing 

process is crucial in that it allows for the solution system to stabilise such that a 

monophasic HA can be produced; the formation time can vary depending on the 

chemical nature of the precursors used [26]. Insufficient ageing can result in weight 

loss during pyrolysis, due to loss of unreacted phosphite, and the potential for 

undesired phases, such as CaO, to be observed [26, 81].  
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The aged sol was dried using a hot plate: the solvents were driven off at ~60 

°C until a viscous liquid formed, which was further dried in an oven at 100 °C for 12 

hours. The resulting white gel was ground into a powder with a pestle and mortar. 

Two samples were prepared by calcining the gel at 500 and 700 °C respectively, for 

2 hours [26].  

 

3.3.1. Thermogravimetric analysis (TGA) of sol-gel precursors 

 Thermogravimetric analysis (TGA) is a testing procedure which measures the 

change in mass of a sample as a function of temperature and time, under controllable 

atmospheric conditions [183]. It is utilised to monitor processes such as 

decomposition, evaporation, dehydration and gas adsorption [184]. The technique 

provides quantitative information resulting from any processes that may instigate 

detectable changes in mass at controlled temperature; this allows the stoichiometry 

and kinetics of any heat-induced reactions to be followed directly [185].  

TGA analysis has been carried out to measure the decomposition of both 

triethyl phosphite (C2H5O)3P, Aldrich, 98%) and triethyl phosphate ((C2H5O)3PO, 

Aldrich, 99%) using a Stanton and Redcroft TGH-1000 thermo-balance. Samples 

(18.85 ml of triethyl phosphite and 17.16 ml of triethyl phosphate), were placed into 

a platinum crucible and heated, in air, at a rate of 15 °C per minute up to a maximum 

temperature of 900 °C. The percentage weight loss is recorded and plotted as a 

function of time (in seconds) and temperature (°C). 
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3.3.2. Stability of triethyl phosphite 

The atmospheric stability of triethyl phosphite was compared to that of triethyl 

phosphate ((C2H5O)3PO, Aldrich, 99%). An experiment was conducted measuring 

the relative mass change of both chemicals exposed in air at ambient temperature. 

Samples of triethyl phosphate (9.45 ml) and triethyl phosphite (8.95 ml) were placed 

in an evaporating dish on a balance for 15 minutes; mass measurements were 

recorded every 30 seconds. 

3.4. Hydroxyapatite toxicology 

Cytotoxicity (the degree to which a material is toxic to living cells) assays 

have been carried on two HA samples hydrothermally prepared at pH 9 and pH 11 

(following the method outlined in Section 3.2). Bulk compositional analysis was 

performed by XRD (described in Section 3.12.1), and particle level analysis carried 

out using the TEM-EDX method, which is described in Section 3.13.4.  

Cell viability was measured using the MTT assay [186] and has been carried 

out courtesy of Dr Lars Jeuken by undergraduate students Gregory Dyson, Emma 

Horncastle and Jessica Jones in the Faculty of Biological Sciences, University of 

Leeds.  

Toxicity of hydrothermal HA samples prepared at pH 9 and pH 11 was 

investigated using three human (in-vitro) cell lines: Caco-2 (intestine) and A549 

(lungs), and SH-SY5Y (brain). Testing against the Caco-2 and A549 cell lines might 

proxy effects of HA nanoparticles that are ingested or inhaled. Should HA 

nanoparticles pass into the blood-stream, neurological effects may be observed and 

thus effects on the SH-SY5Y cell line have been examined.  
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Media for cell culture was prepared by the addition of 50 ml foetal bovine 

serum (FBS) and 1 ml penicillin-streptomycin antibiotics into 500 ml of Dulbecco’s 

Modified Eagle’s Medium (DMEM). A 10 ml solution of the media was incubated 

(at 37 °C, 5% CO2) and then seeded into 96 well plates at a density of 10,000 cells 

per 100 μL of medium. This was further left to incubate.  

Dispersions of HA (0.1 wt%) were prepared using distilled water and further 

diluted in DMEM at various concentrations between 0 – 500 μg ml
-1

. These 

suspensions were added to the cultured cells and tested for viability, after 24 and 48 

hours, using the yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide) colorimetric assay. The MTT solution reduces from a yellow 

tetrazole to purple formazan in the mitochondria of living cells (where reductase 

enzymes are active) and so cell viability is measured by the percentage of light 

absorbance at a certain wavelength (typically between 500 and 600 nm) using a 

spectrometer. Results are calibrated against untreated control wells (without HA 

particles), thus determining the effectiveness of the particles in causing cell death 

[187, 188]. 
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3.5. Calcium oxide & CO2 sequestration 

3.6. Thermal decomposition of calcium acetate by 

thermogravimetric analysis (TGA) and evolved-gas analysis by 

Fourier transform infrared spectroscopy (FTIR) 

 The thermal decomposition of commercial calcium acetate hydrate, CaAc 

(Ca(CH3COO)2·xH2O, Acros Organics, 99%, extra pure, value of x unreported by 

supplier) was firstly analysed using thermogravimetric analysis (TGA). Samples for 

TGA analysis are loaded into a 6 mm diameter x 2.5 mm alumina cell crucible 

which is placed onto a high precision balance and lowered into a sealed oven 

chamber. The thermal decomposition and evolved-gas analysis of the as received 

CaAc has been analysed by a Stanton Redcroft TGH-1000 TGA instrument 

connected to a Thermo Scientific Nicolet iS10 FTIR spectrometer running OMNIC 

processing software and fitted with an attenuated total reflection (ATR) accessory. 

 A sample of CaAc was heated from ambient temperature to 800 °C at a rate of 

20 °C min
-1

, in N2, using the Stanton Redcroft TGH-1000 TGA thermo-balance 

(changes in mass and temperature are recorded every 1 second; accuracy = 0.001 

mg). Results of thermal decomposition of CaAc by TGA are shown in Section 5.3, 

Figure 5.6, with results of evolved gas analysis by FTIR shown in Figures 5.7 and 

5.8. 

 Detailed analysis of the CaO product, formed upon TGA decomposition of 

CaAc, has been carried out by XRD and TEM (Figure 5.10 and Figure 5.12). To 

observe the intermediate phase during decomposition, an additional sample has also 

been prepared by the TGA decomposition of CaAc at 500 °C (following the 
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previously outlined TGA conditions), and analysed by XRD and TEM (Figure 5.9 

and Figure 5.11). 

 

3.7. Thermal decomposition of calcium acetate by in-situ hot-stage 

XRD  

The development of crystallographic phases during thermal decomposition of 

CaAc was carried out using XRD, with an in-situ, water-cooled heating stage. A 

CaAc sample was analysed with a temperature controlled heating stage (up to 800 

°C) using a Philips PanAnalytical X’pert Diffractometer with Cu Kα radiation 

source. Each measurement temperature was reached at a rate of 20 °C min
-1

, and 

then held for 1 hour to allow for X-ray diffraction analysis.  

Samples for TEM were prepared by a slow decomposition of CaAc, in a 

furnace, from ambient temperature to 200, 500 or 800 °C (at 20 °C min
-1

); each held 

at the respective temperatures for 1 hour. Samples were then removed from the 

furnace, and cooled in air.  

3.8. CO2 sequestration 

 Carbon dioxide capture was performed by thermogravimetric analysis (TGA) 

using a Shimadzu TGA-50 thermo-balance. A schematic showing the key 

components of the Shimadzu TGA-50 thermo-balance is shown in Figure 3.1. 

Decomposition was performed at 800 °C under a N2 atmosphere, with a CO2 supply 

pressure of 2 bar controlled by a rotameter to a flow rate of 50 ml min
-1

. For 

carbonation, the chamber temperature was then dropped to 650 °C and the gas 

stream supply switched to CO2, at a 50 ml min
-1 

flow-rate. Gases are interchangeable 
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at a preset time or temperature limit, allowing for automatic valve control. The 

atmosphere within the chamber is purged with desired gases, prior to sample 

loading. 

 

Figure 3.1: Schematic of the Shimadzu TGA-50 thermo-balance [189]. 

 

3.8.1. CO2 uptake of CaAc-CaO 

The CO2 uptake of calcium acetate hydrate decomposed to calcium oxide after 

a fast and slow decomposition rate, were measured by TGA. Samples of CaAc were 

decomposed from room temperature to 800 °C (in N2) at a rate of 20 °C min
-1

. To 

mimic fast and slow decomposition, two samples were prepared; the first was 

decomposed to 800 °C followed by immediate chamber cooling to 650 °C for 

subsequent carbonation, the second was decomposed to 800 °C and held at that 

temperature for 1 hour before the chamber was cooled to 650 °C for carbonation. 

Carbonation conditions were held at 650 °C for 15 minutes. Upon completion, the 

gas stream was switched to N2 and the chamber was cooled to room temperature. 

Results are shown in Figures 5.15 and 5.16. 
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3.8.1.1. CO2 cycles 

Repeat cycles of carbonation and decarbonation were performed by TGA, with 

a looping program prepared using the TA60 acquisition software. A sample of CaAc 

was firstly fully decomposed (in N2, 50 ml min
-1

) from room temperature to 800 °C, 

at a rate of 20 °C min
-1

. Chamber temperature was immediately decreased to 650 °C 

upon which the gas stream was switched to CO2 (50 ml min
-1

). These carbonation 

conditions were held for 5 minutes. After this time the gas stream is switched back 

to N2 and decarbonation takes place from 650 °C to 800 °C. This loop is repeated 10 

times.  

To analyse carbonated and decarbonated samples at given intervals during the 

cycle process, the looping experiment was repeated several times but terminated 

after specific periods of either carbonation or decarbonation. Samples collected have 

been labelled A-H, where: 

A = Initial decomposition of CaAc to 800 °C; 

B = after 1
st
 carbonation cycle at 650 °C; 

C = after 2
nd

 decarbonation at 800 °C; 

D = after 2
nd

 carbonation cycle at 650 °C; 

E = after 3
rd

 decarbonation at 800 °C; 

F = after 3
rd

 carbonation cycle at 650 °C; 

G = after 9
th

 decarbonation at 800 °C; 

H = after 10
th

 carbonation cycle at 650 °C 

Samples were cooled under N2 conditions to room temperature upon 

conclusion of each experiment. Each sample was then analysed by XRD (Figure 

5.25) and SEM and TEM (Figures 5.27 - 5.29). 
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3.8.1.2. Using TEM for the analysis of CO2 cycles 

Analysing the CaO sorbent at various stages during the looping process proved 

to be problematic due to the reactive nature of CaO in air at ambient conditions, 

forming Ca(OH)2 and CaCO3. Exposure to air during standard XRD, TEM and SEM 

sample preparation is unavoidable. Therefore, to examine the microstructural 

changes of the CaO sorbent during the looping process, without risk of hydration, 

novel TEM based techniques have been explored. 

Firstly, a water cooled Gatan Single Tilt Heating Holder with SmartSet 

Hotstage Controller has been utilised with a Philips CM200 FEGTEM with Gatan 

Imaging Filter (GIF 200). The first carbonated sample (Sample B) has been prepared 

following the TGA cycle method and then decomposed, in-situ in the TEM, at 10 °C 

intervals (at ~20 °C min
-1

) and held to allow for imaging. Images at selected 

temperatures taken by hot-stage TEM analysis are shown in Figure 5.30. 

An additional novel technique has been employed that utilises an ex-situ bench 

mounted Gatan Environmental cell (E-cell) heating holder with a FEI Tecnai 

TF20 field emission gun (FEG-) TEM. The E-cell is a sealed unit that allows for a 

TEM sample to be loaded into a gas or vacuum environment, with controllable 

temperature, before being transferred into the TEM without exposure to air, thus 

eliminating potential hydration of, in this case, the nanoparticulate CaO. The 

technique allows for the carbonation and decarbonation of a single sample to be 

carried out, with the ability to analyse the effects of the process on a single area of 

particles by TEM. 

A CaO sorbent has been prepared by decomposition of CaAc at 500 °C in a 

furnace, to produce calcium carbonate (CaCO3). This was ultrasonically dispersed in 

methanol and drop cast onto an electron transparent silicon nitride membrane (Agar 
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Scientific). The grid was then secured on the detachable TEM sample holder of the 

E-cell. Decomposition of the sample to CaO was carried out within the E-cell by 

directly heating, at ~20 °C min
-1

, from room temperature to 800 °C, followed by 

immediate cooling back to room temperature, all under continuous rotary vacuum, 

using an Edwards RV8 vacuum pump (lowest achievable vacuum pressure = ~10
-3

 

Pa). The sample was then vacuum sealed within the detachable TEM sample holder 

and transferred to the TEM for analysis.  

For carbonation, the E-cell chamber temperature was firstly raised to 650 °C 

under vacuum, with CO2 then applied to fill the furnace chamber (controlled by a 

manual valve); carbonation of the sorbent then took place at 650 °C for 5 minutes 

before the gas supply was closed off and the vacuum pump reapplied during cooling 

to room temperature. Replicating the carbonation conditions from TGA (CO2 

pressure of 2 bar with rotameter controlled flow rate of 50 ml min
-1

) was 

unachievable here as the pressure could not be supported by the holding seal of the 

chamber, and therefore the chamber was filled to a lower, 0.5 bar pressure of CO2 

during carbonation. Figure 3.2 displays a schematic of the decarbonation and 

carbonation process as carried out using the E-cell, where Figure 3.2a displays the 

sample (2) being loaded into the furnace chamber (3) which, along with the guide 

tube (5) and vacuum chamber (7), is kept under continuous vacuum by the pump 

connected at 1. Sample release and decarbonation conditions are shown in Figure 

3.2b where the sample is released by the retractable specimen holder (8) and then 

contained in the furnace chamber and heated under vacuum from room temperature 

to 800 °C prior to cooling. The connection tap for the interchangeable vacuum pump 

and CO2 input supply is shown at 1. Temperature is controlled by an external heater 

and thermocouple connected to the furnace chamber, and chamber cooling is 
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maintained by a continuous water flow which is connected from a cold-tap to pipes 

shown at 4. 

Sample carbonation is shown by Figure 3.2c where the sealed furnace chamber 

is firstly heated (under vacuum) to 650 °C and then filled with CO2 (0.5 bar 

pressure); these conditions are maintained for 5 minutes prior to removal of the CO2 

supply, and the furnace chamber is then re-pumped to vacuum. Collection of the 

sample by the retractable specimen holder is shown by Figure 3.2d. The removal of 

the sample from the furnace chamber is shown by Figure 3.2e, where the sample is 

firstly withdrawn into the vacuum chamber (7) and sealed using the cell valve (6); 

the guide tube and vacuum chamber can then be detached from the furnace chamber, 

and can then be attached directly to the TEM goniometer, and the sample passed 

into the microscope whilst under rotary vacuum (at worst).   
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1 = Tap for connection of vacuum pump & CO2 supply. 2 = Sample. 3 = Furnace chamber. 4 = 

Cooling water. 5 = Guide tube. 6 = Cell valve. 7 = Vacuum chamber. 8 = retractable specimen 

holder.  

Figure 3.2: Schematic of the E-cell operation. Where (a) displays sample loading, (b) sample release 

for decarbonation and (c) carbonation, (d) sample collection and (e) sample removal and sealing prior 

to transfer to TEM. 

 

 



47  

 

3.9. Particle spacers 

3.9.1. Yttria stabilised zirconia  

Commercial zirconia, stabilised with 5.4 wt% yttria (YSZ), was purchased 

from Goodfellow, Cambridge. The phase content of the commercial YSZ was 

analysed by XRD, with particle morphology and size analysis by SEM and TEM. 

3.9.2. CaO-YSZ preparation 

A large sample (~20 g) of commercial 5.4%-YSZ powder (Goodfellow) was 

firstly vibro-milled, for 30 min in isopropyl alcohol using a McCrone Micronising 

Mill, to reduce agglomeration.  

A small amount of the vibro-milled YSZ was then mixed with CaAc allowing 

for 70/30 wt% of CaO:YSZ in the final product when decomposed at 800 °C. 

Mixing was carried out using a small amount of ethanol, with the mixture ground 

with a pestle and mortar for 30 min. The powder (> 1 g) was then oven dried for 1 

hour at 50 °C. A sample of the CaAc-YSZ blend was subjected to furnace 

decomposition at 800 °C for 10 minutes and analysed by XRD. 

3.9.3. CaO-Zirconia preparation 

Two samples of Zr-doped CaO (70/30 wt%), were prepared by solution 

precipitation of CaAc with zirconyl (IV) nitrate (Zr(NO3)2, 99.5% Fisher Scientific), 

and also calcium hydroxide (Ca(OH)2, Alfa Aesar, ACS 95%) with Zr(NO3)2: 

 For the CaAc/(Zr(NO3)2 solution; CaAc (4.95 g) was firstly dissolved in 100 ml 

of ethanol. A stock ammonium hydroxide (NH4OH; Sigma-Aldrich, ACS 

reagent grade) solution was prepared (pH 10) in distilled water, and 100 ml was 

added to the CaAc solution drop wise via a burette, under continuous stirring. 
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A second solution was prepared by dissolving Zr(NO3)2 (2.64 g) in 100 ml 

ethanol, with 100 ml of pH 10 ammonium hydroxide solution subsequently 

added drop wise via a burette with continuous stirring. 

Finally, 50 ml of the Zr(NO3)2/ NH4OH sol was added drop wise into 100 ml of 

the CaAc/NH4OH sol, producing a cloudy solution with final pH = 6.9. Stirring 

continued for 1 hour after titration before a small amount of solution was placed 

into an evaporating dish and dried overnight in an 80 °C oven. A fine white 

powder was then collected and ground. 

 The Ca(OH)2/(Zr(NO3)2 solution was prepared under the same conditions as the 

CaAc/(Zr(NO3)2 powder; using Ca(OH)2 (2.31 g) diluted in 100 ml ethanol with 

further drop wise addition of 100 ml of pH 10 ammonium hydroxide. Drop wise 

addition of 50 ml of the Zr(NO3)2/NH4OH produced a milky solution with final 

pH = 11.9. A sample was collected and dried overnight at 80 °C, forming a fine 

white powder. 

Samples of each powder were decomposed at 800 °C for 10 minutes and analysed 

for phase content by XRD. 
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3.9.4. Hydrothermal synthesis of YSZ with zirconia (IV) nitrate hydrate 

and yttrium (III) nitrate hexahydrate 

Yttria-stabilised zirconia (YSZ) has been synthesised according to the route 

outlined by Guiot et al [169]†. Zirconia (IV) nitrate hydrate (ZrO(NO3)2·xH2O, 

99.5% Acros organics) and yttrium (III) nitrate hexahydrate (Y(NO3)3·6H2O, 99.9% 

Acros organics) is dissolved in 50ml of distilled water with the concentrations: 

[Zr
(IV)

] = 0.1 M and [Y
3+

] = 0.05 M. Acetylacetone, Acac (Aldrich, 99%+) is added 

with the molar ratio Zr:Acac = 1:1. Guiot’s original study suggests a solution pH of 

7 proved optimal for a stable solution and prevents the rapid precipitation of the 

solid and so, in this preparation, ammonium hydroxide (Sigma-Aldrich, ACS 

reagent grade) was added drop wise to achieve this from an initially acidic solution. 

The solution was magnetically stirred for a further 5 minutes and then transferred to 

a 125 lm Teflon liner and hydrothermal reactor (model 4748, Parr Instruments) 

where it was heated to 160 °C for 72 hours. Figure 3.3 displays a basic schematic of 

the process [169].  

  

 

                                                 

† Guiot explains that the hydrothermal conditions allow for the formation of YSZ 

nanoparticles within a gel, which contracts upon expulsion from the liquid in a 

process known as syneresis. Cooling to room temperature creates a cylindrical 

macroscopic aggregate of YSZ within a clear supernatant. 
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Figure 3.3: Guiot et al’s hydrothermal synthesis of YSZ [169]. 

 

 

The powder-aggregate was collected and washed by re-suspension in distilled 

water, under ultrasonic agitation, for 5 min and then the particles were sedimented 

by means of centrifugation at 6000 rpm for 5 min. This process was repeated 6 times 

with a final wash carried out using methanol so as to limit agglomeration in the final 

dried powder. The solution was then dried in an oven at ~50 °C and the resultant 

white cake ground to a powder using a pestle and mortar. This synthesis method 

produces 9 mol% Y2O3-ZrO2 powder, equivalent to 15.6 wt% yttria in zirconia 

[169]. Guiot reports the formation of cubic YSZ following this synthesis route [169]. 

Analysis of the hydrothermal (h-) YSZ powder was carried out by XRD and TEM.  

A sample of CaAc containing hydrothermally synthesized YSZ (hYSZ) was 

prepared by dry mixing in ethanol using a pestle and mortar, allowing for 70/30 wt% 

of CaO:hYSZ in the final product when decomposed at 800 °C. Phase analysis of 

the CaO:hYSZ was carried out by XRD. 
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3.9.5. CaO-Mayenite preparation 

A 75:25 wt% blend of CaO:Ca12Al14O33 has been provided courtesy of 

postgraduate student Dr Roger Molinder of the Energy Research Institute, 

University of Leeds. Synthesis closely follows a sol-gel route outlined in [190]. 

Preparation involves the dilution of 26.2 g CaO and 28.4 g Al(NO3)3 into 760 ml of 

pre-heated distilled water (75 °C) and 130 ml of 2-propanol. The resulting solution 

is kept at 75 °C and stirred for 1 hour, before being placed into a 120 °C oven 

overnight to evaporate water from the sol. The resulting cake is ground into a 

powder with a pestle and mortar before being placed into a furnace. The powder is 

heated from ambient temperature to 500 °C (at 20 °C min
-1

) and held for 3 hours. 

The sample is again ground, and subject to further heat treatment from ambient 

temperature to 120 °C for 2 hours. A final cycle involves grinding followed by heat 

treatment in a pre-heated furnace at 900 °C, for 1.5 hours. Upon cooling, the sample 

is collected and parafilm sealed in a glass container [190]. Phase analysis of the as 

received CaO:Mayenite powder blend has been carried out by XRD. 

3.10. CO2 sequestration of particle spacer materials 

It is well recognised that CaO experiences a loss of CO2 capture capacity 

within increasing cycles in the carbonation-decarbonation looping system [126, 147, 

191]. This is attributed to particle densification and sintering producing smaller CaO 

particle surface area for pickup [136].  

The CaO-zirconia materials synthesised in-house have been tested under the 

carbonation-decarbonation cycle conditions outlined in Section 3.8.1.1, using TGA. 

The following were tested: 

 CaO-YSZ (from CaAc precursor and Goodfellow 5.4%YSZ) 
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 CaO-CaZrO3 (from CaAc precursor) 

 CaO-CaZrO3 (from Ca(OH)2 precursor) 

 CaO-hYSZ (from CaAc precursor and hydrothermal YSZ) 

 CaO-Mayenite (75/25 wt%)  

Each mixture was synthesised to allow for 70/30 wt% CaO/spacer in the final 

decomposed product, unless otherwise stated. Results of the multicycle capture by 

TGA, with molar conversion data for each sample, are shown in Figure 5.43 and 

Table 5.8. 

 The CaO:YSZ powder blend was subsequently selected for analysis using the 

E-cell TEM technique previously described in Section 3.8.1.2. This blend was 

selected as results from multicycle capture (Figure 5.43) show the most promising 

effects with regards to reducing the decay in sorbent CO2 capture. Results of this E-

cell experiment are shown in Figures 5.44 - 5.46. 

3.11. Material characterisation techniques 

Bulk compositional and phase analysis has been performed by: (a) powder X-

ray diffraction (XRD), (b) X-ray fluorescence (XRF), (c) Fourier-transform infrared 

(FTIR) spectroscopy and (d) laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS).  

Scanning electron microscopy (SEM) has been used for the observation of 

larger particle agglomerates and aggregates. Individual particle size distribution and 

compositional analysis was carried out by transmission electron microscopy with 

energy-dispersive X-ray spectroscopy (TEM-EDX).  
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The size distribution profile, for HA samples dispersed in Dulbecco's Modified 

Eagle Medium (DMEM) and analysed for cytotoxicity, has been carried out by 

dynamic light scattering (DLS).  

3.12. Bulk analysis techniques 

3.12.1.  X-ray diffraction 

X-ray diffraction (XRD) is an effective, non-destructive tool that allows for the 

determination of atomic arrangement within a material, giving the crystalline phases 

from the atomic spacing’s and symmetry. Developed on the basis of Bragg’s law, 

the presence of lattice planes in a crystalline material are sought by the diffraction of 

X-rays, of a known wavelength e.g. Cu-Kα (wavelength. λ = 1.5416 Å), at specific 

angles between the X-ray source and detector, Figure 3.4. Each lattice plane of 

atoms in a material will cause constructive interference of diffracted X-rays at a 

certain angle of incidence, θ, known as the Bragg angle. The lattice spacing, d, can 

be identified by rearrangement of Bragg’s Law:  

           (3.1) 

Where n denotes an integer. 
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Figure 3.4: Schematic of X-ray diffraction from a set of crystal planes [86]. 

 

The determination of a material’s crystal structure using XRD is accomplished 

using the scattering angles, and relative intensities of the diffracted X-rays. The 

measured scattering angles are used to obtain the crystal system of the material (i.e. 

size and shape of the unit cell) and the relative intensities of the diffracted beams are 

then used to determine the atomic positions within the unit cell [86, 192]. 

For powder XRD, identification of phases present, in the XRD pattern, is 

carried out by comparison to known reference patterns using powder diffraction files 

(PDF), held by the International Centre for Diffraction Data (ICDD), formerly 

JCPDS (Joint Committee for Powder Diffraction Standards). With PDF’s, peak 

positions (2θ) and intensities can be comprehensively matched to identify single or 

multiple phases; and with careful (calibrated) measurement the precise d-spacing’s 

of lattice planes (hkl) and unit cell parameters (abc) can be obtained. For a sample 

that contains sub-micrometer crystalline particles, the mean crystallite size, τ (of a 

specific crystal plane, hkl), can be obtained from the broadening of the diffraction 

peaks using the Scherrer equation:  

d

Diffracted x-raysIncident x-rays

θ

θ θ

2θ
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  (3.2) 

Where K represents the shape factor (this is dimensionless and has a typical 

value of 0.9 or 1 for equiaxed crystals, but varies with crystallite shape), λ is the X-

ray wavelength, β denotes the full width of the diffraction peak at half the maximum 

intensity (FWHM) in radians, and θ is the Bragg angle for the reflection [86, 193].  

 Characterisation by XRD has been carried out here using a 

Philips/PANalytical X’pert Diffractometer with Cu Kα radiation (λ = 1.5418 Å). 

Phase identification and crystallographic information were obtained using the 

PANalytical HighScore software. Sample analysis was carried out across the 2θ 

range of 10 – 80° for most samples; a starting angle of 5° 2θ was utilised for the 

analysis of calcium acetate hydrate where there are several high intensity peaks at 

low angles. High resolution scans were obtained using a step size of 0.017°, and 

scan speed of 0.018° s
-1

, providing a total acquisition time of ~1 hour.  

 

3.12.2.   X-ray fluorescence 

X-ray fluorescence (XRF) is a bulk elemental analysis technique first 

demonstrated by Glocker and Schreiber in 1928 [194]. Elemental composition is 

determined by the fluorescent emission of X-rays from the sample caused by the 

stimulation with an incident primary X-ray beam. When a primary X-ray is emitted 

from a tube or radioactive source and strikes a sample it can either be absorbed by 

the atoms in the material or scattered through. The ‘photoelectric effect’ describes 

the process whereby an X-ray is fully absorbed by a material and its energy is 

transferred entirely to an inner-shell electron. The energy of the incident X-ray 

instigates the ejection of the electron from the inner shell, generating a vacancy, in 

turn creating instability within the atom, see Figure 3.5. The atom regains stability as 
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electrons from the outer-shells transfer to lower energy states to fill the vacancies. 

With each transferring electron, X-rays of energies, E, characteristic of individual 

elements are emitted and can be detected so as to provide compositional data of the 

material [192, 195].  

X-ray fluorescence analysis here has been carried out by a commercial 

laboratory at the University of Leicester, using a PANalytical Axios-Advanced XRF 

spectrometer with a 4kW Rhodium (Rh) anode end window, super sharp ceramic 

technology X-ray tube. Sample preparation involves dissolving the powder in a 

lithium tetraborate flux at high temperatures (> 1000 °C) which is cast then in a 

platinum/gold crucible to form a 32 mm homogenous fused bead. Fusion at this 

temperature causes the HA samples to breakdown and dissolve into the flux with the 

elements present in the sample subsequently becoming captured‡. Beads are loaded 

from a 96 position sample changer. Quantitative elemental analysis was carried out 

using PANalytical SuperQ system with IQ+, WROXI and ProTrace extensions. 

Calibrations are obtained by using values published on the GeoREM database which 

utilises the Philips based Fundamental parameters correction technique. This 

approach has replaced calibration using 70-75 International standard reference 

materials measured under the same experimental conditions and regressing the 

measured count ratios against recommended concentrations [196-199]. 

 

 

                                                 

‡ From discussion with XRF specialist Mr Steve Davies of PANalytical Ltd.  
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Figure 3.5: Schematic of the XRF process. Incident X-ray knocks out an inner shell electron from A 

to B. This vacancy is then filled by a higher shell electron, C, which releases excess energy, E, in the 

form of an X-ray photon, D. The energy of the emitted X-ray is characteristic of the host element. 

Modified from [200]. 

 

 

3.12.3.  Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a chemical analysis 

technique utilised for the identification of chemical compounds and substituent 

groups through the absorption of infrared light [201]. As a sample is exposed to 

different wavelengths of infrared light, transitions between vibrational energy levels 

(modes) of different chemical bonds are detected, allowing for the functional groups 

within molecules in the sample to be identified (e.g. carbonates, C-O).  

For FTIR, infrared wavelength, λ, is commonly presented as wavenumber   ; 

this is expressed as the inverse of wavelength, in cm
-1

. 

     
 

 
 (3.3) 
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 The mid IR wavenumber range (most commonly utilised in standard FTIR 

analysis) is 4000 - 400 cm
-1

, where an increase in wavenumber is related to a greater 

energy, E: 

        (3.4) 

Where h = Planck’s constant (6.6 x 10
-34

 J s
-1

), and c = the speed of light (3 x 

10
10 

cm s
-1

. 

Fourier transform infrared spectroscopy has been carried out using a Thermo 

Scientific Nicolet iS10 FTIR spectrometer running OMNIC processing software and 

fitted with an attenuated total reflection (ATR) accessory. The ATR accessory 

utilises a diamond crystal to internally reflect the IR beam, allowing for transmission 

up to typically 0.5 - 5 μm into the sample. Energy is absorbed by the sample, 

attenuating the IR beam which then passes to a detector, generating an IR spectrum. 

Samples do not require pre-preparation; solid powders are placed in direct contact 

with the diamond crystal. A weight is placed over the sample, applying a pressure 

that encourages maximum contact with the crystal surface. 

Characterisation of spectra is carried out by correlation against previous 

recorded reference data (using digital spectra databases or against reputable 

research), with peaks assigned to the vibration of specific functional groups. 

 

3.12.4.  Laser ablation inductively coupled plasma mass 

spectrometry 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

has become an important analytical technique, most commonly applied for trace 

elemental analysis in geological samples [202]. The technique works by 
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decomposing (ionising) the sample into neutral elements using a high temperature 

argon plasma, these are then analysed, according to their mass to charge ratio using 

mass spectrometry [203].  

Samples are firstly converted to aerosols by way of laser ablation. The aerosol 

is then passed into a torch body and mixed with heated argon gas (typical 

temperature = 10,000 °C), producing an argon plasma flame. This causes 

atomisation and ionisation of the sample. Ions are transferred into a pumped vacuum 

system through a quadrapole mass filter and to a mass spectrometer, with a typical 

detection limit of 0.1 μg
-1

. A quadrapole mass filter uses variable voltages over four 

metal rods to allow for only specific ions (with specific mass/charge ratio) to pass 

through to the detector.  

 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

has been carried out at the School of Earth and Environment, University of Leeds. 

Samples were prepared as 10 mm pressed pellets and were analysed using a Geolas 

Q Plus laser ablation system, with a 193 nm excimer laser, coupled to an Agilent 

7500c ICP-MS. 

3.13. Particle analysis techniques 

 Analysis of powder samples at the nanoscale level has been carried out using 

both Scanning and Transmission electron microscopy techniques, SEM and TEM. 

Hydroxyapatite nanoparticles for toxicology assays have also been analysed for their 

size distribution in solution using dynamic light scattering (DLS). 
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3.13.1.  Scanning electron microscopy 

Scanning electron microscopy (SEM) utilises the scanning of the surface of a 

sample by a focussed electron beam (typical energy = 3 - 30 kV), providing detailed 

morphological and micro-structural information via secondary (SE) and back-

scattered electrons (BSE) at a resolution down to ~10 nm. Secondary electrons are 

low energy (< 50 eV) electrons that are ejected from inner shell orbital’s of the 

atoms within the sample, and because they are readily reabsorbed they are utilised to 

provide topographical and micro-structural information of the sample surface. A 

basic schematic showing the key components of an SEM is shown in Figure 3.6. 

Back-scattered electrons are high energy electrons that originate from the 

incident beam and are reflected from the sample through elastic scattering. The 

degree of electron backscatter is probabilistic in nature and is related to the 

composition and topography of the specimen. Atoms of a higher atomic number 

typically provide a larger degree of electron backscatter than lighter elements, and 

so the contrast in backscattered electron images, particularly for flat polished 

specimens can give an indication of the relative composition of a material.  

To enable imaging, the sample surface must be of sufficient size and of a 

conductive nature to avoid accumulation of surface charge. Sample preparation here 

involves small amounts of powder dropped onto an aluminium support stub with an 

adhesive carbon leit-tab (Agar Scientific Ltd) fixed on top. Excess powder is 

removed with an air-jet and the sample is subsequently coated using an Agar High 

Resolution Pt/Pd Sputter Coater (thickness = 5 nm) to provide a conductive surface. 

Sample imaging was carried out, in high vacuum, using a LEO 1530 Gemini 

FEGSEM operated at 5 kV, at a 5 mm working distance and using an in-lens 



61  

 

detector. Sample analysis and image acquisition was performed using Zeiss 

SmartSEM™ software.  

 

Figure 3.6: Schematic of typical SEM. Modified from [204]. 
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3.13.2.  Transmission electron microscopy 

Transmission electron microscopy (TEM) analysis can provide information on 

powder morphology and internal microstructure utilising a variety of imaging and 

spectroscopic methods. High-resolution (HR) imaging, selected area electron 

diffraction (SAED) and spectroscopic techniques (e.g. energy dispersive X-ray 

(EDX) analysis) allow for a comprehensive analysis of a sample at the nanoparticle 

level.  

A standard TEM instrument produces an electron beam using a tungsten 

filament (electron gun), which is typically accelerated at 50 - 200 kV. The 

wavelength of the electrons, λ is related to the accelerating voltage, V  by 

 (3.5) 

Where m and e represent the mass and charge of an electron, and h is Planck’s 

constant [162]. 

The generated electron beam passes through a series of electromagnetic lenses, 

with firstly condenser lenses which focus a parallel beam onto the specimen. 

Objective and projector lenses subsequently produce a magnified image of the 

specimen onto a fluorescent viewing screen. TEMs can offer a resolution down to 

~0.1 nm. Figure 3.7 displays a schematic of the key components of a TEM [93, 

205]. 

Sample preparation for TEM requires the specimen to be thin enough to 

transmit a high energy electron beam (ideally < 100 nm thick), to provide imaging 

through mass thickness contrast, diffraction contrast (if crystalline) or phase contrast 

at high-resolution, providing the sample is thin enough. The sample preparation for 

nano-powders involves ultrasonically dispersing the powder in a suitable dispersant 

 =  (2𝑚𝑒𝑉)−
1

2    
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(e.g. methanol) and drop casting onto a holey carbon support film (Agar Scientific 

Ltd). 

Powder sample imaging was acquired using; (a) a FEI Tecnai TF20 field 

emission gun (FEG-) TEM operated at 200 kV and fitted with a Gatan Orius 

SC600A CCD camera and fitted with an Oxford Instruments ultra thin window EDX 

spectrometer running INCA processing software, and (b) a Philips 

CM200 FEGTEM operated at 197 kV and fitted with a Gatan Imaging Filter (GIF 

200) and an Oxford Instruments ultra thin window EDX spectrometer running ISIS 

processing software. Particle sizes, of 50 particles per sample, were measured using 

Gatan’s Digital Micrograph software. 

  



64  

 

 

Figure 3.7: Schematic of typical TEM. Modified from [205]. 
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3.13.3.  Energy dispersive X-ray spectroscopy 

Energy dispersive X-ray (EDX) spectroscopy is a method first developed in 

the 1960’s, initially for nuclear applications [206]. The first EDX detectors were 

successfully applied to SEM’s in about 1970, and were commonly adapted for both 

SEM and TEM by 1980 [206]. The technique utilises electrons focussed on a sample 

to trigger the release of X-ray photons (similarly to XRF, Section 3.12.2) that have 

energies characteristic of the elements of the specimen; allowing for the quantitative 

analysis of composition of the material to be obtained [93, 207]. 

 The technique can also be utilised to track changes in composition of a 

material during exposure to a focussed high energy electron beam. Williams and 

Carter [93] discuss the EDX system as three key components:  

 The detector receives the X-ray photon signal and generates a charge 

pulse proportional to the energy of the X-ray;  

 Processing electronics convert the charge pulse into a voltage, which 

is isolated from other pulses, amplified and recorded as a digital signal 

specific to an X-ray of specific energy; 

 The computer stores the signals assigned to that energy, presenting it 

in an element-compositional spectrum of energy (eV) against intensity 

(%) using analysis software. The computer ultimately controls the 

detector, processing electronics and the display [93]. 

Figure 3.8 displays a basic schematic of this process. 
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Figure 3.8: Schematic of the principles of EDX [93]. 

 

Due to detector materials absorbing low energy X-rays, most EDX systems 

have limited detectability of elements with a low atomic number (Z) [93, 208]. 
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energies (typically 140 eV). Detectors can be capped with either a beryllium 

window, an ultra-thin window (UTW) or be left windowless. Beryllium windows 
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detection of elements where Z < 11 [93]. Ultra-thin windows are more 

commonplace and provide low-energy X-ray absorption, with some UTW’s 
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Kα X-rays [93]. 
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focused probe, (typically 500 nm diameter); the Ca/P ratio, as determined from the 

Oxford ISIS processing software using virtual standards for the Ca and P Kα X-ray 

peaks, was monitored, at a take-off angle of 20° and a specimen tilt angle of 15°.  

3.13.4.  Electron fluence analysis 

Previous experiments demonstrating the beam sensitivity of hydroxyapatite 

have been carried out by Eddisford et al [94] and were based on the assumption that 

electron beam damage of inorganic materials is a function of cumulative fluence 

(total number of electrons per unit area) and fluence rate (number of electrons per 

unit area per second) at a given beam energy [95]. This information, regarding the 

effects of electron beam energy, has been identified by tracking the changes in the 

Ca/P ratio over time by exposing single particles to a fine focussed electron beam 

and measuring the Ca/P ratio with EDX [94]. 

Following these TEM conditions, the beam current at a fixed illumination 

(spot size 8 and largest, 200 μm, condenser aperture) was estimated by using an FEI 

calibration curve based on the measured brightness (i.e. exposure time) on the 

(large) fluorescent viewing screen of the TEM: current (in nA) = 4.875/(Exposure 

time for an emulsion setting of 2.0). Beam currents were then converted to electron 

fluence rates and fluence by measuring the area of illumination and the total 

exposure time respectively.  

 The TEM-EDX method allows compositional analysis to be carried out on 

small clusters of particles, providing valuable information on fine-scale 

compositional homogeneity within a sample. However it is important to ensure that 

the sample is not subjected to an electron beam so intense that damage occurs and 

erroneous levels of Ca and P are detected. Therefore, a series of prior experiments 

were undertaken to establish the optimal electron fluence for obtaining reliable data. 
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The electron fluence can be controlled in the microscope using a condenser aperture, 

spot size and exposure time. These experiments will be described in Section 4.3.4 of 

the Chapter 4. 

3.13.5.  Dynamic light scattering 

For the measurement of nanoparticle size and size distribution within an 

aqueous environment, dynamic light scattering (DLS) can be utilised [209]. This 

technique provides a quantitative assessment of particle size distribution and can 

complement the primary particle size measurements from TEM; however it is 

limited by the inability to differentiate between particle shape and is reliant on a 

high quality dispersion of particles. This quality is also dependent upon the 

polydispersity, which is the relative number of primary (single) particles in 

comparison to agglomerates (bound clusters of particles held together by weak inter-

particle forces) or aggregates (chemically bound clusters of particles) [210]. 

Accuracy of particle size measurement is also reliant on knowing the refractive 

index of the nanoparticles as well as the refractive index and viscosity of the 

suspending solution [209, 211, 212]. The refractive index for HA is reported in the 

range η = 1.63 – 1.64 [213], and for DMEM η = 1.33 (water = 1.33). 

 Dynamic light scattering uses a coherent light source (typically a red laser) 

focused through a particle suspension where particles scatter light in all directions as 

they undergo Brownian motion (random movement of particles within a 

suspension). Scattering causes light intensity fluctuations which is collected by a 

detector positioned at a specific angle to the incident ray (typically 90 °). These 

signals are converted into electrical pulses and correlated to particle diameter by 

monitoring the time-dependent variation in the scattering intensity. A schematic of 

the process is shown in Figure 3.9 [214].  
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Figure 3.9: Schematic of the DLS process [214]. 

 

To replicate the conditions utilised in the toxicity assays, stock suspensions of 

0.1% w/v pH 9 and pH 11 hydrothermal HA were prepared in distilled water. These 

were further prepared as 10 and 50% v/v suspensions in Dulbecco's modified Eagle's 

medium (DMEM) and measured using a Malvern Zetasizer Nano DLS instrument, 

operating with red laser light source (wavelength = ~633 nm). Data manipulation 

was carried out using Zetasizer software (version 5.02). Sample measurements were 

repeated 5 times, with the overall average mean size distribution and ‘z-average 

diameter’ (cumulant average particle diameter) results presented.  
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Chapter 4. Results & discussion - Hydroxyapatite 

Preface 

Hydroxyapatite is a material commonly used in various biomedical 

applications due to its excellent properties such as biocompatibility, bioactivity and 

osteoconductivity, closely matching that of natural bone. The specific application of 

HA, at the nanoscale, is strongly dependent on the properties of the nanoparticles 

such as crystallinity, morphology and stoichiometry, all of which are controlled by 

the method of synthesis [90, 215].  

Work in this Chapter aims to firstly prepare nanoparticulate hydroxyapatite 

powders following two established methods of synthesis, hydrothermal and sol-gel. 

The nanoparticle morphology and chemical composition of these powders will be 

carefully analysed using a variety of bulk (FTIR, LA-ICP-MS, XRD and XRF) and 

particle level (SEM and TEM) characterisation techniques, and compared to a 

commercially available HA powder purchased from Sigma-Aldrich. A novel, low-

fluence analytical technique will be developed in the TEM that allows for the safe 

characterisation of the chemical composition of HA nanoparticles without risk of 

irradiation damage by electron beam. 

Two phase-pure and near stoichiometric composition (Ca/P = 1.67) HA 

powders are to be subsequently prepared by the hydrothermal method, and analysed 

for nano-cytotoxicity. 

  



71  

 

4.1. Preliminary analysis of phosphorus-based precursors for sol-

gel HA synthesis 

Preliminary experiments have been carried out to examine the stability of 

triethyl phosphite on exposure to air, in comparison to the more stable triethyl 

phosphate. Figure 4.1 displays the chemical formulae and molecular structures of (a) 

triethyl phosphite and (b) triethyl phosphate: 

 

Triethyl phosphite: C6H15PO3 

Boiling temperature = 156 °C 

 

Triethyl phosphate: C6H15PO4  

Boiling temperaturre = 215 °C 

 

 

Figure 4.1: Chemical formula and molecular structure for (a) triethyl phosphite and (b) triethyl 

phosphate. 

 

It is reported that triethyl phosphate has a relatively low reactivity for 

hydrolysis towards the formation of HA, and so long aging times and high solution 

temperatures are required; therefore, due to a higher reactivity for hydrolysis, and 

despite its less stable nature, triethyl phosphite is often preferred as a precursor for 

HA synthesis [26, 62, 216]. Figure 4.2 displays the change of mass of triethyl 

phosphite and triethyl phosphate with increasing temperature by decomposition in 

air, using a TGA (temperature gradient = 20 °C min
-1

). It is observed that the triethyl 

phosphite has fully evaporated by ~125 °C, and the triethyl phosphate by ~170 °C. 
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Most notably, the onset of mass loss of triethyl phosphite is seen to begin almost 

immediately, suggesting instability at ambient conditions. However, the onset of 

evaporation of the triethyl phosphate does not occur until ~50 °C. The mass loss of 

these two precursors, at ambient conditions, is further analysed in Figure 4.3. Figure 

4.3 displays the relative change of mass of triethyl phosphate and triethyl phosphite 

when placed into an evaportating dish, on a balance, and exposed to ambient room 

conditions (~20 °C) for 15 minutes. The volatile nature of triethyl phosphite is 

clearly apparent with an observed mass loss rate of ~0.2 wt% min
-1

. The triethyl 

phosphate remains relatively stable, but is observed to gradually gain mass at a rate 

of ~0.03 wt% min
-1

. This mass gain may be attributable to hydrolysis with air. To 

observe whether potential drifting of the balance has an effect here, an empty control 

dish was analysed under the same conditions and it’s mass is seen, in Figure 4.3, to 

remain near- constant for the 15 minute period, with a standard deviation of ± 

0.003%. This discards any significant effect on the results by drifting of the balance. 

The mass loss of triethyl phosphite, observed here, can be attributed to its 

readiness to evaporate when exposed to air at atmospheric pressure [217]. 

Conversely, triethyl phosphate does not readily undergo similar evaporation [218]. 

As a vapour, triethyl phosphite will subsequently oxidise, in air, producing the more 

stable vapour of triethyl phosphate [219, 220].  

For sol-gel HA synthesis here, triethyl phosphite was utilised due to its 

superior reactivity for hydrolysis, however these preliminary experiments highlight 

the significant instability of the precursor when exposed to ambient conditions. To 

prevent loss of precursor by evaporation during HA synthesis, certain measures to 

minimise exposure to air must be employed and therefore prompt parafilm sealing of 

all glassware has been utilised during all sol-gel HA preparations.
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Figure 4.2: Decomposition of triethyl phosphate and triethyl phosphate by heating by TGA. Heating 

rate = 20 °C min
-1

. Starting volume = 17.16 ml of triethyl phosphate and 18.85 ml of triethyl 

phosphite. 

 

 

Figure 4.3: Percentage mass change of triethyl phosphate (9.45 ml) and triethyl phosphite (8.95 ml) 

when exposed to air. Measurements were taken every 30 seconds for 15 minutes using a balance. An 

empty control dish was also measured to observe potential drifting of balance (blue data points). 
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4.2. Hydroxyapatite characterisation 

Hydroxyapatite (Ca10(PO4)6(OH)2) powders have been produced by sol-gel 

and hydrothermal methods. Elemental and compositional characterisation of these 

powders has been carried out at the bulk and particle level utilising a variety of 

analytical techniques with results compared to a commercial HA powder purchased 

from Sigma-Aldrich. 

Two further HA samples, prepared via hydrothermal method, have also been 

examined for cytotoxicity by an undergraduate research group led by Dr Lars Jeuken 

at the Leeds Faculty of Biological Sciences.  

Table 4.1 summarises all the synthesis conditions of the six HA samples that 

are to be analysed in this Chapter. 

Table 4.1: Summary of all HA samples to be characterised. 

Sample 

Number 

Hydroxyapatite 

sample 
Preparation conditions 

1 Sigma-Aldrich HA 
Synthesis method unreported by supplier 

despite request 

2 Hydrothermal HA Produced with starting suspension pH 11 

3 Sol-gel HA Calcined at 500 °C 

4 Sol-gel HA Calcined at 700 °C 

5 Hydrothermal HA Produced with starting suspension pH 9§ 

6 Hydrothermal HA Produced with starting suspension pH 11
§
 

 

 

                                                 

§ Synthesised for cytotoxicity analysis. 
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4.2.1. Bulk analysis 

4.2.2.1. X-ray diffraction (XRD) 

X-ray powder diffraction patterns for samples 1-4 are shown in Figures 4.4 - 

4.7 with corresponding peak list data shown in the appendix, Tables A2 - A5. The 

Sigma-Aldrich powder (Figure 4.4) and the pH 11 hydrothermal powder (Figure 

4.5) showed only diffraction peaks due to hydroxyapatite (ICDD ref: 01-074-0566 

[37]); peaks were sharper for the hydrothermal powder which is consistent with a 

larger particle size and good degree of crystallinity as noted by TEM imaging and by 

selected area electron diffraction (SAED) in TEM (Figures 4.20 - 4.23).  

The sol-gel derived HA, calcined at 500 °C (Figure 4.6), showed HA 

reflections plus a faint extra peak at 2θ = 29.4°, indicating a minor amount of 

second-phase calcium carbonate (CaCO3, ‘calcite’, ICDD ref: 00-005-0586 [221]). 

The presence of carbonate in the 500 °C sol-gel HA could be attributed to 

evaporative losses of the phosphite precursor reagent during synthesis, or 

alternatively could be the result of CO2 pickup from the air during handling [222].  

Increasing the calcination temperature to 700 °C resulted in significant levels 

of other secondary phases (Figure 4.7); β-tricalcium phosphate, β-TCP (Ca3(PO4)2, 

ICDD ref: 04-008-8714 [223, 224]), along with small amounts of dicalcium 

phosphate anhydrate, DCPA (CaHPO4, ICDD ref: 01-070-0360 [225]) and calcium 

oxide (CaO, ICDD ref: 04-003-7161 [226]).  

Whilst evaporation of un-reacted triethyl phosphite from the sol or gel could 

contribute to a net excess of Ca, leading to CaCO3 formation in the 500 °C sample 

for example, the other secondary phases observed after heating a gel to 700 °C may 

be a result of thermal decomposition of HA. Previous studies suggest HA may 

decompose above temperatures as low as 600 °C [227]. Increasing the calcination 
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temperature to 700 °C and above, causes the decomposition of HA into β-TCP and 

CaO, following the proposed reaction [227, 228]: 

Ca10(PO4)6(OH)2 → 3Ca3(PO4)2 + CaO + H2O  (4.1) 

To confirm this, the Sigma-Aldrich powder was subject to calcination for 1 

hour at both 700 °C and 800 °C. X-ray powder diffraction patterns for these samples 

are shown in Figure 4.8, and it is noted that the onset of decomposition, of HA to β-

TCP, began at 700 °C, with a greater amount of β-TCP formed at 800 °C. 

The decomposition temperature of HA may be strongly dependent on the 

particle characteristics and synthesis route for the HA powder [228, 229].  

In the present work, the calcium carbonate phase observed in the 500 °C sol-

gel sample, which could be due to evaporative losses of the phosphite precursor 

reagent (see Figure 4.3), would be expected to decompose to calcium oxide at 700 

°C. However carbonated apatite has been shown to decompose at temperatures as 

low as 400 °C [230]. This could explain the absence of CaCO3, and presence of 

CaO, in the 700 °C sol-gel powder [231].  
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Figure 4.4: XRD pattern for Sigma-Aldrich HA. All peaks correspond to a pure HA phase. Major 

peaks are indexed to ICDD ref: 01-074-0566 [37]. Full peak data in the appendix, Table A2. Mean 

crystallite size, τ = 62.68 nm (using Scherrer equation). 

 

Figure 4.5: XRD pattern for pH 11 hydrothermal HA. All peaks correspond to a pure HA phase. 

Major peaks are indexed to ICDD ref: 01-074-0566 [37]. Full peak data in the appendix, Table A3. 

Mean crystallite size, τ = 106.51 nm (using Scherrer equation). 
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Figure 4.6: XRD pattern data for 500 °C sol-gel HA. Indexed peaks labelled ‘*’ and unlabelled peaks 

correspond to HA, ICDD ref: 01-074-0566 [37]. ‘#’ denotes the most intense peak of calcium 

carbonate, CaCO3, indexed to ICDD ref: 00-005-0586 [221]. Full peak data in the appendix, Table 

A4. Mean crystallite size (of HA), τ = 73.74 nm (using Scherrer equation). 

 

Figure 4.7: XRD pattern for 700 °C sol-gel HA. Indexed peaks labelled ‘*’ and unlabelled peaks 

correspond to a HA phase ICDD ref: 01-074-0566 [37]. ‘▲’ denotes indexed peaks of β-tricalcium 

phosphate, β-TCP (Ca3(PO4)2) ICDD ref: 04-008-8714 [232], ‘■’ denotes indexed peaks of dicalcium 

phosphate anhydrate, DCPA (CaHPO4) ICDD ref: 01-070-0360 [225], ‘○’ denotes indexed peak of 

calcium oxide (CaO) ICDD ref: 04-003-7161 [226]. Full peak data in the appendix, Table A5.     

Mean crystallite size (of HA), τ = 68.47 nm (using Scherrer equation). 
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Figure 4.8: Powder XRD patterns for Sigma-Aldrich HA decomposed for 1 hour at 700 and 800 °C. 

Indexed peaks ‘*’ and unlabelled peaks at 700 °C correspond to a HA phase, ICDD ref: 01-074-0566 

[37] with ‘▲’ denoting single most intense peak of β-TCP (Ca3(PO4)2) indexed to ICDD ref: 04-008-

8714 [232]. Indexed peaks labelled ‘▲’ and unlabelled peaks at 800 °C correspond to β-TCP 

(Ca3(PO4)2) ICDD ref: 04-008-8714 [232]. Peaks labelled ‘*’ at 800 °C are indexed to HA, ICDD ref: 

01-074-0566 [37]. At 800 °C most of the HA has decomposed to β-TCP. Full peak list data in the 

appendix Tables A6 and A7. 
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4.2.2.1.1. HA samples prepared for cytotoxicity analysis  

 

Two hydrothermal HA samples prepared at pH 9 and 11 (samples 5 and 6 in 

Table 4.1) for cytotoxicity assays reported in the appendix, have also been analysed 

by XRD, with patterns displayed in Figures 4.9 and 4.10 respectively. Peak lists are 

shown in the appendix, Tables A8 and A9. Both samples showed only reflections 

due to hydroxyapatite (ICDD ref: 01-074-0566 [37]), with sharp peaks indicating a 

large particle size and good crystallinity confirmed by TEM and corresponding 

selected area electron diffraction (SAED) pattern (Figure 4.25a-d). 
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Figure 4.9: XRD pattern for pH 9 hydrothermal HA for prepared cytotoxicity analysis. All peaks 

correspond to a pure HA phase. Major peaks are indexed to ICDD ref: 01-074-0566 [37]. Full peak 

list data in the appendix, Table A8. Mean crystallite size, τ = 108.85 nm (using Scherrer equation). 

 

Figure 4.10: XRD pattern for pH 11 hydrothermal HA prepared for cytotoxicity analysis. All peaks 

correspond to a pure HA phase. Major peaks are indexed to ICDD ref: 01-074-0566 [37]. Full peak 

list data in the appendix, Table A9. Mean crystallite size, τ = 81.48 nm (using Scherrer equation). 
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4.2.2.2. Fourier transform infrared spectroscopy (FTIR) 

 

The presence of carbonate or hydrated secondary phases, in HA samples 1-4, 

was investigated using FTIR [233, 234], Figure 4.11. All four HA samples exhibited 

absorption bands due to OH
-
 groups, (stretching vibration at ~3570 cm

-1 
and 

libration mode at 630 cm
-1

); these were most intense in the pH 11 hydrothermal 

powder and weakest in the Sigma-Aldrich powder. Additional strong absorption 

bands at low wavenumber (< 1200 cm
-1

), are also common across all four HA 

samples; bands observed in the region ~950 - 1100 cm
-1

 can be assigned to P-O 

stretching modes [45, 87, 235, 236].  

It is observed that some of the absorption bands are visible only as shoulders to 

neighbouring peaks; this is most notable in the 700 °C sol-gel HA with the OH
-
 band 

at 630 cm
-1

. This is indicative of poorer crystallinity in comparison to the Sigma-

Aldrich, 500 °C sol-gel and pH 11 hydrothermal HA samples where this peak 

becomes increasingly sharper [235]. Additional shoulders in the sol-gel HA calcined 

at 700 °C are also observed at 945 and 970 cm
-1

 and may indicate the presence of α- 

and/or β-TCP [4, 237]. 

The 500 °C sol-gel sample showed medium absorption bands at 875 and 1420-

1456 cm
-1

, which can be attributed to carbonate (CO3
2-

) stretching vibrations [235, 

236, 238-240]. The band at 875 cm
-1 

has also been assigned to hydrogen phosphate 

ion (HPO4
2-

) in calcium-deficient HA [235, 241]. Very faint bands in these regions 

were also detected in the 700 °C sol-gel and pH 11 hydrothermal powders. A band at 

~875 cm
-1

 is noted in all four samples; and this has been previously linked with the 

presence of HPO4
2-

 and Ca(OH)2 [40, 235, 241]. Whilst it is difficult to assign 

individual bands unambiguously in this low frequency region, the stronger intensity 
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of the ~875 cm
-1

 band in the 500 °C sol-gel sample, coupled with bands at 1420 and 

1456 cm
-1

, may signify the presence of structural carbonate [235]. It is reported that 

HA can host carbonate ions at two different sites: site-A, where they substitute for 

OH
- 
ions, and site-B, where they substitute for PO4

3-
 ions ; absorptions bands at 875 

and 1420-1456 cm
-1 

are characteristic of carbonate ion occupation of site-B [238, 

240].  

As already suggested, evaporation of unreacted triethyl phosphite from the sol 

or gel could contribute to the presence of carbonate in the 500 °C sol-gel powder, 

however carbonate could also form in a partially decomposed sol-gel system due to 

interaction between the inorganic product (HA) and the organic decomposition 

vapours (CO2-rich). In addition, the formation of an interfacial CaCO3 phase could 

occur as a result of interaction of the nano-HA with atmospheric CO2 during storage 

in air, and this might explain the low levels detected in the 700 °C sol-gel and pH 11 

hydrothermal powders [222].  
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Figure 4.11: FTIR spectra of Sigma-Aldrich HA, pH 11 hydrothermal HA, 700 °C sol-gel HA and 

500 °C sol-gel HA. The main lattice vibrations of HA are at < 1200 cm
-1 

along with OH stretches at 

3570 cm
-1

. Likely second phase carbonate stretches, as discussed in the text, are clearly visible in the 

500 °C sol-gel powder (at 1456, 1420 and 875 cm
-1

). 
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4.2.2.3. X-ray fluorescence (XRF) and laser ablation inductively 

coupled plasma mass spectrometry (LA-ICP-MS) 

 

The Ca/P ratios of all HA powder samples have been measured in bulk using 

XRF, by a commercial laboratory (University of Leicester), and also by LA-ICP-MS 

with the Ca/P ratio data shown in Table 4.2. These are compared to the particle Ca/P 

ratios measured by TEM-EDX, also shown in Table 4.2 but described in further 

detail in Section 4.3.4.  

The expected Ca/P ratio for stoichiometric hydroxyapatite is 1.67, and both 

XRF and TEM-EDX data suggest low Ca/P ratios for the Sigma Aldrich powder of 

1.50 and 1.45 respectively; the TEM-EDX value is in agreement with previous 

reports [94].  

The XRF average values of bulk Ca/P ratio for the ‘in-house’ powders (1.68 

for the pH 11 hydrothermal HA, 1.83 for the 500 °C sol-gel HA and 1.47 for the 700 

°C sol-gel HA) were in broad agreement with the Ca/P values collected by particle 

TEM-EDX (1.61 for the pH 11 hydrothermal HA. 1.72 for the 500 °C sol-gel HA 

and 1.65 for the 700 °C sol-gel HA), as the XRF values were each within the range 

of the standard deviation of the average TEM-EDX value (standard deviations for 

the XRF powders were not reported by the commercial XRF facility despite 

repeated requests).  

Data collected using LA-ICP-MS showed a higher Ca/P ratio for the Sigma-

Aldrich powder of 1.64. This is close to the stoichiometric target, 1.67, however it is 

not consistent with XRF (1.50) or TEM-EDX (1.45 ± 0.16) data, or previously 

reported values for this material [94]. The pH 11 hydrothermal HA, shows a near 

stoichiometric Ca/P ratio of 1.65, a value which is in good agreement with both XRF 



86  

 

(1.68) and TEM-EDX (1.61 ± 0.17) data. The 500 °C sol-gel HA displays a higher 

than stoichiometric Ca/P ratio of 1.84, which is in agreement with the XRF data 

(1.83) and within the standard deviation range of the TEM-EDX data (1.72 ± 0.38). 

The 700 °C sol-gel HA shows a near stoichiometric Ca/P ratio by LA-ICP-MS, 1.66, 

which closely corresponds to TEM-EDX data (1.65 ± 0.35), but is inconsistent with 

the much lower value from XRF, 1.47.  

Overall the Ca/P ratio values measured in bulk by XRF and LA-ICP-MS and at 

the particle level by TEM-EDX, for the Sigma-Aldrich and ‘in-house’ prepared 

samples show inconsistency across the three techniques. The pH 11 hydrothermal 

HA and 500 °C sol-gel HA show the most agreeable Ca/P ratios as measured by all 

three methods (both < 5% difference). Greater variance is observed in the Sigma-

Aldrich and the 700 °C sol-gel HA (both ~ < 10% difference). The aforementioned 

evaporation of phosphorous during sol-gel HA synthesis causing the presence of β-

TCP, DCPA and CaO in the 700 °C sol-gel HA, as measured by XRD (Figure 4.7), 

may be a reason for this observation.  

For comparison, a bone-meal standard reference material (NIST 1486, 

preparation method unreported) with a previously determined Ca/P ratio of 1.67 (as 

measured by using XRF by W.F. Koch et al of the NIST Inorganic Analytical 

Research Division [242]) was also analysed by the LA-ICP-MS facility and 

displayed a high Ca/P ratio, 1.86**. This may be explained by the well recognised 

inconsistencies with phosphorus detection using an argon-plasma [243-245]. It is 

reported that phosphorus detection is restricted due to its relatively high first 

ionisation potential (~10.5 eV) and interference may occur with ions of C, O, N and 

H [243-245]. Additionally, it is reported that phosphorus loss can occur due to 

                                                 

** full LA-ICP-MS compositional data for all powders in appendix, Table A11. 
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condensation on cool container walls of the instrument, an issue shown to be 

overcome by injection of hydrogen and hydrogen chloride into the argon plasma 

[243].  

The full analytical procedure carried out by the LA-ICP-MS facility remains 

unreported, despite repeated request for the details. Although unconfirmed, 

phosphorus detection problems discussed above may be a potential cause of the 

phosphorus deficient Ca/P values observed by LA-ICP-MS for the Sigma-Aldrich 

HA and the bonemeal standard. 
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Table 4.2: Ca/P ratios for respective HA powders from bulk XRF and LA-ICP-MS analysis. Full 

data displayed in the appendix, Tables A10 (XRF) and A11 (LA-ICP-MS).  

 

Sample 

Sigma-

Aldrich 

HA 

pH 11 

hydrothermal 

HA 

500 °C sol-

gel HA 

700 °C sol-

gel HA 

Bulk Ca/P 

ratio (XRF) 
1.50 1.68 1.83 1.47 

Bulk Ca/P 

ratio (LA-

ICP-MS) 

1.64 ± 0.03 1.65 ± 0.02 1.84 ± 0.09 1.66 ± 0.02 

Average 

particle 

Ca/P ratio 

(TEM-EDX) 

1.45 ± 0.16 1.61 ± 0.17 1.72 ± 0.38 1.65 0.35 
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4.3. Particle analysis  

Particle morphology for the samples 1-4 are shown by SEM and TEM images, 

Figures 4.12 - 4.21. Particle size information was obtained by manually measuring, 

from TEM images, the dimensions of 50 particles per sample using Gatan Digital 

Micrograph software, Figure 4.24.  

Analysis by SEM shows that the as received Sigma-Aldrich HA consists of 

large (> 10 μm) spheroidal aggregates of fine particles (Figure 4.12). By TEM 

analysis, the Sigma-Aldrich HA consists of elongated primary particles ≤ 200 nm in 

length (Figure 4.20), with the greatest proportion in the 50-75 nm range; aspect 

ratios varied from 1.0 to 13.9, with an average of 3.6 (Figure 4.24a). Selected area 

electron diffraction (SAED) confirms crystalline, single phase HA (Figure 4.20c), 

consistent with XRD (Figure 4.4). 

Analysis of the pH 11 hydrothermal HA by SEM shows well-defined rod-like 

particle morphologies with a relatively short length and a low amount of particle 

agglomeration in comparison to the other HA samples (Figures 4.14 and 4.15). From 

TEM analysis (Figure 4.21a and b) particles show lengths ≤ 300 nm and aspect 

ratios range from 1.8 to 7.8, with an average of 4.0 (Figure 4.24b). Selected area 

electron diffraction confirms crystalline, single phase HA (Figure 4.21c) as 

previously shown by XRD (Figure 4.5). Furthermore, the SAED pattern shown in 

Figure 4.21d, taken of a single pH 11 hydrothermal HA particle, suggests that HA 

particles here exist as single crystals. 

HA powders prepared via the sol-gel method, at 500 °C (Figures 4.16, 4.17 

and 4.22) and 700 °C (Figures 4.18, 4.19 and 4.23), possessed a more equiaxed 

morphology than the other powders (average aspects ratios < 2); particle lengths 

were mostly 25-100 nm with a maximum of ~250 nm.  
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By SEM (Figures 4.16 and 4.17), the sol-gel HA calcined at 500 °C shows 

large agglomeration of particles typically < 200 nm in length (average = 70 nm). 

Selected area electron diffraction in TEM (Figure 4.22c) is in agreement with 

previous XRD data (Figure 4.6c), confirming the presence of HA phase with an 

additional diffraction ring assigned to CaCO3. Particle length measurements the 500 

°C sol-gel HA by TEM show an average particle length of 70 nm, and the highest 

proportion of sub 50 nm particles of any powder (Figure 4.24c). 

The sol-gel HA prepared at 700 °C shows large agglomeration by SEM 

(Figures 4.18 and 4.19). Analysis by TEM (Figure 4.23a and b) shows rounded 

particles, with selected area electron diffraction (Figure 4.23c) confirming the 

presence of multiple phases, HA, β-TCP, DCPA and CaO as previously observed by 

XRD (Figure 4.7). Increasing the calcination temperature from 500 °C to 700 °C 

shifted the size distribution to higher values; an average particle length of 108 nm 

was observed, with some particles reaching lengths of 225-250 nm (Figure 4.24d). 
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4.3.1. Scanning electron microscopy (SEM) 

Sigma-Aldrich HA 

 

 

Figure 4.12: Low magnification SEM image showing spheroidal aggregates of the as received 

Sigma-Aldrich HA. 

 

 

Figure 4.13: High magnification SEM image of the as received Sigma-Aldrich HA revealing a sub-

micron primary particle size. Primary particle size range = 25 – 175 nm. 
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pH 11 hydrothermal HA 

 

 

Figure 4.14: Low magnification SEM image of hydrothermal HA prepared at pH 11. 

 

 

Figure 4.15: High magnification SEM image of hydrothermal HA prepared at pH 11. Primary 

particle size range = 25 – 300 nm. 
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Sol-gel synthesised HA 

500 °C sol-gel HA 

 

 

Figure 4.16: Low magnification SEM image of sol-gel HA calcined at 500 °C. 

 

 

Figure 4.17: High magnification SEM image of sol-gel HA calcined at 500 °C. Primary particle size 

range = ~25 - 225 nm. 
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700 °C sol-gel HA 

 

 

Figure 4.18: Low magnification SEM image of sol-gel HA calcined at 700 °C. 

 

 

Figure 4.19: High magnification SEM image of sol-gel HA calcined at 700 °C. Primary particle size 

range = 25 – 250 nm. 

 

 

 



95  

 

 

4.3.2. Transmission electron microscopy (TEM) 

Sigma-Aldrich HA 

 

 

 

Figure 4.20: Bright field TEM images (a & b) of the Sigma-Aldrich HA, with (c) a selected area 

electron diffraction pattern from image (a), all rings correspond to a HA phase, ICDD ref: 01-074-

0566 [37]. 

 

 

 

 

(a) (b) 

(c) 
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pH 11 hydrothermal HA 

 

  

Figure 4.21: TEM images (a & b) of hydrothermal HA prepared at pH 11, with (c) a selected area 

electron diffraction pattern for (a) showing a dominant (211) ring, and (d) SAED pattern of single 

crystal HA particle. All rings and spots correspond to a HA phase ICDD ref: 01-074-0566 [37].  

 (b) (a) 

(c) (d) 
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Sol-gel synthesised HA 

500 °C sol-gel HA 

 

Figure 4.22: TEM images (a & b) of sol-gel HA calcined at 500 °C, with (c) a selected area electron 

diffraction pattern for area (a) showing faint ring (labelled ‘#’) corresponding to CaCO3, hkl = (104), 

ICDD ref: 00-005-0586 [221], other rings denote HA phase ICDD ref: 01-074-0566 [37] with ring 

labelled ‘HA’ indexed to hkl = (211). 

 

 

 

 

 

 

(a) (b) 

(c) 
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700 °C sol-gel HA 

 

 

Figure 4.23: TEM images (a & b) of sol-gel HA calcined at 700 °C, with (c) multiphase selected area 

electron diffraction pattern for (a), with key HA (ICDD ref: 01-074-0566 [37]), β-TCP (ICDD ref: 

04-008-8714 [232]), DCPA (ICDD ref: 01-070-0360 [225]) and CaO phases labelled (ICDD ref: 04-

003-7161 [226]).  

  

(b) (a) 

(c) 
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4.3.3. Particle length distributions from TEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Distribution of particle lengths (50 particles per sample) measured from TEM images of 

(a) Sigma-Aldrich HA, (b) pH 11 hydrothermal HA, (c) 500 °C sol-gel HA and (d) 700 °C sol-gel 

HA.  
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4.3.3.1. HA samples prepared for cytotoxicity analysis 

 

The two HA samples that have been prepared hydrothermally at pH 9 and pH 

11 for cytotoxicity analysis (Section 4.5.1), have been analysed by TEM, with 

images and selected area diffraction patterns shown in Figure 4.25a-d. Particle size 

distribution plots for 50 particles of each sample are displayed in Figure 4.26a-b. 

TEM images of both the pH 9 and pH 11 hydrothermal HA’s (Figure 4.25a and c) 

show that both samples displayed well-defined, short (< 300 nm) rod-shaped 

particles, with a single-phase, crystalline HA confirmed for both samples by SAED 

(Figure 4.25b and d).  

The HA prepared at pH 9 shows average particle lengths ~200 nm (Figure 

4.26a) with the greatest proportion in the 175 – 200 nm range; aspect ratios range 

from 1.1 to 12.4. A small proportion of particles show lengths > 300 nm. The HA 

prepared at pH 11 shows average particle lengths ~130 nm (Figure 4.26b) with the 

greatest proportion in the 75 – 100 nm range; aspect ratios range from 1.6 to 12.0. 

No particles show lengths > 300 nm.  

Particle size data here conforms to the work by Meyer and Nancollas [182], 

whereby an increase in basicity contributes to a shorter particle length. Previous 

studies have suggested that a high pH reduces particle growth due to the increased 

number of OH
- 

ions in the solution creating surface defects, and lowering surface 

energy in the preferred plane of growth [181, 246]. An increase in pH also has the 

benefit of preventing the formation of unwanted calcium phosphate phases, such as 

dicalcium phosphate anhydrate, DCPA (CaHPO4) and dicalcium phosphate 

dihydrate, DCPD (CaHPO4·(H2O)2); these are known to be unstable at pH values 

greater than 6 - 7 and subsequently convert to the more stable HA phase [247]. 
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Figure 4.25: TEM images and corresponding selected area electron diffraction pattern for 

hydrothermal HA prepared at pH 9 (a & b) and pH 11 (c & d) for cytotoxicity analysis. 

  

(a) pH 9 hydrothermal HA 

 

(c) pH 11 hydrothermal HA 

 

(d) pH 11 hydrothermal HA 

 

(b) pH 9 hydrothermal HA 
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Figure 4.26: Distribution of particle lengths (50 particles) measured from TEM images of 

hydrothermal HA prepared at pH 9 (a) and pH 11 (b) for cytotoxicity analysis.  
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4.3.4. Energy dispersive X-ray spectroscopy (TEM-EDX) 

4.3.4.1. Determination of critical electron fluence threshold 

To determine a threshold-fluence, whereby accurate and representative 

compositional data can be obtained by EDX without significant damage to the 

samples, two experiments were carried out using the Sigma-Aldrich HA powder, 

expanding on the method in [94]. First, a series of spot EDX measurements of 

different, small, particle clusters were made across the fluence range ~10
5
-10

9
 e nm

-2
 

(by changing fluence and fluence rate) and the spectra quantified, using ISIS 

processing software, to obtain Ca/P ratios (Figure 4.27a and [27]). Secondly, spot 

EDX measurements were taken across a single cluster of particles, at a fixed 

irradiation area, to really isolate the effects of increasing fluence at a fixed fluence 

rate (10
6 

e nm
-2

) on the Ca/P ratio (Figure 4.27b). Figure 4.27a shows that the Ca/P 

ratio remains stable up to ~10
7 

e nm
-2

; beyond this point the Ca/P ratio rises and 

specimen alteration was observed. Prolonged irradiation of a single area of particles 

(Figure 4.27b) demonstrates a progressive rise in the Ca/P ratio (1.45 to 1.65) up to a 

final, cumulative fluence of 10
8 

e nm
-2

. 

 Supplementary TEM images (with Ca/P ratios measured by EDX) that 

highlight the physical effect of rising electron fluence on a small particle cluster area 

of the Sigma-Aldrich HA are shown in Figure 4.28a-c††. These images show that the 

HA particles undergo no physical change with fluence levels at ~10
5
 and ~10

7 
e nm

-2
 

(Figure 4.28a and b respectively), with the average Ca/P ratio (from EDX) rising by 

0.03 from 1.46 to 1.49. However at a fluence level of ~10
9 

e nm
-2

 (Figure 4.28c) 

significant radiolytic particle damage was observed, which is most notable at the 

                                                 

†† Note: these images were acquired as a separate experiment due to the changes in magnification and 

beam brightness required to allow for imaging. This subsequently alters the fluence rate and 

therefore values are given as rough estimates. The TEM-EDX data here was measured according to 

the previously outlined conditions, and was acquired prior to each image being taken. 
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particle edges. Large amounts of porosity were visible and the average Ca/P ratio 

shows a large increase to 2.81.  

These results demonstrate the need for controlled fluence particle 

characterisation of hydroxyapatite in the TEM. Subsequent TEM-EDX analysis of 

the Sigma-Aldrich HA and all ‘in-house’ prepared HA’s uses a maximum threshold 

fluence of 10
7
 e nm

-2 
to gather reliable Ca/P ratios for 100 small particle clusters of 

each HA powder.  
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Figure 4.27: (a) TEM-EDX Ca/P ratio of the Sigma-Aldrich HA as a function of electron fluence 

obtained by varying fluence at fluence rate (b) TEM-EDX Ca/P ratio data, over a fixed particle area 

of the Sigma-Aldrich HA, as a function of cumulative fluence obtained at a fixed fluence rate. 
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Figure 4.28: TEM images displaying the effect of rising electron fluence on the Sigma-Aldrich 

hydroxyapatite at approximate fluence levels of (a) ~10
5
 e nm

-2
,
 
(b) ~10

7
 e nm

-2 
and (c) ~10

9
 e nm

-2
. 

 

(a) ~10
5
 e nm

-2
 

TEM-EDX: Ca/P = 1.46 

(b) ~10
7
 e nm

-2
 

TEM-EDX: Ca/P = 1.49 

(c)  

(c) ~10
9
 e nm

-2
 

TEM-EDX: Ca/P = 2.81 

(d)  
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4.3.4.2. Particle TEM-EDX analysis of HA samples 

The Ca/P ratios calculated from EDX peak ratios for 100 small particle 

clusters of samples 1-4, have been acquired by working below the threshold fluence 

for irradiation damage (10
7
 e nm

-2
), with results shown in Figure 4.29a-d and Table 

4.2. These values have previously been compared to bulk Ca/P ratio data collected 

by XRF and LA-ICP-MS in Section 4.2.4.  

The Sigma Aldrich powder displayed the least variability in particle Ca/P ratio 

(Figure 4.29a), but the average Ca/P ratio was only 1.45 (standard deviation, S.D. = 

0.16), significantly below the stoichiometric target of 1.67, however this is in 

agreement with previous reports [94].  

The pH 11 hydrothermal powder (Figure 4.29b) showed similar consistency in 

inter-particle Ca/P ratios to the Sigma-Aldrich powder, but the average Ca/P ratio, 

1.61 (S.D. = 0.17), was in closer agreement with the stoichiometric target. 

The sol-gel powders calcined at 500 and 700 °C displayed a greater variability 

between particle Ca/P ratios (Figure 4.29c and d), with average values of 1.72 for 

the 500 °C HA and 1.65 for 700 °C HA, with larger standard deviations of 0.38 and 

0.35 respectively. This was mainly due to a few particles with extreme Ca/P ratios, 

2.50-4.50 (Figure 4.29c and d); which may arise due to an overlap of more calcium 

rich phases; CaCO3 in the 500 °C sample and CaO in the 700 °C sample. As 

previously discussed from FTIR data (Figure 4.11), carbonate ions may substitute 

for PO4
3-

 ions (site-B) in the HA structure [238, 240]. This may also explain the 

higher average Ca/P ratio’s observed here as both sol-gel powders showed peaks due 

to carbonate absorption in FTIR; these peaks were significantly more intense in the 

500 °C sol-gel HA, which corresponds with a higher Ca/P ratio obtained by TEM-

EDX. 
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 This high level of variability within a small fraction of particles in the sol-gel 

samples contrasts to the hydrothermal powder, as none of the 100 particle clusters in 

the pH 11 hydrothermal sample had a Ca/P ratio > 2.10.  
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Figure 4.29: TEM-EDX of 100 small particle clusters (with noted average Ca/P ratios) each taken at 

the threshold fluence of 10
7
 nm

-2
 for (a) Sigma-Aldrich HA, (b) hydrothermal HA prepared at pH 11, 

(c) sol-gel HA calcined at 500 °C, (d) sol-gel HA calcined at 700 °C. The stoichiometric target of 

Ca/P of 1.67 is marked (red dotted line) in each figure. 

(a) Sigma Aldrich HA 

 

 

 

 

 

 

 

 

 

 

Average Ca/P ratio = 1.45 ± 0.16 

 

(b) pH 11 hydrothermal HA 

 

 

 

 

 

 

 

 

 

 

Average Ca/P ratio = 1.61 ± 0.17 

(c) 500 °C sol-gel HA 

 

 

 

 

 

 

 

 

 

 

Average Ca/P ratio = 1.72 ± 0.38 

 

(d) 700 °C sol-gel HA 

 

 

 

 

 

 

 

 

 

 

Average Ca/P ratio = 1.65 ± 0.35 

 

= Ca/P ratio, 1.67 
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4.3.4.3. Particle EDX of HA samples for prepared cytotoxicity analysis 

 

TEM-EDX data showing the distribution of Ca/P ratios for 100 small particle 

clusters of the hydrothermal HA samples prepared for cytotoxicity analysis at pH 9 

and pH 11, is shown in Figure 4.30a-b. Data here displays good inter-particle 

consistency for both samples; consistent with the previous hydrothermal preparation 

(Figure 4.29b) the average Ca/P ratio values were slightly lower than the 

stoichiometric target of 1.67. The hydrothermal HA prepared at pH 9 had an average 

Ca/P ratio of 1.55 (S.D = 0.11) with no particle clusters displaying a Ca/P ratio > 2. 

The average Ca/P value for the hydrothermal HA prepared at pH 11 was 1.60 (S.D = 

0.11), and in good agreement with the previously prepared hydrothermal HA sample 

at pH 11, 1.61 (S.D = 0.17; Figure 4.29b), only two particle clusters in this sample 

displayed a Ca/P ratio > 2.  
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Figure 4.30: EDX Ca/P ratios for of 100 small particle clusters from hydrothermal HA samples 

prepared at (a) pH 9 and (b) pH 11 hydrothermal HA, with noted average Ca/P ratio, taken at the 

threshold fluence 10
7
 nm

-2
. The stoichiometric target of Ca/P of 1.67 is marked (red dotted line) in 

each figure. 

  

(b) pH 11 hydrothermal HA 

 

 

 

 

 

 

 

 

 

 

 Average Ca/P ratio = 1.60 ± 0.12 

 

(a) pH 9 hydrothermal HA 

 

 

 

 

 

 

 

 

 

 

  Average Ca/P ratio = 1.55 ± 0.11 
 

 

= Ca/P ratio, 1.67 
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Overall, the results show that elemental analysis at the particle level is a 

valuable tool in assessing hydroxyapatite nanopowders. The TEM-EDX technique 

of measuring the Ca/P ratio of individual particles at or below a threshold electron 

fluence confirms that the hydrothermal synthesis technique produces a consistent, 

single phase powder with an average Ca/P ratio in close agreement with the value 

for stoichiometric hydroxyapatite, 1.67. By contrast, the sol-gel synthesis route 

produced powders with greater variability in Ca/P ratio, each batch containing a 

small percentage of Ca-rich particles. This may be linked to volatility of the 

phosphite precursor reagent during processing (Section 4.1). A Ca-deficient 

composition was identified in the Sigma-Aldrich powder, with Ca/P = ~1.50, which 

is in agreement with previously reported data [94].  

This work demonstrates the need for careful consideration of the electron 

fluence in TEM-EDX analysis of HA. Levels of compositional variability revealed 

by particle to particle quantification of the Ca/P ratio, at controlled electron fluence 

(≤ 10
7
 e nm

-2
), are essential to collect reliable analytical data and avoiding radiolytic 

damage. This measurement is a valuable addition to the more typical 

characterisation methods employed for HA analysis. This method of analysis will be 

particularly useful for assessing the homogeneity of synthetic HAs that have been 

chemically modified to more closely match the composition of natural HA to gain 

further improvements in biocompatibility and osteointergration. 
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4.3.5. Dynamic light scattering (DLS) analysis of hydrothermal HA 

samples prepared for cytotoxicity analysis 

Particle size distribution curves, as measured by dynamic light scattering 

(DLS), of agglomerates of the hydrothermal HA samples prepared at pH 9 and pH 

11, to be used for cytotoxicity analysis, are shown in Figure 4.31. Z-average data 

(cumulant average particle diameter) for both samples is shown in Table 4.3. Two 

concentrations of each powder were prepared, firstly as 0.1% w/v of HA in distilled 

water and then this was mixed further as 10 and 50% v/v dispersions in cell culture 

medium (Dulbecco's modified Eagle's medium, DMEM).  

The DLS data here shows a wide size distribution of particle agglomerates 

across both samples. At 10% v/v concentration of HA in DMEM, the pH 11 

hydrothermal HA exhibits the lowest particle agglomeration range ~100 – 500 nm 

(z-average = 500 nm). At a 50% v/v concentration of HA in DMEM, this range 

greatly increases to ~400 – 4000 nm (z-average = 2746 nm), providing the greatest 

agglomeration of all samples. 

 At 10% v/v concentration of HA in DMEM, the pH 9 hydrothermal HA 

exhibits agglomerates in the size range ~300 – 1100 nm (z-average = 893 nm). At a 

50% v/v concentration of HA in DMEM, this size range increases to ~700 – 2000 

nm (z-average = 1191 nm).  

The hydrothermal HA prepared at pH 9 shows a larger z-average value (893 

nm) than the HA prepared at pH 11 (500 nm) at 10% v/v concentration of HA in 

DMEM. Larger agglomerates would be expected due to the larger overall crystallite 

size of the pH 9 HA (see TEM Figure 4.26) which would provide a greater surface 

area for charge build up.  
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At 50% v/v concentration of HA in DMEM, the hydrothermal HA prepared at 

pH 11 shows a much larger z-average (2746 nm) in comparison to the hydrothermal 

HA prepared at pH 9 at the same concentration (1191 nm): the hydrothermal HA 

prepared at pH 11 (at 50% v/v concentration of HA in DMEM) displays both a 

standalone single scattering peak and also a very broad two-peaked curve, which is 

indicative of significant variability in agglomeration and overall a poor dispersion in 

solution [248]. In the case where there are multiple scattering peaks for a sample, it 

is considered more representative to report the position of the peak maxima, rather 

than the z-average [211, 249], which for the hydrothermal HA prepared at pH 11 (at 

50% v/v concentration of HA in DMEM) this is observed at 1718 nm. In 

comparison, the hydrothermal HA prepared at pH 9 at this concentration shows only 

a single scattering peak curve (maxima at 1106 nm), which suggests the sample is 

more evenly agglomerated, however broadness here does indicate the presence of 

some fragments [248]. 
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Figure 4.31: Size distribution (by number) of 10 and 50% v/v dispersions of pH 9 and pH 11 

hydrothermal HA in Dulbecco's modified Eagle's medium (DMEM). Significant agglomeration of the 

200 nm primary particles is noted. 

 

 

Table 4.3: Z-average (particle diameter cumulant average) as measured by DLS for 10 and 50% v/v 

dispersions of pH 9 and pH 11 hydrothermal HA in Dulbecco's modified Eagle's medium (DMEM) 

Sample z-average (d.nm) 

pH 9 HA 10% v/v in DMEM 893 

pH 9 HA 50% v/v in DMEM 1191 

pH 11 HA 10% v/v in DMEM 500 

pH 11 HA 50% v/v in DMEM 2746 
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4.4. Summary 

 

This work has presented two solution-based techniques for the preparation of 

nano-particulate HA: hydrothermal and sol-gel synthesis routes. The physical and 

chemical properties of the powders have been compared to a commercial HA 

powder (Sigma-Aldrich) using a range of bulk (XRD, XRF, FTIR and LA-ICP-MS) 

and particle (SEM and TEM-EDX) level analysis techniques [250, 251].  

Hydrothermal synthesis produced single phase HA of rod-like nano-particles, 

the growth and morphological variation of which is restricted with rising basicity, by 

the increased addition of ammonium hydroxide (Figures 4.14, 4.15, 4.21, 4.25, 4.26 

and 4.31). The sol-gel synthesis method produced non phase-pure samples of HA 

nano-particles, which were a mixture of equiaxed and rod-like particles (Figures 

4.16 - 4.19, 4.22 and 4.23). Bulk XRD and FTIR analysis highlighted the presence 

of CaCO3 in the sol-gel HA prepared at 500 °C (Figures 4.6 and 4.11). At 700 °C, 

XRD showed a HA sample containing notable amounts of alternate calcium 

phosphate based phases; β-tricalcium phosphate and dicalcium phosphate anhydrate, 

as well as traces of calcium oxide (Figure 4.7). Bulk analysis of the Ca/P ratio by 

XRF and LA-ICP-MS confirmed deviations away from the stoichiometric target, 

1.67 for the non-pure HA samples (Table 4.2). 

A new low-fluence TEM-EDX technique has been demonstrated, which is able 

to highlight particle to particle compositional variability (Figure 4.27). 

Hydrothermally produced HA had a near-stoichiometric Ca/P content; TEM-EDX 

revealed an average Ca/P ratio of 1.61 (S.D = 0.17), with no detection of Ca-rich 

particles (Figure 4.29b and Table 4.2). The sol-gel method produced particles for 

which TEM-EDX, at the particle level, indicated average Ca/P ratios in close 
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agreement with the stoichiometric target, 1.67 (Figure 4.29c and d, and Table 4.2). 

However a small, but significant, fraction of particles with much higher Ca/P ratios 

were detected. The sol-gel powders displayed average Ca/P ratios of 1.72 for 500 °C 

(S.D = 0.38) and 1.65 for 700 °C (S.D = 0.35). The Sigma-Aldrich powder 

displayed a similar level of compositional consistency to the hydrothermal ‘in- 

house’ sample, but the powder was deficient in calcium with a Ca/P ratio of only 

1.45 (S.D = 0.16), Figure 4.29a and Table 4.2. 

Overall, the work demonstrates the importance of applying a combination of 

bulk and particle-level analytical techniques (XRD, XRF, FTIR, LA-ICP-MS, SEM 

and TEM-EDX) to adequately characterise nano-hydroxyapatite powders. Individual 

characterisation techniques have identified secondary phases in the sol-gel powders 

that are likely to have important bearings on the performance of the powders in 

applications such as implant coatings [252]. Literature shows that β-TCP can 

demonstrate good biocompatibility properties and its less stable nature, in 

comparison to HA, causes faster biodegradation which can promote the growth of 

new bone when utilised as a graft material, however there are still questions as to 

whether β-TCP possesses superior bone formation properties than HA [253-256]. 

Similarly, dicalcium phosphate has shown promise as a cell culture scaffold for bone 

regeneration [257, 258] and has also been used as an implant coating material that 

later is converted to HA [247]. Calcium oxide is undesired in HA coatings due to its 

high reactivity in aqueous environments [82, 259].  

Hydroxyapatite is one of the most widely used synthetic calcium phosphate 

ceramics for bio-applications due to its greater compositional similarities with bone 

and its higher stability in aqueous media in comparison to alternate calcium 

phosphates [11]. The individual characterisation techniques utilised here highlight 



118  

 

the hydrothermal synthesis method as the preferred technique for the production of a 

single phase and near-stoichiometric HA nanopowder.  

Hydroxyapatite is primarily utilised in bulk, non-load bearing applications, as 

there remains concerns over the exposure of nanoparticle HA with regards to 

particle size and shape. Consequently, careful consideration of nanoparticle toxicity 

is required, and this has been explored here (see the appendix - Section 4.5).  

Engineering improvements of nanoparticulate HA with particle substitutions 

can aim to better match the composition of naturally occurring bone, which can 

often contain ions of, Na
+
, Mg

2+
, K

+
, Cl

-
, F

-
 and CO3

2-
 [260]. Ion substitution using, 

amongst others, Na
+
, Mg

2+
, Sr

2+
, F

-
, Ag

-
, Cu

2+
 and Zn

2+
 in synthetic HA has 

demonstrated various effects with improvements in thermal stability, solubility, 

textural properties, surface reactivity, osseointegration, bone formation and 

reduction in bacterial contamination [11, 27, 38, 261-265]. Silicon substitution in 

HA has also shown increased chemical stability and bioactivity [266-268]. A 

collaborative study with researchers Mr Adam Qaisar and Miss Rachel Wallace 

investigated the sol-gel synthesis of nanoparticulate HA modified with either Mg, Sr 

or Ti; TEM-EDX analysis of the powders showed varying particle sizes with also 

variability shown in the level of incorporation of each dopant ion into the HA 

particles [269]. 
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4.5. Appendix 

 

4.5.1. Hydroxyapatite toxicology  

Two HA powders, synthesised via the hydrothermal technique at pH 9 and pH 

11, have been analysed for potential cytotoxicity to in-vitro cell lines by an 

undergraduate research group led by Dr Lars Jeuken at the Leeds Faculty of 

Biological Sciences.  

 

4.5.2. Toxicity assays 

Despite sharing a similar chemical composition to that of bone synthetic HA, 

in nanoparticulate form, has demonstrated damaging effects to muscle cells [270], 

and pro-inflammatory effects in various pathological conditions including vascular 

calcification [271] and therefore should not be considered as non-toxic [103]. 

Increasing uses of HA in biomedical applications, such as for drug delivery [25, 

272] as orthopaedic implant coatings [3, 23] and in toothpastes [20, 21, 273] are 

likely to increase human exposure to nanoparticulate HA and therefore it is essential 

that the toxic effects are fully understood.  

The MTT assay (method outlined in Section 3.4) has been performed to assess 

the viability of the Caco-2 cell line (intestine cell line to measure response by 

ingestion), A549 cell line (lung cell line to measure response by inhalation) and SH-

SY5Y cell line (brain cell line to measure response of nanoparticles in the blood that 

may pass the blood-brain barrier), upon exposure to two samples of HA prepared by 

the hydrothermal method at starting pH 9 and pH 11 respectively. Results are 

displayed in Figures 4.32 - 4.36.  
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The Caco-2 cell line shows little affect with exposure to up to 1000 μg ml
-1

 of 

the hydrothermal HA prepared at pH 11, however a decrease in cell viability is 

observed with increasing dose of the hydrothermal HA prepared at pH 9 (Figure 

4.32). The A549 cell line shows little drop in cell viability with an increasing dose 

of both pH 9 and pH 11 HA samples (Figures 4.33 and 4.34). The SH-SY5Y cell 

line does not show a response to doses of the pH 9 HA up to 1000 μg ml
-1

, however 

a decrease in cell viability is observed with a high dose (1000 μg ml
-1

)
 
of the pH 11 

HA (Figures 4.35 and 4.36).  

Nanoparticle dose can be expressed in terms of total number of particles per 1 

μg. By assuming all nanoparticles are perfect cylindrical rods, the volume and 

subsequent weight of an individual particle can be estimated. Average particles 

lengths and widths have been measured from 50 measurements of individual 

particles (in TEM) of both hydrothermal HA samples prepared at pH 9 and pH 11. 

The theoretical density, ρ, of hydroxyapatite has been obtained from literature as 

3.156 g/cm
3 

[274]. This calculated data is shown in Table A1.  

Using this data, high nanoparticle doses would contain a very large number of 

individual nanoparticles; 500 μg ml
-1

 can be expressed as ~87,000 particles per ml 

of the pH 9 HA, and ~135,000 particles per ml of the pH 11 HA. Previous literature 

has shown that high doses (> 500 μg ml
-1

) of HA nanoparticles are toxic to other cell 

lines, likely due to cellular particle load and possible release of calcium [103]; and 

this is the most likely cause of the effects observed here. 
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Table A1: Calculated data showing estimated number of nanoparticles per 1 μg. 

 
pH 9 

hydrothermal HA 

pH 11 

hydrothermal HA 

Average nanoparticle length, 

from 50 particles (nm) 
200.00 129.00 

Average nanoparticle width, 

from 50 particles (nm) 
34.00 34.00 

Volume of single cylindrical 

nanoparticle rod (m
3
) 

1.82 x 10
-4

 1.17 x 10
-4

 

Mass of single nanoparticle (g) 5.74 x 10
-6 

3.70 x 10
-6

 

Estimated number of 

nanoparticles per 1 μg 
174 270 

 

 

Particle size variation may contribute to the affect observed in both the Caco-2 

and SH-SY5Y cell lines; however there is currently little evidence to support this 

and further research would be required to confirm this hypothesis. Poor dispersion 

properties of HA due to sedimentation in the cell culture medium have been 

speculated to be a contributing factor to the decreasing cell viabilities observed at 

high HA concentrations (by the group at the Leeds Faculty of Biological Sciences) 

and particle size distribution data of the samples measured by DLS (Figure 4.31) 

confirms agglomeration of the HA samples in cell culture medium.  

Overall the results of HA cytotoxicity indicate promising and expected 

biocompatibility, but are inconclusive. Only very high doses of HA nanoparticles 

caused significant drops in cell viability. Further work utilising improved 

nanoparticle dispersions could investigate the potential effects of particle size more 

carefully.   
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4.5.2.1. Caco-2 cell line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: MTT assay for the cytotoxicity of varying doses of pH 9 and pH 11 hydrothermal HA 

particles with 24 hour incubation period using Caco-2 cell line, measured as the percentage cell 

viability compared to control wells with no particles (G. Dyson).  

 

4.5.2.2. A549 cell line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: MTT assay for the cytotoxicity of varying doses of pH 9 and pH 11 hydrothermal HA 

particles with 24 hour incubation period using A549 cell line, measured as the percentage cell 

viability compared to control wells with no particles (E. Horncastle). 
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Figure 4.34: MTT assay for the cytotoxicity of varying doses of pH 9 and pH 11 hydrothermal HA 

particles with 48 hour incubation period using A549 cell line, measured as the percentage cell 

viability compared to control wells with no particles (E. Horncastle). 

 

4.5.2.3. SH-SY5Y cell line 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: MTT assay for the cytotoxicity of varying doses of pH 9 and pH 11 hydrothermal HA 

particles with 24 hour incubation period using SH-SY5Y cell line, measured as the percentage cell 

viability compared to control wells with no particles (J. Jones). 
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Figure 4.36: MTT assay for the cytotoxicity of varying doses of pH 9 and pH 11 hydrothermal HA 

particles with 48 hour incubation period using SH-SY5Y cell line, measured as the percentage cell 

viability compared to control wells with no particles (J. Jones). 
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4.5.3. XRD peak list data 

Table A2: XRD peak list data for the Sigma-Aldrich HA, with ICDD reference file number: 01-074-

0566 [37]. a = b = 9.41 Å, c = 6.89 Å. 

Sigma-Aldrich HA 
Hydroxyapatite reference file, 

 ICDD: 074-0566 

Pos.°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos.°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.877 8.1476 15.17 10.832 8.1614 17.00 1 0 0 -0.045 

21.854 4.0738 6.58 21.762 4.0807 6.50 2 0 0 -0.092 

22.874 3.8848 8.51 22.858 3.8875 6.30 1 1 1 -0.016 

25.845 3.4445 37.74 25.883 3.4395 35.70 0 0 2 0.038 

28.103 3.1726 8.42 28.131 3.1695 8.80 1 0 2 0.028 

28.971 3.0795 18.52 28.921 3.0847 16.00 2 1 0 -0.050 

31.804 2.8114 100.00 31.766 2.8147 100.00 2 1 1 -0.038 

32.183 2.7791 55.76 32.195 2.7781 51.50 1 1 2 0.012 

32.954 2.7159 58.52 32.897 2.7205 61.30 3 0 0 -0.057 

34.058 2.6303 19.60 34.063 2.6299 21.00 2 0 2 0.005 

39.861 2.2597 20.42 39.791 2.2636 20.50 1 3 0 -0.070 

42.047 2.1472 6.00 41.986 2.1502 5.60 1 3 1 -0.061 

46.729 1.9424 29.94 46.694 1.9437 28.10 2 2 2 -0.035 

48.120 1.8894 10.86 48.081 1.8908 12.20 1 3 2 -0.039 

49.473 1.8409 31.70 49.490 1.8403 31.30 2 1 3 0.017 

50.555 1.8040 15.07 50.475 1.8066 16.10 3 2 1 -0.080 

51.348 1.7779 11.51 51.255 1.7810 11.60 1 4 0 -0.093 

52.125 1.7533 12.18 52.075 1.7548 11.70 4 0 2 -0.050 

53.137 1.7223 16.59 53.220 1.7198 14.00 0 0 4 0.083 

55.922 1.6429 5.35 55.863 1.6445 5.90 3 2 2 -0.059 

60.037 1.5398 5.45 59.925 1.5424 4.30 2 4 0 -0.112 

61.677 1.5027 6.84 61.571 1.5050 3.20 2 4 1 -0.106 

63.060 1.4730 8.11 62.982 1.4747 7.90 5 0 2 -0.078 

63.959 1.4545 6.50 63.998 1.4537 7.40 3 0 4 0.039 

64.196 1.4496 8.23 64.165 1.4503 9.30 3 2 3 -0.031 

65.114 1.4314 6.98 65.000 1.4337 6.90 5 1 1 -0.114 

75.539 1.2577 5.61 75.622 1.2565 4.50 2 1 5 0.083 

77.027 1.2370 5.62 77.021 1.2371 5.00 1 4 4 -0.006 

77.246 1.2341 7.07 77.174 1.2350 4.40 5 1 3 -0.072 

78.301 1.2201 7.51 78.179 1.2217 5.60 2 5 2 -0.122 
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Table A3: XRD peak list data for pH 11 hydrothermal HA, with ICDD reference file number: 01-

074-0566 [37]. a = b = 9.45 Å, c = 6.89 Å. 

pH 11 hydrothermal HA 
Hydroxyapatite reference file, 

 ICDD: 074-0566 

Pos. 

°2θ 

d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. °2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.801 8.1845 15.59 10.832 8.1614 17.00 1 0 0 0.031 

21.733 4.0859 7.76 21.762 4.0807 6.50 2 0 0 0.029 

22.828 3.8925 8.57 22.858 3.8875 6.30 1 1 1 0.030 

25.849 3.4440 41.28 25.883 3.4395 35.70 0 0 2 0.034 

28.098 3.1732 9.81 28.131 3.1695 8.80 1 0 2 0.033 

28.895 3.0875 18.01 28.921 3.0847 16.00 2 1 0 0.026 

31.739 2.8170 100.00 31.766 2.8147 100.00 2 1 1 0.027 

32.164 2.7808 62.02 32.195 2.7781 51.50 1 1 2 0.031 

32.871 2.7225 57.07 32.897 2.7205 61.30 3 0 0 0.026 

34.032 2.6322 21.88 34.063 2.6299 21.00 2 0 2 0.031 

39.870 2.2648 16.15 39.791 2.2636 20.50 1 3 0 -0.079 

41.962 2.1513 5.19 41.986 2.1502 5.60 1 3 1 0.024 

46.669 1.9447 26.19 46.694 1.9437 28.10 2 2 2 0.025 

48.056 1.8918 10.17 48.081 1.8908 12.20 1 3 2 0.025 

49.460 1.8413 33.09 49.490 1.8403 31.30 2 1 3 0.030 

50.454 1.8073 13.06 50.475 1.8066 16.10 3 2 1 0.021 

51.235 1.7816 9.30 51.255 1.7810 11.60 1 4 0 0.020 

52.052 1.7556 10.59 52.075 1.7548 11.70 4 0 2 0.023 

53.185 1.7208 19.52 53.220 1.7198 14.00 0 0 4 0.035 

61.673 1.5028 6.60 61.704 1.5021 5.00 1 2 4 0.031 

62.963 1.4751 6.26 62.982 1.4747 7.90 5 0 2 0.019 

63.969 1.4542 8.44 63.998 1.4537 7.40 3 0 4 0.029 

64.142 1.4507 9.26 64.165 1.4503 9.30 3 2 3 0.023 

64.985 1.4340 5.34 65.000 1.4337 6.90 5 1 1 0.015 

75.591 1.2569 5.27 75.622 1.2565 4.50 2 1 5 0.031 

76.998 1.2374 5.50 77.021 1.2371 5.00 1 4 4 0.023 

77.158 1.2353 5.77 77.174 1.2350 4.40 5 1 3 0.016 
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Table A4: XRD peak list data for 500 °C sol-gel HA, with ICDD reference file number: 01-074-0566 

[37] and single calcite peak, ICDD reference file number: 00-005-0586 [221].  

Lattice parameters for HA phase: a = b = 9.41 Å, c = 6.89 Å 

  

500 °C sol-gel HA Pattern Assignment 
 

Pos. 

°2θ 

d-spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD 

Reference file 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.877 8.1476 15.03 HA #74-0566 10.832 8.1614 17.00 1 0 0 -0.045 

21.799 4.0738 7.71 HA #74-0566 21.762 4.0807 6.50 2 0 0 -0.037 

22.874 3.8848 8.67 HA #74-0566 22.858 3.8875 6.30 1 1 1 -0.016 

25.845 3.4445 34.90 HA #74-0566 25.883 3.4395 35.70 0 0 2 0.038 

28.103 3.1726 8.26 HA #74-0566 28.131 3.1695 8.80 1 0 2 0.028 

28.971 3.0795 18.34 HA #74-0566 28.921 3.0847 16.00 2 1 0 -0.050 

29.397 3.0359 16.81 
CaCO3 #05-

0586 
29.406 3.0350 100.00 1 0 4 0.009 

31.804 2.8114 100.00 HA #74-0566 31.766 2.8147 100.00 2 1 1 -0.038 

32.183 2.7791 50.74 HA #74-0566 32.195 2.7781 51.50 1 1 2 0.012 

32.954 2.7159 58.15 HA #74-0566 32.897 2.7205 61.30 3 0 0 -0.057 

34.058 2.6303 19.88 HA #74-0566 34.063 2.6299 21.00 2 0 2 0.005 

39.861 2.2597 21.52 HA #74-0566 39.791 2.2636 20.50 1 3 0 -0.070 

42.047 2.1472 5.69 HA #74-0566 41.986 2.1502 5.60 1 3 1 -0.061 

46.729 1.9424 29.37 HA #74-0566 46.694 1.9437 28.10 2 2 2 -0.035 

48.120 1.8894 11.46 HA #74-0566 48.081 1.8908 12.20 1 3 2 -0.039 

49.473 1.8409 32.10 HA #74-0566 49.490 1.8403 31.30 2 1 3 0.017 

50.555 1.8040 15.63 HA #74-0566 50.475 1.8066 16.10 3 2 1 -0.080 

51.348 1.7779 11.19 HA #74-0566 51.255 1.7810 11.60 1 4 0 -0.093 

52.125 1.7533 12.18 HA #74-0566 52.075 1.7548 11.70 4 0 2 -0.050 

53.137 1.7223 8.02 HA #74-0566 53.220 1.7198 14.00 0 0 4 0.083 

55.922 1.6429 5.50 HA #74-0566 55.863 1.6445 5.90 3 2 2 -0.059 

61.677 1.5027 6.87 HA #74-0566 61.571 1.5050 3.20 2 4 1 -0.106 

63.060 1.4730 10.27 HA #74-0566 62.982 1.4747 7.90 5 0 2 -0.078 

63.959 1.4545 6.77 HA #74-0566 63.998 1.4537 7.40 3 0 4 0.039 

64.196 1.4496 7.64 HA #74-0566 64.165 1.4503 9.30 3 2 3 -0.031 

65.114 1.4314 7.41 HA #74-0566 65.000 1.4337 6.90 5 1 1 -0.114 

77.027 1.2370 5.67 HA #74-0566 77.021 1.2371 5.00 1 4 4 -0.006 

77.246 1.2341 7.22 HA #74-0566 77.174 1.2350 4.40 5 1 3 -0.072 

78.301 1.2201 7.53 HA #74-0566 78.179 1.2217 5.60 2 5 2 -0.122 
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Table A5: XRD peak list data for 700 °C sol-gel HA, with reference patterns for HA (ICDD 

reference file number: 01-074-0566 [9]), β-TCP (ICDD reference file number: 04-008-8714 [232]), 

DCPA (ICDD reference file number: 04-012-8346 [225]) and CaO (ICDD reference file number: 04-

003-7161 [226]). Lattice parameters for HA phase: a = b = 9.45 Å, c = 6.89 Å 

 

700 °C sol-gel HA Pattern Assignment 
 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD Reference 

file 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) h k l Δ°2θ 

10.800 8.1854 15.78 HA #74-0566 10.832 8.1614 17.00 1 0 0 0.032 

10.826 8.1653 18.98 TCP #04-008-8714 10.863 8.1382 11.60 0 1 2 0.037 

13.582 6.5144 20.15 TCP #04-008-8714 13.618 6.4971 17.00 1 0 4 0.036 

16.806 5.2711 3.29 HA #74-0566 16.842 5.2599 4.60 1 0 1 0.036 

16.936 5.2309 23.30 TCP #04-008-8714 16.974 5.2195 20.80 1 1 0 0.038 

21.733 4.0860 7.40 HA #74-0566 21.762 4.0807 6.50 2 0 0 0.029 

21.787 4.0760 13.82 TCP #04-008-8714 21.824 4.0691 11.70 0 2 4 0.037 

25.736 3.4588 26.34 TCP #04-008-8714 25.773 3.4540 24.40 1 0 10 0.037 

25.840 3.4452 21.80 HA #74-0566 25.883 3.4395 35.70 0 0 2 0.043 

26.129 3.4076 4.01 TCP #04-008-8714 26.167 3.4028 3.70 2 1 1 0.038 

26.445 3.3677 8.71 
DCPA #04-012-

8346 
26.360 3.3784 92.10 0 0 2 -0.085 

26.459 3.3660 9.46 TCP #04-008-8714 26.497 3.3612 7.90 1 2 2 0.038 

26.534 3.3566 9.22 
DCPA #04-012-

8346 
26.547 3.3550 92.50 2 0 0 0.013 

27.386 3.2540 6.02 TCP #04-008-8714 27.423 3.2497 5.30 1 1 9 0.037 

27.739 3.2134 18.94 TCP #04-008-8714 27.777 3.2091 51.90 2 1 4 0.038 

28.090 3.1741 3.78 HA #74-0566 28.131 3.1695 8.80 1 0 2 0.041 

28.678 3.1091 20.52 
DCPA #04-012-

8346 
28.518 3.1274 23.70 

-

1 

-

1 2 
-0.160 

28.896 3.0874 6.38 HA #74-0566 28.921 3.0847 16.00 2 1 0 0.025 

28.902 3.0867 6.35 
DCPA #04-012-

8346 
28.842 3.0930 5.10 

0 

-

2 1 
-0.060 

29.582 3.0173 12.49 TCP #04-008-8714 29.620 3.0135 12.40 3 0 0 0.038 

30.525 2.9251 23.07 
DCPA #04-012-

8346 
30.241 2.9530 100.00 

-

1 2 0 
-0.284 

30.985 2.8838 40.65 TCP #04-008-8714 31.023 2.8804 100.00 0 2 10 0.038 

31.738 2.8171 100.00 HA #74-0566 31.766 2.8147 100.00 2 1 1 0.028 

32.157 2.7813 54.71 HA #74-0566 32.195 2.7781 51.50 1 1 2 0.038 

32.387 2.7621 20.21 
DCPA #04-012-

8346 
32.463 2.7558 34.40 2 0 1 0.076 

32.399 2.7611 21.67 TCP #04-008-8714 32.436 2.7580 19.90 1 2 8 0.037 

32.872 2.7224 52.22 HA #74-0566 32.897 2.7205 61.30 3 0 0 0.025 

32.955 2.7158 5.74 TCP #04-008-8714 32.993 2.7127 7.50 3 0 6 0.038 

33.440 2.6775 5.35 TCP #04-008-8714 33.477 2.6746 5.90 1 1 12 0.037 

34.027 2.6327 8.88 HA #74-0566 34.063 2.6299 21.00 2 0 2 0.036 

34.296 2.6126 20.70 TCP #04-008-8714 34.334 2.6098 69.20 2 2 0 0.038 

34.982 2.5629 5.79 TCP #04-008-8714 35.019 2.5603 3.90 0 1 14 0.037 

35.065 2.5570 10.20 TCP #04-008-8714 35.104 2.5543 6.30 2 2 3 0.039 

35.533 2.5245 12.16 TCP #04-008-8714 35.570 2.5219 11.50 2 1 10 0.037 

37.290 2.4094 4.92 TCP #04-008-8714 37.329 2.4070 7.70 2 2 6 0.039 

37.428 2.4009 3.78 CaO #04-003-7161 37.345 2.4060 100.00 2 0 0 -0.083 

37.776 2.3795 3.06 TCP #04-008-8714 37.814 2.3772 4.70 3 1 5 0.038 

39.770 2.2647 17.87 HA #74-0566 39.791 2.2636 20.50 1 3 0 0.021 

39.789 2.2636 3.11 TCP #04-008-8714 39.825 2.2617 9.70 1 0 16 0.036 

40.030 2.2506 5.37 TCP #04-008-8714 40.067 2.2486 2.60 1 1 15 0.037 

40.118 2.2458 4.05 TCP #04-008-8714 40.156 2.2438 1.40 0 4 2 0.038 

40.956 2.2018 4.95 TCP #04-008-8714 41.054 2.1968 9.90 2 1 13 0.098 

41.633 2.1676 11.42 TCP #04-008-8714 41.670 2.1657 9.50 3 0 12 0.037 

43.386 2.0839 4.61 TCP #04-008-8714 43.424 2.0822 3.40 1 3 10 0.038 
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43.516 2.0780 5.93 TCP #04-008-8714 43.552 2.0764 4.20 0 0 18 0.036 

43.636 2.0726 4.82 TCP #04-008-8714 43.676 2.0708 2.30 3 2 1 0.040 

43.833 2.0637 7.01 HA #74-0566 43.876 2.0618 4.50 1 1 3 0.043 

43.847 2.0631 7.22 TCP #04-008-8714 43.885 2.0614 4.80 2 3 2 0.038 

44.457 2.0362 7.69 TCP #04-008-8714 44.496 2.0345 7.40 0 4 8 0.039 

44.684 2.0264 5.98 TCP #04-008-8714 44.723 2.0247 3.60 3 2 4 0.039 

45.260 2.0019 6.68 TCP #04-008-8714 45.297 2.0004 6.30 2 2 12 0.037 

45.288 2.0008 6.28 HA #74-0566 45.330 1.9990 3.50 2 0 3 0.042 

46.534 1.9500 3.28 TCP #04-008-8714 46.573 1.9485 1.80 1 4 3 0.039 

46.667 1.9448 30.69 HA #74-0566 46.694 1.9437 28.10 2 2 2 0.027 

46.905 1.9355 9.62 TCP #04-008-8714 46.943 1.9340 22.20 4 0 10 0.038 

47.914 1.8970 6.61 TCP #04-008-8714 47.953 1.8956 13.00 2 3 8 0.039 

48.055 1.8918 12.67 HA #74-0566 48.081 1.8908 12.20 1 3 2 0.026 

48.318 1.8821 13.79 TCP #04-008-8714 48.357 1.8807 11.30 1 4 6 0.039 

49.452 1.8416 35.71 HA #74-0566 49.490 1.8403 31.30 2 1 3 0.038 

49.749 1.8313 4.85 TCP #04-008-8714 49.784 1.8301 3.70 0 1 20 0.035 

50.233 1.8148 5.20 TCP #04-008-8714 50.271 1.8135 4.40 3 2 10 0.038 

50.457 1.8072 6.04 HA #74-0566 50.475 1.8066 16.10 3 2 1 0.018 

50.572 1.8034 4.34 TCP #04-008-8714 50.683 1.7997 4.30 2 2 15 0.111 

51.187 1.7832 6.72 TCP #04-008-8714 51.226 1.7819 3.90 4 1 9 0.039 

51.239 1.7815 6.93 HA #74-0566 51.255 1.7810 11.60 1 4 0 0.016 

51.396 1.7764 6.15 TCP #04-008-8714 51.434 1.7752 6.80 0 5 4 0.038 

51.549 1.7715 5.37 TCP #04-008-8714 51.586 1.7703 1.00 2 3 11 0.037 

52.051 1.7556 3.96 HA #74-0566 52.075 1.7548 11.70 4 0 2 0.024 

52.944 1.7281 29.29 TCP #04-008-8714 52.979 1.7270 24.40 2 0 20 0.035 

53.169 1.7213 30.58 HA #74-0566 53.220 1.7198 14.00 0 0 4 0.051 

53.518 1.7109 9.23 TCP #04-008-8714 53.554 1.7098 7.90 3 0 18 0.036 

53.688 1.7059 5.79 TCP #04-008-8714 53.724 1.7048 1.40 2 1 19 0.036 

54.326 1.6873 6.60 TCP #04-008-8714 54.365 1.6862 5.50 5 0 8 0.039 

54.435 1.6842 3.98 HA #74-0566 54.484 1.6828 1.00 1 0 4 0.049 

54.474 1.6831 5.24 TCP #04-008-8714 54.561 1.6806 1.80 3 2 13 0.087 

55.021 1.6676 4.90 TCP #04-008-8714 55.058 1.6666 3.00 4 1 12 0.037 

56.009 1.6405 4.06 TCP #04-008-8714 56.111 1.6378 3.30 1 2 20 0.102 

56.455 1.6286 3.14 TCP #04-008-8714 56.494 1.6276 2.20 0 5 10 0.039 

57.337 1.6057 3.57 TCP #04-008-8714 57.378 1.6046 4.20 3 3 9 0.041 

57.531 1.6007 2.78 TCP #04-008-8714 57.570 1.5997 2.70 5 1 4 0.039 

59.415 1.5544 6.32 TCP #04-008-8714 59.439 1.5538 7.30 5 1 7 0.024 

59.523 1.5518 5.13 TCP #04-008-8714 59.561 1.5509 6.70 3 2 16 0.038 

59.703 1.5476 6.62 TCP #04-008-8714 59.739 1.5467 1.20 4 1 15 0.036 

60.259 1.5346 4.10 TCP #04-008-8714 60.298 1.5337 2.40 1 5 8 0.039 

61.454 1.5076 3.76 TCP #04-008-8714 61.494 1.5067 3.70 2 3 17 0.040 

61.661 1.5030 3.15 HA #74-0566 61.704 1.5021 5.00 1 2 4 0.043 

62.965 1.4750 3.31 HA #74-0566 62.982 1.4747 7.90 5 0 2 0.017 

63.289 1.4682 4.88 TCP #04-008-8714 63.309 1.4678 3.90 1 2 23 0.020 

63.958 1.4545 3.25 HA #74-0566 63.998 1.4537 7.40 3 0 4 0.040 

64.139 1.4508 3.69 HA #74-0566 64.165 1.4503 9.30 3 2 3 0.026 

64.991 1.4338 3.11 HA #74-0566 65.000 1.4337 6.90 5 1 1 0.009 

66.188 1.4108 6.33 TCP #04-008-8714 66.229 1.4100 4.70 5 2 6 0.041 

66.388 1.4070 4.14 HA #74-0566 66.412 1.4066 2.10 1 4 3 0.024 

72.322 1.3055 3.01 TCP #04-008-8714 72.359 1.3049 2.80 1 5 17 0.037 

73.396 1.2890 3.89 TCP #04-008-8714 73.435 1.2884 2.20 5 3 2 0.039 

75.273 1.2615 4.42 TCP #04-008-8714 75.311 1.2609 3.40 4 2 20 0.038 

78.173 1.2217 4.30 HA #74-0566 78.179 1.2217 5.60 2 5 2 0.006 

78.218 1.2212 4.30 TCP #04-008-8714 78.253 1.2207 1.70 3 5 10 0.035 
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Table A6: XRD peak list data for Sigma-Aldrich HA calcined 700 °C, with reference patterns for 

HA (ICDD reference file number: 01-074-0566 [9]) and β-TCP (ICDD reference file number: 04-

008-8714 [232]). Lattice parameters for HA phase: a = b = 9.48 Å, c = 6.89 Å 

 

Sigma-Aldrich HA at 

700 °C 
Pattern Assignment 

 

Pos. 

°2θ 

d-

spacin

g (Å) 

Relative 

intensity 

(%) 

ICDD 

Reference 

file: 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.771 8.2070 11.89 HA #74-0566 10.832 8.161 17.00 1 0 0 0.061 

21.697 4.0930 7.35 HA #74-0566 21.762 4.081 6.50 2 0 0 0.065 

22.797 3.8980 7.71 HA #74-0566 22.858 3.888 6.30 1 1 1 0.061 

25.830 3.4460 32.80 HA #74-0566 25.883 3.440 35.70 0 0 2 0.053 

28.076 3.1760 10.27 HA #74-0566 28.131 3.170 8.80 1 0 2 0.055 

28.855 3.0920 19.04 HA #74-0566 28.921 3.085 16.00 2 1 0 0.066 

31.005 2.9090 5.94 
β-TCP #04-

008-8714 
31.023 2.880 100.00 0 2 10 0.018 

31.701 2.8200 100.00 HA #74-0566 31.766 2.815 100.00 2 1 1 0.065 

32.138 2.7830 58.87 HA #74-0566 32.195 2.778 51.50 1 1 2 0.057 

32.829 2.7260 59.70 HA #74-0566 32.897 2.721 61.30 3 0 0 0.068 

34.004 2.6340 22.85 HA #74-0566 34.063 2.630 21.00 2 0 2 0.059 

35.388 2.5340 5.56 HA #74-0566 35.455 2.530 3.90 3 0 1 0.067 

39.136 2.3000 5.69 HA #74-0566 39.197 2.297 5.00 2 1 2 0.061 

39.720 2.2670 21.20 HA #74-0566 39.791 2.264 20.50 1 3 0 0.071 

41.917 2.1540 6.49 HA #74-0566 41.986 2.150 5.60 1 3 1 0.069 

43.821 2.0640 5.22 HA #74-0566 43.876 2.062 4.50 1 1 3 0.055 

46.310 1.9590 8.70 HA #74-0566 46.381 1.956 0.70 4 0 1 0.071 

46.629 1.9460 27.41 HA #74-0566 46.694 1.944 28.10 2 2 2 0.065 

48.015 1.8930 12.22 HA #74-0566 48.081 1.891 12.20 1 3 2 0.066 

48.513 1.8750 6.45 HA #74-0566 48.586 1.872 4.00 2 3 0 0.073 

49.432 1.8420 29.29 HA #74-0566 49.490 1.840 31.30 2 1 3 0.058 

50.403 1.8090 15.61 HA #74-0566 50.475 1.807 16.10 3 2 1 0.072 

51.180 1.7830 11.89 HA #74-0566 51.255 1.781 11.60 1 4 0 0.075 

52.007 1.7570 12.57 HA #74-0566 52.075 1.755 11.70 4 0 2 0.068 

53.171 1.7210 13.75 HA #74-0566 53.220 1.720 14.00 0 0 4 0.049 

55.793 1.6460 5.32 HA #74-0566 55.863 1.645 5.90 3 2 2 0.070 

59.846 1.5440 5.09 HA #74-0566 59.925 1.542 4.30 2 4 0 0.079 

61.494 1.5070 5.36 HA #74-0566 61.571 1.505 3.20 2 4 1 0.077 

61.649 1.5030 5.84 HA #74-0566 61.704 1.502 5.00 1 2 4 0.055 

62.908 1.4760 7.39 HA #74-0566 62.982 1.475 7.90 5 0 2 0.074 

63.942 1.4550 9.21 HA #74-0566 63.998 1.454 7.40 3 0 4 0.056 

64.098 1.4520 9.14 HA #74-0566 64.165 1.450 9.30 3 2 3 0.067 

64.921 1.4350 6.75 HA #74-0566 65.000 1.434 6.90 5 1 1 0.079 

76.956 1.2380 6.14 HA #74-0566 77.021 1.237 5.00 1 4 4 0.065 

77.100 1.2360 5.98 HA #74-0566 77.174 1.235 4.40 5 1 3 0.074 

78.098 1.2230 5.16 HA #74-0566 78.179 1.222 5.60 2 5 2 0.081 
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Table A7: XRD peak list data for Sigma-Aldrich HA calcined 800 °C, with reference patterns for 

HA (ICDD reference file number: 01-074-0566 [9]) and β-TCP (ICDD reference file number: 04-

008-8714 [232]). Lattice parameters for HA phase: a = b = 9.46 Å, c = 6.89 Å 

Sigma-Aldrich HA at 800 °C Pattern Assignment 
 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD Reference 

file: 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.788 8.1940 15.97 HA #74-0566 10.832 8.1614 17.00 1 0 0 0.044 

10.821 8.1691 18.44 
β-TCP #04-008-

8714 
10.863 8.1382 11.60 0 1 2 0.042 

13.573 6.5187 20.27 
β-TCP #04-008-

8714 
13.618 6.4971 17.00 1 0 4 0.045 

16.937 5.2307 24.12 
β-TCP #04-008-

8714 
16.974 5.2195 20.80 1 1 0 0.037 

21.718 4.0888 8.30 HA #74-0566 21.762 4.0807 6.50 2 0 0 0.044 

21.785 4.0763 14.12 
β-TCP #04-008-

8714 
21.824 4.0691 11.70 0 2 4 0.039 

25.715 3.4617 30.76 
β-TCP #04-008-

8714 
25.773 3.4540 24.40 1 0 10 0.058 

25.840 3.4452 21.76 HA #74-0566 25.883 3.4395 35.70 0 0 2 0.043 

26.134 3.4070 5.78 
β-TCP #04-008-

8714 
26.167 3.4028 3.70 2 1 1 0.033 

26.463 3.3655 8.09 
β-TCP #04-008-

8714 
26.497 3.3612 7.90 1 2 2 0.034 

27.372 3.2557 7.33 
β-TCP #04-008-

8714 
27.423 3.2497 5.30 1 1 9 0.051 

27.741 3.2132 61.06 
β-TCP #04-008-

8714 
27.777 3.2091 51.90 2 1 4 0.036 

28.878 3.0893 5.72 HA #74-0566 28.921 3.0847 16.00 2 1 0 0.043 

29.589 3.0166 12.93 
β-TCP #04-008-

8714 
29.620 3.0135 12.40 3 0 0 0.031 

30.970 2.8851 100.00 
β-TCP #04-008-

8714 
31.023 2.8804 100.00 0 2 10 0.053 

31.722 2.8184 35.07 HA #74-0566 31.766 2.8147 100.00 2 1 1 0.044 

32.152 2.7818 20.15 HA #74-0566 32.195 2.7781 51.50 1 1 2 0.043 

32.393 2.7616 26.30 
β-TCP #04-008-

8714 
32.436 2.7580 19.90 1 2 8 0.043 

32.853 2.7240 23.24 HA #74-0566 32.897 2.7205 61.30 3 0 0 0.044 

32.956 2.7157 24.64 
β-TCP #04-008-

8714 
32.993 2.7127 7.50 3 0 6 0.037 

33.419 2.6791 6.71 
β-TCP #04-008-

8714 
33.477 2.6746 5.90 1 1 12 0.058 

34.020 2.6332 9.47 HA #74-0566 34.063 2.6299 21.00 2 0 2 0.043 

34.305 2.6119 67.98 
β-TCP #04-008-

8714 
34.334 2.6098 69.20 2 2 0 0.029 

34.952 2.5651 6.25 
β-TCP #04-008-

8714 
35.019 2.5603 3.90 0 1 14 0.067 

35.073 2.5565 10.00 
β-TCP #04-008-

8714 
35.104 2.5543 6.30 2 2 3 0.031 

35.522 2.5252 12.47 
β-TCP #04-008-

8714 
35.570 2.5219 11.50 2 1 10 0.048 

37.293 2.4092 9.61 
β-TCP #04-008-

8714 
37.329 2.4070 7.70 2 2 6 0.036 

37.782 2.3792 5.82 
β-TCP #04-008-

8714 
37.814 2.3772 4.70 3 1 5 0.032 

39.747 2.2660 18.46 HA #74-0566 39.791 2.2636 20.50 1 3 0 0.044 

39.755 2.2655 18.73 
β-TCP #04-008-

8714 
39.825 2.2617 9.70 1 0 16 0.070 

40.002 2.2521 7.05 
β-TCP #04-008-

8714 
40.067 2.2486 2.60 1 1 15 0.065 

41.620 2.1682 10.58 
β-TCP #04-008-

8714 
41.670 2.1657 9.50 3 0 12 0.050 

43.475 2.0799 6.26 
β-TCP #04-008-

8714 
43.552 2.0764 4.20 0 0 18 0.077 

43.832 2.0638 6.47 HA #74-0566 43.876 2.0618 4.50 1 1 3 0.044 
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43.860 2.0625 6.88 
β-TCP #04-008-

8714 
43.885 2.0614 4.80 2 3 2 0.025 

44.460 2.0361 7.16 
β-TCP #04-008-

8714 
44.496 2.0345 7.40 0 4 8 0.036 

44.695 2.0259 5.90 
β-TCP #04-008-

8714 
44.723 2.0247 3.60 3 2 4 0.028 

45.251 2.0023 6.10 
β-TCP #04-008-

8714 
45.297 2.0004 6.30 2 2 12 0.046 

45.286 2.0008 6.06 HA #74-0566 45.330 1.9990 3.50 2 0 3 0.044 

46.547 1.9495 8.38 
β-TCP #04-008-

8714 
46.573 1.9485 1.80 1 4 3 0.026 

46.651 1.9454 12.02 HA #74-0566 46.694 1.9437 28.10 2 2 2 0.043 

46.904 1.9355 24.83 
β-TCP #04-008-

8714 
46.943 1.9340 22.20 4 0 10 0.039 

47.919 1.8969 15.33 
β-TCP #04-008-

8714 
47.953 1.8956 13.00 2 3 8 0.034 

48.038 1.8925 13.10 HA #74-0566 48.081 1.8908 12.20 1 3 2 0.043 

48.328 1.8818 13.25 
β-TCP #04-008-

8714 
48.357 1.8807 11.30 1 4 6 0.029 

49.447 1.8418 10.36 HA #74-0566 49.490 1.8403 31.30 2 1 3 0.043 

49.705 1.8328 7.15 
β-TCP #04-008-

8714 
49.784 1.8301 3.70 0 1 20 0.079 

50.234 1.8148 5.88 
β-TCP #04-008-

8714 
50.271 1.8135 4.40 3 2 10 0.037 

50.432 1.8081 7.16 HA #74-0566 50.475 1.8066 16.10 3 2 1 0.043 

50.555 1.8040 6.14 
β-TCP #04-008-

8714 
50.683 1.7997 4.30 2 2 15 0.128 

51.192 1.7830 7.91 
β-TCP #04-008-

8714 
51.226 1.7819 3.90 4 1 9 0.034 

51.211 1.7824 8.09 HA #74-0566 51.255 1.7810 11.60 1 4 0 0.044 

51.411 1.7759 10.22 
β-TCP #04-008-

8714 
51.434 1.7752 6.80 0 5 4 0.023 

51.548 1.7715 5.98 
β-TCP #04-008-

8714 
51.586 1.7703 1.00 2 3 11 0.038 

52.903 1.7293 24.23 
β-TCP #04-008-

8714 
52.979 1.7270 24.40 2 0 20 0.076 

53.176 1.7211 8.03 HA #74-0566 53.220 1.7198 14.00 0 0 4 0.044 

53.489 1.7117 8.64 
β-TCP #04-008-

8714 
53.554 1.7098 7.90 3 0 18 0.065 

53.654 1.7069 5.86 
β-TCP #04-008-

8714 
53.724 1.7048 1.40 2 1 19 0.070 

54.335 1.6871 5.80 
β-TCP #04-008-

8714 
54.365 1.6862 5.50 5 0 8 0.030 

59.428 1.5540 9.60 
β-TCP #04-008-

8714 
59.439 1.5538 7.30 5 1 7 0.011 

59.510 1.5521 11.29 
β-TCP #04-008-

8714 
59.561 1.5509 6.70 3 2 16 0.051 

59.693 1.5478 6.13 
β-TCP #04-008-

8714 
59.739 1.5467 1.20 4 1 15 0.046 
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Table A8: XRD peak list data for pH 9 hydrothermal HA for cytotoxicity analysis, with ICDD 

reference file number: 01-074-0566 [37]. a = b = 9.48 Å, c = 6.88 Å. 

pH 9 hydrothermal HA for 

cytotoxicity analysis 

Hydroxyapatite reference file, ICDD:  074-

0566  

Pos. 

°2θ 

d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.793 8.2106 14.59 10.832 8.1614 17.00 1 0 0 0.039 

16.820 5.2798 4.45 16.842 5.2599 4.60 1 0 1 0.022 

18.797 4.7288 3.19 18.817 4.7120 2.30 1 1 0 0.020 

21.748 4.0934 6.33 21.762 4.0807 6.50 2 0 0 0.014 

22.848 3.8987 8.05 22.858 3.8875 6.30 1 1 1 0.010 

25.353 3.5189 2.76 25.357 3.5097 2.30 2 0 1 0.004 

25.886 3.4477 33.66 25.883 3.4395 35.70 0 0 2 -0.003 

28.139 3.1766 8.23 28.131 3.1695 8.80 1 0 2 -0.008 

28.924 3.0921 17.13 28.921 3.0847 16.00 2 1 0 -0.003 

31.776 2.8208 100 31.766 2.8147 100.00 2 1 1 -0.010 

32.129 2.7837 57.76 32.195 2.7781 51.50 1 1 2 0.066 

32.824 2.7263 66.15 32.897 2.7205 61.30 3 0 0 0.073 

34.084 2.6349 21.93 34.063 2.6299 21.00 2 0 2 -0.021 

35.474 2.5348 3.84 35.455 2.5298 3.90 3 0 1 -0.019 

39.230 2.3003 4.98 39.197 2.2965 5.00 2 1 2 -0.033 

39.819 2.2676 17.86 39.791 2.2636 20.50 1 3 0 -0.028 

42.021 2.1538 4.68 41.986 2.1502 5.60 1 3 1 -0.035 

43.925 2.0648 3.71 43.876 2.0618 4.50 1 1 3 -0.049 

45.382 2.0018 3.39 45.330 1.9990 3.50 2 0 3 -0.052 

46.427 1.9591 7.72 46.381 1.9561 0.70 4 0 1 -0.046 

46.745 1.9466 24.07 46.694 1.9437 28.10 2 2 2 -0.051 

48.135 1.8935 10.74 48.081 1.8908 12.20 1 3 2 -0.054 

48.637 1.8752 4.10 48.586 1.8724 4.00 2 3 0 -0.051 

49.553 1.8427 27.55 49.490 1.8403 31.30 2 1 3 -0.063 

50.532 1.8092 13.04 50.475 1.8066 16.10 3 2 1 -0.057 

51.313 1.7835 9.43 51.255 1.7810 11.60 1 4 0 -0.058 

52.055 1.7555 11.97 52.075 1.7548 11.70 4 0 2 0.020 

53.299 1.7216 11.18 53.220 1.7198 14.00 0 0 4 -0.079 

55.838 1.6452 5.49 55.863 1.6445 5.90 3 2 2 0.025 

57.061 1.6128 4.13 57.134 1.6109 3.70 3 1 3 0.073 

60.006 1.5443 4.01 59.925 1.5424 4.30 2 4 0 -0.081 

61.636 1.5036 6.11 61.571 1.5050 3.20 2 4 1 -0.065 

61.659 1.5068 6.06 61.704 1.5021 5.00 1 2 4 0.045 

62.902 1.4763 8.77 62.982 1.4747 7.90 5 0 2 0.080 

63.929 1.4551 9.23 63.998 1.4537 7.40 3 0 4 0.069 

64.107 1.4551 10.96 64.165 1.4503 9.30 3 2 3 0.058 

64.917 1.4353 7.7 65.000 1.4337 6.90 5 1 1 0.083 

71.509 1.3183 4.13 71.596 1.3169 3.70 4 3 1 0.087 

72.144 1.3082 3.27 72.232 1.3069 2.80 5 2 0 0.088 

73.931 1.2810 4.13 74.012 1.2798 3.80 2 4 3 0.081 

75.553 1.2575 4.53 75.622 1.2565 4.50 2 1 5 0.069 

75.999 1.2512 2.97 76.085 1.2500 2.40 3 4 2 0.086 

76.944 1.2382 6.48 77.021 1.2371 5.00 1 4 4 0.077 

77.092 1.2362 7.42 77.174 1.2350 4.40 5 1 3 0.082 

78.323 1.2228 3.73 78.179 1.2217 5.60 2 5 2 -0.144 
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Table A9: XRD peak list data for pH 11 hydrothermal HA for cytotoxicity analysis, with ICDD 

reference file number: 01-074-0566 [37]. a = b = 9.49 Å, c = 6.90 Å. 

pH 11 hydrothermal HA for 

cytotoxicity analysis 

Hydroxyapatite reference file, ICDD: 074-

0566  

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d- 

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

10.850 8.1476 16.17 10.832 8.1614 17.00 1 0 0 -0.018 

21.799 4.0738 8.05 21.762 4.0807 6.50 2 0 0 -0.037 

22.874 3.8848 8.51 22.858 3.8875 6.30 1 1 1 -0.016 

25.845 3.4445 37.74 25.883 3.4395 35.70 0 0 2 0.038 

28.103 3.1726 8.42 28.131 3.1695 8.80 1 0 2 0.028 

28.971 3.0795 18.52 28.921 3.0847 16.00 2 1 0 -0.050 

31.804 2.8114 100.00 31.766 2.8147 100.00 2 1 1 -0.038 

32.183 2.7791 55.76 32.195 2.7781 51.50 1 1 2 0.012 

32.954 2.7159 58.52 32.897 2.7205 61.30 3 0 0 -0.057 

34.058 2.6303 19.60 34.063 2.6299 21.00 2 0 2 0.005 

39.861 2.2597 20.42 39.791 2.2636 20.50 1 3 0 -0.070 

42.047 2.1472 6.00 41.986 2.1502 5.60 1 3 1 -0.061 

43.837 2.0636 4.75 43.876 2.0618 4.50 1 1 3 0.039 

45.296 2.0004 4.00 45.330 1.9990 3.50 2 0 3 0.034 

46.729 1.9424 29.94 46.694 1.9437 28.10 2 2 2 -0.035 

48.120 1.8894 10.86 48.081 1.8908 12.20 1 3 2 -0.039 

49.473 1.8409 31.70 49.490 1.8403 31.30 2 1 3 0.017 

50.555 1.8040 15.07 50.475 1.8066 16.10 3 2 1 -0.080 

51.348 1.7779 11.51 51.255 1.7810 11.60 1 4 0 -0.093 

52.117 1.7535 11.59 52.075 1.7548 11.70 4 0 2 -0.042 

53.160 1.7215 13.71 53.220 1.7198 14.00 0 0 4 0.060 

55.915 1.6431 5.13 55.863 1.6445 5.90 3 2 2 -0.052 

60.037 1.5398 5.45 59.925 1.5424 4.30 2 4 0 -0.112 

61.655 1.5031 6.89 61.571 1.5050 3.20 2 4 1 -0.084 

61.677 1.5027 6.84 61.704 1.5021 5.00 1 2 4 0.027 

63.060 1.4730 8.11 62.982 1.4747 7.90 5 0 2 -0.078 

63.959 1.4545 6.50 63.998 1.4537 7.40 3 0 4 0.039 

64.196 1.4496 8.23 64.165 1.4503 9.30 3 2 3 -0.031 

65.114 1.4314 6.98 65.000 1.4337 6.90 5 1 1 -0.114 

74.074 1.2789 4.93 74.012 1.2798 3.80 2 4 3 -0.062 

75.539 1.2577 5.61 75.622 1.2565 4.50 2 1 5 0.083 

77.027 1.2370 5.62 77.021 1.2371 5.00 1 4 4 -0.006 

77.246 1.2341 7.07 77.174 1.2350 4.40 5 1 3 -0.072 

78.301 1.2201 7.51 78.179 1.2217 5.60 2 5 2 -0.122 
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4.5.4. XRF compositional data 

Table A10: Full XRF data for four HA samples. 

  
Sigma 

Aldrich HA 

pH 11 

Hydrothermal 

HA 

500 °C sol-

gel HA 

700 °C sol- 

gel HA 

  
Concentration 

(wt%) 

Concentration 

(wt%) 

Concentration 

(wt%) 

Concentration 

(wt%) 

SiO2 <0.006 <0.062 0.062 <0.062 

TiO2 0.033 <0.006 <0.012 <0.006 

Al2O3 0.008 <0.041 <0.012 <0.041 

Fe2O3 0.133 <0.005 <0.011 <0.005 

Mn3O4 0.019 0.011 0.020 0.015 

MgO <0.005 <0.007 <0.017 <0.007 

CaO 49.645 55.019 55.422 52.370 

Na2O 0.154 <0.008 <0.021 <0.008 

K2O <0.003 <0.004 <0.010 <0.004 

P2O5 41.875 41.345 38.291 45.224 

SO3 0.115 0.037 0.044 0.035 

V2O5 <0.002 0.005 <0.008 <0.004 

Cr2O3 <0.003 0.008 <0.010 <0.005 

SrO 0.043 0.011 0.020 0.014 

ZrO2 0.018 0.005 0.031 0.013 

BaO <0.004 <0.008 <0.017 <0.008 

NiO <0.002 <0.002 <0.005 <0.002 

CuO <0.002 <0.002 <0.004 <0.002 

ZnO 0.012 <0.001 <0.003 <0.001 

PbO 0.009 0.017 0.029 0.016 

HfO2 0.014 0.007 <0.009 0.004 

F <0.085 0.000 <0.020 0.000 

          

LOI 5.600 1.576 5.844 2.114 

          

Total 97.679 98.041 99.763 99.806 

 

Laboratory notes: 

1. Major elements determined on fused glass beads prepared from dried powders. 

Sample to flux ratio 1:10, 100% Lithium tetraborate flux (Fluxana FX-X100) 

results quoted as component oxide weight percent, re-calculated to include LOI.  

2. Samples analysed on University of Leicester, Department of Geology 

PANalytical Axios Advanced XRF spectrometer using WROXI analytical 

package. 

3. LOI determined on powders previously dried overnight at 105 
°
C. Samples 

ignited for 90 mins at 950 °C in air ventilated electric muffle furnace. 

4. Results below limit of detection quoted as less than the limit of detection 

(<LLD) 

5. Low total for pH 11 hydrothermal HA, but not enough sample to repeat LOI 

determination or make another bead. LOI does seem lower than for other 

samples. 

  



136  

 

4.5.5. LA-ICP-MS compositional data 

 
Table A11: LA-ICP-MS composition summary for all four HA samples and Bonemeal standard 

reference material. 

Sample Name 

Na23 

(wt% 

x 10-8) 

Mg24 

(wt% 

x 10-4) 

K39 

(wt% 

x 10-6) 

Ca44 

(wt%) 

Ca44 

(at.% 

x 10-2) 

P31 

(wt%) 

P31 

(at.% 

x 10-2) 

Ca/P 
Ca/P 

Avg 

Sigma-Aldrich 

HA 

15.973 1.057 1.947 0.697 1.584 0.303 0.977 1.620 

1.64 ± 

0.03 

17.299 1.048 2.090 0.704 1.601 0.296 0.953 1.680 

16.859 1.068 1.857 0.701 1.592 0.299 0.966 1.650 

16.657 1.068 1.667 0.693 1.575 0.307 0.990 1.590 

16.469 1.049 1.914 0.701 1.594 0.299 0.963 1.650 

pH 11 

hydrothermal 

HA 

2.806 3.925 1.700 0.700 1.592 0.299 0.965 1.650 

1.65 ± 

0.02 

2.882 3.401 1.668 0.701 1.594 0.298 0.962 1.660 

2.810 4.297 1.757 0.697 1.584 0.303 0.976 1.620 

2.889 3.961 1.606 0.705 1.601 0.295 0.952 1.680 

2.856 4.542 1.671 0.699 1.590 0.300 0.968 1.640 

500 °C sol-gel 

HA 

2.776 2.675 91.977 0.729 1.658 0.270 0.872 1.900 

1.84 ± 

0.09 

1.588 2.548 40.053 0.709 1.611 0.291 0.939 1.720 

1.965 2.437 46.146 0.720 1.637 0.280 0.902 1.810 

2.055 2.416 41.642 0.734 1.668 0.266 0.857 1.950 

2.209 2.534 32.859 0.720 1.637 0.279 0.901 1.820 

700 °C sol-gel 

HA 

3.395 2.525 25.230 0.702 1.597 0.297 0.959 1.670 

1.66 ± 

0.02 

3.163 2.568 21.158 0.700 1.590 0.300 0.968 1.640 

2.977 2.360 16.460 0.700 1.591 0.300 0.967 1.640 

2.332 2.120 18.460 0.703 1.599 0.296 0.956 1.670 

2.922 2.454 25.930 0.706 1.605 0.294 0.947 1.690 

Bonemeal 

NIST1486 

Standard 

1.437 0.211 1.683 0.725 1.647 0.275 0.888 1.860 

1.86 ± 

0.01 

1.586 0.205 1.726 0.725 1.647 0.275 0.888 1.850 

1.611 0.199 1.677 0.725 1.649 0.275 0.886 1.860 

1.685 0.206 1.837 0.726 1.650 0.274 0.884 1.870 

1.748 0.205 1.700 0.724 1.645 0.276 0.891 1.850 
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Chapter 5. Results & discussion - Calcium oxide nanosorbents for 

CO2 sequestration 

Preface 

The worldwide obligation to reduce anthropogenic CO2 emissions has led to 

large interest being generated in the development of technologies for carbon capture 

and storage (CCS). The technique for CO2 capture currently considered the most 

commercially viable is amine scrubbing, which was first successfully trialled on gas 

and coal power stations on a small scale in the early 1980’s [119]. The technique 

captures CO2 for geological storage by regenerating the solvent by stripping with 

water vapour at 100 °C to 120 °C [119] however, due to various operational (e.g. 

corrosion) and environmental disadvantages, there is a drive to develop greener and 

more cost-effective methods [120]. Alternate technologies include absorption with 

soluble carbonate, adsorption with activated carbon and capture using an ionic liquid 

[121, 122], but these are not easily applied at temperatures above 500 °C, which 

would be necessary for incorporation into coal power plants where temperature 

conditions for coal combustion (and therefore CO2 emission) are typically in the 

range 550 – 750 °C [108, 122-124]. One effective method for CO2 sequestration, at 

a higher temperature range (550 – 950 °C), is to use a solid metal oxide such as CaO 

(e.g. calcined limestone) and nanoparticulate CaO based powder sorbents are well 

recognised as materials for effective high-capacity capture and storage of CO2 [125-

129]. Calcium acetate hydrate, CaAc (Ca(CH3COO)2·xH2O), powder has been 

previously highlighted as an effective precursor for the formation of nanoparticulate 

CaO which can be utilised for optimum sequestration of CO2 gas [123, 128, 275]. 
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Although the costs of these nano-powder sorbents may prevent their utilisation in 

large scale operations, information gained from research on model CaO nano-

powder sorbents will help understand the fundamental issues concerning 

carbonations and decarbonation.  

Calcium acetate hydrate reportedly thermally decomposes (in an N2 

atmosphere) in a step-wise fashion, by an initial release of water (between 100-

200°C), and then decomposition of acetate to form an intermediate calcium 

carbonate (CaCO3) phase (between 350-450 °C), which ultimately decomposes to 

form fine nanoparticulate CaO (at ~750 °C) [141, 275]. This resultant CaO product 

exists as a more open (not fully-sintered) structure in comparison to CaO formed by 

the decomposition of alternate calcium-based precursors, such as calcium nitrate 

tetrahydrate (Ca(NO3)2·4H2O), calcium hydroxide (Ca(OH)2) and calcium carbonate 

(CaCO3) and therefore, due to the larger exposed surface area available for reaction, 

offers a higher amount of carbonation conversion for the sequestration of CO2 [128, 

275].  

Modification of powder CaO sorbents using dopant and second-phase 

materials have been highlighted as means for improving CO2-capture performance, 

with zirconia (ZrO2) and mayenite (Ca12Al14O33) both recognised as effective 

materials for such improvement [130, 276, 277]. These ‘spacer’ powders aim to 

improve the regenerability of the CaO sorbents during multicycle CO2 capture by 

acting as barriers against the sintering of CaO during decarbonation (at 800 °C), 

limiting CaO particle growth and maintaining higher particle surface areas for the 

subsequent carbonation reaction. 

Work in this Chapter aims to firstly analyse the step-wise decomposition of 

CaAc to identify the key microstructural changes that lead to the reported formation 
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of an open structured CaO sorbent by characterisation at the bulk and nanoparticle 

level. 

Secondly, nanoscale analysis of the carbonation process of the CaO sorbent 

will be carried out to identify the growth mechanism of calcium carbonate, CaCO3, 

and subsequently any densification and sintering during the continuous 

decarbonation/carbonation multicycle process. 

Finally, modifications of the optimum CaO sorbent will be prepared using 

particle spacer materials (yttria stabilised zirconia, calcium zirconate and mayenite), 

and analysed for potential further improvement in multicycle durability. The main 

concept here is to use yttria stabilised zirconia to extend beyond passive ‘spacers’ by 

utilising its phase transformation from tetragonal to monoclinic (at ~550 °C) 

between sorbent carbonation and decarbonation to induce micro stresses and crack 

to provide active ‘spacers’. 

Nanoparticle analysis by electron microscopy will be used to highlight the 

microstructural effects of particle spacers on the CaO sorbent, which ultimately may 

lead to improving the overall sorbent performance for CO2 capture.  
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5.1. Hydroxyapatite as a sorbent for CO2 capture  

As previously discussed in Section 4.2.2, the decomposition of synthetic HA 

can begin at ~600 °C, and with increasing temperature (> 700 °C), proceeds by the 

following reaction to produce β-TCP and CaO [227, 228]: 

Ca10(PO4)6(OH)2 (s) → 3Ca3(PO4)2 (s) + CaO (s) + H2O (g) (5.1) 

Naturally occurring hydroxyapatite contains carbonate ions (CO3
2-

) that have 

substituted on hydroxyl ion (OH
-
) sites [38], and the HA samples previously 

prepared in house by the sol-gel synthesis route similarly exhibited contaminants of 

carbonate and also CaO (see Section 4.2.2, Figure 4.6 and 4.7). This therefore 

presents a possibility for the use of HA as a high temperature sorbent for the capture 

of CO2 gas, following the reaction: 

 CaO (s) + CO2 (g) → CaCO3 (s) (5.2) 

A preliminary experiment has investigated the CO2 uptake capability of 

synthetic HA was by thermogravimetric analysis (TGA) using a Shimadzu TGA-50 

thermobalance. The HA samples previously prepared by the sol-gel route (calcined 

at 500 and 700 °C) and hydrothermal method (at pH 11), and also the commercial 

HA powder (Sigma-Aldrich) have been heated from 20 to 1000 °C at a constant 

heating rate of 20 °C min
-1

 in a fixed a CO2 atmosphere (flow rate = 50 ml min
-1

). 

Results are displayed in Figure 5.1 and it is observed that no significant weight gain 

due to uptake of CO2 is observed by any of the HA samples in these conditions. 

In fact weight loss (6.5%) was observed in the Sigma-Aldrich sample, which 

may be due to loss of H2O. The in-house prepared samples showed negligible 

changes in weight percentage (all < 2.5%) with the pH 11 hydrothermal HA 

showing a < 2% decrease in mass up to 600 °C, and then a minor gain of < 1% up to 
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1000 °C. Such small changes may be erroneous and caused by drift by the TGA 

instrument. The sol-gel sample prepared at 500 °C showed no notable weight 

decrease up to 900 °C, after which a 2.5% decrease in weight was observed up to 

1000 °C, which may be the start of HA decomposition to β-TCP. Similarly the sol-

gel HA prepared at 700 °C showed no notable weight change up to 900 °C, with a < 

1% weight decrease observed up to 1000 °C, which again which may be the start of 

HA decomposition to β-TCP. 

It can be ultimately concluded that HA is not effective for the capture of CO2, 

at this temperature range, and consequently will not be pursued further here for the 

production of powder sorbents for CO2.  

. 
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Figure 5.1: Thermogravimetric analysis of the CO2 uptake capability of HA samples prepared by the 

sol-gel method (calcined at 500 °C and 700 °C), the hydrothermal method (at pH 11) and commercial 

HA powder (Sigma-Aldrich). Temperature raised from 20 – 1000 °C at (20 °C min
-1

) under constant 

CO2 atmosphere (50 ml min
-1

 flow rate). 
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5.2. As received calcium acetate hydrate  

The thermal decomposition of a commercial calcium acetate hydrate, CaAc 

powder (Ca(CH3COO)2·xH2O; value of x unreported by supplier), Acros Organics, 

99%, extra pure) has been analysed using thermogravimetric analysis (TGA) with 

evolved gases analysed by Fourier transform infrared spectroscopy (FTIR). The 

development of the phases formed during this process have been analysed by XRD, 

SEM and TEM.  

 

5.2.1. XRD analysis  

The X-ray powder diffraction pattern for the CaAc, powder is shown in Figure 

5.2a. Sharp peaks suggest a high degree of crystallinity, and a prevalence of high-

intensity peaks at low 2θ values indicates large unit cell parameters. Analysis of the 

peak data using X’pert HiScore software shows the sample was best matched to 

calcium acetate hydrate, Ca(CH3COO)2·0.5H2O (ICDD ref: 00-019-0199); this 

reference pattern suggests a crystal structure where one water molecule is shared 

between every two calcium acetate molecules [278]. The crystallographic 

parameters (space group and Miller indices) are unreported by the reference pattern 

for this material.  
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Figure 5.2: (a) XRD pattern for as received calcium acetate hydrate powder. Pattern is in close 

agreement with (b) calcium acetate hydrate, Ca(CH3COO)2·0.5H2O, ICDD ref: 00-019-0199 [279]. 

Full peak data in the appendix, Table A12. Note: Reference provides peak data in the 2θ range 5 - 

52°, with Miller indices not provided.  
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5.2.2. Particle analysis by SEM and TEM 

 

Particle analysis of the as received CaAc powder has been carried out by SEM 

and TEM, with images and a selected area electron diffraction pattern (SAED) 

shown in Figures 5.3 and 5.4. Particle size information was obtained by manually 

measuring the dimensions of 50 particles (imaged by TEM) using Gatan’s Digital 

Micrograph software, Figure 5.5. 

Analysis by SEM (Figure 5.3a-c) shows that the as received CaAc powder 

consists of very large (> 50 μm), elongated and flake-like aggregates of lath shaped 

primary particles. At high magnification (Figure 5.3c), the aggregate appears 

disrupted with the presence of much smaller lath shaped particles (typically 1 μm in 

length) observed on the surface.  

Analysis by TEM (Figure 5.4) shows individual lath shaped particles of CaAc, 

with measurements of 50 individual particles imaged by TEM (Figure 5.5) showing 

lengths ranging from < 0.5 μm to > 5 μm with the greatest proportion of particles 

existing in the range 1 - 1.5 μm; aspect ratios varied greatly from 1.3 to 65.4, with an 

average of 8.1. The selected area electron diffraction (SAED) pattern of a CaAc 

particle is shown in Figure 5.4c, and no sharp rings are observed. This does not 

agree with the previous XRD pattern (Figure 5.2) where sharp intense diffraction 

peaks were observed, indicating a highly crystalline structure. It is assumed that 

CaAc may have undergone alteration under the electron beam or vacuum of the 

TEM; but this result is not considered to present any bearing on the remainder of 

this study.  
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Figure 5.3: (a & b) Low magnification SEM images of as received commercial calcium acetate 

hydrate showing large (> 50 μm), elongated and flake-like aggregates of lath shaped primary particles 

and (c) high magnification SEM image of as received commercial calcium acetate hydrate showing 

smaller lath shaped particles (typically 1 μm in length) observed on the surface of a larger aggregate, 

(Figure 5.3b). 

  

 (a) 

 (b) 

 (c) 
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Figure 5.4: (a & b) Bright field TEM images of as received commercial calcium acetate hydrate 

showing individual lath-shaped primary particles (c) shows selected area diffraction pattern for image 

(b), no sharp rings may suggest alteration of the material under the electron beam or vacuum of the 

TEM.  

  

(b) (a) 

(c) 
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Figure 5.5: Distribution of particle lengths (50 individual particles) measured from TEM images of 

the as received calcium acetate hydrate powder. 
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5.3. Thermal decomposition of CaAc analysed by 

thermogravimetric analysis (TGA), and evolved-gas analysis by 

Fourier transform infrared spectroscopy (FTIR) 

The thermal decomposition and evolved-gas analysis of the as received CaAc 

has been analysed by a Stanton Redcroft TGH-1000 TGA instrument connected to a 

Thermo Scientific Nicolet iS10 FTIR spectrometer running OMNIC processing 

software and fitted with an attenuated total reflection (ATR) accessory. A 15 mg 

sample of CaAc was decomposed by heating from 20 to 1000 °C at a constant 

heating rate of 20 °C min
-1

, under a N2 atmosphere (50 ml min
-1

). Figure 5.6 

displays TGA data from the decomposition of CaAc in N2 from 20 - 1000 °C.  

Table 5.1 highlights the percentage mass loss across three given temperature 

ranges; 150 - 240 °C, 400 - 520 °C and 650 - 765 °C. Expected percentage mass loss 

values are also presented in Table 5.1 for CaAc·0.5H2O. FTIR spectra were 

recorded every 30 seconds (10 °C), and are displayed in Figures 5.7 and 5.8. In the 

temperature region 150 – 240 °C, where water loss is predicted, no infrared 

absorption due to evolved gases was detected‡‡. 

The data here (Figure 5.6) shows that by 765 °C CaAc has decomposed to CaO 

with an overall percentage mass loss of 65.5%. The process occurs firstly via an 

initial two-stage mass loss of water molecules, the first at ~150 - 200 °C, and the 

second at ~200 - 240 °C, with a total percentage mass loss of 5% (equivalent to a 

xH2O molar loss = 0.45) [141]. This is in close agreement with the previous XRD 

reference pattern which reports CaAc·0.5H2O. This process follows the proposed 

reaction: 

                                                 

‡‡ From discussion with Dr Adrian Cunliffe (Energy Research Institute), this is a 

common occurrence in hydrated species. 
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Ca(CH3COO)2·0.45H2O → Ca(CH3COO)2 + 0.45H2O (5.3) 

Between ~400 - 520 °C, previous work indicates that the dehydrated CaAc 

breaks down to form calcite (CaCO3) with the release of acetone (C3H6O), with a 

total percentage mass loss of 34.5% between 400 °C and 500 °C [141]. The 

formation of CaCO3 within this temperature is confirmed by X-ray diffraction in 

Sections 5.3.1 and 5.4. This decomposition of dehydrated CaAc to calcite and 

acetone follows the reaction: 

Ca(CH3COO)2 → CaCO3 + C3H6O  (5.4) 

This decomposition to the calcium carbonate phase occurs via a two-step 

process and this has previously been attributed to the melting of the calcium acetate 

[280]. Melting subsequently slows down the rate of decomposition and occurs at 

~440 °C on Figure 5.6. Figure 5.7a highlights the FTIR spectra for absorption by 

acetone, detected in the temperature region 415 – 520 °C. Experimental data (red) 

and best-matched reference data (purple) for acetone absorption, collected using 

OMNIC processing software, are shown. Figure 5.7b shows the changing intensity 

of the strongest peak due to carbonyl (C=O) stretching mode, commonly associated 

with acetone absorption (in the wavenumber region 1650 – 1850 cm
-1

), with the 

progression of CaAc decomposition from 20 – 1000 °C in N2 [281]. It is observed 

that absorbance due to the carbonyl group of acetone first begins at 415 °C, with the 

peak reaching a maxima at 455 °C. A second, less intense, maxima is also observed 

at 498 °C, with no further absorbance beyond 520 °C. This loss of acetone coincides 

with the significant weight loss observed by TGA (Figure 5.6) in the temperature 

region 400 – 500 °C. Despite TGA showing a two-step decomposition in this 

temperature region, only infrared absorption due to acetone was detected by FTIR 

analysis of evolved gases. This supports the previous work suggesting that this 

change in decomposition rate is cause by melting of the calcium acetate [280].  
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The calcium carbonate then decomposes to form calcium oxide from ~650 °C 

to completion at ~765 °C [141]: 

CaCO3 → CaO + CO2 (5.5) 

Figure 5.8a highlights the FTIR spectra associated with carbon dioxide 

absorption, detected in the region 600 – 800 °C. Experimental data (red) and best-

matched reference data (purple) for CO2 absorption, collected using OMNIC 

processing software are shown. Figure 5.8b shows the changing intensity of the 

strongest peak due to the antisymmetric stretching mode of carbonate (C-O), 

commonly associated with CO2 absorption (in the wavenumber region 2300 – 2400 

cm
-1

), with the progression of CaAc decomposition from 20 – 1000 °C in N2 [282].  

Significant absorbance due to the carbonate stretching mode is first observed at 

600 °C, with the peak reaching a maxima at 775 °C. A sharp decrease is seen 

beyond this temperature with no carbonate absorption detected after 800 °C; from 

the TGA curve (Figure 5.6), this suggests the full decomposition of the intermediate 

CaCO3 phase to CaO, which is subsequently confirmed by X-ray diffraction in 

Sections 5.3.1 and 5.4. Only infrared absorption due to the CO2 carbonate group was 

detected in this temperature region. 

Overall, the data presented here are in good agreement with previous reports 

for this material [141, 275, 278]. 
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Figure 5.6: TGA data for the thermal decomposition of calcium acetate hydrate from 20 – 1000 °C in 

N2. Temperature ramp = 20 °C min
-1

. 

 

Table 5.1: Percentage mass loss for thermal decomposition of CaAc by TGA, with expected 

percentage mass loss values for CaAc·0.5H2O.  

 

 

  

Temp (°C) 
Measured mass 

loss (%) 

Expected mass 

loss (%) for 

CaAc·0.5H2O 

~150-240 5.0 5.7 

~400-500 34.5 34.7 

~650-765 26.0 26.3 

Total Loss = 65.5 66.7 

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

90

100

(CaO)

(CaCO
3
)

Calcium oxide

Calcium carbonate

Reported melting of calcium acetate

acetone loss (C
3
H

6
O) 

(Ca(CH
3
COO)

2
)

Dehydrated calcium acetate

Calcium acetate hydrate 

(Ca(CH
3
COO)

2
·xH

2
O) 

 

 

W
e
ig

h
t 

(%
)

Temperature (°C)

CO
2
 loss

acetone loss (C
3
H

6
O) 

Predicted water loss



153  

 

 

 

0 10 20 30 40 50

0

10

20

30

40

50
Carbonyl, C=O, stretching mode (Wavenumber range: 1650-1850 cm

-1
) 

Time (mins)

A
b

so
r
b

a
n

c
e

0

200

400

600

800

1000

T
e
m

p
e
r
a

tu
r
e
 (°C

)

 

Figure 5.7: TGA/FTIR data for gases evolved during the decomposition of CaAc with (a) pattern 

(red) assigned to acetone, with reference pattern for acetone (purple) and (b) development of the most 

intense carbonyl group peak due to acetone absorbance, in the region 1650-1850 cm
-1

, with 

decomposition of CaAc from 20 – 1000 °C in N2.  
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Figure 5.8: TGA/FTIR data for gases evolved during the decomposition of CaAc with (a) pattern 

(red) assigned to carbon dioxide (CO2), with reference pattern (purple) and (b) development of the 

most intense CO2 group peak, in the region 2300-2400 cm
-1

, with decomposition of CaAc from 20 – 

1000 °C in N2. 
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5.3.1. XRD & TEM analysis 

 

Analysis of the CaO, derived from TGA decomposition of CaAc at 800 °C, has 

been carried out by XRD and TEM. An additional sample has also been prepared by 

the TGA decomposition of CaAc up to at 500 °C (following the previously outlined 

TGA conditions), which will be also be analysed by XRD and TEM. Figure 5.9 and 

Figure 5.10 show XRD patterns of CaAc samples decomposed by TGA (at 20 °C 

min
-1

 in N2) up to 500 °C and 800 °C respectively with no dwell time. Furnace 

cooling is carried out by an external Shimadzu BLW-50 cooling blower. The N2 

supply is not removed until the chamber is cool and opened for removal of the 

sample. Figure 5.9 shows the presence of two polymorphic forms of calcium 

carbonate; calcite and vaterite, formed upon decomposition of CaAc at 500 °C by 

TGA. Higher intensity diffraction peaks were observed to calcite, suggesting a 

dominant phase here, with only low intensity peaks observed due to vaterite. Calcite 

exhibits a rhombohedral crystal structure (a = b = 4.99 Å, c = 17.06 Å) and is 

recognised as more thermodynamically stable at room temperature. Vaterite exhibits 

a hexagonal crystal structure (a = b = 4.13 Å, c = 8.49 Å) and is considered to be a 

metastable polymorph of calcium carbonate which can often contain disordered 

carbonate molecules which lead to partial occupancy of carbonate in the structure 

[283-285]. Vaterite is also seen as a precursor of calcite, which, when initially 

crystallised from amorphous calcium carbonate, will transform to calcite by a 

dissolution and reprecipitation mechanism [286]. A report by de Leeuw and Parker 

explains that vaterite can exist in different morphologies including spheres 

comprising of needle-like units, ellipsoids or disklike crystals [283].  

After decomposition of CaAc at 800 °C by TGA, peaks due to CaO were 

mainly observed in the XRD pattern (Figure 5.10), with also small broad peaks due 
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to calcium hydroxide (Ca(OH)2), and a single peak (at 2θ = 29.6°) indexed to the 

100% peak of calcite (CaCO3). The Ca(OH)2 and calcite peaks can be attributed to 

the reactive nature of CaO on exposure to air (atmospheric moisture and CO2), and 

this is most likely (despite care during handling) during storage, and unavoidable 

during sample preparation for analysis [287]. Such rapid hydration and carbonation, 

of the CaO sorbent can be attributed to the large pore volume and high surface area 

of the nano particulate CaO product formed by the decomposition of calcium acetate 

hydrate, properties which similarly make CaO, produced by decomposition of CaAc, 

a superior powder sorbent (in relation to CaO formed by alternate calcium 

precursors) for CO2 capture [123, 128, 275, 278]. 

Figure 5.12 displays TEM images that show the morphologies of the products 

formed by TGA decomposition of CaAc at 500 °C and 800 °C (with immediate 

cooling upon reaching desired temperatures).  

The products of TGA decomposition of CaAc at 500 °C (which contains both 

vaterite and calcite phases from XRD, Figure 5.9) are shown by bright field TEM 

images and SAED patterns in Figures 5.11 and 5.12. Figure 5.11a displays 

polycrystalline vaterite, which is observed to consist of a branched network of long 

needle-like particles, reaching up ~1 μm in length. The corresponding SAED pattern 

(Figure 5.11b) confirms only a vaterite phase, with no diffraction spots due to calcite 

observed.  

The calcite form of calcium carbonate, also produced by CaAc decomposition 

at 500 °C by TGA, is shown in Figure 5.11c, with the calcite phase confirmed by the 

corresponding SAED pattern in Figure 5.11d. No diffraction spots due to vaterite 

were observed. Calcite does not show the same branched structure as the vaterite; 

the material is seen to exist as large thin sheet-like structures. A small amount of 
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porosity within the sheets was evident which may be due to loss of CO2 or may be a 

result of air trapped during recrystallisation from the melting calcium acetate, which 

occurs at 440 °C (Figure 5.6) [280]. 

The product of TGA decomposition of CaAc at 800 °C (which, displayed 

mainly CaO, with small amounts of Ca(OH)2 and calcite, by XRD, Figure 5.10) is 

shown by a bright field TEM image and SAED pattern in Figure 5.12a-c. Figure 

5.12a shows highly sintered agglomerates of fine plate-like particles (typical size < 

150 nm); selected area electron diffraction (Figure 5.12b) confirms diffraction due to 

CaO, Ca(OH)2 and CaCO3. Figure 5.12c shows the presence of nanopores within the 

particles, these are typically < 10 nm. Individual particles after TGA decomposition 

at 800 °C are smaller than those formed after decomposition at 500 °C, however 

there is a significant amount of sintering evident.   
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Figure 5.9: XRD pattern for CaAc sample decomposed by TGA from room temperature to 500 °C 

(at 20 °C min
-1

) with no dwell time. ‘#’ denotes indexed peaks of calcite, CaCO3, ICDD ref: 00-005-

0586 [221]. ‘▼’ denotes indexed peaks of vaterite, CaCO3, ICDD ref: 00-033-0268 [288]. Full peak 

list available in the appendix, Table A13. 

 

Figure 5.10: XRD pattern for CaAc sample decomposed by TGA from room temperature to 800 °C 

(at 20 °C min
-1

) with no dwell time. ‘○’ denotes indexed peaks of calcium oxide, CaO, ICDD ref: 04-

003-7161 [226]. ‘Δ’ denotes indexed peaks of calcium hydroxide Ca(OH)2, ICDD ref: 01-084-1263 

[289]. ‘#’ denotes indexed peaks of calcite, CaCO3, ICDD ref: 00-005-0586 [221]. Full peak list 

available in the appendix, Table A14. 
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Figure 5.11: Bright field TEM images and SAED patterns of (a & b) Vaterite CaCO3 ‘▼’ (ICDD ref: 

00-033-0268) [288]) and (c & d) Calcite CaCO3 ‘#’ (ICDD ref: 00-005-0586 [221]) both formed from 

by TGA decomposition of CaAc at 500 °C. Labels of SAED pattern correspond to spots on 

diffraction rings. 

  

(c) 500 °C (Calcite) 

(b) 

(d) 

(a) 500 °C (Vaterite) 
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Figure 5.12: (a) Bright field TEM image and (b) corresponding SAED pattern of the CaO formed by 

decomposition of CaAc by TGA at 800 °C. SAED pattern shows diffraction rings due to CaO ‘o’ 

(ICDD ref: 04-003-7161 [226]), Ca(OH)2 ‘Δ’ (ICDD ref: 01-084-1263 [289]) and calcite CaCO3 ‘#’ 

(ICDD ref: 00-005-0586 [221]), labels correspond to spots on diffraction rings. (c) shows higher 

magnification image of (a) highlighting presence of nanopores within the particles. 

  

(a) 800 °C (CaO + Ca(OH2) + calcite) (b) 

(c)  
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5.4. In-situ hot-stage X-ray diffraction 

 

The decomposition process of CaAc has also been studied using a 

Philips/PANalytical X’pert diffractometer fitted with an in-situ heating stage. A 

sample of CaAc was heated at a rate of 20 °C min
-1 

in 100 °C intervals, up to 800 

°C, and was held for ~1 hour at each temperature (100, 200, 300, 400, 500, 600, 700 

and 800 °C) to allow for X-ray analysis. X-ray diffraction patterns are presented in 

Figure 5.13 and it must firstly be noted that all diffraction patterns contain a low-

intensity peak at °2θ = 7.06, which is a recognised peak due to X-ray scatter from 

the oven-stage of the X-ray diffractometer§§. 

The XRD data here (Figure 5.13) show that the calcium acetate hydrate firstly 

decomposes into a poorly-crystalline compound at 200 °C. Some detectable peaks in 

the low 2θ region (< 15° 2θ) can be assigned to crystalline CaAc (ICDD ref: 00-019-

0199 [279]) and dehydrated CaAc, Ca(CH3COO)2 (ICDD ref: 00-019-0198 [279]), 

with the remainder of the XRD pattern showing no identifiable reflections. Overall 

this suggests an incomplete breakdown of the CaAc phase into an amorphous 

compound. 

 After decomposition at 300 °C, the XRD pattern can be assigned to 

dehydrated CaAc, (ICDD ref: 00-019-0198 [279]), where the significant difference, 

in comparison to the as received CaAc, is observed in the region of interplanar 

lattice spacing’s of 5 - 10° (2θ). This is most likely due to the loss in the amount of 

water co-ordinated to the calcium acetate molecules [278]. 

Subsequent decomposition at 400 °C leads to the formation of calcite, CaCO3 

(ICDD ref: 00-005-0586 [221]). The vaterite phase, previously observed by CaAc 

                                                 

§§ From discussion with Dr Tim Comyn (Institute for Materials Research). 
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decomposition by TGA, was not detected here, and this is likely due to the extended 

temperature hold that allows for X-ray analysis, converting any vaterite phase into 

the more stable calcite phase. 

 After decomposition at 600 °C a mixture of calcite and CaO (ICDD ref: 04-

003-7161 [226]) is observed, with the higher intensity peaks due to the calcite phase 

and low intensity peaks due to CaO, this indicates the start of the breakdown of 

calcite. After decomposition at 700 °C only peaks due to CaO are observed, 

indicating full decomposition of the intermediate calcite phase to CaO. No change 

from this pure CaO phase is observed after decomposition at 800 °C.  

There is a greater time for phase decomposition and formation under the hot-

stage XRD heating conditions, and subsequently phases such as CaCO3 and CaO are 

formed at slightly lower temperatures than those produced with a faster heating rate, 

by TGA, overall indicating a kinetically limited transformation. A pure calcite phase 

is observed after decomposition at 400 °C in the hot-stage XRD whereas, by TGA, 

full decomposition to the calcite phase is complete at 520 °C. Similarly, single phase 

CaO is observed after decomposition at 700 °C in the hot-stage XRD whereas, by 

TGA, full decomposition to the CaO phase is complete at 765 °C.  
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Figure 5.13: Hot-stage XRD patterns for decomposition of calcium acetate hydrate in air. Patterns at 

25 °C and 100 °C are in close agreement with calcium acetate hydrate (Ca(CH3COO)2·0.5H2O), 

ICDD ref: 00-019-0199 [279]. Pattern at 200 °C shows a small number of peaks that can be assigned 

to crystalline calcium acetate hydrate ‘+’ (Ca(CH3COO)2·0.5H2O), ICDD ref: 00-019-0199 [279] and 

a single peak due to dehydrated calcium acetate ‘*’ (Ca(CH3COO)2), ICDD ref: 00-019-0198 [279]. 

Pattern at 300 °C is in close agreement with dehydrated calcium acetate (Ca(CH3COO)2), ICDD ref: 

00-019-0198 [279]. Patterns at 400 °C and 500 °C, and peaks labelled ‘C’ at 600 °C are indexed to 

calcite, (CaCO3), ICDD ref: 00-005-0586 [221]. Patterns at 700 and 800 °C, and peaks labelled ‘o’ at 

600 °C are indexed to calcium oxide (CaO) ICDD ref: 04-003-7161 [226]. Peak at 7.06 °2θ, labelled 

‘♦’, corresponds to a recognised instrumental peak from the XRD-oven apparatus (from discussion 

with Dr T Comyn). Full peak list available in the appendix Tables A15 - A22.  
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5.4.1. TEM analysis  

To reproduce the stages of CaAc decomposition observed at various 

temperatures by hot-stage XRD, three samples of CaAc have been decomposed in a 

furnace by heating from room temperatures to 200 °C, 500 °C and 800 °C (at 20 °C 

min
-1

, in air) respectively, and held for 1 hour. Samples were immediately removed 

from the furnace after 1 hour and left to cool. These samples were then analysed by 

TEM with data shown in Figure 5.14a-f. 

 At 200 °C (Figure 5.14a), observed particles appear as broken laths of CaAc 

(typical length = 1-5 μm). Broad rings shown by SAED (Figure 5.14b) suggest an 

amorphous phase, which is in agreement with the previous hot-stage XRD pattern 

(Figure 5.13).  

At 500 °C (Figure 5.14c and d), calcite (CaCO3) is observed, with no 

indication of vaterite previously observed following TGA decomposition (Figure 

5.12a). Particles display a similar sheet like morphology to the calcite by TGA 

decomposition (Figure 5.12c), with a small amount of porosity also visible, which 

may be due to release of CO2. The sheet structure here appears more broken than 

that shown by TGA decomposition, with smaller particles evident (typically < 200 

nm).  

At 800 °C (Figure 5.14c) CaO is observed, with Ca(OH)2 and calcite (CaCO3). 

Particles displayed larger and more heavily sintered agglomerates in relation to the 

CaO formed by TGA decomposition (Figure 5.12e). There is also now a significant 

amount of porosity evident, which was not observed in the CaO formed by TGA 

decomposition. This may be due to a higher amount of sintering entrapping CO2 or 

air between the particles.   
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Figure 5.14: Bright field TEM images of and SAED patterns of (a & b) CaAc heated to 200 °C held 

for 1 hour (c & d) CaAc heated to 500 °C (Calcite, CaCO3) and held for 1 hour, and (e & f) CaAc 

heated to 800 °C (CaO) and held for 1 hour, SAED (f) confirms CaO phase ‘o’, with rings due to 

Ca(OH)2 ‘Δ’ and CaCO3 ‘#’.  

  

Pores 

(b) 

(d) 

(a)  200 °C 

(c) 500 °C (Calcite) 

(e) 800 °C (CaO + Ca(OH)2 + calcite) (f) 
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5.5. CO2 sequestration using a CaO sorbent produced by 

decomposition of CaAc 

 

5.5.1. Maximum CO2 uptake capacity of CaO sorbents 

The CO2 uptake capability of CaO produced by decomposition of calcium 

acetate hydrate, was measured by thermogravimetric analysis (TGA). A sample of 

CaAc was decomposed in a TGA under an N2 atmosphere (rotameter controlled flow 

rate = 50 ml min
-1

) to 800 °C (at 20 °C min
-1

), replicating the conditions of Section 

5.3. Upon reaching 800 °C, the chamber temperature was dropped to 650 °C and the 

gas stream was switched to CO2 at a rotameter controlled flow rate of 50 ml min
-1 

(regulator pressure of the CO2 cylinder = 2 bar). The carbonation step was held for 

15 minutes, before the gas stream was switched back to N2 gas, while the furnace 

cooled to room temperature.  

Results of this test are shown in Figure 5.15 and it is observed that the uptake 

of CO2 by CaO occurs by a two-stage process: the first is a rapid process, following 

a linear growth rate that suggests no solid-state diffusion involving particle growth; 

a 50% mass increase due to conversion of CaO to CaCO3 occurred in 28 seconds. 

This linear region is thought to be a surface reaction between the solid CaO 

nanoparticles, and CO2 gas. 

The second phase of carbonation at 650 °C, showed a non-linear mass increase 

from 50 to 71.73%, due to further conversion of CaO to CaCO3. This second phase 

of carbonation proceeds as a slower, solid-state diffusion controlled process 

whereby CaO conversion continues by CO2 diffusion through the growing product 

layer [140]. The overall percentage mass increase of CaO to CaCO3 can be 

represented in terms of a molar conversion ratio χ, where; 
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  (5.6) 

Thus a total molar conversion ratio of 0.92 was obtained after 15 minutes of 

carbonation at 650 °C. This result is in good agreement with a previous report on the 

uptake of CO2 by a CaO nanopowder sorbent produced by the thermal 

decomposition of CaAc, where Lu et al (2006) observed a 90% conversion of CaO 

to CaCO3 after 10 minutes of carbonation (at various carbonation temperatures 

between 550-800 °C) [128]. 

The previous sample was decomposed by TGA at 800 °C with zero dwell time, 

and so to observe whether a prolonged decomposition time hold had an effect on the 

overall carbonation conversion (due to possible sintering), a second sample was 

analysed and held at 800 °C for 1 hour prior to carbonation for a further 15 minutes. 

These data are displayed in Figure 5.16 and show only a slightly smaller overall 

percentage mass conversion of CaO to CaCO3, of 71.6%, with a total molar 

conversion ratio, χ, of 0.91 after 15 minutes of carbonation. The kinetics of the 

carbonation reaction was comparable to the previous sample (with a zero 

decomposition dwell time at 800 °C) and this unexpected result suggests that the 

particle sintering observed with a calcination temperature hold at 800 °C (Figure 

5.14e), has no effect on the overall performance of the sorbent for the subsequent 

carbonation step at 650 °C. Henceforth all subsequent carbonation experiments do 

not utilise a hold time for calcination.  
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Figure 5.15: CO2 uptake of CaO (from CaAc) at 650 °C for 15 minutes by TGA. Starting mass = 

6.08 g (starting mass% = 0). Final mass = 10.45 g (final CaO to CaCO3 mass conversion% = 71.73). 

CaO formed by thermal decomposition of CaAc at 800 °C, in N2, (by TGA) with no dwell time; 

chamber temperature was then dropped to 650 °C, and CO2 gas applied for 15 minutes. Insert shows 

best polynomial fit to curved region of graph (start of solid-state diffusion controlled growth) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: CO2 uptake of CaO at 650 °C for 15 minutes by TGA. Starting mass = 6.39 g. Final 

mass = 10.96 g (final CaO to CaCO3 mass conversion% = 71.56). CaO formed by thermal 

decomposition of CaAc at 800 °C, in N2, (by TGA) with a dwell time of 60 minutes; chamber 

temperature was then dropped to 650 °C and CO2 gas applied for 15 minutes. 
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Analysis of the final carbonated product (Figure 5.15) has been carried out by 

XRD, SEM and TEM. Figure 5.17 displays the XRD pattern for the carbonated CaO 

sorbent, with data showing diffraction peaks due to calcite, CaCO3 (ICDD ref: 00-

005-0586 [221]) and secondary peaks due to CaO (ICDD ref: 04-003-7161 [226]), 

confirming an incomplete carbonation at 650 °C for 15 minutes (χ = 0.91). 

Diffraction peaks for both calcite and CaO are sharp, suggesting good crystallinity.  

From SEM analysis (Figures 5.18 - 5.20), the carbonated product appears as 

large, micron-sized agglomerates that are comprised of well sintered polygonal 

components (typically > 200 nm) with many particle boundaries meeting at 

equilibrium angles i.e. 120°. Figure 5.20a shows an SEM image of the initial CaO 

sorbent produced by the thermal decomposition of CaAc at 800 °C by TGA, with 

Figure 5.20b showing the sorbent after 15 minutes of carbonation at 650 °C, at the 

same scale. The CaO sorbent (Figure 5.20a) shows small (< 200 nm) particles which 

appear lightly sintered, there are also several large pores (typically > 200 nm) 

observed within the structure. After carbonation at 650 °C (Figure 5.20b), a dense 

structure consisting of larger (> 200 nm) polygonal particles is observed, with no 

major porosity. Although not measured by BET analysis (due to small sample sizes 

produced by TGA), the particle surface area observed by SEM images is 

significantly decreased upon carbonation. 

Overall growth of the individual carbonated particles appears limited by a 

large amount of particle densification. From TGA data (Figure 5.15), carbonation 

does not appear to completely stop after 15 minutes of carbonation, suggesting that 

CO2 gas is penetrating through this product layer and that there remains unreacted 

CaO sorbent with the structure, as was confirmed by XRD (Figure 5.17).  
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Analysis by bright field TEM imaging and SAED (Figure 5.21b) shows the 

sintered particles are composed of crystals of calcite; SAED did not detect CaO in 

this instance despite previous detection, in the bulk material, by XRD (Figure 5.17).  

Previous work has solely attributed the loss of CO2 capture capacity of CaO 

sorbents to the particle sintering of the sorbent during calcination (decarbonation) 

[136], however we observe here significant particle densification due to the crystal 

growth of calcite during carbonation, and therefore a loss of particle surface area 

which may also contribute to the incomplete conversion of CaO to CaCO3. 

 The formation of a carbonate product layer upon carbonation has previously 

been studied using micro-sized CaO sorbents; Mess et al (1999) described a 

recrystallised product layer of sintered polygonal crystals of CaCO3 with a uniform 

thickness [290]. Abanades and Alvarez (2003) additionally suggest that the 

carbonation reaction stops due to lack of useful porosity for CaCO3 to grow into, 

rather than the sealing of the outer product layer by the sintered CaCO3 particles, a 

result which would be expected due to lattice expansion upon carbonation, with a 

decrease in density from CaO (ρ = 3.35 g cm
-3

) to CaCO3 (ρ = 2.71 g cm
-3

) [147]. 

The carbonation of a nano-sized CaO sorbent has not been comprehensively 

studied and from TEM analysis here (Figure 5.21) a product layer is not observed as 

CaCO3 crystals show no detection of CaO by SAED (Figure 5.21b), suggesting 

carbonation has extended to the core of the particles. The densification of CaCO3 

during carbonation may provide an additional factor that affects the overall CO2 

capture capability and regenerability of CaO nano-sorbents used in multi-cycle CO2 

capture.  
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Figure 5.17: XRD pattern for CaAc decomposed at 800 °C and carbonated at 650 °C by TGA for 15 

minutes. ‘#’ denotes peaks indexed to calcite, CaCO3, ICDD ref: 00-005-0586 [291], ‘○’ denotes 

peaks indexed calcium oxide, CaO, ICDD ref: 04-003-7161 [226]. Full peak list available in the 

appendix Table A23. 
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Figure 5.18: Low magnification SEM images of the CaO sorbent after maximum CO2 pickup at 650 

°C by TGA. 

 

 

Figure 5.19: Low magnification SEM images of the CaO sorbent after maximum CO2 pickup at 650 

°C by TGA. 
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. 

Figure 5.20: High magnification SEM images of (a) initial CaO sorbent produced by decomposition 

of CaAc at 800 °C by TGA and (b) the CaO sorbent after CO2 pickup at 650 °C for 15 minutes by 

TGA. 

 

 

 

(a) Initial CaO sorbent 

(b) After carbonation for 15 minutes at 650 °C 
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Figure 5.21: (a) Bright field TEM image showing the CaO sorbent after 15 minutes of CO2 pickup at 

650 °C by TGA, with (b) corresponding selected area diffraction pattern showing diffraction spots 

due to calcite (CaCO3), labels correspond to spots. The apparent carbonation extends to the core of 

the particles. 

 

 

(a) (b) 
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5.5.2. Multiple CO2 carbonation-calcination cycles 

 

The regenerability of carbonated CaO has been investigated by a multi-cycle 

carbonation and de-carbonation process using a Shimadzu TGA-50 thermobalance. 

A starting sample of CaAc was decomposed under an N2 atmosphere (rotameter 

controlled flow rate = 50 ml min
-1

) to 800 °C (heating rate = 20 °C min
-1

), following 

the process previously outlined in Section 5.3. For carbonation, the chamber 

temperature was dropped to 650 °C before a 50 ml min
-1

 flow rate of CO2 was 

applied and carbonation was carried out for 5 minutes. Subsequent decarbonation 

then took place under N2 at 800 °C; this cycle was repeated a total of 9 times, with 

the final sample left in the carbonated state for analysis (10
th

 carbonation stage). 

The TGA data from the multi-cycle process are shown in Figure 5.23 with 

CaO to CaCO3 conversion data for the first 9 complete cycles, displayed in Table 

5.2. The data here show that the initial capacity of the CaO powder sorbent is 

equivalent to a mass increase due to CO2 uptake of 71.2% after the first cycle of 

carbonation for 5 minutes (previously analysis of sorbent carbonation for 15 minutes 

showed a CO2 uptake of 71.7 mass%, χ = 0.91) however after each successive 

regenerative heat treatment this value significantly declines, reaching 46.4% mass 

increase after 9 cycles. A decrease in the molar conversion ratio, χ, is observed from 

χ = 0.89 in the first cycle, to χ = 0.57 after 9 cycles. This is typical of the loss of 

CaO durability reported elsewhere, e.g. Liu et al (2009) report a ~40% decrease in 

the conversion of CaO to CaCO3 after 9 cycles (carbonation cycles at 650 °C for 30 

min) [137] and Siliban et al (1992) report a ~20% decrease in the conversion of CaO 

to CaCO3 after 5 carbonation cycles (carbonation cycles at 750 °C for ~40 minutes) 

[275]; both using a CaO sorbent produced from CaAc decomposition.  
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An enlarged chart showing the first three complete cycles of this process is 

displayed in Figure 5.24. The first three cycles here show molar conversion ratios, χ, 

of 0.89, 0.81 and 0.76 respectively. From cycle 1 to cycle 2, the largest decrease in 

overall carbonation conversion between consecutive carbonation/decarbonation 

cycles is observed, 4.8%. The shape of the curves is also seen to alter after the first 

cycle: as previously discussed, CaCO3 growth due to CO2 uptake on a CaO particle 

surface is initially a rapid, linear process and this is observed in the first cycle to be 

significantly more pronounced than in subsequent cycles. Continuation of CaCO3 

growth is then controlled by the slower diffusion of CO2 through the CaCO3 product 

layer. A schematic showing the initial linear growth of CaCO3 particles and then 

diffusion controlled growth of CaCO3 particle, on the surface of a CaO nanosorbents 

particle, during carbonation is presented in Figure 5.22. 

 

Figure 5.22: Basic schematic showing the carbonation process where (a) displays the initial CaO 

nanoparticle in a CO2 atmosphere, at time = 0 (b) shows the rapid linear growth of CaCO3 particles 

on the surface of the CaO particle and (c) continued slow growth of the CaCO3 particles by the 

diffusion of CO2 gas through the carbonate product layer. 
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The areas of the three curves marked ‘*’ in Figure 5.24 signify the 

approximate end of the rapid linear growth (straight-line) region and subsequent 

onset of solid-state diffusion controlled growth (curved region). It is observed that 

this begins much later in the first cycle with diffusion controlled growth contributing 

to a much lower proportion of conversion in comparison to subsequent cycles. This 

suggests that the initial CaO sorbent is more dispersed and porous than the sorbents 

produced by successive decarbonations, which are likely to have lower particle 

surface areas and hence recarbonations are more diffusion controlled, in relative 

terms. Subsequent analysis of multiple decarbonated stages of the cycling process by 

SEM (Figure 5.28a-h) support this, however measurements of surface area were 

found to be unreliable here due to the insufficient sample amounts generated by 

TGA decomposition***. 

From Figure 5.24 is it observed that mass increase due to carbonation 

continues for ~2.0 mins per cycle after the CO2 supply is removed, an effect 

consistent across all carbonation cycles. This is likely to be caused by residual CO2 

gas in the chamber that remains as the N2 gas supply is reapplied. This uptake 

continues as chamber temperature increases from 650 °C to 690 °C, and 

decarbonation then occurs beyond this temperature.  

Sample decarbonation occurs as the chamber temperature increases from 690 

°C (heating rate = 20 °C min
-1

) and is completed by 780 °C, taking 4.5 mins. 

Complete decarbonation to CaO is observed at each cycle. 

                                                 

*** From discussion with Dr Adrian Cunliffe (Energy Research Institute) 
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Figure 5.23: Degradation in CO2 capture capacity for CaO produced via decomposition of calcium 

acetate hydrate (Ca(CH3COO)2·xH2O) at 800 °C. Y-axis (left) displayed as percentage mass change 

due to uptake of CO2. Y-axis (right) displays temperature in log-scale (°C): the red coloured 

temperature plot indicates N2 conditions; the blue coloured temperature curve regions indicate the 

application of CO2, at 650 °C, for carbonation. Samples have been reproduced at points A-H for more 

detailed analysis, see Section 5.5.3. 

 

Table 5.2: CaO to CaCO3 conversion data calculated for first 9 complete cycles. With decarbonation 

carried out at 800 °C (in 100% N2) with no dwell time, and carbonation carried out at 650 °C (in 

100% CO2) for 5 minutes. 

 

Cycle No. 1 2 3 4 5 6 7 8 9 

% mass 

change to 

CO2 uptake 

71.21 66.37 60.96 58.21 55.04 52.51 50.11 47.92 46.39 

Molar 

conversion 

ratio, χ 

0.89 0.81 0.76 0.71 0.68 0.64 0.62 0.59 0.57 
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Figure 5.24: Enhancement of Figure 5.23 showing first three CO2 capture cycles CaO produced via 

decomposition of calcium acetate hydrate (Ca(CH3COO)2·xH2O) at 800 °C with no dwell time. Y-

axis (left) displayed as percentage mass change due to uptake of CO2. Y-axis (right) displays 

temperature in log-scale (°C): the red coloured temperature plot indicates N2 conditions; the blue 

coloured temperature curve regions indicate the application of CO2, at 650 °C, for carbonation. ‘*’ 

signifies the approximate end of the region of rapid linear growth (‘straight-line’) and subsequent 

onset of diffusion controlled growth. 
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5.5.3. Structural analysis 

 

To observe the causes for the reduction in carbonation conversion with 

progressive cycles at the particle level, repetitions of the multi-cycle process have 

been carried out by TGA and terminated after specific periods to produce samples at 

specific stages. Samples were collected after various post-decarbonation and post-

carbonation steps and have been labelled A-H on Figure 5.23, where: 

A = Initial decomposition of CaAc to 800 °C; 

B = after 1
st
 carbonation cycle at 650 °C; 

C = after 2
nd

 decarbonation at 800 °C; 

D = after 2
nd

 carbonation cycle at 650 °C ; 

E = after 3
rd

 decarbonation at 800 °C; 

F = after 3
rd

 carbonation cycle at 650 °C; 

G = after 9
th

 decarbonation at 800 °C; 

H = after 10
th

 carbonation cycle at 650 °C 

Each sample was analysed by XRD, SEM and TEM. Sample A has been previously 

analysed in Section 5.3.1. 

 X-ray diffraction patterns for samples A-H are displayed in Figure 5.25. 

Carbonated samples (B, D, F and H) show sharp diffraction peaks due to CaCO3, 

calcite (ICDD ref: 00-005-0586 [291]) and minor peaks due to CaO (ICDD ref: 04-

003-7161 [226]). The relative intensity of the CaCO3 diffraction peaks are observed 

to decrease with progressive CO2 cycles, further confirming a lower conversion of 

CaO to CaCO3 with progressive cycles of carbonation.  
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Figure 5.26 displays the measured changes in relative intensity of CaCO3 to 

CaO (ICaCO3/ICaO) with progressing cycles of carbonation, as measured using 

maximum intensity peaks for CaCO3 (104) and CaO (200) from XRD plots (Figure 

5.25) for the 1
st
, 2

nd
, 3

rd
 and 10

th
 carbonation stages (samples, B, D, F and H 

respectively). These data show how the amount of CaCO3 present in the sample, 

after carbonation, decreases with progressing cycles, as the amount of uncarbonated 

CaO sorbent increases. From Figure 5.26 it is observed that the largest decrease in 

sorbent carbonation is observed between the first two cycles, as the CaCO3/CaO 

ratio decreases from 10.9 to 5.7. After the third cycles the CaCO3/CaO decreases to 

3.5, and after 10 cycles, 1.3. 

 X-ray diffraction patterns for decarbonated samples, C and E (Figure 5.25) 

show sharp diffraction peaks due to CaO (ICDD ref: 04-003-7161 [226]) plus low 

intensity broad diffraction peaks due to Ca(OH)2 (ICDD ref: 01-084-1263 [289]). 

The diffraction peaks of Ca(OH)2 have increasing intensity with progressive 

decarbonations, and sample ‘G’ (after the 9
th

 decarbonation at 800 °C) displays a 

near single Ca(OH)2 phase with only small traces of CaO. In addition, the Ca(OH)2 

crystallite size is significantly smaller than the CaO or CaCO3. These results suggest 

a rise in instability of the CaO sorbent upon progressive decarbonations, 

subsequently making the crystallite sizes smaller and material more vulnerable to 

hydration. This contradicts the previous model using micro sized powder sorbents 

where a decrease in sorbent surface area, due to particle densification, is expected 

with progressive decarbonations (see Figure 2.7) [151]. Analysis by SEM and TEM 

will investigate this further. All samples here were collected from the TGA and 

stored in a desiccator, however exposure to air is unavoidable in this process and 

during XRD sample preparation and analysis.  
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Low magnification SEM images of samples A-H (Figure 5.27a-h) show that 

the large elongated and aggregated particle morphology observed previously from 

the as received CaAc (Figure 5.3) is maintained throughout the carbonation and 

decarbonation cycles. Higher magnification SEM images and TEM images of 

samples A-H and shown in Figure 5.28a-h (for decarbonated samples A, C, E and 

G) and Figure 5.29a-h (for carbonated samples B, D, F and H), and reveal more 

notable microstructural changes, during multicycle capture.  

Analysis by SEM and TEM of the initial CaO sorbent produced by TGA 

decomposition of CaAc at 800 °C (sample A) and the subsequent 2
nd

, 3
rd

 and 9
th

 

decarbonated samples, C, E and G show a decreasing crystallite size, as observed in 

the TEM, with an overall increasing agglomerate size and decreasing porosity 

observed in the SEM with successive decarbonations. This suggests an increase in 

crystallite densification with progressive decarbonations.  

The initial CaO sorbent, sample A (Figure 5.28a and b) shows small (< 200 

nm) sintered crystallites within an agglomerated structure containing several large 

pores (typically > 200nm). Analysis of sample C, Figure 5.28c and d, (after the 2
nd

 

decarbonation at 800 °C), shows a smaller overall crystallite size (< 100 nm) from 

TEM (Figure 5.28d), but an overall structure of larger agglomerates with increased 

densification and less porosity than the initial CaO sorbent (sample A, Figure 5.28a). 

After the 3
rd

 decarbonation at 800 °C, sample E, TEM (Figure 5.28g) shows a 

further decrease in crystallite size (~ < 50nm) and large crystallite densification. 

From SEM (Figure 5.28e) an increase in overall agglomerate size and notable 

further reduction in porosity is observed. After the 9
th

 decarbonation cycle at 800 °C, 

sample G, SEM and TEM (Figure 5.28g and h) show further crystallite densification 

with only small amounts of porosity evident; XRD of this sample (Figure 5.25) 
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shows a dominant Ca(OH)2 phase, with only traces of CaO detected. Significant 

broadening of the Ca(OH)2 peaks suggests a very fine crystallite size, but these 

proved difficult to distinguish in SEM and TEM images due to large densification. 

Porosity loss may be the result of expansion upon hydration, which is expected from 

the decreasing density of CaO (3.34 g cm
-3

) to Ca(OH)2 (2.24 g cm
-3

). The effects of 

a large amount of sorbent hydration, as shown by XRD (Figure 5.25), are likely to 

complicate the interpretation of these results and their comparison to the other 

decarbonated samples (A, C and E). Selected area electron diffraction data for 

sample G (see the appendix Figure 5.58) shows diffraction rings only due to 

Ca(OH)2 with no spots detected due to CaO, and surface hydration is likely to effect 

the porosity of the sorbent. Reasons for the observed differences in the decarbonated 

samples between SEM and TEM are unclear and the structural effects of sorbent 

hydration require and require further investigation. Although unconfirmed, potential 

water contamination in the methanol used for TEM sample dispersion, prior to drop-

casting onto the support film, may be a contributing factor toward further hydration.  

To address the issue of sorbent hydration, a TEM based technique has been 

developed using an Environmental heating cell (E-cell) to analyse the carbonation 

and decarbonation steps under vacuum, minimising exposure to air. Results are 

displayed in Sections 5.5.4 and 5.5.5. 

Images from SEM and TEM of the 1
st
, 2

nd
, 3

rd
 and 10

th
 carbonated samples B, 

D, F and H (Figure 5.29a-h) all show similar microstructural characteristics, with 

heavily sintered crystals of CaCO3 forming in the size range of ~100 - 400 nm. 

Images from SEM and TEM are in good agreement. Expansion on carbonation of 

the first CaO sorbent (sample A) is likely to be the cause of the loss in porosity seen 

after subsequent decarbonation stages, and with progressing sorbent crystallite 
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densification upon decarbonation this is likely to contribute to the overall decay in 

carbonation conversion with progressive cycles, as observed by TGA (Figure 5.23) 

and XRD (Figures 5.25 and 5.26).  

 Table 5.3 subsequently displays average particle sizes for samples A-H, as 

measured across 25 individual particles per sample, using SEM micrographs. This 

data suggests that sorbent particle size gradually increases with progressing 

decarbonation stages (samples A, C, E and G), with the initial CaO sorbent, sample 

A, showing an average particle size of 145 ± 36 nm, which rises to 170 ± 65 nm 

after the 2
nd

 decarbonation at 800 °C (sample C), 204 ± 59 nm after the 3
rd

 

decarbonation at 800 °C (sample E), and to 230 ± 51 nm after the 9
th

 decarbonation 

at 800 °C (sample G). It should be noted that the particle sizes measurements for the 

decarbonated samples are likely to be affected by unavoidable hydration of the 

sorbents at room temperature.  

With progressive decarbonations, TEM analysis shows a decrease in the 

overall crystallite size of the CaO sorbent; with SEM highlighting increasing 

agglomeration, densification and decrease in observed porosity. This densification 

inhibits the amount of carbonation on subsequent carbonation cycles, as is 

confirmed by the decreasing relative peak intensity ratio of CaCO3 to CaO 

(ICaCO3/ICaO) measured from XRD (Figure 5.25) with progressive carbonations 

(Figure 5.26).  

 The 1
st
, 2

nd
 3

rd
 and 10

th
 carbonated samples (samples B, D, F and H 

respectively) show a gradual decrease in average particle size, with the largest 

particle size of 374 ± 120 nm observed after the first carbonation (sample B), 

decreasing to 340 ± 132 nm and 324 ± 91 nm after successive carbonations (samples 

D and F respectively); however values for these samples B, D and F all fit into each 
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range of standard deviation. The average particle size observed after the 10
th

 

carbonation then decreases to 242 ± 97 nm. 

Overall, an expansion of particle size is observed upon each carbonation, 

which would be expected due to the lower density (ρ) of CaCO3 (2.71 g cm
-1

) 

compared to CaO (3.34 g cm
-1

). This expansion leads to the large crystal 

densification of CaCO3 observed here (Figure 5.29). 
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Figure 5.25: XRD pattern for multicycle carbonation/decarbonation samples A to H. ‘#’ denotes 

peaks indexed to calcite, CaCO3, ICDD ref: 00-005-0586 [291], ‘○’ denotes peaks indexed to calcium 

oxide, CaO, ICDD ref: 04-003-7161 [226], ‘Δ’ denotes peaks indexed to calcium hydroxide 

Ca(OH)2, ICDD ref: 01-084-1263 [289]. Full peak data available in the appendix Tables A14 and 

A24 - A30. 
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Figure 5.26: Change in relative intensities of CaCO3 to CaO (ICaCO3/ICaO) with progressing cycles of 

carbonation, measured using maximum intensity peaks for CaCO3 (104) and CaO (200) from XRD 

plots for the 1
st
, 2

nd
, 3

rd
 and 10

th
 carbonation stages (samples, B, D, F and H respectively). 
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Low mag SEM images of all multicycle carbonated and decarbonated samples 

A – H. 

 

 

 

 

Figure 5.27: Low magnification SEM image of multicycle samples A-H.  

  

(g): Sample (G) 

(e): Sample (E) 

(c): Sample (C) 

(a): Sample (A) (b): Sample (B) 

(d): Sample (D) 

(f): Sample (F) 

(h): Sample (H) 
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High mag SEM and TEM images of decarbonated samples A, C, E & G  

 

 

 

 

Figure 5.28: High magnification SEM images with bright field TEM image and SAED pattern insert 

of decarbonated samples A, C, E and G. SAED’s show for sample A: diffraction due to CaO, 

Ca(OH)2 and calcite, CaCO3. Samples C and E indexed to CaO and Ca(OH)2. Sample G indexed to 

only Ca(OH)2. Larger SAED images for samples A, C, E & G displayed in the appendix Figures 

5.54, 5.56 amd 5.58. 

 

(a): Sample (A) 

(c): Sample (C) 

(e): Sample (E) 

(g): Sample (G) 

(b): Sample (A) 

(d): Sample (C) 

(f): Sample (E) 

(h): Sample (G) 
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High mag SEM and TEM images of carbonated samples B, D, F & H 

 

 

 

 

Figure 5.29: High magnification SEM images with bright field TEM image and SAED pattern insert 

of carbonated samples B, D, F and H. SAED’s show for sample and D, diffraction only due to calcite, 

CaCO3. Samples B, F and H are indexed to both calcite, CaCO3 and CaO. Larger SAED images 

displayed in the appendix, Figures 5.53, 5.55, 5.57 and 5.59. 

 

(a): Sample (B) (b): Sample (B) 

(c): Sample (D) 

(e): Sample (F) 

(g): Sample (H) 

(d): Sample (D) 

(e): Sample (E) 

(h): Sample (H) 
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Table 5.3: Average particle size and standard deviation (measured across 25 individual particles per 

sample using SEM micrograph images) and estimated crystallite size (measured from TEM images) 

of decarbonated samples (A, C, E & G). 

 

Decarbonated Samples 

Average particle size, 

nm  

(measured across 25 

particles from SEM 

images) 

Estimated crystallite 

size, nm  

(measured from TEM 

images) 

A - Initial CaO sorbent 145 ± 36 < 150  

C - after 2
nd

 decarbonation 170 ± 65 ~40  

E - after 3
rd

 decarbonation 204 ± 59 ~30 

G - after 9
th

 decarbonation 230 ± 51 - 

 

Table 5.4: Average crystal size, and standard deviation (measured across 25 individual particles per 

sample using SEM micrograph images) of carbonated samples (B, D, F & H). 

 

Carbonated Samples 

Average crystal size, nm 

(measured across 25 particles 

from SEM images) 

B – after 1
st
 carbonation cycle 374 ± 120 

D - after 2
nd

 carbonation cycle 340 ± 132 

F - after 3
rd

 carbonation cycle 324 ± 91 

H - after 10
th

 carbonation cycle 242 ± 97 
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5.5.4. Hot-stage TEM analysis of decarbonation 

 

To examine how the carbonated product is decomposed (decarbonated) back to 

CaO, a carbonated CaO powder sample has been analysed in the TEM using a water 

cooled Gatan Single Tilt Heating Holder with SmartSet Hotstage Controller. This 

holder allows for the in-situ decomposition of the sample under vacuum, removing 

the risk of sorbent-hydration. A sample of CaO carbonated for 5 minutes by TGA 

(Sample ‘B’ in Figure 5.23) was drop cast onto a silicon nitride (SiN) support 

membrane and heated gradually from room temperature to 800 °C and held at 10 °C 

temperature intervals to allow for imaging. Bright field TEM images taken at 

selected temperatures (room temperature, 200, 500, 600, 610 and 800 °C) are shown 

in Figure 5.30. Due to the process being carried out under vacuum, the temperature 

for decomposition is lower than those previously reported by TGA and hot-stage 

XRD decomposition.  

Results here show that up to 500 °C (Figure 5.30a-c) the material remained as 

dense crystals of calcite, typically 200 nm in size. Decomposition of the calcite 

crystals was first observed at 600 °C (Figure 5.30d) and the expected loss of CO2 

was mostly complete by 610 °C (Figure 5.30e)†††. Some remaining areas of CaCO3 

subsequently broke down as the temperature increased to ~700 °C with no further 

structural changes then observed in the material up to the maximum temperature, 

800 °C (Figure 5.30f). A higher magnification image of the sample at 800 °C 

(Figure 5.30g) shows that the CaO product appears as aggregates of very fine 

                                                 

††† Selected area electron diffraction was not carried out to confirm the 

decomposition to CaO phase here due to the instability of particles on the 

silicon nitride support film with rising temperature. From preliminary 

experiments, rising temperature caused many particles to ‘jump’ off the film, 

and this effect was commonly observed when the TEM was set into diffraction 

mode. 
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crystallites, with some observed nano-porosity. Crystallites are roughly < 50 nm in 

size however exact measurements of the crystallites proved difficult due to 

significant densification. Most notably during this decomposition, the original 

outline of the starting CaCO3 particles is maintained upon decarbonation.  
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Figure 5.30: Bright field TEM images of sample D (CaO after 1

st
 carbonation) decomposed using an 

in-situ heating stage in the TEM. Decomposition of CaCO3 begins at 600 °C and is mostly complete 

by 610 °C. 

 

(a) Room temp (b) 200 °C 

(c) 500 °C (d) 600 °C 

(e) 610 °C  (f) 800 °C 

 (g) 800 °C 
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5.5.5. Analysis of the CO2 multicycle process using an ex-situ 

environmental-cell (E-cell) TEM technique 

 

To analyse the effects of CO2 looping cycles at the particle level without risk 

of sorbent hydration, a FEI Tecnai F20 FEG-TEM with a ex-situ Gatan 

Environmental heating cell (E-cell) has been used. The E-cell allows for a sample to 

be loaded into a gas or vacuum environment, with controllable temperature, before 

being transferred into the TEM without exposure to air, thus eliminating potential 

hydration of the nanoparticulate CaO. A CaO sorbent has been prepared by 

decomposition of CaAc at 500 °C in a furnace, to produce calcium carbonate 

(CaCO3)‡‡‡. This was drop cast onto a silicon nitride (SiN) support membrane (Agar 

Scientific). Calcination of the CaCO3 to CaO was carried out under vacuum, using 

an Edwards RV8 vacuum pump (lowest achievable vacuum pressure = ~10
-3

 Pa), 

from room temperature to 800 °C at ~20 °C min
-1

. Carbonation of the CaO sorbent 

was carried out at 650 °C for 5 min. A CO2 flow rate of 50 ml min
-1

, previously used 

by TGA, was unachievable here due to the sealed chamber of the cell; therefore the 

chamber was filled to a 0.5 bar pressure of CO2 during carbonation. This was 

considered the highest achievable gas pressure that did not force the release of the 

chamber seal. 

Results of the E-cell multicycle experiment are shown in Figures 5.33 - 5.38, 

with a reference image of multicycle CO2 capture by TGA (Figure 5.32) included to 

show the comparative stages of carbonation and decarbonation using the E-cell. 

Figure 5.33a shows the starting CaCO3 as sheet-like particles formed by the 

decomposition of CaAc at 500 °C by TGA. Selected area electron diffraction 

                                                 

‡‡‡ Using the as received CaAc powder as the starting material in the E-cell was 

avoided due to the previously observed alteration of the material under the 

electron beam (see Figure 5.4). 
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(Figure 5.33c) confirms only a calcite phase, with no vaterite detected. This sheet-

like form of calcite has previously been discussed in Section 5.3, however the 

particle here (Figure 5.33a) suggests that melting during acetate decomposition or 

perhaps an effect of the dispersion in methanol for TEM sample preparation may 

have resulted in this particle shape. Future work is required to investigate this 

further. 

Figure 5.34 shows the first E-cell decomposition of the starting acetate 

material, forming CaO; the images show the outline shape of the original material is 

maintained, however the sheet-like structure has broken down to form fine 

crystallites, observed to be < 70 nm in size. Selected area electron diffraction 

(Figure 5.34c) confirms a CaO phase, with also diffracted rings due to Ca(OH)2 

indicating some sorbent hydration and an imperfect vacuum within the E-cell 

chamber.  

The first carbonation stage at 650 °C is shown in Figure 5.35; with growth of 

round crystals of calcium carbonate observed with varying size range (20 – 650 nm). 

Where the starting CaO sorbent was observed to be thickest, large (up to 650 nm) 

rounded crystals of CaCO3 form and become densified; some pores are evident 

between particles as highlighted in Figure 5.35b. Porosity observed upon 

carbonation using the E-cell is unexpected as previous analysis by SEM and TEM of 

a CaO sorbent carbonated by TGA (Figures 5.20 and 5.21) did not show the 

formation of pores upon carbonation. The formation of pores upon carbonation 

using the E-cell may be a result of the sample being fixed to the support film, which 

would limit particle growth in all directions and perhaps also generate differential 

stresses between crystals during growth. Further work is required to 

comprehensively assess the formation of pores upon carbonation. 
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Towards the edges of the particle (Figure 5.35b), where the initial CaO sorbent 

appeared finer; smaller (~20 - 100 nm) individual crystals of CaCO3 form upon 

carbonation. Figure 5.35c shows the corresponding SAED pattern, confirming both 

CaCO3 and CaO phases, suggesting an incomplete carbonation of the starting CaO 

sorbent, as would be expected from previous the analysis of sorbent mass 

conversion during carbonation by TGA (Figure 5.15). 

The 2
nd

 decarbonation at 800 °C is shown in Figure 5.36, and it is observed 

that the resulting CaO shows significantly different morphology to the starting CaO 

sorbent (Figure 5.34) with the rounded particle structure created upon carbonation, 

maintained, with an observed crystal size range of 20 – 600 nm. Selected area 

electron diffraction (Figure 5.36c) confirms this phase as CaO, with also a some 

spots detected due to Ca(OH)2, indicating some sorbent hydration. A maximum 

particle size of 600 nm indicates particle shrinkage upon carbonation causing an 

increase in particle densification and a reduction in porosity (Figure 5.36b); with the 

pore highlighted previously in Figure 5.35 observed to have now closed. Most 

notably here it is observed that the fine aggregated CaO observed previously by hot-

stage decomposition in the TEM (Figure 5.30), was not observed here using the E-

cell. Reasons for this are unclear, however the difference in vacuum level for each 

decarbonation may have an effect, with previous decarbonation in-situ in the TEM 

taking place under a significantly higher vacuum (typically 10
-5 

Pa)
 
than that used in 

ex-situ E-cell experiment (lowest pressure = ~10
-3

 Pa). This caused a much faster 

rate of decomposition by the hot-stage TEM, where structural changes due to 

decarbonation were first observed at 600 °C. Table 5.5 highlights the different 

conditions for carbonation and decarbonation for the TGA, hot-stage TEM 

(decarbonation only) and E-cell techniques.  
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The sample after the 2
nd

 carbonation at 650 °C is shown by Figure 5.37. Here 

greater particle densification upon carbonation is observed in comparison to the 1
st
 

carbonation cycle (Figure 5.40) with fewer and larger particles evident (up to 880 

nm); some pores are evident between the carbonate particles (Figure 5.40b) despite 

the previously decarbonated sample (Figure 5.36) showing no observable pores. 

Smaller (< 100 nm) particles are still evident towards to edge of the sample however 

they are slightly larger in size (typically 50 – 100 nm) and in smaller quantity than 

after the 1
st
 carbonation cycle (Figure 5.35). Figure 5.37c shows the corresponding 

SAED pattern confirms CaCO3 and CaO phases. 

After the 3
rd

 decarbonation at 800 °C (Figure 5.38), all pores between particles 

are observed to have closed due to further sintering and particle shrinkage. Particles 

of CaO are typically 50 - 840 nm in size which is larger than after the previous 

decarbonation step (Figure 5.36). Figure 5.38c shows the corresponding SAED 

pattern confirming a CaO phase and some Ca(OH)2. 

Upon each decarbonation cycle at 800 °C, small (< 50 nm) rod and square 

shaped particles were observed covering the entire surface of the sample grid, Figure 

5.39. Spot EDX (Figure 5.39c) of an isolated area of these particle confirmed the 

presence of Mo, which may be caused by possible sputtering of the E-cell furnace at 

this temperature§§§. Sharp diffraction rings in the SAED pattern (Figure 5.39b) 

confirms these particles as crystalline, however these have not been assigned to a 

specific material phase; corresponding diffraction rings detected in the previous 

decarbonation steps of the E-cell multicycle experiment, Figures 5.36 and 5.38, have 

been ignored as these particles are considered contaminants. However, for the 

                                                 

§§§ From discussion with Dr Mike Ward (Leeds Electron Microscopy and 

Spectroscopy Centre) 
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development of the E-cell technique, future work will investigate the exact origin of 

these particles. 

Table 5.5: Summary of carbonation and decarbonation conditions for multicycle CO2 capture by 

TGA, hot-stage TEM (decarbonation only) and the E-cell techniques. 

Method for 

multicycle 

CO2 capture 

Carbonation conditions Decarbonation conditions 

TGA 

650 °C in CO2 (2 bar pressure 

providing a flow rate of 50 ml 

min
-1

) for 5 minutes 

800 °C in N2 (2 bar pressure 

providing a flow rate of 50 ml 

min
-1

). No dwell time 

Hot-stage 

TEM 
- 

800 °C under TEM vacuum 

(typically 10
-5

 Pa). No dwell time 

E-Cell 
650 °C in CO2 (0.5 bar 

pressure) for 5 minutes 

800 °C under rotary vacuum 

(lowest pressure = ~10
-3 

Pa). No 

dwell time 

 

Table 5.6 summarises the structural observations of the CaO sorbent through 

the multicycle carbonation and decarbonation cycles using the E-cell. Overall, these 

results are in good agreement with Lysikov et al’s [151] model for the multicycle 

process, shown in Figure 5.31, showing an increasingly sintered ‘skeleton’ of CaO 

upon decarbonation. This model was previously discussed in Section 2.5.2.1 (Figure 

2.7).  

 

Figure 5.31: The multicycle CO2 capture process on the textural transformation of the CaO sorbent. 

The CaCO3 phase is shown by dark grey, and CaO is shown by light grey [151, 154]. 
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Table 5.6: Summary of structural observations of a CaO sorbent analysed during multicycle 

carbonation and decarbonation using the E-cell technique. 

                                                 

**** Small (< 20nm) Mo-based contaminant particles also detected due to possible 

sputtering of E-cell furnace filament (see Figure 5.39). 

Sample Observations 

Figure 5.33: Starting CaCO3, 

formed by furnace decomposition 

of CaAc at 500 °C 

Sheet-like structure of CaCO3, ~5 μm in size. 

Figure 5.34: Initial CaO sorbent 

formed by E-cell decomposition 

of starting CaCO3 at 800 °C. 

Very fine (< 70 nm) crystallites of CaO. 

Ca(OH)2 detected by SAED, indicating some 

sorbent hydration. 

Figure 5.35: 1
st
 carbonation to 

CaCO3 at 650 °C. 

Particle growth of densified crystals of 

CaCO3.  

Some observed pores (~150 nm).  

CaCO3 crystal size range 20 nm – 650 nm.  

CaO detected by SAED, indicating 

incomplete conversion to CaCO3,  

From equivalent TGA cycle stage : χ = 0.89. 

Figure 5.36: 2
nd

 decarbonation to 

CaO at 800 °C. 

CaO crystals maintain previous structure 

observed in Figure 5.35.  

Particle contraction has closed observed pore.  

CaO crystal size range 20 nm – 600 nm. 

Ca(OH)2 detected by SAED, indicating some 

sorbent hydration****. 

Figure 5.37: 2
nd

 carbonation to 

CaCO3 at 650 °C. 

Larger densified crystals of CaCO3 formed, 

compared to 1
st
 carbonated sample (Figure 

5.35) 

Some observed porosity (~70 nm).  

CaCO3 crystal size range 50 nm – 880 nm. 

SAED detected some diffraction spots due to 

CaO, consistent with incomplete conversion. 

From equivalent TGA cycle stage: χ = 0.81.  

Figure 5.38: 3
rd

 decarbonation to 

CaO at 800 °C. 

Small shrinkage of CaO crystals upon 

decarbonation.  

Heavily densified with no observed porosity 

CaO crystal size range 50 nm – 840 nm 

CaO and some Ca(OH)2 detected by SAED, 

indicating sorbent hydration
****

.  
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Figure 5.32: Multicycle carbonation and decarbonation of a CaO sorbent as measured previously by 

TGA in Section 5.5.2. This shows comparative conditions used for the TEM based E-cell analysis of 

the multicycle capture process, where labels correspond to Figure 5.34 - 5.38. 
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Figure 5.33: Bright field TEM image showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) initial 

CaCO3 formed by decomposition of CaAc at 500 °C by TGA with (c) SAED pattern for (a) with all 

diffraction rings corresponding CaCO3 ‘#’ (ICDD ref: 00-005-0586 [291]). 

  

(a)  Initial acetate decomposition product, 

CaCO3 

(b) 

(b)   
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Figure 5.34: Bright field TEM image showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) 1
st 

calcination at 800 °C using the E-cell with (c) corresponding SAED pattern for (a) showing rings 

indexed to CaO ‘o’ (ICDD ref: 04-003-7161 [226]) and Ca(OH)2 ‘Δ’ (ICDD ref: 01-084-1263 [289]). 

Diffraction only due to these phases is detected with labels assigned to rings. 

 

  

(a) 1
st
 decarbonation to CaO at 800 °C 

(c) 

(b)  
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Figure 5.35: Bright field TEM images showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) first 

carbonation at 650 °C for 5 mins to form CaCO3 with (c) orresponding SAED pattern for (a) showing 

spots indexed to CaCO3 ‘#’ (ICDD ref: 00-005-0586 [291]) and CaO ‘o’ (ICDD ref: 04-003-7161 

[226]). Diffraction only due to these phases is detected with labels assigned to spots on rings. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 1
st
 carbonation to CaCO3 at 650 °C (b) 

(c) 

Pore 



205  

 

 

 

Figure 5.36: Bright field TEM images showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) 2
nd

 

decarbonation at 800 °C to CaO with (c) corresponding SAED pattern for (a) showing rings indexed 

to CaO ‘o’ (ICDD ref: 04-003-7161 [226]). Diffraction due to these phases is detected with labels 

assigned to spots rings. Rings (unlabelled) are also detected that match contaminant Mo-based 

particles analysed in Figure 5.39. 

 

(a) 2nd
 decarbonation to CaO at 800 °C 

 

 (b) 

(c) 

Closed 

pore 
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Figure 5.37: Bright field TEM images showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) 2
nd

 

carbonation at 650 °C for 5 mins with (m) corresponding SAED pattern for (a) showing spots 

indexed to CaCO3 ‘#’ (ICDD ref: 00-005-0586 [291]) and CaO ‘o’ (ICDD ref: 04-003-7161 [226]). 

Diffraction only due to these phases is detected with labels assigned to spots on rings.  

 

 

 

 

 

 

(a) 2
nd

 carbonation to CaCO3 at 650 °C (b) 

(c) 

Pore 
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Figure 5.38: Bright field TEM images showing multicycle carbonation and decarbonation of CaO 

formed upon decomposition of CaAc carried out using the ex-sit E-cell technique: (a & b) 3
rd

 

decarbonation at 800 °C with (c) corresponding SAED pattern for (a) showing spots indexed to CaO 

‘o’ (ICDD ref: 04-003-7161 [226]). Diffraction due to these phases is detected with labels assigned to 

spots rings. Rings (unlabelled) are also detected that match contaminant Mo-based particles analysed 

in Figure 5.39. 

 

 

 

 

(a) 3
rd

 decarbonation to CaO at 800 °C 

 

(b) 

(c) 

Closed 

pore 
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Figure 5.39: (a) Small (< 50nm) contamination particles containing Mo, with unassigned SAED 

pattern insert (b). Particles formed upon decarbonation at 800 °C during E-cell experiment. (c) EDX 

spectrum taken over an isolated area of particles in (a) confirming presence of Mo (large Si peak is 

attributed to the SiN film on the TEM grid). (d) EDX of a particle-free area of the SiN support film. 

  

(b) (a) 

(c) EDX on particle area 

(d) EDX on clear film area 
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5.6. Particle spacer materials for modification of CaO sorbents for 

CO2 sequestration  

 

Sorbent-spacer blend materials have been prepared with the aim of reducing 

the decline in CO2 capture capability with increasing carbonation/decarbonation 

cycles. It is proposed that the addition of spacer materials could reduce the amount 

of particle densification observed upon carbonation and subsequent decarbonation 

during multicycle CO2 capture, and subsequently retain the sorbent CO2 capture 

capability with progressive cycles. 

Zirconia-based sorbent additives have demonstrated high performance and 

stability in multicycle CO2 capture capability [276]. Resistance to sintering at high 

temperatures has been demonstrated using CaZrO3, which acts as an inert barrier 

that prevents CaO particle sintering [277]. Here, the use of partially stabilised 

zirconia (PSZ) particles, as an additive to CaO powder sorbents, aims to utilise a 

phase transformation upon cooling (after decarbonation) that may trigger micro-

cracking of any sintered CaO-zirconia sorbent, opening inter-particle pores and 

increasing the sorbent surface area for subsequent carbonation.  

Four zirconia-based spacer blend materials have been synthesised here and 

calcined at 800 °C, with a 70:30 wt% CaO:spacer in the final calcined product. A 

commercial yttria stabilised zirconia, YSZ (5.4% yttria, Goodfellow) was mixed 

with CaAc using a pestle and mortar (Sample 1). Similarly, CaAc was also mixed by 

the same method using a YSZ prepared via a hydrothermal route, (as previously 

outlined in Section 3.9.4; Sample 2).  
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Two further samples have been produced using CaAc (sample 3) and Ca(OH)2 

(sample 4) precursors which have been individually co-precipitated with Zr(NO3)2 

and NH4OH, forming CaO:CaZrO3 in the final calcined product. Subsequent X-ray 

diffraction also revealed a small precipitation of ZrO2 in the blend prepared using 

CaAc (see Section 5.6.1). 

Mayenite (Ca12Al14O33) has also been outlined as an effective material for the 

enhancement of multicycle CO2 capture due to its ability to inhibit sintering by 

providing a stable framework [130, 292]. A 75:25 wt% CaO:Mayenite blend 

(sample 5) has been provided courtesy of Dr Roger Molinder of the Energy 

Research Institute, University of Leeds, as prepared according to the solution 

preparation route outlined in reference [190]. This sorbent blend will also be 

analysed here for its multicycle CO2 capture capability. 

All five sorbent spacer materials are outlined in Table 5.7. 
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Table 5.7: CaO:spacer materials for CO2 capture. 

Sample 

Number 

CaO 

precursor 
Spacer material 

Preparation 

method 

CaO:spacer 

(wt%) 

CaO:spacer 

(vol%) 

1 CaAc 

YSZ 

(Goodfellow, 5.4 

wt% yttria) 

Mixed by pestle 

and mortar 

grinding with a 

small inclusion 

of ethanol 

70:30 80:20 

2 CaAc 

Hydrothermally 

prepared YSZ 

(hYSZ) 

Mixed by pestle 

and mortar 

grinding with a 

small inclusion 

of ethanol 

70:30 80:20 

3 CaAc 

CaZrO3 + small 

formation of 

ZrO2 

Solution 

precipitation 

using Zr(NO3)2 

+ NH4OH 

precursors. 

70:30  
(25% CaZrO3 

+ 5% ZrO2) 

79:21  
(18% CaZrO3 

+ 3% ZrO2) 

4 Ca(OH)2 CaZrO3 

Solution 

precipitation 

using Zr(NO3)2 

+ NH4OH 

precursors. 

70:30 84:16 

5 CaO 
Mayenite 

(Ca12Al14O33) 

Solution 

precipitation 

method outlined 

by [190]. 

75:25 72:28 

 

 

Preliminary analysis of the commercial YSZ and the hydrothermally prepared 

YSZ (hYSZ) has been carried out by XRD and TEM, with data shown in Figure 

5.40 and Figure 5.41 respectively. X-ray diffraction patterns for the commercial 

YSZ and the hYSZ are shown in Figure 5.40. The commercial YSZ shows 

diffraction peaks indexed due to tetragonal yttrium zirconium oxide (ICDD ref: 04-

008-7255 [293]) and also monoclinic zirconium oxide, ZrO2 (ICDD ref: 04-013-

4343 [294]). Diffraction peaks are sharp suggesting a well crystallised phase, which 

is confirmed by subsequent selected area electron diffraction in the TEM, Figure 

5.41. TEM imaging of the commercial YSZ powder (Figure 5.41) shows large 



212  

 

crystals (typically 200 - 500 nm), with selected area electron diffraction confirming 

crystalline tetragonal zirconium yttrium oxide.  

The X-ray diffraction pattern for the hYSZ shows diffraction peaks indexed to 

cubic zirconium yttrium oxide (ICDD ref: 01-077-2112 [295]), as would be 

expected for 15.6 wt% Y2O3-ZrO2, significant line broadening here can be attributed 

to a small crystallite size, which, calculated using the Scherrer formula is 

approximately 5 – 6 nm. TEM imaging (Figure 5.41) confirms a small crystallite 

size, with particles typically < 10 nm. These results are in good agreement with 

previously data reported for YSZ synthesised by this hydrothermal route [169]. 

TEM images (Figure 5.41) show the differences in particle size between the 

commercial YSZ and the hYSZ, with the commercial YSZ showing larger particles 

(typically 200 - 500 nm), and the hYSZ showing nanosized single crystals (typically 

< 10 nm), as expected from this preparation route [169]. 
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Figure 5.40: XRD patterns for commercial YSZ (Goodfellow) and hydrothermally produced YSZ 

(hYSZ). Peaks labelled ‘Yc’ are indexed to cubic zirconium yttrium oxide, ICDD ref: 01-077-2112 

[295]. Peaks labelled ‘Yt’ are indexed to tetragonal zirconium yttrium oxide, ICDD ref: 04-008-7255 

[293]. Peaks labelled ‘Z’ denote monoclinic zirconium oxide, ZrO2, ICDD ref: 04-013-4343 [294]. 

Full peak data in the appendix, Tables A31 and A32.  
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Figure 5.41: Bright field TEM image of (a) commercial YSZ (Goodfellow) with (b) SAED showing 

diffraction spots due to tetragonal YSZ. (c) shows bright field TEM image of YSZ prepared by a 

hydrothermal method (hYSZ) with (d) SAED showing diffraction rings due to cubic YSZ (ICDD ref: 

01-077-2112 [295]). (e) shows HRTEM image of the hYSZ confirming < 5 nm crystallite size and d-

spacing indexed to the cubic YSZ (222) plane.  

 

(c) Hydrothermally prepared YSZ  

(hYSZ) 

(d) 

(e) hYSZ 

(b) (a) Commercial YSZ (Goodfellow) 
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5.6.1. X-ray diffraction analysis of CaO:spacer materials 

X-ray diffraction patterns for all CaO:spacer materials (samples 1-5) calcined 

at 800 °C are shown in Figure 5.42. Sample 1 (CaO + YSZ) shows sharp diffraction 

peaks of calcium oxide (ICDD ref: 04-003-7161 [226]) and zirconium yttrium oxide 

(ICDD ref: 01-070-4428 [296]). Faint peaks due to Ca(OH)2, (ICDD ref: 01-084-

1263 [289]) are evident, suggesting a small amount of hydration of CaO.  

The XRD pattern for sample 2 (CaO + hYSZ) show sharp diffraction peaks 

due to CaO (ICDD ref: 04-003-7161 [226]) with small broad diffraction peaks due 

to Ca(OH)2, (ICDD ref: 01-084-1263 [289]) caused by hydration of the oxide. Small 

broad diffraction peaks for cubic zirconium yttrium oxide, (ICDD ref: 01-077-2112 

[295]) are observed.  

The XRD pattern for sample 3 (Zr-doped CaO: from a CaAc precursor) 

displays sharp diffraction peaks due to CaO (ICDD ref: 04-003-7161 [226]) along 

with small broad diffraction peaks due to zirconium oxide, ZrO2 (ICDD ref: 04-013-

4343 [294]) and also small diffraction sharp diffraction peaks due to calcium 

zirconium oxide, CaZrO3, (ICDD ref: 04-010-6398 [297]).  

The XRD pattern for sample 4 (Zr-doped CaO: from a Ca(OH)2 precursor) 

displays sharp diffraction peaks due to CaO (ICDD ref: 04-003-7161 [226]) with 

also diffraction peaks due to calcium zirconium oxide, CaZrO3, (ICDD ref: 04-010-

6398 [297]). Diffraction peaks due to ZrO2 were not observed. 

The XRD pattern for sample 5 (CaO:Mayenite) displays sharp diffraction 

peaks due to CaO (ICDD ref: 04-003-7161 [226]) with small broad diffraction peaks 

due to Ca(OH)2, ICDD ref: 01-084-1263 [289]. Sharp diffraction peaks due to 

mayenite (Ca12A14O33) are also observed 04-014-8825 [298].  
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Figure 5.42: XRD patterns for CaO:spacer material samples 1-5, where (1) shows CaO:YSZ, (2) 

shows CaO:hYSZ, (3) shows CaO precipitated with Zr(NO3)2, using a CaAc precursor, (4) shows 

CaO precipitated with Zr(NO3)2, using a Ca(OH)2 precursor and (5) shows CaO:Mayenite 

(Ca12Al14O33). Peaks labelled ‘M’ are indexed to mayenite, Ca12Al14O33, ICDD ref: 04-014-8825 

[298]. Peaks labelled ‘o’ are indexed to calcium oxide, CaO, ICDD ref: 04-003-7161 [226]. Peaks 

labelled ‘Δ’ are indexed to calcium hydroxide, Ca(OH)2, ICDD ref: 01-084-1263 [289]. Peaks 

labelled ‘Yt’ are indexed to tetragonal zirconium yttrium oxide, ICDD ref: 04-008-7255 [293]. Peaks 

labelled ‘Yc’ are indexed to cubic zirconium yttrium oxide, ICDD ref: 01-077-2112 [295]. Peaks 

labelled ‘Z’ denote zirconium oxide, ZrO2, ICDD ref: 04-013-4343 [294]. Peaks labelled ‘CZ’ are 

indexed to calcium zirconium oxide, CaZrO3, ICDD ref: 04-010-6398 [297]. Full peak list data 

available in the appendix, Tables A33 to A37.  
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5.6.2. CO2 carbonation-calcination cycles using CaO-spacer materials 

 

The previously prepared CaO-spacer material blends have been analysed by 

TGA for their regenerability using the multicycle CO2 capture process, following the 

procedure previously outlined in Section 5.5.2. Results are displayed in Figure 5.43 

with full molar conversion, χ, data shown in Table 5.8. Data for the previously 

analysed unmodified CaAc are included for comparative purposes. 

The results here show that none of the CaO:spacer blend materials provide a 

superior performance with regards to overall CO2 capture, over the first 9 cycles, 

than the single, unmodified CaO sorbent. However the single CaO sorbent displays 

the largest decrease in χ (0.32) of all samples after 9 cycles. The CaAc:hYSZ 

powder provided the highest overall molar conversion values of all blend materials 

(0.83 in the first cycle, falling to 0.52 after 9 cycles), however the amount of decay 

closely matched that of the initial raw sorbent (0.31) and so it can be assumed that 

the spacer material has had little to no affect on restricting progressive sorbent 

sintering.  

The remaining CaO:blend materials all showed lower molar conversion values 

per cycle, however the overall decay over 9 cycles was notably lower with 

CaAc:YSZ, CaAc:CaZrO3:ZrO2, CaO:Mayenite and Ca(OH)2:CaZrO3 showing 

decreases of 0.17, 0.20, 0.12 and 0.10 respectively. These results suggest, most 

significantly with regards to powder blends synthesised using CaAc, that sorbent 

sintering is possibly being restricted by the presence of the spacer materials as the 

cycle by cycle decay in overall CO2 uptake is lower than that for the raw CaAc 

produced CaO sorbent. Cycle analysis using the E-cell TEM technique will be 

carried out using these blends to investigate this potential effect further.
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Figure 5.43: (a) Degradation in CO2 capture capacity for as received CaAc and CaO:spacer material 

blends using multicycle CO2 capture by TGA. Decomposition of starting material, and subsequent 

carbonated sorbents took place at 800 °C under N2. Carbonation took place at 650 °C for 5 mins. 0% 

carbonation conversion indicates fully calcined material (CaO + spacer) produced via decomposition 

of calcium acetate hydrate (Ca(CH3COO)2·xH2O) at 800 °C. (b) displays molar conversion data per 

cycle for each sample.  

  

(b) 

(a) 

CaAc-CaO (Control) CaO + hYSZ (70:30 wt%) 

CaO + YSZ (Goodfellow; 70:30 wt%) CaO + CaZrO3 + ZrO2 (using CaAc 

precursor) 

CaO + Mayenite (75:25 wt%) CaO + CaZrO3 (using Ca(OH)2 

precursor; 70:30 wt%, 25% CaZrO3 

+ 5% ZrO2) 
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Table 5.8: CaO to CaCO3 molar conversion data for as received CaAc and CaO:spacer material 

blends. 

  
Cycle Number 

Sample 
 

1 2 3 4 5 6 7 8 9 

CaAc 

Conversion 
due to 

uptake 
(mass%) 

71.21 66.37 60.96 58.21 55.04 52.51 50.11 47.92 46.39 

Molar 

conversion 

ratio, χ 

0.89 0.81 0.76 0.71 0.68 0.64 0.62 0.59 0.57 

CaO 

+ hYSZ 

Conversion 

due to 

uptake 
(mass%) 

65.35 59.55 58.56 51.28 48.35 46.19 44.20 42.61 41.43 

Molar 

conversion 

ratio, χ 

0.83 0.76 0.69 0.65 0.60 0.58 0.55 0.53 0.52 

CaO + YSZ 

(Goodfellow) 

Conversion 

due to 

uptake 
(mass%) 

47.46 44.85 42.26 40.24 39.00 37.43 36.24 35.00 34.04 

Molar 

conversion 

ratio, χ 

0.60 0.58 0.54 0.51 0.50 0.48 0.46 0.45 0.43 

CaO + 
CaZrO3 

+ small 
amount 

of ZrO2 

(using CaAc 
precursor) 

Conversion 

due to 

uptake 
(mass%) 

55.12 53.90 52.89 52.02 51.35 50.78 50.28 49.90 49.55 

Molar 

conversion 

ratio, χ 

0.59 0.54 0.51 0.47 0.45 0.43 0.41 0.40 0.39 

CaO- 

Mayenite 

Conversion 

due to 

uptake 
(mass%) 

35.63 33.65 31.98 30.52 29.43 28.31 27.47 26.82 26.16 

Molar 

conversion 

ratio, χ 

0.45 0.43 0.40 0.38 0.37 0.36 0.34 0.33 0.33 

CaO + 

CaZrO3 

(using 

Ca(OH)2 

precursor) 

Conversion 

due to 

uptake 
(mass%) 

32.83 28.44 26.51 25.56 25.11 24.73 24.45 24.26 24.11 

Molar 

conversion 

ratio, χ 

0.41 0.36 0.33 0.32 0.32 0.31 0.31 0.31 0.31 
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5.6.3. E-cell analysis of CaO:YSZ sorbent/ spacer blend 

The E-cell technique in the TEM, previously described in Section 3.8.1.2, has 

been applied using the CaO:YSZ sorbent/spacer material synthesised in Section 

3.9.2. Results of the E-cell multicycle experiment are shown in Figures 5.44 - 5.46.  

Figure 5.44a and b show bright field TEM images of the CaO:YSZ powder 

after the first decomposition at 800 °C using the E-cell. Selected area electron 

diffraction (Figure 5.44c) confirms diffraction spots for tetragonal YSZ (ICDD ref: 

04-008-7255 [293]) and a small number of spots due to the most intensely 

diffracting plane (200) of CaO (ICDD ref: 04-003-7161 [226]). 

Figure 5.44a and b display a large cluster of particles ~100 – 300 nm in size; 

these were confirmed by SAED and spot EDX as particles of YSZ, agreeing with 

the previous TEM analysis on the material (Figure 5.41). Pores between particles are 

observed up to ~150 nm in size. A higher magnification image of the CaO:YSZ 

blend is shown in Figure 5.44b, and shows the presence of a fine layer of crystallites 

intimately mixed between the larger YSZ particles. Spot EDX of these crystallites 

confirmed a strong detection of calcium and oxygen, and similarly the SAED pattern 

(Figure 5.44c) displayed some diffraction spots due to CaO, and it is therefore 

assumed that this fine layer of particles is CaO. 

The sample after the first carbonation at 650 °C is shown in Figure 5.45a and c 

with respective SAED patterns shown in Figure 5.45b and d, which confirmed the 

YSZ phase along with diffraction spots due to CaCO3. From Figure 5.45a it is 

observed that the porosity between the particles within the bulk area of the sample, 

seen previously in Figure 5.44a, have closed. Rounded, sintered particles of CaCO3 

are now observed, most noticeable at the edge of the bulk area, and also non-sintered 

round crystals of CaCO3 observed surrounding the bulk area, these are displayed in 
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Figure 5.45c and confirmed at calcite by the SAED pattern in Figure 5.45e. 

Differentiation between YSZ particles and CaCO3 particles can be made by the 

difference in mass-thickness contrast, where the CaCO3 are notably lighter, and 

smaller.  

The sample after the 2
nd

 decarbonation at 800 °C, using the E-cell, is shown in 

Figure 5.46a-c, and more porosity is now observed in the bulk material, in 

comparison to the previously carbonated sample, Figure 5.45. These pores are of a 

similar size to those observed in the previously decarbonated sample (Figure 5.44), 

typically up to 150 nm, however they are fewer in number and the sample is more 

dense. Compared to the previous E-cell experiment using the unmodified CaO 

sorbent (Figure 5.36), decarbonation here appears to shows less sorbent 

densification.  

The SAED pattern (Figure 5.46b) shows diffraction spots due reflections of the 

most intense planes of YSZ and CaO phases. The distribution of calcium and 

zirconium within the sample is highlighted by (k-shell) EDX mapping in Figure 

5.47, acquired by scanning-TEM (STEM). 

Small particles (< 50 nm) containing Mo were again detected as in the 

previous E-Cell experiment (see Figure 5.39); these are considered contaminants 

likely to be caused by sputtering from the E-cell furnace at high temperature, and are 

ignored here. 
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Figure 5.44: (a & b) Bright field TEM images showing CaO+YSZ after 1
st
 decomposition at 800 °C 

(during E-cell multicycle CO2 capture technique) with (c) SAED pattern confirming electron 

diffraction spots due to tetragonal YSZ ‘Y’ (ICDD ref: 04-008-7255 [293]) and CaO ‘o’ (ICDD ref: 

04-003-7161 [226]). Rings only due to these phases are detected with labels assigned to spots on 

rings. (d) and (e) show corresponding EDX patterns for areas of CaO and YSZ labelled on (b). 

Presence of Mo attributed to sputtering of the E-cell furnace at 800 °C. 

 

(a) 1st
 decarbonation 

at 800 °C  

(c) 

(b) 

(d) EDX spectra of CaO 

labelled region on (b) 

(e) EDX spectra of YSZ 

labelled region on (b) 
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Figure 5.45: (a & c) Bright field TEM images showing CaO+YSZ after 1
st
 carbonation at 650 °C 

using E-cell multicycle CO2 capture technique, with (b) respective SAED pattern showing diffraction 

spots due to tetragonal YSZ ‘Y’ and CaCO3 ‘#’ (ICDD ref: 00-005-0586 [291]). Rings only due to 

these phases are detected with labels assigned to spots on rings. 

 

 

  

(a) 1
st
 carbonation 

at 650 °C 
(b) 

(c)  
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Figure 5.46: (a & c) Bright field TEM images showing CaO+YSZ after 2
nd

 decarbonation at 800 °C 

using E-cell multicycle CO2 capture technique, with (c) SAED pattern for (a) d) showing diffraction 

spots due to tetragonal YSZ ‘Y’ (ICDD ref: 04-008-7255 [293]) and CaO ‘o’ (ICDD ref: 04-003-

7161 [226]). Rings only due to these phases are detected with labels assigned to spots on rings. 

 

(a) 2
nd

 decarbonation 

at 800 °C  

 

(b) 

(c)  
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Figure 5.47: (a) STEM image showing CaO+YSZ after 2
nd

 decarbonation at 800 °C using E-cell 

multicycle CO2 capture technique, with EDX distribution maps for (b) calcium and (c) zirconium.  

  

(b) Calcium map (c) Zirconium map 

(a)  
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5.7. Discussion and final summary 

This work has analysed the formation of a nanoparticulate CaO powder 

sorbent produced by the thermal decomposition of calcium acetate hydrate (CaAc) 

[299]. The capability for CO2 capture using the CaO sorbent was investigated by 

thermogravimetric analysis (Figure 5.15 and Figure 5.23) with the morphological 

changes, at the nanoscale during carbonation and recarbonation, analysed by TEM. 

The regenerability of the CaO sorbent over multicycle carbonation and 

decarbonation cycles was also analysed by TGA (Figure 5.23). A high initial CO2 

capture capacity (molar conversion, χ, of CaO to CaCO3 = 0.89) of the sorbent was 

followed by a significant decline after progressive cycles (χ = 0.57 after 9 cycles). 

Microstructural analysis of decarbonated and carbonated samples at different 

cycle numbers of the multicycle CO2 capture process (produced and monitored by 

TGA, Figure 5.23) by SEM and TEM are shown in Figures 5.27 to 5.29. Data shows 

crystal growth and expansion of CaCO3 upon carbonation, leading to large amounts 

of crystal densification and sintering of CaCO3 (Figure 5.29).  

With progressive decarbonations, XRD and TEM analysis (Figures 5.25 and 

5.28b, d, f and h) show the formation of increasing amounts of Ca(OH)2 and a 

decrease in the overall crystallite size of the sorbent; with SEM (Figure 5.28a, c, e 

and g) highlighting increasing agglomeration, densification and a decrease in 

observed porosity. This densification inhibits the amount of carbonation on 

subsequent carbonation cycles, as is confirmed by the decreasing relative peak 

intensity ratio of the CaCO3 to CaO principle reflexions (ICaCO3/ICaO) measured by 

XRD (Figure 5.25 and 5.26). The analysis of the decarbonated samples by XRD, 

SEM and TEM is likely to have been significantly affected by varying amounts of 

uncontrolled sorbent hydration during storage, sample preparation and analysis. 
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The hydration of CaO has been modelled by Manzano et al (2012), who report 

an increasing displacement of Ca atoms with increasing hydration, and a dramatic 

change of surface structure due the adsorption of water monolayers and the 

formation of Ca(OH)2 [132]. Figure 5.48 shows Manzano et al’s model for CaO 

hydration [132], the model shows how Ca and O atoms in the first layer become 

distorted and, as water dissociates, hydrogen atoms penetrate further into the crystal 

forming hydroxyl groups in the second layer of CaO, leading to further displacement 

of Ca and O atoms in the second layer [132]. Manzano et al report a very short time, 

in the scale of nanoseconds, for the reaction to occur (hydration of CaO {001}) at 

room temperature and this rate is dependent on the levels of water in the surrounding 

atmosphere. It is a reasonable assumption that this effect has led to the significant 

structural differences observed between CaO sorbents produced in this study; 

varying levels of hydration could have occurred with uncontrolled water vapour 

exposure during storage, sample preparation and analysis, and even due to the 

varying vacuum levels between the E-cell and hot-stage TEM techniques. 

This model also complements further research by Molinder et al (2012) who 

showed the growth of a Ca(OH)2 shell around a nanoparticulate CaO core, following 

regeneration after carbonation [300]. This nanoscale core-shell structure generates 

strain in the Ca(OH)2 lattice which led to particle fracture and the formation of 

smaller crystallites [300]. This description is consistent with the broad XRD peaks 

of the Ca(OH)2 (Figure 5.25) observed in this work, and the small crystallite size of 

the decarbonated sorbents observed by TEM (Figure 5.28b, d, f and h). On the 

positive side, the likely fracturing of CaO nanoparticles due to hydration may offer 

improved regenerability of powder sorbents during multicycle CO2 capture [300]. 

However this needs to be evaluated further since hydration will not have occurred 

during the TGA runs. 
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Figure 5.48: Molecular dynamics of increasing hydration of CaO by H2O. Ca atoms = blue, O atoms 

= red, H atoms = white [132].  

 

To study the rate of hydration for this study, a supplementary experiment has 

been carried out by TGA: a sample of CaAc was firstly decomposed (in N2 at 800 

°C), then carbonated (at 650 °C) and decarbonated (in N2 at 800 °C), completing one 

capture complete cycle and forming a final CaO product. This CaO sample (starting 

mass = 4.55 mg) was then left in the TGA in air (flow rate 50 ml min
-1

) for 4 hours, 

and a mass increase of 3.12% (mass = 4.69 mg) was observed. The sample was then 

removed from the TGA and left exposed to atmospheric conditions overnight (17 

hours) on a lab workbench; the initial and final mass of the sample were recorded 

using a balance, with results showing a total mass increase of 39.85% (final mass = 

CaO 
H2O monolayer 
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6.30 mg). This corresponds to a molar conversion ratio for hydration,   , of 1.20, 

where:  

    
              

                
 (5.7) 

These results are presented in Figure 5.49 and a full conversion to CaO upon 

decarbonation is indicated at 800 °C, prior to hydration being carried out.  

X-ray diffraction of the resulting material (Figure 5.50) was measured 1 hour 

after the final balance measurement, with Ca(OH)2 shown as the dominant phase 

and only small peaks due to CaO observed. Peaks assigned to Ca(OH)2 are broad, 

indicating a fine crystallite size. A small intensity peak due to CaCO3 is also 

observed, suggesting some pick-up of atmospheric CO2; this result is likely to 

explain the > 1 molar conversion ratio,   , for hydration. These results highlight the 

reactivity of nanoparticulate CaO when exposed to atmospheric gases.  

TEM imaging was carried out within 1 hour of a sample being removed from 

the TGA (and stored in a desiccator) after the single carbonation/decarbonation 

cycle (Figure 5.51a), and then also of a sample exposed in air by TGA and then left 

overnight on a lab-bench (Figure 5.51b). For TEM sample preparation, both powder 

samples were simply dry-cast onto a TEM support film to avoid potential hydration 

if dispersed in less than 100% alcohol. The sample immediately removed from the 

TGA after decarbonation is assumed to be pure or near pure CaO based on the TGA 

mass loss during decarbonation (Figure 5.49). Imaging by TEM of this sample 

(Figure 5.51a) shows dense faceted crystals which are typically 100 – 200 nm in 

size. 

The XRD pattern of the sample left out overnight (Figure 5.50) shows a 

dominant Ca(OH)2 phase, with broad peaks indicating a fine crystallite size. By 

TEM (Figure 5.51b) only dense aggregates with significant diffraction contrast 
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within the particles were detected, which suggests polycrystalline Ca(OH)2 particles 

or heavily strained Ca(OH)2 particles are formed. Compared to the unhydrated 

sample (Figure 5.51a), the original particles appear more distorted and less faceted 

when hydrated, a result which is in good agreement with Manzano et al’s model and 

Molinder et al’s description for CaO hydration (Figure 5.48) [132, 300]. This is also 

consistent with the previously hydrated sorbents analysed by TEM in this study 

(Figure 5.28).  
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Figure 5.49: Mass increase of a decarbonated CaO sorbent due to hydration. With grey highlighted 

area showing a single carbonation/decarbonation cycle carried out by TGA (decarbonation in N2). 

Blue highlighted area shows mass increase of sorbent exposed at room temperature to air atmosphere 

for 4 hours by TGA. Green highlighted area shows mass increase when left overnight (17 hours) on a 

lab workbench and exposed to atmospheric conditions.  

 

 

Figure 5.50: XRD pattern for CaAc sample carbonated and decarbonated by TGA, exposed to air by 

TGA, and finally left exposed to atmospheric conditions on a lab workbench overnight. XRD 

analysis was carried out 1 hour after final weight measurement of the sample. ‘Δ’ denotes indexed 

peaks of calcium hydroxide Ca(OH)2, (ICDD ref: 01-084-1263 [289]), ‘○’ denotes indexed peaks of 

calcium oxide, CaO (ICDD ref: 04-003-7161 [226]). ‘#’ denotes indexed peak of calcite, CaCO3, 

(ICDD ref: 00-005-0586 [221]). Full peak list available in the appendix, Table A38. 
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Figure 5.51: Bright field TEM images showing powder sorbent after (a) previous single 

carbonation/decarbonation cycle (assumed to be CaO based on TGA measurement) and (b) a further 

4 hour air exposure at room temperature by TGA, followed by exposure to atmospheric conditions 

overnight (17 hours) on a lab workbench (see Figure 5.49). TEM image of sample recorded 24 hours 

later, shown to be Ca(OH)2 by XRD (Figure 5.50).  

 

Problems with hydration of the CaO sorbent at ambient conditions led to the 

development of an ex-situ analytical technique using an environmental heating cell 

(E-cell) in the TEM, for the analysis of the CO2 multicycle capture system (Figure 

5.34). This technique allows for the analysis of a powder sorbent after progressive 

stages of carbonation and decarbonation, with minimal exposure to air. Analysis of 

the CaO-CO2 powder looping system using the E-cell showed the formation of a 

densified ‘skeleton’ of CaO after only 2 decarbonation cycles, with this result 

consistent with the model of textural changes of a CaO sorbent (produced by initial 

decomposition of CaCO3) presented by Lysikov et al [151] (Figure 5.31).  

Minimalisation of sorbent hydration using the E-cell technique presented 

significantly different results to the decarbonated samples previously observed by 

SEM and TEM analysis (Figure 5.28) taken after particular stages of the multicycle 

CO2 capture by TGA. These samples however were exposed to air during storage 

and analysis, while those left in the TGA were not. These extracted samples (Figure 

5.28), showed that particle densification was observed by SEM however a decrease 

(a) (b) 
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in crystallite size was observed by TEM with progressive decarbonations, consistent 

with reported particle fracture due to induced strain upon hydration [300]. The rate 

of CaO hydration on exposure to air has subsequently been highlighted in Figure 

5.49, but also potential water contamination in the methanol used for TEM sample 

preparation could also be considered as a contributing factor toward further sorbent 

hydration, and may perhaps contribute to the notable differences observed between 

SEM and TEM images of the decarbonated samples, however this is unconfirmed. 

More importantly, the ex-situ TEM decarbonation result is more likely to be a true 

reflection of the decarbonated structures in the TGA. 

In-situ decarbonation of a carbonated sorbent using a hot-stage in the TEM 

(Figure 5.30), showed the decomposition of CaCO3 into a fine crystallite structure of 

CaO, with particles observed to be ~ < 50 nm in size. This result contradicts both the 

previous analysis of decarbonation stages by SEM and TEM analysis (Figure 5.28), 

where sorbent hydration had occurred, and also the decarbonation result presented 

using the E-cell (Figures 5.33 - 5.38), where only small amounts of sorbent 

hydration had occurred. This may be attributed to the difference in the vacuum and 

heating rate used for each technique; under high vacuum (~10
-5

 Pa in the TEM 

compared to ~10
-3

 Pa in the E-cell, at best) decomposition of CaCO3 was more rapid 

and occurred at a lower temperature (~600 °C) than the other methods (which 

decarbonate CaCO3 at 800 °C). Results of the E-cell showed small amounts of 

sorbent hydration however it would be expected that using the in-situ hot-stage in 

the TEM, the risk of sorbent hydration would be zero.  

In final summary, the capacity for CO2 capture of CaO nanoparticles degrades 

rapidly with multiple sorption-desorption cycles. With slow, low-vacuum 

decarbonation (by ex-situ TEM) a densified ‘skeleton’ of CaO forms, consistent with 

the drop in capture capacity observed by TGA. With rapid, high vacuum 
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decarbonation, a fine CaO crystallite structure forms (by in-situ TEM). By storage in 

atmospheric conditions (extracted XRD, SEM and TEM) a fine Ca(OH)2 crystallite 

structure forms. Both of these ultra-fine structures should be re-assessed for CO2 

capture capacity with the potential for Ca(OH)2 formation during hydrogen steam 

reforming being a likely application for the latter. 

The ex-situ E-cell technique for the analysis of the multicycle carbonation and 

decarbonation process provides a valuable new tool in the field of CO2 capture. The 

technique allows for the structural changes of powder sorbents to be observed for 

the first time at the nanolevel, upon progressing capture cycles, and due to the 

minimal risk for sorbent hydration, is therefore probably the closest microstructural 

match to what is occurring in the TGA. 

 

This research in powder CaO sorbents has contributed to the awarding of a 

new EPSRC grant (Ref: EP/J014702/1) for Dr Steven J Milne, who aims to develop 

the understanding of the relationship between sorbent microstructure and CO2 

capture capacity and durability. Further research will aim to improve the multicycle 

durability of powder sorbents investigate by steam reforming and also by the 

development of new sorbent powder blends with additives which offset sintering 

during carbonation and which are beneficial to inhibiting densification during de-

carbonation.  
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5.8. Appendix 

5.8.1. Selected area electron diffraction patterns from Section 5.5.3 

 

Figure 5.52: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample A: first calcination of CaAc at 800 °C. SAED shows diffraction due to CaO (‘o’) 

ICDD ref: 04-003-7161 [226], Ca(OH)2 (‘Δ’), ICDD ref: 01-084-1263 [289] and calcite, CaCO3 (‘#’), 

ICDD ref: 00-005-0586 [291]. Rings only due to these phases are detected with labels assigned to 

spots on rings. 

 

Figure 5.53: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample B: after 1
st
 carbonation at 650 °C. SAED shows diffraction spots due to calcite (‘#’), 

ICDD ref: 00-005-0586 [291] and CaO (‘o’), ICDD ref: 04-003-7161 [226]. Diffraction only due to 

CaCO3 and CaO phases are detected with labels assigned to spots. 

 

(a) (b) 

(a) (b) 
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Figure 5.54: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample C: after 2
nd

 decarbonation at 800 °C. SAED shows pattern due to CaO (‘o’), ICDD 

ref: 04-003-7161 [226] and Ca(OH)2 (‘Δ’), ICDD ref: 01-084-1263 [289]. Rings only due to these 

phases are detected with labels assigned to spots on rings. 

 

Figure 5.55: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample D: after 2
nd

 carbonation at 650 °C. SAED shows pattern due to only calcite phase 

(‘#’), ICDD ref: 00-005-0586 [291]. Rings only due to the CaCO3 phase are detected with label 

assigned to spot on rings. 

 

Figure 5.56: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample E: after 3
rd

 decarbonation at 800 °C. SAED shows pattern due to CaO (‘o’), ICDD ref: 

04-003-7161 [226] and Ca(OH)2 (‘Δ’), ICDD ref: 01-084-1263 [289]. Rings only due to these phases 

are detected with labels assigned to spots on rings. 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 5.57: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample F: after 3
rd

 carbonation at 650 °C. SAED shows pattern due to calcite (‘#’), ICDD ref: 

00-005-0586 [291] and CaO (‘o’), ICDD ref: 04-003-7161 [226]. Rings only due to these phases are 

detected with labels assigned to spots on rings. 

 

Figure 5.58: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample G: after 9
th

 decarbonation at 800 °C. SAED shows pattern due to Ca(OH)2 (‘Δ’), 

ICDD ref: 01-084-1263 [289]. Rings only due to the Ca(OH)2 phase are detected with label assigned 

to spot on rings. 

 

Figure 5.59: (a) Bright field TEM image and corresponding selected area electron diffraction pattern 

(b) for Sample H: after 10th carbonation at 650 °C. SAED shows pattern due to calcite (‘#’), ICDD 

ref: 00-005-0586 [291] and CaO (‘o’), ICDD ref: 04-003-7161 [226]. Rings only due to these phases 

are detected with labels assigned to spots on rings. 

 

(a) (b) 

(a) (b) 

(a) (b) 
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5.8.2. XRD peak list data 

Table A12: XRD peak list data for as received calcium acetate hydrate, with ICDD reference file 

number: 00-019-0199 [279]. 

As received calcium acetate 

hydrate 

Calcium acetate hydrate reference file, ICDD: 00-019-

0199 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

5.130 17.2135 76.53 5.287 16.700 75.00       0.157 

7.319 12.0694 100.00 7.550 11.700 100.00       0.231 

10.078 8.7704 19.62 10.278 8.600 35.00       0.200 

10.426 8.4778 58.83 10.523 8.400 65.00       0.097 

11.673 7.5749 48.43 11.790 7.500 45.00       0.117 

12.529 7.0591 8.07 12.672 6.980 16.00       0.143 

13.591 6.5099 9.94 13.718 6.450 16.00       0.127 

15.496 5.7137 6.81               

15.743 5.6247 33.06 15.898 5.570 30.00       0.155 

16.605 5.3347 8.90 16.714 5.300 10.00       0.109 

21.094 4.2083 15.37 21.239 4.180 10.00       0.145 

22.394 3.9670 15.29 22.607 3.930 10.00       0.213 

22.862 3.8868 23.86 22.962 3.870 20.00       0.100 

25.089 3.5465 39.95 25.281 3.520 30.00       0.192 

25.796 3.4510 24.11               

26.315 3.3840 16.17 26.033 3.420 20.00       -0.282 

26.497 3.3612 30.29 26.587 3.350 25.00       0.090 

26.869 3.3155 22.16               

27.032 3.2959 17.54 27.165 3.280 30.00       0.133 

27.412 3.2511 8.45 27.681 3.220 16.00       0.269 

29.445 3.0310 12.17 29.555 3.020 10.00       0.110 

30.064 2.9700 19.62 30.273 2.950 10.00       0.209 

30.409 2.9371 6.12               

31.014 2.8811 16.08               

32.391 2.7617 14.21               

33.167 2.6989 13.25 33.408 2.680 8.00       0.241 

33.723 2.6557 6.96               

34.049 2.6310 10.97 34.196 2.620 8.00       0.147 

34.790 2.5766 17.46 35.023 2.560 10.00       0.233 

35.394 2.5340 5.42 35.598 2.520 6.00       0.204 

37.363 2.4049 25.94               

38.155 2.3568 14.97               

38.544 2.3339 13.53 38.439 2.340 8.00       -0.105 

38.838 2.3169 7.05 38.784 2.320 8.00       -0.054 

39.311 2.2901 11.91 39.492 2.280 8.00       0.181 

40.899 2.2047 7.28               

41.191 2.1898 9.30 41.385 2.180 6.00       0.194 

41.917 2.1536 26.71 42.195 2.140 12.00       0.278 

42.639 2.1187 23.03               

43.093 2.0974 9.71 43.038 2.100 10.00       -0.055 

43.436 2.0817 13.11               

43.723 2.0687 6.51               

44.046 2.0543 5.96 43.917 2.060 8.00       -0.129 

44.476 2.0354 7.60               

44.750 2.0236 14.35               

45.094 2.0089 6.23 45.068 2.010 6.00       -0.026 

45.503 1.9918 5.03               
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45.774 1.9806 12.22               

46.491 1.9518 6.49               

47.114 1.9274 8.27               

48.076 1.8910 6.43               

48.819 1.8640 16.23 48.930 1.860 8.00       0.111 

49.362 1.8448 5.32               

49.707 1.8327 8.42               

50.097 1.8194 5.56               

51.348 1.7780 11.05               

51.660 1.7680 10.46 51.911 1.760 6.00       0.251 

52.886 1.7298 8.02               

53.039 1.7252 12.28               

61.264 1.5118 5.73               

 

 

Table A13: XRD peak list data for as received CaAc decomposed by TGA to 500 °C, with ICDD 

reference file number for calcite: 00-005-0586 [221] and vaterite: 00-033-0268 [288]. 

CaAc at 500 °C by TGA Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

23.082 3.8501 9.82 Calcite: #00-005-0586 23.022 3.860 12.00 0 1 2 -0.060 

24.873 3.5769 5.52 Vaterite: #00-033-0268 24.900 3.573 60.00 1 1 0 0.027 

27.032 3.2958 9.64 Vaterite: #00-033-0268 27.048 3.294 100.00 1 1 2 0.016 

29.375 3.0381 100.00 Calcite: #00-005-0586 29.406 3.035 100.00 1 0 4 0.031 

31.336 2.8523 4.52 Calcite: #00-005-0586 31.418 2.845 3.00 0 0 6 0.082 

32.723 2.7345 6.30 Vaterite: #00-033-0268 32.778 2.730 90.00 1 1 4 0.055 

35.998 2.4929 13.09 Calcite: #00-005-0586 35.966 2.495 14.00 1 1 0 -0.032 

39.404 2.2849 17.17 Calcite: #00-005-0586 39.402 2.285 18.00 1 1 3 -0.002 

41.680 2.1670 0.19 Vaterite: #00-033-0268 41.765 2.161 2.00 2 1 3 0.085 

43.163 2.0942 13.26 Calcite: #00-005-0586 43.146 2.095 18.00 2 0 2 -0.017 

43.735 2.0681 7.57 Vaterite: #00-033-0268 43.849 2.063 60.00 3 0 0 0.114 

47.081 1.9287 16.61 Calcite: #00-005-0586 47.124 1.927 5.00 0 2 4 0.043 

47.345 1.9185 21.05 Calcite: #00-005-0586 47.490 1.913 17.00 0 1 8 0.145 

48.418 1.8785 18.24 Calcite: #00-005-0586 48.514 1.875 17.00 1 1 6 0.096 

48.953 1.8592 8.59 Vaterite: #00-033-0268 49.099 1.854 30.00 3 0 4 0.146 

57.380 1.6046 7.41 Calcite: #00-005-0586 57.402 1.604 8.00 1 2 2 0.022 

60.617 1.5264 5.28 Calcite: #00-005-0586 60.678 1.525 5.00 2 1 4 0.061 

60.839 1.5214 5.84 Calcite: #00-005-0586 60.987 1.518 4.00 2 0 8 0.148 

64.637 1.4408 4.50 Calcite: #00-005-0586 64.678 1.440 5.00 3 0 0 0.041 
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Table A14: XRD peak list data for as received CaAc decomposed by TGA to 800 °C, with ICDD 

reference file number for CaO: 04-003-7161 [226], calcite: 00-005-0586 [221] and Ca(OH)2: 01-084-

1263 [289]. 

CaAc at 800 °C by TGA Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

18.288 4.8472 10.84 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 -0.222 

28.924 3.0842 2.88 Ca(OH)2: #01-084-1263 28.676 3.1104 19.10 1 0 0 -0.248 

29.642 3.0382 2.55 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 -0.236 

32.415 2.7598 41.85 CaO: #04-003-7161 32.2220 2.7760 41.10 1 1 1 -0.193 

34.328 2.6103 12.41 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 -0.227 

37.558 2.3929 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 -0.181 

47.325 1.9193 5.40 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 -0.181 

50.689 1.7988 10.21 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 0.109 

54.030 1.6959 51.67 CaO: #04-003-7161 53.891 1.7000 51.20 2 2 0 -0.139 

62.819 1.4781 1.30 Ca(OH)2: #01-084-1263 62.606 1.4826 9.80 2 0 1 -0.213 

64.304 1.4475 14.23 CaO: #04-003-7161 64.194 1.4500 12.80 3 1 1 -0.110 

64.423 1.4451 13.02 Ca(OH)2: #01-084-1263 64.300 1.4480 9.20 1 0 3 -0.123 

67.519 1.3862 13.26 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 -0.102 

79.767 1.2013 5.21 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 -0.057 

 

Table A15: XRD peak list data for as received CaAc in hot-stage XRD at 100 °C, with ICDD 

reference file number: 00-019-0199 [279]. 

CaAc at 100 °C in hot stage 

XRD 

Calcium acetate hydrate reference file, ICDD: 00-

019-0199 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

5.124 17.2312 78.14 5.287 16.700 75.00       0.163 

6.495 13.5970 5.93               

7.301 12.0983 100.00 7.550 11.700 100.00       0.249 

10.066 8.7802 20.91 10.278 8.600 35.00       0.212 

10.402 8.4979 69.09 10.523 8.400 65.00       0.121 

11.643 7.5947 54.97 11.790 7.500 45.00       0.147 

12.510 7.0702 9.36 12.672 6.980 16.00       0.162 

13.567 6.5213 11.38 13.718 6.450 16.00       0.151 

15.464 5.7255 8.68               

15.698 5.6407 39.29 15.898 5.570 30.00       0.200 

16.554 5.3507 10.91 16.714 5.300 10.00       0.160 

21.028 4.2214 18.61 21.239 4.180 10.00       0.211 

22.323 3.9794 17.00 22.607 3.930 10.00       0.284 

22.797 3.8976 26.76 22.962 3.870 20.00       0.165 

25.040 3.5534 43.54 25.281 3.520 30.00       0.241 

25.726 3.4601 26.17 26.033 3.420 20.00       0.307 

26.224 3.3955 18.16 26.587 3.350 25.00       0.363 

26.408 3.3723 37.55               

26.884 3.3137 32.81 27.165 3.280 30.00       0.281 

27.382 3.2545 9.58 27.681 3.220 16.00       0.299 

29.340 3.0417 14.28 29.555 3.020 10.00       0.215 

29.961 2.9800 21.27 30.273 2.950 10.00       0.312 
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30.370 2.9408 6.91               

30.886 2.8928 19.57               

32.282 2.7708 15.26               

33.084 2.7055 13.62 33.408 2.680 8.00       0.324 

33.625 2.6632 7.23               

33.942 2.6390 12.46 34.196 2.620 8.00       0.254 

34.694 2.5835 19.81 35.023 2.560 10.00       0.329 

35.291 2.5412 6.97 35.598 2.520 6.00       0.307 

36.027 2.4909 5.62               

36.836 2.4381 5.30               

37.238 2.4127 27.72               

38.032 2.3641 16.35               

38.422 2.3410 15.60 38.439 2.340 8.00       0.017 

38.743 2.3224 7.59 38.784 2.320 8.00       0.041 

39.214 2.2955 13.50               

40.767 2.2116 8.07               

41.087 2.1951 10.73 41.385 2.180 6.00       0.298 

41.774 2.1606 30.95               

42.492 2.1257 25.57 42.195 2.140 12.00       -0.297 

42.939 2.1046 10.72 43.038 2.100 10.00       0.099 

43.311 2.0874 13.12               

43.666 2.0713 8.01               

44.002 2.0562 7.11 43.917 2.060 8.00       -0.085 

44.320 2.0422 9.85               

44.594 2.0303 16.04               

44.980 2.0138 6.13 45.068 2.010 6.00       0.088 

45.354 1.9980 6.55               

45.637 1.9863 13.41               

46.333 1.9580 7.84               

46.619 1.9467 5.06               

46.942 1.9340 9.36               

48.007 1.8936 6.84               

48.668 1.8694 18.48 48.930 1.860 8.00       0.262 

49.259 1.8484 7.23               

49.537 1.8386 8.88               

49.975 1.8236 6.67               

51.198 1.7828 11.48               

51.574 1.7707 11.24 51.911 1.760 6.00       0.337 

52.665 1.7366 6.30               

52.901 1.7294 13.69               

53.284 1.7178 5.54               

54.551 1.6809 6.59               

58.602 1.5740 5.63               

61.059 1.5164 6.35               

64.066 1.4523 5.62               
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Table A16: XRD peak list data for as received CaAc in hot-stage XRD at 200 °C, with ICDD 

reference file number for CaAc: 00-019-0199 and dehydrated CaAc: 00-019-0198 [279]. 

CaAc at 200 °C in hot-stage 

XRD 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

5.457 16.1830 76.58 
CaAc: 00-019-

0199 
5.287 16.70 75.00       -0.170 

7.341 12.0432 100.00 
CaAc: 00-019-

0199 
7.550 11.70 100.00       0.209 

9.720 9.0994 33.02 
Dehydrated 

CaAc: #00-

019-0198 
9.606 9.20 35.00       -0.114 

14.939 5.9302 6.89 
Dehydrated 

CaAc: #00-

019-0198 
14.827 5.97 6.00       -0.112 

22.236 3.9980 5.86 
Dehydrated 

CaAc: #00-

019-0198 
22.376 3.97 10.00       0.140 

25.620 3.4771 22.41 
Dehydrated 

CaAc: #00-

019-0198 
25.652 3.47 25.00       0.032 

26.688 3.3404 27.24 
Dehydrated 

CaAc: #00-

019-0198 
26.832 3.32 14.00       0.144 

28.557 3.1258 15.61 
Dehydrated 

CaAc: #00-

019-0198 
28.776 3.10 6.00       0.219 

30.163 2.9630 8.93 
Dehydrated 

CaAc: #00-

019-0198 
30.168 2.96 14.00       0.005 

31.777 2.8160 4.04 
Dehydrated 

CaAc: #00-

019-0198 
31.589 2.83 10.00       -0.188 

38.851 2.3181 4.62 
Dehydrated 

CaAc: #00-

019-0198 
39.135 2.30 6.00       0.284 

 

 
Table A17: XRD peak list data for as received CaAc in hot-stage XRD at 300 °C, with ICDD 

reference file number for dehydrated CaAc: 00-019-0198 [279]. 

CaAc at 300 °C in hot stage 

XRD 

Calcium acetate (dehydrated) reference file, ICDD: 

00-019-0198 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

5.457 16.1830 76.58 5.697 15.5000 30.00       0.240 

6.953 12.7023 8.08               
8.249 10.7105 18.09               
9.064 9.7484 100.00 9.205 9.6000 100.00       0.141 

9.530 9.2731 87.46 9.606 9.2000 35.00       0.076 

11.021 8.0217 28.68 11.191 7.9000 16.00       0.170 

13.822 6.4017 16.79               
14.389 6.1506 15.69 14.827 5.9700 6.00       0.438 

16.155 5.4819 5.39               
16.649 5.3205 17.07 16.557 5.3500 6.00       -0.092 

20.047 4.4258 12.53 20.165 4.4000 8.00       0.118 

20.605 4.3071 6.08 20.885 4.2500 10.00       0.280 

21.749 4.0830 12.16 21.605 4.1100 6.00       -0.144 
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22.126 4.0143 16.37 22.376 3.9700 10.00       0.250 

23.328 3.8101 9.67 23.083 3.8500 4.00       -0.245 

23.800 3.7356 10.01 23.707 3.7500 8.00       -0.093 

24.218 3.6720 6.00 24.299 3.6600 16.00       0.081 

25.138 3.5397 5.41               

25.392 3.5048 10.89 25.652 3.4700 25.00       0.260 

26.220 3.3961 42.25               

26.658 3.3412 14.23 26.832 3.3200 14.00       0.174 

27.565 3.2333 27.22               
27.969 3.1876 9.54 28.037 3.1800 6.00       0.068 

28.880 3.0890 6.28 28.776 3.1000 6.00       -0.104 

29.227 3.0531 22.39 29.160 3.0600 8.00       -0.067 

29.574 3.0181 8.02               
29.879 2.9880 8.06 29.961 2.9800 6.00       0.082 

30.330 2.9445 7.17 30.168 2.9600 14.00       -0.162 

30.560 2.9229 5.07 30.808 2.9000 8.00       0.248 

31.241 2.8607 12.62               
31.649 2.8248 6.61 31.589 2.8300 10.00       -0.060 

32.763 2.7313 8.75               
33.523 2.6710 11.75 33.537 2.6700 8.00       0.014 

33.751 2.6536 9.56               

33.932 2.6398 5.85               
35.663 2.5156 11.69 35.452 2.5300 6.00       -0.211 

35.989 2.4935 7.09               

36.691 2.4474 6.32               

36.936 2.4317 8.29               

37.867 2.3740 10.94               

38.503 2.3362 5.03               
38.898 2.3134 11.47 39.135 2.3000 6.00       0.237 

39.631 2.2723 10.33 39.673 2.2700 6.00       0.042 

39.939 2.2555 21.67               
40.578 2.2214 6.76 40.416 2.2300 10.00       -0.162 

40.865 2.2065 8.80               
41.507 2.1739 11.31 41.385 2.1800 6.00       -0.122 

42.621 2.1196 7.67 42.824 2.1100 10.00       0.203 

43.455 2.0808 12.97               
44.415 2.0380 6.74 43.917 2.0600 8.00       -0.498 

45.044 2.0110 12.10               

46.374 1.9564 9.09               
47.754 1.9030 6.24               
48.041 1.8923 9.28               

48.618 1.8712 10.13               

50.088 1.8197 6.60               
55.485 1.6548 5.55               
57.006 1.6142 5.27               
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Table A18: XRD peak list data for as received CaAc in hot-stage XRD at 400 °C, with ICDD 

reference file number for calcite: 00-005-0586 [221]. 

CaAc at 400 °C in hot stage 

XRD 

Calcium carbonate (calcite) reference file, ICDD: 00-

005-0586 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

23.076 3.851 9.16 23.022 3.860 12.00 0 1 2 -0.054 

29.271 3.049 100.00 29.406 3.035 100.00 1 0 4 0.135 

31.044 2.878 2.19 31.418 2.845 3.00 0 0 6 0.374 

36.090 2.487 13.52 35.966 2.495 14.00 1 1 0 -0.124 

39.434 2.283 18.47 39.402 2.285 18.00 1 1 3 -0.032 

43.251 2.090 14.01 43.146 2.095 18.00 2 0 2 -0.105 

47.019 1.931 23.60 47.124 1.927 5.00 0 2 4 0.105 

47.100 1.928 24.71 47.490 1.913 17.00 0 1 8 0.390 

48.303 1.883 19.98 48.514 1.875 17.00 1 1 6 0.211 

56.719 1.622 3.44 56.555 1.626 4.00 2 1 1 -0.164 

57.391 1.604 5.67 57.402 1.604 8.00 1 2 2 0.011 

57.531 1.601 9.81 58.075 1.587 2.00 1 0 10 0.544 

60.642 1.526 6.88 60.678 1.525 5.00 2 1 4 0.036 

60.710 1.524 8.30 60.987 1.518 4.00 2 0 8 0.277 

60.880 1.520 7.80 61.345 1.510 3.00 1 1 9 0.465 

63.030 1.474 1.98 63.060 1.473 2.00 1 2 5 0.030 

64.650 1.441 5.64 64.678 1.440 5.00 3 0 0 0.028 

64.845 1.437 8.50 65.599 1.422 3.00 0 0 12 0.754 

72.613 1.301 2.46 72.870 1.297 2.00 1 2 8 0.257 

76.306 1.244 2.36 76.300 1.247 1.00 2 2 0 -0.006 

 

Table A19: XRD peak list data for as received CaAc in hot-stage XRD at 500 °C, with ICDD 

reference file number for calcite: 00-005-0586 [221]. 

CaAc at 500 °C in hotstage 

XRD 

Calcium Carbonate (Calcite) reference file, ICDD: 

00-005-0586 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

23.069 3.8523 9.17 23.022 3.8600 12.00 0 1 2 -0.047 

29.226 3.0532 100.00 29.406 3.0350 100.00 1 0 4 0.180 

30.932 2.8887 2.24 31.418 2.8450 3.00 0 0 6 0.486 

36.109 2.4855 13.68 35.966 2.4950 14.00 1 1 0 -0.143 

39.428 2.2836 18.72 39.402 2.2850 18.00 1 1 3 -0.026 

43.263 2.0896 14.40 43.146 2.0950 18.00 2 0 2 -0.117 

46.882 1.9364 21.71 47.124 1.9270 5.00 0 2 4 0.242 

47.084 1.9285 17.44 47.490 1.9130 17.00 0 1 8 0.406 

48.239 1.8850 20.66 48.514 1.8750 17.00 1 1 6 0.275 

56.747 1.6210 3.61 56.555 1.6260 4.00 2 1 1 -0.192 

57.203 1.6091 2.15 57.402 1.6040 8.00 1 2 2 0.199 

57.553 1.6002 9.75 58.075 1.5870 2.00 1 0 10 0.522 

60.539 1.5282 5.41 60.678 1.5250 5.00 2 1 4 0.139 

60.708 1.5243 9.77 60.987 1.5180 4.00 2 0 8 0.279 

60.742 1.5236 9.85 61.345 1.5100 3.00 1 1 9 0.603 

63.012 1.4740 2.10 63.060 1.4730 2.00 1 2 5 0.048 

64.391 1.4457 4.24 64.678 1.4400 5.00 3 0 0 0.287 

64.879 1.4360 6.67 65.599 1.4220 3.00 0 0 12 0.720 

68.944 1.3610 1.48 69.231 1.3560 1.00 2 1 7 0.287 

69.510 1.3512 2.42 70.238 1.3390 2.00 0 2 10 0.728 
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72.530 1.3022 2.70 72.870 1.2970 2.00 1 2 8 0.340 

73.576 1.2863 0.59 73.729 1.2840 1.00 3 0 6 0.153 

76.076 1.2501 2.09 76.300 1.2470 1.00 2 2 0 0.224 

76.531 1.2438 1.37 77.177 1.2350 2.00 1 1 12 0.646 

 

Table A20: XRD peak list data for as received CaAc in hot-stage XRD at 600 °C, with calcite 

(CaCO3) ICDD reference file number: 00-005-0586 [221] and CaO ICDD reference file number: 04-

003-7161 [226]. 

CaAc at 600 °C in hotstage 

XRD 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

23.008 3.862 8.99 Calcite: #00-005-0586 23.022 3.860 12.00 0 1 2 0.014 

29.124 3.064 100.00 Calcite: #00-005-0586 29.406 3.035 100.00 1 0 4 0.282 

30.756 2.905 2.36 Calcite: #00-005-0586 31.418 2.845 3.00 0 0 6 0.662 

32.088 2.787 2.52 CaO: #04-003-7161 32.222 2.776 41.10 1 1 1 0.134 

36.073 2.488 14.26 Calcite: #00-005-0586 35.966 2.495 14.00 1 1 0 -0.107 

37.220 2.414 6.32 CaO: #04-003-7161 37.377 2.404 100.00 2 0 0 0.157 

39.366 2.287 19.78 Calcite: #00-005-0586 39.402 2.285 18.00 1 1 3 0.036 

43.219 2.092 15.15 Calcite: #00-005-0586 43.146 2.095 18.00 2 0 2 -0.073 

46.680 1.944 21.84 Calcite: #00-005-0586 47.124 1.927 5.00 0 2 4 0.444 

47.011 1.931 7.32 Calcite: #00-005-0586 47.490 1.913 17.00 0 1 8 0.479 

48.115 1.890 22.99 Calcite: #00-005-0586 48.514 1.875 17.00 1 1 6 0.399 

53.653 1.707 3.60 CaO: #04-003-7161 53.891 1.700 51.20 2 2 0 0.238 

56.718 1.622 3.92 Calcite: #00-005-0586 56.555 1.626 4.00 2 1 1 -0.163 

57.518 1.601 10.90 Calcite: #00-005-0586 57.402 1.604 8.00 1 2 2 -0.116 

60.371 1.532 3.69 Calcite: #00-005-0586 60.678 1.525 5.00 2 1 4 0.307 

60.536 1.528 6.13 Calcite: #00-005-0586 60.987 1.518 4.00 2 0 8 0.451 

60.649 1.526 7.40 Calcite: #00-005-0586 61.345 1.510 3.00 1 1 9 0.696 

62.934 1.476 2.51 Calcite: #00-005-0586 63.060 1.473 2.00 1 2 5 0.126 

63.900 1.456 1.87 CaO: #04-003-7161 64.194 1.450 12.80 3 1 1 0.294 

64.056 1.453 5.33 Calcite: #00-005-0586 64.678 1.440 5.00 3 0 0 0.622 

64.858 1.437 7.42 Calcite: #00-005-0586 65.599 1.422 3.00 0 0 12 0.741 

67.106 1.394 1.04 CaO: #04-003-7161 67.417 1.388 13.20 2 2 2 0.311 

68.822 1.363 1.72 Calcite: #00-005-0586 69.231 1.356 1.00 2 1 7 0.409 

69.282 1.355 2.85 Calcite: #00-005-0586 70.238 1.339 2.00 0 2 10 0.956 

72.381 1.305 3.29 Calcite: #00-005-0586 72.870 1.297 2.00 1 2 8 0.489 

73.486 1.288 0.68 Calcite: #00-005-0586 73.729 1.284 1.00 3 0 6 0.243 

75.771 1.254 2.59 Calcite: #00-005-0586 76.300 1.247 1.00 2 2 0 0.529 

76.516 1.244 1.30 Calcite: #00-005-0586 77.177 1.235 2.00 1 1 12 0.661 

79.316 1.207 0.44 CaO: #04-003-7161 79.710 1.202 5.00 4 0 0 0.394 
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Table A21: XRD peak list data for as received CaAc in hot-stage XRD at 700 °C, with ICDD 

reference file number: 04-003-7161 [226]. 

CaAc at 700 °C in hot stage XRD CaO reference file, ICDD: 04-003-7161 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

32.394 2.7615 21.32 32.222 2.7759 41.10 1 1 1 -0.172 

37.503 2.3963 87.52 37.377 2.4040 100.00 2 0 0 -0.126 

53.857 1.7009 100.00 53.891 1.6999 51.20 2 2 0 0.034 

64.048 1.4526 36.42 64.194 1.4497 12.80 3 1 1 0.146 

67.235 1.3913 37.64 67.417 1.3880 13.20 2 2 2 0.182 

79.368 1.2063 19.56 79.710 1.2020 5.00 4 0 0 0.342 

 

 

Table A22: XRD peak list data for as received CaAc in hot-stage XRD at 800 °C, with ICDD 

reference file number: 04-003-7161 [226]. 

CaAc at 800 °C in hot stage XRD CaO reference file, ICDD: 04-003-7161 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

32.016 2.7933 14.99 32.222 2.7759 41.10 1 1 1 0.206 

37.184 2.4160 63.71 37.377 2.4040 100.00 2 0 0 0.193 

53.745 1.7042 100.00 53.891 1.6999 51.20 2 2 0 0.146 

64.083 1.4519 39.46 64.194 1.4497 12.80 3 1 1 0.111 

67.319 1.3898 41.48 67.417 1.3880 13.20 2 2 2 0.098 

79.657 1.2027 21.59 79.710 1.2020 5.00 4 0 0 0.053 

 
Table A23: XRD peak list data for CaO after 15 minutes of carbonation by TGA, with ICDD 

reference file number for Calcite (CaCO3): 00-005-0586 [221] and CaO: 04-003-7161 [226]. 

CaAc-CaO after 15 minutes 

carbonation by TGA 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.895 3.8813 9.80 Calcite: #00-005-0586 23.022 3.8600 12.00 0 1 2 0.127 

29.209 3.0550 100.00 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 0.197 

31.175 2.8667 2.46 Calcite: #00-005-0586 31.418 2.8450 3.00 0 0 6 0.243 

31.989 2.7956 2.31 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.233 

35.860 2.5021 13.14 Calcite: #00-005-0586 35.966 2.4950 14.00 1 1 0 0.106 

37.137 2.4190 5.33 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.240 

39.279 2.2919 17.10 Calcite: #00-005-0586 39.402 2.2850 18.00 1 1 3 0.123 

43.055 2.0992 12.62 Calcite: #00-005-0586 43.146 2.0950 18.00 2 0 2 0.091 

46.987 1.9323 6.93 Calcite: #00-005-0586 47.124 1.9270 5.00 0 2 4 0.137 

47.247 1.9223 17.27 Calcite: #00-005-0586 47.490 1.9130 17.00 0 1 8 0.243 

48.328 1.8818 16.63 Calcite: #00-005-0586 48.514 1.8750 17.00 1 1 6 0.186 

53.625 1.7077 2.33 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.266 

56.503 1.6274 2.60 Calcite: #00-005-0586 56.555 1.6260 4.00 2 1 1 0.052 

57.334 1.6057 6.94 Calcite: #00-005-0586 57.402 1.6040 8.00 1 2 2 0.068 

57.785 1.5943 1.14 Calcite: #00-005-0586 58.075 1.5870 2.00 1 0 10 0.290 

60.585 1.5271 3.93 Calcite: #00-005-0586 60.678 1.5250 5.00 2 1 4 0.093 

60.803 1.5222 3.69 Calcite: #00-005-0586 60.987 1.5180 4.00 2 0 8 0.184 

61.141 1.5145 1.04 Calcite: #00-005-0586 61.345 1.5100 3.00 1 1 9 0.204 

62.956 1.4752 1.41 Calcite: #00-005-0586 63.060 1.4730 2.00 1 2 5 0.104 

64.626 1.4410 4.22 Calcite: #00-005-0586 64.678 1.4400 5.00 3 0 0 0.052 

65.257 1.4286 2.54 Calcite: #00-005-0586 65.599 1.4220 3.00 0 0 12 0.342 

67.129 1.3933 0.52 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.288 
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69.059 1.3590 0.85 Calcite: #00-005-0586 69.231 1.3560 1.00 1 2 7 0.172 

70.006 1.3429 1.37 Calcite: #00-005-0586 70.238 1.3390 2.00 0 2 10 0.232 

72.747 1.2989 1.54 Calcite: #00-005-0586 72.870 1.2970 2.00 1 2 8 0.123 

76.863 1.2393 1.10 Calcite: #00-005-0586 77.177 1.2350 2.00 1 1 12 0.314 

 

 
Table A24: XRD peak list data for Cycle Sample B: after 1st carbonation cycle in multicycle CO2 

capture, with ICDD reference file number for Calcite (CaCO3): 00-005-0586 [221] and CaO: 04-003-

7161 [226]. 

Cycle Sample B: after 1st 

carbonation cycle at 650 °C 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.986 3.8660 10.93 Calcite: #00-005-0586 23.022 3.8600 12.00 0 1 2 0.036 

29.305 3.0452 100.00 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 0.101 

35.931 2.4974 12.06 Calcite: #00-005-0586 35.966 2.4950 14.00 1 1 0 0.035 

37.223 2.4136 5.36 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.154 

39.352 2.2878 15.10 Calcite: #00-005-0586 39.402 2.2850 18.00 1 1 3 0.050 

43.119 2.0963 10.58 Calcite: #00-005-0586 43.146 2.0950 18.00 2 0 2 0.027 

47.055 1.9297 5.27 Calcite: #00-005-0586 47.124 1.9270 5.00 0 2 4 0.069 

47.349 1.9184 13.48 Calcite: #00-005-0586 47.490 1.9130 17.00 0 1 8 0.141 

48.407 1.8789 13.01 Calcite: #00-005-0586 48.514 1.8750 17.00 1 1 6 0.107 

53.698 1.7056 2.36 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.193 

57.378 1.6046 4.90 Calcite: #00-005-0586 57.402 1.6040 8.00 1 2 2 0.024 

60.631 1.5261 2.73 Calcite: #00-005-0586 60.678 1.5250 5.00 2 1 4 0.047 

64.656 1.4404 2.75 Calcite: #00-005-0586 64.678 1.4400 5.00 3 0 0 0.022 

 

 
Table A25: XRD peak list data for Cycle Sample C: After decarbonation of 1st carbonated product 

in multicycle CO2 capture, with ICDD reference file number for CaO: 04-003-7161 [226] and 

Ca(OH)2: 01-084-1263 [289]. 

Cycle Sample C: After 2nd 

decarbonation at 800 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

37.257 2.4115 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.120 

32.105 2.7857 43.69 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.117 

53.759 1.7038 42.19 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.132 

64.067 1.4523 9.82 
Ca(OH)2: #01-084-

1263 
64.300 1.4476 9.20 1 0 3 0.233 

64.053 1.4525 9.66 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.141 

67.275 1.3906 9.33 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.142 

79.553 1.2040 3.07 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.157 
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Table A26: XRD peak list data for Cycle Sample D: after 2
nd

 carbonation cycle in multicycle CO2 

capture, with ICDD reference file number for Calcite (CaCO3): 00-005-0586 [221] and CaO: 04-003-

7161 [226]. 

Cycle Sample D: after 2nd 

carbonation cycle at 650 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.978 3.8673 9.95 Calcite: #00-005-0586 23.022 3.8600 12.00 0 1 2 0.044 

29.287 3.0470 100.00 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 0.119 

32.079 2.7879 5.64 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.143 

35.937 2.4970 12.52 Calcite: #00-005-0586 35.966 2.4950 14.00 1 1 0 0.029 

37.226 2.4134 12.95 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.151 

39.352 2.2878 16.27 Calcite: #00-005-0586 39.402 2.2850 18.00 1 1 3 0.050 

43.127 2.0959 11.63 Calcite: #00-005-0586 43.146 2.0950 18.00 2 0 2 0.019 

47.056 1.9296 5.93 Calcite: #00-005-0586 47.124 1.9270 5.00 0 2 4 0.068 

47.310 1.9199 15.54 Calcite: #00-005-0586 47.490 1.9130 17.00 0 1 8 0.180 

48.393 1.8794 14.97 Calcite: #00-005-0586 48.514 1.8750 17.00 1 1 6 0.121 

53.710 1.7052 5.41 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.181 

57.396 1.6041 5.90 Calcite: #00-005-0586 57.402 1.6040 8.00 1 2 2 0.006 

60.644 1.5258 3.23 Calcite: #00-005-0586 60.678 1.5250 5.00 2 1 4 0.034 

63.992 1.4538 1.23 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.202 

67.210 1.3918 1.15 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.207 

 
Table A27: XRD peak list data for Cycle Sample E: After decarbonation of 2

nd
 carbonated product in 

multicycle CO2 capture, with ICDD reference file number for CaO: 04-003-7161 [226] and Ca(OH)2: 

01-084-1263 [289]. 

Cycle Sample E: After 3rd 

decarbonation at 800 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

17.946 4.9388 23.31 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 0.120 

28.593 3.1194 5.78 Ca(OH)2: #01-084-1263 28.676 3.1106 19.10 1 0 0 0.083 

32.100 2.7861 44.56 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.122 

34.007 2.6342 23.76 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 0.094 

37.253 2.4117 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.124 

47.028 1.9307 8.96 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 0.116 

50.735 1.7980 5.08 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 0.063 

53.758 1.7038 42.15 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.133 

54.284 1.6885 5.20 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 0.072 

64.054 1.4525 10.59 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.140 

64.159 1.4504 9.90 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 0.141 

67.277 1.3906 8.64 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.140 

71.727 1.3148 0.99 Ca(OH)2: #01-084-1263 71.808 1.3136 7.10 2 0 2 0.081 

79.557 1.2039 2.83 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.153 
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Table A28: XRD peak list data for Cycle Sample F: after 3
rd

 carbonation cycle in multicycle CO2 

capture, with ICDD reference file number for Calcite (CaCO3): 00-005-0586 [221] and CaO: 04-003-

7161 [226]. 

 

Cycle Sample F: after 3rd 

carbonation cycle at 650 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.984 3.8664 9.95 Calcite: #00-005-0586 23.022 3.8600 12.00 0 1 2 0.038 

29.289 3.0468 100.00 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 0.117 

31.242 2.8607 2.22 Calcite: #00-005-0586 31.418 2.8450 3.00 0 0 6 0.176 

32.086 2.7873 9.63 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.136 

35.947 2.4963 12.47 Calcite: #00-005-0586 35.966 2.4950 14.00 1 1 0 0.019 

37.233 2.4130 22.01 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.144 

39.360 2.2873 15.85 Calcite: #00-005-0586 39.402 2.2850 18.00 1 1 3 0.042 

43.137 2.0954 11.73 Calcite: #00-005-0586 43.146 2.0950 18.00 2 0 2 0.009 

47.063 1.9294 6.30 Calcite: #00-005-0586 47.124 1.9270 5.00 0 2 4 0.061 

47.302 1.9201 15.61 Calcite: #00-005-0586 47.490 1.9130 17.00 0 1 8 0.188 

48.395 1.8793 14.81 Calcite: #00-005-0586 48.514 1.8750 17.00 1 1 6 0.119 

53.719 1.7049 8.96 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.172 

56.581 1.6253 2.18 Calcite: #00-005-0586 56.555 1.6260 4.00 2 1 1 -0.026 

57.410 1.6038 5.77 Calcite: #00-005-0586 57.402 1.6040 8.00 1 2 2 -0.008 

57.826 1.5932 1.01 Calcite: #00-005-0586 58.075 1.5870 2.00 1 0 10 0.249 

60.655 1.5255 3.22 Calcite: #00-005-0586 60.678 1.5250 5.00 2 1 4 0.023 

60.856 1.5210 3.14 Calcite: #00-005-0586 60.987 1.5180 4.00 2 0 8 0.131 

61.188 1.5135 2.01 Calcite: #00-005-0586 61.345 1.5100 3.00 1 1 9 0.157 

63.022 1.4738 1.15 Calcite: #00-005-0586 63.060 1.4730 2.00 1 2 5 0.038 

64.003 1.4536 2.01 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.191 

64.700 1.4396 3.42 Calcite: #00-005-0586 64.678 1.4400 5.00 3 0 0 -0.022 

65.282 1.4281 2.05 Calcite: #00-005-0586 65.599 1.4220 3.00 0 0 12 0.317 

67.221 1.3916 1.90 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.196 

69.114 1.3580 0.65 Calcite: #00-005-0586 69.231 1.3560 1.00 2 1 7 0.117 

70.044 1.3422 1.07 Calcite: #00-005-0586 70.238 1.3390 2.00 0 2 10 0.194 

72.795 1.2981 1.17 Calcite: #00-005-0586 72.870 1.2970 2.00 1 2 8 0.075 

73.642 1.2853 0.26 Calcite: #00-005-0586 73.729 1.2840 1.00 3 0 6 0.087 

76.342 1.2464 0.45 Calcite: #00-005-0586 76.300 1.2470 1.00 2 2 0 -0.042 

76.884 1.2390 0.82 Calcite: #00-005-0586 77.177 1.2350 2.00 1 1 12 0.293 

79.483 1.2049 0.60 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.227 
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Table A29: XRD peak list data for Cycle Sample G: After decarbonation of 9
th

 carbonated product in 

multicycle CO2 capture, with ICDD reference file number for CaO: 04-003-7161 [226] and Ca(OH)2: 

01-084-1263 [289]. 

 

Cycle Sample G: After 9th 

decarbonation at 800 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

17.937 4.9414 97.08 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 0.129 

28.575 3.1213 24.19 Ca(OH)2: #01-084-1263 28.676 3.1106 19.10 1 0 0 0.101 

32.201 2.7776 6.42 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.021 

33.986 2.6357 100.00 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 0.115 

37.371 2.4044 7.49 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.006 

46.999 1.9318 37.99 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 0.145 

50.701 1.7991 21.07 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 0.097 

53.934 1.6987 10.03 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 -0.043 

54.248 1.6896 13.35 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 0.108 

59.279 1.5576 1.79 Ca(OH)2: #01-084-1263 59.376 1.5553 2.10 2 0 0 0.097 

62.500 1.4848 6.89 Ca(OH)2: #01-084-1263 62.606 1.4826 9.80 2 0 1 0.106 

64.117 1.4512 8.14 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.077 

64.272 1.4481 8.01 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 0.028 

67.508 1.3864 0.28 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 -0.091 

 
Table A30: XRD peak list data for Cycle Sample H: after 10

th
 carbonation cycle in multicycle CO2 

capture, with ICDD reference file number for Calcite (CaCO3): 00-005-0586 [221] and CaO: 04-003-

7161 [226]. 

Cycle Sample H: after 10th 

carbonation cycle at 650 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.903 3.8798 9.74 Calcite: #00-005-0586 23.022 3.8600 12.00 0 1 2 0.119 

29.197 3.0562 100.00 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 0.209 

31.120 2.8716 2.58 Calcite: #00-005-0586 31.418 2.8450 3.00 0 0 6 0.298 

32.014 2.7934 27.40 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.208 

35.895 2.4998 13.23 Calcite: #00-005-0586 35.966 2.4950 14.00 1 1 0 0.071 

37.167 2.4171 64.91 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.210 

39.300 2.2907 16.85 Calcite: #00-005-0586 39.402 2.2850 18.00 1 1 3 0.102 

43.090 2.0976 12.28 Calcite: #00-005-0586 43.146 2.0950 18.00 2 0 2 0.056 

47.008 1.9315 9.56 Calcite: #00-005-0586 47.124 1.9270 5.00 0 2 4 0.116 

47.189 1.9245 16.93 Calcite: #00-005-0586 47.490 1.9130 17.00 0 1 8 0.301 

48.318 1.8821 16.04 Calcite: #00-005-0586 48.514 1.8750 17.00 1 1 6 0.196 

53.671 1.7063 29.58 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.220 

56.560 1.6258 2.40 Calcite: #00-005-0586 56.555 1.6260 4.00 2 1 1 -0.005 

57.388 1.6044 6.42 Calcite: #00-005-0586 57.402 1.6040 8.00 1 2 2 0.014 

57.702 1.5964 1.15 Calcite: #00-005-0586 58.075 1.5870 2.00 1 0 10 0.373 

60.627 1.5262 3.93 Calcite: #00-005-0586 60.678 1.5250 5.00 2 1 4 0.051 

60.779 1.5227 2.97 Calcite: #00-005-0586 60.987 1.5180 4.00 2 0 8 0.208 

61.094 1.5156 2.05 Calcite: #00-005-0586 61.345 1.5100 3.00 1 1 9 0.251 

62.989 1.4745 1.34 Calcite: #00-005-0586 63.060 1.4730 2.00 1 2 5 0.071 

63.968 1.4543 6.96 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.226 

64.696 1.4397 3.90 Calcite: #00-005-0586 64.678 1.4400 5.00 3 0 0 -0.018 

65.135 1.4310 2.35 Calcite: #00-005-0586 65.599 1.4220 3.00 0 0 12 0.464 

67.190 1.3921 6.79 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.227 

69.071 1.3588 0.75 Calcite: #00-005-0586 69.231 1.3560 1.00 2 1 7 0.160 
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69.954 1.3437 1.19 Calcite: #00-005-0586 70.238 1.3390 2.00 0 2 10 0.284 

72.747 1.2989 1.32 Calcite: #00-005-0586 72.870 1.2970 2.00 1 2 8 0.123 

73.622 1.2856 0.28 Calcite: #00-005-0586 73.729 1.2840 1.00 3 0 6 0.107 

76.362 1.2461 0.52 Calcite: #00-005-0586 76.300 1.2470 1.00 2 2 0 -0.062 

76.771 1.2405 0.91 Calcite: #00-005-0586 77.177 1.2350 2.00 1 1 12 0.406 

79.471 1.2050 2.28 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.239 

 
Table A31: XRD peak list data for hydrothermally prepared YSZ (hYSZ) with ICDD reference file 

number for cubic zirconium yttrium oxide: 01-077-2112 [295]. 

Hydrothermally prepared YSZ 

(hYSZ) 

Zirconium yttrium oxide reference file, ICDD: 01-077-

2112 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

Pos. °2θ 
d-spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

29.834 2.9924 100.00 29.970 2.9791 100.00 1 1 1 0.136 

34.605 2.5900 47.83 34.743 2.5800 21.60 2 0 0 0.138 

49.809 1.8292 62.50 49.953 1.8243 48.20 2 2 0 0.144 

59.208 1.5593 51.15 59.355 1.5558 31.90 3 1 1 0.147 

62.132 1.4928 35.05 62.278 1.4896 5.30 2 2 2 0.146 

73.177 1.2923 27.62 73.330 1.2900 5.40 4 0 0 0.153 

 
Table A32: XRD peak list data for commercial YSZ (Goodfellow) with ICDD reference file number 

for tetragonal zirconium yttrium oxide, ICDD ref: 04-008-7255 [293] and zirconium oxide (ZrO2), 

ICDD ref: 04-013-4343 [294]. 

Commercial YSZ 

(Goodfellow) 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

23.973 3.7090 4.67 ZrO2 : #04-013-4343 24.040 3.6988 14.60 0 1 1 0.067 

24.330 3.6554 3.76 ZrO2 : #04-013-4343 24.440 3.6392 10.90 1 1 0 0.110 

28.084 3.1748 29.98 ZrO2 : #04-013-4343 28.171 3.1651 100.00 
-

1 1 1 
0.087 

30.131 2.9635 100.00 
Yttrium Zirconium 

Oxide: #04-008-7255 
30.177 2.9592 100.00 1 0 1 0.046 

31.331 2.8528 20.45 ZrO2 : #04-013-4343 31.437 2.8434 68.40 1 1 1 0.106 

34.073 2.6292 7.35 ZrO2 : #04-013-4343 34.113 2.6262 20.90 0 0 2 0.040 

34.290 2.6130 6.79 ZrO2 : #04-013-4343 34.400 2.6049 12.40 0 2 0 0.110 

34.630 2.5882 8.89 
Yttrium Zirconium 

Oxide: #04-008-7255 
34.607 2.5898 8.10 0 0 2 -0.023 

35.094 2.5550 17.25 ZrO2 : #04-013-4343 35.268 2.5428 14.80 2 0 0 0.174 

35.103 2.5544 17.52 
Yttrium Zirconium 

Oxide: #04-008-7255 
35.172 2.5495 13.40 1 1 0 0.069 

40.562 2.2223 3.87 ZrO2 : #04-013-4343 40.709 2.2146 12.90 
-

2 1 1 
0.147 

49.140 1.8526 5.26 ZrO2 : #04-013-4343 49.229 1.8494 16.80 0 2 2 0.089 

49.909 1.8258 11.48 ZrO2 : #04-013-4343 50.091 1.8196 21.20 2 2 0 0.182 

50.153 1.8175 29.71 
Yttrium Zirconium 

Oxide: #04-008-7255 
50.170 1.8169 33.70 1 1 2 0.017 

50.449 1.8075 21.89 ZrO2 : #04-013-4343 50.545 1.8043 11.90 
-

1 2 2 
0.096 

50.498 1.8059 21.39 
Yttrium Zirconium 

Oxide: #04-008-7255 
50.590 1.8028 17.60 2 0 0 0.092 

53.847 1.7012 3.21 
Yttrium Zirconium 

Oxide: #04-008-7255 
53.799 1.7026 0.10 2 0 1 -0.048 

55.263 1.6609 3.28 ZrO2 : #04-013-4343 55.310 1.6596 8.90 2 2 1 0.047 

55.501 1.6544 3.26 ZrO2 : #04-013-4343 55.501 1.6544 3.26 
1 1 

-

3 
0.000 

55.561 1.6527 3.14 ZrO2 : #04-013-4343 55.546 1.6531 5.90 
-

1 1 3 
-0.015 
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59.342 1.5561 8.89 
Yttrium Zirconium 

Oxide: #04-008-7255 
59.296 1.5572 11.60 1 0 3 -0.046 

59.608 1.5498 8.28 ZrO2 : #04-013-4343 59.773 1.5459 8.50 1 3 1 0.165 

59.825 1.5447 12.64 ZrO2 : #04-013-4343 60.004 1.5405 6.40 
-

3 0 2 
0.179 

59.957 1.5416 17.45 
Yttrium Zirconium 

Oxide: #04-008-7255 
60.043 1.5396 22.10 2 1 1 0.086 

62.506 1.4847 3.98 ZrO2 : #04-013-4343 61.927 1.4972 6.00 
-

2 1 3 
-0.579 

62.672 1.4812 5.37 
Yttrium Zirconium 

Oxide: #04-008-7255 
62.747 1.4796 5.50 2 0 2 0.075 

62.705 1.4805 5.35 ZrO2 : #04-013-4343 62.756 1.4794 9.00 3 1 1 0.051 

68.440 1.3697 0.22 
Yttrium Zirconium 

Oxide: #04-008-7255 
68.493 1.3688 0.20 2 1 2 0.053 

71.806 1.3136 0.48 ZrO2 : #04-013-4343 71.836 1.3131 0.80 0 0 4 0.030 

74.232 1.2765 2.77 
Yttrium Zirconium 

Oxide: #04-008-7255 
74.357 1.2747 4.00 2 2 0 0.125 

77.852 1.2260 0.32 
Yttrium Zirconium 

Oxide: #04-008-7255 
78.406 1.2187 0.20 1 0 4 0.554 

 
Table A33: XRD peak list data for CaO:Mayenite spacer blend material calcined at 800 °C, with 

ICDD reference file number for CaO: 04-003-7161 [226] and Ca(OH)2: 01-084-1263 [289] and 

Mayenite: 04-014-8825 [298]. 

CaO + Mayenite calcined at 

800 °C. 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

18.005 4.9227 46.16 Mayenite: #04-014-8825 18.046 4.9116 100.00 2 1 1 0.041 

18.023 4.9302 46.14 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 0.043 

27.679 3.2203 8.37 Mayenite: #04-014-8825 27.722 3.2154 23.80 3 2 1 0.043 

29.635 3.0120 12.80 Mayenite: #04-014-8825 29.679 3.0077 38.80 4 0 0 0.044 

32.160 2.7811 42.75 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.062 

33.233 2.6937 28.47 Mayenite: #04-014-8825 33.277 2.6902 81.60 4 2 0 0.044 

34.056 2.6305 20.55 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 0.045 

34.908 2.5682 7.45 Mayenite: #04-014-8825 34.953 2.5650 12.90 3 3 2 0.045 

36.516 2.4587 14.93 Mayenite: #04-014-8825 36.561 2.4558 39.50 4 2 2 0.045 

36.552 2.4625 15.29 Ca(OH)2: #01-084-1263 36.601 2.4532 0.70 0 0 2 0.049 

37.311 2.4081 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.066 

41.013 2.1989 8.96 Mayenite: #04-014-8825 41.060 2.1965 30.40 5 2 1 0.047 

46.446 1.9535 8.71 Mayenite: #04-014-8825 46.495 1.9516 20.20 6 1 1 0.049 

47.160 1.9304 8.03 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 -0.016 

50.805 1.7957 5.40 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 -0.007 

53.790 1.7029 47.27 Mayenite: #04-014-8825 53.840 1.7014 5.60 7 1 0 0.050 

53.812 1.7022 49.76 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.079 

54.341 1.6869 5.84 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 0.015 

54.945 1.6698 7.33 Mayenite: #04-014-8825 54.994 1.6684 19.50 6 4 0 0.049 

57.208 1.6090 6.59 Mayenite: #04-014-8825 57.257 1.6077 23.50 6 4 2 0.049 

64.105 1.4515 13.56 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.089 

64.296 1.4512 10.15 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 0.004 

67.327 1.3897 11.61 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.090 
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Table A34: XRD peak list data for CaO + CaZrO3 (from a Ca(OH)2 precursor) spacer blend material 

calcined at 800 °C, with ICDD reference file number for CaO: 04-003-7161 [226] and CaZrO3: 04-

010-6398 [297].  

CaO + CaZrO3 (from a 

Ca(OH)2 precursor) 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.481 3.9517 14.50 CaZrO3: #04-010-6398 22.116 4.0161 51.40 0 2 0 -0.365 

31.439 2.8432 15.77 CaZrO3: #04-010-6398 31.013 2.8813 25.60 0 0 2 -0.426 

31.828 2.8093 33.92 CaZrO3: #04-010-6398 31.488 2.8389 100.00 1 2 1 -0.340 

32.205 2.7773 19.49 CaZrO3: #04-010-6398 31.937 2.8000 23.00 2 0 0 -0.268 

32.585 2.7458 45.80 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 -0.363 

37.733 2.3821 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 -0.356 

45.432 1.9947 12.05 CaZrO3: #04-010-6398 45.116 2.0080 36.50 2 0 2 -0.316 

50.581 1.8031 2.35 CaZrO3: #04-010-6398 50.167 1.8170 5.90 3 1 0 -0.414 

51.101 1.7860 4.81 CaZrO3: #04-010-6398 50.801 1.7958 13.60 2 2 2 -0.300 

51.613 1.7694 2.10 CaZrO3: #04-010-6398 50.167 1.8170 5.90 3 1 0 -1.446 

54.222 1.6903 49.01 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 -0.331 

55.857 1.6446 6.37 CaZrO3: #04-010-6398 55.781 1.6467 10.60 0 4 2 -0.076 

56.106 1.6379 7.08 CaZrO3: #04-010-6398 56.362 1.6311 9.80 2 4 0 0.256 

56.821 1.6190 8.82 CaZrO3: #04-010-6398 56.631 1.6240 21.50 3 2 1 -0.190 

64.508 1.4434 12.64 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 -0.314 

65.986 1.4146 3.31 CaZrO3: #04-010-6398 65.734 1.4194 10.50 2 4 2 -0.252 

67.726 1.3824 13.17 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 -0.309 

74.941 1.2662 3.13 CaZrO3: #04-010-6398 74.727 1.2693 8.20 1 6 1 -0.214 

79.784 1.2041 4.25 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 -0.074 

79.914 1.1994 4.34 CaZrO3: #04-010-6398 79.750 1.2015 1.60 4 2 2 -0.164 

 

 
Table A35: XRD peak list data for CaO + CaZrO3 + ZrO2 (from a CaAc precursor) spacer blend 

material calcined at 800 °C, with ICDD reference file number for CaO: 04-003-7161 [226], Ca(OH)2: 

01-084-1263 [289], ZrO2: 04-013-4343 [294] and CaZrO3: 04-010-6398 [297]. 

CaO + CaZrO3 + ZrO2 

(from a CaAc precursor) 
Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

22.054 4.0273 6.66 CaZrO3: #04-010-6398 22.116 4.0161 51.40 0 2 0 0.062 

29.732 3.0025 3.94 ZrO2: #04-013-4343 28.710 3.1651 100.00 
-

1 1 1 
-1.022 

30.920 2.8897 5.49 CaZrO3: #04-010-6398 31.013 2.8813 25.60 0 0 2 0.093 

31.395 2.8471 14.54 CaZrO3: #04-010-6398 31.488 2.8389 100.00 1 2 1 0.093 

31.820 2.8100 7.97 CaZrO3: #04-010-6398 31.937 2.8000 23.00 2 0 0 0.117 

32.129 2.7837 43.42 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.093 

34.238 2.6186 6.36 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 -0.137 

37.280 2.4100 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.097 

44.993 2.0132 5.07 CaZrO3: #04-010-6398 45.116 2.0080 36.50 2 0 2 0.123 

50.005 1.8208 0.87 CaZrO3: #04-010-6398 50.167 1.8170 5.90 3 1 0 0.162 

50.679 1.7999 1.94 CaZrO3: #04-010-6398 50.801 1.7958 13.60 2 2 2 0.122 

53.780 1.7032 49.55 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.111 

55.680 1.6494 2.34 CaZrO3: #04-010-6398 55.781 1.6467 10.60 0 4 2 0.101 

56.486 1.6278 3.79 CaZrO3: #04-010-6398 56.631 1.6240 21.50 3 2 1 0.145 

64.073 1.4521 12.62 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.121 
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65.607 1.4219 1.36 CaZrO3: #04-010-6398 65.734 1.4194 10.50 2 4 2 0.127 

67.295 1.3902 13.24 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.122 

74.619 1.2208 1.19 CaZrO3: #04-010-6398 74.727 1.2693 8.20 1 6 1 0.108 

79.562 1.2039 5.30 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.148 

79.570 1.2038 5.36 CaZrO3: #04-010-6398 79.750 1.2015 1.60 4 2 2 0.180 

 
Table A36: XRD peak list data for CaO (from a CaAc precursor) + hydrothermally prepared YSZ 

(hYSZ) spacer blend material calcined at 800 °C, with ICDD reference file number for CaO: 04-003-

7161 [226], Ca(OH)2: 01-084-1263 [289] and cubic zirconium yttrium oxide, ICDD ref: 01-077-2112 

[295]. 

CaO (from a CaAc 

precursor) + 

hydrothermally prepared 

YSZ (hYSZ) 

Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

18.011 4.9212 19.33 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 0.055 

28.643 3.1140 5.27 Ca(OH)2: #01-084-1263 28.676 3.1106 19.10 1 0 0 0.033 

30.073 2.9692 3.59 Cubic YSZ #01-077-2112 29.970 2.9791 100.00 1 1 1 -0.103 

32.158 2.7812 42.46 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 0.064 

34.056 2.6304 28.83 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 0.045 

35.116 2.5534 2.54 Cubic YSZ #01-077-2112 34.743 2.5800 21.60 2 0 0 -0.373 

36.522 2.4583 2.02 Ca(OH)2: #01-084-1263 36.601 2.4532 0.70 0 0 2 0.079 

37.308 2.4083 100.00 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.069 

47.074 1.9289 11.11 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 0.070 

49.969 1.8237 1.97 Cubic YSZ #01-077-2112 49.953 1.8243 48.20 2 2 0 -0.016 

50.767 1.7970 7.29 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 0.031 

53.805 1.7024 49.04 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 0.086 

54.315 1.6876 6.20 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 0.041 

56.091 1.6383 0.40 Ca(OH)2: #01-084-1263 56.199 1.6354 1.10 0 0 3 0.108 

59.344 1.5561 0.56 Cubic YSZ #01-077-2112 59.355 1.5558 31.90 3 1 1 0.011 

59.939 1.5420 0.82 Ca(OH)2: #01-084-1263 59.376 1.5553 2.10 2 0 0 -0.563 

62.553 1.4837 2.85 Cubic YSZ #01-077-2112 62.278 1.4896 5.30 2 2 2 -0.275 

62.567 1.4834 2.85 Ca(OH)2: #01-084-1263 62.606 1.4826 9.80 2 0 1 0.039 

64.095 1.4517 14.28 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.099 

64.161 1.4504 14.03 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 0.139 

67.316 1.3898 11.86 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 0.101 

71.747 1.3145 1.81 Ca(OH)2: #01-084-1263 71.808 1.3136 7.10 2 0 2 0.061 

72.485 1.3029 0.47 Cubic YSZ #01-077-2112 73.330 1.2900 5.40 4 0 0 0.845 

74.265 1.2761 0.13 Ca(OH)2: #01-084-1263 77.807 1.2266 1.00 0 0 4 3.542 

79.047 1.2104 0.61 Ca(OH)2: #01-084-1263 79.143 1.2092 1.80 1 1 3 0.096 

79.588 1.2035 4.58 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 0.122 
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Table A37: XRD peak list data for CaO (from a CaAc precursor) + commercial YSZ (Goodfellow) 

spacer blend material calcined at 800 °C, with ICDD reference file number for CaO: 04-003-7161 

[226], Ca(OH)2: 01-084-1263 and tetragonal zirconium yttrium oxide, ICDD ref: 04-008-7255 [293]. 

CaO (from a CaAc 

precursor) + commercial 

YSZ (Goodfellow) 

Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

18.555 4.7781 2.13 Ca(OH)2: #01-084-1263 18.066 4.9063 74.20 0 0 1 -0.489 

28.874 3.0897 1.55 Ca(OH)2: #01-084-1263 28.676 3.1106 19.10 1 0 0 -0.198 

30.505 2.9281 100.00 
Yttrium Zirconium 

Oxide: #04-008-7255 
30.177 2.9592 100.00 1 0 1 -0.328 

32.519 2.7512 37.66 CaO: #04-003-7161 32.222 2.7759 41.10 1 1 1 -0.297 

34.386 2.6060 4.54 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 -0.285 

34.979 2.5631 11.40 
Yttrium Zirconium 

Oxide: #04-008-7255 
34.607 2.5898 8.10 0 0 2 -0.372 

35.466 2.5291 15.32 
Yttrium Zirconium 

Oxide: #04-008-7255 
35.172 2.5495 13.40 1 1 0 -0.294 

37.208 2.4146 9.04 Ca(OH)2: #01-084-1263 36.601 2.4532 0.70 0 0 2 -0.607 

37.661 2.3866 90.87 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 -0.284 

43.301 2.0878 0.97 
Yttrium Zirconium 

Oxide: #04-008-7255 
42.965 2.1034 0.90 1 0 2 -0.336 

47.590 1.9092 1.50 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 -0.446 

50.481 1.8065 37.99 
Yttrium Zirconium 

Oxide: #04-008-7255 
50.170 1.8169 33.70 1 1 2 -0.311 

50.842 1.7945 29.20 
Yttrium Zirconium 

Oxide: #04-008-7255 
50.590 1.8028 17.60 2 0 0 -0.252 

50.841 1.7945 29.26 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 -0.043 

54.054 1.6952 42.01 
Yttrium Zirconium 

Oxide: #04-008-7255 
53.799 1.7026 0.10 2 0 1 -0.255 

54.126 1.6931 49.59 CaO: #04-003-7161 53.891 1.6999 51.20 2 2 0 -0.235 

54.455 1.6836 19.12 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 -0.099 

56.945 1.6158 0.15 Ca(OH)2: #01-084-1263 56.199 1.6354 1.10 0 0 3 -0.746 

59.635 1.5492 13.07 
Yttrium Zirconium 

Oxide: #04-008-7255 
59.296 1.5572 11.60 1 0 3 -0.339 

59.351 1.5559 4.07 Ca(OH)2: #01-084-1263 59.376 1.5553 2.10 2 0 0 0.025 

60.279 1.5341 23.64 
Yttrium Zirconium 

Oxide: #04-008-7255 
60.043 1.5396 22.10 2 1 1 -0.236 

62.632 1.4820 1.52 Ca(OH)2: #01-084-1263 62.606 1.4826 9.80 2 0 1 -0.026 

63.010 1.4741 6.21 
Yttrium Zirconium 

Oxide: #04-008-7255 
62.747 1.4796 5.50 2 0 2 -0.263 

64.396 1.4456 13.39 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 -0.202 

64.921 1.4352 2.18 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 -0.621 

67.609 1.3845 13.51 CaO: #04-003-7161 67.417 1.3880 13.20 2 2 2 -0.192 

68.733 1.3646 0.55 
Yttrium Zirconium 

Oxide: #04-008-7255 
68.493 1.3688 0.20 2 1 2 -0.240 

71.964 1.3111 0.29 Ca(OH)2: #01-084-1263 71.808 1.3136 7.10 2 0 2 -0.156 

73.368 1.2894 1.90 
Yttrium Zirconium 

Oxide: #04-008-7255 
73.007 1.2949 1.70 0 0 4 -0.361 

74.526 1.2722 4.19 
Yttrium Zirconium 

Oxide: #04-008-7255 
74.357 1.2747 4.00 2 2 0 -0.169 

78.739 1.2144 0.35 Ca(OH)2: #01-084-1263 77.807 1.2266 1.00 0 0 4 -0.932 

78.742 1.2143 0.35 
Yttrium Zirconium 

Oxide: #04-008-7255 
78.406 1.2187 0.20 1 0 4 -0.336 

79.567 1.2038 1.62 Ca(OH)2: #01-084-1263 79.143 1.2092 1.80 1 1 3 -0.424 

79.852 1.2002 5.44 CaO: #04-003-7161 79.710 1.2020 5.00 4 0 0 -0.142 
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Table A38: XRD peak list data for CaAc sample carbonated & decarbonated by TGA, then analysed 

for effect of hydration by TGA, and by overnight air exposure, with ICDD reference file number for 

CaO: 04-003-7161 [226], calcite: 00-005-0586 [221] and Ca(OH)2: 01-084-1263 [289]. 

CaAc sample carbonated & 

decarbonated, then 

analysed for effect of 

hydration by TGA, and by 

overnight air exposure. 

Pattern Assignment 

Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

ICDD ref file 
Pos. 

°2θ 

d-

spacing 

(Å) 

Relative 

intensity 

(%) 

h k l Δ°2θ 

17.886 4.9592 74.21 Ca(OH)2: #01-084-1263 18.066 4.9060 74.20 0 0 1 0.180 

28.667 3.1141 29.72 Ca(OH)2: #01-084-1263 28.676 3.1106 19.10 1 0 0 0.009 

29.975 2.9770 7.54 Calcite: #00-005-0586 29.406 3.0350 100.00 1 0 4 -0.569 

33.899 2.6445 100.00 Ca(OH)2: #01-084-1263 34.101 2.6271 100.00 0 1 1 0.202 

37.088 2.4241 9.18 CaO: #04-003-7161 37.377 2.4040 100.00 2 0 0 0.289 

47.067 1.9308 32.17 Ca(OH)2: #01-084-1263 47.144 1.9262 38.60 0 1 2 0.077 

50.658 1.8020 49.21 Ca(OH)2: #01-084-1263 50.798 1.7959 26.20 1 1 0 0.140 

53.946 1.6997 24.96 Ca(OH)2: #01-084-1263 54.356 1.6865 14.30 1 1 1 0.410 

59.071 1.5639 9.76 Ca(OH)2: #01-084-1263 59.376 1.5553 2.10 2 0 0 0.305 

62.325 1.4898 15.79 Ca(OH)2: #01-084-1263 62.606 1.4826 9.80 2 0 1 0.281 

64.075 1.4515 15.21 Ca(OH)2: #01-084-1263 64.300 1.4476 9.20 1 0 3 0.225 

64.171 1.4514 12.52 CaO: #04-003-7161 64.194 1.4497 12.80 3 1 1 0.023 

71.590 1.3170 10.17 Ca(OH)2: #01-084-1263 71.808 1.3136 7.10 2 0 2 0.218 
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Chapter 6. Conclusions 

The main aims of this research were to develop synthesis and characterisation 

protocols for two different nanoparticulate materials; hydroxyapatite (HA), which 

can be used as a biomaterial, and calcium oxide (CaO), which can be utilised as a 

powder sorbent for CO2 capture. For the analysis of these nanoparticulate materials, 

various bulk and particle level characterisation techniques have been employed, and 

have been complemented by the use of current and newly developed analytical 

methods using the transmission electron microscope (TEM); including a low 

electron-fluence EDX technique for the reliable analysis of the Ca/P ratio of small 

nano-clusters of HA nanoparticles, and in- and ex-situ techniques for the analysis of 

nanoparticulate CaO with a reduced risk of sorbent hydration. 

Characterisation of the physical and chemical properties of nanoparticulate HA 

powders produced by hydrothermal and sol-gel methods has been carried out using 

Fourier transform infrared spectroscopy (FTIR), laser ablation inductively coupled 

plasma mass spectrometry (LA-ICP-MS), X-ray diffraction (XRD), X-ray 

fluorescence (XRF), scanning electron microscopy (SEM) and transmission electron 

microscopy with energy dispersive X-ray analysis (TEM-EDX), with results 

compared to a commercially available HA powder (Sigma-Aldrich).  

Sample analysis confirms that phase-pure HA with near-stoichiometric 

composition (Ca/P = 1.67) was achieved by the hydrothermal route, with particles 

displaying regular rod-shaped morphologies (typically 50 - 300 nm in length). The 

average Ca/P ratio from TEM-EDX, for the hydrothermal HA prepared at pH 11 

was 1.61 (S.D = 0.17).  
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The sol-gel samples (calcined at 500 °C and 700 °C) produced impure HA; an 

additional phase of calcium carbonate (CaCO3) was observed in the 500 °C sample, 

and β-tricalcium phosphate (β-TCP), dicalcium phosphate anhydrate (DCPA) and 

traces of calcium oxide (CaO) were observed in the 700 °C sample. The impurities 

observed in the sol-gel HA powders are attributed, in part, to the evaporative loss of 

triethyl phosphite during specimen preparation and the thermal decomposition of the 

primary HA phase during calcination (at 700 °C). The low fluence TEM-EDX 

technique highlighted particle to particle compositional variability, with greater 

variance in the Ca/P ratio observed in the samples prepared by the sol-gel method, in 

comparison to the HA samples prepared by the hydrothermal method and the 

commercial HA sample. The sol-gel powders displayed average Ca/P ratios of 1.72 

for 500 °C (S.D = 0.38) and 1.65 for 700 °C (S.D = 0.35). Bulk analysis of the Ca/P 

ratio by XRF and LA-ICP-MS confirmed deviations away from the stoichiometric 

target of 1.67 for the phase-impure HA samples.  

Both HA samples prepared by the sol-gel method exhibited equiaxed or 

rounded shaped particles, with extensive agglomeration of both observed by SEM. 

Increasing the calcination temperature from 500 °C to 700 °C increased the average 

particle length from 70 nm to 108 nm respectively, with some particles reaching 

lengths of 225 - 250 nm in the HA sample calcined at 700 °C. 

Two additional samples of HA synthesised by the hydrothermal method, have 

been prepared with starting suspensions held at pH 9 and pH 11. The increase in pH 

of the starting suspension hindered particle growth with the pH 9 and pH 11 HA 

samples showing average particle lengths of ~200 nm and ~130 nm respectively. 

These samples were subsequently examined for cytotoxicity against a selection of 

cell lines (Caco-2, A549 and SH-SY5Y) by an undergraduate research group led by 

Dr Lars Jeuken at the Leeds Faculty of Biological Sciences. Results of HA 
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cytotoxicity indicated promising and expected biocompatibility, but were 

inconclusive as to the effect of particle size and shape, and would require further 

research. Assays carried out here showed little affect on cell viability across all cell 

lines tested, with decreases in cell viability only observed at very high particle 

doses, typically > 500 μg ml
-1

. 

The second component of this thesis has examined the thermal decomposition 

of calcium acetate hydrate (CaAc) for the formation of CaO-based nanoparticulate 

powder sorbents for CO2 capture. Thermal analysis of the decomposition of CaAc 

was performed by thermogravimetric analysis (TGA) and in-situ hot-stage XRD, 

with results showing that full decomposition of CaAc to CaO was complete at 800 

°C by TGA, and a longer dwell time using the hot-stage XRD showed the 

decomposition of CaAc to CaO was complete at 700 °C. Intermediate phases of 

dehydrated-CaAc and calcite (CaCO3) were observed after decomposition at 300 °C 

and 500 °C respectively by hot-stage XRD, and vaterite (CaCO3) was also observed 

(along with calcite) after decomposition at 500 °C by TGA. Analysis of the CaO 

product by SEM and TEM showed highly sintered agglomerates of fine plate-like 

particles (typically < 100 nm) with some nanoporosity observed. Complications with 

the analysis of CaO samples (collected from the TGA) by SEM, TEM and XRD 

arose due to the reactive nature of CaO with atmospheric moisture and CO2 at 

ambient conditions, with Ca(OH)2 and CaCO3 phases regularly detected.  

Calcium oxide produced by the decomposition of CaAc has shown to be an 

effective powder sorbent for the high temperature capture of CO2, with 71.7% mass 

increase observed after carbonation at 650 °C (in 100% CO2) for 15 minutes by 

TGA. This is equivalent to a molar conversion ratio (χ) of CaO to CaCO3, of 0.92. 

The kinetics of carbonation were shown to be controlled firstly by fast linear growth 

which then developed into that controlled by solid-state diffusion of CO2 through a 
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product layer of CaCO3. From SEM and TEM analysis, the carbonated product layer 

was observed to be large, micron-sized agglomerates that are comprised of 

significantly sintered polygonal crystals (typically > 200 nm) with many particle 

boundaries meeting at equilibrium angles i.e. 120°. Overall growth of the individual 

carbonated particles appears limited by a large amount of particle densification. 

The regenerability of CaO after carbonation (CaO 
   
    CaCO3) was analysed by 

TGA with the development of a multicycle carbonation and decarbonation program. 

With increasing cycles of carbonation (in CO2) at 650 °C for 5 mins followed by 

decarbonation (in N2) at 800 °C with no dwell, the molar conversion ratio (χ) of CaO 

to CaCO3 was shown to decrease from 0.89 after the first cycle, to 0.57 after 9 

cycles. This decrease has been attributed to the sintering (reduction in surface area) 

of the sorbent upon decarbonation. Structural analysis by SEM and TEM of samples 

(extracted from the TGA at progressive stages of the multicycle process) showed an 

increasing average particle size of the sorbent with progressing decarbonation 

cycles, and an observed lower surface area. The initial sorbent showed an average 

particle size of 145 nm, this increased to 230 nm after the 9
th

 decarbonation cycle. 

With progressive carbonation cycles the particle size of CaCO3 crystals was 

observed to gradually decrease. Analysis of decarbonated samples highlighted the 

issue of sorbent hydration upon storage, sample preparation and analysis; particle 

densification was observed by SEM however a decrease in crystallite size was 

observed by TEM with progressive decarbonations, which is attributed to the 

formation of ultra-fine polycrystalline Ca(OH)2 particles (consistent with broad 

XRD peaks observed for Ca(OH)2) upon storage. The amount hydration of each 

CaO sample is not considered to be related to the number of decarbonation cycles. 

The above analysis of the sorbent by SEM and TEM, at progressive stages of 

the multicycle process, was significantly affected by hydration and small amounts of 
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carbonation when the sorbent was exposed to normal atmospheric conditions (during 

storage, sample preparation and analysis). To address this, a TEM based technique 

using an ex-situ environmental cell (E-cell) was developed for the analysis of a CaO 

sorbent during multicycle CO2 capture. By performing carbonation and 

decarbonation steps in a sealed unit that can be directly transferred to the TEM 

under rotary vacuum, this method aimed to reduce the risk of sorbent hydration and 

carbonation at ambient conditions, allowing for more accurate structural analysis of 

the CaO sorbent. Results showed that slow, low-vacuum decarbonation (in the E-

cell) creates a densified ‘skeleton’ of CaO, consistent with the drop in capture 

capacity observed by TGA. In comparison to the analysis of the decarbonated 

samples extracted from the TGA, and decarbonation by in-situ hot-stage TEM, the 

ex-situ E-cell technique is considered to provide the closest microstructural match to 

the conditions inside the TGA.  

Modification of CaO sorbents were investigated using zirconia based- and 

mayenite dopant (‘spacer’) materials which aimed to reduce the sintering of the 

sorbent upon decarbonation. Results showed that cycle-by-cycle decay in CO2 

uptake capacity was achieved using spacer additive, with commercial YSZ powder 

shown to be most effective spacer material. 

 

6.1. Future work 

 Engineer bio-activity improvements (e.g. Sr substitution promotes bone 

growth [264, 265]) of nanoparticulate HA produced by the 

hydrothermal method with elemental substitutions (e.g. Na
+
, Mg

2+
, 
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Sr
2+

, F
-
, Ag

-
, Cu

2+
 and Zn

2+
). Analyse potential cytotoxicity effects of 

these modified HA samples. 

 Understand the relationship between sorbent microstructure and CO2 

capture capacity and durability through the development of novel in- 

and ex-situ TEM techniques to understand the structural changes of 

powder sorbents that are currently un-documented. 

 Further develop the ex-situ E-cell TEM technique for the analysis of 

multicycle CO2 capture. This includes: improving vacuum quality to 

remove risk of sorbent hydration, and investigating the origin of Si/Mo 

particles formed upon decarbonation at 800 °C. 

 Understand the inter-dependence of microstructural alteration during 

low-temperature carbonation and high-temperature calcination and the 

effect of deliberate sorbent hydration between cycles. 

 Synthesise new sorbent blends with additives which offset sintering 

during carbonation and are also beneficial to inhibiting densification 

during decarbonation, and therefore demonstrate improved durability 

over many (100+) thermal cycles. 
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