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ABSTRACT 

SLS is a commercial solid freeform fabrication process. Layers of powder 

material are bonded by a laser beam to rapidly manufacture three dimensional 

freeform models. In this work, the direct SLS of room temperature single-phase 

steel powder beds is researched. 

Two approaches are adopted: 

" Experimental analysis of heat transfer in the process; 

" Numerical modelling of the process. 

Experimental work involves the use of analytical equations to calculate the 

thermal conductivity and laser energy absorptance of the SLS powder bed. 

Experiments take place in a range of representative situations. Two temperature 

measurement systems are used, requiring some custom-designed elements. 

Conductivity values in the range 0.07 to 0.25 W/(m. K) are found, dependent on 

atmospheric gas and powder particle size. Absorptance varies from 0.08 to 0.21, 

dependent on atmosphere and material type. Measurements are made to learn 

more about temperature variation in the bed with position and time. It is found 

that processed material melts and solidifies in under 4 seconds in studied cases. 

Numerical modelling involves developing and testing an existing Fortran model 

of the SLS process. A method is devised to visualise modelled parts in 3D. Pre- 

processing is simplified, and more status information is communicated during 

execution. The effect on modelled parts of changes made to the program are 

tested. The stability of part depth is improved. The nature of parts is categorised 

against input parameters. The area, relative density and morphology of 

manufactured and modelled single layer parts are compared. Manufactured scans 

are found to have a variable cross-sectional shape, whereas the cross-sectional 

shape of modelled scans does not change. Modelled parts are found to be 

significantly smaller than manufactured parts. Reasons for these two differences 

are suggested. 
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CHAPTER ONE 

1 INTRODUCTION 

This chapter summarises the need for the work undertaken in this PhD project, 

and describes the nature of that work. The layout of the following document is 

then explained. 

1.1 Outline of Research Situation 

To reduce the amount of time required in the development of new products, 

manufacturing industry has adopted a group of technologies collectively known as 

solid freeform fabrication (SFF) systems. SFF machines can be used for rapid 

prototyping (RP) or rapid tooling (RT) applications. RP systems allow prototype 

parts of any geometry (within size limits) to be built in a matter of hours. RT is 

used to quickly fabricate metallic tools which are then used to make many parts 
having production-standard mechanical properties. 

One such SFF process is known as Selective Laser Sintering (SLS). SLS takes 

powdered material as its input. Before processing, the powder is spread flat to 

form a thin layer. A scanning laser beam selectively heats and bonds the powder 

particles in a layer, to form solid sections of a specified shape. More powder is 

spread on top of the processed layer: more laser scanning and bonding takes place. 

Adjacent layers bond to each other through the laser's heating effect, building up 

to form a solid part. Once it is built, an SLS part can then be treated with post 

processes to improve quality: however, this increases the overall duration required 

to complete a prototype. 

It is desired to selectively laser sinter metal powders without post processing, to 

create short run tools or parts. The potential combination of speed, geometrical 
flexibility and low cost compares favourably against traditional manufacturing 

methods: casting, spark erosion and machining for example. A number of 

approaches are already available to create metallic parts directly via SFF, however 

the requirements of finished parts are hard to meet: high dimensional accuracy, 
high strength and low residual stresses are examples. In order to meet such 

requirements, attention must be paid to SFF process control. The thermal and 
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mechanical properties of the processed metal should be understood and taken into 

account. 

1.2 This Thesis 

In this thesis, two thermal characteristics of metals which relate to direct SLS 

are investigated. The material focussed on for study is stainless steel 314HS 

powder, of various particle sizes. Another type of tool steel and a polymer-bound 

steel powder are also tested. The heat transfer process when a constant wave 

carbon dioxide laser scans metal powder is examined, using contact and non- 

contact temperature measurements. Methods are developed to evaluate the 

effective thermal conductivity of powders, and the absorptance of laser radiation 

energy by powders as they are processed. The effect of laser parameters and 

scanning strategy on absorptance is considered. 

An existing finite element model of direct metal SLS (written in Fortran) is 

developed in several ways. Generation of input files is simplified, and feedback 

during run-time is increased. The size of output files is reduced, and visualisation 

of output data is improved. The scope and nature of the model is assessed via 

process mapping. 

The model output is compared to experimental output for verification, based on 

the cross-sectional dimensions of modelled and manufactured layers. The 

application of modelling work to better process control is considered. 

1.3 Organisation of Thesis 

The following document is split into chapters, with content as described below. 

" Chapter 2 is the Literature Review. It begins with a discussion of the need for 

Solid Freeform Fabrication in manufacturing industry. SFF and popular SFF 

systems are detailed, then from these Selective Laser Sintering is chosen for a 

more in-depth discussion. Direct SLS of metal is analysed: the effect of 

process parameters and finished part characteristics are investigated. Previous 

work regarding heat transfer, material densification and numerical modelling 
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for SLS are reviewed. The future direction of SFF is considered. Findings are 

then summarised. The chapter ends with a statement of the aims of this PhD 

project. 

Chapter 3 is called Heat Transfer Experiments. The theory underlying the 

calculation of conductivity and absorptance is explained. Experimental 

apparatus (pre-existing and custom-made) and powders tested are described, 

with reasons for their selection or design. The procedure followed during 

experiments is explained. Experiments include measurement of thermal 

properties and the creation of single layer stainless steel parts for dimensional 

analysis and comparison against numerical model output. There is also a 

measurement of powder density and a study of material evaporation. 

" Chapter 4 is about Numerical Model Development. It explains changes made 

to an existing numerical model, and pre-/ post-processing aids which were 

developed. These relate to ease of use, efficiency and communication of 

output. Chapter 4 also details activity undertaken to assess the scope and 

validity of the model for recreating direct SLS of metallic single layer parts. 

" Chapter 5 describes Processing of Results. Raw data from thermal 

experiments and numerical modelling are converted into a useful format. 

Processing of experimental temperature data is done to determine material 

thermal properties (conductivity and laser absorptance) under various 

conditions. Calculations are made in order to measure powder density and the 

level of material evaporation. Sectional and 3D visualisation of modelled parts 

was made possible, via post-processing. This is undertaken using two software 

packages. Images of modelled parts are used to create process maps, showing 

the range of input parameters which would lead to parts of acceptable quality. 
Images are also created for morphology and area comparisons between 

modelled and manufactured single layer parts. 

" Chapter 6 contains Results and Discussion: Thermal Experiments. Material 

absorptance and conductivity as measured under different circumstances are 
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presented. Observations are made concerning the laser-induced thermal field 

in direct metal SLS. Powder density and evaporation study results are 

presented. Stainless steel single layer cross-sections are displayed. All 

presented results are discussed. Possibilities for future experiments are 

identified. 

9 Chapter 7 is Results and Discussion: Numerical Modelling. Elementary 

modelled shapes are presented, with an explanation of generic features. 

Changes made to the program are validated by comparison of modelled parts. 

Process maps are presented. Modelled single layers are compared 

dimensionally and morphologically with the manufactured (real) equivalent. 

All items presented are discussed, and observations made during use of the 

model are detailed. Suggestions are made for future modelling work. 

Chapter 8 contains Conclusions. The contents of the thesis are condensed into 

a few statements. 

9 References and Appendices follow on from Chapter 8. 
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CHAPTER TWO 

2 LITERATURE REVIEW 

In this chapter, the work of others relating to the direct selective laser sintering 

(SLS) of metal is reviewed, leading to a statement of aims for this PhD project. 

Section 2.1 provides background information to explain the importance of the 

SLS process for rapid manufacturing applications. SLS is discussed alongside 

other processes used in rapid manufacturing. 

Section 2.2 focuses on SLS in its different forms. The process is described with 

reference to hardware, materials and the manufacture of freeform structures. 

Machine parameters and the characteristics of parts are discussed. Section 2.3 

concentrates on modes of heat transfer in the SLS process. Equations describing 

heat transfer mechanisms are reviewed. The effect of laser heat on SLS materials 

is examined in Section 2.4. In Section 2.5, numerical models of relevance to direct 

SLS are investigated. Section 2.6 reflects the views of authors concerning the 

future direction of processes such as SLS. Section 2.7 summarises the chapter so 

far, and Section 2.8 provides a statement of what this PhD project aims to achieve. 

2.1 Introduction 

In this section, a discussion of the contemporary product design process 
identifies a need for rapid manufacturing technology. Some rapid manufacturing 

methods are described, and the nature of output parts is discussed. 

2.1.1 Needs of Manufacturing Industry 

New technology and new working practices have affected the contemporary 
industrial product design process in many ways. The integration of new 

technology and practices has helped manufacturing industry to meet its evolving 

needs. Described below is the current state of the product design process, which 
leads to an understanding of why technologies such as the type researched in this 

work have been so quickly adopted by manufacturing companies across the world. 
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From the scale of a single-piece child's toy to an automobile comprising 

thousands of parts, manufacturers are perpetually involved in the business of 

product development. A team of people is assigned a specific product 

development task to complete in a given time, using given resources. Teams are 

multi-disciplinary, consisting of engineers, industrial designers, purchasers and 

marketers amongst others. All groups must bring their specialised knowledge to 

bear on the product, in order to define the details of its form and function. The 

product is then brought to the manufacturing stage, before being released to 

market. 

The constituent activities of this product design process according to Pahl and 

Beitz [Pahl 1999] are shown in Figure 2.1. The process begins with an assessment 

of the market situation, to identify potential needs. If a niche for a product is 

identified, then a series of activities follows to identify a solution, briefly outlined 

here: 

" Planning and clarifying: allocating necessary resources to the project, and 

defining a list of requirements (specification) for the product to fulfil; 

" Conceptual design: finding methods by which the needs of the specification 

now generated can be met; 

" Embodiment design: assessing these methods, choosing the most suitable one. 

Defining the form of the product; 

" Detail design: exact dimensions, materials and means of manufacture are 

specified. 
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Figure 2.1 
Pahl and Beitz's representation of the 
planning and design process 

An alternative form of the design process is offered by [Ohsuga 1989]. Stages 

in the process are not ordered or named, but are generalised as a loop of analysis, 

evaluation then refinement. Both discussed forms of the design process suggest 

iteration from a vague to an explicit definition of the product. This model of 

design as an iterative process implies that the more iterations there are, the less 

flaws a product will have and the more fit for purpose it will be. 

These iterations are more the result of brainstorming and critical discussion in 

the first instance, and more due to theoretical and practical testing in the later 

stages. A useful objective is that in the discussion stages the product concept is 

exposed to people having a wide pool of experience, including potential 

customers [Pham 1998], and that it is tested as widely as possible later on. 
Regular and specific communication of design details to the entire development 
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team not only facilitates feedback, but also allows individuals to start planning 

their up-and-coming tasks [Pham 1998]. This parallel, well-informed system of 

team working is known as concurrent engineering, and is vital to rapid 

development of high quality, complex products [Sohlenius 1992]. 

For the purposes of co-ordinating and communicating complex design 

information, computer-based tools have entered the product development process 

[McMahon 1998]. Computer aided design (CAD) allows a three-dimensional (3D) 

image of a product or part to be created using knowledge of geometry and set 

theory (using addition, union and so on). 3D models are quick to generate, easy to 

manipulate and can be stored or transmitted electronically with no degradation 

[Steen 1998]. Once a model's geometry and other explicit data have been defined, 

its in-service performance can be simulated by the computer in several ways: 

using finite element modelling to analyse mechanical or thermal scenarios 

[Livesley 1983], and using virtual reality [Kalpakjian 2001] to interact with the 

model. 

The value of computers for visualisation and analysis has been identified, yet 

there is still a need for physical models in design verification and communication. 

The subtleties of ergonomic factors such as the comfort of a hand grip or the 

appearance of a textured surface in daylight may be impossible to assess in a CAD 

environment. Similarly, certain physical usage conditions may be too complex to 

be modelled accurately by numerical methods. A "real world" model or prototype 

is needed. Prototypes are unambiguous and an ideal focus point for non-technical 

personnel [Pham 1998]. 

A final dimension to add to the situation of new product development is that of 

time. IBM [Sohlenius 1992] have reported that over the period 1978-1994, the 

average life of a consumer product reduced from 7 to 2.5 years. Competition in a 

global market has increased pressure on manufacturers to accelerate their product 
life cycle. For fast-moving and forward-thinking companies, reduction of a new 

product's time to market increases the market share enjoyed as other companies 

work to develop competing products [Kalpakjian 2001]. 
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With reference to their product design stage diagram Figure 2.1, Pahl and Beitz 

report that making a design modification at the concept stage will cost a tenth of 

making the same modification in the manufacturing engineering stage, and will 

only cost a hundredth of making the modification during mass production. This is 

because of the level of financial commitment made at the different stages. BAE 

Systems [Beaman 1997] have reported that once 5 percent of a design project's 

total cost has been spent, 85 percent of the total cost is committed. 

The facts provided by IBM, Kalpakjian, Pahl and Beitz and BAE can be 

interpreted thus: 

" The product development cycle should be as short as possible, in order to 

maximise product sales and income; 

" Within this cycle, the product design should be modified repeatedly, with a 

rate of change which reduces over time in order to minimise the cost of 

changes. 

What has been identified is that multiple, rapid repetitions of the early product 

development loop (analyse, evaluate and refine) are required. This loop may 

involve visualisation and testing in the computer environment, but will also 

require rapid realisation of 3D CAD geometry, i. e. physical model-making. This 

will facilitate communication of design developments to a broad range of people, 

and will allow limited product testing, both of which can drive future design 

iterations. 

Such a group of methods for CAD data realisation has recently become 

available, collectively known as solid freeform fabrication (SFF) methods. Their 

ability to quickly create solid objects has attracted interest from people inside and 

outside manufacturing industry, leading to many novel applications. Discussed in 

the next section is the value to manufacturing industry of SFF technology not only 
for creating prototypes, but also for generating mass production forming tools. 

2.1.2 Solid Freeform Fabrication in Manufacturing: RP and RT 

Rapid prototyping (RP) refers to processes which create prototype parts, 

geometrically representing the final production part [Kalpakjian 2001]. Cheap and 
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simple machines which make "form and fit" type parts are often referred to as 

desktop RP systems. Machines also exist which can produce functional 

prototypes, with mechanical properties and accuracy close to those of a 

production part [Kruth 1998]. These are known as workshop RP systems [Pham 

1998]. The rapid tooling (RT) group of processes involve the primary 

manufacture of a negative which serves as a tool in a secondary forming process. 

RT can create production-type parts which are equivalent to the final product, for 

testing purposes. In some cases RT tools are sufficient for mass production, for 

instance the injection moulding of 100,000 parts before tool wear became 

excessive [Radstok 1999]. 

The combination of RP and RT is referred to by the term solid freeform 

fabrication, or SFF. Whereas rapid prototyping and tooling describe the process in 

terms of a product development strategy, SFF describes the nature of the process 

output. The term SFF acknowledges the unrestrained geometrical properties of 

output parts, described further in Section 2.1.3. 

Desktop RP, workshop RP and RT each have their own combination of 

qualities which are tailored to meet different needs. A production engineer may 

select them from amongst a large group of processes including more traditional 

material forming technologies. Three example scenarios are given below, in 

which a non-SFF and SFF process are compared for realising a 3D CAD design. 

More details on forming processes and any facts used below can be found in the 

work of [Kalpajkian 2001], [Swift 1997], [Pham 1998], [Shellabear 2001] and 

[Dickens 2000]. The SFF processes mentioned will be discussed further in Section 

2.1.4. 

Requirement 1: fast and cheap prototype part to verify a first design. 

Non-SFF solution: desktop milling machine. Accuracy ±10µm. Machine cost 
£4,500. Maximum part size 120 x 100 x 120mm. 

Best choice for: cost. 
SFF solution: desktop RP, e. g. 3D printing. Accuracy ±130µm. Machine cost 
£25,000. Maximum part size 360 x 460 x 360mm. 
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Best choice for: reproduction of internal design features. 

Requirement 2: rapidly-produced and functional prototype polymer part, strength 

and accuracy approaching that of production part. 
Non-SFF solution: machined master, reproduced by reaction injection moulding. 

Appropriate accuracy and strength, can make up to 100 copies of master. Process 

is labour-intensive. 

Best choice for: multiple prototypes. 
SFF solution: workshop RP, e. g. selective laser sintering. Appropriate accuracy 

and strength. Production time about 1 day. 

Best choice for: low skilled labour requirement. 

Requirement 3: tool for plastic injection moulding. 

Non-SFF solution: electrode discharge machining. Tool strength similar to that of 

cast material. Lead time 10 weeks, cost £6,000. 

Best choice for: high production runs (100,000s of shots). 

SFF solution: RT, e. g. DMLS. Tool strength approximately 75 percent of cast 

material. Lead time 2 weeks, cost £5,000. 

Best choice for: fast tool production. 

As has been illustrated, there are many factors to be considered when choosing 

a manufacturing process. These examples do not attempt to provide all the facts 

involved in a decision, but simply show that SFF processes are preferable in a 

variety of niche situations. In such a huge marketplace (the forming tool market 

alone being estimated at a value of £43 billion in 1999 [Wohlers 1999]), SFF 

technologies are thriving. 

2.1.3 SFF Technology 

2.1.3.1 Process Procedure and Part Features 

Some of the advantages of solid freeform fabrication have already been 

demonstrated in the previous section. Commercial SFF technology is only 14 
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years old [Jacobs 1992], and has always been based on modern hardware and 

software technology. The procedure for converting a 3D CAD model into a 

physical model is largely automated, meaning a high process speed and minimal 

human intervention [Badrinarayan 1994]. This procedure by which an SFF part is 

made [Beaman 1997, Kalpakjian 2001] will be described with the aid of Figure 

2.2. The influence of the process on the nature of parts is explained. Some 

example SFF processes are detailed in the next section, 2.1.4. 

iý. ýi 0 
Step 1: Create CAD 

geometry 

Step 2: 
geometry 
processed 
into laver, 

ý,. ,ý 
----- -- ; 

Figure 2.2 Steps involved in a 
typical SFF process 

The input data required to make an SFF part are of three dimensional 

geometrical form (step 1, Figure 2.2). The most common way of creating 3D data 

is by assembling solids and surfaces using a CAD package. An alternative is to 

digitise the geometry of an existing object through laser or MRI scanning. 

SFF systems have sometimes been termed "layer manufacture" systems. This is 

because the building of parts takes place one layer at a time, with each layer 

bonded on top of the last. Before a solid model can be realised, it is necessary to 

convert the 3D data into surface form, to be processed into tool paths. The most 

popular format to convert to is "sti" [Pharr 1999], a de facto standard developed 

by 3D Systems which uses tesselating triangular elements to cover the full surface 

of the model. This leads to a diamond-like facetted appearance of curved surfaces, 

and reduces the accuracy of the model somewhat. Other formats exist, such as 
"slc" which generates polygonal contours around the model surface in parallel 

Step 3: part 
assembled 
layer by 
layer 
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planes. The value of the stl format though is that the triangle-based data make 

model processing fairly simple. 

Once in stl format, the part data are usually transferred to the SFF equipment. 

The machine's software must now use the stl data to generate a scanning pattern 

for the processing tool (which may be a laser, polymer extrusion head or other 

device depending on the type of SFF process). A slicing algorithm calculates the 

intersection point between evenly-spaced parallel slicing planes and the stl surface 

triangles. The planes are trimmed to occupy the interior volume of the model (step 

2 in Figure 2.2). 

The method in which plane information is converted to a tool path is dependent 

on the SFF process. Some different forms of SFF are discussed in the next section. 

In the case of a raster-scanning laser used to form a solid structure where it 

contacts with raw material, the laser could simply be toggled on and off where it 

passes into and out of the area defined as solid by the layer plane. 
Layers are built by the processing tool's interaction with the raw material as the 

tool follows the calculated paths. The layers are created and bonded together, to 

create the final part (step 3, Figure 2.2). Bonding of layers occurs either during the 

process or afterwards. 

Note that no pre-fabricated part-specific tools are required in manufacture, a 

major advantage of SFF. 

Using SFF-type processes, polymers, metals, ceramics and many composite 

materials can be transformed into bonded-layer parts. Raw material comes in 

powder, liquid, sheet or solid layer form. A part may be completely finished after 

SFF processing (known as a direct process), or in "green" form, ready for post- 

processing (which is discussed in Section 2.1.4.7). SFF parts can be recognised by 

certain features inherent in the process: 

" Complex geometry, particularly in reproducing internal features. SFF tools 
have no "blind spots" such as found in machining, and corner radii are 
typically less than 0.5mm [Beaman 1997]. Figure 2.3 is an example of the 
detailed freeform output possible. A popular geometrical aspect of rapid 
tooling (RT) is the ability to create "conformal" cooling channels in mould 



tools [Wohlers 1999]. Such channels run just below the cavity surface of the 

manufactured mould, carrying fluid which transfers heat away from the 

mould. Uniquely to RT, these 

channels can be fashioned to 

exactly follow the contour of the 

cavity surface. They provide the 

optimum result when molten 

material has been injected into the 

mould and must be cooled before 

ejection. The higher the cooling 

rate, the quicker the moulding 

process becomes [Sachs 1997]. 

" Use of supports. As a material additive process, not all SFF parts have the 

support structure needed to avoid in-process toppling, sinking or creeping of 

certain areas. Overhanging features in particular have been seen to distort 

under their own weight [Xu 1999, Matsumoto 2001]. To counter this effect, 

certain machines have software which provides further model processing, to 

calculate positions where extra part support structures should be built. These 

supports are either made of a wax-like material which does not bond to the 

part, or are designed to be broken off at special weak points. 

"A rough "stepped" surface. 

Each layer is made with vertical 

walls, so curved surfaces are 

only approximated, shown in 

Figure 2.4 [Sabourin 1996]. The 

extent of the resulting 

inaccuracy is dependent on 

layer thickness and build 

orientation. 



Page 15 Chapter 2 

" Inaccuracy due to shrinkage and tool offset. Studies show [Wang 1999, Geiger 

1996] that an effective way to remove en masse dimensional inaccuracies is 

through a feedback loop. A standard part is built, and a large number of 

dimensions are measured. Inaccuracy which varies linearly with position can 

be attributed to material shrinkage in forming, and any constant inaccuracy 

can be attributed to poor tool radius compensation, as is used when calculating 

machining toolpaths. SFF software can apply reverse values of shrinkage and 

tool offset to a CAD model, for dimensional control. This broad brush method 

can not however deal with the differential cooling and localised shrinkage/ 

warping inherent in truly freeform parts, discussed in Section 2.2.6. 

" Non-isotropic mechanical properties. Parts have been found to be stronger 

when loaded in the build layer plane than when loaded orthogonally to this 

plane. This is because the layers themselves are generally stronger than the 

bonds between layers. Furthermore, SFF-processed materials tend to be more 

brittle, softer and less strong than if processed using standard production 

methods (e. g. casting for metals, injection moulding for plastics). There are 

applications where non-isotropic properties are advantageous: SFF can be 

used to deposit multiple materials alongside one another with a stepped or 

graded material transition. For instance, it is possible to incorporate internal 

wiring or high-strength zones into a manufactured object [Calder 2001]. 

" Porous (semi-dense) processed structure. This applies particularly to SFF 

processes involving powders. It is possible to induce necking between the 

powder particles, but leave interstitial channels as with sintering. Such open 

porosity can be useful when moving parts are intended to be self-lubricating 
(i. e. grease is held in the pores), or for medical applications [Wohlers 1999]. 

In most SFF applications a porous structure is accepted but is not desired, 

because a strong link exists between part porosity and low yield strength 
(discussed in Section 2.2.6.4). Solid (zero porosity) parts can be challenging to 

produce by SFF [Khaing 2001]. 
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2.1.3.2 Machine Components 

The majority of SFF machines fulfil similar functions: 

" Raw material storage; 

" Delivery and levelling of material for each layer; 

" Means of processing material from raw to structural form; 

" Movement of the processing tool relative to the work piece. 

Different methods of fulfilling these functions will be seen in the examples 

provided, Section 2.1.4. Further consideration is given here to the most popular 

material processing tool used in SFF. This is the laser [Kruth 1998]. 

A laser's light is electromagnetic, but with the unusual property of being highly 

focussed (divergence a few milliradians) and of almost constant wavelength for a 

particular laser type [Luxon 1985]. The two most popular laser types for SFF are: 

" Carbon dioxide (COZ), up to 15kW CW power at 10.6µm wavelength; 

Neodymium YAG (Nd: YAG), up to 200W CW or 1.5kW pulsed power at 

1.06µm wavelength. 

The term "CW" is short for "continuous wave", meaning that the beam provides 

constant power over time. If a laser is pulsed, 

this means it is switched on and off rapidly, 

which can provides certain benefits. An Nd: YAG 

laser may be pulsed, a C02 laser may not. For 

their high power and relative low cost [Crafer 

1993], CO2 lasers have proven most popular for 

use in SFF machines. Nd: YAG lasers are 

growing in popularity for metals processing as 

their price decreases. 
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Figure 2.5 Lens types 

Optical systems consisting of several lenses can expand, collimate and focus a 

laser beam as required. In Figure 2.5, two lenses are presented. A convex lens 

(top) causes the beam to converge by refraction; the concave lens (bottom) causes 

the beam to diverge. These two lenses are combined to form a beam expander, 

which improves focussing by reduction of beam diffraction effects. It is worth 
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bearing in mind that each optical component added to the beam delivery system 

reduces its efficiency, by absorbing the beam's energy. 

Standard laser beams do not have a constant spatial distribution of power, 

rather a radial pattern of irradiance. Irradiance is strongest at the beam centre and 

reduces exponentially outwards. More detail will be provided in Section 2.3.1. 

Laser light can be effectively redirected by mirrors, which are used in many 

SFF processes. Mounted on galvanometers [Turner 1995], the mirrors redirect the 

beam when they are rotated. Certain lasers (including Nd: YAG) can be 

transmitted inside optical fibres, which are directed by an NC head [Kruth 1998b]. 

2.1.4 SFF Systems 

There are now in excess of 58 types of SFF system being sold worldwide [Hunt 

2001]. It is not proposed to describe them all here. In the next 5 sections, 5 

popular SFF processes are detailed in terms of hardware features and 

performance. In a further 2 sections, other SFF technologies are summarised and 

post processes are considered. The variety of possible approaches becomes clear, 

as does the core concept of layered manufacturing. Prices quoted are for the most 

basic model. "RT part volume" refers to the number of parts which can be 

manufactured from a rapid tool made with the particular process. For further 

information on SFF processes, see [Kalpakjian 2001], [Dickens 2000], [Pham 

1998] and [Castle Island 2002]. 

2.1.4.1 Stereolithography (SLA) 

Material: liquid photocurable 

polymer. 

Tool: laser. 

Accuracy: ±100µm [Pham 1998]. 

Machine cost: £50,000 [Cl 2002]. 

RT part volume: <1,000 [Radstok 

1999]. 
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SLA is the first of the SFF processes, commercialised in 1988. 

The apparatus is as in Figure 2.6. The part platform sits one layer thickness (as 

little as 0.025mm) below the surface of a liquid polymer bath, allowing a layer of 

the polymer to flow over it. A wiper blade is used to level the viscous liquid. The 

laser beam is then directed by rotating mirrors to contact chosen areas of the 

liquid polymer layer: where it does so, the polymer cures and solidifies. Once one 

solid layer structure has been completed, the laser switches off and the part 

platform lowers by one layer thickness. More polymer flows over the top of the 

solid layer and covers it. The laser scans again, building another layer on top of 

the previous one. The penetration of the laser is such that the new layer bonds to 

the previous one as it is cured. One by one, layers are added until a complete 

model is finished. The part platform raises from the bath allowing remaining 

liquid to drain from the model, then it is detached from the platform and may be 

post-cured to full density. 

2.1.4.2 Selective Laser Sintering (SLS) 

Material: powder form. 

Polymers, polymer-coated 

metals and ceramics, high/ 

low melting point metal 

mixtures and other 

composites. 

Tool: laser. 

Accuracy: ±51µm [Pham 

1998]. 

Machine cost: £200,000 [Cl 2002]. 

RT part volume: <100,000 [Radstok 1999]. 

SLS is the most versatile SFF process. The materials used are cheaper than 

those used in SLA [Pharr 1998]. 

Refer to Figure 2.7 to see the SLS apparatus. As in SLA, material is spread 

across the surface of a bed and processed by a laser. The major difference is that 

the material is in powder form, of typical particle diameter 50µm. The laser heats 
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material to approximately the melting point, causing adjacent powder particles to 

bond and form a solid structure. This requires higher laser power than for SLA. In 

the case of polymer or polymer-coated powders, sintering temperatures usually lie 

in the 100-200°C interval: the powder bed can be preheated to just below the melt 

temperature of the polymer, allowing tighter control of the sintering process. 

The SLS process is discussed in greater detail in Section 2.2. 

2.1.4.3 Laminated Object Manufacturing (LOM) 

Material: sheet paper or 

plastic (may be ceramic- 

filled) with polymer binding 

underlayer. 

Tool: laser or knife. 

Accuracy: ±127µm 

[Pham 1998]. 

Machine cost: £80,000 

[Cl 2002]. 
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Figure 2.8 
LOM L, iY ,: 11 Suppl. Roll 

Refer to Figure 2.8 during the following description of the LOM process. A roll 

of flexible sheet is supplied to the part area, where a laser or knife cuts the pattern 

of a layer. The excess sheet around the pattern is cross-hatched for easy removal 
later. After cutting, a heated roller compresses the sheet layer. The heat of the 

roller activates the sheet's polymer undercoating, which bonds the current sheet to 

the previous one. Once the part is fully built, the bonded cross-hatched areas are 

removed from the interior and exterior. LOM is an example of a desktop RP 

process. 

2.1.4.4 Fused Deposition Modelling (FDM) 

Material: polymer or casting wax filaments. 

Tool: heated extrusion head. 

Accuracy: ±127µm [Stratasys 1998]. 
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Machine cost: £20,000 [CI 2002]. 

FDM has been the most popular SFF 

process on the market [Kruth 1998a]. 

As shown in Figure 2.9, input material 

comes in the form of reels of polymer fibre. 
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An NC-directed extrusion head has rollers which feed the fibre onto the part. 

Inside the head are resistance heating elements which raise the temperature of the 

polymer to 0.5°C above its melting temperature. The soft polymer is then 

extruded through the head onto the part being built. The polymer solidifies 0.1 

seconds after contact with the part, before creep occurs. 

Two materials may be used at once: a hard model material and a soft, easily 

removed support material, as shown in the figure. 

LIP (or ink jet printing), works in much the same way as FDM but forms a 

structure using molten thermoplastic droplets rather than a continuous feed. 

2.1.4.5 Metal Powder Spraying by DirecTool 

Material: mostly metals. 

Tool: integrated laser beam and spraying head. 

Accuracy: ±127µm [Knights 2001]. 

Machine cost: unknown. 
RT part vol.: >100,000 [Radstok 1999]. 

Numerous powder spraying SFF methods exist, 

using a laser beam to melt a stream of particles 

which enter the beam's focal zone near the part 

powder feed 
and carrier gas 

router 
as 

ud 

Figure 2.10 
Powder spraying 

surface. A material delivery head as shown in Figure 2.10 is moved by NC 

control. Spraying has the advantage over SLS that material supply to the 

processed area can be increased, to reduce part porosity. The DirecTool process 
can generate 100 percent dense parts from materials such as stainless steel. It is 

reckoned that a forming tool can be made in 1 week by DirecTool [Knights 2001]. 
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2.1.4.6 Other SFF Technologies 

In this section, some novel elements of other RP and RT processes are briefly 

considered. 
Apart from the standard laser beam and heated extrusion head mentioned 

already, other processing tools have been used in SFF. These include: 

" Geiger's [1996] dual-focussed laser. A beam is split into two concentric 

beams, using optics. One of these is of large diameter and low irradiance. In 

room temperature powder bed laser sintering (similar to SLS), where rapid 

heating and cooling can cause internal stresses in parts, the beam's outer ring 

slowly preheats and cools the processed material. 

"A robot-controlled welding torch for metal SFF [Dickens 1992]. Dimensional 

accuracy was poor (±0.5mm) due to difficulty controlling the melt flow. 

"A heated head which prints polymer binder into powder bed layers. The 

binder solidifies around the powder to form a structure [Kruth 1998a]. 

" An ultraviolet lamp, which shines through a custom-printed mask to solidify a 

layer of photocurable polymer. The entire layer is processed at once. 

"A single- or multi-axis milling head. This is used to flatten the surface of 

layers as they are formed, or cut an angle on the vertical walls of each layer to 

reduce the stepped effect discussed in Section 2.1.3.1. 

Some novel material schemes have been developed to overcome problems in SFF: 

9 Often it is desired to make parts from high melting temperature materials such 

as ceramics or steel. However, for good dimensional control in laser 

processing the peak temperature rise should be small, for reasons explained 

later in Section 2.2.6.3. [Kruth 1998a] and others have addressed this problem 

by using a dual-phase powder, with low temperature (binding) and high 

temperature (structural) constituents. The low temperature material melts on 
laser application, and flows by capillary force to form a bound part. The 

technique is known as liquid phase sintering (LPS) [Agarwala 1995b]. Low 

strength and high porosity result, which can be improved by post-processing. 

" SFF materials tend to expand and shrink as they are processed. In the direct 

metal laser sintering (DMLS) process, metal blends have been developed 
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which undergo no overall shrinkage due to counteracting microstructural 

effects [Wilkening 1996]. Dimensional accuracy results are good. Liquid flow 

and particle rearrangement increase bulk density, then homogenisation causes 
diffusion, creating porosity and expansion to decrease bulk density. Processed 

parts are left less than 80 percent dense, however. 

" In generating tools for drop forging and pressing, porosity is undesirable as it 

leads to lowered strength [Agarwala 1995a]. The Stratoconception SFF 

method [Poirier 2001] uses laminates cut from solid sheet material by laser or 

milling. These are stacked on top of one another and glued or brazed to form 

solid shapes. Metal tools made this way are very strong in compression. 

" The benefits of powder spraying and LPS can be combined using selective 

area laser deposition vapour infiltration [Dai 2003a]. A powder bed is locally 

heated then infiltrated with vapour which fills pores, bonding the powder 

particles as it solidifies. High density and good dimensional control are seen in 

processed parts. 

2.1.4.7 SFF Post Processes 

If an SFF-generated part undergoes further processing, this is generally done to 

improve mechanical and geometrical qualities. Either the original part is 

enhanced, or its geometry is exploited by using it as a master to make new parts. 

Examples of "original part" post processes are furnace cycles, infiltration, 

machining/ polishing and painting. Examples of "master part" post-processes are 

rubber and resin moulding, electroplating and casting: these are usually used for 

rapid tooling (RT). Some post-processes are discussed below. 

Furnace cycles offer longer and more consistent heating, for hours or tens of 

hours [Kruth 1998a]. Their function is to burn out SFF polymer binders, and to 

cause necking of the structural material which creates strength [Kruth 1996]. SLS 

furnace processes are discussed in more detail in Section 2.2.3. In 3D Keltool RT 

[Dickens 2000], core and cavity mould shapes are made by SLA equipment, then 

they are cast around with silicone rubber to create moulds. The mould is filled 

with polymer-bound metal powder, which is then cured. Firing in a furnace burns 

away the binder and sinters the metal particles. Infiltration can also occur in the 
furnace to produce tools with higher yield strength and hardness, and lower 
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roughness [Karapatis 1998a]. 1 million injection moulded parts have been made 

using a single copper-infiltrated Keltool tool [3D Systems]. Alternately, SFF parts 

may be coated with ceramic slurry, then burnt out in the furnace. The slurry is 

sintered to create an investment casting cavity [Pham 1997]. 

Other infiltrating materials include epoxy resin and solder. The surface or bulk 

of the part may be infiltrated, depending on the extent of porosity interconnection 

[Kruth 1997]. Infiltration of nickel-bronze SFF parts with tin solder by [Karapatis 

1998a] increased their strength three times, and increased hardness five times. 

Selective finishing (machining and polishing) of parts makes them smooth and 

flat, for interfacing with other parts and to reduce friction for moulding 

applications [Shellabear 2001]. 

Moulding using an SFF master part is done to produce parts of high and 

isotropic mechanical properties. An example process is room temperature 

vulcanising rubber (RTV) moulding [Dickens 2000]. Silicone rubber cast around 

an SFF master pattern is used as a cavity, to make urethane or epoxy parts. 

Material and labour costs make this method quite expensive. 

In post-SFF electroplating, a master is sprayed with conductive laquer then 

electroplated with several millimetres' thickness of material such as nickel. 
External detail is very good, but holes cause difficulties [Dickens 2000]. 

There are numerous problems associated with post processing: for instance 

shrinkage in furnace cycles, 18 percent for some ceramics [Kruth 1998a]. 

Additional dimension changes accompany the use of geometrical negatives. In 

rapid tooling, tolerances need to be within ±50µm [Radstok 1999] so post-process 

control must be strong. Furnace cycles can add 5,10 or more hours to lead times, 

and work such as polishing incurs high labour costs. 

2.1.5 Summary of SFF in Manufacturing 

SFF methods have become an integral part of the modern computer-driven 
design process. They help to reduce product development times, improving the 

communication and verification of product form. Different SFF processes have 
been developed to meet different needs. They compare favourably against more 
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traditional manufacturing processes not only in terms of speed, but also in terms 

of the complex internal detail which can be produced. 

A processing tool creates a part from raw material in a layer-by-layer fashion, 

working from a 3D CAD design. A stepped surface, in-process shrinkage, non- 

isotropic properties and porosity are common qualities of SFF parts. Hardware, 

materials and post-processes have been developed to improve the qualities of 

parts. Post-processes add to the lead time required to obtain finished parts. 

2.2 Selective Laser Sintering 

In this section, different aspects of selective laser sintering (SLS) are 

considered. The original SLS process, as commercialised by DTM Corporation 

(now 3D Systems) is discussed in 2.2.1 and 2.2.2. Direct SLS processes are 

reviewed in 2.2.3. 

The SLS equipment developed for the research undertaken in this work is the 

topic of Section 2.2.4. In 2.2.5, material properties are discussed. Section 2.2.6 

discusses processing issues with a particular focus on direct SLS of steel powders. 

2.2.1 The 3D Systems SLS Process in Detail 

The 3D Systems SLS machine, also 

known as a SinterStation, was first devised 

in the 1980s [Deckard 1986]. It converts a 

CAD model in three dimensions to a solid 

object of the same geometry. 

The data required to instruct an SLS 

machine how to build a part of certain 

geometry are in an stl format or equivalent. 

The creation of CAD geometry and 
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Figure 2.11 SLS Hardware 

conversion to stl has previously been discussed (Section 2.1.3.1). A model is 

draughted in 3D at actual size, and its interior/ exterior identified. The model's 

surface is automatically approximated by tesselated triangular patches, and this 

geometrical definition of the model is used to cut the internal volume into slices 

on parallel planes. The slice information is then converted to data controlling the 
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operation of the SLS laser beam [Beaman 1997]. The apparatus required for SLS 

is shown in Figure 2.11. 

Materials used in SLS are polymers (which can be processed directly into a 

finished part), or polymer-bound metals and ceramics (made indirectly, requiring 

post-processes). All are in powder form. As an example of the particle diameter, 

the powder Rapid Steel 2 has a particle diameter range from 22 to 53µm 

[McAlea]. Fresh powder is entered into cartridges located on either side of the bed 

where the part is to be built. Underneath each cartridge is a feed piston which 

raises by a certain amount, presenting new powder to be moved to the part bed. 

The powder is moved by a roller, which rotates and moves to the left or right, 

depending on which powder cartridge is being used at the time. The roller moves 

the powder from the cartridge to the bed and spreads it flat across the bed's 

surface (on the next pass, it will serve the opposite cartridge moving in the 

opposite direction). The powder bed is preheated by radiant heaters, to a 

temperature just below the softening point of the binding material. 

The laser, typically of 50W continuous wave CO2 type, is activated. The laser 

beam is directed by two galvanometer-controlled mirrors, which rotate about 

perpendicular axes to deflect the beam left and right or up and down on the bed 

surface. The beam is switched on and off so that it selectively contacts with the 

powder surface. An automatic controller handles issues such as the timing of 

mirror movement against laser operation, and mirror velocity control [Deckard 

1995]. 

As the laser beam makes contact with the powder surface, heat is absorbed 

locally by the powder particles, which increases their temperature. By a 

combination of sintering and melting, the particles in the beam's wake are bonded 

and cool to form lines of connected material on the bed's surface. Usually the 

laser moves in a "raster scan" pattern, drawing parallel lines with a degree of 

overlap to form a solid plane of material. Line scanning speeds can reach 

7500mm/s [3D Systems 2002]. 

Once an entire solid layer has been formed, the part bed is lowered by one layer 

thickness. The powder feed piston and roller are activated to provide a new 
levelled powder layer on top of the previous one. Laser processing takes place 
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again, with laser power and layer thickness chosen so that temperature penetration 

is sufficient to bond the new layer to the previous one. 

All unbonded powder is left in place during the process, which provides 

support for the structures created. More than one part may be made at once, for 

efficient use of the part bed volume and machine time. Thermally-induced 

shrinkage and residual stresses are minimised by preheating of the part bed and a 

slow cool-down after processing. Cooled parts are removed from the bed, and 

loose powder is extracted from them using brushes and compressed air. 

Unprocessed powder can be recycled after sieving [Pham 1998]. 

2.2.2 Optional Post-Processing Steps in 3D Systems SLS 

SFF post processes have been mentioned in section 2.1.4.7. They are used to 

improve the mechanical and geometrical properties of parts. Most of the "original 

part" processes covered are used in SLS post-processing: furnace cycles, 

infiltration, machining and polishing [Beaman 1997]. Use of SLS for rapid tooling 

usually involves metallic or 

ceramic parts and as such, 

post processes are required. 

Materials have been specially 

designed for indirect RT 

applications, as will be seen 

below. 

A key feature of specially- 

developed indirect SLS 

powders is the combination of 

a low melting temperature 

and a high melting 

temperature material. The low 

temperature material is the 

binder, necking and bonding 

during SLS to create a 

continuous structure. The 

Max. f. 
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Figure 2.12 Magnified view of steel powder (i. ); 
packing density range for spherical particles (ii. ) 
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high temperature material provides properties looked for in the final part: 

temperature resistance, strength and stiffness. SLS-induced temperatures remain 
below the high temperature material's sintering point, to maximise dimensional 

accuracy [Pharr 1999]. 

SLS of metals and ceramics is followed by furnace treatment. The polymer 

binder is burnt off, leaving a necked skeleton structure which is then sintered to 

full strength. 

SLS parts are built from a powder bed which inherently contains voids, image 

(i. ) in Figure 2.12. Although the sintering process incurs densification, green SLS 

parts are typically 70 percent dense, having a system of pores running throughout. 

This open-pored structure is unsuitable for an application such as plastic injection 

moulding or casting for several reasons: 

" Cavity surfaces must be impermeable and smooth if formed parts are to be 

ejected easily and without causing wear; 

" Hardness, strength and toughness of the structure are insufficient. 

To improve the properties of parts after firing, infiltration is an option. A 

skeletal steel structure may be copper infiltrated as in the 3D Systems RapidTool 

process, or a ceramic structure may be polymer resin infiltrated. The infiltrant fills 

pores, improving strength and hardness and reducing surface roughness. An 

infiltrated yield strength of 300MPa has been reported for CastForm material [3D 

Systems 2002]. Infiltration also permits parts to be finished without damage. The 

infiltrant must not cause chemical reactions, which can lead to warping of parts. 

Finishing processes include polishing to reduce roughness, and milling to 

improve surface planarity [Dalgarno 2000]. 

Investigations have been made into creation of short-run solid parts by SLS/ 

HIP processing [Das 1998]. The SLS part is built with gas-impermeable outer 

walls, and an interior of lesser-processed powder. The outer skin serves as an HIP 

(hot isostatic pressing) "can", to create fully dense parts. Normally a metal can 

must be specially formed for this purpose, so the HIP process is simplified. A 

titanium-based alloy part was made in this way, to 99.9 percent of full density. 
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To provide a real example of indirect part creation, consider a sand casting 

mould made in RT [Beaman 1997]. A polymer-coated silica powder is processed 

by SLS, so that the polymer coatings of adjacent particles bind to form a 

continuous structure of complex geometry. After SLS, colloidal silica in water is 

infiltrated into the part. The green polymer-silica part is transferred to an oven at 

400°C which degrades the polymer binder and sets the colloid. The temperature is 

raised, and the silica mould is fired at 1000-1500°C for 17 hours, causing 1 

percent shrinkage relative to the green part. 

Indirect SLS is time-consuming, due to the number of stages involved: polymer 

burn-out and infiltration takes tens of hours [Kruth 1998a]. Part shrinkage and 

warping [Wang 1999, Pham 1999] accumulate with each process, making 

dimensional change difficult to predict. 

2.2.3 Direct SLS-Type Technologies 

As well as the original SLS equipment offered by 3D Systems, other similar 

machines are in development. The shared principle of the machines is as 

discussed above: the bonding of adjacent particles in a powder bed using a 

scanning laser beam. One similar machine is the subject of work reported in 

subsequent chapters of this document. The 3D Systems process can directly 

produce polymer parts, extensively investigated by [Beaman 1997] and [Childs 

2001]. It is of interest to develop techniques for directly producing metal parts, 

because furnace cycles add many hours to SLS processing time as stated earlier. 
The techniques described below were designed for direct SLS of metals. 

[ONeill 1998] and [Morgan 2001b] report the results of a process called direct 

metal laser remelting (DMLR). An Nd: YAG laser of beam diameter d equal to 

0.1mm is used to directly process room temperature stainless steel powder. It is 

reported that pulsing of the YAG laser causes vaporisation of surface material. 
Vaporisation pressure above the powder bed has the beneficial effect of flattening 

the melted material down, to produce a low-porosity structure. Coupled with an 

optimum building strategy, a part at 99.65 percent of solid density is achievable. 
The effect of machine parameters in DMLR is commented on in section 2.2.6. 
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Hauser [Hauser 1999a and 1999b] also uses a laser to directly process room 

temperature stainless steel powder. The laser in Hauser's arrangement is of 

continuous wave CO2 type, with d equal to 1.1mm. Good bonding between 

adjacent scans is reported in an inert argon atmosphere, but processed part density 

is low at 50-60 percent. This process is discussed further in sections 2.2.4 and 

2.2.6. The same machine used by Hauser has been used by [Lorrison 2002] to 

investigate direct laser sintering of bio-active glass ceramics. 

[Wilkening 1996], [Shellabear 2001] and [Khaing 2001] describe the DMLS 

process already mentioned in section 2.1.4.6. Use of a particular material blend 

means that parts produced show no net shrinkage or warping. A CO2 laser directly 

processes room-temperature steel-based powder to high density. With around 15 

hours' processing and a few hours of post-processing a tensile strength of 

500MPa, accuracy of ±0.1mm and skin porosity of 2 percent is achievable. 

Further reading on direct SFF of metallic parts can be found in [Dickens 2000], 

[Tolochko 2003a], [Meiners 1999], [Griffith 1998], [Kaplan 2001], [Benda 1994]. 

2.2.4 Leeds Experimental SLS Station 

The SLS machine based at the University of 

Leeds and described by [Hauser 1999a and 

1999b] is instrumental in much of the 

experimental work reported in later chapters. Its 

function is the direct SLS processing of a room 

temperature powder bed. The powder bed is 

contained within a 460x26Ox250mm sealed 

chamber (Figure 2.13), allowing ambient air to be 

exchanged for an inert atmosphere via 

evacuation, backfill and purging. A continuous 

laser pressure beam sensor 

viewing 
window 

argon in 

argon out 
Figure 2.13 

Processing chamber 

wave CO2 laser beam of 250W capacity is guided by galvanometer-controlled 

mirrors, allowing the beam spot to move over a 70mm diameter build area on the 

surface of the powder bed. The beam scans at speeds of up to 100mm/s in 

reported experiments. The beam diameter at the powder bed surface is 1.1mm. 

The scanning beam is transmitted through a window into the chamber. 
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In Hauser's work the powder used is gas-atomised stainless steel 314S, which 

has constituents as provided in Table 2.1. 

Element Fe Ni Cr C Si P Mn S 

Percent Bal. 19.85 24.36 0.443 1.43 0.017 0.94 0.006 

Table 2.1 Constituents of stainless steel powder used by [Hauser 1999a] 

Four powder fractions are tested, from particle diameter dp of 3001im down to 

less than 38µm. 

In his work, Hauser tests the effect of atmosphere and process parameters on 

the qualities of output parts. Such studies on SLS-type processes are common in 

available literature: the observations of Hauser and others are disseminated in 

sections 2.2.6.3 and 2.2.6.4. Findings involving the Leeds machine are 

summarised below. 

With regards to atmosphere, laser processing was carried out in ambient air, air/ 

argon and argon atmospheres. Oxygen in the air reacted with the molten steel to 

form surface oxides. Because argon is an inert gas, it did not react in such a way. 
It was reported that in an air atmosphere, the surface tension of the melt pool 
increased due to oxidation. The molten steel showed more tendency to form ball 

shapes, and bonding between adjacent melted tracks was poor. In an argon 

atmosphere, adjacent tracks bonded successfully over a much wider range of laser 

power and speed. The amount of material melted reduced relative to when 

processing in air, leading to the conclusion that oxidised samples had absorbed a 
higher proportion of laser energy. The final density of single layers processed in 

argon lay between 50 and 60 percent. In both air and argon atmospheres it was 

concluded that a reduction in powder particle size reduced the amount of energy 

required to melt the powder. More is said about this in the next section. 

A variety of laser power, laser scanning speed and scan spacing combinations 

were tried to see their effect on the structural integrity of single layer and multiple 
layer parts. Some simple rules were established: a maximum scan length was 
found above which irregular shrinkage, warping and cracking began. It was 
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discovered that over the range of other parameters tested, a laser power to speed 

ratio above 1 J/mm was required to achieve bonding of adjacent scanned tracks. 

The process requires that the laser heats the powder from room temperature to 

the melting temperature of stainless steel. The size of the resulting thermal 

gradients is thought to contribute to irregular shrinkage, warping and cracks in 

finished parts. 

2.2.5 Powder Material Characteristics 

This section introduces the properties of metals (and particularly steel) relating 

to the direct SLS process. Melting, balling and wetting of material during the 

process is discussed in the next section. 

Selective laser sintering is a versatile process, suitable for processing polymers 

and polymer-bound ceramics or metals. All materials are supplied to the SLS 

machine in powder form. Material parameters stated to be important to SLS are 

[Agarwala 1995a]: viscosity p, surface tension a, particle size (dp) distribution, 

particle shape, thermal conductivity k, specific heat C, melting temperature T,,,, 

absorptance a and emissivity c, 

Material 

Name 

Structure Coefficient of 
Thermal Expansion 

(10-1 K-') 

Thermal 

Conductivity, 

k (W. m-1. K-') 

Specific 

Heat, C 

(J. kg-1. K-') 

Polyamide Semi-cryst. 8.0 0.23 1800 

Polycarb. Amorphous 6.7 

Steel Poly-cryst. 1.2 60.00 450 

Silica Poly-cryst. - 0.02 1000 

Table 2.2 Room temperature properties of SLS materials [Touloukian 1970]. 

Viscosity and surface tension become important when materials are in their 

softened or molten state. They affect material flow and densification, discussed in 

sections 2.2.6.2 and 2.4. Surface tension and viscosity have a more significant role 
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in direct SLS processing of metals than in direct SLS processing of polymers, 

accorded to [Agarwala 1995a]. 

Size distribution and shape of powder particles have an effect on the powder's 

bulk density p [Boivie 2003]. The density of a powder is less than that of the 

equivalent material in solid form, typically around 60 percent of solid density for 

steel [Niu 2000]. Transformation from powder to solid material state may be 

considered in terms of increasing density p, or in terms of reducing porosity (p in 

the powder bed. If bed density is considered as a fraction of solid density, equal to 

p, then the relationship between p,. and (pis such that: 

ip=1-pr ý2.1) 

The powder's density affects the relationship between heat input and changes of 

state [Childs 2000]. 

Specific heat, density and conductivity affect the magnitude and distribution of 

temperature in the powder bed over time. Some example k and C values for 

materials are provided in Table 2.2. The values tabulated suggest the need for 

special consideration of each material type. For instance, a unit of input energy 

would penetrate a steel sample more easily than a polymer sample (due to its 

higher thermal conductivity), and would raise the temperature of samples in 

proportion to the product of density and specific heat, or (p. C). C for steel is a 

quarter of C for polyamide, but p for steel is seven times that of polyamide. 

Therefore polyamide would reach a higher temperature. 

To add complication, the thermal properties tabulated are only correct for solid 

material at room temperature. C and k change with temperature and k changes 

with density: these changes are detailed in sections 2.3.2 and 2.5.2.3. Around the 

material's melting point T,,,, a change of state and latent heat become important. 
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Figure 2.14 Equilibrium phase diagram, 
for stainless steel 

In Figure 2.14, an equilibrium phase diagram for stainless steel is shown [Davis 

1994]. The x-axis represents a changing percentage of carbon in the steel, the y- 

axis represents the steady-state temperature of the sample. Below 1200°C the steel 

is completely solid and at 1600°C it is entirely molten. The exact temperatures at 

which an alloy becomes completely solid or completely liquid are known as the 

solidus and liquidus respectively. Between these states there is a gradual phase 

change, accompanied by a heightened absorption (in heating) or evolution (in 

cooling) of heat. In the "L+S" and "L+y" regions near the top of the graph, liquid 

and solid phases co-exist. In these regions, wetting and bonding are very good in 

direct SLS as reported by [Hauser 1999a]. Processing resembles liquid phase 

sintering. However, the necessary temperature range would be hard to achieve 

consistently in direct SLS given the temporal and spatial temperature transience 

reported. 3D Systems SLS deals with high- T,,, materials using post process 

furnace cycles, as discussed earlier. 

Laser power absorption characteristics vary from material to material. They are 

affected by the surface condition of a material and also the laser wavelength used 

[Touloukian 1970]. Useful energy in SLS is that which is absorbed by the powder 
bed, raising its temperature. The remaining energy is lost to the bed's 

surroundings in various modes. Experiments have been carried out [Tolochko 

2000] which find that the absorptance a (useful power/ laser input power) of 
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carbon dioxide laser radiation by silicon oxide powder (ceramic) is 0.96, by PTFE 

(polymer) is 0.73, and by iron (metal) is 0.45. The same study indicates that a 

does not depend on powder particle diameter dp between 40 and 160µm, for an 

Nd: YAG laser sintering nickel alloy. This is logical, as particles in this interval 

are large relative to the laser beam wavelength yet small relative to the laser beam 

diameter. It is said that a tends to zero once dp falls below the laser beam's 

wavelength [Karapatis 1998a]. As the powder material is processed by the laser 

its geometry and temperature change, both of which have an effect on absorptance 

[Tolochko 2000]. More is said about laser radiation in SLS in section 2.3.1. 

Powder particle size can be important in other respects, such as material 

spreading and sintering rate. A typical layer thickness in SLS is 0.12mm [Nelson 

1995], so in order to spread powder effectively a dp value less than 0.12mm would 

be necessary. If a CO2 laser at 10.6µm wavelength is used, dp should be larger 

than 10.6µm to maximise absorptance. As was mentioned in the previous section, 

[Hauser 1999a] reported that steel powders required less power to form a melted 

structure as dp reduced from the order of 200µm to 20µm. Smaller particles have a 

higher surface area (therefore surface energy) to volume ratio, and shorter inter- 

particle material diffusion path [Kaysser 1991]. These two facts may explain 

Hauser's findings. [O'Neill 1998] comments that reducing the mean powder 

particle diameter increases absorptance, although no size range is specified. 

The shape of powder particles has an effect on their packing and processing 

characteristics. Spherical (low roughness) particles have a high packing density. 

They spread with low frictional shear stress and will bond well to adjacent 

particles when processed [Van der Schueren 1995a]. The roughness of particles is 

determined by a number of factors, including the way in which they are prepared. 
Gas atomised metal powders are less rough than water atomised metal powders 
for instance [Jenkins 1991, Niu 2000]. If spherical particles of constant size are 

assumed, then geometry dictates a packed density between 7d6 and J37L/8, or 52 

and 68 percent. See image (ii. ) in Figure 2.12 for a 2D representation of minimum 

and maximum density arrangements. 
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The material stainless steel 314S HC was selected for the direct SLS research 

undertaken by Hauser. Constituents are as Table 2.1. This material is an austenitic 

stainless steel, having higher chromium, nickel and silicon content than typical 

18-8 type stainless steel. Stainless steel's strength and corrosion resistance 

compare favourably with other metals. The extra percentage constituents give 

314S HC a higher melting temperature than 18-8, meaning higher heat resistance 

[Davis 1994]. The crystal structure contains a relatively high proportion of 

carbides, providing creep resistance at high temperature. 314S HC is well suited 

to high-temperature superplastic forming of materials such as titanium alloy. 

2.2.6 Process Characteristics and the Effect of Parameter Values 

The type of SLS machine used, machine parameters and material properties all 

influence the qualities of finished parts. Many researchers have investigated the 

link between the above, and there is common ground between much of what is 

reported. Presented here is an introduction to process parameters (2.2.6.1), then a 
discussion of material melting (2.2.6.2). Unsteady effects inherent in the process 
(2.2.6.3) and the resulting part properties (2.2.6.4) are considered. 

2.2.6.1 Introduction to Process Parameters 

Parameters in SLS relating to materials have been discussed in section 2.2.5. 

Now the parameters of the machine processing the materials are considered. 

Machine parameters of importance in SLS accorded to [Agarwala 1995a] are: 

atmospheric control and air flow, bed heaters, laser type, power P, beam diameter 

d, scan vector length L, scanning system and powder spreading system. To add to 

this list are beam profile [Deng 1992], laser scanning parameters speed U and 

spacing s, and layer thickness Z, [Gibson 1997]. See Figure 2.15 for an illustration 

of d, L, sandZ1. 
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Figure 2.15 Layer scanning (adapted from [Hauser 1999b] ) 

Use of an airtight sintering chamber allows the processing atmosphere to be 

modified by a through-flow of gas. Nitrogen [Deckard 1995] or argon [Yevko 

1998] gases are popular due to their inert nature. Using inert gas as opposed to air 

means that oxidation and burning will not occur as the laser scans the material 

powder. It is vital to prevent surface oxides from forming on the melting material 

as this increases surface tension to hinder material flowing [Hauser 1999a]. The 

result of sintering in an air atmosphere is the formation of ball-like shapes, and 

poor bonding between sintered lines, leading to mechanically-weak parts 

[Karapatis 1998a]. Authors have reported that oxygen content in the order of 

hundreds of parts per million (in material powder and the sintering atmosphere) 

had a detrimental effect on manufactured structures [Niu 2000, Zong 1992]. 

If a protective gas is to be used, one must be selected which is appropriate to 

the material being processed; for instance it has been found that stainless steel 

absorbs nitrogen gas if present during sintering to form nitrides, which reduce the 

material's corrosion resistance [Tiziani 1989]. Therefore argon is often used when 

processing stainless steel. Polymer materials are not susceptible to this problem, 

so nitrogen is used in 3D Systems SLS machines because it is cheaper than argon. 

It has been shown [Hauser 1999a] in experiments contrasting air- and argon- 

atmosphere sintering that when using argon, successful bonding may be achieved 

at lower powers and over a much wider range of power and scan speed. 
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Bed preheating is used in 3D Systems SLS machines where polymer or 

polymer-coated materials are being processed. Radiant heaters increase the 

powder bed temperature to a point just below the polymer material glass transition 

temperature. This means that a small power input from the laser will bring about 

sintering and bonding, with minimal residual stress and irregular shrinkage 

[Agarwala 1995a]. The bed temperature must be uniform: a variation of only a 

few degrees Celsius can affect part accuracy [Tontowi 2001]. 

To recreate the preheating method in direct sintering of metals or ceramics is 

difficult: for instance, all chamber components would have to be high-temperature 

rated [McWilliams 1992]. Also there is an issue of low-rate sintering taking place 

throughout the powder bed, which in metals begins at half the melting 

temperature [German 1996]. [Das 1998] and [Zong 1992] have directly processed 

metal powder mixtures to upwards of 80 percent relative density from preheated 

beds. Localised preheating methods [Geiger 1996, Benda 1994] are also possible, 

but most often no preheating is used in direct metal SLS. 

Solid substrates are sometimes used in direct metal SLS, to anchor the 

processed structure in its early stages of building. Building onto a powder base 

provides little mechanical restraint [Agarwala 1995a], so initial scanned tracks 

may suffer from distortion and balling. [Morgan 2001b] and [Carter 1993] built 

metal parts onto substrates with resulting geometrical improvements. 

Other SLS hardware issues include powder spreading system, laser type and 

laser scanning system. Some examples of SFF spreading systems have been 

shown in section 2.1.4: the system used determines how flat each layer is, and 

may include compaction to increase the powder density. The laser type used in all 

reviewed cases of direct metal SLS was either CO2 or Nd: YAG, the basic 

properties of which have been mentioned in 2.1.3.2. The CO2 lasers reported 

provided up to 1.5kW of constant power at 10.6µm wavelength. Nd: YAG lasers 

reported provided up to 90W of constant power or as much as 100kW peak pulsed 

power, at up to 60kHz pulsing frequency. They operate at 1.06µm wavelength. 
Choice of laser affects the absorptance of laser power into the powder, and also 
therefore the attenuation of laser radiation with depth into the powder bed [Kruth 

1998b]. 

LEEDS UNIVERSITY LIBRARY 
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The laser beam and powder bed are moved relative to each other either by NC 

motion or more popularly by two rotating mirrors (see Section 2.2.1). Mounted on 

galvanometers [Turner 1995], the mirrors can achieve high angular acceleration. 

Momentary periods are required after each scan where the laser is switched off, 

allowing the mirrors to reach the required position and velocity for the next scan. 

It is usual for a constant value of laser power P to be used in a particular build. 

P is measured at the powder bed surface position, and is expected to be less than 

the output of the laser unit because power is lost in the optical system [Luxon 

1985]. P has a large effect on the density and depth of processed tracks [Deng 

1992, Kruth 1996]. Nd: YAG lasers may operate in pulsed mode, where power is 

provided intermittently. Pulsing leads to greater peak power, and greater 

temperature gradients against position and time [Yevko 1998]. [Morgan 2001a] 

reports that pulsing an Nd: YAG laser increases the density of the generated metal 

structure in the DMLR process, mentioned in Section 2.2.3. 

The laser beam diameter d is measured at the powder bed surface, like P. It is 

also known as the spot diameter. Reducing the value of d leads to greater beam 

intensity and narrower processed tracks [Eyerer 1994, Kandis 1999]. Values of d 

reported in direct metal SLS vary from below 45µm [Yevko 1998] to 1.1mm 

[Hauser 1999a]. In most cases reviewed the beam profile (distribution of 

intensity) was Gaussian, the meaning of which is explained in 2.3.1. 

Scan speed U is the rate at which the laser spot moves over the powder bed 

surface during processing. SLS processing time is dependent on U. In the 3D 

Systems SLS process U reaches thousands of millimetres per second [3D Systems 

2000], but in direct metal processes U in the order of 15mm/s is typical [Kahlen 

2001, Hauser 1999b]. 

Scan length L and speed U allow the amount of time taken for a particular scan, 

ts, to be calculated. Ignoring the short dwell period, is is equal to the time elapsed 
between successive scans, which affects the uniformity of cooling and can cause 
dimensional accuracy problems if its value is too high [Gibson 1997]. Uniformity 

of cooling and the effect on part properties are investigated in Sections 2.2.6.3 and 
2.2.6.4. Typical values of L are in the order of millimetres [Morgan 2001b]. 
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Scan spacing s is the distance perpendicular to the scanning direction by which 

the laser beam is displaced between adjacent scans, illustrated in Figure 2.15. 

Often s is chosen to be less than the beam diameter d so that scanned areas 

overlap. This means that the previously scanned material is reheated which helps 

in bonding it to the newly scanned material [Gibson 1997]. The number of times 

an area is exposed to laser radiation in scanning, N, can be calculated from the 

values d and s [Williams 1998]: 

N =(')-i (2.2) 
s 

If an area of a material is rescanned too many times, it can become warped and 
brittle. [Hauser 1999b] found direct SLS of room temperature steel powder 

worked best with s<0.3 d, or N<2.3, for this reason. 

Layer thickness Z1 is the depth of each newly-spread powder layer. Z1 affects the 

build time in SLS, and through the stepped effect described in Section 2.1.3.1 

affects part accuracy. The chosen value of Zl relates to powder particle size, as has 

been mentioned earlier. The laser must be able to penetrate a powder layer to melt 

it and bond it to the previous layer [Agarwala 1995a, Childs 2001]. Values of Zi 

reported ranged from tens to hundreds of microns [Carter 1993, Morgan 2001b]. 

In sections 2.1.3.1 and 2.2.1, basic laser scanning strategies for SLS are 
discussed. In most cases, the strategy is to scan each material layer as a series of 

adjacent parallel lines with an amount of overlap, known as raster scanning. 
Parameters involved in the raster scanning method are shown in Figure 2.15. The 

laser supplies power P to the powder bed over a beam diameter d, scanning with 

speed U over a distance L and being indexed a distance s between scans (scan 

spacing). Ignoring the small dwell time between successive scans, the energy 
input into the bed is either directly or inversely proportional to the quantities P, U 

and s. The amount of input energy dictates the temperature rise in the powder bed, 

and so affects the volume and mechanical properties of the sintered material. A 

quantity known as energy density or the Andrew number AN has been suggested to 

relate scanning parameters to aspects of sintered part quality [Nelson 1993]: 

_P AN 
U. S 

(2.3) 



Page 40 Chapter 2 

It has been shown that SLS process success or failure can be related back to 

scanning parameters through AN: too low a density of energy will not raise the 

powder to sintering temperature, and too high a density will cause material 

vaporisation [Kizaki 1992a, Yevko 1998]. Ideally then, one might manufacture 

parts at maximum levels of P and U (to minimise build time), whilst keeping AN 

constant. However, [Williams 1998] states that the Andrew number can only be 

related to part properties within a range of the parameters P, U and s, with 

relationships breaking down at extreme values. For example, time-related energy 

loss from the part to the surroundings increases with part temperature in a non- 

linear fashion. 
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Figure 2.16 
Part porosity morphology against P and U at constant s 

Process mapping takes the practice of linking machine parameters to part 

quality one step further. [Hauser 1999a], [Nui 2000] and [Morgan 2001b] have 

constructed graphs of part morphology against combinations of P, U and s. An 

example of Niu's maps is provided, Figure 2.16. Examination of process maps 

reveals that a particular phenomenon such as poor bonding does not occur within 

an exclusive range of Andrew number values. 

A statistical approach to parameter control was taken by [Prakash 2003], who 

conducted a Taguchi study on laser-aided processing of metals. See Section 2.6 

for details. 

Finally, the effect of scanning strategies is mentioned. For reasons already 
discussed, there are advantages to keeping scan lengths small, and yet large parts 

must be built. Methods of maximising part accuracy and density are required. 



Page 41 Chapter 2 

[Morgan 2001a] proposes processing each layer twice, and scanning each layer 

normal to the preceding one, to increase density. [Hauser 1999b] scanned 

triangular layers, which warp and crack less than rectangular ones. 

2.2.6.2 Material Phase Change and Shape Change 

Section 2.2.5 explains that metals, plastics and ceramics are significantly 

different in terms of their thermal and mechanical properties. It follows that 

different materials would behave in different ways when exposed to the laser 

beam in SLS. In the direct SLS of room-temperature single-phase metal powders, 

process issues are reported which are new or different compared to 3D Systems 

SLS. These issues mainly relate to the higher temperature rise required and the 

properties of pure metal powders. 
In the 3D Systems process described in 2.2.1, material is preheated to a point 

just below its softening temperature then heated further by the laser beam. This 

lifts the material temperature just above the softening point for around 15 seconds 
[Childs 2001], allowing adjacent particles to bond. In contrast, shape change is 

reported to be complete in under 500ms in direct room-temperature metal SLS 

[Griffith 1998, Kizaki 1992a]. Laser beam exposure lasts less than 100ms [Wang 

2002, Agarwala 1995a] and is followed by rapid cooling. The powder material 

must densify significantly in a short time, by an amount not possible at solid state 

sintering temperatures. The material must be able to flow, so melting must occur 
[Morgan 2001b]. See Section 2.4 for more on densification processes. 

This indicates that a complex process occurs in under one second's duration. 

Temperature rises and falls due to laser application, during which time the metal 

material melts, changes shape and solidifies. Several phenomena are at work 
during this short time, which determine the size and shape of the processed 

geometry, also known as the heat-affected zone (HAZ). Parallels with laser 

cladding and laser welding phenomena exist. 

When an area of powder is processed, adjacent particles merge with one 

another and porosity tp is reduced. In 3D Systems SLS a linear shrinkage of a few 

percent is typical [Childs 2001], causing modest densification. In direct metal 

SLS, the bed density increases by much larger amounts [Morgan 2001b]. (p 
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reduces, so any material properties which relate to (p will change continuously. 

The same is true of temperature. Thermal properties k and a decrease and increase 

with increasing cp respectively; k, C and aall increase with temperature [Yagi 

1953, Tolochko 2000]. Mechanical properties, u and areduce with increasing 

temperature [Dowden 1983]. Reasons for these changes and related equations are 

provided in later sections. 

Laser energy spreads into the powder bed as electromagnetic radiation and 

conducted heat. The amount of energy input has an important role to play in the 

material phase and shape change process. If the Andrew number AN is too low, 

viscosity ,u and surface tension aare not low enough to allow adjacent particles to 

merge [Hauser 1999a]. However, too high a value of AN leads to material 

evaporation [Tolochko 2000]. In metals processing, evaporation has two effects. 

One is the recoil pressure associated with vaporisation [ONeill 1998, Dowden 

1983]. This pressure from above has been observed to create a depression in the 

melted material [Cline 1977, Equilasers 2001]. The second is a vapour plasma 

cloud which blocks or scatters the laser beam to reduce energy absorbed into the 

melt [Dowden 1983, Steen 1998]. To avoid vaporisation effects at high AN, a 

shield gas may be used to blow the vapour away from the processing area [Kahlen 

2001, Steen 1998]. 

Once the metal powder melts, a number of things happen. Low viscosity allows 

particles to join together, forming a molten pool. Surface tension dominates 

gravity to drive the pool into a ball shape [Kaplan 2001]. If the pool is sitting on 

unprocessed powder, there will be little resistance to this reshaping. Surface 

tension gradients cause stirring inside the pool, known as Marangoni flow [Steen 

1998, Anthony 1977]. Material convects from the hottest (low a) to the coldest 

(high a) regions. The pool rapidly solidifies to form a processed track. The 

volume of the track is less than that of the constituent powder due to densification. 

The track is reheated by the next pass of the laser, which reduces a again so that 

the previous and current tracks can bond. At the boundary between melted 

material and the powder bed, partially-melted agglomerates are bonded to the 

tracks [Tolochko 2003b]. Surface oxides increase ato reduce the quality of 
bonding, hence the need for an inert atmosphere [Hauser 1999a]. 
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2.2.6.3 Manufacture of Multi-Layer Parts and Transient-State Effects 

The line by line, layer by layer laser scanning procedure used in SLS means 

that adjacent areas in a part are heated and cooled asynchronously. Combined 

with material properties which change as the part is processed (detailed in the last 

section), this leads to the formation of characteristic features in direct metal SLS 

parts. Such features are illustrated in Figure 2.17 [Childs 1999] and described 

below. 

scanning direction 
end of 
scanning 

first-second layer 
delamination 

start of first-second layer bonus z 

scanning delamination 

Figure 2.17 
Sectional side view of part generated by model of SLS process 

Each scanned track has a distinctive shape. Moving horizontally (Figure 2.17), 

the depth and width of a track increase from the edges to a steady state value. The 

edges form a "prow" shape rather than being square. One reason for this is that the 

first and last d of each scan receive less laser energy. The depth increase at the 

start of tracks (left hand side) is more rapid than the depth decrease at the end of 

tracks (right hand side), because the fresh powder has a higher aand lower k than 

processed material [Benda 1994]. 

The top surface of the track is more exposed to the laser beam and not insulated 

by the powder bed, so its heating and cooling cycle occurs faster than that at the 

bottom surface [Kathuria 1997]. This leads to a microstructure which changes 

with depth [Hauser 1999a], and in extreme cases causes scans to curl upwards 

[Carter 1993]. Microstructure is not featured in Figure 2.17. 

When the second track in a layer is scanned next to the first, the amount of new 

material melted is less than the volume of the first track, observes [Song 1997]. 

See Figure 2.18. This relates to the higher aand lower k of unprocessed powder: 

if the first line is partially rescanned its lower absorptance will mean less energy is 
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delivered to the area. Some of the delivered energy will be lost into the first scan, 

which acts as a heat sink with its high k [Morgan 2001b]. [Benda 1994] reports 

that processing tungsten 

with a CO2 laser, a second 

overlapping scan requires 

20 percent more laser 

power to achieve the same 

material temperature as the 

first scan due to this effect. 

A third scan requires a 

further increase in P of less 

than 10 percent as the local 

k increases again. 
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Figure 2.18 Evolution of first and second tracks 

The phenomenon of previously-processed areas acting as a heat sink applies to 

whole layers as well as scans. If the first layer of a part is built onto unprocessed 

powder then a second layer is built on top, the conduction of heat from the second 

layer into the first is sufficient to cause it to be smaller [Pham 1999]. The first 

layer is larger than the others, a quality known as "bonus Z" [Dalgarno 1997]. 

[Papadatos 1997] reports that this is the biggest cause of inaccuracy in 

polycarbonate parts. Because the amount of densified material is greatest in the 

bottom layer, it is also the layer which shrinks the most. Therefore the gap 

between the first and second layers is large, and the bond between them is weak 

[Childs 1999]. In general, the bonding between layers is weaker than the bonding 

between adjacent scans [Agarwala 1995b, Gibson 1997]. 

The nature of raster scanning means that a time elapses between successive 

scans. The previous scanned track enters its cooling phase as the adjacent current 

track is being heated. The heat and cool cycle corresponds to thermal expansion 

and contraction of the track, so the previous track contracts as the current track is 

expanding. Each track bonds to the previous one at the end of the molten phase, 

so asynchronous cooling causes residual stress in tracks as they attempt to 

contract but are restrained by their colder neighbours [Matsumoto 2001]. This 
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differential shrinking mechanism can cause bending, warping and cracking of 

layers (see Figure 2.19). If the scan length L is limited, the asynchronicity reduces 

and layers become more dimensionally uniform [Gibson 1997, Hauser 1999b]. 

The scanning pattern of the laser affects the cooling rate of processed regions. 

For instance, the centre of a part experiences slower cooling than its edges. 

Authors have reported that this causes higher hardness and lower ductility at the 

edges of parts [Dickens 1992, Gibson 1997, Karapatis 1998b and Griffith 1998]. 

In some cases, irregular temperature profiles cause bulk distortion of parts 
[Beaman 1997]. 

Some systems designed to counter transient-state effects are featured in 2.6.2. 

[Hauser 2001] studied the cross- 

sectional morphology of individual 

stainless steel scanned tracks. Figure 

2.20 demonstrates the marked difference 

in morphology which was found. Half- 

moon shaped cross sections were seen at 

very low U values, changing to a ball 

shaped section as U increased. The upper 

surface is either concave or convex. 
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Equation (2.3) earlier described how energy input per unit area can be assessed 

in layer scanning. In the case of scanning single tracks, the equivalent quantity is 

energy per unit length EL, which is simple to evaluate: 

EL = P/U (2.4) 

The scan shape change seen in Figure 2.20 is accompanied by a reverse in the 

change of the volume of material melted. In most cases, a reduction of EL 

corresponds to a reduction in the melted volume of scans. However, the balled 

bottom scan in Figure 2.20 has a greater cross-sectional area than the top 

specimen, despite receiving only half as much energy (see the P and U values 

quoted). Testing over a range of P and U, the shape transition occurs at lower EL 

as U increases. The underside of tracks is relatively rough, due to agglomerates 

(mentioned 2.2.6.2). Track width is anything up to 2.0mm, which is 1.8 times d 

and 1 to 3 times the track height. A typical track width is 1.5 times d. 

2.2.6.4 Properties of Manufactured Parts 

Direct metal SLS-processed parts must have good mechanical and geometrical 

properties, in order to compete effectively with material removal processes such 

as machining [Kalpakjian 2001]. For an example of the mechanical properties 

expected from a forming tool, consider P20 tool steel. The designation P20 

signifies a oy of 830 MPa and a hardness 31 Rockwell C [Toolcraft 2000]. 

[Radstock 1999] contends that an accuracy of ±50µm and an Ra <_ 1µm are 

required for forming tools. In this section porosity tp, part relative density p, yield 

strength ay, Young's modulus E, surface roughness Ra, dimensional accuracy, 
hardness and microstructure are discussed in relation to processing conditions. 
The use of post-processes to enhance part properties has already been reviewed in 

Section 2.2.2 and will not be discussed further. 

The first property considered is qp. Porosity in parts has a negative effect on 

mechanical properties. ay is reduced by stress concentrations: brittleness increases 

and fatigue life reduces because there are more possible crack initiation sites 
[Agarwala 1995a]. Surface hardness and therefore wear resistance is lower 
[Karapatis 1998b]. Porosity should ideally be eliminated in rapid tooling, that is to 
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say pr brought close to 100 percent. Several processes now achieve p'. > 99.5 

percent [Morgan 2001b, Knights 2001]. 

A relationship has been reported to link oy and pr for tested parts [Badrinarayan 

1994]: 

Qy = a(Pr)n 
(2.5) 

Where a and it are empirical constants. As p,. increases, so does oy. a and n are 

affected by factors such as oxide formation and residual stress [Karapatis 1998b, 

Kahlen 2001], which reduce Qy for a given p,. 

In general, a high pr is achieved by increasing the Andrew number AN. 

However, too high a value of AN can cause part distortion [Ryder 1996] and 

material evaporation. [Miller 1997] undertook a parametric study before 

modifying Badrinarayan's relationship: 

ay = al. AN -a2. U. s (2.6) 

The AN term represents an approximate linear relationship between part strength 

and input laser energy. The extra terms in U and s are said to take into account 

time-based heat loss from the structure and the fact that AN has a practical upper 

limit. Constants al and a2 would be expected to change as the scan length L 

changes: shorter time between scans means better bonds, as revealed in the last 

section and discussed by [Williams 1998]. 

Average porosity is anisotropic in SLS-processed parts, being lowest in the 

scanning direction, higher in the scan spacing direction and highest in the layering 

direction [Boivie 2003]. The relationship in equation (2.5) means that strength 

also changes with orientation, reducing as porosity increases [Agarwala 1995b, 

Gibson 1997]. 

[Kathuria 1997], [Hauser 1999a] and [Griffith 1998] examined the effect of 

direct laser processing on the microstructure of metal parts. Kathuria and Hauser 

report that microstructure changes between the top and bottom of a single scan. 

Kathuria describes a fine, hard structure near the top surface where cooling is 

fastest, and a coarse, softer structure near the underside where the material cools 

slower. On a larger scale, Griffith reports on the properties of a multi-layer H13 

tool steel wall. The top of the wall is least insulated and so cools quickest, leading 

to a martensitic structure of hardness 59 Rockwell C. The body of the wall is 
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reheated with each laser pass, and so is softer at 50 Rockwell C. However, the 

temperature cycling of the body of the wall leads to ageing through carbide 

precipitation and so is not considered a positive effect. 
Residual stresses in direct metal parts have been examined by [Griffith 1998] 

and [Vasinonta 2000]. Griffith found stress values of up to 25 percent of Cy in 

steel parts. Vasinonta discovered that preheat could reduce residual stress by 40 

percent, by reducing the oy of the material. The conclusion of these authors is as 

the last section, that rapid and asynchronous cooling cause the stress build-up. The 

structure being built can be caused to bend or warp: where stress exceeds the 

material strength, cracks are formed [Karapatis 1998a]. 

Dimensional requirements for forming tools include low roughness and high 

accuracy. A "counter tendency" can occur between part mechanical and 

dimensional requirements: [Song 1997] and [Ryder 1996] report that as AN 

increases, Qy of parts increases but they start to curl. [Niu 2000] and [Klocke 

1996] comment that high pr corresponds to high Ra. Compromises must be found, 

or post processes considered. 
Part design [McCrum 1988] and powder bed preheat [Pham 1998, Benda 1994] 

can reduce dimensional distortion up to a point. Uniform shrinkage in a process 

can be compensated for by pre-processing CAD software [Wang 1999]. The 

transient state effects of the last section are hard to predict, and have a significant 

impact on part accuracy. They can be countered by build strategy, or simulation- 

driven machine control [Karapatis 1998b] which is explained in Section 2.6.2. 

2.2.7 Summary of SLS Process Investigation 

There are several types of SLS process under development. In all cases, a 

scanning laser converts powder material into a 3D structure. The material may be 

a polymer, ceramic or metal. Parts can be post-processed to enhance their 

properties: however, efforts are being made to generate metal parts directly in 

order to save time. 

An example of a direct metal SLS machine can be found at Leeds University. A 

1.1mm diameter CO2 laser has been used to process stainless steel powder from 
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an ambient initial temperature. The effect of atmospheric gas and other machine 

parameters on part quality has been tested. The effect of material properties, and 

thermal properties in particular, on the SLS process has been considered. 12 

machine parameters have been identified which can also affect the process. 

Criteria for selection of parameter values are presented. It is discovered that 

parameter changes may be beneficial in one way, but negative in another way. For 

instance, increased energy density leads to stronger but more curled parts. 

It is found that material shape change takes place in under 1 second in direct 

metal SLS, and that material melting must occur. The porosity of the powder bed 

reduces with laser application. Material evaporation can occur, depressing the 

melted material or reducing laser energy absorption. Direct metal SLS parts have 

characteristic features, such as a reduction in scan depth from the first to the 

second and following scans in a layer. Hauser discovered that scan cross-sectional 

shape can change with laser power and speed, being either a circular or half-moon 

shape. 

Various methods for predicting the relationship between SLS inputs and 

outputs are presented later in sections 2.3.4 and 2.5. Better control of machine 

parameters is discussed in 2.6. 

2.3 Heat Transfer in SLS 

As has been explained in Section 2.2, the heating effect of the scanning laser 

beam in SLS converts fresh powder into a coherent 3D structure. The laser leaves 

a heat-affected zone (HAZ) behind it: a common term for the volume in the 

powder bed within which the material has experienced a change of form. The size 

and shape of the HAZ depends on the interaction of heat transfer modes, and on 
the mechanical behaviour of molten materials. 

When the laser beam interacts 

with the surface of the powder bed, 

its energy is divided into several 
forms: see Figure 2.21 [Williams 

1998]. Firstly, a percentage of laser 
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Figure 2.21 SLS heat transfer modes 
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energy is absorbed into the powder, the remainder is reflected away. This occurs 

almost instantaneously. The remaining heat contributes to material melting, or is 

dissipated in one of two ways: conduction into the wider powder bed, or loss from 

the bed's surface to the surroundings over time. All of these heat transfer modes 

are discussed below. The relative importance of each mode depends on the type of 

SLS process. 

Methods of measuring powder bed thermal properties are reported, with 

advantages and disadvantages. Analytical models for predicting temperature 

change with position and time are also discussed. 

2.3.1 Laser Radiation Interaction with Powder Bed 

Laser beam energy absorption has been discussed several times previously in 

this chapter. CO2 and Nd: YAG lasers have been compared, and the effect of 

powder diameter and atmosphere on absorptance ahas been considered. The 

effect of a changing with material state was reported. Material vaporisation 

effects have been mentioned. In 2.3.1.1, a few paragraphs on the theory of lasers 

and radiation are followed by a review of radiation absorption measurement. 

Relevant equations are presented in 2.3.1.2. Theory information has been taken 

from books [Luxon 1985], [Steen 1998], [Ready 1997] and [Touloukian 1970]. 

2.3.1.1 Theory and Experiment 

Laser radiation is electromagnetic, in the infra-red wavelength region for the 

types of laser used in direct metal SLS. The radiation is generated by stimulated 

emission from the atoms or molecules of the laser generating substance (carbon 

dioxide, for example). Absorption and emission of waves occur due to changes in 

either atomic electron levels, or in molecular vibration levels. A CO2 laser relies 

on the changing vibration of molecules. Energy quanta or photons are transmitted 

in the emitted waves, with magnitude inversely proportional to the beam 

wavelength, A. 

When photon energy is absorbed by a molecule, its vibrations increase to 

higher levels (known as an "excited state"). Eventually they fall back to the 
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previous energy level, and in doing so they emit photon energy as a wave. Each 

type of molecule has unique vibration levels, so waves of a single characteristic A 

are produced, hence the spectral coherence of laser sources. Another important 

effect is that when a photon passes sufficiently close to an excited molecule, the 

molecule emits a wave with the same direction of travel as the stimulating wave. 

This explains the unidirectional quality of laser light. 

The absorption of laser radiation by opaque materials occurs in the following 

way. The electromagnetic waves incident on the material interact with the surface 

atoms, not penetrating the material more than 1µm in relevant reported cases 

[Tolochko 2000]. Two types of interactions are possible in the material: radiative 

and non-radiative. In a radiative interaction, energy levels are increased, then fall 

back with the release of another wave. In a non-radiative transition, heat is 

generated by energy transmission to the material's molecular structure 

(absorption). The proportion of radiative to non-radiative interactions decide the 

absorptivity of a smooth surface. 

A "black body" is one which is said to absorb all incident radiation. It also has 

the property of emitting the maximum possible amount of energy at a given A and 

temperature. Real materials exhibit lesser absorption and emission characteristics, 

so a quantity known as emissivity Fr is used. Sr is the ratio of radiant emission of a 
body to that of a black body at the same temperature. So long as Kirchoff's Law 

(which will not be entered into here) holds true, the Fr value of a body is equal to 

absorptivity. In SLS the materials being tested do not have a smooth surface, so 

the term absorptance is used rather than the material property absorptivity. 
For metals, the Drude free electron theory states that absorptance ais inversely 

proportional to the root of wavelength A. Data compiled by Touloukian shows that 

metal powders absorb more power from lasers operating at lower A. Radiation 

which is absorbed by the surface of a body may be held, or re-radiated by thermal 

radiation over time. Thermal radiation occurs in relation to the absolute 
temperature of the body and surroundings [Williams 1998]: 

4 )] (2.7) ETA 6r"QSB"[(TSURFACE )-(TENVIRONMENT 

Where ETA is the energy radiated per unit time per unit area, Cr is the material 

emissivity and c; -SB is the Stefan-Boltzmann constant, 5.7x10'8 W/(m2. K4). 

Temperature is in K. The effect of temperature on this heat transfer mode is large. 
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Some techniques for measuring a (or sr) of materials currently exist. These fall 

into the categories calometric (quantified through a heating effect) or radiometric 

(direct measurement of reflectivity). Four methods are discussed below. Results 

obtained using the four techniques are presented elsewhere in this chapter. 

[Kizaki 1992a] used an integrating 

mirror arrangement to measure radiation 

reflected from a powder sample for the 

time interval 6-20ms from the 

application of a laser beam to the 

sample. The first test involved shining 

the laser through two flat mirrors, onto a 

parabolic mirror, and collecting at the 

Figure 2.22 Kizaki's Laser beam 
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focal point using a photon drag detector (Figure 2.22). The detector reading was 

taken to represent the case where no power was absorbed through the system. 

Next, one of the flat mirrors in the system was covered with a layer of a powder 

sample. Radiation reflected from the powder surface was again reflected from the 

parabolic mirror, onto the detector. An optical chopper acted as a switch by 

selectively blocking off the laser beam. Because of the high time definition, the 

response time of equipment had to be considered. 

aof the powder sample was taken as: 

a= 1- (detector reading with powder/ reading with no powder). 

Figure 2.23 
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[Tolochko 2000] used an integrating sphere to collect reflected laser radiation 

(Figure 2.23). The fundamental difference from Kizaki's approach was the 

diffusion of reflected laser radiation by the material covering the sphere wall, 

effectively distributing it evenly around the sphere. A photodetector viewed an 

area on the sphere wall, and took a reading proportional to the amount of reflected 

radiation. As in Kizaki's method, calibration of the system had to be carried out. 

Here a sample of known reflectivity was used and the corresponding reading 

taken. 

Sih and Barlow [Sih 1993] used a 

calometric method. A laser was directed onto 

one end of a tube filled with powder, 

insulated around the curved surface (Figure 

2.24). Using a coil heater wrapped around the 

tube, Sih and Barlow measured aat different 

bed temperatures. The laser power was kept 

small so that temperature rises were also 

small. This kept the powder thermal 

properties almost constant. 

To calculate a for a powder sample, a solid 

heated by a surface source was considered, in 
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two cases where a changes. It can be shown that: 

IS. a,. A = m. C. (dT /dt), (2.8a) 

IS. a2. A = m. C. (dT / dt), (2.8b) 

Where (dT/dt) is the rate of temperature rise with time, is is the incident 

surface heat flux per unit area and A is the area over which the surface source acts. 

a, m and C are as previously defined. Subscripts 1 and 2 refer to the two cases. 

Equating C for the two cases and for the same Is, A and m, it is found that: 

C=a, 
. 
(dt / dT ), = az. (dt l dT )z (2.8c) 

When the laser was switched on, power absorbed at the bed's surface caused the 

powder temperature to increase. This unsteady-state temperature rise within the 

powder bed was recorded against time using a thermocouple to find (dt/dT)1 for 

the powder of interest. The laser was switched off, then a thin layer of calibrating 
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material with a known a value (a2) was applied to the surface of the powder bed. 

Once (dt/dT)2 was found in a second experiment, the absorptance of the powder 

of interest (a, ) could be calculated using equation (2.8c). Powder 2 was carbon 

powder in Sih and Barlow's work (assumed 100 percent absorptive). 
The experimental technique used by Sih and Barlow to measure powder ais 

also applicable to conductivity k. By measuring the temperature at different times 

for one position within the powder bed, k can be found. An equation exists to 

describe a semi-infinite solid with a constant heat source applied across its 

surface. The resulting heat flow through the solid is one-dimensional. By 

integrating this equation with appropriate boundary conditions, an expression for 

temperature rise against depth in the powder bed and time can be derived: 

T (z, t) =2IS 
J(.. JT)iei: fc[Z__J (2.8d) 

2x. 

Where z is depth into the powder bed and Kis bed diffusivity equal to k I(p. C). 

T, Is, t, ca p, C and k are as previously defined. ierfc is an integrated 

complimentary error function, as described in Appendix II of [Carslaw 1959]. If 

measurements are made of Tin two instances, a ratio can be established: 

RT _ 
Tý Z1 

t1ý 
(2.8e) 

Where Zl is the depth position of the thermocouple (Figure 2.24) and ti is a 

chosen time interval. Examining equations (2.8d) and (2.8e), the relationship 
between temperature ratio RT and xis independent of material properties. Data 

from a thermocouple experiment can be used to obtain a value of RT, from which 

Kis found. Measurement or knowledge of p and C allow k to be calculated. 
By measuring the rate of temperature increase for a given input power, the 

specific heat C can be found. 

[Hauser 2001] weighed single SLS-processed tracks made at different values of 

speed and power. A particular amount of energy is required to heat and melt a unit 
length of material, so acan be estimated through an energy balance: 

P. a »t EM ==L (C. dTA-M + LM) (2.9) 
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Where P, a, U, L and C are as previously defined, EM is the energy per unit 
length of track which contributes to melting material, in is the mass of the track 

(of length L), dTA_M is the temperature change from ambient to melting point and 
LM is the latent heat of melting. Because some heat is conducted into the bed and 

does not contribute to melting, the value of ais expected to be an underestimate. 

The method's advantages are its simplicity and practicality given the situation at 

hand. 

With regards to the atmosphere during experiments, Tolochko used an inert 

atmosphere, Sih used a vacuum. Hauser used air and argon. Kizaki used vacuum, 

argon and xenon gas. He reported that in argon and xenon a plasma was formed 

near the irradiation zone, causing absorption to increase with time where in 

vacuum it had decreased. Experiments carried out in vacuum would not be 

considered representative of processing carried out in an inert atmosphere. 

In the experiments of Kizaki, Tolochko and Hauser, sintering occurred. In Sih's 

experiments it did not. 

Calometric methods have the practical advantage that only heat actually 

remaining in the bed is measured. Radiometric methods measure reflected 

radiation: no account can be made of heat lost through convection or mass transfer 
if evaporation occurs. The advantage of radiometric methods is their definition 

against time, providing snapshot readings in the early milliseconds of laser 

application. Tolochko and Kizaki's short application of laser energy is 

approximately representative of the exposure provided to a point by a scanning 
laser. Irradiation time typically amounts to less than is in direct metal SLS [Knuth 

1996]. 

There is a lack of heat transfer experimentation which closely recreates the 

processing conditions found in direct metal SLS. The atmospheric gas, laser and 

powder types used should correspond to the situation investigated, in order to 

generate representative results. 

Of particular interest would be to see how laser absorption varies in the SLS 

process. There is expected to be a difference between heat absorbed into a first 
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scanned track and subsequent overlapping tracks, for instance. SLS could be 

recreated even more closely by testing a moving laser source. 
The use of carbon as a simulated black body by Sih must be looked upon as not 

ideal; Touloukian [1970] writes: "All real materials reflect part of the radiant 

energy incident upon them". 

Tolochko found that for iron powder exposed to a CO2 laser, awas 0.45. 

[Kahlen 2001] uses an aof 0.4 for stainless steel powder processed by a CO2 

laser, saying that of this amount, 12 to 35 percent does not contribute to material 

melting. [Vasinonta 2000] uses aof 0.35 for steel powder processed with an 

Nd: YAG laser, a value derived from thermal imaging. 

2.3.1.2 Models 

Laser beams such as that used by [Hauser 1999a] have an irradiance which 

reduces radially from the beam centre (see Figure 2.25). The irradiance 

distribution is known as Gaussian, changing with radial position as described by 

the equation: 

I (r) = Ic. e[ 
2 rZ`°°21 

(2.10) 

Where I(r) is the beam irradiance at a 

radial position r, Ic is the peak irradiance 

and wo is the beam radius, equal to d/2. 

Irradiance at the beam perimeter is non- 

zero, equal to (Ic. e-2) or (0.14 IC). The 

Gaussian distribution is used in laser 

heating models, seen in Section 2.3.4. 

The beam is reported to be absorbed into the powder bed over a finite depth. 

[Sun 1991], [Deckard 1995] and other authors assumed Beer-Lambert's Law to 
describe laser absorption against depth in SLS: 

Iz = (1- R). Io. e-bZ (2.11) 

Where I is irradiance, R is the powder reflectance, b is the extinction coefficient 
of the powder and Z is depth into the bed. Subscripts Z and 0 mean at Z depth and 
at the surface respectively. 



Page 57 Chapter 2 

The expression (1-R). lo represents the irradiance which remains after surface 

reflection. The exponential term represents decay of the laser beam intensity with 

depth into the bed, due to absorption. The extinction coefficient is dependent on 

laser and powder type. The Beer Lambert equation was developed for semi- 

transparent continuous materials; the geometry of a powder bed is significantly 

different. The equation assumes that the beam travels in a straight line 

downwards, but the spherical opaque nature of the powder particles means that 

rays could be reflected in any direction. The beam is likely to spread downwards 

and sideways, suggests [Laoui 1999] in his work reviewed below. 

It has been mentioned in 2.2.6.3 that a increases as porosity (p increases. In 

general, voids in a surface cause waves to be reflected multiple times, yielding 

more of their energy [Touloukian 1970, Steen 1998]. [Sih 1995b] proposed an 

equation which relates a to qp ; discussed below. 

Sih and Barlow considered the relationship between the emissivity . Fr 

(equivalent to a) of solid materials and of powder beds made of those same 

materials. They reported a probabilistic equation used to calculate Er for radiation 

travelling through a hole into a cavity bounded by solid material: 

ErH = -0rS (2.12a) 
ErS+f(1-sr5) 

Where e is emissivity and f is the cavity to hole area fraction. Subscripts are H 

referring to the cavity and hole, and S referring to the solid material. As f tends 

towards zero, the emissivity of the cavity tends towards that of a black body (=1). 

This hole emissivity was applied to the surface of a powder bed: 

Srp = AH. ErH + (1- AH )"6rS (2.12b) 

With parameters as defined above. AH is the surface area fraction of holes, 

subscript P refers to the powder bed. Further geometrical analysis and substitution 

by Sih and Barlow provides a formula for 6, of a powder bed as a function of E. 

for solid material and bed porosity cp Exchanging Er for cc a powder bed with (p 

equal to 55 percent would have: 

a= (4.1aS)/(3.1 as + 1) (2.13) 
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The bed absorptance a would be larger than the solid absorptance c in all real 

cases. An accuracy of ±10 percent is suggested by Sih, but the equation greatly 

misjudges the ratio a: as in reported cases. For iron powder reported by 

[Tolochko 2000], a: a, was 1.4 :1 whereas the equation predicts 3: 1. [Eyerer 

1994] reports a a: % of 60 :1 for copper, much higher than predicted. Sih's 

analysis and experiments involve no geometrical change, whereas other authors 

report awhere material is melted. Sih's method is applicable to 3D Systems type 

SLS but not direct metal type SLS. In the latter case, the value of awould depend 

on the melting time relative to laser application time. The equation (2.13) suggests 

that particle diameter dp does not affect c which the findings of Section 2.2.5 say 

is only true within a certain range of dp. 

Tolochko uses the graph Figure 2.26 to demonstrate how absorptance changes 

with laser application time during Nd: YAG processing of nickel alloy powder in 

an argon atmosphere. Two stages are shown. In stage I, absorptance increases due 

to the temperature increase. When stage III is reached, absorptance decreases due 

to the melting of particles and reduction of porosity. This result is said to be 

typical for CO2 and Nd: YAG laser processing of metallic powders. Three seconds 

of laser exposure are required to initiate melting in Tolochko's experiment, 

compared to less than one second in cases of direct metal SLS. The energy density 

used by Tolochko is relatively low. 

ä oa 
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Figure 2.26 
time (s) 

Absorptivity v time, laser processing of nickel alloy 

[Laoui 1999] and [Wang 2000] carried out research into the energy absorbed by 
iron-copper powder beds by Nd: YAG and CO2 lasers. It was assumed that other 
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heat transfer modes were negligible compared to radiation in their effect on the 

shape of processed material. The authors generated a ray-tracing model assuming 

a bed made of spheres which reflect the laser beam. Rays originate travelling 

downwards, and on collision with a particle they lose energy. The modelled bed 

porosity was much higher than reality, at 75 percent. Results were presented as 

cumulative absorbed energy against bed depth Z, and a against c (see the graph 

Figure 2.27). This figure agrees qualitatively with Sih's formula, (2.13) above. All 

laser radiation was absorbed for Z <0.9mm, and most was absorbed at Z <0.3mm. 

At a nominal dp of 40µm, these positions corresponded to 22dp and 8dd 

respectively. Contrary to Laoui and Wang's modelled conclusion, [Sun 1991] 

assumed that radiation was absorbed at Z <dp. [Childs 2001] assumed Z <4dp. This 

difference may relate to the assumptions made, the modelled bed porosity or the 

material type. 

Because as is higher for the YAG laser, this lead to a higher modelled a (66 

percent) and a lower penetration 

depth than for the CO2 laser. a for 

the CO2 laser was found to be 26 

percent. The model is interesting as 

a qualitative guide to behaviour. As 

with Sih and Barlow's model, it 

does not incorporate any porosity 

change over time. 
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Figure 2.27 
Absorptance of powder bed vs material 

2.3.2 Heat Transfer within Powder Bed 

Within the body of a solid material, heat transfer occurs by conduction alone. In 

a material powder, there are two constituent phases: powder particles and the 

gaseous voids between them. Adjacent particles only make solid contact over 

small areas, so between one particle and another, convection and radiation heat 

transfer are considerable in relation to conduction modes [Yagi 1957]. Heat 

transfer modes can be summed to form an effective conductivity k for powders. 
[Nelson 1995] notes that k values for powder materials are relatively closer than 

their solid equivalents. For instance, k for solid copper is 2000 times that of solid 
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polycarbonate, whereas k for copper powder is only 4 times that of polycarbonate 

powder. Inter-particle heat transfer clearly has a large effect on k for powders. 

Researchers have constructed semi-empirical equations which relate the 

thermal properties of the solid and gas phases to the effective conductivity for a 

powder bed. It is assumed that the bed is still governed by a conduction law 

(described by equation (2.16) below). 

The most popular equation for effective conductivity was proposed by Yagi and 

Kunii [Yagi 1957], for fine particles and a motionless gas: 

k= P"kk (2.14) 
1+c1 S 

kg 

Where k is thermal conductivity, 0 is an empirical coefficient, 0.02x102(0.7-p`), 

pý is the bed's relative density and subscripts are s for solid material, g for gas 

phase. "Fine" particles are those which have dp <0.4mm. Accorded to [Sih 1995a], 

Yagi and Kunii's equation consistently underestimates k when applied to ceramic 

powders. [Churchill 1986] created a similar equation, relating k values through p,. 

[Damkohler 1937] suggested an equation which accounts for only the 

component of heat transferred due to radiation: 

kR = 4. ý. j. d 
p. sr. QSB. TG3 (2.15) 

Where kR is conductivity due to radiation, dis area fraction occupied by 

voidage canals, j is a constant approximately equal to 1, Tb is the temperature of 

the powder bed in K and dp, sr and QSB are as previously defined. 

Zehner and Schlunder put forward an equation for powder k, which was 

modified by [Sih 1995a] to include Damkohler's radiation effects and a particle 
deformation parameter. The pursuit of a higher accuracy equation applicable over 

a wider range of cases leads to many more terms compared to Yagi and Kunii. If 

the equation is used to model a dynamic situation, values must be recalculated 

over time. For manual working this represents a problem, but does not if 

computers are employed. Sih and Barlow's equation is proven to be flexible; when 

compared with hundreds of data sets for solid-state powders, accuracy was found 

to be ± 30 percent. Heat transfer inside the melt pool zone in direct metal SLS is 
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not expected to conform to the conductivity equations of Yagi and Kunni or Sih 

and Barlow: the change of state and stirring of material are not accounted for in 

estimating k. 

If a powder bed can be assumed to follow solid conduction laws, Fourier's 

equation describes the variation of temperature against position and time: 

zz2 aT äT äT p. C aT 

k at 
0 (2.16) 

axz + -d -F + az2 __ Y 

Where x, y and z are perpendicular directions in space, t is time and T, p, C and 

k are as previously defined. Fourier's equation is used in experiments and thermal 

process models below. 

Measurement of the conductivity of powders is carried out in much the same 

ways as for solids. A rig described by [Tontowi 2000] and [Childs 2001] uses a 

steady- rather than transient-state method to measure k. A cylindrical stack 

comprising disc-shaped layers of different materials is insulated around its curved 

surface. Two material types are used: one is a solid material of known k, and the 

other is a powder sample. A heater at the top of the stack is used to set a uniform 

heat flux, which travels axially down the stack. Temperature gradients form 

through the material layers, reducing to ambient T at the bottom of the stack. Once 

a steady state is reached, T is measured at specific axial positions using 

thermocouple probes. Using several sets of simultaneous temperature readings 

and the properties of the known material, the powder k can be found from the 

relationship (derived from equation (2.16)): 

PH = k. A. T- Tb 
(2.17) 

dZ 

Where PH is heater power, k is powder conductivity, A is the stack cross- 

sectional area, T is temperature and dZ is the distance between points a and b. 

Subscripts a and b represent the top and bottom points of a disc of material 

respectively. 

Compared to Sih and Barlow's method, the temperature differences measured 

are larger, thus they are more likely to be precise. The temperature difference 
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causes a slight difference in the value of k between the top and bottom of the 

stack. 

The effect of porosity on specific heat C is now considered. To calculate C for a 

two-material mixture, a commonly-used equation is [Yevko 1998]: 

I 
A-Cl'Yl +P2'C2'Y2 

(2.18 

Pl'Y, + P2'Y2 
l 

Where C is the specific heat, p is the material density, yis the volume fraction 

and subscript m means mixture, and 1 and 2 represent the two material phases. 

For metal powders, the density of gas is relatively small, so the equation can be 

simplified as: Cm = 
P''C''Y, 

. In other words the powder specific heat is equal to 
Pi"Yi 

the specific heat of the solid, Cl. This has been confirmed experimentally [Sih 

1992]. Yagi and Kunii's equation (2.14) and equation (2.18) above contain no 

terms in T, so k and C of powder are assumed to vary with T as they would in the 

solid material. 

2.3.3 Time-Dependent Heat Loss from Powder Bed Surface 

Time-dependent mechanisms for heat loss from the powder bed's surface are 

convection, thermal radiation and material vaporisation [Sun 1991, Yevko 1998]. 

Whilst laser absorption and heat conduction in the powder bed discussed above 

have been the subject of numerous papers, less attention has been paid to surface 

heat loss in the SLS process. In direct SLS of room temperature steel powder, the 

peak difference between the melt pool and atmospheric temperature is significant, 

necessarily above 1000°C. Temperature differences drive convection and 

radiation losses, as will be seen below. The material temperature may become 

high enough for vaporisation. In Section 2.2.6.2 it was reported that laser 

application, melting and solidification of material often take less than 500ms to 

occur in direct metal SLS. Time-dependent heat fluxes would be largest in this 

500ms interval, diminishing thereafter. 

Thermal radiation has been described in Section 2.3.1.1, causing a heat flux 

very sensitive to temperature difference, evaluated via equation (2.7). 
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In convection heat transfer, a coefficient li is commonly used to evaluate heat 

loss from a body's surface to a surrounding medium, given flow conditions and 

the temperature of the body and medium. For the general case of free convection 

(the effect of gravity on a fluid as it is heated and its density changes), an equation 

has been developed [Holman 1997]: 

Ntif= D. (GrpPrf) ", (2.19) 

Where D and p are values reported for different body geometry and fluid 

thermophysical properties, Nu is the Nusselt number, = 
lt. xk"r 

Gr is the Grashof no., = 
g. ß. (Tw -T . p2. x"T3 

, and Pr is Prandtl no., = 
C. 'u 

,uk 

x is the length of heat transfer area, g is acceleration due to gravity, 9.81 m/s2, '8 
is the volume coefficient of expansion. T and h are the temperature and heat 

transfer coefficient. k,, u, p and C have their usual meanings and refer to the fluid. 

Subscript f means evaluated at the film temperature, =T2 
T"' 

:w and -refer to 

points on the body surface and in the bulk fluid, respectively. 

Parameters must be evaluated for a set situation to calculate h. For instance, for 

heat lost by a horizontal cylinder (similar to the case of a single sintered line) at 

80°C to air, a calculation of the product Gr. Pr tells us that D=0.675 andp=0.058, 

therefore h=493W/(m2. K). Thermodynamic tables provide Pr for air at a specific 

temperature: the quantity /3 is equal to 1/T(K), assuming an ideal gas. 

The equation is designed for use in steady-temperature situations. A transient T 

calculation would require an accurate temperature-time profile of the melt pool 

surface for regular recalculation of the 6 variables. 

Evaporation of material at high values of AN has been discussed in Section 

2.2.6.2. As well as reducing laser beam absorptance, it is possible that removal of 
heat by mass transfer would be significant at high AN. 
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Authors express a variety of attitudes towards the heat transfer modes described 

above. [Kaplan 2001] and [Vasinonta 2000] say that convection and thermal 

radiation have a negligible effect on part geometrical properties in metals 

processing. [Williams 1996] and [Miller 1997] say that convection and thermal 

radiation over the course of a part build affect processed part mechanical 

properties. [Kahlen 2001] says that of the laser energy absorbed by the powder 

bed, 12 to 35 percent does not contribute to melted mass due to being lost by 

conduction or other time-dependent modes. [Dai 2003b] incorporates only natural 

convection from the powder bed surface into his model of laser processing, in 

which temperatures over 1000°C occur. In a comparable process, [Chung 2003] 

incorporates surface heat loss by radiation only. [Kandis 1999] and [Norrell 

1996] disagree over which is the dominant mode at 200°C part temperature. 

2.3.4 Thermal Fields in SLS-Type Applications 

2.3.4.1 Measuring Temperature versus Position and Time 

Various temperature measuring devices have been used by reviewed authors. 
Selection was based on issues such as accuracy, spatial and time definition of 

measurements, cost and ease of use. [Griffith 1998] inserted a thermocouple into a 

wall being built up by direct metal SLS. She recorded the variation of temperature 

against time, showing successive T spikes of reducing amplitude as the laser 

passed overhead to scan each new layer. Griffith also used infra-red and high- 

speed cameras to measure temperature in a laser-induced metal melt pool. For 

both cameras, the wavelength of thermal radiation emitted by the pool was 

recorded and converted to temperature. Values of T up to 1700°C were measured. 

The benefit of using thermocouples is that they can measure temperatures 

within a solid body. They have a thermal inertia which must be considered when 

measuring transient temperatures. Imaging systems (cameras) are limited to 

surface readings, but have the advantage that they can measure T without 

removing heat, so they do not interact with the measurement zone [Magison 

1990]. 
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2.3.4.2 Thermal Field Models 

Analytical models have been created to predict the temperature rise occurring in 

a body when a laser-like heat source is applied. [Bechtel 1974], [Cline 1977], 

[Lax 1977], [Carslaw 1959], [Chen 1983], [Sanders 1984] and [Festa 1987] were 

studied. These authors assumed the heated body to be semi-infinite and isotropic, 

with constant material properties. None of the models incorporated surface heat 

loss. Heat propagation occurred by conduction in the solid, described by Fourier's 

equation (2.16). The laser intensity surface distribution was assumed to be 

Gaussian (equation (2.10)), or constant within a zone of a certain shape. Most 

models assumed exponential attenuation with depth (equation (2.11)). 

Temperature profiles for moving and stationary laser heat sources were 

compared. For moving sources, the relationship between beam speed and heat 

diffusion speed is key: if the ratio U/(d. K) is low enough, the temperature profile 

for a moving source resembles that for a stationary source. If U is high enough, 

the depth profile of temperature becomes similar to that of irradiance. The effect 

of the beam diameter d and attenuation depth Zp are considered. 

[Carslaw 1959] contains example equations for heat sources applied to solid 

bodies. One example is described here, the variation of temperature with position 

and time in an infinite body due to a line heat source. In order for the line 

assumption to be applied to SLS, the ratio U/(d. K) must be above a certain value. 

The body is infinite in size with constant properties, at an initial temperature of 

zero throughout. The heat source of strength Q is applied instantaneously at t=0. 
Its form is an infinitely long thin line, parallel to the z axis, passing through points 

xi and y1. Temperature is described by: 
(x-xI)2+(Y-Y1)2l 

T_Qea. K. r (2.20) 
4. ir. K. t 

Where T is change in temperature at the point (x, y). Q is the heat flux per unit 
length of the line, divided by (p. C). Kis bed diffusivity equal to k /(p. C). t, x, y, k, 

p and C are as stated earlier. 
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2.3.5 Summary of Heat Transfer Investigation 

A non-linear heat transfer situation exists near the powder bed surface in SLS. 

Laser energy is absorbed over a finite depth. Heat spreads through stirring of 

melted material, then spreads further due to heat conduction. 
Laser radiation was discussed with reference to absorption and reflection. 

Convection, thermal radiation and evaporation were considered as time-dependent 

modes of heat loss from the bed's surface. These modes depend on temperature as 

well as time. Peak temperatures upwards of 1000°C must necessarily occur in 

direct steel SLS. Infra-red cameras and thermocouples have been noted for their 

ability to record high temperatures. 

Analytical models of heat transfer which are applicable to SLS were compared. 

Models of laser irradiance against position and surface absorptance against 

porosity were reported. Values entered into these models are dependent on the 

type of laser and material. It was shown that porosity has a significant effect on 

absorptance. The absorptance of a surface was reported to change over time, as 

the surface material changed from powder to solid form. Models of conduction 

within the powder bed and convection from the powder bed surface were 

discussed. 

Methods of measuring powder bed absorptance and conductivity were 

reviewed. Absorptance was measured using either radiation methods, calorimetric 

methods or the weighing of processed tracks. Conductivity was evaluated via 

temperature measurements within the powder bed. It was commented that 

experimental conditions should recreate SLS processing conditions as closely as 

possible. 

2.4 Material Densification Process 

When parts are formed by traditional solid phase sintering, a body of powder is 

heated throughout to a temperature just below the material melting point for 

minutes or hours [Jenkins 1991, Davis 1994]. In the SLS process however, 

powder particles are heated beyond the softening or melting point for a duration in 

the order of seconds (see Section 2.2.6.2). The powder bed structure is altered 

only in the locality of the laser application. In direct metal SLS, some particles 
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lose their shape completely by joining a melt pool. Traditional sintering, SLS 

sintering and laser cladding are compared below. 

2.4.1 Densification in Traditional Sintering 

Sintering is the temperature-activated 

process whereby adjacent powder 

particles bond to one another to form a 

solid structure [Kaysser 1991]. Pressure 

may or may not be applied. Porosity in 

the bed is reduced, and the overall 

surface energy of the body is reduced. 

Traditional methods of sintering are 

80 
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Figure 2.28 Densification in sintering 

known as solid phase sintering (SPS) and liquid phase sintering (LPS). SPS 

occurs at a temperature below the melting point of the material, and takes in the 

order of hours to complete. There are two mechanisms in SPS by which porosity 

decreases: particle rearrangement and bonding (Figure 2.28). Rearrangement 

causes the particles to pack more optimally. However, its effect is not as 

pronounced as that of bonding. Bonding in SPS is split into three characteristic 

stages with their own features and mechanisms [Jenkins 1991]. The stages are: 

1) Solid material bridges form in the necks between individual particles. 

Diffusion takes place. 

2) Stage 2 begins at a relative density pr of 75 percent. Individual particles can 

no longer be distinguished. Channels of open (interconnected) porosity run 

along boundaries. Rapid shrinkage occurs during this phase. 

3) Between pr of 91 and 95 percent, stage 3 begins. Pores become isolated 

(closed) at grain boundaries or inside grains. Densification is slow, but pore 

size and grain features grow rapidly. Closed porosity is hard to eliminate, but 

parts may reach pr of 98 percent [German 19961. 

For each stage, equations can be derived from the geometry of particles/ pores 

and the rules of material flow. These are used to calculate the rate of reduction of 

porosity in SPS. [Frenkel 1945] developed an energy balance based on the viscous 
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coalescence of crystalline powder particles driven by a reduction of surface 

energy. [MacKenzie 1949] developed alternative material deformation laws. 

[Scherer 1976] developed a method for calculating strain rate in sintering material 

of pr < 94 percent. A flexible model was developed by [Johnson 1992]. 

[Nelson 1993b] developed a relationship to evaluate the sintering rate of 

amorphous materials using the Arrhenius equation for activated reactions. 

Combined with MacKenzie's relationship between sintering rate and change of 

void fraction, the following is derived: 

F 

dt 
= (PMAX 

- P)B. e R. T (2.21) 

Where p is bed density, t is time, pMax is maximum (solid) density, B is a pre- 

exponential factor, F is activation energy, R is the gas constant 8.31x103 

J/(K. mol), and T is temperature in K. B and F are found experimentally for a 

specific material. 

Liquid-phase sintering involves a mixture of two or more material phases, 

including a low melting-point (binding) and high melting-point (structural) 

material. LPS occurs faster than SPS, because the binding material melts and 
flows into open pores through capillary attraction. If the right temperature is 

achieved, the binding phase will have low viscosity leading to good wetting of the 

structural phase [Agarwala 1995a]. Surface tension properties of the phases can be 

altered by pre-alloying or addition of fluxing agents. 
In a subsequent temperature cycle, the structural material diffuses through the 

liquid phase leading to homogenisation. Application of LPS to an SLS-type 

process is mentioned in Section 2.1.4.6: green parts are rapidly made by LPS then 

are solid-state sintered to enhance their structure. 

2.4.2 Densification in SLS Processing 

The bonding of powder particles in SLS occurs in the order of seconds, laser 

beam exposure time being in the order of milliseconds [Kruth 1996]. Solid phase 

rules such as that developed by Nelson, equation (2.21) above, have been used to 
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model 3D Systems SLS of polymers. However, the appearance of parts processed 

by direct metal SLS reveals that melting and flowing of material occurs as well as 

inter-particle necking. Microscope images Figure 2.29 illustrate a metal powder's 

change of structure during laser processing, as observed by [Kizaki 1992a]. Image 

(a) shows unprocessed metal powder, (b) shows powder after 0.2s low-power 

laser exposure, and the following images were taken at 

0. Is intervals after this point. Bonding is still partly 

driven by the reduction of surface energy, but the 

reaction is faster than in SPS. 

The densification process in single-phase metal SLS 

has been further analysed in Section 2.2.6.2. A 

discussion of SLS process models follows in Section 

2.5. In certain models of single material laser 

processing, the heating of material to melting point has 

been deemed so rapid that the influence of time on 

densification can be disregarded. Examples cited in 

Section 2.5 are the work of [Yevko 1998] and [Kaplan 

2001] which simulate laser cladding. [Childs 2001] and 

[Dai 2003b] assumed that the material density increase 

at a point in the powder bed is instantaneous, and is 

dictated by the maximum temperature experienced. 

Full melting of single-phase metals in direct SLS processing allows them to 

flow freely: surface tension forces drive the melted zone into a rounded shape 

[Tolochko 2003b]. [Agarwala 1995a] states that material shaping occurs under 

better control if temperatures between the material solidus and liquidus are 

achieved. Between these states a mixture of solid and liquid material exist, as in 

LPS. Controlling the solid fraction present would require good thermal control 

[Tolochko 2003a], or the use of a metal with widely-spaced liquidus and solidus 

temperatures. 

Figure 2.29 Densification 
in direct metal processing 
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The difference in cooling rates between SPS and single-phase metal SLS mean 

that processed microstructures are different. The grain growth over time in SPS 

leads to soft parts. The rapid time-temperature transition in SLS causes materials 

to form more hard, brittle structures with residual stress as described in 2.2.6.4. 

2.5 Numerical Modelling of the SLS Process 

Examples of numerical methods for simulating laser processing of material in 

powder form are given here. Such methods are designed for computer-integrated 

formulation and solution. They go a step beyond analytical methods as found in 

2.3.4.2 by incorporating more detail, specifically non-linear effects [Childs 1998]. 

Laser radiation, heat conduction, densification and property change sub-models 

are integrated with procedures designed to solve the equations generated. 

Some of the reasons for modelling are stated in Sections 2.5.1 and 2.5.2. In 

general, models are seen as a way in which to improve SFF process performance. 

Section 2.5.1 discusses the generalities of numerical modelling. Sections 2.5.2 and 

2.5.3 discuss specific models. 

2.5.1 Finite Element and Finite Difference Models 

The purpose of finite element (FE) and finite difference (FD) methods is to 

model physical systems, to see the way they behave in response to different 

situations [Livesley 1983]. Design and process optimisation work can require 

many physical iterations, as discovered in Section 2.1.1: an FE or FD model 

allows initial iterations to take place before expensive facilities are required for 

actual testing. 

As part of the modelling procedure, a physical system is broken down into 

discrete units. Time is divided into intervals. Space is divided into nodal points, 

joined by elements in FE. Nodes store values describing the state of the system, 

whilst elements respond to specified conditions accorded to their properties, 

through numerical functions. In an example of forces in a structure, nodes store 

forces and displacements, whilst elements respond to the forces through their 
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stiffness to create the displacements. A system of nodes and elements will be seen 
in 2.5.2. 

Nodes may have multiple degrees of freedom: freedom to move, freedom for 

elements to bend and so on. Elements may be 1,2 or 3 dimensional and may 

interpolate the transition between nodal values in a linear or more complex 

manner. In general, the more nodes and elements used in a model, the closer will 

be the model's representation of the "real world" situation. 

In order to solve an FE or FD problem, systems of equations are set up. 

Matrices used to describe single elements are assembled into a global matrix 

describing the whole system. To solve a problem involving n unknown quantities, 

there must be n equations. Application of constraints helps to make problems 

determinate, so boundary conditions are used. These are data which describe 

conditions imposed on a system. An example in the case of forces in a structure 

would be that the displacement of a certain node must remain zero, because it has 

been fixed to the ground. 

So what are the differences between the FE and FD approaches? Both make use 

of governing equations, which describe the behaviour of systems given certain 
inputs. Fourier's Law for conduction in solids has been seen earlier: 

p. c aT 
aa2 

T a2 

x +T +aZT 
k at=0 

(2.15) 

The FD approach uses means to discretise an equation such as the one above. A 

Taylor's series expansion may be used, or the conditions at the boundaries of a 

control volume considered. Either way, each differential is approximated by a 

polynomial function at each node. For instance, a truncated Taylor's expansion of 

a first order differential in the x direction would look like: 

dT Tm+2. 
n. o - 

Tm. n. o (2.22) 
m+l, n, o 

Ax 

Where Ax is the distance between nodes in the x direction. T is temperature. 
Subscripts are in, n and o representing nodal positions in the x, y and z directions. 
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The Taylor's expansion is truncated. The right hand side of equation (2.22) is 

an interpolated estimate of the left. The same principal is adopted for y, z and t 

terms, so that a system of equations can be built. 

In FE, the governing differential equation is constructed using a set of linear 

algebraic equations. For each node connected to a specific element, polynomial 

shape functions are constructed which describe the spatial variation in a quantity 

such as temperature using coefficients. When the shape functions for each node in 

an element are combined, they describe the variation of the quantity with position 

throughout the element using the nodal values. The equation can be differentiated 

with respect to direction to build up the governing equation. The coefficients and 

the value distribution are found by solving the governing equation at each node. 

Examples of FE equation building are found in [Tay 1973] and [Childs 1988]. 

In FD values only exist at the nodes, whereas using FE methods the value is 

defined continuously throughout an element using nodal values and shape factors. 

In terms of their performance, FE and FD have various qualities. FE performs 

well in cases of irregular geometry, whereas FD is easily extended into 2 or 3 

dimensions, and its use of interpolation makes it more simple. 

2.5.2 Childs' Model 

Childs' model of the SLS process is a program in Fortran, based around a 
transient FE heat calculation with material properties which vary with state. The 

model was first developed in two dimensional (2D) form to simulate SLS of 

amorphous polymers and is well described by [Childs 1997a, Tontowi 2000]. The 

most recent 3D metal version is known as stmet3d [Childs 2000, Volpato 2001]. 

3D analysis was developed for metals processing because of the lower scanning 
speed involved. The analogy between the model and the SLS process is illustrated 
in Figure 2.30. 

smiet3d is essentially a thermal model. Shrinkage is taken into account; issues 

of stress and fluid dynamics are not considered. The co-ordinate system used in 

the model is not the standard one used in SLS: y represents depth in the powder 
bed, rather than z. 
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Two meshes are involved, with geometry and boundary conditions described in 

Section 2.5.2.1. The program run-time procedure is described in 2.5.2.2. 

Equations involved in the simulation will be described in Section 2.5.2.3. Means 

of handling model output and model verification work are documented in Section 

2.5.2.4. 

SLS: Laser Scanning Childs' Model: Thermal Mesh 
Powder Bed Moves through Powder Bed Mesh 

scanning laser 
beam end point end point 

sintered 
(processed) 
tracks,. 

heat i put 

start point 
powder bed 

start point 
elem nt grid 

powder bed 
i: 

ý: ý thermal mesh 
mesh 

I Co-ordinates 
Figure 2.30 Modelling of the SLS Process xz 

y 

2.5.2.1 Meshes 

The two meshes involved in stmet3d are a thermal mesh (TM) and a powder 
bed mesh (PBM). The geometrical details of these two meshes, and the boundary 

conditions for the thermal mesh, are shown in Figure 2.31 and discussed below. 
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Figure 2.31 Thermal and powder 
bed meshes used in stmet3d 
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The thermal mesh marches through the powder bed mesh along consecutive 

parallel lines, in the same way that a laser scans the powder bed in SLS (Figure 

2.30). On the top surface of the TM is a 10 x 10 element heat input zone (top 

right, Figure 2.31). This zone represents the presence of an incident laser beam. 
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Heat flux is distributed amongst elements to represent a discretised Gaussian 

irradiance profile. The majority of elements in the TM are purely for heat 

conduction. The TM's six surfaces have nodes with specific boundary conditions 

associated (see the bottom left of Figure 2.31 for details). 

The PBM acts as a data storage matrix, holding temperature, density and 

thermal property data for each node. When PBM nodes and TM nodes coincide in 

a heat time step, the TM copies, processes and replaces PBM nodal values. PBM 

nodes outside the TM are considered inert for that time step. 

Both meshes consist of many cuboids ("bricks") with nodes at their corners. 

The PBM brick size is constant at d/6 in the x and z directions, Z1 /6 in the y 

direction. For a beam diameter d 

of 1.1mm, each element in the x 

and z directions is (1.1)/6, or 

0.18 mm long. Each TM brick 

size is a specified multiple of the 

PBM brick size, permitting 

coarseness of the TM away from 

the heat source position to reduce 

data and save memory. See 

Figure 2.31 again for a graphical 

representation of this. In the TM, 

the volume of each brick 

subdivides 6 times into 

tetrahedral-shaped quadrilateral 

volume elements (Figure 2.32 

shows how this is accomplished 

geometrically). 

Brick 
halved 
diagonally 

Half brick 
split into 
three 
IPtr! II, edr 1 

Each half 
split into 
three 

ýý 
Figure 2.32 Tetrahedral thermal elements fit 
inside powder bed bricks 

2.5.2.2 Procedure 

An overview of the procedure in program stmet3d is provided in the flow 

diagram Figure 2.33. This figure is adapted from Childs' flow diagram for 2D 

modelling of polymer SLS [Childs 1998, Tontowi 2000]. 
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Figure 2.33 Flow diagram of Childs' finite ele ment 
sintering model (adapted from [Childs 1998]) 

Pre-processing involves customisation of an input data file (defining the two 

meshes, material properties, scanning parameters and start/ stop positions). If 

mesh definitions are to be changed, new parameter values must be calculated to 

replace current ones in the program listing. Also, changes in the size of the TM 

and PBM meshes affect the size of parts which can be modelled. 

Once the program is executed, it reads the input file. Meshes are then 

initialised: their nodal positions, the relationship between TM nodes and elements 

and the relationship between the TM and PBM nodes are specified. TM boundary 
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conditions and initial nodal values are set: for instance density throughout the 

PBM is set to that of fresh powder. For the 100 heat input elements, heat transfer 

coefficient and energy input profile against position are set. 

The TM begins to move through the PBM, at a rate of one PBM mesh spacing 

per heat step. The time per heat step DTIME is chosen to meet this criterion. In 

each heat step, the TM copies, operates on then returns selected PBM values. A 

heat calculation produces a new temperature distribution in the TM. Material 

density is then calculated based on temperature: see 2.5.2.3 for the related 

equations. Nodal values from the TM are returned to the corresponding zone in 

the PBM. 

In multiple heat steps, a complete line is scanned. Once a line has been 

scanned, the TM dwells without moving until all material has cooled to 

solidification point, i. e. the processed line has reached its final shape. After each 

scan and static dwell, the TM is translated to the starting position for the next scan 

and the process is repeated. TM movement through the PBM follows a 

unidirectional rastering pattern, with a constant spacing between scans (see Figure 

2.15). The intensity of the heat input distribution remains constant during 

marching, representing a beam of constant power perpendicular to the bed surface. 

Overlapping line scans combine to create densified layers. Once a layer has 

been completed, a new unprocessed layer is added on top. Layers accumulate into 

complete parts. 

To carry out the heat calculation in the TM, a heat transfer stiffness matrix with 

cofactors is set up. Thermal properties C and k are recalculated at each heat step 
based on nodal temperature (for C and k) and density (for k). Matrices containing 

many simultaneous temperature equations are solved by a lower upper 
decomposition method [Ralston 1978]. A recent development in the program 

stmet3d is reduction to sparse format of the matrices to be solved. Values deemed 

insignificant are dropped by a preconditioner, then the matrix is solved by an 

algorithm known as GMRES. A reduction of memory usage and increase in 

processing speed is expected. More can be found on GMRES in [Saad 1985]. 
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y direction (vertical) shrinkage is assumed to occur by conservation of mass as 

powder material turns to solid. Nodes are free to move in the y direction only. 

Shrinkage is calculated at every heat step. No mechanical analysis takes place: 

surface tension and residual stress effects are not considered. 
Data is output to text files (known as "Rhoplot" files), consisting x, y and z 

coordinates, density and temperature data for each node in the processed volume 

of the PBM. Only the PBM nodes processed by the TM have their values output. 

Post-processing of output data either involves manual inspection of values, or 

execution of scripts on the visualisation package GSharp: described in Section 

2.5.2.4. 

The model has mostly been applied (by Childs and Tontowi) to polymer SLS in 

2D until recently. Modelling of direct metal SLS is reported in 2.5.2.3 and 2.5.2.4. 

2.5.2.3 Governing Equations 

Within the program stinet3d there are sub-models which describe phenomena in 

the thermal mesh. They are described by the equations below. 

In the majority of the powder bed conduction heat transfer dominates, described 

by Fourier's Law equation (2.16). Laser beam irradiance across the bed surface 

follows a discretised Gaussian distribution, described by equation (2.10). 

Beam irradiance reduces with depth into the bed, as dictated by the equation: 
DPN 

DFRAC = DPA. DYAV. P' (2.23) 
1-A 

Where DFRAC is the fraction of laser energy received, DYAV is depth in the 

bed, p,. is relative density and DPA/ DPN are experimental constants. 

Powder k is calculated as a function of temperature Tin K and porosity gyp, 

kS, T =T. CONDV + CONDO (2.24), 

1p) k- ks, r 1+ SIGV 1. rpsrav2 
2.25 

Where subscript S denotes solid material, and T means on account of 

temperature. CONDV, CONDO, SIGV1 and SIGV2 are experimentally-determined 

constants (taken from literature) for solid material. 
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Powder C is calculated as a function of Tin K, 

C= CAPO + CAPV. T (2.26) 

Where CAPV and CAPO are experimentally-determined material constants. 

Values of C and k as linear functions of T agree well with values found in 

literature [Auburn 2001]. 

For metal alloys, the solid fraction xis assumed to vary linearly between 1 and 

0 as temperature increases from the solidus to the liquidus value for the alloy. 

T, 
n-T X=- 

T. -TS 
(2.27) 

Where T,,, and TS are the liquidus and solidus temperatures respectively. A 

temperature recovery method [Childs 2000] reduces material temperature in 

exchange for latent heat of melting. 

The densification law used in the program is tailored to the direct processing of 

single-phase metals. Density is assumed to change instantaneously and 

irreversibly, dependent on solid fraction ; r: 

P= PMAx "(RT1 + RT2. [tanh(5(1-X))]4) (2.28) 

Where p Ax is solid density, RT1 is the bed porosity and RT2 equals (1-RT1). 

The tanh function and parameters 5 and 4 are chosen such that for % above 0.7, 

almost no densification occurs. The variation of density as a function of %is based 

on the way in which the viscosity of metals varies with, [Childs 2000]. 

2.5.2.4 Post Processing and Verification of Model Output 

Model output data are density and temperature values calculated at x, y and z 

positions in the powder bed. [Tontowi 2000] used the software Unimap to 

generate 2D contour plots of temperature T and density p data. Then [Volpato 

2001] used the later software package GSharp Version 3.1, by Advanced Visual 

Systems, to achieve the same end. 3D arrays of T and p could be viewed in cross- 

sectional planes. Contour plots of p were used to examine the modelled part, once 
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a decision was taken about what value of p represented the transition from loose 

powder to solid material. Examples of modelled part cross-sections are found in 

Tontowi and Volpato's work. One is shown in Figure 2.17, Section 2.2.6.2. 

[Childs 2001] compared modelled and experimental output for the direct room 

temperature SLS of stainless steel powder with a CO2 laser. Processed track size 

was examined. Track widths in the model and experiments were similar if 

absorptance ain the model was set between 0.26 and 0.41. 

[Laoui 2000] tested the model for tungsten carbide powder processed with an 

Nd: YAG laser. awas set at 0.8, based on experiments. He found that the model 

performed relatively poorly at low P and U >5mm/s, under-predicting the material 

melted. Predictions would have been better if the assumed conductivity could be 

lowered. 

2.5.3 Other Numerical Models 

Models which perform thermal and stress analyses have been studied, as they 

are applied to processes like SLS, laser cladding and laser welding. Some of these 

models have been described in previous sections, and so are referred back to. 

In general, models of 3D Systems type SLS incorporate time-dependent viscous 

sintering laws as described in Section 2.4.1. Material density increases in the 

order of 20 percent during the 3D Systems process [Beaman 1997]. By contrast, 
in direct laser processing of single-phase metals, authors have chosen to relate 

material density to temperature or energy absprbed without the influence of time. 

Density can increase by large amounts, doubling in the case of [Morgan 2001b]. 

[Yevko 1998] and [Kaplan 2001] model laser cladding. Yevko uses 3D FD to 

evaluate the powder temperature distribution caused by a scanning surface power 

source. The volume of powder at T >T.. is considered to have melted, solidifying 

to form an assumed clad shape. This shape is then shrunk to represent 
densification. Kaplan assumes an analytical T field as proposed in 2.3.4.2, 

providing an estimate of melt pool width and height. As Yevko, Kaplan assumes a 

shape for the melted material: in this case a parabolic function gives layer height 

with respect to position. Integration of the function provides clad cross-sectional 

area. Kaplan incorporated latent heat, Yevko disregarded it. 
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The model of [Laoui 2000] has been covered in 2.3.1.2. Ray-tracing leads to a 

profile of laser irradiance against position. An area solidifies if exposed to 

irradiance above a certain threshold. Conduction heat transfer is not considered. 

[Ho 1995], [Weissman 1991] and [Williams 1996] used 1-dimensional FD 

thermal models to simulate laser processing. These models could only describe 

simple situations. Temperature profiles against time were examined. [Boddu 

2003] and [Landers 2003] created analytical, dynamic models of laser processing 

of metal. These models were designed to provide rapid results, for real-time 

feedback control. They relate melt pool temperature and morphology to inputs 

such as laser power. 

[Vasinonta 2000] used a 2D thermal FE model to construct process maps for 

better temperature gradient control. [Bontha 2003] continued this work by using 

modelled cooling rates and temperature gradients at the onset of molten metal 

solidification to predict the microstructure of laser-processed titanium alloy. 

[Tolochko 2003b] created a 2D model concerning heat transfer and densification 

in SLS. Laser penetration into the powder bed was considered negligible, so all 

heat was delivered to the bed's surface. 

[Bugeda 1999], [Flach 1997], [Sun 1991], [Steinberger 2000], [Papadatos 

1997] and [Dai 2003a and b] constructed 3D models of SFF processes. 3D models 

are better able to deal with edge effects than 1D or 2D [Tontowi 2001]. Sun and 

Steinberger report optical, thermal and rheological sub-models. Thermal and 

rheological models are similar to those already reported, but optical (laser 

radiation) models are unique, even compared to those of Laoui and Childs. Flach 

verified his model by comparing calculated temperatures with those measured by 

thermocouple. Steinberger and Dai compared surface temperatures using a 

pyrometer. [Tolochko 2003b] compared the dimensions of real and modelled 

parts. 

Modelling workers may or may not include the change of thermophysical 

properties with temperature and porosity: where change is not implemented, an 

average value is used. Similarly, conduction and radiation heat loss to the 

surroundings may or may not be considered: authors' views are recorded in 2.3.3. 
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[Dalgarno 1996], [Jiang 2002] and [Matsumoto 2001] used FE to perform stress 

analyses on simple modelled parts. Dalgarno studied curl in polycarbonate parts. 

He added layers, then applied compressive strains to them to represent thermal 

contraction. Jiang extracted temperatures and sintered geometry from Childs' 

thermal SLS model at different points in time, to study the evolution of residual 

stress and deformation. Elastic deformation occurred on cooling. Thermal stresses 

found were six times higher in the scanning direction than in other directions. 

Matsumoto used a coupled heat conduction and stress model. The pattern of 

tensile and compressive residual stresses was studied. 3 sets of thermophysical 

properties were used, to represent powder, liquid and solid states. 

2.5.4 Summary of Modelling Investigation 

Finite element and finite difference methods are commonly used to model 

physical systems, by breaking them down into discrete units. Childs' finite 

element model simulates direct SLS of metal powders, in three dimensions. Laser 

energy follows a Gaussian surface profile, and an exponential depth profile. 

Material temperature, density, thermal conductivity and specific heat all change 

with position and time. Multiple layer parts can be scanned in discrete spatial 

steps. Processing parameters, material properties and part geometry are input to 

the model; density and temperature data versus position are output. 

A new system has been implemented to simplify thermal matrices for solution. 
Changes in the capability and validity of the model under the new system should 
be tested. Post-processing of model output consists of manual inspection, or 2D 

visualisation. Limited morphological comparisons have been made between 

model output and the physical output from the SLS machine. 

Other models of laser processing have been examined to see their scope and 

assumptions. Different methods of deciding the cross-sectional shape of processed 

tracks have been observed. 



Page 83 Chapter 2 

2.6 The Future of SFF- Means of Achieving Aims 

Some of the goals currently driving SFF are identified, then the means by 

which to achieve these goals are discussed. 

Ever-present in solid freeform fabrication is the need to increase process speed 

[Wohlers 1999, Kruth 1998]. Increased speed must not detract from the quality of 

processed parts however. Wohlers believes that in rapid tooling, geometrical 

properties are in need of improvement: namely dimensional accuracy, flatness, 

surface finish and mould size. [Hunt 2001] has identified accuracy and finish as 

key qualities to improve in SFF. A common cause of accuracy issues is the 

heterogeneity of process conditions, discussed at length in Section 2.2.6.3. Effects 

include thermal distortion whilst cooling [Deckard 1995]. 

[Nelson 1992] and [Dai 2003a] identify the need for powder material 

characterisation: a knowledge of thermophysical properties, guiding machine 

parameter changes to accommodate new materials. New processes and materials 

can increase the applications for SFF technology [Calder 2001]. 

Means by which SFF processes have 

been improved in the past include 

hardware redesign, such as the use of 

polygonal laser scanning mirrors to 

reduce necessary rotation angles (Figure 

2.34 derived from [Steen 1998]), or the 

dual beam heating method from [Benda 

1994]. Powders have been redesigned 

rotating polygonal 
mirror 

beam 

powder bed 

Figure 2.34 Polygonal scanning mirror 

too, optimising particle diameter [Karapatis 1998b, Boivie 2003] or alloying to 
improve processing properties [Agarwala 1995a]. SFF process speed can be 

increased by introducing multiple, parallel processing tools. Multi-material SFF is 

now meeting new requirements in medical and electronic fields of work [Calder 

2001]. 

Many authors suggest that to optimise both geometrical and mechanical part 
properties, better process control is required [Dai 2003b, Griffith 1998, Williams 
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1998]: in particular, better thermal control [Eyerer 1994, Vasinonta 1999, Bontha 

2003]. Heterogeneous processing conditions mentioned can be countered through 

feed-forward or feedback control systems. 
A feed-forward system uses a process model such as those reviewed in 2.5 to 

predict part properties for a given set of machine input parameters. Optimum 

input values can be iterated towards as the model runs repeatedly with the 

machine off-line, before any parts are made. [Papadatos 1998] proposes using this 

system to vary laser power settings during a build. 

A feedback system uses closed loop (CL) feedback to adapt machine 

parameters in real time during processing. Sensors report values such as 

temperature or melt pool height to a controller, which acts to moderate build 

conditions [Landers 2003]. Benda and Eyerer successfully implemented CL 

temperature control through laser power adaptation. A plant model can be 

incorporated in CL control to explain how measured and controlled quantities 

relate to each other. This model should be simple and analytical, argue [Tsai 

2000] and [Boddu 2003], because a numerical calculation would be too time- 

consuming to apply to on-line control of laser processing. More information on 

current control technology can be found in [Steen 1998]. 

[Prakash 2003] conducted a Taguchi study on an SFF process. The build rate, 

hardness and porosity of parts was compared against six machine input 

parameters. Such a study can identify optimum parameter values, and reveal the 

relative importance of each. 

2.7 Summary of Literature Survey 

SFF processes provide a modern solution to rapid product development and 

rapid tooling needs. Freeform geometrical shapes are created in a layer-by-layer 

fashion. SLS is a type of SFF process, which uses a scanning laser to selectively 

fuse material powder. A three-dimensional structure is formed. Metal parts may 
be infiltrated during a post process, or may be made directly. The latter option is 

faster. A machine has been built at Leeds University for direct SLS of room- 

temperature stainless steel powder. This machine has been used to research the 

effect of atmosphere and certain other machine parameters. 
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Generic research into SLS process parameters has been reviewed. One means 

of relating part qualities to input parameters is process mapping, covered in 

Section 2.2.6.1. It is discovered that direct SLS of room temperature steel involves 

material being melted, and a temperature rise of over 1000°C in under 1 second. 

Direct SLS parts display characteristic features, such as a reduction in scan depth 

from the first to the second and following scans in a layer. Features such as this 

can compromise part accuracy. The cross-sectional shape of scans can change, 

depending on laser power and speed. 

The scanning laser beam delivers energy to the powder bed as electromagnetic 

radiation. A certain percentage is absorbed into the bed, the remainder is reflected 

away. The absorbed heat melts the powder, or may be lost to the surroundings by 

conduction, convection and thermal radiation modes. Models of heat transfer 

applicable to SLS were considered. Powder absorptance was reported to change 

with porosity. Knowledge of powder material thermal properties can aid 

understanding of heat transfer in the process. 

Methods of measuring powder bed absorptance and conductivity are reviewed. 

It was observed that there was a lack of data derived in the conditions specific to a 

laser beam scanning metal powder of changing porosity in an argon atmosphere. 

The density of SLS materials increases as they are processed. In solid phase 

sintering, densification occurs below the melting temperature over hours' 

duration. For this reason, densification models which assume instantaneous 

density changes are considered more appropriate than models of time-dependent 

viscous sintering. Surface tension acts in the molten state to drive material into a 

balled shape. 

A 3D finite element Fortran model has been written by Childs, to simulate 
direct SLS of metals. Heat transfer and densification sub-models are included. 

Machine and material parameters are input into the model, density and 
temperature values against position are output. A change made to the model (the 

use of sparse matrices) remains to be tested. Morphological comparisons between 

real and modelled parts are limited to date. 
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Authors suggest that the SLS process may be developed further by increasing 

the process speed, improving dimensional accuracy and surface finish, and by 

characterisation of powder materials used. Methods of improving the process 

include hardware redesign and better process control. Process control involves 

adaptation of machine parameters for optimal performance. 

2.8 Aims of Work Reported in This Thesis 

Given the information which is presented in this chapter, opportunities to 

develop the direct metal SLS process have been identified. It is intended to study 

the thermal situation occurring during direct SLS of single-phase metals, to 

increase understanding. The Leeds experimental SLS station described in Section 

2.2.4 will be used for this purpose. 

As a part of this study, the thermal properties conductivity k and absorptance a 

of metal powder will be measured under conditions typically encountered in direct 

SLS. The effect (if any) of the main machine parameters on material k and a 

values will be checked. It is known that layers made from several parallel, 

overlapping scans are affected by the change in k and aof processed material as 

opposed to fresh powder, mentioned in 2.2.6. It is intended to investigate this 

property change and its effect. A study of the mass and shape of tracks processed 

at different powers and speeds will be undertaken, following on from Hauser's 

work reported in 2.2.6.3 and 2.3.1.1. 

Development and further verification work will be done on the Fortran 

numerical model of the SLS process, stmet3d. Opportunities have been identified 

to ease the preparation of model input data. Communication of the model's 

progress during run time will be improved, as will the communication of output 

data. The nature and capability of the model in its sparse matrix-using form will 

be recording and tested, via process mapping and a morphological comparison of 

modelled and manufactured parts. 

Verification of the model stmet3d is seen as a step towards use of the model for 

feed-forward process control (FFPC), to help refine the direct SLS process. 
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CHAPTER THREE 

3 HEAT TRANSFER EXPERIMENTS 

The findings of Chapter 2 have suggested some opportunities to develop 

understanding of heat transfer in direct single-phase metal SLS. The theory and 

intentions behind experiments are explained, then experimental equipment and 

procedure are detailed. 

3.1 Introduction 

Thermal experiments will focus on the manufacture of single lines and layers of 

material. In Section 3.2, an opportunity is recognised to find the conductivity k 

and absorptance aof a powder via an equation first introduced in Section 2.3.4.2. 

Both properties are found through measurement of temperature in the powder bed. 

An investigation of transient state effects in SLS has been undertaken, reported in 

Section 2.2.6.3. The thermal aspects of transient behaviour in direct single-phase 

metal SLS are studied in this chapter. 

The Leeds experimental SLS rig is described in more detail in Section 3.3. The 

materials to be tested are specified in 3.4. 

Two quite different systems were used to measure temperature against position 

and time in the material powder bed whilst a laser beam scanned the bed's surface. 

These two methods required apparatus constructed from existing and custom- 

designed components. A specification and description of components for each of 

the two measurement systems appears in Sections 3.5 and 3.6. 

An evaporation study explained in Sections 3.7 and 3.13 looks at what happens 

to the mass and shape of processed tracks created at different powers and speeds. 

The study is based on Hauser's track cross-sectional profiles of Section 2.2.6.2. 

Section 3.8 provides information on the setting up of experiments. In Section 

3.9, powder bed density measurement is described. 3.10,3.11 and 3.12 describe a 

series of thermal experiments. Each experiment required the collection of up to 45 

individual results, therefore multiple runs were involved. A run is one 

measurement cycle. A full listing of the experimental runs undertaken in 3.10, 

3.11 and 3.12 is found in Appendix A. 
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Simple but fundamental observations about the laser-induced thermal field in 

the powder bed are made in Sections 3.10 and 3.11, the results of which were used 

to refine the design of experimental equipment and to refine the procedure for 

Section 3.12. Experiments were carried out over a range of scanning parameters 

(power P, scan speed U and scan spacing s) and powder sizes, in an ambient and 
inert atmosphere. During contact temperature measurement experiments, data was 

collected at a high sample rate on multiple channels. To increase the speed of 

selecting out relevant values from data files storing hundreds of numbers, a 

computer program was written to automate the task. 

Sections 3.14 and 3.15 explain the manufacture and sectioning of single layer 

parts for comparison with numerical model output. Parts were made then 

sectioned in order to compare them dimensionally with output from the numerical 

model of the process, stmet3d. In 3.15, two preliminary studies are discussed. A 

method was developed for dimensional analysis of part cross-sections, and the 

SLS machine's flexibility was tested with a view to varying the laser power setting 

for each individual scan. The work of 3.14 and 3.15 support the notion reported in 

Section 2.8, of testing the validity of the model and working towards feed forward 

SLS process control. 

In most experiments, only one powder was used: stainless steel 314S HC with 

particle size interval 75-150µm. In Section 3.12 however, the thermal properties 

of 314S HC and two further materials are calculated. 
Treatment of data gathered from the work described in this chapter can be 

found in Section 5.1. Results are presented and discussed in Chapter 6. 

3.2 Theory- Use of Carslaw and Jaeger's Equation to Calculate Thermal 

Properties 

Following on from the research of Chapter 2, some means is required to find 

material thermal properties in a situation representative of SLS. It is desired to see 
how material absorptance changes in different processing situations. 

Carslaw and Jaeger's equation (2.20) of Section 2.3.4.2 describes the 
temperature rise occurring in an infinitely large body due to the application of an 
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instantaneous, infinitely long line heat source, analogous to SLS. This equation 

has been chosen in preference over the other analytical models studied in 2.3.4.2. 

Carslaw and Jaeger's equation can express temperature as a function of P, U, a, k, 

t and y after manipulation (see below). It approximates the form of a moving heat 

source, without the use of integrals or error functions. 

In SLS the heat source is applied at 

the powder bed surface, so the 

equation has been manipulated. 

Figure 3.1 depicts the situation 

represented. The co-ordinate system 

of equation (2.20) has been altered to 

be consistent with the modelling work 

described in the next chapter. The 

infinitely surface 
long thin of semi- 
line on x infinite 

axis body: 
y=0 

X 

Figure 3.1 
body exists 

Visualisation of line heat where y>_0 

source system [Carslaw 1959] 

infinite body is split in half, to exist only where y>_ 0. No heat may leave the body, 

so the source strength Q represents that laser energy which is absorbed into the 

bed. If the uniform initial temperature in the body is non-zero, then it is best to 

replace the temperature term T with dT, or temperature rise. If the infinite line 

heat source is imagined to run along the x-axis (y and z equal to zero) on the 

surface of what is now a semi-infinite body, twice the amount of heat will be 

supplied to the remaining half of the body, i. e. 
y2+Z2 

dT =Qea. 
K. r 

2. Ir. K. t 
(3.1) 

Where dT is the temperature rise in the body at a specified position and time, t 

is time elapsed since the instantaneous application of heat, y and z are distances 

from the line in the y and z directions and xis the diffusivity of the powder bed. 

For positions vertically below this line source (i. e. z=0): 

dT =Qea 

y2 

K. r) (3.2) 
2. r. K. t 

Differentiating with respect to t at constant y, 

d(dT) 
_ -Q 

y2 

2. e K. 7 +Q e( 
?2 
ax. r) Yz 

2 
(3.3) 

dt 2ir. x. t 2n. ic. t 4x. t 
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Equating equation (3.3) to zero, the time to reach maximum temperature at a 

specific point, tT,,,, is introduced: 

z 
tr y 

aax-4x 
(3.4) 

Where diffusivity xis related to conductivity k, powder density p and specific 

heat C as shown: 

k 
K= 

p. C 
(3.5) 

Absorbed power PA is the product of input laser power P and material 

absorptance a: 

PA=P. a (3.6) 

Source strength Q is related to energy absorbed into the powder bed as follows: 

Energy input per unit length = Q. p. C (3.7) 

So for a laser source, moving with speed U: 

Ü=Q. 
p. C (3.8) 

Substituting t for tT,,,, equation (3.4), Q, equation (3.2) and PA, equation (3.6) 

into (3.8), an expression for the maximum temperature rise dT,,, is derived: 

dT = 
0.234a. P (3.9) 

maX U. p. C. yz 

Equations (3.4) and (3.9) provide a means by which both the conductivity k and 

absorptance aof the powder being tested may be evaluated. All other quantities 

appearing in these equations can be set or measured. Temperature readings taken 

at points of different depth in the bed and at different values of laser power and 

scan speed are to be analysed. The method is tested first, then used to learn more 

about property changes in the direct single-phase metal SLS process. 

Equations (3.4) and (3.9) assume a line heat source which is infinitely thin; in 

the SLS process a laser beam with a finite diameter d is used. It is anticipated that 

at depths into the powder bed which are less than the beam radius (dl 2), 

temperature profiles would come to resemble those found for a plane heat source. 
For this reason, temperature measurements will be made at depths which are at 



Pape 91 Chapter 3 

least several times d. At such depths, temperature profiles will approach those of 

an infinitely thin source. 

[Chen 1983] studied a situation similar to that of Carslaw and Jaeger. He 

looked at the shape of temperature fields in relation to the speed of movement of a 

Gaussian surface heat source. The approximation to a line heat source is believed 

to be acceptable, given that the condition set by Chen is observed: if U>2. K/ d, 

the temperature field appears like that occurring due to a line heat source rather 

than a point heat source. d is the laser beam diameter. For stainless steel 314S 

powder properties (which are reported in Chapter 7), diffusivity Kequals 7.4x10-8 

m2/s. The beam diameter d is 1.1mm, so 2.0 d=0.13mm/s. Provided that a laser 

scanning speed U well above 0.13mm/s is maintained in experiments, the 

condition is met. 

Carslaw and Jaeger provide an equation similar to (2.20) to describe the 

situation of an instantaneous, infinitely large plane heat source. This equation can 
be manipulated in the same way as was demonstrated in the derivation of 

equations (3.4) and (3.9). The infinite plane equations below are useful in 

representing the scanning of single layers: 

dT = 
Q' 

e ax. r2 (3.10) 
2 7L. K. t 

Source strength Q' is the heat flux per unit area of the plane, divided by p. C. 

Ways of expressing energy input per unit area are equated below, incorporating 

scan spacing s: 

.P= Q',, o. C (3.11) 
U. S 

Leading to two equations from which k and a can be found: 

try� xy (3.12) 

0.484a. P 
(3.13) dT, 

X = U. p. C. s. y 
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3.3 Existing Experimental Equipment- SLS Rig 

This section further describes the equipment introduced in Section 2.2.4. The 

figure 3.2 shows a schematic layout of the system. 

Laser power is provided by two 

Synrad 120W continuous-wave CO2 

lasers, with beams combined to create 

240W power capacity. The combined 

beam passes through a beam expander 

(type V+S Scientific BEZ-10) which 

increases the beam diameter from 

4.4mm to 18mm. The beam is then 

focussed, and begins to converge 

(decrease in diameter). The beam is 

reflected by two galvanometer- 

controlled mirrors rotating about 

perpendicular axes, directing it through 

a window into the SLS processing 

control, 
pC scanning refrigerator 

mirrors 
laser 

laser iý banks 
window 

processing viewing 

charüber window 

powder 
bed 

argon 
supply 

valves 

vacuum 
pump 

Figure 3.2 
Schematic diagram of 
sintering rig system 

chamber. The rotation of the mirrors directs the beam across the surface of the 

material powder bed. The beam diameter at the bed's surface is 1.1mm. A 

refrigerator cools water which is circulated through the laser housings to cool 

them. 

Laser on or off switching and mirror rotation are controlled by a General 

Scanning 2-axis digital scanning controller. The galvanometers on which each 

mirror is mounted are position controlled in a closed loop. The controller receives 
instruction from a PC, running PC-Mark software by General Scanning. The SLS 

machine user defines the geometry to be scanned with HPGL-type plotter code 

input into the PC. Scan speed U and power P can be assigned to sub-sections of 

the scanned geometry using PC-Mark. In all work reported here, U is assigned on 

the PC whilst P is set manually using a dial. Scan speed up to 1000mm/s is 

available. 

Figure 3.3 shows the processing chamber in more detail. A window in the top 

of the chamber allows the laser beam to enter. The beam terminates at the powder 
bed, which is contained by a tray. Tray design is detailed in Section 3.5.2. The 
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tray is slotted into a holder assembly inside the chamber, allowing NC-controlled 

lateral movement during experiments. The holder is driven by a stepper motor 

through a lead screw. Vertical powder bed NC motion is available for 

manufacture of multiple layer parts, but is not used here. A removable, sealable 

viewing window allows the process to be observed, as well as providing access to 

the chamber between experiments. 

A pump and argon bottle are attached to the chamber so that the air inside can 

be removed and replaced with an inert processing atmosphere. A meter displays 

the chamber pressure during the process. No powder preheating is provided, so 

the temperature throughout the powder bed is ambient when processing begins. 

laser pressure beam sea 

viewing ":. ýp++ 
window 

argon in 

argon out 

Figure 3.3 SLS processing chamber: diagram and photograph 

3.4 Materials Tested 

The powder used in most cases is Osprey Metals stainless steel 314S HC 

powder, with size distribution dp between 75 and 150µm and constituents stated in 

Table 3.1. "Bal. " means "balance", i. e. the remaining percentage. 

Element Fe Ni Cr C Si p Mn S 

Percent Bal. 19.85 24.36 0.443 1.43 0.017 0.94 0.006 

Table 3.1 Constituents of 314S HC stainless steel powder used 

Element Fe Mo Cr C Si S Mn v W 0 

Percent Bal. 5.15 4.1 0.92 0.5 0.01 0.05 6.5 6.5 0.09 

Table 3.2 Constituents of M2 stainless steel powder used 
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Thermal property measurement (reported in 3.12) takes place for 314S of size 

distributions dp 10-20µm, 75-1501im and 150-30011m, to see the effect of particle 

size on k and aA cumulative frequency plot of dp shows an approximately 

normal size distribution [Osprey 1997] for these samples. The polymer-coated 

steel powder developed for 3D Systems SLS, known as Rapid Steel 2, was tested 

in the same way. Rapid Steel 2 is stainless steel 316 with 3 percent polymer 

binder. The average particle diameter of Rapid Steel 2 is 30µm. Gas-atomised M2 

stainless steel powder of size 75-150µm was also tested. The feasibility of testing 

the properties of water-atomised M2 steel powder of size 75-15011m was 

investigated. M2 steel has constituents as stated in Table 3.2. 

3.5 Contact Temperature Measurement 

The first temperature measurement method used was one in which a device is 

inserted in the measurement position. The merits of such a method are discussed 

below. 

In the implementation of a contact temperature recording system, four functions 

had to be integrated. These were measurement and recording of temperature, 

containment of the powder bed, a measurement positioning system and a vacuum 

feed-through. A specification and solution for the temperature measurement and 

recording system follows in Section 3.5.1. The powder bed container, positioning 

system and vacuum feed-through are specified then realised in 3.5.2. 

3.5.1 Specified Existing Equipment 

A specification was drawn up for the temperature measurement and recording 
function: 

"A sample time and response time below 1 second was considered necessary, 
due to the expected speed of temperature rise reported in Section 2.2.6.2; 
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" Also seen in Section 2.2.6.2, bed temperatures increase from ambient to steel 

melting point (around 1300°C). Ability to cover this temperature range is 

required; 

" It is wished to observe the thermal field without disturbing it, so devices 

inserted into the bed must be of low mass. This also relates to device response 

time; 

" Temperature reading accuracy should be within ±2 percent; 

" Multiple readings should be taken simultaneously to save experimental time; 

" The recording system should be portable; 

" Output should be compatible with spreadsheet software for manipulation. 

To measure temperatures occurring within the body of the powder bed, a device 

would have to be found which could be positioned at points within the bed. 

Resistance thermometers were considered, but type K thermocouples were chosen 

for their small junction size (low thermal inertia/ heat removal), high temperature 

ceiling (1250°C), and accuracy (quoted as ±1% if calibrated correctly). 

Thermocouples purchased came in the form of two conductors of diameter 

0.3mm, sheathed in dual mineral insulation. They were sourced from RS, code 

151-209. Junctions were spot-welded manually using an RS J60M instrument 

welder. 

The recording system solution was a trolley-mounted PC. A National 

Instruments terminal block of type TBX-68T was connected to the PC via a 
N14351 input card. The terminal block could accommodate 14 thermocouples 

simultaneously, with a resulting minimum sample time of 0.6 seconds. The PC 

ran National Instruments VirtualBench-Logger version 2.5 data logging software. 
Thermocouple readings could either be taken in degrees Celsius or volts DC. 

Temperature-time curves for each channel were displayed on screen during 

experiments. Data was output as a text file consisting a column for each channel 

and a row for each interval in time. 
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3.5.2 Custom-Designed Equipment 

A new powder bed holding tray was deemed necessary for the purpose of 

temperature experiments. A tray specification was created: 

" Large enough to be effectively infinite in size, i. e. no significant temperature 

rises at the walls; 

" Should have flat upper faces to support manual spreading and flattening of the 

powder bed surface; 

" Should fit into the holder assembly built into the chamber, and be of such 

dimensions that the powder bed surface is at the laser beam waist position 

vertically. 

And for the measurement positioning system: 

" Allow temperature measurement to take place at many (or any) positions; 

" Facilitate the entry of temperature measurement devices into the bed; 

" Support positioning of these devices with an accuracy of ±0.2mm. 

Section A-A removable 
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Design development stick in hole. hole, so easy 
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positioning system 

Trays 1 and 2 (Figures 3.4 and 3.5 respectively), combined with the use of 

ceramic rods were designed to meet the needs of powder bed containment and 

measurement positioning. Tray 2 is an improved design, based on feedback from 

tray 1. Ceramic rods of 1.6mm diameter were chosen to carry the thermocouple 

wires inside the powder bed tray, for a combination of reasons. These were 
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thermal and electrical insulation, temperature resistance and rigidity for accuracy 

of junction positioning. Each rod has two internal axial holes for the nickel- 

chromium and nickel-aluminium type K conductors. See Figure 3.6 to see how the 

thermocouple wires fit inside ceramic rods. Epoxy resin was used to stiffen the 

conductors at the transition between the insulation and ceramic rod because this 

was found to be a stress concentration point, at which the conductor snapped most 

often. 

For tray 1, the resulting powder bed was 50mm deep. Tray 1 was constructed 
from bent and welded 3mm aluminium plate, with holes NC drilled into the base. 

Tray 1 was used for the thermal field and edge effects experiments of Sections 

3.10 and 3.11. Three methods were used at different times to locate the ceramic 

rods into the NC holes of trays 1 and 2: see the diagram Figure 3.7 for a 
description. In tray 1, putty was used to vertically locate the thermocouple 

junctions (design A in Figure 3.7 and image (ii. ) in Figure 3.8). This design gave 

rise to three issues relating to the accuracy of the measurement position: vertical 

movement of the ceramic rod due to creep of the putty over time, horizontal 

movement of the rod relative to the NC hole ("wobble") and poor perpendicularity 

of the tray bottom relative to the side walls as manufactured. Positional accuracy 

of the measurement position was estimated to be ±0.5mm. 

Tray 2 had a powder bed depth of 20mm, which is less than half that of tray 1. 

The choice of depth was influenced by the results of a thermal field study, which 

will be described later in Section 3.10. The new tray is made from 9mm thick 

aluminium plates, milled then bolted together. This means that the new NC holes 

in the tray's base are 9mm deep. The shallower bed and deeper NC holes lead to 
higher horizontal precision of the measurement position. The tray is also shorter 

and narrower than the original, meaning less powder to recycle after experiments, 

which increases the experimental speed. Corners of the tray are much closer to 

90° than had been the case using bent aluminium plate. Tray 2 has been designed 

with a specific width and a vertical slot, to fit into the processing chamber's holder 

assembly, for variable but repeatable lateral positioning. 



Page 99 Chapter 3 

Ceramic rods were initially located in tray 2 using design A. Although there 

was no horizontal movement of the ceramic rods any more due to an interference 

fit into the NC holes, it was found that once powder got into the holes, the rods 

became stuck. They were very difficult to move, and rod breakages resulted. The 

NC holes were then widened by 100µm and collets were used to vertically locate 

the ceramic rods (design B in Figure 3.7, image (i. ) in Figure 3.8). The rods were 

held fast, but because the end of each collet's grub screw was quite sharp, it could 

fracture rods as it was tightened. The NC holes were then modified to incorporate 

o-rings (design C in Figure 3.7 and enlargement B of Figure 3.5), the final design. 

Each NC hole was widened by 100µm then widened further at the top and bottom, 

to the recommended o-ring cylinder diameter. The o-rings succeeded in holding 

the rod solidly in place, without causing stress concentrations on the rod surface 

whilst being fitted and removed. The rod was held on the axis of the hole, and did 

not get stuck any more. To see a photograph of this arrangement, refer to image 

(iii. ) in Figure 3.8. 

It was considered important to be able to carry out experiments in an inert 

atmosphere, representative of conditions typically found in direct metal SLS. The 

main challenge of measuring temperatures during argon atmosphere processing 

was establishing a means of entry to the chamber for thermocouple wires whilst 

maintaining vacuum conditions. The following was required of a solution: 

0 Facilitate entry to the processing chamber for multiple thermocouple wires; 
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" Withstand a pressure change of 1 bar across it when the chamber is being 

evacuated and backfilled; 

" Should use blanked, threaded holes currently existing in the chamber wall; 

" Allow the powder bed tray to be transported in and out of the chamber 

between experiments, for the emptying and refilling of powder. 

Commercial solutions were investigated, but the final design was a custom one. A 

1/4' BSP bolt was NC drilled with 6 holes of 2.5mm diameter. The thermocouple 

wires were stripped of their insulation over a 5mm section, then threaded through 

the bolt up to the stripped section. Epoxy resin was applied between the bare 

wires and the inner surface of the drill holes to form a seal. See the pictures of this 

arrangement in Figure 3.9. 

To transport the powder bed tray in and out of the chamber, it was necessary to 

break each thermocouple wire between the feed-through and tray positions. 

Regular removal and replacement of the bolt was not acceptable because it 

involved 20 rotations, which would have severely twisted the wires. Circuit 

breaking was performed by cutting then twisting the wires in early tests using tray 

1. Type K plug and socket connectors were then purchased (image (i. ) in Figure 

3.8). 

3.6 Non-Contact Temperature Measurement 

In non-contact temperature measurement, the device is positioned remotely. 

Powder bed tray 2, as described in Section 3.5.2, was used for this purpose. New 
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temperature measurement (3.6.1) and vacuum (3.6.2) systems were specified and 

realised. 

3.6.1 Specified Existing Equipment 

Requirements of the non-contact temperature measurement system are identical 

to those set out in Section 3.5.1. In relation to bullet point three of that section, 

non-contact measurements do not disturb the thermal field whatsoever. Only 

temperatures on the surface of the powder bed can be measured, however. 

To learn more about the material phase change and shape change reviewed in 

2.2.6.2, it was desired to record temperatures in the melt pool zone during laser 

application. A melt pool temperature-time profile would allow an estimate to be 

made of time-dependent heat loss from the powder bed's surface (see Section 

2.3.3). 

Temperatures in the melt pool would be liable to melt a contact device such as 

a thermocouple. For this reason, non-contact measurement devices were 
investigated, namely pyrometers and a thermal imaging camera. A pyrometer can 

only take a point temperature reading, and there were no such devices freely 

available to practise with. Therefore an infra-red thermal imaging camera was 
loaned, an Agema 880. It was used to repeat contact measurement experiments 

and for extra studies. A schematic diagram has been constructed for the infra-red 

camera system, Figure 3.10. 

The temperature ceiling of the 

camera was 1500°C, with 

accuracy ±2°C once calibrated. 

The camera produced 280x175 

pixel video images of 

temperature, represented by 

colour contours, within the field 

of view. Video was viewed on the 

scanner display and data 

acquisition PC. A scene could be 

viewed in black and white (easier 

processing lens scanner 
chamber 

tripod 

scanner control 
display unit 

external 
trigger 

data 
acquisition printer 

PC 

Figure 3.10 
Schematic diagram of 
thermal camera system 
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to understand), or colour (good for definition of information). Display and output 

options were selected on the data acquisition PC. Thermal images provide a 

record of temperature versus position at a set time, these could be output as 
bitmaps. 

It was also possible to measure temperature versus time at a set position by 

using spotmeters. These were positioned on screen to record temperature at up to 

5 locations in the camera's view, with a sample time of 0.46 seconds. 
Unfortunately, due to the age of the camera system, spotmeter temperature versus 

time data was not directly compatible with any analysis software. The only output 

option was to print the data onto paper as a graph. 

Three camera apertures could be selected, to change the potential temperature 

range and sensitivity. For each aperture, the temperature level and range could be 

adjusted on the control unit. The specification for the system stated that a CO2 

laser filter was fitted to the camera, but unfortunately this was not the case. Such a 
filter would have eliminated any effect of the laser beam radiation on temperature 

readings. The camera was cooled using liquid nitrogen. 

3.6.2 Custom-Designed Equipment 

It was intended to use the thermal camera to record temperature versus position 
during SLS processing in an inert atmosphere (which will be discussed further in 

Section 3.12). The process chamber's current polycarbonate viewing window 

absorbs and scatters infra-red, so the camera could not make good readings. The 

first solution to this problem to be considered was an infra-red transmissive 

window, capable of withstanding 1 bar pressure difference during air evacuation 

and backfill with argon. But transmissive material is costly, and it would be time- 

consuming to manufacture a surround for the window which was compatible with 

the chamber. The window would need to be thin enough not to interfere with 
infra-red emissions from the bed, but thick enough to withstand the pressure 

change. So, an alternative was considered, a way to create a sealed volume 
between the camera lens and the chamber entrance (see Figure 3.10). The solution 

chosen was a strong plastic bag, glued to a rigid cardboard frame at one end (to 
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seal around the processing chamber entrance), and with a hole at the other (to seal 

around the camera lens using elastic bands). 

Black card was used to line the chamber, to prevent laser radiation being 

reflected from the steel walls. 

3.7 Evaporation Study- Introduction and Equipment 

At the end of Section 2.2.6.3, a previous study by Hauser, of parts made using 

the experimental SLS rig of Section 3.3, is described. The cross-sectional 

morphology of single line scans is examined, and the mass of material melted is 

observed for different values of scanning P and U. In certain cases at U below 

7mm/s, a decrease in energy supplied leads to more material being melted, which 

is the opposite of what normally occurs. This change is accompanied by a change 

in the cross-sectional shape of scanned tracks, from having a concave to a convex 

upper surface. Considering the energy balance equation (2.9) of Section 2.3.1.1, 

the mass of tracks is proportional to the energy absorbed and retained until the 

point of solidification. The proportion of energy being used to generate solid mass 

is somehow changing in these cases. A cause for this change has not been 

ascertained, so it is studied in Section 3.13. 

Potential causes for a reduction in laser energy efficiency are discussed in 

Sections 2.2.6.1 and 2.2.6.2. They are energy loss by mass transfer if material is 

evaporating, a reduction in heat reaching the powder bed due to evaporation 

causing a vapour cloud which blocks the laser beam, or possibly some unknown 

phenomenon. In terms of molten metal fluid mechanics, a reduction of surface 

tension with temperature could cause the upper surface of tracks to form a 

concave shape, but this could not contribute in any known way to a reduction of 

melted mass. An important untested clue in identifying the cause of reduced 

efficiency is the mass of processed material and the mass of the zone immediately 

surrounding the processed material. If metal vapour is being lost from the 

processing zone, removing heat, some mass will be lost from the processing zone 

during laser application. 

Any mass lost from the processing zone would have heated from melting to 

vaporisation temperature then undergone a latent phase, which would be 

accompanied by a minimum energy loss of: 
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Ecoss ='nv (C. dT4, 
_v 

+ Lv) (3.14) 

Where C is specific heat, my is the evaporated mass, dT, iI_v is the temperature 

change from melting to vaporisation point and Lv is the latent heat of vaporisation. 

The melting points of iron, nickel and chromium lie close to 2750°C. The 3 

elements have an Ly of around 6000 kJ/kg [Kaye 1995]. This compares to LA1 of 

around 250 kJ/kg for melting. dTM_y is about the same as dTA_M (from ambient to 

melting temperature). When averaged over the temperature intervals, C for dTAf_y 

is around 1.5 times C for dTA_M. Compiling this information, the energy required 

to melt 1kg of steel from room temperature is only one seventh of the further 

energy required to vaporise the same mass. However, the importance of this 

information depends on how much (if any) mass is lost from the processed zone 

by evaporation. 

To test this, some powder will be placed in a small container. The processing 

zone will be weighed before and after laser processing. Mass will be measured 

using a set of Mettler AJ100 electronic weighing scales, with a range 0-110g and 

a digital readout in grams to 4 decimal places. To be suitable, the container must 

therefore weigh less than 110g when full of powder, have a surface area not much 

greater than the processed area, and must resist high temperatures with no 
degradation. 

A plastic bottle cap was the first container tested: it began to degrade at 

experimental temperatures, losing mass. A small china cup (pictured later) was 

considered next. Whilst exposed to 1200°C for 4 hours, no evaporation of the cup 

or its enamel coating occurred. The cup was therefore chosen for the experiment. 

It was cut down from 50 to 20mm in height, which reduced its weight. 

3.8 Experimental Preparations 

Before using the SLS rig for each experiment, a preparation procedure was 
followed. Refer to Figure 3.2 once again for the hardware arrangement. 
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The processing chamber and powder bed tray were vacuum cleaned to remove 

any remaining powder particles. If an argon atmosphere was required, a valve on 

the argon bottle was opened and the delivery pressure was set. All electrical 

supplies were switched on. The focal length setting of the laser beam expander 

was checked. Laser goggles were worn when operating the CO2 laser, a respirator 

and gloves were worn whilst handling the powders. 
With the tray sitting outside the chamber, powder was poured into the tray. The 

tray corners were tapped to settle the powder, a little more powder was added then 

the powder bed surface was levelled with the tray's surface using a steel ruler. 
The tray holder assembly was centralised in the chamber. The tray was slotted 

into the holder. The viewing window was bolted into place. 
Scan geometry was specified (number of scans, length and position) on the PC 

using a simple program. Scan speed was assigned to scan geometry using the PC- 

Mark software. 
Laser power was set via a dial. Power at the powder bed position was calibrated 

against dial position regularly, using a Machen Instruments 200W laser power 

probe. 
If processing in argon, the atmosphere in the chamber was evacuated using the 

pump then replaced from the argon bottle. This occurred twice, before a 15- 

minute continuous flow of argon to purge any remaining oxygen. 
Various safety interlocks and switches were actuated. Laser scanning was 

initiated by entering a command in PC-Mark. 

3.8.1 Use of Thermocouples 

Before experiments began, the type K thermocouples were calibrated in water 

cooled from 100 to 0°C, against an externally-calibrated probe. A comparison was 

made between the 0.3mm diameter thermocouple wires used and some similar 
0.2mm diameter wires, to see if the change in junction mass caused any change in 

the response time and peak temperature measured. 
Before filling the tray with powder, the thermocouples (inside their ceramic 

rods) were inserted and adjusted for height. Adjacent NC holes were used, 

meaning the measurement positions were spaced at 10 or 20mm intervals in the 

scanning direction (refer to Figure 3.5). O-rings were slid onto the ceramic rods 
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above and below the powder bed tray's base and were pushed into their locations 

(see Figure 3.5 again). The rods' vertical positions were set then the o-rings were 

pushed into position once more. The depth of thermocouple junctions in the 

powder bed was set using a digital Vernier caliper, measuring in hundredths of a 

millimetre. 
The vacuum feed-through was fitted to the chamber. With the tray inside the 

chamber, the thermocouple circuit was completed by connecting the type K 

connectors. The logging software on the PC was set up. The output file name, 

sample time (0.6 seconds), number of significant figures in output and number of 

channels read from (6) were set. Before beginning each run, a check was made 

that all wires were reading reasonable values. 

After the first few uses of the experimental equipment, priorities for 

improvement of the process were established. Time spent using the SLS laser rig 

was restricted due to the needs of other users, so a reduction of the time taken and 

increase in readings taken per experimental run was required. More readings 

could be made by improving reliability (the number of useful readings as a 

percentage of all readings taken). Poor reliability was largely caused by 

thermocouple circuit failure. Rod location designs A and B (Figure 3.7) caused 

the rods to snap often, leading to snapping of the thermocouple wires. The wires 

also snapped often at the bottom of the rod, hence the epoxy reinforcement 
implemented in 3.5.2. The positive and negative conductors had identical 

appearance outside of their sheathes, which allowed them to be connected 

backwards occasionally: this problem was remedied by coloured marking of the 

wires. 

Experiments undertaken using the thermocouples are tabulated in Appendix A, 

pages 2 to 4. Included are preparatory tests, thermal property measurement 
(described 3.12 below), a thermal field study (3.10 below) and an end effects 

study (3.11). The link between Appendix A and specific results is explained in 

Chapter 5. 
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3.8.2 Use of Infra-Red Camera 

The infra-red camera system was set up as shown in Figure 3.10. Before 

experiments, the aperture, level and range dials had to be set on the camera to 

achieve the desired temperature interval. A printer was set up to output colour 

temperature versus time curves for the spotmeters. The black card mentioned in 

3.6.2 was stuck around the chamber walls. 

Calibration of the camera involved calculation of the emissivity 6r of the object 

viewed, in this case the powder bed. A function built into the camera allows s. to 

be calculated. A furnace was used to heat the powder bed to 200°C, then the 

camera was trained on the bed. The temperature of the area viewed was input into 

the camera, allowing it to calculate 6r. The effect of viewing angle on the 6r value 

calculated was checked: Er was 0.65 at 34° from perpendicular to the bed surface, 

and 0.67 at 52° from perpendicular. All camera work to be done involved viewing 

at within this interval of angle, so consistency was good. 

When an argon SLS processing atmosphere was required, the sealing bag of 
3.6.2 was utilised. The chamber was evacuated and refilled twice with the viewing 

window fitted as previously described. The window was then removed, and the 

sealing bag fitted to the chamber entrance using adhesive sealing tape round the 

cardboard frame. Some leakage was observed around the edges of the frame in the 
following 20-minute purge of argon, but the flow of gas was from the chamber to 

the lab atmosphere, meaning that the argon purity inside was maintained. 

The camera needed liquid nitrogen in order to operate- a risk assessment was 

carried out in relation to handling, storage, accidental spillage and disposal 

protocol for this substance. 
Because there was no appropriate filter, the CO2 laser could be seen to interfere 

with the camera picture. This will be seen in results (Chapter 6). A larger 

uncertainty in temperature measurements was assumed whilst the laser was 

operating: otherwise accuracy is as stated in 3.6.1. 
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Experiments undertaken using the infra-red camera are tabulated on page 1 of 

Appendix A. Included are preparatory tests, thermal property measurement 

(described 3.12 below) and a thermal field study (3.10 below). The link between 

Appendix A and specific results is explained in Chapter 5. 

3.9 Measurement of Powder Density 

In the equations (3.4), (3.9), (3.12) and (3.13) of Section 3.2, one of the 

quantities which must be evaluated in order to calculate the k and avalues of a 

powder is density p. This was measured with a method using the weighing scales 

specified in Section 3.7. Two powder types and different size ranges were tested. 

Powder was held in the cup used in the evaporation study of Section 3.7. This cup 

is 20mm deep, the same depth as powder bed tray 2, in case the gravitational head 

of powder has an effect on its packing density. 

The mass of the cup, the mass of the cup full of powder and the mass of the cup 
full of water (both substances made flat to the rim of the cup) were measured. 
Using these three masses, density could be calculated. 

Density was measured three times for each powder, and the average taken. 

Stainless steel 314S HC powder, of size fractions 10-20µm, 75-150µm and 150- 

300µm, was tested. Also gas-atomised M2 stainless steel, size fraction 75-150µm, 

and Rapid Steel 2 powder were tested. 

3.10 Thermal Field Study 

This study was carried out using powder bed tray 1. There were three aims: to 

develop the design of the tray, to develop the experimental procedure and to learn 

more generally about the change in temperature against position and time in the 

powder bed during and after laser application. Temperature was recorded whilst 

single lines were scanned over a broad range of machine parameters. Readings 

were taken at positions within the bed using the thermocouple system, and at 

positions across the bed's surface using the infra-red camera system. The size and 

magnitude of the thermal field against time could be observed. 
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The range of parameters tested were: measurement depth y from 1 to 1 1mm, 

laser power P from 20 to 160W, scan speed U from 4 to 32mm/s and air and 

argon atmospheres. 

3.11 End Effects Study 

This study was carried out using tray 

1. The aims of the study were as the 

second and third aims stated in the last 

section. The express task was to 

determine the limits of the steady 
behaviour sector of the thermal field 

generated by the scanning of single 

temperature 
contours scanned line 

powder bed 

tracks. The unsteady nature of temperature distribution with depth at scanned line 

ends has been discussed in Section 2.2.6.3. It is also predicted by the analytical 

models of Section 2.3.4.2. The diagram Figure 3.11 shows the location of the 

steady behaviour zone. The temperature contours shown are those occurring 
directly below the scanned line. The steady zone is defined by the condition 
dT/ dx =0, where x is the scanning direction. The steady behaviour zone identifies 

the limits of where thermocouples can be positioned in experiments, as dT/ dx =0 
is a condition essential for making the infinite line assumption of Section 3.2. 

Power, speed and depth were constant during the study: P =120W, U =6mm/s 

and y =5mm. There were 8 experimental runs. For each run, a 60mm line was 

scanned with the thermocouples located at three 10-millimetre spaced x positions. 
This meant that readings were taken at 24 unique x positions relative to the end of 
the 60mm scan, to discover where the steady condition would be met. 

3.12 Thermal Property Measurement 

The background to this activity is stated in Section 3.2. The effective 

conductivity k and absorptance a of powders were calculated based on 

experimental results. The effect of the geometry scanned, the powder size and 

type, atmosphere and scanning strategy were tested. Also the effect of parameters 
P, U and s on properties was investigated. k and a were measured using the 

Figure 3.11 
Sectional view of powder bed: processed 
scan and temperature distribution 
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thermocouple temperature measurement system, but k was also measured using 

the thermal camera. Scanning of single lines and layers was considered analogous 

to the heat source cases set out by Carsiaw and Jaeger, reported in 3.2. The 

validity and scope of the analogies were tested before they were used to calculate 

material thermal properties. Equations (3.4), (3.9), (3.12) and (3.13) were used for 

this purpose, explained in Chapter 5. Laser power and scan speed were varied 

following a set program in most cases. Scan spacing was varied in the case of 

scanning single layers. In all sub-sections of 3.12 except 3.12.3, only 314S HC 

powder was used. In 3.12.3, the other powder types are tested. Powder bed tray 2 

was used throughout. 

Minimum values of power and scan speed were observed so that the laser- 

induced temperature profile was effectively the same as that of a line heat source, 

but there was enough heat to create a temperature rise easily distinguishable from 

device noise. 

Each experimental run involved 40 minutes of preparation as described in 3.8, 

then temperature data collection which took 5 minutes. A full list of experimental 

runs is tabulated in Appendix A. 

3.12.1 Procedure- Thermocouple (Contact) Measurement 

Laser scanning and temperature logging were begun in synchronisation. 
Scanning was always completed in under 60 seconds. Logging was continued 
long enough to get a temperature peak (temperature traces could be seen on- 

screen), and a decent amount of data afterwards. Data was recorded in Volts DC, 

to be converted to temperature afterwards. 

3.12.2 Procedure- Infra-Red Camera (Non-Contact) Measurement 

The infra-red camera was used to verify thermocouple-based measurement of k 

in the situation of single line scanning. Spotmeters were trained on the powder 
bed inside the processing chamber, each at measured distances in the z direction 

(across the bed's surface, perpendicular to scanning: see Figure 3.11) from the 

centre position of the line to be scanned. An option was selected on the data 

acquisition PC to trigger temperature logging manually. Laser scanning and 
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temperature logging were begun in synchronisation. Scanning was always 

completed in under 60 seconds. The printer connected to the data acquisition PC 

printed a temperature versus time graph, for multiple spotmeters. 

3.12.3 Single Line Experiments 

Material Powder dp 

Interval 

(gm) 

Atmo- 

sphere 

P 

Range 

(W) 

U 

Range 

(mm/s) 

Contact or 

non-contact 

method 

314S 75-150 Air 40-160 1-15 Contact 

314S 10-20 Argon 40-160 1-15 Contact 

314S 75-150 Argon 40-160 1-15 Contact 

314S 150-300 Argon 40-160 1-15 Contact 

314S 75-150 Argon 160 0.5 Contact 

314S 75-150 Argon 160 1.0 Contact 

314S 75-150 Argon 160 10.0 Contact 

M2 75-150 Argon 40-160 1-15 Contact 

RS2 Avg. 30 Argon 40-160 1-15 Contact 

314S 75-150 Air 40-160 1-15 Non-cont. 

Table 3.3 Program of experiments carried out for single line scans 

Experiments were carried out, following the program in Table 3.3. The first 9 

experiments involved the use of thermocouples. The final experiment was carried 

out using the thermal camera. Temperature versus time data was gathered, from 

which the values tT,,, and dT,,. could be extracted. Each experiment was based 

on single lines 60mm long, scanned on the powder bed surface. 
In the experiments where thermocouples were used, the laser scanned directly 

over the thermocouples' positions. Based on the findings of Section 3.11, 

thermocouples were positioned 20mm or more from the edge of the scanned line 

in the x direction. This ensures that temperatures read are independent of x. A 

standard program of power and speed values for experiments was devised, 

ranging from 40 to 160W and 1 to 15mm respectively. This only changed where a 

was measured at single values of U. As a result of experiments in Section 3.10, 
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the upper and lower limits of thermocouple measurement depth y had been 

discovered: 2 and 6.5mm respectively. At less than 2 millimetres below the bed 

surface, the thermocouple junction had melted into the processed tracks. At y= 

6.5mm, P of 40W and U of 15mm/s (the lowest EL combination in the 

experimental program) brought about a temperature rise of 1.2°C. 1°C had been 

chosen to be the lowest acceptable temperature rise. 

When using the infra red camera, measurements were taken at different 

positions in the z direction, as opposed to the y direction when using 
thermocouples. In Carslaw and Jaeger's situation of an infinite line heat source 

where no heat is lost from the surface of the semi-infinite body, the measured 

temperature profiles should be the same whether in the y or z directions. 

Once the method was established, one experiment could be done in 6 runs, 

taking just under a day to complete. 

3.12.4 Single Line Relasing Experiments 

This section and the following section investigate the effect of scanning 

strategies on the thermal situation in SLS. It has been observed in Section 2.2.6.3 

that in the raster scanning strategy, the first track scanned is the largest and that 

tracks become successively smaller, down to a steady state size. It was suggested 

that this is due to the reduced a and increased k of previously processed material 

which is partially rescanned by the laser. The effect of rescanning on awas tested 

here and in the next section. 
The experimental method used was similar to 3.12.3, except that the same 

60mm line geometry was scanned multiple times in the same position. 6 runs 

yielded 30 results. The bed was allowed to cool to a uniform temperature between 

runs. The effect on aof material changing from powder to solid form (with 

reduction of porosity) was tested in argon. 

3.12.5 Single Layer Experiments 

Single layers are raster scanned with a degree of overlap in SLS. To calculate 
thermal properties k and c' layers were approximated to an instantaneous plane 
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heat source covering the surface of a semi-infinite body, as discussed at the end of 
Section 3.2. 

It was to be seen whether a would change compared to values calculated for 

single lines, due to the partial rescanning of previously-processed material. The 

effect on aof a change in scan spacing s was tested. 

Layer dimensions and values of U were tested initially, to see the limits of the 

infinite instantaneous plane heat source assumption. If a layer is too large, it can 

not be scanned in a time assumed instantaneous; too small a layer can not be 

assumed to be infinite in size. A layer size of 20x4Omm was chosen for these 

reasons. Higher scanning speeds were necessary than were used for single lines, to 

maintain the instantaneous heat application assumption. 10 experiments were 

carried out in argon, at constant P but with s changing in inverse proportion to U 

such that the energy density AN and the scanning time remained constant. s ranged 

from 0.2 to 1.1mm, U ranged from 27.5 to 300mm/s. 

The selected range of s was based on likely minimum and maximum values. 
1. lmm is equal to the beam diameter d, and is the maximum track width likely to 

occur for the range of U [Hauser 2001]. 

3.12.6 Semi-Automated Treatment of Thermocouple Measurements 

The VirtualBench logging software used outputs a text file with temperature 

versus time data for up to 6 thermocouple channels. A program was developed in 

Fortran to read through this file, picking out the initial temperature and time, and 

the maximum temperature (dT,,, ) with corresponding time (tT�. ) for each 

channel. The maximum temperature was found through comparison and 

conditional replacement of values. A listing for the program can be found in 

Appendix B. An account of how the program was operated is included in Section 

5.4.1. 

3.13 Evaporation Study 

An introduction to this study appeared in Section 3.7. The study was intended 

to determine whether energy was lost from the powder bed by evaporation at 

certain values of P and U, and if so how much. 
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Electronic scales were used to measure the mass of the cup and powder. 
"Control" weigh-ins occurred first. The cup full of powder was entered into and 

removed from the processing chamber with no laser sintering. It was weighed 
before and afterwards, to check that the weight remained the same. 

Then two experiments were done. 

Experiment 1 took place at P equal to 

160W and U equal to 0.5mm/s, 

number 2 took place at P of 160W and 

U of 1.0mm/s. The two sets of P and U 

values were chosen because the first 

was found by Hauser to result in scan 

cross-sections with a concave upper 

surface, and the second was found to 

scanning 
laser beam processed 

tracks 

powder 
bed 

heat-resistant 
cup 

Figure 3.12 Evaporation study 

lead to cross-sections with a convex upper surface (referring to Figure 2.20). Each 

experiment consisted of the following: 

" The cup was filled with powder, then the powder was spread flat to the cup's 

surface with a metal ruler; 

" The mass of the cup and powder was weighed, before processing; 

"5 parallel tracks were scanned on the powder surface in the cup (see Figure 

3.12); 

" The mass of the cup and powder was weighed, after processing; 

" The processed tracks were removed from the cup and weighed; 

" This took place 3 times in each experiment, and the average mass was taken. 

The mass of the cup will not change from before to after SLS processing. Any 

change in the mass of the cup and powder would indicate a change in the mass of 

the processing zone. It is suggested that if a change occurs, this would be due to 

material evaporation. The mass change due to evaporation between experiments 1 

and 2 can be compared to the change in mass of the processed tracks. There are 

two theories which may explain an increase of melted mass corresponding to a 

reduction of energy supplied: evaporation heat loss or a blocking vapour. The 

results of experiments 1 and 2 will determine which theory is the most likely. 
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Evaporation heat loss is assumed to begin with. Equation (2.9) from Section 

2.3.1.1 is used to see how much energy is diverted from the melting of material 

between the two experimental cases, assuming a constant a The mass of the 

processing zone before and after processing tells whether the energy lost by 

evaporation decreases between experiments 1 and 2, and if so equation (3.14) 

from Section 3.7 is used to decide if the amount is sufficient to explain the lower 

melted mass at the lower U. If the amount is not sufficient, then a reduced 

absorptance due to a blocking vapour is the favoured explanation. 

In 3.12.3, the a value corresponding to the same two sets of P and U values has 

been measured using the thermocouple system. The results will be compared to 

those of this section. 

3.14 Manufacture and Sectioning of Single Layers 

The validity of the SLS finite element modelling program stmet3d described in 

Section 2.5 needs to be tested. For this purpose, a comparison was made between 

cross-sections of manufactured parts and cross-sections of parts generated by 

numerical modelling. Chapter 4 contains more information on the aims of this 

exercise. Manufactured and modelled parts were morphologically analysed and 

compared, as described in Chapters 6 and 7. 

P=60W, U=1mm/s P=120W, U=6mm/s P=155W, U=12mm/s 
s= 3 d16 3 parts 3 parts 3 parts 
s= 5 d16 3 parts 3 parts 3 parts 
s= 9 d16 3 parts 3 parts 3 parts 
Table 3.4 Single layer manufacturing, machine parameters (d= 1.1mm) 

s was chosen at 3/6,5/6 and 9/6 times the beam diameter d. s must be set as a 

multiple of d/6 in the model. 3d /6 and 5d /6 are values seen to produce strong, 
flat layers using the experimental SLS rig. 9d /6 was thought to be the maximum 
likely scan spacing, given the P and U values chosen. P and U were selected after 
inspection of a process map by [Hauser 2001]. 60W, 1mm/s and 120W, 6mm/s 

were selected because these combinations are said to produce high quality, 

uniform tracks. Continuous tracks of a slightly lower quality are formed at 155W, 
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12mm/s. Energy density AN takes 9 unique values for the parameter combinations 

selected. Track cross-sectional shape is expected to differ for the P and U 

combinations selected. 

The y-z plane was chosen for 

sectioning layers, as shown in 

Figure 3.13. This plane was 

selected because the largest 

geometrical changes are seen, 

making it of the most interest. In 

the scanning (x-y) and depth (x-z) 

planes, layer shape does not 

change greatly except at the 

edges. 

It would be easier from an 

experimental point of view to 

weigh samples and compare their 

mass against model output, but 

z (scan spacing 
Section A-A 

direction) 

y (depth analysed 
direction) section 

Top View 

scan 
length 
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automated mass analysis is not currently possible for modelled parts. Area 

analysis has been semi-automated using a method developed as part of this work, 

requiring software introduced in Section 3.15.1. The method is described in 

Section 5.1. 

A procedure was followed to prepare samples for analysis. Single layers were 
direct-SLS processed using the equipment of 3.3. Layers consisted of 10 parallel 

scans with each scan being 10mm long. Processing parameters s, P and U were as 

written in Table 3.4. 

Unidirectional scanning was chosen, although the laser equipment and process 

model can be modified for bi-directional raster scanning. 

Layers were removed from the bed and cleaned off. Each layer was mounted on 

small supports, and immersed in epoxy resin (allowing the layer to be clamped 

and sectioned without any deformation). The epoxy-coated layer was sectioned 

with a Struers Accutom-5 cutting wheel. It was sectioned through the centre in the 

scanning direction (as denoted in Figure 3.13). One half of the layer was reset in 

epoxy, to create a disc which could be evenly polished. The surface of the cross- 
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section was ground and polished using Metaserv 2000 and Metalo machines, 

down to 1µm polishing particle size. 

An enlarged view of the polished section was created on a profile projector, a 

Nikon V-16D by Nippon Kogaku K. K. A grid was fitted over the projection 

screen to provide a millimetre scale on the image for working out its dimensions 

later. A digital camera was used to take pictures of the projector screen, the image 

being a steel layer cross-section with an overlaid grid. A typical image will be 

seen in Section 5.1. 

The amount of labour involved in this operation was quite large: the effort 

required in creation of manufactured part cross-sections for analysis will be 

compared with that required to create numerically-modelled part cross-sections in 

Chapter 7. 

3.15 Experimental Support Development 

3.15.1 Dimensional Analysis of Single Layers: Use of Image-Pro Software 

Images as prepared in Section 3.14 had to be analysed to evaluate their 

dimensions. The general shape of layer cross-sections was analysed manually. 

Calculation of area and relative density could be automated using Image-Pro Plus 

Version 3 (by Media Cybernetics L. P. ). Areas in an image having a particular 

colour can be analysed almost instantaneously for area, with graphical feedback to 

confirm the perimeter of the area analysed. The software works faster and more 

accurately than manual square counting, which took a few minutes per cross- 

section when attempted. The method of using Image-Pro will be described in 

Chapter 5. 

3.15.2 Feed-Forward Process Control Feasibility Study 

As a basic requirement for feed-forward process control (discussed in Section 

2.6), the possibility of varying laser power on a scan-by-scan basis on the SLS rig 

was investigated: this is possible. It would then be possible to vary laser power to 

counter the natural reduction in size from the first to the second and third scans in 
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layer processing. Variation of power is preferable to variation of scanning speed 
between adjacent scans, which is also possible. It would be harder to adapt the 

numerical model to reflect changing U. The ability to model the process is vital 
for FFPC. 

There was not enough time available to try refining the cross-sectional 

geometry of manufactured parts via power modulation, so this has not been 

undertaken. The work of 3.14 was considered more fundamental. 
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CHAPTER FOUR 

4 NUMERICAL MODEL DEVELOPMENT 

4.1 Introduction 
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Figure 4.1 
Refined flow diagram of Childs' finite element sintering model 
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In Section 2.5.2, the Fortran SLS process model stmet3d was described. 

stmet3d is to be developed and tested as part of this work. 

The model snnet3d is based on the direct SLS of stainless steel from room 

temperature. Changes have been made at various stages of Childs' program 

stmet3d in this work. To explain where these changes occur in the program's 

execution, Figure 4.1 has been constructed. The figure is a more detailed version 

of the flow diagram Figure 2.33 presented in Section 2.5.2.2. Where changes have 

been made to a step in the process as part of this work, boxes in the flow diagram 

appear black. Sections of the stinet3d program code which were modified are 

included in Appendix C. 

Changes have been made to the model code and to inputs at process step 1 in 

Figure 4.1. These relate to harnessing the increased capability of the model due to 

addition of sparse matrix solution methods (ILUT and GMRES decomposition) in 

process step 5 by another worker (described Section 2.5.2.2), and to supporting 

the concept of feed-forward process control (FFPC), discussed in Section 2.6. Pre- 

processing (also step 1) has been sped up through automation of the repetitive 

calculations required to prepare the input file and parameters in the code if 

conditions change. More information is printed to screen during run time (step 4) 

for program performance analysis, and new formatting of output files (step 15) 

reduces their size. Post-processing (step 17) has been enhanced through 

development of more visualisation and analysis options for model output. A 

change has been made to the laser scanning procedure in the model (steps 4 and 
11), in an attempt to remove an unexpected phenomenon. 

The form of modelled parts and the status of the temperature calculation related 
to scan spacing s, power P and scan speed U is investigated and classified. 

Step 1 in Figure 4.1 involves reading process parameters and material 

properties. 17 such values were set, and remained constant throughout modelling 

work. The values are as reported in Table 4.1. TDEGO is the temperature of the 

powder bed before SLS begins. TDWELL is the temperature condition at which 
the TM is allowed to move from the end of one scan to the start of the next, see 
Section 4.3. TSOL and TMELT are the temperature limits of the material latent 
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phase, TLAT is the latent heat of melting. HLOSS is a powder bed surface heat 

transfer coefficient. RHOPOW is the fresh powder density, RHOSOL and RMAX 

are the density of solid material. DPA and DPN are laser penetration constants 

used as shown in equation (2.23), Section 2.5.2.3. CONDO and CONDV, CAPO 

and CAPV, SIGVJ and SIGV2 are used to calculate changes in thermal properties 

with temperature and porosity, explained by equations (2.24), (2.25) and (2.26) in 

Section 2.5.2.3. 

TDEGO TDWELL TMELT TSOL TLAT HLOSS 

20 °C 1260 °C 1380 °C 1280 °C 308000J/kg 0 W/(m . K) 

RHOPOW RHOSOL RMAX DPA DPN 

4356 g/M3 7850 kg/m 3 7850 kg/m 1 1.0 

CONDO CONDV CAPO CAPV SIGV1 SIGV2 

7.83 

W/(m. K) 

0.0183 

W/(m. K2) 

437 J/kg 0.275 

J/(kg. K) 

6.05 0.78 

Table 4.1 Process parameters and material properties set in file stme3dat 

4.2 Mesh Refinement and Increase in Modelled Part Size 

The original meshes were sized as follows: thermal mesh (TM), 

17x17x17=4,913 nodes. Powder bed mesh (PBM), 85x20x50=85,000 nodes. 

The ILUT and GMRES subroutines discussed in Section 2.5.2.2 make more 

efficient use of PC memory, providing new opportunities for usage of the model. 

Two key variables in ILUT, namely DROPTOL and LFIL, determine the amount 

by which the matrices to be solved in modelling step 5 are simplified. DROPTOL 

and LFIL were set to 0.005 and 10 respectively, throughout this work. 

To make use of the program's extended capability, mesh data in the program 

input file stme3dat were changed. The TM was equipped with a greater number of 

smaller nodes. Originally, a TM y element had a minimum height of 0.083mm. 

This was considered quite large, given that modelled layers are in the order of 
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1mm deep. The number of y elements in the TM was doubled, and the height of 

each element was halved, to see if this would change the shape of modelled parts. 

The element length in the y direction is proportional to the specified layer depth 

(see Section 2.5.2.1), so to halve the element length, the layer depth was reduced 

from 0.5 to 0.25mm. The depth of the TM was increased also, by adding 11 

further y nodes. These extra nodes doubled the TM depth, from 2.5mm to 5mm. A 

comparison was made of output geometry in 3 pairs of cases: before and after 
GMRES implementation, for a coarse and a fine TM, and for the original and 
increased TM depth. 

In all, the TM had 5x nodes, 28 y nodes and 2z nodes added. In the x and z 

directions, nodes were added to improve the definition of the TM around the 

edges of the heat application zone. In the x direction, two further nodes were 

added to move the laser beam profile backwards in the TM. This was done to 

equalise the distance from the edge of the heat application zone to the front and 

side surfaces of the TM. 

65 x, 10 y and 80 z nodes were added to the PBM, permitting parts to be made 
from a greater number of longer scans. 

Trial and error were required in the beginning to discover the new maximum 

size of the TM and PBM for which the program had sufficient memory to run. 
Extra stack and paging memory were allocated to assist. Changes made to the TM 

and PBM were expedited by use of a spreadsheet, details of which are found in 

Section 4.4. 

4.3 Modification of Bed Scanning Procedure 

Values of material absorptance are entered into stine3dat in pre-processing, step 
1 in Figure 4.1. stmet3d was modified to accept a value of absorptance for each 

scan, whereas previously one value had been used for the whole part. The aim was 

to recreate the effect which partial rescanning has on powder absorptance for 

metals in layer rastering. This followed on from the work of Song in Section 

2.2.6.3, and was intended to draw on findings made in the work of Sections 3.14 

and 4.7 to follow. 
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A change was made to the TM's behaviour at the end of each scanned line in 

the model. This was implemented at steps 4 and 11 in Figure 4.1. In the original 

procedure, the TM stopped moving once a scan was complete, waiting 

("dwelling") until all nodal temperatures were below the steel solidification point. 

When this condition was met, the processed geometry would not change further, 

so the next scan was begun. The reason for the change was a vertical "hook" 

feature seen on the end of many modelled scans (examples in Figure 4.2). It was 

thought this might be due to the TM dwelling static over the end section of a scan, 

as opposed to marching along the rest. If material in the rest of the scan was not 

solidifying before it left the TM, the scan end zone could have been getting more 

heat dissipation time compared to the body of the scan. The solid volume at the 

scan end would have experienced a biased level of growth. 

Two Modelled Parts- Sectional Side View 
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Figure 4.2 
Demonstrating hook effect noted at end of scans 

A new marching cool down scheme tested in this work provided consistent 

treatment of all nodes processed by the TM, and was efficient with run-time. In 

the new scheme, the TM continued to march once the laser heat input had been 

switched off. Nodal temperatures were checked at each heat step after switching 

off. If all temperatures were below the solidification point of the material (i. e. the 

output geometry would not change any further), the next scan was begun. If the 
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temperature condition was not met, the TM continued to check temperatures and 

march on until an entire TM length after the heat input was switched off. If this 

point was ever reached, a warning would appear and the next scan would be 

begun. 

Modification of the scanning direction was considered, in order to have back 

and forth rather than unidirectional raster scanning. This would not be difficult to 

implement, but it was found easier to modify the experimental rig to a 

unidirectional scanning style so no change was made. 

4.4 Ease of Use, Feedback and Output File Size Reduction 

Whenever changing the size of the PBM or TM, parameters relating to the 

meshes had to be recalculated and changed at several points in the program 

listing. Selection of values in the stme3dat input file (step 1 in flow diagram 

Figure 4.1) also depended on the PBM and TM size. The dimensions of parts to 

be modelled had to be chosen carefully. If the scan start and end points or the 

number of scans or layers specified was too great, the TM left the interior of the 

PBM during run time, causing the program to crash. For this reason, a spreadsheet 

stinet3d. xls was created on Microsoft Excel 97. Refer to Table 4.2 to see its inputs 

and outputs. The spreadsheet used size information about the PBM and TM to 

perform two useful functions. The x, y and z size of the TM and PBM were 

entered as a multiple of the PBM element size. The millimetre length of a PBM 

element was known, reported earlier in Section 2.5.2.1. Values were automatically 

calculated for the parameters which had to be changed in the program listing, and 

the number of layers and extreme part dimensions which were permissible were 

provided. The spreadsheet generated maximum scan start and end positions in 

millimetres. This provided a guide to the part dimensions entered manually into 

the file stme3dat. For the situation where both meshes were to be changed in size, 

stmet3d. xls automated 20 essential and 5 advisable calculations. 



Page 125 Chanter 4 

n10 nl l n12 nl n4 n6 Nodes in beam diameter 

150 30 130 22 45 19 7 

mnelg mnodg mlingl mnmq mnelw3 mnodt3 ttherm. mesh spacing 

3459780 3529500 181 10 99792 18810 

xyz 

mling2 mling3 mnlinel mnline2 mnline3 8 12 8 

150 130 45 22 19 

mnglay mielm maja 

30 769 264388 

iKey: underlined values are inputs, other values are calculated outputs. 

Powder Bed/ Thermal Mesh Node to Maximum Dimension Calculator 

Total no. of "x" PBM elements in thermal mesh Elements in front of heat source 

42 13 

Total no. of ''y' PBM elements in thermal mesh 

120 

Total no. of "z" PBM elements in therm l mesh Elements right/ left of heat source 

36 13 

No. of layers z start No. of scans x spacing x start x end 

9 20.4 16.5 am 

am2/3 11 22.9 

Table 4.2 Layout of stmet3d. xls, with inputs and outputs for model stmet3d. f 

To improve feedback from the program during run time, the main program was 

modified to write it's current scanning position (current layer, scan and heat step) 

to screen. This occurred at step 4 in the flow diagram, Figure 4.1. The 

modification was made because in trials, certain input parameters were found to 

slow or freeze the model's progress during running. In case of the program 
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crashing or temperature fields failing to converge in the FE heat calculation, the 

position of the problem's occurrence would now be known. This became 

important due to the possibility of modelling larger parts, because running the 

program once could involve hundreds of heat steps. 
Two other feedback features were added. At the end of program execution (step 

16 in Figure 4.1), total run time was reported for performance records. The 

maximum number of cool steps required, with corresponding scan, were now 

reported. This indicated how quickly scans cool to solidification once the laser 

heat input had ended. 

New formatting was applied when writing nodal density and temperature output 

to Rhoplot text files (step 15 in the flow diagram). Density and temperature data 

files were typically of 50-90 MB size, which soon filled up a PC hard drive and 

took time to burn to CDs. Attention was therefore turned to reduction of output 

file size. Redundant space characters were found to be present, and the number of 

significant figures for output values was greater than could be represented 

graphically (the Fortran 95 default being 6). The new formatting reduced file sizes 

by a typical 40 percent. 

4.5 Handling of Model Output- Visualisation 

It was more important than ever to have good visualisation of the model's 

output- the changes described in Section 4.2 meant that larger and more complex 

parts were being modelled. A 3D view of the modelled part was desired. This 

would be more useful than sectional views for communicating the general form of 

the part, and would help in diagnosing problems with the model or the process. 
This role of communication and verification is similar to that of rapid prototyping, 
described in Chapter 2. Scripts were developed to better visualise the model 

output, using two pieces of software. This work relates to the post processing step, 

number 17 in the flow diagram Figure 4.1. 

4.5.1 Use of GSharp Software 

GSharp 2D contour plots have been useful to see how density varies with 

position in cross-sections of parts. Referring back to Section 2.5.2.4, Tontowi and 
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Volpato first developed scripts to analyse the output of stmet3d in this way. 

Volpato added the writing of Rhoplotx and Rhoplotz output files to stmet3d. These 

two files contain the same co-ordinate and property data as Rhoplot mentioned 

before, but re-ordered to describe the powder bed as slices in planes of constant x 

and constant z respectively. 

As part of this work, Volpato's GSharp script was changed to add the name of 

the file being analysed to output graphs, then from there was modified in 2 

directions. The first version was modified to display first 3 then 1 x-y slices rather 

than y-z slices for the process mapping work of Section 4.6 below. The growth of 

parts in the scan direction could then be analysed. A second version was 

developed for single layer cross-section dimensional analysis work: refer to 

Appendix D for a copy of the script. A demonstration graph is displayed in Figure 

4.3. Here, a single y-z plane cross-section is viewed. A 0.2mm grid is 

superimposed onto the section for manual examination of the image. Area colour 

mapping of density was made more suitable for the application, by reducing the 

number of colours from 10 to 3. Each colour (dark grey, light grey and white) 

represented a material state through the chosen density interval: unprocessed 

powder, partially densified powder and solid material. 

Modelled Part Cross-Section, Central in x (Scan) Direction 
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Figure 4.3 
GSharp cross-section of single layer modelled part, as prepared for area analysis 

A slight modification was made to prepare modelled parts for automated cross- 

sectional area evaluation. The grid of Figure 4.3 was removed. Solid material 

appeared as white, which allowed Image-Pro software to distinguish it from the 

surrounding area. Area evaluation by Image Pro is described later, in Section 
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5.2.3. The aspect of the graph was adjusted in the GSharp script, so that when 

saved as a jpeg image, it had the same number of pixels per modelled millimetre 

in both the x and y directions. A further version had solid material appearing as 

black on a white background, for reporting purposes. Such black-on-white 

sectional images will be seen in Chapter 7. 

4.5.2 Use of Matlab Software 

Matlab 6 by The MathWorks, Inc. was investigated because it has many 3D 

visualisation functions. A method of generating perspective views of modelled 

parts was sought. A script was developed for this software, refer to Appendix E 

for a copy. Matlab read all values from a Rhoplot text file into a 2D array, then 

rearranged values into four 3D arrays, a form compatible with Matlab's 3D 

graphing functions. Three arrays were for x, y and z co-ordinates in the powder 

bed, the fourth was the plotting quantity (which could be either density or 

temperature). The script then ran a command "Isosurface" to generate a surface 

linking all points at a specified value of the plotting quantity: connecting all points 

at which density was equal to 7500kg/m3 provided the surface of the solid part. 

Isosurfaces could be set to be semi-transparent as well as opaque, to create 3D 

contour maps. To accentuate particular features of the visualised geometry, the 

viewing and lighting angle were specified. A grid and title/ axis labels were 

added. 

Perspective and Bottom View of Modelled Single Line Temperature Field 
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Figure 4.4 Matlab-generated temperature isosurface plots 
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In Figure 4.4, a perspective and bottom view of a modelled (scanning laser- 

induced) temperature profile is provided as an example of what is now possible. 

The temperature in the thermal mesh can be seen to reduce with distance from the 

laser heat application zone. Matlab was initially applied to examine single and 

twin scans in 3D for the first time. It was then used on temperature data as in 

Figure 4.4, to investigate freezing of the program during running. Its main use 

however was for process mapping, see Section 4.6. 

4.6 Process Mapping for Model 

The ability to see modelled parts in 3D has provided a good opportunity to 

benchmark the model. Single layer parts were made for the study, consisting of 10 

parallel scans, each of 10mm length. The model was run with parameters (s, P and 

U) spanning the feasible range. The resulting part was examined then classified 

against parameters, similar to the process mapping studies based on real parts in 

Section 2.2.6.1 (see Figure 2.16). In 4.4, it has been mentioned that certain input 

parameters caused stmet3d to freeze in execution. If this occurred, it was also 

marked onto the process map to see if a pattern would emerge. If the temperature 

field failed to converge to the pattern dictated by the heat equation to within a set 

tolerance, a notification was printed to screen and steps 5,6, and 7 of Figure 4.1 

were repeated until convergence criteria were met. If the criteria were never met, 

an infinite loop occurred. 

Input material properties were those of stainless steel powder, as stated in 

Section 4.1. A range of power P from 0 to 200 Watts was used, the power 

available in the experimental rig. U was taken from 0 to 70 mm/s, at which point 

the energy density AN was too small to create coherent parts even at maximum P. 

Scan spacing of 3/6,5/6 and 9/6 times the laser beam diameter d was the same set 

chosen for single layer analysis of manufactured and modelled parts in Section 

3.14. s ranged from the minimum to the maximum likely to occur. 

In each modelled part, two values of absorptance were used, each one applied 

over five scans. This was done to generate results more quickly and save time. It 

had been found that the scan depth tends to a steady value after three rastered 

scans. 
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The objective of process mapping was to check that the model ran appropriately 

over the parameter ranges of interest, and to see the pattern of part characteristics 

against parameters. 

4.7 Verification of Model against Experiment- Use of Image-Pro Software 

Papers reviewed in Section 2.6 demonstrated a keen interest in the use of 

numerical SFF process models to direct machine parameters in a feed-forward 

process control (FFPC) system. However, before this is possible the model to be 

used has to be verified to prove that it can accurately anticipate the process 

outcome in all possible situations. As a result, the fitness of Childs'stmet3d 

program was tested in a feedback mode. Sectioned 10-scan single layer 

manufactured parts created in Section 3.14 were compared against modelled part 

cross sections. A morphology (shape) study of manufactured and modelled parts 

helped to assess the model's accuracy and realism. 

The same input parameters were used, the same single layer shape was scanned 

and the same measurements were made on cross-sections of modelled parts as for 

manufactured parts. Cross-sectional views were created in the y-z plane at the 

part's centre in the scanning direction as for manufactured parts (illustrated in 

Figure 3.13). The GSharp script described in 4.5.1 was used to generate 3-colour 

sections with no grid. Selection and use of Image-Pro software for the analysis of 

cross-sections is discussed in Section 3.15.1 and Section 5.2.3. Comparison of 

morphology occurs in Chapter 7. 
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CHAPTER FIVE 

5 PROCESSING OF RESULTS 

This chapter explains how raw experimental data and model output from 

activity in Chapters 3 and 4 are converted into the desired form. Examples of 

processing procedures are provided for clarity. Results and discussion of results 

can be found in Chapters 6 and 7. 

5.1 Thermal Experiments 

A record was kept of all thermal experiment parameters, found in Appendix A 

as indicated earlier. Examining page 1 of Appendix A (infra-red camera 

experiments), graphs 1 to 18 were plotted to test the camera system and to 

contribute data towards the thermal field study. Certain graphs between numbers 

19 and 45 were used to calculate k for stainless steel 314S HC, dp of 75-150µm, 

processed in air. Graphs 46 onwards contributed towards the thermal field study, 

and were used in an attempt to measure a directly by recording peak temperatures 

in the melt pool. Peak temperatures could not be identified from graphs due to 

laser interference: readings demonstrated a large degree of noise within the critical 

time interval. 

On pages 2 to 4 of Appendix A, date-coded thermocouple experiments are 

listed with the corresponding conditions. For experiments which contribute 

towards thermal property calculations a series number is quoted, linking 

experiments with results as tabulated in Chapter 6. Other than for thermal 

property measurement, thermocouple experiments were carried out to test the 

measurement method (040200), study end effects (170500,120700 and 130700 up 

to n3) and to contribute towards the thermal field study (full range of results). 

5.1.1 Powder Density 

One of the values required to determine the thermal properties of a powder was 
its density. This was measured using a cup, scales and water. Section 3.9 

describes the method by which readings are obtained. 
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New subscripts for use in this section are provided: 
P= powder, W= water, 

CE= empty cup, CF= cup full (of powder/ water). 

The empty cup was weighed ('ncE). The cup was filled flat to the top with water 

and weighed (mwycF + mcE). 
The cup was then filled with loose-packed powder and the surface of the 

powder was wiped flat to the top of the cup with a ruler. The cup was weighed to 

find the total mass (mpcF + mcE). 

Calculations were made using the results: 

[1 "] (»1wcF + »1cE)- incE =i nwcF (mass of water needed to fill cup). 

[2. ] pw = 1000kg/m3, therefore VCF =1nwcF11000. 

[3. ] (n1PCF + nncE)- n1CE =111PcF (mass of powder needed to fill cup). 
[4. ] 111PCF / VPCF = PP. 

Example for stainless steel powder- 314S HC, dp of 75-150 gm 

Measurements: nicE = 30.2 g, 

11WWCF + 71cE = 42.92 g, 11)PCF + 171CE = 89.67 g 
So: 

[1. ] mtivcF = 12.72 g 
[2. ] VCF = 12.72X10 6 

m3 

[3. ] mpcF = 59.47 g 

[4. ] pp = 4680 kg/m3. 

5.1.2 Thermal Field Study 

The objectives of this study were described in Section 3.10. The thermocouple 

and infra red camera systems were used to record temperature versus time and 

position during direct SLS. It was hoped to discover some useful observations and 

rules concerning change in temperature related to the parameters P, U, x, y, z and 

t. 
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Output files from the National Instruments thermocouple logging software used 

are of a specific format. A few initial lines are provided to state the date and other 

relevant information, then tab delimited data follow. Each row of data 

corresponds to a moment in time. Column 1 contains the time at which readings 

were taken, then the following 6 columns provide temperature readings for each 

thermocouple channel in degrees Celsius. Output files were imported into 

Microsoft Excel 97, then viewed as line graphs. An example of graphed logger 

output looks as shown in the temperature versus time graph, Figure 5.1. The three 

curves shown in the figure are for different values of P at a constant U and 

measurement depth y. 
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Figure 5.1 Temperature versus time curves recorded at 5.2mm depth 

5.1.3 End Effects Study 

First introduced in 3.11, this study made use of temperature versus time curves 

similar to those shown in Figure 5.1. From each curve (representing a different 

junction position), T was selected out at 5 moments in time. A single graph was 

created, of temperature versus x at the 5 points in time, which can be seen in 

Section 6.4.1. 
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5.1.4 Thermal Property Measurement 

A procedure was developed to calculate the powder bed thermal properties k 

and a using experimental data. Spreadsheets were created on Microsoft Excel 97 

for this purpose. All Excel spreadsheets are made available on a CD attached to 

the back cover of this document, so that the source data and methodology can be 

examined. See Section 6.5 for more details of spreadsheets. The same calculation 

procedure was used for single lines and relased single lines. For single layers, the 

equations used were slightly different. An example of the procedure followed for 

single lines is provided in 5.1.4.1, then the elements which differ for single layers 

are described in 5.1.4.3. 

5.1.4.1 Single Lines 

Following the experiments of Section 3.12.3, output files of temperature against 

time were generated, as described in Section 5.1.2. Output from each channel took 

the form of a curve, rising then falling with time as shown in the graph, Figure 

5.1. 

Around 30 curves of temperature versus time were collected in each 

experiment, in groups of 6 per output file. dT,,, and tT,,, Q. r were extracted then 

graphed in groups to reduce random error in calculating k and a The method of 

transforming results into dT,,, and tT,,, then into k and ais provided below. 

[1. ] Text files, containing 6 columns of temperature-time data, were read by the 

Fortran program described in 3.12.6. The program selected out the initial and 

maximum values of temperature in each column, with corresponding times. 

These were written to the PC screen by the program. 
[2. ] Initial and maximum temperatures with corresponding times were tabulated 

in rows on Excel. The conditions corresponding to each measurement were 

added to the relevant rows: P, U and y. 
[3. ] Excel calculated the difference between the initial T, t values and those 

corresponding to the maximum temperature. The difference values are dT,,. 

and tT,,, ax. 
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[4. ] Excel also calculated the quantities y2 and P/(U. y2). 
[5. ] Graphs were created of tT,,, versus y2, and dT,,, versus P/(U. y2). See 

Figures 5.2 and 5.3 for examples. 
[6. ] A straight line was plotted on each of these graphs. The gradient of the line 

was used to calculate the thermal properties looked for. Considering equations 

(3.4) and (3.9) from Section 3.2: 

f Gradient of tT,,. versus y2 is equal to 1/(4i) or p. C/(4k). 

f Gradient of dT,,, versus PI(U. y2) is equal to 0.234a/(p. C) 

[7. ] For these two cases the known values are entered, to leave one unknown 

quantity in each case: k and a respectively. 

The linearity of points and the intercept of the line of best fit in the graphs 

helps to validate the infinite line heat source assumption made. 

Examples are now provided for different situations, with reference to the graphs 
Figures 5.2 and 5.3. 

300- 
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Figure 5.2 Time to dTinax versus y A2 for 314S HC single line in argon 

1. Conductivity of 314S HC, dp of 10-20µm in argon (full conditions are as Series 

1.2, Table 6.2 in Chapter 6 later): 

" From Figure 5.2: tT�. =6.22x106y2 

" p. C/(4k) =6.22x106 s/m2 

y =6.224x -2.163 6 
(g radient i n s/mm^2 ) 
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A 
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" For 314S HC 10-20µm, p measured as 3914kg/m3 

" For stainless steel 314, value of C at 20°C assumed, 460 J/(kg. K) [Holman 

19971 

"1 remaining unknown: for 314S HC 10-20µm in argon, ß. =0.15W/(m. K) 

120 

v 
100 y= 24.229x - 0.1697 

ä (gradient in nun^3/W) 
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" Fxperimental Points 
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Linear (Fxperirmntal Points) 
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Figure 5.3 dTinax versus P/(U. y^2) for 314S HC single line in air 

2. Absorptance of 314S HC, dp of 75-150µm in air (full conditions are as Series 

1.1, Table 6.2 in Chapter 6): 

" From Figure 5.3: dT,,, =24.23x10'9 Pl(U. y2) 

" 0.234a/ p. C =24.23x10'9 m3/W 

" For 314S HC 75-150µm, p measured as 4675kg/m3 

" For stainless steel 314, value of C at 20°C assumed, 460 J/(kg. K) as above 

"1 remaining unknown: for 314S HC 75-150µm in air, c 0.21 

Values of C for Rapid Steel 2 and M2 materials were taken as 479 (measured 

by [Volpato 2001]) and 460 (assumed the same as 314S) J/(kg. K) respectively. 

Conductivity in the case of stainless steel 314S single line scans processed in 

air was confirmed with the infra red camera. The camera took 31 temperature- 

time curves. These were processed in a similar way to that described in the 

numbered points above. Curves were collected at positions in the z rather than y 

direction. Printed graphs of T against t had to be examined individually to find 

229x -0 1697 = 24 . y . 
(gradient inn A3/W) 

ý'ý - " Experimental Points 

0. ' Linear (Fxperirmntal Points) 
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dT,,, and tT,,, ax. Graph 43 (as described in Appendix A) is featured in Figure 5.4 as 

an example. The figure has been marked with the positions of dT,,,,,,, and tT,,,,. i. 
Graphs were scanned, then the 

co-ordinates of the relevant ° 
temperature axis tý a� T- Tn 

positions were found on Paint trace i 

Shop Pro version 7.02, JASC 
trace 1 Software. Co-ordinates were 

converted to seconds and - g sj2 
temperature/ 

degrees Celsius to get dT }-=T", mac 5IV; 
trace 

time traces 
1 

and tT,,., k was calculated t =0 time axis 

using MS Excel 97 as 

described, but substituting y 

for z. 
Figure 5.4 Sample infra red camera output 

5.1.4.2 Single Line Relasing 
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Figure 5.5 Finding absorptance, steel in argon, relased lines 

Taking the results generated in the manner described in Section 3.12.4, a 

procedure identical to that of 5.1.4.1 has been followed to find the change in 

absorptance of the powder bed as it is processed multiple times with the laser. See 

Figure 5.5, a graph with a curve displayed for each scan of the laser. The gradient 
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of the curves diminishes with the number of successive scans. Full experimental 

conditions are as Series 2.1, Section 6.5.2. 

5.1.4.3 Single Layers 

Results were gathered as stated in Section 3.12.5. Carslaw and Jaeger's 

equation for an instantaneous plane heat source was applied. Full experimental 

conditions are as Series 3.1, Section 6.5.3. 

The procedure from 5.1.4.1 for finding k and acan be used for layers if the 

points numbered 4 to 6 are replaced in the following way: 

[4] Excel calculated the quantities y2 and P/(U. s. y). 

[5] Graphs were created of tT,,, versus y2, and dT,,, versus P/(U. s. y). See 

Figure 5.6. 

[6] Straight lines were plotted on these graphs. Gradients of lines were used to 

calculate the thermal properties looked for. Considering equations (3.12) and 

(3.13) from Section 3.2: 

f Gradient of tT,,, ax versus y2 is equal to 1/(2x) or p. C/(2k). 

f Gradient of dT,,. versus P/(U. s. y) is equal to 0.484a/(p. C). 
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Figure 5.6 Finding absorptance, 3145 HC in argon, single layers 
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5.1.5 Evaporation Study 

The results of weighing undertaken in Section 3.13 were processed. There were 

two experiments: number one at P=160W, U=0.5mm/s, and number two at 

P=160W, U=1. Omm/s. Knowing the mass measured at various points, changes in 

mass between the two experimental cases are converted into changes of energy 

usage to help provide an explanation for the shape change and mass change of 

scans communicated in Section 3.7. 

The mass of processed tracks can be related to the energy absorbed. The 

equation reported in Section 2.3.1.1 is used: 

EM =I (C. dT + LM) (2.9) 

in is used to find the energy which contributes to material melting, EM. L, for the 

two cases studied. L, C, dT and LM are as reported in 3.7, the same in both cases. 

The change in EM is compared to the total laser energy supplied for the two cases. 

Also compared between the two cases is the mass lost from the processing zone 

during processing. If energy is being absorbed by the bed but is not evident in the 

mass of processed tracks, perhaps it has been lost due to vaporisation. The 

equation related in Section 3.7 is applied to mass measurements made before and 

after processing, assuming that the change in mass is caused by vaporisation: 

ELOSS = my (C. dT,, 
-v + Lv) (3.14) 

5.1.6 Dimensional Analysis of Manufactured Single Layer Cross-Sections 

Area and relative density were evaluated for 27 manufactured and cross- 

sectioned single layer parts. Evaluation was carried out via digital camera images, 

of parts manufactured and sectioned as described in Section 3.14. The top image 

in Figure 5.7 is an example. The solid area and area-based relative density of each 

section was evaluated using a semi-automated process. 

Image-Pro software described in Section 3.15.1 was used to find the area of 

cross-sections. Firstly a white-on-black mask was generated for area analysis, 

where white represents solid material. This was done automatically by Image-Pro, 

exploiting the difference between the colour of the solid steel section and 
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surrounding epoxy. The boundary between black and white areas was fuzzy in 

places once the mask had been applied, so some manual touching-up was carried 

out using Paint Shop Pro version 7.02, by JASC Software. The result can be seen 

in the bottom image of Figure 5.7. Image-Pro can then evaluate the white area in 

square millimetres, given a dimensional calibration factor. This factor was 

provided via the grid overlaid onto profile-projected parts, as in the top image of 

Figure 5.7. 

Manufactured Part- Sectional Front View 

Grid oxy tc, in e 
overlaid for 

p 

image AID 
calibration: 
1.25mm per 

major 
graduation scan I end , can IU cnd 

Manufactured Part- Black and White Mask Version 

Figure 5.7 Manufactured part, before and after image processing 

A line was overlaid onto the image, then the length of the line in the image was 

input in mm. A command was used to get a report of the sectional area in square 

millimetres. Where a section had several areas separated by pores, a statistics 

option was used to see the sum value of constituent areas. Image Pro can 

automatically generate a convex hull around a section, then evaluate the area 

within this hull. The convex hull feature was used to calculate the area-based 

relative density of parts. 

The thickness and roughness of layers, changes in thickness and roughness and 

the shape of the constituent scans (if these are discernible) have been inspected 

manually. Results are presented in Chapter 6 (general comments on single layers) 

and Chapter 7 (dimensional analysis of single layers). 

An estimate has been made of how much worker time per part was required to 

generate white-on-black layer cross sections. The stages are: making parts, setting 
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them in epoxy, sectioning, resetting in epoxy, grinding and polishing, profile 

projection and photographing, mask creation and touch-up. 50 minutes per part is 

estimated. 

5.2 Numerical Modelling 

A record was kept of all parameters input to the model (stme3dat files), an 

abbreviated version of which can be found in Appendix F. Each running of the 

program was allocated a number: input and output files were named accordingly. 

190 runs were executed, for the purposes stated in Chapter 4. Below is an account 

of how the output of stmnet3d was processed in various ways. 

The results and discussion from this work can be found in Chapter 7. 

5.2.1 Visualisation of Model Output 

5.2.1.1 Use of Matlab Software 

The Matlab script was run on Rlhoplot files one by one. Two versions of the 

script were used: the most popular of these automatically generated 3D views of 

parts from density versus position data. The second version was used to make 3D 

temperature plots, reading data from the fifth (temperature) rather than the fourth 

(density) column of Rhoplot files. Two views of each part were created as 

standard: one diagonal perspective view and one end view (in the y-z plane). 

These were saved as jpeg format images. Occasionally, if the two standard views 
did not provide enough detail of the part, other views were examined. 

For process mapping use, the x to y to z aspect was set to automatic, which 

allowed the part's shape in the y (depth) direction to be accentuated, the y being 

the shortest dimension in single layer parts. For the comparison of modelled 

versus manufactured parts, the viewed aspect is set to reflect the actual size: 1 to 1 

to 1. 
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5.2.1.2 Use of GSharp Software 

Scripts written for GSharp automatically generated sectional contoured views 

from Rhoplotx and Rhoplotz files. As was stated in Section 4.5.1, two scripts were 

developed for different applications. The first was used in process mapping, see 

Section 5.2.2. Version 2 was used for cross-section dimensional analysis (see 

Section 5.2.3). 

5.2.2 Process Mapping 

The Matlab script as described in 4.5.2 was run on Rhoplot files. An archive 

was made of all output geometry: approximately 90 parts were made for the 

purpose of process mapping. Each part has two a values associated with it 

(explained in Section 4.6), so well over 100 results were gathered. Examples of 

3D visualised single layer parts are provided in Section 7.2.1. 

Five classifications were devised to express the quality of modelled parts, based 

on general observations. These classifications were: 

(1) Successfully modelled layer; 

(2) Insufficient material melted (i. e. adjacent scans did not join up); 

(3) No material melted; 

(4) Depth not tending to steady state (i. e. out of control part growth); 

(5) Heat calculation non-convergence. 
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Figure 5.8 
Use of GSharp images for decision making in model process mapping 
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Only classification (1) represents a "pass", the other 4 classifications represent 

parts which are not considered useful (2 and 3) or have not been modelled 

adequately (4 and 5). 

Some parts were easy to categorise based on examination of Matlab plots: for 

instance, where adjacent scans did not join together. If it was not possible to 

categorise parts from the 3D image, GSharp was used on relevant x-y sections. 

This was mainly required to ascertain whether part growth was out of control. It 

had to be judged whether the growth gradient, dySCAN / dx, was reducing in the 

scan direction -x. An example is shown in Figure 5.8. Points were assembled on 3 

graphs of P against U, one graph for each of 3 values of s. 

5.2.3 Dimensional Analysis of Modelled Single Layer Cross Sections 

Cross-sectional area and relative density in y-z slices of modelled parts were 

evaluated for comparison with sintered layers. The purpose of the comparison and 

method for generating modelled sections were described previously in Section 

3.14. The procedure for analysing the area of cross-sections was the same as is 

described in Section 5.1.6, except that the initial stages were not required. 

Axis graduations are used to 
Modelled Part- Sectional Front View 

calculate number of pixels 
(image) per millimetre (part) 
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4368 
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Figure 5.9 considered solid Aspect adjusted so that no. Use of GSharp to produce images for of pixels per mm is the same 

cross-sectional analysis by Image-Pro in y and z directions 

In 4.5.1, a GSharp script is described which was developed specifically for 

single layer sectional area analysis. See Figure 5.9 for sample program output. 
The solid part is already denoted by a sharp colour change from grey to white. 
This means creation of a colour mask as required in 5.1.6 is not necessary. The 
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axis graduations applied by GSharp were used for image calibration purposes, 

much as the overlaid grid was used in 5.1.6. The calibration factor was the same 

in both the y and z directions. 

The thickness and roughness of layers, changes in thickness and roughness and 

the shape of the constituent scans (if these are discernible) have been inspected 

manually. Results are presented in Chapter 7. 

In worker time, the generation of modelled black and white cross sections 

(inputting model data, running the model, transferring the Rhoplot files to GSharp, 

finding the centre slice and saving it as an image) was estimated to take 15 

minutes per part. 
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CHAPTER SIX 

6 RESULTS AND DISCUSSION: THERMAL EXPERIMENTS 

Results and discussion sections are presented together here, for each set of 

experiments from Chapter 3. Results take the form of tables, graphs and images. 

Chapter 6 ends with a summary, and recommendations for future experimental 

work. 

6.1 Powder Density 

Results here are as calculated in Section 5.1.1. 

6.1.1 Results 

The table 6.1 shows the measured density for 5 powder types. Values for 

314HS and M2 stainless steel were found experimentally as part of this work. The 

density of 3D Systems' Rapid Steel 2 is as reported in literature [Volpato 2001, 

McAlea 2000]. 

Material Type, 314S, 314S, 314S, M2, Rapid 

Particle Size 10-20µm 75- 150- 75- Steel 2, 

Interval 150µm 300µm 150µm 22-53µm 

Density (kg/m3 ) 3914 4675 4609 4435 4210 

Table 6.1 Density of powders used in thermal property study 

6.1.2 Discussion 

Values found here compare 

well with previously-measured 

values [Eane 2002]. The powders 

measured above pack at 

approximately 56 percent of full 

density. This value lies at the low 

-ý 
,ýx 

k 

I :,, 
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end of the 52 to 68 percent range determined for perfect spheres in Section 2.2.5. 

Looking at Figure 6.1, a magnified image of the 314HS 75-150µm steel powder, 

the particles seen are roughly spherical but have lumps on their surfaces. These 

are often the result of smaller "satellite" particles which become stuck to them in 

the atomisation process. Surface lumps would contribute to friction between 

particles and hence to the low bed density. 

The 10 to 20 micron 314S powder had the highest surface area to volume ratio, 

so inter-particle friction would be the highest; density was the lowest. The 75- 

150µm 314S had a higher density than the 150-300µm 314S, possibly because the 

75-150µm fraction had been sieved and reused a few times, becoming more 

smooth in the process. 

6.2 Thermocouple Calibration and Wire Diameter Comparison 

This work was carried out before thermal experiments began, and was 

described in Section 3.8.1. Figure 6.2 shows the thermocouple readings logged 

from 5 channels simultaneously against temperature. The gradient of the best fit 

line is within 4 percent of the value obtained using the manufacturer's chart data. 
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Figure 6.2 The rmocouple calibration curves 

A linear relationship is assumed between the thermocouple voltage and the 

measured temperature. The calibration results are used to find the variables a and 
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T= a. VR +b (6.1) 

Where T is the temperature in Celsius measured by the thermocouple probe, 

and VR is the thermocouple reading in Volts DC. The gradient from the graph was 

inverted to find that a was 23600. b can be ignored because in all cases, the value 

of interest is the temperature rise dT, so b cancels out. 

A comparison was made between thermocouples with conductor wires of 0.2 

and 0.3mm diameter. A step temperature rise of 200°C was applied to the wires to 

see if their response time was noticeably different. No difference was seen in the 

two sets of traces on heating, but the traces diverged at low temperature when 

cooling. The response when heating is most important because once T,,. has been 

measured, the remaining data is of little relevance. 

6.3 Thermal Field Study 

The data examined in Section 5.1.2 is summarised here. Infra red camera then 

thermocouple results are presented. 

6.3.1 Results 

Figure 6.3 shows thermal 

images of the steel powder bed 

surface during and after SLS laser 

application. Temperature is 

represented by tone. White 

represents high temperature, black 

represents low temperature. 

Interference is seen in the top two 

images, appearing as angled lines. 

This is caused by infra-red 

electromagnetic emissions from 

the laser as it fires. 

Image a shows the laser scanning from right to left. The temperature at the 

centre of the laser application spot was always above the maximum value which 

could be read by the camera, 1500°C. In the cases studied (power P from 20 to 
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150W, at scan speed U of 6mm/s), the temperature at a scanned point on the 

powder bed surface fell below 1200°C in under or around 1 second, once the laser 

had passed overhead. Material below 1200°C will be in a solid state. Image b 

shows a reversal of the scan direction in bi-directional raster scanning. The 

scanned path can be seen. The zone around the position of direction change 

experienced a relatively large exposure time. Temperature remained above 

1200°C for up to 3 seconds under the same P and U range as in image a. 

Image c shows a single scanned line, cooling once the laser had been switched 

off. The processing conditions were P=150W, U=6mm/s. The size of the heated 

zone surrounding the line was observed: the area where the temperature rise was 

greater than 10°C did not extend further than 10mm from the perimeter of the 

line. Image d shows a cooling layer. A measurable change in temperature (1 or 

2°C) could be observed at up to 20mm from the perimeter of the layer. 

In all cases, the scanning laser heated material from room temperature to 

melting point in an immeasurably small time, well below half a second. 

Figure 6.4 shows temperature-time curves recorded by thermocouples placed in 

a bed of stainless steel 314S HC 75-150µm powder. The laser beam scanned 

single line tracks directly over the thermocouple positions in an air atmosphere. P, 

U and y were varied. 
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Figure 6.4 Temperature versus time graph. Varying P and U at two values of y 
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6.3.2 Discussion 

Discussing the results obtained by the non-contact method, the infra red camera 

shows that at the bed's surface, temperatures reached are beyond the material 

melting point, but only endure in the order of seconds. In the situation for 

traditional sintering of metals, temperatures are held at a level close to, but below, 

the melting point for minutes or hours. The non-contact results support the notion 

of melting as opposed to sintering in the direct single phase metal SLS process. 

They also support the choice of a time-independent, temperature-based density 

calculation in Childs' model of the process, as opposed to a calculation based on 

necking of adjacent particles over time as in viscous sintering. 

It has not been possible to obtain an exact temperature profile for the melt pool 

surface during laser scanning, for the following three reasons: 

" Laser electromagnetic emissions interfered with the infra red camera readings; 

" Peak temperatures were above the camera's maximum level; 

" The laser-induced temperature rise occurred at over 1000°C per second, too 

fast to be observed in the camera's sample time of 0.46s. 

A more modern thermal camera, with a CO2 laser filter fitted, would provide a 

more accurate surface temperature profile, which could allow estimates of heat 

loss by convection and thermal radiation to be made. 

Results obtained using the contact method provide an opportunity to comment 

on the thermal field in the powder bed, with respect to P, U, x, y and z parameters. 
Figure 6.4 contains some typical temperature versus time curves, obtained 

using the thermocouple system. 12 curves are displayed at y equal to 7mm (light- 

coloured curves) and 10mm (dark-coloured curves) below the position of scanned 
lines. U was set at 4 or 8mm/s, P was varied from 20 to 100W. Certain curves 
have been annotated, for comparison. 

Some elementary observations can be made based on Figure 6.4 (where 

parameters not mentioned in the following points are held constant): 

" When P is increased, the measured temperature rise increases. This is logical, 
because the energy supplied to the bed increases. 

" When U is increased, the measured temperature rise decreases. Increased U 
leads to a reduced laser exposure time and therefore less energy input. 
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" When y is increased, the measured temperature rise decreases and curves 

elongate on the time axis. These are illustrated by the two curves at 100W, 

4mm/s and the vertical lines denoting time to T,,, respectively. The laser- 

induced temperature front spreads radially into the powder bed from the laser 

application zone, reducing in magnitude with depth and taking more time to 

reach greater depths. 

" The time to reach T,, is constant at a particular value of y, independent of P 

and U. See the vertical lines, denoting time to T,,,. 

These four observations were found to hold true in all results gathered. They 

are predicted by Carslaw and Jaeger's equation (2.20), lending support to the 

instantaneous infinite line heat source assumption which was made in measuring 

thermal properties, Section 6.5. 

A few key facts have been compiled concerning temperatures measured in the 

powder bed, using the contact method whilst scanning single lines: 

" The highest temperature change read was 320°C, under conditions P=160W, 

U=0.5mm/s, y=2.1mm. At the same power and speed but with y=6.8mm, the 

highest temperature change read was 50°C. 

" Under the full range of P and U tested, up to 160W and as low as 0.5mm/s 

respectively, the maximum temperature rise at y=13mm was always below 

10°C. The thermocouple voltage rise was not significantly larger than circuit 

noise at 15mm depth. This equates to a temperature rise of less than I. T. 

" At low P and high U, the measurable temperature field was small. At P=20W 

and U=4mm/s, the maximum temperature rise at y=3mm was always below 

10°C. 

The discoveries about temperatures at y=13 and 15mm were made using 
powder bed tray 1 (see Section 3.5.2), and were the basis for the shallower 
powder bed tray 2. 
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6.4 End Effects Study 

Temperature data recorded 5.2mm beneath the end of a 60mm processed line 

scan were organised as described in Section 5.1.3. They are displayed and 

discussed here. 

6.4.1 Results 
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Figure 6.5 Temperature versus x at points in time, 5.2mm beneath scanned line 

The graph Figure 6.5 shows how temperature varies with position at five time 

intervals, approaching the end of a 60mm-long processed line. The position of the 

scanned line has been superimposed at the top of the graph for guidance. 

6.4.2 Discussion 

Refer to Figure 6.5. The measured temperatures continue to increase directly 

underneath the end of the scanned line. Temperature begins to level out with 

position, until dT/ dx =0 underneath a position approximately 12mm along the 

line. The path of any curve fit to points at a particular time interval is a matter of 

some interpretation. At the most conservative interpretation, the steady state 

temperature zone (dT/ dx =0) was reached after moving 15mm from the line end. 

= 
e f t=52s 

11 t=104s 
m 

-Q -a- - 
t=207s Q 

X t=414s x 
x t=82 9s x 

13 

x X 
x x rf 

X fý 
- s o 1 1 



Page 152 Chanter 6 

This is true at all time intervals. This information was fed back into the 

positioning of thermocouples in the powder bed for single line thermal property 

measurement. 

6.5 Thermal Property Measurement 

The results presented in the sub-sections of 6.5 were processed in the 

corresponding sub-sections of Section 5.1.4. Excel spreadsheets were created to 

calculate k and afrom temperature data. Spreadsheets include the original 

thermocouple readings against time. For the thermal camera, raw temperature data 

are recorded on scanned, numbered graphs. The spreadsheets and graphs can be 

found on a CD attached to the rear of this document. Each pair of thermal 

property results reported in this section have been allocated an experimental series 

number, to tie them in with the contents of the CD and the tables of Appendix A. 

Column 1 of Appendix A page 1 denotes graphs which were used in thermal 

property measurement. Column 2 performs this function for thermocouple data on 

pages 2 to 4 of Appendix A. 

The values of k and a reported for single lines scanned in air and argon, and 

single layers and relased lines scanned in argon have been presented previously in 

a paper [Taylor 2001]. 

6.5.1 Single Lines 

Materials tested were stainless steel 314S HC and M2 (both gas atomised), and 
3D Systems Rapid Steel 2. When a feasibility study was conducted on M2 water 

atomised steel powder, it was discovered that due to the low bed density, melted 

material penetrated as much as 4.5mm into the powder bed. Under these 

conditions, the measurement depth y would become too difficult to evaluate. 

6.5.1.1 Results 

Below are Tables 6.2 and 6.3, results for the contact (thermocouple) and non- 
contact (infra red camera) measurement methods. These are followed by a graph 

used to calculate a at single values of U, under conditions as series 1.5,1.6 and 
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1.7, Table 6.2 and Appendix A. Table 6.4 compares calometrically-measured (by 

the contact method) values of ato values estimated based on the mass of material 

melted by the laser. Thermal properties for steel are as assumed in sections 3.7 

and 5.1.4.1. 

Exp. 

Series 

No. 

Mat- 

erial 

Powder 

dpRange 

(µ. m) 

Atmo- 

sphere 

P 

Range 

(W) 

U 

Range 

(mm/s) 

k 

(W/ 

(m. K)) 

a 

(0-1) 

1.1 314S 75-150 Air 40-160 1-15 0.25 0.21 

1.2 314S 10-20 Argon 40-160 1-15 0.07 0.08 

1.3 314S 75-150 Argon 40-160 1-15 0.15 0.09 

1.4 314S 150-300 Argon 40-160 1-15 0.13 0.13 

1.5 314S 75-150 Argon 160 0.5 0.15 0.04 

1.6 314S 75-150 Argon 160 1.0 0.18 0.15 

1.7 314S 75-150 Argon 160 10.0 0.14 0.18 

1.8 M2 75-150 Argon 40-160 1-15 0.12 0.13 

1.9 RS2 Avg. 30 Argon 40-160 1-15 0.19 0.10 

Table 6.2 Powder conductivity and absorptance as found by contact method 

Exp. Mat- Powder Atmo- P U k a 
Series erial dpRange sphere Range Range (W/ (0-1) 

No. (µm) (W) (mm/s) (m. K)) 

1.10 314S 75-150 Air 40-160 1-15 0.19 - 
Table 6.3 Powder conductivity as found by non-contact method 

_, 
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Figure 6.6 dTinax versus P/(U. y^2 ), 314S HC in argon at single values of U 

Experiment: P=160W, U=0.5mm/s Experiment: P=160W, U=1. Omm/s 

Laser energy supplied: 19.2kJ I Laser energy supplied: 9.60 
Mass of 60mm-long scan: 1.7g Mass of 60mm-long scan: 4.5g 

Energy required to melt scan: 1.80 Energy required to melt scan: 4.70 
Mass-related a: 0.094 Mass-related a: 0.49 

Calometrically-measured a: 0.04 1 Calometrically-measured a: 0.15 
Table 6.4 Results and calculations based on a versus U experiments 

6.5.1.2 Discussion 

This section has been split into independent discussions of conductivity results, 

absorptance results and the accuracy of measurement methods. 

6.5.1.2.1 Conductivity Results 

The effective conductivity of a powder bed depends on the properties not only 

of the powder particles, but also of the surrounding gas phase. Experimental series 
1.1 and 1.3 in Table 6.2 display the difference in measured conductivity for steel 

powder in an air and argon atmosphere. Yagi and Kunii (Section 2.3.2) proposed 

an equation which predicts that the conductivity of steel in air will be 1.5 times 

that of steel in argon. This agrees reasonably with a comparison of k between 
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series 1.1 and 1.3, which suggest a ratio of 1.7. Based on series 1.2 and 1.4, the 

effect of particle size on k is slightly greater than the effect of atmosphere, over 

the interval of dp tested. 

6.5.1.2.2 Absorptance Results 

Figure 5.3 shows experimental points, compiled on a graph for the calculation 

of a. Points on the graph are scattered radially from the origin, which suggests a 

range of possible a values are being measured in different experimental runs. For 

instance, in Figure 5.3 the best fit gradient is 24, but might extend as high or low 

as 17 or 32 (denoted by the dashed lines). It was thought that perhaps achanges 

with laser beam power P and speed U. A new experiment was undertaken to 

measure a at constant values of U, the results are seen in Table 6.2 series 1.5,1.6 

and 1.7 and Figure 6.6. At a single value of U there is a lower radial spread of 

experimental points. The implications of this are considered. If a single value of a 

is required for an untested material, a process map as made by Hauser should be 

created to decide what operating range of P and U is required. One can then be 

more focussed in experimentally evaluating afor this specific range. A large 

change in absorptance is related to the issues discussed in Section 6.6, occurring 

at speeds under 7mm/s. 

Series 1.1 and 1.3 of Table 6.2 show how absorptance decreases from an air to 

an inert processing atmosphere. This agrees qualitatively with the observations of 

[Hauser 1999a], that larger volumes of material were melted in air processing than 

in argon processing. He theorised that this was due to oxides forming on the 

processed material surface in air. Based on series 1.3,1.8 and 1.9, the material 

type also appears to have a significant effect on a 

It might be expected that the absorptance values reported in Table 6.2 would 

correlate well to the corresponding mass of material melted. For instance, 

increasing U from 0.5 to 1mm/s creates a 275 percent increase in a (series 1.5 and 
1.6, Table 6.2). The mass of tracks processed as part of these experiments were 
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expected to exhibit a similar change. The relationship between measured aand 

track mass is considered now. 
A comparison was made between calometric (thermocouple) and mass-related 

a, for the two instances series 1.5 and 1.6 in Table 6.2 discussed. Results can be 

found in Table 6.4. At P of 160W for U equal to 0.5 then 1.0mm/s, the energy 

supplied by the laser to 60mm long tracks was 19.2 and 9.6kJ respectively. Five 

60mm tracks were weighed for U equal to 0.5 and 1.0mm/s. Putting values for 

steel into equation (2.9) (see sections 3.7 and 5.1.4.1), the energy required to melt 

a certain mass of material can be calculated. For the masses measured, a minimum 

of 1.8 and 4.7 kJ were required to form the 0.5 and 1.0mm/s tracks respectively. 

This indicates mass-related aof 0.094 and 0.49 respectively. Mass-related 

absorptance can be compared to the a values of 0.04 and 0.15 which were 

calometrically measured (Table 6.4). The mass-related aincreases 5.2 times 

between U of 0.5 and 1.0mm/s. The calometric a increases 3.8 times between U 

of 0.5 and 1.0mm/s. a increases several times over in both cases as would be 

expected, but the calometric and mass-related measurements do not agree on exact 

values. 

It has been established that when the laser is applied, the powder bed melts 

rather than sintering. It is worth checking though, that the surface energy 

converted to heat during reduction of surface area when powder turns to solid 
does not contribute significantly to the amount of material melted. This is 

particularly relevant when powder size dp changes. It can be seen in Table 6.2, 

series 1.2,1.3 and 1.4, that as the average powder size increases, the absorptance 

measured increases. It is questioned whether this could be a result of the powder's 

surface area to volume ratio. An order-of-magnitude calculation, using 1 J/m2 as 
the surface energy of steel [Wojciechowski 1999] for a typical single line sintered 
from 75-150 pm steel powder, gives the result that surface area reduction 

contributes less than 0.0001 times the energy provided by the laser beam to the 

melt pool. Thus surface energy is not thought to be the cause of achanging with 
dp. The cause of a changing with dp is as yet unknown, perhaps related to the 

surface roughness of particles. 



Paee 157 Chapter 6 

As a final comment on absorptance, data reference books demonstrate how 

sensitive a(often quoted as emissivity) can be to such factors as material 

constituents, surface geometry and finish. These factors are worth considering 

when comparing data gathered here and elsewhere. 

6.5.1.2.3 Accuracy of Measurement Methods 

Values of k obtained in equivalent cases should be comparable. A set of four 

such cases are series 1.3,1.5,1.6 and 1.7 of Table 6.2. For the four cases, k is 0.16 

on average, with a maximum variation of 16 percent. Referring to Figure 5.2, the 

intercept of the line fitted is worth considering. Carslaw and Jaeger's theory 

dictates that this intercept should be equal to zero. Here the intercept is -2.2; other 

graphs plotted demonstrate intercepts which are similarly small. This is a good 
indication for the method used to calculate k. 

k has been measured using both the thermal camera and thermocouple systems 
(series 1.1 and 1.10, tables 6.2 and 6.3). Temperatures were measured 

perpendicular to the scanned line in each case, but across the bed's surface using 

the thermal camera, and vertically down using thermocouples. The resulting k 

would be the same if both measurement systems were perfectly accurate and if 

Carslaw and Jaeger's assumptions were perfectly true (that is, if zero heat loss 

took place across the powder bed surface). k measured using the thermocouples 

was 32 percent higher than was measured using the thermal camera. 

The Carslaw and Jaeger-derived infinite line approximation was tested in a new 

way: temperatures measured in the powder bed at a set time after laser application 

were integrated over 5 radial areas in the powder bed, orthogonal to the laser 

scanning direction. Summing the deduced heat in these areas: 

Energy Per unit area in powder bed = P. al U, _ 1A-5 
ý 

(A,.. C,.. dT,. ) (6.2) 

Where A is the area of each radial area in the bed. Thermocouple data files 

250902n2 and 250902n5 were analysed at 62 and 75 seconds elapsed respectively, 

using aC of 460J/(kg. K). This method yielded 2 values of awithin 30 percent of 
those calculated using the infinite line procedure of Section 5.1.4.1 on 
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thermocouple temperature measurements. The checking method above is crude, 
but it demonstrates that values found are of the correct order. 

Figure 5.3 is considered, a graph of experimental results from which ais 

calculated. As for k above, the intercept of the fitted line on this graph should be 

close to zero; at -0.17 it is very close. Intercepts are not always so small in 

magnitude, but are always less than 5 percent of the plotted temperature range. 
Examining the absorptance results presented in Table 6.2, it can be seen that all 

values lie below 0.25. In the closest comparable situation found in literature, 

Tolochko reported aof 0.45 for iron powder processed with a CO2 laser in an 
inert atmosphere. The first reason why Tolochko's measurements might be higher 

than found in this work is the geometry of the material surface. Whereas Tolochko 

maintained the powder state of tested materials, all experiments from this work 
involve processing to solid. Processing changes the absorptance of the material 

surface, as discussed in Section 6.5.2. As an indication of the powder bed a before 

melting took place, the infra red camera calculated the emissivity of a stainless 

steel bed in air as 0.66 at a constant 200°C. A second influence on areadings is 

that in the calometric experiments presented here, absorptance measurements are 
based on the heat which diffuses into the powder bed, whereas Tolochko's 

experiments were radiation-based, considering energy reflected. It is possible that 

the effects of conduction and convection-based surface heat loss in the seconds 
following laser application act to significantly reduce the energy measured by the 

thermocouples. From the point of view of fully understanding heat transfer in 

SLS, both measurement methods are considered useful. For the practical 

application of creating scans of consistent size in an SLS-processed layer, it is 

thought that measuring the heat retained by the bed (as has been performed in this 

work) is more important. 

6.5.2 Single Line Relasing 

Absorptance was measured during multiple passes of the laser over the same 
area. The powder used was stainless steel 314S HC, 150-300µm in size. The 
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atmosphere was argon. Other experimental conditions were those of series 2.1 in 

Appendix A. 

6.5.2.1 Results 

Table 6.5 has been derived from Figure 5.5 and demonstrates how a varies with 

the number of rescans. Figure 6.7 shows photographs taken of relased lines. 

Scan No. 1 2 3 4 5 

a (0-1) 0.13 0.084 0.074 0.072 0.054 

Table 6.5 Absorptance against number of scans, 314S HC single line in argon 

Figure 6.7 Steel tracks scanned then relased four 
times at 80W and 6mm/s, in argon and air 

6.5.2.2 Discussion 

Table 6.5 shows a reducing with the number of relases. With each successive 

scan the surface material becomes more smooth and has less porosity. This 

geometrical change has an effect on absorptance. The value of aon the first pass 

is 0.13, which is the same as was measured for another experiment involving the 

same powder and similar conditions, series 1.4 of Table 6.2. After the fifth pass of 

the laser, ahad reduced to less than 50 percent of its initial value. Absorptance 

reducing with each rescan is supported by the findings of Section 2.3.1.2. 

Equations (2.12a) and (2.12b) predict that a will reduce as (p reduces. 

The images in Figure 6.7 show how atmosphere makes a difference to the 

surface condition of processed tracks. The track processed in argon becomes 
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smooth and shiny (low absorptance of visible light) after several scans. Shiny 

silver parts were produced consistently, indicating that the inert atmosphere was 

created successfully. Tracks processed in air became blackened, presumably 
because of surface oxidation. They also exhibited high surface tension behaviour, 

sometimes forming a line of unconnected ball shapes as shown in the figure. 

6.5.3 Single Layers 

6.5.3.1 Results 

The gradients of curves from the graph Figure 5.6 were used to generate the 

graph Figure 6.8, of a versus s. A range of absorptance values from 0.11 to 0.28 

can be seen as s varies. The peak a occurs at s of approximately 0.9mm. The 

powder used was stainless steel 314S HC, 150-300µm in size. The atmosphere 

was argon. Conditions are those of series 3.1 in Appendix A. 
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Figure 6.8 Effect of scan spacing on absorptance 

6.5.3.2 Discussion 
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around s= 0.9, then falling until s=1.1mm (equal to the beam diameter d). The 
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graph will be considered in two sections, for s below 0.9mm then for s above 

0.9mm. 

Section 6.5.2 shows that previously-scanned (partially or fully melted) material 

exhibits a lower absorptance than fresh powder. In the case of layer scanning 

considered here, the area scanned after the first line is a combination of 

previously-scanned material and unscanned material. As the scan spacing s 

increases, the ratio of unscanned to previously-scanned material increases. 

Therefore a would be expected to increase, which is true in the region where s is 

below 0.9mm. 

The rule just described appears to break down at s above 0.9mm. It must be 

remembered that the scanning speed U was varied in inverse proportion to the 

scan spacing s, to keep the layer scanning time constant. As s increased, U 

decreased. The duration over which an area of material is exposed to the laser 

beam increases as U decreases. The decrease in amay relate to the increase in 

laser exposure time, as was observed by Tolochko (stage 3 in Figure 2.26, a graph 

of aversus exposure time). 

The absorptance value found for single lines with the same material and 

atmosphere was 0.13, which lies within the range of a found here. The 

combinations of P and U used in the two sets of experiments are very different, so 

values of a should not be expected to be directly comparable considering what is 

said in Section 6.5.1.2.2 about a versus P and U. 

6.5.4 General Comments- Thermal Property Measurement 

In calculating k and a, it is assumed that properties k and C are constant. k and 

C change with temperature in reality. The value of C used in calculating k and a 

from Section 5.1.4 is a room temperature value, chosen because temperatures 

measured in the vast majority of relevant cases (considering particularly position 

and time) were below 100°C. Between room temperature and 120°C, k and C 

change by less than 25 percent. It is believed that the assumed temperature- 

independence of calculations will place an uncertainty of no more than 25 percent 

on the absolute values of k and a reported here. 
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6.6 Evaporation Study 

The outcome of processing data as described in Section 5.1.5 follows. 

6.6.1 Results 

Figure 6.9 is a photo of 2 scans, 

10mm in length. The concave, 

depressed surface of the scan processed 

at 0.5mm/s and the convex surface of 

the scan processed at 1.0mm/s can be 

seen. 

Results of the study are presented in 

Table 6.6. Energy values have been 

calculated from measured masses as 

detailed in Section 5.1.5. 

Experiment 1: P=160W, U=0.5mm/s 

Laser energy supplied: l6kJ 
Mass of scans: 2.61 g 
Surface shape: concave 
Processed zone mass reduction 
9.8mg 

Energy Values 

Experiment 2: P=160W, U=1. Omm/s 

Laser energy supplied: 8kJ 
Mass of scans: 3.65g 
Surface shape: convex 
Processed zone mass reduction: 
15mg 

Energy Values 

Energy required to melt scans: 2.7kJ I Energy required to melt scans: 3.8kJ 

Maximum energy lost by Maximum energy lost by 
evaporation: 71J evaporation: 11OJ 

Table 6.6 Results and calculations based on evaporation study 

6.6.2 Discussion 

The change in the mass melted per unit of energy supplied, and the change of 

scan cross-sectional shape as reported by Hauser in Section 2.2.6.3 has been 

observed. 
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The scan created at U=1. Omm/s is convex over its surface, see Figure 6.9. The 

convex surface is caused by surface tension in the steel's liquid state, which 

dominates gravitational force to drive the melt pool into a rounded shape. The 

liquid steel is easily shaped because its viscosity is low. The shape of scans at 

U=0.5mm/s follows the description of plasma recoil pressure depressing the 

melted surface in Section 2.2.6.2. Energy supplied to scans decreases from 

experiment 1 to 2, yet melted mass increases. This is believed to indicate 

vaporisation of the steel, either removing heat from the processing zone or 

blocking the laser beam. 

It was calculated in Section 3.7 that the energy required to melt 1kg of steel 

starting at room temperature is only one seventh of the further energy required to 

vaporise the same mass. Based on the mass measurements made before and after 

SLS processing, any energy removed by vaporisation is insignificant compared to 

the amount of energy required to melt the processed tracks. In fact, it is seen that 

as the melted mass decreases (from experiment 2 to experiment 1), the mass lost 

from the processing zone decreases also. This counters any notion of an energy 

balance explained by vaporisation heat loss. 

Combining the facts, a depressed scan shape and reduction in material melted 

with negligible reduction in the mass of the processing zone support the notion of 

a blocking vapour forming at certain P values for low U (below 7mm/s). This is 

worth bearing in mind if such low U is to be used. There is a limited value to 

processing at very low U, from the point of view of the lead time to make parts. 

6.7 Sectional Analysis of Single Layers 

Discussed here are general observations about the morphology of the single 
layers made, analysed in Section 5.1.6. Area analysis of layers is reported in 

Chapter 7, because it relates to verification of the numerical model. 
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6.7.1 Results 

Figure 6.10 provides perspective and top views of a typical 10-scan layer, 

manufactured at s=5d /6, P=60W and U=1. Omm/s. In Figure 6.11 some 

characteristic features of layer cross-sections are illustrated. Table 6.7 presents all 

Processing Conditions: 
s=3d /6, P=60W, U=1 mm/s 

ýý 
, r, , ter 

through porosity 

Processing Conditions: 
s=5d /6, P=120W, U=6mm/s 

agglomerates on underside 

Processing Conditions: 
scans have 

s=9d /6, P=155 W, U=12mm/s convex surface 

40 , ý- a* 40 `' 
..... .................. ......................................... ......................................................................... .......................... 

Note: laser rasters left to right 5mm 

...................... _... _....... _... _.. _... _... _....... _... _....... _... _....... _... _............ _............ _....... _ 

Figure 6.11 Enlarged views of a sample of manufactured single layer sections 
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, wýrVwflorbr 
N NN. - 

auie o. ivianuracturea single layers, against machine parameters ((I= 1.1 mm) 

27 layers, cross-sectioned for analysis. 
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6.7.2 Discussion 

For brevity, the layers from Table 6.7 are referred to by their parameters, in the 

form "s-P-U", where s, P and U have their usual meanings. 
5 of the 9 sets of parts display through-porosity, i. e. pores which isolate one 

area from another. This makes some parts appear as though they are split into 

pieces, but in three dimensions all parts are continuous. At s--9d /6, there is 

through-porosity between each scan, and the shape of scans can be seen distinctly. 

Porosity is believed to be caused by a lack of available powder in the locality of 

previously processed material (explained in Section 2.2.6.3), and insufficient 

energy density for molten material to flow into the pores. 

The majority of each layer's area is fully dense, which means that full melting 

of material is taking place. Around the edges of sections (particularly the 

underside), small fragments of material can be seen. These are clumps of particles 

which reached a temperature high enough to bond together, but not high enough 
to flow into the main melt pool. 

At small s and low P /U, the first line scanned (FLS) is noticeably bigger than 

the others in each layer. This occurs in the 3d/6-120-6,3d/6-155-12,5d/6-120-6 

and 5d/6-155-12 layers. These same layers are less flat than the other samples, 
due to the FLS on the left hand side and curling in the body of the layer. Curling 

of parts at high values of AN was reported by various authors in Section 2.2.6.3. 

Parts made at 5d/6-155-12 have the lowest upper surface roughness. 
At P=60W, U=1mm/s, layer depth continues to grow in the rastering direction 

(left to right): a steady depth has not definitely been reached. Depth seems steady 
throughout for 9d/6-120-6 and 9d/6-155-12 layers. 

A change can be seen in the shape of scans, related to P and U values. At most 
P and U settings, the surface of scans is convex. At P=60W and U=1mm/s, the 

surface of scans is slightly concave. This is particularly noticeable at s--9d /6 and 
in the FLS of layers. Reasons for this shape change at low speed are as discussed 

in Section 6.6. 

In general, a trade-off would be required in choosing which of the parameter 

combinations from Table 6.7 make the "best" layers. For example, the parts with 
the highest relative density were those identified as having a large FLS. 
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6.8 Summary of Thermal Experiments 

It has proven possible to carry out thermal experiments in a situation 

representative of the direct single phase metal SLS process. In particular, an inert 

processing atmosphere, a scanning laser and melting rather than just heating of 

material have been recreated. 

A method has been developed which uses analytical equations adapted from 

literature to predict the conductivity k and absorptance aof a powder bed whilst 

single lines and layers are scanned. Contact and non-contact temperature 

measurement systems have been constructed from existing and custom-designed 

equipment. Temperature data was processed with the assistance of a specially- 

written Fortran program, Excel and Paint Shop Pro. Manufactured layers were 

sectioned and analysed for area and relative density using Image Pro software. 

Use of an infra-red camera has provided some idea of temperatures occurring 

on the powder bed surface in direct SLS of room-temperature stainless steel 

powder using the Leeds experimental rig. At aP of 20W and U of 6mm/s, heating 

of material from room temperature to the melting point occurred in less than half a 

second. Peak temperatures measured were above 1500°C. At P of 150W and U of 

6mm/s, material fell below solidification temperature in 3 seconds or less for bi- 

directional raster scanning. A temperature rise of 1°C could be measured at up to 

20mm from the perimeter of scanned layers. 

Below the powder bed surface, temperatures were measured using 

thermocouples. Observations were made which support Carslaw and Jaeger's 

instantaneous infinite line heat source assumption. The highest temperature 

measured within the bed whilst scanning single lines was 320°C, at P of 160W, U 

of 0.5mm/s, y of 2.1mm. At 15mm depth into the bed, the measured temperature 

rise never exceeded 1°C. 

Powder bed k and a were measured during the scanning of single lines, using a 

calometric method. k values ranged from 0.07 to 0.25W/m. K, a was measured at 
between 0.08 and 0.21. k was found to depend on the atmospheric gas used, and 

on powder particle size. awas found to depend on the atmosphere used, reducing 

from an air to inert gas atmosphere. ais affected by the powder material type. a 
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was seen to increase with increasing laser scanning speed U, more than four-fold 

over the range 0.5 to 10mm/s at P of 160W. It has been seen that when measured 

a values increased or decreased, the mass of material melted followed the same 

pattern. However, the magnitude of changes in the measured a were not the same 

as the magnitude of changes in processed track mass. 
A line was scanned on the bed's surface, then was rescanned 4 times to see the 

effect on absorptance. areduced from 0.13 on the first scan to 0.054 by the fourth 

rescan. A reduction of porosity and smoothening of the scanned surface due to the 

laser's action was observed. The result is consistent with the findings of [Sih 

1995b] and [Tolochko 2000], who state that the absorptance of a powder bed 

decreases as the porosity decreases. 

The effect of scan spacing s on awas tested for raster scanning of layers. awas 
found to increase from 0.11 at s=0.2mm, to a peak of 0.28 at s=0.9mm. Increasing 

s from 0.9mm, afell back to a value of 0.21 at s=1.1mm. Ass increased from 0.2 

to 0.9mm, the amount of rescanned material reduced, so it was expected that a 

would increase. For s greater than 0.9mm, a reduction in ais suggested to be 

caused by a reducing scan speed, hence a greater laser exposure time. 
A study was made of an apparent reduction in the proportion of laser energy 

contributing to melting of material, which occurred at low U. The physical form 

of scanned tracks was noted. Measured masses were related to modes of energy 

use. It was concluded that the most likely cause of this reduction in melted mass 

was the formation of a metal vapour cloud, which blocked the laser energy's path 

to the powder bed. 

Single layer part cross-sections were morphologically analysed. Fragments of 
material were seen on part undersides, and through-porosity was observed. In 

some cases, the first line scanned was noticeably larger than the following scans. 
Although a thorough statistical analysis has not been performed, an 

experimental uncertainty of ±35 percent on values of k and ais suggested. This 
figure is based on a comparison of 4 equivalent cases, and measurements made 
using contact and non-contact techniques. 
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6.9 Possibilities for Future Experimental Work 

Following on from observations made in Chapters 3,5 and 6, some ideas for 

continuation of this work are proposed. 

Experimental methods have been developed in this project, to evaluate material 

thermal properties in the range of situations reported in Section 6.5. The main test 

subject has been a single type of metal powder. Any metal powder can be tested 

for conductivity and absorptance in the reported way. It would be interesting to 

see if observations made for stainless steel powder are generic for metals. For 

instance, what would be the pattern of absorptance against scan spacing for layer 

scanning of a different metal powder type. 

A natural extension to thermal experiments (and modelling work) would be to 

study the situation occurring during the scanning of multiple layers. Powder 

respreading introduces new thermal and mechanical issues which must be 

addressed when trying to understand the thermal situation. 

The infra red camera borrowed generated some valuable results, such as were 

reported in Section 6.3.1. However, a more modern version would have had 

Microsoft Windows-compatible output, saving hours spent processing results. A 

carbon dioxide laser filter for the camera would have reduced the noise which was 

superimposed onto readings whilst the laser was firing. 

Temperatures have been measured on the surface of and inside the powder bed 

to calculate material absorptance. The relationship between absorptance and 

melted mass was investigated. A further way to improve understanding of energy 

usage in direct metal SLS would be to make radiation-based absorptance 

measurements, using an integrating sphere. Specifically, the magnitude of 

measured absorptance is of interest, for comparison with values presented here. 

Statistical analysis could be performed on a set of conductivity results, to 

quantify the experimental repeatability. For instance, a t-test could be performed. 
This would require the repetition of a single experiment. It is estimated that the 

necessary data gathering would take several weeks. 
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In the evaporation study discussed in Section 6.6, it was suggested that at low 

scanning speed, the effective absorptance of the powder bed was reduced by the 

presence of a blocking metal vapour above the processing zone. To test this 

theory, a flow of shielding gas could be introduced during SLS processing. The 

use of shield gases was briefly mentioned in Section 2.2.6.2. The flow of gas is 

aimed at the point where the laser interacts with the work piece. Any metal vapour 

present above the work piece is blown away by the gas. The gas has a similar 

transmittance to that of air. If the theory of Section 6.6 was correct, the use of a 

shield gas would increase the energy absorbed into the powder bed. The mass of 

processed material would increase, compared to the situation where no shield gas 

was used. 

The SLS apparatus described in Section 3.3 could be developed to provide 

preheating of the powder bed. Infra red camera results demonstrate the high 

increase and decrease of temperature with time during the process. Accorded to 

the findings of work reviewed in Chapter 2, powder preheating would lead to 

better bonding, less residual stress and less brittleness of manufactured parts. 

Finally, a comment is made on the method used to prepare manufactured layers 

for area analysis. In future, opaque rather than semi-transparent epoxy resin would 

be used to suspend the sectioned layers. Light shining through the resin meant that 

the edges of the layers were poorly defined ("fuzzy") in digital photographs. This 

problem doubled the time required to create white-on-black masks for area 

analysis, as touching up was necessary. 
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CHAPTER SEVEN 

7 RESULTS AND DISCUSSION: NUMERICAL MODELLING 

Results and discussion are presented together to introduce the new 3D views of 

modelled parts, and to address the objectives of Chapter 4. Model output is 

displayed either as sectional or 3D views: it will be seen that both formats have 

their uses, depending on the requirement. General observations are made about 

the execution of the modelling program. Chapter 7 ends with a summary, and 

recommendations for future modelling work. 

7.1 Introduction to Modelled Part Geometry 

The thermal mesh (TM) size settled on for the sparse matrix-using version of 

the model was 22x45x19= 18,810 nodes, 3.8 times more than before 

modification. The final powder bed mesh (PBM) size was set at 150x3Ox130= 

585,000 nodes, 6.9 times more than pre-modification. These mesh sizes are close 

to the maximum which is possible without overloading the available PC memory. 

The spreadsheet stmet3d. xls 

calculated that the new meshes 

allowed an increase in the 

potential modelled part size from 

4.0mm x 4.9mm x7 layers to 

11.9mm x 19.2mm x9 layers. 

More part size increases would 

be possible by decreasing the 

number of nodes in the TM, to 

allow more nodes in the PBM. 

layer end point 
z 

x 

heat'1put 
clem nts 

modelled 1, er start point 

powder bed mesh 
thermal mesh 

Figure 7.1 Co-ordinates 
system and scanning orientation, stmet3d 

The potential effect of any change to the TM on the geometry of modelled parts 

would have to be tested before proceeding. 
Below in Sections 7.1.1 and 7.1.2, the new larger part size and Matlab 3D 

visualisation are demonstrated in some views of modelled scans and layers. Figure 

7.1 is useful as a reminder of how co-ordinates relate to the laser scanning and 

rastering directions. 
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7.1.1 Single Line Scan and Pair of Overlapping Scans 

These simple shapes were chosen because they show the generic features of 

modelled geometry. 

7.1.1.1 Results 

Single Scan Part- Perspective View 

z axis 
(rastering 
direction) 

x-y (Side) View 

s 
go 

O 

v axis 
4 (depth) 

av-z (End) View 

z Axis (Rmstamp Prxum 

3ýýý 

Figure 7.2 Elementary part, visualised using Matlab script. Scales in mm 
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Double Scan Part- Perspective View 
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Figure 7.3 Elementary part, visualised using Matlab script. Scales in mm 

Figures 7.2 and 7.3 depict a single scanned track and two parallel overlapping 

scans respectively. They were modelled using the program stmet3d, then post- 

processed in Matlab as discussed in Section 5.2 to generate 3D views. Power P 

was 100W, absorptance awas set arbitrarily to 1.0, and scan speed U was 6mm/s. 

For the double scan, s was 5d /6. The aspect ratio used for the 3D images here is 

(1,1,1). The three sectional views in Figure 7.4 are of the temperature field for the 

single scan, at the point in time where laser scanning ended. 

o ý_ 
h ý- 
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Temperature vs Position at 3d/6,5d/6,9d/6 from Single Scan Centre 
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Figure 7.4 Temperature field at the time of completing a single scan 

7.1.1.2 Discussion 

It can be seen that in the transverse (y-z) plane, each scanned track has a half- 

moon shape. The upper surface is concave, the lower surface is convex. The upper 

surface can be seen in the perspective view, the lower surface in the end view of 

Figure 7.2. On the upper surface, shrinkage and densification increases towards 

the centre of the laser beam profile, where the irradiance is greatest. On the 

underside, the part is rounded due to radial diffusion of the laser's heat into the 

powder bed. The depth of scans increases in the scan direction. Scan width also 

increases with distance in the scan direction. 

Concerning the two overlapping scans of Figure 7.3, the first of these to be 

scanned is bigger because once processed it has a higher conductivity than the rest 

of the bed. It acts as a heat sink when the second line is scanned. 

The similarities and differences between modelled and real (manufactured) 

scans is to be discussed in Section 7.4. 

A question exists over what density value constitutes the transition from semi- 

dense powder to solid material in modelled parts. To create the parts shown, a 

value of 7500kg/m3 was selected. Referring to a GSharp section, Figure 4.2 in 

Section 4.3, density falls from 7500 to 7000kg/m3 over approximately 0.1mm 

around the part perimeter. The solid volume encompassed is not sensitive to the 

choice of powder-to-solid density within this likely range. 
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7.1.2 Single Layers 

7.1.2.1 Results 

Figure 7.5 shows a 10 scan part with s= 3d /6. The aspect ratio here is (1,1,1) 

as in 7.1.1. 

stmed3dgmres Part, Data Source Rhoplot159 

y axis scan 1 

(depth) 

scan 10 

n° y axis 
(depth) 

4P 
zf 

z axis x axis 
(rastering direction) (scan direction) 

Figure 7.5 

Ten scan single layer part modelled by stmet3d 

7.1.2.2 Discussion 

The features seen in the modelled layer are similar to those of one- and two- 

scan parts in 7.1.1. The transverse sectional shape of scans is of the same half- 

moon type. Scans become deeper and wider in the scanning direction. The first 

scan is the biggest, acting as a heat sink when the second line is scanned. Scan 

depth reduces from the first to the second scan, and from the second to the third 

scan. Scan depth reaches a steady state by the third scan, true for all values of P, 

U and s tested later in Section 7.3. The morphology of modelled layers resembles 

that of real layers in some ways, but does not in others: this will be discussed 

more in 7.4. 
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7.2 Comparison Between Original and Modified Program Output 

Changes have been made to the model program code and meshes, recounted in 

Sections 4.2 and 4.3. Five changes have been made which may affect the model's 

output: use of the GMRES sparse matrix method, increase in TM x spacing, 

doubling of the TM definition, doubling of the TM depth and the marching cool 

down procedure. Any effect of these changes is demonstrated in 7.2.1 via parts 

which are identical in nature except that the changes mentioned above are made. 

Multiple parts had been modelled and compared in each case, but only one is 

shown. 

7.2.1 Results 

Figure 7.6 contains two images of GSharp 3-section views. The pre-GMRES 

version of the model has generated the output on the left, and the GMRES version 

has created the output on the right. The dimensions of both scans in the three 

sections are virtually identical. A small part is used for the comparison, 

comprising only 2 short scans. As has been said, the potential modelled part size 

has been increased with the introduction of GMRES. 

Pre-GMRES Part, 3 Sections Post-GMRES Part, 3 Sections 
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Figure 7.6 Density fields for equivalent parts, pre- and post-GMRES 

Doubling of the nodal density in the TM was tested with the GSharp single 

section view in Figure 7.7. The part on the right, made using the denser mesh, has 

a slightly better defined (less angular) surface. As shown by the dimensions 

quoted in the figure, both parts are of the same shape and size. 
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To test the increase in TM depth and change of procedure from marching to 

static cool down, 3 Matlab views of 3 parts were created, displayed in Figure 7.8. 

The part made with a TM which continued to march onwards as the bed cooled 

down is no different from the one made with a TM which did not move at the end 

of each scan. The only difference seen between these two sets of parts is due to a 

change in the lighting angle. However, deepening the TM from 2.5 to 5mm had a 

big effect on geometry, removing the "hook" feature from the underside of the 

part. 

Original TM 

Measurements: Top left tip to bottom, 0.375mm 
Top right tip to bottom, 0.44mm 

TM with Double y Nodes 

ID 11 t 13 14 

Measurements: Top left tip to bottom, 0.375mm 
Top right tip to bottom, 0.44mm 

Figure 7.7 Density fields for equivalent parts, pre- and post-TM refinement 
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Original Thermal Mesh, Static Cool Down 
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Figure 7.8 Single layer used to test thermal mesh and scanning procedure changes 
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7.2.2 Discussion 

Figure 7.6 proves the acceptability of sparse matrix methods for rapid program 

execution without reducing the validity of the FE calculation. Figure 7.7 suggests 

that the experimental doubling of the TM y nodal density was unnecessary. 

Returning to the original TM y node density (requiring 17 nodes) will allow either 

a larger PBM or a smaller running time to be achieved. 

In Figure 7.8, the effect of measures used in an attempt to reduce or stop out-of- 

control part growth are shown. The first measure to have been taken (the result of 

this has not been shown) was to increase the x distance between the front of the 

TM and the heat application zone, to make it equal to the distance from the sides 

of the TM to the heat application zone. This had no effect on modelled parts. For a 

top view of the TM showing the new position of the front and side surfaces 

relative to the heat application zone, see the diagram Figure 7.15. The -800°C 

surfaces denote the corners between the front and sides of the TM; the main 

1000°C surface surrounds the heat application zone. 

The next measure to be taken is displayed in Figure 7.8, namely the change 

from a static to a marching cool down period. This change did not remove the 

hook feature seen on the end of modelled scans as described in Section 4.3. It had 

been considered that a possible cause of this feature was a bias in exposure time 

between the main body and the end of a scan. The TM dwelling over the end of a 

scan might have allowed extra growth of the scan end to occur. However, this 

could only be true if some material in the main body of the scan had been left 

behind by the TM with a temperature still above the melting point (i. e. that area of 

the scan had an unrealised potential to grow further). The new marching 

procedure showed that material in a melted state was not leaving the TM, because 

there were always less than 15 (and typically less than 6) marching cool steps at 
the end of a scan before the temperature fell below solidification point. A 

minimum of 19 cool steps would be required before any processed material would 
begin to leave the TM. 
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The identical nature of parts made using both procedures means that either of 

them could be used in future. The marching cool down allows the program to be 

executed slightly faster, whereas the static cool down permits modelled parts of 

greater size to be processed. 

In contrast to the two previous changes, the increase in TM depth had a marked 

effect on modelled parts (Figure 7.8). With the TM depth increased to 5mm the 

scan depth reaches a steady value at x=14.5mm, whereas it had continued to 

increase in the scan direction (to form the hook feature) at a TM depth of 2.5mm. 

It should be remembered that the bottom surface of the TM has a boundary 

condition that temperature is equal to 20°C. Deepening of the TM appears to 

improve the resemblance of modelling conditions to those in experiments, where 

the powder bed is effectively of infinite depth. Although the TM depth increase 

removed the hook in the case of Figure 7.8, it has not eliminated the hook 

phenomenon completely as will be seen in Section 7.3.1. 

7.3 Numerical Model Process Mapping 

Below are the results of process mapping for the model stmet3d, an activity 

which was introduced in Section 4.6. Throughout the mapping exercise the TM 

had 22x45x19 nodes, the TM depth was 5mm and the marching cool down 

procedure was used. Data was processed as stipulated in Section 5.2.2. The maps 

are intended for two purposes: primarily to test the ability of the model, then for 

comparison with the experimental process maps of [Hauser 1999a], first 

mentioned in Section 2.2.6.1. 

For the purpose of comparison, Hauser's maps are reproduced here. Figure 7.9 

shows the four experimental process maps, for stainless steel 314S powder 

processed in argon using the experimental equipment of Section 3.3. Each map is 
for a different powder fraction, with a particle size denoted above the graph. Maps 

are split into four areas, to indicate the outcome of processing at a particular 
power and speed. Areas in the key have the following meanings: 
  Area 1- Melting with bonding exhibiting low surface tension phenomena; 

  Area 2- Melting with breakages; 
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  Area 3- Partial melting and no bonding; 

  Area 4- No marking. 
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Figure 7.9 Process maps by Hauser, for stainless steel 314S layer processing 

7.3.1 Results 

In this section there are four process maps for the model, Figures 7.11 to 7.14. 

Two maps are for s =3d16, then there is one for each of s =5d16 and s =9d16. There 

is also a temperature surface plot, Figure 7.15, showing two views of a TM 

temperature field which failed to converge. 
The four process maps have a common key, which is provided in Figure 7.10. 

Areas 1 and 2 from Figure 7.9 are equivalent to area 1 in Figures 7.11 to 7.14. 

Areas 3 and 4 from Figure 7.9 are equivalent to areas 2 and 3 in Figures 7.11 to 

7.14. Areas 4 and 5 in Figures 7.11 to 7.14 have no experimental equivalent. 
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1. Successful layers 

2. Insufficient melting 

3. No melting 

"}"}" 4. Depth not tending to steady state 

® 5. Heat calculation non-convergence 

Figure 7.10 Key to Figures 7.11 to 7.14 
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Figure 7.11 Process map for stmet3d, s= 3d/6 
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Figure 7.12 Enlargement of process map Figure 7.11 for shnet3d, s= 3d /6 
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Figure 7.13 Process map for stinet3d, s= 5d/6 
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Figure 7.14 Process map for stnzet3d, s= 9d16 
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Temperature Plot- Perspective View 
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Figure 7.15 
Temperature surface plot for case of non-convergence 

7.3.2 Discussion 

The process maps shown, Figures 7.11 to 7.14, display the degree of success 

with which modelled single layers are created, over a range of P and U for set 

values of s. The running of the model is discussed first, then a comparison is made 

with the maps by Hauser, which were shown in Figure 7.9. 

It can be observed that for U less than l0mm/s, parts may grow out of control 

or the program stmet3d may fail to complete execution (shaded areas 4 and 5 as 
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shown in the key Figure 7.10) at certain power levels. These two cases are 

associated with the modelling process, and are not reflected in experimental 

process maps. At U equal to 4mm/s, areas 4 and 5 are found at P. agreater than 

100W. At the extreme case of U equal to 0.5mm/s, there were no successful 

modelling runs at any value of P. a Put simply, the problems of constant increase 

in part depth and FE calculation non-convergence correspond to high values of 

AN, for U below 10mm/s. 

At U above 10mm/s, parts can be modelled over a wide power range. The 

limiting factor is a minimum power level required to make coherent parts, which 

increases as U increases. If AN is too low, individual scans do not join one another 

(insufficient melting, area 2). If AN drops further, temperatures do not reach a 

sufficient level for any solid material to form (no melting, area 3). At P. a=200W 

(the top line) on each map, the range of U over which coherent parts can be made 

reduces as s increases. The highest speed at which adjacent scans will join for s 

=3d /6 is around 65mm/s. For s =5d /6 the equivalent point is 52mm/s, and for s 

=9d /6 it is 25mm/s. As s increases, the power required to create connected scans 

increases, which is to be expected. 

With a TM depth of 5mm, hooking of modelled parts occurs only at U of 
1mm/s or below. In extreme cases, the part was seen to encroach on the bottom 

surface of the TM. It has been discussed in 7.2.2 that an increase in TM depth 

previous to process mapping had reduced the hooking problem. 
A brief consideration has been given to the boundary condition on the rear 

surface of the TM: see Figure 2.31. The boundary condition set means that no heat 

may flow through the rear surface in the x (scanning) direction. It was considered 

whether this might encourage heat to flow in the plane of the rear surface (), -z) to 
the bottom surface of the TM, to cause the hook feature on parts. However, 

exactly the same hooks occur using the static cool down as when using the 

marching cool down procedure. If the rear surface boundary condition was 
affecting part growth in the y direction, the size of hooks would actually be 
increased by using the marching cool down procedure. 
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In the top left corner of the modelling process maps are cases where the heat 

calculation failed to converge. This caused the program to repeat the heat 

calculation infinitely, because temperature distributions did not fit the defined 

pattern. A 3D temperature surface plot at a point in the program's execution where 

the model looped infinitely as described is shown in Figure 7.15. The conditions 

for the run are P. a= 140W, U= 2mm/s. The value of s is not relevant, as the 

program began to loop before completing the first scan. 
In the figure, surfaces have been created to link points which are at a 

temperature of 1000°C and -800°C. Extremes of temperature -7000°C to 5000°C 

were seen at a handful of nodes. The temperature variation with position does not 

resemble anything seen in experiments, and the large negative temperatures found 

have never been seen in any parts where the program ran successfully (i. e. with 

convergence of the heat calculation). The worst temperature oscillations were at 

the corners between the front, side and top surfaces of the TM, which were also 

close to the heat source elements. These were the locations most restrained by 

local boundary conditions. The high fluctuations in the temperature field explain 

why the heat equation failed to converge. 

The modelling process maps are now compared with the experimental process 

maps. 
A set value of laser absorptance is not assumed for the modelling process maps. 

The y-axis of these maps represents the product of P and a, whatever the 

particular values of P and amay be. The form of the modelling maps is therefore 

slightly different from the experimental ones. In particular, it is now known that 

experimental avalues are speed-dependent at low U (Section 6.5.1). If it is 

assumed that a was equal to 0.2 in all cases, then in fact the maximum value of P 

times a available using the experimental machine would be 240 times 0.2, or 

48W. 

Even if the value of ais assumed to be equal to 1.0, the power at which 

coherent layer scanning becomes possible at a certain value of U is higher in 

modelling than in experiments. The model underestimates the amount of material 

melted, a conclusion which agrees with what is found in 7.4.3. The border lines 

between areas of no material melted, insufficient melting and full melting and 



Pare 186 Chanter 7 

bonding are linear on experimental and modelling maps, which supports the 

validity of modelling. The shape of areas 1,2 and 3 for modelling is the same as 

for the corresponding areas of the experimental maps, Figure 7.9. 

Referring to area 4 of the modelling maps, depth not tending to steady state in 

the scanning direction (the hook phenomenon) is something which has not been 

seen under any circumstances (P, U, and s values) in manufactured parts. 
In terms of applying the model to process control of SLS manufacturing, areas 

4 and 5 on the modelling maps are not considered a large problem. They occupy 

positions of high P and low U. As has been discussed in Chapter 6, the 

experimental processing speed is hoped to be quite high, almost certainly above 

0.5mm/s, in order to be competitive with other SFF processes in terms of part 

build time. 

The areas on the modelling process maps would be expected to change in size 

and shape if model inputs were changed. For instance, if the specific heat of the 

powder material were reduced, all areas would be expected to shrink down on the 

y-axis. Material would require more power to melt properly. Increasing the depth 

of the TM has already (Section 7.2) increased the power limit at which parts begin 

to grow out of control, and could further increase this limit. Experimental process 

maps show a dependence on dp of the power at which coherent layer 

manufacturing becomes successful. This might be reflected by model results if a 

change in the input powder density (a function of dp) was made. 
Model process mapping has not been performed before for stmet3d, and has, it 

is hoped, provided information useful for model development. The comparison of 

model and experimental process maps adds to the comparisons made in Section 

7.4. 

7.4 Dimensional Analysis of Single Layer Sections 

Cross-sections of experimentally-produced single layers (discussed in Chapter 

6) were compared dimensionally against numerical model output. The purpose of 
this work is as stated in 4.7, the results for modelled parts were obtained as 
detailed in 5.2.3. 
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The sections analysed had been made through the centre of each layer in the 

scan direction as in Figure 7.16. The results of this comparison between 

manufactured and modelled parts leads to a discussion of the model's features and 

accuracy. 

The work displayed in Section 7.4 has been presented in a recent paper, [Taylor 

2002]. The same layer identification format is sometimes used as in Chapter 6, s- 

P- U. 

z (scan spacing 
Section A-A 

direction) 
, 4, (-l 

v(depth analysed 
direction) section 

Top View 

scan 
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-? --- -? L 
AA 

U2 

sintered 
Figure 7.16 layer 
Position and orientation of 
cross- sections analysed 

7.4.1 Results: Experimentally-Produced Single Layers 

Figure 7.17 shows close-up photographs of a single layer part manufactured at 

s= 5d /6, P= 60W, U= 1. Omm/s. The figure has already been seen in Section 6.7. 

With reference to the top view, the laser scanned from right to left and rastered 
from top to bottom. 
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Making and analysing cross-sections took approximately 50 minutes of worker 

time per part, estimated in Section 5.1. 

7.4.2 Results: Numerically-Produced Single Layers 

Figure 7.18 shows images of a single layer part modelled at s= 5d /6, P= 60W, 

c 1.0, U= 1.0mm/s. The part is visualised using Matlab, and has been seen 

already in 7.1.2.1. As in Figure 7.17, the laser scanned from right to left and 

rastered from top to bottom (with reference to the top view). 
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Figure 7.18 Perspective (left) and top view (right) of example modelled part 

It took approximately 15 minutes of worker time per part to make and analyse 

cross-sections, estimated in Section 5.2. 

7.4.3 Discussion- Layer Features 

Certain features are noticeable in Figure 7.17 and 7.18. Individual scans of the 

laser can be distinguished. Common to both layers, the first line scan (FLS) has a 

noticeably different appearance in comparison to the following scans. The 
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modelled part has a much smoother surface than the manufactured part. The 

manufactured part has a pitted surface and a granular appearance at the edges. 

7.4.4 Results: Experimentally- and Numerically-Produced Layer Sections 

Figure 7.19 Mid-sections of a manufactured (left) and modelled (right) part. 
Laser rasters from left to right hand end of sections as shown. 

A typical manufactured and modelled part are displayed in the figure, 7.19. In 

Figure 7.19 and in Table 7.1, the first line scanned is on the left hand side, and the 

last line scanned is on the right hand side. 
Table 7.1 is a comparison of layer cross sections manufactured and modelled at 

9 combinations of s, P and U. The area and area-based relative density of parts are 

compared. 

For each of the nine s-P-U combinations, three manufactured parts were 

sectioned and analysed; quoted values are the average of three. There were two 

parts modelled for each s-P-U combination, with two values of absorptance. The 

modelled parts used for comparison are those where c 1.0, i. e. the top layer in 

each row. Values quoted in the table are for c 1.0. 
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Conditions Manufactured Parts Modelled Parts 

(Average Values are Quoted) (Values Quoted are for c 1.0) 

s (mm) P (W), Profiles Area Rel'tive Profiles: Area Rellive 

[d=1.1 U (mm2) Density Top, c=1.0 (mm2) Density 

mm] (mm/s) M Bottom, c0.5 M 
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Table 7.1 Comparison of manufactured and modelled part cross-sections. 

Note: part profiles scaled to fit table- scale varies according to s value. 

7.4.5 Discussion- Comparison of Layers 

This discussion will first examine general layer morphology, then will look at 

the sectional area and relative density results of Table 7.1. Finally, comments will 
be made about the scope of the model. 
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In manufactured parts, groups of particles are seen attached to the perimeter of 

layers, particularly on the part undersides. This can be seen best in Figure 6.11. 

Such particles are not seen surrounding modelled parts. The model assumes the 

powder bed to be a continuous medium of varying density, so would not predict 

satellite groups of particles. 

Real parts have a greater change in shape than is predicted by the model. This 

applies to changes in processing parameters, and to random changes in parts made 

at the same parameters. The two issues are dealt with separately in the following 

two paragraphs. 

Manufactured part morphology is discussed in Section 6.7.2. To summarise, the 

shape and size of the FLS and proceeding scans changes with parameters. Scans 

demonstrate two cross-sectional shapes, determined by the fluid mechanics of the 

steel in its liquid and gaseous phases. The roughness of layers, presence of 

through voids and flatness also depend on parameters. In modelled layers, 

individual scans change in size with parameters, but their cross-sectional shape 

remains the same, discussed below. The FLS is of a similar or greater size than 

the proceeding scans in manufactured parts, a trend mirrored by the model except 

in parts made at 60W and 1mm/s. No through voids exist in the modelled parts at 

c 1.0. Modelled parts are flat at all processing parameters. Higher roughness is 

observed at high scan spacing in both manufactured and modelled parts; the 

curvature of individual scans is more distinct. 

Random geometrical variation is seen from scan to scan in a manufactured 
layer. Examining modelled sections, there is little variation in shape or size from 

one scan to the next. 

Low s, high P and low U lead to high energy input per unit area, AN. For this 

reason, parts manufactured and modelled at s=3d /6 are expected to have (and do 

have) a higher processed density than parts processed at s=9d /6. The relationship 
between AN and relative density is not a linear one however, as demonstrated in 

Table 7.1. 

Experiments and modelling agree that the amount of material melted decreases 

with decreasing s. Previously-processed material can act as a heat sink for laser 
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energy, and this effect increases with reduction of s. Furthermore, rescanned solid 

metal absorbs a lower proportion of incident laser energy than fresh powder as 

shown in Section 6.5.2. The heat sink effect is recreated in modelling, and is the 

reason why the FLS is of similar or greater size compared to the following scans 

in modelled layers. The absorption effect is not recreated in modelling, and is 

discussed later in this section. 

Experimentally-generated parts display a lower relative density than modelled 

ones. This is due to the rougher, more porous and sometimes curled shape of 

manufactured parts. The area-based relative density values quoted for parts will be 

slightly higher than the actual (volumetric) relative density, because greater 

porosity exists at the layer ends than in the centre. 
In the sets of 3 parts manufactured at identical parameters (Table 7.1), there can 

be a variation in cross-sectional area of up to 14 percent from the average value 

quoted. In contrast, there is complete repeatability every time a modelling run is 

repeated. 

The model always underestimates the amount of material melted, even at the 

highest value of absorptance. With a assumed to be 1.0, manufactured layers have 

30 to 75 percent more area than modelled ones. There are two possible reasons 

why this might be so. The first lies in the model's handling of temperature 
information between the end of one scan and the start of another. In the current 

version of stmet3d, temperature fields created by preceding scans are overwritten. 
Temperatures in the TM are reset to TDEGO (20°C) at the start of each new scan. 
This effectively removes heat from the bed. Referring to Figure 7.4, a temperature 

snapshot has been captured at the end of laser scanning when P=100W, c=1.0 and 
U=6mm/s. Temperature field x-y sections are shown at certain distances from the 

scan centre. Even at a spacing 9d /6 from the beam centre, the majority of the area 

shown is above 200°C. If this temperature was retained, the effect on the size of 
the following scan would be expected to be significant. 

A second possible cause of discrepancies between modelled and manufactured 

part size lies in material conductivity values. Equations (2.24) and (2.25) in 

Section 2.5.2.3 describe how the model calculates k as a function of temperature 

and porosity using the parameters CONDO, CONDV, SIGV1 and SIGV2. Values 

of the four parameters as used throughout this work are reported in Table 4.1. 
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Applying the four values from Table 4.1 to equations (2.24) and (2.25), a room 

temperature k value of 1.1W/(m. K) results. This is several times larger than 

experimentally-measured values of k from Chapter 6. Examples of measured 

values are 0.15W/(m. K) for stainless steel 314S of dp 75-150µm in argon (series 

1.3) and 0.25W/(m. K) for the same powder in air (series 1.1). Assuming that 

CONDO and CONDV values are appropriate for stainless steel (both constant for 

a particular material), SIGV1 and SIGV2 must be changed to suit the powder 

particle size and atmospheric gas. Changing SIGV1 alone, an increase from 6.05 

to 56 would be required to obtain a room-temperature k value of 0.15W/(m. K). It 

is not known what effect a change in SIGV1, hence k, would have on the 

dimensions of modelled parts. Modelling work had been well underway once the 

k results of Chapter 6 were obtained so for consistency, changes were not made to 

the model parameters. 

Some phenomena occurring in the direct single phase SLS process are not 

included in the model. One of these is liquid metal balling. Surface tension causes 

rounding of tracks on the top side and underside. Another phenomenon is material 

vaporisation, believed to affect a minority of cases. At low U and high P (for 

instance 1mm/s and 60W), it affects scan size and shape as described in Section 

6.6. The model always predicts a half moon scan shape, for reasons stated in 

7.1.1.2. Modelling of effects such as surface tension would be a large task. 

The model does not include stress analysis, so it can not predict the mechanical 

interaction between adjacent scans. Asynchronous cooling causes asynchronous 

shrinkage, as discussed in Section 2.2.6.3. This may cause manufactured parts to 

curl at high AN. In larger parts, asynchronous cooling can cause cracks to appear. 

Without stress analysis, all modelled parts appear flat (with no curling). 

It is possible to set a coefficient of time-related heat transfer from the modelled 

part surface to the surroundings. In this modelling work, negligible surface 

convection and radiation are assumed so the coefficient is set to zero. 
The "absorption effect" was discussed earlier: once material has been 

processed, its surface transforms from porous powder to a solid track. The 

absorptance of the fresh powder is higher than that of processed material. It has 

been mentioned that the model assumes the powder bed to be a continuous 
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medium, with no understanding of the arrangement of particles and pores. This 

was part of the reason for implementing variable absorptance per scan in the 

model. It had been intended to simulate the absorption effect in the partial 

rescanning of material, but there was not enough time to carry out such work. 

Time-wise, estimates for generating cross-sectional results are 15 minutes per 
layer using the model, and 50 minutes per layer using the experimental method. 
This provides an argument for developing the model as a substitute for 

experimental trial and error. 

7.5 General Comments on Running Program 

Factors affecting the modelling program's running time are discussed, and 

comments on reliability are made. 

Step 7 in Figure 4.1 shows a test being made on the TM temperature field. 

Notification is given on screen when the temperature field has not converged to a 

specified form in the FE heat calculation. This notification appears constantly if 

running at too high an energy density (see Section 7.3). During normal operation, 

some non-convergence occurs if P and U are approaching the values where the 

program froze in the maps of 7.3. This non-convergence was usually seen to occur 
in the marching cool down steps, or in the first few heating steps: at points when 
the situation was most transient. Any reported non-converge makes running time 
increase, as the FE calculation must be repeated many times. A heat step lasts 

several times as long as normal in this case. 

Comparing model running time against the number of scans modelled, 1 scan 
took 25 minutes, 2 scans took 46 minutes, and 10 scans took 215 minutes. All 

scans were of the same length. Running time increases in near proportion to the 

number of heat steps required, which increases in proportion to the amount of 

geometry scanned. The size of modelled parts also increases the amount of time 

taken to initialise the meshes and to write output files, but these subroutines 

require less than 5 percent of run time. 
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Although it does not change the number of heat steps, choice of scan speed 

affects the program running time for U<20mm/s. See the graph, Figure 7.20. P 

and s values in the graphed cases are those at which adjacent scans first join 

together (i. e. a similar amount of material has been melted in each case, for 

consistent treatment). 
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Figure 7.20 Processing time versus scan speed selected for stmet3d 

Implementation of sparse matrix methods (ILUT and GMRES) had a profound 

effect on the model's running speed. Heat steps were processed at one every 4 

seconds, as opposed to one every 40 minutes before GMRES. This represents a 

600-fold speed increase. Running speed is dependent on mesh sizes- smaller 

meshes run much faster. When the TM and PBM sizes were increased 3.8 and 6.9 

times respectively post-GMRES, the time taken to execute the program increased 

3 times. There are typically 590 heat steps involved in modelling a layer of ten 

10mm scans. 

The marching conditional cool down procedure saves time over the static cool 

down, generally speaking. TM temperatures cool to below solidification level in 2 

or 3 (cooling) heat steps on average. 

The model has a high reliability rate, running to completion if the limiting 

process parameters are observed (Section 7.3). Freezing of the program not related 

to a high energy density (as mapped in Section 7.3) only occurred in 2 out of 110 

runs. 
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7.6 Summary of Numerical Model Development 

An existing Fortran-based model of the direct metal SLS process, known as 

stinet3d, has been developed and tested. Much has been achieved with model: 

firstly the thermal mesh (TM) and powder bed mesh (PBM) have been increased 

in size. In particular, the nodal density and overall size of the TM in the y 

direction have been increased. The number of nodes in the TM was increased 4 

times, and its depth was doubled. The PBM size has been increased 7 times, so 

that larger parts may be modelled. 

The program code was modified to allow a new value of absorptance to be set 

for each scan. This will eventually allow the absorptance effect, discussed below, 

to be taken into account. A modification was made to the modelling procedure, to 

have conditional marching rather than a static dwell of the TM whilst nodes 

cooled at the end of each scan. The change was made in an attempt to remove an 

unwanted "hook" feature, appearing at the end of scans. 
A spreadsheet was constructed to ease the process of changing TM and PBM 

sizes. 20 essential and 5 advisable calculations were made automatically by the 

spreadsheet. stmet3d was made to write it's current layer, scan and heat step to 

screen during execution, so that if calculations froze, the last position would be 

known. If the model ran to completion, running time was output for performance 

analysis. Reformatting of output files reduced their size by 40 percent. 2D 

visualisation of model output using GSharp software was improved by changing 

colours and adding a grid, for process mapping and sectional analysis work. 3D 

visualisation was made possible for the first time using Matlab software, very 

useful for communication of model output. Density or temperature data could be 

viewed from any angle in 3D. 

Process maps were constructed, to relate modelled part qualities to input power 
P, scan speed U and scan spacing s. If the model failed to run properly, this was 

also marked on the maps. Approximately 90 parts were modelled to compile 3 

process maps. 
Modelled part cross-sections were analysed for area and relative density using 

Image Pro software. 
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3D modelled scans were presented for the first time, displaying a half-moon 

cross-sectional shape and a first line scan which was larger than following scans 

in the case of layers. Each scan became deeper and wider in the scanning 

direction. 3D parts were compared to see the effect of sparse matrix calculations, 

changes in the TM and use of the conditional marching cool down. The only 

change to have a significant effect on output parts was the deepening of the TM 

from 2.5 to 5.0mm. This change removed a "hook" feature seen on the underside 

of parts. With the TM depth at 5mm, the scan depth reached a steady value. 

3 process maps showed model output characteristics versus P and U at s equal 

to 3d /6,5d /6 and 9d /6 (where d is the laser beam diameter). It was observed that 

for U below 10mm/s and high AN, problems of excessive part growth and model 

freezing could occur. A case where the model froze was investigated, and local 

temperature fluctuations of thousands of degrees Celsius were found. When 

process maps for modelling and SLS experiments were compared, the shape of 

areas denoting particular part characteristics were found to be similar. 

The area, relative density and morphology of manufactured and modelled layer 

cross-sections were compared. It was noted that modelled parts had smoother 

surfaces than manufactured parts. Manufactured parts showed random variation in 

shape, modelled parts did not. Individual scans in manufactured parts had a 

circular or half-moon cross-sectional shape; in modelled parts the cross-sectional 

shape was always a half moon. Manufactured parts had a first scan larger than the 

following scans in 5 out of 9 cases; in modelled parts, the first scan was always 

the largest. The model recreated the higher k of processed (densified) material as 

compared to fresh powder, but not the lower a. Modelling and experiments agree 

that material melted decreases with decreasing s. 
The model underestimates the amount of material melted, by 30 to 75 percent 

when ais set to 1.0. A factor contributing to this underestimate is the way the 

model discards temperature data at the end of each line scanned, resetting to 20°C. 

This practice effectively removes heat from the bed. The value of k used in the 

model is several times larger than values measured in Chapter 6; this may have an 

effect on modelled part size. Modelled layers have a higher relative density than 

manufactured layers, due to their smoother, less porous and flatter nature. 
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The model does not include stress analysis or molten metal surface tension 

effects, which are seen to influence manufactured part morphology. 

The execution speed of the model was considered. It was discovered that run 

time increased in near proportion to the amount of geometry scanned. Non- 

convergence of the FE calculation at low U and high AN slowed execution. The 

use of a sparse matrix FE solution method increased running speed 600 times. 

7.7 Possibilities for Future Modelling Work 

Following on from observations made in Chapters 4,5 and 7, some ideas for 

continuation of this work are proposed. 

In 7.4.5, it has been noted that modelled layers are smaller than layers 

manufactured with the same parameters. The model resets temperatures in the 

powder bed to 20°C once each line has been scanned, which removes heat from 

the bed. It is thought that if existing temperature data was maintained between one 

scan and the next, this would increase the volume of melted tracks. The value of 

model parameters SIGV1 and SIGV2 should be reviewed; a comparison has shown 

that powder conductivity in the model is several times larger than has been 

measured experimentally. This may affect the size of modelled parts. 

Modelled and manufactured parts are dimensionally and morphologically 

compared as part of this work. Activity such as recommended in the paragraph 

above will hopefully improve the extent to which the modelling process recreates 

the manufacturing process. More loops of comparison and feedback are required, 

to iterate the behaviour of the model towards that of the direct metal SLS process. 

Once the output of the model and the manufacturing process are sufficiently 

similar for all likely input parameters, the model can be used to optimise power 

settings per scan. One aim in doing this would be to generate scans in a layer and 

layers in a part which are of a consistent size. Optimised machine parameters 

would be passed from the model to the machine, for feed forward process control. 

It has been identified in Section 7.4.5 that whilst the model incorporates a 

change of conductivity as material changes from powder to solid form, the same is 

not true of absorptance. Absorptance for a solid is lower than that of a powder. 
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Absorptance could be calculated at each heat step as a function of density (as 

conductivity is), but it is believed that a step change from a powder to a solid 

value would be sufficient. In this work, the facility has been added to manually set 

values of absorptance per scan in the model, based on the degree of overlap with 

previous scans (scan spacing). This facility should be tested, and adopted if 

effective. 

To predict the curl and residual stresses occurring in manufactured parts, it 

would be necessary to couple thermal and stress analyses. As above, parameters 

could be optimised using the model, to minimise curl and residual stress before 

manufacturing parts. 
Chapters 6 and 7 show that the cross-sectional shape of manufactured parts 

changes from being circular to being half-moon shaped at low speeds (1mm/s for 

instance). By contrast, the model always predicts a half-moon shape. The model 

has no capacity to consider the surface tension effect which drives molten metal 

into rounded shapes. One solution to this problem is to use a more analytical 

approach to scanned track morphology, as used by Yevko and Kaplan in Section 

2.5.3. The numerical heat model would be used to calculate the length, width, 

depth and overall volume of scanned tracks. Analytical methods would then 

decide the track shape, fitting the experimentally-observed form to these 

dimensions. 

The morphological comparisons made in this chapter were based on evaluation 

of cross-sectional areas, using GSharp and Image Pro software. It may be possible 

to write a Matlab script which could evaluate the volume and mass of modelled 

parts, using the 3D density versus position data output by the model. After the 

initial effort required to write the script, time would be saved in generating 

manufactured part data for comparison. Weighing manufactured parts would be 

much quicker than sectioning and analysing them to evaluate area. 
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CHAPTER EIGHT 

8 CONCLUSIONS 

Thermal experiments and numerical modelling have been carried out to help 

develop a direct metal SLS process. The main material considered was stainless 

steel 314S HC powder, of particle diameter up to 300 microns. Experimental work 

investigated the thermal situation occurring in the process, incorporating 

calculations of material conductivity k and absorptance ain a range of 

representative situations. Modelling involved the development of an existing 

Fortran finite element model of the process; increasing modelled part size, 

enhancing ease of use, adding post-processing options and testing the model's 

output against the SLS manufacturing process output. 

Contact and non-contact measurement systems were constructed from existing 

and custom-designed equipment, to record temperature against time on the surface 

of and inside the SLS powder bed. When the laser was applied, surface material 
heated from room to melting temperature in less than 0.5 seconds, then fell back 

to solidification temperature in under 3 seconds. At 20mm distance from the 

processed area, temperature rises did not exceed 1°C. 

Temperature measurements were used to calculate material k and a. k values 

found for stainless steel-based powders ranged from 0.07 to 0.25 W/(m. K), 

depending on atmosphere and particle size. awas measured during the scanning 

of lines and layers, and for rescanning of lines. a varied from 0.08 to 0.21, and 

was dependent on the atmosphere and material type. For single lines, a increased 

with laser scanning speed U, more than four-fold between 0.5 and 10mm/s at 

power P of 160W. Multiple scans of a single line showed that areduced when the 

line was rescanned, due to reduced surface porosity. 
A change of scan cross-sectional shape occurring at low U was investigated. 

Results suggest that the shape change and mass reduction observed was caused by 

formation of a metal vapour cloud over the processing area. 
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In modelling work, a spreadsheet was written to automate calculations required 

when changing mesh sizes. The program was made to report more status 

information during execution, for performance analysis. Output file size was 

reduced by 40 percent. Sparse matrix methods introduced by another worker were 

found to increase running speed 600 times. 

Process maps of part quality against inputs P, U and scan spacing s were 

constructed, to compare the model against the SLS machine and to guide future 

modelling. At most relevant values of P, U and s, the model ran without problems. 

The form of process maps for modelling and manufacturing is quite similar. 

2D visualisation of model output was enhanced for purpose. 3D visualisation 

was introduced. 3D views of modelled parts prompted observations of their form. 

2D and 3D parts were used to test changes to the model; a deepening of the 

thermal mesh improved the stability of part depth in the scanning direction. The 

area, relative density and morphology of manufactured and modelled layer cross- 

sections were compared. The cross-sectional area of manufactured layers was 30 

to 75 percent more than that of modelled layers. Reasons for this difference have 

been suggested. Modelled scan cross-sections always have a half-moon shape; 

real SLS-processed metal sections can be circular in shape due to molten material 

surface tension. The model recognises that k increases as material is processed, 

but does not recognise that a changes during processing. A method was devised to 

incorporate variable aper scan into the model. 
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Appendix A Record of Experiments 

Table of Thermal Experiments- Thermal Camera 22.08.01 Page 1 of 5 

System tests, thermal property measurement series 1.10 (marked "*"), thermal field study 

Corresp. Line / Temp Measure Power Scan Notes 
Graph Layer Range -went (W) Speed 

No. s Dims ('C) z-Pos'ns (mm) (mm/s), 
(nim), (all near Spacing 
Atmos. line x centre) (miii) 

1 - 'l'est 

liý 2-8 
. -,,, 

Q_hne,. 1,:.. .. 
29.9-150$.. 

_. 
Line 21 0. 

..;.. 
`. 6: T ranges. 

9-16 60 line, air 29.9-1508 Line 132.7 6 6 rranw'es 
40x20 lr, air 26.4-1506 Edge/edge, ctr/ctr l00,6,,, ,, 

00,, 0.5 
.. .2 

Iranges, 
19,20* 60 line, air 20.3-203 40/7,8 38.2 6 2 Tran, -, es 

; 1601ine, 20.4-36.7 24/7,40/7,8. T 
22* 60 line, air 25.0-40.8 32/7,40/7.48/7.8 38. ' 6 No 7'iiii 

23*, 24*, 60 line, air 26.8-31.0 48/7,8 38.2 6 Printer jam 
25* 

2 6*, 27* (ill line. air 27.4-64.4 32/7.40/7 38.2 0 
27, $; ßi 4(/Z, 

30,31, 60 line, air 28.7-134 16/7,24/7 38.2 6 
32* 

33,34* 60 line, air 23.5-1500 = 16/7,24/7 ß8.2r. . "Fli hest dt 
35,36,37 - Evaluating highest dt - - = 0.464s 

39,40*, 60 line, air 25.0-335 24/7,32/7 20.8 6 3T ranges 
41" 
42* 60 line, air 26.9-34.9 24/7 8.2 
43' 60 line, air 27.8-31.8 48/7,56/7 38.2 6 

45 * 60 line, air 28.6-30.2 48/7,56/7 20.8 6 
F 

6 
.:. :: 

60x20 layer 30.61505 0.5 :: .. 
7 in air 30.5-1505 Ctr: ctr/edge '_'11.8 (,, 0.5 

48 ' 60x20 layer 29.9-1505 -" 
X1/4 os'n, 1/4 ohs'- 20.8 0.5,0.5 

49 60 line, al, n 29.9-203 Line 20.7 6 Diff. atmos. 
50 60 line, argn 29 . 9-203 

.. .',, 
Line ý� 132.7.. 

, 51 60 line, argn 29.9-203 Line 20.7 6 
60 line, a£ 

54 60 line, arge 29.9-203 Line 38.2 6 

'; 5,56 60 line, argn , 9-536 I,;. 
..:.. the ; 72 5 V. 'ange 

57 60 line, area 29.9 203 Line 38.? 0 
58 60 line, ar n 29.9-203 Line 72.5 6 
59 40x20 layer 30.5-1505 1"d, ee, edge 100.6 0 
60 in argon 29.9-1505 Centre, centre '` 100.6 Highest (It 

61,62,63 60 line, air 29.9-1505 Line 20.8 6 5 spots 
64,65 x. '60 line, pr an : x. 29.9-1505 ; Line 0.8, : .. 66,67 + relase 29.9-1505 Line 20.8 6 

70,71 """, relase4,5 29.9-1505 Line 20.8 6 
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Table of Thermal Experiments- Thermocouples 30.03.00 Pave 2 of 5 

Output Series No/ Scan Type Thernl'epl Power Scan Notes 
Data File Atinos, Pos'ns for OV) Speed 

Name Line T2,3,4,5, (nlnl/s) 
Length 6 

(11]111) Respec'ly 

(nlnl) 
040200n1 Air, 45 10 parallel 10.20,30. 40 O '(' o/p 
040200n2 Air, 45 scans, 40 height... dt about 
040200n3 Air. 45 7mm cap. No T6. 80 6 (1.05 secs. 
040200n4 Air, 45 1 central;., First four ` xdt, 0.6, 
040200n5 Air. 45 scan. Line nnkl Ihok's. 50 3 (it 4.25 
090300n]. S 1.1,45 6 chosen out 41,42,43, 80 4 mV 1)C 

of o/p, dt 9.9s 
090300n2 S 1.1,45 plot 44 height. 6(1 4 LItS. 4s 
090300n3 S1.1,4S lines : Vo T 40, dt 8.44 
090300n4 51.1,45 1-10 First four 20 4 
100300n1 S1.1,45 for central NC drill 

,,, _OU.,,,; 
ý 

100300n2 S 1.1,45 scan. holes, 80 8 

. 1493 Qnäti , ,,. 
100300n4 S1.1,45 column. 120 8 
160300n1 

_ 
S1.1,45. 20 . dt, 8.4' 

160300n2 S I. 1,45 44 height. 40 4 ('113 Out 
4 00300n3..,.: S1.1,45 ' 

M. 80 dt 8.4s 
160300n4 51.1,45 64 First four 121 0 4 (It 8.4s 

4=10W : 7. S1.1% Q1ý , , Gh 
I60300n6 Si. 1,45 mid col' n. 80 8 CIO Out 
160300n7 

, 
T/c Ord ý. ', 

GQ Chi 0 
170300nl Si.!, 45 from left, 5 4 No Power 
70300n2 >V 1,45 

_. t:. T3, T2 o Poyy 
1703000 S I. 1,45 T5, 'C4. 160 32 ('h4 Out 

:.,. 
0 

,. 
NowPowe :" 

170300n5 S 1.1,45 45 height. 20 4 dt S. 4s 
'' 17Ö300 Z 

. . . .. .. 
t8 4s. 

. 170300n7 Si. 1,45 . . . I central Order T3. 80 4 Sample Lit 
170300n8 S 1.1,45 scan T2, T4, T5 80 8 reduced 

4x, 2 Is 
170500nl Air, 60 1 central 50,48,46, 20 6 dt 2.1s 
170500n2 Air, 60 scan. Line 4-1,38 20 6 (11 2. Is 

05Qpn3 nl]" 
OW M4 itýiYt[ . l_Ud /i11_t 

170500n4 Air, 60 out of First five. 80 6 ", dt 0.6s 
O0n5. 

170500n6 Air, 60 lines T3, T4, 160 6 ", dt 0.6s 
70500n7 Air, 60 '! W' 1- 16 dt 0.6s' 

170500n8 Air, 60 for central 40mm 60 0 .. dt 1. Is 
KZ OSO0n9 Air ; _6 . scan, height.., 60 6 dt 8.4$ 

N(' 2,3,4 

air atinos 
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Table of Thermal Experiments- Thermocouples 17.10.00 Page 3 of 5 

Data File 
Name 

120700n1 
120700n2 
12O700n3 
120700n4 
120700n5 
130700n1 
130700n2 
130700n3 
130700n4 
130700n5 
13O7OOn6 

s13Q700n7 
130700n8 
130700n9 
140700u1 
L4Q700n2 
140700n3 

Series No/ Scan Type 'I'herm'cpl 
Atmos, Pos'ns for 

Line T2,3,4,5, 
Length 6 
(mm) Respec'ly 

(mm) 
Argon. 60 1 central T213/4. 
Argon, 60 scan. Line 46mm h't. 
Argon, 60 14 chosen NCs 2,3,1 
Argon,. out of respect'ly. 
Argon, 60 plot Position in 

77Ärgon, 607m'"' lines.,,,,,, 
, _, �line, 

dir'n, 
Argon, 60 11-16 of 
Argon, 60 for central interest. - 
S2.1,60 scan. 46.48,50, 
S2.1,60 

.2 rulers ,. .,. , 
42,44 Wt.. 

S2.1,60 used as First five 

drQj 
S2.1,60 front to holes 
S2.1,60 back. ; respect'ly 

Argon, 60 Resulting 46,48,50, 
Argon,. 6Q me about 47,44. ", 
Argon, 60 58mm First five 

er stall 

) speed 
(nlnils) 

120 0 iriV UC 

120- 
,. 

6 o/P,: 
120 6 dt about 

6 $ecs;. 
120 6 Now usin: 
T2- 6 
120 6 vacuum 

120 }6 feedthro', 
8O 0 dt (). Os 
80 6 Re-lase. 
SO 0 0 nIins of 

Ps 
80 6 recordcd. 

' * dt 0.6s 
20 6 Bed voids, 

40 20 Rapid 

Output 
Data File 

Name 

121000n3 
X21000; 4 
161000111 
T1000n2 
161000n3 
161000n4' 
I61000n5 
021100n4 
02 110()115 
Q2 UQQI l 
021 100n7 

. 
921 100n8 
021 100n9 
ü31 100n1 
03I 1O0n2 

0311004 
D3,1 100n5 
0311 00n6 

Series No, Scan Type y Pos'ns 
Line/ for 1'3,4, 
Layer 5,6,7 
Dim. s Rcspec'ly 
(nim) (mm) 

S 1.9,00 Linc 14. 4.9,2.8, 

S 1.9,60 spacer: 5.7 depth 
S 1.9,6Q 
S 1.9,60 and to e. First five 
Si . 9,6Q NC holes; 
51.9,60 

Layer, NCs 2,3,4 
single positioned respect, ly. 

Y. tv. g0r. T4A, 
40x2Omm. over t/cs T5, T6. 

o 
S3.1, x+2, y-7) depths, 

Ratio 5.2-1.0nui 
layer, f'/(U. s) (vernier). 

Layr takes 

single to scan. 

Power Scan Notes 
(W) Speed 

(mni/s), 
Spacing 

(nun) 
15.3 350 I /C \\ irre 

19.0 225 
97'oärýi's 

19.0 00.5 Ch2 t'unnv'. 
9.8 30.0 T3 -7. 
15.3 30.0 4110.0s. 

121.2 
. 

150,0.2 clt 2.1s, 
, 121.2 75,0.4 rlr2. Is 

21.2 11 60. 
-0. iýll4 

121.2 50,0.6 

121.2 33.5,0.9 
121.2 :3Q,. 7: 
121.2 150,0.2 

121.2 60,0.5 

121.2 4_3,0.7 Cl14 out 

121.2 33.5,0.9 
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Table of Thermal Experiments- Thermocouples 16.11.00 Page 4 of 5 

Output Series No/ Scan Type Y Pos'ns Power Scan Notes 

Data File Atmos, for T2,3, (W) Speed 
Name Line/ 4,5,6 (mnn/s), 

Layer Respec'ly Spacing 
Dim. s (Inm) (nun) 
(nim) 

1511 00n I Argon, 6(1 1 central Ws 2.3.4 1 (ill IIV I)(' 

151100n2 Argon, 60 line 14. lt res ect'1 . 121.2 60 o/ p, 
151100n3 S3.1, Directly Order T4, 121.2 37.5,0.8 di about 

.. 
151100n4 single over, t/cs T5, T6. 121.2, 30,1.0 0.6 secs. 
151100n5 layer, (offset= Various 121.2 37.5.0.8 T3 and 
151100n6 40x20mm. x+2, y-7). depths, 121.2 30,1.0 T7 used to 
15110On7 24 seconds 5.0-1.0 121.2 37.5.0.8 measure 
151100n8 Argon, 60 to scan. (vernier). 121.2 33.5 air T 

010301n1 S3.1, New offset 121? 300,0-1 8 thins of' 
01030112 single NCs, 2,3,4 121.2 35.5, temps 
010301n3 layer, y-7 respect'ly. 121.2 33.5,0.9 recorded. 
010301n4 40x2Urnn :.. 

' . Resulting Order T4, 121.2 27.5,1.1 dt 0.6s 
010301115 S3.1, layers T5, T6. 121.2 35.5,0.85 
010301n6 single '" 38x18., Various 121.2 300,0.1 

, -` 010301n7 layer, depths, 121 2 35.5,0.85 nl-n8, T6 
0103010, 

, 
40x2Omm. Lots 

. of (x; 1,0 ý, ,ý k1 1, 
, : 

5, 
_QýS 

öut 
010301n9 S3.1, breakages, (vernier). 121.2 27.5,1.1 n9, works. 

A70 single 121.2 73Ö0,0 1 ;; rll-n3,. 'ß; 
070301 n2 layer, rods. 121.2 35.5,0.85 & '1'5 were 
070301n3 40x20mm. " 121.2 " T' 33.5,0.9 out. 
240902n* 81.5. S 1.6, 2 scans, Spaced 16(1 Speed 0.5, ýx U 
250902n* S1.7,60 30mm space 160 1.0,10 for 314. 
041002n* S1.5, S1.6, Directly (vernier). 100 Speed 0.5, 5 readings 
111002r1 S1.7,60 over t/cs 16Q,, F 1.0,10 per 2 runs. 
091002n 1 S1.2,60 2 scans, Spaced 40 to Speed k and a, 

to Si . 2,6" aS.,. 6,0-2 
091002nD S 1.2,60 over t/cs (vernier). 
111002n* Si . 3,60 2 scans, Spaced ; , 

40 to . - , egc_and , c, 
and S 1.3,60 30mm space 6.0-2.5 160 0.5 to 15 314 med. 

161002n* S 1.3,60 over t/cs vernier). 'tý %... tT s" 
101002n 1 S 1.4,60 2 scans, Spaced 40 to Speed k and a, 

w.. ý: _ ... _ 
Si . 60 

... 
4,. ... 

_IL _, -3Qrru sP lay.. _ ....., ", 
101002nC S1.4,60 over t/cs (vernier). 
161002b 1 Si . 8,60 S`1 7 

to S 1.8,60 30mm space 6.0-2.5 160 0.5 to 15 M2 med. 
161002bC S1.8,60 1 veI t/cs ie 
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Experiments: Single Layer Manufacture 30.01.02 Page 5 of 5 

Run 
No. 

Date No. 
Scans 

Scan 
Length 
(ºnni) 

Scan 
Spacing 
(x d /6) 

Power 
(NV) 

Scan 
Speed 
(nnn/s) 

No. 
Samples 

Notes 

1 24.01.02 1O 1O 3 60 1 3 Manuf- 
2 07.02.02 10 10 5 60 1 3 actured 
3 07.02.02 10 1O 9 60 1 3 for 
4 07.02.02 10 10 3 120 6 3 comp- 
5 07.02.02 1O lO 5 120 6 3 arison 
6 07.02.02 10 10. 9 120 6 3 with 
7 07.02.02 10 1O 3 155 12 3 model- 

_. 07. 2 
.. _ _.. 

10 15 12 -lest. 9 07.02.02 10 10 9 155 12 3 parts 
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Appendix B Fortran Program to Extract Data frone Thermocouple Logs 

PROGRAM LogRead 

C --- BY CHRIS TAYLOR, 11.08.00. MODIFIED NOVEMBER 2000 FOR 5 

C -CHANNEL DIRECTORY, T2 NOT WORKING (IE Tn => Tn+1). 

C --- TAKES SPECIFIED OUTPUT FILE FROM PC RUNNING LABVIEW AND 

C ATTACHED TO A THERMOCOUPLE DATA CARD. READS THROUGH DATA, AND 

C SELECTS OUT INITIAL/ MAXIMUM READINGS WITH CORRESPONDING TIME. 

C HAS TO IGNORE FIRST N LINES, PICK OUT CHARACTER/ REAL 

C VARIABLE TYPES, STORE MAXIMUM VOLTAGE VALUE FOR EACH COLUMN 

C (THERMOCOUPLE). CONVERTS DATA TO TEMPERATURE FORM AND PRINTS 

C ON SCREEN. 

C --- NOTES ON DISCOVERIES MADE WHILST DEBUGGING: 
C LINES MUST BE <=72 CHARACTERS LONG, CARRY OVER WITH AN APPROP 

C -RIATELY PLACED SYMBOL (LIKE HYPHEN SHOWN IN THIS SENTENCE). 
C LINE NUMBERS MUST BE PLACED TO BEGIN IN COLUMN 1. 

REAL VSTART(5), VMAX(5), VCOMP(5), TEINI(5), TEMAX(5) 

CHARACTER LOG*12, DIRFILE*22 

CHARACTER UNWANT*60, DATE*10, TISTRT*12, TICOMP*12, TIPEAK(5)*12 
INTEGER I, J, L 

C DEFINITION/ SETUP OF FILE. NAME INPUT BY USER EACH TIME. 
C INITIALISATION OF MAXIMA TO 0.0. 
C IF NO READING GREATER THAN THIS FOUND, TIME='NONE'. 

PRINT *, 'Input text file name (without log extension): 
READ(*, 100) LOG 
DIRFILE(1: 10)='5 Channel\' 
DIRFILE(11: 18)=LOG 
DIRFILE(19: 22)='. log' 
OPEN(10, FILE=DIRFILE) 

C OPEN(10, FILE='Test. log') 
REWIND 10 

DO 10 1=1,5 
VMAX(I)=0.0 
TIPEAK(I)='NONE' 

10 CONTINUE 

C CLEAR ALL UNWANTED DATA AT START OF FILE. PICKS UP ON UNIQUE 
C STRING '(V)' FOUND IN LINE BEFORE NUMBERS OF INTEREST BEGIN. 

DO 20 L=1,8 
READ(10,100) UNWANT 

100 FORMAT(A) 
20 CONTINUE 
30 CONTINUE 

READ(10,100) UNWANT 
IF (UNWANT(52: 54). NE. '(V)') THEN 
GO TO 30 
END IF 
CONTINUE 

C READ INITIAL TIME/ VOLTAGE VALUES. 
C REPLACEMENT OF MAXIMUM VOLTAGE AND TIME WHERE READ VALUE LARGER. 
C CHECK FOR SPURIOUS DATA: O/P <0.084V (=2000'C). NOT FOOLPROOF! 
C PROBLEMS WHERE THERMOCOUPLE CIRCUIT BROKEN ETC. 
C APPROXIMATE CONVERSION TO 'C (BASED ON TYPICAL CALIBRATION). 

READ(10,200) DATE, TISTRT, VSTART(1), VSTART(2), VSTART(3), 
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-VSTART(4), VSTART(5) 
200 FORMAT(A, 6X, A, 4X, 

-F11.0,5X, F11.0,5X, F11.0,5X, F11.0,5X, F11.0) 
C WRITE(6, *) DATE, TISTRT, VSTART(1), VSTART(2), VSTART(3), 

C -VSTART(4), VSTART(5) 

DO 210 I=1,5 
TEINI(I)=(23560*VSTART(I))+22.14 
IF ((VSTART(I). GT. VMAX(I)). AND. (VSTART(I). LT. 0.084)) THEN 

VMAX(I)=VSTART(I) 
TIPEAK(I)=TISTRT 

END IF 
210 CONTINUE 

J=2 
220 CONTINUE 

C REPEATEDLY READ ROWS OF VALUES UNTIL FILE ENDS 

READ(10,200, END=240) DATE, TICOMP, VCOMP(1), VCOMP(2), VCOMP(3), 

-VCOMP(4), VCOMP(5) 

DO 230 I=1,5 
IF ((VCOMP(I). GT. VMAX(I)). AND. (VCOMP(I). LT. 0.084)) THEN 

VMAX(I)=VCOMP(I) 
TIPEAK(I)=TICOMP 

END IF 
230 CONTINUE 

J=J+1 
GO TO 220 

240 CONTINUE 

C PRINT TIMES AND VOLTAGES. CONVERT AND DISPLAY AS TEMPERATURES. 

PRINT *, 
PRINT 300, TISTRT 

300 FORMAT(' ', 'Start time: ', A12) 
PRINT *, 
PRINT 400, VSTART(1), VSTART(2), VSTART(3), VSTART(4), VSTART(5) 

400 FORMAT(' ', 'Start Voltages: ', 

-Fll. 7, F11.7, F11.7, F11.7, F11.7) 
PRINT 500, TEINI(l), TEINI(2), TEINI(3), TEINI(4), TEINI(5) 

500 FORMAT(' ', ' Temperatures: ', 
-Fll. 3, F11.3, F11.3, F11.3, F11.3) 

PRINT *, 

DO 510 I=1,5 
PRINT 600, (1+2), TIPEAK(I), VMAX(I) 
TEMAX(I)=(23560*VMAX(I))+22.14 
PRINT 700, (1+2), TIPEAK(I), TEMAX(I) 

510 CONTINUE 
600 FORMAT(' ', 'Thermocouple T', I1, ' peak time and voltage ', 

-A12, F11.7, ' V') 
700 FORMAT(' ', 'Thermocouple T', I1, ' peak time and temp. ', 

-A12, F11.2, '' 'C') 
PRINT 100, DATE 

PRINT 
PRINT 800, J 

800 FORMAT(' ', 14, ' (-2) rows read. ') 
PRINT *, '' 

END 
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Appendix C Modifications to Fortran Program shnet3d 

PROGRAM STMET3DGMRES_3 

c Version of stmet3d with GMRES. 12.12.01 

c Version 
_2: 

thermal mesh marches on beyond end of scan (testing consistency 
compared to static dwell) 

c 03.01.02 absorptivity (and therefore power) can be varied from one scan to 
the next. 

c version 
_3: some changes to marching cooldown to save time, and Rhoplot 

formatting. 10.02.02 

c this version modified 17/10/01 to solve heat equations by ilut preconditioned 
gmres. 
c the subroutine HSOLVE is totally different from before and calls subroutines 
ilut, qsplit, 
c pgmres, amux, lusol and daxpy; and functions ddot and dnrm2. 
c compared to the previous code, the PARAMETER MNAL is no longer needed and is 

removed from the 
c parameter list. Two new parameters are needed in HSOLVE - go to HSOLVE to read 
more 
c 
c 
c Modified by CMT: in new sparse matrix section, some lines ran beyond 

c col 72. Carried these over to next line. Same problems on Salford as 
c original THCC program: numbers raised to real power. Modified lines: 

c 'Trial=Trial**2.01,2x I... (TANH(5.0*ALPAVD))**4.0)'. 

c 
C TWO NEW OUTPUT FILES ADDED TO MAIN PROGRAM AND SUBROUTINE "OUTPUT" 
C FOR GSHARP COMPATIBILITY, SEPT. 2001. CODE BY NV. 
C 
C MODIFIED BY CMT 14.11.01 TO MAKE RHOPLOT X/Z MATLAB FRIENDLY (TOOK TEXT 
OUT). 
C ACTUALLY EASIER TO READ VALUES INTO MATLAB FROM RHOPLOT: 
C MODIFIED OUTPUTTING OF RHOPLOT TO PUT A LINE AT THE START, TELL MATLAB 
C HOW MANY X, Y, Z POINTS; DEC. 2001. 

C 
C ** a2 
C Modified, CMT 03.01.02: decided to have thermal mesh carry on marching 
after scanning, 
C with no further power being input into bed. The previous system had the 
thermal mesh 
C dwell at the end of the scan until all temperatures fell below 
solidification point. 
C This is inconsistent with how the rest of the scan is processed- provides 
much more 
C time for diffusion of heat into scan's end region, meaning much wider, 
deeper geometry 
C (big lump on end of scan). Now thermal mesh marches on for it's entire 
length once 
C scanning ceases, before moving to start position of next scan. 
C 
C At the same time, added a new 10x10 array ABSORBSCAN (rather than 1 
ABSORB value). 
C Surface laser power profile is modified in magnitude for each separate 
scan, through 
C values in ABSORBSCAN which dictate absorptance. Two purposes for this: to 
model the 
C difference in average absorptance between 1st and nth scans (scanning raw 
powder as 
C opposed to partially scanning dense and shiny processed powder); and to 
simulate 
C boosting laser power to counter this effect/ heat sink effect from 
adjacent previously 
C processed (higher conductivity) material ("Adaptive Manufacture" method). 

C ** 

C Modified, CMT 31.01.02: some more diagnostic info. Full heat/ cool step 
ID (layer, 
C scan, step), reporting processor start/ end time, time elapsed. 
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C ** am-3 

C Modified, CMT 10.02.02: decided to amend marching cooldown phase- mesh 
will continue 
C to march with P=0 for MGXMAX steps, UNLESS following condition is net. At 

each cool 
C step, maximum of thermal mesh nodal temperatures is found, compared to 
TDWELL. If 
C lower, it is deemed that material has cooled enough to be completely 
solid. Program 
C execution moves onto next scan. This should reduce program run time. Some 

new 
C integer variables are also added, to record the maximum number of cool 
steps 
C executed for a scan, and identify corresponding scan. If any scan 
requires MGXMAX 
C cool steps and still has not fully solidified, this is reported. 
C 
CA second change made at the same time, relating to output of 
x, y, z, RHO, DTAV data. 

C Values have been output to text file at 6 S. F. in a field of 16 
characters (by 
C default). Spaces between values can account for Mb of storage space in 
output files. 
C Formatting of data now applied in subroutine OUTPUT when writing Rhoplot, 
Rhoplotx/z. 

C ** 

C --- MODEL STARTED 06/03/97- THIS VERSION FOR ISOMORPHOUS MELTING OF 
CRYSTALLINE 
C POLYMERS IN 2D STARTED 6/11/98, CONVERSION TO 3D METALS STARTED 6/14/99 
C GREATER USE OF COMMON BLOCKS THAN SINTCR3D2. F, TO TRY TO MAKE BETTER 
USE OF MEMORY 
C AND VARIABLE Z-SPACING IN THERMAL MESH STARTED 26/9/99 
C --- CALCN. OF NEW VARIABLE DTGLOB ADDED 22/04/01 

[Break in code] 
C 

COMMON /BLOCKO/ISTOR-, ISTORZ, NXLAST, NYLAST, NZLAST 
COMMON /BLOCKO/NYMIN, NXMAX, NYMIN, NYMAX, NZMIN, NZMAX 

C 
C Added ABSORBSCAN. CMT, Jan. 02. TEXT1, TEXT2, Feb. 02. 

DIMENSION NSCAN(10), SINSTT(10,20), ABSORBSCAN(10,10), ZSTART(10) 
DIMENSION DTEND(MNODT3), ALPEND(MNODT3) 
CHARACTER(LEN=39) TEXT1 
CHARACTER)LEN=28) TEXT2 

C 
C this version calculates temperature / time histories through an fe mesh. 
C data is entered through reading from a data file in which the order is 
C (line 0, inside program gives nmcq =7- this is the number of nodes over the 
beam diameter 
C and must not be changed) 
C line 1: global powder bed size, defined as n10 nodes long(X), nll layers depth(Y) 
C and n12 wide(Z) (but also depends on nmq) 
C line 2: thermal mesh parameters nl nodes long(x), (historically the x-length was 
nl+n5 nodes) 
C n4 deep(y) and n6 wide(z) 
C line 3: a list of thermal mesh relative spacings in horizontal direction (placed 
in nthermx) 
C line 4: a list of thermal mesh relative depth spacings, in groups multiplying to 
6 (i. e 6xl, 3x2 or 2x3) 
C placed in nthermy 
C line 5: a list of thermal mesh relative spacings in width (placed in nthermz) 
C line 6: surface element position in x-dirn, 10 in all, where the heat source is, 
C otherwise enter 0, in nheatx 
C line 7: surface element positions in z-dirn, 10 in all, where the heat source 
is, 
C otherwise enter 0, in nheaty 
C line 8: laser power (W) , scan speed (nun/s) , spot diameter (nun) 
C line 9: layer thickness, bed temperature (deg C), 
C density of powder solid and max. density in sintering law, in kg/m3 
C line 10: min. temperature for sintering (C). 



Pare 226 Appendix 

C line 11: conductivity law consts. (w/m/c) and sp. ht. consts. (j/kg) 

C and heat loss in W/m2/c. 
C line 12: latent heat and liquidus and solidus temperatures; 
C line 13: coefficients in heat absorption with depth law 

C line 14: coefficients in law for dependence of k on porosity 
C line 15: fe calculation number THETA 
C line 16: start layer of build and number of layers (up to 10 for now); 

C (cont. ) and scan spacing, entered as the integral number of 1/6ths of the beam 
diameter 
C line 17: for each layer, the number of scans per layer - at moment up to 10. 

C line 18: for each layer, z position (slice) of first scan in that layer. 

C lines 19 and following: -2 sets of values. 
C1 line for each layers start and end point x-value of each scan vector in 

layer (10x20). 
C1 line for each layer; power absorptance (fraction) per scan - at moment up 
to 10x10. 
C 

C Added lines to report processor time at start. CMT, 31.01.02 

CALL CPU_TIME(TIME]. ) 
PRINT *, 'PROCESSOR TIME AT START, ', TIME1 

C DEFINITION OF FILES. FILES 15 AND 16 NEW FOR GSHARP OUTPUT, SEPT. 2001 

OPEN(10, FILE='STME3DAT') 
OPEN(12, FILE='SINTPROD') 
OPEN(13, FILE='RHOPLOT') 
OPEN(15, FILE='RHOPLOTZ') 
OPEN(16, FILE='RHOPLOTX') 
REWIND 10 
REWIND 12 
REWIND 14 
REWIND 15 
REWIND 16 

CC 
DO 10 I=1,10 
NSCAN(I)=0 

C Zeroing ABSORBSCAN. Added Jan. 02, CMT 

DO 5 J-1,10 
ABSORBSCAN(I, J)=0 

5 CONTINUE 

DO 10 J=1,20 
SINSTT(I, J)=0 

10 CONTINUE 
NMO=7 
READ(10, k) N10, N11, N12 

READ(10, *) N1, N4, N6 
READ(10, *) (NTHERMX(I), I=1, N1-1) 
READ(10, *) (NTHE101Y(I), I=1, N4-1) 
READ(10, *) (NTHERMZ(I), I=1, N6-1) 
READ(10, *) (NHEATX(I), I=1, N1-1) 
READ(10, *) (NHEATZ(I), I=1, N6-1) 

READ(10, *) PR, VSPEED, DIAMETER 
READ(10, *) TLAYER, TDEGO, RHOPONN, RHOSOL, RMAX 
READ(10, *) TDWELL 

READ(10, *) CONDO, CONDV, CAPO, CAPV, HLOSS 
READ(10, *) TLAT, TMELT, TSOL 

READ(10, '') DPA, DPN 
READ(10, *) SIGVI, SIGV2 
READ(10, *) THETA 
READ(10, *) LAYER, NBER, ISCAN 

READ(10, *) (NSCAN(I), I=1, NBER) 
READ(10, i) (ZSTART(I), I=1, NBER) 
READ(10, *) ((SINSTT(I, J), J=1,2*NSCAN(I)), I=1, NBER) 

C New multiple absorptance values read in, 1 per scan. CMT, Jan. 02 
READ(10, *) ((ABSORBSCAN(I, J), Jm1, NSCAN(I)), I-1, NBER) 

C WRITE(6, *) (NSCAN(I), I=1, NBER) 
C WRITE(6, ') (ZSTART(I), I=1, NBER) 
C 4WRITE(6, *) ((SINSTT(I, J), J=1,2*NSCAN(I)), I=1, N$ER) 
C 
C* NLAYER is the last layer sintered, when LAYER is the first one: 
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NLAYER=LAYER-NBER+1 
C 
C* the next lines work out how many global MGZ AND MGX elements from origin of 
thermal mesh to centre 
C* of the heat source, assuming that the heat source covers 10 x 10 global 
elements - it links to 
C* calculation of NELSTRT in DO 610 loop. they also sum up max. no. of x, y, r. 

global elements in thermal mesh 
C* and store these in NGXNAX, etc. ISTORZ and ISTORX also give which thermal 

element is at centre of heat source 
C 

MGZ=O 
MGZMAX=O 
IGZ=0 
DO 15 I=1, N6-1 
MGZ14AX=MGZMAX+NTHERNZ(I) 
IF(IGZ. GT. 6) GO TO 15 
ISTORZ=I 
IGZ=IGZ+NHEATZ(I) 
MGZ=MGZ+NTHERMZ(I) 

15 CONTINUE 
C 

MGX=O 
MGXNAX=O 
IGX=O 
DO 20 Iz1, N1-1 
MGXMAX=MGXMAX+NTHERMX(I) 
IF(IGX. GT. 6) GO TO 20 
ISTORX=I 
IGX=IGX+NHEATX(I) 
MGX=MGX+NTHERMX(I) 

20 CONTINUE 
C 

MGYMAX=O 
DO 30 I=1, N4-1 
MGYMAX=MGYMAX+NTHERMY(I) 

30 CONTINUE 
C 
C* thermal property calculations and conversions 

CONDO=CONDO/1000.0 
CONDV=CONDV/1000.0 
CAPO=CAPO/1000000000.0 
CAPV=CAPV/1000000000.0 
HLOSS=HLOSS/1000000.0 
TLAT=TLAT/1000000000.0 

TGAP=TNELT-TSOL 
C 

QLAS F PR/DIAMETER**2.0 
C 
C Removed ABSORB term, different value to be applied each scan. CMT, Jan. 02 
C QLAS = ABSORB*PR/DIAMETER**2.0 (Original statement). 
C 
C 
C start by creating powder bed model, to contain initial coordinates 
C of nodes and initial values of density of elements, also data on 
C connectivity of nodes 
C *** VALUES OF N10, Nil, N12 DESCRIBE GLOBAL BRICK MODEL. 
C *** N10 IS NUMBER OF NODES IN X-DIRN (PARALLEL TO SURFACE), N11 
C *** IS NUMBER OF POWDER LAYERS IN THE BED; I. E. EACH TLAYER THICY.. 
C *** THE PROGRAM ASSUMES THAT EACH LAYER HAS 6 STREAM TUBES. 
C *** N12 IS NUMBER OF NODES IN SURFACE PERPENDICULAR TO X 
C *** THE VALUE OF NMQ , THE NUMBER OF NODES DEFINING HEAT SOURCE WIDTH 
C *** MUST ALSO BE ENTERED AT THIS STAGE. 
C 

NODTG=N10*(N11*6+1)*N12 
NELTG=(N10-1)*(N11*6)*(N12-1) 

C 
CALL PDERBED(N10, N11, N12, NNQ, DIMETER, TLAY£R, RHOPOW, TDEGO, XLNTHI, 

&RHOSOL) 
C 
C* the thermal model is a discrete number of powder bed layers thick, its mesh 
divided into 
C* sixths, thirds or halves, etc., of powder bed thickness depending on depth 
below surface. 
C* its mesh dimensions are multiples of powder bed mesh, as defined in input file. 
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C* in early versions of program, n1 was number of nodes ahead of heat source and 
nmq was the 
C* nodes covering the heat source, lying on top of the first nodes of n5. but this 
restriction has 
C* since been removed. there is a case for replacing nl and n5 as separate 
variables by a single n1, 
C* that has been done in this version. 
C 
C* the time step should be chosen to relate to element size (see after INPUT) 
C 
C ** START TO CREATE THERMAL MODEL - NODT3 AND NELT3 ARE NUMBERS OF NODES, 
ELEMENTS IN 3D, 
C ** NODT, NELT ARE NUMBERS OF NODES, ELEMENTS IN A SINGLE LAYER 
C 

NLINE1=N4 
NLINE2=Nl 

C 

NODT= N4*NLINE2 
NODT3=(N6*NODT) 

NELT= 6*((N4-l)*(NLINE2-1)) 
NELT3=(N6-1)*NELT 

C 
C 
C* mesh generates the element connectivities and boundary conditions of the 
C* finite element thermal model, including over which elements the laser acts 
C* it also creates the mapping from the powderbed dataset to the thermal model. 
C* and finally sets up thermal condensed matrix and index variables 
C 

CALL NESH(NlO, Nll) 
C 
C 
C* start of transient thermal analysis, based on crank-nicolson time steps 
C* first set time step; and also various counters to zero (use explained later) 
C 
C New variables introduced and set: to identify which scan takes longest to 
cool. 
C Integers MAXCOOL, ICOOLED. CMT, 10.02.02 

MAXCOOL=O 
ICOOLED=1 
DTINIE=XLNTHI/VSPEED 

ILAY=O 
KYMAX=0 

KYMIN=N11*6 
KXMAX= 0 
KXMIN=N10-1 
KZMAX=O 
KZMIN=N12--1 

C 
DO 600 I=LAYER, NLAYER, -l 

C set top layer powder thickness to merge with next layer down 
MSTART=(I-1)*6+1 
DO 350 ISLICE=1, Nl2 
N3=LINEGL(MSTART, 1, ISLICE) 
YTOP=XGLOB(2''N3) 
DO 400 J=1, Nl0 
NTEMP=MSTART+6 
N2=LINEGL(NTEMP, J, ISLICE) 
YBOT=XGLOB(2*N2) 
DY=(YBOT-YTOP)/6.0 

DO 450 K=1,5 
NTEMP=MSTART+K 
N2=LINEGL(NTEMP, J, ISLICE) 
XGLOB(2*N2)=YTOP+K*DY 

450 CONTINUE 
400 CONTINUE 
350 CONTINUE 

C* The next lines work out integer values KY, KZ, KX, to place in MFEG to 
establish global element 
C* number at the origin of the thermal mesh. It includes using MGZ and MGX to 
shift from centre of 
C* heat source to origin of thermal mesh. The maximimum and minimum values of KY, 
KZ, KX are also worked 
C* out throughout the program and are used to select global data for display in 
OUTPUT. 
C 
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KY=(I-1)*6+1 
IF (KY. GT. KYMAX) KYMAX=I\'Y 

IF (KY. LT. KYMIN) KYb1IN=KY 
C 

ILAY=ILAY+l 
KZ=ZSTART(ILAY)/XLNTHI-MGZ+ISCAN 

C 
DO 61.0 ISLICE=I, NSCAN(ILAY) 

C' next line shifts thermal mesh origin ISCAN global stream tubes towards global 
origin every x-scan; 
C* and after that< max> and min> values of kz continue to be stored 

KZ=KZ-ISCAN 
IF (KZ. GT. KZMAX) KZMAX=KZ 

IF (RZ. LT. KZMIN) KZMIN=KZ 
PRINT *, 'STARTING LAYER , I, ' SCAN NUMBER = ', ISLICE 
INUM=ISLICE*2 
INS= INUM-1 

C set counters to determine limits of laser movement - 
NLAST=SINSTT(ILAY, INS)/XLNTH1 
NBIT=SINSTT(ILAY, INUM)/XLNTH1 

C New lines: if laser start and stop "x" position have been given the same value, 
program assumes 
C that the scan is to be skipped. Moves straight to next scan- saves 1 heat step 
and MGXMAX cool 
C steps (about 10 minutes' worth). CMT, 05.02.02. 

IF (NLAST. EQ. NBIT) THEN 
PRINT *, 'SKIPPING LAYER ', I, ' SCAN NUMBER - ', ISLICE 
GO TO 610 
ENDIF 

NLIMIT=NBIT-NLAST+l 
KX=NBIT-MGX41 

C set temperatures to ambient and laser heating values for HEAT 
DO 100 J=1, NODT3 

100 DT(J)=TDEGO 
DO 200 M=1, NELT3 
GU(M, 1)=VSPEED 
GU(M, 2)=0.0 

GU(M, 3)=0.0 
ETP(M)=TDEGO 

200 CONTINUE 
C -square pyramid approximation of gaussian heat source follows 

C Changes in magnitude of QMAX accorded to ABSORBSCAN, changes scan to scan. CMT, 
Jan. 02. 

ABSORB=ABSORBSCAN(ILAY, ISLICE) 
QMAX=ABSORB*QLAS*1.126 
PRINT *, 'ABSORB- ', ABSORB 

DO 210 J=1, (NMQ+3) 
DO 210 K=1, (NMQ+3) 
I{FRIC(J, K)=0.082*QMAX 

210 CONTINUE 
DO 212 J=2, (NMQ+2) 
DO 212 K=2, (NMQ+2) 
HFRIC(J, 1: )=0.223*QMAX 

212 CONTINUE 
DO 214 J=3, (NMQ+1) 
DO 214 K=3, (NMQ+l) 
HFRIC(J, K)=0.472*QMAX 

214 CONTINUE 
DO 216 J=4, (NMQ) 
DO 216 K=4, (NMQ) 
HFRIC(J, K)=0.779*QMAX 

216 CONTINUE 
DO 218 J=5, (NMQ-1) 
DO 218 K=5, (NMQ-1) 
HFRIC(J, K)=QMAX 

218 CONTINUE 

C 
C -setting material as all solid state before start of heating 

DO 540 J=1, NODT3 
ALPOLD(J)=1.0 
ALPHA(J)=1.0 
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540 CONTINUE 
C 
C start of transient temperature calculation -- and also estimating max. and min i: 

(for OUTPUT) 

WRITE(6, *)'NLIMIT IS.... ', NLIMIT 
DO 550 T=1, NLIMIT 

KX=KX-1 
IF (KX. GT. KXMAX) KXMAX=KX 

IF (KX. LT. KXMIN) KXMIN=KX 
NELSTRT=MFEG(KY, KX, KZ) 
NSTART=MCNGLB(NELSTRT, 1) 

C NSTART=NSTART-1 
C NELSTRT=NELSTRT-1 

C Added layer/ scan number variables to printout per heat step, for diagnosis. 
CMT, 31.01.02 

WRITE(6,2610)'STARTING HEAT STEP ', I, ' \', ISLICE, ' \', J 
2610 FORMAT(A, I4, A, I4, A, I4) 

C* time step set so that movement in one time step is element spacing 
CALL RETRIEVE(NSTART, NELSTRT, NLINE1, NLINE2, N6) 

C 
C store previous time step temperatures for use in sintering calculation 

DO 580 JJ=I, NODT3 
580 DTOLD(JJ)=DT(JJ) 

C 
C* the next line sets up a flag to print data in OUTPUT if negative volume 
generated in HEAT 

IFAIL =0 
CALL HEAT(THETA, DTIME, NLINE1, NLINE2, NMQ, TDEGO, RMAX, 

1TGAP, TSOL, TMELT, TLAT, IFAIL, DPA, DPN) 
C 
C the sintering stop is empirical for metals. 

CALL SINTER(NELSTRT, DTIME, RMAX) 
C 
C NOW STORE ALPHA IN ALPHAOLD FOR NEXT TIME STEP CYCLE and include convection 
effect 

DO 581 KK=1, N6 
DO 581 JJ=1, N4 
DO 581 II=2, NLINE2 
DIV=1.0/NTEHERMX(II- 1) 
ITRIAL =(KK-1)*NODT+(JJ-1)*NLINE2+II 
ALPOLD(ITRIAL)=ALPHA(ITRIAL-1)*DIV+ALPHA(ITRIAL)*(1-DIV) 

581 CONTINUE 
C 
C calculate shrinkage associated with densification 

CALL SHRINKAGE (KZ, KX, KY, MGZMAX, MGXIILAX, MGYMAX) 
C 
C 

550 CONTINUE 
C 

551 CONTINUE 
C store last time step temperature and state of melting as a record for OUTPUT 

DO 555 JJ=1, NODT3 
ALPEND(JJ)=ALPHA(JJ) 

555 DTEND(JJ)=DT(JJ) 
C 
C Have exchanged static dwell period (below) for a marching one. QLAS-0. Thermal 
mesh moves 
C it's whole length (MGXMAX) in x direction after heating, well beyond end of 
line. CMT, Jan. 02 

C Can have a dwell period here; i. e. timesteps but zero heat in until the 
C model has cooled down enough to stop sintering - also stop thermal mesh marching 
over surface 
C- possibility of jumping dwell by going straight to 600 - CURRENTLY INACTIVATED 
C GO TO 610 
C -also set a counter 'WELL so the time spent in dwell can be estimated 

DO 590 J =1, (NMQ+3) 
DO 591 JJ=1, (NDMQ+3 ) 

591 HFRIC(J, JJ)=0.0 
590 CONTINUE 

C ** "No heat in" marching stage, section 1 ** 
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C Laser power off, thermal mesh continues on for MGXMAX more elements in x 
direction. 
C CMT, Jan. 02. 

C UNLESS all nodal temperatures in thermal mesh are below solidification level, in 
which case 
C calculation moves on to next scan. Time saver. CMT, Feb. 02. 

C Stop recording change in KX, most new material will remain unsintered. CMT, 
Jan. 02. 

WRITE(6, *)'MARCHING COOLDOWN PHASE. MGXMAX IS...... MGXMAX 
DO 595 J-1, MGXMAX 

C New lines to save some fruitless time in marching cooldown phase. 

TMAX=0.0 
DO 597 JJ=1, NODT3 
IF(DT(JJ). GT. TMAX) TMAX=DT(JJ) 

597 CONTINUE 

IF(TMAX. LT. TDWELL) THEN 
IF(J. GT. MAXCOOL) THEN 

MACOSCAN=ISLICE 
MACOLAY=I 
MAXCOOL-J 

END IF 
TEXT1-'ALL THERMAL MESH TEMPERATURES LIE BELOW' 
TEXT2-' TDWELL. MOVING TO NEXT SCAN' 
WRITE(6, *)TEXT1, TEXT2 
WRITE(6, *)' 
GO TO 610 

END IF 
IF(J. EQ. MGXMAX) ICOOLED-0 

C End of new lines. 

KX-KX-1 
NELSTRT-MFEG(KY, KX, KZ) 
NSTART=MCNGLB(NELSTRT, 1) 

C NSTART-NSTART-1 
C NELSTRT=NELSTRT-1 

C Added layer/ scan number variables to printout per cool step, for diagnosis. 
CMT, 31.01.02 

WRITE(6,2620)'STARTING COOL STEP ', I, ' \', ISLICE, ' \', J 
2620 FORMAT(A, I4, A, I4, A, I4) 

C ** "No heat in" marching stage, end of section 1 ** 

C Dwell stage code, section 1 ** 

C DO 592 J=1, NELT3 
C GU(J, 1)=0.0 
C592 CONTINUE 
C IDWELL=-1 
C increase the time step here - reduce it again before exit at 610 CONTINUE 
C DTIME=2*DTIME 
C595 CONTINUE 
CI DPIE LL= I DWELL+1 

C ** Dwell stage code, end of section 1 
C 

CALL RETRIEVE(NSTART, NELSTRT, NLINE1, NLINE2, N6) 
C 

DO 596 JJ=I, NODT3 
596 DTOLD(JJ)=DT(JJ) 

C 
IFAIL=O 
CALL HEAT(THETA, DTIME, NLINE1, NLINE2, NMQ, TDEGO, RMAX, 

&TGAP, TSOL, TMELT, TLAT, IFAIL, DPA, DPN) 
C 
C 

CALL SINTER(NELSTRT, DTIME, RMAX) 
C NOW STORE ALPHA IN ALPHAOLD FOR NEXT TIME STEP CYCLE 

DO 587 JJ=1, NODT3 
587 ALPOLD(JJ)=ALPHA(JJ) 
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C 
CALL SHRINKAGE(KZ, KX, KY, MGZMAX, MGXMAX, MGYMAX) 

C ** "No heat in" marching stage, section 2 ** 

595 CONTINUE 

C ** "No heat in" marching stage, end of section 2 ** 

C ** Dwell stage code, section 2 ** 

C TMAX=0.0 
C DO 597 JJ=I, NODT3 
C IF(DT(JJ). GT. Tb1AX) TMAX=DT(JJ) 
C597 CONTINUE 
C IF(TMAX. GT. TDWELL) GO TO 595 
C TMDWELL=DTIME*IDWELL 
C WRITE(6, *)'TINE (SEC) IN DWELL STAGE IS ', TMDWELL 

C DTIME=0.5*DTIME 
C 
C ** Dwell stage code, end of section 2 ** 

610 CONTINUE 
600 CONTINUE 

C 
C` establishing ranges of global powder bed elements to be displayed in output 

routines. Earlier, the variables 
C* KXMAX, KXMIN and similarly for y and z have established extreme global element 
numbers at origin of thermal 
C* mesh. Extreme values of the centre of the heat source are then KXM X/MIN+MGX, 

IKYMAX/MIN, KZMAX/MIN+NGZ. The 
C* range of global data to print out/visualise may span from say D24IN to 
KXMAk+MGXMAX, from KYMIN to 
C* KYMAX+MGYMAX, from KZMIN to KZMAX+MGZMAX 

NXMIN=KXMIN 
NXMAX=KXMAX+MGXNAX 

NYMIN=KYMIN 
NYMAX=KYMAX+MGYMAX 

NZMIN=KZMIN 
NZMAX=KZMAX+MGZMAX 

C 
C global element numbers of the heat source centre at the last time step are 

NXLAST=KX+MGX 
NYLAST=KY 
NZLAST=KZ+MGZ 

CALL OUTPUT(Nl, N4, N6, DTEND, ALPEND, TLAYER, IFAIL) 

C Added lines to report on maximum number of cool steps required before moving to 
next scan. 
C CMT, 10.02.02 

IF(ICOOLED. EQ. O) THEN 
WRITE(6, *)'ONE OR MORE SCANS DID NOT FULLY SOLIDIFY, EVEN IN' 
WRITE(6, *)'MGXMAX COOL STEPS' 

END IF 
IF(ICOOLED. EQ. 1) THEN 

WRITE(6, *)'MAXIMUM NO. OF COOL STEPS BEFORE' 
WRITE(6,2650)'FULL SOLIDIFICATION: ', MAX000L 
WRITE(6,2655)'FOR SCAN I. D. ', MACOLAY, ' \', MACOSCAN 

END IF 

2650 FORMAT(A, I4) 
2655 FORMAT(A, I4, A, I4) 

C Added lines to report processor time at end, elapsed program time. CMT, 31.01.02 

CALL CPU_TIME(TIME2) 
PRINT *, 'PROCESSOR TIME AT END, ', TIME2 
ELAPSED= (T IME2 -TIMET) / 60 
PRINT *, 'PROGRAM TIME ELAPSED WAS ', ELAPSED, ' MINS' 

650 CONTINUE 
C 

STOP 
END 
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C 

[Break in code] 
c------------------------------------------------------------------------ 
C 

SUBROUTINE OUTPUT(N1, N4, N6, DTEND, ALPEND, TLAYER, IFAIL) 
c 
C *** OUTPUTS NODAL & ELEMENT SOLUTIONS t** 
C 

C creation of output from global data, for plotting: for each global element, 
C calculate its centre of volume and relate its density to that point; also 
calculate 
C average global element temperature (it could have been done alreasdy for TELGLOB 
but 
C hasn't been. 

C ADDED THE 4 LINES OF CODE BELOW. TELLS MATLAB HOW TO READ RHOPLOT DATA. 
C NXX, NYY, NZZ ARE NO. OF NODES FOR WHICH DATA IS STORED. 0.0,0.0 AIDS MATLAB 
IMPORT. 
C CMT, 06.12.01. 

C NEW FORMAT LINES- 2660,2670,2680. DESIGNED TO REDUCE SIZE OF RHOPLOT, 
RHOPLOTX/Z FILES. 
C CMT, 10.02.02. 

NZZ=NZMAX-NZMIN+1 
NYY=NYMAX-NYMIN+1 
NXX=NXMAX-NXMIN+1 

C 
WRITE(14, *) NXX, NYY, NZZ, 0.0,0.0 

DO 40 K=NZMIN, NZMAX 
DO 50 I=NYMIN, NYMAX 
DO 60 J=NXMIN, NXMAX 
M3=MFEG(I, J, K) 
NODEI=MCNGLB(513,1) 
NODE2=MCNGLB(M3,2) 
NODE3=MCNGLB(M3,3) 
NODE4=MCNGLB(M3,4) 
N'ODE5=MCNGLB(M3,5) 
NODE6=MCNGLB(M3,6) 
NODE7=MCNGLB(M3,7) 
NODE8=MCNGLB(M3,8) 

c 
XSUM=XGLOB(2*NODE1-1)+XGLOB(2*NODE2-1)+XGLOB(2*NODE3-1) 

XSUM=XSUM+XGLOB(2*NODE4-1)+XGLOB(2*NODE5-1)+XGLOB(2*NODE6-1) 
XAV=(XSUM+XGLOB(2*NODE7-1)+XGLOB(2*NODEB-1))/8.0 

YSUM=XGLOB(2*NODE1)+XGLOB(2*NODE2)+XGLOB(2*NODE3) 
YSUM=YSUN+XGLOB(2*NODE4)+XGLOB(2*NODES)+XGLOB(2`NODE6) 
YAV=(YSUNNS+XGLOB(2*NODE7)+XGLOB(2*NODEB))/8.0 

ZSUM=ZGLOB(NODE1)+-ZGLOB(NODE2)+ZGLOB(NODE3) 
ZSUM=ZSUM+ZGLOB(NODE4)+ZGLOB(NODES)+ZGLOB(NODE6) 
ZAV=(ZSUM+ZGLOB(NODE7)+ZGLOB(NODES))/8.0 

RHOAV=RHOGLOB(N3) 
DTSUt4=DTGLOB(NODE1)+DTGLOB(NODE2)+DTGLOB(NODE3) 

DTSUM=DTSUM+DTGLOB(NODE4)+DTGLOB(NODE5)+DTGLOB(NODE6) 
DTAV=(DTSUM+DTGLOB(NODE7)+DTGLOB(NODES))/8.0 

WRITE(14,2660) XAV, YAV, ZAV, RHOAV, DTAV 
60 CONTINUE 
50 CONTINUE 
40 CONTINUE 

C 
2660 FORMAT(F6.3, F7.4, F7.3, F7.1, F6.0) 
C 
C 

C , rx, r*xxxx*xxxrxx, rx*xxxxxxxxx*xx, rxx, rxx*xxxxx, rx x, ý"x xý 

C 
C NEW SECTION WRITTEN BY NV FOR BLADE VERSION, GSHARP-COMPATIBLE OUTPUT 
C creation of output from global data, for plotting: for each global element, 
C calculate its centre of volume and relate its density to that point 
C 

PRINT ", 'WRITING FILE RHOPLOTZ' 

C 
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NZZ=NZMAX-NZMIN+1 
NYY=NYMAX-NYMIN+1 
NX: C=NXMAX-NXMIN+1 

WRITE(15, *) NXX, NYY, NZZ 
NZIDEN=O 
DO 43 I: =NZMIN, NZMAX 

DO 53 I=NYMIN, NYMAX 
DO 63 J=NXNTN, NXNAX 

M3=MFEG(I, J, K) 

NODEI=MCNGLB(M3,1) 
NODE2=MCNGLB(M3,2) 
NODE3=MCNGLB(M3,3) 
NODE4=MCNGLB(M3,4) 
NODE5=MCNGLB(M3,5) 
NODE6=MCNGLB(M3,6) 
NODE7=MCNGLB(M3,7) 
NODE8=MCNGLB(M3,8) 

XSUM=XGLOB(2*NODE1-1)+XGLOB(2*NODE2-1)+XGLOB(2*NODE3-1) 
XSUM=XSUM+XGLOB(2*NODE4-1)iXGLOB(2*NODE5-1)+XGLOB(2*NODE6-1) 
XAV=(XSUDN+XGLOB(2*NODE7-1)+XGLOB(2*NODES-1))/8.0 
YSUM=XGLOB(2*NODE1)+XGLOB(2*NODE2)+XGLOB(2*NODE3) 
YSUM=YSUil+XGLOB(2*NODE4)+XGLOB(2*NODE5)+XGLOB(2*NODE6) 
YAV=(YSUNI+XGLOB(2*NODE7)+XGLOB(2*NODE8))/8.0 
ZSUM=ZGLOB(NODE1)+-ZGLOB(NODE2)+ZGLOB(NODE3) 
ZSUN=ZSUM+ZGLOB(NODE4)+ZGLOB(NODE5)+ZGLOB(NODE6) 
ZAV=(ZSUM+ZGLOB(NODE7)+ZGLOB(NODEB))/8.0 
RHOAV=RHOGLOB(M3) 

C 
IF(NZIDEN. EQ. K)GOTO 5551 

WRITE(15, *) ZAV, ' 0.0 0.0' 
NZIDEN=K 

5551 CONTINUE 
C 

WRITE(15,2670) XAV, YAV, RHOAV 
63 CONTINUE 
53 CONTINUE 
43 CONTINUE 

C 
C 

PRINT *, 'PfRITING FILE RHOPLOTX' 

WRITE(16, *) NZZ, NYY, NXX 
NXIDEN=O 
DO 64 J=NXMIN, NXMAX 

DO 54 I=NYMIN, NYMAX 
DO 44 K=NZMIN, NZMAX 

M3 =MFEG (I , J, K) 
NODE1=MCNGLB(M3,1) 
NODE2=MCNGLB(M3,2) 
NODE3=MCNGLB(M3,3) 
NODE4=MCNGLB(M3,4) 
NODE5=MCNGLB(M3,5) 
NODE6=MCNGLB(M3,6) 
NODE7=MCNGLB(M3,7) 
NODE8=MCNGLB(M3,8) 

XSUM=XGLOB(2*NODE1-1)+XGLOB(2*NODE2--1)+XGLOB(2*NODE3-1) 
XSUM=XSUM+XGLOB(2*NODE4-1)+YGLOB(2*NODE5-1)+XGLOB(2*NODE6-1) 
XAV=(XSUM+XGLOB(2*NODE7-1)+XGLOB(2*NODE8-1))/8.0 
YSUM=XGLOB(2*NODE1)+XGLOB(2*NODE2)+XGLOB(2*NODE3) 
Y: 3AM=YSUNl+XGLOB(2*NODE4)+XGLOB(2*NODE5)+XGLOB(2*NODE6) 
YAV=(YSUM+XGLOB(2*NODE7)+XGLOB(2*NODE8))/8.0 
ZSUN=ZGLOB(NODE1)+ZGLOB(NODE2)+ZGLOB(NODE3) 
ZSUM=ZSUM+ZGLOB(NODE4)+ZGLOB(NODE5)+ZGLOB(NODE6) 
ZAV=(ZSUM+ZGLOB(NODE7)+ZGLOB(NODEB))/8.0 
I2HOAV=RHOGLOB(M3) 

IF(NXIDEN. EQ. J)GOTO 5552 
WRITE(16,2680)'$LICE X-', XAV 
NXIDEN=J 

5552 CONTINUE 
C 

WRITE(16,2670) ZAV, YAV, RHOAV 
44 CONTINUE 
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54 CONTINUE 
64 CONTINUE 

C 
2670 FORMAT(F6.3, F7.4, F7.1) 
2680 FORMAT(A, F6.3) 
C 
C END OF NV SECTION 

C 
C 
C* 110 should be (nl-1F5. 

110 FORMAT (21F5.0) 
C* 111 should be (n6-1F5. 

111 FORMAT(1$F5.0) 
C* 115 should be (nlF6.0) 

115 FORMAT (22F6.0) 
C* 116 should be (n6F6.0) 

116 FORMAT(19F6.0) 
C* 117 should be (nlF6.2) 

117 FOR1, MAT(22F6.2) 
C* 116 should be (n6F6.2) 

118 FORMAT(19F6.2) 
C 120 FORMAT (20F6.3) 
C* 121 should be (n6F6.3) 

121 FORMAT (19F6.3) 
C* 130 should be (n1F6.2) 

130 FORMAT (22F6.2) 

0) 
Of 

RETURN 
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Appendix D Modified GSharp 2D Visualisation Script 

# d: /Program Files/Gsharp/bin/Gsharp. exe 
# ... Neri Volpato, Date: 22/05/00 
# ... Converted by Chris Taylor, starting 24/09/01 
# ... Version for 1x slice, x_165_lmesh5 

# ... "lmesh4" as opposed to "lmesh2/3": less contour colours (only 3 
# ... greyscale, for easy counting of squares), and use of "xmesh_b"/ 
# ... "ymesh_b"- used for counting squares. 
# ... Also changed x, y, aspect to 1.0: need x and y 
# ... pixels-per-millimetre ratio (jpegs) to be the same, acheived with z=0.178. 

# ... "lmesh" version has a custom mesh superimposed, to see dimensions 
# ... more clearly. Good for reporting and for first estimates of track depth etc. 
# ... Mesh line positions set using "xmesh_b"/" ymesh_b" dat files in "Output\". 
# ... CMT, 18.12.01. 

# ... New push: get contour colour limits set in more relevant manner. 
# ... Want 1 limit just above powder density (4356), the rest around 7500. 
# ... Considered removing myclas (slice density max. / min. split into 10 
# ... via RANGE), replacing with my own n density values. Once this was 
# ... working, it proved the best method. 

# ... Also tried using XuNCalculationMode/ XuMaxLimit/ XuLimitStep. 
# ... For more on these, see GSharp User's Guide pdf (help section). 
# ... OK for constant class intervals. New method more flexible however. 

# ... Easiest thing to do was override myclas values, by using 
# ... command "XuNclassLimits[1]=4358.0000" (for example). 
# ... But, only seems to work if specified values are approx. what they would 
# ... be if set automatically (i. e. approx. evenly spaced between 4356/7850). 
# ... Tried setting limits 4358,7100,7200,... Wouldn't work, "Not ascending". 
# ... CMT, 16.01.02. 

# ......................................................... 
# ... Enter data file name and location; Slice numbers ... # ... to be plotted; Set 'myclas' to layer 1 (only relevant layer). 

# ... If changing slice plane (YZ/ ZY): ... 
# ... Change fname and filesource below, e. g. OnnRhoplotx/z; 

... # ... ( Rhoplotx = YZ plane, Rhoplotz = XY plane. ) 
... # ... Set 'legendx' text, and also x/z Limits ... 

# ......................................................... 

# ***** Reset GSharp **************** 

reset all; 

# ***** Enter data file name and location, graph title **************** 

fname="E: /Fortran/Output Files/165Rhoplotx"; 

filesource="165Rhoplotx"; 

#fname="E: /Fortran/THCC Mod/Output Files/016bRhoplotz"; 

#filesource="016bRhoplotz"; 

# ***** Enter the X (Z) slice numbers to be plotted (2 and 3 irrelevant here) *** 

#44: found to be centre of sections in x direction (using 3-section script) 

n1=44; 

n2=24; 
n3=69; 

# ********** Enter limits for slice Z (ZY) ************* 
lxMin=3.0; 
lxMax=21.0; 
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# ********** Enter limits for slice X (XY) ************** 
#lxMax=5.0; 
#lxMin=2.2; 

lyMax=0.6; 
lyMin=2.0; 

# ******* Choose 'legendx' text according to the case *** 

legendx = "z (Length) mm"; 
#legendx = "x (Length) mm'; 

# **** Lines added for more spaced graph mesh, CMT 17.12.01 
# **** Change these two files to get a different overlaid mesh. 
# **** Could have a mesh specific to each slice (e. g. 050xmesh). 

import_report("E: /Fortran/Output Files/xmesh_b. dat"); 
import_report("E: /Fortran/Output Files/ymesh_b. dat"); 

# ......... Read the Data from 'fname' ................... 
# ......... "nx ny nz" is first line of rhoplotx/z, tells how many nodes ..... 

import_ascii(fname, 1,1,,,, "nx ny nz"); 

# ......... "t" is no. of nodes in 1 x/z slice ................... 

t=(nx*ny); 

# ......... "linest/ linend": where to start and stop reading for x/z slice ... 

linend=(t*nl)+nl+l; 
linest=linend-t+l; 

# ......... Importing title ................... 

import_ascii(fname, (linest-l), (linest-1) 
,,,, "slicezl", "text"); 

# ......... Importing slice data 
................... 

import_ascii(fname, linest, linend,,,, "xi yl densityl", "real",,,, "vertical"); 

linend=(t*n2)+n2+1; 
linest=linend-t+l; 

import_ascii(fname, (linest-l), (linest-1),,,, "slicez2", "text"); 

import_ascii(fname, linest, linend,,,, "x2 2 densit 2" " Yy real",,,, "vertical"); 

linend=(t*n3)+n3+1; 
linest=linend-t+l; 

import_ascii(fname, (linest-1), (linest-1),,,, "slicez3", "text"); 

import_ascii(fname, linest, linend,,,, "x3 y3 density3", "real",,,, "vertical"); 

# ............. New lines added to clip X and Y data ............. 

yl = if(xl>lxNax undef, yl); 
densityl = if(xl>lxMax , undef, densityl); 
xl = if(xl>lxMax undef, xl); 

yl = if(xl<lxMin undef, yl); 
densityl = if(xl<lxMin , undef, densityl); 
xl = if(xl<1xMin undef, xi); 

xl = if(yl>lyMin undef, xi); 
densityl = if(yl>lyMin , undef, densityl); 
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yl = if(yl>lyMin undef, yl); 

newxl = mask(xl, xl<>undef and yl<>undef); 
newyl = mask(yl, xl<>undef and yl<>undef); 

ndensityl = mask(densityl, xl<>undef and densityl<>undef); 

y2 = if(x2>lxMax undef, y2); 
density2 = if(x2>lxMax , undef, density2); 

x2 = if(x2>lxMax undef, x2); 

y2 = if(x2<lxMin undef, y2); 
density2 = if(x2<lxMin , undef, density2); 
x2 = if(x2<lxMin undef, x2); 

x2 = if(y2>lyMin undef, x2); 
density2 = if(y2>lyMin , undef, density2); 

y2 = if(y2>lyMin undef, y2); 

newx2 = mask(x2, x2<>undef and y2<>undef); 
newy2 = mask(y2, x2<>undef and y2<>undef); 
ndensity2 = mask(density2, xl<>undef and density2<>undef); 

y3 = if(x3>lxMax undef, y3); 
density3 = if(x3>lxMax , undef, density3); 
x3 = if(x3>lxMax undef, x3); 

y3 = if(x3<lxMin undef, y3); 
density3 = if(x3<1xMin , undef, density3); 
x3 = if(x3<lxMin undef, x3); 

x3 = if(y3>lyMin undef, x3); 
density3 = if(y3>lyMin , undef, density3); 
y3 = if(y3>lyMin undef, y3); 

newx3 = mask(x3, x3<>undef and y3<>undef); 
newy3 = mask(y3, x3<>undef and y3<>undef); 
ndensity3 = mask(density3, xl<>undef and density3<>undef); 

# ............. End, lines added to clip X and Y data ............. 

# ****** Set 'myclas' as n values between min. /max. density for slice. ******* 

# myclas=range(ndensityl, 10); 
myclas = 4358//7550; 

set displayoption 
XuNautoApply = false, 
XuNautoRepaint = true, 
XuNgraphPicking = true 

#xgridl = range(xl, 200); 
#ygridl = range(yl, 100); 
#gridl = bilinear(xl, yl, densityl, xgridl, ygridl); 
xgridl = range(newxl, 200); 
ygridl = range(newyl, 100); 
gridl = bilinear(newxl, newyl, ndensityl, xgridl, ygridl); 
gridlb = bilinear(newxl, newyl, ndensityl, xmesh_b, ymesh_b); 

#xgrid2 = range(x2,200); 
#ygrid2 = range(y2,100); 
#grid2 = bilinear(x2, y2, density2, xgrid2, ygrid2); 
xgrid2 = range(newx2,200); 
ygrid2 = range(newy2,100); 
grid2 = bilinear(newx2, newy2, ndensity2, xgrid2, ygrid2); 
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#xgrid3 = range(x3,200); 
#ygrid3 = range(y3,100); 
#grid3 = bilinear(x3, y3, density3, xgrid3, ygrid3); 
xgrid3 = range(newx3,200); 
ygrid3 = range(newy3,100); 
grid3 = bilinear(newx3, newy3, ndensity3, xgrid3, ygrid3); 

set page-1 
XuNsize = (164.775,63.3219) mm 

#create Viewport page_1. Density 
#( XuNanglelnXYPlane = 236 deg, 
# XuNdistanceFactor = 6.53378, 
# XuNelevationPlane = 14.37 deg, 
# XuNfirstDiagonalPoint = (5,8) %, 
# XuNfocusHeight = 47.2973, 

# XuNframeWidth = 0.1 ten, 
# XuNsecondDiagonalPoint = (92,90) 
# XuNxRatio = 1.16, 
# XuNyRatio = 1.63, 
# XuNzRatio = 0.347 
# ); 
create Viewport page_1. Density 

XuNanglelnXYPlane = 180 deg, 
XuNdistanceFactor = 5.5, 
XuNelevationPlane = 0.0 deg, 
XuNfirstDiagonaiPoint = (6,8) %, 
XuNfocusHeight = 51.0, 
XuNframeWidth = 0.0 mm, 
XuNsecondDiagonalPoint = (93,92) 
XuNxRatio = 1.0, 

# XuNyRatio = 1.63, 
XuNyRatio = 1.0, 
XuNzRatio = 0.178 

# ............. FIRST GRAPH ........................ 

create Domain page_l. Density. domain_1 
( XuNpriority = 0, 

XuN3DPlane = true, 
XuNclassType = "limits", 

# Set number of contour boundaries, and "myclas" (set manually above). 
XuNnumValues = 2, 
XuNclassData = "myclas", 

# XuNcalculationMode = "maxStep", 
# XuNmaxLimit = 7800.0, 
# XuNlimitStep = 100.0, (Good for regular intervals, but now have a better 
way. ) 

# XuNclassLimits[1]=4358.0000, (Won't work when "maxStep" set, & obsolete! ) 

XuNgraphClipping = true, 
XuNlevel = 0.635135, 
XuNlocation = "top", 
XuNmirrorX = true, 
XuNplane = "yz", 

# RGB values from 0 to 100. Didn't like interval 4 default colour. 
XuNrgbValues[1)=(50,50,50), 
XuNrgbValues[2]=(80,80,80), 
XuNrgbValues[3]=(100,100,100), 

XuNxMaximum = lxMax, 
XuNxMinimum = lxMin, 
XuNyMaximum = lyMax, 
XuNyMinimum = lyMin 

set page_1. Density. domain_l. legend 
#( XuNentryHeight = 5.61538 

XuNentryHeight = 4.11538 
XuNlegendOrigin = (0.0,0.0) %, 
XuNobjectEnabled = true 
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create Graph page_1. Density. domain_i. graph_1 
XuNcolorDataGrid = "grids", 
XuNgraphType = "2DContour", 
XuNregionBorderCells = "contoured", 
XuNxData = "xgridl", 
XuNyData = "ygridi" 

create Note page_l. Density. domain_l. note_l 
XuNexpansion = 1.55405, 
XuNfont = "cart", 
XuNheight = 5.0 %, 
XuNhorizontalJustification = "left", 
XuNposition = (68.0,128.0) 

# XuNrotation = 0.0 deg, 
XuNrotation = 0.0 deg, 
XuNskewing = 90.0 deg, 
XuNtext = "slicezl" 

set page_l. Density. domain_i. xaxisl 
(XuNaxle = false 

set page_1. Density. domain_l. yaxisl 
(XuNaxle = false 

set page_l. Density. domain_l. xaxis2 
XuNaxisLabelsHeightActual = 7.0 %, 
XuNaxisTextHeight = 8.5 %, 
XuNaxisTextText = "legendx", 
XuNaxle = true 

set page_l. Density. domain_l. yaxis2 
XuNaxisLabelsHeightActual = 7.0 $, 
XuNaxisLabelsScale = "fine", 
XuNaxisLabelsTrailingZeros = "truncated", 
XuNaxisTextHeight = 6.0 %, 
XuNaxisTextText = "y (Depth) mm", 
XuNaxle = true 

............. OVERLAID GRAPH ........................ 
**** Overlay a less intense grid pattern than original graph provides. 
**** CMT, 17.12.01 

create Domain page_l. Density. domain_2 
XuNlst2DXAxis = false, 
XuNlst2DYAxis = false, 
XuNpriority = 0, 
XuN3DPlane = true, 
XuNclassData = "myclas", 
XuNclassType = "limits", 
XuNgraphClipping = true, 
XuNlevel = 0.635135, 
XuNlocation = "top", 
XuNmirrorX = true, 
XuNplane = "yz", 

# XuNrgbValues[2]=(0.00,41.64,100.00), 
XuNxMaximum = lxMax, 
XuNxMinimum = lxMin, 
XuNyMaximum = lyMax, 
XuNyMinimum = lyMin 

create Graph page_l. Density. domain_2. graph 
XuNgraphType = "2DContour", 
XuNcontourShading = false, 
XuNcolorDataGrid = "gridlb", 
XuNmesh = true, 
XuNxData = "xmesh_b", 
XuNyData = "ymesh_b" 

1; 
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# ********** Title for Graphs ************* 

create Note page_1. Density. domain_i. note_2 
XuNheight = 8.0 %, 
XuNposition = (50, -15)%, 
XuNtext = "Density v Position in YZ Plane" 

create Note page_1. Density. domain_l. note_3 
XuNheight = 8.0 %, 
XuNposition = (50, -30)%, 
XuNtext = "filesource" 

# .................. 
#create Title page_l. Density. title_1 
#( XuNheight =4%, 
# XuNjustification = "right", 
# XuNtitleText = "slicezl", 
# XuNverticalBase = (350.494,79.3113) % 
# ); 
#create Title page_1. Density. title_2 
#( XuNheight =4%, 
# XuNjustification = "right", 
# XuNtitleText = "slicez2", 
# XuNverticalBase = (94.7,92.513) % 
# ); 
#create Title page_1. Density. title_3 
#( XuNheight =4%, 
# XuNjustification = "right", 
# XuNtitleText = "slicez3", 
# XuNverticalBase = (19.194,85.3113) % 
# ); 

# ................. 
#8888888888888 
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Appendix E Matlab 3D Visualisation Script 

% Read DTAV from Rhoplot into vectors for plotting 
% IsoTemp reads x, y, z, size from Rhoplot, modification of IsoSurf 
% Chris Taylor, 12.01.02 

% 
% 

1 number to change each time: RhoNo. Graph title changes automatically. 

clear; 

% Change RhoNo each run 
RhoNo=173; 

RhoplotNo = Int2str(RhoNo); 
echo; 
PlotData = [RhoplotNo 'Rhoplot'] 
echo; 

Graphtitle = ['stmed3dgmres Temperature Plot, Source Rhoplot' RhoplotNoj; 

% Set file path 
load c: \temp\Rhoplot -ascii; 
% e. g. c: \temp\035Rhoplot -ascii 

%CarryThrough = [PlotData '(1,1)']; 
xtot = Rhoplot(1,1); 
ytot = Rhoplot(1,2); 
ztot = Rhoplot(1,3); 

x= zeros(xtot, ytot, ztot); 
y= zeros(xtot, ytot, ztot); 
z= zeros(xtot, ytot, ztot); 
temperature = zeros(xtot, ytot, ztot); 

for k=1: ztot 
for j=1: ytot 

for i=1: xtot 
n= ((k-1)*ytot*xtot)+((j-1)*xtot)+i+1; 
x(i, j, k) = Rhoplot(n, 1); 
y(i, j, k) = Rhoplot(n, 2); 
z(i, j, k) = Rhoplot(n, 3); 

% rho(i, j, k) = Rhoplot(n, 4); 
temperature(i, j, k) = Rhoplot(n, 5); 

end 
end 

end 

clear Rhoplot; 

%smoothrho = smooth3(rho, 'box', 5); 

structurel=isosurface(x, y, z, temperature, -800.0); 

%structure=isosurface(x, y, z, rho, 7500.0); 
%pat= 
patch(structurel, 'FaceColor', 'red', 'EdgeColor', 'none'); 
%alpha(0.5); 

structure2=isosurface(x, y, z, temperature, 1000.0); 
%pat= 
patch(structure2, 'FaceColor', 'yellow', 'EdgeColor', 'none'); 
%alpha(0.2); 
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%isonormals(x, y, z, rho, pat); 
%set(pat, 'FaceColor', 'red', 'EdgeColor', 'none'); 

%colormap hot; 
daspect([1 1 1]); 
axis tight; 
box on; 
view(300,340) 
%view(90,180); 
%view(135,315); 
camzoom(1.0); 
camproj perspective; 
camlight; 
lighting gouraud; 
lightangle(120,120); 

title(Graphtitle, 'FontSize', 16); 
xlabel('x Axis (Scan Direction)', 'FontSize', 10); 
ylabel('y Axis (Depth)', 'FontSize', 10); 
zlabel('z Axis (Rastering Direction)', 'FontSize', 10); 



Appendix F Record of Fortran Model Parameters 

Table of Fortran Model Parameters 17.01.02 Page 1 of 3 

Testing and process mapping. Parts for display purposes are not tabulated. 

Run No. Scan Scan Power Scan Absorp Run Notes 
No. Scans Length Spacing (W) Speed tance 'Pinie 

(uni) (x d/6) (mm/s) (Range) (min) 

01 2 2 10 125 2 0.92 - Initial 
02 2 2 10 125 2 0.2 - tests 

04 2 2 10 125 2 0.4 - 

07 1 2 5 125 2 0.4 - 

09 1 0.5 5 125 2 0.4 - 
0.5 Y 

14 1 0.5 5 125 2 0.4 - 

17 1 0.8 5 125 2 0.4 - 

24 2 2 5 125 2 0.4 - modifi- 
' cati non 

26 2 2 5 125 2 0.4 - 
5 60 '. Sing 

32 2 2 5 125 2 0.4 - Tine \ersion 

39 10 10 3 125 2 
MGM 

0.4 - shape 

47 5 4 5 125 2 0.4 - 

49 10 5 3 125 2 0.4 - fol- 
51 11) 5 3 112.5 2 0.4 - 

yr 747 1,11 1 
55 10 5 3 112.5 2 0.4 - definition 

10 arcli. g 
57 1U 5 3 112.5 2 0.4-0.6 - cooldown, 

10 ý r ý, 112 w5 x ý_,. 01-Q' friabl 
59 11) 10 3 37.5 0 (1.1-0.9 - ( any' i 

10. 
. 
75 12 01-4.9 Thermal 

65 1O 10 3 75 1- U. 1-0.9 - ni"ýIi 

72 10 5 5 40 0.5 0.2-0.4 - b2 
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Table of Fortran Model Parameters 30.01.02 Page 2 of 3 

Testing and process mapping. Parts for display purposes are not tabulated. 

Run No. Scan Scan Power Scan Absorpta Run Notes 
No. S cans Length Spacing (W) Speed live Time 

(mm) (x d/6) (mni/s) (Range) (min) 
73 10 10 5 40 0.5 2-0.4 - laýrr. 
74 ja 10, i= n 2 
75 10 10 3 100 1.0 0.2-0.4 - 
76' 10 10 
77 10 10 5 40 0.5 0.4-0.5 - tlýrural 
80 10 10 1. 

. .... 
M11 WL. 

.. _. 
F . 

" 0.4-0 5 x node;: 
81 10 10 3 58 0.5 0.4-00 - in front 
82 10 10 3 190 4.0 0.4-0.5 ý of laser 
83 10 II) 3 8ý 1.0 0.2-0.3 - hraný 
84 10 10 3 120 6.0 i 40.2-0.3 
85 10 10 3 155 12.0 0.2-0.3 - 4 more 
86 10 5' PT, 
87 10 10 3 155 12.0 0.4-0.5 267 tlwrinal 
88 10 .., 18 

. 0-- 
_- mesh 

89 89 10 10 3 200 12.0 0.4-0.5 287 nudes, 

91 10 10 3 240 6 0.4-0.5 350 s aced 
921, Iu 
93 10 10 3 240 6 0.4-0.5 348 I'n css 
94 10 , 5äIf ramaPPºng 
95 10 10 3 44 1 0.86-1.0 381 acti\11y 

97 10 10 5 100 6 0^5-1.0 316 

99 7 10 9 100 4 0.55-1.0 238 
101. ̀ r LIU, 
102 7 10 9 120 6 0.4-1.0 140 marchim-, 
103 cooIdoýý`n, 
104 10 10 3 40 2 0.75-1.0 197 lurn1a1tcd 
ýNs" .. 

"aý "" ^- ^ a, � 

vc ýllitlit +.. 

dl... RhQP .a, 

106 10 10 9 120 6 0.2-0.5 148 Rho lot 
VTO La 

108 10 10 3 50 4 0.4-1.0 141 
JatýL 

yr 109. 

- . ý! 
,.. 

110 10 10 3 20 2 0.5-1.0 104 
5 1.0 

112 10 10 3 40 4 0.75-1.0 172 
, i13 10 :, 
1 14 10 10 3 120 18 0.583-1.0 159 
115 10 

. -....... 110 10 10 3 50 0.5 0.8-l, l) 397 
0.99. 

ti 118 10 10 9 100 12 0.8-1.0 187 

120 10 10 9 100 6 0.8-1.0 215 
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Table of Fortran Model Parameters 25.05.02 Page 3 of 3 

Testing and process mapping. Parts for display purposes are not tabulated. 

Run 
No. 

No. 
Scans 

Scan 
Length 
(mm) 

Scan 
Spacing 
(x d/6) 

Power 
(NV) 

Scan 
Speed 
(mm/s) 

Absorpta 
nce 

(Range) 

Rull Notes 
'l'ink 
(min) 

121 10 lO 9 60 1 (). 000- 1.0 272 
122 10 10 9 60 1 0.75-0.92 270 
123 10 1O 9 90 4 0.778-1.0 221 
124. 10 10 5 40 2 0.75-1.0 200 
125 10 10 5 20 2 LU 104 
126 10 10 5 40 6 0.75-1.0 128 , - 127 1U 1O 5 80 1 0.75-1.0 2 
128 10 10 80 0.75-1.0 240:,..... ` 
131 10 10 3 140 50 0.71-1.0 91 
132 10.:,.. 10 lA 75- 
133 10 1O 3 200 50 0.75-1.0 147 
134 10 10 140 '0.71-1.0 153' 
135 1O 1O 3 `'UO 30 (). S-I. () IO3 
136 10 10 150 40, 

,. 
0.8-1.0 135 

137 10 1l) 3 125 b 1). 8-1.0 224 
138 10, 

_.. 
10 

139 10 10 3 184 50 0.902-1.0 10() 
140 to .; " i6 111 011=77771-M . 

D'68-1.0 277 
141 1U II) 3 126 30 0.905-1.0 155 
142 10 10 200'15' 0.85-1.0 129 
143 1O 1U 3 200 12 0.85- 1.0 211 
144 
145 10 10 3 140 40 0.929-1.0 145 
146 10 +; 47- 
147 10 10 3 180 7 0.75-1.0 229 
148 10 15-1.0 229 
149 10 10 5 53 1 ... U. ti0S- l. O , 274 

.:: 
150 ;,.. ;. Qý82-1-1.0 174 
151 10 10 5 200 2 0.4 3-0. -17 2 38 
1,, '161L 
174 1U 10 3 100 30 0.8-0.9 93 
175 10 81 -- 
176 10 10 5 40 4 0.625-1.0 140 
177 , 6(i7-1 U_ 
178 10 10 9 50 12 0.8-1. O 116 
7 

180 10 10 9 35 1 0.857-1.0 243 
181 ; , 

"'' 
182 10 10 9 40 6 0.75-1.0 132 

. 
83r ' MI75- 

1.0 
184 10 10 9 25 4 0.8- 1.0 116 
185 200 $ý 0.8-1.0 1 
186 10 10 9 200 5O 0.8-1.0 143 

190 10 10 5 200 60 0.8-1.0 111 
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