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Abstract 

Face recognition is an important pattern recognition problem, in the study of both natural 
and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- 
invasive and requires no paxticipation from the subjects. As a result, it has many applications 
varying from human-computer-interaction to access control and law-enforcement to crowd 
surveillance. 

In typical optical image based face recognition systems, the systematic vaxiability arising 
from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) 
illumination intensity matrix is treated as random vaxiability. Multiple examples of the face 
displaying vaxying pose and expressions axe captured in different imaging conditions. The 
imaging environment, pose and expressions are strictly controlled and the images undergo 
rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully 

automated system. Although these systems report high classification accuracies (>90%), 
they lack versatility and tend to fail when deployed outside laboratory conditions. 

Recently, more sophisticated 3D face recognition systems haxnessing the depth informa- 
tion have emerged. These systems usually employ specialist equipment such as laser scanners 
and structured light projectors. Although more accurate than 2D optical image based recog- 
nition, these systems are equally difficult to implement in a non-co-operative environment. 

Existing face recognition systems, both 2D and 3D, detract from the main advantages 
of face recognition and fail to fully exploit its non-intrusive capacity. This is either because 
they rely too much on subject co-operation, which is not always available, or because they 
cannot cope with noisy data. 

The main objective of this work was to investigate the role of depth information in face 
recognition in a noisy environment. A stereo-based system, inspired by the human binocular 
vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo 
setup to compute depth information. Depth values extracted from 2D intensity images using 
stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This 
was cofirmed by the results of our experimental work. Noise in the set of correspondences, 
camera calibration and triangulation led to inaccurate depth reconstruction, which in turn 
led to poor classifier accuracy for both 3D surface matching and 211) depth maps. 2 

Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images 
of 22 individuals with varying pose, illumination and expressions. 
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Psychology literature elucidated that although depth information is crucial to the way 
humans recognise faces, this information is perceived through disparity information rather 
than actual depth in the form of familiar structure and texture information seen in 2D images. 
Hence, dispaxity information can be thought of as neural proxy for depth. Computationally 
too, depth and disparity are proportional up to camera parameters. Disparity values of 
sub-pixel accuracy are computed by matching the stereo image pairs to solve the ill-posed 
Correspondence Problem. 

A 211) image representation based on disparity values is proposed in this work, and is 2 

shown to give a higher classifier accuracy than the equivalent depth based 211) images ob- 2 
tained in a noisy environment. Disparity images encode the horizontal and vertical displace- 
ment in pixels between the two images. Also proposed is a composite image representation, 
incorporating both 2D texture and 3D shape information. This representation is shown to 
result in better classifier performance than either 21) or 3D representations individually. This 
representation also captures the systematic variability arising from the transformation of the 
facial surface from the 3D world-space to the 2D image-space. The performance of the base- 
line classifier in this work is lower than the accuracies typically reported in the literature. 
However, this is primarily because image capture is not strictly controlled and the images 
themselves undergo no normalisation or pre-processing. 

It is concluded that depth information in the form of disparity values plays a crucial 
role in both human and machine recognition of faces. Disparity information significantly 
enhances the performance of a face recognition system when it operates in a noisy stereoscopic 
environment, and paxticularly when it is combined with texture information. It is also 
noted however, that in the presence of noisy or inaccurate 3D data, using 2D intensity 
images and established 2D face recognition algorithms results in more accurate recognition. 
Reconstructing depth from disparity in noisy environments leads to a loss of discriminatory 
information, which explains the lack of stereo-based systems in 3D face recognition literature. 
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CHAPTER I 

Introduction 

Face recognition is an important pattern recognition problem in the study of both natural 
and artificial learning systems. As a pattern, the face is a challenging object to recognise. 
Anatomically, it is rigid enough so that all faces have the same structure. However, each face 
is unique due to the shape, size and placement of features (e. g. separation of eyes), gender 
and race. The problem is made further difficult due to variations that arise as a consequence 
of changing expressions, illumination, accessories, cosmetics and aging. 

Humans demonstrate an impressive ability to recognise faces and are not easily deceived 
by superficial or cosmetic alterations. Once a face has been leaxnt, people can recognise it 
accurately despite not having seen it for years. Often a brief look at a face is enough for 
correct recall (e. g. witnesses to crime recognising their perpetrators from mug-shots or police 
line-ups). The ability to recognise faces accurately is essential for both, social interaction and 
human survival - an infant immediately responds to face shapes at birth and can recognise 
his or her mother's face from a stranger's at just 45 hours (Voth 2003). It is known that the 
human brain has specialised subsystems of neural circuits for face recognition rather than 
general object recognition (Wilrtz 2002). Brain imaging studies show a great deal of activity 
in an area of the temporal lobe known as the fusiform gyrus (George et al. 1999), an axea 
also known to cause prosopagnosia, (an inability or difficulty in recognising familiar faces) 
when damaged. 

Over the last 15 years or so, face recognition has become an active area of research in 
computer vision, neuroscience and psychology (Phillips et al. 2000). Since the terrorist at- 
tacks of September l1th 2001, biometrics in general and face recognition in particular, have 
transformed into a lucrative market. There is an increased interest in the field from both 
government and non-government organisations. In the UK, the first passports equipped with 
facial biometrics axe due to be introduced in February 20061. In the USA, major funding ini- 
tiatives are being undertaken by Federal agencies (e. g. HumanId project at Defence Advanced 
Research Projects Agency (DARPA)) to further research in this area2. Face recognition tech- 

'UK Passport Service Press Release "PASSPORTS ARE CHANGING: BIOMETRIC INFORMATION 
CAMPAIGN LAUNCHED IN MANCHESTEW, 12th September 2005, www. ukpa. gov. uk/press-120905. asp 2National Institute of Standards and Technology (NIST), "IT Performance: HumanID - Ranking Algo- 
rithms for Face Recognition", 21't June 2002, www. itl. nist. gov/div898/itperf/humanid. htm 
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nology has also been recommended by the International Civil Aviation Organization (ICAO) 
as the most suitable biometric for Machine Readable Travel Documents (MRTD)3. 

In "traditional" biometric applications such as access-control, face recognition encounters 
stiff competition from other more accurate biometrics such as iris and fingerprint recognition. 
In a co-operative scenario where accuracy is paramount and the search set small, face recog- 
nition may not be the most appropriate means of identification. However, it is an intrinsic 
part of identification documents such as driving licenses and passportS3. The database for 
these documents is much larger in comparison and subject co-operation is not always readily 
available. This covert or clandestine capacity of face recognition is its major advantage over 
other biometrics. 

As a means of personal identification, it has the advantage of being remote, quick and 
convenient. But most important of all, it is totally non-intrusive and can be accomplished 
without subject participation or knowledge. This latter property has also initiated much 
debate and controversy with regards to privacy and civil liberties. However, advocates of 
these arguments often forget that manual face recognition systems are already in operation 
and have been for many decades. Such systems rely on police or security officials' ability 
to identify "wanted" criminals or to allow access to restricted areas to "known" individuals. 
Manual monitoring of CCTV images is widely accepted in most public places. Although 
human ability to recognise faces surpasses that of most automated systems', this ability 
varies from individual to individual. Constant performance levels cannot be guaranteed 
across operators. Human face recognition performance is also limited by the number of faces 
an individual can accurately remember and identify. In addition, human operators are also 
susceptible to fatigue, stress and other distractions, hence the motivation for an automated 
face recognition system. 

1.1 Automated Face Recognition 

Although the history of automated face recognition dates back to the 1960's, it remains an 
unsolved problem and still offers a great challenge to computer-vision and pattern-recognition 
reseaxchers (Li & Jain 2005). The difficulty arises because even though faces are generally 
thought to be unique, statistically they are quite similar. This, combined with the numerous 
possible variations in the images of the same face arising due to changes in pose, expressions, 
illumination, etc. makes this seemingly simple task non-trivial. A great deal of cognitive 
effort is required to identify faces. Neurologically, in addition to the fusiform gyrus, large, 
distributed regions of the brain are involved in accomplishing this. Computationally, sophis- 
ticated and robust algorithms are required to classify faces - often there is greater variation 
in images of the same individual from different viewpoints than in the images of different 
individuals from the same viewpoint (Adini et al. 1997). Face recognition is effectively a 
within-category discrimination and is a more difficult problem than general object recogni- 
tion, which involves identifying objects with largely distinct shapes. 

Traditionally, face recognition systems have operated in the two-dimensional (21)) space. 
Most systems use digitised gray-scale photographs of faces (intensity images), though some 
research involving colour images is also found in literature (Torres et al. 1999). Intensity 

3 "World Face Recognition Biometrics Markets", 6th October 2003, www. marketresearch-com, Pub ID: 
MC935321 
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images measure the amount of light reflecting from a surface and hitting a photosensitive 
device (camera). The reflected light enters the camera lens and hits the image plane, where 
image of the surface being photographed is captured and stored. Thus, they represent an 
affine projection of an underlying three-dimensional (3D) object on the 2D camera image 
plane. 

Data for 2D face recognition systems is easily available since specialist equipment (other 
than cameras) is not required. There axe also numerous publicly available datasets of 2D face 
images captured under conditions with vaxying degrees of control (see (Tolba et al. 2005) for 
a comprehensive list). The images usually display uniform variation in pose, expressions and 
illumination. It is usually advisable to use these datasets for evaluating performance of new 
face recognition systems against existing ones. 

The main disadvantage of 2D image based face recognition systems is that they do not 
exploit the systematic transformations of optical structure that occur when an object is 
viewed over multiple vantage points. This systematic variability is treated as random, by 
collecting a number of images per individual, captured with different pose, illumination 
and expressions. This leads to poor recognition accuracy when the test images deviate 
significantly from the training images. However, recognition rates in excess of 90% axe 
common for test and training images collected in strictly controlled laboratory conditions. 

More sophisticated 3D face recognition algorithms have emerged in the recent years, 
taking advantage of the depth information lost in 2D images. These systems are inherently 
invariant to changes in pose and illumination since the 3D shape of the facial surface captures 
the anatomical structure of the face and are independent of the imaging environment. Depth 
information can be obtained using specialist equipment such as laser scanners or structured 
light projectors. Both these methods are very accurate, though laser scanners are consid- 
erably more expensive. From a pattern recognition perspective, 3D systems allow better 
classification due to the availability of additional information. However, from a biometrics 
point of view, there is a tradeoff between the non-intrusiveness and the accuracy. Such an 
identification system can only be operated in a co-operative scenario. And since more ac- 
curate biometrics exist for this, the 3D technology does not paxticularly widen the scope of 
face recognition applications. 

3D face recognition is usually approached in one of three ways. The first approach is the 
model-based approach, in which a generic 3D face model is created using the face models of 
all the subjects in the database. Models may be represented as a shaded model or a wire- 
frame. The generic model is manipulated to customise it to each individual in the database, 
either by locating fiducial points on the surface of the model (manually or automatically) or 
by fusing information from 2D images (usually frontal and profile). The colour or texture 
information from the 2D intensity images is then overlaid on the customised 3D model to give 
it a realistic appearance. The depth and texture information axe often used in conjunction 
to achieve better classifier accuracy. Model-based approaches are heavily reliant on pre- 
and post-processing to achieve uniformity across all the models in the database and are 
computationally intensive. 

The second approach reconstructs the facial surface from depth values for every single 
individual in the database. The depth values may be obtained from a vaxiety of cues such 
as stereo images, range images, laser scans, etc. These approaches do not, in general, use 
the texture information. They rely on the premise that the depth data is already fairly 
accurate either due to the nature of the data acquisition process, or because the data has been 
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rigorously filtered to eliminate noise. Surface matching techniques are used for identification. 
An alternative approach encodes the 3D depth information directly in a 2D image by 

replacing the intensity values with the depth values, so that the new pixel values correspond 
to the surface geometry of the 3D object (e. g. range images, depth maps and surface profiles). 
Such a representation captures the depth information of a scene, whilst still enabling all the 
existing 2D image processing and face recognition techniques to be used. There is some debate 
in the literature as to whether the representation of depth information in this latter approach 
should be referred to as "31)" or as "211)" (2.5D) images. For example, Heseltine (Heseltine 

2 
et al. 2004db, c) refers to his depth maps as 3D images, whereas Fromherz (Fromherz 1996) 
states that a 3D image is an image or a model that encodes the geometry of an object from 
0* to 360". 

In this work, 3D images refer to models that can be viewed in the 3D space either as a 
point cloud, a polygonal mesh (unshaded wire-frame) or a surface (shaded wire-frame) and 
do not consist of the whole head. Since this dissertation concerns face recognition, rather 
than general object recognition, it is fair to say that the data corresponding to the back 
of the head can be discarded without any loss of information. In addition, this part of the 
human head is subject to constant change due to variations in hair styles and length, and 
would only serve to confuse the system. The terms "M model" and "M image" are used 
interchangeably and refer to the same entity. 21D images on the other hand, refer to 2D 42 
images encoding depth information. 

1.2 Objective 

The objective for this work was to investigate the usefulness of depth information in improving 
face recognition accuracy in the presence of noise. 

1.3 Inspiration: Human Binocular Vision 

Humans, in most cases, recognise faces using stereo vision. Results of the experiments by Hill 
et al (Hill et al. 1997) showed that 3D shape information is fundamental for face recognition 
across rotations in depth, although superficial texture or shading information may also be 
useful in reducing the viewpoint dependence of the recognition process. These findings axe 
also echoed by Liu et al (Liu et al. 2000). 

There are many different aspects of optical stimulation that are known to provide per- 
ceptually salient information about 3D form (Todd 2002). Cues such as texture gradients, 
contour configurations, and patterns of shading axe usually available simultaneously within 
individual static images. However, by far the most important cue is defined by systematic 
transformations among multiple images, including the disparity between each eye's view in 
binocular vision and the optical deformations that occur when objects are observed in motion. 

In human binocular vision system, each eye receives a slightly different, but overlapping 
view of the same scene. It is interesting to note that this overlap reduces the size of the 
overall visual field relative to what would be otherwise possible if the two eyes faced in 
opposite directions, as is the case with many other animals. For the ecology of human 
observers, this cost is apparently outweighed by the useful information that is provided by 
the disparities between each eye's view in the region of overlap (Todd 2002). 
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Although depth information plays an important role in face recognition, review of some 
of the psychology literature showed that this depth information can be perceived without fa- 

miliar structure or texture information (Nakayama 1996). This notion was further reinforced 
by experiments using random dot stereograms invented by Julesz. He found that binocular 
disparity alone is sufficient to mediate perceived depth. An example of neural mechanisms 
for such processing by the perceptual visual system is the existence of disparity tuned cells 
in the striate cortex of cats (Barlow et al. 1967). 

1.4 Implementation 

Computationally, this process of binoculax vision can be reproduced using stereoscopic depth 

extraction methods. These methods involve computing the geometry of the imaged scene 
by matching corresponding points in two images. The images capture a static scene from 
different viewpoints using either a number of still cameras (Passive Stereo) or using a single, 
dynamic camera (Active Stereo). The latter is also equivalent to imaging a dynamic scene 
using a single still camera. Points in the 2D images corresponding to the same scene point 
axe matched (manually or automatically) and their positions (co-ordinates) in the 2D image 

planes axe obtained. Because the images are captured from slightly different viewpoints, there 
is a disparity or a difference in the position of the features between the two images. This 
dispaxity is used in conjunction with the camera paxameters (focal length, principal point, 
location in the 3D space, etc. ) and the position of the scene features in the 3D space axe 
calculated using triangulation. Stereoscopy is extremely noisy primarily because the task of 
matching two images and computing disparities is ill-posed and as yet unsolved -a problem 
known as the Correspondence Problem. This is compounded by errors in the estimation of 
camera paxameters and triangulation. Consequently, stereoscopic methods axe rarely used 
for 3D face recognition. 

3D face recognition using stereoscopic methods, although noisy, retains all the advantages 
of face recognition as a biometric. Faces axe imaged using ordinaxy cameras and subject co- 
operation is not required. The problem is also of great interest from pattern recognition, 
machine leaxning and computer vision perspectives. In this work, two digital off-the-shelf 
cameras are used to capture face images in a partially controlled environment. Subjects are 
instructed to display varying pose and expressions but the exact degree of variation is not 
strictly enforced. Such an approach, although not totally non-intrusive, can be extended 
to operate in an uncontrolled environment if it is sufficiently accurate. Indeed, this is the 
long-term goal of this work. An accurate face recognition system using stereoscopy has many 
applications including crowd surveillance and law enforcement. It is also much more in line 
with how we humans recognise faces. 

Experiments in this work showed that stereoscopic depth extraction is noisy and compu- 
tationally expensive, and unless performed accurately, detracts from rather than adds to the 
discriminatory information in face recognition. Binocular disparity encodes depth informa- 
tion. Physiologically, disparity is the neural proxy for depth, and mathematically, the two 
are proportional up to camera parameters. This crucial piece of information is used in this 
work to produce 21D images. While existing techniques use the depth values to represent 2 
relief information in the 21D images, this work uses disparity information. 21D dispaxity 22 
images show how much each pixel has moved by between the two images. Much of the noise 
is thus eliminated by by-passing the noisy camera calibration and triangulation processes, 
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whilst still retaining all the benefits of face recognition as a biometric. This leads to increased 
accuracy when compaxed with 21D depth images. 2 

Humans use all available information (Todd 2002), and in particular shape and texture 
(Liu et al. 2000) to identify known individuals. It is now known that a combination of 
shape and texture information, collected using specialist equipment (such as laser scanners 
and structured light projectors) in controlled environments results in greater accuracy in 
automated face recognition systems (Bowyer et al. 2004). With this in mind, a simple 
yet effective method of combining 3D shape and 2D texture information in the form of 
a Composite Image is adopted, with extremely promising results. Composite images are 
formed by appending the 21D disparity image with the 2D image. Thus the information 2 
from the two modalities is processed simultaneously, much like in the human visual system. 
Existing approaches process the depth and texture channels separately and fuse the results 
at a later stage (Phillips et al. 2005). This approach is also more suitable for the long 
term goals of this work. It is intended to replace passive stereo (still cameras) with active 
stereo (moving cameras/scene) initially, and later, embed the recognition module in a fully 
automated surveillance system incorporating face detection, face tracking and possibly multi- 
modal recognition. 

3D reconstructions are obtained using image matching and noisy camera parameters 
and triangulation. A signature-based 3D surface matching algorithm, Johnson's spin-image 
matching (Johnson 1997), is used to perform recognition in the 3D space. 

Face recognition in 2D, 21D and composite spaces is performed using Turk and Pentland's 2 
Eigenfaces algorithm (Turk & Pentland 1991a) and Spies and Ricketts' Fourier space based 
nearest neighbours algorithm (Spies & Ricketts 2000). Eigenfaces technique derives a face 
space that is sensitive to the statistical structure of the faces in the training. It is thought 
that humans also perform identification in a similar manner. Valentine's (Valentine 1991) 
face space theory states that the human memory for faces can be thought of metaphorically 
as a multi-dimensional face space. The average face is at the centre of the space, where it is 
"crowded" with many faces that are at close proximity to the average face. Distinctive faces 
are located in the sparser parts of the space, away from the average. 

1.5 Thesis Overview 

The remainder of the thesis is structured as follows: 

Chapter 2: Face recognition literature is reviewed and the main techniques in 2D, 21D and 
3D face recognition are described. 2 

Chapter 3: An overview of the 3D reconstruction process using stereo images is covered in 
this chapter, along with the merits and drawbacks of the technique. 

Chapter 4: A description of the Sheffield Dataset, its main features and the data acquisi- 
tion process are outlined. The camera calibration process in outlined and the camera 
matrices are presented. 

Chapter 5: A discussion of the Correspondence Problem and a brief literature review are 
presented. Two feature detection and feature matching algorithms are described and 
applied to face images. Results and analysis are presented at the end of the chapter. 
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Chapter 6: Two wavelets-based image matching algorithms axe explained. They are used 
to match face images and the results are analysed both qualitatively and quantitatively. 

Chapter 7: Spin-image representation and recognition algorithm for matching 3D objects 
is detailed in this chapter, along with the results of applying it to recognise 3D face 
models. 

Chapter 8: A mathematical exposition of the Principal Component Analysis based Eigen- 
faces algorithm and a Fourier space based nearest-neighbours algorithm is presented. 
These algorithms axe used for face recognition in 2D, 21D and composite spaces. 2 

Chapter 9: This chapter presents the results and analysis of 2D face recognition using the 
Sheffield Dataset. 

Chapter 10: The results of face recognition experiments in the 21D and composite spaces 2 
are analysed in this chapter. 

Chapter 11: Conclusions, contributions and suggestions for future research are put forward. 

Appendices A and B: An outline of the wavelets theory and details of the Magarey- 
Kingsbury wavelets respectively. 

Appendices C, D and E: Detailed description of two image matching algorithms and the 
surface matching algorithm used in this work. 

21 
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CHAPTER 

Face Recognition Literature Review 

2.1 Introduction 

In the recent yeaxs, face recognition has received significant attention. Some of the reasons 
for this have already been outlined in Chapter 1. In addition, the technology to carry out 
the complex tasks in face recognition has only just staxted becoming more readily available. 
This, combined with the wider range of commercial and law enforcement applications has 
also contributed to the increased interest in face recognition. (Zhao et al. 2000). 

The literature in this field spans many decades, both in psychology and computer science. 
In computer science, it also covers many different sub-axeas such as face detection, face 
tracking, feature extraction, etc. The review in this chapter will concentrate only on the 
major face recognition techniques since it is impossible to cover all the techniques reported 
in the literature. 

Eaxly face recognition techniques relied on manual definition of geometry-dependent fea- 
tures to be used for recognition. These feature values depended on the detection of geometric 
facial features, including the distance and angles between points such as eye corners, mouth 
extremities, nostrils and chin top (Weng & Swets 1999). The features defined for the face 
profiles typically consist of a set of characteristic points on the profile such as the notch 
between the brow and the nose and the tip of the nose. For example, Kaya and Kobayashi 
(Kaya & Kobayashi 1972) used Euclidean distances between manually identified points in 
the images to characterise the faces. 

Although this manual definition of features is intuitively understandable, the number 
of features measurable in this way is small and the reliability of each feature measurement 
is difficult to estimate (Weng & Swets 1999). In addition, there has been an increasing 
demand to develop systems that axe completely automatic and require no human input. 
These systems have many applications in fields ranging from graphics and human-computer- 
interaction (HCI) to law enforcement and access control. 

A face recognition system is required to perform identification, verification or a combi- 
nation of both these tasks depending on the application. Identification is a multi-class task, 
where the input image of an unknown individual is matched against a database of known 
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individuals and an identity label is assigned to it. Verification is an easier, two-class task in 
which the claimed identity of an individual is confirmed or rejected by the classifier. Alter- 
natively, an appropriate error message is provided if the individual does not exist in the the 
database. The main issue with the verification problem is setting the appropriate threshold 
values, based on which the system decides whether or not the input image and the claimed 
identity match. These values are typically determined empirically, and are dictated by the 
dataset. 

Automatic face recognition techniques can be grouped in many ways, depending on the 
criteria chosen to solve the problem (Weng & Swets 1999), for example: 

Sensing Modality: This refers to the inputs the system accepts. For example, 2D intensity 
images, colour images, infra-red images, 3D range images or some combination of these. 

Temporal Content: This refers to whether the inputs are of a static or a dynamic nature. 
Static images axe those taken at a particular point in time using a digital camera for 
instance. Dynamic images are time-varying and are produced using a CCTV camera 
for example. A dynamic system may be an "all inclusive" system and may facilitate 
face detection, face tracking and face identification. 

Geometry & Viewing Angle: Geometry refers to the space in which the system operates: 
2D or 3D. 3D systems are inherently view and pose independent, but a 2D system is 
usually designed for frontal views, profile views, general views or a combination of all 
of these. 

Computational Tools: This refers to the actual technique used to perform recognition. Ex- 
amples include programmed knowledge rules, statistical decision rules, neural networks, 
genetic algorithms, etc. Although these techniques and their variants were initially used 
by themselves, they are now often used in conjunction with each other. These methods 
are known as hybrid methods and they take advantage of the useful primitives from the 
constituent methods. Techniques can also be divided into feature-based methods and 
template-based methods. Feature-based methods first compute a set of geometrical 
features and use these individual features to match faces. Template-based methods use 
a single template to represent the entire face and use holistic matching techniques. A 
comparison of the feature and template matching techniques can be found in (Brunelli 
& Poggio 1993). 

2D face recognition techniques axe reviewed in Section 2.2. However, most of these tech- 
niques apply equally well to 21D and 3D input data as well. Evaluation methodologies for 2D 2 

recognition techniques is discussed in Section 2.3. This is followed by a review of techniques 
using depth information to recognise faces. Techniques relying on shape information alone, 
and those relying on both shape and texture are covered. 

2.2 2D Face Recognition 

This section will provide a general overview of some of the major classification techniques 
in 2D face recognition. As mentioned earlier, since the subject of face recognition has been 
around for a long time, there are many other techniques to be found in literature. It is not 
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possible to cover them all in detail. Good surveys of face recognition literature can be found 
in (Fromherz 1998, Weng & Swets 1999, Zhao, et al. 2000, Lu 2003, Zhao et al. 2003, Kong 
et al. 2005, Tolba et al. 2005). 

2.2.1 Eigenfaces 

One of the most popular methods for face recognition, Eigenfaces was pioneered by Mirk and 
Pentland in 1991. It is based on Kirby and Sirovich's (Kirby & Sirovich 1990) proposition to 
use Principal Component Analysis (PCA) for face analysis and representation. This approach 
treats face recognition as a problem in the 2D space rather than requiring the recovery of the 
3D geometry. It takes advantage of the fact that faces are normally upright and thus may 
be described by a small set of characteristic views. 

The basic idea behind principal component analysis (PCA) is to take advantage of the 
redundancy that exists in the training set, so that it may be represented in a more compact 
way. Face images are represented as 1D vectors and are projected onto a feature space that 
spans the significant variations among known face images. PCA determines an orthogonal 
space, Eigenspace, by computing the eigenvectors of the covaxiance matrix of the set of 
vectors. This Eigenspace is an orthogonal basis with the axes ordered according to their 
overall variance (Troje & Vetter 1996), and the basis vectors in this space can be used to 
represent all the faces. The basis vectors or the principal components of the set of faces axe 
known as Eigenfaces because they are the eigenvectors (principal components) of the set of 
faces; they do not necessarily correspond to physical features on the face (Turk & Pentland 
1991a). How descriptive these Eigenfaces axe depends on the initial set of training faces that 
are used to determine the Eigenspace. 

The Eigenface approach has many advantages. It is a relatively simple technique that 
is easy to implement and has a very good runtime performance (Barrett 1998). Generating 
the Eigenfaces for the database is computationally intensive (proportional to the size of 
the images and the database), however, it is undertaken only when the database is updated. 
Recognition rates of over 90% are reported on a large database (3000 subjects, 8000 images) of 
full-frontal images ("mug shots") with strictly controlled scale, illumination and pose (Bichsel 
& Pentland 1994). This technique is insensitive to some forms of noise - small occlusions, 
as long as the topological structure remains unchanged, blurring and minor changes to the 
background (Zhang 2003). 

Among its drawbacks is that it is extremely sensitive to deviations from the initial train- 
ing set. It is heavily reliant on pre-processing and normalisation and is known to perform 
poorly in the presence of illumination changes. The degradation in the performance is also 
significant when there is a marked difference in the pose and expressions (Sirovich & Kirby 
1987, Barrett 1998, Phillips et al. 2000). This is because PCA essentially selects a subspace 
which retains most of this variation, and consequently the similarity in the face space is 
not necessarily determined by the identity (Shakhnarovic & Moghaddam 2004). The sys- 
tem is also easily fooled by short term changes such as variations in facial hair or hairstyle 
(Suthankar 1997). Long term changes such as those due to aging can, in theory, be handled 
with ease assuming new training images are added to the database regularly. To optimise the 
classifier performance, the images have to be normalised for head location, lighting, contrast, 
rotation and scale, and for the geometry of the face in order to obtain the kind of results 
reported in the literature. 
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Eigenfaces is usually the benchmaxk algorithm in 2D face recognition (Phillips & Newton 
2002) and has been combined with many other techniques such as neural networks, wavelets, 
support vector machines, Bayesian methods, etc. to form hybrid methods. An independent 
comparative study of different Eigenface-based approaches can be found in (del Solar & 
Navarrete 2005), while a comparison of the different distance measures appears in (Yambor 

et al. 2002). 
In (Pentland et al. 1994), the technique has been extended to Eigenfeatures correspond- 

ing to face components such as eyes, nose and mouth. A modular Eigenspace composed of 
Eigeneyes, Eigennose and Eigenmouth is used. This has the advantage of being relatively 
insensitive to appearance changes than the standard Eigenfaces method. Approximately 95% 
accuracy on the FERET database of 7,562 images of approximately 3,000 individuals (Pent- 
land et al. 1994, Tolba et al. 2005) is achieved. Pentland et. al also explores the idea of 
view-based Eigenspaces, in which different views (front and profile) of the face are grouped 
together to produce a single Eigenspace, corresponding to the chosen view. This approach 
also performs better than the original suggested in (Turk & Pentland 1991a). In (Penev 
& Atick 1996), PCA is combined with Local Feature Analysis (LFA), another biologically 
motivated technique which extracts topographic information from the principal components 
of the faces. The combination leads to better performance than the use of PCA by itself, 
however, performance results for LFA alone are not provided. LFA is claimed to be used 
in the "FaceIt" commercial system of Identix' (formerly known as Visionics) (Zhao, et al. 
2003). Moghaddam et. al (Moghaddam & Pentland 1997) extend the standard technique to 
a Bayesian approach. However, this approach requires the estimation of probability distri- 
butions in a high dimensional space from a limited number of training images per class. 

Eigenfaces is used extensively in this project. It is thought to have been motivated by 
the way humans process faces for recognition (Valentine 1991) and can easily be used with 
dynamic inputs such as CCTV images. Such images are small and are not suitable for use 
with most feature based methods. Appearance based methods like Eigenfaces are appropriate 
for such applications (Zhao et al. 2003) and its use is in line with the long term goals of this 
work. A detailed mathematical exposition of the technique can be found in Chapter 8. 

2.2.2 Linear Discriminant Analysis (LDA) 

The LDA algorithm uses the PCA subspace projection as a first step in processing the image 
data (Zhang 2003). Fisher's Lineax Discriminants are defined in the K dimensional sub-space 
defined by the first K principal components. c-1 basis vectors are defined for c classes. 

LDA determines a subspace in which the between-class scatter is maximised while keeping 
the within-class scatter constant (Weng & Swets 1999). The face subspace obtained using 
LDA optimally discriminates face classes (classes are most linearly separable) in the training 
set (Weng & Swets 1999, Martifnez & Kak 2001, Shaklmarovic & Moghaddarn 2004) by using 
class-specific information very effectively. PCA on the other hand constructs the face space 
without using any information from the face classes, and as a result, the LDA procedure is 
known to work in cases where PCA has failed (e. g. in images with varying illumination and 
facial expressions) (Swets & Weng 1996b). 

For all images in all of the classes, two measures are defined: the within-class scatter 

lwww. identix. com 
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matrix S,,, and a between-class scatter matrix Sb given by (Maxtinez & Kak 2001): 

c Nj c 
Sw , ý- E 1: (X, j _ 11j) (X, j _ Aj) TI Sb 1: (I_lj T 

j=l i=l j=l 
where xij is the ith image of the jth class, c is the number of classes, Nj is the number of 
samples in class j, 14j is the mean of class j and p is the mean of all classes. 

The goal is to maximise the between-class measure while minimising the within-class 
measure. A commonly used approach is to maximise the ratio of determinants of S,,, and Sb, 

det I Sb r i. e. ratio - det 13.11 (Swets & Weng 1996b, Zhao et al. 2000, Martinez & Kak 2001). 
Based on Fisher's Linear Discriminant (FLD) (Fisher 1936), this technique is reported 

to yield better results than several competing methods (Belhumeur et al. 1997), especially 
for laxge databases (Swets & Weng 1996b, a, Belhumeur et al. 1997, Etemad & Chellappa 
1997, Zhao et al. 1998, Zhao 1999, Zhao, Chellappa & Phillips 1999). The main drawback 
of this technique is that it is computationally intensive (more so than PCA). Calculation 
of the scatter matrices increases both complexity as well as the processing time, while the 
technique's ability to better classify images means that the dimension of projection in the face 
space is not as compact as that of Eigenfaces, resulting in increased storage requirements. 
The technique is known to fail if both scatter matrices are singular (Li et al. 2004). In terms 
of input images, the classical LDA does not cope well with images that differ significantly 
from the training images, and in paxticular when the backgrounds in the training and the 
test images axe different (Zhao, R. Chellappa & Phillips 1999). 

PCA and LDA both tackle the face recognition problem using a dimensionality-reduction 
approach. LDA is generally reported to give better results than PCA. However, in (Martinez 
& Kak 2001), an experimental comparison of the two techniques showed that when the 
number of training images available per class is small (typically 1-2) or when the training data 
do not uniformly sample the underlying distribution, PCA outperforms LDA. They conclude 
that in practical applications such as face recognition, since the underlying distribution for 
the different face classes is not known in advance, it is generally difficult to ascertain whether 
PCA or LDA is best suited. Zhao et. al strike a compromise between the two techniques and 
combine them in "Subspace LDA" (Zhao, R. Chellappa & Phillips 1999) and report superior 
results to both PCA and LDA on the FERET database. A detailed review of the different 
variants of the LDA approach can be found in (Zhao et al. 2003). 

2.2.3 Support Vector Machines 

Support Vector Machines (SVM's) were proposed in 1998 by Vapnik (Vapnik 1998) and are 
used for a variety of pattern recognition problems including face recognition. SVM's perform 
pattern recognition between two classes by finding a decision surface that has maximum 
distance to the closest points in the training set which are termed support vectors (Heisele 
et al. 2001). They have been used for face recognition and verification by many researchers 
including Phillips (Phillips 1998), Kwong (Kwong & Gong 1999), Guo (Guo, et al. 2000) 
and Heisele, (Heisele et al. 2001), and they report better performance than the Eigenfaces 
technique. SVM's are reported to yield better results on the FERET (see (Zhao et al. 2000) 
for details on FERET) database when tested against the PCA methods. SVM's have been 
employed for the 3D object recognition tasks and have reported good performance (Blanz 
et al. 1996, Pontil & Verri 1998, Roobaert & Hulle 1999). 

27 
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SVM's are formulated to solve a classical two class pattern recognition problem, but are 
usually adapted in some way to deal with the multi-class face recognition problem (Phillips 
1998). Two common approaches are "one-against-alr and "one-against-on6" (Guo et al. 
2000, Heisele et al. 2001). A "one-against-all" strategy can be used to classify between each 
class and all the remaining, however, this is reported to give ambiguous results. In a "one- 
against-one" strategy, classification is reduced to a series of two-class problems. The results 
of these problems can be combined to give a final answer using a bottom-up binary tree, for 
example. 

An alternative approach in (Phillips 1998), treats face recognition as aK class problem, 
where K is the number of known individuals. The problem is then formulated as a problem 
in the difference space. This models the dissimilarities rather than similarities between face 
images. From the training set T= It,,... tm} of faces of K individuals, 2 classes are gen- 
erated. The first is the within-class differences set C1, which are the dissimilarities between 
the faces of the same person (i. e. the dissimilarities arising due variation in pose, expression, 
illumination, etc. ). The second is between-class differences set, which are the dissimilarities 
between the faces of different people. C, and C2 are the inputs to the SVM algorithm, which 
outputs a decision surface. Phillips modifies the interpretation of the decision surface of the 
SVM and proposes a similarity metric. Faces are recognised by setting threshold values for 
the similarity metric. This idea of a difference space to classify faces is also explored by 
Moghaddam et al (Moghaddam et al. 1998) but in a Bayesian framework. 

The main drawback of SVM's is that for large optimisation problems, they are compu- 
tationally intensive and the memory requirement grows with square of the training vectors 
(Yang & Ahuja 2000). A comprehensive survey of the use of SVM's in face recognition can 
be found in (Tolba et al. 2005). 

2.2.4 Elastic Bunch Graph Matching (EBGM) 

This method was proposed by Wiskott et al in Wiskott et al. (1997). Faces are stored as 
grids (graphs) with the characteristic facial features attached to the nodes of the graphs. 
Nodes are positioned at fiducial points (such as eyes, tip of the nose, etc. ) (Lu 2003) and 
edges are labelled with 2D distance vectors. The features are obtained by convolutions of the 
faces with Gabor wavelets computed at node locations (Fromherz 1998). The finite wavelet 
set (encompassing both phase and magnitude information) at a paxticular grid point forms a 
feature vector called a jet. The image is characterised by these set of jets, which comprise of 
a relatively small set of numbers by which two images may be compared (Barrett 1998). In 
order to accommodate different scales, translations, facial expressions and poses, Lades and 
von Malsburg discovered that the grid could be elastically distorted (within constraints), in 
order to find the best match between two images (Barrett 1998). 

Individual faces in the database are represented by simple labelled graphs. All face 
graphs are stacked together to obtain a comprehensive representation of the training set. 
The individual graphs are required to have the same structure so that the nodes refer to the 
same fiducial points (Lu 2003). All jets referring to the same fiducial point (e. g. left eye) are 
bundled together in a bunch, from which one can select any jet as an alternative description 
(Lu 2003). Hence, a face bunch graph (FBG) is a collection of individual face model graphs 
combined into a stack-like structure. Each node corresponds to a certain facial feature and 
contains the feature jets of faces from the training set. This allows the system to locate the 
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fiducial points in a single matching process and eliminates the need for matching each model 
graph individually (Kong et al. 2005). 

Test faces are matched by maximising some similarity measure between the test face graph 
and the FBG. The similarity measure is usually taken as the average of the best possible 
match between the new image and any face stored within the FBG minus a topographical 
term, which accounts for distortion between the image grid and the FBG (Lu 2003). Pose 
invariance is a consequence of the elastic deformation of the graphs. 

The elastic graph method is robust with respect to variations in pose, size, and facial 
expression and can deal with different lighting conditions (Fromherz 1998, Zhang 2003). 
This is mostly due to the fact that Gabor features are largely insensitive to lighting, face- 
position and expressions (Zhang et al. 1997). Small changes in pose about any axis amount 
to local scale and rotation transformation, which the jets can cope with effectively (Baxrett 
1998). Changes in expressions are slightly more difficult to deal with, but the grid distortions 
will to some extent track these changes. Trials using the FERET database have resulted in 
high recognition rates and the algorithm was ranked among the three most accurate (Kong 
et al. 2005). 

The algorithm is complex and difficult to implement as a large number of grid placements 
have to be done manually. It requires a large number of convolution images for better 
performance. Careful pre-processing and accurate feature point location are also a crucial 
requirement. Further, high resolution images (e. g. 128 x 128) are required, which largely 
restricts the applications of this algorithm (Kong et al. 2005). 

2.2.5 Neural Networks 

One of the first examples of neural networks in face recognition is Kohonen's associative map 
(Kohonen 1988). Even when the input images were very noisy or had portions missing, an 
accurate recall capability was achieved on a small set of face images. Neural networks are 
generally very complex and difficult to train to perform face recognition tasks (Baxrett 1998, 
Zhang et al. 1997), even when the image size is fairly small. For example, if the image size 
is 128 x 128, a simple back-propagation (BP) network would require 16,384 inputs (Zhang 
et al. 1997). Difficulties also arise when the number of classes increases and when only single 
training image per class is available since multiple images are necessary in order to determine 
the optimal parameter settings for training the systems (Tolba et al. 2005). 

Cottrell and Fleming propose using two BP networks in order to reduce complexity (Cot- 
trell & Fleming 1990). The first network operates in an auto-associative mode, while the 
second one operates in the classification mode. The auto-associative network has n inputs, 
n outputs and p hidden units, with p<n. The network takes a face vector x as input and 
is trained to produce an output y that is a best approximation of x (Zhang et al. 1997). 
The output h of the hidden layer is a compressed version of x, or a feature vector and is 
used as the input to the classification network. In (Zhang et al. 1997), the authors found 
that the performance of such a network is comparable to the Eigenfaces algorithm, but the 
implementation costs are much higher. 

Multi-layer perceptron neural networks and radial basis function networks (Howell 
Buxton 1996) have also been used for face recognition. A back-propagation training algorithm 
for multi-layer perceptron may be sufficient for a low dimensionality with a small number of 
classes (Weng & Swets 1999). 
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In (Lawrence et al. 1997), a hybrid neural network that combines local image sampling, a 
self-organising map (SOM) neural network and a convolutional neural network is presented. 
The proposed method is capable of rapid classification, requires only fast, approximate nor- 
malisation and preprocessing, and is reported to consistently exhibit better classification 
performance than the Eigenfaces approach (96.2% accuracy on the ORL database of 400 
images of 40 individuals). Invariance to minor changes in the image samples and rapid clas- 
sification are achieved through SOM, which quantises the samples into a topological space 
where the inputs that are nearby in the original space are also nearby in the output space. 
The convolutional network extracts successively larger features in a hierarchical set of layers 
and provides partial invariance to translation, rotation, scale and deformation (Tolba et al. 
2005). The main drawback of this technique is that training the network takes a long time. 

In (Brunelli & Poggio 1992) a neural network approach to gender classification is de- 
scribed. Two Hyper Basis Function (HyperBF) networks (Poggio & Girosi 1990) were trained, 
one for each gender. This approach has been extended to face recognition using one HyperBF 
per person. Neural networks have also been combined with statistical methods. For exam- 
ple, Lin et al (Lin et al. 1997) used a probabilistic decision based network (PDBNN) for face 
detection and recognition. The PDBNN does not have a fully connected network topology. 
Instead, it divides the network into K subnets, each of which is dedicated to recognise one 
person in the database. Gaussian activation functions act as neurons and the output of each 
subnet is the weighted sum of the neuron outputs (Tolba et al. 2005). 

2.2.6 Hidden Markov Models 

Hidden Markov Models (HMM) are a set of statistical models used to characterise the sta- 
tistical properties of a signal (Nefian & 111 1998). While Hidden Markov Models (HMM) 
have been used in speech recognition for over three decades, and were also promoted for ges- 
ture recognition, relatively little work has been done on applying HMM to face recognition 
(Samaria 1993, Achermarm & Bunke 1996). 

HMM's generally work on sequences of coherent 1D signals (feature vectors), while an 
image usually is represented by a simple 2D matrix. To overcome this, a sliding window is 
applied to the image. The window covers the entire width of the image, and is moved from 
the top to the bottom of the image. The brightness values of the windows are passed to 
the HMM process as 1D feature vectors. Successive windows overlap to avoid cutting off 
significant facial features and to bring the missing context information into the sequence of 
feature vectors. The human face can be divided in horizontal regions like forehead, eyes, 
nose, mouth, etc. that are recognisable even when observed in isolation. Thus, the face is 
modelled as linear left-right HMM model of five states, namely forehead, eyes, nose, mouth 
and chin (Fromherz 1998). Accuracy of 87% is achieved on the ORL database of 400 images 
of 40 individuals. 

A pseudo 2D HMM is presented in (Samaria & Harter 1994). Each face image is rep- 
resented by a 1D vector series of pixel observations. Each observation vector is a block of 
L lines, with an overlap of M lines between successive observations. A test image is first 
sampled to a 1D observation sequence and then matched against every HMM in the training 
set. The match with the highest likelihood is considered the best match and corresponds to 
the identity of the test image. A recognition rate of 95% was reported in the preliminary 
experiments on the ORL database of 400 images of 40 individuals (Tolba et al. 2005). 
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2.2.7 Miscellaneous 

Other popular techniques for face recognition not covered here include Active Shape Models 
(Cootes et al. 1995, Lanitis et al. 1997, Cootes et al. 2000,2001), Evolutionary Pursuits 
(Liu & Wechsler 2000), Independent Component Analysis (ICA) (Draper et al. 2003), non- 
negative matrix factorisation (Lee & Seung 1999). None of these techniques achieve perfect 
results by themselves. But when combined with other techniques, many of these limitations 
can be overcome (Tolba et al. 2005). 

2.3 Evaluation 

The evaluation of face recognition systems has become very important in the recent years as 
the number of systems available both commercially and otherwise has grown exponentially. 
As a result, it is necessaxy to have a common and consistent evaluation protocol in order 
to assess the quality of these systems. The main goals of Facial Recognition Technology 
(FERET)2 database and evaluation methodology are (Phillips et al. 2000, Zhang 2003): 

Measuring the performance of face recognition technologies in a framework that models 
real-world settings and uses a large database, 

* advancing face recognition technologies, and 

e collecting a database of facial images to support algorithm development and evaluation. 

The FERET evaluations provide a comprehensive picture of the state-of-the-art in face recog- 
nition from still images (Phillips et al. 2000). Algorithms' identification and verification 
abilities can be evaluated by testing them on different versions of algorithms, scenarios and 
categories of images (e. g. lighting change, people wearing glasses or not, time elapsed between 
training and test image, etc. ). 

The FERET database has made it possible for researchers to develop algorithms on a 
common database and to report results in the literature (Phillips et al. 2000). This allows 
an objective assessment of the algorithms and their relative merits and drawbacks since they 
are tested using identical normalisation procedures, scoring methods and images. Image 
collection for the database started in September 1993, and the first test was carried out in 
August 1994. 

FERET tests evaluate Mly automated and partially automated face recognition systems. 
Fully automated systems localise and normalise the face in a given image and perform au- 
tomatic face recognition. Partially automated systems only perform the recognition task. 
The database consists of 1,199 individuals and a total of 14,126 (Phillips et al. 2000) images 
taken in a variety of settings and time scales (2 days to 2 years). The dataset is partitioned 
further into various categories based on the images contained in them. For example, there 
are categories consisting of duplicate images, images taken under the same/different lighting 
conditions, images taken within 5 minutes/2 days/2 yeaxs of each other, etc. The results of 
the identification tests axe presented in (Phillips et al. 2000), while the verification results 
are published in (Rizvi et al. 1998). 

2 www. itl. nist. gov/ad/humanid/feret 
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2.3.1 Face Recognition Vendor Tests 

Based on FERET, the Face Recognition Vendor Tests (FRVT)3 provide independent govern- 
ment evaluations of commercially available and prototype face recognition technologies. So 
far, two tests have been performed - in 2000 (FRVT 2000) and in 2002 (FRVT 2002). FRVT 
2002 featured a high computational intensity test (IlCint), which consisted of 121,589 full 
frontal images of 37,437 people. The medium computational intensity test (MCint) consisted 
of two parts: still and video. The still portion of the test compared different categories of 
still images (e. g. vaxying illumination and pose). The video portion tested face recognition 
accuracies using dynamic images. It should be noted that these tests aim to assess the per- 
formance of the state-of-the-art technology and identify areas of future research and are not 
"buyer's guides" as such. The main findings of the test are summarised below: 

The recognition rate for indoor images is much higher than outdoor ones, even with 
noticeable changes in lighting. Thus, face recognition from outdoor imagery remains a 
research challenge area. 

Identification performance decreases linearly as the database size increases logarithmi- 
cally. 

Identification rates were higher for males than females. They were also higher for older 
people (38-42 yeax olds) than for younger people (18-22 year olds). Hence, demographic 
information should be accounted for when assessing face recognition performance. 

Performance using video sequences was the same as using still images (using FRVT 
2002 datasets). 

* The use of morphable models significantly improve non-frontal face recognition. 

2.3.2 The CSU Face Identification Evaluation System 

Colorado State University provides algorithm evaluation facility for researchers developing 
2D face recognition algorithms4. It provides 4 baseline algorithms: 

1. PCA or Eigenfaces algorithm (standard implementation as described in ('11urk & Pent- 
land 1991a) 

2. A combination of PCA and LDA algorithm 

3. A Bayesian Intrapersonal/Extrapersonal Image Difference Classifier 

4. An EBGM algorithm that uses localised landmark features represented by Gabor jets 

The site does not provide any data as most of the work is based on the FERET data. Normal- 
isation code for the data is made available. As with the FERET database, the normalisation 
involves aligning the eyes using the co-ordinates of the centres of the eyes. The images are 
scaled so that the distance between the eyes is constant and cropped so that they are all the 
same size. Canonical images are obtained by applying a mask that zeroes the all pixels that 

3 www. frvt. org 
4 "Evaluation of Face Recognition Algorithms: " www. cs. colostate. edu/evalfacerec 
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do not fall in an oval that contains the typical face. This removes hair, clothes, ears and any- 
thing else in the background. Histogram equalisation is applied to smooth the distribution 
of the grey values for the non-masked pixels. Finally, the pixel values axe normalised so that 
the non-masked pixels have a mean of zero and a standard deviation of one. 

Performance results of the benchmaxk algorithms using the FERET database are also 
provided on the website. 

2.3.3 Face Recognition Grand Challenge 

FERET, FRVT and the CSU Face Identification Evaluation System all address the problem 
of compaxing and evaluating 2D face recognition systems. However, the recent advances 
in 3D face recognition technologies have meant that a common data corpus and evaluation 
framework axe necessary to measure the performance of these systems. The Face Recogni- 
tion Grand Challenge (FRGC) aims to determine the merit of techniques that perform face 
recognition using 3D scans, high-resolution still images (single and multiple) and multi-modal 
images (21) and 3D) (Phillips et al. 2005). To this end, it provides a data corpus of 50,000 
high-resolution images and 3D scans, a set of evaluation experiments and an infrastructure 
that supports an objective comparison among different approaches (Phillips et al. 2005). 

Images of 200 subjects axe collected at the University of Notre Dame, in a series of photo 
sessions spanning between 2 and 10 months. Four controlled still images, two uncontrolled 
still images and one 3D image is collected in each session. The controlled images are taken 
indoors with two different lighting and facial expressions. The uncontrolled images axe taken 
in varying illumination and in non-laboratory settings: hallways, atria or outdoors. The 3D 
images are taken in controlled setting using a structured light sensor, which captures both 
range and corresponding texture information. The high-resolution still images measure either 
1704 x 2272 pixels or 1200 x 1600 pixels. The 3D range images are 640 x 480 range sampling 
and a registered colour image of the same size. As with the FERET database, the images 
are normalised so that the average distance between the centres of the eyes is 68 pixels with 
a standard deviation 8.7 pixels. 

The challenge consists of 6 experiments to gauge the performance of algorithms when 
dealing with a number of face recognition problems. These include recognition in controlled 
and uncontrolled environments, under vaxying illumination conditions, under varying expres- 
sions, multi-image and multi-modal recognition and finally, recognising 2D images using 3D 
or multi-modal training data. 

Turk and Pentland's PCA based Eigenfaces algorithm (Turk & Pentland 1991a) is used 
as the baseline algorithm. For the multi-modal recognition, PCA is performed on the range 
and texture channels separately, and the similarity scores are fused to give a final similarity 
score. 

The FRGC data corpus is the only one of its kind and allows researchers to test their 
3D and multi-modal algorithms using a common dataset, similar to that of the FERET or 
the FRVT. However, for this work, such a dataset was available too late. Besides, this work 
investigates 3D face recognition from binocular stereo data, which is not available in the 
FRGC data corpus. 
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2.4 21D and 3D Face Recognition 2 

Early face recognition techniques functioned in the 2D space, and this has been the case 
until recently. Technology in this field is now mature and a certain ceiling has been reached 
in terms of performance. Hence the advent of 3D face recognition. 3D face recognition has 
been axound for about a decade and is still in its infancy. However, the constant demand 
for robust, accurate recognition systems, and the advances in technology is causing a rapid 
shift in focus from 2D to the 3D space. Much of the research in 3D face recognition used to 
be done commercially, and as a result, the literature on the subject is sparse in comparison. 
Intuitively, it can be seen that the 3D approach would have many advantages over the 2D. 
If a practical and accurate 3D recognition system can be developed, the financial gains are 
tremendous. Research information on 3D technology has only started to become available in 
the public domain in the last 5-8 years. 

In this work, 3D systems refer to model- and surface-based approaches while 211) refers 2 
to systems using 2D images that encode depth information. This section will review some 
of the main approaches to face recognition using depth information. The techniques will be 
divided on the basis of modality, i. e. those using only shape information and multi-modal 
systems using both shape and texture information. 

2.4.1 Shape based systems 
These systems use face data captured with specialist equipment such as laser scanners, range 
cameras or structured light projectors. Although the colour and texture information may be 
available, its use is generally avoided and identification is on the basis of depth information 
alone. Stereo-based shape-only systems require accurate data capture and precise camera 
matrices. 

Gordon extracts facial features merely to perform normalisation and define template 
regions, which are later used for combined recognition of frontal and profile regions in a 
classical template matching process (Gordon 1995, Fromherz 1998). Features are extracted 
from one frontal and one profile image using tangency constraints and heuristic knowledge 
about head structure. These features are used for normalisation, and later to define template 
regions to be used for face recognition. In (Gordon 1991,1992), she proposes a technique in 
which the face is first segmented using surface descriptors based on curvature features and 
knowledge about the structure of the face. Features such as width and separation of eyes, 
and height and width of nose axe extracted and thus each face is represented as a point in the 
feature space. Faces are matched using a nearest-neighbours type approach and an accuracy 
of up to 100% is reported on a dataset consisting of 3 views of 8 faces (24 images) captured 
using a rotating laser scanner. 

Hesher et al (Hesher et al. 2003) explore PCA based approaches using different numbers 
of eigenvectors and image sizes for range images. As in 2D PCA analysis, the range images 
undergo rigorous normalisation. In the 3D domain, this takes the form of feature alignment. 
Images axe aligned (rotated and translated) using the tip and the bridge of the nose. This is 
followed by projection to a lower dimensional space and recognition using PCA. The system 
is tested using a dataset of 37 subjects, with 6 images per subject (varying expressions). 
Invariance to changes in pose and illumination are not tested and the expressions are con- 
trolled. Recognition rates of over 80% and around 90% are reported when the classifier is 
trained using single and multiple images respectively. 
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In (Heseltine et al. 2004b), a combination of PCA and LDA is applied to surface repre- 
sentations of 3D models to generate Fishersurfaces. This extends the earlier work (Heseltine 
et al. 2004c) using only PCA to produce Eigensurfaces. To generate Fishersurfaces, PCA 
is used to reduce the dimensionality of the LDA scatter matrices, prior to computing the 
eigenvectors of the matrix of ratios of the dimensionality-reduced scatter matrices. These 
eigenvectors are then used to project a face surface vector into a face space of smaller di- 
mensions, as in PCA. The vector representing each face in this reduced dimensionality space 
(analogous to the vector of "weights" in Eigenfaces) is known as the "face-key". Face-keys 
are compared using either Euclidean or cosine distance measures, and acceptance/rejection in 
verification tasks is determined by applying threshold values. Fishersurfaces perform better 
than the Eigensurfaces and cosine distance results in lower error rates than the Euclidean 
distance. The lowest Equal Error Rate (EER) of 11.3% is reported for the horizontal surface 
gradient representation. Identification experiments using this approach are not conducted. 
This work is extended in (Heseltine et al. 2004d), where different surface representations are 
combined to improve the accuracy of the classifiers. The authors conclude that although some 
surface representations do not perform so well when used for recognition, they may contain 
highly discriminatory components that could complement other surface spaces. The EER is 
reduced to 9.3% when cosine distance metric is used in a space combining 184 dimensions 
from 16 different surface spaces. A database of 3D images collected at the University of York 
is used in these works. A stereo based 3D camera using structured light projection captures 
the 2D and 3D data. The database consists images of 280 people (1770 images, on average 6 
images per person), captured under partially controlled imaging conditions. Lighting is not 
strictly controlled and no effort is made to enforce precise orientation. Earlier works of Hes- 
eltine et al (Heseltine et al. 2002,2004a) focus on pre-processing techniques most suitable for 
Eigenfaces approach and on combining the outputs of these techniques using Fisher's Linear 
Discriminant, both for 2D images. 

Medioni and Waupotitsch (Medioni & Waupotitsch 2003) and Uchida et al (Uchida et al. 
2005) both use a pair of stereo cameras to determine the 3D shape of the face. Stereo based 
systems are very rare in face recognition due to the low quality and low accuracy of the 
captured 3D information (Uchida et al. 2005). Both these approaches use calibrated cameras 
to obtain a metric reconstruction of the facial surface from the disparity values. The surfaces 
are then matched using Iterative Closest Point (ICP) algorithm. Medioni's system is tested 
on a dataset of 100 people, with 7 images per subject. Images axe captured both indoors and 
outdoors in a variety of lighting conditions. It is compared against Identix Facelt System 
- one of the top three in the FRVT 2000 tests, and is reported to give significantly better 
results. Uchida et. al's system is tested on a much smaller dataset of 18 subjects. Details 
about the nature of the dataset and the performance of the system axe not presented in the 
paper. 

Yoda et al (Yoda & Sakaue 2003) also developed a stereo based identification system. 
Their system however, is not a dedicated face recognition system. It processes faces, hand 
gestures and a number of inanimate objects and is used for human computer interactions. 
The cameras are mounted on a workstation and the system attempts to identify the objects 
and individuals most frequently encountered in vicinity. It operates in a strictly controlled co- 
operative scenario with a small number of subjects to identify. Learning involves extracting 
regions of interest from depth maps and then using higher order auto-correlation functions 
and hierarchical LDA to perform recognition. 
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Chen et al (Chen et al. 2003) use a combination of PCA and wavelet transforms for 
face recognition using 21D range images. They use photometric stereo to reconstruct the 2 
depth maps from three images, each with a different direction of illumination. A total of 
101 subjects are imaged with 6 different viewing directions. Wavelet decomposition using 
Daubechies-1 (Db-1) wavelet is performed on the depth maps. The dimensionality of the 
decomposed Approximation images (output of the low-pass channel) is reduced and the 
images are recognised using PCA. Four different classifiers are tested for use with the PCA 
algorithm. A moderate decrease in the recognition time is observed for the 21D images when 2 
compaxed with the 2D images. The classifier combining LDA with the Nearest Feature Line 
approach performs the best with an accuracy of 95.1% for 21D data and 89.4% for the 2D 2 
data. 

2.4.2 Shape and Texture based systems 

Systems combining shape and texture may or may not use dedicated equipment to capture 
depth information. Depth information used in these systems may be captured using a pair 
of still cameras in a stereo set-up or using a single dynamic data source such as a webcam. 
or CCTV images, with either the camera or the subject in motion. 

Model-based approaches construct a generic 3D model of the human face that is able to 
capture the facial variations in pose, illumination and expressions. The model-based scheme 
usually contains three steps: (a) Constructing the model; (b) Fitting the model to the given 
face image and (c) Using the parameters of the fitted model as the feature vector to calculate 
the similarity between the test face model and the training models in the database to perform 
the recognition (Lu 2003). Alternatively, the final step can be replaced by 2D recognition 
system where the classifier is trained using numerous images synthetically generated from 
the morphable model. 

The morphable model approach was first proposed by Blanz et. al (Blanz & Vetter 1999, 
Blanz et al. 2002, Blanz & Vetter 2003). A 3D morphable face model that parametrises the 
shape and texture of an individual's face from a single image is used. The model represents 
shapes and textures of faces as vectors in a high-dimensional face space. Thus, any combina- 
tion of shape and texture can result in a face (Blanz & Vetter 1999, Blanz et al. 2002, Blanz 
& Vetter 2003). However, not all of these are realistic. A probability density function of all 
the faces in the training set is used to limit the generation of unrealistic faces (Blanz & Vetter 
1999, Blanz et al. 2002, Blanz & Vetter 2003). Identification is based on these shape and 
texture parameters, which are independent of the imaging conditions such as illumination 
and viewpoint (Lu 2003, Tolba et al. 2005). 

The training set models a-re laser scanned and stored in cylindrical co-ordinates relative 
to a vertical axis (Lu 2003). Texture is represented by the RGB colour values at each 
of the 3D points. Model parameters are calculated by applying PCA to both shape and 
texture parameters individually and then concatenating the two. This captures class-specific 
information about the faces. The 3D model is deformed to obtain the "best fit" between its 
2D projection and the new 2D image. Given a single test image of a person, the algorithm 
automatically estimates the 3D shape, texture, colour, illumination and all relevant 3D scene 
parameters. Illumination is not restricted to Lambertian reflection, but takes into account 
specular reflections and cast shadows, which have considerable influence on the appearance 
of human skin (Tolba et al. 2005). 
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Weyrauch et. al. (Weyrauch et al. 2004) use the morphable model based approach in the 
training phase to generate the synthetic face images with varying pose and illumination, and 
then use a component-based approach to face recognition by first extracting the facial features 
(using SVM's). They report a better performance than an equivalent global approach and 
attribute it to the fact that the individual components of the face vary much less than the 
entire face when the pose and illumination vaxy. 

The main advantage of the 3D morphable model is that it avoids the need to generate 
an intermediate morphable model for the test image since the 2D image can be matched 
directly to the 3D model. The system does however, require manual initialisation of pose. 
Estimation of the parameters from a single image is a computationally intensive task and 
does take a few minutes to process. In terms of accuracy, the system ranks among the top 
three algorithms in the recent FERET tests. 

Beumier and Acheroy (Beumier & Acheroy 1998,2000) combine shape and texture in- 
formation, obtained using structured light projections. Their system is designed with a 
co-operative scenaxio in mind and adopts a global surface matching approach to establish 
geometrical correspondence between two surfaces prior to matching. Surface matching is 
implemented using parallel profiles 1cm apaxt. An individual is represented using a central 
and lateral profile, and identification is based on a matching score obtained by minimising 
some distance measure based on curvature values of the profiles. Vertical symmetry of the 
face is used to normalise the surfaces. Although an accuracy of over 90% is reported, the 
system is known to give poor results or fail completely for individuals with glasses and bushy 
beards! 

In (Bichsel 1995), a modular framework for shape from multiple views and varying illumi- 

nation is presented. A 21D depth map and a corresponding texture map are both estimated 2 
in an iterative process. This allows, within limitations, the computation of additional views 
of the head. The model estimation also includes a probability estimation module which 
computes the probability of a specific set of shape and texture paxameters. According to 
(Romherz 1998), this can also be used as a recognition module. This, however, is not men- 
tioned by the authors in (Bichsel 1995) as the article deals mostly with estimating head 
models. 

In his PhD thesis (Romherz 1996), Romherz adopts a similar approach. He proposes 
the use of shape from multiple views and visual cues embedded in a framework that allows 
consistent integration of additional visual cues (Fromherz 1998). A head model is recon- 
structed and represented as a set of depth maps. Recognition is performed by adjusting the 
orientation of a particular depth map, together with its associated texture map. This is done 
iteratively until a match is found. Matches are sought using a simple template matching 
technique. 

Bronstein et al developed a 3D face recognition system that is considered the state-of-art 
due to its unique ability to distinguish between identical twins. Their system is invariant 
to facial expressions (Bronstein, Bronstein & Kimmel 2003) but sufficient information about 
invariance to pose and illumination is not available. They capitalise on the fact that the 
class of transformations that the facial surface can undergo is not arbitrary. They note that 
empirical observations demonstrate that facial expressions can be modelled as isometric or 
length preserving transformations that do not stretch or tear the surface, or more rigor- 
ously, preserve the surface metric (Bronstein, Bronstein & Kimmel 2003). Their method 
first computes geodesic distances between sampled points on the facial surface. Based on 
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these distances, it produces an isometric invariant representation of facial surface (Bronstein, 
Bronstein, Kimmel & Spira 2003, Bronstein, Bronstein & Kimmel 2003, Kimmel & Sapiro 
2003, Bronstein et al. 2005), which is unique to each individual in the database. The repre- 
sentation is multi-modal in that the recognition is performed using Eigen-decomposition of 
textures mapped into a lower dimensional Euclidean space and canonical surface representa- 
tions (Bowyer et al. 2004). Depth and texture information is obtained using a range camera 
(with coded light - similar to structured light, but more accurate) and the images are pre- 
processed extensively. The authors report that the registration process is quick but the need 
for specialist data-capture equipment and lack of information on algorithm's performance 
under varying pose and illumination limits its applications and versatility. They also report 
the system's failure when the faces are significantly deformed (e. g. inflated cheeks). Their 
representation enables distinction between identical twins even without the texture informa- 
tion and the system outperforms both, the 2D Eigenfaces approach and the straightforward 
incorporation of range images into the Eigenfaces framework. 

In (Chang & Bowyer 2005), a dataset of around 200 individuals with multiple images 
captured over a six to thirteen week period is used to perform various Eigenfaces based ex- 
periments for 2D and 3D images. Range scanner is used to obtain a 640 by 480 sampling 
of range data and a registered colour image of the same size. A standard implementa- 
tion of Eigenfaces algorithm with the Mahalanobis cosine distance is used. The images are 
heavily normalised and pre-processed, both automatically and manually. For multi-modal 
recognition, scores from each modality are combined using a confidence-weighted variation 
of sum-of-distances rule. The weights are estimated based on the distribution of the top 
three matches in the 2D and the 3D spaces. A larger distance between the first and second 
ranked matches implies a greater certainty that the first ranked match is correct. They con- 
clude that recognition using 2D and 3D images leads to similar performance when considered 
individually. Using multiple 2D images is better than using single 2D images for training. 
However, combining both 2D and 3D leads to a better performance than either modality by 
itself and multiple 2D images. This work and their earlier work (Chang et al. 2003) axe two 
of the largest experimental studies reported in the literature either for 3D or for multi-modal 
face recognition in terms of the number of subjects, the number of training and test images 
and the time lapse between the training and test image capture. 

Tsalakanidou et. al (Tsalakanidou et al. 2003) use the Eigenfaces approach for recognising 
faces using a combination of depth and colour images. The use of colour images for multi- 
modal recognition has not been observed before. Experiments are conducted for 2D colour 
images, 3D range images and a combination of the two. For the 2D images, a Euclidean 
distance between the test and training image is computed for each of the Y, U and V colour 
channels. The test image is assigned to the class k for which the smallest product of the 
Euclidean distances is obtained. A similax approach is adopted for the multi-modal approach. 
Accuracies as high as 99% are reported on a dataset of 40 individuals from the XM2VTS5 
dataset. 

Lu and Jain (Lu et al. 2004a, b, Lu & Jain 2005a, b, Lu & K. Jain 2005) present a number 
of approaches of combining 3D range and 2D texture images to perform automatic face 
recognition. Feature points axe identified either automatically or manually prior to surface 
registration and alignment between the training and test images. Two methods are presented 
for automatic feature location. The first uses maximum and minimum local curvature (Lu 

'http: //xm2vtsdb. ee. surrey. ac. uk/ 
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et al. 2004a, b) to yield a shape index at each point, which helps to identify spherical cups, 
caps and saddle points on the surface of the face. The second approach automatically locates 
the tip of the nose (Lu & K. Jain 2005) using cross profile analysis on the segmented range 
map, based on the shape of the nose. Once the tip of the nose has been identified, other 
features such as the corners of the mouth and the eyes can be located with ease. Feature 
points on the facial surface are used to align and register the test and training facial surfaces. 
Iterative Closest Point (ICP) algorithm is used for matching the facial surfaces, and a 3D 
matching score is devised using point-to-plane matching. The score of the 3D matching is 
integrated with the 2D matching score using the sum rule. The 2D matching score is obtained 
in a number of ways. Hierarchical LDA is applied to a set of potential matches from the 
training set, short-listed on the basis of the ICP score, in (Lu & Jain 2005b). A combination 
of thin-plate splines and SVM's are used in (Lu & Jain 2005a), while (Lu et al. 2004a) 
uses a combination of registration error from ICP, shape index from feature identification 
and texture matching. In (Lu et al. 2004b), the ICP matching score is combined with the 
cross-correlation between the shape index vectors of the sets of control points in the test 
and training images. On a database of 100 subjects, the highest accuracy is obtained by the 
system presented in (Lu & Jain 2005a), combining ICP, thin-plate splines and SVM's. 

2.5 Summary 

After over 30 years of research and development, basic 2D face recognition has reached a level 
of maturity and many commercial systems axe available for various applications (Zhao et al. 
2003). Evaluation methodologies are available and both academic and commercial systems 
are tested using common datasets of FERET and FRVT. Image-based, holistic methods such 
as Eigenfaces and Fisherfaces dominated 2D face recognition. However, these approaches are 
susceptible to changes in pose and illumination and can lead to inaccurate identification if 
the test images vary significantly from the training images. The advent of the 3D techniques 
that utilise depth information aims to tackle the geometric sensitivity of these systems. 

3D face recognition systems that use shape information only rely on accurate depth 
information. For these systems, the shape of the face is usually measured using dedicated 
hardware. A handful of systems use stereo images to extract depth information. Shape from 
stereo is generally avoided for face recognition due to low quality and accuracy of the 3D data. 
Existing stereo-based systems require careful camera calibration to accurately reconstruct the 
shape information. Surface matching techniques such as ICP are used for matching, making 
these systems computationally intensive and not necessarily practical for large databases or 
for deployment outside laboratory conditions. Further, to the author's knowledge, none of 
the stereo-based face recognition systems utilise texture information. 

Multi-modal systems combining 3D shape information with the 2D texture information 
have been found to be more successful than either modality individually. Consequently, 
much of the upcoming research concentrates on this axea. Most 3D and multi-modal systems 
report accuracies in excess of 90%. However, the lack of 3D and multi-modal test sets (such 
as the 2D FERET dataset) until recently has made it difficult to compare and evaluate these 
techniques effectively. The Face Recognition Grand Challenge (FRGC), which has been 
running since 2004, addresses this issue in part by providing a large multi-modal dataset 
for evaluating 3D and multi-modal systems. However, such a dataset is not available for 
comparing stereo-based systems. 
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Three Dimensional Reconstruction 

3.1 Introduction 

The problem of static 3D face recognition can be divided into three major tasks. 

1. Extraction of the 3D structure of the face. 

2. Effective representation of the 3D image so that it aids the recognition process. 

3. The actual recognition of the 3D image. 

The 3D structure of a scene can be extracted in many different ways, depending on 
the mode of data acquisition (see section 3.2). Stereoscopy is the most generic method 
for surface reconstruction from 2D images. A general stereoscopic system takes at least 
two different views of the scene to be reconstructed. These views are obtained either by 
a single moving imaging sensor or by several sensors at different locations (Rottensteiner 
2001). 3D Reconstruction from a pair of stereo images is a non-trivial task and much of the 
research for this work has concentrated on finding appropriate algorithms to accomplish this. 
Mathematically, it draws on simple results from classical geometry. However, extracting the 
appropriate information from stereo images is challenging. This is mainly due to the presence 
of noise and ambiguity in the data. Despite much of the theory being established for decades, 
a computational solution applicable to all classes of images remains elusive. 

This chapter starts with a brief review of depth extraction methods and the relative merits 
and drawbacks of stereoscopy. This is followed by the mathematics of 3D reconstruction from 
stereo. The strength and weaknesses of the calibrated and uncalibrated camera set-ups is 
also discussed. 

3.2 Brief Overview of Depth Extraction Methods 

Depth of a scene can be computed in many ways depending on the mode of data acquisition. 
The modes vaxy according to the restrictions imposed by availability of hardware, finances 
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and most importantly, on the purpose of the computer vision system being developed. Some 
methods of depth extraction include: 

Disparity from Stereo: Also known as Passive Stereo, this method requires at least two 
images of the scene, taken from slightly different locations. Also required are the 
relative positions of the cameras to each other and to the scene. Disparity, or the 
shift in the position of objects in the two (or more) images of the scene is used to 
compute depth. Special equipment, operation personnel and storage are not required. 
Off-the-shelf digital cameras are adequate. 

Disparity from Motion: Also known as Active Stereo, this method uses the geometry 
of motion to compute depth. This geometry is essentially the same as the geometry 
used for stereo. However, establishing the relative positions of the cameras is far more 
difficult now. This method is heavily reliant on pre-processing to detect and track 
objects in different frames. Again, special equipment, operation personnel and storage 
are not required. Although off-the-shelf camcorders or webcams are adequate, high- 
resolution images are preferable for accurate reconstruction. 

Texture Gradient: This is best understood by thinking of grass in a field. In close up, all 
the blades of the grass can be seen quite distinctly, but as the distance from the actual 
blades increases, it all merges into a green texture. This has limited use by itself and 
is usually used in conjunction with other techniques such as disparity from stereo and 
disparity from motion. It also requires detailed knowledge of the scene. 

Occlusion: This method uses prior knowledge of the positions of various objects in the 
scene to establish depth. For example, if there is a tree in front of a house, then a part 
of the house is occluded by the tree and hence the house is at a greater depth than 
the tree. Again, detailed knowledge of the scene is required and the technique is rarely 
used by itself. 

Structured Light: This technique is one of the most well-known and widely used methods 
of depth extraction. It is highly accurate and cost-effective, both in monetary and 
computational terms. A light stripe pattern (similar to a bar code) is constructed and 
projected on to a 3D scene. The projections provide light stripe features over the object 
surfaces. These can be captured to calculate the 3D position of a surface point where 
the stripe edge is detected (Giihring et al. 2000). This method of depth extraction 
requires subject co-operation and some specialist equipment. Depth values are usually 
more accurate than all of the above methods. 

Laser Scans: Laser scanning works by projecting a coloured stripe onto a laser illuminated 
object. Depth is extracted by analysing the changing shape of the stripe as the scanner 
moves across the object. This method is perhaps the most accurate and the most ex- 
pensive (Levoy 2000). In addition, the system requires careful storage and maintenance 
as well as trained personnel to operate it. Subject participation and co-operation are 
also necessary. 

Often some of these techniques are combined to obtain more robust measurements (Fromherz 
1996, Choudhury et al. 1999). However, computational as well as monetary costs are high 
and both sophisticated hardware and software are required. Other types of images used for 
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depth extraction include Magnetic Resonance Image (MRI) scans for medical images and 
infra-red images (Kong et al. 2005). 

This work employs only one method of depth extraction - Shape-ftom-Stereo. The use of 
stereo vision defines the scope of the project sufficiently without limiting avenues for further 
research. A system based on stereo can be mostly non-intrusive and requires little input or 
paxticipation from the subjects or the operators. In addition, it processes the data in a way 
that allows the results to be easily verified by human experts, thus limiting the number of 
false alarms. 

Depth extraction methods that require prior knowledge of the scene were immediately 
rejected. Although occlusion and texture provide valuable depth information, these tech- 
niques need to be used in conjunction with other depth extraction methods. They can be 
introduced at a later stage to enhance the information already available from a stereo based 
system. 

Passive stereo was chosen over active stereo in order to minimise the degree of pre- 
processing required. It also serves to isolate the effects of using depth information. Active 
stereo requires tracking of the object to be reconstructed in each of the frames. The tracked 
object then has to be aligned and matched so that the depth may be extracted. All these 
procedures add to the computational overheads and may require increased human input. 
'Racking, in such systems is often performed by marking feature points on the object (Paxk 
et al. 2002). This is obviously impractical if a large subject database is to be built, and 
requires too much human interference. Additional processing renders shape-from-motion 
techniques more prone to errors than shape-from-stereo techniques. A static system that is 
efficient and accurate can, in time, be developed further to process dynamic inputs too. 

In the long term, it is envisaged that the system will encompass not only images from the 
static domain but also the dynamic domain (using CCTV images, for example). A system 
that can recognise faces efficiently and accurately, taking as input dynamic images, has many 
applications in areas ranging from crowd surveillance and access control to computer games 
and human-computer-interaction. Hence it is important to be able to extract and process 
the useful information from simple (and noisy) sources such as images. Depth extraction 
using structured light and laser scans were also turned down with this long term goal in 
mind. These techniques are far more accurate than stereo vision, but lack versatility and are 
confined to use in laboratory conditions. 

3.3 Stereo Vision: Advantages and Disadvantages 

It may be axgued that static stereo can be as intrusive as laser scans or light-stripe projections, 
since extensive subject participation is required to capture the images with varying pose 
and expressions. However, it is essential to impose some degree of control on the data 
acquisition process to allow effective comparison between the 2D and the 3D recognition 
systems. Further, this degree of intrusiveness can be justified by the project's long term 
goals of handling dynamic image inputs. A problem as complex as face recognition needs 
a great deal of simplification in order to curtail the number of variables. These can be 
introduced gradually to develop a sophisticated system. Stereo imaging using simple off-the- 
shelf digital cameras does not feature much in the literature on 3D face recognition. This 
was a further motivation to investigate it in this work. 

Reconstruction from 2D images using stereo is a very active and challenging area of re- 
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search. Two or more cameras axe used to capture the scene. The cameras are calibrated so 
that their internal paxameters and positions, both relative to each other and to the scene 
(external parameters) axe known. There axe many established practices for calibrating cam- 
eras (Tsai 1986, Wilson 1994, Heikkila & Silven 1997, Bouguet 1999, Zhang 2000) and this 
in itself is an interesting area of research. 

Extracting depth information from multiple stereo images is very generic and can be 

applied in many different situations, both in static and dynamic face recognition applications 
(e. g. "mug-shot" identification in the static domain and automated crowd surveillance in the 
dynamic domain). In addition, having two or more separate cameras allows greater control in 
terms of data acquisition: placement of cameras, resolution of images and a uniform dataset 
for the training and testing of images in many dimensions. Cost effectiveness is an added 
advantage of this approach. 

When using stereo images to compute depth of a scene, the accuracy of depth information 
is directly proportional to the number of images used to compute it. However, the number of 
images used is also directly proportional to the complexity of the calculations, the execution 
time and the processing power required. This, in addition to financial constraints led to the 
decision of starting with the simplest two camera setup. Although it is possible to obtain any 
number of images with a single camera, the camera has to be moved to a different position 
for each scene capture. This requires re-calibrating the cameras each time they axe moved. 
This can have the undesirable effect of reducing accuracy as errors axe introduced each time 
the cameras are calibrated. It is also a very time consuming process. Slightest errors in the 
calibration parameters can amplify significantly during the depth extraction process. Hence, 
two cameras in a stereo configuration were used. 

Although the use of more cameras can yield greater accuracy, it can make it extremely 
difficult to evaluate the matching and the reconstruction algorithms. It may not be possible 
to establish whether the errors in reconstruction are due to the calibration process or due 
to the actual algorithm. If the cameras are calibrated once and then not moved throughout 
the data collection, then the errors can be assumed to be constant across the subjects. Each 
reconstruction is affected equally and the different algorithms can be compared effectively. 
In theory, it is possible to extend the results obtained from two cameras to any number of 
cameras. How well this works in practice; the various tradeoffs between accuracy, complexity, 
time and processing power requirements; optimisation of the various parameters (including 
the number of cameras); reconstruction and recognition in the presence of significant noise 
levels (caused by moving the actual cameras, for example) axe all areas of potential future 
research. 

Processing the data obtained from digital images is particulaxly challenging and compu- 
tationally more intensive compared with data obtained from laser scans and structured light 
projections. Although the process of data acquisition is simple and easy, the data itself is not 
always so accurate. It is very susceptible to subtle changes in the environment. For example, 
even though the cameras may be positioned as close as is physically possible (parallel cam- 
era model), the scene they capture may still contain slightly varying ambient illumination. 
These changes axe not necessarily observable by eye, but axe recorded by the digital cameras 
in the form of marginally different pixel values. Another source of error, as mentioned above, 
is the calibration process. Calibration is done manually, so there is an element of human 
error. Cameras themselves are also a source of errors. Although two cameras of the same 
make and model have the same technical specification in theory, this is raxely the case in 



3.4 3D from Images 

practice. Inaccuracies in the internal parameters of the carneras may be introduced during 
the manufacturing process. The variations are usually minor, and again not discernible by 
the human eye. But they can result in significalit errors during the reconstruction. 

Face recognition is a cliallenging bionietric as it is, due to the changeable nature of the 
face. The task is irlade further difficult by choosing to execute it ill a partially-controlled 
environment using a noisy and a potentially unstable method of depth computation. However, 
if successful. the applications of such a system would be limitless. 

3.4 3D frorn Images 

A 2D image such as Figure 3.1 conve sa lot of information about the 3D scene that it 0 ýn y 
represents (Pollefeys 2000). 

However. there is not enough information in the image to reconstruct the scene. This is 
due to the nature of linage formation process which consists of a projection from a 3D sceile 
onto a 2D image. During this process the depth information is lost, as illustrated by Figure 
3.2. 

The point in the 3D space corresponding to a specific iniage point is constrained to be in 
the issociated line of sight. From it single image it is not possible to deterinine which point 
oil this line corresponds to the image point. If two (or more) images are available, then the 
3D point call be retrieved as the intersection of the two lines of sight. This process is called 
triangulation (Figure 3.3). 

A number of variables are needed in order to reconstruct a 3D scene from two or more 
2D images: 0 

1. The corresponding iniagge points 

2. Relative pose of the camera for the different views 
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3. Relation between the image points and the corresponding line of sight 

I- igui t, 3.1: An il'MW ()i a (Pullefeys 2000). 
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/ 

Figure 3.2: Back-projection (A'a point m viewed throu-Ii a camera C, along the sight. In 
The 3D point M corresponding to the 2D point m lies somewhere along the line of sight. n0m 
However, its exact location cannot be determined froin one iniage alone. (Pollefeys 2000). 

C, 
Figure 3.3: Reconstruction ofa 3D point NI through trian, gulation. When the same scene is 
imaged using two different cameras C and C'ý it is possible to determine the exact location 

of a point in the 3D space, given that the point is visible in both the inia,, es and its exact 
location in the two 2D iniages is known. (Pollefeys 2000). 
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The relation between an image point and its line of sight is given by the camera model 
(e. g. a pinhole camera) and the calibration paxameters. Paxameters such as the focal length 
of the lens and the distance between the lens and the film or the image plane axe called the 
intrinsic camera paxameters, while the position and orientation of the camera are in general 
called extrinsic parameters. 

Depth can be estimated more accurately by utilising additional cues such as texture, 
occlusion and shading (see Section 3.2). However, often despite having all the above infor- 
mation, scenes are still difficult to reconstruct. This is either due to their complex nature or 
due to the way in which they have been imaged. For example, there may be many disconti- 
nuities or reflections within the scene, or the camera model might not satisfy the assumption 
of a pinhole camera. The images used in this work were taken explicitly for the purpose of 
reconstruction and recognition. Therefore, every effort has been made to ensure that such 
situations do not occur. However, sometimes this is unavoidable (e. g. some reflection is 
encountered in images of subjects with glasses). These images have not been excluded from 
the dataset as it was imperative to keep the dataset as realistic as possible. 

3.5 Stereo Vision - An Overview 

Stereo Vision refers to the process in which a scene is projected on both the right and the left 
eye, i. e. on two image frames (Fromherz 1996). Reconstruction of 3D scenes is performed 
using multiple images, all taken from slightly different angles. A minimum of two images is 
required. The theory can however, be easily extended to more than two views. 

The basic principle behind depth from stereo is to use the disparity between the different 

views of the same scene to extract depth. Dispaxity is the shift or the difference between the 
same scene in the two images. This principle is best understood by holding up a finger in 
front of one's eyes and alternately closing each eye. In each view, the finger appears to shift 
by a certain amount - this shift is called dispaxity. 

The process of reconstruction from stereo can be divided into three stages. 

1. Feature Extraction 

2. Feature Matching or Image Matching 

3. aiangulation (depth extraction) 

Quite often, the first two stages are combined, depending on the method of establishing 
correspondences between the two images. Feature extraction and triangulation rely on ex- 
isting techniques in computer vision and geometry respectively. Feature matching or image 
matching is the most difficult and time consuming stage of stereo vision, and hence much of 
the research in stereo vision focuses on this field (Fromherz 1996). 

First, a simple approach to the mathematics of the stereo imaging is presented in order 
to understand the tasks involved in reconstructing a scene from stereo. For detailed math- 
ematics, the reader is referred to (Haxtley & Zisserman 2000, Pollefeys 2000). Consider the 
optical setup in Figure 3.4 (Marshall 1994). 

The figure shows two cameras with their optical axes parallel and separated by a distance 
d. The perpendiculax distance between the lens centre and the image plane is the focal 
length, f. Note that normally both d and f axe fixed. The line connecting the camera lens 
centres is called the baseline. 

47 
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Wý 

Figure 3.4: Simple triangulation with calibrated cameras and noise free matching points in 

the two images 

Let the baseline be perpendicular to the optical axes of the cameras. Let the x axis of the 
three-dimensional world co-ordinate system be parallel to the baseline. Let the origin 0 of 
this system be mid-way between the lens centres. Consider the point (x, y, z) oil an object. 
Note that this point is in, 3D world co-ordinates. Let this point have image co-ordinates 
(xi, yi) and (Xr, Yr) in the left and right image planes of the respective cameras. Then by 

similar triangles: 
x+dX, x-4 2 Yl Yr y 

ZfZffZ 
Solving for (x, y, z) gives: 

d(xi + x, ) 
y= 

d(yl + y, ) df 
- (3.2) 

2(xl - x, )' 2(xl - x, )' Xl - Xr 

The quantity (xi -x, )., which appears in each of the above equations is called the disparity. 
Disparity is measured in pixel differences and is proportional to the distance between the two 
cameras. There are several practical problems with this setup. Firstly, the reconstruction 
accuracy diminishes as the object gets further away from the cameras. As the distance from 
the cameras increases, the scale and the quality of the object's image deteriorates. subject 
to the camera resolution. Secondly, as the camera separation d increases, difficulties arise 
in correlating the two camera images. As the disparity increases, the portion of the scene 
that is visible in both the images decreases, thus decreasing the proportion of the scene that 
can be reconstructed. In such situations, employing more than two cameras can be useful. 
And finally, since disparity is proportional to the camera separation, if there is a fixed error 

a 
Left Camera Right Camera 
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in determining the disparity then the accuracy of depth values will decrease as d increases 
(depth values are also proportional to the disparity). 

3.6 Two-View Geometry 

This section briefly covers the geometry of two perspective views. These views may be 

acquired simultaneously as in a stereo rig, or acquired sequentially, for example by a camera 
moving relative to the scene. These two situations are geometrically equivalent an(] are not 
differentiated. 

Each of the two views has an associated camera matrix, C and C'. A point, X in 3D 

space is imaged as x= CX in the first image and as x' = C'X in the second image. Image 

points x and x' are said to be corresponding points or matching points because they are the 
image of the same 3D point. Establishing correspondence points between two images of the 

same scene is an extremely difficult task and forms a part of the Correspondence Problem 
(Section 3.6.3). 

In order to reconstruct the scene, three pieces of information are required: 

1. Epipolar Geometry 

2. Camera Geometry 

3. Scene Geometry 

3.6.1 Epipolar Geometry 

eplý, Am Plane Ir 

x 

1) 

Figure 3.5: Epipolar Geometry: (a) C and C' are the two camera centres in tile left and 
right images respectively. The camera centres, the 3D point X, and its iniages x and x' lie 
in a common plane 7. (b) An image point x back projects to a point in 3D space defined by 
the left camera centre. C, and x. The ray is imaged as a line V in the right view. The 3D 
point X which projects to x must lie on this ray, so the image of X in the right view must 
lie oil 1'. (Hartley & Zisserinan 2000). 
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The epipolar geometry is the intrinsic projective geometry between two views. It is 
independent of scene structure, and only depends on the cameras' internal parameters and 
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1) 

Figure 3.6: Epipolar Geometry: (a) The camera baseline intersects each image plane at 
the two epipoles e and e'. Any plane 7r containing the baseline is an epipolar plane, and 
intersects the image planes in corresponding epipolar lines I and 1'. (b) As the position of the 
3D point X varies, the epipolar planes "rotate" about the baseline. This family of planes is 
known as an epipolar pencil. All epipolar lines intersect at the epipole. (Hartley & Zisserman 
2000). 

relative pose. It is essentially the geometry of the intersection of the image planes with 
the pencil of planes having the baseline as axis (see Figure 3.6). The geometry is usually 
motivated by considering the search for corresponding points in stereo images. 

In Figure 3.5, X is a 3D point that is imaged in two views at image points x and x'. The 
image points, the 31) point and the camera centres are coplanar. The rays back-projected 
from x and x' intersect at X. These rays are coplanar and lie in the same plane 7r as x, x' 
and X (Hartley & Zisserman 2000). The plane 7r is determined by the baseline and the ray 
projected by x (see Figure 3.5). It can be seen from Figure 3.6 that the ray corresponding 
to the point x' lies in 7r. Hence the point x' lies on the line of intersection F of the plane 7r 
and the right image plane. This line V is the image of the ray back projected from x in the 
right image plane. Therefore, a point x in one image generates a line in the second image on 
which its corresponding point must lie. The search for correspondences is thus reduced from 

a region to a line. This epipolar constraint arises because the image points, 3D point and the 
optical centres are coplanar, for image points corresponding to the same 3D point. Detailed 
exposition of the subject can be found in Hartley and Zisserman (Hartley & Zisserman 2000). 

Terminology 

The following terms and their descriptions are taken from (Zisserman 1997). 

Epipole The point of intersection of the line joining the optical centres (the baseline) with 
the image plane. The epipole is the image in one camera of the optical centre of the 
other camera (denoted by e and e' in Figures 3.5 and 3.6). 

Epipolar Plane The plane defined by a 3D point and the optical centres. Or equivalently. 
by an image point and the optical centres (denoted by 7r in Figures 3.5 and 3.6). 

Epipolar Line The straight line of intersection of the epipolar plane with the image plane. 
It is the image in one camera of a ray through the optical centre and image point in the 
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other camera. All epipolar lines (denoted by I and l' in Figures 3.5 and 3.6) intersect 
at the epipole. 

Many image matching techniques take advantage of the epipolar constraint to establish 
more robust correspondences between the two images (Zhang et al. 1995, Xu 1997). Rectifi- 
cation is a process by which epipolar lines in the two images become collinear and are aligned 
to a scan line, i. e. epipolar lines become the rows of the images on the rectified image plane 
(Wu 2004). The rectified images axe produced by a re-projection operation (a homography), 
such that the rectified plane is parallel to the baseline. As a result, the intersection of the 
epipolar plane with the rectified image plane is a line, thus reducing the disparity to hori- 
zontal displacement on both the rectified images (Wu 2004). Rectification is not adopted in 
this work. 

3.6.2 Camera Geometry 

A camera projects a 3D scene space onto a 2D image plane. It is a mapping between the 
3D world (object space) and a 2D image. The camera mapping is represented by a3x4 
matrix which maps from homogeneous co-ordinates of a point in 3D space to homogeneous 
co-ordinates of the imaged point on the image plane (Hartley & Zisserman 2000). 

= 

(a, s uo) 
C=KD 0 a,, vo T (3.3) 

001 

(R3x3 1 
3) 

where R and T represent the orientation and position of the camera, and K its intrinsic 
parameters (Sturm & Quan 1995): 

uo and vo are the co-ordinates of the principal point, the point where the optical axis 
of the lens meets the image plane. 

9 a. and a,, axe the horizontal and vertical scale factors, or equivalently, the focal length 
in pixels. If the pixels are square then a. = a,,, otherwise a. and a,, correspond to the 
width and the height of a pixel as units of length. 

9s is the skew factor. 

So, for a pair of stereo images, 

x= CX and x= CX (3.4) 

where x and xý axe the co-ordinates in the two images of a 3D space point X, and C and C' 
are both 3x4 camera matrices. 

The matrix has 11 degrees of freedom and encapsulates the intrinsic and the extrinsic 
parameters of the camera. The intrinsic parameters consist of the scale factor in the x and 
y directions, the skew angle (to take into account non-rectangulax pixels), the focal length 
measured in width and height of the pixels and the co-ordinates of the principal point (uO, vo). 
The extrinsic parameters refer to the location and the orientation of the cameras relative to 
each other and the subject. 

In a stereo setup, the cameras can either be calibrated or uncalibrated. In the calibrated 
setup, both intrinsic and extrinsic camera parameters are known or set a priori. In the 
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uncalibrated setup, no information regaxding the scene or the cameras is known directly. 
The camera matrices have to be estimated from whatever information is available. In most 
cases, the only available information is set of potential correspondences between the two 
images. 

Calibrating cameras is a simple but tedious task. It generally involves viewing some 
kind of calibration object of known geometry and identifying certain landmark points. The 
calibration object usually consists of chess-boaxd like grid, or a white board with equidistant 
black points, or similar. Based on this information, the intrinsic and the extrinsic camera 
parameters are computed (see Section 4.4). 

The reader is referred to (Hartley & Zisserman 2000, Pollefeys 2000, Wu 2004) for further 
details on Camera Geometry. 

3.6.3 The Correspondence Problem 

Although the principle of passive stereo vision is extremely simple, finding a way of matching 
points in the two images accurately presents a major hurdle. The Correspondence Problem 
refers to the search in two or more 2D images for pairs of points that are projections of the 
same point in the scene. So, in order to reconstruct a scene point appearing in say the left 
image, the corresponding scene point has to be found in the right image too. That is, given 
the image co-ordinates of a point in the left image, the image co-ordinates of the exact same 
point the right image need to be established in order to calculate the 3D co-ordinates of 
the point. The centre of the 3D world co-ordinate system is usually taken to be the optical 
centre of one of the cameras (usually left), i. e. the position of the point in the 3D space is 
calculated relative to some global frame of reference (Owens 1997). 

To solve the correspondence problem without any human input is extremely difficult and 
requires mathematically robust and sophisticated algorithms. The computer has no concept 
of features - the only information about the image that the machine has is the image matrix. 
Each element of the image matrix represents a pixel intensity value. For every point with a 
particular intensity value, there could be any number of points in the image with the same 
intensity value. In addition, there is no guarantee that the image point being searched for is 
actually present in the second image. Consequently, the correspondence problem is extremely 
difficult, and developing a mathematically sound and robust solution for it is a challenging 
and as yet an unsolved task. 

The correspondence problem has been a significant part of this work and is described in 
detail in Chapter 5, along with a review of the existing techniques for solving it. 

3.6.4 Triangulation 

'Riangulation addresses the problem of finding the position of a point in 3D space, given 
its position in two images taken using cameras with known calibration and pose (Hartley 
& Sturm 1997). Hartley and Sturm present a good review of the existing techniques for 
triangulation and the merits and drawbacks of each in (Hartley & Sturm 1997). 

In the absence of noise, this is a relatively trivial problem. However, noise in the camera 
parameters and in the list of correspondences means that robust algorithms need to be 
devised. It is generally assumed that there are errors only in the measured image co-ordinates 
(i. e. correspondences), not in the camera matrices C and C' (Hartley & Zisserman 2000). 
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The presence of noise means that simply back-projecting rays using the correspondences will 
fail as the rays, in general, will not intersect. 

The problem of triangulation has been approached in many ways (Lengagne et al. 2000, 
Carlsson & Weinshall 1998, Hartley & Sturm 1997, Hartley 1994, Shashua 1994). The choice 
of technique will depend on whether the set of cameras being used is calibrated or uncali- 
brated. In general, more algorithms exist for the latter case. These take into account factors 
such as projective invariance, robust estimation of additional parameters such as camera ma- 
trices and noise filtering to allow accurate scene reconstruction. Details of the triangulation 
algorithm used in this project are as under: 

Given a set of correspondences and the camera matrices (computed either by manual cal- 
ibration or by computing the epipolar geometry directly from the matches), the structure X 
of the imaged scene may be recovered by triangulation relatively easily (Hartley & Zisserman 
2000). However, obtaining an optimal solution can be costly, both in terms of processing 
time and complexity. This is because the optimal solution would minimise the re-projection 
error of the 3D points, i. e. minimise the sum of squares of Euclidean distance between the 
observed point in each image and the re-projection using the camera matrices and putative 
3D structure (Torr 2002), i. e. 

min e�(x, C, X)2 + e. (2e, C2 X)2 (3.5) 
x 

where e. (a, b) is the Euclidean distance between a and b. This is equivalent to finding 
(1, P, V, V) such that 

(X _, 
j: e = ý)2 + (y _ 9)2 + XI)2 + (91 _ yt)2 (3.6) 

is a minimum and (1,9, V, fl) satisfies 
: jFiý 

= (3.7) 

where R= (1,9,1)T and k' = (11,91,1) T are the re-projected image points. F is the 3x3 
Fundamental Matrix of rank 2. It encapsulates the intrinsic geometry of the scene. 

This is computationally expensive and a simpler Singular Value Decomposition (SVD) 
based linear method may be used to estimate X from x (see (Haxtley & Zisserman 2000) for 

a detailed mathematical exposition of the algorithm). Combine the equations x= CX and 
3e = C'X to form AX = 0, which is linear in X (Hartley & Zisserman 2000). 

Eliminating the homogeneous scale factor using vector cross-products gives three equa- 
tions for each image point. Two of these axe lineaxly independent. For example, expanding 
xx (CX) =0 for the first image gives 

X(c 3TX) 
_ (ClTX) =0 (3.8) 

Y(c 3TX) 
_ (C2TX) =0 (3.9) 

X(c 2TX) 
_ V(ClTX) =0 (3.10) 

where CiT are the rows of C. Let C11-3 be the three rows of C'. Similar equations can be 
written for the second image as well. These equations are linear in the components of X. 

Thus an equation of the form AX =0 may be written with 
XC3T -c 

1T- 

yc 
3T 

-c 
2T 
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Two equations from each image axe included, resulting in four equations in four homogeneous 
unknowns. These equations are however, redundant since the solution of X can only be 
determined up to scale. 

The solution of X is obtained using the SVD of A and coincides with the unit singular 
vector corresponding to the smallest singular value. Specifically, if A= UDVT and D is 
the diagonal matrix with positive entries axranged in non-increasing order along the main 
diagonal, then X is the last column of V. 

Note that this method of triangulation is not suitable for projective reconstruction (it is 
not projective-invariant). Although it does not employ any form of geometric error minimi- 
sation or re-projection error minimisation, it still gives acceptable results. Furthermore, it 
has the advantage that it generalises easily to triangulation when more than two views of the 
point are available (Hartley & Zisserman 2000). 

3.7 Reconstruction Ambiguity due to Uncalibrated Cameras 

Without some knowledge of a scene's placement with respect to a 3D co-ordinate frame, it 
is generally not possible to reconstruct the absolute position or orientation of a scene from 
two views, or in fact, any number of views (Hartley & Zisserman 2000). This is independent 
of any knowledge which may be available about the internal parameters of the cameras or 
their relative placement. 

If nothing is known of the calibration of either camera, nor the placement of one camera 
with respect to the other, then the ambiguity of reconstruction is expressed by an arbitrary 
projective transformation. 

Informally, the basic theorem of projective reconstruction from uncalibrated cameras may 
be stated as follows: 

If a set of point correspondences in two views determines the fundamental matrix 
uniquely, then the scene and cameras may be reconstructed from these correspon- 
dences alone, and any two such reconstructions from these correspondences are 
projectively equivalent. 

Techniques to change the transformation from projective to affine and then affine to 
metric exist (Sturm & Quan 1995, Horaud & Csurka 1998, Ruf et al. 1998). This can be 
achieved in two ways. The Direct method involves computing the homography from five 
or more ground points with known Euclidean positions (Hartley & Zisserman 2000). The 
transformation is simple and easy. The system however, is not practical or realistic. For 
example, if the cameras axe displaced slightly then one or more of the ground points might 
not be in view any longer. This would hinder the metric reconstruction, unless the number 
of ground points is considerably greater than five, so that no matter how much the cameras 
are perturbed, at least five of the points axe always in view. For the purposes of a face 
recognition system, these fixed points would be in the background (the subject would be in 
the foreground) and may well be occluded by the subject. Another problem with this method 
is that determining the Euclidean co-ordinates of points in 3-space is not always that simple. 

The Indirect or the Stratified method involves computing the plane at infinity first for 
the affine reconstruction, and then computing the image of the absolute conic for the met- 
ric reconstruction (Hartley & Zisserman 2000). These are again non-trivial tasks requiring 
3D scene information such as parallel lines in the image. It is not always possible to find 
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these in the image of a face. Thus, going from a projective to an affine and then to a 
metric reconstruction poses an added challenge to the task of 3D reconstruction from point 
correspondences alone. 

3.8 Calibrated Vs. Uncalibrated Setup in a noisy environ- 
ment 

A calibrated set up refers to one in which both intrinsic and the extrinsic parameters of the 
cameras are known or set a priori. In an uncalibrated setup these parameters have to be 
inferred from the correspondences between the two images. 

Using 2D intensity images introduces noise in the data in a number of ways. Camera 
images are very sensitive even to the slightest variation in illumination. In digital images, 

scene information (such as features) is contained in the pixel values and the ratio of these 
values to each other. Very small changes in illumination can cause significant changes in the 
pixel values. If the object is not illuminated uniformly, some paxts of it appear daxker or 
lighter than other parts. This causes the ratio of pixel values to be altered drastically and 
images of the same object can appeax vastly different. 

Cameras can introduce noise in the data in two ways. Unless they are manufactured 
with utmost precision and accuracy, the intrinsic parameters of the cameras can vary slightly 
around their documented values. As a result of these inaccuracies, no two commercially 
manufactured cameras are going to be exactly the same. These variations in the camera 
parameters can distort the images slightly. These distortions may not necessarily be visible 
to the human eye, but are easily picked up by the computer in the form of changed pixel 
intensity values. In addition, optical and mechanical misalignments in the lens system of the 
camera can cause the position of the principal point to vary quite significantly as the zoom 
position and the lens focus change (Burner 1995, Wilson & Shafer 1993). This kind of noise 
can cause the matching algorithms to perform poorly and may result in an increased number 
of mismatches among the correspondences. 

The other source of camera noise manifests in the camera matrices. How the noise is 
introduced in these depends mostly on whether the cameras being used axe calibrated or 
uncalibrated. Both of these generate noise in different ways. 

When using an uncalibrated rig, it is in theory possible to calculate the camera matrices 
accurately from the set of correspondences between the two images alone (Hartley & Zis- 
serman 2000, Shashua 1994, Hartley et al. 1992). In practice, however, the correspondences 
themselves are riddled with mismatches. The mismatches are a consequence of the ill-posed 
nature of the correspondence problem and distortions in the images caused by imprecise 
cameras. For each point in the left image, there can be many potential matches in the right 
image, which may or may not contain the correct match. A choice of incorrect matches 
can lead to incorrect camera matrices, and therefore incorrect reconstruction of the scene. 
Robust algorithms are required to not only establish potential correspondences, but also to 
eliminate the incorrect ones. In addition, without any prior knowledge of the scene or the 
cameras setup, the scene can only be reconstructed projectively. This means, that different 
sets of perfectly valid correspondences can lead to perfectly valid and equivalent projective 
reconstructions of the same scene. These reconstructions can however look very different as 
the ratio of areas, lengths and angles is not preserved (Hartley & Zisserman 2000). This 
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can make it very difficult to differentiate between noise and projective ambiguity. The com- 
putational load of the algorithms increases significantly and the system is more likely to be 
numerically unstable (Faugeras et al. 1992). 

The calibrated rig also has its downfalls. It is not always practical or easy to obtain the 
camera parameters. If a stereo-based system is to be implemented in a real-world setting 
then it is highly likely to be subject to minor camera displacements. In such a situation, 
unless the cameras are calibrated again, the reconstruction algorithm at best might produce 
very erroneous results and at worst result in a failure of the entire algorithm. 

The calibrated system has two main advantages over the uncalibrated system. Firstly, 
the projective ambiguity is eliminated. Unlike algorithms for the uncalibrated setup, the 
camera matrices and reconstruction in the calibrated setup do not rely on numerous random 
combinations of correspondences to eliminate noise. As a result, each time a scene is recon- 
structed using a given set of correspondences and camera matrices, it will look exactly the 
same. The need to establish projective equivalence is eliminated and the processing time is 
reduced. Secondly, the assumption that the two cameras used axe identical can be discarded. 
Thus, individual distortions in each camera can be modelled in the camera matrices and the 
resulting reconstructions also take into account these differences, thus eliminating further 
noise from the reconstructions. This assumption is common in reconstruction algorithms 
for uncalibrated cameras (Hartley & Zisserman 2000). Algorithms that treat each camera 
individually exist, but some knowledge of the scene is required. 

The choice of setup depends laxgely on the application. The uncalibrated setup and 
the projective approach to structure from motion was introduced to get round the prob- 
lem of calibrating the cameras precisely (Faugeras 1992, Hartley et al. 1992). Uncalibrated 
cameras lead to a projective reconstruction, while calibrated cameras result in Euclidean 
reconstruction. Oliensis and Govindu compare the projective and the Euclidean approaches 
to reconstruction in (Oliensis & Govindu 1999). Their findings are summarised below. 

The projective reconstruction is equivalent to the Euclidean except that the linear camera 
calibration is treated as unknown and potentially arbitrarily different in each image. The 
projective approach is unrealistic in that it allows for arbitrary linear calibration errors 
but neglects potentially significant non-linear camera distortions. Consequently, there is a 
significant loss in accuracy. This is true even for the most robust and optimal projective 
reconstruction algorithms. Even if only a few of the calibration paxameters are known, the 
Euclidean reconstruction will be more accurate than the optimal projective reconstruction. 

Oliensis and Govindu (Oliensis & Govindu 1999), state that Euclidean structure-from- 
motion techniques, assuming a single camera of unknown calibration, recover the projective 
structure more accurately than the projective structure-from-motion approaches do. Thus, 
inaccurate knowledge of camera parameters may not necessaxily justify a projective approach 
to structure from motion. Their experiments with the optimisation techniques show that the 
local minimum problem appears less severe for the projective approach than for the Euclidean 
approach. They are keen to emphasise that this finding does not imply that the projective 
framework is more robust than the Euclidean one, since the projective approach is simply a 
generalisation of the Euclidean. 

Between these two extremes lies the partially calibrated setup. The external camera 
parameters are subject to noise and perturbations and are often unknown. The internal 
parameters however are often known, or can be determined if the camera model is known. 
Both the aspect ratio (a. /a, ) and skew s of the pixel co-ordinate axes are very stable over 
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long periods of time and so can be taken as known values in the camera matrices (Sturm 
1997). The position of the principal point depends on the zooming position and the lens 
focus. Thus, there is a certain interdependence between the intrinsic camera parameters, 
which can be modelled into the self-calibration techniques used in the uncalibrated setup 
(Sturm 1997). This partial calibration reduces the number of unknowns and can improve the 
accuracy of the estimated parameters in the uncalibrated setup. 

3.9 Summary 

This chapter has outlined some of the major aspects of the 3D reconstruction process from 
stereo images such as the epipolar and the camera geometry, triangulation and the corre- 
spondence problem. A minimum of two images of the scene to be reconstructed, acquired 
from slightly different positions are required. The depth information is encompassed in the 
disparity, or the difference between these two images. Stereo vision from two images mimics 
the human binocular vision. 

Computing depth from 2D images requires knowledge of the camera geometry and pairs 
of corresponding points from the images that map to the same point in the 3D space - the 
epipolar geometry. The 3x4 camera matrix is essential for the reconstruction process and can 
be obtained either by manually calibrating the cameras or by inferring the camera parameters 
from the correspondences and the knowledge of the scene. Manually calibrating cameras is 
more accurate, robust and numerically stable than the uncalibrated approach. In addition, it 
produces a Euclidean reconstruction rather than the projective reconstruction resulting from 

uncalibrated cameras. It is possible to obtain a Euclidean reconstruction from the projective 
reconstruction, but it is a lengthy, computationally intensive and an error-prone procedure. 
Calibrated setup involves the use of a calibration object and extensive human input, which 
in itself can be a major source of errors. 

In addition to the camera geometry, pairs of points from the two images that map to 
the same point in the 3D space are required. The idea of the Correspondence Problem is 
introduced. A detailed exposition of the problem and some of the solutions are presented 
in Chapter 6. Depth can only be extracted for the points that are visible in both the 
images and for which correct correspondences have been established. This task is extremely 
complex and a solution for all classes of images does not exist. Once the camera geometry 
and the matched points are available, depth can be extracted via triangulation. The lineax 
triangulation procedure used in this work is also briefly described in Section 3.6.4. 
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CHAPTER 

Data Acquisition and Processing 

4.1 Introduction 

It is often found that there is a significant variation in the results reported in literature for the 
same algorithm. A good example of this is Turk and Pentland's Eigenfaces algorithm (Turk 
& Pentland 1991b). This algorithm is often used as a benchmark and different results are 
reported depending on the dataset, the pre- and post-processing techniques and the distance 

measures used (Zhao et al. 2003). A comparative study of this is presented in (del Solar & 
Navarrete 2005, Yambor et al. 2002). 

There has been some research on the subjects of data collection, processing and repre- 
sentation techniques (Craw et al. 1999). Some of the important questions that they attempt 
to address include: 

9 The size of the data set, number of training images and the number of test images that 
should be used in order to test a particular technique. 

The number of images in each class, i. e., the optimum number of images per individual 
in the dataset. 

The best poses and head orientations to include in the training images to maximise 
reconstruction and recognition accuracy and minimise redundancy in the dataset (Lee 

et al. 2004). 

The controls and the restrictions to be imposed on the imaging environment (illumi- 
nation, clutter, kind of background, etc. ) and the image content (head orientations, 
poses, expressions, scale, etc. ). 

The type and degree of pre-processing to apply to images in order to optimise the 
performance of the techniques being investigated. For example, Heseltine investigates 
normalisation and convolution methods in (Heseltine et al. 2002,2004b, c) and Adini 
investigates how to best compensate for illumination variation (Adini et al. 1997). 
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The best representation for the data to minimise redundancy and storage costs without 
compromising performance of the system. For example, reduce the image to edges only 
(Canny 1986), coefficients of Gaussian basis functions (Edelman et al. 1992), etc. 

Datasets and collection methods in face recognition has largely been driven by applica- 
tions or by the particular aspect of face recognition that is being investigated (e. g. pose or 
illumination invariance). Although there have been some attempts to establish the criteria 
for ideal dataset (both training and test), lack of sufficient research means that there is no 
established methodology or best practise for data collection in face recognition. This work 
aimed to investigate the usefulness of depth information in face recognition. Therefore, it 
was essential that the dataset was kept as realistic as possible so that the results of the 
study would also be applicable outside the laboratory conditions. However, some controls 
also needed to be exercised so that the data could be analysed in a meaningful way without 
limiting the scope of the research. 

This chapter describes in detail the Sheffield Dataset used in this work, how it was 
compiled and processed prior to being used for reconstruction and recognition. It concludes 
with a description of the camera calibration process and details of the camera parameters. 

4.2 Data Set 

The main features of the dataset used in this project (referred to hereafter as the Sheffield 
Dataset) are: 

Data collected in August 2004. All the images of an individual were captured on the 
same day. This was to avoid temporal effects since there is some evidence (Chang et al. 
2003) that classifier accuracies can vary for images captured with time delay of few 
days. 

0 It consists of 22 individuals - 11 males and 11 females, to avoid any kind of gender bias. 

a Subjects belong to vaxious ethnic groups including Caucasian, Afro-Carribean, Asian, 
Oriental and South-American. 

0 The ages range from early 20's to late 40's. 

07 out of the 22 subjects wear glasses. 6 of the individuals who wear glasses are pho- 
tographed both with and without glasses. 

02 of the females are photographed with a head-scarf. Of these, one is photographed 
without the head-scaxf as well. She is also photographed both with and without the 
glasses (see Figure 4.1). 

a The database consists of a total of 692 images. 

Figure 4.2 displays the different classes in the dataset. Approximately 23 images were 
captured for each individual. These images were grouped in various categories (see Figure 
4.3 for a sample of images captured for each individual): 

* Frontal: 1 image with no rotation and a neutral expression. 
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Fig-me 4.1. Oiie uf the subJects iii the dataset, pictured with and without. glasses and, with 
and without a head-scarf. 

Figure 4.2: The reduced dataset depicting, the first linage in each of the 30 classes. 0n 
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Rotationl and Rotation2: 7 images with neutral expression and head rotation about 
the y-axis (axis of symmetry), approximately 12'-15* apart. Subjects were instructed 
to face reference points placed strategically around the room. The exact degree of 
rotation was not strictly enforced as a reasonable balance between totally controlled and 
uncontrolled environments was required. The expression for these images was neutral 
as they were to be used to test the pose-invaxiance of the recognition algorithms. 

Rotationl and Rotation2 contain 3-4 images with rotation about the y-axis. As the 
degree of rotation from the frontal image increases, the identifiable features (such as 
eyes and nose) become less visible and the non-identifiable features (such as ears and 
cheeks) become more visible. Images with fewer identifiable features are harder to 
classify correctly and are grouped together in Rotation2. The rotation images axe 
paxtitioned manually, depending on their information content. 
Since none of the subjects' faces are noticeably asymmetrical, only one side of the face 
is imaged. It is assumed that imaging both the sides of the face in the same manner 
would serve only to introduce redundancy in the data. 

EyesClosed: 1 frontal image with eyes closed. This is a commonly axising situation in 

photographs. It is usually a consequence of the flash being too bright or the subjects 
blinking at the time of image capture. Again, the expression is neutral. 

e Smile: 1 frontal image with smile. This is one of the most common expressions that 
can alter the shape of the eyes, cheeks and the mouth significantly, with the added 
appearance of the teeth! 

EyesCloseLookUp and EyesCloseLookDown: 4 frontal images with rotation about the 
x-axis and eyes both open and closed. Face recognition literature that discusses pose 
variation or different head orientations always refers to rotation about the y-axis as this 
is the most commonly occurring situation. For a face recognition system to be of value 
in applications such as crowd surveillance, it has to be able to cope with very generic 
face images. When the head is tilted up or down, its appearance can alter significantly 
as more or less of the neck and head may be visible. Little is known about this class 
of face images. Its effects on recognition rates in the partially-controlled laboratory 
environment are investigated using these images. 

RotationXYLookUp and RotationXYLookDown: 2 images with rotation about both x 
and y axes, i. e., looking up or down and not looking directly at the camera. It was 
left up to the subject to decide which direction they would face. Again such images, 
although common in most real-life situations, are rare in literature. 

Expression: 5 images with random expressions. During the capture of these images, 
subjects were given complete freedom of expressions. They chose anything from a 
simple frown to blowing up the cheeks and yawning! These images test the expression- 
invariance of the algorithms and they also serve to introduce a degree of randomness 
into the dataset. The aim of this work is to test the usefulness of depth information for 
a generic face recognition system, i. e. a face recognition system that can process face 
images with a wide variation in pose and expressions. 
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0 Lighting: 2 images with "liarsli" illumination. It is known that inost 2D recognition 
,, ystenis perform poorly in the presence of varying illumination. As a result, these sys- 
teins are heavily reliant oil norinalisation and techniques that compensate for varying 
illumination (Adiiii et al. 1997). If the change in lighting is uniform, then these tecli- 

niques work well, as intensity call be equalised. However, if the face is lit very brightly 
from one particular direction. such that it appears as if the contours of the face have 
been altered. then norinalisation techniques also fail. The subjects' faces are illunii- 
nated very brightly from the left and from underneath for these images. The usefulness 
of depth information in such cases in not known. 

Figure 4.3: A sample imap, class froin Ilw (lataset DI. I 

Every attempt was made to ensure that the dataset is as versatile as possible. Although 
the total number of individuals in the dataset is quite small compared to some of the other 
publicly available datasets (such as the FERET database), it lias many unique features. For 
example. it allows the user to test the effects of changes in pose, both, about the x and y 
axes. This is not coninionly found in literature. It also allows the user to test the effects of 
non-uniforin illumination and controlled (such as smiles and eyes open and closed) as well 
as uncontrolled expressions. In addition. the effects of accessories such as glasses and head- 
scarves can also be investigated. All of these can be explored individually or in conjunction 
with each other. as is done in this work. 

There are numerous datasets that allow the user to investigate the effects of many of 
these image types on face recognition in 2D and 3D spaces (Tolba et al. 2005). However, 

63 
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until recently, there was no single dataset that allowed the user to compare both 2D and 3D 
recognition algorithms. Algorithms are generally tested on different datasets and attempts 
are made to compare the results. 

The Sheffield Dataset also serves the stereo matching and reconstruction communities. 
Stereo matching algorithms that yield dense and accurate disparity fields for face images 
are not very common since faces are a very complex class of 3D objects - they are rigid 
yet deformable. Admittedly, the lack of ground truth data can make it difficult to provide 
results that are quantitatively comparable. However, the availability of the calibration images 
gives the user some control over the accuracy of the calibration parameters, and hence the 
reconstruction. 

The dataset also has many drawbacks. As mentioned earlier, it is small in comparison with 
some of the publicly available datasets (such as the FERET database' and the Face Database 
of the Max Planck Institute for Biological Cybernetics 2). It includes subjects from various 
ethnic origins, but many more subjects are required to draw concrete conclusions about the 
performance of the chosen algorithms for these vaxious groups. Lack of ground truth data is 
an obvious problem for the shape-from-stereo algorithms comparison. It may also be argued 
that it does not strike a good balance between controlled and uncontrolled environments, 
or that the lack of ground truth data and accurate reconstructions does not allow a fair 
comparison of recognition algorithms in two, two-and-a-half, and three dimensional spaces. 
However, to an extent, this was intentional. The goal of the project is to investigate whether 
or not having the depth information improves the recognition rates in the presence of noise, 
and it is felt that the dataset serves this purpose adequately. It is true that it has a long 
way to go before it can reach the standards of the other databases such as the FERET, but 
it serves as a good starting point which can be built upon. 

4.2.1 Sheffield Data Sub-Sets 

The Sheffield Dataset is referred to as D, in the remainder of this thesis. This notation is 
introduced purely for convenience. Two further subsets of D, are also used for some of the 
experiments. 

Dataset D2 is a small subset of the Sheffield Dataset D1. It consists of 165 images and is 
compiled using five or six representative images from all 30 classes (see Figure 4.2). Figure 
4.4 is an example of the images contained in one of classes in this dataset. This dataset is 
used for feasibility studies prior to applying a new technique on laxger datasets D, or D3- 
A good performance on this smaller dataset was taken to be an indication of the viability of 
the approach being tested. 

Dataset D3 is a larger subset of D1, consisting of 540 images. There are approximately 
18 images (see Figure 4.5) in each of the 30 classes. This dataset is formed by removing 
three image categories from the dataset: Rotation2, RotationXYLookUp and RotationXY- 
LookDown. In some of the images from these categories, very little of the actual face can be 
seen because the subject has either turned too far away from the camera or because a large 
part of the face is covered by the hair or the head-scarf. 

lwww. itl. nist. gov/ad/humanid/feret 
'http: //faces. kyb. tuebingen. mpg. de 
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Figure 4.4: A sample image class from the dataset D2. 

Fi-iire 4.5: A saniple inlape class I'l'oni the dataset Di. 



66 Data Acquisition and Processing 

4.3 Set-up 

The subjects were seated approximately 60cm from the smooth, monotonic background. This 
distance was arrived at through a process of trial and error. Positioning the subjects at a 
distance from the matte background ensured adequate dispersal of shadows. Effort was made 
only to minimise the shadows, not to eliminate them completely. This was again in order 
to strike a balance between totally controlled and uncontrolled environments. On occasions, 
due to the subject moving axound slightly, shadows were generated. These images were not 
eliminated from the database as it was felt that they would be useful in testing the robustness 
of the matching and the reconstruction algorithms. The cameras were placed approximately 
300cm from the subject, and were separated by a horizontal baseline of 22cm. 

All natural light was baxred from the room - the curtains drawn shut. The room was 
illuminated using fluorescent lights and the subjects were positioned such that their faces 
were illuminated uniformly from all directions, as far as the eye could tell. Fill-in flash was 
left on. This ensured good contrast in the images. The flash was switched off completely 
when taking the "harsh lighting" pictures. The effects of harsh lighting are simulated using 
an ordinaxy 40W desk lamp. The lamp was held very close to the left side of the face and 
very close to the chin to illuminate the face from the side and from underneath. Digital zoom 

, es is switched off so that the focal length of the lenses remained constant across all the imag . 
Digital zoom can be left on if a calibration object is also imaged along with the subject to 
estimate the camera parameters. 

A pair of digital cameras (Olympus Camedia C20OZ) are used to capture 1280 x 960 RGB 
images. These images axe then individually cropped so that they contained only the faces 
and minimal background. Both left and right images are cropped equally so that there is no 
loss of stereo information. The images are initially cropped to 512 x 512, after which they axe 
further reduced to 256 x 256 using bicubic interpolation. Two of the matching algorithms are 
wavelets based, and so at each level of decomposition the images are decimated by 2' x 2". 
Hence, as a matter of convenience, the images are chosen to be of size 2' x 2". The image 
size is reduced from 512 x 512 to 256 x 256 as this speeds up the computation, without 
any noticeable reduction in the recognition accuracy during the software testing phase. This 
is also echoed in the findings of Zhang (Zhang 2003). He found that although the facial 
recognition performance becomes better with improvement of the image quality, it does 
reach a certain ceiling which cannot be exceeded, irrespective of the image quality. 

The images undergo no other form of pre-processing or normalisation. There is significant 
evidence that normalisation and the application of certain pre-processing techniques improve 
the performance of face recognition systems. However, the recognition accuracy varies ac- 
cording to the pre-processing technique that is applied. Furthermore, the normalisation and 
the pre-processing are often dictated by the dataset being used (Heseltine et al. 2002). In an 
uncontrolled environment such as a crowd surveillance system, the dataset is not necessarily 
known a priori and as a consequence, all forms of normalisation and pre-processing (except 

resizing) were avoided. This also limited the number of variables in the system, which was 
preferable at this early stage of research. Refraining from such pre-processing also allows 
the discriminatory power of actual recognition algorithm (without the aid of pre-processing 
techniques) to be analysed. 
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4.4 Camera Calibration 

Jean-Yves Bouguet's "Camera Calibration Toolbox for Matlab" 3 is used to calibrate the two 
cameras. The calibration process involves photographing a chess-board like calibration object 
in different orientations (as shown in Figure 4.6) and then verifying the corners identified by 
the software. 

Once the corners have been extracted by the toolbox, the user is asked to identify four 

points on the corners of the grid. These points act as a frame of reference for the grid, 
and the order of clicking allows the toolbox to compute the orientation of the calibration 
object. The structure of the calibration object (i. e. the positions of the corners on grid) 
is known, so the position of the corners can be expressed in terms of this reference frame. 
The extracted corners are displayed and the user is asked to verify these. If the putative 
corners do not match the actual corners on the grid, the distortion and the skew parameters 
are adjusted to ensure that the two line up. This process is repeated for all the calibration 
images. Once this is complete, the toolbox automatically computes the intrinsic camera 
paxameters (focal length, principal point, skew and lens distortion) using established camera 
geometry (Faugeras 1993), along with predicted errors. 

Both the cameras are calibrated individually first, and then together. This allows the 
extrinsic camera paxameters R and T to be computed. R and T represent the relative 
rotation and translation of the right camera with respect to the left. Consider a point X 
in the 3D space with co-ordinate vectors x and x! in the left and right camera reference 
frames respectively. Then, x and x' axe related to each other through the rigid motion 
transformation 

x'= (R x x)+ T 

where R is a3x3 rotation matrix and T is a3x1 translation vector. 
The calibration process is not covered in detail here and the interested reader is directed 

to Jean-Yves Bouguet's webpage3. 

4.4.1 Camera Matrices 

RecaH from Section 3.6.2 the camera matrix (equation 3.3): 

:= 
(au 3 U0) 

KD 0 a, VO 
(R3X3 

T3) (4.1) 
001 

When there axe two cameras, as in a stereo setup, the left and right camera matrices axe 
given by: 

C= K1 III 03X1] C' = K2 [RIT] (4.2) 

where K1 and K2 are the intrinsic camera parameters for the left and the right cameras 
respectively, and R and T axe the extrinsic paxameters that give the position of the right 
camera with respect to the left. 

Matrix K encodes the intrinsic camera parameters and has the form given in equation 
4.1. (a,, a,, ) are the scale factors in the x and y directions (or equivalently, the width and 

Swww. vision. caltech. edu/bouguetj/calib-doc/ 
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C: 5 

Figure 4.6: The calibration images used to calibrate the stereo cameras. using hýan-Yves 
Bouguet's --Camera Calibration Toolbox for Matlab". 
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height of a pixel, or the focal length), (uo, vo) axe the co-ordinates of the principal point and 
s is the skew factor in the pixel co-ordinate system. 

The camera matrices for the stereo set-up in this work are given by: 

811.054, ' 
c0 

3845.55242 
cl 13.722020 

[-0.051188003 
0 

36 0 
3829.60447 

0 

-13.69196 
3916.78454 
0.023185055 

696.82022 696.820221 
400.49039 400.49039 (4.3) 

11 

1062.52133 -786451.047101 
393.072111 -11897.163528 1 (4.4) 
0.99841987 -17.3725668 j 

The corresponding matrices Kj, K2, R and T axe given by: 

811.05436 0 696.82022 
KI 0 3829.60447 

1 
400.49039 (4.5) 

0 0 1 
895.06403 0 863.80941" 

K2 = 0 3906.79300 482.55947 (4.6) 
0 0 1 
0.9986 -0.0087 0.0514- 

R= 0.0098 
[ 

0.9997 -0.0227 (4.7) 
-0.0512 0.0232 0.9984 

j 
T= [-198.0569 -0.8994 -17.3726] 

T (4.8) 

Note that the rotation matrix R is generated from 

[0.0230 0.0513 0.0093] 

using the Rodrigues formula. The Rodrigues formula provides a convenient way of writing a 
rotation matrix as a rotation vector. The direction of this vector gives the axis of rotation, 
and its norm (or length) is the angle (or the amount) of rotation (Bouguet 1998). A rotation 

[W. vector Q=XWy WZIT can be expressed as a3x3 rotation matrix R by taking the 
exponent of 

u 0 
wx -wy 

0-" 
So, 

R= efl 
(Bouguet 1998). Note that !ý is a skew-symmetric matrix which makes it possible to compute 
R in closed-form using Rodrigues' formula (Faugeras 1993): 

. 2(o) T1- COS(O) 13,, 3 cos (0) + fl S11 
0+- 02 

W2 IX WXWY WX Wz 
2+W; 2 + W; 2 T= 

[W 

2 
where 0Q ýwx 

Z, 
I3x3 is the U3 identity matrix and fm WY JWX WY WYWZ 

W &jz 2 WX W, W Y W; 
(Bouguet 1998). 
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The numerical errors corresponding to the these variables are approximately three times 
the standard deviations. They are computed automatically by the camera calibration toolbox, 
and are given in Table 4.1 

Parameter Error (%) I Mean Error 
(a. I, a. l) ±(2.5651,2.5775) 2.57 
(au2 i Ctv2) ±(9.4139,22.0799) 2.45 
(uol, Vol) ±(9.4139,22.0799) 15.75 
(U02tVOl) ±(19.34400,15.71865) 17.53 

T ±(0.0173,2.4382,2.3057) 1.59 
r ±(120.8696,89.8635,17.2043) 75.98 

Table 4.1: Camera Parameters and their associated errors 

The highest errors are observed in the computation of the principal points and the rotation 
vector. Bouguet explains in the documentation for the toolbox that the large errors are the 
result of these two parameters being very difficult to estimate accurately. 

Averaging the errors over the six parameters gives a mean error of 19.31%, most of which 
is due to the exceptionally high error value for r. If this is discounted, then the overall error 
is 8.0%. 

4.5 Summary 

This chapter describes the Sheffield Dataset in detail and how it was collected. The camera 
calibration process is described and the camera matrices are presented along with their 
estimated error values. 

The Sheffield Dataset contains 692 images of 22 individuals (11 males and 11 females). 6 
of these are photographed with and without glasses and 1 female is photographed with and 
without a head-scarf as well. A certain degree of control is exercised in the imaging process. 
For example, images with rotation about the y-axis are taken by instructing the subjects 
to face reference points located strategically around the room. However, since a balance 
between controlled and uncontrolled imaging environments was required, the subjects were 
given a certain degree of choice with some of the images (such as those requiring different 
expressions). 

The main advantage of this dataset is that the same set of images can be used to test face 
recognition in 2D, 21D, 3D and the composite spaces. The camera calibration matrices and 2 
images axe also available so that, in future, if required, then the 3D images can be generated 
again with more accurate camera matrices. In this respect, the dataset not only serves the 
face recognition community, but also the image matching community. The main drawbacks 
of the dataset axe that it is not as extensive as some of the other databases (e. g. the FERET 
database) and the ground truth data is not available for image matching. 

Cameras are calibrated using Jean-Yves Bouguet's "Camera Calibration Toolbox for Mat- 
lab". The camera matrices and the associated error values are detailed. The mean error 
across all the parameters is approximately 19.31%, with the highest errors being in the rota- 
tion vector and the principal points of the two cameras. 



CHAPTER 

The Correspondence Problem 

5.1 Introduction 

The Correspondence Problem refers to the search in two or more 2D images for pairs of 
points that are projections of the same point in the scene. Establishing a set of accurate 
correspondences is vital to the task of depth extraction and 3D reconstruction. Without 
these, the reconstruction is impossible, irrespective of whether the cameras are calibrated or 
uncalibrated. If the uncalibrated setup is being used, the accuracy of the correspondences 
becomes even more vital as all the information about the scene, the camera geometry and the 
epipolar geometry has to be inferred from the correspondences alone. In a calibrated setup, 
inaccuracies axe more tolerable as some, if not all, information about the cameras is available 
independently of the correspondences. Assuming that the camera calibration information is 
accurate, the errors in the correspondences should manifest themselves as distortions in the 
3D reconstruction. 

Reconstructing 3D scenes from 2D images has been a major part of this work. Accurately 

reconstructed face models axe imperative for any 3D recognition system to be successful, 
and the key to generating good models is a set of accurate correspondences and camera 
paxameters. The cameras were calibrated manually and all necessary care was taken to ensure 
that the errors were minimal. Although it is known that camera matrices are erroneous, these 
errors are constant across all images and matching algorithms, and hence can be ignored. 
In order to make the 3D reconstruction and the recognition process as error-free as possible 
and to ensure that the most appropriate techniques are chosen at each stage, it is vital to 
evaluate these techniques quantitatively. 

Quantitative evaluation techniques are rare in computer vision problems (Klette et al. 
1995). Image matching is one such problem - most of the evaluation is qualitative. In (Lin 
& Barron 1994) Lin and Barron suggest using forward and backward image reconstruction 
as a means of quantitatively evaluating image matching algorithms. 

Image matching is an active axea of computer vision and many approaches have been 
put forward for solving the correspondence problem. However, these techniques are often 
specific to the image class they axe being tested on and not generic enough to be applicable 
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to all classes of images. This chapter summarises some of the approaches to this problem 
and details the algorithms investigated in this work. It starts with some general assumptions 
that are adopted by most stereo vision. This is followed by a short review of the various 
approaches to the problem of stereo correspondence. Again, the literature in this field spans 
many decades and it is impossible to review all the techniques here. Evaluation techniques 
for stereo matching algorithms axe described in Section 5.4. Section 5.5 describes two feature 
detection and feature matching algorithms investigated in this work. Results are presented 
in Section 5.6. 

5.2 General Assumptions Behind Stereo Vision 

In (Pan 1996a), Pan goes into considerable detail about the assumptions that are made, 
either explicitly or implicitly, by most stereo matching algorithms, and specifically by his 
own. These are outlined below. 

1. Scene surfaces: Static and opaque 
The imaged scene is static relative to the time span of the imaging for all the stereo 
images. Surfaces are completely opaque, not transparent or semi-transparent. 

2. Lambertian Surfaces: 
The appearance of the surfaces does not vary with the viewpoint (Scharstein et al. 
2001). 

3. Illuminations: Natural or man-made, but non-specialised 
Objects may be illuminated by natural light (e. g. sunshine) or by man-man panchro- 
matic lamps. No specialised light sources are assumed. 

4. Optical medium: Týransparent 
The objects have opaque surfaces and are viewed through a transparent optical medium 
(i. e. camera lens). 

5. Camera geometry: Central perspective 
The image sensors are central perspective cameras and the image plane is measured in 
a 2D Cartesian continuous co-ordinate system. If real cameras are different from this 
ideal model, then it is assumed that they are transformed properly into this model. 

6. Stereo configuration: Overlapping and orientation 
Most stereo algorithms require a minimum overlap of 50% between a pair of stereo 
images. Individual algorithms may impose additional constraints on the minimum 
overlap (e. g. minimum overlap in Pan's algorithm is 60%) and orientation depending 
on the algorithm and the application. 

7. Images: Discrete, digital 
The images are assumed to have digital representation and the intensity values are 
assumed to be discrete. The original images may be in the form of optical film but it 
is assumed that they are digitised appropriately. 
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5.3 Literature Review 

There are many approaches to the solution for the correspondence problem. It is a problem 
that has existed for many decades without a definitive solution. The solutions axe very much 
image-class (e. g. buildings, faces, hand gestures, etc. ) and/or application dependent. A 
single, universally applicable or "gold-standaxd" technique does not exist, further highlighting 
the difficulty of the problem (Barron & Eagleson 1997, Read 2002). Since the problem has 
existed for many decades, many different techniques have been put forward for solving it. It is 
difficult to provide a detailed review of all the different approaches in this thesis. The reader 
is directed to sources such as (Barron & Eagleson 1997, Scharstein et al. 2001, Scharstein & 
Szeliski 2001) for detailed surveys of the literature in this field. 

The existing techniques for stereo matching can be grouped into two main categories 
according to the matching primitives. Feature-based methods use sparse, high-level features 
such as zero-crossing points of the filtered image (Maxr & Poggio 1979, Marr 1982, Pollaxd 
et al. 1985), connected edges (Ohta & Kanade 1985), segmented edges (Medioni & Nevatia 
1985), and corner points (Nasrabadi & Choo 1992) and have accurate disparity values at the 
feature points (Kim et al. 1997). However, these methods need complicated processes such as 
edge-thinning and linking to avoid false matching and, post-processing such as interpolation 
to obtain full resolution dispaxity maps. In paxticular, they are inadequate when the texture 
of scenes is too dense or too sparse. Feature based methods are often used in the uncalibrated 
set-up. Initially, the spaxse set of feature points (after the false matches have been discaxded) 
is used to establish the camera geometry. The feature points may be manually defined 
points-of-interest. Once the epipolar geometry has been computed, the epipolar constraint is 
exploited to reduce the search area for the correspondences. The images are rectified (images 
are warped such that the corresponding epipolar lines in the two images axe co-linear and 
any displacement between the images is along the x-axis only) using the epipolar geometry 
and an exhaustive search for the correspondences is conducted along the epipolar lines on the 
two images (Zhang et al. 1995). A brief review of the feature based methods may be found 
in (Torr & Zisserman 1999) and (Vincent & Laganibre 2002) contains an empirical study of 
some feature matching strategies. 

Direct Methods for motion and/or shape estimation refer to those methods which recover 
the unknown parameters directly from the measurable image quantities at each pixel in the 
image (Irani & Anandan 1999). These differ from the feature-based methods in that feature- 
based methods minimise an error measure that is based on distances between just a few 
corresponding features, while direct methods minimise an error measure that is based on 
direct image information collected from all pixels in the image (such as image brightness) 
(Irani & Anandan 1999). These methods axe able to recover the dense 3D structure of the 
scene simultaneously with the epipolar geometry, and axe generally used in uncalibrated 
stereo systems. For details on these methods, see (Irani & Anandan 1999). 

Intensity-based methods fall under the category of direct methods and use dense, low- 
level features and intensity values themselves to calculate the disparities, without the use 
of feature extraction or interpolation (Levine et al. 1973, Moravec 1977, Matthies 1992). 
Intensity-based methods axe very sensitive to noise and usually require some form of pre- 
processing. When stereo images have large disparities, it is often difficult to detect and treat 
a false match. Therefore, multiple scenes (Okutomi & Kanade 1993), hierarchical structure 
(Tezopoulos 1983) or neural networks with vaxious constraints (Lee et al. 1994) are used to 
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solve these problems. Other algorithms for stereo matching include segmented region-based 
methods (Marapane & Trivedi 1989), phase-based methods (Fleet & Jepson 1990, Fleet 

et al. 1991, Jenkin et al. 1991), topological methods (Fleck 1991), tree matching (Cheng & In 
1985), stereo matching using Gabor filters (Sanger 1988, Gennert & Malin 1992), probabilistic 
methods (Read 2002) and neural networks learned by constraints (Kontanzad et al. 1993). A 

good review of gradient based methods, frequency based methods and hierarchical methods 
can be found in (Magarey 1997). 

Recently, some algorithms combining the intensity-based and the feature-based techniques 
have taken advantage of the reliable primitives of each technique (Ju & Naftel 1999). NVeng 

et. al. (Weng et al. 1992) used some primitives simultaneously, i. e. intensity value, edgeness; 
and cornerness, to determine the correct disparity, taking into account possible structural 
discontinuities and occlusions (Kim et al. 1997). Cochran and Medioni (Cochran & Medioni 
1992) first employed the intensity based techniques which use the local variance of intensity 

pattern, and then obtained accurate disparities using edge-information as a feature-based 

primitive from the blurred disparity map. This method applies a set of constraints to identify 

and remove the low confidence matches, then performs surface interpolation to obtain fun 

resolution disparity map. 
The performance of stereo vision system based on the above methods depends mainly 

on extraction of the optimal features, high-level or low-level primitives which are insensitive 
to image translation and noise, and optimal fusion of these features (Kim et al. 1997). It 
is however, a complicated and a difficult process. Duplication or loss of information can 
occur due to each feature being extracted and processed separately. On fusion, the relative 
importance of each feature is determined heuristically. 

Wavelets transforms have been applied to many tasks in image processing (Strela et al. 
1995, Lina 1996, Kingsbury & Magarey 1997, Daubechies et al. 1999, Pastor et al. 1999, 
Wundrich et al. 2000), including multiresolution analysis (Mallat 1989a, b, Cohen et al. 1992, 
Wilson et al. 1992), image compression (Antonini et al. 1992, DeVore et al. 1992) and sin- 
gulaxity detection (S. G& Hwang 1992, Mallat & Zhong 1992). Two-dimensional wavelets 
transform decomposes the image into a low-frequency and three high-frequency sub-bands. 
The low-frequency image is an approximation of the original, while the high-frequency com- 
ponents consist of the horizontal, vertical and the diagonal features (corners) (see Appendix 
A for details). This is a very efficient, no-loss representation of the image information. These 
characteristics of the transform make the feature extraction process very simple and the 
resulting pyramidal structure can be used for stereo matching as a coarse-to-fine strategy. 

Wavelets-based methods using real-valued filters have two main drawbacks. First is that 
real-valued wavelets transforms are unstable with respect to translation of the input sig- 
nal because these wavelets filters do not have ideal filter characteristics (Kim et al. 1997). 
Secondly, the distribution of energy between coefficients at different scales is very sensitive 
to shifts in the input data (Kingsbury & Magarey 1997), i. e. the transforms are not shift- 
invariant. However, many wavelets families with complex filter coefficients are now being 
used (Pan 1996a, Magarey & Kingsbury 1995,1998b, Magarey 1997, Kingsbury & Magarey 
1997, Kingsbury 2000a, b) to compensate for the shortcomings of the real wavelet transform. 
The complex wavelet families have better orientation selectivity (Magarey & Kingsbury 1995, 
1998b, Magarey 1997) and are able to exist under the strict conditions for optimality stated 
by Pan in (Pan 1996 a). These conditions are orthonormality, compact support, vanishing mo- 
ments and symmetry. In addition, they produce dense disparity maps, which are preferable 
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for surface reconstruction. 
The use of wavelet techniques to address the correspondence problem has grown steadily 

in the past five years or so. All the techniques take advantage of the multiresolution feature 
of wavelets and use it as a coaxse-to-fine matching strategy with varying results. Shim 
(Shim 2000) proposed a technique based on multi-channel wavelet transform. The trends 
in wavelet coefficients axe used to provide overall context throughout the framework, and 
the transients are used to give refined local details of the image. A locally adapted lifting 
scheme is used to maximise the sub-band decorrelation energy by the transients. An intra 
scale correlation and an inter scale backtracking technique using the Multimodality Sum of 
Sum of Squared Difference (MSSSD) on the transform coefficients is introduced. It is claimed 
that this technique provides cumulative confidence in selecting corresponding points at two 
contiguous analysing levels as well as within scale. 

Kim et. al. (Kim et al. 1997) propose a pyramid using modified wavelet decomposition in 
order to achieve translation invariance in the matching process. The image transformed by the 
proposed method is converted into appropriate multiple features without loss of information. 
Since the importance of each feature is determined heuristically, it is very difficult to fuse 
them adequately. They propose to attach weights to each of the features depending on the 
similarities between the intensities in the local region of each left and right wavelet channels. 
The window size used for the decision of weight and disparity values influences the processed 
result considerably. Hence, it is chosen adaptively to ensure it is large enough to obtain a large 
signal to noise ratio, but not so large that it induces the effects of projective distortion. They 
also propose a new relaxation algorithm which can reduce false matches without blurring the 
disparity edge. Good performance on both synthetic and real images (e. g. collection of toys 
and aerial photograph of the Pentagon) has been reported. 

Pan and Magaxey propose a multiresolution phase-based bidirectional stereo matching 
algorithm in (Pan & Magaxey 1999). Gabor phase is used in this scheme as a basis for 
dense multiresolution matching due to its stability. It is a full information matching scheme 
that transforms the whole image into some new domain or feature space - in this case, the 
Gabor-phase-based space. This matching strategy is based on the Fourier shift theorem, 
whereby the phase rotation in the Fourier coefficients of the signal are related to the global 
signal translation. Gabor phase is the ideal candidate for this strategy as its windows have 
optimum localisation properties in both time and frequency domains. Additionally, Gabor 
phase is a robust feature space that is insensitive to perturbations in illumination and affine 
distortion of objects. Again, a coarse-to-fine strategy is used, which effectively imposes a 
smoothness criterion on the final matching map without the need for explicit regularisation. 
The relaxation scheme used in the paper also deals with discontinuities and occlusions. A 
variant of this algorithm, proposed in (Pan 1996b, a) is one of the algorithms that is inves- 
tigated in this work. Mathematical details axe provided in Appendix C and results of its 
application to face images are presented in Chapter 6. 

Magarey and Dick (Magarey & Dick 1998) have approached the subject of image matching 
in a very similar way, using Gabor phase based methods and a similarity measure to compute 
the disparity. However, they regularise the disparity at each level of hierarchy in order 
to provide a global compromise between feature similarity and disparity field continuity, 
resulting in feature-sensitive smoothing. They claim that the algorithm is very well suited 
for analysing and reconstructing facial images, though they do not report having tested it on 
many images. 
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Dick also uses complex wavelets and multiresolution and applies it to the Anandan (Anan- 
dan 1989) approach, after having reported disappointing results on his own relaxation and 
smoothing techniques. In his paper (Pan 1996a), Pan also defines some useful criteria for a 
robust matching algorithm. He investigates several real and complex wavelet families and 
suggests the use of symmetric complex wavelets as they satisfy all the conditions for opti- 
mality. The algorithm is not fully implemented yet and so the paper is somewhat sparse on 
results. A detailed mathematical exposition of the algorithm is covered in Appendix C. 

5.4 Evaluation of Stereo-Matching Algorithms 

Although there are many stereo image matching algorithms in the public domain, very few 

of them have been subject to quantitative evaluation (Klette et al. 1995). It has been sug- 
gested in (Barron et al. 1994) that because of difficulty in accessing accurate estimates of 
the 2D motion field and the ill-posed nature of the correspondence problem, only qualitative 
information can be extracted. 

Much of the evaluation and comparison of competing algorithms is qualitative and is 
done by inspection, particularly if the data is real. Many techniques exist for reporting 
errors in disparity values for synthetic data. Some of these are presented in (Barron et al. 
1994). Egnal et. al. (Egnal et al. 2002) present a technique for establishing a confidence 
metric for the performance of stereo algorithms using single view imagery. They search 
for correspondences in a pair of images from a single view, as opposed to images from two 
different views. Disparities significantly far from zero are erroneous as there is no motion 
between the two images. This yields precise quantitative performance data for real images as 
"ground-truth" data is readily available. This technique was investigated for the data used 
in this work but the results were very inaccurate and the technique was not pursued any 
further. According to this technique the disparity between two identical images was 1110, 
which is obviously incorrect. 

Most sources in literature adopt one of two general approaches for quantitative comparison 
of stereo matching algorithms. If the ground-truth data is available then comparison is 
done using error statistics computed with respect to this data (Scharstein & Szeliski 2001, 
Barron et al. 1994). Alternatively, synthetic images are obtained by warping the reference 
or unseen images by the computed disparity map. These images are then evaluated using 
appropriate metrics (usually the Root Mean Squared (RMS) error between the estimated and 
the actual data) (Szeliski 1999). In (Pan 1996a), the performance of the matching algorithms 
is evaluated by taking the difference between the computed disparity values and the mean 
disparity value in the 3X3 neighbourhood of the pixel. A threshold is set for the minimum 
acceptable difference. If the difference is below this threshold value then the disparity value 
at the pixel is taken to be correct, otherwise not. The main disadvantage of this approach 
is that it relies on the assumptions that the disparity values in a given neighbourhood vary 
smoothly and that these disparity values axe correct. These assumptions are often hard to 
justify unless the matching technique is already known to produce good results. 

In (Lin & Barron 1994), Lin and Barron use forward and backward image reconstruction 
using the optical flow fields to evaluate various image matching techniques. Forward and 
backward image reconstruction are used to generate the next image in the sequence of images 
for which the correct optical flows are known. The RMS differences between the actual images 
and their reconstructed versions are used as a metric for comparing different image matching 
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techniques. Lin and Barron found it to be a good indicator of optical flow errors between 
different methods of computation. Backward reconstruction and RMS axe used in this work 
as a means of compaxing matching accuracy between two image matching techniques when 
the correct disparity 'values are not known. The following section explains the backward 
image reconstruction process as described in (Lin & Barron 1994). 

5.4.1 Backward Image Reconstruction 

Without loss of generality, let the left image be the first in the sequence of images and the 
right image the subsequent image in the sequence. Let the intensity at image location (x, y) 
in the left image be denoted by I(x, y). Let the optical flow or the disparity between the left 
and the right image be denoted by d(u, v). The new image is created by using I(x - u, y- v) 
as the intensity at location (x, y). For example, if d= (1.43,2.31) at location (50,50), then 
the intensity at (48.57,47.69) in the left image is used as the intensity at (50,50) in the right 
image. The RMS error is computed using 

RMS error 
Ex EY(I(X, y) - JI(XI, yl))2 

MxN 

where I(x, V) and I'(x', y') are the actual and reconstructed images of size MxN (Lin & 
Barron 1994). 

The main drawback of this method is that it assumes that illumination across both the 
images is uniform. In this work, this assumption is satisfied, though no special effort is made 
to ensure this. In situations where this may not be true (e. g. when the images are taken with 
cameras that are far apaxt, or when the images are not captured simultaneously), backward 
image reconstruction may not be an appropriate evaluation tool. 

5.5 Algorithm Choices for Matching Face Images 

Face images belong to an especially difficult class of images. The image of a face contains 
large areas of low-frequency regions (e. g. cheeks and forehead) and pockets of very high- 
frequency regions (e. g. eyes, nostrils and lips). Most algorithms axe very good at identifying 
features in the high-frequency regions. Low-frequency areas pose a problem as there are no 
sharp edges, corners or significant changes in the intensity. Yet features this region do need 
to be located and matched correctly. Although cheeks and forehead generally lack features 
of distinction, they are distinct for each individual (e. g. presence or absence of prominent 
cheek-bones and the shape and the size of the forehead) and contain useful classification 
information that may be essential for the recognition in the 3D space. Consequently, an 
algorithm which yields dense, accurate correspondences in both high and the low frequency 
regions is essential. 

Although it can intuitively be seen that feature based methods would struggle to iden- 
tify features in low frequency axeas of the face, two feature detection and feature matching 
methods were investigated to illustrate this point. Harris corner and. edge detector (Harris & 
Stephens 1988) and Smallest Univalue Segment Assimilating Nucleus (SUSAN) (Smith 1995) 
were used for feature detection. The features identified by these were then matched using 
Pilu's (Pilu 1997) Singular Value Decomposition (SVD) method and Torr's (Torr 2002) cor- 
relation based matching. These methods axe simple and clearly underscore the above point. 
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They have not been applied to the class of face images before. Both the feature detection 

methods claim that they are well suited to feature detection tasks in high frequency and low 
frequency, textured regions. 

A set of dense matches is required to reconstruct 3D face images. If the correspondences 
are sparse but accurate, "filled-in" flow fields can be used. In (Lin & Barron 1994) Lin and 
Barron claim that in general, "filled-in" flow fields are more accurate than unthresholded 
dense flows. Linear interpolation between pairs of non-adjacent horizontal and vertical image 
disparities is used to fill-in the missing disparity values. However., this relies heavily on the 
fact that the chosen algorithm is able to correctly identify enough matches in very high- 
frequency regions such as the eyes, and it is able to absorb the salient information present 
in the gentle contours of the cheeks, say. This is in general difficult to accomplish even for 
the most sophisticated feature-based methods. This is especially true for face images as the 
low-frequency areas are not uniformly textured or contoured as in synthetic objects. 

The chosen feature-based methods were tested against two wavelets based methods as 
techniques that yield dense disparity maps. Pan's uniform information matching scheme 
(Pan 1996b, a) and Magarey and Dick's motion estimation algorithm (Magarey 1997. Kings- 
bury & Magarey 1997, Magarey & Dick 1998) are tested. Both the algorithms are described 
in Appendices C and D respectively. Coarse-to-fine multiresolution matching and tile use of 
complex wavelets is common to both techniques. Advantages of a wavelets-based scheme, 
particularly one that uses complex valued filters have been outlined in Section 5.3. In addi- 
tion, Magarey and Dick's algorithm has been successfully applied to face images (Magarey 
& Dick 1998, Magarey et al. 1999). Pan's algorithm however. has not been applied to this 
class of images before. It has only been applied to aerial photographs and has reported good 
results. 

Smallest Univalue Segment Assimilating Nucleus (SUSAN) 

Boundarý of rmisk Nucleus of mask 

Dark Area 

Light Arej 

SUSAN, proposed by Smith and Brady., uses brightness comparisons within a circular imLsk 
(Smith 1995) c-entred on a pixel to identify corners. It assumes that within a relatively small 
circular region, pixels belonging to a given object will have relatively iiii1forin brightness. 

Figure 5.1: Four circular masks at different places on a simple image 
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Figure 5.2: Four circular masks with similarity colouring; USANs are shown its the white 
parts of the masks 

The intensity of the central pixel or the Nucleus, is compared with the intensity of every 
other pixel in the mask. This allows the segmenting of the region in the mask where the 
intensity is similar to the intensity of the nucleus. This region is known as the USAN, and 
is implemented using 

c(r, ro) = 100e 
(t)6, 

(5.2) 

where ro is the position of the nucleus, r is the position of any other pixel, t is the intensity 
difference threshold, I(r) is the intensity at position r and c(rjo) is the output of the 

comparison. For each pixel in the mask, the number of pixels which have similar brightness 

to the nucleus are counted using 

n(r, ro) = 1: c(r, ro). (5.3) 
r 

Then, n is compared with a geometric threshold g, which is set at n,.. 
2 71max is the maximum 

value that n can take (number of pixels in the mask x the maximum value of c). 
Note that the intensity difference threshold t selects the minimum contrast of corners 

which will be detected and the geometric threshold g controls the strength of the corners. 
False features are removed by imposing the condition that all the pixels between the centre 
of gravity of the USAN and the cent, re of the mask must belong to the USAN (Ghita et al. 
2001). 

The main advantage of this method is that it does not rely on any image derivatives and 
so requires no noise reduction. Every point in the input image is used as the nucleus of a 
small circular rnask and its USAN is determined. The area of the USAN is maximised when 
the nucleus lies in a flat region, it gradually decreases and is halved as an edge is approached 
and is reduced further as the nucleus approaches a corner. The local ininima of the USAN's 

are used to identify corners in the image. The algorithm is implemented using the publicly 
available code from Stephen Smith's SUSAN pagesi. 

lww-A,. fmrib. ox. ac. uk/ steve/susan/susanl. c 
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Harris corner and edge detector 

Harris corner and edge detector (Harris & Stephens 1988) combines corner and edge detection 
to cater for image regions containing both high-frequency features and low-frequency textures. 
The corner detector calculates an interest operator defined according to an auto-correlation 
of Gaussian smoothed images (Torr 2002). There is a trade-off between the localisation of 
corners and noise-filtering, determined by the size of the convolution mask. Auto-correlation 

may be defined as the sum of squares of the difference of image intensities (Torr 2002) 

SI(Jx, Jy) =EU, (i + Jx, + jy) -I (i, (5.4) 
i, jEpatch 

whose analytic Taylor expansion is 

SI(Jx, Jy) = (Jx, Jy)N 
Jx (5.5) 

Gy) 

where 
XXy (5.6) N(x, y) 

X 
J2 

X 
Iy 

y 

The two eigenvalues of N are proportional to the principal curvatures of the local auto- 
correlation function, and form a rotationally invariant description of N (Harris & Stephens 
1988). Large values of trace of the matrix correspond to an edge, while large values of the 
determinant correspond to an edge or a corner. Corner strength signal is given by 

e (x, y) = det N(x, y) - r. * UaCe2 (N (x, y» , (5.7) 

where n is a weighting factor derived empirically. 

Feature Matching Techniques 

In order to establish correspondences between the identified features, two feature matching 
techniques are used: Torr's cross-correlation method (Torr 2002) and Pilu's SVD method 
(Pilu 1997). 

Torr uses the difference between the image intensity over two NxN areas centred on 
each feature: 

C (J2 (i, J1 (i, j)) 2 (5.8) 
ijEpatch 

where I,, (i, j) is the image intensity at co-ordinate (ij) in the n th image. Every feature 
in one image is cross-correlated with every feature in the other image. The match with 
the maximum strength is stored for each corner from the first to the second image. The 
same process is then applied in reverse from the second to the first image. Matches are 
only accepted if the difference between their intensities is minimum in both comparisons. 
This has the effect of removing corners which are ambiguous in that they have multiple 
candidate matches. The main drawback of this method is that its execution time is directly 
proportional to the number of features identified in both the images. The Harris corner and 
edge detector and Torr's cross-correlation method for feature matching were implemented 
using Philip Torr's "Structure and Motion Toolkit in Matlab "2 . 

2 http: //cms. brookes. ac. uk/staff/PhilipTorr 
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The second approach to matching features first identified either by SUSAN or by the 
Harris corner detector is Pilu's Singular Value Decomposition (SVD) approach (Pilu 1997). 
This method builds on the landmark paper by Scott and Longuet-Higgins (Scott & Higgins 
1991), in which they exploited the properties of SVD to associate features of two arbitrary 
patterns. Pilu's algorithm, similarly to Scott and Longuet-Higgins's, has three stages. 

Let I and J be two images containing m features Ii (i = 1, ..., m) and n features Jj (j 
1, ..., n) respectively. 

1. Build a correlation- weighted proximity matrix G of the two sets of features where each 
element Gij is a Gaussian weighted distance between two features Ii and Jj: 

Cii +1r,! 
. /2or2 Gij =2 e- i, J (5.9) 

where rij = IIIi - Jjjj and Cij represents the correlation weights (the normalised cross- 
correlation) in the proximity matrix. 

E! ý, E! ý, (A,,,, - ý! ) (B.,, - W) 
Cii = U= V= W2 - c(A) - u(B) 

where A and B are two WxW arrays of pixel intensities centred on features Ii and Jj. 
X and R are the average of A and B, and a(A) and a(B) are the standard deviations of 
all the elements of A and B respectively. The values of Cij vary from -1 for completely 
uncorrelated patches to 1 for identical patches. 
G is positive-definite and the its values decrease monotonically from 1 to 0 with sim- 
ilarity. The parameter a controls the degree of interaction between the two sets of 
features: a small value of a enforces local interactions, while a larger value permits 
more global interactions. 

2. Perform the singular value decomposition (SVD) of GE Mm, n: 
G= TDUT 

where TEM,,, and UEM, are orthogonal matrices and the diagonal matrix DE 
M ..... contains the (positive) singulax values along its diagonal elements Dii in non- 
increasing numerical order. If m<n, only the first m columns of U have any signifi- 
cance (Scott & Higgins 1991). 

I Convert D to a new matrix E obtained by replacing its diagonal elements Dii with 1 
and then compute the product 

P= TEUT 

The new matrix PEM,,,,. has the same shape as the proximity matrix G. If Pjj has 
the maximum value in both the row and the column and its value is above the threshold 
7-, then the features Ii and Jj are in 1: 1 correspondence with each other (Scott & 
Higgins 1991). The squaxes of elements in each row of P add up to 1, meaning that a 
given feature Ii cannot be strongly associated with more than one feature Jj (Scott & 
Higgins 1991). 

The main disadvantage of this method is that a large number of matches need to be 
identified in both images prior to matching. 
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5.6 Feature Detection and Feature Matching Algorithms: Re- 
sults 

The feature detection and feature matching algorithms described in Section 5.5 were applied 
to the set of face images described in Chapter 4. As stated in Section 5.5, in order to 
sufficiently reconstruct the entire surface of the face, a dense set of matches is required since 
depth values can only be computed for the points that are visible and have been matched in 
both images. It was certain that feature detection algorithms would in general not be able 
to identify many matches in the low frequency axeas such as the cheeks and the forehead. 
However, if a sufficient number of correct matches can be identified in the high frequency 
regions such as the eyes, nose and the lips, then this small number of correct matches may 
be better suited for reconstruction and matching purposes than a dense disparity field that is 
riddled with mismatches. Filling-in the flow fields as suggested by Lin and Barron in (Lin & 
Barron 1994) was also considered as a possibility if a few good matches in the low frequency 
regions could be found. 

5.6.1 SUSAN Feature Detection 

For the feature detection task in SUSAN, a 37 pixel circular mask is used, as recommended 
in (Smith 1995). The value of t determines the maximum difference in intensity between two 
pixels which allows them to be considered part of the same "region". A high value of t causes 
fewer corners to be detected, while a small value of t increases the number of corners that 
are detected. Three values of t were tested. The average number of corners detected for 300 
images (150 left and 150 right images) along with associated t values is given in the Table 
5.1. 

t Average number of 
corners detected 

10 554 
20 372 
30 180 

Table 5.1: Intensity difference threshold t and the average number of corners detected for 
150 left and right images (total of 300 images). 

Figures 5.3(a), 5.3(b) and 5.3(c) illustrate a typical set of corners detected in one of the 
images in the dataset. 

It is clear that although a low value of t does detect more corners, these are not necessarily 
located in regions that are useful for the reconstruction or the recognition tasks. In fact most 
of the corners detected are in the background and are of little use. On the other hand, a 
high value of t detects relatively fewer matches. It is interesting to note that a large number 
of matches are still detected in the background. This was not expected since it was to avoid 
this very situation that a matte, monotonic background was chosen for the image capture. 
However, it does illustrate the point made in Section 3.3 that minute changes in illumination 
that are not necessarily visible by eye are most certainly recorded in the digital images in 
the form of small changes in the intensity values. 
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(a) Corners detected with t= 10 (b) Corners detected with t= 20 

(c) Corners detected with t= 30 

Figure 5.3: Typical set of corners detected in the face iniages using SUSAN. Intensity differ- 
ence threshold (t) values of 10.20 and 30 are tested. 
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Matches obtained with the threshold value of t= 20 were thought to give a suitable 
balance between the number of matches and their location. These features were then matched 
using the two feature matching algorithms. On average, between 300 and 400 matches were 
fed into the matching algorithms. 

5.6.2 Harris Corner Detector 

The Harris corner detector requires two parameters to be chosen: the size 3 of the Gaussian 
convolution mask and a. 9, its standard deviation. 

The size of the convolution mask represents a tradeoff between identifying high frequency 
features and eliminating noise. A large value of s results in a large number of features being 
found in the background rather than on the actual face, while a small value restricts the vast 
majority of the features to lie on the face. It should be noted at this stage that the number 
of corners identified was restricted to 500. Since ground truth data for the face images is 
not available, the detected features have to be verified manually. This is a very tedious and 
time-consuming task and an upper bound has to be placed on the number of matches to be 
identified by the algorithm. 

Standard deviation, a. 9, of the mask controls the degree of smoothing applied to the 
images. A large value of a. increases the blurring effect and much of the high frequency 
information is lost. Figures 5.4(a) to 5.4(c) depict the effects of changes in the values of this 
parameter. 

It is obvious that values of a. >1 cause a drastic deterioration in the quality of the 
matches detected. This makes it easy to assign it a value of 1 since it yields matches in the 
best locations in the image, i. e. on the face rather than the background. The choice of a 
value for the size of the convolution mask is not so easy. Its effects manifest gradually and 
it is much harder to identify a cut-off point beyond which the quality of the matches is too 
poor to consider. Figures 5.4(a) and 5.4(d) show the quality of matches for the chosen value 
of s (s = 5) and an extremely large value, 50. 

5.6.3 Feature Matching 

In general, both the matching algorithms, after the removal of incorrect or low confidence 
matches, were able to match approximately half the corners originally identified. Pilu's SVD 
based method requires three paxameters to be chosen by the user: 

" a, the degree of interaction between the two sets of features. 

" W, the size of the WXW patch centred on the features to be matched. 

0 r, the minimum correlation threshold indicating a match between the features. 

Two paxameters need to be chosen for Torr's cross correlation based technique: 

" d, the maximum expected disparity between the images. 

" N, the size of the correlation window. 

Since ground truth data for these images is not available, the validity of the matches 
produced by both these images were checked manually. This is an extremely time-consuming 
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task and often the issue of whether or not two features match is subjective. As a result, only 
a fraction of values were investigated for these parameters. The values that resulted in the 
most number of correct matches are given in Table 5.2. 

SVD 11 Cross-Correlation 
Parameters Parameters 

10 d 15 
5 IN 7 

0.25 1 

Table 5.2: Parameter values that result in the greatest number of correctly matched features 
for the two feature matching algorithms. 

Once the optimal (or as near optimal as possible) parameters had been determined, the 
features identified using SUSAN and the Harris detector were matched using each of the 
two feature matching algorithms, resulting in the four combinations: SUSAN and Pilu's 
SVD method (SP), SUSAN and Torr's cross-correlation method (ST), Harris' comer detec- 
tor and Pilu's SVD method (HP) and Haxris' corner detector and Torr's cross-correlation 
method (HT). Figure 5.5 illustrates the average match rate (percentage of correctly matched 
points) for 150 images using a combination of the two feature detection and feature matching 
algorithms. 

It is easy to see that the use of SUSAN results in the fewest correct matches. This comes 
as no surprise since the quality of the features detected is very poor, compared to the Harris 
corner detector. In the feature matching algorithms, the SVD method performed poorly 
compared to the cross-correlation based algorithm. It is worth noting that the performance 
of the SVD method is poorer when combined with SUSAN than when combined with the 
Harris corner detector. This is indicative of the importance of the quality of the initial 
features detected when using the SVD method. 

Although the Harris-Torr combination algorithm performs reasonably well on this difficult 
class of input images, it was felt that the match rate was not high enough for an application 
such as face recognition. After the elimination of incorrect matches, from the original set of 
500 features, on average, only about 190 were correct. This amounts to a mere 0.0029% of 
the total number of image points (65,536 points for the 256 x 256 input images used here). 
Even if it can be assumed that 75% of the image pixels do not contain useful information, 
there are still an insufficient number of correct matches to justify filling-in the flow field as 
suggested by Lin and Barron (Lin & Barron 1994). 

Consequently, algorithms that are designed specifically to produce dense disparity matches 
were explored. Two wavelet algorithms were chosen and their description and the results of 
their application can be found in the subsequent chapters. 

5.7 Summary 

This chapter discusses the Correspondence Problem in detail. Briefly, it is concerned with 
searching and the matching of features across two images. It is an extremely difficult problem 
to solve due to its ill-posed nature. Although, many researchers have over the years tried 
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Figure 5.5: Mean percentage of correctly matched features using combinations of feature 
detection and feature matching algorithms (SP = SUSAN + Pilu, ST = SUSAN + Torr, HP 

= Harris + Pilu, HT = Harris + Torr). 
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to address the problem, the solution still remains image-class specific. Face images form a 
particularly challenging class of images due to the lack of sharp comers and edges; and also 
because they contain vital information in both the high and the low frequency areas. An 
overview of some of the existing solutions is provided along with evaluation techniques for 
stereo matching algorithms. 

A set of two feature detectors and two feature matchers are chosen to perform feature 
based matching on the face images, and two wavelets based methods are chosen to yield dense 
disparity fields. The feature based algorithms are outlined and the results of their application 
to face images is also detailed. The performance of these algorithms is disappointing and 
they are not investigated any further. Instead, in Chapter 6, two wavelets based methods 
are described and their performance is analysed. 



CHAPTER 

Image Matching: Results 

6.1 Introduction 

To reconstruct information-rich surfaces with very limited sharp features, dense disparity 
maps axe required. Faces are an example of such surfaces. Subtle features such as cheek 
bones and the curvature of the forehead which may be useful for automatic face recognition 
are generally difficult to reconstruct using feature based methods, unless these methods are 
paxticularly sophisticated. 

In this work two wavelets based methods axe investigated for matching face images: Pan's 
full information image matching algorithm (Pan 1996b, a) and Magarey's motion estimation 
algorithm using complex wavelets (Magarey 1997). An overview of both these algorithms is 

presented in this chapter, with detailed descriptions in Appendices C and D respectively. The 
two algorithms axe applied to a selection of images from the Sheffield Dataset. Qualitative 

and quantitative results are compared in Sections 6.5.1 and 6.5.2. This is followed by the 
conclusions and a summary of the chapter. 

6.2 Image Matching Algorithms 

Wavelets based matching algorithms tend to exploit the inherent facility of multi-resolution in 
the form of a coaxse-to-fine matching strategy. This can be expected to result in more accurate 
matches, as at each stage in the multi-resolution hierarchy, false matches are eliminated and 
only the correct ones are propagated to the next level. Pan's algorithm has been tested 
on aerial photogrammetry images and promising results have been reported. This work 
investigates its application to face images. Magarey's algorithm has been tested on face 
images and has yielded very good results when the disparity field is smoothed and regularised 
at each level of decomposition (Dick 1997). For detailed mathematical exposition, derivations 
and test results for non-face images, the reader is directed to the original sources. 

Both the algorithms have a hierarchical structure, shown in Figure 6.1 (Magaxey 1997). 
The nature of the motion estimator and the interpolator varies for each algorithm. Details 
are presented in the subsequent sections. 
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Figure 6.1: Hierarchical structure of CDWT-based motion estimation algorithm. Transforms 

proceed from top to bottom, estimation from bottom to top. The motion estimation stops 
at level and the corresponding motion field is interpolated mmi,, times to attain full 

resolution. 

6.3 Pan's complex wavelets 

Pan presents a top-down complex wavelets based matching algorithm. Complex wavelets are 
used for phase-based matching. In addition to the assumptions stated in Section 5.2, this 
algorithm assumes that the minimum overlap between the two images to be matched is 60% 

- the industry standard in aerial photogrammetry. The two image planes are not required to 
be parallel, however, the vergence angle (the angle between the two cameras' lines of "sight") 
formed by the two image planes is required to be less than 7r/2. The scales of the two images 
may be different, as long as the above conditions are met. 

A uniform and full information representation is one in which the constructs are related to 
the salient information in the original signal f (x, y) (Pan 1996b). A mathematical definition 
of full information representation can be found in Section C. 1. Two examples of uniform and 
full-information representations are Fourier analysis and wavelets analysis. Fourier analysis 
has the disadvantage that it is extremely poor in spatial localisation. Wavelets analysis 
on the other hand has not only good localisation in space and frequency domains, but it 
also has a number of other desirable properties. Details of these and the complex wavelets 
recommended by Pan for use with his algorithm can be found in Section C. 8. 

The matching algorithm proceeds with the definition of implicit feature vectors, B,,, (x, y) 
(equation CA). Implicit feature vectors are constructed, for every pixel, from the coefficients 
of the Approximation and Detail images. These correspond to the outputs of the low-pass 
and the high-pass channels respectively. Estimation of disparity starts at the highest level of 
wavelet decomposition mm,,,,, where the images are the coarsest (See (f) in Figures 6.3,6.4 
and 6.5). If the assumption of 60% or more overlap is satisfied, then the pixels in the centre 
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of the reference image (say, left) are guaranteed to have a match in the search image (say, 

right). 
The search for potential matches for the central area staxts with an exhaustive search at 

the coarsest level. The similarity distance defined by equation C. 14 yields an approximate 
disparity matrix at level mm,, x Mmm.. (O, O) for the central area. The disparity vector for 
each integer-indexed position of the central area is initialised as 

M�, (k, 1) ; z: ý M�, (0,0), {(k, 1) E9- (0,0) 1 (6.1) 

JV = j(0,0), (-O. 5, -O. 5), (-O. 5,0.5), (0.5, -O. 5), (0.5,0.5)} 

and fine-tuned using the similarity distance measure Sn (equation C. 14). A pixel at (x, y) in 
the left image corresponds to the pixel (x', y') in the right image that minimises S, Search 
takes place on both integer-indexed positions and half-integer-indexed positions to give a 
sub-pixel accuracy. 

The disparity field is assumed to be continuous in the local neighbourhood. So, based on 
the correspondences for the pixels in the central area, the remainder of the field at the coarsest 
level is initialised. Known disparity vectors are propagated outwards, ring by ring, from the 
central area (spiral propagation). Once the field is initialised, it is fine tuned and refined. 
Gross errors of the resultant disparity field can be detected and corrected automatically using 
the local continuity constraint 

IM,,, (k, l) -Wl,, (k, 1)j: 5 Tmj 

where M,, (k, 1) denotes the mean (or median for robustness) of the disparity field vector on 
the smallest (e. g. 4-connected) neighbourhood centred on the position (k, 1) of level j. TM 
denotes the maximal allowed disparity difference usually 1< TM < 2. If the disparity at a 
pixel value differs significantly (> TM) from the disparity in its neighbourhood, it is adjusted 
appropriately (see the pseudocode in Figure 6.2). 

After image matching on a higher (, rn + 1)th level, the disparity field is then propagated to 
the next lower (finer) Mth level (hierarchical propagation). The initial disparity field at level 
m can be obtained by interpolating the disparity field at the (, rn + 1)th level. The inverse of 
the similarity distance measure Sn (equation C. 14) for each position on the higher level may 
be taken as the weighting factor for linear or nonlinear interpolation. The matched disparity 
field M,,, on each mt" level yields pairs of matched image points. These, along with the 
relative imaging geometry (obtained through camera calibration), axe used to reconstruct 
the object surfaces via triangulation. 

The algorithm is presented in pseudo-code form in Figure 6.2. 
Pan recommends three complex wavelets: Symmetric Complex Daubechies Wavelets of 

length 6 (SCD-6), Symmetric Complex Daubechies Wavelets of length 4 (SCD-4) and Mag- 
arey and Kingsbury's Complex Wavelets of length 4 (MKC-4). These are described in more 
detail in Section C. 8. Figures 6.3,6.4 and 6.5 show the Approximation and Detail images for 
wavelet decomposition levels 1-6 using SCD-6, SCD-4 and MKC-4 (Note that images from 
only the complex channel are shown for MKC-4 since the images from the complex conjugate 
channel are mirror images of these. ). At higher levels of decomposition, the features are 
gross, and it is easier to conduct exhaustive searches for potential matches. As the images 
get finer, it is harder to search exhaustively and to be certain that the correct match has 
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Algorithm 1: Image Matching using Pan's Algorithm 

Input: Images X1, X2 (N x N), complex wavelet (SCD4, SCD-6, NlKC4) and levels 

of decomposition m,... 
Output: Disparity field Mm (N x N) 

Perform Complex Discrete Wavelet Tran form (CDVvrT) on X, and X2 using com- 
plex valued low-pass and high-pass filters (see Section C. 8) 

Output: Approximation & Detail images of size N12' for each image X, and X2 at levels 

m=1: Single channel filter-banks (SCD4, SCD-6) produce I Approxi- 

mation &3 Detail images. Two channel filter-banks produce twice as many. 

for M= Mmaz :1 // Mmax is the coarsest level of decomposition 
// Compute disparity field at each level using: 
if M == Mmaz 

Exhaustively search for matches in central area 
Find co-ordinates of central pixel 
Compute implicit feature vector (IFV) for this point & its neighbours in left & right images 
Compute similarity distances S. 
Establish match for central pixel based on min(Sn) 

Repeat above process for pixels neighbouring central pixel 
Spiral Propagation 

Set the disparity values of pixels surrounding the central area the same as their 
adjacent pixels 

end if 

if M0 Mmaý 

If this is not the coarsest level then an initial disparity field is already available. 
Refine this field using: 

Spiral Search 
for every pixel, its potential match & the neighbours of this match 

" Compute IFV's 
" Compute similarity distances Sn 
" Of the potential match & its neighbours, determine the correct match using 

min(S, n) 
end for 

end if 

Refine disparity field (starting from centre & going out) by: 
for every pixel location (k, 1) in central area 

Compare disparity value Mm(k, I) at (k, I) with the mean disparity value M 
.. (k, 1) 

in its 3x3 neighbourhood 
- if error value e=IM,,, (k, 1) - M,, (k, 1) 1 :5 Tm 

Tm: threshold value for the maximum allowable difference in the disparity 
values of neighbouring pixels 

Do nothing 
else 

Correct disparity value 
using error-weighted sum of computed disparity M,,, (k, 1) at (k, 1) & mean disparity 
M,,, (k,! Lof the neighbouring pixels 

(e x Mn (k, 1)) + (1 - e) x Mn (k, 1)) 
end if 

Hierarchical Propagation using linear interpolation 
Interpolate the disparity field to obtain the correct resolution at the next finer level m- 
The interpolated field forms the initial estimate of disparity values at level m-1. 

end for 

Figure 6.2: Pseudo code for Pan's complex wavelets based image matching algorithm 
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been isolated. As a result, the hierarchical structure of wavelets based algorithms provides 
a means of narrowing down the search area for potential matches in larger images. The 0 horizontal and vertical disparity maps corresponding to each of these sets of decomposition 
images are presented in Figures 6.7,6.8 and 6.9. 

6.4 Magarey's complex wavelets 
Magarey's complex wavelets based motion estimation algorithm (Magarey & Kingsbury 1995, 
1996, Magarey 1997, Magarey & Kingsbury 1998b, Castellano 1999) is summaxised in this 
section. Further mathematical details are provided in Appendix D. 

A pair of images X1 and X2, belonging to the reference and the current frames respec- 
tively, are decomposed using the Complex-valued Discrete Wavelet Transform (CDWT). A 

pair of complex conjugate wavelet filters in a two channel filter-bank (one channel for the 
complex filters, one for the complex conjugate filters) axe used to implement the CDWT. 
The ID filter pair {ho, hl} are rational-valued complex kernels (equations 6.2 and 6.3) and 
were designed by Magarey and Kingsbury (Magaxey & Kingsbury 1995,1996, Kingsbury & 
Magarey 1997, Magarey 1997, Magarey & Kingsbury 1998b). They axe described in more 
detail in Appendix B. 

ho = 
[1 

-i 4-j 4+j 1+j]110 (6.2) 

hi =[-1- 2i 5+ 2i -5+ 2j 1- 2j] /14 (6.3) 

The wavelet functions generated using these filters were also used in Pan's matching algorithm 
and are referred to as MKC-4. 

Image matching starts at the coarsest level Since MKC-4 wavelets have 2 channels, 
at each level of decomposition, there are twice as many coefficients (2 Approximation and 6 
Detail images). The 6 Detail images from each image frame (Xi and X2) are used to compute 
the disparity value at each sub-pixel and a confidence measure for these values. 

The matching criterion used in this algorithm takes the form of a sub-band squared dif- 
ference (SSD) surface at pixel location n over the real valued offset vector f (see Section D. 2 
for further details on this (equation D. 1)): 

SD(n, m)(n, f) = 
ID, (n, m) (n, f) -D 

(n, m) (n) 
12 

(6.4) 2 

D(j"') (n, f) is an interpolated sub-band (Detail) coefficient from image frame 1 at offset 
f from n, and allows for disparities at sub-pixel locations to be estimated. It is assumed that 
the input spectrum has no sharp peaks in the support region of the associated Gabor-like 
wavelet filter (Magarey & Kingsbury 1996). This means that the phase-behaviour of the 
coefficient follows that of the filter and it has a constant magnitude, given by equation D. 9. 
As a result, the matching criterion SD(n, m) (n, f) can be approximated as an elliptical surface 
which is quadratic around its i imum. 

SD(', ') (n, f) is computed for each pixel across all the six surfaces and summed to give 
a single quantity (equation DA) SD(m) for each level of decomposition. This averages the 
disparity over the six oriented sub-bands rather than over a region of pixels in any particular 
sub-band. If SDM is plotted, it also produces an elliptical bowl shaped surface, which can 
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Figure, 6.3: Real and imaginary components of the Approximation and Detail unages (hor- 
izontal, vertical and diagonal) at various levels of decomposition using Symmetric Complex 
Daubechies wavelet of length 6 (SCD-6). 
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Figure 6.4: Real and imaginary components of the Approximation and Detail images (hor- 
izontal. vertical and diagonal) at various levels of decomposition using Symmetric Complex 
Daubechies wavelet of length 4 (SCD-4). 
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Figure 6.5: Real and imaginary components of the Approximation and Detail images (hori- 
zontal, vertical and diagonal) at various levels of decomposition using Magarev and Ki iiias- 
bury's complex wavelets of length 4 ('VIKC-4). 
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be fully described from the 12 coefficients D Km) 
and D(n, m) (Dick 1997). This in turn allows 12 

SD(m) to be approximated as a quadratic surface (equation D. 21): 

SD(') (n, f) , z: i Af2 + BF22 + Cflf2 + Df, + Ef2 +G 1 

The coefficients JA, B, C, D, E, F, G} axe defined in terms of the coefficients of the band- 
pass images D(, ') and the centre frequencies O(n, m). Closed form expressions for these 
coefficients are given in equations D. 22-D. 28. 

By completing the squaxe, SD(m) can be transformed from the representation in (equation 
D. 21) to (equation D. 29): 

SD(') (n, f) ; Zý a(f, _ flo)2 + p(f2 _ f2o)2 +, y(f, - flOW2 - f2O) +6 

where fo = [flo f201T are the co-ordinates of the surface minimum. fo is taken to be the 
level m, disparity value at sub-pixel n of frame 2. The curvature parameters a, P,, y = A, B, C 
together define the curvature matrix of the surface at its minimum point (equation D. 31) 
and give a measure of confidence in the estimated dispaxity value. These are referred to 
as "ellipses of confidence" in (Magarey & Kingsbury 1996). The steeper the surface (laxge 
curvature parameters), the more precise the dispaxity value and the higher the confidence in 
the disparity estimates. 

Once the disparity field has been computed at the coarsest level it is refined and propa- 
gated to the next finer level. The SSD is refined (see Section D. 5.5) using the information 
from the ellipses of confidence. To account for the images at the next finer level being twice 
the size, the SSD surface is scaled and interpolated using the bilinear kernel (see (Magarey 
1997) for details). The interpolated field of level m surfaces is denoted by SV(m) (n, f ), with 
parameters JA', B', C', D', E', G'} or {fo', a%ff, Y, fl. 

fo' acts as an initial estimate of disparity at the next finer level m-1. The disparity 
estimates, or the SSD's at level m-1, SD(m-1) are established using the procedure described 
above. The interpolated field SY(m) is then added to SD(m-1) to form the cumulative squared 
difference (CSD). This incorporates the information from the previous level into the dispaxity 
estimates at this level. The CSD is then interpolated and used as the initial estimate for the 
next finer level. This procedure is repeated until the required level of detail is obtained. 

The algorithm is presented in pseudo-code form in Figure 6.6. 
One of the main advantages of phase based technique such as this one is that it provides 

a certain robustness to local changes of illuminance. This is very beneficial for this paxticular 
application as it adds a degree of versatility to the system and retains some of the benefits 
of face recognition. 

However, the algorithm also has some drawbacks and it may not be applicable in all 
situations. In particular, the model breaks down when the motion is "out of range" for a 
given search set, i. e. if one or both components of motion exceed 0.5 x 2m pixels. Also, if 
the images contain motion discontinuities of some kind (eg. objects moving over one another 
or over a stationary, textured background) or if there is significant rotational, dilational or 
shear component, then the algorithm would result in noisy or inaccurate matches. 
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Algorithm 2: Image Matching using Magarey's Algorithm 

Input: Images X1, X2 (N x N) and levels of decomposition Mmax 
Output: Disparity field SD (N x N) 

Perform Complex Discrete Wavelet Transform (CDWT) on X, and X2 using com- 
plex valued low-pass and high-pass filters: 

ho=[I-j, 4-j, 4+j, l+j]/10 hj=[l-2j, 5+2j, -5+2j, 1-2j]/14 

Output: Six Detail images D(', ') In =Q and two Approximation images A(1, m) 
and A(2, m) of size N/27n for each image X1 and X2 at levels m=1: mm., 

for M=Mmax: 1 // Mmax is the coarsest level of decomposition 
// Compute the sub-band squared difference (SSD) for each of the 6 sub-bands at each level using: 

for sub-bands 1: 6 
// Compute disparity between the pixels in each of the sub-bands of X, and the corresponding sub-bands of X2. 
for every pixel location n, in XI 

Find a match in the image X2 using: 
(n, m) (n, f) D 

(n m) (n,, ) 2 

Sub-band squared difference (SSD): SD I' (n, f) - D2 (n) 

Compute the energy weighting Op(n, m) and divide the SO (equation D. 1) 

e Sum over the 6 sub-bands: SD(')(n, f) = E6=1 SD (n, m) 
n 

(n, f) (equation D. 4) 

end for 

Compute the coefficients of the quadratic surface 
{A, B, C, D, E, G} and {fo, a, #,, y, J} // See Section D-4 

" Locate surface minimum: 
The correspondent for the left pixel nj is the indicated by the minimum fo of the quadratic surface 

" Curvature Correction: 
Subtract circular bowl shaped surface with the same minimum as the elliptical surface (equation D. 41) 
to increase accuracy of the estimates (equations D. 41 & D. 42). 

0 Confidence Filtering: 
Compute scalar confidence measure Crn (equation D. 38). 
Eliminate matches for which CI < 0.95 

Low confidence matches eliminated. Motion estimates at subsequent levels not affected 
Smooth & Regularise: 

Compute principal axes & curvatures using the curvature matrix (equation D. 31) 
Compute directional confidence measures using equations D. 43 & D. 44 

if CmazCmin <t // overall poor reliability of match 
Eliminate match 

end if 

- Solve equation D. 45 using Gauss-Seidel iterations 
end for 

if M ý6 7nm,, // If this is not the coarsest level 
Combine with previous level estimates (Section D. 5-2) 
CSD(')(n, f)=CSD'(m+l)(n, f)+SD(m)(n, f) Mmj,,: 5M<Mmax 

end if 

Propagate motion estimates up the image pyramid. Scale 8 interpolate disparity field to account for 
increased no. of pixels 6 decreased spacing between adjacent pixels. 

Interpolate using bilinear kernel: 

- Upsample & then apply [1 33 1]/4 first to columns, then to rows. 

en; for 
Scale disparity field: See equations D. 32-D. 36 

Figure 6.6: Pseudo code for Magarey's complex wavelets based image matching algorithm 
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6.5 Image Matching Results 

Although many image matching algorithms report excellent results on synthetic images such 
as the "Diverging/Translating Tree"' and the "Yosemite Sequence" 2, they are not always 
suitable for matching face images. This is mainly due to lack of shaxp features such as 
edges and corners in face images. Since face recognition and even face reconstruction axe 
rarely performed using stereo, very few image matching algorithms are tested on face images. 
Furthermore, ground truth data for face images is extremely hard to establish. This makes 
the task of choosing appropriate algorithms for this application particularly difficult. 

Magarey's complex wavelets based image matching algorithm has been tested on face 
images with excellent results (Magaxey & Dick 1998). Pan's algorithm has been tested on 
aerial photogrammetry and terrain images (Pan 1996a), and promising results have been 
reported. Initially, only qualitative compaxisons were made, as is common in most image 
matching literature. In due course, quantitative assessment of the algorithms and wavelets 
used was carried out to support the findings of the qualitative assessment. 

6.5.1 Qualitative Analysis 

Figures 6.7,6.8 and 6.9 show the horizontal and the vertical disparity maps generated for the 
decomposition images shown in the previous section. Pan's algorithm has been used with the 
three complex wavelets SCD-6, SCD-4 and MKC-4. Compare these with the dispaxity maps 
using MKC-4 wavelet with Magarey's algorithm in Figure 6.10. The coaxsest level maps from 
Pan's algorithm show how the disparity values generated for the central area are propagated 
outwards as an initial estimate. This leads to the entire central region of the image having the 
same disparity values, indicated by a block of the same colour. By contrast, the coarsest level 
map from Magarey's algorithm (Figure 6.10, (f)) computes the disparity values for each pixel 
individually and does not rely on the initial estimates for the central region being correct. 

The effect of the assumption of disparity values in a neighbourhood being similar also 
ripple through to the finer level maps. Pan's algorithm uses this assumption at each level of 
decomposition to refine the matches. If this assumption is not satisfied, the disparity values 
are "corrected" to satisfy it. This manifests in the form of "pockets" of erroneous disparity 
estimates with the entire neighbourhood having incorrect values. The maps resulting from 
Magarey's algorithm axe much smoother (noise-free) at finer levels. They capture the subtle 
variations in the disparity values as the algorithm is more sophisticated and the refinement 
procedure adopted is more robust to errors in the matching process. 

The disparity maps give some indication about the quality of the two algorithms. But 
since ground truth data is not available, it is not possible to verify the quality of the algorithms 
with certainty. In such situations, it is common for the matching algorithms to be compared 
on the basis of their 3D reconstructions. It is in general easier to identify errors in the 
reconstruction than it is in the disparity maps since the errors and the noise manifest as 
distortions in the surface. 

In this work, the two algorithms were initially compared qualitatively only, using the 3D 
reconstructions. The reconstructions clearly showed that Magarey's algorithm was by far the 

'Diverging/Translating Tree sequence was created by David Fleet and 
2 Yosemite sequence was created by Lynn Quam. Both these test sequences are available at 

ftp: //ftp. csd. uwo. ca/pub/vision 
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(a) Vertical and horizontal disparity maps at (b) Vertical and horizontal disparity maps at 
level I of decomposition level 2 of decomposition 

(c) Vertical and horizontal disparity maps at (d) Vertical and horizontal disparity maps at 
level 3 of decomposition level 4 of decomposition 

(e) Vertical and horizontal disparity maps at (f) Vertical and horizontal disparity maps at 
level 5 of decomposition level 6 of decomposition 

Figure 6.7: Vertical and horizontal disparity maps obtained at each of the six levels of 
decomposition using Pail's algoritlim with Symmetric Complex Daubecilies wavelet of length 
6 (SCD-6). 
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(a) Vertical and horizontal disparity maps at 
level 1 of decomposition 

(c) Vertical and horizontal disparity maps at 
level 3 of decomposition 

(e) Vertical and horizontal disparity maps at 
level 5 of decomposition 

(b) Vertical and horizontal disparity maps at 
level 2 of decomposition 

(d) Vertical and horizontal disparity maps at 
level 4 of decomposition 

(f) Vertical and horizontal disparity maps at 
level 6 of decomposition 

Figure 6.8: Vertical and horizontal disparity maps obtained at each of the six levels of 
decomposition using Pan's algorithm with Symmetric Complex Daubechies wavelet of length 
4 (SCD-4). 
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(a) Vertical and horizontal disparity maps at 
level I of decomposition 

(c) Vertical and horizontal disparity maps at 
level 3 of decomposition 

(e) Vertical and horizontal disparity maps at 
level 5 of decomposition 

(b) Vertical and horizontal disparity maps at 
level 2 of decomposition 

(d) Vertical and horizontal disparity maps at 
level 4 of decomposition 

(f) Vertical and horizontal disparity maps at 
level 6 of decomposition 

Figure 6.9: Vertical and horizontal disparity maps obtained at eacli of the six levels of 
decomposition using Pan's algorithm with Magarey and Kingsbury*s complex wavelets of 
length 4 (MKC-4). 
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(a) Horizontal and vertical disparity maps at 
level 1 of decomposition 

(c) Horizontal and vertical disparity maps at 
level 3 of decomposition 

(e) Horizontal and vertical disparity maps at 
level 5 of decomposition 

(b) Horizontal and vertical disparity maps at 
level 2 of decomposition 

(d) Horizontal and vertical disparity maps at 
level 4 of decomposition 

j 
(f) Horizontal and vertical disparity maps at 
level 6 of decomposition 

Figure 6.10: Horizontal and Vertical disparity maps obtained at each of the six levels of 
decomposition using Magarey & Kingsbury's complex wavelets and motion estimation algo- 
ritlim. 
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more superior. However, it was in general difficult to draw any conclusions about the how 
the three wavelets used with Pan's algorithm compared. 

Comparison using 3D Reconstructions 

The reconstructions for a selection of images are presented in this section. Their quality is 
poor compared to the reconstructions generally seen in the literature. They axe produced 
from images captured using simple cameras, while those seen in literature are usually obtained 
through specialist equipment such as laser scanners or structured light projectors. This 
highlights the difficulty of the problem but does not hinder the evaluation of the algorithms 
since all the reconstructions use the same camera parameters and are equally affected by the 
noise. 

The reconstructions presented in this section are generated using the full frontal images 
shown in Figure 4.2. The 3D reconstructions axe then rotated about the y-axis to show 
different perspectives. 

It is obvious looking at the reconstructions that Magarey's algorithm is better at identify- 
ing correct matches between the images. The reconstructions using Pan's algorithm preserve 
only the gross relief information such as the concavity of the face relative to the background. 
Depth of smaller features such as nose and chin is often lost (e. g. Figure 6.13 (a-c), Figure 
6.15 (a) and (e-f), 6.16 (f-g) and 6.18 (a)). If these features are captured, then they are usu- 
ally extremely noisy (e. g. 6.11 (c-f), 6.12 (a-f), 6.13 (e-f), 6.16 (a-e), 6.18 (b-f)). Without the 
texture maps, it would be extremely difficult to establish that these surface reconstructions 
represent faces. Identification of an individual from these would be virtually impossible. 

A further indication of the poor quality of the matches axe the texture maps corresponding 
to each of the reconstructions. Bilinear interpolation is used to compute the intensity values 
at each 3D position, using the intensity values at the matching points in the two images. 
If the matches are incorrect, the corresponding intensity values will also be incorrect. This 
effect is most visible when using SCD-4 wavelet (see Figures 6.12 (a-f), 6.15 (a-b), 6.18 (a)). 
The most erroneous texture maps are obtained for matches generated using Pan's algorithm 
with SCD-4. It is harder to gauge which of SCD-6 and MKC-4 wavelets result in good 
matches. 

The reconstruction of subject 13's face (Figure 6.15) is extremely poor and is a very good 
example of how the algorithm breaks down in the presence of discontinuities. The disconti- 
nuity in this case is in the form of reflection in his glasses. This effect is also noticeable in 
other images with reflection in the glasses (see Figure 6.19). Compare these with the recon- 
structions of subject 11g (Figure 6.14), where there is no reflection in the glasses. Although 
the reconstruction is unsatisfactory, it does not have any distortions due to reflection. 

Figure 6.20 shows the reconstructions produced by applying Magarey's algorithm to some 
of the non-frontal images from Figure 4.3. Images with extreme rotation (a, b, g) result in 
poor models since only the visible portions of a scene can be reconstructed accurately. This 
is further exemplified by image (f) which is reconstructed using a profile image. The effects 
of harsh lighting are also evident. The part of the face that is well lit is well-reconstructed 
(k), while there is considerable loss of depth information in the poorly lit regions (1). This 
is particularly noticeable in the region neax the eyes, which in this case is completely flat. 
The subtlety of the information captured by Magarey's algorithm is highlighted in surfaces 
with varying expressions. Minor deformations in the region neax the eyes in (h) and (i) axe 
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(a) Pan K- SCD-4 (1b) Pan k SCD-4 (( ) Pail & SCD-6 

(d) Pan k- SCD-6 (e) Pau &-- NIKC-4 (f) Pan k MKC-4 

(g) Magarey &- MKC-4 (h) Magarey k NIKC-4 
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Figure 6.11: 3D reconstructions of subject 4. 



106 Iniage Matching: Results 

(a) Pan &- SCD-4 

(d) Pan &, - SCD-6 

(g) Pan &-- 
-NIKC-4 

(b) Pan k- SCD-4 

(e) Pail k SUD-6 

(c) Pan &-- SCD-4 

(f) Pan &- SUD-6 

(h) Pan &-- MKC-4 

-0 

(J) Nlagilrt. ý &- 

(i) Niagarey 8, NIKC-4 

Magarvy &_- 

Figure 6.12: 3D reconstruct ions of subject 7. 
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(a) Pall K- SCD-1 (h) U. 111 ý, 

(() Pan k- SCD-6 ((I) Pall k NIKC-4 (o) Magarey k. MKC- I 

J) Magarey &- NIKC-4 (g) Magarey & NIKC- I 

Fignre 6.13: 3D reconstructions ofsubject 11. 
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(, t) pall k- ýC [)-I h, Pan k- SCD-6 k- SCD-6 

(, [) Poll k NIK(. - I ý(, ý Pilli k NIKC _; fý Pall & Mfý('-l 

k NINU-4 

Figure 6.14: 3D reconstr tic t ions of subject 11 with glasses. 
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(a) Pan k- SCD-4 

(d) Pail &-- SCD-6 

7tt 

(h' I'mi &- SCD-4 

(e) Pan k MKC-4 

(g) Magarey k- NINC-4 

(( ) Pan k- SCD-6 

(f) Pail k MKC-4 

(h) Magarcy &, NINC- I 

Figure 6.15: 3D reconstructions of subject 13. 
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(a) Pan &-, SCD- I 

(d) Pan &, SCD-6 

Pan &-, MKC-4 

ý b) Pan k- SCD- I (() Pan &-- 'S'CD-(j 

(r) Pim &-- S('D-t) f, ,, - ": K('- I 

(h) Magarey &-- 
-MEC-4 

(i) Magarey & XIKC-4 

Magarey &- NINU-4 

Figure 6.16: 3D reconstructions of subject 17 with scarf. 

Image Matching: Results 

1ý 
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(a) Pan k '-)('D-4 (b) Pall ', - 'SCD-0 (c) Pan & SCD-6 

(d) Pan k- NIKC-4 (e) Pan k- 
-NINC-4 (f) Pan &, - NIKC-4 

(g) Magarey &- NIKC-4 (h) Magarey &-- NIKC-4 (i) Magarey &-- NIKC-4 

Figure 6.17: Pail + SCD6 

Figure 6.18: 3D reconstructions of subject 18. 

ill 
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( b) (C) 

Figure 6.19: Effects of Reflection in tile glasses (Magarev &-, 'NIKC-4) 

captured along with major deforinations in the mouth and chin regions in 

6.5.2 Quantitative Analysis 

Backward miage reconstruction (Lin & Barron 1994) is used to quantitatively evaluate the n 
two inatchin,,; algorithins used in this work. The concept is explained in Section 5.4.1 along 
with a simple minierical example. 

The accuracy of the backward image reconstruction depends on the precision of the sub- 
pixel intensities. This in turn depends on the quality of interpolation and on the satisfaction 
of the implicit assumption that local intensity varies smoothly (Lin & Barron 1994). 

Sub-pixel intensities are computed using bilinear interpolation (see Figure 6.21). The 

intensity value of the new pixel is computed by taking the weighted average of the four pixels 
in the 4-connected neighbourhood of the original pixel. 

It is known that the assumption of smooth variation in local intensity, inherent to this 
technique, is not satisfied at occlusion boundaries and in image regions containing detailed 

texture (Lin & Barron 1994). However, for evaluating matching algoritlims in this work. 
this assumption is taken to be satisfied. This is justified since large areas of the face are low 
frequency, for which the intensity values do vary smoothly. Also, the algoritlims are compared 
using the same set of images, so the performance of each of the algorithins is affected equally 
due to the violation of this assumption. Furthermore, backward image reconstruction is 

one of the few reliable methods of quantitatively comparing the performance of matching 
algorithins in the absence of --round-truth data. Together. all these factors justify the use of 
this technique despite the fact that the assumption is not always satisfied (eg. in the presence 
of reflection) 

The results of backward image reconstruction using Pan's algorithm in conjunction with 
the two Symmetric Complex Daubechies Wavelets 

, 
SCD-4 and SCD-6, and the Magarey and 

Kingsbury wavelet ?. ýIKC-4 are presented in Table 6.1. For Magarey's matching algorithni. 
the backward image reconstruction is performed twice. First. matches for the pixels in the 
left image are sought in the right image (LR) and then vice-versa (RL). This is not done for 
Pan's algoritlim since the error values for the first application of the reconstruction process 0 
are so high. This. combined with poor surface reconstructions contributed to the algorithin 
not being investigated any further. The actual RMS values are presented in the table along 
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(a) Look 'Up 

((1) 3- View 
I 'I 

(g) XY Look Down 

(b) Look Down 

(e) View 

(h) E. xpression I 

View 

(f) Profile 

'ý4 

(i) Expression I 

Expression 2 (k) Harsh Lighting Hatsh Lighting 

Figure 6.20: Bala models r) 



114 Image Matching: Results 

Intensity at sub-pixel P is the weighted average of the 
intensities Ix at pixels X 

A+ +C Ip = a(TA) + b(IB) + c(Ic) + d(ID) 

suchd- d>c>b>a 
P 
X 

The weighting for each intensity value is the norrmalised 
perpendicular distance between the location of the B+ +D pixel X and the sub-pixel p 

Figure 6.21: Bilinear interpolation to compute the intensity of sub-pixel p using the intensities 
at integer-indexed pixels (A, B, C, D}. 

with the error values as a percentage of 256, the maximum possible disparity between the 
pixels. 

Algorithm + Wavelet 
11 Actual 1 

RMS % Error 

Pan + SCD-4 115.40 45.08 
Pan + SCD-6 114.95 44.90 
Pan + MKC-4 115.24 45.01 
Magarey + MKC-4 (LR) 41.27 16.12 
Magarey + MKC-4 (RL) 

1 1 28.89 11.28 

Table 6.1: Evaluation of Image matching algorithms using backward image reconstruction. 
The table shows the actual RMS values and the RMS values as a percentage of the maximum 
disparity between the pixels (256) for combinations of algorithm and complex wavelets. 

As expected, the RMS error values for Magarey's algorithm are significantly lower than 
those for Pan's. It is surprising that the difference between the performance of the different 
wavelets in Pan's algorithm is so insignificant. The SCD-4 performed the worst, followed by 
MKC-4 and SCD-6. The large difference in the RMS values of LR and RL images was also 
unexpected since there are no obvious reasons for this asymmetry. In order to investigate 
this phenomenon, the algorithm needs to be tested on more images. It is possible that this 
is peculiar to the particular dataset used in this work. This investigation is not carried out 
in this work since it was felt that this would shift the focus from original problem of face 
recognition. It was in fact preferable that this distortion not be corrected prior to the face 
recognition stage so that its effects on the classifier accuracy can be detern-ýdned. 

The poor performance of Pan's algorithm can be attributed to its reliance on the matches 
at the coarsest level being correct. If the matches at this level are incorrect, the errors are 
propagated up to the finer levels since the refinement strategy is rather simplistic. However, 
given that this is the case, the results axe very impressive. 
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6.6 Summary 

This chapter described the two wavelets-based image matching algorithms investigated for 
matching the face images. Pan's algorithm is simple and easy to implement and has re- 
ported good results on aerial photographs. However, it has not been applied to face images. 
Magarey's algorithm on the other hand is complex to understand and its implementation is 
non-trivial. However, it has been tested on many images with ground truth data (Magarey 
1997), and more importantly, it has been tested on face images (Magarey & Dick 1998) with 
impressive results. 

As expected, Magarey's algorithm is more robust and this is indicated by lower RMS 
values determined using Backward Image Reconstruction process. This is not surprising 
since Magarey's algorithm is more involved and adopts robust regularisation and refinement 
strategies. By contrast, Pan uses a rather simple error correction technique. However, Pan's 
algorithm, despite its simplicity does produce some acceptable reconstructions. Magarey's 
algorithm fails in the presence of image discontinuities such as reflection (from subjects' 
glasses, for example). There is also a significant difference in the error rates of LR and RL 
images when using Magarey's algorithm. The reason for this was not investigated here since 
it was deemed beyond the scope of this work. It was instead decided to investigate if this 
difference in the LR and RL disparity maps has any bearing on the recognition rates. Pan's 
algorithm is not investigated any further in this work. The LR disparity maps are used to 
reconstruct 3D surfaces, which form the inputs for the 3D face recognition algorithm. 
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CHAPTER 7 

Surface Matching 

7.1 Introduction 

Three-dimensional models generated using triangulation form the inputs for the recognition 
task in the 3D space. These models are noisy and very unlike the smooth laser scanned models 
generally seen in literature. The main sources of noise are errors in the image matching 
process, camera calibration, inaccuracies in triangulation and finally, in the process of going 
from 3D points to 3D surface meshes. 

Johnson's spin-image representation and recognition algorithm (Johnson 1997, Johnson 
& Hebert 1997, Johnson et al. 1998, Carmichael et al. 1999, Johnson & Hebert 1999, Ruiz- 
Correa et al. 2001) is used for 3D face recognition. This technique was pioneered by Johnson 
at the Carnegie Mellon University's Robotics Institute in 1997 and has been successfully 
applied to 3D object recognition (Johnson 1997, Johnson & Hebert 1997, Johnson et al. 
1998, Carmichael et al. 1999, Johnson & Hebert 1999, Ruiz-Correa et al. 2001), 3D object 
retrieval (Assfalg et al. 2004) and surface registration (Brusco et al. 2005), among others. 

An overview of the representation and the recognition algorithm is presented in this Chap- 
ter. Further details can be found in Appendix E. The main advantages and disadvantages of 
the technique with reference to face recognition are discussed in Section 7.3. A description of 
the spin-image paxameters used in this work and details of mesh pre-processing are presented 
in Section 7.4. This is followed by the results and conclusions. 

7.2 3D Object Recognition using Spin Images 

In the spin-image representation, 3D objects are represented by a polygonal surface mesh, 
and for every oriented point (3D point with surface normal) on this mesh, a 2D image - 
spin image, is generated. Informally, the spin-image concept can be thought of as follows: 
Imagine standing on the surface mesh at one of its vertices and doing a 360" turn on the 
spot, observing the view. Spin-images capture this 360* view of the object from each of the 
points on the mesh. It can intuitively be seen that the view captured in each of these images 
is entirely independent of the orientation of the object. This is an inherent advantage of 
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object-centred representation systems. The scene that is viewed does however depend very 
much on the "orientation7' of the viewer - whether the viewer is standing on the outside or 
the inside of the surface and on other constraints. So in terms of 3D object representation, 
the spin-image contents vary based on whether the surface normal is oriented towards the 
inside or the outside of the object surface and it is constrained by the spin-image generation 
parameters. 

7.2.1 Spin-Image Generation 

More formally, an oriented point 0, at a surface mesh vertex is defined using the 3D position 
of the vertex, p, and the surface normal, n, at the vertex. Surface normal at a vertex is 
computed by fitting a plane to the points connected to the vertex by edges in the surface 
mesh (Johnson et al. 1998). A crucial requirement for the spin-image representation is that 
the oriented points axe oriented outside the object surface. If the surface mesh is created 
from a sensor with a single viewing direction, then the normal direction can be chosen as the 
one pointing towards the sensor. Otherwise, each of the normals have to be oriented using 
the heuristic outlined in Appendix E (Section E. 1). 

Figure 7.1: An oriented point basis created at a vertex in a surface mesh. The oriented point 
is defined by the 3D position p of the vertex and the direction of the surface normal n at 
the vertex. a is the radial distance to the surface normal line L and P is the axial distance 
above the tangent plane P. Note that a can only take positive values, P however, can take 
both positive and negative values. x is another 3D point on the surface. 

An oriented point, such as that shown in Figure 7.1, defines a basis or a local co-ordinate 
system with 5 degrees of freedom (DOF). The two co-ordinates of the basis are a, the 
perpendicular distance to the surface normal line C, and fl, the signed perpendicular distance 
to the tangent plane P. An oriented point basis is a cylindrical co-ordinate system that is 
missing the polar angle co-ordinate, as this cannot be determined using just surface position 
and normal. 

For every oriented point 0, a 2D accumulator indexed by a and, 8 is also created. This 
encodes the density of points in each of the spin-images. Then for each vertex x: on the 
surface of the object, the spin-map co-ordinates with respect to 0 are computed. 

SO(X) -+(a, #) =, ý/lIX-plI2 - (n. (X-p))2, n. (x-p)) 
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If x meets some criteria based on distance from 0 (support distance) and angle between 
0 and the surface normal of x (support angle), then the bin corresponding to its spin-inap 
co-ordinates is determined. The 2D array is updated by increinenting the surrounding bins 
in the array - not the bin to which the point is spin-mapped. This takes into account noise 
in the data by spreading the position of the point in the 2D array. Tile point is bilinearly 
interpolated to the four surrounding bins in the 2D array. Thus by spreading the contribution 
of the point in the 2D array, it is made less sensitive to its position. Once all of the points on 
the surface of the object have been accumulated, a 2D array representation ofthe spin-iniage 
is generated. This process is depicted in Figure 7.2. 

3D ObJect Surface Mesh Spin Image 

"Cl(r) 

Bilinear Interpolation 

Figure 7.2: The spin-image generation process. A spin-map So is a function that projects 3D 
points x to the 2D co-ordinates of a particular basis (p, n) corresponding to oriented point 
0. Each oriented point 0 oil the surface of all object has a unique spin-inap So associated 
with it, and when this is applied to all of the vertices of a surface inesh M, a set of 2D points 
is created. 

The descriptiveness of the spin-images is controlled by three spin-iniage generation pa- 
rameters. Bin Size is the storage size of the bins in the spin-iniages and regulates the effect 
of individual point positions. Image Width sets the size of the spin-iinage and controls how 
"localised" or "global ised" t lie spin-images are. For a given bin size, the larger the iniage 
width, the more globalised the spin-images. Support Angle limits the angle between the nor- 
mal of the oriented point basis and the normal of points contributing to the spin-iniage. A 
large support angle may map points from outside the object surface to the spin-iniages. The 
parameters are explained in more detail in Appendix E. 
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7.2.2 Spin-Image Matching 

Two spin-images P and Q are compared using the similarity measure, C(P, Q) (equation E. 6). 
It combines the normalised linear correlation coefficient with a confidence measure in the value 
of the correlation coefficient. Linear correlation coefficient is a standard way of comparing 
lineaxly related images. The confidence measure in the correlation coefficient is obtained by 
considering the amount of overlap between two surfaces to be matched. Combining both 
these measures in the similarity measure means that the spin-image matching process takes 
into account only those regions of the surfaces where there is an overlap. This is a distinct 
advantage when data from real scenes is compared, since real data is often riddled with noise 
in the form of clutter and occlusion. A large similarity measure between two spin images 
indicates high degree of correlation between them. Hence, a point correspondence between 
the two surfaces is established. 

7.2.3 Object Recognition 

Spin-Image Matching 

For the object recognition task, spin-images for all the surface models in the training set 
are generated a-priori and stored in a spin-image stack. At the recognition stage, a point is 
selected at random from the test surface mesh and its spin-image is generated. The test spin- 
image is correlated with all the images in the spin-image stack and the similarity measures 
are stored in a histogram. Incorrect point correspondences are eliminated by ranking the 
similarity measures and identifying the outliers in the histogram (See Section E. 5). Upper 
outliers in the similarity measure histogram correspond to pairs of test/training spin-images 
with similarity measures significantly higher than the rest. If no outliers exist, then the test 
point has a spin-image that is very similax to all the training spin-images and definite cor- 
respondences with this test mesh point cannot be established. From these outliers, plausible 
point correspondences between oriented points on the test/training surface mesh are estab- 
lished. This procedure is repeated for a fixed number of randomly selected points on the test 
surface mesh. The number of points selected is directly proportional to the amount of clut- 
ter in the test model. Johnson (Johnson 1997) recommends setting this number somewhere 
between 0.5 and 0.05. 

This results in a set of oriented point correspondences between test/training surface 
meshes, for each mesh in the training set. These sets of point correspondences are then 
filtered and grouped together using geomet7ic consistency to compute the transformation 
from training set model to the test set model. The surface matches are verified and refined 
using a modified iterative closest point (ICP) algorithm. A match between the surfaces is 
established if the number of correspondences between the two surfaces is greater than a 
threshold value, usually set as a percentage of the total number of points in meshes. 

Correspondence Filtering 

Although some of the incorrect matches axe eliminated using the histogram of similarity 
measures, many still remain. These may be due to symmetry in the data, which causes the 
spin-images of two points to be similar. It may also occur because proximal points on the 
surface mesh can have similar spin images or because there are multiple occurrences of the 
model in the test scene. 
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Incorrect matches are eliminated by filtering the point correspondences on the basis of 
geometric consistency (equation E. 7). Geometric consistency is a measure of likelihood that 
two correspondences can be grouped together to calculate a transformation of the test model 
to the training model (or vice-versa). If a correspondence is not geometrically consistent with 
other correspondences then it cannot be grouped with other correspondences to calculate a 
transformation and should be eliminated. 

Correspondences are filtered by setting a threshold value T9, for the geometric consistency 
(equation E. 7). Two point correspondences Cl and C2 axe said to be geometrically consistent 
if their geometric consistency D9, (Cj, C2) < Tg,. Johnson (Johnson 1997) suggests setting 
T., equal to 0.25 to enforce a strong geometric consistency between the correspondences. 

First, all the correspondences Ci are put in a list L. Next, for each "test correspondence" 
Ci in L, D, 9, (Ci, Cj) is computed with all of the other Cj in L. If the number of corre- 
spondences in the list that are geometrically consistent with the "test correspondence" (i. e. 
the number of correspondences Cj where D,, (Cl, C2) < T,, ) is at least one quarter of the 
number of correspondences in L, Ci passes the geometric consistency test. Otherwise it is 
not geometrically consistent with enough correspondences in L and is removed from the list 
L. This process is repeated for the correspondences Ci in L. 

This results in a list of point correspondences L= JC,,..., C,, } that are most likely to be 

correct and can be grouped together into sets that can be used to compute transformations. 

Grouping geometrically consistent matches 

The grouping criterion Wg,, is the geometric consistency distance (equation E. 8) augmented 
by a weight that promotes grouping of correspondences that are far apart. Correspondences 
that are too close together result in erroneous transformations. This is a consequence of noise 
in the point position. 

Given a list of most likely correspondences L= {C 1, C,, }, the grouping procedure 
is applied for each correspondence in the list as follows. First, a seed correspondence Ci in 
L is selected and a group Gi = jCj} is initialised. Then, the correspondence Cj in L, for 

which Wg, (Cj, Gj) is a minimum (correspondences geometrically consistent and far apart) is 

established. Cj is added to Gi if Wg, (Cj, Gi) < T9c. The geometric consistency threshold 

. 9c is set between 0 and 1 (usually around 0.25). This process of adding the correspondence T 
with minimum grouping criterion continues until no more correspondences can be added to 
Gi. This procedure is repeated for each correspondence in L, and the end result is n groups, 
one for each correspondence in L. 

This grouping algorithm allows a correspondence to appear in multiple groups. This 
is essential for handling model symmetry, as correspondences along the plane of symmetry 
contribute to two distinct transformations. A set of potential rigid body transformations 
are calculated from each of the groups of correspondences. The transformations and the 
associated correspondence groups are then verified to eliminate any further mismatches and 
establish the final test/training model match. 

Verifying Matches 

This stage of the matching process aims to find the best match(es) between the training 
set models and the test set model by eliminating inconsistent data. During the verification 
process, point correspondences are spread over the surfaces of the test model and the training 
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set models from the initial correspondences established by the matching process. If many 
correspondences are established through spreading the matches, an association (or a match) 
between the training model and the test model is validated. In addition to verifying possible 
matches, this method also improves the transformation between the two models. 

The verification algorithm is a modified version of the Iterative Closest Point Algorithm 
(ICP) of Besl and McKay (Besl & McKay 1992) and Zhang (Zhang 1994). Johnson (Johnson 
1997) modifies the generic ICP by limiting the closest point distance measurement only to 
those areas in the two sets that overlap. This is accomplished by growing the closest point 
correspondences from initial correspondences established by the matching process thus far. 

The *verification process involves first computing the transformation from the training 
model to the test model using the correspondences established so far. This transformation 
is then applied to the training model. Each of the initial correspondences is propagated 
outwards. If the distance between the test model and the closest training set model is less 
than a threshold D,, then the test model points directly connected to it by edges are turned 
into correspondences. Johnson recommends setting D,, at two times the mesh resolution in 

order to allow for noise but not for establishment of correspondences in areas of no overlap. 
This correspondence propagation process is repeated until no more correspondences can be 

created. 
If the initial transformation is correct, then a large number of points will be brought into 

correspondence. If the transformation is poor, the number of correspondences will remain 
close to the original number. Hence, the measure of validity of the match is number of 
correspondences after verification. This is related to the total aligned (or overlapped) surface 
area between the test and the training models. If the number of correspondences is greater 
than 1/10 the total number of points on the model, then the transformation is considered 
valid, otherwise not. The additional matches generated from this process are used to refine 
the transformation, after it has been verified and accepted. 

The matching process described here is repeated for all the models in the training set 
and a match is established with the model that gives the highest number of correspondences 
between the points on the test and the training surface mesh. 

In (Johnson 1997), Johnson also presents three variations on the spin-image representation 
and the recognition algorithm. These are described in Section E. 9 of Appendix E. 

7.3 Spin-Images: Advantages and Disadvantages 

7.3.1 Advantages 

Spin-image representation of 3D objects has many advantages, the main one being that it is 
an object-centred representation rather than a viewer-centred one. Object-centred systems 
can be more compact than viewer-centred systems because a single surface representation 
describes all views of the surface (Johnson & Hebert 1999). Object-centred systems are 
also view-independent. This means that unlike 2D recognition systems, only one model 
of the object is required for training the classifier. This has the obvious advantages of 
speeding up the processing time and decreasing storage requirements. Pose invariance is 
also inherent to these systems. From the point of view of face recognition, this is a very 
important consideration since most 2D face recognition systems perform poorly in the face 
of pose-variation. 
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Spin-image generation process and the recognition algorithm both avoid error-prone fea- 
ture extraction and segmentation. This is paxticulaxly advantageous since in the approach 
adopted in this work, the input data is already so erroneous. This may not be a major concern 
for applications that use accurate data acquisition methods such as laser scans. However, 
when the 3D data comes from noisy stereoscopy, it becomes very important to avoid any 
kind of additional processing that may introduce more errors. 

Surface matching algorithms often require some knowledge of the transformation between 
the models in the training set and the test model. While this may be possible for many 
applications, it was not an option for a face recognition system. A system that is implemented 
in a very controlled environment can enforce such conditions by limiting the subjects' freedom 

of movement during the capture of test data. However, this work imposes no such constraints 
on the input data. Spin-image representation is designed to work in the absence of any 
information regarding the transformation between the training and the test images. If the 
transformation is known, then it can increase the speed and accuracy of matching, but it is 
not a requisite. 

The other major consideration behind the choice of spin-images for face recognition was 
that they have been reported to give highly accurate results when the data is noisy and there 
is only a small overlap between the training and the test models. As explained before, input 
data from stereo matching is extremely noisy. Often there is only a small region on the entire 
surface that has reconstructed well. Most surface registration algorithms would fail under 
these circumstances. However, because of the way spin-image matching works, even a small 
overlap or a small noise-free area on the surface can, in theory, produce an accurate match. 

It is also a very flexible representation and imposes few constraints on the training and test 
data. For example, the mesh resolution of the training and the test images can be different, 

as long as the mesh generation parameters axe adjusted accordingly. Since determining the 
mesh statistics is a simple process (which can be automated), the mesh generation paxameters 
can also be adjusted appropriately without any user interference. This makes the recognition 
algorithm not only immune to variations in pose, but also to vaxiations in scale. However, 

scale invariance is not dealt with in this work. 
Finally, a major concern in this work has been to develop a system that can eventually 

function in uncontrolled environments. In applications such as crowd surveillance, the system 
needs to perform to accurately even when the input image contains more than the object to 
be recognised. And equivalently, when the object to be recognised is not entirely visible. The 
robustness of spin-images has been tested in both these situations and good performance has 
been reported in the presence of both, clutter and occlusion. 

7.3.2 Disadvantages 

Although the authors of the technique report very good recognition accuracy, these claims 
should be considered with caution. The main reason being that it has only been tested on 
two libraries (toy and plumbing) (Johnson 1997). The 3D objects used in these libraries have 
very distinct shapes. Faces on the other hand, are instances of the same 3D object, and most 
of the time the differences between these instances is subtle rather than gross. Spin-images 
from different faces axe not as distinct as those for the toy or the plumbing libraries, and 
this is a major drawback of this technique. This may also detract from the benefits of the 
approach being object-centred and therefore requiring only one training model per class. 
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More than one models may be required per class to train the system adequately. Since the 
processing time increases linearly with the number of models in the library (Johnson 1997), 
this can make the system, however accurate, useless for practical applications. 

The other problem is that Johnson's libraxy contains fewer models than the Sheffield 
Dataset. His libraries contain at most 20 models, whereas the Sheffield Dataset has 692. In 
addition, his models are complete, closed models, much like the 3D objects themselves. The 
models in the Sheffield Database are surfaces rather than closed models, since the back of 
the head is not imaged during data acquisition. Further, since Johnson's objects are small, 
the corresponding meshes are also small (100's of vertices). However, the face meshes are 
extremely large in comparison (1000's of vertices). It is envisaged that the combination of 
large models and a large library will make the recognition process very sluggish. Compressing 
the model or the library spin-images is not an option at this stage. 

Hence, although the spin-image representation has many desirable features, its perfor- 
mance may be hindered by certain factors. On balance though, it was felt that the advan- 
tages may outweigh the disadvantages and that it was worth investigating the technique's 
application to the face recognition task. 

7.4 Spin-Image Parameters for face images 

Choice of appropriate parameters is crucial for the generation of appropriate spin-images and 
for accurate object recognition. First, the mesh pre-processing parameters are chosen. 

Depth information obtained from the image matching and the triangulation processes has 
to be represented as a polygonal mesh for spin-image generation. Triangular meshes were 
generated using Delaunnay triangulation. The meshes then have to be processed to eliminate 
errors and ensure that spin-images containing useful information are generated (as opposed 
to spin-images containing misleading, erroneous information). 

Mesh pre-processing is summaxised below: 

The normals are then oriented outwards. Without this crucial step the algorithms are 
likely to fail, as one of the core assumptions of the spin-images theory is violated. 

The meshes are cleaned in order to remove overly-long edges. Overly long edges are 
defined as edges that are longer than 2 times the mesh resolution. Mesh resolution is 
defined as the median edge length. Similarity in the edge length is one of the implicit 
assumptions in this representation. Overly long edges correspond to outlier points 
and hence, are removed. Random patches (< 100 vertices) that are not connected to 
anything axe also removed. They are seen as belonging to the background noise, and 
would not contain any useful classification information. 

Meshes are then smoothed using 25 iterations of "smoothing without shrinking filter" of 
Taubin (Thubin 1995). The number of iterations are chosen after a qualitative analysis 
of the meshes. Too few iterations mean that meshes are still very noisy, while too many 
mean that valuable information is lost. 

The mesh is simplified, so that it consists of user-specified number of polygons. The 
number of polygons results in a trade-off between the level of detail and the processing 
time. It may sometimes be difficult to achieve the desired number of polygons. This 
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Figure 7.3: An unprocessed mesh, along with meshes smoothed using 10,25 and 50 iterations 
of the smoothing filter. Excessive smoothing in the last inesh ineans features such as the 
eyes are less discernible. This effect is less noticeable when the mesh is smoothed using 25 
iterations. 
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is a consequence of the mesh generation and the simplification process. In that case. 
reduce the mesh size to the minimum possible. going up in steps of 250 or 500 polygons. 000 
This speeds up the mesh pre-processing and results in fewer errors. Controlling the 
approximate size of all the meshes in the library also allows the user to control the 
nwsh rosolution aud tlt(, processh), - time to an extent. 

(, k) I nprocessed mesh 

l') S'llilplified. I)l I Simplified, I ()I ý1) ((i) 5000 poly- 
polyguns polygons golls 

Figure 7.4: The original inesh with approximately 32.000 polygons, simplified to 500.1000 
and 5000 polygons. At 5,000 polygons, it is just about possible to correspond tile simplified 
mesh with tile original. 

The algoritlim requires setting the threshold values for some of the varlables. The thresh- 
old values recommended by Johnson (Johnson 1997) are used in this work and are listed 
below. 

9 Geometric consistency threshold, T,, is set to 0.25 (Section E. 6). 

G(, ometric consistency weight -y is set to 4 times the niesh resolution to encourage 
grouping between correspondences which are at least four times the mesh resolution 
distance away from each other (Section E. 7). 
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v, the factor that weighs the surface normal information against position information 
is set at 2 times the inesh resolution. The nornials of vertices, as a result, have more 
of ail effect oil the distance metric than the positions of the vertices (see Section E. 8). 

Verification threshold, D, is set to 2 times the inesh resolution. This dictates, at the 

verification stage, which points oil the training model may have illatclies on the test 
model (see Section E. 8). 

For the spin-image generation parameters, Johnson recommends setting the bill size be- 
tween I and 2 times the mesli resolution as this blurs the position of tile points sufficiently. 
without compromising on the shape description. For face images, it was set to 1.5 to strike a 
balance between too much averaging so that there is loss of information, and not enough so 
that the images are riddled with noise. The image width and the support angle were chosen 
by conducting a leave-one-out cross validation experiment oil a small dataset. The inesli 
size was set to 1200 polygons. This is ail extremely coarse mesli, so considerable infornia- 
tion is lost, however, resulting computations are extremely fast. Dataset D2 containing 165 
images is used. Figure 7.5 is ail example of the 2D images in this dataset. The 3D inodels 
corresponding to these images are used in this study 

Figure 7.5: A sample image class from the dataset used in the preliminary experiments to 
determine optimum values for the spin-image parameters. 

Spin-iniages are generated and matched using the "Mesh Toolbox" developed at the 
Vision and the Autonomous System,, Centre within the Robotics Institute at Carnegie Mellon 
University, where the technique was pioneered 1. The results of this preliminary experiments 
are depicted in Figure 7.6. It is easy to see that the best recognition rates are obtained when 
the image width is set to 15 and the support angle to 90'. The recognition rates achieved 
are extremely low, even though all the points oil the training and the test models were used 
for matching. 

Consequently, the mesli resolution was altered to obtain better recognition rates for the 
experiments using the entire Slieffield Dataset. The original meslies generated using Delaull- 
nay triangulation consist in the region of 50,000 polygons. Ideally, matching process should 
involve as many of these points as possible. But this would slow the system down to the point 
of collapse. In order to strike a reasonable balance between processing time and recognition 
accuracy, the mesh size for the next set of experiments was set at 5.500 polygons, and 80(YO 
of tile points on the training and test models were used for matching. 

The final mesh size is a mere -L of the ori-iiial mesh. and this loss of information mail- 10 0 
ifests in poor recognition rates. However, owing to the complexity of the algorithill, this 
simplification of the meshes was ilecessarly. 
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Figure 7.6: A sample image class from the dataset used in the preliminary experiments to 
determine optimum values for the spin-image parameters. 

7.5 Face Recognition Results using Spin-Images 

Spin-image recognition algorithm was tested using Dataset D, in two experiments: Leave- 
One-Out (LOO) cross validation and recognition using a reduced training set. 

Leave-One-Out (LOO) cross validation partitions the dataset of size D into a training set 
of size D-1 and a test set of size 1. Tile classifier is trained D times, leaving out 1 image 
each time (for testing). All the images in tile dataset are used for training the classifier. which 
can potentially maximise its accuracy. In addition, all data can be used to test tile classifier. 
This has tile advantage of not only being able to test the classifier more thoroughly, but it 
may also highlight some important features about tile dataset. Furthermore, since it does 
not involve any random sampling, it always returns the same results, given that the same 
classifier and associated parameters are used. Tile main drawback of this method is that the 
algorithm has to be run D times. For large datasets. or complex algorithms, this can take a 
long time. 

The second experiment uses only one image per class to train tile classifier. The 3D 
models corresponding to the 2D images in Figure 4.2 form tile training set. Tile main aim of 
this experiment was to test the claim that object-centred systems only require one training 
image due to their pose- invariance. If this claim can be verified, then it may negate some 
of the disadvantages of spin-image representation, and may still justify their use in real-time 
applications. It also tests how well the classifier can cope with input images that deviate 
significantly from the training set. 

Note that during tile experiments, images of an individual with glasses and without glasses 
are treated as belonging to two different classes. It was felt that this would give a better idea 
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of how well the algorithm is able to distinguish between images of the same individual with 
and without glasses. The spin-images of an individual with glasses are very different to the 
spin-images of the same individual without glasses in the region near the eyes. Spin-images 
from other regions of the face axe identical. The idea was to see if the recognition algorithm 
could distinguish between the two image classes of the same individual and classify them 
correctly. The recognition rate in both the experiments is defined as the number of correctly 
identified individuals divided by the total number of images in the dataset. Recognition rates 
for the first nearest-neighbour (denoted by 1-NN) and the recognition rate when the correct 
match is identified among the top 5 matches (denoted by Top5-NN) are presented in Table 
7.1. 

The results of the two recognition experiments are provided in table 7.1. 

Experiment 1-NN (%) I Top5-NN 
Leave-One-Out 18.42 32.75 

Reduced 'IYaining Set 17.90 25.33 

Table 7.1: Results of the preliminary experiment using Dataset D2 , to determine the optimum 
values for the spin-image generation parameters. 

Two things axe immediately obvious from Table 7.1. First, that the recognition rates 
are extremely low - much lower than those reported in the literature for even the most 
basic algorithms. Second, that the difference between the 1-NN recognition rates of the two 

experiments is extremely small - 0.52%. 
The poor recognition rates are extremely disappointing. The algorithm was not expected 

to yield the kind of recognition rates that axe generally reported in face recognition literature, 

primarily, because of the nature of the input data. Both, training and test models are 
extremely noisy. They are not the smooth laser-scanned or structured-light scanned models 
seen in literature. The noise levels in the data would have a significant impact on the 

recognition rates. Johnson (Johnson 1997) tests for the effects of noise in the input data, but 
the noise he introduces into his models is not as extensive as that seen in the face models. 
Further, it is assumed in this work that optimal spin-image parameters determined using the 
coarses meshes are also optimal for the more detailed meshes. This may not necessrily be the 
case, however, time constraints did not permit further investigation in this direction. This 
combined with the similar nature of the models, and hence the spin-images, is thought to be 
responsible for the algorithm's poor performance. 

This problem can be dealt with in a number of ways. First, the models can be smoothed 
extensively at the pre-processing stage. However, this causes valuable information to be lost. 
Smoothing may eradicate much of the high-frequency data, which is mistaken for noise. This 
is a problem since much of the useful information on the face is also in high-frequency areas. 
The low-frequency areas such as the forehead and the cheeks contain salient information that 
aids classifier accuracy, but on their own, they axe not sufficient to classify faces correctly, 
especially using this technique. 

The classifier performance may be improved by increasing the mesh size to at least half the 
original size. This reduces the errors that result from the mesh pre-processing tasks. This has 
the advantage of the meshes being more information-rich, but is also has the disadvantage of 
the meshes retaining much of the noise. The best alternative perhaps is to use noise-filtering 
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at each stage prior to recognition, from image matching to triangulation. This would result 
in the input meshes being more accurate. 

The marginal difference between the 1-NN recognition rates of the LOO cross-validation 
and the reduced training set experiments largely verifies the claim that object-centred systems 
are indeed very elegant and do not require extensive training data to perform accurately. It 
also underscores the point that it is the accuracy of the input data rather than the amount of 
training data available that determines accuracy of this classifier. This fact is also echoed by 
the results of the experiments conducted to determine the value of parameters. The meshes 
used in those experiments were much smaller, containing 1200 polygons on average, whereas 
the meshes used in these experiments contained on average 5500 polygons. 

The recognition algorithm used by the spin-image representation is essentially a nearest- 
neighbours algorithm. One of the main drawbacks of nearest-neighbours is that the test image 
needs to be compared against every image in the training set. For an algorithm as complex 
as this one, classifying each image becomes an extremely time-consuming task. However, 
the results of the reduced training set experiment have shown that because of the way the 
spin-image representation was designed, the need for more than one training image per class 
has been eliminated, 

The difference in the Top5-NN recognition rates between the two experiments is much 
larger - circa 7.4%. This difference is a consequence of the LOO cross validation training set 
be considerably larger. In a nearest-neighbours algorithm, if the training set is large, then 
there is an increased chance of the test image being matched with another image of the same 
person. 

7.6 Conclusions 

The results from the previous section are extremely disappointing. They are also very in- 
conclusive with regards to whether or not the depth information has any added benefits for 
face recognition. What is certain is that although the spin-image representation is powerful, 
it is not suitable for this particular approach to face recognition. Depth computation using 
stereo images is very error prone. When both training and test data are so error-prone, most 
classification algorithms are likely to fail. 

Even if the recognition accuracy was higher, using it with our data is not practical. The 
spin-image generation and recognition are both lengthy and complex processes. This increases 
the processing time enough for the the system to be useless for real-time applications. If the 
input data is captured using more accurate means such as laser scans, structured light scans 
or even specially designed stereo cameras, then the resulting 3D models are far more accurate 
than those used in this work. It is believed that this would increase the accuracy enough to 
make the system comparable with other 3D face recognition systems. Further, if the initial 
data is very accurate, then downsampling and smoothing would reduce the noise content of 
the models rather than the information content. This would speed up the processing time 
further. It may also make it possible to use at least one of the variants, MA2, of the algorithm 
to compress the model spin-images. This would eliminate much of the redundancy in the 
spin-images of faces. Even if the compression algorithms cannot be implemented, a smaller 
fraction of the points may be chosen for matching the test and the training set images. This 
would also reduce the processing time without affecting the accuracy significantly. If these 
changes can be implemented, then the system is likely to perform recognition in real-time, 
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as claimed by its authors. 
In conclusion, for accurate 3D face recognition using spin images, it is very important 

that the data is as error-free as possible. Hence, generating depth information using noisy 
stereoscopy is not an option. Another, more robust recognition algorithm is required if stereo 
images are to be used. Alternatively, a more accurate method of data acquisition should be 
employed. 

Further investigations need to be carried out using more accurate input data to draw any 
concrete conclusions about the algorithm's suitability for face recognition. 

7.7 Summary 

This chapter described Johnson's (Johnson 1997) spin-image representation and recognition 
algorithm for 3D objects. Its relative merits and drawbacks with respect to face recognition 
were discussed, and finally it was tested on the 3D models from the Sheffield Database. 

The best values for the algorithm parameters were determined using dataset D2. Once 
these were established, two experiments were conducted to test the algorithm: Leave-One- 
Out cross validation, which uses all but one image from the dataset to train the classifier, 
and recognition using a reduced training set, which uses only one model per class to train 
the classifier. The results for 1-NN were 18.42% and 17.9% respectively. These results 
were lower than expected, and this was attributed to the fact that the input models were 
extremely noisy. If more accurate training models are used then the classifier accuracy may 
see significant improvement. The small difference in the recognition rates between the two 
experiments are indicative of the superiority of object-centred 3D representation systems. 

The results obtained in this chapter are compared with the results of the two benchmark 

algorithms. These algorithms axe described in Chapter 8 and the results of the experiments 
are presented in Chapter 9. 
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CHAPTER 

Algorithms for Face Recognition 

8.1 Introduction 

This chapter details the face recognition algorithms used for the 21), 2 ý' D and the composite 
images. Again, two algorithms are investigated - Mirk and Pentland's Principal Component 
Analysis (PCA) based Eigenfaces technique (Turk & Pentland 1991a) and a simpler version 
of Spies and Ricketts' Fourier space nearest-neighbours technique (Spies & Ricketts 2000). 
The original Eigenfaces technique is often used as benchmark and has been combined with 
many other approaches and applied to face recognition (del Solax & Navarrete 2005). The 
second algorithm is based on an extremely simple idea and is reported by its authors as 
being more accurate than the Eigenfaces algorithm. In this work, both these algorithms are 
investigated and their performance is compared with the 3D matching algorithm presented 
in Chapter 7. 

Sections 8.2 and 8.3 detail the Eigenfaces technique and the neaxest-neighbours in the 
Fourier space algorithm. The chapter concludes with a brief summaxy in Section 8.4. 

8.2 Principal Component Analysis and Eigenfaces 

Principal Component Analysis (PCA) is a dimensionality reduction technique based on ex- 
tracting the desired number of piincipal components (or "feature axes") from the multi- 
dimensional data. These feature axes are ordered according to the proportion of variance 
they explain in the set of faces analysed (training set). PCA is closely related to Kaxhunen- 
Lo-6ve Transform (KLT) (Lo&e 1955). It is shown in (Gerbrands 1981) that under the 
assumption of zero-mean, the formulations of PCA and KLT are identical. 

8.2.1 Calculating Eigenfaces 

The mathematical details here axe taken almost entirely from Turk and Pentland's original 
papers (Turk & Pentland 1991 a, b). Let a face image I(x, y) be a 2D (N x N) array of intensity 
values. Let there be M such images. An image can also be considered as an N2-dimensional 
vector, or equivalently, as a point in the N2-dimensional space. Since all face images belong 
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Figure 8.1: The first 10 Eigenfaces for tile Slieffield Dataset. These Eigenfaces highlight the nn 11ý1 CD 
discriminatory power of tile technique as it captures the different features of the dataset. 
Particularly noticeable is the capture of pose information in tile third Eigeliface. Lack of 0 
distinct features such as the eyes and the lips is indicative of tile input images not having 
been normallsed to align facial features across the dataset. 

I 

to tile same class of images, they will not be randomly distributed in this space. and can be 
described by a relatively low dimensional subspace. PCA aims to find those vectors that best 

account for tile distribution of face images within this image space. These vectors define tile 
subspace of face images, or the face space. It transpires that these vectors are the eigenvectors 
of the covariance matrix corresponding to the original face images. And they have a face-like 

appearance. lience, Eigenface. Figure 8.1 depicts the first 10 Eigenfaces for the Sheffield 
Dataset. 

o Let the Training set of face iniages I)t-: 

fri, r,, r, .... 
I (N2 x M) (8.1) 

0 Moan face of the Set: 

%P =ME IF, (N (8.2) 

" Mean subtracted face image: 

"D, = F, q, 
_\, 

2 X 1) (8.3) 

-1) represents how much each face differs from the mean 

" Form the Covariance matrix: Al 
C=E 4ý' ,bT (8.4) 
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which is equivalent to: 
C=AA T (N 2xN 2) (8.5) 

where 
A=[4ý174ý2)--Aým] (N X M) (8.6) 

The covariance matrix C is subject to PCA, and yields a set of M orthonormal vectors 
u,,, and their associated eigenvalues Ak. These give the best description of the distribution of 
the images in the face space. C is a matrix of size (N2 x N2), and finding the eigenvalues 
and eigenvectors of this is computationally very intensive. 

If (M <N 2), then the Eigensystem of the smaller (M x M) matrix ATA can be found. 
This means that 

ATAV, =, Z, V,, (8.7) 

with eigenvalue /. zi associated with eigenvector vi. Pre-multiplying both sides by A gives 

AATAvi = tsiAvi (8.8) 

From this it can be seen that Avi are the eigenvectors of C= AAT. Based on this, an 
(M x M) matrix L can be constructed. 

L=A TA where Lm,, =, pT (8.9) 
m 

The eigenvectors vi of L determine linear combinations of the M training set face images to 
form the Eigenfaces ul: 

M 
Ul"J: V10ý16 I'll ... IM 

(8.10) 

k=1 
Thus, the calculations are greatly reduced from the order of the number of pixels in the 
images (N2) to the order of the number of images in the training set (M). The associated 
eigenvalues allow the eigenvectors to be ranked according to their usefulness in characterising 
the variation among the images. The Eigenfaces ul span the basis set with which the images 
in the face space can be described. 

PCA may also be implemented via Singular Value Decomposition (SVD) (Shakhnarovic 
& Moghaddam 2004). The SVD of an (N2 x M) matrix A (8.6) is given by 

UDVT 
7 

where (N2 X M) matrix U and the (M X M) matrix V have orthonormal columns, and the 
MxM diagonal matrix D contains the singular values of A on its main diagonal. A singular 

T value of a matrix A is the square root of an eigenvalue of AA . It can be shown that 
the columns of U are the orthonormal basis vectors ul (equation 8.10), so that SVD allows 
efficient and robust computation of PCA without the need to estimate the data covaxiance 
matrix (equation 8.4). When the number of training images M is much smaller than the size 
of the image vector (N2), this is a crucial computational advantage. 

The Eigenfaces span an M'-dimensional subspace of the original N2 image space. The 
M' significant eigenvectors of the matrix L are chosen as those with the largest associated 
eigenvalues. 

Swets and Weng (Swets & Weng 1996b) suggest the following to determine the number of 
significant eigenvectors to use. Rank the eigenvalues pi in non-increasing order. The residual 
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mean-square error E of using M' <M eigenvectors is the sum of the eigenvalues not used, 
Eýf , =M, +, Mi. So M' can be chosen such that the sum of these un-used eigenvalues is less than 
some fixed percentage P of the sum of the entire set. Let m satisfy 

Eýý , Pi 2=m +1 
<p (8.12) 

Eýf 1=1 Pi 
If P< 5%, a good reduction in the number of eigenvectors is achieved while still retaining 

a large proportion of the variance present in the original feature vectors (Turk & Pentland 
1991b, Jain & Dubes 1988). Hence, very little of the original population-capturing power is 
lost. In practise, the choice of the number of Eigenfaces to use is also guided by computational 
constraints related to the cost of matching, the size of the training set, etc. 

When a new face r is to be recognised, it is first transformed into its Eigenface components 
(projected into the "face space"): 

Wk ýUT (r - %P), k M, (8.13) k 

The weights wk form a vector nT =. = [WI, W2, ... 'WM'] that describes the contribution of 
each Eigenface in representing the input image face, treating the Eigenfaces as a basis set 
for face images. This can then be used to establish which, if any, of the pre-determined face 

classes best describes the face. The simplest way is to find the face class k that minimises 
the Euclidean distance 

dE 
--: -- 

lift - Ilk 112, where f2k is a vector describing the k th face class (8-14) 

The face classes f2l are calculated by averaging the results of the Eigenface representation 
over a small number of face images of each individual. A face is classified as belonging to 
class k when the minimum dE is below some chosen threshold Od-,. Otherwise the face is 
classified as unknown. 

Creating the vector of weights is equivalent to projecting the original face image onto the 
low dimensional face space. Consequently, there win be many images that win project onto a 
given Eigenface vector. This is not necessarily a problem since the distance dE between the 
image and the face space is simply the squared distance between the mean adjusted input 
image, r- %F and 4>f = Eý41 wiui, its projection onto face space: I= 

f2= 11,1, 
_ , kf 112 

8.2.2 Distance Metrics 

(8.15) 

In the experiments conducted in this work, two distance measures are used: the Euclidean 
distance dE given by equation 8.14, or equivalently by: 

)= xi - Yi dE (x, yE( 

ý i=l 

and the Mahalanobis distance dm given by 

dm = (8.17) 
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Equations 8.16 and 8.17 are equivalent if the covariance matrix E-1 is the identity matrix 
I. In case of the present application, since the distance is computed over uncorrelated data, 
the covariance matrix E-1 is a diagonal matrix whose elements are given by the eigenvalues 
pi. Hence equation 8.17 can be simplified as: 

dm (x, y) =1 (8.18) Pi (Xi - Yi) 
where x and y are two feature vectors. Subscript i denotes the ith element of these vectors 
and pi is the ith eigenvalue. The Mahalanobis distance is often used in conjunction with the 
Eigenfaces algorithm because of its superior discriminatory power (Craw et al. 1999). This 
claim is confirmed by the results obtained in this work. It measures the distance between 
two feature vectors in terms of standard deviations from the centroids in each class. Its 
main advantage is that it can represent non-linear boundaries between features. This is 
particularly useful when the feature space may be too complex to be divided linearly. The 
Euclidean distance metric is unable to do this. 

8.3 Nearest Neighbours in the Fourier Space (Fourier K-NN) 
Spies and Ricketts (Spies & Ricketts 2000) propose a technique based on the Fourier spec- 
tra of facial images. Similar to the PCA technique, this technique also relies on a global 
transformation, i. e. every pixel in the image contributes to each value of its spectrum (Spies 
& Ricketts 2000). The Fourier spectrum is a plot of the energy against spatial frequencies. 
The spatial frequencies in this case relate to the spatial relations of intensities in the image. 
Specifically for face images, this translates to distances between areas of particular brightness 
such as the overall size of the head, or the distance between the eyes (Spies & Ricketts 2000). 
Low frequency components contribute to the global description of the image, while higher 
frequencies describe the finer details in the image. 

In (Spies & Ricketts 2000), Spies and Ricketts found the higher frequencies less useful for 
identification of a person, similarly to the human ability to recognise a face from a brief look 
without the need to focus on the minute details. Consequently, they chose a small number 
of frequencies from the entire spectrum and report a 98% recognition rate on the Olivetti 
Research Ltd (ORL) face database 1. They also find the real part of the spectra to be more 
useful for the identification than the imaginaxy part. In (Zhang 2003) Mang et. al. also 
describe the role of spatial frequency in the recognition task similarly. However, they report 
the high frequency components of images to be of equal importance in aiding the recognition 
task. In light of this, all the frequency components from the face images are retained in this 
work. Furthermore, the dataset used in this work is more challenging than the ORL dataset, 
and it was felt that the retained information would serve to improve the performance of the 
system. 

Spies and Ricketts were able to further reduce their search dimension as all the images 
they use axe real images. Consequently, both the real and the imaginary spectra are symmet- 
ric around the origin. This means that only half of each spectra carries valuable information. 
They use this observation and the variance of the frequencies to select the frequencies that 

lwww. cam-orl. co. uk/facedatabase. htmI 
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vary the most. They report good results when comparing their approach with other compet- 
ing techniques such as Eigenfaces and neural networks on the same dataset. For this work, 
it was felt that this is not a viable option. Although the above is true for real images (see 
Figure 8.2), this is not necessarily the case for "complex7 images. A real image is defined 
here as an image matrix whose elements are real numbers, while complex images are image 
matrices whose elements have both real and imaginary components. In this work complex 
images axe generated during the image matching process. Magarey's image matching algo- 
rithm represents the disparity at each pixel as a complex variable. The real and imaginary 
parts of the complex number represent the horizontal and vertical disparities respectively. 
Hence the disparity field, or the 21D image is expressed as a complex-valued matrix. 2 

In complex images, while majority of the information is still concentrated around the 
centre, there is significant amount of valuable information away from the centre, unlike the 
Fourier transform of a real image (see figure 8.2(b)). 

8.3.1 Fourier Transformation and Recognition 

Let the dimensions of an image be (N x M). There are two frequencies w-- and wy corre- 
sponding to the x and the y co-ordinates respectively. If I.,, y is the intensity value at location 
(x, y), then the two-dimensional discrete Fourier transform values f, ' are given by: 

M-1 N-1 

f, x, wy I.,, ye 
Nm (8.19) 

Y=O X=O 
Note that the actual implementation of the Fourier Transform is achieved using the Fast 
Fourier Transform (FFT) function in Matlab. 

A nearest-neighbour approach is taken to perform the classification and the Frobenius 
norm is used to give a distance metric between the Fourier transforms of the input images. 
The Frobenius norm of a matrix A of size (M x N) is defined as the square root of the sum 
of the absolute squares of its elements (Golub & Van-Loan 1996): 

NM 
11 A IIF= E 1: laijI2 (8.20) ý 

i=o j=o 

aij in this case is the difference between the Fourier transforms of the test and the training 
images. 

8.4 Summary 

This chapter has detailed the two algorithms used in this work for face recognition. The 
Eigenfaces algorithm is a well-known algorithm and has been used as a benchmark algorithm 
in the field since it was pioneered in 1991. The other algorithm is a simple implementation 
of neaxest-neighbour approach in the Fourier space. The three recognition algorithms (spin- 
image matching, Eigenfaces and Fourier K-nearest neighbour (K-NN)) can now be tested 
using the Sheffield Dataset. The results of the experiments are presented in the next chapter. 
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(a) 

(c) 

(b) 

Figure 8.2: Log of absolute values of the Fourier transform of: (a) a real 2D image, showing 0 t5 
most of the information concentrated around the centre, and (b) a complex 2D image. 
Unlike the Fourier transform of a 2D real-valued face image, there is significant amount of 
information awky from the centre in the Fourier transform of the complex-valued image of 
the same face. Consequently, selecting a limited number of frequencies to represent such 
images may result in valuable information being lost. The 2D intensity image corresponding 
to both Fourier transforms is depicted in (c). 
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140 Algorithms for Face Recognition 



CHAPTER 

2D Face Recognition: Results and 
Analysis 

9.1 Introduction 

Results of face recognition experiments in the 2D space using the benchmark algorithms axe 
presented in this Chapter. These are compared with the results of 3D face recognition using 
Johnson's (Johnson 1997) spin-image representation from Chapter 7. Turk and Pentland's 
(Turk & Pentland 1991a) PCA based Eigenfaces approach, and Spies and Ricketts' (Spies 
Sz Ricketts 2000) Fourier space based nearest-neighbours approach (Fourier K-NN), both 
described in Chapter 8 axe used as benchmarks. 

Eigenfaces is a well established technique and is frequently used as a benchmark algorithm. 
Since the spin-images representation employs a sophisticated nearest-neighbours approach to 

perform the recognition task, it is more meaningful to compare it with a nearest-neighbours 
type algorithm in the 2D and the 211) spaces as well. As in Chapter 7, the first nearest- 2 
neighbour (denoted by 1-NN) and the recognition rate of the first 5 matches (denoted by 
Tbp5-NN) are analysed and compared with the results in Chapter 7. 

9.2 A Note about Eigenfaces 

As stated in Section 8.2, the number of Eigenfaces to use in the recognition task is determined 
using the residual mean-square error measure (equation 8.12) (Swets & Weng 1996b). The 
number of Eigenfaces M' to be used is chosen such that the error measure em, is less than 
5%. c,,, is defined as: 

Eýfm, 
EMI =1 +1 V=1 pi 

The residual mean-square error is the sum of eigenvalues not used, EjýM, +j pi. M is the j= 

total number of eigenvalues. 
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9.3 Leave-One-Out Cross-Validation on D1 

Leave-One-Out cross-validation is performed on all the 2D images from the Left stereo chan- 
nel in dataset DI, consisting of 692 images of 22 individuals (11 males and 11 females). 
Note that as before, during cross-validation and the computation of the recognition rates, 
images of an individual with glasses and without glasses are treated as belonging to two 
different classes. It is believed that this gives a better idea of the discriminatory power of the 
recognition algorithms. The recognition rate is defined as the number of correctly identified 
individuals divided by the total number of images in the dataset. 

LOO cross-validation is performed on D, using both Eigenfaces and Fourier K-NN algo- 
rithm. Figure 9.1 shows a plot of the eigenvalues for this dataset. They have been normalised 
to lie between 0 and 1. Here onwards, the term eigenvalues will refer to normalised eiggenval- 
ues. 

-0. 

A 0. 

. LM 

100 200 300 400 500 600 
Eigenvalue index 

Figure 9.1: Eigenvalues of 2D images in dataset Di. 

Eigenvalues are indicative of the amount of variation in the corresponding eigenvectors, 
and hence the Eigenfaces. Proportionally, more of this variance is retained in the first few 
Eigenfaces than in the subsequent ones, and it is this variance that allows the faces to be 
identified accurately. This is illustrated in Figure 9.2, which compares the set of Eigenfaces 
11,5,10,100,250,500}. This observation is confirmed by the inverse ti, of the error values 
listed in Table 9.1. 

9.3.1 Recognition Rates 

The first 250 Eigenfaces are used for recognition, giving an error measure C250 of 4.38%. The 
corresponding recognition rate is 55.2% for the Euclidean distance metric and 67.05% for 
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(a) Eigenface 1 (b) Eigenface 5 (c) Eigenface 10 

I, 

(d) Eigenface 100 (e) Eigenface 250 (f) Eigenface 500 

Figure 9.2: Eigenfaces 11.5.10.100.250.5001 of 2D images of DI. 00 

Eigenface Index i I11 5 10 100 250 500 
Inverse error-ineasure ti (70) ý4.46 1 4.09 1.49 0.07 0.02 0.008 

) Error Measure ci 7 75.54 1 45.58 33.47 10.36 4.38 1.02 
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Table 9.1: Error measure values and their inverses for the Eigenfaces 11,5,10,100,250,5001, 
illustrated in Fi-ure 9.2. 0 
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the Mahalanobis distance metric. This clearly highlights the superiority of the Mahalanobis 
00 

distance measure in classifying faces in the Eigenface space. 
By contrast, the recognition rate for the Fourier K-NN algorithm was 68.9% for the 1- 

NN and 86.6% for the Tbp5-NNI. This is in agreement with Spies and Ricketts' findings. 
They too report a better performance for the Fourier K-NN compared with the Eigenfaces 0 
in (Spies & Ricketts 2000). They report recognition rates of 98% and 94% for Fourier K-NN 

and Eigenfaces (with Euclidean distance metric) respectively. 

Eigenfaces Fourier K-NN 
Euclidean) 

Distance (% 
I Mahalanobis 

Distance 
1-NN Tbp5-NN 

r 55.2 1 67.05 1 68.9 1 86.6 

Table 9.2: Performance of the benchmark algorithms on the dataset DI. 

These benchmark results are much lower than those reported by Spies and Ricketts (Spies 
Ricketts 2000). This inconsistency in the recognition rates could be due to two reasons: 

1. Challenging dataset: Most 2D face recognition algorithms reported in the literature 

use publicly available datasets. If this is not the case then the data they use is usually 
very controlled. Sheffield Dataset on the other hand has greater variety of imag; es per 
class, and imposes very few constraints on subjects' pose and expression. Hence, it is 

possible that on a simple dataset, the algorithms would give a better performance. 

2. Presence of "bad" images in dataset: There may be some image classes in the 
dataset that may be placed in the face-space in such a way that a high proportion of 
individuals are assigned to that class. 

Both possibilities were investigated in order to establish the cause(s) for such poor results. 
The difficulty level of the dataset was investigated by running the code for the Fourier K-NN 

and Eigenfaces on a publicly available dataset. The Yale Database2 containing 165 images 
(15 subjects, 11 images per subject) was chosen for this. The main considerations behind this 

choice were the size of the database and the variety of images available for each subject. The 
database is small enough for the code to run fast and has an acceptable mix of image types. 
The dataset is somewhat limited in terms of the individuals in the database (e. g. there is 

only one female subject). Each subject is imaged both with and without glasses. There are 
five images with varying expressions: happy, sad, sleepy, surprised and wink. Three images 

are captured by moving the light source to the left, the right and the centre of the face, and 
one image is neutral (no expression, no particular illumination direction). Figure 9.3 shows 
the different subjects in the Yale Database and 9.4 shows the images for one of the classes 
in the database. 

'Top5-NN refers to the recognition rate when the correct match is identified among the top five matches, 
rather than the conventional 5-nearest-neighbours definition 

2 http: //cvc. yale. edu/projects/yalefaces/yalefaces. html 
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Figure 9.4: Subset of images from the Yale Database. 
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9.3.2 LOO cross- validation on the Yale Database 

The first 60 Eigenfaces of the Yale Datal); Lso are used. giving ail error measure f i, of 3.7 71V 
- 

Figure 9.5 shows the first 10 Eigenfaces from the Yale database. Combination of strict 
controls being imposed during image capture and the relatively small size of the database 

means that the features such as the eyes in these Eigenfaces are fax morf- pronounced than 

say in Figure 8.1. The features in Sheffield datasot Elggeiifacfý.,; ýFigiir,, are ii,, t %-(ýry 
discernible at all. 

Figure 9.5: The first 10 Eigenfaces of the Yale Databtse- 

Table 9.3 presents the results of recognition using the two benchmark algorithins in the 0 
Yale Database. In (Belliumeur et al. 1997). Belliumeur et. al. report similar results for the 
Eigenfaces technique applied to the Yale Database. 

Eig nfaces I Fourier K-N. N 
ge 

Euclidean Nlahalanobis I-NN (W) ' Tol)5-. N. \' (54) 
Distance Distance 

79. j----T 98.8 80.1----[- M-9 

Table 9.3: Performance of the benchmark algorithins oil the Yale Database. 

This experiment with tile Yale Database also highlighted some issues regarding test and 0000 
training data. It is obvious that D, is much bigger and far more varied than tile Yale inn 
Database. both in terms of tile image types and tile subjects. The Yale Database is very 
restrictive in that all its images are strictly controlled. and hence not very realistic. Such 
datasets result in good accuracy for algorithms that may not be suitable for operation in 

uncontrolled environments (such as crowd surveillance or identification). It highlights the 
point that reconition rates reported in the literature should always be considered in the 
context of the test data used. and if possible. the same dataset should be used wilen comparing 
algoritlims. 
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9.3.3 Confusion Matrices 

If any one class, a. in the image database is more prone to confusion and miscalssification, 
then it is possible that a lot of images may be wrongly classified as belonging to that class. 
This can decrease the recognition rate for the entire classifier. It does not necessarily mean 
that the classifier is poor, just that the data or a certain subset of the data is poor. 

In order to detect the presence of such image classes in the dataset, confusion matrices 
were used. Confusion matrices are used for checking the accuracy of classifiers. For n classes 
in the dataset. an (n x n) zero matrix C is initialised. The rows of C depict the actual 
class labels and the columns depict the class labels assigned by the classifier. The elements 
of this matrix act as bins. The bins count the number of class i images that are classified 
as belonging to class 1.2,... , n. A graphical representation of this matrix is quick and an 
easy visual tool for identifying any classes that may be responsible for the classifier's poor 
performance. Figure 9.6 shows the confusion matrix for a perfect classifier. 
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10 

Figure 9.6: Confusion Matrix for a perfect classifier is a diagonal matrix as all images are 
classified correctly. 

The confusion matrix is diagonal, i. e. all class i images are correctly classified as belonging 
to class i. The off-diagonal entries in the matrix are incorrectly classified individuals, which 
in the case of a perfect classifier are all 0. Figures 9.7 and 9.8 show the confusion matrices 
for the LOO cross-validation on D, using Eigenfaces and Fourier K-NN respectively. 

It is evident that the classifiers are not perfect classifiers, as the matrices are not strictly 
diagonal. However, the distribution of the misclassifications also appears to be random. 
It is not possible to identify any particular class of images as such, that may be causing 
the classifiers to perform badly. The confusion matrices also empliasise the fact that the 
Mahalanobis distance measure is more powerful than the Euclidean when used in conjunction 
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Figure 9.7: Confusion Matrices for the Eigenfaces classifier, using both the Euclidean and the 
Malialanobis distance metric. Although the matrices are not diagonal, there is no emerging 0 
pattern. Hence, there are no classes in the dataset that are particularly -bad", indicating a 
random distribution of errors. 
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Confusion Matrix for Fourier 1 -NN 
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Fi-, ure 9.8: Confusion Matrix for the Fourier 1-NN classifier. Again, the matrix is not entirely 0 
diagonal, but there are fewer values off diagonal than in Figure 9.7. 

with Eigenfaces. Its confusion matrix is relatively more diagonal than that of the Euclidean 

measure. This is depicted by the greater number of squares on the diagonal with shades of 
red. and relatively fewer squares off diagonal with a value greater than 4. Similarly, Figure 

0 
9.8 shows that Fourier K-NN is a better classifier than the Eigenfaces. 

Also noticeable is that certain elements in the confusion matrices appear to be more er- 
roneous than others. This is depicted by sub and super-diagonal elements with relatively high 

number of misclassified elements. This can be observed around elements 12,3 1, f 7,81,113,1411 
{17,181,119,201,122.231 and 124.251. However, closer examination of the dataset reveals 
that this is in fact due to the nature of the dataset. The elements in the above list repre- 
sent adjacent classes of images where one class is an individual with glasses and the other 
is the same individual without glasses. Classes 22-25 contain images of the same individual 
with and without glasses and head-scarf. But notice how classes 122,231 (f 24,25 1) are only 
confused between themselves and not with f 24,251 (122,23 1). The classifiers treat subjects 
22 and 23 (without heads-scarf) as the same, and subjects 24 and 25 as the same (with 
head-scarf). but f 22,231 and 124,251 as different from each other. The classifiers are able 
to cope with accessories such as glasses but not head-scarves, which significantly alter the 
appearance of the face. 

Hence it can intuitively be seen that more "misclassificat ions" are possible when these 
image classes are treated as being two distinct individuals. If however, they are treated as 
the same individual and the classifiers are trained appropriately, then the confusion matrices 
would have a very pronounced diagonal with fewer erroneous values distributed randomly 
off-diagonal, as expected. 

5 10 15 20 25 30 
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9.4 Recognition Experiments on D, using a Reduced Training 
Set 

As in Chapter 7, the classifiers are also tested on the dataset Di using a reduced training 
set. The reduced training set consists of the fun frontal images with neutral expressions only. 
These axe depicted in figure 4.2. 

In Chapter 9, this experiment was conducted to see how the spin-image representation's 
recognition rates are affected when the training set for each class consists of only one image. 
It was found that the drop in recognition rates was only marginal. This led to the conclusion 
that the spin-images are a powerful representation and recognition technique when dealing 
with 3D data, though not necessarily for faces. 

Here, the same is investigated using the two benchmark algorithms in the 2D space. The 
results are given in Table 9.4. 

Eigenfaces Fourier K-NN 
Euclidean) I Mahalanobis 1-NN Tbp5-NN 

Distance (% Distance (%) 

LOO cross-validation 55.2 67.05 68.9 86.6 
Reduced 'Raining Set 46.24 48.7 45.09 73.41 

Table 9.4: Performance of the benchmark algorithms trained using almost the entire dataset 
(LOO cross-validation) and using the reduced training set and tested on the dataset DI. 

There is not a significant difference between the recognition rates achieved using the Eu- 
clidean and Mahalanobis distance metrics. This indicates that although adding a greater 
variety of images to the training set does improve the performance of the PCA classifier, it 
may also make the distribution of the classes in the face space more complex. This increased 
complexity justifies the need for a more sophisticated distance metric such as the Maha- 
lanobis. Also, the Fourier K-NN algorithm performs worse than the Eigenfaces algorithm. 
This is a clear indication that this is a powerful technique, but as with an nearest-neighbours 
type algorithms, it does require more training data to optimise its performance. 

The following section compares the results of recognition experiments on the dataset DI 
in the 2D space using the benchmark algorithms with the results obtained in Chapter 7. 

9.5 Comparing Face Recognition in 2D and 3D spaces 

The results of the recognition experiments using the spin-image representation in the 3D 
space, and using Eigenfaces and Fourier K-NN in the 2D space are shown in Table 9.5. 

It was clear in Chapter 7 that the recognition rates in the 3D space were extremely 
poor and certainly much lower than expected. However, it was not expected that the 2D 
algorithms would out-perform the 3D algorithms by such a vast margin. The poor results 
for the spin-image representation were thought to be a consequence of all the errors that 
were accumulated in the input data prior to the recognition stage (see Chapter 7 for details). 
These errors are accumulated during the reconstruction process (due to errors in camera 
calibration, image matching and triangulation processes), the mesh generation process and 
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Eigenfaces Fourier K-NN Spin-Images 

Euclidean Mahalanobis 1-NN Tbp5- 1-NN Top5- 
NN NN 

Distance Distance (%) (%) M M M 
LOO Cross- 

55.2 67.05 68.9 86.6 18.42 32.75 Validation 
Reduced IYain- 46.24 48.70 45-09 73.41 17.90 25.33 ing Set 

Table 9.5: Comparison of the recognition rates in the 2D space (using Eigenfaces and Fourier 
K-NN) and the 3D space (using Spin Image representation). Recognition rates for the two 
experiments - Leave-One-Out Cross-Validation and Recognition using the reduced training 
set are shown. 

in mesh pre-processing. Many of these errors are difficult to eliminate. But it is equally 
difficult to obtain good recognition rates in the presence of these errors. 

Hence, after weighing vaxious pros and cons (see Section 7.5 for details), it was concluded 
that 3D face recognition with the spin-images was not suitable when using stereo images. 
This is not to say that it is not a viable technique for face recognition, just that it is neither 
particulaxly practical nor accurate when the data is extremely noisy. It would be interesting 
to investigate in future the performance of this technique when the 3D data is more accurate. 
These results also offered no conclusive evidence regarding the usefulness of depth information 
in face recognition. 

Finally, the results in Table 9.5 show that the classifier performs better in LOO cross- 
validation experiments than in the experiments when the classifier has fewer training images. 
This is to be expected since as a general rule, the amount of training data is directly propor- 
tional to the classifier accuracy, processing time and the storage requirements. In addition, 
there is also the danger of over-training the classifier so that it is unable to handle input data 
that deviates significantly from the training data. 

9.6 Summary 

The results of face recognition experiments in the 2D space axe presented in this chapter. 
As in Chapter 7, experiments axe performed using Leave-One-Out (LOO) cross-validation 
and also by training the classifiers on just a single image from each of the classes (reduced 
training set). The recognition rates are better for the LOO cross-validation experiment. The 
2D recognition rates, although better than the 3D, are still very disappointing compared 
to those reported in the literature. LOO cross-validation experiments are performed on 
a publicly available dataset, the Yale Database, and results axe compared with published 
results. This ascertains that Sheffield Dataset is more challenging than some of the publicly 
available datasets, and low accuracy of the benchmark algorithms can be attributed to this. 
Confusion matrices are used to establish that the miscalssifications are more likely between 
images of subjects with and without glasses. For other subjects, there are no strong patterns 
in the misclassifications. 
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CHAPTER 10 

Face Recognition Using 2211) and 
Composite Images 

10.1 Introduction 

21D images are defined as 2D images that encode depth information. In literature, 21D 22 
images are generally constructed using the actual depth values instead of the intensity values 
in the 2D images. This approach implicitly assumes that extracted depth values are accurate. 
However, when depth values are extracted from stereo images, this is rarely the case, unless 
accuracy in image matching, camera calibration and triangulation can be guaranteed. In most 
real settings, cameras are susceptible to perturbations, which can result in incorrect camera 
matrices, and hence depth values. This is one of the main reasons for the unpopularity 
of stereo images for face recognition. In this chapter, an alternative encoding of depth 
information is presented for 21D images. Also presented is a simple and effective way of 2 
combining this depth information along with the texture or the intensity information from 
the 2D images to form composite images. 

Face recognition experiments are conducted on both 21D and composite images. The 2 
results are compared with those of 2D face recognition. Using the same dataset and classifi- 
cation algorithms in all the spaces makes the comparison of results more meaningful. Again, 
Eigenfaces and the Fourier space based neaxest neighbours algorithm (Fourier K-NN) axe 
used for classifying the faces. Results and analysis axe presented, followed by conclusions 
and a summary of the chapter. 

1 10.2 2ýD Image Face Recognition 

Constructing 2ýD images using depth values (depth maps) is a simple and popular means 
of encoding relief information in a 2D image, as all the existing image processing and 2D 
face recognition techniques can be used. However, if these depth values axe obtained through 
stereoscopy, then the existing problems with noise in camera matrices, correspondences and 
triangulation remain. Obviously, for accurate recognition results, the depth information 



154 Face Recognition Using 2.; l-D and Composite Images 

needs to be as error-free as possible. 
Inspired by human binocular vision, this work uses dispaxity information as proxy for 

depth. Disparity values contain depth information, proportional up to parameters of the 
camera matrices. The camera matrices only serve to give the placement of the object being 
reconstructed in the 3D space, relative to other objects, including the cameras themselves. 
So, the actual depth information is contained in the disparity values, which in theory at 
least, should be as accurate as the depth values. Using the disparity values bypasses the 
noisy camera calibration and the triangulation processes, while still retaining all the depth 
information. Only the errors from the image matching process influence the disparity values. 

In this work, the 21D images encode the depth information in the form of dispa7ity 2 
values rather than actual depth values. For each pair of 2D images that are matched, two 
21D images are produced. These are denoted by LR and RL. LR (RL) represents the 
21D image that is generated by holding the left (right) image as the reference image and 2 
looking for the corresponding matches in the right (left) image, i. e. LR (RL) is the left-right 
(right-left) disparity. 

As explained before, in his work, Magarey (Magarey 1997) represents the disparity values 
at each pixel by a complex number. The real and imaginary parts correspond to disparity 
in the horizontal and vertical directions respectively. 2D intensity images only have a real 
intensity value at each pixel location, and similaxly depth maps only have a real depth value 
at each pixel location. Ways of extracting meaningful information from the pair of disparity 
values (real for horizontal and imaginary for vertical disparity) are also investigated. 

Five simple representations of the complex number are investigated: 

1. Complex: Disparity values are represented as complex numbers as this retains the 
displacement in the horizontal and vertical directions as such. It allows the actual 
depth values to be extracted, given the camera matrices, but has the disadvantage of 
the image not being in a form that is easy to visualise. 

2. Real: Only the horizontal disparity values are used and the 21D image can be easily 2 
visualised. 

3. Imaginary: Similarly, only the vertical disparity values are used and again, the 21D 2 
image can be easily visualised. 

4. Ll-Norm: This is a simple way of combining the information in the real and the 
imaginary components. The Ll-norm of a complex number c=a+ ib is computed 
using 

L, = lal + JbI (10.1) 

5. L2-Norm: This also combines disparity information in both the directions, and is 
commonly used to represent the magnitude of a complex number. The L2-norm of a 
complex number c=a+ ib is computed using 

L2 : -- ý/-(a2 + b2) (10.2) 

Although the Ll and the L2 norms encode all the disparity information, its components 
in the horizontal and the vertical directions are lost. Figure 10.1 shows the 21D images using 2 
the representations 2-4. 
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(a) Real LR 

(e) Real RL 

(b) Imaginary LR 

(f) Imaginary RL 

L, LR 

L, RL 

(d) L2 LR 

(i) 2D intensity image 

(h) L2 RL 

Figure 10.1: LR and RL 212D images generated using the four non-complex representations of 
the disparity information: Real. Imaginary, LI-norm and the L2-norm, and the corresponding 
2D image. 
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Figure 10.2: A sample image class (21) left images and 21D disparity images) from the 2 
dataset D2. D2 is a smaller subset of the Sheffield Dataset and contains 165 images (5 or 6 
images per class). 

Recall from Chapter 6 that Magarey's al-orithin requires tile disparity field at each level to 0 10 
be interpolated till it is of tile same size as tile input images. This produces a disparity vector 
for each point in tile input images. As mentioned in Chapter 4. the images in the Sheffield 
Database measure 256 x 256. However, tile disparity maps used in this work to represent the 
211 D images only measure 128 x 128. Having smaller input images reduced the computation 26 
time significantly without affecting the quality of the images or indeed the recognition rates 00 
in pilot experiments. In addition, it was felt that unnecessary interpolation had the potential 
to introduce unnecessary errors. Hence tile disparity maps are not interpolated to achieve 
full resolution. 

10.2.1 Feasibility Study 

Initially. a feasibility study was carried out to investigate whether or not using the disparity 
values as a proxy for depth was effective and if it merited further investigation. 

The feasibility study was carried out using dataset D2, using LOO cross- validation. Only 
tile Eigenfaces al-orithm with tile Euclidean distance measure was investigated in this study 
since earlier experiments showed that this classifier performed the worst. If the Eigenfaces 
algorithm performed well in this study, then it would be reasonable to assume that the Fourier 
K-NN algorithm would also give acceptable results on the 211) images. 2 

The results of tile feasibility study are presented in Figure 10.3.100 Eigenfaces are used 00 for both 2D and 211) images. This corresponds to an error value of (100 of 3.73% for the 2D 2 
images. Tile mean error value for the 211) images is < 1%. 2 

It can be seen from Figure 10.3 that on average. LR and RL images perform similarly 
Recall from Chapter 6 that tile RMS errors (in tile image matching process) for LR and 
RL images were 41.27 and 28.89 respectively. Then, the absolute mean difference in the 
recognition rates between LR and RL images of 0.85% is surprising. It would appear that 
errors in the image matching process are not necessarily passed on to tile recognition stage. 

The imaginary component of tile complex disparity value, i. e. vertical disparity results in 
the highest classifier accuracy. This is extremely surprising since tile imaginary 212D image 

02b 
(see Figure 10.1) does not appear to contain much information. In fact. it appears very noisy 
compared to the other images. Tile most prominent feature in the imaginary 21D images is 2 
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Figure 10.3: Results of the feasibility study conducted to ascertain whether depth can be 

represented using 2D disparity maps. LOO cross-validation is performed on D2 using the 
Eigenfaces al-oritlim and the Euclidean distance measure. The bars depict the results of C, 0 
the five representations of the 2ý11) images, both LR and RL. The recognition rate for the 2 

corresponding 2D images is shown by the red line. 
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the eyes, and it would seem that this information is sufficient for classification. Recognition 
using the imaginary 21D image outperforms the 2D recognition by up to 3%. This is not 2 
significant considering the other forms of 21D images under-perform by about 5.5%. 

2 
The results of the feasibility study were promising, and consequently, LOO cross-validation 

was performed on the larger dataset DI. The results are presented in Section 10.2.2. The 

classifiers are also tested by training them on a reduced dataset, as in Section 9.4. The results 
for this experiment axe presented in Section 10.2.3. 

10.2.2 LOO cross-validation on D, 

As before, LOO cross-validation is performed on the dataset DI, but this time using the LR 

and RL 21D images rather than the 2D images. Again, both the benchmark algorithms are 2 
tested: Eigenfaces with Euclidean and Mahalanobis distance measures and the Fourier K-NN 

with 1-NN and Top5-NN. The results are presented in table 10.1. Again 250 Eigenfaces are 
used, giving a mean error measure C250 of 0.36% for all five representations of LR and RL 
21D images. 2 

Eigenfaces Fourier K-NN 
2D Im- (Euclid. ) 55.2 

1 (M'bis) 67.05 
1 

N) 68.9 
1 

(Tbp5-NN) 86.6 
1 

ages 
LR RL LR RL 

211) Euclid M'bis Euclid. M'bis 1-NN 
Tbp5- 1-NN 

TOP5- 
2 . NN NN 

Images 
Dist. Dist. Dist. Dist. M M M M 
M M M M 

Complex 37.57 39.31 69.9 86.0 71.4 84.4 
Real 28.76 59.68 32.23 61.71 64.5 79.1 68.5 80.8 
Imag 45.52 61.27 44.51 59.68 67.6 85.3 66.5 84.7 
Ll-Norm 33.53 63-15 36-85 61.42 65.2 82.5 67.05 81.2 
L2-Norm 33.09 62.57 35.84 61.27 65.3 83.0 67.8 82.1 

Table 10.1: Comparison of the recognition rates in the 21D space using Eigenfaces and 20 
Fourier K-NN. Recognition rates for all the representations of the 212D images are shown. 

Compare the values in Table 10.1 with those in Table 9.5. It is easy to see that the 

recognition rates for the 21D images are considerably lower than those obtained for the 2D 
2 

images, on the same dataset and using the same algorithms. A graphical depiction of this is 

presented in Figure 10.4. 
Even with the low recognition rates obtained with the Eigenfaces algorithm, the recogni- 

tion in the 2D space still outperforms recognition in the 21D space. These results contradict 2 
those obtained in the feasibility study, as at least one form of . the 212D images outperformed 
the 2D image recognition. Admittedly, it was only by a small margin. However, adding more 
images to the training set was expected to enhance the performance of the classifier rather 
than deteriorate it. Instead, the recognition rates have fallen by an average of 17.5% across 
all image representations and distance measures. The drop in the recognition rates achieved 
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Figure 10.4: Results of the LOO cross-validation on the dataset D, of 212D images. The bars 
02 

in the chart show the recognition rated for the various forms of LR and RL 2_21D images. 
Superimposed on the bars axe four surfaces representing the results of applying the same 
algorithms to 2D images. 
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by the Euclidean distance metric is fax more pronounced and is mostly responsible for this 

overall steep decline in performance. The recognition rates for the complex images using the 
Mahalanobis distance measure are omitted from the table since Mahalanobis distance cannot 
be defined for complex feature vectors and any accuracy measure defined as such would be 

meaningless. The remainder of the 21D images display a much smaller deterioration in the 
2 

recognition rates -a mean fall of 5.7%. Note that here too the Mahalanobis distance classifier 

performs better than the Euclidean in both 2D and the 21D spaces. However, recognition in 
2 

the 2D space is still more accurate than recognition in the 2D space. 
Although disappointing, these results are not entirely surprising. When one compares 

the 211) images with the 2D ones (see Figure 10.1), it is easy to see that in terms of intensity 
2 

information, the 2-12D images are very limited. Their information content is more subtle than 
the 2D images. In view of this, it is in fact encouraging that recognition rates are as they 

are, and emphasise the potential of the two classifiers and the disparity information. Further, 
the results of the feasibility study indicate that the images contained in each class may be of 
some significance. However, at this stage it cannot be said whether it is the actual number 
of images in the training set of each class, or whether it is the kind of images (varying poses, 
illumination, expressions, etc. ). 

The results of Fourier K-NN algorithm, as before, are more encouraging. Based on the 

algorithm's performance in the 2D space, this was to be expected. It is interesting to note 
that it is only the complex form of the disparity map that has yielded an improvement in 

the recognition rates. The other forms of 21D images have not performed as well as the 2D 
2 

images. The recognition rates obtained by the imaginary form, representing disparity in the 

vertical direction, axe very close to those achieved by the 2D images. This can be attributed to 
the fact that information in the Fourier transforms of real valued face images is concentrated 
very much around the centre, while in complex images, a larger part of spectrum is used. 
Also, intuitively it can be seen that the complex representation contains more information - 
disparity values from both the directions 

10.2.3 Recognition Experiments on D, using a Reduced Training Set 

The results for this experiment are shown in Table 10.2 and Figure 10.5. 
Again, the results in the 21D space do not measure up to those in the 2D space. It is 2 

however interesting to note that the imaginary 21D images perform particularly well in this 2 
experiment. They yield the highest recognition rates for the Fourier K-NN classifier and for 
Eigenfaces with the LR 21D images. This has not been observed previously. The improved 2 
performance of the imaginary images indicates that in the absence of sufficient training data, 
the vertical disparity values hold more classification information than the horizontal or the 
combined dispaxity values. However, at this stage it is not possible to say whether or not 
this would be the case for all datasets. It may be that this phenomenon is peculiar to the 
Sheffield Dataset and the way it was collected. More research needs to be conducted to 
ascertain whether this is true of all datasets. 

10.3 Wavelets-Based Pre-Processing for Eigenfaces 

Wavelets based pre-processing was investigated to see if the performance of the Eigenfaces 

classifier in the 211) space can be enhanced. This was motivated by the results of the earlier 2 
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Eigenfaces Fourier K-NN 
2D Im- (Euclid. ) 46.24 (M'bis) 48.70 (1-NN) 45.09 (Top5-NN) 73.41 
ages 

LR RL LR RL 

211) Euclid. M'bis Euclid. M'bis 1-NN Tbp5- 
I-NN Top5- 

2 NN NN 
Dist. Dist. Dist. Dist 

Images M M M M M M CA) M 

Complex 31.65 31.36 31.94 64.16 31.79 64.86 
Real 28.03 38.58 28.90 41.47 28.47 57.51 28.61 57.23 
Imag 33.24 38.15 33.53 36.13 34.10 66.62 33.53 66.91 
LI-Norm 30.35 36.42 30.06 40.17 31.07 58.53 29.91 60.69 
L2-Norm 1 29.19 35.40 30.20 40.75 31.07 58.53 29.91 

1 60.69 

Table 10.2: Comparison of the recognition rates in the 21D space using Eigenfaces and 2 
Fourier K-NN classifiers trained on a reduced dataset and tested on DI. Recognition rates 
for all the representations of the 21D images are shown. 2 
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Figure 10.5: Performance of the benchmark algorithms in 212D space, trained using the 
reduced dataset and tested on the dataset D1. 
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experiments that highlighted the benefits of using Fourier decomposition of the intensity 
images rather than the images themselves. However, this idea was not explored in detail since 
it was decided at the outset that pre-processing would be avoided and that the classifiers and 
the images would be tested in their "raw" form. 

The effects of two wavelets were investigated. The Haar or the Daubechies-1 (Dbl) 
wavelet has been used to this end by Chen et. al. in (Chen et al. 2003) and by Chien et. 
al in (Chien & Wu 2002). They have reported reasonable results for face recognition. Haar 
wavelets have also been used for image querying by Jacobs et. al in (Jacobs et al. 1995) with 
promising results. In Chapter 6 Magarey's complex wavelets performed extremely well in 
matching face images. These wavelets have very good orientation selectivity, which makes 
them ideal for image processing. 

As explained in Appendix A, 2D wavelets decompose the input images into four subhn- 
ages: a low frequency Approximation image and three high-frequency Detail images that 
extract the horizontal, vertical and diagonal features from the images. Most of the infor- 
mation useful for recognition is contained in the low-pass approximation images (Magarey 
1997, Chien & Wu 2002). Hence, only these images are used for the recognition task. How- 
ever, a recent publication by Ekenel and Sankur (Ekenel & Sankur 2005) reports that using 
the horizontal detail images achieves greatest robustness to varying illumination, while the 
approximation images axe the most expression-invariant when Daubechies-4 (Db4) wavelets 
are used. 

Recall from Chapter 6 that Magarey's wavelets are 2D complex wavelets. Two pairs of 
complex wavelet filters JhO, hl} and {ho*, h*, } are used and h* denotes the complex conjugate 
of h. At each level of decomposition, two approximation images are produced - one from the 
complex filters, and the other from the complex conjugate filters (see Figure B-1). These will 
be referred to as channels A and B respectively. The complex filters are given by 

ho = 
[1-j 4-j 4+j 1+j]110 (10.3) 

hi = 1- 2j 5+ 2j -5+2j 1-2j]/14 (10.4) 

Note that a pre-filter 
5 j]/5 

is used in the first level of decomposition to simulate an infinitely large DWT tree with 
perfectly scaled filters. 

Figures 10.6 and 10.7 show the low-pass or the Approximation images for a 2D and a 
21D image using Magarey's complex wavelet. Note that output from channels A and B are 2 
both shown. The coefficients of the decomposed images are also complex valued. As a result, 
four representations of these coefficients are depicted: real, imaginary, LI and L2-norm. 

The Haar wavelet is the simplest wavelet and corresponds to the filter pair 

ho = 
[1 (10.5) 

hi = 
[1 (10.6) 

Figures 10.8 and 10.9 show the low-pass or the Approximation images for a 2D and a 
2-12D image using the Haar wavelet. 
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(d) Appioximation at level 4: Real, Imaginary, Li, L2 
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Figure 10.6: The outputs of the 2 low-pass channels, A&B, (Approximation images) for a 0 
2D intensity iniage that lias undergoile 4 levels of decomposition using Magarey's complex 
wavelet. Real. Iinaginary, LI and L2-11orin representations froin both channels are shown. 
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Figure 10.7: The outputs of the 2 low-pass channels, A and B, or the Approximation images. 
for a 2ý11) intensity image that has undergone 3 levels of decomposition using Magarey's 

20 CD 
complex wavelet. Real, Imaginary, L, and L2-norm representations from both channels are 
shown. 
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(c) Approximation at level 3 

(b) Approximation at level 2 

(d) Approximation at level 4 

Fic, ure 10.8: The output of the low-pass channel or the Approximation images for a 21) ?D 
intensity iniage that lias undergone 4 levels of decomposition using the Haar wavelet. 
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(a) Original 2ý'D image (b) Approximation at level I 

(c) Approximation at level 2 (d) Approximation at level 3 

Figure 10.9: The output of the low-pass channel or the Approximation images for a21D 02 
image that has undergone 3 levels of decomposition using the Haar wavelet. The 221 D image 020 
corresponds to the 2D image shown in Figure 10.8. 
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10.3.1 Feasibility Study 

A feasibility study was carried out in the first instance to see if the pre-processing led to 
any significant improvements in the recognition rates. The effects of wavelet pre-processing 
on dataset D2 were investigated using the Eigenfaces algorithm in conjunction with the 
Euclidean distance metric. As before, LOO cross-validation was performed and the first 100 
Eigenfaces were used for classification. 

The recognition rates for the 2D and the 21D images in D2 (from Section 10.2.1) are 2 

recalled in Table 10.3. These results were used as benchmark results and compared with the 
classifier accuracy after pre-processing. 

II Recognition Rates (%) 
2D 24.24 

LR 2D 25.45 
RL 2; 'ýD 27.27 

Table 10.3: Recognition rates for the 2D and the 21D images using the Eigenfaces algorithm 2 

and the Euclidean distance measure. LOO cross-validation is performed on the dataset D2 
and the input images undergo no pre-processing. 

The results of the feasibility study were very promising. The 2D images are decomposed 
to 4 levels, while the 21D images are decomposed to 3. Pre-processing using the Haar wavelet 2 
improved the accuracy, but only maxginally. The 2D recognition rates increased by 0.61%, 

while the 21D LR and RL rates increased by 1.22% and 0% respectively. These increased 
2 

recognition rates were observed in decomposed images of size 64 x 64. The results with 
Magarey's wavelets were much better, though this was expected since these wavelets have a 
greater orientation selectivity and are generally better suited to image processing tasks. 

The 2D recognition rate with Magaxey's wavelet increased to 32.1% -a rise of almost 8% 
in the image of size 128 x 128 from channel B. The LR 21D images displayed an increase 2 
in recognition rates of between 6% and 24%. Improvements were observed in all forms of 
21D images of size 64 x 64 from channel A. The RL images did not display such significant 2 
changes in the recognition rates. The classifier performance rose by a mere 3.6%. 

Pre-processing the 21D images with Magaxey's complex wavelets leads to a marked in- 
2 

crease in the recognition rates for the LR images. On the basis of these results, LOO cross- 
validation was caxried out on the dataset D, using the Eigenfaces algorithm alone (with both 
Euclidean and Mahalanobis distance metrics). 

10.3.2 LOO cross-validation on D, 

As before, LOO cross-validation is performed on the 2D and the corresponding 21D images 2 
in the dataset D1. Only the Eigenfaces algorithm is tested using both, Euclidean and the 
Mahalanobis distance measures. The images axe pre-processed using the Haar wavelet and 
Magarey's complex wavelets. The 2D images (256 x 256) undergo four levels of decomposition 

and the 21D images (128 x 128) axe decomposed three times, so that the final images are 2 
16 x 16. 

Table 10.4 summarises the outcome of this experiment. Note that the recognition rates 
presented here pertain to images of size 64 x 64. Images smaller than this give lower accuracy 
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than the benchmark (not pre-processed) images. The bigger images do not display significant 
improvements in the recognition rates. This is echoed by the findings of Ekenel et. al. (Ekenel 
& Sankur 2005) as well. 

% Recognition Rates 
2D 2-21D LR 2.; ' 

, jD RL 
Benchmark 67.05 63.15 61.71 

aar 67.49 63.73 61.42 
y 67.77 64.02 63.87 

Table 10.4: Compaxison of the recognition rates in 2D and 21D spaces using Eigenfaces al- 2 

gorithm. The input images have been pre-processed using the Haar wavelet and Magarey's 
complex wavelet. These recognition rates are achieved using the Mahalanobis distance mea- 
sure. Note that only the highest recognition rates are presented here and no distinction is 
made between the various forms of the 211) images and outputs of channels A and B. 2 

Again, the results of the LOO cross-validation on DI do not follow the same pattern as 
the results of LOO cross-validation on D2- Compared to the results of the feasibility study, 
these results are extremely disappointing. The improvement in the recognition rates is far less 

pronounced and the 21D images still perform worse than the benchmark 2D images. The only 2 
advantages of the pre-processing are that the execution time is much faster and less storage 
space is required since the images are much smaller. These two advantages would make it 

worthwhile to use wavelet processed 2D images instead of the raw 2D images, especially since 
there is an improvement rather than deterioration in the classification performance. However, 
for this work, this line of investigation is not pursued any further. Instead, the reasons for 
the poor performance of the 21D images and ways of addressing their shortfalls were sought. 2 

10.4 Composite Image Face Recognition 

Classifiers operating in the 21D and 3D spaces perform worse than those in the 2D space. 2 
However, some encouraging results have been obtained for the 21D images. 2 

2D images contain useful texture information. This information supplements the infor- 
mation from depth values in identifying features and individuals themselves. The importance 
of this intensity information in automatic face recognition had been gravely underestimated 
in this work. The consistently better performance of the classifiers in 2D space put this 
information into perspective. 

As seen in the literature review in Chapter 2, many works combine the depth and texture 
information in different ways to take advantage of information from both these domains. 
It is known that humans use all available information to recognise faces (Todd 2002, Liu 
et al. 2000). In (Lam & Suen 1997) Lam and Suen give many examples from literature 
where combining the decisions of multiple classifiers has led to better recognition results. 
These findings are confirmed by other works such as (Lin et al. 2003, Tsalakanidou et al. 
2003, Chang & Bowyer 2005, Ekenel & Sankur 2005) Consequently, both the texture and 
the depth information, both readily available from the Sheffield Dataset, were combined in a 
simple but effective way. This resulted in greater classifier accuracy in comparison with the 
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classifiers from either modality by itself. 
Both, Eigenfaces and the Fourier K-NN classifiers transform the nxn input image into 

an n2 vector before proceeding to the subsequent stages of the algorithm. This is done 
to simplify the implementation in case of the Fourier K-NN algorithm and to capitalise on 
certain matrix manipulation rules in case of the Eigenfaces. A simple way of combining the 
intensity information with the disparity information is to concatenate the two vectors. This 

combined representation of a 3D image is referred to as a composite image in this work. So, 

an nxn intensity image combined with an mxm, disparity image would yield a composite 
image or a composite feature vector of the form 

n2 2D image vector (10.7) 
m2 22D imap 

and of length n2 +m2. It should be noted that this representation cannot be interpreted 

graphically and serves only as a means of combining and using effectively the intensity and 
the depth information. Although this is strictly speaking a composite feature vector, it is 

referred to as a composite image in this work. Since the 21D images come from two separate 2 
channels LR and RL, a separate composite image is obtained for each of these channels. 

The composite image needs to be normalised prior to being input into a classifier since its 
2D and the 21D components axe measured in different units. The intensity images typically 2 
range from 0 to 255. The disparity images on the other hand measure displacement in sub- 
pixel values and the typical values range from -25.59 to 20.74. Normalisation of the two sets 
of values, prior to concatenation, is important in order to weight the two image components 
equally. If the minimum value is greater than or equal to zero, the matrix is normalised 
simply by dividing all the values by the maximum. If the minimum is less than zero, the 
absolute value of the minimum is added to the matrix to shift the minimum to zero, followed 
by division by the maximum value. 

To the author's knowledge, intensity and depth information have not been combined in 
this way previously. Works such as (Chang & Bowyer 2005, Tsalakanidou et al. 2003) that 
utilise both shape and texture information in the form of 2D intensity and 21D range/depth 2 
images obtain classification scores for each type of image separately. These scores axe then 
fused together using some kind of classifier combination rule (e. g. sum rule or the product 
rule). The approach adopted in this work extracts a single feature vector for both the domains 
and uses this to classify the test image, rather than using two or more separate feature vectors. 
In addition, normalisation for brightness and geometry is avoided. The implicit assumption 

ges axe illuminated reasonably uniformly still holds. that both imag 

10.4.1 LOO cross-validation on D, 

The results of LOO cross-validation on dataset D, in the composite space are shown in Figure 
10.10. In all, there are 10 composite image types, from the 10 211D images (5 representations 
of LR and RL images). Both Eigenfaces and the Fourier K-NN classifiers are tested. Results 
for the Mahalanobis distance measure and the 1-NN axe shown as these are the most accurate. 
Note that the recognition rates for complex composite images using the Eigenfaces classifier 
were not computed owing to time-constraints. 

The Eigenfaces classifier produces the least accurate results in the composite space. It 
performs worse in the composite space than the 211) space, which was unexpected and 2 
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Figure 10.10: LOO cross-validation results for D1 in the composite image space. Results for 
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disappointing. Fourier K-NN outperforms the Eigenfaces classifier, as it has done in all 
the previous experiments. However, contrary to the expectation that the classifiers in the 

composite space would be able to draw on the strengths of 2D and the 21D images, the 2 
Fourier K-NN classifier appears to be bounded by its performance in the 2D space. The 
highest recognition rates are still those yielded by the Fourier K-NN in 21D space. 2 

10.5 Breakdown of recognition results in 2D and 21D spaces 2 

So fax, the 21D images have consistently performed better than the 2D images in the feasibil- 
2 

ity studies (dataset D2). However, when tested on the larger dataset DI, the recognition rates 
dropped significantly. The composite images, incorporating both 2D and the 211) images 

2 
also performed worse than the 2D images. 

One possible explanation for this anomaly between the results of the feasibility studies 
and the larger experiments was that the larger dataset contains images that axe more varied 
than the smaller dataset. The images in D, can be partitioned into following groups: 

Rontal 
LookUp 
EyesClosedLookDown 
RotationXYLook Up 
Lighting 

Smile 
LookDown 
Rotationl. 
RotationXYLookDown 

EyesClosed 
EyesClosedLookUp 
Rotation2 
Expressions 

It may be possible that one particular type or types of images from the list above causes 
the classifier performance to deteriorate sharply in the 21D space. This would reflect in 2 
the overall performance of the classifier. In order to verify this, the LOO cross-validation 

results for D1 were categorised according to the image groups. The results are presented 
in Figures 10.11 and 10.12 for the Eigenfaces (using Mahalanobis distance) and the Fourier 

1-NN classifiers respectively. 
Note that for the 21D images, only the highest benchmark results are charted. No 

2 
distinction is made between the different representations of the 21D images. Analysis of 2 
the breakdown results have shown that for the LR images, the imaginary (46%) and the L, 

(39%) representations perform consistently well, while for the RL images, the real (61%) and 
the L, (31%) representations give good results. For the Fourier K-NN algorithm in the 212D 

space, the complex representation consistently gives better results. 
Figure 10.11 clearly demonstrates that for most image groups, recognition rates for the 

2D and the 211) spaces axe very similax. However, 2D images perform significantly better 
2 

(between 15% and 25%) for Rotation2 images, indicating that 2D Eigenfaces is more superior 

when dealing with variations in pose about the y-axis. 211) images on the other had give 2 
much better results than 2D for RotationXYLookUp and the harsh lighting images. It is 

known that perturbations in illumination causes the 2D Eigenfaces performance to deterio. 

rate considerably. Depth information definitely enhances the performance of the Eigenfaces 

classifier when the faces have been imaged with uneven illumination. 

Breakdown of recognition results using the Fourier K-NN algorithm shows that on the 

whole, recognition in the 21D space performs at least as well as, if not better than recognition 2 
in the 2D space. The 2D recognition rates are marginally better when the eyes are closed 
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Figure 10.11: LOO cross-validation results for D, using the Eigenfaces algorithm with Maha- 
lanobis distance, categorised according to the image types. Comparisons are drawn between 
the 2D and the 211) spaces. 2 



10.5 Breakdown of recognition results in 2D and 2-ýD spaces 173 

100 

90 

80 

70 

2D 
2.5D FIr 
2.5D Fri 

60 

50 

40 

30 

20 

10 

0 
V) rL C 

CL CY 
>Mc co T, mxDC 

0 NC D0z19 -J- LU 8AS8 cc 
0 

Figure 10.12: LOO cross- validation results for D, using the Fourier K-NN algorithm with 
I-NN, categorised according to the image types. Comparisons are drawn between the 2D 
and the 21D spaces. 2 
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and the subject is either looking up or down. 2D Fourier K-NN performs significantly better 
than 21D when the subjects display varying expressions. As with the Eigenfaces classifier, 2 
in case of extreme lighting conditions, the 21D images perform better than 2D images by up 2 
to 30%. This, coupled with the maxginally better performance of the 211) images for most 2 
other image types produces the consistently high recognition rates for the 211) space when 2 
using Fourier K-NN 

Comparing Figures 10.11 and 10.12 also shows that the Eigenfaces classifier never achieves 
100% recognition for any type of image. Fourier K-NN on the other hand produces 100% 
results for two image types: EyesClose and EyesOpenLookUp. 

The variation in the classifier accuracy for the different image groups led to the formula- 
tion of dataset D3, described in Section 4.2.1. Groups Rotation2, RotationXYLookUp and 
RotationXYLookDown have been removed from this dataset. These images display poses 
that axe not sustainable for any period of time, and so were eliminated. So in a practical 
application such as say crowd surveillance, images from other better-placed cameras would 
be available to replace these images. Randomness is retained in the dataset in the form of 
expression, harsh lighting and Rotationl images. If good classifier accuracy can be achieved 
with dataset D3, then such a system would be a considerable improvement on the existing 
controlled systems. 

10.6 LOO cross-validation on D3 

LOO cross-validation is performed 2D, 21D and composite images from the dataset D3 using 2 
the Eigenfaces algorithm. 250 Eigenfaces are used for the 2D, giving an error value C2D, 250 Of 
3.31%. The mean error value Ccomp, 250 for composite images is 2.90%. For the 211D images, 
100 Eigenfaces are used and the corresponding error value cloo is 1.00%. 

Figure 10.13 and Table 10.5 show the results of LOO cross-validation using both datasets 
DI and D3. Note that only the results for the Mahalanobis distance measure are shown as 
this is more accurate than the Euclidean distance measure. 

Eigenfaces (M'bis) Fourier K-NFN--(l-N-N--)ý 
Di (%) I D3 R D, (%) I 

2D 67.05 62.59 68.9 71.11 
5 Urli 63.15 50.0 69.9 75.19 

21D RL 2 61.71 48.89 71.4 77.22 
Composite LR 63.44 71.48 68.9 71.11 
Composite RL 1 1 60.04 1 70.0 69.1 1 71.11 1 

Table 10.5: Comparison of LOO cross-validation results for datasets D1 and D3 using Eigen- 
faces with Mahalanobis distance and the first nearest-neighbour of the Fourier K-NN classi- 
fier. 

Removing the images from the dataset that can be seen as containing relatively less useful 
recognition information deteriorates the performance of the Eigenfaces classifier in the 2D 
and the 21D spaces by an average of 10% (when using the Mahalanobis distance). The 2 
performance of the Eigenfaces classifier in the composite space shows an 8% improvement, 
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with the highest recognition rate of 71.5%. This is the best this classifier has performed so 
far. 

Fourier K-NN classifier is also tested on the dataset D3- Unlike the Eigenfaces, this 
classifier's performance in the 2D and the 21D spaces improves by an average of 4.5% as a 2 
result of the dataset being modified. Although the performance in the composite space is 
better for dataset D3 than it is for D1, the improvement is very small - about 2%. This is 
lower than the 5.5% improvement observed in the 21D space. As noted in Section 10.4.1, 2 
the recognition rate for the composite spaces appears to be bound by the recognition rate 
for the 2D space. This is peculiar and may be a consequence of the way the 2D and the 21D 2 
components in the composite image are weighted by the classifier. 

10.7 Composite images and the Fourier space based classifier 
The results of the recognition experiments on composite images using the Fourier space based 

classifier seem to indicate that the classifier weights the information from 2D images more 
heavily than 21D images. As a result, even though recognition using 21D images is more 22 
accurate, this is not reflected in the recognition rates of the composite images. Two weighting 
functions were investigated to see if the recognition rates of the composite images could be 
improved in any way. A linear weighting function of the form 

1aa (-A 

and a quadratic weighting function of the form 

(10-8) 

(1(- a)2 A21 

2a 1- a)) AB (10.9) 
a2 B2 

were investigated. a denotes the value of the weight such that 0<a<1 and A and 
B represent the 2D and the 2ý11) images respectively. Note that B is interpolated so that 
it is the same size as A (256 x 256) to facilitate the matrix multiplication required for the 
quadratic weighting function. The convex combination of A and B in Equation 10.9 results 
in the cross-coupling term 2a(l - a)AB. This has the effect of amplifying the underlying 
relation between A and B, if there exists one. Both the weighting functions were tested on 
a dataset of 150 images. Five images were chosen at random from each of ý the 30 classes. 
The weighting functions were tested using LOO cross validation. No underlying relationship 
came to light despite investigating more than 30 different values of a between 0 and 1. The 
performance of the classifier on the composite images could not be improved beyond the 
bounds of the 2D recognition rates using Fourier K-NN classifier. 

The linear weighting function produced better results in that for an values of a, the 
recognition rate of the composite images was the same as the recognition rate of the 2D im- 
ages. The quadratic weighting function reported 30% lower results than the linear weighting 
function for all values of a except a=0, for which the recognition rate was the same as that 
achieved with the linear weighting function. This rate was in turn the same as that achieved 
without any weighting function. 

Failure of the weighting function to improve the performance of the Fourier K-NN classifier 
in the composite space led to the exploration of an alternative way of combining the results of 
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the 2D and the 21D spaces. Majority voting is the simplest way of collating information from 2 

multiple classifiers. In (Lam & Suen 1997) it has been reported to give very good performance 
in a variety of applications. In this classifier combination strategy, the combined decision is 

obtained by a majority vote of the individual classifiers. When n classifiers are combined, 
the test sample is assigned the class for which there is a consensus, or when at least k of the 
classifiers axe agreed on the identity, where (Lam & Suen 1997) 

k= 
I n2 +1 if n is even 

2-ý*' if n is odd 2 

In this work, the two classifiers are Fourier K-NN in the 2D space and Fourier K-NN in 

the 21D space. Majority voting is impossible to apply with only two classifiers. Hence the 
2 

strategy is adapted slightly. Each of the two classifiers output the top five matches, Top5- 
NN. These matches are taken as the outputs of independent classifiers. Thus there are ten 

classifiers: five corresponding to the top 5 matches in the 2D space and five corresponding 
to the top 5 matches in the 21D space. 2 

Unfortunately, this did not improve the performance of the Fourier space based classifier 
either. The average recognition rate was circa 42%. This was most likely to be a conse- 
quence of the fact that the results that were combined were not from entirely independent 

classifiers. Further, this strategy does not combine the different pieces of information from 
the different images. It implicitly assumes that the classifiers used are the best classifiers for 
the recognition problem at hand. This assumption may not necessarily be satisfied in this 
case. 

10.8 Capturing the Systematic Variability 

In this experiment, the Eigenfaces classifier was trained using 3 different subsets of D3. The 

recognition rates from this are compaxed with the classifier accuracy achieved with leave- 

one-out cross-validation. Training sets of 30,150 and 300 images were investigated, with 1,5 

and 10 images per class respectively. The remainder of the images were used for testing. The 

training images were chosen randomly, and the experiment was repeated 10 times to give 
mean recognition rates for the different classifiers, along with the standard deviation, which 
acts as an error measure. Recognition was performed in 2D, 21D and the composite spaces. 2 
The same images were used for training and testing the classier in each of the spaces. The 

same number of Eigenfaces were used for recognition in the 2D and the composite spaces: 
130,100,175,250} for training sets of size 130,150,300,539}. The corresponding Eigenfaces 
for the 211) images are 130,50,75,100}. These were chosen to such that the RMS error was 2 
< 5% 

The mean recognition rates along with the error maxgins are presented in Table 10.6. 
As before, the Mahalanobis distance measure outperforms the Euclidean by a significant 

margin. And as expected, increasing the number of training images per class increases the 
classifier accuracy, with the best results obtained for leave-one-out cross validation. 

The results from this experiment clearly indicate that the composite image representa- 
tion incorporating both 2D texture information and 21D depth information is a significant 2 
improvement on either representation by itself. As in the previous experiments, the images of 
individuals with and without glasses are treated as belonging to different classes. If they are 
treated as images of the same individual, then the highest recognition rates obtained for the 
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Mean Recognition Rate % 
2D 1 

- - 
12 ý' D1 1 Composite 

imgs/clas-,; 11 5 F 10 ý LOO 1 111 51 10 1 LOOI J11 51 10 1 LOO 
I Euc. ýj 29.06139.46143.04148.151122.55128.87128.96131.851132.061 46-7ý 50.17153.1 
1 M'bis 1133.27153.13158.58162.591130.16143.95146.46150.001137.96161.79167.711 71.481 

Error ± 113.15 12.11 12.68 1 11 2.72 12.77 12.85 1 113.82 1 1.39 12.58 1 
Note that the error margins for both Euclidean & Mahalanobis distance measures are equal 

Table 10.6: Mean recognition rates and error margins after 10 recognition experiments with 
the Eigenfaces classifier trained on datasets containing 1,5,10 and --17 images per class, 
chosen randomly from D3. Note the composite classifier is consistently better than the 2D 
classifier. Further, at only 5 training images per class, it achieves comparable performance 
to LOO classifier which has ; ýý 17 training images per class (recognition scores in bold font). 

composite image classifier in LOO cross-validation increases from 71.48% to 76.85%. This 
higher recognition rate is comparable with the classifier accuracies reported in the literature 
on relatively less challenging datasets. 

In order to establish that the improvement in the classifier accuracy is indeed a conse- 
quence of using the disparity information and not simply using additional information, the 
recogniser was tested by simply concatenating the left and right 2D stereo images, and per- 
forming leave-one-out cross validation. Recognition rates were found to be 66.67%, which 
is comparable with the results achieved using 10 composite images. The accuracy is higher 
than that obtained using single or 5 composite images. However, this is offset by the sig- 
nificant increase in the computational complexity and classification time. These results also 
verify that the accuracy of the composite image based classifier is a consequence of using the 
disparity information. 

As explained before, different expressions and poses of the face with respect to the camera 
result in variation in the image space which is systematic. This systematic variability is 
modelled as a random variability by most 2D and 21D recognition algorithms. The classifier 2 
is trained on a large number of images of each subject displaying a vaxiety of poses and 
expressions. This obviously increases the computational overheads and decreases efficiency. 

The composite image representation presented in this work addresses this issue of system- 
atic vaxiability. The Eigenfaces classifier achieves greatest accuracy in the 2D space (62.59%) 
when the maximum number of training images is used. Similar accuracy (61.79% ± 1.39) is 
obtained in the composite space using only a fraction of the images to train the classifier. 
This cleaxly indicates the usefulness of depth information used in conjunction with texture 
information in face recognition. 

10.8.1 Disparity Maps vs. Depth Maps 

In literature, 211) images refer to 2D images where the intensity values have been replaced 2 
by actual depth values obtained from range images, laser scans or through structured light 
projections. These are often referred to as 3D images, depending on the authors' preferences. 
The existing 2D image processing and face recognition techniques are then applied to these 
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images and good recognition accuracy has been reported (Heseltine et al. 2004db, c, a). 
Very few existing 21D face recognition systems obtain their depth values from stereo 2 

images. The main reason for this is that the depth values obtained in this way are ex- 
tremely noisy as errors axe introduced in the depth computation at image matching, camera 
calibration and triangulation stages. 

In this work, depth maps (see Figure 10.14 (a) and (b)) for images in D3 were generated 
using the camera matrices from Chapter 4 and the triangulation algorithm described in 
Chapter 3. 

Figure 10.14 depicts the two depth maps and the corresponding disparity map and the 2D 
intensity image. It can be seen that the depth maps do not appear significantly different to 
the disparity maps. However, the relief information contained in depth maps is corrupted by 
noise and the errors accumulated in the reconstruction process. This is underscored by the 
results in Table 10.7. The Eigenfaces classifier was trained using 150 images from D3, with 
5 images per class. 10 runs of the recognition experiment were executed. Training images in 
each run axe the same as those used in the last experiment (Section 10.8). The composite 
images are constructed by appending the depth values to the 2D image vector instead of the 
disparity values. No distinction is made between the LR and RL depth images - only the 
highest accuracy is reported. 50 Eigenfaces are used for classifying the depth maps and 100 
for the composite images. Again, the RMS error was kept below 5%. 

Mean Recognition Rate % 
Depth 
Maps 

1 
Composite 

ý 

imgs/class 15 

Euc. 1 1 14.28 1 136.69 
1 Wbis 1 128.18 1 152-36 

I Error ± 11 1.89 11 1.45 

Table 10.7: Mean recognition rates and error margins after 10 recognition experiments with 
the Eigenfaces classifier trained using 5 images per class, chosen randomly from D3. COM- 
paring with the results in Table 10.6 shows that in noisy environments, using disparity values 
gives better classifier accuracy than the depth values. 

Note that the error margins for both Euclidean and Mahalanobis distance measures are 
equal. 

These results clearly indicate the superiority of the disparity information compared with 
the reconstructed depth information in noisy environments. Being able to use depth in- 
formation obtained from ordinary cameras in a stereo configuration, without the need for 
error-prone camera calibration and reconstruction processes vastly increases the scope of 
face recognition applications. The work can also, in theory, be extended to dynamic images 
such as those from CCTV cameras. Very little information is available in the literature on 
completely automatic dynamic face recognition systems since much of this research is carried 
out commercially. 
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(a) LR Depth Map (b) RL Depth Map 
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Figure 10.14: LR and RL depth maps generated using the camera matrices and the triarigu- 
lation algoritlim described in Chapters 4 and 3. Figures (c) and (d) show the corresponding 
disparity map and the intensity image. 
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10.9 ROC Curves 

Receiver Operator Characteristics (ROC) graphs are a means of visualising, organising and 
selecting classifiers based on their performance (Fawcett 2004). Face recognition systems are 
usually required to perform either identification or verification (or both) depending on their 
application. Identification deals with the task of assigning an identity label to a given image 
and is a 1: many task. Verification on the other hand is a 1: 1 task and deals with the task of 
checking or verifying whether identity label assigned to a paxticular image is correct. This 
is done by measuring the distance of the image from the class and comparing it against a 
threshold value. If the distance is less than or equal to the threshold, the claimed identity is 
accepted as being true, otherwise false. 

Consider a two class classification problem (such as verification). Each instance I of a 
dataset has mapping to one element of the set {p, n} of positive and negative class labels 
(Fawcett 2004). A classifier is a mapping from the instances I to predicted classes with labels 
JY, N}. Given a classifier and an instance, there are four possible outcomes (Fawcett 2004): 
true positive, false positive, true negative and false negative. 

In case of face recognition: 

" true positive: When an individual has assumed his/her correct identity, and is 
rightly accepted by the classifier. 

" true negative: When an individual has assumed a false identity and the classifier 
wrongly accepts him/her. 

" false negative: When an individual has assumed his/her correct identity but the 
classifier still rejects him/her. 

" false positive: When an individual has assumed a false identity and he/she is 
correctly rejected by the classifier. 

For the verification problem, the classifier is given as input an image and class label. The 
distance of the image is computed from the class, and if it is below the threshold 0 the claim 
is accepted, otherwise not. The assignment of true/false positive/negative labels is shown 
schematically in Figure 10.15. 

RO C graphs plotted with T+ 
axe defined as: 

T+ rate -- 

rate on the y-axis and the F+ rate on the x-axis. These 

No. of positives correctly classified 
Total no. of positives 

and 
F+ rate -- 

No. of negatives incorrectly classified 
Total no. of negatives 

The T+ rate and the F+ rate values range between 0 and 1 and hence the ROC space 
has unit area. ROC curves depict the relative trade-offs between the benefits (T+'s) and the 
costs (F+'s) of using a given classifier. The curves have the special property that they are 
insensitive to changes in class distribution. That is, if the proportion of positive to negative 
instances changes in a test set, the ROC curves will not change (Fawcett 2004). 

The perfect classifier, in the ROC space is represented by the point (0,1). The diagonal 
line y=x represents the random classifier, which can be expected to correctly classify 
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Outputs: 

Inputs: (i, c) 
Classifier Accept (True, T 
Output Reject (False, F) 

Input Image: i Actual Correct Verification (Positive, +) Claimed Class Label: C Output Incorrect Verification (Negative, 

Example: Image I 
belongs to class A 

(1, A) I. 

Classifier 

Distance between 
d(f, C) =image i and class 

C 
(1, A) Mo. - 

(1,110- 
0= Acce table Distanace 

thresgold 

(1, B) 110- 

d(l, A) <0 IMP- T+ 

d(1, A) 

d(l, B) pp, - 
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Figure 10.15: The assignment of true/false positive/negative labels for the face verification 
problem. For a given image 1, belonging to class A, if d(l, A) <0 then the classifier correctly 
accepts the individual and his/her claimed identity (T+). If d(1, A) > 0, the individual's 
classifier rejects the individual and his/her claimed identity even though the individual be- 
longs to the database and has the correct class label (F-). (1, B) represents an individual 
who is claiming false identity. The individual may or may not belong to the database. If 
d(l, B) < 0, the classifier incorrectly accepts that individual (T-) and if d(l, B) >0 the 
individual is rejected (F+) 
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individuals approximately 50% of the times. For a classifier to be better than the random 
classifier, it needs to lie above the y=x line. A classifier lying below the y=x line performs 
worse than the random classifier. However, since this decision space is symmetrical about 
the y=x line, if the decision of a classifier lying in the below this line is negated, then its 
ROC curve lies above the diagonal line of symmetry (Fawcett 2004). 

The ROC performance can be reduced to a single number to allow quantitative compar- 
ison of classifiers. 

A common method is to calculate the area under the ROC curve (AUC) (Hanley & McNeil 
1982, Bradley 1997). The area of the entire ROC space is 1 (unit squaxe), so the value of 
the AUC will always lie between 0 and 1. The diagonal line y=x represents the random 
classifier and since it bisects the unit square, its AUC is 0.5. Hence, no realistic classifier 
should have an AUC of less than 0.5. The AUC of a classifier has an important statistical 
property: the AUC of a classifier is equivalent to the probability that the classifier will rank a 
randomly chosen positive instance higher than a randomly chosen negative instance (Fawcett 
2004). By this token, a higher value of AUC for a given classifier indicates a better classifier. 

Figures 10.16 and 10.17 show the ROC curves in the 2D, 21D and the composite spaces 2 
for the Eigenfaces classifier used in conjunction with the Euclidean distance measure and 
the Mahalanobis distance measure respectively, using dataset D3. The ROC curves for the 
Fourier K-NN classifier using dataset D3 in the 2D, 211) and the composite spaces is shown 2 
in Figure 10.18. The curves are generated by computing the true positive and false positive 
rates for all the individuals in the dataset D3 at 101 threshold values between 0 and 1 
inclusive. The identity of each of the 540 images in D3 is checked against the 30 classes 
in the dataset for the 101 different threshold values. In total, 1,636,200 (540 x 30 x 101) 
verification operations are conducted for each classifier. 

The corresponding values for the AUC are given in Table 10.8. 

2D 2 -ý' D Composite I 
(Imaginary LR) 

I 
(Imaginary LR) 

Eigenfaces (Euclidean) 0.8922 0.8880 0.8749 
Eigenfaces (Mahalanobis)_ 0.9221 0.9186 0.9130 
Fourier K-NN 0.9554 0.9808 0.9ý53 

Table 10.8: The AUC values for the ROC curves in figures 10.16,10.17,10.18, corresponding 
to the performance of the Eigenfaces classifier (using both Euclidean and Mahalanobis dis- 
tances) and the Fourier K-NN classifier in the 2D, 21D and the composite spaces. Dataset 2 
D3 is used for producing the curves and computing the AUC values. 

10-10 Miscellaneous 

This section contains a brief analysis of the results to see which individuals in the dataset 
were the best and the worst recognised. Also studied are the effects of glasses and head-scarf. 
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Figure 10.16: ROC curves for the Eigenfaces classifier (Euclidean distance) in the 2D. 2 ý' D 

and the composite spaces, using dataset D3 
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Figure 10.17: ROC curves for the Eigenfaces classifier (Malialanobis distance) in the 2D. 
2 21 D and the composite spaces, using dataset D3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
False Positive Rate 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0ý9 
False Positive Rate 



10.10 Miscellaneous 

a) 

ca a: 

in 0 

1 lb . --ý ý, ýý-- 
0.9 ', o 

., 
* e 

0.8 

0.7 

0.6 

0.5 

0,4 

0.3 

0.2 

2D 

0.1 composite 
-2.5D 

0- 
U. 1 U. 2 U. 3 VA U. b U. (5 U. f UX U. 

False Positive Rate 

Figure 10.18: ROC curves for the Fourier K-NN in the 2D, 2ý'ýD and the composite spaces, 012 
using dataset D3 

10.10.1 Best and Worst Recognised Individuals 

The best and the worst recognised individuals for Eigenfaces classifier and the Fourier K-NN 

classifier are shown in Figures 10.19 and 10.20 respectively. 
The fact that subjects 6 and 16 were both consistently classified correctly by both the 

classifiers could be a consequence of the dataset containing only two individuals of Afro- 
Carribean origin. The images of these two individuals are significantly different from the 
other subjects at least in the 2D and the composite spaces, and axe therefore always correctly 
classified. Investigations using a larger dataset with greater variation in the subject ethnic 
groups is required to investigate the effects of ethnic origin on classifier performance. 

10.10.2 Effects of Head-Scarf 

Recall that ill the Sheffield Dataset. two of the females axe imaged with a head-scarf. Of 
these. one is also imaged without the head-scarf. Refer to Figure 10.21 to see tile subject 
numbers that correspond to the various images of the two individuals. 

The recognition results of the classifiers were checked for two things. Firstly, is tile 
classifier able to distinguish between the images of subjects 124,251 and subjects {17,181 

and secondly. does the classifier realise that subject 22-25 are in fact tile same individual. 
The Eigenfaces classifier in 2D space struggled the most with the first criteria. On average, 

about 25% of tile times it confused subjects 124,251 and f 17,181. The misclassification rate 
fell to 18% when using tile Mahalanobis distance measure. The classifier performed much 
better in tile 21D and the composite spaces. In the composite space, the misclassification 2 

185 
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(a) Best recognised in 2D and 
composite spaces 

(c) Worst recognised in 2D and 
composite spaces 

(e) 

(b) Best recognised in the 2 --, D 

space 

(d) Worst recognised in the 
22D space 

(f) (g) 

Figure 10.19: In addition to subjects (c) and (d). subjects (e). (f) and (g) are frequently 

misclassified in 2D, 2 ý11) and composite spaces using the Eiggenfaces classifier. 20 
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ýaý Best recogilised in 2D and 
composite spaces, Worst recog- 
nised in the 21D space 2 

(c) Worst recogilised in 2D and 
composite spaces 

ýb) Best recognised in the 21D 2 

space 

(d) Worst recogilised in the 
21D space 2 

Figure 10.20: The best and the worst recognised individuals when using the Fourier K-NN 
00 

classifier. 
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(a) subject 22 (b) siil)jfct 23 (() Sli 1) if, T24 

(d) subject 25 (e) subject 17 (f) subject 18 

Figure 10.21: The two subjects imaged with Ilead-scarf 

rate dropped to circa 14% for tile Euclidean distance measure. and to circa 5% for the 
Malialanobis distance measure. The classifier performed the best in tile 211) space. with OCA 

2 
misclassifications, regardless of the distance measure used. These results reinforce the fact 

I 
that Malialanobis distance measure has better discriminatory power and that classifiers make 
effective use of the depth information (in 2 21 D images) to correctly classify those images t liat 2 
are harder to classify in the 2D space. 

On tile same criteria, the Fourier K-NN classifier performed much better. In tile 2D and 
the composite spaces, the misclassification rate was as low as 3(/'(-,. Similarlv to the Ei-enfaces 

classifier, in the 2ý11) space, the classifier is not confused between the iniages of subjects 17. 
18,24 and 25. 

On the second criteria, both the classifiers performed poorly in 2D and the composite 
spaces. The classifiers are unable to recognise tile similarities between subjects 22-25 and 
are unable to realise that these subjects are in fact the same individual. In tile 2 21 D space, 
the classifiers perform better. They "realise" that subjects 22-25 are the same individual 

circa 4% and 15% of the times when using the Fourier K-NN and tile Eigerifaces classifiers 
respectively. These results echo the findings in Section 9.3.3. 

It should be noted here that these results are only computed out of interest. To draw any 
reliable conclusions about the effects of head-scarf, a much larger dataset is required. 

10.10.3 Effect of Glasses 

As inentioned before. 6 of the individuals in the database are imaged both with and without 

, 
lasses. In all the results presented in this chapter, images of an individual with glasses and 

without glasses are treated as two separate individuals. 
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The classifier accuracy obviously increases if the images of individuals with and without 
glasses axe treated as the same individual. In LOO cross-validation on D3 using Eigenfaces 

and Mahalanobis distance measure, the recognition rates increase by 10%, 5% and 5% for 
the 21), 21D and the composite spaces respectively. The new recognition rates are 71.85%, 2 
54.63% and 76-65%. 

The improvement in the performance is slightly higher when the Fourier K-NN classifier is 

used. Increases of approximately 13.5%, 6.4% and 13.5% are noted, with the new recognition 
rates of 84.26%, 83.52% and 84.44% in the 2D 2 51 D and the composite spaces respectively. 12 
Notice that the recognition rates for the 2D and the 21D spaces are almost similar. In this 2 

case, depending on the application and the training dataset size, it may be better to use 21D 
images rather than 2D images since the processing time is much faster for the smaller 21D 2 
images. 

10.11 Summary 

The concepts of disparity based 21D images and composite images are introduced in this 2 

chapter. 21D images axe 2D images that encode the depth information of the scene in the 2 
form of dispaxity values. Five different representations of 2-ý'D images are presented. Al- 

though the results of the feasibility study revealed marked improvement in the classifier 
performance using 21D images, the results of experiments on the larger dataset D, were 2 
extremely disappointing. 21D images performed worse than the 2D images in these experi- 2 
ments. 

Composite images axe a simple and effective way of combining 2D and 21D images, such 2 
that the strengths from both these dimensions are utilised in an advantageous way. This 
image representation also performed worse than the 2D images when tested on the Sheffield 
Dataset D1. 

Wavelets-based pre-processing is investigated to see if the performance of the benchmark 

classifiers in the 21D space can be improved. Again, the feasibility study showed promising 2 
results, but the experiments using the laxger dataset were only marginally better than before. 
The only advantage of using the pre-processing is that the resulting wavelets-decomposed im- 

ages are much smaller, and so the storage requirements and the processing power requirements 
axe greatly reduced. 

The recognition results of dataset D, were analysed to see which image groups performed 
well and poorly in each of the 2D and the 21D spaces. The groups resulting in the low- 2 
est recognition rates are Rotation2, RotationXYLookUp and RotationXYLookDown. As a 
result, further experiments are conducted only using dataset D3, which does not contain 
these image groups. LOO cross-validation on this dataset yielded the expected results: the 
composite representation performed better than both 2D or 21D representations. 2 

Finally, the performance of the Eigenfaces classifier is tested in all 3 spaces using training 

sets of different sizes. As the training set gets larger, the classifier accuracy gets better. 
The composite classifier consistently performs better than the 2D classifier. In addition, it 

achieves comparable performance to the 2D LOO classifier using only a fraction of training 
images. This is a clear indication that the composite representation is an effective way of 
combining the 2D texture information and the 21-D depth information. It also shows that 2 
this representation treats the systematic vaxiability in the face images as such rather than 
as random variability. The 21D disparity representation is also compared with the standard 2 
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depth representation, and it is shown that the disparity representation is superior when the 
depth in computed through the noisy stereoscopic process. This also greatly widens the scope 
for using multiple images from arbitrarily placed cameras since no knowledge of the camera 
matrices is required. 



CHAPTER 11 

Conclusion and Future Directions 

The objective for this work was to investigate the usefulness of depth information in improving 
face recognition accuracy in the presence of noise. 

A stereo-based system, inspired by the human binocular vision, was devised using a pair 
of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth infor- 

mation. Depth values extracted from 2D intensity images using stereoscopy are extremely 
noisy, and as a result this approach for face recognition is rare. Recognition experiments 
are performed on the Sheffield Dataset, consisting 692 images of 22 individuals with vary- 
ing pose, illumination and expressions. Stereo image pairs from this dataset were matched 

and sub-pixel disparity information for each pair in the dataset was computed. Psychology 
literature elucidated that although depth information is crucial to the way humans recog- 
nise faces, this information is perceived through disparity values rather than actual depth 

values in the form of familiar structure and texture information seen in 2D images. Hence, 
disparity information can be thought of as neural proxy for depth. Computationally too, 
depth and dispaxity are proportional up to camera parameters. Initially, disparity values and 
camera parameters are used to compute depth values, which are subsequently used to con- 
struct 211) images (depth maps) and 3D wire-frame models of the facial surfaces. Turk and 2 
Pentland's (Mirk & Pentland 1991a, b) Eigenfaces algorithm and Spies and Ricketts' (Spies 
& Ricketts 2000) Fourier space based nearest-neighbours algorithm (Fourier K-NN) are used 
as benchmark algorithms throughout this work. 

Shaded wire-frame (polygonal mesh) models are used to test a signature-based 3D sur- 
face matching algorithm for face recognition. Johnson's (Johnson 1997) spin-image based 

representation and recognition algorithm is an object-centred representation, in which a 2D 
intensity image (a spin-image) is generated for each point on the polygonal mesh. Two ob- 
jects are matched by comparing a large number of randonfly chosen spin-images. Although 
this technique has been tested in the presence of noise in the form of clutter and occlusions, 
it was unable to cope with the noisy models used in this work. The noise is introduced in 
these models during the camera calibration, triangulation and mesh pre-processing stages. 
Real-time processing was hindered by the size of the models (number of mesh faces) and the 
nearest-neighbours type approach to recognition. Extremely low recognition accuracies were 
obtained during leave-one-out cross validation on the models in dataset DI and consequently, 
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the approach was abandoned. 
Also proposed are two new image representations: 211) disparity images and composite 2 

images. 21D disparity images, unlike the 21D depth images commonly found in literature, 22 

use disparity values as a representation of depth information. This representation has many 
advantages including the avoidance of error-prone camera calibration and triangulation pro- 
cedures, the potential to be used with arbitrary camera placements and higher recognition 
accuracies compared with the equivalent depth images generated using stereoscopic meth- 
ods. Composite images combine 2D texture and 3D shape information was investigated in 
an attempt to utilise the most discriminant information from both these modalities. It is 
obtained by concatenating the two images results in the highest recognition accuracies for 
the Eigenfaces classifier, when used in conjunction with the Mahalanobis distance. 

Finally, the Eigenfaces classifier's performance was also tested using wavelets-decomposed 
2D and 21D images. This led to some improvement in the recognition accuracy and the 2 
processing time was reduced significantly. 

11.1 Conclusions 
Some of the important conclusions that can be drawn from the experiments conducted in 
this work are listed below: 

Depth information in the form of disparity values plays a crucial role in machine recog- 
nition of faces. Disparity information significantly enhances the performance of a face 
recognition system when the stereo images are captured in a partially controlled envi- 
ronment and display varying pose, illumination, expressions. 

In the presence of noisy or inaccurate 3D data, using 2D intensity images and es- 
tablished 2D face recognition algorithms results in more accurate recognition. Re- 
constructing depth from disparity led to a loss of discriminatory information in noisy 
environments. This also explained why this approach is rarely seen in 3D face recogni- 
tion literature. Despite maxked improvement in recognition accuracies when compared 
with 21D depth images and 3D images (using spin-image representation), the classifiers 2 
still performed worse than the 2D images. 

A multi-modal Eigenfaces-based system incorporating both 2D texture and 3D shape 
information in the form of composite images proposed in this work, results in better 
classifier performance than either modality by itself. This representation also captures 
the systematic variability arising from representing the 3D shape of a face by a 2D 
illumination intensity matrix. This variability is treated as random in most existing 
systems by collecting numerous samples of the face in different pose and under varying 
imaging conditions. 

Fourier K-NN is a powerful algorithm and typically performs better than Eigenfaces 
for small datasets. As the size of the dataset increases, so does the processing time 
since the test image needs to be compared with all the existing images in the dataset. 
This approach does not handle the systematic variability very well since large amounts 
of training data are required. 21D complex disparity images result in the optimum 2 
classifier performance with this algorithm rather than the 2D or the composite images. 
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In the composite space, the Fourier classifier's performance was constrained by its 
performance in the 2D space, although the classifier was more accurate in the 211) 2 

space. Further investigations were unable to highlight the reasons for this peculiar 
phenomenon. 

" The novel representations used in this work, paxticularly the 21D disparity images, 2 

are powerful enough to discern between the images of the same individual with and 
without glasses. However, the classifiers fail to establish the similarities in the faces in 
the presence of more gross changes such as addition or removal of head-scarf. Hence, it 
may be better to pre-process the images in a similar manner to the FERET datasets. 

" The use of wavelets based pre-processing using Magarey and Kingsbury's MKC-4 
wavelets (Magarey & Kingsbury 1995,1996, Magarey 1997, Magaxey & Dick 1998, 
Magarey & Kingsbury 1998b) maxginally improves the recognition accuracy and the 
storage and the processing time requirements axe reduced significantly. 

" For reconstructing surfaces that do not contain sharp features (e. g. faces), image match- 
ing techniques that result in dense dispaxity maps are better than feature based ap- 
proaches. 

11.2 Contributions 

The major contributions of this work to face recognition using depth information are listed 
below: 

Disparity based 21D image representation 2 
This work is the first to use disparity values to represent 31) shape. Disparity infor- 

mation is used to compute the actual depth values in existing systems. Experiments 

showed that the transformation from depth to disparity caused a loss of discriminatory 
information due to the presence of noise in the camera parameters and triangulation. 
Hence, these error-prone processes are by-passed and pixel intensities are replaced with 
disparity values in 21D images. This representation has a distinct advantage over 2 
depth based systems when deployed in noisy, uncontrolled environments and has the 
potential to be used with arbitrary camera placements, thus widening the scope of face 
recognition applications. 

Composite Images 
In general, multi-modal systems incorporating both shape and texture information 
process the data from both these modalities separately, and then fuse the recognition 
scores to assign an identity to the input image. In this work, the texture and disparity 
information are combined in a simple yet effective manner by concatenating the two 
matrices to form composite images. Thus the information from both these modalities 
can be processed simultaneously. Such an approach is more in line with how humans 
process information from multiple cues (Todd 2002) and results in greater classifier 
accuracy than either modality by itselL This is also confirmed by Bowyer's findings 
(Bowyer et al. 2004). 
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Capturing the systematic variability 
In typical optical image based face recognition systems, the systematic variability aris- 
ing from representing the 3D shape of a face by a 2D illumination intensity matrix is 
treated as random, by collecting multiple images of the face with varying pose and ex- 
pression. The composite image based classifier, trained using only 5 images per class, is 

able to achieve the leave-one-out cross validation accuracy of a 2D intensity image based 

classifier (approximately 18 images per class). Thus, the composite representation cap- 
tures the systematic vaxiablUty in the appearance of the face and clearly highlights the 
importance of using both shape and texture information in face recognition. 

Quantitative analysis of image matching algorithms 
Pan's and Magarey's complex wavelets based image matching algorithms are both eval- 
uated qualitatively and quantitatively. Qualitative analysis is done by inspection, as is 
common in literature. Both algorithms are quantitatively analysed using Lin and Bar- 
ron's (Lin & Barron 1994) Backward Image Reconstruction. To the author's knowledge, 
this the only work to evaluate these algorithms quantitatively using real (rather than 
synthetic) face images. Magarey's algorithm, used with Magarey and Kingsbury's com- 
plex wavelets (MKC-4) gave superior results to Pan's algorithm which was tested using 
MKC-4 and Symmetric Complex Daubechies wavelets SCD-4 and SCD-6. 

3D face recognition using spin images 
Spin-image representation and recognition algorithm of Johnson (Johnson 1997) are 
used in this work to represent and recognise 3D face images. This approach has so far 
been used to classify rigid objects such as toys and plumbing equipment and for terrain 
images. The results obtained with the 3D face models from the Sheffield Database 
were disappointing and it was concluded that this approach is not suitable for 31) face 
recognition in a noisy environment. 

21D face recognition in the Fourier space using complex images Horizontal and 2 

vertical disparity values, obtained during the image matching process are represented 
as the real and imaginary components of a complex number (Magarey 1997). Spies 
and Ricketts' Fourier space based nearest neighbours algorithm (Fourier K-NN) and 
Mirk and Pentland's Eigenfaces algorithm are both applied to this complex disparity 
image matrix. The results for the Eigenfaces algorithm were disappointing. However, 
the Fourier K-NN algorithm's performance is optimal with this complex representation 
as a wider range of frequencies are used to represent this shape information. This is 
the only work to apply this algorithm to complex disparity images for face recognition. 

Wavelets based pre-processing of 2D and 21D images 2 
Although wavelet decomposition is frequently used in image processing and vision tasks, 
it is not often used for pre-processing face images for recognition. Magarey and Kings- 
bury's MKC-4 complex wavelets (Magarey & Kingsbury 1995,1996, Magarey 1997, 
Magarey & Dick 1998, Magarey & Kingsbury 1998b) are used in this work and com- 
pared against the benchmark Haar (or the Daubechies-1) wavelet, which has been used 
to this end with some promising results. Experiments showed a marginal improvement 
in the performance of classifiers using MKC-4 processed images. These images are 
smaller than the original and this leads to a reduction in the storage requirements and 
processing time. 
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11.3 Future Directions 

This work presented a stereo-based face recognition system using a pair of digital off-the-shelf 
cameras. Although promising results have been obtained with the Sheffield Database, much 
reseaxch still needs to be conducted before an identification system based on this work can 
be deployed in a non-co-operative scenario. Keeping this long-term goal in mind, the future 

research should be administered in the following areas: 

Image matching 
During the image matching process, correspondences are sought in the reference image 
(say, right) for every every pixel in the current image (say, left). The reference and 
the current images are swapped and the process is repeated to obtain left-right (LR) 

and right-left (RL) disparities. Future work should investigate ways of combining the 
output of the two disparity images to obtain more robust estimates. Normalisation and 
pre-processing techniques should also be investigated with the aim of reducing incorrect 
matches. 

Arbitrary camera placements 
In order to use the disparity maps from arbitrarily placed stereo cameras, the algorithm 
needs to be robust in the presence of asymmetric illumination between the two (or 
more) stereo images. This scenario is not investigated in this work owing to time 
constraints. Future work using the 21D and composite images should investigate the 2 
algorithm's invariance to changes in illumination. Further investigation is also required 
in combining disparity information from multiple cameras before such a system can be 
deployed in a real-world setting. 

Disparity maps of varying resolutions 
A dispaxity map is generated at each decomposition level for each of the image pairs. 
The non-interpolated disparity map from the lowest decomposition level (128 x 128) 
is used in this work to perform recognition. Reduction in resolution does not result in 

poorer recognition accuracy and the matching process is much faster due the reduced 
image size. The accuracy of the classifiers should be tested with the lower resolution 
disparity maps from higher decomposition levels to ascertain the decomposition level 
at which an acceptable balance between recognition accuracy and speed is reached. 

0 Depth information 
Experiments in this work showed that using disparity instead of depth information 
leads to increased classifier accuracy. However, the depth information used in this 
work is generated using noisy camera calibration parameters and a simple triangulation 
algorithm. Comparisons between disparity values and depth values obtained with more 
sophisticated algorithms should be compared. 

Recognition algorithms 
The Eigenfaces algorithm used in this work is the original proposed by Turk and Pent- 
land in (Turk & Pentland 1991 a, b) and is used since it is a standard benchmark in face 
recognition. However, since 1991, many variants of this algorithm have emerged, with 
different levels of success. Bayesian approach to PCA based face recognition, proposed 
by Moghaddam et. al at MIT (Moghaddam & Pentland 1997, Moghaddam et al. 1998, 
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1999) was one of the most successful algorithms at the recent FERET trials. Investiga- 
tions using some of the more accurate variants of the Eigenfaces algorithm should be 
conducted to see if lower error rates can be achieved. Variants of the Fourier K-NN al- 
gorithm and ways of combining it with the Eigenfaces approach should be investigated 
to see if the classifier performance can be boosted further. 

Canonical faces 
Experiments showed that the benchmaxk algorithms, when presented with the images 
of an individual with and without head-scarf, were oblivious to the similarities in the 
face. Therefore, there is a definite case for the use of pre-processing to obtain canonical 
faces so that the face images only contain the oval of the face. It is expected that this 
will increase classifier accuracy. 

Bigger dataset 
The Sheffield Dataset, although a good starting point, is still very small compared to 
other publicly available databases such as the FERET. It can be improved by adding 
images: 

of more subjects 
taken outdoors 

with minor/major changes in cosmetics 

of subjects with sunglasses, head-scarves, balaclavas, caps, hats, "hoodies", etc. 

Dynamic inputs 
The long term goal of this work was to extend the face recognition system to using 
dynamic inputs such as those obtained from CCTV cameras. This would involve de- 
tecting and tracking faces correctly in two or more cameras, pre-processing them and 
computing the disparity information prior to the identification stage. 

Multi-modal identification system 
In a non-co-operative environment, this would involve using a face recognition system in 
conjunction with gait recognition, for example. Gait recognition involves recognising 
an individual from the way in which they walk. Again, like face recognition, this 
has the advantage of being non-invasive, non-intrusive and covert but is also subject to 
change. Finger-print or iris recognition are the ideal candidates for use in a co-operative 
environment. 
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Wavelets 

A. 1 Introduction 

In the last two decades, wavelets have evolved from a popular field of study to a well estab- 
lished branch of mathematical analysis (Kobayashi 2000). A wavelet transform decomposes 
a signal into different frequency components which can then be analysed at a resolution that 
is appropriate to its scale. Wavelets theory is well established for one and two dimensional 
data and it is possible to extend it to three (and higher) dimensions. In two dimensions, 
the wavelet transform decomposes a digital image into a set of subimages with different 
chaxacteristic orientations and scales. 

Wavelets axe closely linked with signal processing and the knowledge and understanding 
of filters and filter-banks is essential in understanding and designing wavelets with desirable 
properties. The subject of filters and filter-banks will not be reviewed here. The interested 
reader is directed to (Strang & Nguyen 1997) for an excellent exposition of the subject, 
leading to the development of the wavelet theory. 

Up until recently, all the wavelets that were being designed were based on real-valued 
filter coefficients. However, these have many shortcomings when they are used in the two- 
dimensional space to analyse images. Consequently, new wavelets, based on complex-valued 
filter coefficients are now emerging. 

A. 2 Wavelets and Fourier M-ansforms: An Introduction 

Wavelets are a way of representing and transforming a signal, very much like the classical 
Fourier Transforms. It is important to stress at this stage that wavelets are an alternative 
to the Fourier transforms rather than a replacement. The choice of the transform depends 
ultimately on the application, the signal itself and its bandwidth (Strang & Nguyen 1997). 

Fourier Analysis decomposes a given signal into sinusoids of varying frequencies - it is a 
way of transforming raw data from the time domain into the frequency domain. However, 
it has a major drawback - Fourier transforms only have frequency resolution. They lack in 
time resolution, so, although it is possible to determine all the frequencies present in a signal, 
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it is not possible to establish the exact time when they occur (Valens 1999. Winkler ii. d.. 
Polikar 1999). Fourier techniques analyse the total frequency content of a signal using infinite 

exponential waves (Castellano 1999). Consequently, they only give satisfactory results for 

stationary signals. The results are extremely poor for transient signals and signals with 
drifts, trends and abrupt changes (Winkler n. d. ). In short, these techniques are not suitable 
for detecting changes in signals. 

The short-time Fourier Transform (STFT) is a joint time-frequency representat loll that 

cuts the signal of interest into several parts and then analyses the parts separately. It provides 
information about when an event in a signal occurred. and the frequency content of the event 
by dividing the signal into small segments and treating each of these segments as stationary. 
This clearly gives more information, but it also raises the issue of how to cut up the signal 
(Valens 1999). A window of constant length (duration) is used for the entire signal. both 
low and high frequency regions, which makes it very inefficient. If the chosen window is too 

narrow, it is no longer possible to know the exact frequency components that exist in the 

signal. Only the band of frequencies that exist is distinguishable. Conversely. if the window 
is too wide then the stationarity assumption is violated and the time resolution is lost as it 
is in the Fourier transform (Polikar 1999). The Gabor transform is all example of the STFT, 

which uses a Gaussian kernel as the window function. Gabor proved that with this window, 
the STFT achieved the best joint time-frequency localisation (Castellano 1999). 

The shortcomings of the STFT led to the development of the Wavelet Transform -a 
localised, scale- independent technique, which analyses a signal at different time locations 

with kernels of varying sizes (Castellano 1999). These kernels are formed by translations and 
dilations of a prototype function called the mother wavelet. 

A. 3 Wavelet Theory 

In wavelet analysis, the use of a fully scalable modulated window solves the dilemina of how 
to cut the signal. The window is shifted along the signal and for every position the spectrum 
is calculated. This process is repeated many times with a slightly shorter (or longer) window 
for every new cycle. The end result is a collection of time-frequency represent at ions of the 
signal, all with different resolutions, hence the idea of Muffiresolution being associated with 
wavelet analysis. Wavelet analysis does not have time-frequency representation but rather a 
time-scale representation (Valens 1999). 

CL 
E 

Time 

a) 
ra 
U 

, J) IT- 1. 
Time 

Wavelet Analysis 

Figure A. I: Wavelet Transform: An efficient representation in both time and freqliencý 
domains 
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In wavelet decomposition, an input signal f (t) is projected onto a family of functions 

which are the dilations and translations of a unique function'O(t) (Pan 1996b). This function 
is called mother wavelet and it is a complex-valued window function. 'O(t) is scale dependent. 
It is made scale-independent by considering all possible scalings of V)(t). Temporal analysis is 
performed with a contracted, high-frequency version of the prototype wavelet, while frequency 
analysis is performed with a dilated, low-frequency version of the same wavelet (Graps 1995). 

CWTf (r, a) = 
+00 

f (00 (t-T) dt va- 
f 

00 a 

The Continuous Wavelet Transform (CWT), CWTf is a time-scale representation of f 
and a is the scale parameter (Magarey 1997). Large values of a axe indicative of long basis 
functions and hence larger scale features of f. -r is the translation factor and helps to achieve 
time-localisation. This adaptivity to scale a and translation r leads to its good locality in 
both frequency and spatial domains -a property desirable in image matching algorithms 
(Pan 1996b). The ensures energy normalisation at various scales. 

It is easy to see that there is a large degree of redundancy in the CWT representation of 
the signal. This can be addressed by constraining r and a to take on discrete values only, 
which leads to the definition of the Discrete Wavelet Transform (DWT). 

A. 4 Discrete Wavelet Transform 

Discrete wavelet transform discretises both a and -T such that 

a=2j and -T=k, j, k EZ (A. 2) 

where Z is the set of integers. This dyadic sampling makes the DWT more efficient and just 

as accurate as the CWT. The DWT of a signal can now be written as a set of integer-indexed 

coefficients: 

cf (j, k) 
+00 

f (t) ? P(j) (t) dt (A. 3) 
00 

, O(j) (t) 1 O(t - 23k) 
k 72i 2i 

(A. 4) 

A. 5 Wavelets and Filter Banks 

Writing equations A. 3 and A. 4 as 

cf (j, k) = 
(x 

*, O(j) ) (t) I 
t=2j k 

(A. 5) 

where ip(j)(t) = 
2-12? p( 

-t), jEZ (A. 6) 
2i 

demonstrates that the wavelet coefficients cf (j, k) can be interpreted as the sampled outputs 
of a bank of filters whose impulse responses are scaled versions of a mother wavelet. 

The Discrete Time Wavelet Transform (DTWT) corresponds to a filter bank iterated a 
finite number of times along the low pass channel (Cooklev et al. 2000). For discrete signals 
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x(n), it is defined as 

y(j) (n) =Ex (k), O(j) (2i n- k) (A. 7) 
k 

ory(j)(n)=(x*, O(j))(n)ý2j j=1,2,... (A. 8) 

where 4, refers to the downsampling-by-n operation. 
The DTWT is an efficient representation in the sense that it has no redundancy. This 

is true if the filter bank that implements it is a maximally decimated multirate filter bank, 
i. e. it represents the signal x(n) using the same number of coefficients y(j)(n) as the original 
signal has samples (Magarey 1997). 

A. 6 The subband decomposition tree 
The dyadic DTWT provides information about the detail contained in a signal at many 
different scales. In the frequency domain, this is same as analysing the signal into octave 
frequency bands. In such a subband filtering scheme, the input signal x(n) is analysed by a 
pair of halfband filters, one highpass and one lowpass. The highpass filter h, provides the first 
level of detail, i. e. the coefficients y(l) (n) (after downsampling by 2), while the downsampled 
lowpass output ýM becomes a coarse approximation to x(n), with half the resolution, but 
double the scale (Magarey 1997). The basic 2-band structure is shown in figure A. 2. The 
approximated signal is again analysed by the two filters, resulting in the second level of detail 
coefficients, and another approximation signal. This process is repeated iteratively till the 
desired maximum level of decomposition is reached. The resulting structure (figure 
A. 2) is known as the the subband decomposition tree. 

x(n) 
(l) (n) 

00) (n) 

Figure A. 2: Two-band building block for dyadic DWT 

At the maximum level of decomposition m, there are m set of detail signals {y(l) 
j y(2) 1-7y 

(M) 

and a remainder signal P(m), which is a coarse, low-resolution approximation to the original 
signal x. If the lowpass and the highpass filters ho and hi are ideal halfband filters, no 
information is lost and the input signal can be reconstructed exactly. See (Strang & Nguyen 
1997) for a detailed exposition on the links between wavelets and filter-banks. 

The subband decomposition tree also links in with the idea of Multiresolution Analysis 
(MRA), one of the most desirable and versatile properties of the wavelet analysis (Misiti et al. 
2000). The concept of MRA was introduced by Mallat in (Mallat 1989b). He showed the 
suitability of wavelet bases to represent the difference in information between approximation 
of a signal at different resolutions. 
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Figure A. 3: Subband Decomposition Tree (3 levels). The output P(m) of the lowpass channel 
is decomposed further at each level to generate the coefficients at the next coarser level m+ 1. 

A. 7 Two-Dimensional Wavelets 

In 2D, the DWT is implemented most efficiently using a 2D separable filter. Separable image 
transforms axe implemented using 1D convolutions and by applying the 1D building block 
(see figure A. 2) first down the columns and then along the rows of the two resulting half-size 
images. The 2D building block is depicted in figure AA 

Highpass 

r---[ hi ý-rý 2)- 

A 

Columns Rows 

---I -ý- D(2,1) ho]--at '2)---r--4 
h1 -rý 2 

L-EPD- D(3,1) 

Lowpass 

Figure A. 4: Building block for separable DWT on a 2D input image A 

Similarly to the 1D equations in A. 8, the level m approximation and detail coefficients 
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can be written as: 
D(n, m) (n) = 1: A(k). O(n, m) (2mn - k) (A. 9) 

k 

A(m) (n) = 1: A(k)o(m) (2mn - k) (A. 10) 
k 

where O(n, m) is the wavelet filter associated with subband (n, m) and ýW is the level m 
scaling filter. Because of the separable nature of the transform, the 2D wavelets and scaling 
filters can be implemented as tensor products of 1D functions: 

(n) = iP() (ni) 0(') (n2) (A. 11) 

, 0(2, m)(n) = o(m)(nj)? P(')(n2) (A. 12) 

, 0(3, m) (n) =lP(m)(nj)-O(m)(n2) (A. 13) 
o(m)(n) = 0(m)(nj)O(m)(n2) (A. 14) 

These filters partition the unit frequency cell as shown in figure A. 5. Their orientational 
emphasis corresponds to their position in the frequency cell. For example, being 
lowpass in the horizontal direction but highpass in the vertical, emphasises horizontal edges. 
, 0(1, m), . 0(2, m) and 0(3, m) capture the vertical, horizontal and diagonal (corners) features of 
the image. The coefficients D(', m)(n) contain information from heavily overlapping blocks 

of input pixels, each spatially filtered to emphasise a specific orientation and scale (Magarey 
1997). 

7r 

-7r 

Figure A. 5: Partition of 2D frequency cell by single-level separable DWT 

Figure A. 6 depicts the implementation of a 2D wavelet transform. First, each row of 
the image undergoes decomposition into its high and low-pass components. The resulting 
images' horizontal resolution is reduced by a factor of 2 and their scale is doubled. Then, 
both, the high and low-pass subimages are each separately filtered column-wise to obtain 
four row-column filtered subimages. 
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Figure A. 6: Wavelet image pyramid obtained by 2D DWT (left) and Flow-chart of the 2D 
DWT, from level m-1 to level m, implemented using the high-pass filter h, and the low-pass 
filter ho (right). 

A. 8 Complex Discrete Wavelet M-ansform 

The complex discrete wavelet transform (CDWT) is implemented using a pair of complex 
valued filter pair jhO, hj} and was designed to address some of the short-comings of the real 
DWT such as lack of shift invariance and poor directional selectivity. 

Details of the complex wavelets used in this work are presented along with the algorithms 
that use them. Symmetric Daubechies Complex Wavelets (SCD-4 and SCD-6) and Magarey 
& Kingsbury's complex wavelets (MKC-4) are described briefly in Appendix C and a detailed 
mathematical exposition of the MKC-4 wavelets is presented in Appendix D. 

Note: To be consistent with Magaxey's (Magarey 1997) and Castellano's (Castellano 
1999) notation, spatial co-ordinates n= (ni, n2)T ) are used, with vertical listed first. Positive 
directions are down and to the right. 

A. 9 Summary 

The basics of 1D and 2D wavelet transforms have been presented in this appendix. Wavelets, 
like Fourier transforms, decompose a signal into different frequency components. But unlike 
Fourier transforms, wavelets have both frequency and scale resolution (analogous to time 
resolution). Signals are decomposed into shifted and scaled versions of the mother wavelet. 
This results in a collection of time-frequency representations of the signal, all with different 
resolutions. This affords many advantages in terms of signal analysis, the main one being 
that of multiresolution analysis. They allow the use of long time intervals where more precise 
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low-frequency information is required, and shorter regions where high frequency information 
is required. The other major advantage of wavelet analysis is the facility to perform local 
analysis - that is, to analyse a localised area of a larger signal. Wavelet analysis is capa- 
ble of revealing aspects of data such as trends, breakdown points, discontinuities in higher 
derivatives, and self similarity, which are often not highlighted by other techniques. 

Wavelet analysis is implemented using pairs of high and low-pass filters in a filterbank 
configuration. At each level of decomposition, the input signal is decomposed into a low- 
pass Approximation of the signal and a high-pass Detail signal. The Approximation signal 
is again analysed using the filters to obtain the decomposition at the next coarser level. 
Wavelet techniques are economical in their representation because there is no redundancy or 
overlapping in the representation across the scales. This is because the wavelet decomposition 
is with respect to an orthonormal basis - the approximation and the detail sequences are 
both uncorrelated and half the size of the original sequence, which implies that the size of 
the decomposed representation is equal to the size of the original sequence (Prasad & Iyengar 
1997). 

Wavelet analysis in 2D is executed in a similax way using a separable filter pair. These 
axe implemented using 1D convolutions by applying the filters first to the columns of the 
2D signal (image) and then to the rows. This results in an Approximation image and three 
Detail images that capture the horizontal, vertical and diagonal features of the images. 
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Magarey & Kingsbury's Wavelet - 
MKC-4 

B. 1 Introduction 

The complex wavelets designed by Magarey and Kingsbury (Magarey & Kingsbury 1995, 
1996, Magarey 1997, Magarey & Kingsbury 1998a, b), referred to as MKC-4 wavelets, have 
been used extensively in this work. Both the image matching algorithms crucial to this work 
employ these wavelets with varying results. This Appendix describes MKC-4 wavelets in 
some detail. 

B. 2 1-Dimensional CDWT 

The Complex Discrete Wavelet Transform (CDWT) is based on a pair of even-length FIR 
filters jhO, hl} which may be modelled as Gabor filters 

(n 2 

ho(n) aoe . 
iwo(n-no) (B. 1) 

_ 
(n-no)2 

hl(n) ale iff I, - ei, i (n-no) (B. 2) 
for n -D,..., D-1 

with no set to -1- in order to position the Gaussian window symmetrically in the interval 2 
[-D, D- 1]. wo and w, are the centre frequencies. 

The 1D CDWT is implemented using these filters in the standard subband decomposition 
tree (figure A. 3) (Magarey & Kingsbury 1998b). The bandpass coefficients y(I) at level m 
can be thought of as the downsampled output of a convolution with an equivalent wavelet 
filter (equation B. 5), while the lowpass coefficients P("') are obtained using a scaling filter 
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(equation B. 6: 

y(') (n) =E x(k)? P(') (2'n - k) (B. 3) 
k 

(n) = 1: x (k) 0(') (2'n - k) (B. 4) 
k 

For a particular choice of the parameters ao, al, uo, orl, wo, wi, the equivalent wavelet and 
scaling filters can be approximated as Gabor filters (Magarey 1997): 

(n-n? n) 

, 0(') (n) a,,, e 
21, al wn(n-nn) 

- ei (B-5) 
(n-nm) 

a,,, e 
2,2 ej,:, m(n-nn) m (B. 6) 

forn -(2'-l)D,..., (2j-1)(D-1) (B. 7) 

The parameters of V)(1) and 0(l) can be calculated from the parameters of ho and hi. If 

ao, al, wo, wi axe correctly chosen, the set of filters 10(m), 1,... , m} will adequately 
cover the range [0,7r]. 

Of particular interest is the behaviour of 2mwm and 2m6jm as m varies. As m gets large, 
they converge to constants, but for the first few levels, they exhibit significant variation. As 

a result, a prefilter f is applied to the input before the first level of the DWT tree. The 

prefilter is defined by: 

(ho*f)(2n) = Af(n) 

whereA =11 Ho (w) 1,, =o 2 

(B. 8) 

(B. 9) 

Ho(w) is the Fourier transform of the filter ho. The prefilter f is carefully chosen to simulate 
the lowpass branch of an infinitely deep DWT tree, so that after the first 2-band split, the 
equivalent wavelet and scaling filters have converged to their final behaviour (Magarey 1997, 
Magarey & Kingsbury 1998b). Without the prefilter, the complex wavelet filters given by 
equations B. 5 and B. 6 have the same chaxacteristics as the real-valued wavelet filters in terms 
of not being perfectly scaled versions of one another (Castellano 1999). However, perfect 
scaling is a desirable property for the image matching application, and this is achieved through 
the use of the prefilter. The decomposition is now a perfectly scaled wavelet decomposition. It 
is implemented as the standard DWT, except that the filters for the first level axe hof = ho *f 
and h1f = hi * f, instead of ho and hl. The subsequent levels of the tree are computed by 
applying ho and hi as usual. 

The actual filters used are 4-tap filters with rational complex-valued coefficients: 

ho = 
[1-j 4-i 4+j 1+j]110 (B. 10) 

hi = 
[-1-2i 5+2i -5+2j 1-2j]/14 (B. 11) 

Their Gabor parameters axe (Magarey & Kingsbury 1998b): 

WO = ir/6 wi = 0.761r 
uo = 0.97 ul = 1.07 

ao = 0.47 al = 0.43j 
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B. 3 2-Dimensional CDWT 

In the 2D space, the CDWT is implemented separably as the real-valued DWT. The 1D 
CDWT wavelet filters have significant magnitude response only in the range [0,7r]. Therefore, 
if the 2D CDWT is implemented in the same manner, the equivalent wavelet filters will cover 
only the first quadrant of the unit frequency cell (see figure A. 5). However, real-valued images 
contain significant information in the first and second quadrants of the unit frequency cell 
(the third and fourth quadrants axe conjugated versions of the first and second). Hence, the 
2D separable implementation needs to be modified to capture this information. 

In (Magarey 1997) Magarey supplements the complex filters ho and hl with the conjugates 
of these filters since this reflects their magnitude frequency responses about W=0. Hence, 
the conjugated filters cover the frequency range [7r, 0] and there is no loss of information from 
the images. The same separable 2D CDWT implementation is used for the conjugate filters 

- the conjugate filters are applied to the columns first and then the rows of the resulting 
images. The resulting band-pass images are denoted by ID (4,1) 

, 
DMI), D (6,1) } In addition, 

there is a second low-pass image at each level of decomposition, which is labelled A(2, m) (since 
the first one is labelled A(', m)). The 2D CDWT is shown in figure B. 1 

Row Col Row 
(l l) 2 1 A , , ) A( 

hof 
D (2,1) 

ho ho 
D(2,2) 

Col D(l, l) D(1,2) 

(3,1) 
hi hi 

D(3,2) 

hof 

A 
(2 1) 2 2 

hif , A , 
) A( 

(hof)* ho ho* 
D(5,1) D (5,2) 

D (4,1) D(4,2) 
(hif)* 

D(6,1) 
hi h', * 

D (6,2) 

Figure B. I: 2D CDWT. Note the use of f-modified filters in the first level. (Each convolution 
is followed by a downsampling) 

Eight complex subimages are produced, each a quarter of the size of the original and hence 
there is a4: 1 redundancy. Subsequent stages do not increase the redundancy, because each 
stage takes two complex images and produces eight subimages of one quarter the size. The 
over all redundancy of the 2D CDWT is therefore 4: 1, regardlessfo the depth of the tree. 
This redundancy is vital for the interpolability of the transform and is a crucial feature of 
the image matching algorithm (see section D. 2). 

Note: Rom here onwards all the equivalent wavelet and scaling filters considered are 
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f-modified. 
Each subimage D(I, ") has a corresponding wavelet filter 1P(I, m). Equations B. 12 to ?? 

illustrate the relationship between the first quadrant and second quadrant filters respectively 
and the 1D wavelet and scaling filtersO(m) and O(m). The second quadrant filters are obtained 
by applying h*0 and h*,, and can be written: 

, 0(1, ') (n) = 0(') (nl)O(')(n2) (B. 12) 

, 0(2, m) (n) = O(m) (ni), O(m) (n2) (B. 13) 

, 0(3, m) (n) = O(m) (nj)-O(m)(n2) (B. 14) 
o(l, m) (n) = O(m) (ni) O(m) (n2) (B. 15) 

, 0(4, m) (n) = O(m) (nj)o*(m)(n2) (B. 16) 
, 0(5, M) (n) = 0(') (nj)iP*(m)(n2) (B. 17) 
V)(6, m) (n) = -O(m) (nj)O*(m)(n2) (B. 18) 
0(2, m) (n) = o(m) (nj)o*(m)(n2) (B. 19) 

The 2D wavelet filters are also Gabor like (since they axe the products of 1D Gabor filters) 

and can be approximated as: 

(n) -- a(n, m)N(nln,,,, An, m)ejn("'-) . (n-n.. ) (B. 20) 

where N(nim, A) is an un-normalised bivariate Gaussian in n with mean n,,, and covariance 
A: 

N(nlm, A) = exp( - -1(n - M)T A-' (n - rn) (B. 21) 
2 

The parameters can be derived from those of ho and hl. The centre frequencies specifying 
the orientation of the wavelet filters is given by: 

O(I, M) = (WMIC)m )T (B. 22) 
n(2, m) = pm, Wm) 

T (B. 23) 
n(3, m) = (w 

m, wm )T (B. 24) 
n(4, m) = (wm, -(Ij m 

)T (B. 25) 
n(5, M) = (6iml -wm )T (B. 26) 
n(6, m) = (Wm, _W m 

)T (B. 27) 

Since the CDWT is to be used to estimate motion, it is paramount that no information is 
lost when transforming to the CDWT domain. To facilitate this, the chosen set of 2D wavelet 
filters should tile the upper half of the unit frequency cell as evenly and as completely as 
possible. Because of the iterative structure of the CDWT, this can be ensured by placing 
the six filters evenly around the edge of the rectangle [-27r/2', 27r/2m] x [0,27r/2m]. 
Figure B. 2 shows that most even tiling is achieved by setting wm/Cvm equal to 3. Since the 
tree in consideration is a perfectly scaled tree, this can be achieved all levels of decomposition 
m by simply setting w1f 1wof to 3, and this in turn can be achieved by appropriate choice of 
the parameters {wo 9 wi I uo 7 ol}. 

It is preferable if a near uniform spacing of orientations between 0 and 7r can be achieved, 
i. e. a spacing of7r/6. Magarey found in (Magarey 1997) that this can be achieved by setting 
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Figure B. 2: Circular contours of the magnitude responses of the 2D CDWT wavelet filters at 
levels 3 and 4 derived from the Gabor pairho and h, with parameters ao = 0.39, a, = 0.39j, 

WO = 7r/6 and w, = 57r/6, ao = a, = 1.27 and D=4 

wmlCvm equal to 3.73. However, this conflicts with the previous requirement for an even 
tiling, and a value somewhere between these must be chosen. 

The contours of the Fourier transform jQ(n, m)(Q)j of O(nm) are elliptical, centred on 
Q(n, m)' with shape determined by An, m (Magaxey 1997, Magarey & Dick 1998). Each coef- 
ficient D(n, m) of the Detail or the bandpass images is derived from the contributing region 
of pixels in the original image. The size of the contributing region depends on the spatial 
extent of the corresponding filter O(n, m). Because of the Gabor-like nature of the wavelet 
filters 0(1, m), the region contributing to n can be thought of as an elliptical area centred 
on pixel 2mn - nn, with axes specified by An, m. This property is crucial to the matching 
criterion used in Magarey's matching algorithm, described in detail in Appendix D. 

B. 4 Summary 

Magarey and Kingsbury's complex-valued 2-channel wavelets have been described in this 
Appendix. First, the 1D CDWT using Gabor-like filters is described. The theory is then 
extended to 2D real-valued signals (images). Properties of this wavelet particularly useful 
the image matching application and Magarey's algorithm are also highlighted. 
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APPENDIX 

Pan's Uniform Full-Information 
Image Matching Algorithm 

In (Pan 1996b, a), Pan presents uniform full-information image matching technique. This 
technique is described briefly and is presented in pseudo-code form in Chapter 6. The results 
of its application to matching face images axe also presented in the same chapter. This 
chapter presents the mathematical details for the algorithm and follows a similar structure 
to Pan's papers (Pan 1996b, a). 

CA Uniform Full-Information Image Matching 

A digital image is a function f (x, y) in the 2D space. For the purposes of image match- 
ing, a new representation of f (x, y) should be chosen such that the constructs in this new 
representation harness the salient information contained in the original image f (x, y). 

Assume that f (x, y) is to be represented by a vector of projections of f (x, y) onto n basis 
function Oj (x, y) 

f (x, V) --4 (a 1, a2 , .... a,, ) (C. 1) 

aj=(f(x, y),? Pj(x, y)), j=1,2,..., n (C. 2) 

where (-, -) denotes the inner product of two functions, and aj's are called representation 
coefficients. Appropriate choice of the basis functions iPj's results in the salient information of 
f (x, y) to be encoded in the representation coefficients, aj's. If the coefficients aj's computed 
via equation C. 2 result in 

(x, y) = F(al, a2 , .... an; IP1 42 
1 ... 9 

On) (C. 3) 
being true, then equation CA is said to be a full information representation. Note that FO 
is a computable function. An example would be when 0j's constitute an orthonormal basis. 
In this case, the reconstruction can be achieved using 

n 
(x, y) =E aj ýbj (x, y) 

j=l 
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A representation of the form in equations C. 1 and C. 3 is said to be uniform because each 
representation coefficient aj is defined and computed with exactly the same mathematical 
form of equation C. 2 (Pan 1996b). 

Pan states that for image matching, it is desirable if the properties of equation C. 3 
include good dimensional orthogonality, discriminative uniqueness, space-frequency locality, 
multiresolution adaptivity, and computational efficiency and robustness (Pan 1996b). 

C. 2 Similarity Distance and Continuous Matching 

Pan defines a similarity distance measure for any pair of points in the reference image (e. g. 
left) and the matched image (e. g. right) in terms of the complex conjugate wavelet analysis. 

C. 2.1 Notation 

o Standard Similarity Distance: SBj((x, y), (x', y)) 

o Generalised Similarity Distance: Sj ((x, y), (x', y)) 

o Reference Image: f (x, y) 

o Matched Image: f'(xl, yl) 

Approximation sub-matrices at jth level of decomposition: A(W) and AMA. 
Note that the use of two channel complex wavelets such as MKC-4 results in twice 
as many coefficients: 2 Approximation coefficient matrices and 6 Detail coefficient 
matrices. If single channel wavelets axe used then there is only I Approximation and 6 
Detail images. 

Detail sub-matrices at jth level of decomposition: D(IJ), D(2j), D(3, j), D(4, j), 
D(5, j) and D(6, j). 

C. 3 Implicit Feature Vectors 

It is assumed for the remainder of this Appendix that 2-channel complex wavelet such as the 
MKC-4 is used, and the theory is presented here with that in mind. If this is not the case, 
then only the available coefficients axe used. 

There axe 8 complex wavelet analysis coefficient matrices for each level of the wavelet 
pyramid: A(W), A(2j), D(W), D (2j) 

, 
D(3j) 

, D(4j), D(5J) and D(6, j). The 2 approximation 
components, A(W) and A(2j), are further decomposed at each level to obtain the coefficients 
for the next level of the wavelet pyramid. 

The standard case of similarity distance measure for matching the two images uses the 
detail coefficients only. The implicit feature vector Bj (x, y) for each position (x, y) is given 
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as 

Bj (x, y) = 
(D(lj)(x, y) D (2j) (X, y) D (3, j)(X, y) D(4, j)(X, y) D(5, j)(x, y) D(6, j)(X, y) 

IA(I, j)l ' IA(lj)l IA(I, j)l IA(2, j)l IA(2, j)l IA(2, j)l 

with 

B 
D(P, j) (x, y) 

and q= 
1 ifp=1,2,3, 

P'j A(q, j) (X, T) 2 if p=4,5,6. Y) 

I 

(C. 4) 

where I-I denotes the L2-norm. This feature vector also incorporates normalisation in 
order to insure the matching process against local image intensity variations. 

CA Standard Similarity Distance Measure 

If the relative rotation angle -y is small enough, then the similarity distance measure SBJ ((x, V), (xl, yl)) 
can be defined as 

SBJ «X, y), (X', y'» =Z SBP, j «X, y), (X', y'» (C. 5) 
p, i 

where SBpj's are the subband similarity distances, defined by 

I"j 
(X y) _ BI, j (XI, YI) 12 SBp, j «x, y), (x', y 1, 

(C. 6) l» = IB. 11 

For an image point (x, y) = (k, 1) on the reference image, its precise correspondence (x', y') 
lies somewhere around the integer positions (m', n'). 

(k, 1) ý-+ f '(? n' + u, n' + v) (C. 7) 

where (u, v) E R2 and denotes the differences: 

U=Xl-ml, v=y'-n' (C. 8) 

The similaxity distance measure is now reformed to: 

SBp, j((k, I), (m'+u, n'+v)) = lBp, j(k, I) - BP', j(m'+u, n' + V)12 (C. 9) 

The best matching point is the one that minimises this distance measure. 

min SBpj ((k, 1), (m' + u, n+ V)) (C. 10) 
U, V 

Note that in the above formulations, the position (x, y) refers to the continuous 2D 

space. However, Bp, j (x, y)'s axe available only at discrete positions (x = k, y=II (k, 1) E Z2). 
Therefore, the wavelet subbands are continuously interpolated in order to minimise SBP, j of 
C. 6. Detailed exposition of the continuous interpolation process can be found in (Pan 1996b). 
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C. 5 Local Parallax Continuity and Generic Pattern Matching 

For the robustness of image matching, Pan assumes local parallax continuity, i. e. the parallax 
field (or the disparity field) in a neighbourhood of two neighbouring points will be nearly 
the same. To maintain a compromise between fine locality of matching and robustness of 
matching, a generalised similaxity distance measure, in the generic pattern matching sense 
is defined. Let X denote a minimum neighbourhood containing the central position and its 
four closest diagonal positions: 

JV = f(0,0), (-O. 5, -O. 5), (-O. 5,0.5), (0.5, -O. 5), (0.5,0.5)1 (C. 11) 

Let PAj (k, 1) and PDj (k, 1) denote the approximation and the detail subband pattern 
vector on an integer-indexed position (k, 1): 

PAi, j(k, l)=[A(i, i)(k+r, l+c) I i=1,2; (rc)EN] (C. 12) 
PDj(k, l)=[Bp, j(k+r, l+c) I p=l,..., 6; (rC)EN] (C. 13) 

Note that: 

* PAij and PA2, j are complex conjugates. 
(k + r, I+ c) with I (r, c) E JV - (0,0) } corresponds to diagonal positions which can also 
be computed with rigorous bottom-up wavelet transform. 

An integer-indexed position (k, 1) may be matched with another integer-indexed posi- 
tion (m', n') or a diagonal position (m' + r, n' + c). 
In order to use the generalised similarity distance measure Sj ((k, 1), (7n, n')), two 
wavelet pyramids need to be prepared: one on integer-indexed positions (k, 1) and 
another one on diagonal positions (k + r, I+ c). This eliminates the need for continuous 
interpolation of wavelet subbands. 

The generalised similarity distance measure Sj = ((k, 1), (tn, n')) is defined as 

Sj ((k, 1), (m', n)) = SAj ((k, 1), (m', n)) * SDj ((k, 1), (m', n')) (C. 14) 

where SAj ((k, 1), (m', n')) and SDj ((k, 1), (m', n')) are the similarity distances in terms 
of approximation and detail subbands respectively, 

SAj ((k, 1), (ml, ni)) 
IPAl, j (k, 1) * PA2, j (m', n) I 

(C. 15) 1PAI, j (k, 1) 1 PA2, j (m', nl) 

SDj ((k, 1), (m', n')) PDj (k, 1) - PDj' (mW) I (C. 16) 

Note that Pan uses full information here - approximation subbands and normalised detail 
subbands are used for defining the similarity distance. Pan also suggests an alternative set 
of approximation and detail subbands similarity measures. However, he ascertained through 
experimental work that this alternative set of measures reduces the efficiency but not the 
gross errors. Consequently, these measures are not detailed here. The interested reader is 
directed to (Pan 1996a) for more information. 
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C. 6 Matching Two Images 

For any image point (k, 1) on the reference image, its approximate correspondence (ko, 10) on 
the matched image is obtained through spiral and hierarchical paxallax propagation strategies. 
The identification of the precise correspondence (k', I') is achieved via the discrete search in 
a small neighbourhood of (ko, 10). This neighbourhood is defined by a distance threshold T, 

min Sj((k, l), (k', I')) V(k', I'): (C. 17) 
(kl, ll) 00 

The distance threshold T, should be defined in such a way that the allowed errors in the 
parallax propagated from the last higher level can be corrected. In general 1<T, < 2. Note 
that the search takes place not only on integer positions, but also on diagonal positions. 

C. 7 Spiral and Hierarchical Parallax Propagation 

Without loss of generality, only stereo pairs of square images with size 21 x 2' are considered. 
Let Mj denote the parallax vector field on the jth level of the image pyramid for image f (x, y), 

Mj=(Mj(k, l)), withm=2n-i-I (C. 18) 

where each element Mj (k, 1) contains parallax vector for a pair of homologous image 
points (x = k, y= 1) and (x', y) on the jth level 

Mj(k, 1) = (x'- k, y'- 1) 

In case there is no correspondence for (x = k, y= 1), Mj (k, 1) = 0. With a minimum 
overlap of 60%, the central area on the coaxsest reference image (i. e. at the highest level 
of decomposition) is guaranteed to have a correspondence on the coarsest matched image. 
The search for potential matches for the central area starts with an exhaustive search at the 
coarsest level (the smallest decomposed image). The similarity distance defined by equation 
C. 14 yields an approximate parallax vector Mj (0,0) for the central area. 

Using the assumption of local parallax continuity, the parallax vector for each integer. 
indexed position of this central area is initiated as 

Mj (k, 1) -- Mj (0,0), 1 (k, 1) G JV - (0,0)} (C. 20) 

This can also be fine-tuned using equation C. 14. Spiral propagation is used to initialise the 
unknown parallax field. Known parallax vectors are propagated, from the central area to 
the outer rings, ring by ring, until the boundary of paxtial correspondence is reached. Gross 
errors of the resultant parallax field can be detected and corrected automatically using the 
local continuity constraint 

I Mj (k, 1) - Nij (k, 1) 1 :5 Tm 

where Mj(k, I) denotes the mean (or median for robustness) parallax field vector on the 
smallest (e. g. 4-connected) neighbourhood centred on the position (k, 1) of level j. TM 
denotes the maximal allowed paxallax difference usually 1< TM < 2. 

After image matching on a higher (j + 1)th level, the parallax field is then propagated to 
the next lower (finer) jth level (hierarchical propagation). The initial parallax field on the 
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current jth level can be obtained by interpolating the parallax field at the (j + 1)th level. 
The inverse of the similarity distance of equation C. 14 for each position on the higher level 
may be taken as the weighting factor for linear or nonlinear interpolation. The matched 
parallax field Mj on each jth level yields pairs of matched homologous image points. These, 
along with the relative imaging geometry (obtained through camera calibration), are used to 
reconstruct the object surfaces via triangulation. 

C. 8 Wavelets 

Pan describes the properties that are desirable in a wavelet family to achieve optimality in 
the context of the image matching task in (Pan 1996a). The three main properties, orthonor- 
mality, locality and symmetry axe described briefly. Since the 2D wavelets axe implemented 
as separable filters, Pan states that it suffices to study the 1D scaling and wavelet functions 
0 and V), where 

0 (x) = , r2- E hko(2x - k) (C. 22) 
k 

and 
ip (x) = %42- EAý (2x - k) (C. 23) 

k 

Orthonormality: Orthogonality of the scaling and the wavelet functions 0 and 
,0 guarantees that there is no loss of information and no redundancy in the repre- 
sentation of a particular input signal. In particular, the similarity distance measure 
Sj ((k, 1), (m', n')) (equations C. 6, C. 14) is defined as a Euclidean distance, which re- 
quires the orthogonality of implicit feature space. The normality condition ensures 
uniform comparison in terms of similarity distance. 

Locality: Salient information is often contained in the local variations or the transient 
phenomena. This imposes two requirements on the chosen representation: 

1. The representation should be able to detect local changes in the input signal 
f (x, y), and 

2. Abrupt changes in the input signal f (x, y) over a small spatial span should result 
in changes in only a few of the wavelet coefficients. 

In the context of image matching, locality requires the scaling and the wavelet functions 
to have compact support. This means that only a limited number of hk's are non-zero 
or non-vanishing: 

hk7ýO Vk: -N>k<N+l 

Such scaling function has support length L= 2N + 2. Locality in the frequency domain 
is reflected in the smoothness of the scaling and wavelet functions. Mathematically, 
a maximum number of vanishing moments for the scaling and wavelet functions is 
desirable. For a wavelet family with compact support of 2N + 2, the maximum number 
of vanishing moments is N. 

Symmetry: In signal processing, symmetry is necessary for linear phase of the 
filters. Linear phase is desirable in order to avoid phase compensation in pyramidal 
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filter structure and for reducing border effects by symmetric extension. The symmetry 
of the scaling and wavelet functions 0 and 0 is equivalent to 

hk=hl-k, fork=1,2 

where N is an odd number. In image matching, this property is also a necessity in order 
to achieve a minimum basis of the rotation-invariance of the filters and in matching the 
homologous image neighbourhoods. It is important in particular in case the relative 
orientation of the two images is unknown prior to the image matching. 

C. 8.1 Real Wavelets 

Pan goes on to analyse three of the real wavelet families with the above properties in mind. 
The Haar and the Daubechies-4 (Db4) Wavelets axe both orthogonal and have compact 
support. The Haar has the most compact support of 2. The Db4 wavelets have the most 
compact support of 4 among all orthonormal wavelets. The scaling filters for the two are 
given by 

hO(Haar) =111) 
( 

-2 i 

and 
1+ /3- 3+ N43- 3- /3- 1 /3- 

h(Db4) 
888, 

-8 

Unfortunately, the Haar is too compactly supported so that not enough information can be 

extracted for similarity analysis of any given pair of homologous points on any given level 

and the Db4 wavelets are not symmetric. Also analysed is Symmlet-L family of wavelets. 
This family of wavelets satisfy the orthonormality property and have the maximum vanishing 
moments. They are known to be the "least asymmetric" wavelets with the compact support 
of L. 

No real wavelet families satisfy all of these conditions for optimality. Lawton (Lawton 
1993) showed that only complex valued scaling and wavelet filters and functions exist under 
the four stringent conditions of orthonormality, compact support, maximum vanishing mo- 
ments and symmetry. He presents a method for constructing complex valued linear filters 
and associated wavelet bases. Lawton also derived a length-6 complex valued linear phase 
filter associated with real-valued Daubechies-6 wavelet bases. 

Lina and Mayrand (Lina & Mayrand 1993) investigated the general complex solution 
of the four conditions using a particular paxametrisation of the multiresolution analysis. 
They show that realness and symmetry are incompatible. Hence, all symmetric Daubechies 

wavelets are complex valued, and Lawton's complex valued Daubechies-6 wavelet is a partic- 
ulax example of the more general set of complex wavelets found by Lina and Mayrand. 

C. 8.2 Complex Wavelets 

Pan (Pan 1996a) refers to the symmetric complex wavelet family associated with real Daubechies- 
L wavelet family the "Symmetric Complex Daubechies Wavelets" (SCD-L). He investigates 
two of these for use with his algorithm - SCD-4 and SCD-6. SCD-6 is the shortest wavelet 
that satisfies the conditions of orthonormality, vanishing moments and symmetry. However, 
Pan believes that SCD-6 is not compact enough for stereo image matching. SCD-4, although 
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symmetric, does not have vanishing moments. Because of its highly non-smooth nature, 
this particular wavelet has not received much attention in signal analysis and reconstruction 
applications. However, Pan felt it was worthwhile investigating whether it was useful and 
effective for the image matching application. The scaling filters for SCD-6 and SCD-4 are 
given by equations C. 24 and C. 25. 

ho(SCD-6) = -1 
(-3-iVl-5,5-i-, /-1-5,30+2ivrl-5-, 30+2iVl-5,5-ivfl-5, -3-ivfl-5) (C. 24) 

64 

1 
ho(SCD - 4) =ý 

(i +i, l -i'l -il +i) (C. 25) 

In addition to the Symmetric Complex Daubechies Wavelets, Pan also investigates the 
complex wavelets designed by Magarey and Kingsbury (Magarey & Kingsbury 1995). These 
wavelets do not satisfy the orthogonality condition and are described in detail in Appendix 
B. These wavelets have a compact support of length 4, with N=2. Pan uses an approximate 
version of these wavelets, with the lowpass (ho) and the highpass (hj) filters given by: 

hcl= [1-i 4-i 4+j 1+j]/10 (C. 26) 

hi = 
I- 1-2i 5+2i -5+2j 1-2j]/14 (C. 27) 



APPEN Dix 

Magarey's Motion Estimation using 
Complex Wavelets 

D. 1 Introduction 

The mathematical details relating to Magarey's complex wavelets based motion estimation 
algorithm, described in Chapter 6 are provided in this Appendix. 

Motion estimation starts at the coarsest level mmax, producing a motion vector for each 
sub-pixel at this resolution. A coarse-to-fine hierarchical matching strategy is adopted. At 
each level of decomposition, the corresponding transform coefficients plus the estimates of 
the previous coarser level are utilised to produce a more dense and accurate motion field. 
This field is then smoothed and regularised using Anandan's approach (Anandan 1989). 
This process is repeated till the finest resolution is achieved at level mmin. At this level of 
decomposition the motion field has a density of 2-2, nmin, i. e. one motion estimate for every 
2M-in x 2m-in block of input pixels. In order to obtain a motion vector for every pixel in the 
original image (full resolution motion field), the motion field at level Mmin is upsampled and 
interpolated Mmin times (Castellano 1999). 

D. 2 Coarse Level Estimation 

The matching criterion is defined at subpixel n and sub-band (n, m), where n refers to the 
bandpass image number, and m is the decomposition level, as follows: 

SD (n, m) (n, f) 
D(, "'m) (n, f) - D2(n'm) (n)' 

2 

(D. 1) 
orp(n, m) 

D (n, m) (n) and D (n, m) (n) are the bandpass or the detail coefficients from the reference 12 
and the current image frames Al and A2. f is the vector offset or the displacement at the 
subpixel n at scale m (or equivalently, a displacement of 2m xf at the original resolution 
of the input images). p(n, m) eliminates the filter dependency when the different subbands 
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are combined in the hierarchical estimation. a avoids the scale dependency of p(n, m) when 
combining the matching criteria over different scales. It has the effect of assigning the finer 
level information a progressively greater weight in the final motion estimate. 1 

p(n, m) is a weighting factor corresponding to the energy of the wavelet filter at subband 
n and scale m. 

p(n, m) 
27r f21r Jp(n, m) (fl) 

12 
df] (D. 2) (27r)2 

fo 

0 

where TKI) represents the Fourier transform of 01, I). 
Hierarchical matching algorithms work by accumulating disparity information at all levels 

of decomposition. This allows the more confident coarser-scale motion components to be 

passed down the hieraichy, unchanged into the aperture-affected regions. Hence, the aperture 
problem (see Section DA) is addressed to an extent. 

At the coarsest level of decomposition, there is no prior information available about the 

motion field, and the search region is centred on zero displacement: 

E [-fmax, fmax] X Pfmax, fmax] (D. 3) 

Estimating motion at vector offsets as well as integer valued coefficients gives sub-pixel accu- 
racy at the coarsest level. Scaling and interpolating these sub-pixel values at finer resolutions 
results in a dense and accurate disparity field. 

Summing over the six oriented subbands forms the subband squared difference, SSD: 

6 

SD(') (n, f) =E SD (n, m) (n, f) (D. 4) 
n=l 

The motion estimate or the dispaxity at sub-pixel n is taken to be the location of fo, the 
minimum of SDW. fo is converted to the original pixel resolution by scaling it by 2m. This 
is to allow for the downsampling that has taken place at level m. The maximum detectable 
motion is therefore fm,,:, x 2m-, -- pixels in each direction. 

A distinctive feature of this matching criterion is that it is defined as a surface over a real 
2D interval, f, rather than as a set of values on an integer or half-integer interpolated grid. 
This is made possible by the interpolability of the CDWT, the ability to estimate non-integer- 
indexed coefficients D(j"m)(n, f) from the known integer-indexed coefficients in the same 
subband. This property also makes it possible to estimate the location of the minimum of the 
SSD analytically in terms if the coefficients JD, (n, m) (n), D (n, m) (n), n=1,6} with high 2 
precision, without having to conduct a computationally-intensive interpolated search (see 
Section B. 3). The interpolability of the CDWT also links phase-correlation, phase matching 
and gradient-based estimation. 

A further important property of these surfaces is that the steeper the surface is at the 
minimum point (large curvature paxameters), the more precise (high confidence) the corre- 
sponding motion estimate is. Inversely, if the surface is flat in a paxticulax direction (small 
curvature parameters), it highlights the unreliability (low confidence) in the component of 
the motion in that direction (Castellano 1999). 

'Note that in his thesis (Magarey 1997), Magarey finds that the best value for a(') is 4 \4, with A given 
by equation B. 9. 
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D. 3 Subband Coefficient Interpolation 

The interpolability property (described in preceding Section) of linear transforms follows 
from another property, termed shiftability by Simoncelli et. al (Simoncelli et al. 1992). A 
transform is defined to be shiflable if the energy distribution amongst subbands is independent 
of shifts in the input signal. Real-valued critically-sampled transforms cannot be shiftable 
in this sense. However, the implicit 2: 1 redundancy of the 1D CDWT provided by the 
complex basis filters enables this without the need for explicit oversampling. Since the 
CDWT approximately satisfies this criterion (Castellano 1999), D(n, m)(nf) can be written 
as 

D 
(n, 7n) (n, f) W(n, m) (k)D (n, m) (n + k) (D. 5) f 

k 

Wf(n, m) (k) Hf(-k)e j2'(n(n, m))T(f-k) (D. 6) 

This is based on the work by Fleet and Jepson (Fleet & Jepson 1990), who showed that it 
is possible to interpolate the downsampled outputs of complex bandpass filters by modulating 
a low-pass interpolation kernel W(n, m) to the centre frequency of the equivalent wavelet filter, f 
and convolving with the modulated kernel (equation D. 5). 

As the 2D CDWT is constructed separably, it follows that 2D interpolation can also be 
implemented sepaxably. That is, the 2D interpolating low-pass kernel can be constructed as 
the product of two 1D kernels: 

Hf(k) = hfi(kl)hf2(k2) (D. 7) 

The range of k depends on the range of f values required. In practise, only a unit range (in 

each direction) needs to be considered, as the CDWT coefficients can be integer-shifted to 
cope with values that fall outside that range. 

The simplest low-pass kernel is a delta function, corresponding to a "staircase" interpo- 
lation. 

hf (k) =1 
ifk=O forf E [-0.5,0.5]. (D. 8) 

10 

otherwise 
This results in the simplest possible interpolation formula 

D(n, m)(n+f) D(n, m)(n)ejo(f) (D. 9) 

where O(f) 2m (n(n, m) )Tf (D. 10) 

forf E [-0.5,0.5]x[-0.5,0.5] 

(The factor 21 in equation D. 10 accounts for the downsampling in each direction). Equa- 
tion D. 9 gives the approximate relationship between small input translations and linear phase 
changes. This relationship may be modelled as a plane, whose gradient is determined by the 
centre frequency of the associated wavelet filter, scaled up by 2'. It is assumed here that for 
small f shifts, the magnitude of the CDWT coefficients is approximately constant. Magarey 
finds in his thesis (Magarey 1997) that the model works well over the unit interval as long 
as the input image has no "strong spectral components in the passband of the filter, but is 
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reasonably spectrally flat". Hence, it is assumed that the input spectrum has no sharp peaks 
in the support region of the associated Gabor-like wavelet filter. Since the filter bandwidth 
decreases as m increases, this property is more readily satisfied at the higher pyramid levels, 

where accuracy is most important. 
However, Magarey and Kingsbury's investigations, in common with those of Fleet and 

Jepson's (Fleet et al. 1991), found that the actual phase gradient, or local firquency, can vary 
considerably axound the expected value. As a result, the algorithm accuracy is improved by 

explicitly estimating the phase gradient in equation D. 10 at each subpixel n of each subband. 
The phase gradient can be estimated using the formula (Fleet & Jepson 1990) and equation 
D. 5: 

! Zýmf D(n, m)*(n + f)VD(n, m)(n + f) 
VO(n, m)(n+f) =I D(n, m)(n + Q2 

(D. 11) 

where VD (n, m) (n + f) = VWf(n, m) (k)D(n, m) (n + f) (D. 12) 
k 

The accuracy of the algorithm is further increased by replacing the staircase interpolation 
kernel of equation D. 8 with a 4-tap windowed-sinc kernel: 

hf (k) cos (f + k) sin 7r(f + k) 
k=-2.... 

11 
(D. 13) 

1- (f + k)2 

)( 

7r (f + k) 

DA Quadratic SSD surfaces 
Magarey shows in (Magaxey 1997) that the dispaxity estimation using only one sub-pixel (see 

equation D. 1) is sufficient in the CDWT domain, and averaging over a region of sub-pixels is 

not necessary. This is due to the fact that small translations in the input image result phase 
rotation in the CDWT domain, which is both predictable and signal independent, and its 
values can be derived from the CDWT coefficients. However, at least two distinct orientations 
are required to produce a unique estimate and all six are required to ensure robustness of 
the estimates. This is because each subband, rather than defining the actual displacement, 
defines only that component of the displacement that is normal to the orientation of the 
filter associated with the paxticular subband. This a manifestation of the aperture problem 
in the subband-phase-space. Aperture problem is also one of the contributing factors to the 
motion estimation problem being ill-posed (Magarey 1997). 

The aperture problem in detecting the motion of a feature that varies along one spatial 
dimension only (either horizontally or vertically) arises because the vector component of 
motion parallel to the orientation of the feature has no effect on the image. If the true 
motion vector is decomposed into two components, paxallel and perpendicular to the feature 
orientation, then only the orthogonal component can be detected (Hildreth 1983). More 
specifically, the component of the motion along the direction of an edge cannot be determined 
unless the size of the aperture of the analysing device is larger than the length of the edge 
(Castellano 1999). In the case of this algorithm, the size of the aperture is determined by 
the region of support of the wavelet filter (Castellano 1999). 

A match between two sub-pixels is indicated by the minimum of the SD' (n, f) (equation 
DA). The minimum of the SSD surface is located using the CDWT interpolation formulae. 
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First, expand the equation D. l: 

SD (n, m) (n, f) D(n, m) (n, f) 
2+D (n, m)(n) 

2_ 
2Re D*(n, m) (n)D (n, m) (n, f) (D. 14) I1121f21 

This implies that minimising, the SSD is equivalent to maximising the cross-correlation of 
the two sub-images across all. six orientation bands, assuming that D (n, m) (n + f) 

2 
remains 

111 

relatively constant as f varies. This assumption is further justified by equation D. 9 over a 
small range of f values about (0,0). Further, this allows SD(n, m)(n, f) to be approximated 
as 

SD(', ')(n, f); z:: D (n, m) (n) 
2+D (n, m) (n) 

2 1121 

21D 
(n, m) (n)D (n, m) Cos (n, m) (n, f) _ O(n, m) 
121 

(01 
2 

for fE [-0.5,0.5] x [-0.5,0.5] (D. 15) 

where 0("')(n, f) and 0("')(n) are the phases of D (n, m) (n, f) and D("m)(n) respectively. 1212 
Hence, minimising equation D. 8 is much like maximising the weighted phase correlation 
between the two sub-pixels. The weighting factor is given by the activity in each subband at 
sub-pixel n: 

Dln, m) (n)D (n, m) (n) 
E(n, m) (n) 

J-2 
(D. 16) p(n, m) 

The effective fnx for this approximation of SD (n, m) is 0.5. Hence this method assumes that 

the motion is less than half the separation between level m sub-pixels in each direction. That 

is, an m-level algorithm can estimate motion up to 0.5 x 2' pixels in each direction (conse- 

quence of using the staircase approximation). This range can be extended and details of this 

can be found in (Magarey 1997). In (Magarey & Kingsbury 1995), Magarey and Kingsbury 

report that in practise this measurement is more like < 0.35 due to the deterioration in the 

staircase approximation as f increases. Consequently, the mm". ' chosen must be large enough 
to allow this measurement range to encompass the largest expected displacement. 

The minimum of the quadratic surface SD(, m) as approximated in equation D. 15 is 

specified by the equiphase equation 

O(n, m) O(n, m) (n, f) --'ý 2 (n) (D. 17) 

which needs to be solved for f over n From the planar model of interpolated 
phase (equations D. 9 and D. 10): 

2' (fl(n, m) )Tf =O(n, m) (n) (D. 18) 

where O(n, m)(n) =Z 
D(n, M)2 

(D. 19) 
D (n, m) 

1 

The minimum of SD(', ') therefore lies along a line perpendicular to the centre frequency 
vector of the associated wavelet filter. The minimum line is therefore parallel to the 
preferred direction of the filter (see Figure D. 1). 



224 Magarey's Motion Estimation using Complex Wavelets 

(a) 

400 "N" 

(b) 

Figm-4. DA: Greyscale (grey=0) plot, of the impulse responses of the 6 wavelet filters 

at level I of Hie 21) CIAVT based on the pair of Gabor filters in equations B. 1 and B. 2(aO 

0.39, NIO. 39j, Wj) ý 7r16, Wj = 57r/(i, (7() = (TI = 1.27). (a) Real part. (b) Imaginary part. 
Fr')III left to right" t, ll(' 4)1-der oforientations is n=2,3,1,4,6,5. 

The quadratic surf"we SD( ...... ) can be characterised around its nummum line by using 
I 

appl-twillat, H)JI (. ()S. I. ýzt I -r- and the planar phase model (equation D. 9): 
2 

12 D (I (n) D271 "I') (n) I) 

+ D(I ...... )(n)D (n, rn) (n) ý (2' (n f- 0(", ") (n)) 
2 

2 (D. 20) 

If' the 11611111111111 11114"s of the six SD( ..... ) surfaces do not He too far apart, theil the sum 
s0m) call also be approximated ; is a quadratic surface. 

SDý .. ) (n, f) ; ý, A f2 +B I 
F, 

22 + Cflf2 + Df, + Ef2 +G (D. 21) 

form expressions foi- the coefficients fA, B, C, D, E, F, GI in terms of coefficients 
(11) and 1). ( ....... 

ý01) 
and the (viltre frequencies may be obtained from equations 
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D. 20 and DA: 

6 
n, m) A= EID, 
1 

(n, m) (n)D 2 
n(n, m)) 

2 
(n) (D. 22) 

n=l 

(n, m) B=EID, 
(n, m) (n)D2 n(n, m) 

2 
(n)l( 2 (D. 23) 

n=l 
6 

(n, m) C=EID 1 
n, m) (n)D2( 2 

n(n, m)n(n, m) (n) 2 12 (D. 24) 
n=l 

6 
(n, m) 
1 D=EID n, m) (n) D2 n(n, m)o(n, m) 

-2) (n) (n) (D. 25) 
n=l 

6 
(n, m) E=J: JD (n, m) (n)D 2 

n, m)o(n, m) (n)l(-2)il( (n) 2 (D. 26) 
n=l 

(n, m) (n, m) (M) 
2 

G= (ID, (n) 1-1 D2 (D. 27) 
n=l 

n, m) +I: ID, ( (n, m) (n)D2 O(n, m) 
2 

(n) (n)) 
n=l 

where 
2mn(n, m) n(n), p(n) 

T (D. 28) 12) 

By completing the square, SD(m) can be transformed from the representation in D. 21 to 

SD(') (n, f) - a(f, _ flo)2 + p(f2 _ f2o)2 +, Y(fl _ flo) (f2 _ f2o) +j (D. 29) 

where fo = yIOf2O]T are the co-ordinates of the surface minimum. Also, it can be seen that 

[2BD 
- CE, 2AE - CD] 

T 

fo = C2 - 4AB 
(D. 30) 

The curvature parameters a, P, -y = A, B, C together define the curvature matrix of the 
surface at its minimum point such that 

[2a y 
ly 20 

(D. 31) 

J in equation D. 29 represents the surface minimum value and J=G- Af 2_ Bf 2- Cflof2o. 10 20 
The value of J is indicative of the closeness of the match between D2(n") (n) and D(ln'm) (n + fo) 2 
over n 6. 

Hence the location fo(n) of the minimum, scaled by 2m, is the coarse motion estimate 
for the 2m x 2m block of pixels in the reference frame centred on 2mn. It is composed of 
information from each subband, weighted by the energy in that subband. 
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D. 5 Hierarchical Estimation 

D. 5.1 SSD Parameter Field Interpolation 

The coaxse level estimates are used as initial guesses and these are progressively refined by 
including the finer scale information. At the coarsest level mm"ý', a field of SD parameters, in 
the form of six real-valued parameter matrices (either JA, B, C, D, E, GI or Ifo, a,, 8, -Y, 61) 
is computed. The dimensions of the level m parameter matrices are doubled (interpolated 
and scaled as f ý--* 2f to give a one-to-one correspondence since at level m-1 there are four 
times as many sub-pixels). 

The interpolated field of level m surfaces is denoted by SD'(m)(n, f), with paxameters 
{A', B', C', D', E', G'} or {fo', a', 0', -y', 6'}. 

Two interpolation schemes are investigated by Magarey in (Magarey 1997): staircase 
interpolation and bilinear interpolation. The bilinear interpolation kernel is found to give 
better results (Magarey 1997). The columns and the rows are interpolated sepaxately, first by 
upsampling and then by filtering with the bilinear kernel [1 33 1]/4 (Castellano 1999). 

The set JA, B, C, D, E, GI is interpolated, and then equation D. 30 is used to find fo'. The 
motion field is effectively weighted by curvature (curvature weighted) and the paxameters 
increase in rough proportion to the activity at that sub-pixel. As a result, estimates from 
high activity regions tend to propagate into regions of low activity in curvature weighted 
interpolation. 

Since the separation between the adjacent pixels is halved at the next finer level, the 
variables are scaled: 

al, A' a/4, A'/4 (D. 32) 
ßl, B' ß'/4, B'/4 (D. 33) 

ly 1, C, h-+ Y/4, C'14 (D. 34) 
D', E' i--+ D'/2, E/2 (D. 35) 

fo, ý-+2 fo' (D. 36) 

D. 5.2 Cumulative SD Surfaces 

Once the disparity field SD'(1n) is obtained, the disparity field at the next finer level m-1 
is estimated using the procedure outlined in Section D. 2. The resulting parameters SD(m-1) 
are added to the estimates SD'(m) from the previous level to give the cumulative squared 
difference, CSD, at level m. This process of interpolation, computing the new disparity field 
estimates and adding the two is repeated iteratively until the desired level mmin is reached, 
i. e. 

CSD(') (n, f) 
CSD'('+1)(nj)+SD(1)(n, f) mmj,,: 5m<mmt,., 

(D. 37) SDW (n, f) m =, rnm,, ý, 
Thus, information from all resolutions and all subbands is utilised to form one single 

quadratic surface, which gives the final motion vector. In areas and directions where there 
is limited fine detail, such as along edges, the curvature paxameters will indicate a shallow 
surface (low confidence) in that direction. Such a surface will contribute very little when 
combined with a coarser level surface, which is steep in that direction. Such a strategy in 
known as a refining strategy. 
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D. 5.3 Coarse-to-fine Strategies 

The refining strategy uses the coarser level estimates to warp the CDWT coefficients of the 
reference image at the next finer level using equations D. 5 to D. 9 to produce new coefficients 
D(m, n) (n + fo'), n=6. The SD(m) (n, f- fo) is formed by using the interpolated 
(windowed-sine kernel) coefficients instead of the integer-indexed ones. This is then used 
to find the parameters of valid SDW (n, f) and thereby translate the origin back to (0,0). 
This valid SDW is added to the scaled CSD'(m+') from the coarse level to form CSDW 
using equation D. 37 and the parameters if I a7 #7 ***} axe formulated. This approach has 
the advantage of detecting uniform motion of laxge scale features with excellent accuracy, 
However, motion of the smaller scale features that is independent of the motion of the larger 

scale features is not detectable. 

D. 5.4 Confidence Measure 

Confidence measures partition the motion estimates into reliable and unreliable estimates, 
based on some threshold. The unreliable estimates can be eliminated so that subsequent 
estimates are not corrupted. This process is repeated for each of the estimates at each level 

of decomposition. 
The confidence measure adopted by Magaxey et al. is based on the residual of the weighted 

least-squares solution, represented by fo. It is computed using: 

C(')(n) =- 
A(m) (n) (D. 38) 

E(m) (n) 
6 

where E(')(n) =E E(n, m) (n) (D. 39) 
n=l 

(n, m)(n) D (n, m) (n) 2 

and A(m)(n) =6 

(ID1 
2Y (D. 40) E 

p(n, m) 
n=l 

The A(')(n) is the discrepancy. C(m) is equal to the normalised cross-correlation of 
D (n, m) (n + f) with D (n, m) (n) (Magarey & Kingsbury 1998b). J is the surface minimum, and 
Elm) (n) and p(n, m) 

2 
can be computed from equations D-16 and D. 2 respectively. Because 

J>A, then C<1. All values of C that lie below a certain threshold value are nullified and 
their effects are not observed in subsequent computations. Magarey found that a value of 
0.95 for the threshold gives the best balance between preserving sufficient field density and 
increasing accuracy (Magarey & Kingsbury 1998b). 

D. 5.5 Curvature Correction 

Recall that flat surfaces are indicative of low confidence in the motion estimate, while steep 
surfaces indicate higher confidence. In addition, the coarser levels estimates tend to be more 
aperture-free than the finer level estimates due to their larger region of support (Castellano 
1999). The aperture problem is addressed by propagating the coarser levels estimates to the 
aperture affected finer levels so that the parallel component of motion may be determined. 



228 Magarey's Motion Estimation using Complex Wavelets 

A curvature correction measure is introduced to improve the accuracy of these estimates. 
The rotation invariance property of the filter pair [ho, hl} enables this curvature correction. 
This in turn stems from the fact that the filters ho and h, were designed to produce ellipses 
whose (finite) eccentricity is nearly independent of edge orientation. 

The curvature correction process "corrects" the curvatures of the strongly aperture- 
affected surfaces by assigning them very large eccentricity while leaving surfaces at all other 
subpixels relatively unchanged. This involves subtracting from all SD(m) surfaces (prior to 
combination with previous level surfaces CSD(m+')) a circular bowl-shaped surface with the 
same minimum location fo as SD(m). This is done so that the minimum location and the 
height of SDW are not affected. 

SD(m) (n, f) = SD(m) (n, f) - p(fl - flo(n))2 - p(f2 - f2o(n))2 (D. 41) corr 
The curvature of this bowl is calculated such that surfaces corresponding to the aperture- 

affected estimates become nearly flat, thus reducing their contribution to the cumulative 
squared difference, while surfaces corresponding to aperture-free estimates are left nearly 
unchanged. 

The radius p is chosen so that all surfaces with eccentricity e> et, for some threshold et, 
have very large eccentricity after correction: 

min ct 
10.98A2 (D. 42) 2 

(et ++'l) I 

where A2 is the smaller eigenvalue of curvature matrix K (equation D. 31). 

D. 5.6 Disparity Field Regularisation 

Anandan's regulaxisation procedure, proposed in (Anandan 1989), is used to smooth the 
disparity field at each level of decomposition. This approach preserves the coarse-to-fine 
framework of the matching algorithm. Furthermore, sub-pixel accuracy achieved by this 
algorithm can be retained since the approach does not require that the disparity at each 
pixel refers to the precise location of another pixel (Dick 1997). 

Recall that the SSD is defined as an elliptical surface centred on its minimum value. 
Two principal axes are defined for this surface: e,,, a. ý in the direction of maximum surface 
curvature (steepest sides of the bowl) and e,, i,, in the direction of the minimum surface 
curvature. These are analogous to the major and minor axes of a 2D ellipse. Associated with 
these axes are two curvatures C,,, a.,: and Cmin in the directions of emax and emin respectively. 
Cma.,, and Cmin axe the greater and the lesser eigenvalues respectively of the curvature matrix 
K (equation D. 31) and em,,.,, and emin are the eigenvectors corresponding to these eigenvalues. 

In (Anandan 1989) these values are used to define maximum and minimum confidence 
measures cmax and cmin- 

Cmax 
C., 

(D. 43) ki + k2 SD (m) (n, fo) + k3 Cnwx 

Cmin 
Cmin 

(D. 44) 
ki + k2SDm(n, fo) + k3Cmin 

kj, k2 and k3 are parameters that influence the behaviour of c,,,,., and c,,, i,,. kj is an 
overall scaling factor and prevents the values of cmx and cmin from becoming too large 
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if SD(m)(njo) is close to 0. k2 controls the relative influence of the curvatures and the 
similarity distance, and k3 is used to restrict the range of possible confidence values to the 
interval (0,1/k3). Values of c,,.., and cmi. determine the amount of smoothing to apply in 
each direction. Directions with high confidence values for a match require less smoothing. 

Given the field Ifol of feature space minimum location offsets, the regularisation proce- 
dure obtains an optimal compromise between feature similarity and disparity field smoothness 
by finding a field {u} such that the function 

E({U}) = Em + AEp(fu}) 

is minimised (Magarey & Dick 1998). The smoothness term E,,, ({u}) is some measure 
of the difference between {u} and a uniform disparity field and defined in terms of the 
gradients of the components (u,, uy) of u (Magarey & Dick 1998). The global "approximation 
error77 energy E,, p(iu}) is the normalised measure of difference between SD(')(n + u) and 
SD(') (n + fo), the feature space minimum. The scaling factor \ controls the influence of 
each difference on the resultant disparity field. 

An exact global minimisation of E({u}) is computationally expensive to compute. Anan- 
dan (Anandan 1989) shows that an approximate solution to the set {u} that minimises E(u) 
may be found using only the local information surrounding each subpixel, i. e. using disparity 
vectors which satisfy the equation: 

(u - U) + Acma-ý (u - emax - fo - emax) emax + Acmin (U - emin - fo - emin) emin =0 (D. 45) 

U is the four-neighbour average of u. (u - U) is a measure of local variation in {u}, and 
hence represents E,,,, ({u}) (Dick 1997). 

Equation D. 45 can be solved for each u using Gauss-Seidel iteration (Anandan 1989). 
This involves repeatedly applying the update equation 

u n+l = Un + 
\Cmax ((fo 

- Un) - e,,,, x) emax + _ACmin 
((fo 

- Un) - emin emin (D. 46) 
ACmax +1 ACrnin +1 

until a set ju} is found whose elements u have all converged to within some neighbourhood 
of a solution to equation D. 45 (Dick 1997). In this work, A is set to 0.75 with 20 Gauss-Seidel 
iterations. 

The presence of the matching surface curvatures in the regularisation means that only 
limited smoothing is applied in regions and directions in which the confidence is high. The 

effect of smoothing is increased in regions and directions of lower confidence. This results in 

a disparity field which preserves sharp features and smoothes out featureless regions which 
may be riddled with noise. 

The accuracy of the dispaxity field is further increased by thresholding the disparity field 
(fo} to remove low confidence measures prior to smoothing. A threshold on the product 
of the confidence measures cmax and cmin is effective in removing the matches between the 
featureless points in the background, while still retaining matches on the faces. 
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APPEN Dix 

Johnson's 3D Object Recognition 
Using Spin-Images 

The spin-image representation comprises of a set of descriptive images associated with the 
oriented points (defined using the 3D position of the mesh vertex and its surface normal) on 
the surface of an object (Ruiz-Correa et al. 2001). They derive their name from the image 
generation process, which can be visualised as a sheet spinning about the normal of the various 
points on the polygonal mesh representing the surfaces. Surfaces are matched by comparing 
spin-images from points on one surface to spin-images from points on another surface. A 
correlation coefficient is used to compare the points. When two spin-images are highly 
correlated, a point correspondence is established. Point correspondences are then grouped 
and outliers are eliminated using geometric consistency. Groups of geometrically consistent 
correspondences are used to calculate a rigid transformation that aligns the two surfaces. 
Finally surface matches are verified using a modified closest iterative point algorithm. The 
following sections detailing the algorithm have been taken almost entirely from Johnson's 
original thesis (Johnson 1997). 

E. 1 Assumptions 

Surface Representation 

It is assumed that surfaces are represented using polygonal meshes. This allows the user to 
choose the level of detail that the surface is represented at. In addition, if the meshes can 
be generated directly from sensed 3D data then fitting or approximation is not required, and 
the introduction of unnecessary errors can be avoided. 

Surface Normals 

It is also assumed that the surface normals are oriented outside the object surface. If this 
is not the case then the following heuristic can be used to ensure all the vertex normals 
are oriented to the outside: first, a vertex is chosen and the orientation of its normal is 
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propagated outwards to the normals of its adjacent vertices. This process is repeated until 
all the normals are consistently oriented to the inside or the outside of the object. Next, 
the orientation of all the normals is determined by calculating the scalar products of the 
surface normal at each vertex and the vector from the centroid of the object to the vertex. 
If the majority of the scalar products are positive, the normals have been oriented outside. 
Otherwise, the normals have been oriented to the inside and they need to be inverted. 

Mesh Resolution 

In (Johnson 1997), Johnson discuses the concept of mesh resolution at length, as it is closely 
related to the level of detail contained in the mesh. He defines mesh resolution as the median 
of all edge lengths in a mesh. This relies on the assumption that all the edges in the mesh 
are of a similar length. When this is the case, the spacing between the vertices will be 
approximately uniform, and the defined metric is meaningful. Note that according to this 
definition, mesh resolution is inversely proportional to the number of vertices in the mesh, 
i. e. the resolution increases when there are fewer vertices in the mesh (edges axe longer in 
a coarser mesh) and it decreases as the number of vertices increases. It can be seen that 
the metric is poorly defined if there is a great deal of variation in the edge lengths. Hence, 
if the mesh has an uneven distribution of vertices, then it has to be recreated with uniform 
spacing. Johnson's mesh simplification algorithm is presented in Section E. 2. Details of 
Johnson's experiments, results and an analysis of how this algorithm compares with other 
mesh simplification algorithms from computer graphics (e. g. (Gu4ziec 1995, Heckbert & 
Garland 1997, Hoppe 1996, Schroeder et al. 1992, Mirk 1992)) can be found in Johnson's 
PhD thesis (Johnson 1997). 

Uniform sampling of surfaces is a requirement for the spin-images of two corresponding 
points on different instances (surface mesh representations) of the same object to be similar. 
This is a much weaker and a more preferable constraint than requiring the positions of points 
to be the same for the two instances. If the surfaces are uniformly sampled then on average, 
each corresponding bin of the spin-images will have the same number of points projected into 
it, making the spin-images similar, even though the co-ordinates and surface normals of the 
vertices are not exactly the same. If the sampling is not uniform, then the mesh resampling 
algorithm (section E. 2) is used to ensure uniform sampling. If the sampling is uniform, then 
it is not necessaxy for the resolution of the meshes being matched to be equal. 

Noise 

Noise is introduced to the process of spin-image generation in two forms: noise in the 3D 
vertex position and noise in the surface normal. Since the 3D position of the vertex is 
bilinearly interpolated during the accumulation process, the effect of this type of noise on 
spin-image appearance is minimised, as long as its magnitude is less than the distance between 
mesh vertices. The surface normal noise however, can alter the spin-images significantly. Its 
effect on the spin-image appearance increases as a and P increase across the spin-image. As a 
result, small errors in the surface normal manifest as large changes in spin-image appearance. 
This can lead to incorrect correspondence between oriented points and spin-map co-ordinates. 
However, these matches are eliminated during the surface matching process using geometric 
consistency. 
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ScaIe-Invariance 

Spin-images are invariant to rigid body transformations, but they are not scale-invariant. 
So, two surfaces of the same shape but different sizes will generate different sets of spin- 
images. However, the spin-map is a function of Euclidean distances, so the spin-images 
from scaled versions of the same shape will be the same up to the scale factor between the 
surfaces. Therefore, in theory, multiple models do not have to be stored to represent surfaces 
at different scales; only the original model and the necessary scale factors need to be stored. 
This has not yet been implemented in practise and the claim remains to be investigated. 

E. 2 Mesh simplification algorithm 
Mesh simplification process is essential in order to normalise the edge lengths so that they 
are roughly the same, or equivalently, so that the vertices are uniformly distributed. The 
mesh resolution also determines the level of detail in the mesh, and this can also be controlled 
using this algorithm. A brief outline of the algorithm is given here. A detailed analysis of 
the algorithm along with the results of its application to various object meshes is presented 
in Johnson's PhD thesis (Johnson 1997). 

First, a priority queue (a dynamically ordered queue) is formed of all the edges in the 
mesh to be simplified. The position of an edge in the priority queue is given by 

Edge Length Weight, Wx Accumulated Shape Change Measure, C; 

Edges with small product (W x C) will be towards the top of the queue. The edge length 
weight, W is generated from a Gaussian of the edge length: 

W=e( LD 

where I is the length of the edge, Lo is the desired mesh resolution and LD is the acceptable 
deviation in length from the desired resolution for edges in the the normalised mesh. A small 
weight is assigned to edges that axe much shorter or longer than the desired resolution. 

The shape change measure, D, of an edge is defined as the distance between the current 
mesh and the mesh that results from the simplification. This places a bound on the maximum 
change in the shape of the mesh during the normalisation process. Since edge operations affect 
only a local neighbourhood of the edge, the distance between meshes can be measured by 
comparing only the local mesh neighbourhoods before and after application of the operation. 
The mesh shape is conveyed by both the vertices and the faces. Therefore, an accurate 
measure of distance between meshes must take into account the distance between the mesh 
faces as well. The asymmetric distance between meshes M1 and M2 is defined as the 
maximum Euclidean distance between a vertex vi of M1 and its associated closest point, 
Vaosest on the face fj Of M2 that is closest to vi. 

d(Mi, M2) max min Ilvi-vclosest(vilfj)ll 
viEMi 

GjEM2 

Since this distance metric is not symmetric, it is re-defined as the maximum of d(M 1, M2) 

and d(M2 
iM 1) - 

D(Ml, M2) = max(d(Ml, M2), d(M2, Ml)) 



234 Johnson's 3D Object Recognition Using Spin-Images 

This is a useful metric in that it allows the simplification algorithm to operate on edges along 
surface shape discontinuities (e. g. ridges and corners), provided that the distance between 
the meshes remains small during the operation. This facility is not available in most other 
simplification algorithms (Johnson 1997). In the simplification process, the accumulated 
shape change (shape change accrued so far) is used instead of the raw shape change. This 
ensures that the amount of shape change during the normalisation is limited to a certain 
user-defined maximum allowable change in shape, Cm,, 

_,. Also defined are the upper and the lower bounds on edge lengths in the simplified mesh: 

LD LD 
L .. i,, =Lo- FL...... = Lo +2 

Note that edges that fall within the desired edge length bounds are not added to the dynamic 
priority queue. Neither axe the edges whose accumulated shape change measure C exceeds 
the maximum allowable change in shape. This means that if a particular edge has changed 
significantly from its original length and has reached Cm,,., then it cannot be operated on, 
even though it may not fall within the bounds imposed by Lrnin and Lma.. Hence, not all 
edges in the final mesh will have lengths inside of the bounds. 

Each edge in the queue is operated on as follows: If the length of the edge is greater than 
Lmaxi the edge is split at its midpoint. This split changes the neighbourhood of the edge by 
adding an edge, a vertex and two new faces. This operation does not change the shape of the 
mesh, and it does not alter the accumulated shape change of the edges in the neighbourhood 
of the edge. If the edge length is less than Lmin, the edge is collapsed into a point. This 
alters the neighbourhood by eliminating an edge, a vertex and two faces. This causes the 
mesh to either shrink or expand. The shape change measure is added to the accumulated 
shape change of the edges in the new neighbourhood of the edge. Details of how the exact 
position of the new vertex is determined are given in (Johnson 1997). After an edge split 
or an edge collapse, the edges in the old neighbourhood of the edge axe removed from the 
priority queue. Edges in the new neighbourhood of the mesh are added to the queue if they 
meet the following criteria: 

The edge lengths fall outside the bounds for the minimum and maximum edge lengths, 
Lmin and Lma_,. 

* Their accumulated shape change is not greater than Cma,,. 

They meet additional checks that prevent changes in topology and shrinkage of the 
mesh boundary. Details of these checks can be found in (Johnson 1997). 

This process is repeated iteratively till there are no more edges in the priority queue. 
In (Johnson 1997), Johnson compares this algorithm with other competing mesh simpli- 

fication algorithms in computer graphics. This technique is reported to be superior of those 
investigated. 

E. 3 Spin-Image Parameters in Detail 

Three parameters control the spin-image generation. 
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1. Bin Size: This is the geometric size (storage size) of the bins in the spin-images 
generated. It determines the averaging (from bilinear interpolation) in the spin-images. 
Averaging reduces the effect of individual point positions (large bin size implies more 
averaging) and affects the descriptiveness of the spin-images. It is set as a multiple 
of the surface mesh resolution (defined in section E. 1) to avoid dependence on object 
scale and resolution. This is intuitive as the mesh resolution is closely related to the 
density of points in the surface points. In (Johnson 1997), Johnson finds that setting 
the bin size 1-2 times the mesh resolution sufficiently blurs the position of individual 
points in the spin-images, while still adequately describing global shape. 

2. Image Width: For simplicity and without loss of any generality, the number of rows 
in a spin-image is set equal to the number of columns. They can however, be set to equal 
any arbitrary number. Setting the rows and the columns to equal one another results in 
square spin-images whose size can be defined by one parameter. Image width controls 
the global information content of the spin-image. For a fixed bin-size, decreasing image 
width decreases the descriptiveness of a spin-image because the amount of global shape 
included in the image will be reduced. However, decreasing the image width also limits 
the corruption in the spin-images caused by clutter. 

3. Support Angle: This is the maximum angle between the direction of the oriented 
point basis of a spin-image and the surface normal of points that are allowed to con- 
tribute to the spin-image. Take two oriented points A and B and their respective 3D 

positions and normals (pA, nA) and (pL3, nB). Then, the support angle constraint can 
be stated as: B will be accumulated in the spin-image of A if 

axccos(nA - nB) < A, (E. 1) 

Support angle is used to limit the effect of self-occlusion and clutter during spin-image 
matching. The size of the support angle is directly proportional to the descriptiveness 

of the spin-image. However, if the support angle is too large, many scene points that 
do not belong to the model axe spin-mapped into the scene spin-image. 

Given the bin size b and the image width W, the spin-image bin associated with particular 
spin-map co-ordinates can be computed using 

i= 
[ 

(E. 2) 

where Lfj is the floor operator which rounds f to the nearest integer, (a, 0) are the spin-map 
co-ordinates and (i, j) refer to the spin-image bin. Because the distance to the tangent plane 
of an oriented point can be both positive and negative, the spin-image has E rows above 2 
,8=0 and E rows below 0. Given the bin size b, the bilinear weights used to increment 2 
the bins in the spin-image are calculated using 

m =a -ib n=p-jb (E. 3) 

where (i, j) refers to the spin-image bin. The support distance D, is defined as 

D, =W xb (E. 4) 
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and it determines the amount of space swept out by a spin-image. The support distance is 
also directly proportional to how localised the images are or equivalently, how descriptive 
they are. 

The choice of the spin-image generation parameters dictates how localised or "globalised" 
the spin-images axe. When the spin-images are not localised enough, test model and the 
training model spin-images appear very different. 

Detailed experiments and analysis of the spin-image generation parameters is given in 
(Johnson 1997). Johnson describes his clutter model and investigates the optimum values for 
the parameters in the presence of clutter and occlusion. However, since the models used in 
this project contain no clutter and only self-occlusion, these details axe not presented here. 

EA Comparing Spin-Images 

Spin-images from two instances of the same object, generated with the same spin-image gen- 
eration parameters will have similar spin-images since the spin-map co-ordinates (a, 0), with 
respect to a particular oriented point basis, are independent of rigid body transformations. 

Two spin-images from proximal points on the surface of two different instances of an 
object are lineaxly related because the number of points that fall in corresponding bins will 
be similar, given that the distribution of points over the surface of the objects is the same. 
The bin values are directly related to the number of points falling into the bins. Hence, 
the bin values will be similar. Then, the linearly related images can be compared using the 
normalised lineax correlation coefficient. Given two spin-images P and Q with N bins each, 
the linear correlation coefficient R(P, Q) is 

R(P, Q) = 
NEpiqi - EpiEqi 

(E. 5) V(NEp? 
- (Ep, )2) (NEq? 

- (E )2 II, qi 

where pi and qi refer to the individual points in the image. R lies between -1 for completely 
uncorrelated images and 1 for completely correlated images. It measures normalised error 
using the distance between the data and the best least squares fit line to the data. 

The linear correlation coefficient can be expected to be similar across the entire image if 
the spin-images are generated from complete objects. However, data obtained from most real 
scenes fail to meet this criteria. Real test images may be corrupted by both clutter (extra 
data) and occlusion (missing data). Spin-images from different incomplete data sets will not 
be the same everywhere even though they correspond to the same object. 

This is resolved by removing portions of the images from the image comparison process. 
If a bin in either of the images does not have a value (i. e., no vertex was spin-mapped into it) 
then that bin is not considered in the calculation of the linear correlation coefficient. Hence, 
the data used to compute the correlation coefficient is taken only from the region of overlap 
between two spin-images. 

The linear correlation coefficient is a function of the number of pixels used to compute 
it. Therefore, the amount of overlap between the images affects the value of the coefficient. 
The number of pixels used to compute the correlation coefficient indicates the amount of 
confidence in its value. Two images A and B with a small overlap can have a higher correlation 
coefficient than images A and C with a laxge overlap, if (A, B) are very similar in the area 
of overlap and (A, C) are slightly less similar in the area of overlap. In this case, A would 
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be incorrectly matched with B. The match (A, C) should be ranked higher as there is more 
confidence in the value of the correlation coefficient. 

Johnson (Johnson 1997) finds that matching spin-images based on the magnitude of 
correlation coefficient as well as the confidence in it results in more accurate oriented point 
correspondences. He derives a similarity measure for spin-image matching that incorporates 
both, the linear correlation coefficient and a measure of confidence in it (measured by its 
variance). The similaxity measure C(P, Q) (not derived here) is stated as 

C(P, Q) = (axctanh(R(PQ)))2 _, \ 
(n ' 

3)' 
(E. 6) 

R(P, Q) is the linear correlation coefficient (equation E. 5), n is the number of overlapping 
pixels used to compute R(P, Q) and A weights the vaxiance against the expected value of the 
correlation coefficient. The hyperbolic arctangent function is a standard statistical technique 
for change of variables and transforms R into a normal distribution with better statistical 
properties. Specifically, the change of variables leads to the variance of the transformed 
correlation coefficient to be 1/(n - 3) -a simple function of the number of pixels used to 
compute R. A high value of C indicates that the images are more likely to come from 
corresponding oriented points. 

A limits the matches between spin-images of low overlap. Its value should be set as close 
to the expected overlap between the spin-images. The value of A is based on the spin-images 
of models in the training set. For each model spin-image, the number of bins containing data 
are counted and put in a list. The value of A is set to one half of the median value in the 
list. This takes into account matches with smaller overlap, caused by occlusion. 

E. 5 Outlier Detection for Similarity Measure Histogram 

For uni-modal distributions, a standard statistical way of detecting outliers is to determine 
the fourth spread of the histogram (Devore 1987). 

upper quartile - lower quartile 
NN 

median of laxgest y measurements - median of smallest -y measurements 

Outliers typically lie between 1.5f, and 3.5f, units above (below) the upper (lower) quartile. 
Outliers 3.5f, units above the upper quartile, if they exist, are chosen as potential matches. 

E. 6 Correspondence Filtering 

Incorrect correspondences will in general have low similarity measures and be geometrically 
inconsistent when compared to the rest of the correspondences. 

Let P and Q be the test and the training set models respectively. Let (pl 
I P2) and 

(qj, q2) be the oriented points on the surface of Pand Q. Then the geometric consistency of 
two correspondences C, = [pl, qj] and C2 = [P2, q2] between the test and the training set 
models is given by 

dg, (Cl, C2) = 
IlSq2 (ql) - 

SP2(Pl)ll 
- (IlSq2 (ql)ll + IISP2(Pl)11)72 
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D. 9, = max(dgc(Cit C2b dgc(C21 CO) (E. 7) 
SP2(Pl) is the spin-map that projects the 3D point p, to the 2D co-ordinate space corre- 
sponding to the oriented point P2. dg, measures the distance between the correspondences in 
spin-map co-ordinates, normalised by the average of the spin-map co-ordinates. Spin-map co- 
ordinates (rather than the Euclidean co-ordinates) axe used to measure geometric consistency 
because they are a compact way to measure consistency in position and normals. Distance 
between the spin-map co-ordinates is normalised by the average spin-map co-ordinates so 
that the geometric consistency is not biased toward correspondences that are close to each 
other. Distance measure d., is not symmetric, therefore, the maximum of the distances is 
used to define the geometric consistency distance Dg,. A small value of D., indicates that 
C, and C2 are geometrically consistent, and that the test and training model points in C, 
are the same distance apart and have the same angle between surface normals as the test 
and training model points in C2- 

E. 7 Grouping Point Matches with Geometric Consistency 

Correspondences are grouped together so that rigid body transformations that align the 
test and the training model can be computed. The grouping criterion W9c, is the geomet- 
ric consistency distance (equation E. 8) augmented by a weight that promotes grouping of 
correspondences that are far apart. 

Wgc(Clg C2) ý 
dgc (C 11 C2) 

1- e-((IlSq2 
(ql )11+IISP2 (pl)ll)/(2, y)) 

Wgc(Cli C2) = max(wgc(Cig C2)t Wgc(Cli C2)) (E. 8) 
A small value of W., indicates that two correspondences are geometrically consistent 

and far apart. Geometric consistency is an important aspect of this metric as geometrically 
inconsistent matches produce transformations of higher error. 

Geometric consistency weight is normalised by -y to make it scale independent. John- 
son (Johnson 1997) sets this value to be four times the mesh resolution, as this encourages 
grouping between correspondences that are at least four times the mesh resolution distance 
from each other. The grouping criterion between a correspondence C and a group of corre- 
spondences {Ci,..., C,, ) is 

wgc(c, fcj,..., C,, } = M? Lx(wgc(c, Ci)) (E. 9) 
f 

The correspondences in L are grouped using the procedure described in Section 7.2-3. 
A plausible rigid body transformation T from the training model to the test model is then 
calculated from each group I [pi, qj] I of correspondences by minimising 

ET = 1: Ilqi - T(pi) 112. (E. 10) 

Note that pi and qi refer to the 3D position of the oriented points. These are used instead 
of the 3D position and the surface normal together as they allow a well defined algorithm 
(Faugeras & Hebert 1986, Horn 1987) for finding the best rigid transformation that aligns 
two points to be used. 
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E. 8 Verifying Matches 

The verification algorithm is a modified version of the Iterative Closest Point Algorithm 
(ICP) of Besl and McKay (Besl & McKay 1992) and Zhang (Zhang 1994). The ICP algorithm 
works well for registration of free form curves and surfaces when the transformation between 
the surfaces is small. Transformation between two surfaces is iteratively determined by 
assigning correspondences between closest points, calculating transformation, transforming 
all of points on one of the surfaces based on the transformation and then repeating the 
process. The algorithm is robust even where there is a laxge amount of noise as long as the 
initial transformation is small. Its main drawback is that it converges to a local minimum in 
the pose space and as a result cannot be used if the surfaces to be registered are arbitrarily 
displaced from each other. Further, the generic ICP is unable to register data sets when one 
is not a subset of the other, i. e. when there is only paxtial overlap between the surfaces, 
because it tries to establish correspondences between all the points in one set with some of 
the points in the other. 

Johnson (Johnson 1997) modifies the generic ICP by limiting the closest point distance 
measurement only to those areas in the two sets that overlap. This is accomplished by 
growing the closest point correspondences from initial correspondences established by the 
matching process thus far. 

Two surfaces match (overlap) when many points on one surface correspond to many points 
on the other surface. If the surfaces are oriented, then the matched surfaces should also have 
consistently oriented surface normals, i. e. the matched points should be close to each other 
in 3D position and the surface normal. To this end, a 6D distance metric combining 3D 
position and surface normal is devised. Given two oriented points (pl, nj) and (P2, n2), their 
6D distance is 

d6 VIIP1 
- P211 + vjjnj - n211 (E. 11) 

where v weighs the surface normal information against position information. Johnson (John- 

son 1997) sets the value of v at two times the mesh resolution, causing the normals of vertices 
to have more of an effect on the distance metric than the positions of the vertices. 

E. 9 Variants of the Spin-Images Algorithm 

The spin-image representation is highly redundant. Most of this redundancy stems from the 
fact that spin-images generated from two oriented point bases that are close to each other 
on the surface will be highly correlated (Johnson 1997). Spin images of symmetrical objects 
axe also highly correlated - two oriented point bases on equal but opposite sides of a plane of 
symmetry will be the same. This adds to the processing time and the storage requirements. 

Johnson investigates varying degrees of compression to eliminate this redundancy and 
make the recognition process faster and more efficient. In total, there are four versions of 
the algorithm: 

1. MA1: Matching with no compression. This is the algorithm described in Chapter 7. 

2. MA2: Matching with model compression. Principal Component Analysis (PCA) is 
used to compress the spin-images, resulting in Eigen-spin-images. However, instead of 
the eigenvalues, a measure based on the correlation coefficient (equation E. 5) is used 
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to determine the number of Eigen-spin-images to use. This is because the assumption 
that input images are distributed in a hyper-ellipsoid is violated. 

3. MA4: Matching with library compression. Spin-image libraries can be also be com- 
pressed using PCA. However, the aim with library compression is to increase differ- 
entiation between the models rather than between the actual points on the model. It 
is implicitly assumed that spin-images from different models are clustered together in 
spin-image space. Note that this algorithm does not use model compression. 

4. MA3: Matching with model and library compression. PCA is used to compress both, 
the model spin-images and the spin image libraxy. 

MA2, MA3 and MA4 are not detailed here. The interested reader is directed to (Johnson 
1997). MA3 and MA4 were deemed unsuitable for face recognition since the assumption 
that spin-images from different models axe in separate clusters in the spin-image space would 
not strictly be true for face spin-images. In Johnson's (Johnson 1997) toy and plumbing 
libraries, all the models have distinct shapes. Although there is some similarity between the 
spin-images of the plumbing libraxy, the majority are unique to each object. This would 
not be the case with face images. Since all faces have a similar shape, it is highly unlikely 
that the library spin-images will be distributed in separate clusters depending on the model. 
Using MA2 is a possibility, however, it was felt that the spin image representation and the 
recognition algorithm with no compression should be investigated first, and if suitable results 
are achieved, then spin-image compression can be investigated. 

Also presented in (Johnson 1997) is a spin-image based surface registration algorithm. 
This facilitates complete models to be built by combining many partial views. It also acts as 
a noise-filtering mechanism. The details of this algorithm are not presented here as surface 
registration is not investigated in this work. It would however, constitute an interesting area 
of future research. For details of the algorithm, the interested reader is directed to (Johnson 
1997). 
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