
THE UNIVERSITY OF SHEFFIELD 

DESIGN OF A HIGH SPEED SWITCHED 

RELUCTANCE MACHINE FOR AUTOMOTIVE 

TURBO-GENERATOR APPLICATIONS 

By 

Stuart David Calverley 

A Thesis submitted for the degree of 
Doctor of Philosophy in the Department 
of Electronic and Electrical Engineering, 
The University of Sheffield. 

OCTOBER 2001 



SUMMARY 

The efficient generation of relatively large quantities of electrical energy in vehicles 

is becoming an increasingly important issue, as a result of increasing demands of 

ancillary equipment and the emergence of hybrid power-train vehicles. An attractive 

solution to meeting these demands is to extract the electrical energy by means of a 

generator driven by a high-speed exhaust mounted turbine, a technology that is 

beginning to emerge commercially. This thesis is concerned with the design of a 

system, which extends this concept to enable both electrical generation and highly 

flexible air-management. The heart of the system is a high-speed switched reluctance 

machine, the rotor of which is located on a common shaft with the turbine and 

compressor wheels of a standard commercial turbocharger. 

The design synthesis of a -switched reluctance machine capable of meeting the 

required performance specification is particularly onerous given the harsh 

environment in which it operates, specifically in terms of the restricted space 

envelope, the high ambient temperature and the very high rotational speeds. This 

thesis describes the design of a switched reluctance machine for a prototype system, 

a procedure that encompasses the detailed analysis of centrifugal stress in the rotor, 

aerodynamic losses, iron loss, rotordynainic performance and dynamic performance. 

The design and analysis of the system is supported by experimental evaluation at 

both component and system level. 
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CHAPTER1 

INTRODUCTION 

This thesis is concerned with the design of a prototype electrical machine for use as a 
high-speed electrically assisted turbocharger for automotive applications. The 

research presented encompasses the mechanical and electromagnetic issues 

associated with the design of a high-speed electrically assisted automotive 

turbocharger, the techniques developed and many of the conclusions drawn are 

generally applicable to the design of any high-speed electrical machine. 

The principal motivations for the development of an electrically assisted 

turbocharger are to enhance the efficiency and drive-ability of the automotive 

compression ignition diesel engine and to facilitate a reduction in the emission of 

exhaust pollutants. The potential merits of this type of device and the legislative 

obligations placed upon engine manufactures to reduce harmful engine exhaust 

emissions and hence adopt such exhaust after-treatment technologies are discussed in 

this introduction. The specification of the electrical machine, i. e. the maximum speed 

and power ratings, the thennal endurance and the available space envelope, are 
derived from consideration of the specific features of automotive turbochargers and 

the environment in which they operate. 

1.1 Diesel Engines 

Compression-ignition diesel engines are very widely employed in applications where 

the demand for robustness, high reliability and longevity is paramount. Indeed the 

heavy-duty-commercial transport, agricultural, military, marine and locomotive 

sectors are dominated by the diesel engine, particularly in the United Kingdom and 

Western Europe. The power rating of compression ignition engines varies between 5 

kW to 22 MW with swept volumes between 0.3 and 1600 litres per cylinder. 
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Combustion in the compression ignition diesel engine is initiated by injecting liquid 

fuel into a combustion chamber containing compression-heated air. 'Me liquid fuel 

evaporates, entraining air at temperatures exceeding the ignition point of the fuel, 

until the localised air/fuel ratio is in the correct proportion to initiate combustion. 
After the initial combustion delay, the fuel spray exhibits multi-point ignition and a 

rapid rate of heat release is observed as the pre-mixed fuel burns in a few crank angle 
degrees, figures 1.1 and 1.2. Combustion slows after the pre-mixed fuel has been 

consumed and the rate of heat release is dictated by the rate at which fuel and air 
become available for combustion. As oxygen is consumed and the pressure and 

temperature in the combustion chamber are reduced in the late phases of combustion 

the heat release slows allowing the fon-nation of sustainable soot within the 

combustion chamber, figure 1.2 [ 1.1 ]. 

Much greater expansion ratios may be adopted in diesel engines without the 

characteristic pre-ignition of fuel observed in spark ignition engines. The higher 

compression ratios give the diesel engine much higher thermal efficiency than a 

similar spark ignition petrol engine. Output power in C. I. engines is controlled by 

varying the amount of fuel injected into the cylinder, while the air inducted per cycle 

remains relatively constant due to the absence of any throttling systen-L The overall 

air/fuel ratio within the combustion chamber is therefore variable. At low load the 

combustion occurs under very lean conditions whereas at high load the air/fuel ratio 

approaches the stoichiometric value. 'nie combustion at air/fuel ratios approaching or 
below the stoichiometric condition is characterised by excessive particulate matter 
formation, which due to the low oxygen content in the combustion chamber cannot 

be burned prior to exhaust. Ultimately the power output of the diesel engine, 

particularly at low speed, is governed by the minimum air/fuel ratio that will allow 

effective and complete combustion of the fuel with tolerable levels of particulate 

matter in the exhaust gas. 
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1.2 Diesel Engine Pollution, Formation, Control and Regulation 

The combustion efficiency (as distinct from the overall thermal efficiency) of the 

diesel engine typically exceeds 98% [1.1], however diesel engine emissions produce 

a significant level of air pollution particularly in urban environments [1.2]. 

The primary pollutant associated with diesel engines is the particulate emission, 

which consists primarily of combustion generated carbonaceous material (soot) with 

absorbed hydrocarbon and organic compounds. Most particulate matter arises from 

incomplete combustion particularly in the late stages of combustion (figure 1.2). 

However engine oil from poorly maintained vehicles may also be a significant 

contributor [1.1,1.3]. Soot formation occurs at temperatures between 1000 and 
2800K, at pressures in the range of 5- lOMPa and occurs in two stages [ 1.1]: 

1. Particle formation: Where the first solid matter arises due to the oxidation and 

pyrolysis of the fuel in the form of a laminar structure of bonded carbon 

atoins. These first particles are typically in the range of 2mn [ 1.1 ]. 

Ii. Particle growth. This either occurs by coagulation of the individual particles 

or by surface growth where gaseous phase substances are deposited on the 

surface of the solid particulate. The mean equivalent diameter of the particles 

emitted after growth is 28 mn [ 1.1 ] 

At either stage of the particulate formation and growth oxidation can occur where 

typically, in an oxygen abundant environment, the product will be C02- The resulting 

emission of particulate matter is a summation of the factors contributing to the 

formulation and growth of the particles and the subsequent oxidation. 

The UK government, addressing the apparent health risks associated with airborne 

particulate matter have prepared a long term air quality standard [1.4]. Particles with 

equivalent diameters of less than 1OAm, referred to as PMjo, are limited to mean 

concentrations of 50gg per cubic metre over a 24 hour period, with a target of 
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achieving 99% compliance in the UK by the year 2005. In parallel with this UK 

based regulation the European Union has agreed a two stage air-quality standard, 

from which a surnmary of the requirements regarding the lirrAts of PMjO mean 

concentrations is shown in table 1.1 [1.4] 

Year Maximum daily mean 

concentration (ggIrr? ) 

Number of permissible 
daily exceptions annually 

Mean concentration 
(gg/rr? ) (annual) 

STAGEI 2005 50 35 40 

STAGE 11 1 2010 50 7 20 

Table 1.1 Sununary of the EU two stage air-quality standard regarding PMIO 

concentrations. 

Nationally road transport contributes 25% of the airborne particulate matter in the 

UK (1996 figures), and the contribution from diesel engines is considerably Wgher 

than that from spark ignition engines [1.4]. However in regions such as London 

where there is no appreciable industrial contribution road traffic accounts for 77% of 

the airborne particulate matter [1.4]. Figure 1.3 shows the spatial distribution of PM, o 

ernissions in 1996, indicating higher concentrations in urban areas, which is 

particularly prevalent in the South East and the North of England. However this 

problem is not solely due to the effect of traffic emissions of PMIO, as other 

urbanised concentrations such as domestic combustion, construction and aerosol 

usage contribute. Table 1.2 shows estimates of exhaust emission factors for diesel 

vehicles (g/km) with varying road conditions, weighted for engine capacity and 

veMcle load. The figures quoted refer to diesel veMcles compliant with European 

stage II regulation regarding emission of particulate matter and other pollutants 

implemented in 1996/1997. 

/ 
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Urban Rural single 

carriageway 

Rural dual 

carriageway 

I Motorway I 

Diesel cars 0.02 0.012 0.011 0.528 

Diesel LGV 0.061 0.043 0.042 0.083 

Rigid HGV 0.310 0.189 0.169 0.116 

Articulated HGV 0.343 0.212 1 0.189 0.131 

Buses and coaches 0.347 0.153 1 0.136 0.092 

Table 1.2. PMo exhaust emission factors (g/km. ) with varying load conditions [1.4] 

Table 1.2 Mghlights that the emissions of PM, o for most categories of veWcle are 

considerably higher for urban driving cycles where typically a higher degree of 

transient engine operation is observed, whereas the lowest emission factors are 

observed under conditions where the engine is operated for long periods in a steady 

state condition, such as motorway travel. 

1970 1975 1980 1985 1990 1 1991 1 1992 1993 1994 1995 1996 

Combustion in energy 78 61 60 53 60 1 59 1 59 57 49 40 38 

production and transformation. 

Comrnercial, institutional and 235 139 109 99 55 59 53 54 44 34 36 

residential combustion. 

Industrial. combustion. 74 43 33 25 26 26 27 25 23 20 17 

Non-combustion processes, viz. 57 58 54 56 63 60 58 59 61 59 59 

mining and construction. 

Road transport, including petrol 46 50 55 58 67 66 64 61 60 56 52 

and diesel exhaust emissions 

and brake and tyre wear. 

Diesel exhaust sub-category (37) (37) (45) (46) (44) (43) (43) (40) (37) 

Other Transport. 5 5 5 5 5 5 5 4 4 4 4 

Waste treatrnent and disposal. 44 44 46 1 45 38 37 34 33 6 

TOTAL 538 400 362 1 341 1 314 1 313 299 293 267 1 220 1 213 

Table 1.3 Emissions of PM, o by sector per year for the period 1970-1996, in Kilo- 

tomes 
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Table 1.3 shows the emissions of PMjo by sector in the UK, and for comparison the 

output of PM, o from diesel exhaust is also shown as a subset of the road transport 

category. 

It is apparent from table 1.3 that the greatest reduction in particulate matter emission 
has arisen in the commercial, institutional and residential combustion sector, where 

the reduced use of coal as a residential fuel has had the most pronounced effect [1.4]. 

Indeed, emission of PMIO from diesel engines accounted for 17% of the total UK 

PM1O emission in 1996 and hence diesel engines are the subject of increasingly 

stringent regulations regarding particulate matter emission. Table 1.4 shows the 
European Community limits for exhaust emissions from new diesel cars. Reductions 

by a factor of 5.6 are required over the period 1993-2005 

Stage Date PM (g/km) NO,, + HC (g/km) NO,, (g/km) 

1 1993 0.14 0.97 

11 1997 0.08 0.7 

111 2001 0.05 0.56 0.5 

IV 2005 0.025 - 0.25 

Table 1.4. European Community limits for particulate matter and NO,, emission for 

new diesel cars [1.3]. 

1.3 Turbocharging 

The power output of an internal combustion engine is limited by the amount of fuel 

that can be efficiently burned in the combustion chamber which in turn is governed 
by the mass of air present in the cylinder. Supercharging is a method of raising the 

inlet air density and hence providing a greater mass of air into the cylinder. 
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The turbocharger, an example of wl-iich is shown in Figure 1.4, is a device used to 

elevate the air pressure at the inlet manifold. Power is developed as the exhaust gas 

passes through the turbine, and this power (minus shaft losses) is delivered to the 

compressor where the density of the inlet gas is elevated above atmospheric and the 

mass of air entering the combustion chamber is greater than that of a naturally 

aspirated engine. Figure 1.5 shows a typical turbocharger-engine arrangement for a 

four cylinder four stroke engine utilising a twin entry turbine to exploit the pulsating 

nature of the exhaust gas. The specific power of a turbocharged diesel engine is 

generally higher than that of an equivalent naturally aspirated engine, and 

furthermore, turbocharged engines exhibit lower specific particulate matter emissions 

and slightly lower specific fuel consumption. 

The turbocharger environment is particularly arduous, typical automotive units 

experiencing exhaust gas temperatures at entry to the turbine in the region of 1000K, 

shaft speeds in excess of 100 OOOrpm and pressure ratios across a stage as high as 

3: 1. A typical maximum shaft power rating for a medium sized automotive type 

turbocharger is in the region of 35kW. 

The first attempts to use turbochargers were made by Bucbi in 1909, however, 

measurable success was only achieved in 1925 [1.5]. The widespread use of 

turbochargers since 1945 is mainly attributed to the development of materials able to 

withstand the stress and temperature levels associated with high-speed 

turbomachinery. Legislation regarding engine emissions and specific power, 

advanced modelling and improved manufacturing techniques have also played a 

significant role in their development. Turbochargers are currently widely utilised in 

medium and large engine applications, most notably in locomotive, marine, road 

haulage and static electrical generation applications, however their use in the high 

speed automotive diesel engines is becoming increasingly prevalent. 

'r- 
For automotive applications where the engine operates over a wide load and speed 

envelope the centrifugal compressor is almost exclusively used. Axial compressors 

exhibit higher efficiencies, however these devices are typically more expensive to 
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manufacture, less robust and exhibit a smaller operating envelope. [1.6]. The choice 

of turbine for the automotive application is mainly dictated by the size of the 

turbocharger. The radial flow turbine is mainly utilised for small turbochargers, 

whereas at diameters over 250mm the axial flow turbine may be advantageous [1.6]; 

again the discriminators are cost, manufacturing complexity and reliability. 

The energy availability of the exhaust gas is dictated, in terins of engine parameters, 
by the load and speed. The turbine and compressor are matched to provide an 

acceptable energy balance over a wide range of operating conditions. However, when 

utilising a fixed geometry turbine, a good match over the entire engine operating 

range is difficult to achieve. 'Me internal combustion piston engine, an example of a 

positive displacement device, exhibits a mass flow characteristic that is almost linear 

with engine speed and inlet density. The turbocharger however, shows an increase in 

pressure differential across the respective flow device with increased mass flow rate. 
Hence only a single point match between the engine and turbocharger may be 

achieved and any deviation from this point is subject to degradation of the 

performance of the overall system. The components are typically matched to provide 

an acceptable minimum amount of boost at low speeds. At high speeds and loads the 

boost often becomes too high in terins of pre-ignition limits in a spark ignition 

engine or metallurgical/cooling limits in a compression ignition engine. At high 

engine speeds and loads the turbocharger speed may reach limits based upon the 

centrifugal stress and rotordynamic performance of the rotor/bearing systen-L Figure 

1.6 shows a typical torque-limiting curve for a diesel engine (where in this case the 

torque is presented as brake mean effective pressure, BMEP), detailing the individual 

mechanisms that limit the performance of the engine. The smoke limit at high load, 

low speed and the turbocharger over-speed hinit are attributable to the turbocharger 

design and subsequent matching to the engine. 

Further to these -matching considerations, the transient response of the turbocharger 

must be considered. The mass flow rate of fuel injected into the combustion chamber 

can be increased rapidly, however the turbocharger has a much higher time constant 

and the time taken for the air flow rate to increase to appropriate levels may be 
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considerable. This provides fuel rich combustion conditions where a large amount of 

soot is formed in the diffusion flame and little subsequent oxidation occurs, leading 

to the characteristic plume of black smoke and poor drive-ability of the diesel engine. 

It is apparent that, over the full range of engine operating conditions, the general 

requirements of any system designed to improve the turbo charger/engine match 

varies according to the engine operating condition. Consequently any turbocharger 

ancillary system designed to improve the match may be broadly categorised as 

either: 
1. Turbocharger assist. Systems/devices designed to improve the turbocharger 

performance under low load engine operating conditions, including the 

Hyperbar system of turbocharging [1.7,1.8], compressed air injection into the 

compressor [1.91, the wastegate control method, variable geometry turbine 

[1.10,1.11,1.12], three wheel turbochargers [1.13,1.14], electrically driven 

compressors [1.15], and the use of low inertia ceramic turbo-machinery 

components [ 1.16]. 

2. Turbocharger retard. Systems/devices used to slow the turbocharger down 

at high engine operating conditions in order to prevent over-boost and shaft 

over-speed. The use of such systems allows a considerable degree of power to 

be extracted from the exhaust gases, which may be converted to mechanical 
drive shaft power using turbo compounding, useful mechanical power for 

ancillary vehicle functions or into electrical power where the requirements of 

the conventional alternator may be eliminated. 

In order to gain insight into the requirements, specifications, complexity and 

performance of the wide variety of conventional systems described, and hence to 

define a tentative specification which may be used in the design of such systems, it is 

useful to discuss each systeni, both assisting and retarding, individually. 
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1.4 Turbocharger Assisting Systems 

The wastegate and variable geometry turbine systems may be classified, in some 

applications, as a device which retards the turbocharger system. However, since 

these devices provide a variable match between the turbocharger and engine by 

altering the characteristics of the turbine and hence produce no useful output Power, 
it is appropriate in this case to classify them as assisting. 

1. The Hyperbar system essentially de-couples the compressor flow from the 

(low compression) engine by introducing a bypass valve, controlling the flow 

rate, in the inlet manifold so the compressor can be used in a region of higher 

yield, closer to the surge line of the device. Figure 1.7 shows a schematic 

representation of the Hyperbar system. The excess air is recombined with the 

exhaust gases from the engine in a secondary combustion chamber. Under 

low load operating conditions, typically around 20% of maximum, fuel is 

introduced into the auxiliary combustion chamber to increase the 

supercharging pressure to compensate for the low engine compression ratio. 
At low engine speed and high load the auxiliary chamber is again utilised to 

increase the supercharging pressure to increase the air/fuel ratio and hence 

reduce specific engine emissions and thermal loading. To exploit the 

maximum advantage of the Hyperbar system the engine is designed with 
lower compression ratios, however the compression ratio is typically too low 

to achieve self ignition without the boost pressure being above ambient and 

such systems require an electrically actuated turbocharger to allow starting. A 

further disadvantage of the system is the increased fuel consumption penalty 

of the secondary combustion chamber, the specific fuel consumption is 

increased by 2-8% at rated speed and load [1-7] and by as much as 30% at 

low engine operating conditions [ 1.17] 

2. Compressed air injection into the compressor is a method primarily utilised 

to improve the transient response of the turbocharger, however the system 

aids the scavenging process in two-stroke petrol engines and enables starting 
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of large, typically marine, diesel engines. The system comprises generally 

several angled nozzles (although a single nozzle system is in utilisation [1.9]) 

located at the rotor tips around the centre of rotation, figure 1.8. Compressed 

air is introduced into the compressor to aid the acceleration of the 

turbocharger under the application of a suddenly increased engine load. The 

system has the added advantage of increasing the air/fuel ratio since the 

injected air enters the combustion chamber and the transient emissions, most 

notably particulate matter, can be significantly reduced. However, 

considerable air storage and management systems must be available for the 

system to operate. 
3. The wastegate control method is widely commercially utilised. The 

wastegate allows a proportion of the exhaust gas to bypass the turbine under 

conditions of high engine load and speed, preventing turbocharger shaft over- 

speed and over-boost of the inlet air. This ability to alleviate excess energy at 
high end operating conditions allows a turbo charger-eng ine match to be 

achieved whereby the boost at low end conditions is significantly increased 

via a smaller capacity turbine. 

4. Variable geometry turbochargers are currently commercially available. 
The system utilises either a moving turbine scroll wall [1.18], or more 

typically [ 1.61, a series of adjustable guide vanes [ 1.19], shown in figure 1.9. 

Adjusting the angle of the vanes (or indeed narrowing the sidewall entry 
distance) allows the inlet area of the turbine to be optimised given the engine 

operating conditions. Reducing the nozzle area at low end operating 

conditions accelerates the turbocharger shaft and allows significant 
improvement to be made to the low-end transient operation of the engine. 

5. Three wheel turbochargers consist of a third turbine hydraulically powered 

via an external supply of high-pressure oil. The third wheel is either a 

hydraulic turbine or a pelton wheel. Again the power addition occurs at low- 

end engine operating conditions and hence the third wheel is often optimised 

for lower speeds than the turbocharger. Encouraging results are reported for 

this systen-4 indeed the low speed maximum torque characteristic of the 
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engine is greatly enhanced with no increase in particulate matter emissions 
[1.131. 

6. Electrically assisted compressors, such as the so-called 'turbo-pac' device, 

provide significant reductions in the development of exhaust particulate 

matter under transient engine loading [1.15]. The device comprises a radial 

compressor driven with a brushless pennanent magnet (PM) motor and may 
be operated in parallel with a standard automotive turbocharger. 

7. Ceramic turbo-machinery components, most commonly the utilisation of 
Silicon Nitride turbine wheels significantly reduces the inertia of the 

turbocharger rotor. The steady state low speed performance of the engine 

shows no improvement as there is no power addition to the turbocharger 

shaft, however the transient response of the engine is improved by the 

shortened turbocharger response time. The commercial development of such 
devices is poorer than predicted [1.16], mainly due to the mechanical 
interfacing between the steel and ceramic components, the high cost of 

manufacture and high rejection rate of the components. 

1.5 Turbocharger Retarding Systems and Excess Energy 

Recovery 

Many of the assisting devices described sufficiently enhance the low end 

performance of the turbocharger and allow the turbine, in particular, to be downsized 

and hence re-matched to the engine at higher end operating conditions. In the 

majority of cases this re-matching eliminates the need for a retarding system on the 

turbocharger, indeed the use of assisting systems is much more prevalent than 

retarding systems. However several systems have been developed to retard the 

turbocharger by extracting the excess exhaust energy, providing power to perform 

other functions. 

Turbo-compounding by combining the excess power available to the turbine 

under high engine operating conditions with that from the engine shaft has 
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been utilised in aircraft, ground transport and marine applications [1.201. 

Although many combinations of arrangement and number of turbines exist, 

each system comprises a turbine transmitting power via a gear train to the 

engine crankshaft (figure 1.10 shows a schematic of the most widely used 

two-turbine, series system [1.20]). Research on turbocompound engines 

widely indicates increased transient response [1.21,1.22], lower particulate 

emissions with no increase in NO,, output [1.22] and lower specific fuel 

consumption [1.23,1.21]. Figure 1.11 shows typical fuel consumption 

characteristics of a standard engine and a series turbocompound engine 
[1.20]. Turbocompound systems are relatively complex and the large- 

reduction gearboxes needed between the turbine and the crankshaft require, 

typically, fluid couplings to reduce the torsional oscillations on the turbine 

shaft generated by the crankshaft [1.23]. 

2. Ancillary power turbines. Woollenweber [1.241 argues that conuilercial 

acceptance of the turbocompound engine is hampered by the cost and 

mechanical complexity and suggests that the power provided by the second 

turbine is best utilised in the engine cooling system. The second turbine is 

coupled to an axial compressor, in an arrangement similar to a conventional 

turbocharger, but to provide cooling air for the engine and heat exchanger, it 

is proposed to mount the device and appropriate heat exchangers at the rear of 

the vehicle, eliminating the need for a conventional radiator. The system 

reduces the parasitic load on the engine, allows the vehicle body to be 

redesigned reducing aerodynamic drag and ultimately reduces the fuel 

consumption of the vehicle [1.24]. 

I Turbogenerators are emerging as a technology capable of supplying useful 

quantities of electrical power primarily for utilisation in hybrid electric 

vehicles. Atkinson et al. [1.25] have reported the design of a 3kW, 100 000 

rpm three-phase brushless permanent magnet turbo- alternator. Figure 1.12 

shows a schematic layout of the system in a hybrid vehicle drive train, while 
figure 1.13 shows the detail of the prototype turbo- alternator. The system 

operates on a naturally aspirated engine, and as a consequence, the increase in 

exhaust back-pressure reduces engine performance and ultimately leads to a 
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degradation of system fuel efficiency over some parts of the operating 

envelope. However the operating range of the engine in hybrid vehicles is 

very constrained, in some cases even to a single operating point. This 

provides scope to optimise the turbo -altemator/engine characteristics so as to 

minimise the adverse effects of the increased exhaust back pressure [1.25]. 

The system was tested both on a constant pressure flow bench and an internal 

combustion engine, from which results indicate electrical power generation of 
RW at a system efficiency of 65% with a corresponding reduction in specific 
fuel consumption of 4-5% [1.25]. 

The objective of the research presented here is to extend this concept to a system that 

both exploits the excess exhaust gas energy for electrical generation, and also 

provides motoring torque to the compressor to enhance the controllability of inlet 

boost. The proposed system is referred to throughout this thesis as an EATG system 
(Electrically assisted turbo charger/generator). 'Me basic layout of the EATG is 

shown schematically in figure 1.14. Both the exhaust turbine and the inlet 

compressor are mounted on a common shaft either side of an electrical machine 

rotor. 

Under low engine speed and high load conditions where the air/fuel ratio in the 

cylinder is very low, the compressor speed can be increased by the motoring torque 

produced by the electrical machine, thus facilitating more efficient combustion than a 

standard turbocharger. Further, the ability to accelerate the compressor by the 

addition of torque from the electrical machine will also reduce exhaust emissions 

under transient engine loading. Further, at high engine speed and low load, the shaft 

speed can be retarded by operating the electrical machine as a generator, with little or 

no detriment in engine performance. In the absence of any specification of the power 
levels attainable with such devices, the initial design was based on delivering a net 

electrical power of RW over a typical driving cycle and a peak power of ±5 M 

These figures are comparable with the power levels reported by Atkinson et al. 
[1.251. 
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A similar integrated turbine, compressor and electrical machine design is currently 

being developed by Reuter for cryogenic application [1.26,1.27]. 'Me outline design 

is shown in figure 1.15. The system is much larger than is typically encountered in 

automotive turbocharger applications and allows the inclusion of a magnetic bearing 

to reduce the friction loss in the bearing system. The power modulation by the 

electrical machine is specifically to constrain the speed of the shaft to 60 000 rpin 
The power rating of the prototype brushless 6 phase AC machine is ±5OkW (research 

is continuing into a 450kW machine), operating over a temperature range of -180'C 

to 1200C. 

During the course of the research reported in this thesis, Turbodyne Systems Inc. 

(USA) released limited details of a turbo-generator system known as the 

'Dynacharger' [1.28,1.29]. The concept is similar to that proposed in this thesis, a 

motor/generator being placed on a common shaft with the turbine and compressor of 

a standard turbocharger. The unit is inter-changeable with a standard turbocharger 

installation with the machine windings connected to a power converter as shown in 

figure 1.16. However, few specific details were provided as regards measured 

performance or detailed design data. A revised design was also reported, albeit again 

with limited technical data [1.28], where the motor/generator is mounted at the 

compressor end of the shaft to assist with cooling. The claimed benefits of the 

dynacharger system are: 

9 Improved specific fuel consumption. Reductions as high as 10-20% are quoted 

with a redesign of the gearbox to acconunodate the increased torque envelope of 

the enghie [1.30]. 

Non-zero turbocharger speed at engine start up. This allows the compression 

ratio of the engine to be optirnised for fuel consumption, where currently the 

design is compromised in order to facilitate cold start of the engine [1.29]. 

Effective elimination of turbo-lag. Motive power can be added to overcome 

turbo-lag, and hence the turbine and compressor can be re-matched to allow 
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elevated turbocharger speeds at low engine operating conditions without the risk 

of shaft over-speed [1.30]. 

* Reduced emissions. Under urban drive cycle conditions the characteristic plume 

of black smoke from a diesel engine under sudden load application is greatly 

reduced due to the elevated boost levels and increased transient response of the 

turbocharger. Further, NO,, may be reduced by the high rates of exhaust gas re- 

circulation that may be afforded by the device [1.29]. 

It should be noted that there are very lin-fited published results that rigorously 

validate these findings at present. 

1.6 Electrical Machine Technologies 

The recent practical realisation and preliminary low-volume commercialisation of 
high-speed automotive turbo-generators has been facilitated, to a large extent, by 

advances in brushless electrical machine technologies. The three turbo-generators 

described in section 1.5, i. e. the turbo-generator described by Atkinson, the 

motor/generator for cryogenic pump applications developed by Reuters and the 

turbocharger motor/generator commercially manufactured by Turbodyne systems, 
have in each case been based around brushless DC permanent magnet machines 

(BLDC). 

However switched reluctance (SR) machines are also likely to be well suited to 

turbo-generators, and may in the long term offer a more cost effective solution for 

high volume, mass market applications. SR machines continue to attract significant 
interest in the aerospace [1.31,1.32], domestic appliance [1.33] and automotive 

sectors [1.34]. The principles of SR machines are very well established, and indeed 

as far back as 1838 their basic principles were identified [1.35]. However, they have 

only recently emerged as a competitive machine format as power electronic 

converter teclmology has becorne established. 'Me absence of magnets and brushes 

make SR machines highly competitive in terms of robustness and cost as compared 
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to brushless PM machines [1-36,1.31,1.32]. Further, it has been claimed [1.311 that 

they inherently afford a higher degree of fault tolerance as compared to permanent 

magnet machines. 

In common with PM machines, SR machines are capable of very high levels of 

performance in ten-ns of specific power and high-speed capability, and can be 

controlled in a highly flexible manner, albeit that the control strategies may be more 

complex than an equivalent PM machine. Although many comparisons between the 

relative merits of SR and PM machines have been published [1.37,1.31], these draw 

few if any definitive conclusions that can be supported by quantitative data. Indeed, 

it is apparent that many of the conclusions drawn are inevitably subjective in nature, 

application specific and highly influenced by the constraints imposed in the 

comparison. For the purposes of this study, it is therefore useful to identify and 

qualitatively compare the key features of each of these topologies within the context 

of the likely requirements of the EATG system. 

1. Power density. As will be demonstrated in chapters 2 and 6, the rotor 
diameter is highly constrained by the centrifugal stress induced at high speeds 

and the axial length by rotor-dynamic considerations. This constraint on the 

rotor volume is likely to require that the machine has a very high power 
density if useful levels of power are to be derived. Although the power 
densities which can be achieved in electrical machines are highly dependent 

on specific design features, particularly the cooling mechanism employed, it 

is generally recognised that PM and SR machines are capable of comparable 

power densities [ 1.34]. 

2. Fault tolerance. Tlie ability of the electrical macWne to provide generating 

torque (hence limiting the shaft speed) allows the turbine and compressor to 

be re-matched to provide higher power levels without the risk of over-speed 

at high engine speed and load conditions. However failure of the electrical 

machine may allow the turbocharger shaft speed to reach levels where 

catastrophic failure may occur. Thus, the degree to which the machine is fault 
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tolerant, i. e. it can remain operational (albeit at some reduced rating) with 

faults such as short/open circuit phase windings, is likely to be a key factor. 

SR machines are generally regarded as exhibiting a higher degree of fault 

tolerance than conventional PM machines [ 1.3 1 ], which generally require the 

addition of specific design features to achieve comparable levels of fault- 

tolerance with consequent reductions in specific power capability [1.31]. 

3. No-load iron loss. Although the duty cycle of the turbo-generator will be a 

complex function of both engine operating conditions and turbine/compressor 

matching, it is likely that its principal use will be at high engine speeds and/or 
during engine transients. As such, it is likely to be essentially idling for a 

considerable proportion of the time, during which it is potentially a parasitic 
loss. In this regard, SR machines offer a considerable advantage since the no- 
load (i. e. un-excited) iron losses are essentially zero, while for a conventional 
PM machine, the iron losses under no-load are still significant. This is likely 

to be a particularly important factor in this case, since the iron loss will 

comprise a very significant proportion of the system losses given the high 

operating speeds of the machines. 

4. Rotor high-speed capability. The rotors of both SR and brushless PM 

machines are well suited to high-speed operation. The single piece 
laminations and the absence of any magnets and rotor windings in SR 

machines, make them ideally suited to high speeds in small to medium 

machines. However the maximum peripheral speed is ultimately limited by 

the intrinsic material strength since there is little, if any, scope to contain the 

rotor within a high-tensile sleeve since they cannot readily accommodate 
large airgaps without a marked reduction in performance. Below this limit 

they offer a low-cost and robust rotor structure. High-speed PM machines on 

the other hand, require some form of magnet containment (e. g. a carbon fibre 

sleeve), even in the case of small machines. Ultimately, their ability to 

accornmodate large airgaps and hence 'thick-walled containment may enable 

them to exceed the peripheral speed capabilities of SR machines. However, 
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small to medium Wgh-speed PM machines will inevitably require a more 

complex, multi-component rotor structure. 

5. Elevated Temperature Capability. The high temperatures encountered 

within the turbocharger environment place particular demands on the 

materials in the electrical machine. The critical materials in terms of 
temperature capability are the winding insulation and the permanent magnets 

used in the BLDC design (most conventional lamination materials being well 

capable of operating up to 500'C or so). The maximum temperature that the 

winding insulation can be exposed to without reducing lifetime dramatically 

is typically some 200-220'C. For the permanent magnet materials, the 

maximum operating temperature varies between different materials, e. g. high 

performance Hard ferrite - 150'C; NdFeB - 220'C; SIU2CO17-250-3500C 

[1.38]. In many cases where either the machine is located in a high ambient 
temperature or a high temperature is generated due to high dissipation levels 

within the machine, the temperature capability of high-performance PM 

materials is usually adequate since the winding insulation is equally 

susceptible to over-temperatures. Consequently Jack et al. [1.31] concluded 
that the penalties for using a PM machine in terrns of maximum thermal 

endurance is minimal. However, in the case of a turbo-generator, there is 

likely to be a considerable temperature differential between the rotor and the 

stator, due to a heat-soak effect from the turbine wheel (which itself may be 

at temperatures as high as 800'Q and the difficulty in cooling a high-speed 

rotor. Thus the ability of an SR rotor to operate at considerably higher 

temperatures is likely to be of considerable benefit. Further, the performance 

of an SR rotor improves with increasing temperature due to the increasing 

resistivity of the laminations and the consequent reduction in the eddy current 

component of iron loss. By contrast, in a PM machine, the negative 
temperature coefficient of remanence, which is typically some -0.1 % per T 

for NdFeB, will give rise to a marked reduction in performance with 

temperature. 
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Aerodynamic drag. Aerodynamic losses in high speed rotating machinery 

are likely to be a highly significant loss mechanism Intuitively, one would 

expect higher aerodynarnic losses with an SR rotor (which in many respects 

resembles a fan like structure) than with the smooth cylindrical rotors of 

BLDC, behaviour that is borne out by the fluid dynamic studies presented in 

chapter 5. Further, the much smaller airgaps that are typically required by SR 

machines to ensure comparable power densities and power factors, are also 
disadvantageous in terms of aerodynamic loss as compared to the larger 

airgaps which can be accommodated in PM machines. 

Although much of the above discussion is qualitative, an SR machine was adopted as 

the preferred topology for this application. The principal justifications were the 

absence of any no-load iron loss, the simple and robust rotor structure and the 

absence of any permanent magnet material in the high temperature environment. 
Further, since PM machines have already been employed in the target application, 

this study will provide a useful comparison in ten-ns of relative machine merits 

1.7 Switched Reluctance Machines 

SR machines are doubly salient machines, i. e. the rotor and stator both exhibit 

magnetic saliency. Although there are many variants, in terms of stator pole, rotor 

pole and phase number, the basic underlying torque producing mechanism is 

conunon, and is a result of the tendency of the rotor to align itself in a position of 

minimum magnetic reluctance. In terms of the torque producing mechanism, it is 

useful to consider the particular case of a3 phase SR machine equipped with 6 stator 

teeth and 4 rotor teeth (a so-called '6/4' machine). A cross-section of a typical 6/4 

SR machine is shown in figure 1.17. Each stator pole carries a concentrated winding 

connected in series or parallel with the winding on the diametrically opposing tooth 

to form one phase of the machine. The coils are connected such that the flux 

produced by currents in the windings is additive. 
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The position of minimum reluctance (i. e. maximum inductance) with respect to a 

given phase is referred to as the aligned position, figure 1.17a. The position of 

maximum reluctance (i. e. minimum inductance) is known as the un-aligned position, 
figure 1. l7b. By virtue of being a singly excited machine, it is desirable to have a 

small airgap in the aligned position in order to minimise the stator mn-If 

requirements. As a consequence, SR machines are often manufactured with very 

small airgaps, typically 0.1-0.2 nun in medium power machines. 

Continuous torque can be generated by sequencing the excitation in the phases with 

respect to rotor position, such that the rotor is continually drawn towards a position 

of minimum reluctance with respect to the excited phases. By way of example, if 

current were flowing in phase C in figure 1.17a, the rotor would move in a clockwise 
direction, until it reached alignment, at which point phase B would be excited to 

continue the rotational motion (the other pair of rotor poles would then be drawn into 

alignment). 

It is important to note that the direction of torque is independent of the polarity of 

current in a given phase. Hence, in principle an SR machine can be driven from a 

simple uni-polar supply without any loss of winding utilisation, a feature which is 

often cited as a major advantage as compared to PM machines. In the case of a 6/4,3 

phase machine, bi-directional operation can be achieved by employing the 

appropriate phase sequence of uni-polar currents, i. e. in the machine shown in figure 

1.17, A-C-B produces clockwise rotation while A-B-C produces anticlockwise 

rotation. 

An established and widely employed approach for modelling SR machines is the use 

of so-called 'Vf-i characteristics'. These characteristics represent the relationship 

between the flux-linkage, Vf, and the current, i, at a particular rotor angle. Of 

particular interest are the limiting characteristics in the aligned and un-aligned 

positions, typical examples of which are shown in figure 1.18. The area under the Vf-i 
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curve at a particular value of current is referred to as the co-energy, wMch is defined 

as: 

wf (O, i)=f i vl(0, iýdil 
00.. 

1.1 

The change in co-energy during rotation from the un-aligned to the aligned position 

can be employed to calculate the torque produced for a given current, i. e.: 

T(O, i) 
aw'(o, i) 

ao 
1.2 

The static torque produced for a given constant current can be readily calculated 
from the change in co-energy between the aligned and un-aligned positions, i. e. from 

area W' in figure 1.18, and the angle of the stroke (30" mechanical in a 6/4 machine). 

However, it should be noted that SR machines rarely operate with constant current 

under static conditions, and as will be demonstrated in chapter 3, dynamic operation 

reduces the torque capability markedly from that of static operation. Another 

important feature of SR machines is the relatively high proportion of energy that is 

drawn from the supply which is stored as magnetic energy and subsequently returned 

to the supply. This can often be of the order of 50% of the energy drawn from the 

supply, and hence gives rise to a relatively poor power factor. 

The direction of net energy flow and hence the mode of operation, i. e. generating or 

motoring, is determined by the commutation angles of the machine. If the machine is 

to be operated as a motor, current must flow in the phase winding during the period 

of rising inductance of that winding, i. e. the period when the rotor is approaching the 

aligned position. Generation is achieved with current flowing in the winding when 

the rotor is drawn away from the aligned position by the prime mover, i. e. during a 

period of falling inductance. 
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1.7.1 SELECTION OF POLE NUMBER 

A wide variety of pole/phase numbers can be employed, although feasible 

combinations require an appropriate superposition of the torque from each phase. In 

general machines with lower pole/phase numbers tend to exhibit high torque ripple, 

and indeed in the case of single and two-phase machines, the torque nulls prevent 

self-starting from all rotor positions unless specific additional design features are 
incorporated [1.39,1.401. Machines with higher pole/phase numbers have less torque 

ripple and can self-start from all rotor positions. Table 1.5 shows a published 

summary of the merits of the most commonly employed pole number and phase 

number combinations [1.351. 

Nphases N., N, r:, o Strokes/rev Comments 

1 2 2 180 2 Needs assistance starting 

3 3 2 60 6 Unbalanced magnetic pull makes impractical 

2 4 2 90 4 Non-uniform rotor/parking magnet required to 

assist starting 

3 6 2 60 6 May need assistance starting 

3 6 4 30 12 Lowest strokes/rev for self starting 

3 6 8 15 24 

3 12 8 15 24 

3 18 12 10 36 Low inductance ratio 
3 24 16 7.5 48 Low inductance ratio 

4 8 6 15 24 

4 16 12 7.5 48 Low inductance ratio 

Table 1.5. Summary of SR pole/phase combinations [1.35] 

As was demonstrated by the discussion of the Hyper-bar system, compressed air 

injection and turbo-pac systems in section 1.4, there is considerable merit in terms of 

engine perfomiance if boost pressure is available at start-up. Thus, reliable self- 
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starting capability is highly desirable. As is evident from table 1.5, the selection of a 

phase number is restricted to 3 and above to meet this criteria. Given that any 
increase in phase and/or tooth number is accompanied by increases in electrical 
frequency (a particular concern given the high-speed nature of the machine), the 

simplest 3 phase topology, viz. 6 stator teeth and 4 rotor teeth (6/4), is the leading 

candidate, and as a consequence, was adopted for the prototype. 

1.7.2 SELECTION OF STATOR AND ROTOR POLE ARC 

The selection of the stator and rotor pole arcs, i. e. the angles subtended by the stator 

and rotor poles respectively, is a critical design parameter. Lawrenson et al. [1.41] 

provides useful guidance to determine a range of feasible pole arcs. In order to 

maximise the specific power of the prototype SR machine the following guidelines 

are adopted: 

" The mutual inductance between phases must be minimised 

" The rotor and stator must exhibit cyclic synunetry 

" The switching frequency must be minkdsed, given that the machine must be self 

starting. 

These conditions give rise to a series of constraints regarding the selection of 

appropriate pole arcs that are given in detail by Lawrenson et al. [1.41]. For the 

prototype application a 30' stator and a 35' rotor pole arc were selected. This leaves 

the largest possible area for the windings in order to minimise the copper loss, while 

the 5' overlap will assist the fluxing of the machine prior to the generating period of 

falling inductance. 

1.8 Summary 

This chapter has described the magnitude and scope of diesel engine application, the 

inherent problems with turbo-charged diesel engines and a series of measures that 

have been adopted in an attempt to coffect the mismatch between the positive 
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displacement engine and the aerodynamic compressor. The EATG system that fonns, 

the basis of this thesis has been introduced and its basic operating mode described. 
Switched reluctance machines have been identified as the preferred electrical 
machine topology for this application and some design features have been 

established. 
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Figure 1.4. Typical automotive turbocharger [1.5] 
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Figure 1.5 Typical turbocharger arrangement on a four stroke, four cylinder engine. 
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Figure 1.8 3-point compressed air injection into the compressor housing. [1.9] 
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Figure 1.9. Swinging vane variable geometry turbine [1.6] 
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Figure 1.12. Schematic representation of the turbo-alternator and engine drive train 

system. [1.25] 
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Figure 1.15. Turbine. compressor, motor/generator and magnetic bearing assembly 
for cryogenic applications [1.26]. 
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Figure 1.16. 'Dynacharger' combined turbocharger and motor/generator 

manufactured by Turbodyne systems Inc [1.281. 

Figure 1.1 7a. Cross section of a typical 6/4 SR machine with the rotor in the aligned 

position with respect to phase A. 

38 



Figure 1.1 7b. Cross section of a typical 6/4 SR machine with the rotor in the 

unaligned position with respect to phase A. 
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Figure 1.18. Typical aligned and unaligned y-i characteristic with a constant current 

operating tradjectory. 
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CHAPTER2 

ROTOR MECHANICAL DESIGN 

2.1 Introduction 

The design of switched reluctance (SR) rotors for many conventional low to medium 

speed applications is dictated predominantly by electromagnetic considerations. 

However, in high-speed applications due consideration must also given to the 

mechanical design, specifically in terms of- 

9 Centrifugal stresses in the rotor - Medium sized automotive turbochargers 

typically operate at speeds of the order of 100,000 rpm or so. The resulting 

centrifugal stresses induced in the rotor at such high rotational speeds impose 

severe constraints on the practical rotor diameter that can be employed while 

remaining within the safe operating stress limits of the rotor materials. 

Radial growth of the rotor - In SR machines the radial airgap between the rotor 

and stator is typically 0.1 - 0.25mm or so in order to minimise, the stator mmf 

requirement. Care must therefore be taken to ensure that the radial growth of the 

rotor under high levels of centrifugal stress does not become comparable with the 

nominal air-gap and associated tolerances in order to prevent potentially 
destructive rotor/stator contact. 

Moment of inertia of the rotor. 'Me transient response of any turbocharger 

system is strongly influenced by the total moment of inertia. Given that the SR 

rotor is likely to contribute a significant proportion of the total moment of inertia 

of the complete shaft assembly, its minimisation in the mechanical design is 

desirable. 

This chapter is concerned with a detailed finite element study of the stress 

distribution within SR rotors, with particular reference to establishing design 
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guidelines for the prototype machine with due account of the consequent 

implications on the rotor moment of inertia. 

2.2 Finite Element Analysis 

Well-established and validated analytical techniques exist for the calculation of stress 
in simple rotating structures such as discs and cylinders. However the particular 

geometrical features of SR rotors preclude the use of such techniques, and recourse 

to numerical techniques such as finite-element analysis is required to calculate the 

stress distribution in the rotor to a level of accuracy sufficient to provide the 

necessary design guidelines. 

The finite element method has been widely adopted for the calculation of centrifugal 

stresses and radial growth in rotating machinery [2.1,2.2]. The method is highly 

developed and has been shown to provide accurate results where appropriately 

applied. Given this well validated track-record, experimental validation of the 

technique was not deemed necessary, particularly given the significant practical 
difficulties involved in performing localised stress measurement and/or highly 

precise dimensional measurements at rotational high speeds [2.2]. 

One notable feature of the study presented in this chapter is that a linear stress-strain 

relationship is assumed throughout the study. YvUle this simplification may give rise 

to the calculation of erroneous stress levels, specifically under load conditions where 

plastic deformation within the material will occur, the operation of the rotor under 

these loads will inevitably result in failure (albeit potentially under fatigue conditions 

after a number of cycles). Hence for all practical loading conditions, where yield of 

the electrical steel is avoided (with a considerable degree of safety) the linear 

material stress-strain curve remains valid. 

Care must be taken when using the finite element method, since its ability to predict 

stress levels in a particular rotor geometry under given conditions is reliant on the 
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imposition of the correct boundary conditions and loads. Further, the absolute 

accuracy of the solution is sensitive to the discretisation employed in the finite 

element mesh Hence, a systematic investigation of the influence of these factors was 

undertaken so as to provide the necessary confidence in the findings derived for SR 

rotors. 

2.3 Finite Element Analysis of Cylindrical Rotors 

Cylindrical rotors provide an extremely useful starting point in terms of ensuring 

appropriate and accurate use of FE analysis, since exact analytical solutions of the 

stress distributions can be employed as a benclunark. The centrifugal stress 
distribution in a cylindrical rotor can be calculated using exact analytical solutions 
for the radial and circumferential stresses [2.3]: 

_+222R, 
2R22 

2 
2.1 

a =-m R +R -r 12 r2 

(3+v) 222+ 
ý12R22 1+3v 2 2.2 

M, W R+Rr 
8(12r2 3+v 

As is evident from equations 2.1 and 2.2, the stress in both the radial and 

circumferential directions increase with the square of both the diameter and 

rotational speed, and proportionately with the rnaterial density. 

Three rotors were selected as the basis for the comparison between FE analysis and 

the analytical solutions. The dimensions selected and the operating speeds for all 

three cases are shown in table 2.1. Rotors 1 and 2 have the same outer radius but 

different inner radii, while to confirm the scalability of the discretisation 

requirements relative to the overall dimensions, the third rotor was included with the 

same aspect ratio as rotor 1, but with much smaller overall dimensions. 
. 
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Rotor Outer radius Inner radius Rotational speed (rad/s) 

I lm 0.5m 1000 

2 lm 0.25m 1000 

3 2 nun 12.5nun 1000 

Table 2.1 Dimensions of the cylindrical rotors analysed in the convergence study. 

Figure 2.1 shows the stress variation with radius in rotor 1 calculated using equations 
2.1 and 2.2. The radial stress is nonnal to the surface at the boundaries of the rotor 

and is therefore zero, while the circumferential, or hoop, stress is a maximum at the 
bore. 

Finite-element models of the three rotors were constructed at various levels of 
discretisation. A useful means of defining the level of discretisation is the element 

size ratio, which is defined as the ratio of the global element edge length to the 

overall diameter. In each of the rotor models Us was reduced from 25% down to 

1%, the step size in each case being reduced as the reciprocal of the initial step size, 
i. e., V2, V3, )14...., V25 

. The rotational symmetry of the rotor was exploited to minimise 

the computational effort, and whereas an arc segment subtending any angle may be 

used for a simple cylinder, a 45' segment was used in order to provide consistency 

with the rotational periodicity of a 4-pole SR rotor. To fully constrain the model, 

symmetry boundary conditions were applied to the nodes lying on the lines 

describing the plane of symmetry of the model. 

For many electrical machine applications the lamination stack is fitted to the shaft 

using a radial interference fit or so called "shrink-fit" at the intersection. One 

consequence of this shrink-fit is to leave considerable stress in the rotor at zero 

speed, which in turn would greatly reduce the maximum operating speed of the rotor. 
For the current application, in common with the manufacturing techniques adopted in 

the production of standard turbochargers, the lamination stack is retained by axial 
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compression and the initial radial displacement of the inner-bore nodes in the finite 

element model is assumed to be zero. 

Figure 2.2 shows a typical mesh of rotor I which has 28 elements with a global 

element edge length equal to 6.25% of the rotor diameter, and includes a 

representation of the segmentation and corresponding symmetry boundary conditions 

applied to the rotor. The radial and circumferential stress contours obtained using the 

mesh shown in figure 2.2 are shown in figures 2.3a and 2.3b respectively. 

The radial and circumferential stress distribution across the radius of the machine 

was calculated at each node lying along a radial path, and a linear interpolation was 

performed by Ansys to obtain discrete stress values at 20 equal intervals along the 

radius. Figure 2.4 shows the stress distribution across the radius of rotor 1 obtained 

using Ansys. The correlation between the finite element analysis and the analytical 

solution can be considered using two measures: 

9 'Me root mean squared error of the interpolated stress values, nonnalised to the 

mean stress level in both the radial and circumferential direction respectively. 
Although providing a global indication of the performance of the finite element 

technique, individual nodal stresses may still have a marked discrepancy despite 

an apparently low mean error. Given that from a design point of view, regions of 
localised high stress may be critical, reliance on this error criterion alone may be 

somewhat questionable. 

9 Since failure of the rotor will occur at the location of the nmxhnum effective 

stress, accurate prediction of this peak stress level is a requirement. It is useful 

therefore to investigate the error associated with the maximum stress in the 

cylindrical rotors, and hence the error in circumferential stress at the inner bore is 

defined using equation 2.3. It is evident from the definition in equation 2.3 that a 

positive error indicates that the finite-element solution underestimates the peak 

stress. 
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Whereas the accuracy of the finite-element solution will inevitably increase as the 

mesh discretisation is increased, the computational requirements of models with very 
high levels of discretisation may become overwhelming and in the limit numerical 
trun cation errors may occur. Further, the benefits of very high accuracy solutions are 

rather questionable if large and somewhat empirical safety factors are subsequently 

used in the rotor design. 

An indication of the penalty in terms of additional computational time associated 

with increasing levels of mesh refinement is given by the so-called 'wavefront' of the 

solution. This is defined as the number of unsolved equations in the solution phase 

and is calculated by Ansys. The square of the mean wavefront is proportional to the 

computational time required to achieve a solution. The computational requirement 
figures quoted in this study are normalised to the requirement for the solution to rotor 
1 with the minimum mesh discretisation. 

Figures 2.5 and 2.6 show the variation in the root mean square error in both the radial 

and circumferential directions respectively, and the nodal stress error at the location 

of the maximum stress for the solution of rotor 1 as a function of the computational 

requirement as mesh discretisation is increased. 

Table A2.1 lists the respective error values for rotor 1 where the element size is 

detailed as the ratio of the global element edge length to the outer diameter of the 

rotor. It is apparent from table A2.1 that the largest errors occur when the radial 

stress is calculated, because this is highest near the midpoint of the radius. The radial 

stress is much lower than the circumferential stress and, at the location of maximum 

stress, where ultimately rotor failure will occur, the radial component is zero. 

Therefore the larger errors observed in the radial stress are permissible, as these do 

not significantly affect the performance of the finite-element method in predicting 

rotor failure. 
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In order to assess the convergence of the finite element solution, a convergence 

parameter expressing the incremental change of maximum nodal stress with 
increased discretisation is defined by: 

lanwj 
arnaxi-I 

I 

X100 
cmxi 

2.4 

The rate of change of discretisation is omitted from equation 2.4. As the solution 

converges ý will tend towards zero, whereas if the rate of change of discretisation is 

included in the denominator of equation 2.4 the convergence parameter would 

exhibit a minimum and rise again as convergence is approached, suggesting apparent 
divergence. However, upon inspection of equation 2.4 it is apparent that a small 
increase in discretisation may yield a small change in the stress maximum detected 

and hence convergence will be detected prematurely. Given the omission of the rate 

of change of discretisation, it is necessary therefore to ensure that its value is much 

greater than the convergence criterion applied to ý For the range of discretisation 

modelled, the smallest increase in discretisation is 4%, where the convergence 

parameter threshold is chosen as 0.2% as discussed below. The convergence of rotor 
1 based upon the parameter is plotted in figure 2.7. 

Table 2.2 shows a summary of the minimum number of elements where the 

convergence parameter falls below and remains below 0.2% for increasing 

discretisation. The criterion is met in rotors 1 and 3 with an element size ratio of 
4.2%, whereas in rotor 2 with the smaller bore radius with respect to the outer radius 

the criteria is met with an element size ratio of 3.1%. The need for higher 

discretisation in rotor 2 is due to the higher stress gradient at the inner bore due to the 

stress concentration effect. 
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Rotor Sr Number of Normalised RMS error RMS error Nodal error at 

elements computational (radial) (hoop) M maximum stress 

M requirement M M M 

1 4.2 60 2.85 2.25 0.205 0.127 0.39 

2 3.1 156 5.06 1.56 0.488 0.146 1.02 

3 4.2 60 2.85 2.25 0.205 0.126 0.39 

Table 2.2. Element size ratio and computational effort required with a 0.5% error 

criteria applied to each rotor. 

It is apparent from consideration of the geometrically similar rotors I and 3 in table 

2.2 that the solution error is attributable to the element size ratio and not the absolute 

size of the element, and hence the element size should be specified in this way. 

The use of the structural finite element method to analyse the centrifugal stress in the 

cylindrical rotors and comparison of the results to the analytical formulae 

demonstrates the validity of the boundary conditions and loads applied, and the mesh 
discretisation of the finite element model. Specifically the use of symmetrical 
boundary conditions and the imposition of the loads as an angular velocity in Ansys 

is validated. Furthermore, methods have been established to identify appropriate 

mesh discretisation to ensure that the error associated with under-discretised mesh is 

mininfised. 
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2.4 Finite Element Analysis of SR Rotors 

2.4.1 INTRODUCTION 

Having established the influence of mesh discretisation in the modelling of 

cylindrical rotors, the study was extended to accommodate the more complex SR 

rotor geometry. The leading geometrical parameters of a typical 6-4 SR rotor are 

shown in figure. 2.8. The stress distribution within the rotor is strongly influenced by 

the inter-polar fillet radius and the central bore which accommodated the shaft. 'Mese 

two features can be conveniently represented by two dimensionless ratios viz. A the 

ratio of bore diameter to the overall diameter, and y, the ratio of the fillet radius to 

the overall diameter. 

Dbore 2.5 

Drotor 

r,,,,, t 
2.6 

Drotor 

The angle subtended by the rotor pole also affects the stress distribution, but for the 

current application this was maintained at 351, a value selected to achieve high 

power density and to minimise torque pulsation as will be discussed in chapter 3. The 

rotational periodicity of the machine was exploited to minimise the computational 

requirement and hence only 1/8 of the machine was modelled, as shown in figure 2.9, 

symmetry conditions being imposed at the relevant boundaries. The rotor material is 

a conunercial grade of Silicon Steel (European Electrical Steels CK-26), the 

mechanical properties of which are listed below in table 2.3: 
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Physical Property Value 

Elastic modulus 196 GPa 

Density 7610 kgff3 

Poisson's ratio 0.3 

Table 2.3 Material properties of CK-26 (Manufacturer's specified data) 

2.4.2 MESH DISCRETISATION 

On the basis of the analysis presented in section 2.3 for the level of discretisation 

required for the cylindrical rotor, the following criteria were selected as forniing the 

initial basis for the modelling of SR rotors: 

1. Element size ratios should be less than 5%, since the SR rotor is likely to 

exhibit more pronounced stress concentrations due to its shape. 

2. The convergence parameter ý should not exceed 0.2% (equivalent to 1% error 

in maximum stress for cylindrical rotors) 

A similar convergence study to that described for the cylindrical rotor was conducted 

on two SR rotors, details of which are given in table 2.4. Although the analysis of the 

cylindrical rotors demonstrated that the overall diameter of the finite-element model 

does not affect the solution accuracy, the SR rotors were modelled with a diameter of 

50mrn, this value being representative of the likely order of magnitude considered for 

the turbo-generator. Rotor 1 has a fillet radius ratio y of 0.325, wWch corresponds to 

the maximum value wMch can be accommodated as this represents a full quadrant 

fillet for a rotor with a 35' pole arc, while rotor 2 has a mh-Amum fillet radius ratio of 
0.025 in order to provide an example of extreme stress concentration. For both 

rotors, the bore diameter ratio was 0.24, which corresponds to a representative 

practical bore diameter of 12nun 
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Rotor Diameter I Bore diameter ratio,, B I Fillet radius ratio, r. I Rotational speed 

1 50mrn 0.24 0.325 10 000 rad/s 
2 50mm 0.24 0.025 10 000 rad/s 

Table 2.4. Geometrical parameters of the SR rotors used for a convergence study. 

The global element edge size for each rotor was initially varied between 5% and 1% 

of the overaH rotor diameter. Figure 2.10 shows the meshes for rotors 1 and 2, each 

with a global element edge length of 2.5% of the rotor diameter, and which consists 

of 145 and 123 elements respectively. Also shown are the symmetry boundaries. 

Convergence of the solution as the discretisation is increased was considered solely 
by reference to the convergence parameter ýdefined in equation 2.4. 

The geometry of the rotor will inevitably give rise to regions of localised Wgh stress 

concentration. As a consequence, more efficient use of a given overall number of 
elements may be acMeved by specifying locally Wgher discretisation in regions 

where the stress gradient is anticipated to be highest. Hence for each mesh ý was 

calculated individually at the point of highest stress observed along the two paths A- 

A' and B-B' defined in figure 2.9. 

It is apparent from table A2.2 and figure 2.11 that the convergence of the solution is 

not as straightforward as for the cylindrical rotor case shown in table A2.1 and figure 

2.7. Although there is a general convergent trend, in some cases an increased number 

of elements and hence computational requirement does not necessarily lead to a 

decrease in the convergence parameter ý. This behaviour is largely a consequence of 

the difficulty in discretising the complex geometry of the SR rotor, a procedure 

which is undertaken automatically by Ansys. This is compounded by Iligh localised 

stress gradients, and the inability of the mesh pre-processor to correlate the degree of 

refinement with the stress distribution. Such limitations could be overcome to a large 

extent by employing so-called adaptive meshing [2.4], a facility which was however 
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not available. The results in table A2.2 and figure 2.11 serve to illustrate that the 

distribution of elements is of equal importance to the overall number. 

Criterion 2 above (ý < 0.2%) is achieved along the path A-A' with a global element 

size ratio of 2.5%. However along path B-B' an element size ratio of 1.47% is 

required, as a result of the high stress concentrations within the fillet. 

Similar analysis of rotor 2 yields a convergence in the region A-->A' when the 

element size ratio is again 2.5%. However over the element size range modelled 

convergence is not achieved in the region B->B, since the smaller fillet radius gives 

rise to a considerably higher localised stress concentration. In order to establish the 

element size ratio required to achieve convergence in rotor 2, the element size ratio 

along path A->A' was maintained at 2.5%, while along path B-->B' it was varied 

from 1% down to 0.2%, where again the element size in each subsequent mesh was 

reduced as the reciprocal of the initial element size, i. e. )/,, VjV,.... )15,,.. Under these 

conditions a suitable convergence was achieved in both regions with an element size 

ratio of 0.38% along path B->B'. 

Table 2.5 summarises the mesh density requirements determined from this analysis. 

7[be element size ratio in region A-)A' is essentially insensitive to fillet radius, and a 

fixed element size ratio of 2.5% appears appropriate for the entire range of inter- 

polar fillet radii under consideration. In contrast, the discretisation required in the 

fillet region depends strongly on the fillet radius. Therefore in the generation of 

meshes for intermediate fillet ratios between 0.025 and 0.325, the size ratio along 

path B-4B' was established by a linear interpolation between the two values in table 

2.5. Figures 2.12 and 2.13 show the resultant final mesh for rotors 1 and 2 

respectively. 
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Rotor Region Element Number of Normalised 

Size M elements computational 

ratio requirement 
M 

A-A' 2.5% 0.0091 
I 208 5 76 

B-B' 1.5% 0.053 . 

A-A' 2.5% 0.11 1 
2 596 10 45 

B-B' 0.38% 0.06 7 . 

Table 2.5. Required mesh density in the pole and fillet regions of the two SR rotors 

modelled. Again the computational requirement reported is normalised to cylindrical 

rotor 1 modeHed with minimum mesh discretisation. 
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2.4.3 ANALYSIS OF STRESS DISTRIBUTION 

Several methods may be used to assess the stress levels in a given SR rotor design, 

including the following: 

i) Global parameters such as the maximum or average element stress 

throughout the rotor. By means of example, table 2.6 contains a summary of 

useful global parameters for rotors 1 and 2 derived using the mesh in figures 

2.12 and 2.13. 

Figure of merit Stress, MPa. 

Average radial stress 66 

Average hoop stress 164 
Rotor 1 Maximum radial stress 110 

Maximum hoop stress 340 

Average radial stress 100 

Average hoop stress 129 
Rotor 2 Maximum radial stress 175 

Maximum hoop stress 588 

Table 2.6. Summary of element stress values in rotors 1 and 2 operating at 10,000 

rad/s. 

ii) GrapWcal representations of the rotor cross-section, wMch indicate the 
location, magnitude and concentration of the stress within the rotor. In terms 

of assessing the merits of a given rotor in terms of the likelihood of yield 

and/or fracture, a useful guideline is provided by calculating the effective or 

so-caHed Ton-Mises' stress distribution [2.3]. This is a weU-established 

measure of the critical stress at a given point in a two-dimensional stress 

field. The Von-Mises stress at a particular location is given by [2.31: 
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Contours of Von-Mises equivalent stress for rotors 1 and 2 calculated using 

the mesh of figures. 2.12 and 2.13 are shown in figures. 2.14 and 2.15 

respectively. Significant stress concentration effects are evident in the fillet 

and bore region of the rotor. 
Profiles of the variation of radial and/or hoop stress along specified paths. For 

the 1/8 sector of an SR rotor, two convenient paths A-W and B-->B' are 

shown in figure 2.9. The radial and hoop stress variations along these planes 
for each rotor are shown in figures 2.16 and 2.17 respectively. It is evident 

that the finite element model predicts zero radial stress at the rotor surfaces, 

which is consistent with the necessary physical condition in a direction 

normal to a circumferential surface. 

2.4.4 ROTOR CROSS SECTIONAL DESIGN 

Having established the appropriate boundary conditions and degrees of discretisation 

required for representative SR rotors, a comprehensive study of the influence of 

various geometrical parameters was undertaken, with a view to calculating a rotor 
diameter suitable for use in the prototype and to establish general design guidelines. 
There are two conflicting requirements for the most appropriate rotor design: 

i) To maximise the overall diameter within the material limits so as to maximise 

the torque and hence power capability. 

ii) To minimise the rotor moment of inertia to improve the transient response of 

the system. 

For the best use of the rotor material in terms of its mechanical strength, it would be 

desirable to avoid regions of stress concentration and hence establish a rotor design 

where a large proportion of the rotor material is subjected to similar maximum stress 

level. As discussed previously, the nonnalised stress for a combination of fillet 

radius ratio and bore diameter ratio is scalable by the material density and the square 

54 



of the overall diameter and rotor speed. Tbus, for a predetermined range of fillet 

radius ratio, the entire feasible rotor design space can be explored by reference to 

these two parameters and the rotor pole width. 

'Mere are a number of methods for incorporating an inter-polar fillet that alleviates 

regions of stress concentration. This study encompasses rotors in which the angle 

subtended by a circular fillet is 90', e. g. figure. 2.18a and 2.18b, and rotors that 

employ fillet angles of less than 90' such as that in figure. 2.18c. 'Me same definition 

of the size of the fillet i. e. the ratio of the radius of the fillet to the diameter of the 

rotor, is used for both cases. 'Me maximum fillet radius ratio for fillets subtending an 

angle of 90' which can be employed for a given rotor pole arc %, is given by: 

2.8 
p r,... =2 

[co Cý/2 
sin(' P2 

The diameter of the shaft is often determined by the requirements of the specific 

application. In some cases, particularly when machines are integrated into compact, 
high-performance systems, such considerations may require a large shaft diameter, 

which may in turn impose limits on the geometry of the rotor. In the general case, the 

relationship between the shaft diameter and fillet radius ratio is constrained by an 

ultimate geometrical limit when the bore reaches the minimum point of the fillet. 

T'hus the fillet radius ratio, y, must satisfy the following constraint: 

%F2 sn(Lzý/2 
y>- 

2 (J2- 
- 1) 

2.9 

A second more arduous constraint may be defined where the need to maintain a 

thickness between the bore and the minimum point of the fillet (which is at least half 

the width of the rotor pole in order to avoid localised magnetic saturation in this 

region) gives rise to the constraint: 
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The feasible range of fillet radius ratios based on this second constraint is shown in 

figure 2.19 as a function of bore ratio for a pole arc of 35'. 

A series of 360 finite-element calculations were performed for rotor combinations 

within the entire feasible design space detailed in figure 2.19. The bore diameter ratio 

was modelled in increments of 0.04 (to a maximum of 0.6) and the fillet radius ratio 
in increments of 0.025 (to a maximum of 0.6). The minimum fillet radius ratio is 

taken to be 0.025 since zero is impractical in terms of stress concentration because 

the absence of a fillet creates a singularity and crack tip elements would be required 
in the finite element solution. 

Figures 2.20 and 2.21 show the effect of the fillet radius on the maximum stress in 

the bore and the fillet of a 50mm diameter rotor at 10,000 rad/s, for bore diameter 

ratios of 0.20 and 0.40 respectively. 'Me maximum stress in the fillet decays rapidly 

in both cases as the fillet radius is increased. At low values of y the maximum Von- 

Mises stress in the rotor occurs at the fillet surface. Increasing the fillet radius yields 

high returns in terms of reducing the stress concentration in this region. However, as 

the fillet radius is further increased, eventually the stress in the fillet is reduced to a 

level such that the maximum stress is present at the bore surface. A larger fillet 

radius slightly reduces the stress at the bore due to the stiffening of the central 

region, but in turn adds significantly to the rotor inertia. Ultimately the increased 

mass of the fillet region increases the centrifugal stress at the bore, however this 

occurs beyond the range of fillet radii considered. 

'For high-speed operation, the fillet radius should be sufficiently large to minimise the 

stress concentration in t1fis region. Arguably the most efficient utilisation of the rotor 

material, particularly when rotor inertia is considered, is acMeved when the stress in 
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the fillet is equal to the stress in the bore. It is possible using the results obtained 
from the finite element analysis to determine the fillet radius ratio with a given bore 

diameter ratio that will provide equal stress in both regions as shown in figure 2.22. 

This relationship between the bore diameter and fillet radius ratio remains valid at 

any rotor speed, diameter and material density and is solely a function of the rotor 

pole arc. Figure 2.23 shows the calculated n=imum. stress levels for the 

combinations of fillet radius and bore diameter ratios shown in figure 2.22 as a 
function of the bore diameter ratio, where each rotor modelled has a 50mm diameter 

operating at 10,000 rad/s. 'Me stress increases with bore diameter due to the thinning 

of the region between the fillet and the bore. At bore diameter ratios above 0.44 the 

stress in the fillet remains larger than that in the bore for all the values of fillet radius 

ratio considered, and hence the 'optimal' criteria in which the stress is equal in the 

bore and fillet cannot be satisfied. 

Contours of peak stress calculated for rotors over the entire feasible design space can 
be calculated. Figure 2.24 shows the maximum rotor stress as a function of both bore 

diameter and fillet radius ratios. Also shown on figure 2.24 are the limits for the two 

criteria described, i. e. 
1. 'Me criteria defined by equation 2.10 required to ensure that localised 

magnetic saturation is avol e the region between the bore and the centre 

of the fillet. 

2. 'Me criteria established where the stress in the bore region is equal to the 

stress in the fillet region, a condition that corresponds to maximum utilisation 

of the rotor material. The combinations of the fillet radius and bore diameter 

ratios at which this occurs are also shown in figure 2.22. 

Preferred designs are those in the region above and to the left of both the limiting 

contours defined by the two dashed lines in figure 2.24. Outside this region, the peak 

stress in the rotor rises rapidly and localised magnetic saturation will occur in the 

rotor behind the fillet. Arguably the most appropriate rotor design is that at the 

intersection of the two criteria (with the minimum rotor inertia), i. e. at a fillet radius 

ratio of 0.16 and a bore diameter ratio of 0.26. This combination of fillet radius and 
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bore diameter ratio represents the most appropriate design in tenns of the mechanical 

and electromagnetic utilisation of the material for a4 pole rotor with a 35' pole arc. 

However, the preferred design for a particular application may well be influenced by 

factors such as the relative importance of the rotor moment of inertia and any 

requirements to integrate the machine with a given shaft assembly. The Von-Mises 

stress contours for this combination of fillet radius and bore in a rotor with an outer 
diameter of 50mrn at 10,000 rad/s are shown in figure 2.25. 

2.4.5 SELECTION OF ROTOR DIAMETER 

By inspection of equations 2.1 and 2.2 it is apparent that the stress in the rotor 
increases in direct proportion to the material density and with the squares of the rotor 
diameter and rotational speed. Hence the maximum stress for any given SR rotor can 
be calculated using an equation of the form: 

armax = kcrmy(t) 2D2 2.11 

Where k, is a dimensionless constant which can be determined from finite element 

analysis for a given combination of fillet and bore radius ratios. For the rotor with a 
fillet radius ratio of 0.16 and a bore diameter ratio of 0.26, i. e. the combination 
identified in section 2.4.4 as having the best material utilisation, the value of k, is 

0.21. Hence for a 50mm diameter rotor operating at 10,000rad/s, with a density of 

7610kg/n? the maximum stress in this particular rotor is 40OMPa. Contours of k, for 

the full range of fillet and bore ratios considered are shown in figure 2.26.7111us, by 

reference to figure 2.26 and equation 2.11, the maximum stress in any rotor design at 

any speed can be straightforwardly calculated. 

By re-arranging equation 2.11, the maximum rotor diameter that can be used for a 

given maximum speed can be calculated by specifying the maximum stress that can 

be tolerated 
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Hence for a given operating speed, rotor material and specified stress limit, the 

maximum rotor diameter may be established using the contours of figure 2.26 Since 

the rotor of a turbocharger has a large speed range and is frequently required to 

accelerate from zero to very high speeds, the maximum equivalent stress must 
incorporate some safety factor to avoid fatigue within the material. A standard 

criterion [2.5] corresponding to a fatigue limit for this type of cyclical loading is that 

the maximum equivalent stress in the rotor should be no higher than half the yield 

stress of the material, i. e. a safety factor of 2 is employed. The yield strength of the 
CK26 lamination iron is 40OMPa and hence a limit of 20OMPa was specified for this 

application. 

Figure 2.27 shows the contours of maximum rotor diameter at an operating speed of 

100 OOOrpm with a stress limit of 20OMPa determined using equation 2.12. Figure 

2.28 shows the maximum rotor diameter for the rotor designs of figure 2.22 for the 

same 20OMPa limit, in designs where the stress in the bore and the fillet are equal. 

2.4.6 SHAFT BORE DIAMETER 

The preceding analysis indicates that the basic geometry of a 4-pole SR rotor of a 

given overall diameter can be fully defined by the pole arc, the fillet radius ratio and 

the bore diameter ratio. If the rotor outer diameter is selected from consideration of 

the centrifugal stress constraints, the resulting bore diameter is then given by the bore 

diameter ratio, 6. However for many applications the bore diameter may be pre- 

determined by a number of factors, including: 

1. The shaft/bore dimensions of existing system components. 

2. Minimum lateral stiffness requirements of the shaft required ensuring the 

critical speeds of the rotor do not occur within the operating speed range. 
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3. Torsional stress limits based on the material properties and the maximurn 

torque transmission of the electrical machine. 

If the rotor design must include a specified bore diameter, it is more convenient to 

present the data of figures 2.27 and 2.28 as a function of the absolute magnitude of 

the bore diameter, rather than as a normalised bore diameter ratio. This can achieved 
by multiplying the values of bore diameter ratio in figure 2.27 by the corresponding 

maximum rotor diameter magnitude for a particular operating speed. Hence, the 

generality of figures 2.27 and 2.28 is compromised somewhat by the imposition of a 

specific operating speed. For the particular case of an operating speed of 100,000 

rpm and a safety factor of 2.0, the non-nalised characteristics of figures 2.27 and 2.28 

can be converted into the speed specific characteristics of figures 2.29 and 2.30, 

which are expressed in terms of the actual rotor dimensions. 

2.4.7 ROTOR MOMENT OF INERTIA 

The preceding analysis was concerned with the design of a rotor cross section from 

the point of view the elimination of any significant stress concentration and localised 

magnetic saturation are the primary considerations. In establishing design guidelines, 
it is also useful to consider the polar moment of inertia of the rotor, which has 

particular relevance to the transient response of the turbo-generator system 

Assuming that the rotor polar moment of inertia is independent of the bore diameter 

(i. e. the shaft and the rotor materials have similar densities), then it can be calculated 

by the appropriate superposition of the contributions of the individual geometric 

elements shown in figure 2.31. Using this approach, the moment of inertia, Ip, of the 

SR rotor with a fillet radius ratio of y which subtends a rotor pole arc of % (35' in 

the case of the particular 6/4 rotor considered in this study) is given by: 

I=L,. mD 
4k2.13 

pr ay 

60 



Where, for quarter-circle fillets such as those shown in figures 2.18a and b, the 

inertia constant is: 
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And for fillets subtending an angle of less than 90' (figure 2.18c), the inertia constant 

is: 
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Where in this case the fillet half-angle, 0, is given by 
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It is useful to plot the variation of k-W as a function of the fillet radius ratio y for a 

fixed rotor pole arc of 35', as shown in figure 2.32. As would be expected and is 

indeed evident from figure 2.32, the most appropriate designs in terrns of reducing 

the polar moment of inertia are those with small fillet radii. However, the 

requirement to avoid significant stress concentration and localised magnetic 

saturation imposes a lower limit on the fillet radius. 
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2.4.8 RADIAL GROWTH OF THE ROTOR AND AIRGAP SELECTION 

The high stress levels induced in the rotor at Wgh speed will inevitably give rise to a 

significant degree of strain, which will manifest itself as a radial expansion of the 

rotor. Although the magnitude of the radial expansion is not critical in many rotating 

machines, it may be of importance in SR machines since the airgap length is 

typically very small (of order of a few tenths of a nun). Hence the calculation of 

radial expansion is useful in order to ensure that the airgap length selected during the 

electromagnetic design is sufficient to avoid the possibility of rotor/stator contact, 

although rotor dynamic issues will also have an influence. 

The radial growth of the rotor calculated from the fmite element solutions described 

in section 2.4.4, can be used to establish a concise relationship between radial growth 

and the leading rotor dimensions using an approach analogous to that used to 

represent the maximum stress level. Hence the radial growth for a given combination 

of y andB is given by: 

Urmax = 
k,, m Co 2D3 

E 

2.15 

The variation of the radial growth constant k, 5 over the entire range of 6 and y 

considered is shown in figure 2.33. Again for the rotor with a fillet radius ratio of 
0.16 and a bore diameter ratio of 0.26, the value of k, 6 is 0.036 and for the case of a 
50mm diameter rotor operating at 10,000rad/s, with a densitY of 7610kg/d and 

elastic modulus of 196Gpa the maximum radial growth is 7.7gn-L 
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2.5 Prototype Rotor Design and Manufacture 

In order to realise a reliable prototype system within realistic cost constraints, the 

mechanical design of the rotor was based, where possible, on employing standard 

Holset turbo-machinery components and manufacturing techniques. In the volume 

manufacture of conventional turbochargers, the Inconel turbine wheel is friction- 

welded onto a steel shaft, thus ensuring a Wgh-integrity sub-assembly with excellent 

elevated temperature capability. One consequence of this manufacturing process is 

that the various components which are to be added to the rotor sub-assembly, viz. the 

bearings, the SR rotor laminations and the compressor wheel must be sequentially 
fitted from the compressor end of the shaft, as illustrated in figure. 2.34 (a detailed 

discussion of the rotor/bearing design is presented in section 6.2 of chapter 6). 

The compressor wheel is retained by generating a high level of axial compression, 

which is achieved by tightening a nut against shoulder on the shaft (a typical torque 

setting for the nut being 20ONm/150ft. lb). This in turn imposes a very significant 

axial tensile stress in the shaft. In order to accommodate this stress level, a minimum 

shaft diameter of 7mm is employed in production by Holset, and even at this shaft 
diameter the stress approaches the yield stress of the material. Hence, there is little, if 

any scope to reduce the inner bore of the SR lamination below 7mm. Using the 

characteristic in figure 2.30 this gives a maximum rotor diameter of 34.5mm for 

operation at 100,000rpm at a safety factor 2.0. 

It should be borne in mind that this limiting figure was based on a somewhat 

arbitrary and conservative safety factor of 2.0. In the detailed optimisation of high- 

performance machinery subjected to cyclical loading such as automotive-engine 

connecting-rods [2.6], considerably lower safety factors have been employed, once a 

very detailed understanding of long-term material behaviour has been proven. This 

ability to reliably operate with a reduced safety factor yields considerable dividends 

in terms of specific power capability and/or maximum operating speed. As will be 

demonstrated in chapter 3, a diameter of 34.5mm. is relatively small for the potential 
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power rating of the machine, with a consequent requirement for a relatively long 

lamination stack. As a consequence, for the prototype rotor, the safety factor was 

reduced by 20% to 1.6, a figure which is still well within the range of values 

encountered in various high specific power cyclically loaded machine elements [2.61. 

The viability of this safety factor in long-term production would necessitate a 

detailed study of the fatigue behaviour of the electrical steel (there being no 

published data in the current literature). The metallurgical data produced in such a 

study must be coupled to a detailed specification of the likely duty cycle of the 

machine in order to determine the residual, mean and peak-cyclical stresses for 

construction of a so-called "Goodman line" [2.7,2.8], to determine the "equivalent" 

stress. 

Using this safety factor, a maximum rotor diameter of 38mm can be employed. The 

bore diameter ratio, 0, becomes 0.184 and the fillet radius ratio, y, required to 

provide equal stress in the bore and fillet regions is 0.13. Figure 2.35 shows the stress 

contours in the 38mm diameter rotor operating at 100,000 rpm. The absolute 

maximum speed at which failure due to shaft burst will occur for this rotor is 

approximately 130 000 rpm 

A prototype rotor was manufactured using a lamination stack with an outer diameter 

of 38nun The rotor is held in place using the retaining nut to provide axial 

compression against a pre-machined shoulder in the shaft in a manner similar to that 

adopted for the compressor wheel in standard turbocharger design. This eliminates 
both the stress concentration effects (and unbalance) associated with machining key- 

ways into the shaft/rotor, and the high levels of residual stress associated with shrink- 
fitting the laminations onto the shaft, which would (due to superposition with the 

centrifugal stresses) considerably reduce the maximum operating speed of a given 

rotor. However upon assembly, the action of compressing the laminations with the 

retaining nut against the shoulder on the shaft via a collar behind the compressor, 

caused the shaft to bend to an extent beyond the limits of the tolerances required for 

balancing. This bending occurred as the two faces of the rotor laminations tended to 

deviate from parallel as they compressed in a non-uniform manner forcing the shaft 
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to bend, as shown in figure 2.36. Consequently the shaft was redesigned to 

incorporate a precision ground steel sleeve which was inserted into a redesigned 

rotor with a larger bore. The compressor collar and shaft shoulder act against the 

sleeve and the non-uniform compression of the lamination material was avoided. The 

diameter of the sleeve was selected as 13mm in order to provide sufficient sectional 

area upon which the shaft shoulder and compressor collar can act, and hence the bore 

of the rotor was modified to accommodate this. For the purpose of producing a 

prototype machine the rotor diameter of 38mm was maintained and hence the fillet 

radius ratio in this case was tailored to achieve the desired speed without exceeding 

the stress limits of the rotor. In this case the fillet radius ratio that, when combined 

with the bore diameter ratio of 0.34, would give the same magnitude of stress in the 

two regions was beyond the limits of the saturation criterion and a fillet radius ratio 

of 0.275 was used. The stress distribution in this rotor at 10 000 rad/s is shown in 

figure 2.37 and figure 2.38 shows the corresponding radial displacement where the 

poles can be seen to extend into the airgap by 8gm. 

The final rotor specifications, which were arrived at with due consideration of the 

practical issues associated with integrating the rotor onto the turbo-machinery 

components, are sununarised in table 2.7. 
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Diameter 38 mm 

Bore diameter ratio 0.34 

Bore diameter 13 mm 
Fillet radius ratio 0.275 

Fillet radius 10.5 mm 

Stress constant k, (equation 2.11) 0.206 

Maximum stress level@ I 00,000rpm 248 MPa 

Inertia constant kw (equation 2.14) 0.875 

Additional inertia (50mm axial length - section 3.2) 43xlO-6 kgm' 

Percentage increase of inertia w. r. t. to standard turbocharger 43 % 

Radial growth constant ks(equation 2.15) 0.037 

Maximum radial growth of rotor@ 100,000rpm 8 gm 

Maximum rotational speed to yield stress 127,000 rpm 
Safety factor for yield 1.61 

Table 2.7 Sununary of rotor design. 

66 



REFERENCES 

[2.1] Jun, C-H. and Nicolas, A. 'Analysis of the mechanical stresses on a squirrel 

cage induction motor by the finite element method. ' IEE Trans. on Magn. 

Proc. of the 1998 18th Biennial IEEE Conference on Electromagnetic Field 

Computation (IEEE CEFC'98), ppl282-1285, May 1999. 

[2.2] Subramani, D. A., Ramamurti, V. and Sridhara, K., 'Numerical analysis and 

experimental verification of the radial growth of a turbocharger centrifugal 

compressor impeller. ' Jnl. of Strain Analysis for Eng. Design, Vol. 32 No 2, 

ppl 19-128, March 1997. 

[2.3] Fenner, R. T., 'Mechanics of Solids' Blackwell Scientific Publications, 1989. 

[2.4] Lee, C. K. and Lo, S. H., "An automatic adaptive refinement procedure using 

triangular and quadrilateral meshes. " Engineering Fracture Mechanics, Vol. 

50. No5,1996. pp 671-686. 

[2.5] Gere, J. M. and Timoshenko, S. P., 'Mechanics of materials -3 rd Edition. " 

Chapman and Hall, 1992. 

[2.6] Graham, J. A., Millan, J. F. and Franklin, J., "Fatigue design handbook. " 

Publication of the Society of Automotive Engineers, USA. 1968. 

[2.71 Chyn, C., Wu, R. C. and Tsao, T. P., "Forsional fatigue of turbine-generator 

shafts owing to network faults. " IEE Proc. Generation, Transmission and 
Distribution, Vol. 143, No 5,1996. pp479-486. 

[2.8] Heath, A. R. and McNamara, P. M., "Crankshaft stress analysis-combination 

of finite element and classical analysis techniques. " Trans. of the ASME, JnI 

of Engineering for Gas Turbines and Power, Vol. 112. No 3.1990. pp268- 

275. 

67 



7000 

6000 

5000 

f 4000 

0 
CD 

3000 

2000 

T 

9 Radial 
0 Circumferential 

-4. - 
-4- 

-4. 

-4-- 

- . 4- 
- 

1000 F 

100 150 200 250 300 350 400 450 
Radial distance (mm) 
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Figure 2.2. Typical finite element mesh of rotor I consisting of 28 second order 

structural elements. 

68 



ANsys 5.4 
FEB 19 2000 
16: 30: 08 
NODAL SOLUTION 
STEP-1 
SUB -1 
TIME-1 
SK (AVG) 
RSYS-1 
PowerGraphics 
EFACET-1 
AVRES-Mat 
DMX -. 016528 
SMN -. 910E+07 
Smx -. 784E+09 

. 910E+07 

. 952E+08 

. 181E+09 

. 267E+09 

. 354E+09 
440E+09 
526E+09 
612E+09 

. 698E+09 

. 784E+09 

Figure 2.3a. Radial stress contours in cylindrical obtained using the mesh detailed in 

figure 2.2. 
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Figure 2.3b. Circumferential stress contours in cylindrical obtained using the mesh 
detailed in figure 2.2. 
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Figure 2.8. Switched reluctance rotor structure highlighting leading dimensions. 
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Figure 2.9 SR rotor schematic indicating region modelled and the paths A-A' and 13- 

B' defmed on the lines of symmetry. 
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Figure 2.1 Oa. Mesh of rotor I with a global element edge length of 2.5% of the rotor 
diameter consisting of 145 elements. 

Figure 2.1 Ob. Mesh of rotor 2 with a global element edge length of 2.5% of the rotor 
diameter consisting of 123 elements. 
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Figure 2.11. Variation of the convergence parameter, ý, in the regions A-A' and B-B' 
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Figure 2.12. Revised mesh of rotor I with a global element edge length of 2.5% of 

the rotor diameter and a localised edge length of 1.5% in region B-B', consisting of 
208 elements 
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Figure 2.13. Revised mesh of rotor 2 with a global element edge length of 2.5% of 

the rotor diameter and a localised edge length of 0.38% in region B-B', consisting of 
596 elements 
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Figure 2.14. Von-Mises stress distribution in rotor I obtained using the mesh shown 
in figure 2.12 at 10000 rad/s. 
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Figure 2.15. Von-Mises stress distribution in rotor 2 obtained using the mesh shown 
in figure 2.13 at 10000 rad/s. 
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Figure 2.17b. Radial and circumferential stress along the profile B-B' in rotor 2 
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Figure 2.18a Segment of SR rotor exhibiting a quarter circle fillet. 

Figure 2.18b Segment of SR rotor exhibiting a quarter circle fillet of the maximum 

value. 

Figure 2.18c Segment of SR rotor exhibiting a fillet subtending an angle less than 

90.0 
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Figure 2.19. Locus of fillet radius ratio as a function of bore diameter ratio where 
localised saturation between the shaft bore and the minimum point of the fillet is 

avoided. 
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Figure 2.20 Maximum stress in the fillet and the bore of the SR rotor with a bore 

ratio of 0.2 as the fillet radius ratio is increased. 
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Figure 2.21 Maximum stress in the fillet and the bore of the SR rotor with a bore 

ratio of 0.4 as the fillet radius ratio is increased. 
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Figure 2.27 Contours of maximum rotor diameter over the feasible design range at 
100 OOOrpm. 
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Figure 2.28. Maximum rotor diameter at the design speed of 100 000 rpm where the 

fillet stress is equal to the rotor stress. 
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Figure 2.31 Segregation of rotor into simple geometric structures to determine rotor 

inertia. 
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Figure 2.32 Rotor inertia constant as a function of the fillet radius ratio as defined in 

equation 2.14. 
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Figure 2.33. Contours of rotor radial growth constant defined in equation 2.15. 
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Figure 2.37 Stress contours for the final rotor design with a shaft bore of 13mm and a 
fillet radius of 0.275 at 10 000rad/s. 
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Appendix 2.1. 

Sr 

M 

Number 

of 

elements 

Normalised. 

computational 

requirement 

RMS error 
(radial) 

M 

RMS error I 

M 

M 

Nodal error at 

maximum stress 
M 

25 2 1.00 52 3.9 - 4.4 

12.5 8 1.29 17 1.6 2.23 2.2 

8.33 15 1.62 8.4 0.76 1.09 1.2 

6.25 28 1.99 5.1 0.45 0.390 0.77 

5.00 40 2.41 3.5 0.31 0.260 0.51 

4.17 60 2.85 2.2 0.20 0.127 0.39 

3.57 77 3.34 1.7 0.16 0.0986 0.29 

3.12 104 3.86 1.3 0.12 0.0561 0.23 

2.78 135 4.42 1.0 0.095 0.0409 0.19 

2.50 160 5.02 1.1 0.096. 0.0364 0.15 

2.27 198 5.66 0.72 0.067 0.0242 0.13 

2.08 228 6.33 0.62 0.056 0.0197 0.11 

1.92 273 7.05 0.51 0.047 0.0151 0.095 

1.79 308 7.80 0.43 0.040 0.0136 0.082 

1.67 360 8.59 0.40 0.036 0.00908 0.072 

1.56 416 9.41 0.34 0.031 0.00757 0.065 

1.47 459 10.3 0.29 0.027 0.00757 0.057 

1.39 522 11.2 0.26 0.023 0.00605 0.051 

1.32 570 12.1 0.23 0.021 0.00454 0.047 

1.25 640 13.1 0.28 0.024 0.00454 0.042 

1.19 693 14.1 0.19 0.017 0.00454 0.038 

1.14 770 15.2 0.17 0.016 0.00302 0.035 

1.09 851 16.3 0.16 0.015 0.00151 0.033 

1.04 912 17.4 0.15 0.014 0.00302 0.030 

1.00 
1-1000 18.6 0.15 0.013 0.00303 0.627 

Table A2.1. Effect of element size and computational requirement on the solution 

error for cylindrical rotor 1. 
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Sr 

M 

Number 

of 

elements 

Normalised 

computational 

requirement 

Number of 

elements along 

path A-A' 

4N 

M 

Number of 

elements along 

path B-B' 

M 

4.17 51 2.45 9 5 

3.57 68 2.67 11 Oýý 6 1.19 

3.12 92 3.48 12 0.43 7 1.01 

2.78 102 3.48 14 0.22 8 0.402 

2.50 143 4.27 15 0.00910 9 0 

2.27 161 4.69 17 0.106 10 0.337 

2.08 200 5.76 18 0.0729 11 0.424 

1.92 228 6.76 20 0.516 12 0.094 

1.79 262 6.25 21 0.0486 13 0.293 

1.67 286 6.93 23 0.00611 14 0.0608 

1.56 316 8.41 24 0 15 0.224 

1.47 374 7.47 26 0.00302 15 0.0526 

1.39 423 10.67 27 0.0213 16 0.174 

1.32 456 10.03 29 0.00612 17 0.158 

1.25 530 12.25 30 0.0182 18 0.0249 

1.19 562 12.25 32 0.0182 19 0.0277 

1.14 618 13.69 33 0.0182 20 0.0471 

1.09 691 14.44 35 0.0121 21 0.0470 

1.04 748 14.18 36 0.00300 22 0.127 

1.00 810 17.36 38 0.00300 23 0.0147 

Table A2.2 Convergence of the finite-eleinent solution as the element discretisation 

is increased for switched reluctance rotor 1. 
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CHAPTER3 

MACHINE DESIGN SYNTHESIS AND DYNAMIC 

SIMULATION 

3.1 Introduction 

In chapter 1, switched reluctance (SR) machines were selected as the preferred 

machine topology, with the 6/4 variant specifically identified in terms of its 

reasonably low torque ripple and self-starting ability. The detailed mechanical study 

presented in chapter 2 confirmed that the rotor construction is well suited to high- 

speed applications, although at the high speeds that are likely to be encountered, 

severe constraints are imposed on the rotor dimensions. 'Me findings of the previous 

chapters, which serve to restrict the machine design at this stage, can be summarised 

as: 

Pole and Phase numbers (Section 1.7.1). Ile previously published findings of 
Miller [3.1] and Lawrenson et al. [3.2] were used as the basis for selecting a3 phase 

machine with 6 stator teeth and 4 rotor teeth. 
Rotor and stator pole arc (Section 1.7-2). Again the guidelines presented by 

Lawrenson et al. [3.2] were used to establish stator and rotor pole arcs of 30' and 35' 

respectively. This combination maximises the area for stator windings while 

allowing a small overlap of 5' to produce a region of constant inductance to assist 

with the 'fluxing' period for electrical generation. 
Rotor cross-section (Section 2.5). The rotor cross-section design established on the 

basis of centrifugal stress has an outer diameter of 38mm, a bore diameter of 13mm 

and a fillet radius of 10.5nun. 

Airgap height (Section 1.7). An airgap of 0.2mm was selected on the basis of 

balanced judgement between manufacturing tolerances and electromagnetic 

performance. 'Mis value also provides the necessary capability to accommodate the 
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predicted radial growth of the rotor at high speed with sufficient remaining overhead 

to accommodate an additional narrowing of the gap due to any differential thermal 

expansion of the rotor and stator. 

Preliminary performance specification (Section 1.5,1.7). As discussed in chapter 
1, the target peak power is ±5kW, with a maximum rotational speed of 100 000 rpm, 

a specification wMch is predominantly determined by the engine, turbine and 

compressor characteristics. 

Symbol Description Value 

a, Stator pole arc 30' 

Crr Rotor pole arc 35' 

D, Diameter of stator bore 38.4mm 

D, Diameter of rotor 38. Omm 

W, 
Width of the stator tooth[D. sin( X/2 9.8mm 

ry Interpolar fillet radius 10.5mm 
Db Bore diameter 13. Omm 

Table 3.1 Established niacWne dimensions. 

Many of the principal geometrical parameters (wWch are defined in figure 3.1) are 

either specified from the above design guidelines, or can be derived directly, e. g. the 

width of the stator tooth can be determined from the stator bore diameter and stator 

pole arc. The numerical values of all the dimensions that are fixed at Us stage of the 

design synthesis are listed in table 3.1. 

The remaining principal dimensions, viz. the depth of the stator back iron (db), the 

depth of the stator slots (ds) and the axial length of the rotor (L,,,, ) must be selected 

with due regard to many factors, paramount amongst which are efficiency and 

temperature rise limitations. 

93 



3.2 Design Synthesis 

Depth of the stator back iron (db). The stator back iron provides the return path for 

the machine flux. A useful design guideline is to select the back iron 

thickness such that it is sufficient to prevent saturation at excitation levels 
'below those required to saturate the stator teeth. The selection of any 

thickness greater than this guideline value is likely to yield little return in 

terms of torque per amp capability, but would nevertheless reduce the iron 

loss, albeit at the expense of an increased stator outer diameter. Using this 
design guideline as a basis, with due recognition of the fact that multiphase 

operation gives rise to a degree of flux superposition in the back iron, the 
back iron thickness is given by: 

2 
W, - 7. Onun 

3 
3.1 

Depth of the stator slot. The depth of the stator slot is a critical design consideration 
in all electrical machines and its selection involves establishing the 

appropriate balance between copper losses, iron losses, temperature rise, and L- 
overall machine size: 

The winding cross-sectional area increases with increasing slot depth thus 

allowing a given level of excitation to be achieved with a lower current 
density and hence copper loss, albeit at the expense of a larger stator. There is 

a minimum slot depth that can be practicably employed, since the maximum 

of copper loss that can be sustained is limited by temperature rise 

considerations. However, increasing slot depth has a detrimental influence on 

the iron losses, since the overall iron mass increases without affording any 

scope to reduce the flux density and hence the iron loss density. In selecting 

an appropriate slot depth which provides a compromise between the 

conflicting requirements of copper and iron losses, it should be borne in mind 

that iron losses can be more readily dissipated than the equivalent copper 
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loss, by virtue of the considerably reduced thermal resistance to the 

ambient/cooling fluid. One important feature of high-speed machines is that 

they tend to have relatively few conductors per slot. In such cases, the 

dimensions of the individual conductors dictates that the slot depth can only 

be varied in discrete steps, which can in some cases limit the scope for 

precise optimisation. 

In the absence of reliable estimates of the relative contribution of the iron and 

copper loss mechanisms, which in turn are reliant on detailed simulations of 

the machine performance, the selection of an appropriate slot depth at this 

stage of the design synthesis would involve a significant degree of 

empiricism. Fortunately however, the phase inductance of an SR machine (in 

both the un-aligned and more particularly the aligned position) is not 

particularly sensitive to the slot depth, providing it is of a reasonable depth. It 

is possible to infer a minimum slot depth using the guidelines established by 

Radun [3.3] where the ratio of aligned to unaligned inductance is maximised 
be ensuring that the length of the rotor tooth is greater than twice the mean 

circumferential spacing between the rotor and stator teeth. If this result is 

applied to the stator teeth, a minimum tooth height of 8.3mm is established. 

Hence, as a starting point it can be set with reference to typical proportions of 

previously published machines [3.1,3.4] and in this case was selected as 
10mn-L Although this is an apparently somewhat arbitrary approach, it 

enables detailed simulations to be performed, in order to generate reliable 

performance data (which itself is relatively insensitive to the actual value of 

slot depth providing the resistive drop is relatively small as compared to the 

supply voltage). This can then be used as the basis for a more rigorous 

selection of an appropriate slot depth, 

Mdal length of machine. 'Me torque capability of electrical machines can be 

reasonably assumed to be proportional to the rotor volume. In this machine 

design, in which the diameter of the rotor is constrained by centrifugal stress 
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considerations to a value of 38mm, the axial length is the only degree of 
freedom available in the rotor design, which can be tailored to meet the 

torque specification. An initial estimate of an appropriate axial length can be 

derived from equation 3.2, which is based on employing torque per unit 

volume figures, such as those shown in table 3.2: 

T 
/D 2k 

TRV 4r 

Machine type/application kTRv(kNm/ný) 

Small totally enclosed motors 2.5-7 

Industrial motors 7-30 

High-performance servomotors 15-50 

Aerospace machines 30-75 

Large liquid-cooled machines 100-250 

Table 3.2 Typical performance coefficients of SR machines. Source [3- 11 

3.2 

As is evident from table 3.2, the values of kTRv cover a relatively wide range and are 
influenced by the cooling strategy employed and the size of the machine. For the 

particular case of the machine considered in this study, the oil cooling of the stator is 

likely to result in a relatively high value of kTRv, although the scope for achieving 

very high values is limited by the relatively small size of the machine. As a 

consequence, initial estimates of axial length were derived using a value of kTRv = 
40Nm1d i. e. towards the lower end of the range which is likely to be achievable in 

aerospace machines. In terms of a torque rating, a worst case operating point of 5kW 

at 20,000 rpm was used, which corresponds to a torque of 2.4Nm. Substituting these 

values into equation 3.2, yields an axial length of 53mm for the case of a rotor 
diameter of 38mm, which formed the basis for selecting a final length of 50nun 
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3.3 Dynamic Simulation 

The design synthesis described in sections 3.1 and 3.2, largely employs established 

design guidelines and empirical factors to determine many of the dimensions, 

whereas others are a result of mechanical analysis and space restrictions. As a 

consequence, the dimensions have hitherto been selected with little reference to the 

output power specification, with the exception of the axial length, L, " which was 

estimated from published specific torque figures. Further, the dynamic nature of SR 

machine operation dictates that the performance of a given machine/drive 

combination can often deviate markedly from idealised static considerations. This 

factor is a particular concern in this case given the high-speed nature of the machine, 

and the consequent high electrical frequencies that are likely to be encountered. 
Hence, recourse to dynamic simulation techniques that are capable of accurately 

predicting machine performance is essential. This in turn will allow detailed 

predictions to be made of the maximum power capability, the current waveforms 
(and hence copper and iron losses), thus providing a robust basis on which further 

refinement of the machine design and/or optimisation of the control strategy can be 

undertaken. 

3.3.1 DYNAMIC SR OPERATION 

The basic operating principles of SR machines, in both motoring and generating 

modes, were described previously in section 1.7, albeit for the somewhat idealised 

case of essentially static, constant current operation. In practice, SR machines tend to 

be operated in conjunction with voltage source inverters rather than being operated 

with a strictly constant current as shown previously in figure 1.18 (section 1.7). As 

such, each winding is excited by a nominally square wave voltage pulse, during 

which, the phase flux linkage increases in accordance with the governing electrical 

circuit equation: 

V=f 
(Vd, 

- iR)dt 3.3 

97 



This process is often referred to as 'fluxing' the machine. At the end of the initial 

voltage pulse, conduction through the free-wheeling diodes 'de-fluxes' the machine, 

hence returning the vast majority of the stored magnetic energy to the supply. A 

typical drive circuit for one phase (comprising two series-connected concentrated 

windings) is shown in figure 3.2. Figure 3.2a shows the conduc tion path through 

transistors Q, and Q2 during the fluxing period, while figure 3.2b shows that for the 

de-fluxing period in which current freewheels through diodes D, and D2, and back 

into the supply. The relative phasing of the voltage pulses with respect to the rotor 

position determines the net energy transfer between the machine and the supply, with 
both motoring and generating modes being realisable. 

In a practical machine operating over a wide speed range, some degree of closed loop 

control of the current is essential. Current control strategies for medium to high- 

power machines tend to achieve this by applying a series of pulses of the full DC link 

voltage across the winding with a duty cycle appropriate for achieving the desired 

current. The differences between the various techniques are, in essence, the means by 

which the duty cycle is determined, and the relationship between the machine 

electrical frequency and the switching frequency. 

'Me most common strategy is to have a switching frequency that is considerably 
higher than the fundamental electrical frequency of the machine, such that many 

switching cycles with appropriate duty occur during one machine electrical cycle, 

e. g. pulse-width-modulation (PWM) techniques. Such techniques are wen suited to 

very accurate control of the shape of the current waveform, and are extensively used 

for example in many SR drives for low to medium speed applications [3.51. 

However, in the case of very high-speed machines, in which the electrical frequency 

of the machine tends towards the kHz range, such techniques become increasingly 

problematic. The switching frequency of medium to high-power inverters is 

generally restricted to some 10-20kHz in order to limit the switching losses and 

maintain efficiency. Hence, for a high fundamental electrical frequency, the number 
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of switching intervals per cycle reduces to such an extent that the degree of control 

that can be exercised with a fixed frequency PWM is severely compromised. 

An alternative control strategy is to limit the number of voltage pulses applied during 

one machine electrical cycle to a single pulse, with control being exercised by 

varying the instant at which the pulse is applied and its subsequent duration [3.5, 

3.6]. These two events can be considered in tenns; of so-called turn-on and dwell 

angles, which are labelled as 0,,, and Od,,,, Il respectively in figure 3.3. However, 

whereas close control of average current and power can be achieved, little direct 

control is exercised over the shape of the current pulse during conduction. This will 
tend to result in some degree of performance degradation as compared to a closely 

controlled waveforin in terms of an increased copper loss (as a consequence of the 
higher mis to average current ratio) and an increased torque ripple. In terms of iron 

loss, it is more difficult to generalise as regards the merits of the two techniques, 

since this will depend on the relative contributions of the higher flux density from a 

single pulse as compared to the eddy-current losses generated by current ripple 

caused by high-frequency switching. 

Given the apparent suitability of this latter technique to controlling a machine with a 

high electrical frequency, its merits were analysed in detail with reference to the 

proposed application. In terrns of practical implementation, one drawback of this 

control strategy is that it is difficult to implement as a truly closed-loop technique for 

a number of reasons: 

1) Since the current is not directly controlled, and can continue to increase even 

following the turning off of a switch (due to the falling inductance), the closed- 

loop control of the turn-off instant to acWeve a given power is difficult to reliably 

implement. 

2) In the absence of any a-priori knowledge, establishing the turn-on angle required 

to obtain a given power denmnd could only be acWeved iteratively on a cycle by 

cycle basis. 
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3) A given power can often be achieved with more than one combination of turn-on 

and dwell angle. In principle, the merits of the particular combinations require 

detailed consideration of the resultant losses (which may involve temperature rise 

having an influence on the balance of the losses) as well as factors such as torque 

ripple etc. 

As is evident from the above, the successful and robust implementation of such a 

control strategy is inevitably reliant on a significant degree of a-priori knowledge. A 

possible exception is the use of self-tuning/neural networks or genetic algorithms. 

However these have limited applicability in this case since the objective functions 

(i. e. minirnisation of copper loss, iron loss etc) are difficult to measure, and the 

potential for catastrophic failure due to inappropriate commutation conditions at such 
high power level restricts the scope for searching/self-tuning. As a consequence, 
dynamic performance simulation allied to detailed loss estimates plays a key role in 

both assessing whether such a control strategy is well suited to the particular 

combination of machine electrical frequency/time constant, and generating reliable 

performance maps which form the basis of look-up tables in the implementation of 

the control system 

It should be noted that whereas the proposed control strategy may well prove to be 

suited to high-speed operation, it is likely that recourse to a more conventional 

current control strategy will be required at low rotor speeds and during starting (the 

ability to self-start and provide engine inlet boost for the engine start procedure 
having been identified as a key performance feature in section 1.5 of chapter 1). This 

chapter however is restricted to the development of control strategy for application at 
high-speed, since many well-established and proven control techniques are available 
for low speed operation. 
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3.4 Numerical Modelling of SR Machines 

SR machines tend to be much more onerous to model than other topologies, because 

of their singly excited nature, the doubly salient geometry, and the tendency for 

machines to be operated with high levels of magnetic saturation in order to realise 

competitive power densities and power factors. 'Me simulation of SR machines and 

subsequent analysis of the results can be considered in three distinct stages i. e.: 
1. Characterisation of the electromagnetic performance in terms of the 

relationships between flux-linkage, current and rotor position. 
2. Calculation of current, flux-linkage and torque under given commutation 

conditions when driven using a constant voltage supply. 
3. Post-processing functions that provide key design and analysis data that 

facilitate, for example, winding design, specification of the drive VA and 

selection of optimal control parameters. 

3.4.1 SIMULATION STAGE 1- Characterisation of Electromagnetic 
Performance 

The characterisation of a particular SR machine involves two stages: 

1. The calculation of the V14-0 relationships using methods such as magneto- 

static finite element analysis or analytical magnetic field calculation 

techniques. 

2. The representation of the Vf-i-O relationships in the simulation code using 

methods such as curve fitting, interpolation or look-up tables. 

The resulting three-degree of freedom characteristic, a typical form of which is 

shown in figure 3.4 is often considered in terms of two linked two-dimensional 

relationships, viz. V-i and V-0 planes as shown in figures 3.5a and 3.5b. A wide 

variety of strategies, both linear and non-linear, have been reported for representing 

typical V/4 and Vf-O relationships [3.2,3.7 & 3.81. Table 3.3 summarises the main 
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features of 5 possible strategies (designated as FL1 to FL5), with particular emphasis 

on the number of data points required in each case. 

I Vqrintinn with riirrt-nt I Varintinn with mtnr nngle 
I 

Flux- Representation Minimum Representation Minimum Total number of 
Linkage data data data points 

Calculation points points req'd for model 
Technique req'd req'd 

FLI Linear Assumed I-A Linear 2 2 
analvtical linear 1_U 

FL2 Linear FE Assumed I-A Linear 2 2 
linear I_U 

FU Non-linear Non-linear 2-A Linear 2 3 
FE parabolic I_U 

curve fit 
FL4 Non-linear Non-linear 2-A Curve fit - 2 3 

FE parabolic I_U Frolich 
curve fit 

FL5 Non-linear Look up table 10+ Look up table 10+ 100+ 
FE I I I II 

Table 3.3. Alternative techniques for the calculation and subsequent representation of 

the flux linkage variation with current and rotor position (A-aligned; U-unaligned). 

On the basis of table 3.3, two strategies were selected for use in Us study, viz. FL4 

and FL2. The non-linear method FIA was selected as it is a computationally efficient 

method, at least in terms of the number of data points which must be generated, 

while at the same time representing the major non-linearities of the machine. The 

linear method FL2 was also selected to gauge the suitability of linear analysis to this 

particular high-speed application. 

Method FL2 - Since the flux linkage is assumed to vary linearly with both phase 

current and rotor position, the full machine characteristic can be simply derived from 

flux-linkage calculations for only two cases, viz. the aligned and unaligned positions 

with an essentially arbitrary level of current. The two values of flux-linkage required 

are calculated using two-dimensional, linear finite element analYsis in wWch the 

rotor and stator soft magnetic components are represented with a fixed relative 

permeability of 10,000, a value which is typical of an unsaturated 2% Silicon steel 
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[3.9]. The two-dimensional nature of the finite element model inherently neglects 

end-effects within the machine and the contribution of the end-windings to the 

overall flux-linkage. Figure 3.6 shows the two-dimensional mesh of the complete 

machine and a close-up of the mesh in the region around one stator pole, for the case 

of a rotor in the aligned position. Ile mesh of figure 3.6 comprises 17468 second 

order elements and 52659 nodes, and was constructed and solved using Ansys v5A 

Figures 3.7 and 3.8 show calculated equi-potential and flux density contours 

respectively, for the case of a current density of 1Amm72 in the entire slot area of 

phase A with phases B and C remaining unexcited (the phase designation being that 

shown previously in figure. 1.17 chapter 1). The phase flux-linkages and hence self- 
inductances were calculated from the two finite element solutions using the 

techniques described in appendix 3.1. 

The finite element predicted self-inductance for the aligned and unaligned positions 

are 6.58 gH and 0.48gH respectively for the case of a single turn around each of the 

two teeth that constitute a phase. 'Me merits of established analytical techniques for 

the calculation of flux-linkage and inductance were assessed by employing the 

simplified model proposed by Radun [3.3], details of which are described in 

Appendix 3.2. Using this model, values of 6.25gH and 0.41gH are obtained for the 

aligned and unaligned inductance respectively. The agreement between the analytical 

model and the finite element method is reasonable in this particular case, the lower 

values predicted by the analytical technique being consistent with the fact that it 

necessarily neglects some components of leakage flux, whose contribution is 

particularly significant in the unaligned position. 

Having established the flux-linkage per unit current for both the aligned and 

unaligned positions, a representation of their variation with respect to rotor angle 

must be established. Rather than a simple linear variation between the two values 

corresponding to aligned and unaligned rotors, a trapezoidal variation is more 

representative of the variation observed in SR machines [3.2]. The form of the 
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trapezoidal variation can be calculated from a simple consideration of the overlap of 

the rotor and stator teeth, as shown in figure 3.9. Using the definitions in figure 3.9, 

the flux-linkage per unit current, and hence the self-inductance at any current and 

rotor position is given by: 

L(O) = L. + A.,, (L,,, - L,, ) 3.4 

Method FL4 - Whereas method FL2 gives rise to a single equation which enables 

flux-linkage to be calculated at any rotor position and current, the assumption that 

the inductance does not vary with current limits its applicability due to saturation. As 

is evident from the ig-i characteristics shown previously in figure 3.5a the variation 

of flux-linkage with current in the aligned positions is significantly more influenced 

by saturation than is the case for the unaligned position. Indeed, for all reasonable 

levels of excitation, the unaligned Vf-i characteristic will be essentially linear [3-71, 

and as such can be fully represented by the single value of unaligned inductance 

calculated previously. By contrast, for the aligned position, some form of non-linear 

curve-fit is required, and a number of methods have been proposed. The data on 

which any curve-fit is based, necessarily requires the calculation of flux-linkage 

values within the saturated region of the V-i characteristic. Although a non-linear 

lumped reluctance modelling approach [3.4] could be used to establish the necessary 

data, in this study non-linear, magnetostatic, two-dimensional finite element analysis 

was employed. 

Although the use of a single curve-fit based on a limited number of coefficients 

would offer a convenient approach, the form of a typical aligned xV-i characteristic is 

not well suited to the use of such techniques within dynamic simulations. By means 

of example, although inverse tangent and inverse hyperbolic tangent functions have 

been employed to model the non-linear magnetisation curves of soft magnetic 

materials which have a similar form to a typical xV-i characteristic [3.101, such 

functions cannot be readily inverted, and hence are cumbersome in simulations in 

which the flux linkage and current are solved sequentially. 
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An alternative approach is to model the V-i characteristic as consisting of two 

distinct regions, corresponding to unsaturated and saturated conditions. The most 

straightforward techniques are based on a two-stage piecewise linear approximation, 

such as the method implemented by Krishnan et al. [3-81. Although simple in its 

formulation, such a two stage linear approach is limited in terms of accuracy, 

particularly near the onset of saturation. The approach adopted in this study is based 

on a combination of parabolic and linear functions as proposed by Miller and McGilp 

[3.7] and shown schematically in figure 3.10. The V-i characteristic is represented by 

the linear function at low levels of excitation below saturation, and by the parabolic 
function near the onset of saturation and beyond. Using the coefficients defined in 

figure 3.10, the equation of the parabola is [3.7]: 

(V 
_ V80 

)2 
= 4a(i - i, o) 

3.5 

In principle, only two finite element calculations are required to establish the 

coefficients for the curve-fit, viz. one at the intersection of the parabolic and linear 

curves and the other at high levels of saturation. However, in the absence of a-priori 
knowledge, the intersection is difficult to directly establish, and a number of 

solutions are usually required to generate the appropriate data. Table 3.4 contains the 

curve-fit parameters for both the linear and parabolic regions which were calculated 

using finite element mesh for the SR machine design described above with the 

application of non-linear B-H characteristics for the rotor and stator iron. The 

resulting Vf-i characteristic derived using these parameters is shown in figure 3.11, 

together with that established from a series of 60 non-linear finite element 

calculations. As is evident, the curve-fit provides a reasonable representation of the 

W-i characteristic, the accuracy of this particular curve-fit being limited by the extent 

of saturation the machine is likely to encounter [3.7]. 
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il 297.4 A 

il 2230 A 

1, 2230 A 

V., 0.0163 Wb-tums 

V. 0.0223 )M)-tums 

vu 0.0107 )M)-tums 

a 4.94xlO-" 

Table 3.4 Curve-fit coefficients for parabolic curve-fitting function for machine 
design of table 3.1 (with two turns/ phase and lm axial lengtl-L) 

The variation of flux-linkage with respect to the rotor position can also be 

represented using a number of alternative approaches, ranging from a simple 
trapezoidal variation such as that employed in method FL2 through to a complete 

series of finite element solutions. One approach that has been demonstrated to 

provide an improved degree of accuracy as compared to a trapezoidal variation, 

wWle at the same time remaining computationaRy efficient, is the use of 

mathematical functions to represent the variation of flux linkage with respect to rotor 

position, with simple correction factors to account for the influence of current at 
intennediate rotor positions. A convenient fonnulation is that proposed by McGilp et 

al. [3.7], which is based on separating the variation with respect to rotor position into 

three discrete regions, as shown by the schematic V- 0 curve of figure 3.12. Regions I 

and III of the Vf- 0 curve are represented by two independent Frohlich curves, while 

region II is assumed to be linear. The key reference angular positions wWch form the 

basis of the three curve-fits, labelled as 4ý, ýi, 4, ý2 and L, ' in figure 3.12, are 

determined predominantly from simple geometrical considerations, the exception 

being jo wWch is related to leakage flux and is a function of the level of excitation. 

Table 3.5 contains a summary of the means by which these various angles are 
detenmined. 

106 



Description Rotor angle (degrees) 

Unaligned position -45 
Offset angle. The intersection of the 

linear variation of region II and the 

unaligned inductance. 

Determined such that: 

<ýo < 
1ý1 

12 

Beginning of mechanical overlap -32.5 
Midpoint of ý, and ýa. -17.5 

J2 Beginning of complete mechanical 

overlap 
-2.5 

J,, Rotor aligned position 0 

Table 3.5 List of parameters for the determination of the inductance variation. 

It is important to note that the form of the Vf- 0 curve is itself a function of the level of 

excitation. Thus there is a unique set of ig-0 curve curve-fit coefficients for each 
level of excitation, wMch are determined using the appropriate limiting flux-linkage 

values, i. e. Vf, (i) and Vf, (i) derived from the representation of the V-i characteristics. 
A detailed description of the curve fitting functions is presented by McGiIp and 
Miller [3.7], and the particular coefficients described in Us study are presented in 

appendix 3.3. 

Figure. 3.13 shows a comparison between the Vf- 0 curve calculated using this curve- 

fitting approach, and that derived from a comprehensive series of finite element 

solutions for 3 levels of excitation, viz. 10,20 and 30A/mn?, which correspond to 

operation witWn the non-linear region of the Vf-i curve at various levels of saturation. 

As is evident, this approach provides a reasonable representation of the flux-linkage 

variation at intennediate positions between the unaligned and aligned position, 
despite the fact that the curve fitting technique employed is based solely on data for 

the aligned and unaligned positions. 
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3.4.2 SIMULATION STAGE 2- Solution 

Having established appropriate representations for the VM-O characteristics of the SR 

machine, the dynamic performance in terms of the current waveform and hence 

power, can be determined for a given combination of winding design, supply voltage 

and rotor speed by solving the governing electrical circuit equation: 

V=iR+ 
dv 
dt 

3.6 

For the case of a non-linear xV-i-O relationship, an iterative time-stepped approach is 

required if the resistive voltage drop across the winding is to be included. However 

in many machines, efficiency considerations during the design process dictate that 

the resistive voltage drop is very low compared to the DC link voltage [3.11]. As a 

consequence, adequate levels of accuracy in terms of predicting the current 

wavefonn may well be achievable by neglecting the resistance, in which case the 

calculation of current and flux linkage can be de-coupled. One ftirther simplification 
that can be introduced to reduce the computational requirement is to neglect the 

influence of any mutual coupling that exists between the individual phases. It has 

been demonstrated that in the case of well designed SR machines, the mutual 

coupling between phases is very low [3.2] and the error associated with adopting a 
de-coupled phase model is generally acceptable [3.7]. On the basis of these potential 

simplifications, it is possible to identify a range of techniques of increasing 

sophistication for solving the governing electrical circuit equation. Table 3.6 contains 

a summary of 3 potential techniques: 
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Resistive Mutual 
Basis of Technique 

Voltage Drop Coupling 

De-coupled phase based sequential, 
ECI. 

time stepped solution 

De-coupled phase based iterative, time 
EC2 V/ stepped solution 

Circuit coupled solution (finite 
EC3 V/ V/ element based) 

Table 3.6. Summary of electrical circuit simulation techniques. 

Solution methods ECI. and EC2 can in principle be used in conjunction with any of 

the techniques shown previously in table 3.3 for calculating and representing the VI-i- 

0 characteristic, while EC3 is based on a series of discrete finite element magneto- 

static solutions for each time step within an electric circuit model. In this study only 

two combinations have been investigated in detail and employed during the machine 

and control system design synthesis, viz. EC1 in conjunction with FL2 and EC2 in 

conjunction with FL4. These two particular combinations were selected on the basis 

that EM allows a large number of operating conditions to be simulated very rapidly, 

albeit with some simplifications, while EC2 allows consideration of the major non- 
linearities without an excessive computational overhead. It is convenient to classify 

the FL2/EC1 and FL5/EC2 combinations as linear and non-linear models 

respectively. 

3.5 Linear Simulation Model 

'Me use of a linear model allows the three principal machine operating variables, viz. 

phase current, flux linkage and rotor position to be ftilly represented as a single, two 

dimensional, relationship. The linearity of the V-i relationship is exploited and the 

machine is fully characterised by the phase inductance and rotor position. Hence the 
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calculation of phase current and flux linkage can be de-coupled. However, the 

calculation of the instantaneous value of flux-linkage is useful in order to provide the 

means by which the co-energy, and hence torque can be determined, and to provide 

an estimation of the flux density waveforms within the stator and rotor. This latter 

feature is useful both for iron loss calculations and to assess the likely degree of 

magnetic saturation, and thus the validity of the linear model. The calculation of the 
flux linkage is relatively straightforward and is achieved using the governing circuit 

equation, which if the resistive voltage drop is neglected reduces to: 

v/ =f Vd�dt =f 
VAJO 

Co 

3.7 

For the case of a single voltage pulse, the flux linkage variation has the form shown 
in figure 3.14. A key feature of this flux linkage waveform is that it is solely defined 

by the switch dwell angle Od,,, Il, the DC link voltage and the rotor speed, Le. it is 

independent of the angular position of the rotor and the relative phasing of the 

commutation interval. The linear analytical model therefore provides a convenient 

method by which the flux density waveforms in various regions of a machine can be 

calculated for the purpose of estimating the iron loss and its dependency on Odal- 

The determination of the flux density variation within the rotor and stator by 

superposition of the components from each phase is discussed in detail in chapter 4. 

It is interesting to note that as the excitation is increased to a level at which 

significant magnetic saturation occurs, the largest errors are likely to be apparent in 

the phase current, rather than the flux linkage. Thus, providing the resistive voltage 
drop is small compared to the supply voltage, the linear model, despite its 

drawbacks, is likely to prove useful for iron loss prediction even under conditions of 

magnetic saturation. 
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3.5.1 CURRENT CALCULATION 

The current waveform can be calculated analytically by considering the variation of 
inductance with angular position in ten-ns of three distinct regions, as shown in 

figure. 3.15. By representing the flux-linkage in temis of the product of the phase 

cur-rent and the appropriate value of inductance, and neglecting the resistive voltage, 

the governing electrical circuit equation can be written as: 

V d[iL(O)] 
d. =a) d0 

3.8 

When the rotor is located within regions 1 and 3 of figure 3.15, i. e. when the rate of 

change of inductance is zero, the currents at a given rotor angle are given 

straightforwardly by equations 3.9 and 3.10 respectively: 

v 3.9 
i(O)= f" dO + io 

OJL. 

v 3.10 
i(O) f 'c dO + io 

COL", 

where io is the initial current in the winding at the beginning of the respective region. 
'Me calculation of current in region 2 requires the full solution of equation 3.8 in 

which the rate of change of inductance is assumed to be linear, i. e.: 

dL(O) 
_ 

L,, - L. 3.11 
dO ý2 - ý, 

wWch gives rise to the non-homogeneous first order differential circuit equation: 

di Vdc (ý2 3.12 

dO 
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When the phase winding is excited prior to the rotor passing angular position ý, and 

the current at Us instant, i,, is non-zero, the variation of current with rotor angle 

within region 2 is given by: 

i(o) 
Vdc (ý2 

- 
ýI )(0 

- 
ýI ) 3.13 

0)[Lu(ý2-ýl)+(La-Lu)(0-ýl)] Lu(ý2-ýl)+(La-LuX0-ý1) 

Under some operating conditions, the excitation can be applied when the rotor is 

already within region 2, in which case equation 3.13 can be simplified to: 

F dc 3.14 i(o) =v 

(ý2-ýIxo-o. ) 

OlLu 
(ý2 

- 
ý1) + (La 

- Lu Xo 
- 

ý1)1 

3.5.2 TORQUE CALCULATION 

In terms of establishing the output power capability, the key quantity of interest is the 

average torque generated over one cycle, wWch is given by [3.7]: 

T. 
le = 

q,. q, 
* 
AW If 

2 2yr 

Where q,. and q, are the number of rotor and stator teeth respectively and the co- 

energy W' is calculated using equation 1.1 in section 1.7 

3.15 
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3.6 Non-Linear Simulation Model 

In this case, the calculation of flux linkage and phase current cannot be de-coupled, 

and hence a time-stepped approach is required, in which the following procedure is 

undertaken at each time step. 
1. Calculation of the flux linkage from the governing circuit equation using the 

phase current obtained from the previous time step. 
2. For a given rotor position (which is assumed to have a linear relationship with 

respect to time) the appropriate region of the Vf-O variation of figure 3.12 is 

identified. 

I Calculation of the phase current by inverting the electrical circuit appropriate 
to the rotor position. The method for calculating current differs in each case; 

regions I and III requiring the flux linkages from the previous time step, 

while for region II the calculation is independent of the excitation from the 

previous time step 
4. Calculation of the aligned and unaligned flux linkages for the given phase 

current, which act as boundary conditions for performing step 3 in the 

subsequent time step. 

5. Calculation of performance related quantities such as instantaneous copper 
loss and stored magnetic energy. 

The exact implementation and calculation techniques for each of the rotor positions 
for the saturated and unsaturated cases are discussed in detail by Miller and 
McGilp[3.7] and are not included in this thesis for brevity. 

3.6.1 PHASE WINDING RESISTANCE 

The phase resistance for a given machine design is calculated assuming that the 

stator teeth are parallel-sided and that the end-windings take a semicircular path 

around the end of each tooth as shown in figure 3.16. The total conductor area for 
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one half-slot, AI,, t and the mean length of a single turn, I., are given by equations 

3.16 and 3.17 respectively. 

Aslot = 
(21r - a, q, )d, D, 

q, q, 

3.16 

lcm = 2Lav + ; rD, 
sin 

2; r - q, a, +sin a" 3.17 

2[( 2q, 

(2 

The resistance of a phase comprising two individual series connected windings each 

with Nph12 turns is given by: 

2 

Rph = _ph 
Pculc,, 

2 kp Aslot 

3.18 

where kp is the packing factor of the winding, which in this study was assumed to be 

0.35, a value which is typical of many medium power electrical machines. Table 3.7 

summarises the calculated parameters and the resistance of the coil. 

Slot area, AI,,, 50.2 nmý 
Mean turn length, 1,,,. 14.6 nun 
Resistance of basic (2 tum) winding, Rph, 2. 0.28 mQ 

Table 3.7. Summary of the winding geometry and resistance. 

The calculation of the phase winding resistance is further complicated by reduced 

depth of penetration of the winding at high frequencies. 'Me skin depth of a 

conductor, J, is given by [3.12]: 
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81 3.19 

Where, u is the permeability and a the conductivity of the conductor. For the rotor at 
100 000rpm, and assuming a sinusoidal current (at a frequency of 6.66kHz) the skin 
depth is 0.81nun Wire diameters much greater than twice this skin depth will yield 
little benefit in terms of current density reduction in the conductor cross section, and 

under these conditions the value of resistance used in the simulation must reflect this. 

3.7 Post-Processor Stage 

Having established the dynamic current waveforms, either from linear or non-linear 

electric circuit simulations, the final stage is to employ these waveforms to calculate 

performance figures (e. g. average torque, copper loss) and/or to finalise design 

features such as the number of winding turns per phase required to achieve the 

desired torque capability with a given supply. 

3.7.1 WINDING DESIGN 

The design of a winding for an SR machine, i. e. selection of an appropriate number 

of turns and their gauge, is arguably more difficult than is the case for machines with 

separate excitation. Although SR machines can accommodate a very wide range of 

winding parameters (there being an inherent degree of self-compensation in such 

self-excited machines), the performance achieved in terms of inverter VA, copper 

loss and maximum power capability will vary significantly for different windings. 

Further, the commutation angles provide an additional and useful degree-of-freedom 

with which control of the machine can be exercised. To cater for these factors, and to 

provide a realistic estimate of the likely number of turns, recourse to at least linear 

dynamic simulation is required. In contrast, for machines with permanent magnet 

and/or wound field excitation the requirement to match the induced emf to the 

terminal phase voltage severely constrains the winding design. In these machines, a 
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reasonably good estimate of the number of turns can be made using essentially first 

order analysis, although recourse to more detailed analysis to fine-tune the winding 

design is often necessary. 

In terms of initial winding design, the linear simulation is particularly useful in that 

the average torque figures for a given operating speed and combination of 

commutation angles can be readily scaled with respect to the DC link voltage and the 

number of turns. Thus, the linear simulation is useful in generating normalised 

performance data, which can be used to rapidly and efficiently identify the Rely 

optimal number of turns to meet a given criterion, e. g. n-dnimurn copper loss and/or 
inverter VA. Having established an estimate of the most appropriate winding design, 

this can be refined using a non-linear simulation for a particular winding design. 

The first stage in analysing the performance of the machine, with a view to designing 

the winding and identifying preferred cominutation angles, is to develop a 

normalised torque characteristic for the machine by performing simulations for all 

feasible combinations of 0., (450 to + 450) and Odwal (0 to + 450) in 2.50 increments, 

for the particular case of 1 turn per tooth (i. e. Nph7-2) and a DC link voltage of 1V. 

The resulting norrmlised output torque characteristic, (with units Of 

Nnirad2. tUM2/V2S2' where co = 1) as a function of both 0,,, and Od,,,, is shown as a 

tbree-diniensional plot in figure 3.17, and a series of constant torque contours (in 

increments of approximately 4X105 Nrnrad2. tUn, 2/V2S2) in figure 3.18. 

22 Ct) 
ph ave T. 

"n -2 
Výl 

3.20 

One interesting feature which is higl-flighted in figure 3.18 are the commutation 

conditions which yield zero net torque, a condition that occurs when the switch-off 

angle 0,, ff, falls exactly on the aligned or unaligned position and hence the motoring 

power is equal and opposite to the generating power over one stroke. As is evident 

116 



these zero torque conditions form lines of symmetry within the torque map of figure 

3.18. 

As is evident from figure 3.17, there are a number of possible combinations of 19,,,, 

and Od,,,, Il which would give rise to a given desired output power. However different 

combinations result in varying degrees of copper loss as evidenced by figures 3.19 

and 3.20 which show a three dimensional mesh and a corresponding series of 

contours of normalised rms current, (in increments of approximately 
1.8X105 Anipere. rad. turnWs) as a function of 0,,,, and Od,,, Il, where is given by: 

inoryn = 
Vdc 

3.21 

As a consequence, for a given output power there will one preferred combination in 

terms of minimum copper loss, and hence one means of discriminating between 

candidate combinations is to establish that which gives rise to the lowest value of 

rms current. This can be illustrated by considering the superposition of a particular 

constant power contours onto the rms current contours, as shown in figure. 3.21 For 

the cases shown, the preferred combination of 0,,,, and Od,,,,, can be established from 

the intersection of the constant power contour with the lowest mis current contour 

that it crosses. Determining preferred values of 0,,,, and Od,,,,, is a procedure that can 

be readily implemented as part of the post processing of the simulation results. 
Figure 3.22 shows the preferred values of 0,,,, and Od,,,,, calculated for operation up to 

a maximum attainable normalised torque for this design of approximately 4X10 6 Nrn 

It should be noted that these values of 0,, and Od,,,, j are derived solely with regard to 

minimising copper losses, whereas other factors such as iron losses may modify 

these preferred values somewhat. 

Having established the preferred conunutation conditions using normalised per turn 

data, the design of the winding can be undertaken. As shown previously by equation 

3.7, the rate of change of flux-linkage is detennined solely by the magnitude of the 
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supply voltage, and hence is independent of the number of turns providing the 

resistance is assumed to be negligible. However, under dynamic operating conditions 

at a fixed rotational speed, the rate of rise of current, and hence the magnitude of the 

resulting torque is limited by the inductance of the winding, which itself is 

proportional to the square of the number of turns. Hence, for a fixed DC link voltage 

and in the absence of a converter current firnit, the maximum power capability at a 

particular speed decreases in proportion to the square of the number of turns. 

Therefore, in order to realise a particular maximum power capability at a given 

rotational speed, there is an upper limit on the number of turns which can be 

employed for a given combination of machine parameters, DC link voltage and 

commutation conditions. 

The normalised power data can be employed to directly establish the maximum 

normalised torque output of the machine and hence place an upper limit on the 

number of turns for this particular machine design with a specified power of 5kW 

and a DC link voltage of 96V (both of which form part of the target specification 
described in chapter 1). From figure 3.17, the maximum normalised torque is 

approximately 4X106' which for a 5kW capability with a DC link voltage of 96V 

leads to a maximum number of turns per phase of 28 (i. e. 14 turns on each of the two 

coils which constitute a phase). One interesting feature of the normalisation 

procedure discussed and the data presented in figure 3.22 is that the ideal 

commutation angles for any given number of turns on the winding can be readily 

obtained for a given operating condition. By means of example figure 3.23 shows the 

commutation angles required to obtain 5kW motoring power at 100,000rpm as a 

function of the number of turns on the winding, up to the limit of 28 turns. 

Below this upper limit of 28 turns, there are a number of factors that must be 

considered in selecting an appropriate number of turns, viz. the magnitudes of the 

peak currents and resulting flux densities, the average copper loss and practical 

issues such as the ease with which the winding can be formed. 
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Peak current - The variation in the magnitude of the peak current as a function of 

Nph at 96V, 5kW, 100000rpm is shown in figure 3.24. As is evident a higher value of 

Nph is beneficial in terms of reducing the peak current, hence nýiinimising the 

converter VA rating, and the peak rate of change of current (which has direct 

implications on electromagnetic emissions). 

Copper Loss -As shown previously in figure 3.15, the inductance variation with 

respect to rotor angle comprises three distinct regions, of which only the central 

region (denoted as region 2) gives rise to a significant rate of change of inductance. 

For the particular machine design considered, the inductance increases between rotor 

angles of -32.5 and -2.5 and decreases between 2.5 and 32.5. In terrns of making best 

utilisation of a given current, it is desirable to operate the machine such that current 

only flows during the period of changing inductance, since any current flow which 

overlaps into regions 1 and 3, essentially produces no torque. In the case of a linear 

model, conduction is initiated at a rotor angle 0,,,,, the switch is turned off at 

0,,,, + Od,,,,,,, and the current is fully extinguished at an angle 0,,, +2 Odaj. 

Figure 3.25 shows the limits of the conduction period (i. e. variation of 0,,, and 

(0,,,, +2 Od,,,, 11)) as a function of Nph for an operating point of 5kW motoring at 

100,000 rpm (similar behaviour is observed in the case of generating). Also shown 

on figure 3.25 are the regions of rising and falling inductance (labelled as motoring 

and generating) for the particular design. As is evident, for values Of Nph greater than 

2, current overlap into regions 1 and/or 3 occur, the extent of which increases as Nph 

is increased. Indeed, for values of Nph greater than 2, the current continues to flow at 

rotor positions which correspond to a falling inductance, which gives rise to a period 

of electrical generation, which detracts from the net motoring power (although a net 

5kW is still achieved). Hence, from the point of view of current utilisation, a value 

for Nph of 2 appears the most suitable. 

The implications of tWs varying degree of current utilisation in terms of copper loss 

can be calculated. At a given operating point (i. e. output power level and speed), the 
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magnitude of the copper loss for a particular value of Nph can be calculated from the 

normalised rnis current values in figure 3.19 and the resistance of given winding 
design which is given by: 

= J2 N2 P. 
mis ph 

A. 
(Lax 

+L. 
d-wdg 

) 
3.22 

kpA,,., 

Figure. 3.26 shows the calculated variation of copper loss as a function of output 

power at 100,000rpm as the value Nph is progressively reduced from the upper limit 

of 28 (the characteristics being equally applicable to motoring or generating power) 
down to a value of 6. The values ofO,,,, and Od,,,,, Il required to minimise copper loss at 

a given power vary as a function of Nph as illustrated in figure 3.22. As is evident 
from figure 3.26, benefits can be achieved in terms of reducing copper loss by using 

a lower number of turns, by virtue of the better current utilisation. For values of Nph 

down to 6, the improved utilisation more than compensates for the fact that the form 

factor of the current waveform is increasing (i. e. ratio of rms to average). However, 

for values of Nph of 6 or less, a lower Nph value gives rise to a higher copper loss due 

to the higher fon-n factor of the waveform. This is evident in figure 3.27 which shows 

the variation of copper loss for values of Nph of 2,4 and 6 as a function of power at 

100,000rpm 'Ibus, on the basis of copper loss consideration a clear optimum value 

of 6 is obtained for Nph- 

It is interesting to note that the above analysis that gives rise to an optimal value of 
Nph, is specific to the conditions of 5kW at 100,000rpn-L As the power and/or speed 

are reduced, the ability to restrict the current flow to regions of changing inductance 

can be realised with higher values of Nph, and at these operating points, a value of Nph 

equal to 6 will inevitably give a higher copper loss. This can be illustrated by using 

the principles discussed to calculate the optimal values of Nph as a function of power, 

as shown in figure 3.28. 
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Peak flux densityriron loss. 'Me variation of iron loss (which is discussed in detail 

in chapter 4) is somewhat more complex to evaluate for the various winding designs 

and increases as a complex and non-linear function of both the magnitude of the peak 

flux density and its rate of change with respect to time. For a linear simulation, the 

rate of flux density waveform can be simplified to that of figure 3.29, in which the 

change of flux density within a region of the machine and its peak magnitude are 

given by equations 3.23 and 3.24 respectively: 

dB Vdc 3.23 
dt NphA co 

B= 
e(n+Odm" dB 

dt = 
Vdcodive-II 3.24 

p 
0. dt NphAa) 

Whereas the rate of change of flux density is inversely proportional to Nph, the 

relationship between Bp and Nph for a given output power is somewhat more 

complicated since the value of Od,,,, Il required is a non-linear function of Nph. As was 
demonstrated for the calculation of the copper loss, the switch dwell angle, Od,,.. ii, 
decreases rapidly as the number of phase turns is decreased, offsetting the apparent 
increase in iron loss. Figure 3.30 shows the variation of Bp as a function of Nph based 

on the optimised values of Od,,,,,, (defined in figure 3.23) and a value of A= 502nin? 

(which corresponds to the stator teeth). Thus, as is evident from equations 3.23 and 
3.24 and figure 3.30, considerable benefits are likely to be accrued in tenns of 

reducing iron loss by employing a high value of Nph. The absolute magnitude of the 

iron loss is a trade off between these generally conflicting non-linear trends and the 

variation of iron loss with the number of turns over the entire operating envelope 

remains beyond the scope of the current discussion. 

Further, given that the magnitude of the peak flux density that can be practicably 

realised is limited by magnetic saturation within the stator and/or rotor, this 

consideration places a limit on the lower number of turns that can be employed. 

121 



However, at 5kW and 100,000 rpm, even a value of Nph =2 only gives rise to a peak 
flux density of 1.35T, which is well below the saturation level of the Silicon Steel 

employed in the prototype. Despite not causing saturation at 100,000 rpm low values 

of Nph are likely to give rise to problems if useful levels of power are to be developed 

over a wide speed range. This can be illustrated by figure 3.31 which shows the 

variation of the lower speed at which a B. of I. 8T is achieved as a function of Nph 

using the commutation conditions discussed while maintaining an output power of 
5kW. 

Current control and drive switching loss. Consideration of the drive circuit 

provides further insight into the design of the phase winding. The efficiency of the 

switching devices in the drive circuit will decrease as the RMS phase current is 

increased. Furthermore for a machine operated in current control mode the decreased 

time constant of a winding with fewer turns will require higher switching 
frequencies, and the efficiency of the drive operating under these conditions will be 

compromised further. The drive efficiency and dynamics require that a higher 

number of turns is used and may ultimately provide a lower limit on the number of 

turns. It is beyond the scope of the present research to provide a model of the drive 

circuit whereby system efficiency may be optimised by the number of turns 

throughout the operating range of the machine, and the discussion is limited to these 

qualitative issues regarding the drive circuit. 

Slot area utilisation and manufacturing considerations. For machine designs 

where the space envelope is restricted (in this case by the existing geometry of the 

turbomachinery and engine) with a low number of turns, the efficient utilisation of 

the slot area becomes a key design issue. For the current application the windings are 

to be pre-formed and inserted into the machine individually. This removes the 

requirement for laborious in-situ winding, but the area available for the winding is 

greatly reduced by the need to insert each of the adjacent windings as shown in 

figure 3.32. Furthermore the machine design requires that the shaft and end-caps are 

gas sealed in order to maintain the efficiency of the compressor and turbine. rMe 

winding terminations must therefore emerge radially from the stator back iron, rather 
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than axiallY from the end-caps as in conventional machine design. This onerous 

constraint requires that: 

i. The number of winding layers around the stator teeth must be an integer 

multiple of two to allow both ends of the winding to emerge through the stator 
back iron, i. e. for a two layer winding the central layer is made with an external 
termination emerging from the stator, the second layer can then begin at the 
tooth tip and upon completion the connection can again be made through the 
stator. 

H. The series phase connections must be made externally. 

It is apparent from the preceding discussion that the selection of the number of turns 
for SR machines, although much less constrained by the requirement to match the 
induced emf to the supply voltage as in brusliless dc machines, is a critical parameter 
in tenns of overall system optimisation. The upper and lower limits of Nph for the 

current application have been established as 28 and 6 respectively, figures based on 
the maximum power attainment and the mininfisation of the copper loss at the 
highest speed and power. It is possible to determine the optimum number of turns 
based upon the criteria defined above with weightings applied to each parameter (e. g. 

converter VA ratings and cost and overall system efficiency etc. ). This apparent 

optimum will however inevitably be specific to a given duty cycle. Given that the 

operating duty cycle is difficult to establish at this stage, for the current application 
Nph --ý 16 was selected, on the basis that it is a reasonable compromise between the 

conflicting requirements identified above. For an Nph of 16, the resulting power 
tmap' for the machine at 100 OOOrpm calculated using the linear simulation is shown 
in figure. 3.33. Also shown in figure 3.33 are the commutation angles derived using 

the techniques discussed in section 3.7.1. 

The use of 16 turns per phase (eight turns per pole) allows the winding to be 

conveniently arranged as two layers of four conductors in the slot, as shown in 

figure3.34. For the current slot aspect ratio, i. e. depth initially defined as 10mm 

(discussed in section 3.2) and a width of 4.6mm, this winding arrangement allows 

efficient utilisation of the available slot area with conductor diameters within the 
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range 1.5mrn to 2mn-L Although a diameter of 2min would be preferable in terms of 

minin-fising the copper loss, practical winding trials established that a maximum 
diameter of 1.7min was feasible. This reduction of diameter to 1.7mm was largely 

required to produce sufficiently compact end-windings such that they could be 

accommodated within the recesses in the machine end-caps (as discussed in chapter 

7). 

3.7.2 CURRENT WAVEFORMS AND RESULTS FROM NON-LINEAR 

MODEL. 

Having established the number of turns using the linear model, the phase resistance 

can be calculated, hence allowing the non-linear simulation to be employed. In order 

to generate current waveforms for direct comparison with a linear simulation, a series 

of linear and non-linear simulations were performed for a machine with 16 turns at a 

fixed speed of 100,000rpm, using 11 values of 0,,,, (-44.60 to -24.60 in 2.00 

increments) and a fixed value of Od,,,,, of 20'. The current waveforms calculated by 

both methods are compared in figure. 3.35, while figure 3.36 shows the variation of 

the average calculated power as a function of 0,,,,. One interesting feature of figure 

3.35 is the particular waveform in the linear case where the phase current remains 

constant during the fluxing period when the inductance is rising. This condition is 

achieved when the applied voltage and back emf are equal. The switch-on angle, 0,., 

required to achieve this condition, remains fixed for a given machine design (-34.6' 

for this particular case) and for the general case is given by: 

OM 
3.25 

Under these operating conditions, the agreement between the linear and non-linear 

simulation methods is satisfactory in terms of both average torque and current, with a 

maximum error in the calculated torque for example of some - 17 % in the case of a= 

-44.6. The general agreement between the two simulation methods is a consequence 
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of the relatively low peak flux densities in the machine and hence the absence of any 

significant magnetic saturation. These low flux densities in turn result from the short 

time intervals involved at this high speed. The peak flux density in the stator tooth 

(the region most susceptible to saturation) can be estimated using the specific form of 

equation 3.24, i. e.: 

B= 
Vdcodwell 

coNphL,,, D, sin( 
/2 

3.26 

By means of example, for the conditions shown in figure 3.35 for the linear 

simulation, i. e. Od,,,, Il = 20.0 and co = 10472, the peak stator tooth flux density is only 

some OAT. Figure 3.37 shows a performance map at 100,000 rpm for the 16-turn 

machine with a dc link voltage of 96V calculated using the non-linear simulation. 
Again the conunutation conditions corresponding to the maximum power output per 

unit RMS current squared are superimposed upon the power contours. The 

commutation conditions are in good general agreement with those calculated using 

the linear model (presented in figure 3.33) under these conditions. The only 
discrepancy is that for values obtained with very small dwell angles, where the error 
is attributable to the initial (and final) conditions imposed on the non-linear 

simulation and the ill conditioning of the ratio of output power and the square of the 

RMS current in the non-linear model. 

If the speed is reduced to 20,000rprn, the peak flux density derived from equation 

3.26 increases to approximately 2. OT for the same commutation angles. With this 

flux density level in the linear simulation, there is a considerable discrepancy 

between the current waveforms and the average torque values predicted by the two 

simulation methods, as evidenced by figure 3.38 and figure 3.39 respectively. The 

phase current rises to much higher levels in the non-linear model, due to the 

reduction in the effective inductance caused by the saturation of the magnetic circuit, 

further the non-linear model generally predicts higher power levels for the same 

commutation conditions. By means of example, the average torque calculated using 
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the linear method shows a maximum discrepancy of 158% when compared to the 

value calculated using the non-linear model when 0,,,, = -32.6 (Od,,,, zl =20.0). 

On the basis of the predicted performance at 100,000rpm and 20,000 rprn, it can be 

anticipated that the linear model is likely to be adequate for operating conditions in 

which the peak flux density is less than some 1.6T, which is satisfied if the current 

rises for a period of less than 0.13ms. (Me duration of the period during which 

current rises is given by 0d,,,,,, 1ca) 

The range of speeds over which the linear model is likely to be valid can be 

investigated by calculating for example, the peak current and output power using 

each of the models for a range of operating conditions at constant commutation 

angles. A useful means of comparing the techniques is to calculate the percentage 
discrepancies in peak current and output power, which are defined as: 

il . 11 3.27 in/ 11 
Discrepancy i(%) = 100 

3.28 
Discrepancy P (%) = 100 

P, 

Where the subscripts nI and I denote the values calculated using the non-linear and 

linear models respectively. 

Figure 3.40 shows the calculated percentage discrepancies as a function of rotor 

speed in which the commutation conditions correspond to those discussed above, i. e. 

O. n = -34.6' and Od,,,.,, = 20*. It is apparent that the correlation of the two models is 

reasonably good at high speeds for this dwell angle. However at low speeds (i. e. 

<35,000 rpm or so) even the 20' dwell angle yields a high degree of saturation, and 

the linear model underestimates both the peak current and output power of the 

machine. Indeed at the lowest operating speed the peak current predicted by the non- 

linear model is approximately five times the value calculated using the linear model. 
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Given that this degree of discrepancy will be present at even higher speeds as the 

dwell angle is increased, it is apparent that at least some of the performance mapping 

of the device required to establish the best commutation angle combinations will 

require the use of the non-linear simulation. 

3.7.3 OPTIMAL COMMUTATION ANGLES 

Having demonstrated the need for non-linear simulation over part of the operating 

range of the machine, a comprehensive and systematic series of non-linear 

simulations were performed in order to establish optimal commutation angles. To 

this end, the process was automated so that the penalty in employing non-linear 

simulations even for cases where a linear simulation would arguably have been 

sufficient, was incurred purely in processing time rather than user interaction. 

Clearly, given the three input variables involved, viz. speed, 0,,,, and Od", 11, a vast 

array of data was generated. In the vast majority of cases, the best combination of 

commutation angles can be directly established by the simple application of two 

criteria, highest efficiency (in terms of copper loss only) in conjunction with 

minimum peak current. However, as will be discussed in chapter 7, it is highly 

desirable in terms of real-time computational overhead in the control system and the 

sensitivity of the performance to commutation angle, if a series of simple curve fits at 

various speeds is employed to map the commutation angles as a function of power 

rather than a 2D look up table with interpolation. Thus, a graphical user interface, an 

example of which is shown in figure 3.41, was developed in order to allow manual 

refinement of the commutation angles automatically selected, such that a smooth 

curve fit could be employed. In a few cases, this necessarily gave rise to some small 

compromises in efficiency on order to simplify the implementation of the control 

system. The resulting optimal commutation angle characteristics, which form the 

basis of the control algoritlun described in chapter 7 are shown in figures 3.42a and 

3.42b. 
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Figure 3.1 Principal dimensions of the 6/4 SR machine stator and rotor. 
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Figure 3.2. SR drive circuit operation. Reference [3.131 
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Figure 3.3 Commutation logic for high speed operation. 
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Figure 3.5a Flux linkage variation as a ftinction of current at constant rotor position. 
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Figure 3.5b Flux linkage variation as the rotor moves from the unaligned to the 

aligned rotor position at constant current. 
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Figure 3.6a Finite element mesh of the SR machine consisting of 17468 second order 

Figure 3.6b Detailed view of the finite element mesh of figure 3.6a. 
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Figure 3.7 Flux lines for the finite element mesh of figure 3.6a 
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Figure 3.8 Flux density contours for the machine with a current density of I A/mm 2 

applied to phase A. 
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Figure 3.10 Parabolic curve fit of the aligned VI-i curve as described by Miller and 
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Figure 3.16. Basic geometric features of coil used to calculate phase resistance in 

non-linear model. 
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Figure 3.28. Copper loss optimised number of phase turns as a function of the output 

power at 100,000 rpm. 
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Figure 3.33 Power contours derived using the linear analytical model for the machine 
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Figure 3.34 Winding design consisting of 8 turns/stator tooth. 
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APPENDIX 3.1 

POST PROCESSING FINITE ELEMENT SOLUTIONS TO CALCULATE 

WINDING FLUX LINKAGE AND INDUCTANCE. 

Linear representation - Finite element calculation of inductance 

The inductance of the winding is calculated from the finite element field solution 

using: 

mn A3.1 
2 EA,, 

iAei 
EA,. 

iAei 
Lýh = 

Nph L. 

m 
i-I 

?". -n 
i-I 

n 2 EAeiEJiAei EAeiE 
. _, 

JiAei 

Where the integers m and n are the number of elements in the cross section of the 

winding defined in figure A3.1, Aj is the vector potential of element i calculated by 

Ansys, Aej is the cross sectional area of element i and Ji is the current density applied 

to element i. 

Non-linear representation - Finite element determination 

The finite element method discussed in the previous section may be extended to 

predict the variation of the flux linkage as the current is increased in the aligned and 

unaligned positions. Since the variation is no longer linear, the two characteristics 

(particularly the aligned) may no longer be represented as a single inductance and the 

full calculation of the Vf-i curve is required. The current density applied to the mesh 

of figure 3.6, and a comparable mesh for the rotor in the unaligned position, was 
increased from 1 to 30A/mn?. The flux linking the phase for each case is calculated 

using 
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mn A3.2 
JA., 

jAei 
2: 

., 
A�, Ae, 

Vfph= L�, Nph im! 
m-n 

2: 2: Ae, 
., 

Ae, 

- 1-1 i-i - 

Figure A3.2 shows the results of the finite element simulations for the aligned and 

unaligned case. It is apparent from figure A3.2 that for the range of current densities 

modelled the material shows a high degree of saturation in the aligned position, 

conversely however the characteristic remains linear throughout the range of current 

densities modelled for the rotor in the unaligned position. 
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APPENDIX 3.2 

ANALYTICAL CALCULATION OF INDUCTANCE IN ALIGNED AND 

UNALIGNED POSITIONS. 

Linear representation - Analytical inductance calculation 

The inductance is calculated separately for the aligned and unaligned case. 'Me 

calculation of the inductance in the aligned position, L,,, is relatively straightforward, 

assuming the steel is infinitely permeable and the reluctance of the magnetic circuit 
is attributable solely to the airgap. 

The flux density in the airgap may be determined using: 

B8 = 
poNph' 

21s 
A3.3 

and the cross sectional area of the airgap is calculated from the smaller of the rotor or 

stator pole arcs (wWch in this case is the stator pole arc): 

A, 
6 = 18, Ds L, 

ý., 
A3.4 

2 

The flux linking the phase is therefore: 

V=NphO= NphBS AS = 
po Np2hiBDgL. A3.5 

41. 

And hence the phase inductance is: 
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pON2,6, DgL. 
ph Lph'a 

'-':, 
ýý 

:,: 
i 418 

A3.6 

WWch for the current design yields an aligned inductance of 6.25gH with a winding 

comprising a single turn per stator tooth (i. e. Nph = 2). 

Calculation of the unaligned inductance is however much more onerous than for the 

aligned case. Radun [3.3] uses conventional field theory to estimate the inductance of 

the rotor/stator design shown as a developed view in figure A3.3. For this particular 

geometry the inductance is given as a Fourier series thus: 

sin siFnmý 
A3.7 [3.31 12-711+ 

nrl 

2 
11 12 

4h, 
u = 4, uoNph Lax*' ya 

n -odd (; zny tanh nizh 1 
1-1 

For the unaligned position where the interpolar region of the rotor lies perfectly 

aligned with the stator tooth then equation A3.7 becomes: 

sin[17- 
A3.8 

2 4h, 
u= 8, uoNp'hL=. 11 n-odd nnh (nny tanh[ 1] 

The rotor geometry adopted by Radun differs slightly from the current interpolar 

fillet design, see figure A3.4. Figure A3.5 shows a developed view of the current 

rotor with a fillet radius ratio of 0.275. The interpolar fillet design adopted in the 

current application to minimise the stress concentration within the rotor structure is, 

geometrically, more complex than the design shown by Radun and the effective 
length of the rotor teeth h is difficult to determine. Figure A3.6 shows the inductance 

variation calculated using equation A3.8 where the relative height of the rotor teeth 

157 



(with respect to the interpolar spacing) is varied. It is apparent from figure A3.6 that 

the unaligned inductance is insensitive to this variable if it is greater than 1.5-2 times 

the circumferential spacing between the rotor and stator teeth, 11,2- It is permissible 

therefore to determine the length of the rotor teeth for use in equation A3.8 based on 

the mean radius of the interpolar fillet, ry, shown in figure A3.7. The mean radius of 

the interpolar fillet is calculated using equations A3.9 and A3.10. Where the angle, 

Oyp, between the yoke and the rotor pole is defined in figure A3.7. 

2ry' (0, )- 2Nr2-D, ry sin( 
a/2 Isin( oy/P2 A3.9 

D2 , 
(4 -; r) 

Where, 

( 
Dr sin 

apl A3.10 

OYP = 
Ir 

- 2sin-1 

( 
/2 

22 ry 

Equation A3.9 cannot be inverted and must be solved iteratively to find the mean 

radius of the rotor yoke, which for the current rotor, where the fillet radius ratio r is 

0.275, is 13-19mni The height of the rotor tooth for use in equation A3.9 is 

subsequently detennined using 

Dr 
-ry 2 

A3.11 

Using equations A3.9 - A3.11 it is possible to determine the unaligned inductance 

for rotors as a function of the fillet radius ratio. Figure A3.8 shows the variation in 

the unaligned inductance for the rotor with a diameter 38mm with a single turn per 

stator pole where the fillet radius ratio is increased from zero to the maximum value 

of 0.326. The inductance (for a winding comprising a single turn, per pole) varies 
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from a minimum value of 0.33pH when the fillet radius ratio is zero to a maximum 

of 0.46gH when the fillet radius ratio is 0.326. The effective height h of the rotor 

tooth for these cases is 10.92mm and 4.93mm respectively. For the current rotor the 

unaligned inductance is 0.4lpH 
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APPENDIX 3.3 

APPROXIMATING THE GAUGE CURVES USING ESTABLISHED CURVE 

FITTING TECHNIQUES 

The finite element analysis reported in the previous section Mgmighted two key areas 

in which the nature of the V- 0 curve deviates from the simplified trapezoidal 

variation, viz. the constant offset, and the curvature of the variation at the beginning 

and upon completion (figure 3.12) and may be approximated by the following 

empirically derived formula: 

4=ý,, v (ý. - ý. ) 
Ig 12 

A3.12 [3.71 

Where V is the flux linking the phase winding at any instant and Vm is the flux 

linkage at maximum excitation. 

In order to represent the curvature of the V/-O variation the characteristic gauge 

curves are divided into the three regions, as shown in figure 3.12, mathematical 

functions and boundary conditions are defined for each region. Region 11 is 

characterised by a simple linear variation and it is appropriate to discuss this region 

in the first instance as it is used as a basis on which the boundary conditions for 

regions I and III may be defined. 

Region Il (41 ' 
4hir) 

lie variation of flux linkage, at constant current, in this region is attributable to 

the increase in the effective area of the airgap as the degree of mechanical 

overlap is increased. It is appropriate to represent the flux linkage in the region 

as a linear variation, in a similar manner to the trapezoidal approach discussed 
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above. The gradient k,, of the straight line, which is bounded by the rotor 

positions ýj and 4,. is obtained using 

ka A3.13 [3.71 

The flux linkage at any rotor position witWn region II can be calculated from: 

Vf. k. (0 - ý0) A3-14 [3.71 

VA-tich for convenience can be presented as 

+ 
(0 -4 

xvf. - vf. ) A3.15 [3.71 

v(0) = v. (ý, 

Region I (ý, -W 

In the trapezoidal model, the flux linkage is assumed to be yf,, at all rotor angles 

where the mechanical overlap of figure 3.9 is zero. In practice the fringing of the 

flux before the rotor comes into mechanical alignment requires that the flux 

linkage variation is modelled as a non-linear function of rotor position. The most 

appropriate curve, identified by Miller [3.7], is that of a Frohlich-type curve of 

the form 

+ 
A(O - ý1) 

v(0) = vi 7- (0 

The imposition of two boundary conditions viz.: 

A3.16 [3.71 
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17 [3.71 ka 
and V(ý. )= V. dO 

give a curve described by 

k. (Vý -V. gý -ýJO-ýý) «'2 V 
A3.18 [3.71 

Again the flux linkage variation is presented as a function of known rotor angles 

and flux linkages. 

Region III (4h, - 
40 

The flux linkage variation in Us region is again represented by a Fr6hlich curve 

similar to that adopted in region I. The boundary conditions with wWch the 

specific curvature function is derived are: 

ldv(ý,,. 
) 

= 
ka and VVa Va 

A3.19 [3.71 
dO 

Ile curvature function is similar to that of region I and is given by: 

ka wa 
- Vf hr 

Xýa 
- 

ýhr Xo 
- 

ýhr A3.20 [3.71 
Vf 

(0) Vfhr + 
(V/. 

- Vfh, 
Xýý 

- 
ýhr )- (0 

- 
ýjhrIký, (ýý - ýý, )- (V/« - V/hr )] 

One convenient feature of this particular set of curve fitting functions and boundary 

conditions is that, apart from the determination of the aligned and unaligned 

magnetisation curves in the initial instance, the V-0 plane is fully defined for all 

levels of excitation and rotor angles. However, the inclusion of the flux linkage terms 

1g, and Vh, require that a time-stepped approach is used in order to simulate the 

machine with arbitrary excitation levels. 
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Figure A-3). I Elements Lised for the calculation of phase inductance. 
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Figure A3.2. Aligned and unaligned qf-i characteristics calculated using Ansys 
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Figure A-3.5. Developed rotor and stator geometry for the rotor with a fillet radius 

ratio of 0.275 and the geometry modelled by Radun [3.3]. 
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Figure A3.7. Rotor geometry for the calculation of the mean radius of the interpolar 

fillet. 
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Figure A3.8. Unaligned mdUCtance as a function of the fillet radius ratio 
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CHAPTER4 

CALCULATION OF IRON LOSS 

4.1 Introduction 

As discussed previously, although 3 phase switched reluctance machines are well 

suited to the target application in many respects, the high excitation frequencies 

encountered at high rotational speeds (e. g. a fundamental frequency of 1.66kHz at 

100 OOOrpm) will inevitably result in a high specific iron loss. Indeed, at high 

rotational speeds, iron losses are likely to be the dominant loss mechanism in SR 

machines [4.1], and may in turn lin-fit the attainable power density and/or the duty 

cycle which can be accommodated within a given temperature limit. In this case the 

thermal limits of the machine may be defined by a combination of factors such as: 

1. Conductor and lamination insulation thermal limits. 

2. The reduced permeability of the soft magnetic material as the Curie 

temperature is approached. 

3. Differential thermal expansion of the dissimilar rotor and stator materials and 

the potential for rotor/stator contact due to the narrow airgap. 

The reliable utilisation of the high-speed switched reluctance machine can only be 

achieved through knowledge of the iron losses and the mechanisms by which the 

losses are induced. 

This chapter is concerned with a detailed study of the iron loss in the proposed 

prototype generator, embracing both the prediction of iron losses using a variety of 

techniques at differing levels of sophistication and also experimental measurements. 

The calculation of loss is performed individually for both the rotor and stator, as 

dissimilar materials are used for these components for reasons discussed in section 

7.1.2 of chapter 7. Where any material or empirical constants are defined, the 
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distinction between the two lamination materials is made. The calculation techniques 

are demonstrated initially for a reference operating condition of 5kW electrical 

generation at 100,000 rpm. The specific operating parameters under these conditions 

are a DC link voltage of 96V with a commutation on angle of -13" and a 

cornmutation off angle of 20" (where 0' is the aligned position). This operating 

condition is chosen as it represents the highest machine load at the highest 

fundamental flux frequency, and corresponds to the highest level of iron loss 

expected in the lamination material. (Motoring and generating conditions provide the 

same level of iron loss in switched reluctance machines [4.2]). 

4.2 Prediction of Iron Losses 

The iron loss in a given sample of soft magnetic material is a complex and material 
dependent function of excitation frequency and flux density. In the case of SR 

machines, different regions of the machine (viz. rotor teetl'4 rotor core, stator teeth 

and stator back iron) variously exhibit DC biased bi-polar, uni-polar alternating and 

rotating flux density waveforms. In this regard SR machines offer a particular 

challenge, as many of the current modelling techniques lack the degree of 

sophistication required to provide accurate results under these conditions. 

In common with other machine types such as permanent magnet and induction 

machines, the prediction of iron loss in SR machines can be divided into two distinct 

stages: 
i) The calculation of the temporal and spatial flux density variation within tile 

machine at a given operating condition. 

The calculation of iron loss for the resulting flux density variation. 
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The flux density waveforms in discrete machine regions can be established using a 

number of approaches: 

i) Analytical - Direct analytical calculation of flux density wavefornis in a 

limited number of lumped discrete regions such as tooth body, stator back-iron. 

ii) De-coupled Finite Element Analysis - Calculation of a current waveform 
for a given operating condition using an electric circuit simulation such as that 

discussed previously, followed by a series of magneto-static de-coupled FE solutions 

with imposed current sources varying with rotor angle. 

iii) Coupled Finite Element Analysis - The electric circuit equations and the 

electromagnetic field are solved simultaneously, where the field equations can be 

coupled to the electric circuit equations for a constant voltage supply [4.3). This 

thesis is restricted to the consideration of the analytical and de-coupled finite element 

approaches as these methods can be integrated into an overall system simulation that 

is much more coniputationally efficient in terms of control strategy determination. 

Having established localised flux density wavefon-ns, either for a limited number of 

distinct regions of the machine (typically 20 or so for a 6/4 SR machines) or for a 

very large number of individual finite elements, the corresponding iron loss in a 

given material must be established. While techniques for the calculation of iron 

losses in materials exposed to symmetrical bi-polar flux density wavefon-ns are 

relatively well established, (typically sinusoidal flux density waveforms with varying 

degrees of sinusoidal harmonic content), the calculation of iron loss for truly 

arbitrary flux density waveforms such as uni-polar waveforms and DC biased bi- 

polar waveforms, remains unresolved in terms of a robust and fully generalised 

method. 
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4.3 Winding Configuration 

An important consideration in SR machines in which iron losses are likely to be the 

dominant loss is the connection of the windings. Since the torque generated by a 

phase winding is independent of the current polarity, then in the case of a 6/4 SR 

machine, either of the two possible winding connections defined as A and B in 

figures 4.1a and 4-lb respectively can be employed. In winding connection A, the 

coils are configured such that for a uni-polar current, three adjacent poles effectively 

act as N poles, and three as S poles. In the case of winding connection B, the coils 

are configured such that the polarities of adjacent poles alternate. By virtue of the 

fact that the coupling between phases in a 6/4 SR machine is relatively low [4.4-4.6], 

there is very little difference between the two winding connections in terms of net 

machine torque capability. However, as will be demonstrated in this chapter, the 

winding connection does have an impact on the magnitude of the iron loss. Of the 

two alternative connections, published literature [4.1] suggests that winding 

arrangement A is likely to result in a lower iron loss, although no quantitative data 

was presented to support this assertion. 

4.4 Calculation of Flux Density Waveforms in the Machine 

4.4.1 ANALYTICAL 

The analytical technique for the prediction of flux-linkage as a function of rotor 

position, which was described at length in section 3.5 of chapter 3, can be extended 

to calculate the flux density variations in various regions of the stator and rotor iron. 

The flux in various regions such as the localised section of the stator back-iron can 

be calculated by appropriate summation of the tooth fluxes calculated in section 3.5, 

with due account of the impact of the various current polarities on the flux 

distribution. It is necessary therefore to define a sign convention based on the 

direction of the flux in each of the regions to be used throughout the course of the 

chapter, as follows: 
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RadiaHy 'outwards' 

Circuniferentially clockwise 

Positive 

Positive 

published techniques [4.1,4.7 & 4.8] yield a generalised approach to calculating the 

flux waveforms using matrix analysis. In this thesis, a more specific formulation has 

been adopted, which is based on this well-established approach, and can clearly be 

shown to accominodate the differing winding connections detailed in figures 4.1a 

and 4. lb. 

The flux variation in any region such as a section of the stator back-iron can be 

determined simply by appropriate addition of the individual tooth fluxes. In the 

general case, the flux density in region i, can be expressed in terms of the various 

winding flux linkages as: 

+ kiB Y Bi 
(kiA 

VA Vq+ kicyfc) 
GiN 

Wbich in matrix form may be written 

Bi [ki, kiB kic- 

VA 

GiN . 
V/1, 

Yc 

Where 

(4.1) 

(4.2) 

Gi is the effective cross sectional area of the region, incorporating the 

assumption that the flux produced in a given tooth by an excited phase 

winding is divided evenly in the corresponding back-iron region. Hence, Gi 

Ai or 2Aj in the pole and back-iron regions respectively. 

N is the number of series turns on each coil. 

., 
is the flux linking phase x Vt 
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The coefficients of the k-niatrix take values of 0,1 or -1 depending on the 

relative polarities of the individual flux linkages with respect to the location 

of region i and the convention described. 

For the 6 stator regions shown in figure 4.2, the coefficients of the k-matrix can be 

determined from table 4.1 a for winding connection A (figure 4.1 a) and table 4. lb for 

winding connection B (figure 4.1b). For example, by substituting the effective cross 

sectional area and the values in the k-matrix, equation 4.2 for region 1 with winding 

connection A becomes: 

VA 

B, [-1 0 0- V, AIN 

- 
Vc- 

and for region 4: 

VA 

B4 = 
2A4N 

[-l 
-1 +1' Vf B 

Yc- 

REGION kiA kiB kic 

1 -1 0 0 

2 0 -1 0 

3 0 0 -1 
4 -1 +1 +1 

5 -1 -1 +1 

6 -1 -1 -1 

Table 4. Ia. Coefficients of the k-matrix for the Six stator regions detailed in figure 
4.2 for winding connection A. 

(4.3) 

(4.4) 
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REGION kiA kiB kic 

1 -1 0 0 

2 0 +1 0 

3 0 0 -1 
4 -1 -1 +1 

5 -1 +1 +1 
6 -1 +1 -1 

Table 4.1b. Coefficients of the k-matrix for the six stator regions detailed in figure 

4.2 for winding connection B. 

It is evident when comparing the coefficients in tables 4.1a and 4.1b that the flux 

density waveform in region 6 for the two winding arrangements will differ. The 

regions 1-5 differ only in phase and overall polarity, and will exhibit, in the 

analytical case, identical iron loss densities. 

The rotor regions are shown in figure 4.3, and the wavefomis are calculated in a 

similar manner. However the angular position of the rotor in the stator detennines the 

direction of the flux passing through the respective region. For example consider the 

case shown in figure 4.4a. Phase A produces flux in the rotor pole region highlighted 

radially inwards and, by convention, the flux density is negative. However if the 

rotor is rotated by 180' the flux produced by phase A now acts radially outward in 

the rotor and is therefore considered positive. 

The coefficients in the k-matrix are now dependent upon rotor position and change at 

301 intervals for the rotor pole (region 7) and 60' intervals for the rotor back iron 

(region 8). It is possible however, to present the k-matrix, in both cases, at 60' 

intervals if a farther coefficient k, is introduced. TMs takes a value of 0 or 1 

dependent upon the rotor angular position, such that k, =1 for the first 30' of each of 

the six 60" intervals presented in tables 4.2a and 4.2b. 
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For the rotor pole (region 7) the values for the k-matrix as a function of rotor angular 

position, 0, (positive 0 indicates clockwise rotation) for each of the winding 

connections detailed in figures 4.1 a and 4.1 b, are: 

Rotor angle k7A k7B k7c 

0<0: 5 60 -1 
0 0 +kr 

60 < 0: 5 120 -k, -1 0 

120 < 0: 5 180 0 -k, -1 
180 <0< 240 +1 0 -k, 
240 < 0: ý 300 +kr +1 0 

300 < 0: 5 360 0 +kz. +1 

Table 4.2a. Coefficients of the k-matrix for the rotor region 7 detailed in figure 4.3 

for winding connection A. 

Rotor angle k7A k7B k7c 

0<0: 5 60 -1 0 +kr 

60 < 0: 5 120 -k, +1 0 

120 < 0:: ý 180 0 +kz. -1 
180 < 0: 5 240 +1 0 -k., 
240 < 0: 5 300 +kr -1 0 

300 < 0: 5 360 0 -k, +1 

Table 4.2a. Coefficients of the k-matrix for the rotor region 7 detailed in figure 4.3 

for winding connection B. 

174 



And similarly the k-matrix for the rotor back iron (region 8) is presented in tables 

4.3a and 4.3b. 

Rotor angle k8A k8B k8c 

0<0: 5 60 +1 -1 -1 
60 < 0: 5 120 +1 +1 -1 
120 < 0: 5 180 +1 +1 +1 
180 < 0: 5 240 -1 +1 +1 

240 < 0: 5 300 -1 -1 +1 

300 < 0: 5 360 -1 -1 -1 

Table 4.3a. Coefficients of the k-matrix for the rotor region 8 detailed in figure 4.3 

for winding connection A. 

Rotor angle k8A k8B k8c 

0<0:: ý 60 +1 +1 -1 
60 < 0: 5 120 +1 -1 -1 
120 < 0:: ý 180 +1 -1 +1 

180 < 0: 5 240 -1 -1 +1 

240 < 0: 5 300 -1 +1 +1 

300 < 0: 5 360 -1 +1 -1 

Table 4.3b. Coefficients of the k-matrix for the rotor region 8 detailed in figure 4.3 

for winding connection B. 

Inspection of tables 4.1-4.3 shows that the difference in the winding connections is 

accommodated by the sign of the kjB coefficient, indicating the differing polarity of 

phase B in the two arrangements. 
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Given the geometry of the machine, as detailed in chapters 2 and 3 the effective 

cross-sectional area Ai of each of the rotor and stator regions and hence the term Gi 

can be detennined as in table 4.4. 

REGION Ai (ný) Gi (ný) 

1 5.02XIO-4 5.02XIO-4 

2 5.02X10-4 5.02XIO-4 

3 5.02XIO-4 5.02XIO-4 

4 3.50XIO' 7. OOXIO-4 

5 3.50X10-4 7. OOXIO-4 

6 3.50XIO-4 7.00xlO-4 

7 5.71XIO-4 5.71XIO' 

8 3.34XIO-4 6.68XIO-4 

Table 4.4. Effective cross sectional area of the rotor and stator regions defined in 
figures 4.2 and 4.3. 

The analytical wavefornis in all the regions of the machine, with each winding 

connection, for the reference operating point selected in section 1 of this chapter are 

shown in figure 4.4. 

4.4.2 DE-COUPLED FINITE-ELEMENT METHOD 

The analytical approach described above, although offering a computationally 

efficient means of estimating the flux density waveforms, is nevertheless reliant on a 

number of simplifications in terms of machine and material behaviour as discussed in 

section 3.5 of chapter I 

In tenns of the ability to accurately represent the flux conditions experienced in the 

machine, and hence provide a basis for subsequent iron loss calculation, the 

analytical method can be seen to be deficient in three ways: 
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Insufficient spatial refinement. The analytical approach described requires 

the 3-phase SR machine to be divided into only 20 distinct regions. Due to 

the nature of the SR machine operation, significant spatial variation of flux 

density within the relatively coarse regions considered may be significant, 

particularly in the tooth tips as the rotor and stator teeth move into and out of 

mechanical aligninent. As a consequence the prediction of iron loss, which is 

a non-linear function of flux density variation at fixed frequency may prove 
inadequate when based on the spatially averaged flux density waveforms. 

2. Simplified representation of flux density conditions. Ile flux density 

waveforms calculated using the analytical approach must lie in either the 

radial or circumferential direction in the teeth and back iron regions 

respectively. Under these conditions no account can be taken of the flux 

density conditions in the transitional regions, where the principal flux 

direction may not lie in the radial or circumferential direction, or indeed a 
high rotational component may be present. 

3. Poor resolution of field harnionics. Simplifications regarding the 

superposition of the flux in various regions of the machine represent a 
significant source of error in the analytical approach As will be demonstrated 
in this chapter, the flux waveforms, in all regions of the machine contain a 
significantly higher harmonic content than that suggested using the analytical 
approach 

Non-linear finite element analysis by contrast is able to provide a more accurate 

representation of the harmonic content in the flux waveforms at a very high degree of 

spatial discretisation, which has considerable consequent benefit both in terms of 

predicting localised fields and providing the necessary spatial resolution for the 

subsequent calculation of iron loss. Nevertheless this, method still requires several 

approximations: 

1. The behaviour of the machine can be represented to an appropriate degree by 

a two-dimensional model, which inherently neglects end-effects and the 

presence of any axial field; this assumption becomes more appropriate as the 
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ratio of machine length to diameter is increased. Whereas in the current 

application this ratio may not be large enough to prevent significant error of 

this type, the two-dimensional approach is adopted to reduce the problem 

domain, which is desirable given the high number of solutions required for 

the purpose of generating flux density waveforms. 

2. Magnetic hysteresis within the stator and rotor Ian-fination material is 

neglected in terms of its influence on the flux density waveforms, for a given 

current excitation (although the effect of hysteresis is accounted for in the 

subsequent calculation of the iron loss for a given flux density waveform. ). 

Tbus the non-linear behaviour of the stator and rotor lamination can be 

represented by a monotonic magnetisation curve. 

3. The problem is assumed to be magneto-static i. e. the presence of any re- 

distribution fields due to eddy currents within the laminations is neglected, 

although again eddy currents are considered in the subsequent calculation of 

iron loss. 

4. The problem can be bounded at, or in close proximity to, the outer surface of 

the stator lamination by imposition of a Diriclilet boundary condition (where 

the flux is constrained to be tangential to the outer surface by the imposition 

of zero vector potentials on the boundary nodes) thus avoiding the need to 

model an extensive region of surrounding air, either by an extended mesh or 

by the use of specialised open-boundary conditions [4.9] 

5. The stator and rotor laminations are modelled as being magnetically isotropic 

as they are nominally non-oriented materials. In practice, such 'non-oriented' 

materials exhibit some degree of anisotropy as a result of the rolling stage of 

manufacture [4.10], the effect of which on losses is discussed by Moses and 

Shirko ohi [4.11 ]. 

In order to achieve the flexibility required for the development of specific post- 

processing programs for the calculation of iron loss, the mesh was constructed using 

in-house software. The mesh within the small airgap and tooth tips of the machine is 

highly dicretised, in order to accurately resolve the rapid spatial change in field 

distribution within this region. Consequently with the lack of any adaptive meshing 
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capability the whole machine must be meshed with a very high level of 
discretisation, wMch is limited by data storage and computational requirements. 

The resulting two-dimensional finite element mesh consisting of 23374 first order 

triangular elements (witbin wbich the rotor can be rotated about the axis at 11 

intervals) forms the basis of this investigation is shown in figure 4.5. 

For the purpose of the finite element simulation, the generator operating point was 

again that described in section 1 of fl-iis chapter, viz. the generation of 5kW at 
100 000 rpm The input to the finite element model consists of the 3-phase current 
density waveforms that are shown in figure 4.6. Finite element calculations were 

performed for both the winding connections shown in figure 4.1 a and 4. lb 

The finite element calculation can be separated into three discrete stages, which are 

repeated at each rotor position: 

1. Angular displacement of the rotor and the reconstruction of the mesh to 

acconnuodate the new rotor position 
2. Imposition of specified current densities within the winding regions, the 

magnitudes of which for a given rotor position are determined directly from 

the waveforms of figure 4.6. 

I Solution of the finite element model using a non-linear Newton-Raphson type 

solver generated in-house [4.9] and subsequent data output for the purpose of 

the post-processing phase. 

Although finite element solutions were performed for P (mechanical) steps, by 

exploiting syinmetry, only 90 solutions are required in the case of winding type A 

and 30 for winding type B. Figure 4.7 shows predicted field distributions for both 

winding connection types at 10' intervals up to a rotor angle of 200 (the angles being 

referenced relative to the O'daturn which corresponds to the aligned position with 

respect to phase A) 
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The finite element mesh comprises 7308 stator iron elements and 5164 rotor iron 

elements. The localised flux density within each element can be derived at each step, 

and hence a very extensive series of waveforms, can be derived for the loss 

calculation. However, such an approach is computationally very demanding, given 

the need to calculate the hysteresis loss and numerically integrate the dynamic loss 

for each of the waveforms. Nevertheless, this exhaustive calculation was performed 

I as a reference against which more computationally efficient methods could be 

benclunarked. 

An alternative approach would be to group elements into a number of discrete sub- 

regions within the rotor and stator, each sub-region being assigned a single waveform 

which is derived from an average of the constituent elemental waveforms, with due 

weighting to accommodate different element areas within the region. Such an 

approach was also investigated in this study, with the following airns: 

1. To establish the correlation between this more computationally efficient method 

and that based on elemental summation of losses, and hence establish guidelines 

for selecting the appropriate number and distribution of sub-regions. 
2. To provide a more manageable number of waveforrns, for the experimental 

measurement of losses. 

3. To significantly reduce the number of distinct waveforms, aiding the 

interpretation of the machine behaviour. 

The initial division of the stator and rotor into sub-regions is shown in figures. 4.8 

and 4.9 (shown with the division of only one pole to aid clarity). The numbering 

convention for the regions is such that it is consistent with that adopted for the 

division of the stator and rotor in the analytical method. It is evident when comparing 

figures 4.8 and 4.9 with figures 4.2 and 4.3 that although Us approach will 

inevitably reduce the spatial resolution compared to that obtained using an elemental 

approach, it nevertheless offers considerably greater resolution than with the regions 

considered in the analytical model. Further, the field solutions from which the 

averaged flux-density waveforms, are derived still benefit from the fine mesh 

discretisation. 
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The increased spatial resolution of this finite element sub-region technique over the 

analytical method can be illustrated by comparing the flux density wavefornis of 
figure 4.10, which correspond to the two extremes of the stator tooth tip, labelled as 

T, and T2 in figure 4.9. It is apparent that the flux density in the trailing edge of the 

tooth is considerably higher than that in the leading edge under the particular 

specified operating conditions, viz. in generating mode, which is a direct 

consequence of the commutation interval of the current with respect to rotor position. 
As will be illustrated in section 4.6, an iron loss calculation based on the use of a 

single region to represent the entire stator tooth face is likely therefore to exhibit 

considerable error as compared to an approach based on a refined spatial 
discretisation. 

Figure 4.11 shows finite element predicted flux density waveforms for 8 regions of 

the stator and rotor (from a total of 204 regions), together with the corresponding 

analytically derived waveforms. These 8 regions in the finite element model were 

selected to demonstrate the reasonable correlation with the analytical technique, 

while highlighting the higher order harmonic content of the finite element predicted 

waveforms. 

4.4.3 ROTATIONAL COMPONENTS OF FLUX DENSITY 

An important consideration in the calculation of the corresponding iron loss for a 

given flux density wavefonn is the approach adopted to accomrnodate flux density 

variation which are not unidirectional in nature, i. e. the direction of the flux density 

vector relative to a given localised reference frame changes as a function of rotor 

angle. This is illustrated by figure 4.12 which shows the flux-density vectors at the 

centroid of sub-regions T, and B, at 15' intervals as the rotor passes the stator tooth. 

The rotation of the flux density vector can be illustrated by the Lissajous plots of the 

corresponding waveforms of radial and tangential flux density shown in figures 4.13 

and 4.14. In region TI, the flux density vector rotates through an angle of 25', 
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whereas in sub-region BI the flux density is almost purely rotational in nature and 

swings a total of 1800. 

The accurate prediction of iron loss due to rotational flux densities is, in general, 

much more complex than the case of unidirectional flux density variation. The 

relatively poor understanding of rotational power losses can be attributed to the 

following: 

1. The characterisation of material is problematic since precisely controlled 

rotational flux density wavefon-ns are difficult to induce in test samples. Poor 

directional control of the flux density and significant leakage around the 

samples results in a Mgh harmonic content, particularly at Mgh induction 

[4.121 

2. Loss measurement techniques are difficult with standard power meters and 

recourse to calorimetric methods is often required [4.12] 

I The specification of parameters and constants fully defining the nature of the 
flux density wavefornis in temis of loss producing variables is difficult [4.13] 

The iron loss associated with a rotating flux density variation is generally much 

higher than that for a unidirectional waveform of the same peak magnitude. 

However, no rigorous model for predicting the iron loss due to rotational flux has 

been presented as yet, particularly when the wavefom-is are non-sinusoidal. Indeed, 

for the waveforms present in the SR machines, e. g. uni-polar, DC biased bipolar etc, 

considerable difficulty arises in relating to any data based on measurement of 

rotational losses with sinusoidal excitation. For example, relative phase can be 

readily established for purely sinusoidal waveforms however this is somewhat more 

ambiguous when considering typical SR machine wavefom-is. The development of a 

generalised model for calculating the iron losses associated with any arbitrary 

rotating waveform is beyond the scope of this thesis. As such, account was taken of 

the rotational element in the overall iron loss by means of a simplified technique 

based on the summation of the loss from the orthogonal components of flux density, 

an approach described and verified, albeit under limited operating conditions, by 

yamaguchi and Narita [4.12]. 
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The model has been validated using a wide range of electrical steels. However the 

summation of the two orthogonal losses becomes increasingly erroneous with highly 

rotating flux densities of relatively large magnitude. Figure 4.15 shows the range of 

all operating points where the error between the predicted and measured values is 

less than 5%. 'Me eccentricity, a, of the two orthogonal flux density waveforms, in 

figure 4.15 is given by: 

a= 
Flux density in minor axis direction (4.5) 
Flux density in major axis direction 

Hence eccentricities of unity represent a purely rotational flux density variation and 

zero a uni-axial variation. 

It is evident from figure 4.15 that the model is valid for a large range of eccentricities 

and major-axis flux densities. However in SR machines, high values of flux density 

are often encountered in the tooth tips, e. g. figure 4.10. In such cases, large rotational 

components would, on the basis of the results in figure 4.15, be likely to yield 

significant over estimates. It has been demonstrated however that the rotating flux 

density in the stator tooth tips is limited to some 25", with similar behaviour 

observed in the rotor teeth. As a consequence, the limited values of eccentricity 

probably indicate that the approach remains reasonably valid despite the high flux 

density levels. 

The method requires that the two orthogonal flux density wavefornis be arranged on 

two principal axes, rather than some arbitrarily defined co-ordinate system. Indeed 

regions that have purely alternating flux density waveforms, may have significant 

components in two orthogonal directions with respect to a given geometrical 

reference frame simply from their relative alignment and, under these circumstances, 

the iron loss calculated would be an overestimate. For the case of orthogonal 

sinusoidal waveforms of a given magnitude and relative phase, 8, in a given co- 
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ordinate system plotted in a Lissajous forniat in figure 4.16 shown in equations (4.6) 

and (4.7): 

x= xo sin ax (4.6) 

y= yo sin(cot + 8) (4.7) 

the determination, and the alignment, cý of the principal axes, shown in figure 4.16 is 

relatively straightforward and is given by: 

1 
tan 

2x,, y,, cos8 (4.8) 
2-Y2 2 X0 0) 

From Us the flux density component along the principal axes can readily be 

obtained under these simplified conditions. 

In contrast however the determination of the attitude of the principal axes for 

arbitrary waveforms in two orthogonal planes is difficult to achieve due to the high 

harmonic content. This is higlilighted in figures 4.13 and 4.14 where the alignment of 

the principal axis is not clear. 

In order to minimise the error associated with calculations based on misaligned 

principal axes the flux density waveforms; of the SR machine, for the purpose of 

subsequent loss calculations, are specified in polar co-ordinates. Inspection of the 

switched reluctance machine reveals that the flux is constrained largely to travel in 

either the radial or circumferential direction as the geometry of the teeth or back iron 

dictates. The flux densities reported in polar co-ordinates are therefore, by virtue of 

the specific machine geometry, representative of the principal flux densities. 
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4.5 Loss Model 

4.5.1 INTRODUCTION 

Core losses in ferromagnetic materials can, in general, be separated into quasi-static 

or hysteresis component and a dynarnic component. 

PTOT "ý PHYS + PDYN (4.9) 

The hysteresis component is attributed to the net energy loss associated with sudden 
irreversible changes within the domain structure as the magnetisation is increased. 

The nature of these so-called Barkhausen jumps implies the hysteresis loss per cycle 
is independent of the frequency of flux reversal and is influenced solely by the 

magnitude of the flux density. The magnitude of the hysteresis loss is determined 

from the area of the B-H loop obtained under quasi-static conditions. 

The dynamic loss is somewhat more complex in nature and arises due to local 

internal damping fields within the material opposing changes in the external 

magnetic field. The dynamic component can be decomposed into classical eddy 

current and excess loss, discussed below, and hence equation (4.9) can be rewritten 

PTOT ý PHYS + PCLA + PEXC (4.10) 

The calculation of iron loss within an electrical machine must include accurate 

representation of each of these components. 

At present however only two of these components, viz. classical and excess losses 

are calculable for any arbitrary induction waveform, the third, hysteresis loss, lacks 

rigorous analysis for arbitrary induction waveforms including minor loops. However 

for the one dimensional case where the flux density is symmetrical about zero, i. e. 

oscillating about some value ±B., it is possible to measure the relationship as B. 
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varies. There is a requirement, liowever, for a degree of empirical data to be applied 

to any analytical model mainly to account for the hysteresis content when the 

waveforms contain local minima (minor loops) and induction about a non-zero value. 

4.5.2 HYSTERESIS 

Hysteresis loss within soft magnetic material is the result of irreversible 'jumps' 

within the material domain structure as the material is exposed to a varying field. The 

hysteresis loss per cycle, which is independent of frequency, is given in the general 

case by: 

Wh =IfB. dH (; Vkg 
mv 

4.11 

The integral in equation 4.11, represents the total area enclosed within the B-H loop 

traversed during one cycle. For a steady-state waveform. in which each cycle 

comprises only one minimum and maximum, e. g. a pure sinusoid, saw-tooth, 

trapezoid etc, the loss per cycle is dependent only on the magnitude of the peak flux 

density. The effective area enclosed within the corresponding hysteresis loop, and 
hence the hysteresis loss, can be estimated to an acceptable degree of accuracy using 

a curve fit of loss as a function of peak flux density, typically using three material 

specific constants. Such an approach for the estimation of hysteresis loss as a 
function of peak flux density is well established and documented [4.1,4.13 & 4.14], 

although the material constants required are rarely published by manufacturers, and 

often must be derived from measured data for a particular grade of electrical steel. 

However in some waveforms, including many of those commonly observed in SR 

machines, each electrical cycle contains numerous local minima and maxima. In 

terms of hysteresis losses, the presence of these so-called 'minor loops' will generate 

additional hysteresis loss. For a wavefonn with significant harmonic content, the loss 

associated with these minor loops may represent a significant proportion of the 

overall hysteresis loss in the machine, thus necessitating their inclusion within an 

186 



iron loss model. In order to accommodate the presence of minor loops rigorously, it 

would be necessary to perforin the numerical integration of equation 4.11, in which 

the instantaneous B and H values were derived from a hysteresis model. Hysteresis 

models have been developed for predicting the hysteretic behaviour of magnetic 

materials, using either 

1. A purely statistical approach with little physical basis [4.15], 

2. Extensive characterisation of the material [4.16] 

3. Physical based micro-magnetic models [4.17]. 

Although this latter approach appears promising in tenns of providing a basis for 

predicting the behaviour of the material, the accuracy of the loss calculation is 

critically dependant on the precise determination of material parameters, which has 

been demonstrated to be difficult to achieve [4.18] 

An alternative method, adopted in this thesis, is to separate the total hysteresis loss 

into two components. Firstly, the major loop loss associated with the excursion from 

-B,,, to +B,, and secondly the individual contribution of each minor hysteresis loop. 

The fon-ner can be readily derived from established techniques, while a novel method 
for approximating the loss associated with n-finor hysteresis loops is presented in this 

thesis. 

4.5.2.1 Major loop hysteresis loss component 

The major loop component of the hysteresis loss can be curve-fitted as a function of 

the peak flux density, B,,,, by the foRowing relationship [4.1,4.13,4.14]: 

Wh 
= khB,,, "'B- (; Vkg ) 4.12 

Where the constants kh, a, and b are material specific and must be determined from 

experimental loss measurement and the peak flux density B.. is specified in Tesla. To 

this end, hysteresis loss measurements were performed on both the rotor (CK26) and 
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stator (V300) materials, using the computer-controlled test-rig described in Appendix 

4.1. The characterisation was performed in both cases for magnetising field strengths 

up to 20,000 A/n-4 wbich gives rise to flux densities around 1.9T in both materials. 

Figures 4.17a and 4.17b show the measured major hysteresis loops for the rotor and 

stator material respectively. To aid clarity, and to illustrate the nature of the 

hysteresis loops, the loops shown are for magnetising fields up to only 100OA/m. The 

values of the material constants obtained for magnetising field strengths up to 

20, OOOA/m are shown in table 4.5. These values were derived from a curve fit of 

equation 4.12 using the Nelder-Mead simplex algoritbm [4.19]. 

Rotor material 
(CK26) 

Stator material 
(V300) 

kh 19.56X10-3 17.90xlO-3 

a 1.415 0.841 

b 0.303 1.023 

Table 4.5. Experimentally determined hysteresis loss coefficients. 

Figure 4.18 shows the predicted hysteresis loss per cycle calculated using equation 

4.12 and the constants in table 4.5, together with measured data points. As is evident 
in figure 4.18 this simple model of hysteresis although having no direct physical 

basis, is able to represent the measured behaviour accurately over the range 

considered. 

4.5.2.2 Existing techniques for the estimation of minor hysteresis loop losses 

The methods considered in this investigation to calculate the additional loss 

associated with minor loops are all based on the individual and independent 

consideration of each reversal, of which there may be many within a given a cycle. 
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One simple approach, which requires no additional material specific data is to 

estimate the major loop hysteresis loss from equation 4.12, with B" set equal to half 

the minor loop traversal. However, as is demonstrated by figure 4.19, which shows a 

series of 2T peak to peak hysteresis loops for a range of different starting flux 

densities, the loop shape and hence the associated hysteresis loss varies significantly 

as a function of the starting flux density, particularly when saturation flux densities 

are approached. This so-called 'non-congruent' behaviour of hysteresis loops 

necessitates some modification of equation 4.12 to include the influence of the 

starting flux density on the loss associated with a given flux density excursion. 

A straightforward method of applying a correction factor to equation 4.12 to 

represent this behaviour was proposed by Lavers et al [4.20]. The method can be 

illustrated by reference to figure. 4.20, which shows a symmetrical AC waveform. 

with a peak magnitude of B,,, and one additional reversal within each half cycle of 

magnitude AB. For the general case of a wavefonn with N such reversals within one 

half cycle, the total hysteresis loss, Wh, can be estimated by [4.20]: 

B. 1N 
Wh I +B. 

x 1+k-EAB, Wh 

B. 

4.13 

The rninor loop correction coefficient k in equation 4.13, will inevitably take 

different values depending on the flux densities at the limits of the minor loop and 

the material properties. However, Lavers et al demonstrated that over a limited range 

of operating conditions, adopting ak value of between 0.6 and 0.7 provides a 

reasonable estimate of loss for a range of materials [4.20]. In ten-ns of flux density 

waveforrns, good correlation between measured and predicted hysteresis losses was 

demonstrated for peak flux densities between 1.0 and 2. OT with relatively low ratios 

of ABilB. - 
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A similar approach was described by Hayashi and Miller [4.1], but in this case the 

correction was restricted to the particular wavefonn shown in figure 4.21, in which 

ABj is equal to B.. For this wavefonn, the total hysteresis loss is estimated using: 

Wh = Whj+B 0 +0.4Whl+B m 
B. -Bm 

4.14 

The correction factor 0.4 in equation 4.14 was determined experimentally for a 

sample of electrical steel (Losil 400/50), for a range of B.. values between 1.40 and 
1.92T. On close inspection of equations 4.13 and 4.14 it is evident that equation 4.14 

is in fact a particular case of the model presented by Lavers, in wWch k=0.8 and AB 

= B,,,. 

Both these published methods were experimentally validated, each demonstrating an 

acceptable degree of correlation with measurements, albeit over a limited range of 

excitation conditions. However, the techniques have a number of deficiencies in 

tenns of their ability to predict hysteresis loss adequately over the entire range of 

operating conditions that are likely to be encountered in an SR machine. This is 

highlighted by the fact that the values of k ranging from 0.6 to 0.8 have been 

proposed for different materials and conditions. 

In order to establish the most appropriate value of minor loop scaling factor k, a 

series of hysteresis loss measurements were performed using the general flux density 

waveform of figure 4.20, where only a single reversal is undertaken at the peak of 

each cycle. 

The quasi-static conditions required to isolate the hysteresis component of the iron 

loss was achieved in practice by employing the waveform of figure 4.20 at a 
frequency of 0.25Hz. The negligible influence of dynamic effects at this test 

frequency was confirmed by comparisons with a waveform having a frequency of 
IHz. A total of 50 measurements were performed at three discrete values of B, viz. 
1.00,1.25 and 1.50T, and in each case, the magnitude of the flux reversal, AB, was 
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varied between zero and 2B. in approximately 0.1T increments. Figures. 4.22a, b and 

c, show the resultant measured total hysteresis losses (major loop loss + minor loop 

loss), together with the corresponding losses predicted using the methods of Hayashi 

and Miller and Lavers et al. 

As is evident from figures 4.22 a, b and c, the magnitude of B. influences the loss for 

a given AB. By means of example, for a AB of 0.3T, the measured minor loop 

components of the hysteresis loss per cycle are 3.25mJ/kg, 4.40mj/kg and 7.85niJ/kg 

for B .. values of LOOT, 1.25T and 1.50T respectively. 

From the definitions of AB and B.. in figure 4.20, it is apparent that a waveform in 

which AB = 2B. is identical in terms of hysteresis loss to 3 independent cycles of 

peak to peak magnitude 2B,,,. This fundamental reference condition provides one 

useful means of validating the generality of the loss models proposed by Lavers and 
Hyashi. However, as is evident from equations 4.13 and 4.14, this reference 

condition will only be satisfied by adopting a value of k=1.0. As a consequence, 

neither of the loss prediction methods is able to satisfactorily cater for Us condition 

if the suggested values of k=0.6 to 0.8 are employed. For the best case, i. e. when k= 

0.8, the calculated loss using equation 4.13 underestimates the loss calculated for 3 

independent cycles by some 13%. 

A useful method of representing hysteresis losses for minor loops is to scale the flux 

density change AB as being a proportion of B,,,, with the resulting loss per cycle 

normalised to the loss for the corresponding loop between -B.. and +B.. The 

normalised loss values will hence vary between 1 (for the case of AB=O) and 3 (for 

the case of AB=2Bm). The absolute loss data shown previously in figure 4.22, can be 

represented using this normalisation approach, as shown in figure 4.23. 

In order to demonstrate the limitations of adopting a fixed value of the parameter k, it 

is useful to calculate values of k ateach operating point, such that the loss predicted 

using equation 4.13 would accurately represent the measured loss, i. e. rather than 
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being regarded as a constant, k becomes a function of both AB and B,,. Figure 4.24 

shows the values of k derived from measured hysteresis loss on a sample of CK26, 

including the two reference excitation conditions employed by Lavers et al. and 

Hyashi, viz. ABIB. =0.08 and 1.0 respectively. As shown, for these particular 

reference conditions, the fixed k values proposed are indeed appropriate. However, 

over much of the operating envelope, particularly at low values of dBIB,, and for the 

lower values of B., the values of k proposed by Lavers and Hyashi are inappropriate. 

Given the limitations of these two published methods, an alternative technique for 

predicting minor loop hysteresis losses has been developed. 

4.5.2.3 Alternative method for estimating minor loop losses 

The complex and non-congruent nature of minor hysteresis loops makes it difficult to 

establish a simple algebraic relationship, particularly when magnetic saturation of the 

material is considered. Consequently there is a requirement to derive a relationship 

which incorporates non-linear measured material data. As with any method for 

determining the losses associated with minor loop hysteresis, there is a trade off 

between absolute accuracy, model complexity and material data requirements. The 

technique proposed in this chapter is based on an empirical relationship derived from 

measured major loops and the nature by which coercivity is developed in the 

material. The method is based on the relationship between the minor loop of 

magnitude dB traversing about zero and a loop of similar magnitude about some 

non-zero, arbitrary flux density such that: 

IB. IAB Y2 
Wh 

B. -AB 
= QrninorWh 

-. AB Y2 
4.15 

AB 
V 

/2 
The term Ih. can be readily calculated using the well proven approximation for 

-AB 2 2 

symmetrical, bi-polar excursions of flux density about the origin, i. e. by using 

equation 4.12, with relevant material constants such as those in table 4.5. 
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The term Q i,., is not constant, as was assumed for the analogous k term in Lavers' 

method, but rather is a non-linear ftinction of AB and B.. The variation of Q .. can 
be deduced either from very extensive material characterisation for all combinations 

of AB and B,,,, or as in the proposed method by reference to a single measured BH 

loop which extends from -B,,,, to +B.,,, t and the measured dependency of the 

coercivity on the peak flux density. The exploitation of these non-linear, material 
dependant characteristics and their integration into the minor hysteresis loop 

correction factor, is discussed below. 

1. Non-linear magnetisation characteristic of electrical steels - The influence of 

the inherent non-linearity of the magnetisation characteristic on the hysteresis 

loss can be illustrated by figure 4.25, which shows a hysteresis loop of magnitude 

Bm = 1.25T incorporating two minor loops of AB = 0.25T, about 1.125T and OT. 

The resulting magnetising field strength excursion, and hence hysteresis loss is 

considerably greater in the case of the minor loop about 1.125T. The variation of 

the area enclosed within a given major loop as a function of flux density, can be 

illustrated by figure 4.26. This shows a schematic representation of a B-H loop 

for the particular case of a fully saturated material (i. e. peak flux density of B. t). 
The shaded areas A, and A2 correspond to total areas enclosed by the saturation 

loop for two different flux density excursions, both of magnitude AB (one based 

around zero and the other about B. -AB/2). Although these two areas do not 

represent the actual areas enclosed by the respective minor loops, the ratio of A, 

to A2 can be used as one correction factor for the additional loss associated for a 

minor loop excursion about non-zero flux densities. Although the relationship 

between the two areas may itself be a function of the peak flux density of the 

outer loop, in order to minimise the material characterisation required, the 

behaviour exhibited by a loop that extends from -Bsat to +Bsat was assumed to be 

representative of the behaviour of other major loops. A useful and concise 

method of representing this area correction term is to calculate the cumulative 

area as a function of flux density, fi-om which the ratio of two areas for a given 
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flux density excursion can then be directly calculated. By means of example, 
figures 4.27 and 4.28 show the measured hysteresis loop (up to 15000 A/m - 

which represents an essentially saturated case), and the corresponding cumulative 

area enclosed within the loop as a function of flux density. A characteristic such 

as that of figure 4.28, forms one contribution to the correction term Q,, Ii,, (,, 

2. Coercive Field - The area correction established above only partly corrects for 

the behaviour which is observed in experimental measurements of minor loops. 

Its major limitation is its inability to represent the partial filling of the areas 
bounded by the major hysteresis loop, a factor that is strongly coupled to the 

development of coercivity in the material. The coercive field strength that is 

developed in the material as a result of being magnetised is strongly dependent 

on the magnitude of the peak magnetising flux density, as illustrated by figure 

4.29 which shows the measured variation in coercivity (i. e. H at B=O), as a 
function of the peak flux density for CK26 Silicon Steel (in each case for 

previously demagnetised material). The coercive field established in the material 

clearly has an impact on the subsequent minor loop hysteresis loss, as is evident 
from figure. 4.25. For the particular case shown, the upper minor loop (B =1.25, 

-AB=0.25T) almost completely fills the area available within the outer major 

loop, while the lower minor loop (B .. =0.125, -AB=0.25T) only fills a relatively 

small proportion of the outer loop between -AB12 and AB12. Thus the calculation 

of the loss associated with the upper minor loop by the simple application of the 

area correction factor established above to the loss for the lower loop loss will 

clearly be an underestimate. Thus there is a requirement to incorporate some 

additional correction to account for the coercive field developed, a factor which 

is particularly important for low values of AB. The dependency of the coercivity 

on B,,, such as the characteristic shown in figure 4.29 can be approximated by the 

equation: 

Ho = H, (I -e 
-kcBm 

) 
4.16 
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For the two material grades considered in this study, viz. CK26 and V300, the 

resulting curve-fit parameters are shown in table 4.6. 

Rotor material 

(CK26) 

Stator material 

(V300) 

H, (A/m) 45.36 49.32 

k,, 2.41 2.61 

Table 4.6. Curve fit parameters for use with equation 4.16. 

The means by which this factor can be integrated into an overaH correction factor for 

hysteresis loss was established by inspection of measured results. The exponential 

curve fits contained in equation 4.16 were found to provide a reasonable estimate of 

minor loop losses, although no physical relationship is directly evident. The resulting 

overaH correction tenn, is given by: 

-k ABI A, 2 X(l-e 2)( + e-kAB 
4.17 

Q. inor A2 

4.5.2.4 Comparison between measured and predicted minor loop losses 

Figure 4.30a, b and c shows the calculated minor loop hysteresis factor Q .. i,,, and the 

correction factor required to provide minor loop losses consistent with the measured 

values for starting flux densities of 1.0,1.25 and 1-5T and with minor loops spanning 

the full range (i. e. O<AB<2B,,, ). Also shown in figure 4.30 is the equivalent value 

derived from the model proposed by Lavers with the correction coefficient of 0.8 

employed. It is apparent from figure 4.30 that the method presented for ealculating 

the minor loop losses, although more reliant on measured material data, provides a 

much higher degree of accuracy, particularly for low values of ABIB., for the limited 

category of loops considered. 

195 



Having established an approximate technique for estimating minor loop hysteresis 

losses, this can be used in conjunction with equation 4.10 to calculate the hysteresis 

loss for a given flux density waveform, a procedure that involves three distinct 

stages, i. e.: 

1. Determination of local maxima, and minima in the waveforms by 

consideration of zero crossings in the time derivative of the flux density. 

2. Loop identification where: 

a) A major loop is defined between the extremes of the flux density 

variation if the excursion is symmetrical about zero. 
b) Subsequent minor loops are defined and specified using the parameters 

AB and B.. 

I Application of the appropriate minor loop correction factor to each of the 
individual loops, and subsequent loss calculation. 

4.5.3 CLASSICAL EDDY CURRENT LOSS 

The classical eddy current loss represents the power loss component due to the joule 

effect heating of the induced eddy currents within the conducting electrical steel. The 

effect is well documented, with well-proven expressions for the loss in a lamination 

of thickness d, density, m, and resistivity p. The energy loss over an interval of time 

T can be expressed as: 

d21T We - .. - -)2dt 
pv o(dB 

Yk4g 
f 12m TI dt 

4.18 

In the particular case of sinusoidal induction with a peak flux density B.. and 

frequencyf, the integral can be evaluated analytically and hence the eddy current 

loss, W,,, is given by: 

B, 2f(; Vkg. 
cycle) 

4.19 

6pin, 
',, 
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However, for complex waveforms such as those encountered in SR machines, there 

is often no direct analytical solution to the integral term of equation 4.18 over one 

cycle. In such cases, there are two alternative approaches that have been considered 

in this investigation. In the case where a relatively simplified representation of the 

waveforms is used, e. g. the analytical dynamic simulation discussed in section 3.7, 

one cycle can be divided into a series of intervals over which analytical integration 

can be performed, and hence the overall loss derived by a summation over these 

intervals. Alternatively for complex waveforms, such as those derived from finite 

element analysis, a piecewise numerical integration can be performed over one 

complete cycle. 

4.5.4 EXCESS LOSS - BERTOTTI MODEL 

Bertotti [4.21] derived a general theory of iron losses in which particular attention 

was given to the physical nature of the dynamic losses, in particular the distinction 

between classical eddy current and excess loss. An external magnetising field applied 

to a ferromagnetic material will attempt to produce a homogenous magnetisation 

pattern throughout the cross section of the material. Indeed in a homogenous material 

with no magnetic texture this will be realised and the resulting dynamic loss 

component will consist purely of classical eddy current loss. This situation is not 

realised in all practical materials due to the presence of a magnetic domain structure, 

separated by so-called Bloch walls (groups of which were termed "magnetic 

objects") interacting with themselves and other similar walls and hence "internal 

correlation! ' fields are observed [4.21]. These corTelation fields, coupled with 

coercive and eddy current effects, act as a damping field, opposing any changes in 

the external magnetising field, and hence provide the excess loss mechanisn-L The 

resulting expression (4.20), summarised by Fiorillo [4.22], is derived from a 

statistical analysis of the number of magnetic objects active at any given 

magnetisation frequency and the change in the active number of magnetic objects 
brought about by the magnitude of the external field. 
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1 JGVOS 1T11.5 A (yk, W.. =--f 
LB 

kg) fin, ýpT 
11 dt 

4.20 

Where S is the cross section of the lamination, G is a dimensionless damping 

coefficient and VO is a characteristic field, detemining the ability of the applied field 

to increase the number of active magnetic objects with increasing frequency. 

For the case of sinusoidal induction, evaluation of the elliptical integral of the second 

kind yields: 

7V7S- 
wl 

8.76 [G-V 
DI. 5 Ff ljm 

- (; ý/kg. 
cycle mv ý_p 

4.21 

The excess loss constant -ýFGVOS is a material constant that can be deternýned 

experimentally. The total iron loss, comprising both static hysteresis and dynamic 

components, can be readily measured for bipolar induction waveforms using a fairly 

standard system similar to that described by Atallah [4.13] and which is shown 

schematically in figure 4.31. In such systems the waveform. generator outputs a 

symmetrical bipolar sinusoidal demand waveform. Analogue feedback from the 

search coil is used to ensure that the material is exposed to a truly sinusoidal flux 

density variation. The magnitude of the induced emf in the search coil under these 

conditions is related to the magnitude of the flux density using Faraday's law, i. e. 

e=N, A 
dB 
dt 

4.22 

Where N, is the number of turns on the secondary coil and A is the cross sectional 

area of the sample. 
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Under sinusoidal conditions the value B. is calculated using 

Bm e. dt 
Ng 0 

4.23 

The total iron loss due to the alternating flux in a sample of material can be obtained 

by integrating the area of the dynamic B-H loop: 

p=1 
dB. dt 4.24 

Tf dt T 

V4iich in terms of primary, measured data can be written: 

1N4.25 
P=- ývp feI. dt 

T INsA T 

Where Np is the number of turns on the primary coil and 1 is the mean path length of 

the magnetic circuit calculated at the mean diameter of the toroid. 

Since the total iron loss is the sum of three components of which hysteresis and eddy 

current are known as functions of the induction waveforrij, it is possible to determine 

the excess loss component simply by numerical subtraction. Equation 4.26 [4.23] 

shows the decomposed iron loss equation for sinusoidal induction: 

8.8 [G-. 'VO--S 1.51f- 
4.26 

wr "a, =wh + Bm2 fo + -Bm 0 
(; Vkg. 

cycle 6m, p mv vp0 

The material constant GVS is the only unknown in equation 4.26 and can be 

determined as discussed. However the accurate determination of this material 

constant is very sensitive to the accuracy to which the total power loss and the 
hysteresis component can be measured. It is advantageous therefore to repeat the iron 
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loss measurements over a range of frequencies and curve-fit the results. Figures 4.32 

and 4.33 show the decomposition of total iron loss for the rotor and stator materials 

respectively over a range of frequencies, after the excess loss constant has been 

determined. 

The excess loss constants derived using this experimental technique for the rotor and 

stator materials are 2.89 X10-4N 
2 SL2 

and 2.00x 10-4 N2 Sg2 

ectively. 
M3T3M3T3 

'--P 

4.5.5 CALCULATION OF DYNAMIC COMPONENT OF IRON LOSS 
BASED ON THE ANALYTICAL METHOD 

The dynamic components of iron loss, i. e. classical eddy current and excess loss, can 

be calculated for any arbitrary waveform by the numerical evaluation of the integrals 

in equations 4.18 and 4.20 respectively. Alternatively, if the waveforms can be 

represented by an appropriate analytical expression, direct analytical integration is 

more convenient. 

Ile analytical method used to predict the flux density in particular regions of an SR 

machine yields waveforms show many similarities with the trapezoidal waveforms of 

the type often observed in brushless dc permanent magnet machines. Amar [4.23] 

and Fiorillo [4.22] both use a loss decomposition method to estimate the core losses 

in ferromagnetic materials with arbitrary induction waveforms. In both cases, the 

simplest case presented was that of a rectangular voltage waveform of period T and 

duty cycle rlT The voltage and the resulting trapezoidal flux density waveform are 

shown in figure 4.34. The time derivative of the flux density is given by: 

2B 
m or zero. 

T 
4.27 
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The resulting integral tenns in the classical eddy current loss equation, are hence 

given by: 

fT dB 
2. 

dt 2B.. 
2 

dt 
0( dt 

(T--r) 
2 

(T+r) 
2 ý2 TT2 

0+ 2B,, 
+c dt dt 

T4-r 
Odt + 

T (T- r( 2X 
Y2 

(LBm 2dt 4.28 

2j 
r (2Bm 2dt 

0 Ir 

Hence the classical eddy current component of loss is given by: 

i t2 2 2B,, 
21 

t2 2 [LB, 2,, 
Wcl dt 

pf 12m 
t, 

TI r pf 12m, T 'r 0 

4.29 

A similar approach to the excess loss component yields: 

W=1 GVOS 2 
r2 1*5 B 1,5 

fin,, pTI 

4.30 

This approach of Amar [4-23] and Fiorillo [4.22] can be extended to cater for the 

more complex waveforms that are likely to be encountered in various regions of an 
SR machine, such as those shown previously in figure 4.4. These localised 

waveforms can be decomposed into a sequence of simple ramps and constant flux 

density intervals, with due account of the phase shift between individual phases, thus 

enabling the direct analytical evaluation of the dynamic components of iron losses 

under particular operating conditions. 
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For a three phase machine, with each phase excited by a voltage pulse of duration r 

(with appropriate phase shift between phases), the time derivative 1ý of the flux 

density in a given region, i, of the machine can be either zero or one of six discrete 

values, viz.: 

0.9 
+ 

20' 
or ± 

30m 

Gir Gir Gir 

4.31 

The maximum flux induced per phase, 0. is calculated using the techniques 

discussed in section 3.7. For the benchmark operating condition of 5kW (generating) 

at 100,000rpm and a DC link voltage of 96V, 0,,, is 330xlO-6Wb. The effective 

cross sectional area, Gi, for various regions in the prototype machine are listed in 

table 4.4. 

In the analytical simulation, it is assumed that a voltage pulse of duration r is 

applied, followed by a reverse pulse of the same duration in order to de-flux. the 

machine (although in practice the reverse pulse can be slightly shorter due to the 

effect of phase resistance). Each pulse pattern is separated between phases by TE16 

radians (mech. ) inducing a flux density waveform. with an arbitrary dc offset 

repeatable at intervals no greater than 7T/2. 

Having established that the various flux density waveforms in an SR machine can be 

considered as comprising the 6 distinct flux density variations defined in equation 
4.31, the resulting values of the integrals for both classical eddy current and excess 

loss components can be evaluated for the 8 regions of the stator and rotor shown 

previously in figures 4.2 and 4.3. Since the flux density waveforms are influenced by 

the winding connection, one set of integrals can be derived for each of the winding 

configurations defined in figure. 4.1. The resulting evaluated integrals are shown for 

these cases in Appendix 4.2. These expressions can be employed in order to estimate 

rapidly the iron loss associated with any given operating condition predicted using 

analytical simulation. Figure 4.35 shows a mesh of the dynarnic components of iron 
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loss calculated using the switching angles established in chapter 3 over the entire 

range of speed and power for winding connection A, where it is apparent that the 

dynamic component of iron loss increases with rotor speed and output power. 

4.6 Machine Level Predictions of Iron Loss 

The overall machine iron loss at the benchmark operating condition, i. e. 5kW at 

100,000rpm, was calculated using three alternative sets of flux density waveforms 

for different degrees of spatial discretisation, viz.: 

1. Analytical Waveform for the regions defined in figures 4.2 and 4.3 (20 

regions) 
2. Finite element generated waveforms for the regions defined in figures 4.8 and 

4.9 (204 regions) 

I Finite element generated waveforms for each individual finite element 

(12,472 elements) 

For the first case the dynamic components of the iron loss were calculated using the 

analytical expressions presented in Appendix 4.2, while for cases 2 and 3, discrete 

numerical integration of the flux density waveforms was employed. In the numerical 

cases, the time derivative was calculated based on the data points at angular intervals 

of 10, with linear interpolation. The hysteresis loss, including minor loop losses, for 

each waveform was calculated using the method discussed in section 4.5.2. 

A useful means of presenting the resulting localised loss distribution within the rotor 

and stator is to employ shaded contour plots of iron loss density. Figures 4.36,4.37 

and 4.38 show the iron loss density contours in the rotor and stator calculated using 

the three methods discussed for each of the two winding connection types 

respectively. Tables 4.7 and 4.8 summarise the total iron losses for each of the 

winding connection types for the machine operating at the benchmark condition. The 
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relative contributions of classical eddy current, excess and hysteresis losses to these 

overall loss figures are contained in Appendix 4.3. 

Iron Loss (W) 

Methodl. Method 2 Method 3 

Stator Radial 71 176 200 

Circumferential 265 380 395 

Rotor Radial 163 250 320 

Circumferential 52 156 211 

TOTAL 551 962 1126 

Table 4.7 Iron loss components for winding connection type A. 

Iron Loss (W) 
Methodl Method 2 Method 3 

Stator Radial 71 183 203 

Circumferential 387 509 520 

Rotor Radial 184 250 304 

Circumferential 55 155 198 

TOTAL 697 1097 1225 

Table 4.8 Iron loss components for winding connection type B. 

'For each of the three methods, the total predicted iron loss is lower for winding 

connection A than connection B, for example with winding connection A the total 
iron loss is only 92% of that for winding connection B (at the highest level of 
dieretisation). This behaviour is consistent with that suggested by Hyashi [4.1]. This 

reduced loss is due mainly to the superposition (and resultant cancellation) of the 

time-varying component of the flux density in stator back-iron region 6 (as defined in 

figure 4.2), which in turn reduces the dynamic loss component, and with only very 

small flux traversals the hysteresis loss is also -somewhat lower, as shown by loss 
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contours of figure 4.36 which shows the total loss contours calculated using the 

analytical method. Indeed, the iron loss predicted in this region using the analytical 

technique is only 7W for winding connection A, as opposed to 129W for winding 

connection B. Winding connection A also gives rise to a slightly lower rotor iron 

loss, 215W as compared to 239W, the major difference being the eddy current 

component. The relative merits of adopting winding connection A are apparent when 

considering figure 4.39 which shows the dynamic components of iron loss calculated 

using the equations listed in Appendix 4.2 plotted against the switch dwell angle up 

to a maximum value of 45* for each of the winding connections. 

Figure 4.37 shows the corresponding loss density contours due to the radial and 

circumferential flux density variations derived from the finite element method in 

which the stator and rotor are divided into a total of 204 regions. Also shown is the 

sum of the radial and circumferential loss densities, which is equal to the total loss 

density. The benefits in terms of the increased spatial discretisation are apparent 

particularly near the trailing edges of the rotor and stator teetI-L The high flux 

densities observed in these areas yield much higher iron loss densities, a factor 

which, as discussed, cannot be acconunodated using the analytical approach. 

Consequently the total iron loss predicted using this method is 74% and 57% higher 

than that predicted using the analytical approach for winding connections A and B 

respectively. 

At the highest level of spatial discretisation, the iron loss was calculated from the 

flux density waveforms derived for each individual element in the mesk Figure 4.38 

shows the resulting loss contours for this method. As demonstrated by the total loss 

values in tables 4.7 and 4.8 above, this method predicts 17% and 12% greater loss 

than the less refined finite element method, and 104% and 76% higher than the 

analytical case for winding connection types A and B respectively. 

These findings are consistent in tenus of the major limitation of the analytical 

technique wl-iich was identified in section 4.4.2 viz. its inability to account for any 
flux concentration during partial overlap, and hence its tendency to severely 
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underestimate iron loss under such conditions. The discrepancy between the three 

methods will inevitably be a function of the particular operating conditions. For 

example, conditions in which the rise and fall of current occur predominantly during 

a period of limited mechanical overlap of the rotor and stator teeth are likely to 

exacerbate the relative errors between the methods. 

The improved spatial discretisation obtained by a summation of the loss in each 

individual finite element will therefore provide a better estimate of iron loss than 

either an approach which averages the flux densities within a group of finite elements 

(method 2), or more particularly the analytical approach. 

The large magnitude of the total iron loss, which is equivalent to an average value of 

1.09kW/kg and 1.18kW/kg (for winding connections A and B respectively), coupled 

to the localised nature of very high loss densities (where specific losses as high as 

13.24kW/kg and 13.26kW/kg are predicted for each of the winding connections) may 

have an influence on the validity of the assumptions made in the model, most 

particularly with respect to localised temperatures. The primary effect of the elevated 

temperature is likely to be the significant increase in resistivity of the lamination 

material, e. g. the resistivity of low alloy content steels typically increases by some 

1% per T [4.24], with a consequent reduction in dynamic components of iron loss. 

This behaviour gives rise to some degree of self-regulation of iron loss, and hence 

the calculation of iron loss based on a room temperature resistivity will be an 

overestimate. One further consequence of large temperature increases which is also 

neglected is the associated thermal expansion, which could in principle result in a 

reduction in the airgap and hence an increase in the flux density for a given level of 

excitation, and hence an increased loss. Further, in extreme cases, the temperature in 

the tooth tips could in principle approach or even exceed the Curie temperature and 

the operational characteristic of the machine could be significantly degraded. 

An additional consideration that is neglected is the dependency of the iron los5 on 

mechanical stress. Tensile stress in a material generally tends to decrease the specific 

iron losses, principally by increasing the permeability of the material and reducing 
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the hysteresis and excess loss components [4.25] [4.26]. By means of example, 

figures 4.40a and 4.40b show published variations of the measured loss components 

(hysteresis and excess loss respectively) in a sample of non-oriented Silicon Steel as 

a function of the stress level in the material [4.26]. Conversely compressive stress 

tends to increase the specific iron loss, indeed the effect of compressive stress on the 

two components of iron loss viz. hysteresis and excess, is much more pronounced 

than the effect of tensile stress. The presence of significant levels of tensile stress in 

the rotor at high speeds will therefore tend to produce an overestimate of the overall 

loss generated in the rotor, although it should be borne in mind that eddy current 

losses (which are largely unaffected by stress) are the don-finant loss component at 

high speeds. 

Hence, the accurate computation of iron loss in a machine operating at very high 

temperatures and at high speeds requires detailed knowledge of the temperature and 

stress distribution within the machine and the influence of temperature on the 

magnetic and electrical properties of the lamination material, and the stress 

dependency of iron loss. Although these limitations are recognised, the inclusion of 

such effects greatly increases the complexity of the iron loss prediction method and 

the material data required, and was deemed to be beyond the scope of this thesis. 

4.7 Dynamic Loss Measurement and Separation 

Having proposed a loss model (albeit one that includes a number of established 

elements), it is important to undertake appropriate experimental measurements. This 

is necessary in. order to validate the loss model for the somewhat unusual excitation 

conditions encountered in SR machines. To this end, a series of loss measurements 

were performed on a sample of material. However, the limitations of the power 

amplifier and the data acquisition system available dictated that these loss 

measurements could not be performed at the high frequency of the benchmark 

machine operating condition. Whereas measurements at lower frequencies with the 
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same waveform shape are useful in providing some validation of the losses that are 
likely to be encountered at 100,000 rpm it should be noted that the relative 

contributions of the three loss components will be markedly different in both cases. 
Further, the very high frequencies encountered at 100,000 rpm may give rise to a 

significant degree of eddy current re-distribution within the 0.5mm thick rotor 

laminations, which is neither accounted for in the model nor is likely to be present in 

5OHz measurements. 

4.7.1 MATERIAL SAMPLES 

Several arrangements of the sample material may be used for the measurement of 
iron losses. The Epstein frame consists of four lengths of material arranged in a 

rectangular magnetic circuit with double overlapping comers. This configuration 

gives a high degree of repeatability, and requires minimal sample preparation. As a 

consequence it often finds favour in quality control environments for relative loss 

measurements. However the correlation in absolute terms with losses observed in 

practical devices is limited, since the inhomogeneity within the magnetic circuit 

caused by the comers provides a source of considerable error [4.27]. Hence a toroidal 

arrangement was preferred in this case, as it overcomes many of the errors associated 

with the Epstein frame, although it nevertheless is still based on using an 

approximate path length for the magnetic circuit. The sample preparation is 

considerably more onerous, since each material must be individually wound with 

toroidal excitation and search coils. The samples used have a 100mm outer diameter 

and 90.45 inner diameter, giving a diameter ratio of 1.1: 1 consistent with 

recommended measuring techniques [4.28]. The rotor material sample comprises 

eight laminations each 0.5mm thick and the stator material 12 laminations each 

0.35mm thick, giving rise to approximately equal cross sectional areas. Two separate 

search coils were wound around the core, with 50 and 100 turns, to allow a range of 

measuring frequencies and flux densities to be measured. Similarly two excitation 

coils were wound around the samples (one with 600 and one with 200 turns) to allow 

a large range of fields to be applied to the sample, while making best use to the 

amplifier VA rating. 
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4.7.2 MEASURING THE LOSSES INDUCED BY ARBITRARY 

WAVEFORMS 

The measurement system described in section 4.5.4 employs analogue feedback of 

the emf induced in the search coil as a basis for the error correction. Such a system 

cannot accommodate flux density waveforms with a DC offset, such as those 

encountered in many regions of an SR machine. Further, analogue feedback systems 
have a limited range of stability, and frequent adjustment of the gain is often 

necessary if a large range of frequencies, flux densities and waveforins are to be 

catered for. This would be a very significant drawback for a system that may be 

required to measure several hundreds of arbitrary wavefornis with minimal user 
input. As a consequence, a custom test-rig was designed using Labview 4.1 and a 12- 

bit 1MHz data acquisition system. [4.29]. The system shares most of the features of 

the system described by Atallah [4.1] and which was shown previously in figure 

4.31. However, instead of an analogue feedback loop driving a voltage controlled 

power amplifier, the new system uses a software-based iterative open-loop approach 

to generate a demand waveform for a current controlled power amplifier. The search 

coil emf and current waveform (measured using a Hall effect transducer) are 

captured by a data acquisition system Figure 4.41 shows a schematic of the system 

architecture. 

The software creates an array of values to output via a digital to analogue converter 

on the data acquisition system. The numerical data for the flux density waveform. is 

obtained from the waveforms derived previously in tl-ds chapter. However given the 

flexibility of both the graphical programming language, Labview, and the data 

acquisition system, several additional features are incorporated within the waveform: 

Soft-Start. 'Me starting value of the flux density waveform is not constrained to 
be zero for a truly arbitrary waveform and hence the flux density variation 
includes a function wWch in essence provides a 'soft-start, that gives an initial 

flux density and emf of zero. If this function were not included, the large emf 
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generated on initiation of the waveform would give rise to erroneous initial 

conditions in the integrator that would be carried tbrough the entire calculation of 

flux density. 'Me 'soft-start' function is given by: 

B(t) = 
[sin (co,. 

Pt 
%2)+ 11 

2 
4.32 

2. Finite number of repetitions of waveform. In order to eliminate any transient 

element that may be present in the system and to allow an average loss to be 

taken over a number of cycles the waveform. can be repeated any number of 

times. While these factors indicate that a large number of cycles is appropriate, 

the requirement is balanced with the need to minimise the effect of integrator 

drift on the loss calculations and to reduce the heating of the sample. Typically 

10-20 repetitions of the waveforin were used and for the purpose of loss 

calculations the first and last 2-5 repetitions are neglected. 

3. Smoothing of end conditions. Again, since the final value of the flux density 

waveform is not zero it is advantageous to ramp the flux density smoothly down 

to zero in a similar manner to that described by equation 4.32 

4. Demagnefisation In order to ensure constant initial conditions for the following 

iteration the sample is fully demagnetised at the end of each output. 

Demagnetisation is achieved by applying an open-loop exponentially decaying 

sinusoidal current waveforin calculated using equation 4.33, to the sample at the 

end of each flux density waveform. The system allows the independent 

specification of each of the variables of equation 4.33 in order to ensure the loss 

measurements are independent of these factors. 

:1 -a le S'n 
(a)deniagt 4.33 

An example of a complete waveform comprising all these elements is shown in 

figure 4.42. 
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'Me algorithm is based on the sequential output of a series of open-loop current 

waveforms, each of which is modified in response to two error signals based on the 

measured emf and the flux density respectively. Although the flux density may be 

used as a sole reference for the error calculation and subsequent current waveform 

modification, the inclusion of the emf improves the rate of convergence and adds 

stability to the process. Consequently, the stability of the process is less sensitive to 

the selection of the gain and hence a wide operating range can be achieved with the 

same specified gain, and indeed the gain can be readily adapted to ensure stability. 
The convergence of the process is accelerated by an initial estimate of the current 

waveform, which is derived from a nominal non-linear B-H characteristic and hence 

a high degree of non-linearity is introduced at the first iteration. 

'Me point by point correction of the wavefonn for iteration k is given by 

Le,, 
f - 

! 
Tm. (k-I 

+ 
LB,, 

- B. 
4.34 

,f Ai, K, f 
K? 

Where for this application the gains are initially set as 

KI = 100 and K2= 10 4.35 

As convergence is approached, the gain is reduced to prevent oscillation about the 

required conditions. When 

4.36 

Etra = i-1 
N<0.05 

the gains are autornatically adjusted to 

K, = 100 and K2 = 100 4.37 
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Since the correction method is implemented point by point, the data acquisition 

system must output the request current waveform while recording the emf and 

current waveform. simultaneously. In order to achieve the simultaneous analogue 

output/input the software creates an internal trigger when commencing the output 

phase, upon which the input is timed to commence and hence, given the limiting time 

the data acquisition hardware requires to serve the channels, the input can be timed to 

coincide. System parameter identification [4.30] indicates that the limiting 

acquisition rate, where the error associated with non-coincident output/input is a 

minimum, lies around 45,000 data points per second, above which a consistent 

erroneous step is observed in the magnitude of the iron loss measured. Hence for 

finite element generated waveforms discretised at l' (mech) intervals the maximum 

operating frequency is 125Hz. In the current application the maximum measurement 
frequency is limited to 10OHz to ensure the error is not encountered. 

The open loop output and subsequent correction of the current wavefonn continues 

until suitable convergence is achieved In order to fully automate the process an 

automatic convergence detection routine was incorporated into the software. It is 

possible to determine convergence based upon error of the enif or flux density 

waveform. or indeed by monitoring the rate of change of the iron loss calculated 

between iterations. For the current application the convergence detection is based on 

the change of Eef described above in equation 4.36. Monitoring the rate of change in 

Ee. f rather than the absolute value allows a wider range of flux density waveforms to 

be used. Indeed absolute convergence of a specified wavefon-n may be limited by the 

equipment performance, most notably the slew rate and maximum current capability 

of the power amplifier and the digital quantisation of the emf waveform. In order to 

prevent premature detection of convergence the emf error is averaged over ten 

iterations and subsequently a moving horizon type integration filter is applied as 

described by: 

MHkg, = E,,, 
nf- + 0.95MH klo-I 4.38 
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Where MH is the value of the moving horizon and the subscript kio indicates the 

average value over ten iterations. The threshold for convergence is again user- 

specified, and in the current application a value of 

MHkjo :50.0075 4.39 

is used to indicate satisfactory convergence. Figure 4.43 shows a simplified 

schematic of the measurement and waveform correction algorithn-L 

In order to allow a fully automated series of iron loss measurements to be undertaken 
for different waveforms under various operating conditions, the temperature of the 

sample is monitored. This prevents the sample from overheating to dangerous levels 

and further allows measurement to be restricted to a window of temperature to assist 

with repeatability (the system pausing where necessary to allow the sample to cool). 

4.8 Experimental Validation of Loss Model 

The iron loss was measured for the flux density waveforms shown previously in 

figure 4.4 which were derivedusing the analytical method described in section 4.4.1. 

The fundamental frequency of the waveforms used for the loss measurement was 

limited to 50Hz because of the amplifier limitations discussed in section 4.7. The loss 

densities measured for each of the regions defiiied in figures 4.2 and 4.3 are 

summarised in table 4.9, together with the corresponding values calculated using the 

loss model described in section 4.5. 
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Iron loss density (W/kg) 

Winding connection A Winding connection B 

Region Measured Calculated Measured Calculated 

1 1.22 1.33 1.23 1.33 

2 1.22 1.33 1.23 1.33 

3 1.20 1.33 1.23 1.33 

4 2.11 2.09 2.07 2.09 

5 2.07 2.09 2.07 2.09 

6 0.05 0.13 2.07 2.09 

7 1.51 1.84 2.11 2.20 

8 1.84 2.29 2.42 2.45 

Table 4.9 Comparison between the measured and calculated loss densities for the 

analytical waveforms of figures 4.4. 

It is apparent from table 4.9 that there is good agreement between the measured and 

predicted losses, although the measured results are, in general, slightly lower than 

those calculated, behaviour that can mainly be attributed to two factors, i. e.: 

1. Simplifications in the loss model, in particular those made regarding the 

nature of the hysteresis loss. While the minor loss is acconnnodated using a 

simple model the truly arbitrary conditions observed even witWn the 

simplified waveforms are not rigorously accounted for in the model. TWs 

source of error is particularly prevalent at such low measurement frequencies 

since the relative contribution of the hysteresis is much larger than that at 

high speed. Indeed using the calculated results shown in appendix 4.3 for the 

case of 100,000 rpm, the relative contribution of hysteresis loss (albeit with 

the simplified model) to the overall loss is only 7.4% and 5.1 % for winding 

connections A and B respectively. 

2. The convergence of the loss measurement is based on a rate of change of 

error with respect to the reference and measured emf which is determined on 
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a global basis using the mis error over the measured portion of the waveform. 
Indeed convergence detected on an absolute error basis is inappropriate for 

the arbitrary waveform and is specific to the exact dimensions and winding 
design of a given toroid and the dynamic performance of the power amplifier. 
It is apparent therefore that when using this method convergence may be 

detected under conditions where the enif error is relatively large, and the 

induced flux density waveform does not truly reflect the reference waveforn-L 
Indeed a likely scenario is the requirement for a winding current with 
harmonic content above that that can be supplied by the power amplifier. 
Under these circumstances the peak rate of change of flux density may not be 

achieved and the measured loss is likely to be slightly lower than predicted 
due to the reduced dynamic loss components. 

In order to validate the loss model for waveforms with a much higher harmonic 

content than those derived in the analytical model, the measurements were repeated 
(again at a fundamental frequency of 5OHz) for the flux density waveforms derived 

using the finite element method with winding connection A. In order to linlit the 

number of individual measurements required the waveforms determined using the 

region method described in section 4.4.2 are used. The appropriate synnnetry of the 

rotor and stator regions was exploited and out of the 204 machine regions a total of 
84 independent rotor and stator regions were identified and hence a total of 168 

wavefornis (both radial and circumferential) were measured using the systern. The 

equivalent loss derived by a summation of the measured losses in the various regions 

are summarised in table 4.10, together with values calculated using the loss model (in 

both cases at 501-1z). 
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I Iron Loss (W) I 

Stator 

Rotor 

Measured Calculated Error (%) 

Radial 0.50 0.58 14.1 

Circumferential 1.04 1.13 8.3 

Radial 0.50 0.58 13.4 

Circumferential 0.29 0.36 18.6 

TOTAL 2.33 2.65 12.1 

Table 4.10 Measured and calculated iron loss in the rotor and stator of the machine 

using the flux density waveforms discussed in section 4.4.2 for winding connection 
A. 

Some insight into the loss distribution, and the ability of the loss model to 

accommodate the very different conditions encountered with the machine, can be 

obtained using the graphical representations of total loss in figures 4.44a and 4.44b 

respectively. Using these figures and the results listed in table 4.10, it is apparent that 

good agreement is demonstrated between the measured results and those determined 

using the iron loss model presented in this chapter. The overall discrepancy between 

the measured and predicted loss at 5OHz is 12.1%, with the measured results being 

lower than those predicted. 

It should be noted that whereas the ability of the loss model to predict the loss 

associated with a given waveform has been demonstrated, this forms only one 

element of the strategy for predicting the loss in the machine (the other being the 

calculation of the current waveform and the resultant flux density waveforms). A 

machine level validation which embraces all three stages, is described in detail in 

section 7.3.4. 
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Figure 4. Ia. Winding schematic of the 6/4 machine with three adjacent poles having 

the same polarity (type A). 
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Figure 4. Ib Winding schematic of the 6/4 machine with adjacent poles of opposite 

polarity (type B). 
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Figure 4.2. Discrete regions of the stator for the prupose of determInIng the flux 

density waveforms. 

Figure 4.3. Discrete regions of the rotor for the prupose of determining the flux 

density waveforms. 
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Figure 4.4f Circumferential flux density in stator region 6 
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Figure 4.4g. Radial flux density in rotor region 7 
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Figure 4.4h. Circumferential flux density in rotor region 8 

Figure 4.4 Flux waveforms for various regions of the SR machine defined in figures 

4.2 and 4.3 obtained using a simplified solution to the governing equation and a 
lumped magnetic circuit, employing two differing winding connection strategies 

defined in figure 4.1. 
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Figure 4.5 Finite element mesh consisting of 233 74 first order triangular elements. 
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Figure 4.6.3-phase current density waveform quantised and applied to the windings 

of the finite element model at P intervals. 
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Figure 4.7. Flux contour plots for the machine at 10' intervals, highlighting the flux 

paths for the two winding connection types. 
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computation of flux waveforms derived from the solution of a finite element model. 
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Figure 4.9. Discretisation of the rotor into regions of various sizes for the 

computation of flux waveforms derived from the solution of a finite element model. 
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connection type A. 
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Figure 4.11 Flux waveforms for the various regions defined in figures 4.8 and 4.9 

with the analytical equivalent superimposed, employing two differing winding 

connection types defined in figure 4.1. 
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Figure 4.19c. Hysteresis loop for 2T traversal about 0.5T (V300). 
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Figure 4.2 1. Induction curve including a single minor loop of magnitude AB = B,,, 
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Figure 4.26. Schematic hysteresis loop showing the areas AI and A2. 

242 



2 

E0 

-2 ,I 
-0.5 0 0.5 1 1.5 

H (A/m) 
X 104 
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Figure 4.29 Coercive field strength of the rotor material as a function of magnetising 

flux density with applied curve fit. 
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Figure 4.3 1. Schematic of iron loss measurement system for symmetrical bipolar 

waveforms. [4.13] 
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Figure 4.32. Loss components measured in the rotor material for (IT peak) 
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Figure 4.33. Loss components measured in the stator material for (IT peak) 
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Figure 4.35 Dynamic components of iron loss as a function of rotor speed and output 

power for the switching angles established in chapter 3. 
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Figure 4.36. Iron loss contours calculated from analytically derived flux density 

waveforms. 
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Figure 4.37b. Iron loss contours for winding connection B- Region method. 
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Figure 4.38a. Iron loss contours for vAnding connection A- Element method 
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Figure 4.38b. Iron loss contours for winding connection B- Element method. 
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Figure 4.41. Schematic representation of the pseudo-closed loop iron loss test system 
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Figure 4.42. Sample flux density waveform consisting of a soft start, 10 repetitions 

of a 1.5T peak sinusold, a soft landing and an open loop demagnetisation profile. 
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Figure 4.43. Flow diagram representation of iron loss convergence routine. 
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Figure 4.44b. Calculated total loss contours at 50Hz. 
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APPENDIX 4.1. Hysteresis loss measurement equipment. 

Ibe static hysteresis loops of the rotor and stator materials are measured using a 

system comprising a 12 bit, 1MHz data acquisition system mounted in a personal 

computer and software controlled using Labview v4.1. Modulating the demand 

signal of a Techron 7570 power amplifier in constant current mode controls the 

magnitude of the magnetic field applied to the sample. The flux induced in the 

sample is measured via a search winding wound close to the material core using a 
Magnetech integrating flux meter where the analogue output voltage proportional to 

the flux linkage is simultaneously recorded by the data acquisition system The tests 

are conducted at frequencies typically in the range 0.25-lHz in order to maintain the 

dynamic loss component at a minimum, while reducing the potential drift of the 

integrating flux meter. 

'Me system allows the magnitude of the magnetic field to be accurately controlled up 

to a limit defined by the size of the material sample, the number of turns on the 

excitation winding and the maximum current capability of the power amplifier. In 

this case the maximum magnetic field achieved was 20kA/m and the maximum flux 

density induced in each sample was of the order of 1.9T. 
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APPENDIX 4.2a. Evaluation of the integrals in the excess loss equation for winding 

connection type A. 
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APPENDIX 4.2b. Evaluation of the integrals in the eddy current loss equation for 

winding connection type A. 
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APPENDIX 4.2c. Evaluation of the integrals in the excess loss equation for winding 

connection type B. 
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APPENDIX 4.2d. Evaluation of the integrals in the eddy current loss equation for 

winding connection type B. 
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APPENDIX 4.3. Components of iron loss for the 5kW, 100,000rpm operating 

condition. 

Iron Loss (W) 

Method 1 Method 2 Method 3 

Stator Radial 57 156 172 

Circumferential 227 331 340 

Rotor Radial 127 225 276 

Circumferential 39 140 180 

TOTAL 450 852 968 

Table A4.1 a Eddy current loss components for winding connection type A. 

Iron Loss (W) 

Methodl Method 2 Method 3 

Stator Radial 57 155 174 

Circumferential 331 439 450 

Rotor Radial 161 224 275 

Circumferential 50 138 179 

TOTAL 599 956 1078 

Table A4. lb Eddy current loss components for winding connection type B. 
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Iron Loss (W) 
Method 1 Method 2 Method 3 

Stator Radial 7 15 15 

Circumferential 23 32 32 

Rotor Radial 12 16 18 

Circumferential 3 11 13 

TOTAL 45 74 78 

Table A4.2a Excess loss components for winding connection type A. 

Iron Loss (W) 
Methodl Method 2 Method 3 

Stator Radial 7 15 16 

Circumferential 33 41 42 

Rotor Radial 15 16 is 

Circumferential 4 11 13 

TOTAL 59 83 89 

Table A4.2b Excess loss components for winding connection type B. 
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Iron Loss (W) 
Methodl Method 2 Method 3 

Stator Radial 7 6 13 

Circumferential 15 18 23 

Rotor Radial 24 9 26 

Circumferential 10 5 18 

TOTAL 56 38 80 

Table A4.3a Hysteresis loss components for winding connection type A. 

Iron Loss (W) 
Methodl Method 2 Method 3 

Stator Radial, 7 13 13 

Circumferential 22 28 29 

Rotor Radial 9 10 11 

Circumferential 2 5 6 

TOTAL 40 56 59 

Table A4.3b Hysteresis loss components for winding connection type B 
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CHAPTER5 

AERODYNAMIC LOSS 

5.1 Introduction 

In many high-speed applications such as that considered in this thesis, aerodynamic 

or so-called 'windage' losses can become a key design consideration, since they can 

constitute a significant proportion of the overall drive system loss, in turn 

constraining the attainable performance. Hence, the design of an SR machine with a 

maximum speed of 100,000rpm should embrace aerodynamic considerations, since 

refinements which result in incremental benefits in terms of electromagnetic 

performance, may in turn have a dramatic and adverse effect on the aerodynainic 

losses. As a consequence, the ability to predict the magnitude of aerodynamic losses 

reliably is an important factor in the design of high-speed SR machines. To this end, 

a detailed computational fluid dynamics (CID) study was undertaken in order to 

quantify the likely magnitude of the losses and to establish the influence of various 

design parameters. A cross-section through a typical three-phase 6/4 SR machine is 

shown in figure 5.1. There are three principal features of SR machines that influence 

the magnitude of the aerodynamic losses: 

The airgap height - the radial clearance between the rotor and stator teeth when 

they are in the aligned position, denoted as 1g in figure 5.1. In common with other 

singly excited electrical machines, SR machines are normally designed with 

relatively small airgaps. Indeed, as was discussed in section 3.1, the airgap 

selected for the prototype EATG was selected as 0.2mm 

The geometry of the rotor - The regions between individual rotor teeth are 

recessed from the outer diameter in order to achieve the degree of rotor saliency 

necessary for torque production. As discussed in chapter 2, there are a number of 

conflicting mechanical and electromagnetic considerations in the selection of an 
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appropriate fillet radius ratio. However, the depth of the recess between adjacent 

teeth will affect the air flow and hence the magnitude of the aerodynamic losses 

to some extent, as demonstrated later in section 5.3.1. All the rotors considered in 

this chapter have a pole arc of 35*. 

The geometry of the stator bore - The stator lamination of an SR machine is by 

necessity a salient slotted structure. In the simplest case, the windings and 

associated insulationfirnpregnation materials in the machine do not fully fill the 

slot, resulting in a stepped airgap profile, which in turn can significantly 
influence the flow in the airgap region. However, a cylindrical stator bore can be 

achieved by incorporating specially designed non-magnetic slot closures, or by 

encapsulating the entire stator. Encapsulation using a high thermal conductivity 
resin is an attractive option for high-perfon-nance machines as it considerably 
enhances the heat transfer capability from the stator windings and provides 
additional protection to the windings. Although such an encapsulation technique 

was not eventually employed in the prototype, the aerodynamic study presented 
in this chapter was restricted to SR machines having cylindrical stator bores. This 

simplification was adopted to considerably reduce the computational and post- 

processing requirements of the analysis, in that a single solution with an imposed 

velocity can be employed, rather than a transient time stepped approach. 

5.2 Simulation Techniques 

'I'lle general nature of the flow in a constant height airgap due to a rotating cylindrical 

rotor approximates closely to Couette type flow, provided that the airgap height (with 

respect to the overall rotor diameter) is relatively small. Analytical techniques for the 

prediction of turbulent Couette flow around a rotating cylinder, which generally 

employ a number of empirically determined constants, have been developed and 

comprehensively validated [5.1,5.2]. Such techniques have been applied to the 

prediction of the flow around cylindrical rotors [5.2]. However, because of the 

complex geometry of SR machines, the published research relating to losses 
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associated with rotating smooth cylinders is of limited utility, and recourse to 

numerical modelling techniques is likely to be required in order to achieve a useful 

level of accuracy for design purposes. As a consequence, aerodynamic losses were 

calculated numerically using a CFD package (FLUENT Version 4.4). 

A critical consideration in calculating the flow, is to establish whether the flow is 

laminar or turbulent. In the case of cylindrical rotors the flow is characterised by the 
Reynolds number: 

Re = 
u-g 

v 
5.1 

Fully developed turbulent flow occurs for conditions which give rise to a Reynolds 

number greater than 2000 or so. In the case of a cylindrical rotor, this equation 
implies that many of the combinations of rotor diameter, airgap height and rotational 

speed considered in this chapter do not correspond to fully turbulent flow. However, 

it is clearly somewhat difficult to apply this formula directly to the complex 

geometry of an SR rotor. In this case the flow regime alternates between developing 

Couette type flow in the narrow airgap and a radial circulation between the rotor 

teeth, so that significant turbulence levels are likely to survive throughout the flow 

even at lower rotor speeds and small airgaps. As a consequence, for all the SR rotors 

considered the flow was modelled using a standard Reynolds Stress Model approach 

for turbulent flow at all values of rotational speed. 

Alternative techniques available for turbulent flow, such as the standard and re- 

normalisation group k-F, models, have a tendency to calculate spuriously large 

turbulence generation rates around flow impingers and comers (such as the sharp 

comers of the rotor teeth). This excess turbulent energy in turn overestimates the 

turbulent viscosity [5.31. Further, the ability of the Reynolds stress method to 

accommodate two separate orthogonal components of turbulent viscosity lends itself 

to calculating the flow in SR machines, which is characterised by the presence of 
both a circumferential flow and a significant radial centrifugal acceleration. 
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The flow distribution in close proximity to the rotor and stator surfaces was 

represented by using one of two wall functions depending on whether the cell centres 
lie within the laminar sub-layer. If the innermost cell centre lies within the larninar 

sub-layer, the standard Newtonian wall function is employed, whereas if the 

innermost cell centre lies outside the laminar sub-layer, a standard log-law of the 

wall is employed, the appropriate wall function being automatically selected. In all 

cases, zero-slip boundaries are enforced on the rotor surface and stator bore. 

5.3 Simulation Results 

5.3.1 TWO-DIMENSIONAL ANALYSIS 

For a 4-pole SR rotor rotating within a cylindrical stator bore, the initial analysis was 

performed using a series of two-dimensional models, as this provides a means of 

establishing the influence of the various geometrical parameters with minimal 

computational effort. 

Two rotors were modelled initially in order to investigate the influence of the fillet 

radius on the magnitude of the aerodynamic losses. These rotors were selected with 

the two extreme values of fillet radius ratio, viz. 0.025 and 0.3, while both have the 

same outer diameter and airgap of 50mm and 0.2mm respectively. The rotors were 

modelled at rotational speeds up to 7000 rad/s (in 1000 rad/s increments). The 

rotational periodicity of the rotor was exploited to reduce the problem domain to one 

quarter of the machine section. Figures 5.2a and 5.2b show the finite volume mesh 

employed in the analysis for fillet radii of 0.025 and 0.3 respectively. 

The calculated power loss as a function of rotor speed for these two extreme values is 

shown in figure 5.3, which for pomparison, also includes the corresponding loss for a 
(50mm diameter) cylindrical rotor with both laminar and turbulent flow assumptions. 
it is worth noting that the CFD predicted losses in figure 5.3 for the cylindrical rotor 
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are in good agreement with previously published measured results for turbulent flow 

around a cylindrical rotor with a narrow airgap [5.1]. It is evident from figure 5.3 that 

using two-dimensional analysis, the loss predicted is slightly higher for the case of a 

rotor with a smaller fillet. Although the nature of the flow is influenced by the form 

of the inter-polar fillet, as shown in the flow vector diagrams (of the leading rotor 

edge) in figure 5.4a and 5.4, the resulting loss is nevertheless relatively insensitive to 

the fillet radius ratio, e. g. at 7000 rad/s the difference is only some 13% for these two 

extreme cases. Given the considerably greater influence that fillet radius ratio plays 
in determining centrifugal stress levels in high speed rotors, this is likely to be the 

overriding consideration in design, even if it involves some marginal compromise in 

the aerodynamic losses. On this basis, the subsequent CID analysis was restricted to 

consideration of a rotor having a fillet radius ratio of 0.13, which was established in 

chapter 2 as being the preferred ratio in terms of the utilisation of rotor material 
(albeit that the final design was modified somewhat by the practical rotor assembly 

requirements) 

Although the airgap height has been fixed for the prototype EATG, it is useful to 

assess the aerodynamic loss over a wide range of airgaps in order to determine the 

nature of the trade-off between electromagnetic torque and aerodynamic loss. To 

investigate the influence of the airgap and the rotor diameter on the aerodynamic 
losses, 9 models were considered, embracing all inclusive combinations of diameters 

of 25,50 and 75mm and airgaps of 0.1,0.2 and 0.3nun. 

Using the loss figures generated by the two-dimensional CFD models, the variation 
in the calculated power loss per unit length as a function of rotational speed can be 

curve fitted to a reasonable approximation, by the equation: 

P= Aco B (W/M) 5.2 

The calculated values of A and B for the 9 cases considered are listed in table 5.1. 

Over this range of diameters and airgaps, the aerodynarnic losses increase with 

rotational speed with a relatively consistent exponent value of approximately 2.7. It 
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is interesting to compare this value with that for the corresponding cylindrical rotors 

and airgap, in which the losses increase with an approximate exponent of 2.2 for 

turbulent flow conditions. 

Rotor diameter 

Airgap height 

(nun) 

25 mm 50 nun 75mm 

0.1 A=2.38Xlo-8 A=2.4 jX10-7 A =1.08X10-6 

B =2.60 B =2.61 B =2.59 

0.2 A =1.69X 
10-8 A=1.68xlO-7 A=1.07X 10-6 

B =2.62 B =2.62 B =2.58 

0.3 A =1.44X 10-8 A =3.70xlo-8 A =2.57xl 0-7 

B =2.63 B =2.79 B=2.73 

Table 5.1. Calculated values of A and B for an SR rotor with a fillet radius ratio of 

0.13 

Figures 5.5a and 5.5b show the variation of stator wall shear stress over one pole of 

the rotor for the case of a 50mm diameter rotor with an airgap of 0.2mm and a fillet 

radius ratio of 0.13 rotating at 1000 rad/s and 7000 rad/s respectively. Also shown 

for comparison in figures 5.5a and 5.5b are the corresponding shear stresses 

calculated by CFD (using RSM) for a cylindrical rotor having the same airgap and 

rotating at the same angular velocity. 

in both cases, there is a large peak in the shear stress distribution on the stator wall in 

the vicinity of the leading edge of the rotor tooth, with a reasonably constant value 

over the trailing two-thirds or so of the narrow airgap region. In the 1000 rad/s case, 
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there is reasonable correlation in ten-ns of magnitude between the near constant shear 

stress region within the airgap and the value calculated for a cylindrical rotor. 
However, for the 7000 rad/s case, the shear stress throughout the narrow airgap 

region is considerably higher than that calculated for a cylindrical rotor, which is 

evidence of the increasingly significant contribution of a pressure differential 

between the leading and trailing faces of the tooth as the rotor speed increases. As a 

consequence, although the shear stress generated within the narrow airgap region is 

the dominant contributor to the overall windage loss in SR machines, a simple 

geometrical scaling approach applied to published calculation techniques for 

cylindrical rotors with small airgaps is inappropriate, particularly at high speed. 

5.3.2 THREE-DIMENSIONAL ANALYSIS 

Two-dimensional analysis is useful in establishing the relative influence of the 

various geometrical parameters on the aerodynamic losses, and in providing an 

estimate of the loss per unit axial length. Three-dimensional analysis may however 

be necessary in many cases, particularly for rotors of relatively short aspect ratios for 

which both end-effects and axial pumping become significant. In order to investigate 

the relative merits of two and three-dimensional analyses, a series of three- 

dimensional CID calculations were performed. Given the considerably greater 

computational overhead involved in three-dimensional analysis, the investigation 

was restricted to 5 rotors, each having the same rotor cross section (50min diameter 

with a fillet radius ratio of 0.13 and a radial airgap of 0.2mm) and axial lengths of 10, 

25,50,75 and 1 00mm. 

In each case an axial clearance of 20mm was included between the end of the rotor 

and the stationary wall representing the motor end-cap, in order to allow for the 

space required in practical machines to accommodate the overhanging stator end 

windings. In all cases, the stator was assumed to have a cylindrical inner bore. Tbe 
finite volume mesh in each case was constructed using first-order hexahedral 

elements, the number of cells in each mesh being approximately 4000. 
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The predicted power loss for the various rotor axial lengths are surnmarised in table 

5.2, together with equivalent values derived from scaling the power loss calculated 
from a two-dimensional model. The results in table 5.2 indicate a very large 

difference between the calculation techniques for the case of the shortest rotor, while 

even for the longest rotor, the error is still significant, being approximately 43% of 

the three-dimensional calculated value. The source of the significant errors between 

2D and 3D analysis become apparent when the losses are segregated into three 

separate loss components on different regions of the stator wall, viz. the stator bore 

region directlY above the active length of the rotor, the overhanging stator bore 

region above the shaft, and the end wall of the stator. 

Rotor Axial 

Length 

Power loss 

derived by 

Power loss 

predicted by 3D 

Components of 3D calculated stator losses (W) 

(MM) scaling 2D 

analysis (W) 
analysis(W) Stator bore 

region directly 

above rotor 

Overhanging 

stator bore 

region 

Stator end 

wall 

10 21 109 25 64 20 

25 52 154 63 70 22 

50 104 215 124 70 22 

75 155 276 188 67 22 

100 207 335 246 67 22 

Table 5.2. Comparison of two dimensional and three-dimensional predictions of 

aerodynamic losses for the reference SR machine at 7000 rad/s (Rotor O. D 50mm, 

0.2mm airgap and fillet radius ratio of 0.13) 

As shown in table 5.2, the component of the three-dimensional calculated losses in 

the region directly above the active section of the rotor are in adequate agreement 

with those calculated by scaling the two-dimensional losses by the rotor axial length. 

'For each of the axial lengths, the difference between the calculated losses in this 
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region is approximately 20%. The contribution to losses from the overhanging stator 
bore region and the end wall remain relatively constant with increasing rotor axial 
lengtl-L This relatively constant 'end-effect' is well illustrated by figs. 5.6a and 5.6b, 

which show the calculated velocity vectors (relative to the rotating reference frame) 

inu-nediately above the stator surface for both the 25mm and 100mm long rotors at 
5000 rad/s. As is evident from figs. 5.6a and 5.6b, the velocity vectors in both cases 

only depart from a purely circumferential flow over the end 5 nun or so of the rotor 

axial lengtlL This is further evidenced by the stator wall shear stress contours shown 
in figures 5.7a and 5.7b. 

5.4 Experimental Validation 

In order to assess the accuracy of the various calculation techniques employed, 

aerodynamic losses were measured on a representative SR rotor using the test rig 

shown in figures 5.8 and 5.9. An SR rotor with an overall diameter of 50mn-4 fillet 

radius ratio of 0.13, shaft diameter 1 1mm and axial length 60mm, was manufactured 
from solid mild steel with a ground surface finish. The rotor was attached to a turbine 

assembly from a commercial automotive turbocharger (Holset WHIE). 'Me 

assembled rotor structure was fitted with 50,000rpm rated high-speed precision 

ceramic ball bearings, and dynamically balanced to a grade of G2.5 as specified in 

IS01940 [5.4]. 

The rotor assembly was mounted inside a smooth cylindrical Aluminium. tube with a 

nominal radial clearance of 0.2mm and an axial overhang at either end of 15mn-i 

The turbine was driven from a regulated compressed air supply of sufficient flow 

capability to allow rotor speeds up to 50,000rpm to be achieved. The reaction torque 

on the Aluminium. tube was measured using a swinging frame arrangement with a 
torque arm acting on a 25g load cell (Pioden UFl) located at a distance of 90mm 

from the axis of rotation. 

Fig. 5.10 shows the measured power loss (stator bore reaction torque x rotor speed) 

as a function of rotor speed up to 50,000rpm Also shown, for comparison is the 
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corresponding loss on the stator bore predicted by three-dimensional CFD, i. e. the 

component associated with the end-cap (which is typically some 10% or so) is 

subtracted from the total predicted loss. Reasonable correlation was achieved 

between the measured and predicted losses, with a maximum error of some 22% at 

the upper end of the speed range. The magnitude of the error between measured and 

predicted losses is consistent with published results for a rotating cylinder using a 

similar arrangement of apparatus and a similar CID analysis [5.2]. It interesting to 

note that the measured losses in this case increase with angular velocity with an 

exponent of 2.97, as compared to values of 2.62 and 2.81 calculated using two and 

three-dimensional CFD analysis respectively. 
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Figure 5.2a Finite volume mesh for rotor with fillet radius ratio of 0.025 with 1960 

first order cells (rotor diameter 50mm, airgap height 0.2mm) 
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Figure 5.2b Finite volume mesh for rotor with fillet radius ratio of 0.3 with 1988 first 

order cells (rotor diameter 50mm, airgap height 0.2mm) 
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Figure 5.3 Calculated aerodynamic losses per unit axial length for SR rotors with 

fillet radius ratios of 0.025 and 0.3 and for a cylindrical rotor (airgap height 0.2mm; 

rotor diameter 50mm) 
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Figure 5.4a Two-dimensional velocity vectors relative to rotating reference frame 

(0.2mm airgap, 50mm rotor, fillet radius ratio of 0.025 at 7000 rad s-1). 
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Figure 5.4a Two-dimensional velocity vectors relative to rotating reference frame 

(0.2mm airgap, 50mm rotor, fillet radius ratio of 0.3 at 7000 rad s-1). 
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Figure 5.5a. Stator wall shear stress over one quarter of the machine circumference 

for the SR and cylindrical rotor at 1000 rad s-1. (0.2mm airgap; fillet radius ratio 
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Figure 5.5b. Stator wall shear stress over one quarter of the machine circumference 
for the SR and cylindrical rotor at 7000 rad s-1. (0.2mm airgap, fillet radius ratio 

0.13,50mm diameter. ) 
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Figure 5.6a. Plan view of velocity vectors immediately adjacent to the stator wall in 

the three-dimensional model (axial length of 25mm). 
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Figure 5.6b. Plan view of velocity vectors immediately adjacent to the stator wall in 

the three-dimensional model (axial length of 100mm). 
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Figure 5.7a. Stator wall circumferential shear stress for the entire stator and end-caps 
(axial length 25mm) 
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CHAPTER 6 

BEARING SELECTION AND ROTORDYNAMIC 

ANALYSIS 

6.1 Introduction 

The high specific powers and efficiencies exhibited by turbo -inacliinery are achieved 

mainly through operation at very high shaft speeds. Indeed, in order to achieve high 

efficiencies in radial flow turbines and centrifugal compressors, shaft speeds of the 

order of 150000 rpm are commonplace. The design of these systems must embrace 

the many mechanical issues related to such high-speed operation, viz. the high 

inertial loads, shaft whirl, vibration and rotordynamic instability. In order to provide 

a basis on which the relative merits of various shaft/bearing arrangements can be 

assessed and to ensure the reliable operation of the prototype macl-iine it is necessary 

to undertake appropriate dynamic analysis of the proposed system. 

The main objective of dynarnic analysis is the prediction of critical speeds (where the 

synchronous response of the rotor/bearing system to shaft unbalance is a maximurn). 

This provides a framework to make modifications to the rotor and/or bearing systen-4 

so as to either move the critical speeds out of the operating speed range or to limit the 

response to acceptable levels, lience allowing the shaft to progress through the 

various critical speeds without damage. The full potential of a dynamic analysis can 

often not be realised prior to manufacture since the prediction of the amplitudes of 

the synchronous vibration due to rotor imbalance is difficult to achieve due to 

uncertainties arising from the exact distribution of mass imbalance along the rotor 

axial length, the rotor/bearing system damping and the typical highly non-linear 

stiffness. Further uncertainty arises when the dynamic parameters of the system are 

considered, since while static mass imbalance in all cases produces wWrling which is 

synchronous with the shaft speed, not all shaft whirling is synchronous with shaft 
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speed, and indeed the most destructive rotordynamic problems are associated with 

non-synchronous whirl [6.11. The analysis must therefore be extended to consider the 

threshold speeds and causes of rotordynamic instability associated with non- 

synchronous whirl, but for the purposes of this study the discussion of such 

instabilities is restricted to a qualitative analysis of the systen-L 

6.1.1 JEFFCOTT ANALYSIS 

A useful starting point in terms of analysing many rotor/bearing systems is to analyse 

the so-called Jeffcott rotor, which comprises a large single cylindrical disk mounted 

on a compliant shaft [6.21. The Jeffcott analysis is useful in terms of highlighting 

some of the design issues associated with synchronous whirl, and in its simplest form 

this analysis provides three suggested methods of minimising the amplitudes of 

synchronous whirl i. e., 

9 The rotor must be balanced to the highest tolerance to minimise the disturbing 

force. 

Critical speeds can be avoided by tailoring the material properties and/or rotor 

dimensions or by moving the operational speed range of the rotor. 

Damping should be added to the rotor/bearing system to linlit the amplitude of 

vibration. 

in some cases (examples cited include helicopter turbo-shaft engines and 

synchronous motors [6.1]) the geometry of the rotor is such that the system can be 

analysed to an adequate level using the simplified Jeffcott analysis. However, 

complications arise in many practical shaft systems because gyroscopic effects 

modify the critical speeds and the mass is often distributed along the shaft (i. e. more 

than one disk requiring multi-plane balancing). The applicability of the Jeffcott 

analysis is sometimes restricted further by the speed-dependent properties of 
hydrodynamic journal bearings, shaft seals and aerodynamic effects. In the case of a 
four-pole SR rotor, a further consideration is the non-uniform mass distribution and 
hence directional nature of the stiffness, which results from the salient rotor 
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geometry. As a consequence, for the particular rotor/bearing system in the proposed 

prototype, the Jeffcott analysis provides little detailed insight into the likely system 

performance, although the general guidelines listed above remain pertinent. In the 

absence of a reliable analytical technique for this complex geometry, a structural 

finite element based approach was employed in order to determine the critical speeds 

to an appropriate accuracy, 

6.2 Bearing Configuration 

The geometry of the three components which are mounted on the rotor shaft, viz. the 

lamination stack, compressor and turbine, have been established with due account of 

the constraints of the centrifugal stress and/or electromagnetic performance 

requirements. However, there are numerous options in terms of the rotor 

configuration, Le. the relative position of these three components and the bearings on 

the shaft, which in turn have consequences in terms of rotordynamic performance. 
Whereas rotordynamic performance is clearly a major factor in determining the 

preferred configuration, other factors such as mechanical complexity, aerodynamic 

efficiency and thermal limits of the bearings may also need to be taken into account. 

For a conventional turbocharger consisting of a turbine and compressor mounted on 

a single shaft, there are four possible bearing configurations as shown in figure 6.1 

[6.31, each of which has been employed at some time in commercial devices. 

The outboard design of figure 6. la provides minimum radial loading on the bearings 

due to moments arising from mass unbalance and hence the bearings provide the 

maximum radial support for the shaft. The location allows easy maintenance of the 

bearings and adequate space for a self contained lubrication system and an oil or 

water-cooling jacket at the turbine end to maintain the bearing temperature within 

acceptable limits. The design is relatively complicated in terms of the number of 
individual components required on the stator, while the large bearing separation 

makes the system prone to misaligninent due to the accumulation of tolerances. The 

design of figure 6.1b, which is referred to as ail inboard bearing design, is very 
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widely used in autornotive turbochargers. It has the simplest construction and is the 

most compact of all the designs due to the low stator component count and the use of 

a single piece bearing housing which contains the two bearings and oil channels. The 

design is ideally suited to the radial flow turbine and centrifugal compressor 

combination since the bearings do not lie in the flow path and lience the induction 

housing is simple and efficient in construction. However this layout is more complex 

in terms of the rotor dynamics, in particular the gyroscopic effects associated with 

the relatively short distance between the bearings and the cantilevered arrangement 

of the compressor and turbine wheels. 

A combination of these inboard and outboard designs is shown in figure 6. Ic. In this 

case, one of the bearings, usually the compressor bearing, is mounted in the outboard 

sense and the turbine bearing is mounted inboard to alleviate the need to cool the 

bearing. This design however is relatively complex and costly (as it requires two 

bearing housings). The effects of the overhung, cantilevered turbine (which generally 
has a significantly higher mass than the compressor) remains a potential problen-L 

The fourth design adopted by De Laval Co. [6.3] is shown in figure 6.1d, and has 

outboard bearings mounted at one end only (again the cooler compressor end). The 

bearing housing has very simple construction and provides good access for 

maintenance. The shaft in this case is generally operated above the first critical speed 

in bending in order to minimise the cantilevered rotor vibrations during normal 

running, and hence the stiffness and, perhaps more importantly, the damping of the 

rotor/bearing system must be carefully determined and not allowed to vary during the 

natural degradation of the system during the life of the turbocharger. 

For the purpose of designing the turbogenerator prototype it was decided to adopt the 

inboard bearing design shown in figure 6.2 with the SR rotor mounted between the 

two bearings, as this is mechanically the simplest design, and is well suited to the 

incorporation of an SR rotor. This configuration is the same as that employed in the 

range of turbochargers manufactured by Holset, therefore allowing the greatest 

commonality with commercially available turbine and compressor components. 
However, as discussed above, this rotor/bearing configuration is not ideal in a 
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rotordynainic sense due to the cantilevered masses. 'I'llis is compounded by the 

longer (and hence lower stiffness) shaft, additional mass and the relatively low 

contribution to shaft stiffness made by the laminated SR rotor structure. In addition, 
*the stress considerations discussed in chapter 2 resulted in a shaft diameter that is 

slightly smaller that in a standard turbocharger, further compromising the stiffness. 

The dhaitical speed of the rotor a),, is given by: 

co,,, = 21r 
6.1 

where k., m.. are the modal stiffness and modal mass of the MIh mode respectively. 

Hence, the reduced stiffness of the turbogenerator rotor and its increased modal mass 

will inevitably reduce the first critical speed in bending as compared to the 

corresponding standard turbocharger rotor. Given that commercial turbochargers 

already operate at speeds that are a significant proportion of the first critical speed, it 

is likely that the proposed turbogenerator rotor will operate close to, or even above, 

the first critical speed. As a consequence, due care must be taken with regard to rotor 

and bearing design and manufacturing of the prototype. 

One further challenge to the design is that the shaft is assembled from many 
individual components. It is desirable under such circumstances to ensure that the 

number of interfaces is kept to a minimum and the fits between the components are 

as precise and tight as possible. However, it is inevitable given the number of 

components in the prototype that manufacturing tolerances and the corresponding fits 

between components will impact to a marked degree on the absolute accuracy with 

which the rotor can be modelled using a-priori data, which essentially comprises 

nominal dimensions and material properties. 
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6.3 'Free-Free' Modal Analysis 

As discussed above, the inclusion of an SR rotor with the consequent increase in 

rotating mass and shaft length will inevitably impact on the rotor-dynainic behaviour. 

It is important, in terms of selecting bearings and/or the final mechanical design of 

the rotor, to establish quantitatively the extent to which the rotor dynamic 

performance is likely to be modified. Ultimately, the overall response is governed by 

the entire rotor and bearing systen-L However, a useful indication of the relative 

performance of a conventional turbocharger shaft assembly and one which includes 

an SR rotor can be obtained from the so-called 'free-free' modal analysis. In this 

analysis, the various modal frequencies of the two shaft assemblies can be deduced 

for the particular case of free vibration with no external constraints, i. e. in the 

absence of any bearings. 

The leading dimensions of the turbogenerator rotor and the equivalent conventional 

turbocharger rotor are shown in figure 6.3. For the purposes of this modal analysis, it 

is desirable to represent the turbine and compressor as lumped masses (each 

exhibiting the same mass and polar and transverse inertia as the actual components) 

rather than very detailed models of the actual turbine and compressor blade 

geometries. This necessarily means that the modal vibrations of the blades 

themselves are neglected. However, these are common factors in both rotor designs 

and their inclusion within the model was deemed to be outside the scope of this 

thesis. The mass, inertia and axial length of the actual components are listed in table 

6.1, where the transverse inertia is defined as that about the mass centre. 
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Compressor Turbine 

Mass, kg. 0.087 0.29 

Polar Inertia, kgmý. 2X 10-5 gX 10-5 

Transverse inertia, kgO. 2X10-5 6.6XIO-5 

Axial lengtN nun 32.5 40 

Table 6.1 Mass and inertia of the turbine and compressor components utilised in the 

prototype design. 

It is evident that since the ratio of the polar moment to the transverse moment is not 

simply 2 as is the case in a plain cylinder, then it is not possible to represent the 

turbine and compressor components with single cylinder equivalents. The turbine 

and compressor are both represented by a series of three cylinders spanning the axial 

length of the respective components, as shown in figure 6.4. The dimensions of the 

three cylinders in each case, 11,12,13, DI, D2 and D3 are detennined using the 

following equations: 

Itot =11 +12 +13 6.2 
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where the location of the mass centre, r,, is defined as the axial distance from the rear 
face of cylinder 1 to the mass centre, and can be determined by taking moments, i. e.: 

Qm, +2M2+2M3)+', (ln, +2ln3)+13M3 6.6 
2(m, + M2 + M3) 

With only four independent equations and six variables, there is no direct solution for 

the three-disk approximation. Therefore, the dimensions of the three cylinders were 

established by an iterative approach (implemented using Matlab), in which a large 

number of combinations were systematically assessed, the final values being derived 

by reference to the relative errors. The resulting three-disk approxirnations for both 

the compressor and turbine are listed in table 6.2, the worst case error being less than 
5%. 

Compressor Turbine Units 

11 2.167 8.0 mm 
12 4.875 4.0 mm 
13 25.458 28.0 nun 

Di 75.0 56.0 rnm 
D2 32.2 46.0 nim 
D3 31.0 22.0 mm 
Mass 0.087 0.288 kg 

Polar Inertia 22xlO-' 79X10-6 kgmý 

Transverse inertia 2. OXIO-5 6.6xlO-5 kgmý 

rc 12.3 11.4 nim 

Table 6.2 Dimensions of three cylinders and corresponding masses and inertias. 

The finite element model for the conventional turbocharger shaft and the 

turbogenerator shaft are shown in figures 6.5 and 6.6. 'Fhe models consist of 3772 

and 3096 structural elements and 4624 and 3718 nodes respectively. First order 
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elements (of type SOLID 45 [6.4]) were employed, while the linear nature of modal 

analysis necessarily prevents any non-linear modelling of the interference between 

the individual components using for example contact elements. As a consequence, 
the individual components are rigidly fixed together, a reasonable approximation if a 

very close fit between the components is acWeved during manufacture. 

The material properties employed in the finite element analysis are summarised in 

table 6.3. Large values of elastic modulus were assigned to the compressor and 

turbine materials so as to effectively eliminate the flexural modes of these 

components from the analysis. The material properties of the laminated structure, in 

particular the shear modulii, are based upon values established experimentally by 

Long et al. [6-51. 

Sub-structure Elastic modulus, GPa Density, kg/rný_ Shear modulus, GPa 

Laminations 200 7305 Gxy Gy, Gzx 

55 8 8 

Compressor 21000 2800 

Turbine 21000 7800 

Shaft 207 7850 

Nut, shaft sleeve 207 7850 

Table 6.3. Material properties of the components used in the finite element models. 

Typical displacement plots of both rotors, illustrating the first bending mode, are 

shown in figures 6.7 and 6.8. 

In order to validate these results an impulse type test was performed on the prototype 

rotor, using a modal hammer, an accelerometer and a dynamic signal analyser. A 

typical spectral response is shown in figure 6.9. For the case shown, the 

accelerometer was located mid-way between the turbine and the normal position of 

the turbine bearing (po sition A in figure 6.3) and the impulse force was applied at the 
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axial edge of the SR structure nearest the compressor (position H in figure 6.3). A 

summary of the predicted and measured modal frequencies is contained in table 6.4. 

Each mode is categorised by the nature of vibration i. e. whether it results in torsion 

or bending, and the order of the mode shape, e. g. bending mode 2 gives rise to 3 

nodes (i. e. position of zero displacement). 

Conventional rotor Turbo-altemator rotor 

Mode 

Finite element 

predicted 

Finite element 

predicted 

Measured 

Bending mode 1 989 Hz 823 Hz 720 Hz 

Torsional mode 1 1.24 kHz 1.22 kHz Not observed 
Bending mode 2 2.79 kHz 2.28 kHz 1.92 kHz 

Torsional mode 2 Not present 3.15 kHz Not observed 
Bending mode 3 7.33 kHz 4.47 kHz 3.63 kHz 

Table 6.4 Natural frequencies of the rotors obtained using the finite element method 

and an impulse test on the prototype rotor. 

In terms of the system response, the most important modes in Us particular 

application are the first bending mode (likely to be excited by out-of-balance forces) 

and the first torsional mode (likely to be excited by torque ripple generated by the SR 

machine). As is evident, the inclusion of an SR rotor reduces the first bending mode 
frequency by some 17%, while the torsional mode remains essentially the same 
(since the SR rotor is essentially located at a node in this mode). It is interesting to 

note that the inclusion of a third component on the shaft inevitably gives rise to a 

second torsional mode of vibration, although Us is of considerably less concern in 

tWs application than the first mode. 

There is considerable discrepancy between the predicted and measured modal 
frequencies of the turbo-alternator shaft, with an error of the order of 14-23%, the 

measured value in each case being lower. TWs overestimate of the modal frequencies 
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by a model hi which the components are rigidly joined is consistent with the 

presence of some compliance between components in the practical shaft. Further 

contributions to the errors are likely to arise from the lamination material properties 

presented by Long et al. [6.51, wMch were necessarily somewhat specific to the 

geometry and fixing methods employed in their study. No attempt was made to 

arbitrarily modify the material to compensate for the observed error in subsequent 

analysis. 

It is apparent from the finite element predictions that the addition of an SR rotor will 

not have a dramatic influence on bearing design/selection, from the point of view of 
its modal response as compared to a conventional turbocharger. However, as will be 

discussed in section 6.4, it does introduce complexities in terms of achieving 

comparable levels of mass balance. Thus, the requirements of the bearings in terms 

of stiffness and damping are likely to be very similar. Therefore in principle, the 

bearing technologies that are commonly employed in commercial turbochargers may 

well be suitable for the prototype turbo- alternator. 

6.4 Bearing Design 

In terms of selecting the most appropriate bearing technology for the prototype, it is 

useful to consider the principal features of the major bearing types employed in the 
high speed turbomachinery, viz. hydrodynamic journal and rolling element bearings. 

Operation at high speed is clearly reliant on the ability of the bearings to generate the 

necessary forces to give adequate stiffness and damping. In addition, the 

susceptibility of the bearings to de-stabilisation is likely to be crucial in this case, 
because of the additional factors which are likely to arise with the inclusion of an SR 

machine within the turbocharger, i. e. unbalanced magnetic pull, asymmetrical rotor 

stiffness, pulsating torque and increased mass. 
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6.4.1 HYDRODYNAMIC JOURNAL BEARINGS 

Many conventional turbochargers are operated with hydrodynamic journal bearings 

primarily because the high damping and relatively low stiffness is useful hi terms of 

the rotordynamic performance. They are cost effective to manufacture and exhibit 

high reliability and durability if a consistent supply of contaminant-free lubricant is 

maintained [6.1 ]. 

The fluid support in hydrodynamic bearings, unlike hydrostatic bearings, is provided 

solely by the relative motion of the shaft in the bearing journal. The key design 

parameters in terms of realising a given performance are the shaft/journal clearance 

and the fluid viscosity (the supply pressure of the lubricating fluid is not critical and 

generally only needs to be sufficient to supply an adequate flow of lubricant to 

overcome leakage and prevent "touchdowif '). The hydrodynamic support pressure is 

generated as the fluid is drawn into a converging 'wedge' produced by the eccentric 
displacement of the rotor, as shown in figure 6.10. The pressure in the converging 

wedge is higher than that in the diverging wedge, and hence a net force is generated 

wl-dch acts to oppose further rotor displacement. 

The magnitude and direction of the restoring forces generated by a hydrodynamic 

bearing and hence the effective stiffness and damping can be determined using 

established analytical models for predicting the pressure field distribution throughout 

the circumference of the journal. The fluid film pressure distribution can be 

determined using the Reynolds equation in cylindrical co-ordinates [6.1]: 

ap] 
2a (R )2 6.7 

az 

[(I 
+E Cos OY +R 

(I +E Cos 0)'2pý -6, u(- [(w-20)ssinO-VcosOj to az 

I 

z]= c 

where p= p(O, z) is the pressure distribution throughout the film in the 

circumferential and axial directions. The dh-nensionless eccentricity is defined as: 
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E= YC 6.8 

Where e is the eccentricity and c is the total journal clearance. R is the radius of the 

journal, u the viscosity of the lubricating fluid and co and 0 are the angular velocities 

of the rotor and the line of centres (defmed in figure 6.10) respectively. 

If the bearing is a plain cylindrical bearing of the type. shown in figure 6.10 with 

axial length L and a single entry oil supply, the boundary conditions for the solution 

of the Reynolds equation are [6.1]: 

P 
(0' 

2) ý-- P 
(0'ý/2) 

ý-" P 

p (0, z) =p (27r, z) = po 

6.9 

Where p,, andpo are atmospheric pressure and fluid supply pressure or the fluid 

pressure at the region of maximum clearance respectively. In order to analytically 

mtegrate equation 6.7, it is necessary to neglect one of the partial derivative tern-is in 

the left-hand side. In this case the second term was assumed to be zero which 

corresponds to a so-called long bearing where the axial variation in pressure field is 

negligible. This simplified form of the equation is valid for ratios of axial length to 
journal diameter of greater than 0.25 [6.1]. The resulting pressure distribution for a 

steadily loaded long journal bearing is given by [6.1]: 

6R2ßco s(2+ecos0)sin0 6.10 
P(O)=po+ 

c2 i+ T2+e'Xl+ECOSO)' 

The solution to equation 6.10 is shown graphically in figure 6.11 for three different 

values of dimensionless eccentricity viz. F, = 0.25,0.5 and 0.75. The bearing and 
fluid parameters employed in these solutions are listed in table 6.5, and are 
representative of a small automotive turbocharger in which the lubricating fluid is 

SAE30 engine oil at 100'C. 
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Parameter Value Units 

Pa 1xio, Pa 

co 10000 Rad. fl 
R 7.5 mm 
c 50 pm 
L 10 mm 

Y 
I 

1xio-I 
I 

Pa. s 

Table 6.5. Summary of constants used in equation 6.10. 

One noticeable feature of the pressure distribution shown in figure 6.11 is that the 

calculated oil pressure distribution would appear to have a negative value in the 
diverging 'wedge' region. In practice, the oil film cavitates at a gauge pressure of 

around -30kPa [6.1] in this region, and the bearing is referred to as partially filled or 

a n-fdm bearing indicating a filin covering approximately half the journal 

circumference. The resultant force in the radial and tangential directions can be 

calculated by integrating the pressure distribution around the journal periphery. For a 
long 7r-fihn bearing, Us gives rise to [6.1]: 

F= -6, uR 
R )2 
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Ico - 201 2e2 
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7rg 
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E2 
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1 

where the radial direction is defined as radially outwards parallel to the direction of 
the line of centres shown in figure 6.10, and a positive tangential force is in the 

direction of rotation. Having established the magnitude of the bearing forces, the 

resulting stiffness characteristics can now be established at various eccentricities, 

using the standard approach of differentiating the bearing forces with respect to 
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displacement [6.6-6.8]. Figure 6.12 shows the calculated bearing reaction force as a 
function of eccentricity, while figure 6.13 shows the corresponding variation of 

incremental stiffness, i. e. for example: 

aF 
K, 

ar 
6.12 

It is useful in terms of assessing bearing performance, to compare the bearing 

reaction forces with the likely loads irnposed during operation and to establish the 

resulting degree of eccentricity. For this purpose, the out-of-balance forces generated 
by the shaft assembly were calculated on the basis of the ISO 1940 (1986) standard 

[6.9], which specifies maximum acceptable mass eccentricities for a range of balance 

grades. For a rotor operating up to 100,000rpm which is balanced to a quality grade 

of G6.3 (a reasonably high precision grade typical of commercial turbochargers), the 

specified mass-eccentricity is approximately lxlO-'6kg m. per kg of rotor mass. At 

100000 rpm this gives a maximum radial out-of-balance force of approximately 

100N. By inspection of figures 6.12 and 6.13 this would result in an eccentricity of 

some 0.75 (which is within an acceptable operating range) and a bearing stiffness of 
1.16X107. 

It is important to note that although the calculation of forces has been based on two 

orthogonal components, the cross-coupled terms, e. g. a radial displacement 

generatuig a tangential force, cannot be neglected since these forces give rise to the 

main destabilising mechanism observed in plain hydrodynamic journal bearings 

[6.11. 

Having established that the free-free response of the prototype turbogenerator does 

not differ markedly from a conventional turbocharger shaft assembly in terms of the 

most significant vibration modes, i. e. 1" bending modes of 822 and 989 for the 

prototype and standard rotors respectively, it is reasonable to conclude that at least in 

terrns of direct stiffness and damping, that hydrodynamic bearings are likely to be 

suitable for the proposed prototype. However, in addition to standard consideration 
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of a second order mass-spring-damper, in this case it is also necessary to pay 

particular attention to the various de-stabilising mechanisms specific to 

hydrodynamic bearings. 

6.4.1.1 Self-excited instability 

The partially filled oil-way and the resultant nature of the restoring forces in a plain 
hydrodynamic bearing can give rise to so-called "self-excited instability" or "oil- 

whip instability". This instability mechanism is extremely complex, and in some 

respects remains relatively poorly understood from a quantitative point of view 
[6.10]. However, some qualitative explanations can be proposed [6.10] by reference 

to figure 6.14, which shows the various operating modes of a plain journal bearing. 

Figure 6.14a shows the bearing operating under steady-state conditions with the film 

starting at the position of minimum clearance. If a small rotating force, such as that 

generated by shaft unbalance, is applied to the bearing, the locus of the journal centre 

whirls about the equilibrium position, shown in figure 6.14b. The magnitude and 

shape of the whirl orbit can be determined using the stiffness and damping 

coefficients of the bearing. If the disturbing force reaches a magnitude such that the 

whirl orbit (which has a frequency f) causes the position of minimum film thickness 

to rotate around the bearing journal, then the system departs from steady-state 

conditions. The relative speed of the whirl is co - 2F (which is analogous with 

the(w-2(P)tenn in equation 6.11) and defines the relative position of the oil film 

with respect to the eccentricity. If t1iis relative speed is positive the oil film tends to 

lag the vibration as shown in figure 6.14c while if the relative speed is negative the 

film leads (figure 6.14d). Under lagging film conditions, the reaction force of the 

bearing on the rotor (which is opposite in direction and magnitude to the force shown 
in figure 6.14c) exhibits a component in the same direction as the whirl and hence 

tends to increase the whirl, with the onset of self-excited instability. This provides 

one possible qualitative reason for the observed instability of this type of bearing 

undergoing oscillations with exciting forces that have frequencies at or below half 
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the rotational speed [6.10]. For leading film conditions, as shown in figure 6.14d, the 

system remains stable with a tendency to reduce the whirl amplitude. 

'Me tendency towards instability with sub-synchronous whirl implies that a shaft 

supported on plain hydrodynamic bearings must not be operated above twice the first 

critical speed in bending, since the rotor will always tend to vibrate at its own natural 

frequency. Indeed most turbocharger manufacturers that employ hydrodynamic 

bearings, airn to provide a large stability margin by operating at speeds below 60- 

70%1 of the first critical speed, and to avoid the large vibration amplitudes observed 

at the critical speed. This limitation on operating speed in commercial turbochargers 

is usually determined primarily with regard to avoiding self-excited de-stabilisation, 

since this is in general much more destructive than operating near or even above first 

critical speed. 

6.4.1.2 Paramehically excited instability 

Unlike self-excited instability, which is characterised by sub-synchronous whirl 
frequencies, so called 'parametrically excited' whirl can occur at any frequency. 

Examples in published literature of the causes of such parametric excitation are 

asymmetrical shaft stiffness [6.111, pulsating torque [6.12] and internidttent 

rotor/stator contact [6.131 - the first two being particularly relevant to the SR turbo- 

alternator. 

The cross section of a 4-pole SR rotor has a "weak axis" where the stiffness is a 

minimum. Taylor and Schenectady [6.11] reported the behaviour of such shafts, but 

in their particular case, the shaft exhibited two distinct axes 90' apart, whereas they 

are only 45' apart in a 4-pole SR rotor. An asymmetrical shaft will exhibit two 

distinct critical speeds characterised by vibration in the direction of the two 

geometric axes. The rotor exhibits large amplitude vibrations at speeds equal to half 

1 Personal discussion with David Green of Holset Engineering Ltd. 
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the lower critical speed due to the interaction of the varying geometry and uni- 
directional forces such as gravity [6.11]. Observations indicate that the rotor is 

unstable at speeds that lie between the two critical speeds, although unlike some 
"classical" instabilities this may be "driven through" without damage to the rotor 
bearing system [6.1]. In the case of an SR rotor whose principal axes lie 45' apart, a 

similar consideration suggests that large amplitude vibrations will be observed at 

speeds equal to 1/4of the first critical speed in bending. It is noted however that the 

contribution to the stiffness by the lamination stack is not very large, and hence the 

"degree of dyssymmetry" discussed by Taylor and Schenectady [6.11] is small, and 

will be the frequency difference between the modes of vibration about the two axes. 

Instability caused by pulsating torque may present a particular problem for a high- 

speed 6/4 SR machine. Figure 6.15 shows the simulated torque of the machine 

rotating at 100,000 rpm and generating 5kW. 'Me pulsating nature and high 

harmonic content of the torque waveform is clearly apparent. Eshleman and Eubanks 

[6.12] observed a region of instability when a small time-varying torque was 

superimposed on a constant torque. The region of instability (which was defined in 

the frequency domain) increases as the ratio of pulsating to constant torque increases 

(figure 6.16). TI-fis instability was characterised by shaft whirl at the first critical 

speed. Although no analysis was provided to enable the prediction of the region of 

stability, it was noted that the characteristic whirl is sub-synchronous at the first 

critical speed in bending and hence only occurs when the rotor is operated above its 

first critical speed. This again highlights the need to design the rotor with the first 

critical speed to be outside the operating range if possible. 

In addition to the published instability mechanisms for plain rotors, one further factor 

that must be considered in the case of electrical inachities is the presence of so-called 
'unbalanced magnetic pull'. This is a particular concern for SR machines since the 

machine airgap is often very small in order to enhance efficiency and specific power 
(typically 200gm), wl-iich is comparable with the radial clearance of 50-100gm in a 

typical hydrodynamic bearing. Although the radial force exerted on individual teeth 
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is high in SR machines (and is a major factor in generating acoustic noise), the net 

unbalanced radial forces in 6/4 SR machines, tend to be relatively small, since they 

arise from the second order effect of the flux density increasing hi the smaller airgap 
due to the reduced fringing and leakage. 

In order to determine the magnitude of these forces in the prototype machine, a series 

of magneto-static finite element solutions were undertaken. The rotor was modelled 
in the aligned position and the eccentricity varied between 0 and 60gm, in steps of 

10grn for the case of a nominal airgap of 200gm. Two separate analyses were 

undertaken with current densities (assuming fully filled slots) of 5Anlnf2 and 
IOAMnf2 .A typical magnetic field distribution is shown in figure 6.17, for the case 

of an eccentricity of 60gm vertically downwards, and a current density specified of 
IOAnuif 2. The reduced fringing and leakage between the lower poles as compared to 

the upper poles, gives rise to a net imbalance in the radial flux density and lience 

force. The resultant force on the rotor for a given current density and eccentricity was 

calculated, by a Maxwell stress integration around a circular path that passes over the 

surface of the rotor teeth. The radial and tangential components of force are given by 

[6.14]: 

F, =Lf 
B, 2 - B, 2 

0 
6.13 

2, uo 

BB6.14 F =Lf ý nýt dO t 
, Uo 

The vertically upward component of the force per unit area (i. e. in positive y- 
direction) around the rotor circumference is shown in figure 6.18. Clearly the total 
force on the top tooth is lower than on the bottom tooth, giving a net force in the 
direction of motion equivalent to a negative stiffness. The resultant force in the y- 
direction is shown in figure 6.19 for the range of displacements and current densities 

modelled. Over the range of displacements considered, the stiffness with a given 
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current density does not vary with eccentricity. The radial stiffness in the aligned 

position for the current densities modelled are sunu-narised in table 6.6. 

Current Density, Amnf" Stiffness, kNff' 

5 -36.7 
10 -150 

Table 6.6. Stiffness of the rotor subjected to eccentric displacement in the aligned 

position. 

The net stress in the x-direction with the rotor in the aligned position is nominally 

zero. However, as the rotor rotates away from the aligned position, the net 

asymmetry in. the geometry will give rise to a degree of cross-coupling between the 

eccentricity and the net force. 

Although the magnitude of the unbalanced magnetic force is relatively low as 

compared to the force generated by mass imbalance in Wgli-speed machhies, the 

nature of the force may cause instability when operated with a plain hydrodynamic 

bearing. The particular problems that may arise with unbalanced magnetic pull can 
be illustrated by reference to a shaft operating as shown in figure 6.10. With an 

externally applied force acting vertically downward displacing the shaft at some 

angle ýp, the unbalanced magnetic pull exerts a force on the rotor in the direction of 

the eccentricity, where the bearing's ability to provide a restoring force is very low, 

wWch itself will tend to increase the angle V. The direction of eccentric 

displacement will vary according to the relative magnitudes of the various 

synchronous and static components of force. The direction of the unbalanced 

magnetic pull generated by an SR machine is determined by the direction of 

eccentricity, the rotor alignment with respect to the stator and the instantaneous 

excitation applied by the stator windings. This complex behaviour, in wbich the 

unbalanced inagnetic pull essentially rotates at twice the rotor frequency in the 

reverse direction, is likely to cause a destabilising force within the fluid film of the 
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bearing. This behaviour is expected to be particularly problematic at speeds equal to 

half the first critical speed in bending. However, the scope for thorough quantitative 

and experimental research to assess the effects of this destabilising mechanism is 

beyond the scope of this thesis. 

The potential for instability of the system can be reduced by using variations of the 

plain journal bearing such as the so-called lemon bore, dammed groove, offset 
halves, multi-lobed or tilted pad bearings. Each of these designs is aimed at 

providing a small converging section and hence a degree of stiffness in all directions 

regardless of the direction of rotor eccentricity. While these bearings can provide 

greater immunity to self excited instability, the design, manufacture and 

characterisation of such bearings is beyond the scope of the present work. 

Whereas comparisons between the free-free modal spectra of the two rotors 
investigated in section 6.3 would suggest that the adoption of hydrodynamic bearings 

in the prototype turbo-alternator may be feasible, consideration of de-stabilising 

mechanisms has highlighted many potential problems, albeit qualitatively. As such 

the use of plain hydrodynamic bearings in the manufacture of the prototype machine 

without a thorough investigation is likely to be prone to problems. Indeed, even in 

prototype and low volume conventional turbochargers where the turbine and/or 

compressor design is modified from standard combinations, it is common practice to 

avoid hydrodynamic bearings in the first instance. 

6.4.2 ROLLING ELEMENT BEARINGS 

As discussed in section 6.1.1, it is desirable to have a bearing system that exhibits 
high damping and relatively low stiffness, so as to allow the rotor vibrations to be 

effectively accommodated. The oil film in hydrodynamic bearings satisfies these 

criteria very well. By contrast, shafts supported on rolling element bearings with no 

additional damping often exhibit very low damping of around 1.5-2.5% of critical 
damping [6.1]. Further, since most of this damping is generated in the shaft material 
itself under flexural conditions, this introduces a further destabilising mechanism, 
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albeit one that is relatively ii-iinor. Rolling-elernent bearings hi high-speed machinery 

are therefore often mounted on some fon-n of external damper, the most common 

type being a squeeze film damper where a static oil film is present between the outer 

race of the bearing and the housing. This is usually coupled with a spring mechanism 

to provide mechanical support of the bearing. The spring device is generally either a 

cylindrical arrangement of thin ribs, termed a squirrel cage, cantilevered supports or 

curved beam segments around the outer race [6.1]. These mechanisms are often used 

in large turbornachinery where the space required to house the springs is available. In 

the turbo-alternator, the space envelope is highly restricted, a restriction which, when 

coupled with the indeterminate stiffness at elevated temperature, limits the scope to 

use such dampers. A further classification of damper consists of an elastomeric 0- 

ring placed around the outer race of the bearing. This provides low stiffness and 

moderate damping, however the fatigue and thermal degradation properties of these 

materials makes the performance of such dampers unpredictable, particularly at 

elevated temperatures [6.1]. The very high rotor and end-cap temperatures which are 
likely to be encountered (particularly on the turbine end of the shaft) and the highly 

constrained space envelope, again limit the scope for these dampers. As a 

consequence, it was decided to manufacture the prototype machine with rolling 

element bearings mounted directly into the end-caps. 

The bearings used in the prototype are FAG high-speed, sealed, spindle bearings 

with ceramic balls. They were selected oil the basis of their ability to operate at 

rotational speeds of up to 100,000 rpm with a grease lubricant. The bearings are 
lubricated with Kluber Isoflex MBU15 grease specifically developed for ceramic- 

steel hybrid bearings. The leading dimensions of the bearing are defined in figure 

6.20 and listed in table 6.7. 

309 



Bearing HCS71900C. T. P4S. UL 

Outer diameter, D (nun). 22 

Inner diameter, d (nun). 10 

Width, B (nun). 6 

Diameter of rolling elements, Db (MM). 2.381 

Pitch diameter, D. (mni). 16 

Contact angle, cc (degrees). 15 

Number of elements, Z. 13 

Table 6.7 Rolling-element bearing dimensions 

The rolling elements are manufactured from hot isostatically pressed Silicon Nitride 

(Si3N4), and the raceways are manufactured from bearing steel 52100 to withstand 

the high Hertzian stresses associated with high-speed operation. The properties of the 

materials are summarised in table 6.8 [6.15]. 

Ceramic Si3N4 Bearing steel 52100 

Elastic Modulus, GPa. 310 207 

Poisson's Ratio 0.26 0.3 

Density, Kg/d. 3200 7800 

Table 6.8. Material properties of bearing components 

One important limitation of the rolling element bearings in the prototype machine is 

the thermal constraints imposed on the operating conditions by the bearing cage. The 

operating temperature of the bearing at the turbine end is likely to be Wgh in Us 

application, although this can be alleviated to some extent by oil-cooling the end- 

caps. The standard fibre reinforced plienolic cage used in the FAG bigh-speed 

spindle bearing range has a maximum continuous operating temperature of 1500C. 

Although the use of a brass cage (with a maximum operating temperature of around 
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330'C) or indeed a "cageless" bearing will alleviate the thermal constraints, hi this 

case these were not available as an 'off-the-slielf item in. small quantities. In an 

attempt to limit the maximum operating temperature of the turbine bearing, it was 

positioned further from the turbine than would be the case with a conventional 
hydrodynamic bearing in a standard turbocharger design. One notable consequence 

of this modification in the prototype design is that the critical speeds of the 

rotor/bearing system will be further reduced beyond those encountered in an 

equivalent standard turbocharger, due to the increased bending moment of the 

cantilevered turbine. 

6.4.2.1 Rolling element beadng stiffness 

In order to perform a quantitative rotordynamic analysis of the rotor/bearing system 
it is necessary to determine the effective radial stiffness of the rolling element 
bearing. The basis of stiffness calculations for rolling element bearings is the so- 

called 'Hertzian contact theory' [6.16]. In this type of analysis, the deflection of the 

inner and outer races are neglected, and any deflection is assumed to occur as a result 

of deformation of the balls and the race surface. The influence of the bearing 

supports and the external structure (e. g. end-caps etc) are also neglected since any 

contribution is highly dependent on the mechanical fit between components and is 

difficult to establish to any degree of accuracy due to compound manufacturing 

tolerances. It should be bome in mind that the stiffness predicted using Hertzian 

contact theory will inevitably result in a slightly higher value than can be achieved in 

a practical device where the bearing support structure will have a finite compliance. 
However, the associated error in a well designed and rigid end-cap will generally be 

within acceptable firnits [6.16]. 

The total deflection of the shaft centre is the sum of the deflections with respect to 
both the inner and outer races respectively, Le.: 

8. = 8, +8.6.15 
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For point contact, the Hertzian deformation is given by [6.16]: 

J,, = K,, Q 
Y3 6.16 

Where Q is the radial force and 

= 
[( 2K(e) (z p 

ý3 

+ 
(2K(e) (1] p)Y3 

- 1-3 
+ E2 

)]2 6.17 

Mna mna 0 

Kn i. 
82 El 
11 

Iri 

I 

The parameters of equation 6.17 are defined such that: 

Z is the so-called 'curvature suný of the bearing [6.16], wWch for the 

inner and outer races is given by: 

JA 1 4- 1+ 2r 6.18 
Db fi 1-r 

Ep. =1 4- 
1_ 2y 

Db f, 1+y 
i 

Db'S the diameter of the rolling element, f1j,, is the groove radius 

coefficient for the inner and outer raceways defined as: 

r 
Db 

6.19 

r is the radius of curvature of the raceway, and typically has a value between 

0.515 and 0.525 for both raceways. 'Fhe tenn y in equation 6.18 is defined 

as: 
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, =. 
Dbcosa 

Dm 
6.20 

a is the contact angle of the bearing and Dm is the pitch diameter of the 

bearing. 

The values K(e) andMa for the contact with the inner and outer raceway 

are tabulated by Changsen [6.16] and detemined using the curvature 

function F(p) for the given raceways, given by: 

1 2y 6.21 
1 

F(pi) fl 1-y- 

4- 1 
+ 

2y 
f, 1-r 

1 2r 

F(p, ) 
f, 1+y 

4- 1 2y 
f, I+r 

The corresponding values of these parameters for the bearings used in the prototype 

machine are listed in table 6.9. 

Inner Outer 

f 0.515 0.515 

y 0.1437 0.1437 

1 
'p, rany, 1.006 0.759 

F(p) 0.951 0.935 

K(e) 3.74 3.59 

Ma 4.15 3.71 

Table 6.9 Dimensional constants and curvature functions. 
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For this bearing, the calculated value of Kn is 2.83X10-7. The total bearing 

deflection due to contact stresses on both the outer and inner raceways can now be 

calculated. The resulting force-displacement characteristic calculated using equation 
6.16 is shown in figure 6.21, together with the variation of the stiffness (defined as 

L' 
and not 

dF,. 

r dr 

In terms of employing an equivalent bearing stiffness in a finite element modal 

analysis of a rotor and bearing system, it is necessary to establish a single value of 

stiffness to approximate the non-linear variation of stiffness shown in figure 6.2 1. As 

discussed in section 6.4.1, the likely out-of-balance forces are of the order of 100N. 

Using this representative load, which gives rise to a deflection of 6pm, a reasonable 

estimate of operating stiffness is 1.64xlO7N/m which compares to an approximate 

stiffness of 1.16X W Win for an equivalently sized hydrodynamic bearing. 

6.5 Critical Speed Analysis 

Having established that rolling element bearings will be used in the prototype, and 
having derived a representative equivalent stiffness, the critical speeds of the entire 

rotor and bearing assembly can be calculated (assuming perfectly rigid end-caps). 
Critical speeds (which are essentially analogous to natural frequencies) are those 

speeds at which the rotor vibrations are synchronous with the speed, and hence the 

magnitudes of vibration are at a maximurn. One important limitation hi the use of 

modal analysis in the prediction of rotor critical speeds is the assumption that the 

rotor whirl is indeed synchronous with the shaft rotation. The presence of unstable 

non-synchronous rotor whirl cannot be conclusively determined with this type of 

analysis. 

It has been demonstrated in the preceding discussion that the stiffness of the rolling 
element bearing is a function of the radial deflection, wWch is itself dependent on the 
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mass-eccentricity and rotational speed of the rotor. 'Mis dependency of the critical 

speeds on the rotor speed can fii principle be plotted using a Campbell diagram [6.1 ]. 

However the reliable prediction of this behaviour would require very extensive finite 

element characterisation. to cater for range of stiffness values encountered at each 

speed, which themselves would be functions of the exact distribution of the mass 

imbalance in the prototype rotor. 

As a consequence, the speed dependency of the natural frequencies was neglected in 

this study, thus enabling a simple modal analysis to be used to establish the 

rotor/bearing system critical speeds. However, whereas an estimate of the rolling 

element bearing stiffness has been derived in section 6.4.2.1, a sensitivity study was 

undertaken to establish the influence of bearing stiffness on the critical speeds. 

In the finite element model of the rotor/bearing system the same mesh was 

employed to represent the rotor as was the case in the 'free-free' analysis of section 
6.3, while the bearings were represented using two orthogonally mounted, radial 

spring elements (of type COMBIN14 [6.4]). It should be noted that this simplified 

representation of the bearings in effect introduces a degree of torsional stiffness that 

is not present in the real bearing system (these being essentially free to rotate). Hence 

the predicted torsional mode frequencies with this model are not representative of 

those that would be encountered in a practical systen-L As a consequence, the 

torsional mode frequencies previously calculated using the 'free-free' analysis are 

considered to be more reasonable estimates of the likely behaviour. 

107 A modal analysis was initially performed using a spring stiffness of 1.64X N/m 

(which corresponds to the approximate stiffness for a 10ON load and a 6gm 

displacement). Further solutions were then undertaken using other stiffness values in 

logarithmic steps between 105 and 1012 N/rn. A further final solution was undertaken 

using the maximum allowable spring stiffness of 1()44 N/m, in order to represent an 

essentially rigid system 
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The findings of the finite element analysis are summarised in figure 6.22. The natural 
frequencies of the various modes are shown for a range of spring stiffness, while the 

form of the solid body and bending mode shapes are illustrated graphically by means 

of the radial displacement of the central nodes along the axial length of the rotor. The 

solid body modes generally correspond to conical wWrl orbits of the shaft in the 

compliant bearing structure, while the bending modes correspond to high degrees of 

flexure of the shaft, and as such are generally regarded as the more destructive of the 

two vibration modes. As was the case with the 'free-free' analysis, the various 
bending modes are grouped with respect to their order. As is evident from figure 

6.22, the categorisation of solid body modes, particularly at high stiffness, 

necessarily involves some degree of ambiguity, since there is considerable flexure in 

these modes, e. g. the mode that has been categorised as solid body mode 2 with a 

stiffness of IX109. 

Figure 6.23 shows the variation in the natural frequencies of the two solid body 

modes and the first four bending modes as a function of bearing stiffness over the 

range lxlO'to lxlO". As would be expected, the frequency of the solid body 

modes increases with increasing bearing stiffness. However as the bearing stiffness 
increases to values of the order of 109 N/m a degree of flexure is observed in the 

shaft as the bearing stiffness approaches that of the shaft, and the frequency of 
vibration increases at a diminishing rate as the spring stiffness is increased. 

In tenns of bending modes, at low bearing stiffness, i. e. below 106 Nlm or so, the 

bearings provide insufficient additional stiffness to significantly modify the 

behaviour from that observed in the 'free-free' case. As the bearing stiffness is 

increased further (to values of around 107) the contribution of bearing stiffness to the 

overall system stiffness becomes comparable to that of the rotor stiffness and hence 

the frequencies of the modal vibration tend to increase. Ultimately for bearing 

stiffness greater than 1010-1011 or so, any incremental increase in bearing stiffness 
has little effect on the frequency or form of the mode shape since the modal vibration 
is such that a node appears at the location of each bearing. A comparison between the 
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predicted modes with a stiffness of 1044 Nlm (maximurn allowable by ANSYS for 

this model) and 1012 N/m (the highest value shown in figure 6.23) confirmed that a 

value of 1012 N/m provides a very good representation of an infinitely stiff system 

V- 107, For the particular calculated rolling element bearing stiffness of 1.64x the 

frequencies of the various vibration modes, and the corresponding critical rotor 

speeds are summarised hi table 6.10. 

Frequency (Hz) Critical speed (rpm) 

Solid body 304 18,200 

Solid body 908 54,500 

Bending mode 1 1428 85,700 

Bending mode 2 2581 155,000 

Bending mode 3 4670 280,000 

Bending mode 4 13318 799,000 

Table 6.10 Natural frequencies of the rotor obtained using the finite element method 

incorporating bearings of stiffness 1.64X 107. 

It is apparent from table 6.10 that for the prototype machine many of the critical 

speeds lie within the proposed operating range of the turbogenerator. %ile the solid 

body modes occur at relatively low frequencies viz. 18,200 and 54,500 rpm 

respectively, the nature of this type of vibration is generally less destructive than the 

bending modes and can be 'driven through' with no severe consequences. The first 

critical speed in bending occurs at 85,700 rpm and is characterised by large vibration 

amplitudes and internal rotor stress. Wbile examples can be found in literature of 

rotor/beariDg systems that are operated above the first critical speed in bending [6.1 
& 6.3] it is generally desirable to avoid tWs critical speed. It should be noted that this 

value of 85,700 rpm was derived on the basis of an approximate bearing stiffness 
figure and the finite element model of the rotor assembly. As has been demonstrated 
by the 'free-free' analysis, the actual prototype rotor has lower measured first natural 
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frequency in bending than that predicted by finite element analysis, with a 

consequent reduction in the first critical speed in bending from the 85,700 rpm value 
in table 6.10. 

With this in mind, the scope to achieve significant increases in the first critical speed 
in bending by refinement of the mechanical design of the rotor was investigated. A 

useful starting point is to model a conventional turbocharger unit, shown previously 
in figure 6.6, with the same rolling-element bearings. 'Ms will provide an upper 
limit on the shift in first critical speed that can be achieved. A summary of the 

resulting modal analysis is contained in table 6.11. 

Frequency (Hz) Critical speed (rpm) 

Solid body 440 26,400 

Solid body 840 50,400 

Bending mode 1 2139 128,300 

Bending mode 2 3468 208,100 

Bending mode 3 7388 443,300 

Table 6.11 Natural frequencies of a conunercial turbocharger obtained using the 
finite element method incorporating bearings of stiffness 1.64X 107. 

As is evident from table 6.11, the margin between the first critical speed in bending 

and the maximum operating speed of 100,000 rpm is likely to be adequate in the case 
of the standard turbocharger, albeit on the basis of an approximate representation of 

the bearing stiffness. As a consequence, there may some limited scope to increase the 
first critical speed in bending of the prototype by modifying the bearing location. The 

current bearing location is based on the need to avoid overheating of the plienolic 
cage of the turbine end bearing. Reducing this separation will have the effect of 

reducing the moment of the cantilevered turbine mass, which as shown in figure 6.22 

appears to strongly influence the mode shapes. One other possible modification is to 
reduce the axial length of the relatively compliant laminated SR rotor. However, this 
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has a proportionate impact on the output power capability of the SR machine. In 

order to deterniine whether sufficient benefits in terrns of an increased first critical 

speed in bending can be acWeved to offset the perfortnance penalties, two further 

finite element models were analysed, viz.: 

1. The separation between the turbine end bearing and the turbine wheel, i. e. dt 

in figure 6.3, was reduced from 29.5mm to 19.5num 

2. The axial length of the lamination stack was reduced by 20% 

The natural frequencies of these modified rotor models were calculated with a 

bearing stiffness of 1.64X 107 Nlm and categorised in a similar manner to those in the 

preceding analysis. Table 6.12 summarises the various critical speeds of the standard 

and modified rotor designs. Clearly, both of the proposed modifications will also 
impact on the mass of the rotor as well as the stiffness, thus further modifying the 

critical speeds. 

Standard rotor Short SR rotor Reduced bearing 

separation 

Critical speed Critical 

speed 

% change 

wrt standard 

Critical 

speed 

% change 

wrt standard 

Solid body 1 18,200 17,900 -1.64 22,400 22.70 

Solid body 2 54,500 54,800 0.66 54,800 0.66 

Bending 1 85,700 92,600 8.05 87,000 1.61 

Bending 2 155,000 168,900 9.07 166,000 6.90 

Bending 3 280,000 315,800 12-70 344,000 22.70 

Bending 4 799,000 877,000 9.72 809,00 1.27 

Mass 0.774 0.715 -7.62 0.767 -0.90 

Table 6.12 Comparison of the critical speeds and rotor mass of the standard and 

modified rotor designs. 
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It is interesting to note that although the case of a short SR rotor does exhibit a 
8.05% increase in the first critical speed in bending, this is of comparable order to the 

mass reduction, suggesting that a significant proportion of the observed increase is 

actually due to the reduced modal mass. The modification to the solid body critical 

speeds is marginal, with only a 1.6% decrease in the frequency of the first mode. 

The reduced bearing/turbine wheel separation has a marginal effect on the first 

critical speed in bending, and is unlikely to yield sufficient benefits to warrant its 

adoption given the constraints on the bearing temperature. The most notable effect of 

reducing the bearing/turbine wheel separation is observed in the modes where a 

considerable degree of flexure of tl-ds portion of the shaft is encountered. Indeed, the 

third bending mode and the first solid body mode (wMcli despite being categorised as 

a solid body mode includes a high degree of flexure) both increase by 23%. 

For the purpose of constructing a prototype machine the original shaft design was 

maintained, since the relatively small benefits that accrue from the proposed 

modifications in terms of the increased critical speeds in simple bending do not offset 

the penalties of the increased temperature loading of the bearings and the reduced 

power capability. 

The rotordynarnic studies in this chapter have illustrated, albeit with some 

simplifications regarding bearing performance and rotor construction tolerances, that 

the inclusion of an SR rotor compounds the difficulties of operating turbo-machinery 

at such high speeds. Indeed, the margin commonly employed hi commercial 

turbochargers has been severely eroded, such that problematic critical speeds may 

well lie within the operating speed range. However, fl-fis was deemed as being 

acceptable at this stage of the machine development, even if the prototype speed 

range has to be limited in the first instance. Ultimately, it is Rely that any 

commercial devices based on tliis prototype would employ custom designed 

hydrodynamic bearings, which would offer a tailored combination of stiffness and 

more particularly damping to accommodate the various i-nodes of vibration. Further, 

the current design has been severely constrained by the need to use standard 
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turbocharger components and manufacturing set-ups, in particular the relatively 

slender shaft that could be friction welded to the turbhie. A custom designed shaft 
(together with the appropriate friction welding capability) could yield considerable 

dividends in terms of increasing shaft stiffness. 
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Figure 6. Ia. 

Figure 6.1 b. 

Figure 6.1 c. 

Figure 6.1 d 

Figure 6.1. Schematic of possible bearing configurations [6.3]. 
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Figure 6.2. Bearing configuration with addition of SR rotor 

Figure 6.3 Basic assembly of the standard turbocharger and prototype turbogenerator 

rotors with principal dimensions in mm. 
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Figure 6.4 Principal dimensions of the three cylinder approximation to the turbine 

and compressor. 
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Figure 6.5 Finite element mesh of the prototype rotor consisting of 3772 first order 

structural elements and 4624 nodes. 
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Figure 6.6 Finite element mesh of the standard rotor consisting of 3064 first order 

structural elements and 3718 nodes. 
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Figure 6.7. Free-free modal analysis showing the first bending mode of vibration of 

the prototype rotor. 
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Figure 6.8. Free-free modal analysis showing the first bending mode of vibration of 
the standard turbocharger rotor. 
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Figure 6.9. Measured free-free response spectra of the prototype rotor. 
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Figure 6.10. Hydrodynamic pressure field generated by an eccentric rotor. [6.1 ] 
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Figure 6.11. Hydrodynamic pressure distribution around the journal of a "long" 

automotive size bearing at differing eccentricities. 

10 
Radial 
Tangential 

10 

10 

10, 

4D 

10 
0 

lo- I 

10,2 
L 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Eccentricity 
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automotive hydrodynamic bearing as a function of the rotor eccentricity. 
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Figure 6.13. Incremental direct and cross-coupled stiffness of a typical automotive 

hydrodynamic bearing as a function of the rotor eccentricity. 
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Figure 6.17 Field distribution with a rotor eccentricity Of 60ýtrn and current density 

of 10 AmM-2. 

Figure 6.17a. Close up of the top rotor pole airgap showing fringing at edges. 
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Figure 6.17b. Close up of the bottom rotor pole airgap with denser flux lines. 
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Figure 6.18. Maxwell stress distribution around the circumference of the path defined 

at the rotor radius. 
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bearing 
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CHAPTER 7 

PROTOTYPE EATG CONSTRUCTION AND 

EXPERIMENTAL VALIDATION OF FINDINGS 

7.1 Prototype Machine Construction 

7.1.1 INTRODUCTION 

The construction of the prototype high-speed SR machine, and in particular the 

coupling of the SR rotor to the turbine and compressor of a standard turbocharger 

presents many technical challenges. In order to highlight some of these challenges it 

is useful stage to briefly discuss the mechanical design of the various components. 

7.1.2 DESIGN AND MANUFACTURE OF THE ROTOR ASSEMBLY 

117- 
For the design of the prototype inachine the scope to include any special features is 

constrained by the findings of the previous chapters, i. e.: 

9 The diameter, cross section and axial length of the SR rotor are limited by the 

centrifugal stress considerations detailed in Chapter 2 and the rotor dynarfflcs as 

discussed in chapter 6. 

* The compressor and turbine wheels are standard Holset commercial components. 

e The overall layout of the shaft was largely determined in by the rotor-dynamic 

considerations of chapter 6 section 2 and the single-ended assembly procedure 

enforced by the friction welded turbine design. 

The lamination stack was constructed from 100 individual CK26 Silicon Iron 

laminations each 0.5mm. thick. These are relatively thick laminations as compared to 

the more conventional 0.35nu-n laminations that are generally employed in 1-figh- 
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performance machines, which in turn will impact on the rotor loss. However, they 

were the only thickness available in this particular high-strength grade at the time of 

prototype construction. The lamination stack was welded along its length. Welding 

directly into the inter-polar fillet region would minimise the mass unbalance caused 
by the weld bead since it is placed on the minii-num. possible radius of the rotor. 
However, it was demonstrated in chapter 2 that t1iis region of the material is likely to 

encounter the highest levels of tensile stress, and the potential introduction of 

material voids and high then-nallY induced residual stresses is likely to be 

undesirable. Since the welding process results in a localised electrical short-circuit 
between adjacent laminations and hence the eddy current component of iron loss 

may be significantly increased within the weld region. It was established in chapter 4 

that the tips of the rotor teeth are likely to exhibit a high degree of localised eddy 

current iron loss, and hence it is inappropriate to position the weld in this location. 

Furthermore, welding both sides of the rotor teeth would create a circular current 

path around the teeth which will again allow a high level of eddy currents to be 

induced in this region due to the non-nal component of flux density acting radially in 

the rotor tooth. As a consequence, the weld was positioned mid-way down one side 

of the rotor pole, as shown in figure 7.1. 

'Me bearings used in the prototype are FAG high-speed spindle bearings as described 

in detail in section 6.4.2. The inner diameter of these bearings is 10mm, and hence 

two collars were constructed to slide onto the 7mm, diameter shaft. In order to 

minimise the amount of exhaust gas leaking into the SR machine a piston-ring type 

gas seal was incorporated into the turbine end of the shaft as detailed in figure 7.2. 

Further, beyond this gas-seal are a series of three radial holes were incorporated into 

the turbine end-cap in order to vent any leakage exhaust gases, also shown in figure 

7.2. 

The assembled rotor structure (i. e. compressor, turbine, shaft, bearings and SR rotor) 

was dynamically balanced by Holset in two planes corresponding the ends of the 
lamination stack by removal of material from the end laminations. 'nie rotor was 
balanced at 20OOrpm to tolerance of lAx 10-6 kgm (2x 10,3 oz-in Imperial units), a 
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specification that is routinely employed for prototype turbo-machinery. The 

measured output from the balancing machinery for each of the balancing planes is 

shown in figure 7.3. One important consequence of the balancing operation is that a 

relatively large volume of material was removed from the edges of one pole piece of 

the rotor. In the prototype machine where the rotor position sensing is achieved using 

the end-face of the SR rotor, the resulting asymmetry posed some problems for the 

rotor position feed-back, which in turn required some modification of the position 
detection algorithm, as discussed later in section 7.2.1. 

7.1.3 STATOR LAMINATIONS 

The stator was constructed from 0.35mm thick V300 Silicon Iron laminations. Most 

conventional electrical machines use an external case to house the stator laminations, 

often using a shrink fit assembly method or an arrangement of key-ways. 'Illis 

approach was deemed to be inappropriate for this prototype for the following 

reasons: 

* The high levels of dissipation predicted in the SR machine, in particular iron 

losses (chapter 4), necessitates a low thermal resistance path from the laminations 

and the windings to the external ambient to avoid excessive temperatures. To this 

end, the removal of the case is advantageous. 

* The small radial (0.2mm) airgap between the rotor and the stator, requires a 

positive location of the rotor-bearing end-caps onto the inner bore of the stator. 
When a conventional case design is used the airgap between the rotor and stator 
is subject to the non-concentricity between the stator iniier and outer bores, the 
outer case and the radial location of the outer case onto the end-cap with respect 
to the bearing recess centre position. T'herefore the airgap in such a design is 

subject to an accumulation tolerances on these dimensions. In order to minimise 
the accumulation of radial tolerances a small shoulder was incorporated on each 
of the end-caps which locates directly into the inner bore of the stator laminations 

as shown in figure 7.2. The shoulder is macl-iined at the same time as the bearing 
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recess and lience the concentricity deviation between the rotor and stator is 

minimised. 

As a consequence, the stator was constructed with the laminations being self- 

supporting with no external case. Four tie bolts were employed to attach the end caps 
to the lamination pack, although as discussed above the concentric location was 

achieved using a shoulder in the end-cap and the inner bore of the laminations, rather 
than by the tie-bolts. The tie-bolts were placed in pre-machined holes in the 
lamination stack, where the pitch circle diameter (PCD) was selected on the basis of 
the standard practice in conunercial compressor end-caps. Since the PCD of the 

mounting bolts is considerably larger than the outer diameter of the stator, the stator 
laminations were extended to incorporate four lugs to accommodate the mounting 
bolts. There may be some incremental benefits in increasing the back iron thickness 
in terms of reducing the flux density and hence iron loss in this region. However, in 

this case, the region between the bolt lugs was used to incorporate a series of radial 
fins to improve heat dissipation from the stator. To further enhance the heat 

dissipation capability, a degree of oil cooling was included in the stator lamination 

stack. This was achieved by incorporating a series of oil-channels in the stator 
laminations at locations where the removal of material is likely to have the least 

detrimental effect on the flux carrying capacity of the stator. Having established in 

chapter 4 that a high degree of iron loss is likely to be encountered in the tips of the 

stator teeth it is desirable to provide a cooling channel as close to this location as 

possible without adversely affecting the flux paths in the stator. Hence, an array of 

oil-ways were cut into the stator back-iron at the base of the stator teeth as shown in 
figure 7.4. In order to avoid any localised saturation, the width of the regions on 
either side of these oil-channels was maintained as being half of the stator tooth 

width. However it was recognised that with multiphase operation, the flux 

distribution is not as simple as the idealised symmetrical distribution wWch is often 
assumed in initial sizing of the lamination, and hence some marginal degradation in 

tenns of increased saturation and iron loss may be introduced. The radial thickness of 
the back-iron was maintained in the vicinity of the oil channels as being the 7 mm 
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selected hi the initial design (section 3.2) by locally increasing the outer diameter of 

the stator. 

A second array of oil-channels was incorporated in the stator laminations in the 

region between adjacent windings, a region that normally forms part of the stator slot 
in a conventional design, as shown in figure 7.5. Although this will promote some 

degree of additional slot leakage, it is an approach that has been used commercially 
for improving the dissipation from the coils with minimal detriment to the torque 

capability. The final stator cross section design employed in the prototype machine is 

shown in figure 7.6. A series of 12 radial holes (each 3mm in diameter) were drilled 

in the stator lamination pack to allow connection of the stator windings. These holes 

were staggered axially by 5mm to prevent any regions of the lamination being 

separated and are shown in figure 7.6. In order to assess the potential perforinance 
degradation in terms of increased slot leakage and unaligned inductance, a finite 

element model of the finned stator was constructed and solved using Ansys. Figure 

7.7 shows the mesh for the rotor displaced 30' from the aligned position that consists 

of 11,323 second order elements and 34,632 nodes. Figure 7.9 shows the flux density 

contours and the lines of constant vector potential for the mesh solved with a current 

density of 15A/mný applied to phase A. One notable feature of the flux density 

distribution shown in figure 7.8 is that the addition of the radial fins has little effect 

on the flux density distribution in the stator back iron, a feature which allows 

considerable savings in terms of computational effort in calculating the iron loss as 

discussed in section 7.3.4. Figure 7.9 shows the V-i characteristic for the rotor in the 

aligned and unaligned positions and for two intermediate positions (15' and 30" from 

alignment). Also shown are the results calculated using the standard mesh presented 
in section 3.4.1. It is apparent from this figure that the inclusion of the additional 
features to aid the cooling of the machine has little detrimental effect on the limits 

imposed by the aligned and unaligned characteristics. The intermediate 

characteristics show a reduced level of induced flux at a given level of excitation, 
however this will have little effect on the specific torque production of the macldne 
but may serve to slightly modify the commutation angles determined in chapter 3. 
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7.1.4 TURBINE END-CAP 

The turbine end-cap essentially forms an interface between the SR machine and the 

turbine. As well as a providing mechanical location and the appropriate oil channels, 
it also has a useful role in shielding the SR rotor and the bearing from the Wgh 

temperatures encountered at the turbine. It must also include a gas seal to prevent the 

exhaust gas leaking into the SR machine. 

The oil circuit in the end-cap is a manifold type arrangement, as shown in figure 

7.10, where each of the stator oil-channels is fed from the same source in the end- 

cap, i. e. the stator oil-channels are effectively in parallel. The oil-channel is fed from 

three equi-spaced external oil feeds in an attempt to provide a uniform flow down the 

stator oil-channels. The end-cap also incorporates a series of recesses to 

accommodate the stator end-windings in order to achieve a very compact assembly 

and hence'minimise the axial length of the machine (consistent with the findings 

reported in chapter 6). 

Having established the end-cap design for the interface with the SR machine it is 

necessary to consider its interface to the turbine. The specification of the mechanical 
interface in ten-ns of the overall diameter, hole location and clamp design is governed 
by the geometry of the standard Holset turbine scroll. In all turbo-charger designs, 

the need to avoid excessive heat-soak from the turbine is an important consideration, 

and necessitates the inclusion of a nfild steel heat sl-field, such as that shown in 

previously figure 7.2, which comes into contact with the exhaust gas and leaves a 

void between itself and the bearing housing. In addition, the constant oil-feed which 
is provided for the hydrodynamic bearings provides an effective means of cooling 

the bearing housing and limiting the then-nal conduction down the shaft. However, 

for the prototype EATG, the use of rolling element bearings in the turbine end-cap 

and the close proximity of the machine end-windings require that the n-dnimisation of 
heat transfer from the exhaust gas to the end-cap is likely to be critical. To this end, 
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the turbine end-cap was manufactured from two parts with an oil circulation channel 

milled into the interfacing components as shown in figure 7.11 and figure 7.12.17he 

final assembled turbine end-cap including the standard heat shield was shown 

previously in figure 7.2. 

7.1.5 COMPRESSOR END-CAP 

The SR machine interface to the compressor end-cap is similar to the turbine end- 

cap, with a matching oil channel to return the oil to the external reservoir. Since the 

SR rotor is compressed axially using the compressor end retaining nut and no 

positive angular-location such as a key-way is incorporated in the shaft, the angular 

position of the lamination stack cannot be reliably registered with respect to other 

rotor components. In order to provide reliable position signals to the drive it is 

necessary therefore to sense the position of the rotor directly. In order to facilitate 

this measurement, the compressor end-cap includes three equi-spaced axially drilled 

mounting holes for three position sensors. The technical specifications of the Hall 

sensors is discussed in section 7.2. It would be desirable to set the PCD of the sensor 

mounting holes to obtain a pulse train with a 50% duty, i. e. at a radius which 

corresponds to rotor iron subtending an angle of 450, as shown in figure 7.13. 

However, the outer diameter of the rotor bearing and the stator locating shoulder 

dictated that the PCD of the Hall sensors was such that a pulse train of 52% duty 

should be generated from a simple consideration of rotor geometry. This can 

however accommodated, along with any asymmetry in the rotor teeth, within the 

control algorithm, as discussed in section 7.2.1. 

Figure 7.14 shows a cross section of the complete prototype EATG and figure 7.15 

shows a photograph of the components prior to assembly. 
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7.2 Prototype Converter Design and Construction 

In order to test the prototype machine, a 3-pliase power electronic converter was 
designed and constructed. It should be noted that the primary aiin in the design of 

this converter was to realise a simple and robust drive purely for testing purposes 

rather than a packaged and Wgl-dy opthi-iised drive for integration into a vehicle. 'I'llis 

inevitably resulted in the use of highly over-specified power electronic switching 

components, and interfaces and control systems that would be unlikely to be cost- 

effective for a mass-production system. 

The drive electronics are based around so-called "intelligent power modules" (IPMs) 

of type 7MBP300RA060 manufactured by Fuji Electrical Ltd. Each IPM consists of 
6 individual 300A, 600V IGBTs internally connected as shown in figure 7.16 (a 

seventh lower Volt-Amp rated IGBT is also included in the IPM for braking if 

required). 'Mese IPMs are very convenient for the rapid prototyping of drives, since 

they incorporate pre-drivers for the IGBT gates that include a degree of protective 

circuitry to guard against short circuit, drive under-voltage, over current and IGBT 

over-heating. 

However, the considerable advances which have occurred in IPMs over recent years 
has been driven principally by the demands 3-phase induction motors and to a lesser 

extent 3-phase brushless machines. As a consequence, IPMs for 3 phase machines 

are almost exclusively configured as shown in figure 7.16 for "star" connected AC 

machines. In order to accommodate SR macliines it is necessary to couple 2 IPM's as 

shown in figure 7.17. T'hus, although they offer an attractive approach for 

prototyping SR converters by virtue of their integrated gate drives and thermal 

management, they necessarily result in the redundancy of 6 of the switches, although 

their associated anti-parallel diodes are used as the free-wheel diodes in the circuit. 
The gate drive inputs of IPMs were connected to the DSP control system via an array 

of optical fibres (HFBR-0400 series manufactured by Hewlett Packard) in order to 

protect the DSP system from potentially destructive voltages that may occur under 
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fault conditions. The use of optical fibres to transrnit the commutation signals also 

provides additional benefits in terms of immunity to electromagnetic interference. 

The rotor position is sensed by a series of self-calibrating, differential Hall sensors 
(ATS612LSB manufactured by Allegro Microsystems Inc. ) w1iich are located in the 

compressor end-cap. Each sensor coniprises a small Samariurn-Cobalt magnet and a 

pair of matched Hall sensors. By appropriate alignment of the position sensors, the 

passing of the edge of a rotor tooth will generate a difference in flux density at each 
Hall device, thus providing a mechanism for rotor detection. I'lie output signals from 

the position sensors are also electrically isolated from the DSP system using high- 

speed inverting opto-isolators (111 IN I). In order to inýnimise any spurious triggering, 

a low-pass filter was constructed with manufacturer's recommended parameters in 

order to provide some inu-nunity from supply line noise. The circuit shown in figure 

7.18 was constructed using surface mount components in order to enable the entire 

circuit to be mounted on the rear of the hall effect sensor. The sensor contains a self- 

calibrating circuit that modifies the internal gain of the device to ininimise the effect 

of airgap variation. 

As discussed in section 7.1.2, the balancing of the rotor resulted in some 

asymmetrical removal of material from the end-face of the rotor lamination stack, as 

shown in figure 7.19. The amount of material removed is relatively significant with 

respect to the nominal 1.5mm axial clearance between the face of the sensors and the 
lamination stack. As a result, although the position sensor can detect all four rotor 
teeth, the extended effective airgap of one of the teeth gives rise at a corresponding 

asymmetry in detection of that particular tooth edge. This is illustrated by the 

measured Hall sensor signals of figure 7.20 that were measured at a speed of 
7300rpm. The control algoritlu-n therefore included provision to account for this 

asYmi-netry, hence enabling absolute position to be measured to a reasonable degree 

of accuracy (approximately 3' mechanical), albeit with some initial calibration. A 

schematic of the prototype EATG system including the connections to the ancillary 
components is shown in figure 7.21, while figure 7.22 shows a photograph of the 
complete prototype system on the bench. 
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7.2.1 CONTROL SYSTEM IMPLEMENTATION 

The control algorithm was implemented in a dSPACE hardware-in-the-loop system, 

comprising a DS1005 processor board, and a DS4002 timing and digital 1/0 [7.1]. 

The DS4002 timing and digital 1/0 board has 8 1/0 channels that can be individually 

programmed to operate in either input or output mode and two external triggers. In 

input mode the signals are monitored for level changes, i. e. rising or falling edges, 

the events are recorded and the timestamps stored in the local RAM, each with a 

resolution of 200ns. These signal timestamps coupled with the two external triggers 

provide a high degree of flexibility for the definition of parameters such as the 

frequency and duty cycle of the rotor position sensor input signal. TWs flexibility is 

particularly advantageous in this case as it allows a degree of signal "correction! ' and 
frequency averaging to be applied to the input signals to accommodate the non- 

uniform duty cycle pulse train from the rotor position sensors. In output mode the 

level of the channels can be updated by the continual specification of a series of 

commands which include a time delay (again with a resolution of 200ns) and the 

signal level to be attained after the delay has passed. The 3 phase output signals can 

be appropriately timed with an externally created trigger event based on the Hall 

sensor input and hence the commutation signals can be referenced to the absolute 

rotor position. 

The control software was implemented using a series of macros specific to the real 

time workshop environment and compiled using a Texas Instruments C program 

compiler. The code is downloaded to the processor board using the dSPACE real 

time interface (RTI1005), which is executed witlihi the Matlab/Sh-nulink 

environment. Finally data acquisition, variable display and manual commutation 

angle control (for example) is undertaken in the dSPACE ControlDesk environment, 

an example of wMch is shown in figure 7.23. 
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7.3 Test Results 

7.3.1 MEASUREMENT OF PHASE SELF-INDUCTANCE AND 

RESISTANCE 

The phase self inductance of the prototype was measured at various rotor angles in 

order to both validate the calculations undertaken in chapter 3, and to determine the 

additional inductance contributed by the end-whidings (which is unaccounted for in 

two-dimensional analysis). The winding of one phase was excited with a 50Hz 

sinusoidal current waveform. (generated by a power amplifier in. constant current 

mode) with an mis value of 5. OA (which is considerably lower than the saturation 
threshold of the prototype machine). The rotor angular position was measured using 
a Heidenhain precision optical rotary transducer. The inductive power flow, Q and 
the rrns current were measured using a high-precision Norma power analyser 
(D 6100). The self inductance under these operating conditions was determined using 

equation 7.1. 

=- 
Q Lph 

2 7, f J2 
rms 

7.1 

Figure 7.24 shows the measured inductance as a function of rotor position, together 

with the corresponding calculated inductance variation derived from the finite 

element analysis presented in chapter 3. The curves are in reasonable agreement, but 

there is a relatively constant offset of a magnitude of some 9%tH between the 

measured and predicted values. This can be attributed in part to the constant end- 

winding inductance of the prototype device that was not accounted for in the two- 
dimensional finite element model. 

'Me resistance of each phase was measured at room temperature using a Rhopoint 4 

terminal milli-ohmeter. There was some spread in the measured results with 
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maximum and minimum values of l9mQ and 20mQ respectively. 'Fliese values are 

in reasonable agreement with the value of 18mQ predicted using equation 3.18 in 

section 3.6.1. 

7.3.2 LOW-SPEED, LOW-POWER BENCH TESTING 

A limited number of low-speed, and low-power tests were perfonned with the EATG 

system mounted on a test-stand rather than directly on the engine. The purposes of 

these low-power tests were to check the operation of the DSP, the power electronic 

converter, and the position sensors and to verify the DSP control code. Further, the 

measurements taken during these tests provided data for the initial validation of the 

dynamic simulation technique developed in chapter 3 and the iron loss calculation 
developed in chapter 4. 

Three operating conditions at the three test points are detailed in table 7.1. Tests 1 

and 2 were conducted at 32V in order to limit the peak current being drawn from the 

laboratory power supply at low speeds. The Voltage was increased to 50V for test 3, 

in order to accommodate the VA rating of the power supply to provide the higher 

levels of power required under these conditions. 

Case 1 Case 2 Case 3 

Speed 10100 14900 18400 

Voltage 32 32 50 
Oon -27 -30 -31 
Odwell 

1 
10 19 22 

Table 7.1. Operating conditions of the three test points. 
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7.3.3 MEASURED DYNAMIC PERFORMANCE 

Phase current and phase voltage waveforms were measured for each of the 3 test 

points using a Tektronix A6303 current probe and a Chauvin Arnoux DP25 active 
differential probe respectively, and captured using a LeCroy 140 digital storage 

oscilloscope. The resulting waveforms are shown in figures 7.25, from which a 

number of interesting features can be observed, particularly in the measured voltage 

waveforms. In each of the three cases, following the extinction of the current, the 

phase voltage waveform only slowly returns to OV. Given that for these particular 

commutation conditions there are no currents flowing in other phases during this 

interval, the enif in the winding can only be attributed to a degree of remanence in 

the stator and/or rotor laminations. Another notable feature is the considerable 
influence that the various switching device voltage drops have when operating at 

such low DC link voltages. By means of example, the voltage across the winding 
during the decay of the current in figure 7.25a (test case 1) is -34.5V as compared to 

29V during the rise of the current, in turn markedly influencing the rate of rise and 
fall of current. This is not directly accounted for in the simulations presented in 

chapter 3, albeit that it will have considerably less effect at the specific DC link 

voltage of 96V. 

The captured waveforms of figure 7.25 can be used to determine the net electrical 

power into the machine, providing care is taken to perform the integration of the 

product of voltage and current over a complete cycle. By means of example, figure 

7.26 shows the variation during one electrical cycle of the energy drawn from and 
subsequently returned to the supply for test case 1. The current waveforms of figure 

7.25 can be used to calculate the average copper loss by employing a value of phase 

resistance that was measured (at the winding terminations) directly at the end of each 
test (in order to provide some allowance for any temperature rise in the winding). 
Table 7.2 shows the measured resistance immediately following each of the three 
tests 
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Test case Measured phase resistance (inQ) 

1 46 

2 45 

3 47 

Table 7.2. Measured phase resistance immediately following each of the three tests 

Whereas the electrical iDput power and the copper losses in the machine can be 

measured to a reasonable accuracy using the techniques described above, the iron 

loss cannot be measured directly, but must be inferred from a loss subtraction 

technique. A key requirement in this regard is a reliable estimate of the mechanical 
load on the machine, i. e. the work done by the compressor and turbine wheels and 

any mechanical losses within the system (principally bearing friction and rotor 

windage). Since an SR machine is a singly excited machine, in its unexcited state 

there is nominally no iron loss in the machine (although as will be demonstrated 

remanent magnetism in the laminations will give rise some degree of iron loss). 'Flie 

absence of any significant iron loss in an un-excited machine enables the mechanical 

load and losses on the system at a given speed to be quantified by means of a so- 

called 'run-down' test. In such a test, the rotor is accelerated up to specified 

rotational speed, and having achieved steady state conditions, the excitation is 

removed. The variation of speed during the subsequent run-down is measured using 

the rotor position sensors and the DSP system. Given the polar moment of inertia of 
the rotating components (established from results in chapters 2 and 6) this speed-time 
curve can be converted to a decelerating torque versus time characteristic, and hence 

to a torque-speed curve for the total mechanical load on the shaft. Figure 7.27 shows 

a series of measured load torque versus speed Characteristics which were measured 

on the test stand at various starting speeds up to 19400rpm 

Having measured the electrical input power, the copper losses and the mechanical 
load/losses, an estimation of the iron loss at a particular operating point can be 

derived. Table 7.3 summarises the values of the various components of measured 
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power for the various test operating conditions together with the corresponding 

values of iron loss inferred from these measurements. 

case 1 

32V, 10100rpm 

Case 2 

32V, 14900rpm 

Case 3 

5OV, 18400rpm 

Measured electrical input power 81 197 538 

Measured copper loss 5 10 23 

Measured mechanical losses 25 60 175 

Iron losses inferred from 

measurements 

51 127 340 

Table 7.3 Division of measured electrical input power 

7.3.4 SIMULATED PERFORMANCE AT TEST-POINTS 

In order to validate the simulation techniques presented in chapters 3 and 4, i. e. the 

dynamic electrical simulation and the iron loss calculation teclmiques, these 

simulations were performed under the 3 specific operating conditions detailed in 

table 7.1. 

The dynamic simulation was performed at the three operating points, with the current 

waveforms, calculated copper loss and machine mechanical power being compared 

with measured results. Figures 7.28a, 7.28b and 7.28c show the measured and 

predicted current wavefon-ns at each of the three operating points respectively. The 

form of the measured and predicted current waveforms is in good agreement. 

However the current decays much more rapidly in the measured waveforms a factor 

which is attributed to the remanence of the lamination material as discussed in 

section 7.3.3. 

Table 7.4 shows a summary of this measured and predicted power and peak current 
data. As is evident, there is a good correlation in terms of the current waveforn-L 
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However, whereas the agreement between measured and predicted power appears to 

be relatively poor, it should be bome in mind that the dynamic simulation does not 

account for iron losses. 

Case I Case 2 Case 3 

Measured Predicted Measured Predicted Measured Predicted 

Output power 25 40 60 118 175 332 

Peak current 21.8 21.9 23.1 21.7 30.1 33.0 

Copper loss 4.5 4.6 10 11 23 26 

Table 7.4 Comparison of ineasured and predicted dynamic performance 

'nie iron loss modelling technique discussed in. chapter 4 is based on a combination 

of finite element analysis and a decomposition loss model and is specific to a 

particular current wavefonn and operating speed. As a consequence, it was necessary 

to undertake three further iron loss calculations in order to replicate the operating 

conditions encountered hi the low-power testing. Further, the iron loss predictions in 

chapter 4 were not directly undertaken using the geometry of the eventual prototype, 

wWch includes a number of practically driven modifications, in particular the 
inclusion of oil-channels in the stator and the increased fillet radius required to 

acconnnodate the shaft sleeve. Tberefore, the mesh shown in figure 7.29, which 

consists of 15563 nodes and 30920 elements was employed to calculate the iron loss. 

Ile mesh includes the oil-channels in the stator and the revised rotor design, but 

neglects the array of radial fins since they have negligible effect on the flux density 

distribution within the stator laminations as demonstrated previously in figure 7.8. 

The iron loss calculations were performed using the measured current waveforms. A 

typical series of field distributions, (for case 2) are shown in figure 7.30, wl-dle the 

corresponding loss contours are shown in figure 7.31 The calculated iron loss values 
together with the results from the loss subtraction teclmique discussed in section 
7.3.3 are shown in table 7.5. 
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Casel. Case 2 Case 3 

Iron losses from measurements 51 127 340 

Calculated iron loss 39 112 233 

Table 7.5 Summary of the iron loss calculated by applying the loss subtraction 

teclmique to the measured data and the calculated iron loss using teclmique discussed 

in chapter 4. 

Although there is reasonable agreement, the iron losses inferred from the 

measurements are in all cases higher than those predicted by the finite element / loss 

model technique. There are 3 factors that may account for some of the observed 
discrepancies: 

1. Remanence in the Laminations - As was observed previously in the voltage 

wavefonns of figures 7.25, there is a degree of remanence in the stator and/or rotor 
laminations in the absence of any current, which is relatively significant when 

compared to the flux densities achieved at these low-power test pohits. However, it is 

difficult to directly determine the impact of this behaviour on the measured iron 

losses. It is likely that it will increase the measured iron loss since in some respects 
its effect is analogous to the presence of an additional 'permanent-magnet' source, 

albeit one whose, properties are th-ne-varying and a complex function of excitation. 

Tifis additional loss is not modelled hi the finite element analysis discussed in section 
4.4.2 of chapter 4 which is consistent in tenns of the underestimates summarised in 

table 7.5. However it should be bome in mind that some component of iron iron-loss 

generated by remanence in the laminations may be present during run-down, and is 
I- hence accounted for in the measured 'mechanical' loss. Given that the excitation 

conditions encountered during nonnal operation and run-down differ considerably 

and the nature of such remanent losses in soft magnetic materials is extremely 
complex, there is no sound basis on which the rernanent losses can be equated for the 
two cases. Hence, Us possible explanation for the discrepancy between measured 

and predicted iron losses can only be considered as being qualitative, albeit that it is 
V 
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consistent with some degree of underestimation by the finite element analysis and 
loss model. 

2. End-Caps - The windings extend into the solid n1ild steel end-caps and a degree 

of flux will be induced hi the end caps when the winding is energised. TIiis is 

evidenced by the measured and predicted inductance variation shown in figure 7.24, 

where the measured values are consistently greater than those predicted using two- 
dimensional finite element approacl-L This constant offset can be attributed to the flux 

passing through the end-caps since it shows little variation with rotor position. It is 

apparent from the discussion presented in chapter 4 that the presence of time varying 
flux densities in the end-caps will inevitably give rise to a degree of iron loss in these 

components, a factor which is not accounted for in the iron loss calculation 
technique. 

3. Loss Subtraction - For the prototype machine it is not possible to directly 

measure iron losses, and consequently the loss subtraction method was used where at 

each operating point the input power was measured and the quantifiable rolling 

resistance, windage and copper loss was subtracted. This method is subject to a high 

degree of experimental error since it is subject to the accumulation of many 

experimental errors. This is particularly prevalent for case 3 where the rolling 

resistance (i. e. the summation of bearing and aerodynamic losses) is seen to rise 

rapidly at speeds greater than 17,500 rpm Although it is not clear at this stage what 

causes this rapid rise in rolling resistance it may be attributed to the presence of the 

first solid body mode critical speed wl-iich is predicted to occur at a speed of 
18,200rpm in chapter 6 or aerodynamic effects caused by using an unconnected 

turbine scroll wl-iich results in large a air flow (backwards through the turbine) which 
is vented to atmospheric pressure. 
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7.4 Engine Testing 

7.4.1 EXPERIMENTAL APPARATUS 

The engine employed in the testing was a Cummins 4BTA, 3.92 litre, four-cylinder 

turbo-charged, after-cooled, compression ignition engine used for medium duty 

industrial automotive applications. In the test-rig, the engine is coupled to a Heenan- 
dynamatic dynamometer in which the reaction torque is produced by a 
circurnferentially wound field coil inducing eddy currents in the electrically 

conducting rotor. The torque is measured using a swinging frame arrangement via a 
Lebow 2.2kN load cell. The engine coolant is cooled by means of a 120kW heat 

exchanger supplied with fresh cold water from the laboratory supply. The engine was 
fitted with a Holset MC non-wastegated turbocharger and tested with two inlet 

turbine scrolls of different cross-sectional areas. Firstly, a standard scroll with a 
nominal inlet area of 16cn? was fitted to the engine to provide a reference condition. 
Secondly a smaller scroll with a nominal inlet area of 12cm2' was fitted in order to 

achieve higher turbine powers. 

The turbine was closely coupled to the engine using a short, narrow, exhaust 

manifold in order to maximise the utilisation of the high pressure and temperature. 

Each scroll features a dual entry design to minimise the detrimental effect of both 

direct pressure wave interaction and reflection onto the exhaust valves of adjacent 

cylinders. The centrifugal compressor feeds the inlet air into an engine-mounted 

after-cooler, which is supplied by cooling water from the engine coolant systen-L 

The fuel system for the engine consists of a rotary type Bosch VE injector pump with 
an air/fuel ratio control device attached to the governor spring to control emissions. 
I'lie air mass flow rate into the engine was measured using ail Alcock viscous flow 

meter, where the pressure drop across the element, (which is proportional to the 
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volumetric flow rate) was measured with a piezo-resistive differential pressure 
transducer. 

The emissions of hydrocarbons (H,, C,, ) and oxides of Nitrogen (NO and N02) were 

measured using two Emicont 20 electrochemical exhaust gas analysers. The 

particulate content in the exhaust was measured using an "L 415 smoke meter. In 

this device, a known volume of exhaust gas is drawn through probe mounted in tile 

exhaust system and passed through a filter element where the relative blackening of 

the filter is measured using a reflectometer head. 'nie volume of gas drawn through 

the filter is determined automatically whereby an initial 200" of gas is sampled to 

determine the soot content, a more appropriate sample volume of gas is then 

calculated based upon this estimate and hence very low soot contents can be 

measured accurately. The results are reported as a filter smoke number (FSN), which 

vary between 0 and 10 with a resolution of 0.01 FSN and a repeatability of 0.05 FSN. 

The filter smoke number is subsequently normalised to standard temperature and 

pressure. 

Figure 7.32 shows a schematic arrangement of the engine test facility indicating the 

various temperature and pressure measurhig points, while figure 7.33 shows a 

photograph of the engine and brake mounted in the sound-proof chamber. 

7.4.2 BASE TESTING RESULTS 

A series of base tests were performed on the engine without the EATG fitted, the 

purpose of which was to: 
1. Verify the preliminary machine specification discussed in chapter 1, i. e. to 

confirm the speed and power rating of the EATG. 
2. Provide a benchmark on which the performance improvement/degradation of 

the engine fitted with the EATG can be established. 
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I Establish a comparison between the standard 16crr? and the 12crr? turbine 
scrolls in order to determine the most suitable match between the compressor 

and turbine scroll for use with the EATG. 

The engine was tested at speeds between 1000 and 2400 rpm at intervals of 200 rpm. 
The torque applied with the dynamometer varied from a minimum of 50Nni, 

incremented by intervals of 5ONm until the limiting value of the engine or 
dynamometer was reached. 

The turbine power can be calculated using the steady flow energy equation. The heat 

transfer from the turbine to the surrounding ambient is neglected (even though the 

casing is un-insulated and under some conditions becornes semi- incandescent) since 
it is assumed to be small in comparison with the total energy flow through the 

turbine, and hence: 

1ýt = 1h, C pe 
V4 

- T3 ) 7.2 

The turbine inlet temperature T3 is the numerical average of the temperatures 

measured in the two entry ports to the turbine (labelled T3. and T3b as shown hi 

figure 7.32). It is worth noting that the accurate measurement of exhaust temperature 
is extremely difficult hi practice, due for example, to the radiated heat transfer from 

the manifold wall to the thermocouples and the temperature fluctuations associated 

with the pulsating flow from the exhaust valves. The specific heat capacity at 
constant pressure of the exhaust gas is calculated at the average turbine temperature 

using 

cpe = A+ Bt + Ct' + Dt3 +Et4 [kJ/kg. Kl 7.3 
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Wbere 

A=1.005 + 0.787f 
B=2.97 X10-5 +1.32xlO-3f 
C=5.98 x 10-7 +1.78 x 10-6 f 

D= -6.81XIO-'O -5.28xlO-'f 
E=2.32 X 10-13 +3.70XIO-12f 
t= T(K) - 300 

and f is the fuel/air ratio. 

Using equation 7.3, the calculated specific heat capacity of the exhaust gas varied 
between a minimum of 1.04 and a maximum of 1.23 for the l6cný turbine scroll, 

while for the 12cn? turbine the value varied between 1.04 and 1.22. The resulting 

maximum turbine power determined from measured temperatures and flow-rates for 

the 16ciiý turbine was 13.2kW at 104,280rprii, with the engine developing 84.4kW at 
2400rpm. When the non-standard l2cmý turbine scroll was used further regulation of 

the engine load was required to prevent over-speed of the turbocharger shaft for 

safety reasons and hence the engine speed and load were limited so the turbocharger 

speed did not exceed 100,000rpn-L Under these conditions a maximum engine power 

of 73.3kW was achieved at 2000rpm. (the turbine power under these conditions being 

1l. lOkW at 96,600rpm). The maximum turbine power recorded using the 12cn? 

turbine was HAW at 92,640rpni, with the engine developing 65.4kW at 1800rpm 

Figures 7.34 show the calculated turbine power for both turbine scrolls. The turbine 

power increases with increasing engine speed due to the higher mass flow rate of gas 
through the turbine. As is evident from figure 7.34, the turbine power increases as the 
load applied to the engine is increased. This behaviour that can be attributed to the 
increased exhaust gas temperature which occurs as the air/fuel ratio is reduced (as 

shown in figure 7.35). The average exhaust temperature, (i. e. the numerical average 
of the temperature measured hi the two entries) is shown in figure 7.36. 
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As would be expected, for a given mass flow rate, the smaller (12ciiý) turbine scroll 

exhibits a larger exhaust manifold pressure under given engine operating conditions 

and hence develops more power over the entire operating range of enghie. One 

notable consequence of the increased turbine power with the l2cný scroll is that 

under high engine speed and load conditions, the turbocharger will function above its 

maximum safe operating speed. For the purposes of testing, the engine was operated 

so the turbocharger speed did not exceed 100,000rpm in order to provide a 

reasonable safety margin (the maximum specified operating speed of the standard 

turbocharger being some 120,000-130,000rpm). 'nie standard engine in its 

commercial specification employs a l6cmý turbine, wWch is selected on. the basis of 
its maximum speed at the bighest engine speed and load conditions, wl-dch for the 

conditions tested was 104,280rpm However, since the EATG allows considerable 

power to be generated from the turbine, hence reducing the shaft speed, it is 

permissible for this application to combine the EATG with the l2cn? turbine scroll, 

thus allowing considerable scope for electrical generation over a wider range of 

engine operating conditions. 

The compressor power was calculated for each engine test point using: 

- Tý, = thcp V2 - Tl ) 7.4 

In the case of the compressor, the specific heat capacity of the inlet air cp is taken as 

being 1.005kJ/kg. Figure 7.37 shows contours of compressor power derived using 

equation 7.4 and measured temperatures and mass flow rates. As would be expected, 

the compressor power is higher at a given engine operating point for the case of the 

smaller turbine, which is consistent with the higher turbine power. The cross- 

sectional area of the turbine scroll only has a minimal effect on the thermal 

efficiency of the engine, and lience the air/fuel ratio of the engine is slightly higher 

with the smaller turbine scroll (as was shown previously hi figure 7.35). One notable 

consequence of the slightly greater air/fuel ratios with the smaller turbine is that for a 

given engine operating condition the level of particulate matter in the exhaust (which 
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I 
is heavily influenced by the ai/fuel ratio) will be somewhat lower, as is evidenced by 

the contours of figure 7.38. 

7.5 Testing Engine with EATG Fitted 

Having established a series of base tests and determined the most appropriate turbine 

scroll the EATG was fitted to the engine in place of the standard turbocharger to 
facilitate a complete system test. The engine fitted with the prototype machine is 

shown in figure 7.39 (in this case with the flexible inlet duct removed to aid clarity). 
A Ward-Leonard set with a maximum power capability of some 30kW was used to 

provide the DC link current in preference to a laboratory DC supply. 

Preliminary testing identified a problem with the Hall effect position sensors, in that 

at moderate levels of current (i. e. corresponding to powers greater than some 
30OW), spurious trigger signals were generated, apparently as a result of magnetic 

coupling from the machine windings. This conclusion was drawn on the basis that 

the false triggers were co-incident with switching events, causing erroneous rotor 

speed and position feedback, in turn causing instability in the operation of the 

machine. Given that very little could be done with the existing design to minimise 

this coupling, in. order to facilitate further testing an optical sensor was integrated 

into the compressor inlet. The optical sensor (Honeywell HOA1405 reflective 

sensor) was located so as to detect a series of dark and bright regions that were 

painted on the compressor nut, as shown in figure 7.40), giving a4 pulse-per- 

revolution signal. Although this allowed position and speed to be detected without 
interference, the absence of any positive registration with respect to the rotor 
lamination required a calibration procedure. Further, it will have some detrimental 

effect on the air-flow in the inlet and is susceptibility to contamination is such that its 

unlikely to be a long-term solution. 

Initially the engfile was tested at the lowest speed and power i. e. 10OOrpiA 50MA as 
tWs represents the least arduous point for the EATG device both in tenns of 
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turbocharger speed and exhaust gas temperature. At this engine test point, the 

original Holset HlC turbocharger with the 12=2 scroll rotates at 25,680rpm with an 

exhaust gas temperature of 199T, which corresponds to a turbine power of 427W 

(derived using equation 7.2). Given this relatively low turbine power, there is likely 

to be very little to scope to generate any electrical output power, and indeed initial 

attempts to extract electrical power using the EATG resulted in an effective 
"stalling" of the turbocharger. The tests in this case were therefore restricted to the 

application of motoring power to increase the speed of the turbocharger. For the 
EATG system the shaft speed with no electrical input was 23,900rpm (compared 

with 25,680rpm for the standard turbocharger). The reduced speed can be largely 

attributed to the use of a different bearing arrangement and the increased 

aerodynamic loss associated with the SR rotor. Electrical input power was supplied 
to the system to increase the speed of the shaft, and ultimately a speed of 29,980rpm 

was achieved in increments of approximately 20OOrpn-L Figure 7.41 shows the total 

electrical power input to the EATG system as a function of shaft speed, with a peak 

electrical power input of 900W. The increased boost pressure as a function of shaft 

speed is shown in figure 7.42, where an overall increase of gauge pressure of 50% 

was recorded over the speed range 23,900rpm to 28,100rpm. Figure 7.43 shows the 

corresponding increase in mass flow rate of air into the engine, where an increase of 
6.5% is observed over the speed range 23,900rpm to 29,980rpm. One notable feature 

of the increased boost pressure and air flow rate is that the efficiency of the 

compressor, calculated using equation 7.5, is seen to fi-nprove markedly over the 

range of speeds measured as shown in figure 7.44. 
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Indeed, an overall compressor efficiency increase from 15% to 22% is observed for a 

speed increase from 23,900rpm to 28,100rpm. Ilis rapid hicrease in compressor 
efficiency can be highlighted by the compressor map of figure 7.45, where the engine 
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operating points (with the standard l2cný turbine arrangement fitted) are 

superimposed onto this compressor map. The engine operating points are arranged as 
lines of constant speed, where the application of engine load and the corresponding 
increase in turbocharger speed tend to shift the operating points upward and to the 

right of the inap into regions of increased efficiency. It is apparent that even with the 

smaller turbine fitted the compressor is operating at efficiency generally well below 

its optimum value. With the increased speed offered by the use of the EATG in 

motoring mode it is apparent that the compressor will operate in regions of higher 

efficiency adding further benefits, in term of air flow management, to the use of 

such a system. 

Further advantages of the system can be seen when considering the particulate matter 

emissions, figure 7.46 shows the variation in smoke as a function of the EATG rotor 

speed. It is apparent from figure 7.46 that even though the smoke emission for these 

engine operating conditions is already very low (by virtue of the low engine load), 

considerable gains can be made in terms of reducing smoke emission, indeed an 

overall reduction of 15% was recorded over the speed range of 23,900rpm to 

29,980rprii, albeit that the manufacturers specified repeatability is only 0.05 FSN. 

This reduction is due mainly to the increased oxidation of the particles due to the 

increased abundance of oxygen in the combustion chamber (section 1.2 of chapter 1) 

as is evidenced by the increased level of measured air flow rate shown in figure 7.43. 

Similarly, the concentration of NO,, emissions is seen to decrease over the speed 

range by some 13% as shown hi figure 7.47. However, care must be taken in 

interpreting this result as the increased mass flow rate of gas into the engine over the 

speed range (i. e. 6.5%) will tend to dilute the NO., content, and lience the absolute 

reduction in NO., emission is much lower than suggested. Since the formation of NO, 

is a complex function of peak cylinder pressures and temperatures and the timing of 

the fuel injection, no conclusive findings in relation to NQ, can reliably be claimed. 

In order to establish the benefits of the EATG system in tenns of smoke-reduction, a 
further series of tests was initiated at low engine speeds and high load, specifically 
10OOrpm and 150NiTL Unfortunately, while allowing the engine to reach steady-state 
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conditions with no electrical input (which typically takes some 45 minutes or so) the 

turbine-end bearing failed catastrophically at a turbine speed of 31,000rpn-L This in, 

turn caused the rotor to ground onto the stator bore, which resulted iii a visually 
discernible bend in the shaft and darnaged one stator winding. On disassernbly, it 

became apparent that the phenolic cage of the bearing had disintegrated completely 
due to the elevated temperature in the end-cap. Whereas features were included to 

cool the end-cap as discussed in section 7.1.4, it is evident that the measures taken 

were inadequate to cater for a Iiigh load (and lience exhaust temperature condition), 

particularly given the self loss of the bearings. One possible solution would be to 

employ direct oil-cooling to the turbine bearing (as opposed to just the end-cap), 

although this is difficult to achieve in practice given the very limited space available 
(particularly with regard to axial length) and the need for appropriate sealing. 
Further, the use of so-called 'cage-less' Idgli-speed bearings could alleviate some of 
the problems, and indeed, these have been used on larger development turbochargers 
by Holset Engineering. However, they are higlily specialised and expensive bearings, 

which furthermore were not available in sizes that could be accommodated within 

the current design nor with the appropriate speed rating. 

In view of the degree of failure, and the considerable re-design required to enable 
testing to be perfornied with high exhaust gas temperatures, no further testing to 

establish the benefits of the EATG in reducing smoke at low-engine speed and high 
load conditions was undertaken. Moreover, given the very severe failure that 

occurred as a result of bearing o ver- temperature even at 31,000rpni, it was deemed to 
be unsafe to test at very high-speeds until extremely reliable bearing operation could 
be guaranteed, particularly since high turbine speeds necessarily involve high 

exhaust gas temperatures. '17hus, although only very limited results were obtained for 

the entire system, these nevertheless in part demonstrate the likely advantages of the 
EATG system. 
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Figure 7.1. Location of rotor lamination welds 
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Figure 7.2. Cross-section of turbine end-cap 
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Figure 7.3. Balancing equipment output 

Oil channel 

Figure 7.4. Cross-section of stator lamination showing location of oil-channels in the 
back-iron. 
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Oil channel 

Figure 7.5 Cross-section of stator lamination showing location of oil-channels in the 

inter-winding region. 

)nnection holes 

Figure 7.6. Cross section of the final lamination design, including location of 
winding connection holes 

369 



AN 

77 

Figure 7.7 Finite element mesh of motor with finned stator consisting of 34,632 

nodes and 11,323 second order elements with the rotor 30' from the aligned position. 
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Figure 7.8. Flux density contours and lines of constant vector potential solved using 
the mesh of figure 7.7 with a current density of 15A/mm 2 applied to phase A. 
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Figure 7.9. y, -i characteristics for the finned and non-finned (chapter 3) stator designs 

in the aligned and unaligned positions and 15 and 30' from alignment. 

Oil channel 

Figure 7.10. Oil-channel milled into the turbine end-cap 
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Figure 7.11. Oil channel milled into the interfacing planes of the split turbine end- 
cap. 

4 

Figure 7.12. Split turbine end-cap assembly showing the oil-circuit arrangement. 
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50 

Figure 7.13. Radius of hall sensors giving a 50% duty cycle position signal 

Figure 7.14 Cross section of the prototype EATG 
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Figure 7.15. Photograph of the components of the prototype EATG. 

I 

I 

Figure 7.16 Schematic of the 3-phase Fuji IPM showing the internal connections and 

external connections to a star connected motor 
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Figure 7.17. Coupling of 2 IPM's to form the basis of the 3-phase SR drive circuit 
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Figure 7.18. Diagram of the low-pass filter constructed using surface mount 

components and placed on the rear of the hall sensor modules 
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Region of material removed 
during balancing 

Figure 7.19 Photograph of the rotor after balancing showing the material removed 
from the face of the structure. 
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Figure 7.20. Measured pulse pattern from the Hall sensors showing the non-uniform 
duty cycle. 
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Figure 7.2 1. Schematic representation of the prototype EATG system. 

Figure 7.22 Photograph of the prototype system on the bench 
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Figure 7.28a. Measured and predicted current waveforms for test case I 
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40 

35 

30 
- 

Predicted 

25 
ýF 

10 

5 

0 0.5 115z 25 3 35 4 
, nmo (S) x 10" 

Figure 7.28c. Measured and predicted current waveforms for test case 3 
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Figure 7.29 Mesh of the prototype machine (without the fins) consisting of 15563 

nodes and 30920 first order elements. 
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Figure 7.30. Sample field distributions for test case 2 
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Figure 7.3 1 b. Rotor iron loss contours for test case 2 

384 



Load cell T 
Fuel 

ýaamometer pump",, 

wheel Drive ) 
shaft 

After- cooler 

Turbine 

Exhaust 

T4 

Exhaust "*I W\ 
Balance manifold 

/ 

T3a, P3a T3b, P3b 
weights Compressor 

KEY 

PI Ambient pressure 

P2 Compressor exit pressure 

P3 Turbine inlet pressure 

T, Ambient temperature 

T2 Compressor exit temperature 

T3 Turbine inlet temperature 

T4 Fuel temperature 

T5 Oil temperature 

T6 Air temperature after after-cooler 

Figure 7.32. Schematic of the engine test apparatus. 

T, = ambient 
T P, = ambient , 

\,. T16 T2, P2 

4 

NO, N02 

HC 

385 



Figure 7.33. Photograph of the engine test facility 
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Figure 7.34a. Contours of turbine power for the engine fitted with the 16cm 2 turbine 
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Figure 7.35a. Contours of air/fuel ratio for the engine fitted with the l6cM2 turbine 
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Figure 7.36a. Contours of exhaust gas temperature for the engine fitted with the 

16CM2 turbine 
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12CM2 turbine 
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Figure 7.37a. Contours of compressor power for the engine fitted with the 16CM2 
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Figure 7.38a. Contours of smoke for the engine fitted with the 16CM2 turbine 
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Figure 7.39. Photograph of the prototype EATG fitted to the engine. 

Figure 7.40. Photograph of the optical sensor mounted in the compressor scroll. 

392 



1000 

900 

700 

600 

800 

0 CL 

'S CL 500 

400 

w 300 

200 

100 

0 L- 

2.3 2A 2.5 2.6 2.7 2.8 2.9 3 3.1 
Rotor speed (rpm) 

x 104 

Figure 7.41. Total electrical power input to the EATG as a function of rotor speed. 
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Figure 7.42. Boost pressure ratio as a function of EATG rotor speed. 

393 



0.04 

0.035 

0.03 

0.025 
cc 
ID 0.02 ro 

U. U 10 
co 

0.01 

0.005 

01 111 

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 
Rotor speed (rpm) 

x 10 4 

Figure 7.43. Mass flow rate of air into the engine as a function of EATG rotor speed. 

25 

20 

Z" L) 
c 

T 15 

10 

01 11 

2,3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 
Rotor speed (rpm) 

X 104 

Figure 7.44. Compressor efficiency as a function of EATG rotor speed. 
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Figure 7.45. Standard compressor map with the engine operating points (with the 

standard 12cm 2 turbine) superimposed onto the characteristic. 
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Figure 7.46. Exhaust smoke as a function of function of EATG rotor speed. 
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Figure 7.47. Concentration of Oxides of Nitrogen as a function of EATG rotor speed. 
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CHAPTER 8 

DISCUSSION AND CONCLUSIONS 

8.1 Conclusions 

This thesis has presented the findings of a wide-ranging and multi-disciplinary 

research programme into the feasibility and design issues related to incorporating an 

electrical machine into a high-speed automotive turbocharger. The research has 

illustrated the critical importance of a concurrent engineering approach to system 
design, which encompasses electromagnetics, power electronics, structural analysis, 

rotor dynamics and cornputational fluid dynamics. Indeed, although this thesis is 

primarily concerned with design of an electrical macl-fine and its integration into a 

system, the key design parameters and constraints are dictated predominantly by 

mechanical considerations. In addition to describing the design of a specific system 

there are a number of generic findings that are likely to be of considerable utility to 

other applications: 

9 generalised teclinique (albeit one based on extensive finite element analysis) to 

calculate centrifugal stresses hi four-pole SR rotors 

9 An assessment of the inerits of various teclmiques for calculating aerodynamic 

losses in SR maclibies 
A novel teclmique for esth-nathig the contribution of minor loop excursions to 
iron losses 

I 

The modelling and design aspects of the research have been supported by extensive 

experimental measurements at component, sub-systcm and system level. In general a 
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reasonable degree of correlation was obtained 'between measured and predicted 

perfon-nance as detailed bi the various chapters. A limited testing progranu-ne on a 

complete system was undertaken, with encouraging preliminary fuidhigs. However, 

tWs was curtailed by severe practical problems associated with over-heating and 

subsequent failure of the bearings. 

In terms of the various specific outcomes of the research programme, the following 

conclusions can be drawn: 

1 Switched reluctance machines are potentially a good fit to the application by 

virtue of the absence of any no-load iron loss, the robust rotor structure, their 
nik, ability to operate at high temperatures and their potential for low cost volume 

manufacture. 
2 I'lie maximum rotor diameter in high-speed SR machines is severely constrained 

by considerations of centrifugal stress and the relatively poor mechanical 

properties of electrical steels. In the specific case of operation at 100,000 rpm 
with Silicon steel, the rotor diameter is limited to 38mm. 

3 The maximum stress in any four pole SR rotor can be estimated to a practically 
useful level of accuracy using a simple equation (i. e. equation 2.12 with a 
constant of 0.2) 

4 Although SR machines tend to be manufactured with small airgaps, (of the order 

of a few hundred microns) this can more than readily accommodate the likely 

radial growth of small and inedium sized SR maclaes at Ifigh-speeds. By way of 
example, for the 38mm rotor in the prototype, the predicted increase in. diameter 

at 100,000 rpm is only some 8gm as compared to an airgap of 200gn-L 
5 Although linear simulation methods for predicting the dynamic perfonnance of 

SR machines have numerous drawbacks, e. g. inability to cater for saturation and 
lience large errors in predicting current waveforms under WgIi levels of 
excitation, they can nevertheless be extremely useful in terms of winding design 
(section 3.7.1) and control system design when appropriately applied. 
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6A novel method for approximating the hysteresis loss for wavefornis with minor 

loops has been developed (section 4.5.2.3), mid validated by measurements on 
both material samples, with a typical correlation of 10 -12%. 

7 Although an analytical approach to iron loss calculation has been proposed, it is 

apparent that it can result in a considerable underestimate of iron loss even under 

essentially un-saturated conditions (underestimating by some 50% the losses 

predicted by a detailed finite element technique - section 4.6). This is a primarily 

a consequence of the over simplified representation of the flux distribution near 

the front regions of the teeth as they come into alignment 
8 In a 6-4 SR machine, a NNNSSS winding arrangement results in a reduced iron 

loss as compared to a NSNSNS, typically by some 8%. 

9A novel test-rig that has been developed based on an iterative open-loop 

approach to generating flux-densitY waveforms. Satisfactory perfon-nance was 

obtained for frequencies up to 125Hz, and the teclinique offers potentially useful 

additional features as compared to more conventional analogue feedback 

systems. 
10 In the calculation of aerodynamic losses hi SR macl-dnes, the vast majority of the 

loss is generated in the narrow airgap. However, the presence of the inter-polar 

regions plays a significant role in terms of the magnitude of the overall loss in the 

narrow airgap region. 
11 The aerodynamic losses in an SR rotor are 1-iigher than for an equivalent 

cylindrical rotor of the same diameter, particularly at high speeds. 
12 Two-dimensional CFD analysis has a number of limitations in terms of 

calculating aerodynamic losses, even for rotors with a relatively long axial 
length, and recourse to three-dimensional analysis is often necessary. 

13 Reasonable correlation between measured and predicted losses can be achieved 

when three-dimensional CFD analysis is appropriately applied (at least in terins 

of the correlation non-nally acliieved with CFD analysis). 
14 Even in high-speed machines, aerodynamic losses are unlikely to constitute the 

major loss component. By way of example, a 50,000 rpin machine with the same 

rotor volume as that considered hi the experimental measurements, would on the 

basis of published output coefficients for a typical aerospace specification 

399 



machine, have a torque capability of some 3.5 Nm (based on a torque per unit 

rotor volume of 30 kNmý2), and hence a notional power rating of sorne 18kW or 

so. Ilius, the measured aerodynamic losses at 50,000 rpm would constitute a loss 

of some 0.5% of rated power. 
15 The integration of an SR rotor into a turbocharger shaft introduces a number of 

additional rotordynatnic de-stabilisation mechanisms, which may influence the 

viability of employing hydrodynamic bearing 

16 For the particular rotor configuration selected, two solid body critical speeds lie 

within the operating speed range of the device, although these can often be driven 

thorough with no damage to the systen-L The most destructive vibration mode is 

likely to be the first bending mode, and again tl-iis within the speed range of the 

system, albeit the top end of the speed range, and is derived with an approximate 

equivalent stiffness for the bearing. 

As discussed above, although a prototype system was manufactured, ultimately its 

utility could not be demonstrated over its full operating range. In terms of future 

viability of the concept, the manufacture and testing of the prototype has identified 

the following key issues: 

Rotor position sensing - The harsh environment, in terms of dirt ingress, 

high temperatures and the electromagnetic interference, dictates that the 

integration of a robust, repeatable and accurate means of detecting position is 

extremely challenging. Although in. principle, automotive grade variable 

reluctance sensors can be employed to exploit the salient nature of the SR 

rotor, in. practice the large stray magnetic fields that are present in the vicinity 

of the end-windings preclude their use. Although some successes was 

achieved by employing an optical approach, this can only be regarded as a 

temporary solution for prototype evaluation given its invasive nature in terms 

of the air-inlet and its likely poor robustness in. terms of the build up of 

contaminants. 
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Beaflngs - Arguably the key enabling technology for any future 

commercialisation is the bearing system, in particular the turbine-end bearing 

which operates in a harsh high temperature environment. The testing of the 

prototype has illustrated that cooling of the turbine-end bearing is critical in 

terms of realising a viable system However, it is worth noting that ultimately 

any cost-effective mass-market systems are likely to require the use of 

hydrodynamic bearings as discussed in chapter 6, rather than Wgh-precision 

rolling-element bearings. However, as discussed in chapter 6, this has 

attendant problems in terms of stability, particularly since SR machines 
introduce considerable unbalanced magnetic pull and torque pulsations. 

In summary, incorporating an SR machine into a turbocharger has very significant 

potential performance benefits. However, it is an extremely challenging application, 

in which many of the system components are operating near their limits. Further, 

there are considerable trade-offs between electrical and mechanical perfon-nance, 

which can only be investigated by detailed analysis. The ultimate coi-m-nercialisation 

of such systems is likely to still require major advances in enabling technologies, 

most notably high-speed bearings that can tolerate the harsh environments and the 

large loads imposed by SR machines. 

lo 
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