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Abstract 

In this thesis a new robustness analysis for model-based Iterative Learning 
Control (ILC) is presented. ILC is a method of control for systems that are 

required to track a reference signal in a repetitive manner. The repetitive 

nature of such a system allows for the use of past information such that 

the control system iteratively learns control signals that give high levels of 
tracking. ILC algorithms that learn in a monotonic fashion are desirable as 
it implies that tracking performance is improved at each iteration. A num- 
ber of model-based ILC algorithms are known to result in a monotonically 

converging tracking error signal. However clear and meaningful robustness 
conditions for monotonic convergence in spite of model uncertainty are lack- 

ing. 

This thesis gives new robustness conditions for monotonically converging 
tracking error for two-model based ILC algorithms: the inverse and adjoint 
algorithms. It is found that the two algorithms can always guarantee robust 
monotone convergence to zero error if the multiplicative plant uncertainty 
matrix satisfies a matrix positivity requirement. This result is extended to 
the frequency domain using a simple graphical test. 

The analysis further extends to a Parameter Optimal control setting 
where optimisation is applied to the inverse and adjoint algorithms. The 

results show a increased degree in robust monotone convergence upon a pre- 
vious attempt to apply optimisation to the two algorithms. 

This thesis further considers the case where the multiplicative plant uncer- 
tainty fails to satisfy the positivity requirement. Robustness analysis shows 
that use of an appropriately designed filter with the inverse or adjoint algo- 
rithm allows a filtered error signal to monotonically converge to zero. 
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Nomenclature 

Uppercase Letters 

A, B, C, D system matrices for a discrete-time 

state-space representation 

G a plant matrix representation 

I identity operator 

J performance criterion 

L learning operator 

Tf trial length 

N number of samples in each trial 
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Lowercase Letters 

e(t) tracking error 
k trial index 

12 space of square-summable sequences 

r(t) reference signal 

time 

u(t) input function 

x(t) state 

Xo initial condition for a state-space description 

y(t) output 
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Miscellaneous 

/i learning gain 

modulus 

norm 

D indicates the end of a proof 

N the set of natural numbers 

R the field of real numbers 

C the field of complex numbers 

MT the transpose of a matrix M 

A(M) an eigenvalue of a matrix M 

u(M) a singular-value of a matrix M 

Abbreviations 

2D two-dimensional 

ILC Iterative Learning Control 

NOILC Norm-Optimal 

Iterative Learning Control 

POILC Parameter-Optimal 

Iterative Learning Control 

SISO single input, single output 

MIMO multiple input, multiple output 

PI proportional plus integral 
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Chapter 1 

Introduction 

1.1 Control and Iterative Systems 

1.1.1 Feedback Control 

Control of dynamical systems can be loosely termed as the manipulation 

of input signals to attain desirable system outputs. Control systems have 

been regularly employed to perform this task. One type of control system 

commonly found in control theory and practice is the feedback controller. A 

feedback controller assesses the error in the system output and accordingly 

alters the system input signal in order to improve the system's performance. 

Consider the following discrete-time, linear time-invariant (LTI), single-input 

single-output (SISO) system. 

x(t + t3) = Ax(t) + Bu(t) x(O) = xo 

y(t) = Cx(t) + Du(t) 
(1.1) 

where A, B, C and D are matrices of appropriate dimensions, u(") is an input 

variable, x(") is a state variable, xo is its initial condition, y(") is an output 

variable and is is the sampling interval. Throughout this thesis it shall be 

11 



1. INTRODUCTION 12 

assumed that D=0 because it is rare that the output y(t) for a physical 

system is directly effected by the input u(t) without delay. 

The role of the feedback controller typically falls into one of two modes: 

control for the regulation problem and control for the tracking problem. For 

the regulation problem a controller must be found that holds the output of 

(1.1), y(t), at a set value despite being subjected to unknown disturbances 

and unknown system parameters. For the tracking problem the input signal 

u(t) must be manipulated so that the output y(t) follows a reference signal 

r(t). 

To tackle both problems the feedback controller measures the output er- 

ror e(t) = r(t) - y(t) and changes u(t) according to some given rule that 

aims to reduce e(t) until it is as small as possible. The design of this given 

rule, also known as the control algorithm, has been subject to vast quanti- 

ties of research work resulting in a wide range of feedback laws and design 

methodologies. Some of these results include the classical PID controller and 

more modern feedback methods such as Adaptive and Robust control and 
have been implemented with success in manufacturing industries, chemical 

processing industries, food industries and automotive industries to name but 

a few. 

1.1.2 Motivation for Iterative Learning 

Suppose a system is run in an iterative manner where the system output is 

required to track a reference signal r(t) over a fixed interval tE [0, Tf]. At the 

end of each iteration the system is reset to an initial condition x(0) = xo and 

the system then tracks r(t) once again. A system that operates in a such a 

repetitive manner may appear artificial but many industrial systems work in 

this way. In (Arimoto et al., 1984), (Arimoto et al., 1985), (Arimoto, 1991), 



1. INTRODUCTION 13 

(Bondi et al., 1988), (Casalino and Bartolini, 1984), (Mita and Kato, 1985) 

and (Zilouchian, 1994) the authors look at robotic control systems where the 

same tracking task is to be performed repeatedly. In (Lee et al., 1996) the 

authors do the same for control in chemical batch processing and in (Lee and 

Lee, 1993) the authors look at control of servo systems that operate in an 

repetitive manner. 

Should a feedback controller result in a non-zero tracking error over the 

fixed interval then this non-zero error is repeated for each and every iteration. 

This is because the feedback controller, and hence the control input signal 

u(t), does not vary from iteration to iteration. This point is illustrated in 

the following example. 

Example 1.1 Consider the discrete-time, LTI SISO system 

(q2 - 0.5q)y(t) = (0.5q + 0.25)u(t) (1.2) 

where q-' is a delay operator of one sample. The sampling interval for the 

system is is = 0.1. The plant is required to track a reference signal r(t) _ 

sin (Tf) where Tf = 10 and tE [0, Tf] 
. 

A Proportional plus Integral (PI) control law is used to track r(t) such 

that 
t 

u(t) = Kits E e(i) + Kpe(t) (1.3) 
i=o 

where Kp = 0.4 and Ki = 1.5 Figure 1.1 shows that the PI controller tracks 

r(t) with a modicum of success. The inaccuracy in tracking is repeated for all 

iterations since the control parameters are fixed for each and every iteration. 

The repeated tracking error of a feedback controller motivates the follow- 

ing question: 

Can the control scheme be iteratively modified so as to improve the track- 

ing performance from iteration to iteration? 
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Tracking performance of the PI Controller 

r(t), y( 

1.5 

1 
y(t) 

0.5 

t) 0 
r(t) 

-0.5- 

-1 

-1.50 1234567891 
Time t 

Figure 1.1: Tracking performance of the PI controller 

0 

One approach to this question is to apply inverse dynamics at each itera- 

tion, see (Spong and Vidyasagar, 1989) for an application of inverse dynamics 

for robot control. If a system representation can be found then the dynamics 

of the plant can be inverted to give an input signal that induces the desired 

output. Clearly for this approach to work the plant dynamics must be known 

exactly otherwise perfect tracking cannot be achieved. In the case where the 

plant is not perfectly known then system identification can be applied at each 

iteration. However this assumes that the structure of the system is known 
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and furthermore if the identification process is flawed to some degree then 

the inverse dynamics approach will still result in a repeated non-zero tracking 

error. 

Another approach to the previous question is to ask a further question: 

Can error signals from previous iterations be used to manipulate the con- 

trol input so as to improve tracking performance for the current iteration? 

The idea here is to iteratively learn the the correct input signal rather 

than learn the dynamics of the plant explicitly. This approach has come to 

be known as Iterative Learning Control (ILC). 

1.1.3 A brief History of the origins of ILC 

The first occurrence of ILC appears to be in an US patent application for 

Learning control of actuators in control systems (Garden, 1971). The idea in 

the patent is to store a control signal in a memory device and to iteratively 

update the control signal using the error between the desired output of the 

actuator. 

The first academic appearance of ILC is in (Uchiyama, 1978). However 

since the publication was published in Japenese only it wasn't until (Arimoto 

et al., 1984) that ILC became known to non-Japanese researchers. It was at 

this point that ILC became an research area in a global sense and as a result 

much of the ILC literature refers to (Arimoto et al., 1984) as the starting 

point for ILC. 

The origins of ILC research tended to be centred around work into robotics 

where repetitive tasks occur naturally. A typical task is a pick and place 

routine for a robotic arm acting upon a series of units on an assembly line. 

Examples of work on ILC for robotics are (Arimoto et al., 1984), (Arimoto 

et al., 1985), (Arimoto, 1991), (Bondi et at., 1988), (Casalino and Bartolini, 
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1984), (Mita and Kato, 1985) and (Zilouchian, 1994). Surveys on ILC are 

present in (Moore, 1993), (Moore, 1999) and (Horowitz, 1993) and give a 

more detailed account on the origins of ILC. 

1.1.4 Example implementation of ILC 

Example 1.2 Consider the dynamical system 

(q2 - aq)y(t) = (ßq +'Y)u(t) ý1.4) 

where a=0.5�ß = 0.5 and -y = 0.25. The sampling interval is is = 0.1. The 

plant is required to track a reference signal r(t) = sin (T) where Tf = 10 ý 

and tE [0, T1]. Note that this system, and its tracking requirement, is the 

same as that given in Example 1.1. The following iterative learning control 

law is implemented 

Uk+l(t) = Uk + hek(t + t3) (1.5) 

where h, the learning gain, is given as h=1.4 and k denotes the iteration 

round (or trial). This ILC law is often referred to as the Arimoto algorithm 

as it appeared in (Arimoto et al., 1984) in a continuous-time context where 

uk+l(t) = Uk(t) + hek(t). Note that the algorithm in (1.5) appears to be non- 

causal since Uk+l(t) is a function of ek(t+t3). However since the signal ek(t) 

for tE [0, T1I is available for iteration k+1 it is always possible to make 

uk+l(t) a function of ek(t +p) for some p>0. 

Figure 1.2 shows that as k -* oo the 12-norm of the error signal ek(t) 
tE [0, Tf] converges towards zero. It can be shown that if, assuming 0 54 0, 

the learning gain h satisfies 11 - h, 61 <1 then the error converges to zero as 

k -f oo (see the spectral radius condition in Chapter 2 for the origins of this 

result). The convergence of the 12-norm is asymptotic meaning that for this 

example tracking performance gets worse before it gets better. 
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Figure 1.3 shows the resulting tracking after 60 iterations. The output 

y60(t) is visually indistinguishable from the reference r(t) and marks a vast 

improvement upon the tracking of the PI controller used in Example 1.1. 

Convergence of tracking error 

IIe(t)kII 

60 

50 

40 

30 

20 

10 

0 10 20 30 40 50 61 
Iteration round k 

Figure 1.2: Convergence of 12-norm of the tracking error using the Arimoto 

algorithm 
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r(t), y 

Time t 

Figure 1.3: Tracking performance after 60 iterations 

1.2 ILC Problem Definition 

As a starting point consider a standard discrete-time, linear, time-invariant 

single-input, single-output state-space representation defined over a finite, 

discrete time interval, tE [0, N] (in order to simplify notation it is assumed 

that the sampling interval, t, is unity, hence the number of samples over time 

interval is N= Tf). The system is assumed to be operating in a repetitive 

mode where at the end of each repetition, the state is reset to a specified 

initial condition for the next operation during which a new control signal can 

Tracking performance after 60 iterations 
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be used. A reference signal r(t) is assumed to be specified and the ultimate 

control objective is to find an input function u*(t) so that the resultant output 

function y(t) tracks this reference signal r(t) exactly on [0, N]. The process 

model is written in the form: 

x(t + 1) = Ax(t) + Bu(t) 

y(t) = Cx(t) 
(1.6) 

where the state x(") E R' (for some P> 1), output y(") E I[8, input u(") ER 

and the initial state x(O) = xo. The operators A, B and C are matrices of 

appropriate dimensions. From now on it will be assumed that CAjB 54 0 for 

some j>0 (trivially satisfied in practice) and that the system (1.6) is both 

controllable and observable. Also, the notation fk(t) will denote the value of 

a signal at time t on iteration k. 

The repetitive nature of the problem opens up the possibility of itera- 

tively modifying the input function u(t) so that, as the number of repetitions 
increases, the system asymptotically learns the input function that gives per- 
fect tracking. To be more precise, the control objective is to find a recursive 

control law 

Uk+1 =f (uk, Uk-1, ... Uk-r, ek+1, ek, .... ek-s) ý1.7) 

with properties, independent of the control chosen for the first trial, such 

that: 

1imkýcx) Ilekll =0 1imk+0 Il uk - u*II =0 (1.8) 

Here the recursion is expressed in the super-vector form with 11 " 11 as a suitable 

norm and uk = [uk(0) nk(1) ... Uk(N)]T, Yk = [Yk(O) yk(1) ... yk(N)]T, 

ek = [r(O) - Yk(O) r(1) - yk(1) ... r(N) - yk(N)]T. Furthermore, u* is the 

input sequence (in time series or supervector form) that gives r(t) = [Gu*] (t) 

and 0 is the convolution mapping corresponding to (1.6). Note that if the 
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mapping f in (1.7) is not a function of ek+l, then it is typically said that the 

algorithm is of feedforward type, otherwise it is of feedback plus feedforward 

type unless it depends only on ek+l when it is of feedback type. 

For analysis it is important to notice that because the system (1.6) is 

defined over a finite time-interval, it can be represented equivalently as a 

matrix equation yk = Guk + d, where G has the lower triangular band struc- 

ture (G)ij = (G)(t+l)(j+l) for 1<i, j<N-1 typical of linear time-invariant 

systems, i. e. 

000... 0 
CB 00... 0 

G= CAB CB 0 ... 0 (1.9) 

CAN'_' B CAN-2 B ... ... 0 

where d= [Cxo, CAxo,..., CANxo]T and the elements CAjB of the matrix 
G are the Markov parameters of the plant (1.6). This matrix description of 

the plant dynamics is commonly used in discrete-time analysis of ILC (see 

(Moore, 1999) and (Norrlöf and Gunnarsson, 2002) for example). Assume 

from now on that the plant transfer function G(z) = C(zI - A)-1B has 

relative degree (pole-zero excess) p and hence that the Markov parameters 

satisfy the conditions CAj-1B =0 for 1<j<p with CAP-'B 0. Assume 

also that the reference signal r(t) satisfies r(j) = CAixo for 0<j<p 

(or, alternatively, that tracking in this interval is not important). Then 

it can be shown (in a similar manner to (Hätönen et al., 2003a)) that for 

analysis it is sufficient to analyse a lifted plant equation yk, l = Gjuk, i where 
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uß., 1 _ [Uk(0) Uk(1) ... Uk(N - P)]T , Yk, 1 _ [Yk(P) Yk(2) ... Yk(N)]T, 

CAP-1B 0 

CAPB CAP-'B 

Gl = CAP+I B CApB 

CAN-PB CiAN-P-1B 

o ... 0 
0 ... 0 

CAP-1B ... 0 

... ... CAP-1B 

21 

(1.10) 

and d is replaced by d= [CA'xo,..., CAI'xo]T. Note that, because it was 

assumed that CAP-1B 0, the matrix G1 is invertible which confirms that, 

for an arbitrary reference r, there exists u* such that r= Gju*+d. From now 

on this lifted plant model will be used as a starting point for analysis, and in 

order to simplify notation, the subscript l will be omitted, p will be assumed 

to be unity and the initial condition xo taken, without loss of generality, to 

be zero. 

1.3 Publications Related to this Thesis 

This thesis is based upon the following publications: 

[P1] T. J. Harte, J. Hätönen and D. H. Owens, A new robust inverse-type 

ILC algorithm, in Proc. of the IFAC Workshop on Periodic Control 

Systems (PSYCO%), Yokohama, Japan, 2004. 

[P2] T. J. Harte, J. Hätönen and D. H. Owens, Discrete-time Inverse Model- 

based Iterative Learning Control: Stability, Monotonicity and Robust- 

ness, in International Journal of Control 78(8): pp. 577-586. 

[P3] J. Hätönen, T. Harte, D. H. Owens, J. Ratcliffe and P. Lewin, A new 

robust Iterative Learning Control algorithm for application on a gantry 
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robot, in Proc. of the IEEE conference on Emerging Technologies in 

Factory Automation, Lisbon, Portugal, 2003 

[P4J J. Hätönen, T. Harte, D. H. Owens, J. Ratcliffe, P. Lewin and E. Rogers, 

Iterative learning control - what is it all about? in Proc. of the 

IFAC Workshop on Periodic Control Systems (PSYCOO4), Yokohama, 

Japan, 2004. 

Publication P1 presents a robustness analysis for an inverse model-based 

ILC algorithm. The paper is concerned with robust monotone convergence 

to zero tracking error when an inverse model contains uncertainty. Theoret- 

ical analysis shows it is necessary that the plant uncertainty must satisfy a 

positivity condition and that a tuning parameter must be made sufficiently 

small in magnitude. The result shows that an inverse type approach to ILC, 

contrary to past belief, offers a well defined degree of robustness. Chap- 

ter 4 is an extension of this paper where positivity conditions are developed 

for a generic feedforward type ILC algorithm and robustness conditions for 

model-based inverse and adjoint algorithms are presented. 

Publication P2 again considers robustness issues of an inverse model- 
based algorithm and can be thought of as an extension of the analysis pre- 

sented in P1. The major result of the paper is the extension of matrix con- 

ditions given in P1 into the frequency domain. In this paper the uncertainty 

in the plant is considered to be a transfer function in the frequency domain. 

It is shown that if the plant uncertainty satisfies a positive-real condition 

then the use of a sufficiently small learning gain guarantees robust monotone 

convergence to zero tracking error. The condition is given in the form of a 

relationship between the plant uncertainty and the learning gain which is in- 

terpreted in terms of a simple Nyquist plot. The result is of interest because 

it takes conditions usually described by matrices and represents them in a 
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domain commonly utilised in control systems theory. Chapter 5 presents this 

analysis and reports a similar result for an adjoint-type ILC algorithm. 
Publication P3 presents a robustness analysis of an optimisation based 

adjoint ILC algorithm. In this paper analysis shows that the algorithm lacks 

a method of balancing convergence speed and robustness. A modification of 

the algorithm is proposed. Consequently a robustness analysis shows that 

if the plant uncertainty satisfies a positivity condition and a tuning param- 

eter is made sufficiently large then the modified algorithm results in robust 

monotone convergence to zero tracking error. This marks a major improve- 

ment upon the standard algorithm. In the paper the algorithm is applied on 

an industrial scale multi-axis gantry robot. Experimental trials demonstrate 

that the algorithm results in near perfect tracking after 100 iterations where 

a poor guess is made for the initial input function. Chapter 6 is an extension 

of this publication and gives similar results for an inverse-model version of 

the algorithm. 

Publication P4 discusses the importance of positivity conditions for ro- 
bustly monotone converging ILC. The paper also proposes Discrete-Fourier 

Transform (DFT) versions of two ILC algorithms: the inverse and adjoint 

model based algorithms. A robustness analysis shows that the algorithms 

result in robust monotone convergence if the plant uncertainty satisfies a 

positivity condition and a learning gain is made sufficiently small. The paper 
highlights the potential of DFT based algorithms to relax the positivity con- 
ditions for robustness. Chapter 7 is an extension of this paper and presents 

results for algorithms using a generic set of basis functions (Discrete Fourier 

Transforms use a specified set of basis functions). 
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1.4 Overview of the Thesis 

The remainder of this thesis is divided into seven chapters. Each chapter 

starts with a short introduction that motivates the work presented in that 

chapter. Each chapter concludes with a summary section that reviews the 

results developed in the chapter and puts them in context with previous 

chapters and ILC in general. As a result the reader should be able to attain 

an understanding of the main of results of this thesis without reading it in 

its entirety. Chapters 3 to 7 give simulations, performed in Matlab, that 

illustrate the key results presented in the chapters. 

Chapter 2 introduces the reader to key mathematical techniques that are 

used to throughout the remainder of the thesis. The chapter concentrates on 

the convergence properties of an iterative process vk+l = Lvk. Contraction 

mapping and spectral radius conditions are given so that a sequence of vectors 

{Vk} converges to a vector v,,, as k approaches oo. 

Chapter 3 reviews optimisation based methods of ILC and more specifi- 

tally Parameter Optimal methods. The chapter concentrates on such meth- 

ods because the ILC literature has a vast and wide range of approaches, for 

example see the survey paper (Moore, 1999) that gives over 250 references, 

and optimisation based methods have been identified as having some desir- 

able properties for Iterative Learning Control. These desirable properties are 

reviewed and some problems with existing optimisation based methods are 

highlighted. Consequently Chapter 3 can be seen as the motivation for the 

work presented in the remainder of the thesis. 

Chapter 4 concentrates on the convergence and robustness properties of 

two model-based algorithms termed the inverse and adjoint algorithms. Ini- 

tially a generically structured feedforward ILC algorithm is considered and 

conditions for monotone convergence to zero tracking error are developed. 
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Following this, the inverse and adjoint algorithms, which fit this generic 
feedforward structure, are then analysed. Necessary conditions for robust 

monotone convergence are then given in terms of the plant multiplicative un- 

certainty. The robustness analysis in this chapter is a marked improvement 

upon that of the parameter optimal methods reviewed in Chapter 3. 

Chapter 5 again considers the robustness properties of the inverse and 

adjoint algorithms analysed in Chapter 4. The matrix-based conditions de- 

veloped in Chapter 4 are extended into the frequency domain. The analysis 

provides a simple Nyquist plot test for robust monotone convergence, the 

test being that the Nyquist plot of the plant multiplicative uncertainty must 
lie in the right-half complex plane. The results in this chapter are a useful 

addition to those of Chapter 4 because it takes the abstract descriptions of 

systems over a finite-time interval, inherent with ILC, and translates them 

into the frequency domain context commonly used in control theory. 

Chapter 6 takes the inverse and adjoint algorithms presented in Chapter 

4 and puts them into the context of the POILC method reviewed in Chapter 

3. The analysis is done in comparison with an existing gradient based opti- 

misation method for the adjoint algorithm. The robustness analysis shows 

that use of POILC with the inverse and adjoint algorithms guarantees robust 

monotone convergence given that the plant uncertainty satisfies a positivity 

condition and a tuning parameter is made sufficiently large. The gradient 

based optimisation method however gives no guarantee of convergence even 

if the plant uncertainty meets the positivity condition. 

Chapter 7 introduces a basis function approach to filtering the inverse 

and adjoint algorithms presented in Chapter 4. The results show that if the 

robustness conditions developed in Chapter 4 are not held then stability can 
be retained by use of appropriate filtering but at a loss of zero tracking error. 
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The loss of zero-tracking error need not be of significant detriment since it 

turns out that a filtered error signal can be made to monotonically converge 

to zero in spite of model uncertainty. 

Chapter 8 draws conclusion upon the results presented in the thesis and 

suggests directions for future research wvork. 

1.5 Reading Instructions 

i) Chapters 2,3 and 4 are self contained and can be read separately by 

those familiar with ILC. However the analysis presented in Chapters 

5,6 and 7 relates heavily to and builds upon the work presented in 

Chapters 3 and 4. Consequently the reader is advised to read Chapters 

3 and 4 prior to Chapters 5,6 and 7 in order to follow the proof of results 

in the latter chapters. If the reader is just interested in a statement 

of the results in Chapters 5,6 and 7 then Chapters 3 and 4 need not 

necessarily be read. 

ii) Where a norm is unspecified the reader should assume the 12-norm is 

being considered. This is the case for Chapters 3 to 7. 



Chapter 2 

Convergence properties of 

iterative processes 

In Chapter 1 the notion of ILC was introduced where a control signal over 

a fixed time interval is iteratively modified until the plant perfectly tracks a 

desired trajectory over the fixed time interval. Clearly ILC results in a two- 

dimensional control system where the two independent axes are the finite 

time axis te [0, T1] and the infinite iteration axis kEN. 

The finite nature of the time axis has consequence (or lack of it) for the 

convergence properties of the 2-D system. The output of a finite-dimensional 

LTI system can never be become unbounded in finite time hence the stability 

of the ILC system does not play a significant role in convergence analysis. 

However the iteration axis is infinite and as the number of iterations 

increases the output signal y(t) where tE [0, T1] either converges or diverges. 

Whether or not the system converges depends upon how the control signal is 

modified from iteration to iteration. The remainder of this chapter reviews 

some useful analysis tools for the convergence of ILC systems. 

27 
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Example 2.1 Consider the following ILC algorithm 

Uk+l = Uk + Kek (2.1) 

where Uk+l, Uk and ek are given in the super vector notation presented in 

section 1.2 and K is an NxN matrix. 

The above ILC control law integrates along the iteration axis until (hope- 

fully) ek = 0. Such a structure allows for an iterative description of the 

error vector ek+1. This description is obtained by noticing that ep =r- Gup 

for any iteration p. Applying this relation to both sides of (2.1) gives the 

following expression for ek+1: 

ek+l = (I - GK)ek = Lek (2.2) 

From here in equation (2.2) shall be termed the error evolution equation and 

the NxN matrix L shall be termed the learning operator. 

Clearly the convergence properties of the ILC system in Example 2.1 de- 

pend upon the matrix mapping L. The next two sections give two different 

conditions upon L for convergence. 

The first condition is a contraction mapping condition which guarantees 

that the error signal ek converges to zero as k reaches infinity for an arbitrary 

initial error. Furthermore should this condition be met then the tracking 

error monotonically converges (with respect to a relevant norm) to zero. 

This property is often desirable as it implies the tracking improves, in some 

manner, at each and every iteration until it is perfect. 

The second condition is the spectral radius condition. If this condition 
holds then the tracking error converges to zero as k approaches infinity for 

an arbitrary initial error. However this condition gives no insight into the 

tracking during intermediate iterations and thus implies that even if the 

condition holds then tracking performance can get worse before it gets better. 
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2.1 Contraction Mappings 

Consider the matrix mapping L: RI -3 RN and a norm on RN such that 

11 " 11 : RN -> It. The matrix mapping L is termed a contraction mapping if 

IILx - Lyll :ý alIx-yII (2.3) 

for some x, yE I1N and a scalar jal < 1. Applying the standard Schwarz 

inequality upon JILx - Lyll yields a sufficient condition for a contraction 

mapping in terms of the matrix L: 

IILx-LyII = IIL(x-y)11: 5 IILIIIIx-yII (2.4) 

where the induced matrix norm of L, IILII, is further defined as follows: 

IILII = sup IILxII (2.5) 
xERN, IIxII=1 

Clearly for the matrix mapping L: RN -> RN to be a contraction mapping 

then it is necessary and sufficient that IILII < 1. 
Consider the ILC error evolution equation in (2.2) where ek+1 = Lek. If 

the learning operator L is a contraction mapping then it implies the following: 

Ilek+ill = IILekII ý IILIIIIekil < IIekII (2.6) 

for all ek 0. 

Clearly if the learning operator is a contraction mapping the norm of 

the tracking error decreases at each iteration, unless of course it has already 

reached zero. This behaviour is termed monotonic convergence and is a 

very desirable property for an ILC algorithm since it implies that tracking 

is always improving rather than producing large and potentially damaging 

control signals. 

The next example demonstrates that whether or not the learning operator 

is a contraction mapping is dependent upon the norm considered. 
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Example 2.2 Consider the matrix mapping L: RN -4 RN. Three com- 

monly used norms on ISBN are the 11,12 and l,, norms defined as follows: 

Ilvlll = 
EZ1 Ivil 

IIv112 = L; i 1 
Ivil2 (2.7) 

Ivlloo = maxjEI Ivil 

where I= {1,2, 
... ,N-1, N}, vE RN and v= [Vl, V27 ... , VN ]T 

. The 

corresponding matrix norms for L become (see (Varga, 1962)) 

IILII1 = maxi EN 
1 

ILijI 

IIL112 = v(L) (2.8) 

IILIIao = ma. XiEI EN 
1I 

LijI 

where Q(L) is the largest singular value of L. Note that often IILII1 0 IILII2 0 

IILIIý, although IILII2 ý IILIII IILII.. ), and hence it should always be made clear 

which norm is being used to describe the convergence properties of the ILC 

algorithm. 

Note that in this thesis if no norm is specified then the reader should assume 

that the 12-norm is being used where JIvII2 = vTv for an arbitrary vector 

E IfBN. 

Even though it is often desirable for an ILC algorithm to be a contraction 

mapping it is not always possible to achieve it. In such cases it is still 

possible to test whether the algorithm converges asymptotically to a fixed 

point. This test is termed the spectral radius condition and is given in the 

following section. 
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2.2 Spectral radius condition 

Consider again the matrix mapping L: RN RN with matrix norm IILII. 

The spectral radius of L is defined as p(L) where: 

P(L) = ýiým JILkI I IT (2.9) 

Note that p(L) is the same regardless of choice of norm. It can be shown, 

see (Edwards and Owens, 1982) for example, that if p(L) <1 then the ILC 

error evolution equation (2.2) converges to zero. This condition comes from 

the following: 

l im IIekil =l 
im IILkeoII <_ l im IILkIIIIeoII =um pk(L)IIeoII (2.10) 

Note, the last equality requires a rigourous proof. Clearly if p(L) <1 then 

it follows that limk. 0 ek =0 for an arbitrary initial error eo. 

It is of worth noting that for an arbitrary NxN matrix L the spectral 

radius p(L) is given by 

p(L) = mEalx I Xj(L)ý 2.11) 

where I= {1,2,. 
.., 

N-1, N} and AA(L), iEI is an eigenvalue of L. See 

(Varga, 1962) for full details of this property. A consequence of this result 

is that it is sufficient that the largest eigenvalue of L be inside the complex 

unit circle to guarantee convergence to zero tracking error. 

The spectral radius condition turns out to be a tighter condition for con- 

vergence than the contraction mapping condition. In fact if the contraction 

mapping condition holds then it implies the spectral radius condition also 

holds, however the reverse is not true. This can best be seen by considering 

a matrix mapping L and its spectral radius p(L) _ AI and further considering 

the following equation: 

Av = Lv (2.12) 
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where v is the corresponding eigenvector of A. Taking the norm of both 

sides of the above equation and utilising the Schwarz inequality leads to the 

following relations: 

IAIJIvIi C JILIiilvil 
(2.13) 

p(L) ý IILi1 

Clearly if ilL11 <1 then it implies p(L) <1 but the reverse is not true. As 

a consequence of this the spectral radius condition p(L) <1 only guarantees 

asymptotic convergence to zero error. The next example illustrates that even 

if the initial error is small then a matrix L that satisfies p(L) <1 can still 

generate large error signals during early iterations. 

Example 2.3 Consider the matrix mapping L: R2 -} R2 where 

L= 
S0 

(2.14) 
ES 

The matrix L has a repeated eigenvalue of A (L) =S and two Jordan block 

eigenvectors va & Vb such that LVa = Sva and Lvb = Svb + va. The two 

eigenvectors are chosen to be: 

01 
Va = Vb (2.15) 

E0 

Suppose now that for the error evolution equation (2.2) eo is chosen to be 

eo = Vb. The resulting error vectors el = Svb + va and e2 = S2Vb + 2Sva 

become: 
S S2 

el = e2 = (2.16) 
E 2SE 

Note that if S=0, and hence p(L) = 0, then the process converges to zero 

in just two iterations. However by increasing c the norm of el can be made 

arbitrarily large regardless of p(L). 
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Note that Example 2.3 has parallels with the Arimoto algorithm pre- 

sented in Example 1.2. The Arimoto learning operator also has N repeated 

eigenvalues of A (L) =1- hCB. Whilst this algorithm has a simple method 

of satisfying the spectral radius condition (select h such that 0< hCB < 2) 

it can also suffer from large error signals during early iteration rounds. 

2.3 Summary 

In this chapter the convergence properties of an iterative process ek+l = Lek 

were reviewed in the context of two conditions. The first was a contraction 

mapping that guaranteed that the norm of ej decreases at each and every 

iteration. The second condition was a spectral radius condition that guaran- 

tees that limk-co ek = 0, however it gives no guarantee that the norm of ek 

will be suitably small during early iterations. 

These two conditions are both of great importance and great use for the 

analysis of ILC since most algorithms result in an error evolution equation 

of the form ek+1 = Lek. The remainder of this thesis concentrates on ILC 

algorithms of this form and applies the contraction mapping and spectral 

radius conditions where possible. 



Chapter 3 

Parameter Optimal ILC 

3.1 Optimisation and ILC 

Optimisation and control theory have been utilised together for many years 

and in numerous scenarios, see (Athans and Falb, 1966), (Anderson and Moore, 

1989) and (Owens, 1981) for a formal background on the partnership. It is 

natural then that the ILC literature includes control schemes that employ 

optimisation. Some examples can be found in (Xu and Tan, 2002), (Owens 

and Hätönen, 2005) and (Furuta and Yamakita, 1987). Usually in such sce- 

narios a performance index, or cost function, of a system is generated in 

terms of a set of parameters available for the controller to manipulate. These 

control parameters are then set, by some means, to minimise the value of 

this cost function and hence give optimal control performance. For exam- 

ple in (Furuta and Yamakita, 1987) the authors attempt to minimise the 12 

tracking error for the next trial. Such an optimisation appears an intuitive 

one for ILC however some different cost functions have been introduced with 

success. Take (Amann et at., 1996) for example, where the following cost 
function is used. 

34 
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ý3.1) min {J(uk+i) = Qllek+1112 + Iluk+i 
- Uk 112} 

uk+I ELN 

In (Amann et al., 1996) the authors have been more concerned with transient 

performance of the control system, finding that whilst minimising jjek. 1112 
directly may give fast convergence to zero error it can induce large error 

signals during the early trials. A trait that in a physical sense might make 
ILC implausible to implement. The cost function in (3.1) has an extra term 

that attempts to minimise the change in input from trial to trial as well the 

future error and hence gives a cautious controller. 

Minimising (3.1) yields what is now termed the Norm Optimal ILC 

(NOILC) update law. 

Uk+1 = YLk + 
16GT ek+l (3.2) 

Convergence analysis of (3.2) gives the following inequality 

IIek+1Il2 s1 IlekIl2 (3.3) 
1 +Qgi(GGT ) 

where Q(GGT) denotes the smallest singular value of GGT. If ß is chosen 

to be a positive scalar then convergence is monotonic, i. e. 11ek+1112 < 1lekII2. 

This is a very desirable property for any ILC system since the performance 
is being bettered, in the 12 sense, at each and every trial. Furthermore it 

converges to the limit 11e,,, 11 = 0. 

However the algorithm is not without drawbacks. It is clear that (3.2) 

is non-causal in the iterative sense and must use state observation and pre- 
diction in order to be implemented. Even in the nominal case where perfect 

plant knowledge is assumed, the implementation has a high degree of com- 

plexity thus making any robustness analysis even more so complicated. These 

two drawbacks lead to a search for other ILC algorithms that were simpler 

and causal in implementation but maintained monotonic error convergence. 
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3.2 Derivation and Convergence of Parame- 

ter Optimal ILC 

Consider the recently introduced simple form of Optimal ILC (Owens and 

Feng, 2003), termed Parameter Optimal ILC (POILC), where a scalar gain 

ß is varied adaptively with iteration in an Arimoto-type algorithm of the 

following form 

uk+1 = Uk + Qk+lek (3.4) 

In contrast with the NOILC input sequence (3.2) the input is causal in im- 

plementation and hence has a degree more of clarity in analysis. 
The authors of (Owens and Feng, 2003) proposed to select Pk +1 by min- 

imising the following cost function 

ßminR{J(Qk+i) _ IIek+1112 + u'ßk+i} (3.5) 
k+I 

The cost function (3.5) was motivated by that used in NOILC, see (Amann 

et al., 1996), and also attempts to minimise the change between inputs from 

trial to trial whilst reducing the error. Note that Uk+1 - uk = 8ek and hence 

minimising , 132 also minimises II uk+l - uk II " 
Minimising (3.5) gives 6k+1 to be 

of the following form 

ek Qk+i 
Gek (3.6) =w+II Gek I I2 

A review of the convergence analysis in (Owens and Feng, 2003) follows. 

Selecting a sub-optimal choice of ßk+l =0 and noticing that J(0) = Ilekll2 

yields an inequality that proves monotonic convergence of the algorithm. 

II ek+1112 + w, ß2+i Cli ek I I2 (3.7) 

Clearly if w>0 then the error converges monotonically. However it converges 

to a limit e,,,, where e, Ge., = 0. If G+ GT is a positive-definite matrix then 



3. PARAMETER OPTIMAL ILC 37 

the only solution for e., is the zero vector. However in many applications 

such a condition on G cannot be held and so the error will converge to a 

non-zero solution, which may or may not be tolerable for the application at 

hand. 

3.3 Multi-Parameter Optimal ILC 

The discussion in section 3.2, and more formally the analysis in (Owens and 

Feng, 2003), highlighted that unless the plant matrix G is positive-definite 

then POILC can, and often in practice does, converge to a non zero error. 

This section introduces more than one adaptive scalar ßk+l and optimizes 

them all to force monotonic convergence to zero error. 

Consider the algorithm: 

P 

Uk+i = uk +E ßi, k+lAiek (3.8) 
i=l 

where 
i\i 00... 0 

A=Z (3.9) 

)r )r-1 
... ... . 

x{ 

The cost function put forward in (Owens and Feng, 2003) cannot be used 

directly but can be written in a similar form to optimize each 3=, k+1 and is 

given as follows 

rim 
nRN J(Tk+i) _ IIek+1112 + Tk+1Wrk+l (3.10) 
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where W is a positive-definite, diagonal matrix and 'f k+1 is defined as below. 

Ql, k+l 

Tk+1 = '62, k+l (3.11) 

L 6P, k+1 

Minimising (3.10) subject to (3.8) yields 

-fk+l = (W + HT GTGHk)-1Hý GTek (3.12) 

where 

Hk = [Alek, A2ek, ... , 
Apek] (3.13) 

The following proposition shows that Multi-Parameter Optimal ILC, like 

POILC, gives monotonic convergence but has a different condition for con- 

vergence to zero error. 

Proposition 3.1 The algorithm (3.8) where Tk+1 is chosen using (3.12) re- 

sults in monotonic error convergence. Furthermore if P>N then limký0 ek _ 
0. 

Proof. 

Selecting a sub-optimal choice of Tk. 1 =0 in the cost function (3.10) 

yields J(0) _ Ilek 112. Since this choice is sub-optimal it follows that 

I1ek112 
? 

Ilek+1112 + Tk+1Wrk+l ? Ilek+1112 (3.14) 

Since W is a positive-definite matrix the inequality in (3.14) clearly demon- 

strates monotonic convergence. Reformulation of (3.14) gives 

1IekII2 - rk+lWrk+l ? IIek+1112 >0 (3.15) 
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and applying induction further gives 
k+1 

Ileo112 -E TA WTA >0 (3.16) 
j=1 

and because k is arbitrary, limk-oo Tk = 0. This results in 

eTGAlek 0 

TT eT GA2ek 0 
um Tk+1 =l im Hk G ek _um_ 

(3.17) 

eT GANek 0 

Note that the term e' GAiek can be written as a sum of terms which happen 

to be an Nth order polynomial of Ai 

ek GAiiek = QNAN + qN-1Azý-1 + ... + 41mä =0 (3.18) 

where {ql, q2, ... , qN} is a set of scalars. There exists no more than N-1 

non-zero solutions for ai, hence if P>N and A2 0 `di then at least one 

of the e7 GAiek terms is non-zero for any ek 0, hence linlkýoo Tk+l =0 if 

and only if ek = 0. It follows that limk + ek = 0.11 

Remark 3.1 The application of POILC required the plant matrix be positive- 

definite to guarantee zero tracking error. In contrast the multi-parameter 

form has relaxed this restriction completely, however it is dependent upon the 

trial length, requiring at least N different AZ to guarantee zero error. In many 

applications N is a large number meaning Multi-Parameter Optimal ILC can 

be computationally intensive. 

3.4 A Robustness Analysis of POILC 

This section presents a robustness condition for the POILC algorithm dis- 

cussed in section 3.2. 
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The optimal /3k+1 given in (3.6) is dependent upon the plant matrix G. In 

most real situations an exact knowledge of this matrix is unavailable and is 

replaced with an approximate model Go, where G= G0U and U represents 

the multiplicative uncertainty in the plant. The following proposition gives 

a condition for monotonic convergence when a sub-optimal Qk+l is used. 

Proposition 3.2 Suppose POILC is used with a nominal model Go, then 

there exists awE I[8+ that guarantees monotonic error convergence if 

sign{vTGov} = sign{vTGv} for an arbitrary vE RI. Furthermore if the 

plant matrix G+ GT is positive definite then the error converges to zero. 

Proof. Taking the inner product of ek+1 with itself yields the following 

equation: 

1Iek+1I! 2 = IIekII2 - 2w+ I Go kI, 2 eTGek +( 
we+ oe IICOek 112 

)2IIGek1I2 (3.19) 

Note that the second term on the right hand side of (3.19) is of O(, ßk+l) and 

that the third term is of O(, Qk+l). Hence if sign{vTGov} = sign{vTGv} Vv 

and w is sufficiently large then I1ek+11 2< 11ekII2. The limit ems, to which ek 

G,, e,,, = 0. If G+G is a positive-definite converges to, is a solution of e, T 

matrix and sign{vTGov} = sign{vTGv} Vv then the only solution for e,,,, 

is the zero vector. Q 

Remark 3.2 The condition in Proposition 3.2 requires that sign{vTGov} = 

sign{vTGv} for an arbitrary v and cannot be held with great confidence in 

many applications where vTGv is sign-indefinite, due to inaccuracies in the 

model. Proposition 3.2 implies that POILC can confidently be applied to 

positive-definite systems but for systems outside of this class robustness anal- 

ysis is not clear. 
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3.5 Simulation Examples 

In this section simulation examples are given that demonstrate the results 

developed for Multi-POILC and the robustness of POILC. 

3.5.1 Multi-Parameter Optimal ILC simulation exam- 

ple 

Consider the case where a real plant G(s) is given in the s-domain to be 

G(s) =1 s2+2s+ 1 
(3.20) 

The system is sampled with a sample time of 0.1 seconds using zero-order 

hold. The trial length Tf is 0.8 seconds hence N=8. It is easy to check 

numerically that the resulting 8x8 matrix G+ GT is not positive-definite. 

The reference signal is chosen to be r(t) = sin(Tft). The Multi-POILC 

algorithm described in section 3.3 is run for 18000 iterations where 

At = Ai_1 -pViE {2,3,..., P} (3.21) 

where A, = 0.99, P = 32 and W=0.0011. 

Figure 3.1 shows that the error monotonically converges. The analysis 

in section 3.3 suggests that since P>N the error should monotonically 

converge to zero. Figure 3.1 shows that after 18000 iterations the error is 

still converging towards zero, however the rate of convergence is slow. 

3.5.2 Robustness of POILC simulation example 

Consider the case where a real plant G(s) and model plant Ga(s) are given 

in the s-domain to be 

G(s) =s22 (3.22) 
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Convergence of Ilekil 

Iiekil 

Iteration round k 
00 

Figure 3.1: Convergence of error for Multi-Parameter Optimal ILC algorithm 

G°(s) 
s+1 

(3.23) 

The two systems are sampled with a sample time of 0.1 seconds using zero- 

order hold. The trial length Tf is 25.5 seconds. It is easy to check numerically 

that the resulting matrices G+ GT and G. + Go are both positive-definite. 

The reference signal is chosen to be r(t) = sin(2 t). The POILC algorithm 

described in section 3.2 is run for 50 iterations where 

CT Goek 
13k+i = 

w+ IIGoekII2 
(3.24) 

and w=0.01. 
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Figure 3.2 shows, as the analysis in section 3.4 suggests, that 1jekil mono- 

tonically converges. It is worth noting that as lickli gets smaller the rate of 

convergence slows. This is found to be a common occurrence when utilising 

POILC. 

Convergence of Ilekll 

IlekII 

Iteration round k 

Figure 3.2: Convergence of error for POILC algorithm 
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3.6 Summary 

In this chapter an existing POILC algorithm was reviewed. The algorithm 

achieves monotonic error convergence if a simple gain is optimised appropri- 

ately at each iteration. The algorithm gives convergence to zero error if and 

only if G+ GT is a positive-definite matrix. 

A multi-parameter version of the POILC algorithm was introduced which 

removes the condition upon G+ GT in order to achieve monotonic error 

convergence to zero. However, as a simulation demonstrated, a method for 

selecting the necessary A parameters is not clear and error convergence tends 

to be slow. 

The previous work on the POILC algorithm lacked a robustness analysis. 
In this chapter a robustness condition was presented, namely if sign{vT (G+ 

GT )v} = sign{vT (Go + GOT )VJ for all v then monotonic error convergence 

is retained. The condition was demonstrated via a simulation example. The 

condition presented is necessary and appears quite restrictive. It also fails 

to give a clear relation between the plant uncertainty and the stability of 

the algorithm. This result motivates the search for simple ILC algorithms 

that give clear robustness conditions for both stability and performance. The 

remainder of thesis tackles this subject. 



Chapter 4 

Time Domain conditions for 

convergence in IL C: Inverse 

and Adjoint algorithms 

In Chapter 3 it was shown that Parameter Optimal ILC puts a highly restric- 

tive condition upon the plant matrix in order to achieve monotonic conver- 

gence to perfect tracking. It was also shown that the robustness analysis of 

POILC does not provide meaningful conditions upon the plant uncertainty 

thus requiring the often unrealistic assumption that a perfect plant model is 

available. 

This chapter analyses the stability and transient performance of a gener- 

ically structured ILC control law, and then focuses on two particular algo- 

rithms that fit this structure, namely the inverse and adjoint algorithms. 

These two algorithms are model based algorithms and it is pertinent to con- 

sider their behaviour when a perfect plant model is unavailable. Therefore 

the stability and convergence conditions are interpreted in terms of model 

uncertainties. This robustness analysis forms the major contribution of this 

45 
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chapter and is presented in publication P1 (Harte et al., 2004). Section 1.3 

gives a brief overview of this paper. 

4.1 Stability of a feedforward Iterative Learn- 

ing Controller 

Consider a feedforward ILC input of the form 

uk+l = Uk +, ßKek (4.1) 

where K is an NxN matrix, Q is a scalar and both are chosen by the 

designer. The error evolution equation corresponding to (4.1) is easily shown 

to be 

ek+l = (I -, 3GK)ek (4.2) 

Convergence of the error depends upon the matrix /3GK. The following 

proposition gives a condition for asymptotic convergence to zero error in 

terms of the spectral radius defined in Section 2.2 

Proposition 4.1 A necessary and sufficient condition for convergence of 

the above feedforward ILC algorithm is that the spectral radius of (I -, 3GK) 

is strictly less than 1. An equivalent statement is that it is necessary and 

sufficient that GK only has eigenvalues in the open right half complex plane 

and that ,ß>0 has a sufficiently small magnitude. 

Proof. The proposition requires a rigorous proof which can done using 

matrix analysis or concepts from Multipass Processes and Repetitive Systems 

Theory and can be found in a similar form within (Edwards and Owens, 1982) 

and (Rogers and Owens, 1992). For a more intuitive explanation of the 
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spectral radius condition in (Edwards and Owens, 1982) and (Rogers and 
Ovens, 1992) see Section 2.2 Q 

4.2 A Matrix Condition for Monotonic Con- 

vergence 

As discussed in Chapter 2, Chapter 3, (Amann et al., 1996) and (Owens 

and Feng, 2003) monotonically converging error signals are a desirable trait 

for any ILC algorithm. This section develops a condition for monotonic 

convergence of a feedforward type algorithm of the form in (4.1). The analysis 

is performed in terms of the l2-norm of the output error ek. 

Proposition 4.2 Suppose that the symmetric matrix GK + (GK)T is a 

positive-definite matrix. Then there exists a learning gain 6* >0 such that 

/3* >ß>0 ensures that IIek+1112 < IIek112 for all ek 0. Furthermore the 

value of any such gain ß can be obtained by satisfying the following matrix 

inequality 

(1I -GK)T(lI - GK) < 2I 
(4.3) 

(the inequality being expressed with respect to the partial ordering on sym- 

metric matrices i. e. Ml < M2 if, and only if, vT Ml v< vT M2v whenever 

v 0). 

Proof. The use of equation (4.2) yields the difference IIek+1112 - Hek112 in the 

form 

Ilek+l 112 - IJekII2 = -'ßek (GK + (GK)T)ek + ß2e7 (GK)TGKek (4.4) 

Since GK + (GK)T is a positive-definite matrix and /3 > 0, then for an 

arbitrary nonzero ek, the term -, ße' (GK+ (GK)T )ek is strictly negative and 



4. TIME DOMAIN CONDITIONS FOR CONVERGENCE IN ILC: INVERSE 
AND ADJOINT ALGORITHMS 48 

the term ß2ek (GK)TGIKek is strictly positive. To guarantee that IIek+112 < 
Iick112 it is necessary and sufficient that the following inequality must be true: 

13vT (GK + (GK)T )v > , 32vT (GK) T GKv `d v ZA0 (4.5) 

Since the left hand term of inequality (4.5) is of 0(3) and the right hand 

term is of 0(02) it follows that the inequality is met for all sufficiently small 

,3>0. 
This proves the existence of , ß* >0 (independent of ek) that ensures 

monotonic convergence. A few algebraic manipulations of (4.5), namely com- 

pleting the square, give the proposed inequality (4.3). O 

Proposition 4.2 shows that if GK+(GK)T >0 and (4.3) holds true then 

error convergence is monotonic, the next proposition furthers shows that 

under this condition the error also converges to zero for an arbitrary initial 

error eo. 

Proposition 4.3 Under the assumptions of Proposition 4.2 with 0<Q< 

, 3*, the algorithm ensures that the tracking error sequence {ek}k>o converges 

monotonically to zero in the 12 norm. 

Proof. Because JJekjJ > I1ek+1II ? 0, limk-oo IIekII exists, i. e. limk_, ()O Ilekil 

E, E>0. If E=0 then the proof is complete. Assume therefore that E>0. 

Then there exists a subsequence {ek } of {ek} such that limk, . eke = eoo, 

where e ,, o satisfies 11e,, I1 = E. Consider the sequence {ek,,, } generated by 

eke+, = (I - ßGK)ek) (4.6) 

Based on Proposition 4.2, the sequence {ek3+1 } satisfies the inequality 

klymo 
IIek, 

+, 
11 

_< klimo 
IIek, 11 =E (4.7) 

However, the sequence {ek, 
+, 

} is also a subsequence of {ek} (which can be as- 

sumed to have a subsequential limit e,,,, with norm 11e,, 11 = E), and therefore 
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it must hold that limk.. IIek3+lII = 116,, 11 =E= Ile... 11. A contradiction is 

obtained by noting the relationship e,,, = (I -ßGK)e,,,, and using Proposition 

1 to show that ýýeýýý < Ile,, 11, which concludes the proof. Q 

The next proposition refines this result to prove geometric convergence. 

Proposition 4.4 If GK + (GK)T is a positive-definite matrix, then there 

exists a real scalar aE (0,1) (dependent on ,ß but not eo) such that IIek+l 11 

allekll for allk? 0. 

Proof. Using the error evolution equation to calculate the 12-norm of 

ek+l gives 

JJek+l112 = IJekII2 -, 6e T (GK + (GK)T)ek + 02eT (GK)TGKek (4.8) 

Since GK + (GK)T is a positive-definite matrix the following bound for 

llek+lII is obtained: 

II ek+1112 -< 
(1 - , ß) + /325 2) 11 ek I I2 (4.9) 

where A is the smallest eigenvalue of GK + (GK)' and Q is the largest 

singular value of GK. The choice of a sufficiently small 8>0 then indicates 

the existence of a real scalar aE (0,1). Q 

Note: a simple consequence of the result is that 1jej < ak eo Il for all 
k>0 and hence the result can be regarded as an alternative proof of the 

previous proposition. 

Remark 4.1 Propositions 4.2,4.3 and 4.44 advocate the use of a sufficiently 

small ,6>0 since it induces monotonic error convergence when GK+(GK)' 

is a positive-definite matrix. It is worth noting however that as ,3 -i 0 it 

follows that uk+1 -4 uk. This implies that an excessively small /3 >0 will 

slow the rate of the convergence. 
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The results in this section show that if GK + (GK)T is positive-definite 

then monotonic error convergence is achieved by selecting a simple learning 

gain, ß>0, to be sufficiently small. The remainder of this chapter focuses 

on two choices for the matrix K. The first choice is K= G-1 and shall be 

referred to as the inverse algorithm and the second choice is K= GT and 

shall be referred to as the adjoint algorithm. 

4.3 The Inverse Algorithm 

ILC can be regarded as an iterative solution of an inverse problem (i. e. solve 

r= Gu for the input time series u) in a manner that can be implemented 

both in the form of experimental procedures during plant operation or as a 

simulation process. As a consequence, the existence and properties of a plant 

inverse are crucial to theoretical developments. This section concentrates on 

the discrete-time case for plant inverses, an analysis for the continuous-time 

scenario is presented in (Furuta and Yamakita, 1987). In what follows, it is 

shown that inverses (or approximations to inverses) can generate algorithms 

that have useful theoretical properties. To underline the potential of iterative 

inverse procedures, consider the conceptual (benchmark) ILC algorithm: 

uk+l = Uk + QG-lek (4.10) 

where ß is a scalar. Assume that the procedure is initiated with the choice 

of an arbitrary initial control time series uo leading to an initial error co. If 

/3 = 1, a simple analysis of the corresponding error evolution equation shows 

the expected result that the error converges to zero in one iteration. More 

precisely, computation of el gives 

el =r - yl =r- Gul = r-G(uo-G-leo) =0 (4.11) 
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In this case it would appear that the inverse model algorithm can be regarded 

as a theoretically perfect ILC algorithm. If 1 1, then a similar analysis 

indicates that ek _ (1 - ß)keo so that convergence to zero is assured in the 

range 0<8<2. 

Implementation of the above benchmark algorithm requires that an exact 

system model is available and can be implemented. Unfortunately an exact 

system model is invariably unavailable although a nominal model Go may be 

available or be chosen deliberately to reduce the computational load on the 

control implementation. 

4.4 Robustness of the Inverse algorithm 

This section is interested in both robust stability and performance of this 

one-parameter inverse ILC algorithm. In the nominal case of G= Go it 

has been seen that the algorithm reduces the magnitude of the error at each 
iteration i. e. if 0<Q<2, then II ek+1 HH= 11 - 0111411 < 11ek for all k 

where ek 0. It is easily seen that this monotonicity property is a very 

strong and valuable theoretical and practical property of ILC methods (see 

(Amann et al., 1996) and (Owens and Feng, 2003)) as it indicates a guarantee 

of improved performance from trial to trial. In what follows the robustness 

of the inverse-model ILC algorithm is analysed under the constraint that 

control performance retains monotonic error convergence in the presence of 

model uncertainty. 
The result takes the form of a relationship between the learning gain 

/3 and the multiplicative uncertainty representation G= G0U, where U is 

a square matrix, and can be interpreted as defining the uncertainty that 

can be tolerated for a given 3 or as defining the range of /3 that can be 
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used for a given uncertainty. Taking U to represent a proper, causal, linear, 

time-invariant system then it must have a similar structure to G i. e. lower- 

triangular Toeplitz. The use of such multiplicative perturbations has been 

standard practice for years in robust control and is comprehensively covered 

in (Skogestad and Postlethwaite, 1996). 

In general, robustness ideas reflect the need to retain a property (e. g. 

stability) despite the presence of modelling errors. In the context of this 

chapter the essential properties of an ILC algorithm will be 

1. the convergence of the algorithm to a zero tracking error (independent 

of the initial trial control used) and 

2. the monotonicity of the Euclidean norm (mean-square value) of the 

error time series. 

Both properties are beneficial to ILC performance with convergence being 

essential. As a consequence it is natural to introduce the concept of robust 

monotone convergence by requiring both of these properties to be present 
despite the presence of modelling errors. 

A crucial step is the characterization of the modelling errors that can then 

be tolerated. 

A robust monotone convergence analysis for the inverse algorithm intro- 

duced above is given below. A main result expressing monotonicity of the 

inverse ILC algorithm now follows: 

Proposition 4.5 Suppose that the symmetric matrix U+ UT is a positive- 

definite matrix. Then there exists a learning gain /3* >0 such that (3* >Q> 

0 ensures that IIek+1112 < IlekII2 for all ek 0. Furthermore the value of any 

such gain O can be obtained by satisfying the following matrix inequality 

(ýI-U)T(lI-U) < 
11 (4.12) 
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Proof. The inverse algorithm is a special case of the generic feedforward 

ILC control law in (4.1), where K= Go 1. Substituting in the matrix GK = 
GGG 1=U into the proof of proposition 4.2 completes this proof. Q 

Remark 4.2 It is clear that the property of geometric convergence to zero 

error described in propositions 4.3 and 4.4 are true for the inverse algorithm 

if U+ UT is a positive-definite matrix. The proof of such properties for the 

inverse algorithm is omitted to limit repetition. 

4.5 The Adjoint Algorithm 

The analysis in section 4.2 shows that the key to obtaining monotone error 

convergence is choosing the matrix K such that GK + (GK)' is a positive- 
definite matrix. One obvious choice, other than the inverse, is to let K= GI 

so that the control law becomes: 

Uk+l = Uc + /3GT ek (4.13) 

This algorithm shall be termed as the adjoint algorithm throughout this 

thesis. The term adjoint is used because the relationship (Gw)T'v = wT (GTv) 

is similar to that of an operator 0 and its adjoint operator G* where the 

following inner product relationship holds: 

(Gw, v)v = (w, G*v)w VvEV, wEW (4.14) 

For a formal description of adjoint operators see (Young, 1988), (Reddy, 

1986), (Nering, 1963) or any other introductory text on functional analysis. 

An analysis of an adjoint algorithm in a continuous-time scenario can be 

found in (Furuta and Yamakita, 1987). 

It is clear from the analysis in section 4.2 that the convergence proper- 

ties of the adjoint algorithm depend upon the matrix GGö. The following 
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proposition shows that robust monotone convergence for an arbitrary initial 

error requires that the multiplicative plant uncertainty (U + UT) to be a 

positive-definite matrix. Furthermore it shows the existence of a sufficiently 

small learning gain, ß, that guarantees robust monotone convergence given 

that the necessary condition holds. 

Proposition 4.6 Suppose that the symmetric matrix U+ UT is a positive- 

definite matrix. Then there exists a learning gain , Q* >0 such that, 6* > /3 > 

0 ensures that Ijek+1112 < IlekII2 wherever ek 0, Vk > 0. Furthermore the 

value of any such gain /3 can be obtained by satisfying the following matrix 

inequality: 

(ýI - Go UGO)T (lI - Go UGo) <11 (4.15) 

Proof. The proof is similar to that of Proposition 4.2 with the most notable 

exception being the following necessary inequality for the existence of ß`. 

, ßvTGo(U + UT)Gö v> , QZJIGUGovII2 Vv0 (4.16) 

The remainder of the proof is omitted for brevity. O 

Remark 4.3 It is clear that the property of geometric convergence to zero 

error described in propositions 4.3 and 4.4 are true for the adjoint algorithm 

if U+ UT is a positive-definite matrix. The proof of such properties for the 

adjoint algorithm is omitted to limit repetition. 

4.6 Simulation Examples 

Consider the case where a real plant G(s) is approximated with a lower order 

system G0(s). In the s-domain, these are taken to be 

G(s) =2 (4.17) 
82+2s 
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G0(s) =s (4.18) 

The two systems are sampled with a sample time of 0.1 seconds using zero- 

order hold. The trial length Tf is 25.5 seconds. It is easy to check numeri- 

cally that the resulting multiplicative uncertainty matrix U+ UT is positive- 

definite. The reference signal is chosen to be r(t) = sin(2 t). 

Figures 4.1 and 4.2 illustrate the existence of a sufficiently small ß>0 

that induces robust monotone convergence. Figure 4.1 shows that if, for 

the inverse algorithm, ß=2 the convergence is monotonic however a small 

increase to ,Q=2.05 gives asymptotic convergence. A similar behaviour 

is illustrated in figure 4.2 for the adjoint algorithm. A small change from 

,3=0.00765 to ß=0.00768 sees monotonic error convergence change to 

divergence. 

A comparison of the inverse and adjoint algorithms for this example shows 

that the inverse algorithm converges much faster than the adjoint algorithm. 

Experimental comparison, not presented here, for a range of LTI SISO sys- 

tems and their reduced order models shows that in general the inverse algo- 

rithm converges faster than the adjoint. The experimental comparison adds 

one further observation. Whilst the adjoint algorithm is in general slower to 

converge it is also slower to diverge should the robustness conditions given 

in this chapter not be held. 

Finally figure 4.3 shows the tracking performance after 120 iterations for 

the inverse algorithm where /8 = 2. The output y120(t) is visually indis- 

tinguishable from the reference r(t) and demonstrates that the error signal 

converges towards zero. 
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Convergence of Ilekil for the inverse algorithm 
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Figure 4.1: Convergence of error for the inverse ILC algorithm 

4.7 Summary 

l0 

In this chapter a generic feed-forward type ILC algorithm , uk+i = uk+/3Kek, 

was analysed. The algorithm is simple in structure, easy to implement and 
leaves a tuning variable, /3 and matrix K open for design and manipulation. 

It was shown that if a matrix GK + (GK)T was positive-definite and if 

the simple scalar ß>0 is made small enough then the algorithm results 

in monotonic convergence to zero error. It is numerically simple to test the 

condition should the plant matrix G be available. Two design choices for 
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Figure 4.2: Convergence of error for the adjoint ILC algorithm 

K that ensured the positive-definite condition was held were then presented. 

The first was K= G-' and was termed the inverse algorithm. The second 

was K= GT and was termed the adjoint algorithm. 

Both the choices for K assume the controller has full knowledge of the 

plant matrix G. Accordingly a robustness analysis was performed where only 

a lower-order plant model Go is available to the controller. The plant and its 

model are related by a multiplicative uncertainty U such that G= UGo. It 

was shown that if U+ UT is a positive-definite matrix and if the scalar /3 >0 
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Tracking performance of the Inverse algorithm with ß: 2 after 120 iterations 

r(t), y12Q 

Time t 

Figure 4.3: Tracking performance for inverse ILC algorithm with ß=2 after 

120 iterations 

is made small enough then the error will monotonically converge to zero in 

spite of the model uncertainty. 

The results in this chapter confirm that feed-forward type ILC, and in 

particular the inverse and adjoint algorithms are powerful tools. The algo- 

rithms have a simple structure, a clear robustness analysis for both stability 

and performance and a simple design principle. The same statement cannot 

be made for POILC and its predecessors, reviewed in Chapter 3, hence the 
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results developed in this chapter are a significant development for ILC. 



Chapter 5 

Frequency Domain conditions 

for convergence using inverse 

and adjoint ILC 

In Chapter 4 necessary conditions for robust monotone convergence using 

either the inverse or the adjoint algorithms were found in terms of the plant 

uncertainty matrix. Whilst these conditions give insight into the convergence 

properties of the inverse and adjoint algorithms they would be simpler to 

interpret if they could be extended into the more natural frequency domain 

commonly used in linear control theory and practice. 

The major contribution of this chapter is the development of robustness 

conditions in the frequency domain and is presented, for the inverse algo- 

rithm, in publication P2 (Harte et al., 2005). 

60 
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5.1 System representations in the Frequency 

domain 

Throughout this chapter a discrete-time plant shall be represented in the 

frequency domain by use of the z-transform and z-transfer functions. 

A link from the work in Chapter 4 to z-transfer functions is obtained 
by noting that both matrices and z-transfer functions link the same input 

and output time series. It is therefore easily shown, see (Oppenheim and 
Schafer, 1989) and (Rosenbrock, 1970), that the following proposition holds 

true: 

Proposition 5.1 Suppose that G(z) has relative degree greater than or equal 

to G0(z) and that G(z) = U(z)G0(z). If G, G,, and U are matrix representa- 

tions of these systems then G= UGo. 

Note 1: the relative degree assumption is needed to ensure that U is causal. 
Note 2: the result is used later in this chapter to obtain frequency domain 

robustness conditions. 

Note 3: in the case of the lifted plant where zG(z) = U(z)zG0(z), used 

throughout this chapter, the result holds without loss of generality. 

5.2 A frequency domain condition for robust 

monotone convergence using the inverse 

algorithm 

Consider the inverse algorithm presented in Chapter 4: 

uk+l = uk +, OGO lek (5.1) 
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The analysis in Chapter 4 showed that for robust monotone convergence 

using the inverse algorithm then it is necessary that the following matrix 

inequality be held. 

(1I - U)T(lI - U) <1 (5.2) 

The following proposition gives a sufficient condition for robust monotone 

convergence in terms of the uncertainty in the plant transfer function. The 

basis of the proposition is to consider the relationship between the matrix U 

and the underlying system with the transfer function U(z). 

Proposition 5.2 Given the notation in Proposition 5.1, suppose that U(z) 

is a stable system, then 

(i) U+ UT >0 if Re[U(z)] >0 at all points on the unit circle IzI =1 
(ii) a sufficient condition for monotonic convergence is that 

11 
sup -U z )ý 
I=1=1 Q 

(5.3) 

Proof. For (i) note that, for any v ERN we have vT (U + UT )v = 2vT Uv. 

Note also that vT Uv is identical to the inner product in 12 of the response 

of the system with transfer function U(z) to the input whose first N values 

are those of the elements of v with all other values taken to be zero. Using 

standard contour integration then gives 

2vTUv = 2I v(z-1)U(z)v(z)dz =1J 
27r 

Iv(e`B)I2U(eie)d0 (5.4) 
/l=I-i o 

where v(z) = vl + z-lvg + .... + z-(N-1) vN. Part (i) follows as the left-hand- 

side is real which implies that the imaginary part of U(ei°) can be deleted 

from the right-hand-side. 
Moving to (ii), let MN = II - U. The maximal value for the left-hand 

side of (5.2) is given by JIMNII'llvIl2 and therefore a sufficient condition for 
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monotonic convergence is that 

IIMNII <Q (5.5) 

Let M,, b be the corresponding infinite matrix mapping when N -3 oo. 
Note that M,,, is a lower-triangular Toeplitz matrix and therefore has a 

dynamical system interpretation, i. e. there exists a state-space realization 

(AAl, BA!, CA!, DA! ) that generates M... Due to the assumed stability of 

U(z), M,, is a bounded mapping and therefore 11MooI12 exists. This results 

in 

IIMooII = sup IIMCOxII ? sup II MOOxII ? IIMNII (5.6) 
xESoo XESN 

where S,,,, ={xE12111x11=1} andSN={xE12111x11=1Ax(t>N)=0}. 
The inequality in (5.6) follows as SN C S. Hence JIM II < implies 

that IIMNII < p. Furthermore it is a well known result, see (Grenander 

and Szegö, 1984) for example and further (Norrlöf and Gunnarsson, 2002) 

for its use in an ILC context, that 11M 0II = sup,,,, =1 
IM(z)I where M(z) := 

(Ä - U(z)). The result follows trivially from this and (i) as (ii) implies that 

Re[U(z)] >0 for all IzI =1 and hence that U+ UT > 0. Q 

Remark 5.1 The condition in (5.3) can be interpreted in terms of a Nyquist 

plot of U(z) on the unit circle. For robust monotone convergence, it is suffi- 

cient that the Nyquist plot of U(z) lies within a circle with radius centred 

about the point (p, 0) on the Complex plane. Section 5.4 demonstrates this 

in the context of a simulation example. 

Remark 5.2 As Q --j 0+, the circle of centre (Q, 0) in the Complex plane 

and radius eventually fills the whole of the right Complex plane i. e. ro- 

bust monotone convergence for any strictly positive uncertainty U(z) can be 

achieved by using a sufficiently small learning gain ,8>0. 
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Remark 5.3 A consequence of condition (5.3) is that the modelling error 

U(z) must be a positive-real system. By definition, the phase shift of such 

a system lies within ±90° for all frequencies jzi = 1. The robustness result 

hence states that the algorithm can tolerate a plant uncertainty of ±90° phase 

shift for all frequencies but that the gain tolerance is phase dependent. 

5.3 Adjoint Algorithm - frequency domain con- 

dition 

Consider the adjoint algorithm presented in Chapter 4: 

Uk+i = uk +, QGo ek (5.7) 

It is easily shown that Ilek+1112 is given as follows: 

Ilek+1112 = IIekII2 -, 6e TG"(U + UT )Go ek +, ß2IIGoUGTekII2 (5.8) 

The analysis in Chapter 4 showed that it was necessary that vT (U+UT )v >0 

for all v0 and that the learning gain /3 >0 be sufficiently small in order to 

induce robust monotone convergence. The following proposition extends this 

condition on U+ UT to a sufficient condition in the z-domain and is given 

in terms of the plant uncertainty transfer function U(z). 

Proposition 5.3 Given the notation in Proposition 5.1, suppose that U(z) 

is a stable system, then 

(i) There exists a learning gain ß* >0 such that , 6* > ,6>0 ensures that 

Iek+l 11 < 11 ekll for all ek 0 if vT (U + UT )v >0 for all v 54 0. 

(ii) vT (U + UT )v >0 for all v0 if Re[U(z)] >0 at all points on the 

unit circle IzI =1 
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Proof. For (i) consider the difference Ilek+1I12 - Ilek112 given as follows: 

Ilek+I I12 - IIek112 = -ße7 Go(U + UT)GT ek + ß2IIGoUGö ek112 (5.9) 

Clearly if vT (U + UT )v >0 for all v 54 0 then there exists a sufficiently small 

, 3* that ensures the right-hand side of (5.9) is strictly negative and hence 

IIek+1II < Ilekil for all ek 54 0. 

For (ii) note that, for any vE RN we have vT (U + UT )v = 2vTUv. Note 

also that vT Uv is identical to the inner product in 12 of the response of the 

system with transfer function U(z) to the input whose first N values are those 

of the elements of v with all other values taken to be zero. Using standard 

contour integration then gives 

Uv =f v(z1)U(z)v(z)= Iv(e°)I2U(e0)dO (5.10) 
f27 

2vT 
/ýzwhere 

v(z) = v1 + z-1v2 + .... + z-(N-l)vN. Part (ii) follows as the left-hand- 

side is real which implies that the imaginary part of U(ei°) can be deleted 

from the right-hand-side. 11 

Remark 5.4 The condition that Re[U(z)] >0 for all IzI =1 can be inter- 

preted in terms of a Nyquist plot. The condition becomes that it is sufficient 

that the Nyquist plot of U(z) lie in the right-hand side of the Complex plane. 

Remark 5.5 A consequence of the condition Re[U(z)] >0 for all IzI =1 is 

that the modelling error U(z) must be a positive-real system. By definition, 

the phase shift of such a system lies within ±90° for all frequencies IzI = 1. 

The robustness result hence states that the algorithm can tolerate a plant 

uncertainty of ±90° phase shift for all frequencies. 
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5.4 Simulation Example 

In this section a simulation example is given to illustrate the results presented 

in this chapter for the inverse algorithm. 
Consider the case where a real plant G(s)is approximated with a lower 

order system G0(s). In the s-domain, these are taken to be 

G(s) = 
s(s 

1 
1) 

(5.11) 

G0(s) =1 (5.12) 

The two systems are sampled with a sample time of O. ls using zero-order 
hold and, transforming to the z-domain (without any change in notation 

for simplicity), a corresponding model uncertainty U(z) is obtained using 
U(z) = GO1(z)G(z). Fig. 5.1 shows the Nyquist plot U(z) lies marginally 

within a circle of radius 0.5 about the point (0.5,0). The inverse of the 

matrix Go generated by (5.12) is used to calculate the inputs for the update 
law (5.1). 

The parameter 6 will be used to demonstrate the use of the theory and 

to test the conservatism of the sufficient condition (5.3) and Nyquist plot 

interpretation given in the section 5.2. An initial choice of Q=1 is made. 
Fig. 5.2 then shows that the Nyquist plot of U(z) lies in the open right- 
half complex plane (and hence it is positive) and also within the circle of 

radius 1 about the point (1,0) i. e. the sufficient condition (5.3) holds and 

robust monotone convergence should be expected. Fig. 5.3 and Fig. 5.4 indeed 

show that the 12 error converges monotonically to zero. Increasing ß to a 

value of Q=2 yields a circle that is indistinguishable visually from the 

Nyquist plot of U(z) (see Fig. 5.2) and once again the error is expected to 

converge monotonically to zero (see Fig. 5.3 and Fig. 5.4 for confirmation of 
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Nyquist Diagram 
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Figure 5.1: Nyquist Plot of U(z) on the unit circle 

0.8 1 

this property). A final choice of 0=2.05 (only a very small increase in ß) 

shows (see Fig. 5.2) that the Nyquist plot of U(z) lies marginally outside of 

the Q circle and hence that (5.3) is broken. The very low conservatism of 

the robustness condition is seen from Fig. 5.3 which shows that for this case 

the error convergence is no longer monotonic. However, the error does still 

converge asymptotically to zero ( see Fig. 5.4). 
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Figure 5.2: Nyquist Plot of Uncertainty with differing 6 circles 

5.5 Summary 

In this chapter the time-domain analysis of inverse and adjoint type ILC was 

extended to into the frequency-domain context. The Toeplitz structure of 

an uncertainty matrix, U, allows for a link between matrix and frequency 

domain descriptions of the plant uncertainty via the use of Parseval's rela- 

tion. The results are typically of the form that robustness is retained if the 

multiplicative modelling error U(z) has a positive real property and a simple 

learning gain is small enough. The results are expressed for the two model 
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Real Axis 
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Figure 5.3: Error comparison for differing ýß, k=1,2,.., 10 

based algorithms and provide a simple graphical Nyquist interpretation of 

the robustness analysis. 

For the inverse algorithm the condition presented provides a direct link 

between modelling error and learning gain magnitude. For the adjoint algo- 

rithm it is not yet clear how the scaling properties of the matrix G. extend 

into the frequency domain. The development of frequency domain condi- 

tions linking the model uncertainty, U(z), the plant model, G0(z), and the 

magnitude of the learning gain, Q, would be a significant contribution to the 
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Figure 5.4: Error comparison for differing , 3,1000 iterations 

robustness analysis of adjoint ILC. 

The robustness conditions developed in this chapter are only sufficient 

however numerical examples indicate that the degree of conservatism present 

may be very small in practice. 



Chapter 6 

Inverse and Adjoint type 

POILC 

The POILC concepts used in (Owens and Feng, 2003) and reviewed in Chap- 

ter 3 can be applied to both the inverse and adjoint algorithms discussed in 

the previous two chapters. The main contribution in this chapter is the de- 

velopment of robustness conditions for both Inverse and Adjoint type POILC 

and is presented in publication P3 (Hätönen et al., 2003b). 

The analysis for both algorithms is similar and this chapter shall concen- 

trate on analysis for the adjoint scenario. The results for the inverse algorithm 

shall be stated with brief analysis so as to avoid unnecessary repetition. 

Parameter Optimisation was first applied to the adjoint algorithm in 

the context of continuous-time ILC in (Furuta and Yamakita, 1987) where 

the authors termed it the steepest-descent algorithm. The paper analy- 

ses the convergence properties of the algorithm when the plant model con- 

tains multiplicative uncertainty. The analysis is done under the assump- 

tion that the trial length is infinite. Furthermore, because the the steepest- 

descent algorithm contains a non-causal operator, the time axis is taken to 
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be tE (-oo, co) resulting in a complicated analysis. 

In this chapter a similar analysis is carried out in the discrete-time case 

assuming a finite trial length and results in a necessary and sufficient con- 

dition for monotonic convergence. The algorithm is found to be lacking a 

mechanism to ensure that the necessary and sufficient condition holds. A 

modified steepest-descent algorithm is then proposed that is less restrictive 

and provides a transparent mechanism for balancing the dual aims of con- 

vergence speed and robustness. 

6.1 The Standard Steepest-Descent algorithm 

In the standard steepest descent algorithm for discrete-time ILC the idea is 

to minimise the cost-function 

J(, Qk+i) _ IJek+1J12 (6.1) 

during each trial. Assume now that the input uk is modified so that during 

iteration k+1 the input law uk+1 = Uk +, ßk+1GT ek is used where , 
%+1 is a 

scaling factor optimally updated at each trial. The cost index for iteration 

k+1 becomes 

J(, ßk+i) = Ilek+1112 = IIekII2 - 2f3k+iekGGTek +, 33+lIIGGTekII2 (6.2) 

It is straightforward to show that the optimal ßk+l is given as below. 

= 
II GTek 112 

(6.3) Q+1 
IIGGTek112 

By optimality it can be seen the 12 norm of the error converges monotonically. 

J(Qk+l) ý J(6) 
(6.4) 

Ilek+1112 <_ I1ek112 
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6.2 Robustness of the Standard Steepest-Descent 

algorithm 

Assume now that only a nominal model of plant, Go, is available and is 

related to the true plant by the equation 

G= G0U (6.5) 

where U is the multiplicative plant uncertainty. Furthermore, G,, is used in 

the update law so that uk+l = uk +Qk+1GTek. The optimal , Qk+l becomes 

ek GGo ek Qkli - IIGGö ekII2 
(6.6) 

however a nominal , 6k+l 

, 
8k+1 JIG'ek112 (6.7) =II GoGO ek 112 

is used instead. The following proposition gives a necessary and sufficient 

condition for monotonic error convergence in terms of the model uncertainty 
U. 

Proposition 6.1 Suppose U+UT is a positive-definite matrix, then if IlekIl 

0 and there exists a ßk+l >0 such that J(Qk+1) < J(0) then it implies ek+1 

converges monotonically. 

Proof. If J(, ßk+l) < J(O) then from (6.1) the following inequality must be 

true 

Qk+lek Go(U + UT )Go ek > Qk+i II GGö ek II2 (6.8) 

Note that both the terms in the above inequality are strictly positive but the 

left-hand term is of O(Qk+1), compared to O(, 6k'+1) on the right-hand side 
hence the inequality held for some sufficiently small , Qk+l. 11 
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Analysing ßk+1, in (6.7), there is no clear mechanism to ensure that ßk+l 

is small enough to meet the condition in Proposition 6.1. Consequently 

the next section introduces a new modified steepest-descent algorithm that 

results in monotonic convergence for plants with multiplicative uncertainty 
U such that U+ UT is a positive-definite matrix. 

6.3 A Modified Steepest-Descent algorithm 

In order to enhance the robustness properties of the standard steepest-descent 

algorithm consider again the algorithm 

uk+l = Uk + ßk+1GT ek (6.9) 

where Qk+l is selected to minimise the optimisation problem 

J(ßk+i) = IIek+1112 + wßk+1 (6.10) 

where wE T1g, w>0. The cost function J(ßk+1) in (6.10) reflects two 

design objectives. The first term in J(Qk+l) reflects the objective that the 

tracking error should be small during each iteration. The second term on 

the other hand tries to keep the magnitude of ßk+1 small, possibly resulting 
in a more cautious and robust algorithm when compared to the standard 

steepest-descent algorithm. 

The optimisation problem (6.10) can be solved in a straightforward man- 

ner where the optimal solution is as follows: 

Qk+l = 
IIekII2 

6.11) 

w+IIGGTekII2 

A convergence analysis of this algorithm follows: 
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Proposition 6.2 If wE R+ then IIek+lll < IIek'l if ek 0. Furthermore, 

limk. oo Ilekil -ý 0 and limk ßZ+l -; 0 (6.12) 

demonstrating monotonic convergence to zero tracking error. 

Proof. Selecting a sub-optimal choice 0, z, k+1 =0 in the cost function (6.10) 

yields J(O) _ Ilek 112. Since this choice is sub-optimal it follows: 

1lek11 2? IIek+1112 + w, ßß+1 ? IIek+1112 (6.13) 

which shows monotonic convergence. Reformulating (6.13) yields 

II ek II2 - "wßß+1 ?II ek+1112 >0 (6.14) 

and applying induction on Ilek I I2 gives 
k+1 

1IeoII2-w> ß2>0 (6.15) 
i=1 

and because k is arbitrary, limk-0 Qk+l = 0. This results in 

12 
k-ý I k+l = k-"M 

W +I II 

IGGT 

ek I I2 =0 (6.16) 

This is only possible if limk . ek =0 because G is non-singular (this is the 

assumption made in Section 1.2. Furthermore, the interlacing result (6.13) 

implies that IlekIl > Iiek+1Il if ek 0 which completes the proof. Q 

6.4 Robustness analysis of the modified steepest- 

descent algorithm 

Consider again the case where the true plant includes a multiplicative uncer- 

tainty, i. e. G=G,, U where U is the uncertainty and Go is the nominal plant 

model which is used so that 

uk+i =Uk+ ßk+1Gö ek (6.17) 



6. INVERSE AND ADJOINT TYPE POILC 76 

The optimal ßk+l is given by 

ek GG° ek (6.18) ýkfý = ur+ IIGGoekII2 

however since the true plant matrix is unavailable to the controller a sub- 

optimal ßk+l is used instead and is given as follows: 

Qk+i -I 
IG'ekII2 

(6.19) 
. wk+i + II GoGö ek 112 

Note that Wk+1 is an iteration varying scalar and can be used to counter the 

effect of any plant uncertainties. 
The following proposition shows that if (U + UT) is a positive-definite 

matrix then monotonic error convergence is attained if wk+l is sufficiently 
large for all k. 

Proposition 6.3 If U+ UT is a positive-definite matrix and Wk+l >0 is 

selected to be sufficiently large then it implies that 1IekIl > IIek+1II for all 

ek 0. Furthermore the sufficiently large Wk+l is characterised by the 

following inequality: 
T2 

Wk+i >E+ JIG Go 1ý Ilek112 (6.20) 
where A is the smallest eigenvalue of U+ UT 

Proof. By the optimality of Qk+l it follows that 

IIek+1f12 + w, ßk+i ý J(Nk+i) 6.21) 

It further follows that if J(, ßk+l) < J(O) for all ek 0 then it implies that 

Il ek+1 I I< II ek II for all ek : 0. 

The proof continues by developing conditions for Wk+l and the matrix 

U+ UT that ensure J(, ßk+l) < J(O) for all ek 34 0. Substituting (6.17) into 

(6.10) gives the following expression for J(, 6k+l): 

J(Qk+l) 
= J(O) - ßk+le G0(U + UT) Gö ek + Nk+1(w + 11 GGo ek112) (6.22) 
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From (6.22) it can be seen that J(Qk+l) < J(O) for all ek 54 0 if U+ U' is a 

positive-definite matrix and the following inequality holds true for all ek 0: 

, 
8k+1 e- Go(U + UT )Go 

ek > #Z+i (w + II GGa ek 
II2) (6.23) 

Substituting (6.19) into (6.23) followed by some algebraic manipulation yields 

the inequality in (6.20) and hence completes the proof. Q 

Remark 6.1 Suppose wl is chosen to be large enough such that Ileo ll > Ile, II 

then the inequality in (6.20) will be held if w2 = wl. This can be seen by 

noticing that the right-hand side of (6.20) monotonically converges as IhekIl 

monotonically converges, hence selecting wk; +l = wl for all k>1 guarantees 

the condition holds for all k>1. However selecting an excessively large and 

constant value for Wk+l can be quite conservative and can result in a small 

Pk+l, implying that Uk+l uk in such a case. Consequently proposition 6.3 

should be understood to be an existence result, and that in practice Wk+1 can 

be selected by a trial and error approach. 

The following proposition shows that if the condition in proposition 6.3 holds 

then Ilekil converges to zero. 

Proposition 6.4 Under the assumptions of proposition 6.3 then Ilekil con- 

verges to zero. 

Proof. If the assumptions of proposition 6.3 hold then it follows that 

II ek+1112 + w, ßß+1 SII ck 112 (6.24) 

The remainder of the proof is identical to that of proposition 6.2 where ßk+l 

is replaced with , ßk+l and G is replaced with Go. Q 
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6.5 Inverse type POILC 

The analysis techniques presented throughout the earlier sections of this 

chapter can be applied to inverse-type ILC. In fact replacing the matrix 
GGö in the robustness analysis of adjoint-type POILC with GGG 1 gives the 

corresponding analysis for inverse-type POILC. With this in mind this sec- 

tion shall refrain from indulging in unnecessary repetition by stating just the 

key results for inverse-type POILC. 

The following update law is intended to be used 

Uk+i = uk + ßk+iG-'ek - (6.25) 

where ßk+l is selected to minimise the following cost function 

J(ßk+i) _ II ek+1112 + wßk+1 (6.26) 

where the optimal , ß, +l is given by 

II ek 112 
(6.27) Qk+i =w+II 

ek I I2 

and w is chosen to be a positive scalar. 

However the true plant includes multiplicative uncertainty, i. e. G= G0U 

where U is the uncertainty and Go is the nominal plant model which is used 

in the update law (6.25) so that 

uk+l = uk + ßk+, Go lek (6.28) 

Note that since the the true plant is unknown, the optimal value for ßk+l is 

actually given by 
ek ý 

Uek (6.29) k+i =w+II Uek 112 
and is also unknown to the controller so a nominal estimate , 

ßk+l, given below, 

must be used instead. 

(6.30) Qk+i =Il 
ek 112 

I I2 wk+i +II ek 
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In (6.30) Wk+1 is an iteration varying scalar that is used to counter the effect 

of any plant uncertainties. 

The following propositions give sufficient conditions for the monotonic 

convergence of the error under the action of inverse-type POILC. 

Proposition 6.5 If U+ UT is a positive-definite matrix and Wk+l >0 is Se- 

lected to be sufficiently large then 11 ekil > IIek+1I1 for all ek 50. Furthermore 

the sufficiently large Wk+1 is characterised by the following inequality: 

Wk+i >+ 
II II2 I Ilek1I2 (6.31) 

where )A is the smallest eigenvalue of U+ U'. 

Proof. See the proof of proposition 6.3 replacing the matrix GGo with U. Q 

Proposition 6.6 Under the assumptions of proposition 6.5 then Ilekli con- 

verges to zero. 

Proof. If the assumptions of proposition 6.5 hold then it follows that 

IIek+1112 + w, ßß+1 ý Iiek112 (6.32) 

The remainder of the proof is identical to that of proposition 6.2 where , ßk*+l 

is replaced with , ßk+l, G is replaced with Go and GT is replaced with G. 1Q 

6.6 Simulation Examples 

Consider the case where a real plant G(s) is approximated with a lower order 

system G0(s). In the s-domain, these are taken to be 

2.1 20 
G(s) =s+1s+ 20 

(6.33) 
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G°(s) 
s+1 

(6.34) 

The two systems are sampled with a sampling interval of 0.1 seconds using 

zero-order hold. The trial length Tf is 25.5 seconds. It is easy to check 

numerically that the resulting multiplicative uncertainty matrix U+ UT is 

positive-definite. The reference signal is chosen to be r(t) = sin(Tft). An 

initial input uo =0 is assumed. 

Figure 6.1 shows that when the standard deepest descent algorithm is 

used that the error signal diverges. Figure 6.2 shows the error convergence 
for the modified algorithm with three different values of Wk+l. When Wk+1 is 

chosen to be a constant equaling 5 for all iterations the error still diverges. A 

further increase to wk+l =8 shows stability is regained and the error mono- 

tonically converges. A final choice of Wk+l = 0.001 + 0.7IIek112 results in a 

faster convergence. This final choice is adaptive and is based on the struc- 

ture of (6.20). Such a structure attempts to manage the trade-off between 

robustness and monotone convergence speed by utilising the fact that the 

sufficient inequality for monotone convergence in (6.20) is heavily dependent 

upon lick 112. The three values demonstrate the existence of a sufficiently large 

Wk+1 that induces monotonic convergence, they further demonstrate that this 

value decreases as lick decreases. 

Figure 6.3 shows the convergence of Wk+1 = 0.001 + 0.7If ek112. It is clear 

that during the early iterations Wk+l is sufficiently large, i. e Wk+1 >8 during 

the early iterations. Then as ek approaches zero Wk+l converges towards 0.001 

and hence the algorithm starts to converge towards the standard algorithm, 

i. e. Wk+z :. 0 as ek -> 0. This implies that, for this example, the standard 

algorithm can work for smaller error signals but fails for larger error signals. 
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Figure 6.1: Convergence behaviour with the standard algorithm 

6.7 Summary 

In this chapter an algorithm Uk+1 = uk + , Qk+1Kek, K= GT or K= G-1, 

was analysed where a scalar variable 6k+l is chosen at each iteration using 

parameter optimisation. In the nominal case where the plant does not have 

any uncertainty it was shown that the algorithm converges to zero error for 

an arbitrary discrete-time LTI SISO plant. 

The scenario where only a plant model, Go, is available to the controller 

was then considered. The model Evas taken to be related to the plant, G, 
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Figure 6.2: Convergence behaviour with the modified algorithm 

by a multiplicative uncertainty U such that G= UG,,. It was shown in this 

case that the algorithm still converges monotonically to zero tracking error if 

U+ UT is a positive-definite matrix and the scalar , ßk+1 is made sufficiently 

small. 

Initially the case where ßk+l is optimised according to an index, termed 

the steepest descent index, was analysed. It was shown that for this algorithm 

that there is no clear mechanism to ensure Qk+l is sufficiently small. 

The case where Qk+l was optimised according to the POILC index, see 
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2 Convergence of wk+l = 0.001+0.711ekll 
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Figure 6.3: Convergence behaviour of iteration varying Wk+l 

Chapter 3, was then analysed. The POILC index introduces an adaptive 

tuning parameter Wk+1 into the algorithm. The tuning parameter provides a 

means of ensuring , ßk+l is sufficiently small at each iteration and also gives a 

straightforward mechanism of finding a balance between convergence speed 

and robustness. 
Note that the modified algorithm, where K= GO, was applied on a 

industrial-scale gantry robot in P. 3 (see section 1.3). Near perfect tracking 

was achieved in approximately 100 iterations. Not only does this result act 
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to validate the findings in this chapter it also shows further promise for 

the algorithm since the linear model, Go, neglected a number of nonlinear 

elements in the gantry robot. 



Chapter 7 

Basis Functions and IL C 

The analysis in Chapter 4 introduced the concept of robust monotone conver- 

gence and for the inverse and adjoint algorithms it was shown that in order to 

achieve robust monotone convergence that it is necessary for the plant mul- 

tiplicative uncertainty matrix to be positive-definite. For some applications 

this condition may be too restrictive. 

This chapter uses basis functions to look at the convergence properties 

of a filtered tracking error subject to plant uncertainty that does not meet 

the positive-definite requirement. A common set of basis functions, namely 

the singular values basis, is used as a filter to design a restricted set of input 

signals that induce monotonic convergence of a filtered error in spite of non- 

positive multiplicative model uncertainty. The chapter then gives a derivation 

of the results for a generic orthornormal basis. A simulation example then 

illustrates the robustness results and highlights directions for future work on 

the use of basis functions for ILC. 

The main contribution of this chapter is the introduction of basis functions 

to retain the stability and monotonically converging properties of Inverse 

and Adjoint ILC algorithms in spite of non-positive multiplicative model 

85 
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uncertainty. This concept was originally presented for a specific set of basis 

functions, the discrete fourier transform, in publication P4 (Hätönen et al., 

2004b) and this chapter can be seen as an extension of these results. 

7.1 Basis Functions 

This chapter heavily utilises basis functions and gives a brief review of the 

notion so as to avoid any notational confusion. For a more formal review 

see (Reddy, 1986), (Nering, 1963) or any other introductory text on linear 

analysis. 

Throughout the chapter a set of vectors V= {vi} is called a set of or- 

thogonal basis functions if an arbitrary vector, pE ISBN, can be written as 
N 

alvi (7.1) 

for some ai E II and where {vz} satisfies 

v, vj=0 (7.2) 

when i0j. Furthermore the basis shall be called an orthonormal basis if 

vTvi=1 V iE{1,2,..., N} (7.3) 

otherwise it shall be called an orthogonal basis. 

Throughout this chapter a set of basis vectors V shall be written as a 

matrix mapping V: RN --ý RN where 

V= [vi, v2, ... , VNI (7.4) 

and can be used in equation (7.1) such that 

p= Va (7.5) 
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where the coefficients a; are written in the following super-vector notation: 

F al 

a2 
a= (7.6) 

ON 

The vector a is given as the solution to the minimisation problem 

min J(a) = Ilp - Vall2 (7.7) 
aERN 

and is found to be 

(X = (VTV)-1VTp (7.8) 

The matrix VTV is a diagonal matrix with non-zero entries along the diag- 

onal, this is due to the assumption that V spans 1[8N and the orthogonality 

assumption in (7.2). Hence VTV is non-singular and invertible. Furthermore 

it can used to scale any orthogonal basis so that it becomes orthonormal. 
The remainder of the chapter shall solely consider orthonormal bases. 

7.2 Basis Function approach to ILC 

The plant input u described in Chapter 1 can be written in terms of a basis 

set V as follows: 
N 

u=N aivz = Va (7.9) 

s=1 
The ILC problem defined in Chapter 1 can now become a question of learning 

the set of base coefficients a= [al, a2i ... , aN]T, such that 1jr - GVaf l is 

minimised, rather than directly learning the perfect plant input u*. 
The following integrating update law is presented 

N 

a=, k+1 = a=, k +Ek: jqj ek (7.10) 
j=1 
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where qTek is the ith coefficient of ek projected onto an orthonormal basis 

Q_ {ql, q2, ... , qN}. The ith input coefficient ai, k+l is chosen to be the 

integral of a weighted sum of the error , ek, projected onto the base Q. The 

choice of kij, V and Q is left open for the designer to compensate for the 

dynamics of the plant G. 

The update law in (7.10) can be rewritten in super-vector notation as 

follows: 

ak+l = ak + KQek (7.11) 

The evolution of the error signal is then described as 

ek+l = (I - GVKQ)ek (7.12) 

The analysis in Chapter 4 shows that GVKQ+(GVKQ)T must be a positive- 

definite matrix with a sufficiently small gain in order to achieve monotonic 

convergence to zero error. 

7.3 Singular Value Decomposition and ILC 

In the previous section two orthonormal matrices Q and V and a weighting 

matrix K were left as an open choice for the control designer to compensate 

the plant dynamics with. This section presents that a Singular Value De- 

composition (SVD) of the plant G provides a natural choice for Q, V and 

K. 

The singular values, u_, left and right singular vectors, vi and qj of a square 

matrix G are given by the eigenvalues and the left and right eigenvectors of 

GGT. The following relation later proves to be a useful design and analysis 

tool: 

Gvi = uiq= (7.13) 
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Equation (7.13) describes the operation of a square matrix G upon a vector 

vi as a rotation to another vector qj and a scaling by a factor u j. From here 

on it shall be assumed that uj > OVi E {1,2, 
... , N}. 

The appropriateness of using SVD in a basis function approach to ILC 

comes from the fact that the set of left and right singular vectors, V and Q, 

are both orthonormal and can be written such that 

GV = QS (7.14) 

where 
0'1 0 ... ... 0 

0 Q1 . 
S= (7.15) 

UN-1 0 

0 ... ... 0 IN 

Using the SVD of G, the update law can be chosen in the following 

manner: 
Uk+1 = EN 

{-1 ai, k+lvi (7.16) 
ai, k+1 = aik + NQi 

19'Tek 

where 6ER is a positive scalar chosen to ensure stability and govern the 

learning rate. 

Note that the term , 3uj-1 in (7.16) gives the algorithm a similarity to 

the inverse ILC algorithm discussed in Chapter 4. The algorithm in (7.16) 

attempts to invert plant dynamics along each of the N directions as opposed 

to trying to directly invert the plant matrix. A similar analogy to the adjoint 

algorithm could be made by using, OQ1 in (7.16). This opens up possibility 

of using different update laws along different search directions, something 

that is not transparently done under the analysis of the inverse and adjoint 

algorithms in Chapter 4. 
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The following proposition gives a necessary and sufficient condition for 

monotonic error convergence for the algorithm in (7.16) 

Proposition 7.1 If 0 <, ß <2 then IIek+1II < Ilekil for all ek 0. 

Proof. The use of (7.16) and few algebraic manipulations yield an identity 

for ek+l. 
N 

ek+1 = ek - 
GvjßU-lqj ek (7.17) 

j=1 

Then by use of (7.13) and the orthonormality property the following evolution 

equation is obtained 
(7.18) 4Tek+i = (1 -, 3)q T ek 

Clearly if 0< /3 <2 then (gTek+l)2 monotonically converges for ek 0. The 

proof concludes by noting that 
N 

IIek+1112 
= 

E(Q'Tek+l)2 (7.19) 

i=1 

and hence if (qT ek+l)2 monotonically converges for all iE {1,2, 
... , N} then 

the same is true for Ilek+1112. Q 

7.4 Robustness of SVD for ILC 

The previous section assumed that the singular value characteristics of the 

plant G are known precisely. In many scenarios this is not the case and only 

a nominal model Go is available. If a multiplicative uncertainty U relates G 

and G0(i. e. G= UGo) then the SVD relation in (7.14) becomes: 

G= UQSVT (7.20) 

The following proposition puts a necessary condition upon this uncertainty 
for monotonic error convergence. 
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Proposition 7.2 If U+ UT is a positive-definite matrix, then there exists a 

suf.. )iciently small ,Q where ,ß>>0 such that Ilek+l II < 116k il V ek 0. 

Proof. The proof is easiest done using the super vector notation where 

Uk+i = Uk + /3V S-'QT ek (7.21) 

The error evolution equation becomes: 

ek+1 = (I -, ßGVS-1QT)ek = (I -, QU)ek (7.22) 

The error evolution equation is identical to that of the inverse algorithm 
detailed in Chapter 4, hence the existence of Q such that 114+111 < 11411 for 

all ek 0 is clear. Q 

Remark 7.1 The result concurs with thesufficient condition found in Chapter 

4. However for some systems it is unrealistic to assume that the multiplica- 

tive uncertainty is positive-definite. Typically the condition is broken when 
high frequency modelling cannot be performed. 

The feedforward type algorithms presented in Chapter 4 have no obvious 

means of relaxing the positivity condition for monotonic convergence. In 

(Hara et al., 1988) and (Tomizuka et at., 1989) Q -filtering is applied to attain 

stability for repetitive control (a control problem with analogies to ILC). 

Inspired by this (Norrlöf and Gunnarsson, 2002) suggest the use of a Q- 

filter such that the plant input, u, becomes u= QUILC where UILC can be 

thought of as the input generated by an ILC algorithm. However the analysis 

presented in the paper is not clearly related to the positivity conditions for 

robust monotone convergence developed in Chapter 4 and also does not give 

any insight into the design of appropriate Q-filters. 

The remainder of this chapter introduces basis functions as a means to 

design filters that relax the robustness conditions developed in Chapter 4. 
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7.5 Using Basis functions as filters 

This section describes how a reduced set of orthonormal basis functions can 
be used as a filter. 

7.5.1 Orthonormal filters 

Consider the Nxp matrix Qp where 

Qn = [ql, 42, ... , Qn-1, qp] (7.23) 

and the set Q is a subset of the orthonormal basis Q. Note that the ordering 

of the vectors 1 to p, in (7.23), is done here purely for notational simplicity 

and that any subset of Qp deemed appropriate can be chosen. 
In the following equation, 

xt = QpQp x (7.24) 

the NxN matrix Q, Qp acts on an arbitrary vector xE RN to produce a 
filtered vector XfEWC RN. The filter QpQp only allows components of x 

that are members of rjQp, where 77 E R, to pass through to xf. Due to the 

orthonormality of Q, these components pass through unchanged. 

Example 7.1 Q{ql, q2,. - -, qN_I, qN} is an orthonormal basis. Q= {ql} is 

a subset of Q and the vector x is chosen to be x= 17gl + qZ where 2<z<N. 

Due to the orthonormality of Q the filtered vector xf becomes: 

xf = QPQp x= Qp(i19i 9i + 4i 4z) = Qpq = , 14i (7.25) 

Figure 7.1 shows a plot of x and x1. From this figure it is clear that qz is not 

an element of Qp and has been filtered out. 
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Comparision of x(t) and xf(t) 

X(t), X f(, 

1.5 

t) 
o 

501 
5 10 15 20 2! 

Time t 

Figure 7.1: Comparison of filtered and unfiltered signals x1(t) and x(t) 

7.5.2 Filtered Error and Component Error 

At this juncture it is necessary to introduce two pieces of terminology, namely 

the filtered error and component error, both of which shall be used through- 

out the remainder of this chapter. 

Filtered Error 

From herein the Nx1 vector QpQP ek shall be termed the filtered error. 

It may be useful to consider the convergence properties of I IQPQP ekll 
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particularly if the filter QJ QP could be designed such that GQpQP u* .:; Gu* 

where u* is the input that minimises hr- Gull. 
A point of caution should be observed however. Since Qp CQ the matrix 

QpQp has p eigenvalues equaling 1 and N-p eigenvalues equaling zero 

resulting in the following inequality: 

IIQpQp ekIl : IlekIl (7.26) 

The consequence of (7.26) is that convergence of IIQPQp ekII does not imme- 

diately imply convergence of Il ek jj. 

Component error 

From herein the px1 vector Qp ek shall be termed the component error. 
This vector can be thought of as the projection of the error onto each of the 

p basis vectors. It may also be useful to consider the convergence of JJQp ekII 

since it has the following property: 

IIQPekll = IIQPQpekll (7.27) 

The property can be obtained by observing that the pxp matrix Qp QP is in 

fact the identity matrix. This is due to the orthonormality of Qp. 

7.6 Relaxed Basis SVD ILC 

Suppose now that the plant multiplicative uncertainty U+ UT is no longer 

positive-definite and is now characterised by three spaces Wps, W, and W,, 

where 

Wps = {wpsl wp (U + UT )wps > 0} 

Wz = {wZl wz (U + UT )wz = 0} (7.28) 

Wn={w7 wn(U+UT)wn<0} 
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and Wp3 ®Wz ®W,, = ISBN 

When using the algorithm in (7.16) if QQT ek = ek E W, for some 

arbitrary ek E RN, then the analysis in section 7.4 shows that the convergence 

of ek would not be monotonic and there would be no guarantee of stability. 

This section presents a relaxed version of the algorithm in (7.16) which uses 

an orthonormal filter QF, Qp : RN -i W p, ® W. The idea here is that 

if QQTek = ek E WP,, for some arbitrary ek E ISBN, then there exists a 

P>0 such that the filtered error signal monotonically converges to zero. If 

QQT ek = ek E Wz, for some arbitrary ek E RN , then the algorithm will have 

converged to a fixed limit E= ek. 

The modified update law is given by 

Uk+i = Vpak+i (7.29) 

where Vp = [vi, v2i ... , vp_,, vp], p< N and 

ak+l = ak + ßSp 1Qp ek (7.30) 

Qp and Sp are given as follows 

Qp = 
fgl, ßi2, ... , Qp-l r qpj (7.31) 

and 
0'1 0 ... ... 0 
0 Q1 

Sp = (7.32) 

up_1 0 

0 ... ... 0 up 
It is worth noting that Vp and Qp are reduced sets, of the type discussed in 

section 7.5.1, of the singular vectors defined in section (7.3) and are related 

by GVp = UQpSp. Note that just as in section 7.5.1 the ordering of the 
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vectors from 1 to p is done here purely for notational simplicity and that any 

set of p singular vectors deemed appropriate by the user can be chosen. 

The error evolution equation for the algorithm in (7.29) becomes 

ek+l = ek - ßUQPQp ek (7.33) 

The analysis of the method starts by considering the component error 

Qp ek where 
Qp ekfi = (I - #Qp UQP)Qp ek (7.34) 

The following proposition gives a condition for monotonic convergence of the 

component error, Qp ek. 

Proposition 7.3 If Qp (U + UT)Qp is a positive-definite matrix then there 

exists a sufficiently small O>0 such that IIQpekII converges to zero mono- 

tonically. 

Proof. The proof becomes identical to that of proposition 4.5 by making 

following substitutions, ek = QT 
p ek and U= QP UQp. 0 

The result in proposition 7.3 does not fully describe the mechanism within 

the relaxed algorithm since it is not clear when Qp (U + UT )Qp is a positive- 

definite matrix. 

Proposition 7.4 There exists a sufficiently small 0>0 such that if QpQp ek E 

W,, 3 V QpQp ek 54 0 then Qp ek converges to zero monotonically. If Q, QP ek = 
0 then Q7'ek remains at zero. 

Proof Continuing on from the proof of proposition 7.3 it is necessary that 

e7 QPQp (U + UT )QpQp ek >0V QpQP ek 0 (7.35) 

and hence it is necessary that QpQp ek be an element of Wps for all QPQp ek 

0. The existence of the sufficiently small 6>0 such that convergence is 
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monotonic to zero follows from the proofs of propositions 4.2 and 4.3. Finally 

it is trivial to see that if QpQP ek =0 then jI Qý'ek II = 0. D 

Remark 7.2 Proposition 7.4 shows that if the filter QpQT can be selected 

such that it maps all error signals to the set Wps where possible, and to 

Wz otherwise, i. e. QJQp is a matrix mapping such that QpQT : RN -º 
Wp, ® WZ, then the filtered error converges to zero monotonically. 

It is insufficient to just consider the performance of QT ek, the stability of 

ek must be analysed to guarantee system integrity. 

Proposition 7.5 If limk-oo Qp ek =0 then ek converges to a limit E such 

that IlEll < oo. 

Proof If liMk-c)o Q'ek ek =0 then it follows that ak+1 = ak and uk+1 = uk as 
k -* oo where Uk is bounded such that limk-co IjukII < oo. Hence the output 

error has converged to some limit E. 

The value of E is given by E= firn, r- Guk. Since both limk. c)o uk 

and r are bounded and G is BIBO stable by assumption then E must be 

bounded such that IlEll < co. Q 

Remark 7.3 The limiting error E is heavily dependent upon the relationship 
between r and Vp and Qp. However the greater number of error signals ek 
that are mapped to the space W 3, and hence the fewer mapped to Wz, then 

the smaller E will be. This 'rule of thumb' is demonstrated by a simulation 

example in section 7.9 using an algorithm similar to that discussed in this 

section. 
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7.7 Orthonormal Filters for Feedforward-type 

ILC 

In this section an ILC algorithm is presented that attempts to map the error 

signal ek to the space Wp,, defined in (7.28), where possible and to WZ 

otherwise. Consider the following update law 

Uk+i = Uk +, QKVpVVTek (7.36) 

where V, is a reduced set of orthonormal basis vectors of the type discussed 

in section 7.5.1. The structure of the algorithm in (7.36) is the same as the 

one presented in section 4.2, except that ek has been replaced with a filtered 

error, VPV, T ek. 

This section proceeds by analysing the convergence properties of the com- 

ponent error, VAT ek, when the matrix GK is characterised by three spaces 
Wps, W, z and W,,: 

WPs= {t 1W (GK + (GK)T) wP3 > 01 

Wz = {wZ lwZ (GK + (GK)T) wz = 0} (7.37) 

Wn = {iun wn (GK + (GK)T) wn < 0} 

where Wps ®W, (D W, = RN. The idea here is to design the matrix Vp PT 

such that it is a matrix mapping VpVVT : RN -4 Wps E9 so that if VP pT ek E 

Wps then there exists a, Q >0 such that PTVpek monotonically converges to 

zero. 

The following proposition shows that if VP 
pT ek E Wps for all VpVVT ek y0 

then JI VpT ek ll converges monotonically to zero. 

Proposition 7.6 If Vp pT ek E3 for all VpVVT ek 0 then there exists 

a sufficiently small 3>0 such that pT ek monotonically converges to zero. 

Furthermore if VpVVTek =0 then jI pTekIj = 0. 
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Proof The component error evolution equation for (7.36) becomes as follows: 

pT ek+l = (I 
- 

pT GKVp)VpT ek (7.38) 

The analysis in Chapter 4 comprehensively shows that if the following in- 

equality holds then a sufficiently small 3>0 exists. 

(7.39) ek Vp 
pT (GK + (GK)T )Vp pT Ck >0V VpVpT e% 0 

Clearly (7.39) holds true if VpVpT ek E Wrs for all Vp pT ek 0. 

The convergence of II PT ek II to zero as k -* oo follows from the proof of 

proposition 4.3. Finally it is trivial to see that if Vp pT ek =0 then II PT ek II = 

o. 0 

It is insufficient to just consider the performance of VPT ek, the stability of 

ek must be analysed to guarantee system integrity. 

Proposition 7.7 If limkýco VT =0 then ek converges to a limit E such 

that JJEJJ < co. 

Proof If limk.. 
pT ek =0 then it follows that uk+1 = Uk as k --+ oo where 

Uk is bounded such that limk-0Ijukil < oo. Hence the output error has 

converged to some limit E. 

The value of E is given by E= limk-co r- Guk. Since both limkýco Uk 

and r are bounded and G is BIBO stable by assumption then E must be 

bounded such that IIEll < oo. 

The following two subsections discuss the case where such filtering is 

used on the inverse and adjoint algorithms, presented in Chapter 4, where 

K= Go' or K= Go. The discussion focuses on a relationship between the 

spaces WPs and YVps, and hence the relationship between the two algorithms 

and the model uncertainty. 
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7.7.1 Filtered Inverse Algorithm 

For the inverse algorithm GK = U, hence Wps = Wps, W, = 3'" and W,, = 
Wn. It is therefore sufficient that Vp pT ek E Wp, for all Vp pT ek 0 for 

proposition 7.6 to be held true. 

7.7.2 Filtered Adjoint Algorithm 

For the adjoint algorithm GK = GOUG' 
, hence the following: 

wps = {wpl wp Go(U + UT)G0 ü PS > O} 
Wz = {&1 wZGo(U+UT)Goiuz = 0} (7.40) 

VVn = Il~VnI wn Go(U + UT )Gown < 0} 

For proposition 7.6 to be held true then Gl'VpVPT ek E W7 for all VpVPT ek 0. 

Should Go VpVpT ek =0 then IIGo Vp pT ek II =0 which implies JJVPT ek II =0 

since GQG'o and VpVVT are positive-definite matrices. 

7.8 Selection of Vp 

Clearly the result obtained in proposition 7.6 does not suggest how to select 

Vp in order for the assumption VpVPT ek E W, for all VPVVT ek ;0 to be held 

true. However if the reference signal is restricted to directions in which the 

designer has good knowledge of the plant dynamics then ILC can be restricted 

to those directions. In the case where r has low frequency content and the 

designer has poor plant knowledge at high frequency then the Fourier basis 

Vf, given below, provides a simple means of selecting Vp such that it rejects 

error signals of specified frequencies. Section 7.9 gives a simulation example 

that demonstrates this point. 
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Fourier basis V1: 

Vj = [cos(0), cos(yt), sin('yt), cos (27t), sin(2yt), ... , (7.41) 

.... cos ((E 
- 1)yt), sin ((L 

- l)-ft), cos (2 ryt)J 

where ry = Tf 
,Tf is the length of the trial and N is the number of samples 

in the trial. Note that this basis is orthogonal but can be normalised as 
discussed in section 7.1. 

It is also worth noting that this method of ILC also has the bonus of 

rejecting disturbances outside the range of the reference signal. The author 

of this thesis leaves a full and thorough investigation of this and the subject 

of selecting Vp in general as a subject of future work. 

7.9 Simulation Example 

Consider the case where a real plant G(s) is approximated with a lower order 

system G0(s). In the s-domain, these are taken to be 

1( 20 l2 G(s)= 
s+1\s+20) 

(7.42) 

G,, (s) 
s+1 

(7.43) 

The two systems are sampled with a sample time of 0.1 seconds using zero- 

order hold. The trial length Tf is 25.5 seconds. It is easy to check numerically 

that the resulting multiplicative uncertainty matrix U+ UT is not positive- 
definite. The reference signal is chosen to be r(t) = sin(Tft). 

The standard inverse algorithm, given in section 4.3, is run with ,Q=0.5 
and an initial guess of uo = 0. Figure 7.2 shows, as the theory in Chapter 4 

suggests, that liekil does not monotonically converge. In fact after an initial 

convergence the system becomes unstable and the output diverges. The result 
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implies the error, ek, has components in W,, that, no matter how small they 

are initially, grow as k increases. 

IIekII with iteration k- the inverse algorithm 

Ilekll 

Iteration round k 

Figure 7.2: Divergence of error for inverse algorithm 

0 

The simulation is repeated but this time with the filtered inverse alga 

rithm in (7.36) where K= GO 1 and the normalised Fourier basis in (7.41) is 

chosen where p= 21. Figure 7.3 shows that the filtered error monotonically 

converges to zero. The result implies that all non-zero filtered errors lie in 

Wp. 

Figure 7.4 shows a logarithmic plot of IIekil for both the inverse and 
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IIVPVPekII with iteration k- the filtered inverse algorithm 

p kIl 
JIVVpe 

Iteration round k 

103 

i0 

Figure 7.3: Convergence of the filtered error signal using the filtered inverse 

algorithm 

filtered inverse algorithms. During the early iterations the two plots are 

visually indistinguishable. This concurs with the theory that if ek E WPs the 

two algorithms are effectively the same. However from about iteration 12 

onwards the inverse algorithm diverges whereas the filtered inverse algorithm 

converges to a fixed limit E. This demonstrates that the inverse algorithm 

feeds elements of W, a into the plant whereas the filtered algorithm rejects 

them. 
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Figure 7.5 shows the reference signal and the output, y15o, are visually 
indistinguishable. This implies that for this example the fixed error limit E 

is negligible. 

102 
Ilekll against iteration k- inverse and filtered inverse algorithms 

)ý 

Inverse algorithm 

ýo 

Ilekil 
Filtered inverse algorithm 

goo 50 100 150 
Iteration round k 

Figure 7.4: Comparison of error convergence for inverse and filtered inverse 

algorithms 

Finally the case where a one-off additive measurement disturbance is sim- 

ulated. It is assumed that perfect tracking has already been achieved, i. e. 

eo = 0, when the signal d(t) = 10v255 is injected into the output measurement 

signal. 

100 
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Reference signal and plant output at iteration 0150 

0 U) 

v 
L 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.50 5 10 15 20 25 
Time t 

Figure 7.5: Comparison of reference and output signals after 150 iterations 

Figure 7.6 shows a plot of r(t) +, ßGGO ld(t), the resulting output of the 

inverse algorithm, and figure 7.7 show a plot of r(t) + QGGo 'VPVpTd(t), the 

resulting output for the filtered algorithm. As the theory suggests the filtered 

algorithm rejects the disturbance. This demonstrates the potential benefits 

of the filtered algorithm when the plant is subject to output disturbances 

and measurement noise. This result motivates analysis of this rejection char- 

acteristic as a future piece of work. 
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Plant output under disturbance - Inverse algorithm 
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Figure 7.6: Plant output subject to disturbance using the inverse algorithm 

7.10 Summary 

In this chapter orthonormal basis functions were proposed as non-causal fil- 

ters for use in feed-forward type ILC algorithms. Non-causal filters are appli- 

cable in ILC as signal processing can be applied off-line in between iterations. 

Orthonormal filters were shown to have the property of being able to either 

pass through signals unchanged or to entirely reject them. This is a property 

causal filters do not possess. Two sets of orthonormal basis functions that are 

commonly used in control theory and signal processing, namely the Singular 
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Plant output under disturbance - Filtered inverse diagram 
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Figure 7.7: Plant output subject to disturbance using the filtered inverse 

algorithm 

Value and Fourier bases, were put forward as suitable basis from which to 

design filters. 

Multiplicative model uncertainty was categorised into three modes: a pos- 

itive mode, a zero (or nullifying) mode and a negative mode. In the face of 

uncertainty with negative modes the conventional inverse and adjoint algo- 

rithms tend to suffer from long term instability. A filtered version of these 

two algorithms was proposed that tackled this stability problem by passing 
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through error signals that excite positive modes whilst rejecting error signals 

that excite negative (or non-monotonic) modes. It was shown that this addi- 

tion of an orthonormal filter opened up a method by which to regain stability 

where the output error converges to a fixed limit. It was further shown that 

if the orthonormal filter is designed appropriately then the filtered error has 

robust monotone convergence in the presence of non-positive multiplicative 

uncertainty. 

This result is a significant improvement for inverse and adjoint ILC and 

gives a method of regaining monotonic behaviour in the face of significant 

model uncertainty. This result also highlights two key issues for feedforward 

type ILC: 

. Passing through (to the plant) error signals that excite positive modes 

of plant uncertainty allows for robust monotone convergence. 

" Passing through error signals that excite negative modes of the plant 

uncertainty leads to a loss of monotonicity and possibly induces insta- 

bility. 

A simulation example demonstrated the ease of implementation of the 

filtered algorithm and further demonstrated that the limiting error need not 

be significant. The simulation example also highlighted the algorithm's po- 

tential ability to reject disturbances. A full and thorough investigation into 

the algorithm's ability to reject output disturbances and measurement noise 

would complement the results presented in this chapter and is an area sug- 

gested for further work. The exact choice of filter once given an orthonormal 

basis, i. e. how many and which basis vectors to use, is also a subject for 

future work as is the relationship between the limiting error and the model 

uncertainty. 



Chapter 8 

Conclusions and Future work 

8.1 Overview 

In this thesis new robustness analysis for model-based Iterative Learning 

Control (ILC) has been derived. In ILC a dynamical system is required to 

track a reference in a repetitive manner. The repetitive nature of the problem 

allows use of information from previous attempts to track the reference in 

order to improve future attempts. An ILC algorithm iteratively uses past 

tracking errors to modify input signals until perfect, or near perfect, tracking 

is achieved. 

This iterative process creates a two-dimensional system where the time- 

axis is fixed and finite and the iteration axis is infinite. The output of an LTI 

system cannot become unbounded in finite time hence the stability of the 2-D 

process is typically characterised by its behaviour along the iteration axis. 

Stability analysis of ILC tends to concentrate on the learning operator L that 

maps the error signal from the current iteration to the next iteration. The 

stability of an ILC algorithm can be determined by considering the spectral 

radius p(L) of the learning operator L and the induced norm JIL1I. If the 

109 
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spectral radius is strictly less than unity then the algorithm asymptotically 

converges to zero error. If the induced norm IIL11 is strictly less than unity 

then the algorithm monotonically converges to zero tracking error. 
Asymptotic convergence is not necessarily a desirable trait for an ILC 

algorithm as it gives no guarantee of the input and output signals remaining 

within any required bounds. Monotonic convergence however implies track- 

ing is improved, with respect to the norm, at each and every iteration. If 

the norm of the initial error is less than some required safety bound then all 

future errors will also be within this bound, hence monotonic convergence is 

a very desirable property for any ILC algorithm. 

In this thesis monotonic convergence of ILC algorithms was considered. A 

number of ILC algorithms with monotonically converging characteristics were 

recognised to be model-based algorithms and accordingly robustness analyses 

were derived for these algorithms for the case when a perfect plant model is 

unavailable. More formally the concept of robust monotone convergence was 

introduced and considered, where a model-based ILC algorithm is required 

to give monotonic convergence in spite of plant uncertainties in the model. 

8.2 Parameter Optimal ILC 

A number of optimisation based ILC algorithms are known to result in mono- 

tonic convergence. However they tend not to be without drawbacks. Norm- 

Optimal ILC (NOILC) for example gives monotonic convergence but is non- 

causal in implementation and requires state-observation and prediction. The 

algorithm is heavily reliant upon a plant model and is complex in implemen- 

tation. As a result of this there is no clear method of performing a robustness 

analysis. 
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Another optimisation based algorithm, termed Parameter Optimal ILC 

(POILC), also results in monotonic convergence but is simpler in form than 

NOILC. However the POILC algorithm struggles to guarantee convergence 

to zero error and is heavily reliant upon having a perfect knowledge of the 

plant dynamics. The simpler structure of POILC does allow for a robustness 

analysis however conditions for robust monotone convergence appear quite 

restrictive and fail to characterise the plant uncertainty tolerable for robust 

monotone behaviour. The analysis of POILC motivates the search for model- 
based ILC algorithms that are simple in structure and that allow conditions 
for robust monotone convergence to be derived in terms of plant uncertainty. 

8.3 Time Domain conditions for convergence 

in ILC 

In POILC and NOILC the optimal algorithms are model based but their 

structure appears to prevent conditions for robust monotone convergence to 

be developed in terms of plant uncertainties. A feedforward ILC algorithm 

can be used to tackle these issues. The feedforward ILC algorithm is of the 

form uk+l = Uk + QKek where ß is a scalar, K is a square matrix and both 

are left open for design. The algorithm is simple in structure and allows the 

use of plant model information via the matrix K. Analysis of this algorithm 

derives a positivity condition for monotonic convergence in terms of /3, K 

and the plant matrix G. Furthermore the condition guarantees convergence 

to zero tracking error. 

If plant knowledge is utilised by selecting K= G-1 or K= GT then the 

condition for monotonic convergence is immediately satisfied for some ,6>0. 
The choices K= G-1, termed the inverse algorithm, and K= GT, termed 
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the adjoint algorithm, result in model-based algorithms. As a new result, also 

presented in publication P1 (Harte et al., 2004), robustness analysis shows 

that if a multiplicative plant uncertainty U satisfies a positivity condition 

then both algorithms result in robust monotone convergence to zero error for 

some 3>0. 

8.4 Frequency domain conditions for inverse 

and adjoint algorithms 

The matrix based positivity conditions for robust monotone convergence pro- 

vide insight into the type of model uncertainty tolerable for the inverse and 

adjoint algorithms. However it would be useful if the matrix based conditions 

could be translated into the frequency domain commonly used in control the- 

ory and practice. The Toeplitz nature of the uncertainty matrix U and the 

assumed stability of the underlying uncertainty transfer function U(z) allows 

this to be done. 

Through use of Parseval's relation, analysis shows that it is sufficient that 

U(z) be positive real, for a sufficiently small Q>0, in order for the adjoint 

algorithm to give robust monotone convergence. A similar analysis yields a 

tighter condition for the inverse algorithm. Not only is it sufficient that U(z) 

be positive real for robust monotone convergence but the condition also gives 

a relationship between U(z) and the magnitude of 6. 

Both of these conditions result in useful and simple Nyquist plot inter- 

pretations. For the adjoint algorithm U(z) must lie in the right-half complex 

plane and /3 must be made sufficiently small yet positive. For the inverse 

algorithm U(z) must lie in the right-half complex plane but also within a 

circle of p radius centred about the point (0, 
p) where 6>0. This analysis 
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was also presented, for the inverse algorithm, in publication P2 (Harte et 

al., 2005). 

8.5 Inverse and Adjoint POILC 

The ideas in POILC can be applied to the inverse and adjoint ILC algorithms 

and provide a method of selecting the tuning parameter /6 so as to balance 

the dual aims of robust monotone convergence and convergence speed. The 

inverse and adjoint type POILC algorithms are both model-based and again 

yield positivity conditions upon the multiplicative plant uncertainty for ro- 
bust monotone convergence. If the multiplicative plant uncertainty matrix, 
U, is positive-definite and a tuning parameter, wk+l, is made sufficiently 
large then robust monotone convergence is guaranteed. This analysis was 

presented, for adjoint type POILC, in publication P3 (Hätönen et al., 2003b). 

The adjoint version of this algorithm has been applied on an industrial- 

scale gantry robot with good results. Despite the model neglecting inherent 

nonlinearities in the plant, the algorithm results in near perfect tracking after 

approximately 100 iterations. 

8.6 Basis Functions and ILC 

The iterative nature of ILC allows for offline signal processing to be performed 

on previous error signals in between trials. Offline signal processing has one 

major advantage over online signal processing in that it permits the use of 

non-causal (in the time-axis sense) filters. 

The inverse and adjoint ILC algorithms require that a multiplicative plant 

uncertainty matrix be positive-definite in order to achieve robust monotone 



8. CONCLUSIONS AND FUTURE WORK 114 

convergence. As a new result it is shown that the addition of a non-causal 

filter to the inverse and adjoint algorithms allows for a relaxation of the 

positivity condition. More formally if the plant uncertainty matrix is not 

positive-definite then the tracking error can still converge to a fixed limit. 

This highlights a trade-off between the positivity of plant uncertainty and 

zero tracking error. 

Analysis shows that the design of such a non-causal filter can be done 

using a set of orthonormal basis functions. Further analysis shows that a 

filtered error signal has robust monotone convergence to zero. Simulation 

studies demonstrate that the limiting tracking error need not be significantly 

large when using the filtered inverse and adjoint algorithms in scenarios where 

the standard inverse and adjoint algorithms suffer from long term instabil- 

ity. This analysis is an extension of the work presented in publication P4 

(H itönen et al., 2004b). 

8.7 Directions for future research 

The work presented in this thesis opens up further directions for future re- 

search: 

i) The analysis in Chapter 4 shows the inverse and adjoint algorithms to 

have a well defined tolerance to plant uncertainty for SISO systems. 
A similar analysis for multiple-input multiple-output (MIMO) imple- 

mentations for both algorithms would complement the findings in this 

thesis. Potential issues could arise for the inverse MIMO algorithm if 

the MIMO plant matrix is not of full rank. 

ii) The convergence analysis throughout this thesis has been performed 

using the 12-norm. In some applications robust monotone convergence 
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with respect to some other norm may be desirable. Meaningful ro- 
bustness conditions in terms of other norms would then be a useful 

contribution to the ILC literature. A starting point for such work 

could centre upon the rich structure of IIUII,, and IIUII1. Since U is 

lower-triangular and Toeplitz both norms are given by: 
N-1 

IIUII- = Hub =Z Imil (8.1) 

s=o 

where U(z) = E°_o miz'i. 

iii) The work in this thesis has assumed that at the end of each trial the 

system is perfectly reset such that xk+1(0) = xo. In a number of practi- 

cal applications perfect resetting may not be possible so repeating the 

analysis presented in this thesis where imperfect resetting is assumed 

would be of value to existing ILC literature. 

iv) The results derived in this thesis for the inverse and adjoint algorithms 

can be applied to repetitive control, a problem analogous to ILC. Prem- 

liminary works on inverse and adjoint repetitive control, by this author 

along with primarily J. Hätönen and D. H. Owens, can be found in 

(Hätönen et al., 2004a) and (Freeman et al., 2004). These works take 

a sliding window approach however one other repetitive control im- 

plementation can be considered. A batch-wise approach to repetitive 

control describes the output at the kill batch as follows: 

00 
ýJk = GiUk_i (8.2) 

: -o 
Such a description of repetitive control is highly analogous to High- 

order ILC, see (Norrlöf and Gunnarsson, 2006) for an example of High- 

order ILC, and provides a natural starting point for analysis of batch- 

wise inverse and adjoint repetitive control. 
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v) The analysis in Chapter 7 discusses the use of an appropriate subset 

of orthonormal basis vectors for filter design. Simulation studies infer 

methods for selecting the appropriate subset of basis vectors and also 
highlights the filter's ability to reject certain output disturbances. A 

full and thorough investigation of these issues would be a significant 

addition to the analysis presented in Chapter 7. 

vi) ILC is an industrially inspired subject. Hence it is of great importance 

to experimentally verify the theoretical results presented in this thesis. 

This work has already commenced in publication P. 3 where the adjoint 

algorithm was applied to a multi-axis robot and in (Ratcliffe et al., 

2004) where the inverse algorithm was applied to the same robot. 



Bibliography 

Amann, N., D. H. Owens and E. Rogers (1996). Iterative learning control 

using optimal feedback and feedforward actions. International Journal 

of Control 65(2), 277-293. 

Anderson, B. D. O and J. B. Moore (1989). Optimal Control: linear quadratic 

methods. Prentice Hall. 

Arimoto, S. (1991). Passivity of robot dynamics implies capability of motor 

program learning. In: Proceedings of the International Workshop on 

Nonlinear and Adaptive Control: Issues in Robotics. Grenoble, France. 

Arimoto, S., S. Kawamura and F. Miyazaki (1984). Bettering operations of 

robots by learning. Journal of Robotic Systems 1,123-140. 

Arimoto, S., S. Kawvamura, F. Miyazaki and S. Tamakie (1985). Learning 

control theory for dynamic systems. In: Proceedings of the 24th IEEE 

Conference on Decsion and Control. Florida, USA. 

Athans, M. and P. L. Falb (1966). Optimal Control: an introduction to the 

theory and its applications. McGraw-Hill. 

Bondi, P., G. Casalino and L. Gambardella (1988). On iterative learning 

control theory for robotic manipulators. IEEE Journal of Robotics and 

Automation 4,14-22. 

117 



BIBLIOGRAPHY 118 

Casalino, G. and G. Bartolini (1984). A learning procedure for the con- 

trol of movements of robotic manipulators. In: LASTED Symposium 

on Robotics and Automation. 

Edwards, J. B. and D. H. Owens (1982). Analysis and Control of Multipass 

Processes. Research Studies Press. 

Freeman, C. T., P. L. Lewin, E. Rogers, J. Hätönen, T. Harte and D. H. 

Owens (2004). A novel repetitive control algorithm combining ilc and 

deadbeat control.. In: Proceedings of the ist International Conference 

on Informatics in Control, Automation and Robotics. Setubal, Portugal. 

Furuta, K. and M. Yamakita (1987). The design of a learning control system 

for multivariable systems. In: Preprints of the 1987 IEEE International 

Symposium on Intelligent Control. Philadelphia, USA. 

Garden, M. (1971). Learning control of actuators in control systems: Us 

patent us03555252. Technical report. Leeds & Northrup Company, 

Philadelphia, USA. 

Grenander, U. and G. Szegö (1984). Toeplitz Forms and Their Apllications. 

Chelsea Publishing Company. 

Hara, S., Y. Yamamoto, T. Omata and M. Nakano (1988). Repetitive control 

system: A new type servo system for periodic exogenous signals. IEEE 

Transactions on Automatic Control 33,659-668. 

Harte, T., J. Hätönen and D. H. Owens (2004). A new robust inverse-type i1c 

algorithm. In: Proc. of the IFAC Workshop on Periodic Control Systems 

(PSYCOO4). Yokohama, Japan. 



BIBLIOGRAPHY 119 

Harte, T. J., J. Hätönen and D. H. Owens (2005). Discrete-time inverse model- 

based iterative learning control: Stability, monotonicity and robustness. 

International Journal of Control 78(8), 577-586. 

Horowitz, R. (1993). Learning control of robot manipulators. Journal of Dy- 

namic Systems, Measurement and Control 115,402-411. 

Hätönen, J., K. L. Moore and D. H. Owens (2003a). An algebraic approach to 

iterative learning control. International Journal of Control 77(1), 45- 

54. 

Hätänen, J., T. Harte and D. H. Owens (2004a). Model-inverse based repet- 

itive control. In: Proceedings of UKACC International Conference on 

Control. Bath, UK. 

Hätönen, J., T. Harte, D. H. Owens, J. Ratcliffe, P. Lewin and E. Rogers 

(2003b). A new robust iterative learning control algorithm for applica- 

tion on a gantry robot. In: Proc. of the IEEE conference on Emerging 

Technologies in Factory Automation (EFTA03). Portugal. 

Hätönen, J., T. Harte, D. H. Owens, J. Ratcliffe, P. Lewin and E. Rogers 

(2004b). Iterative learning control - what is it all about?. In: Proc. of the 

IFAC Workshop on Periodic Control Systems (PSYCO%). Yokohama, 

Japan. 

Lee, J. J. and J. W. Lee (1993). Design of iterative learning controller with vcr 

servo system. IEEE Transactions on Consumer Electronics 39,13-24. 

Lee, K. S., S. H. Bang, S. Yi, J. S. Son and S. C. Soon (1996). Iterative learning 

control of control of heat up phase for a batch polymerization reactor. 
Journal of Process Control 6(4), 255-262. 



BIBLIOGRAPHY 120 

Mita, T. and E. Kato (1985). Iterative learning control and its application 

to motion control of robot arm -a direct approach to servo-problems. 

In: Proceedings of the 24th IEEE Conference on Decsion and Control. 

Florida, USA. 

Moore, K. L. (1993). Iterative Learning Control for Deterministic Systems. 

Springer-Verlag. 

Moore, K. L. (1999). iterative learning control - an expository overivew. 
Applied and Computational Controls, Signal Processing and Circuits 

1,151-214. 

Nering, E. D. (1963). Linear Algebra and Matrix Theory. Wiley. 

Norrlöf, M. and S. Gunnarsson (2002). Time and frequency domain properties 
in iterative learning control. Internation Journal of control 75(14), 1114- 

1126. 

Norrlöf, M. and S. Gunnarsson (2006). On the disturbance properties of high 

order iterative learning control algorithms. Automatica 42,2031-2034. 

Oppenheim, A. V. and R. W. Schafer (1989). Discrete-Time Signal Processing. 

Prentice Hall. 

Owens, D. H. (1981). Multivariable and Optimal systems. Academic Press. 

Owens, D. H and J. Hdtönen (2005). Iterative learning control - an optimiza- 
tion paradigm. Annual Reviews in Control 29(1), 57-70. 

Owens, D. H. and K. Feng (2003). Parameter optimisation in iterative learning 

control. International Journal of Control 76(11), 1059-1069. 



BIBLIOGRAPHY 121 

Ratcliffe, J., T. Harte, J. Hätönen, P. Lewin, E. Rogers and D. H. Owens 

(2004). Practical implementation of a model inverse optimal iterative 

learning controller on a gantry robot. In: Proc. of the IFAC Workshop 

on Periodic Control Systems (PSYCO04). Yokohama, Japan. 

Reddy, B. D. (1986). Functional Analysis and Boundary Value Problems. Wi- 

ley. 

Rogers, E. and D. H. Owens (1992). Stability Analysis for Linear Repetitive 

Processes. Springer-Verlag. 

Rosenbrock, H. H. (1970). State-Space and Multivariable Theory. Nelson. 

Skogestad, S. and I. Postlethwaite (1996). Multivariable feedback control : 

analysis and design. Wiley. 

Spong, M. W. and M. Vidyasagar (1989). Robot Dynamics and Control. Wiley. 

Tomizuka, M., T. C. Tsao and K. K. Chew (1989). Discrete-time domain anal- 

ysis and synthesis of repetitive controllers. Journal of Dynamic Systems, 

Measurement and Control 111,353-358. 

Uchiyama, M. (1978). Formulation of high-speed motion pattern of a me- 

chanical arm by trial. Transactions of the Society for Instrumentation 

and Control Engineers 14,706-712. 

Varga, R. S. (1962). Matrix Iterative Analysis. Prentice-Hall. 

Xu, J. and Y. Tan (2002). Robust optimal design and convergence prop- 

erties analysis of iterative learning control approaches. Automatica 

38(11), 1867-1880. 



BIBLIOGRAPHY 122 

Young, N. (1988). An Introduction to Hilbert Space. Cambridge University 

Press. 

Zilouchian, A. (1994). An iterative learning control technique for dual arm 

robotic system. In: Proceedings of the 1994 IEEE International Confer- 

ence on Robotics and Automation. San Diego, USA. 


