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Abstract 

This dissertation reports investigations on shear in cracked reinforced concrete (RC) 

elements including the development and implementation of a material subroutine for the 

commercial finite element (FE) program ABAQUS. The material subroutine UMAT is 

intended to substantially improve the shear behaviour of the standard concrete options of 

ABAQUS. 

At first the important shear theories are reviewed in detail and their advantages and 
drawbacks are summarised. The modified compression field theory (MCFT) is identified 

as a suitable shear theory worth being coded for its application in FE analysis. 

A comprehensive check on the MCFT confirms its suitability in a slightly modified form 

for the investigation of a variety of cracked structural RC elements. This check is con- 

ducted on a section analysis level by means of a developed program called LAYER 

which is coded according to the MCFT. 

The main part of the work is the implementation and testing of the material subroutine 

UMAT which is added to the source code of ABAQUS via an interface provided by the 

commercial FE program. 

Finally, the UMAT is utilised for examining the ductility of RC walls. It is concluded that 

shear deflections can influence the displacement and curvature ductility of squat struc- 

tures in a substantial way, even though a flexural type of failure might prevail. 
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1 Introduction 

The earthquake resistant design of reinforced concrete structures is mainly based on 

principles which are known as the capacity design method (Paulay/Priestley, 1992), in- 

corporated in nearly all modern codes of practice. In 1993 the second draft of the 

Eurocode 8 was released and its introduction as a standard for seismic design in Europe 

is considered to be not far off. With this development, the capacity design philosophy has 

emerged in European design practice and it is worthwhile considering its implications. 

The philosophy is founded on the fact that severe seismic action is by nature a rare event 

and we, therefore, accept higher risks of damage than under other comparable loads. 

This enables the method to take advantage of the knowledge that a structure can sustain 

large deflections far into the post elastic range, provided it is detailed in a sufficiently 

ductile manner. Consequently, seismic design loads may be substantially reduced if the 

corresponding ductility demand is accounted for. Therefore, a crucial point in capacity 

design is the evaluation of deflections which is necessary for the determination of the 

ductility pd, the ratio of displacement at the ultimate limit to displacement at the onset of 

yielding. 

Until recently, the calculation of deformations was considered to be necessary only at the 

serviceability level and, hence, little research was carried out up to now for the exact 
determination of deformations at the ultimate limit. This means that the displacement 

ductility as cannot be calculated in a reliable fashion using the traditional design rules 

derived in many RC text books and lecture notes. Roughly speaking, these traditional 

procedures are based on section analysis and till recently they have been virtually the 

only possible method of designing reinforced concrete structures. However, an intrinsic 

disadvantage of section analysis is that its focus is confined to local areas making it inca- 

pable of describing the overall behaviour of a structure. Since the development of the 

finite element method (FEM) a powerful tool has become available for the calculation of 

global values which are not easily attainable by section analysis procedures. Therefore, it 

is obvious that predicting quantities like the displacement ductility of a complex rein- 
forced concrete structure is only possible by means of a finite element calculation. 
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However, the method is far from being perfect and much work has to be conducted till 

the non-linear material behaviour of cracked reinforced concrete, subjected to high shear 

stresses, can be modelled in a reasonably accurate manner. Unfortunately, the advantage 

of section analysis, which is the proper treatment of local effects, is a main disadvantage 

of the FEM and that shortcoming becomes significant when trying to implement phe- 

nomena like aggregate interlock, dowel action or the size effect, which are all features 

connected with the shear transfer in a cracked reinforced concrete member. 

The main objective of the capacity design method is to avoid shear failure at all costs 

and, hence, shear is treated in a more conservative way which makes the aforementioned 

shortcomings less dominant, especially when dealing with highly ductile framed skeleton 

structures, consisting of slabs, columns and beams. However, particularly in central and 

northern Europe, stiff shear walls are often used in reinforced concrete buildings to carry 

the lateral loads generated by seismic action. In this case, deflections due to shear are no 

longer negligible and a procedure is necessary for the proper evaluation of the influence 

of shear action on the displacement ductility of a structure. 

Usually, in FE programs cracks are treated as smeared over the element and secondary 

shear carrying actions are accounted for by the introduction of a shear retention factor. 

No guidelines are available for the realistic evaluation of this factor and, hence, an arbi- 

trary value between zero and one must be chosen to care for shear transfer in a crack. 

However, aggregate interlock influences the shear response in a significant way and 

therefore, it is desirable to improve the shear behaviour of existing FE programs by im- 

plementing a shear model, in which aggregate interlock is an intrinsic feature of the con- 

stitutive equations. 

In recent years, various theories on cracked reinforced concrete were developed which 

treated shear in a more physical fashion. In the early sixties Walther, then a co-worker of 

Leonhardt, published his shear failure theory (1964). Almost concurrently Kani in To- 

ronto (1964) and Fenwick/Paulay (1968) in New Zealand established the tooth model 

which was later refined by Reineck (1991), a researcher of Schlaich in Stuttgart. Impor- 

tant work was conducted in Canada by Collins/Mitchell (1980), known as the compres- 

sion field theory (CFT), which was later extended to the modified compression field the- 

ory (MCFT) by Vecchio/Collins (1986). In Munich Kupfer and his researchers (1983) 

developed a similar theory with a more sophisticated approach to aggregate interlock. 
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Thürlimann (1989) in Zurich and Nielsen (1984) in Copenhagen developed limit analysis 

procedures based on the plasticity theory for concrete. All the above mentioned theories 

are reviewed in Chapter 2 in a state-of-the-art report in some detail, however, for the 

sake of completeness it should be mentioned that many other researchers have contrib- 

uted to the better understanding of shear action in the last few decades. 

One of the objectives of this work is to clarify the influence of shear deflections on the 

displacement ductility of reinforced concrete structures. It is therefore intended to im- 

prove the shear behaviour of RC elements in the FE program ABAQUS (1994) by add- 

ing a user defined material based on the MCFT to the source code of the package. The 

purpose of the procedure is to fit ABAQUS with a facility which enables the program to 

calculate the global response of a cracked reinforced concrete structure in a realistic way. 

This goal will be achieved in two steps, the first of which can be described as a check on 

the MCFT (Chapter 3) to prove that the theory, which is based on a rather simple but 

reasonable compatibility condition, provides good results on a local level and is by nature 

suitable to be implemented in an FE program. The second step (Chapter 4) includes a 

comprehensive description of the coded user subroutine and its verification by means of 

comparisons with test data given in the literature. Numerous calculations reported in 

Chapter 5 are carried out to scrutinise the influence of shear on ductility. Finally, the 

provisions of the EC8 have been checked and recommendations on their practical appli- 

cation conclude the work. 
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2 Shear Theories: A State-of-the-Art Report 

2.1 The Shear Failure Theory 

In 1962 Walther published his shear failure theory. This theory focused mainly on the 

flexural shear behaviour of a reinforced concrete beam and was based on the following 

assumptions: 

" Shear failure occurs when the concrete has crushed above the tip of a shear crack. 

Therefore, the stress state in a section perpendicular to the beam axis is investigated. 

" In the shear span of a beam, the plane section hypothesis of Bernoulli must be aban- 

doned and replaced by a compatibility relation which accounts for the shear defor- 

mation in a cracked cross section. 

" The stress in transverse direction ay in the compression zone is taken to be zero and 

in the vicinity of concentrated loads special considerations may apply. 

Walther (1964) used a Mohr failure criterion to evaluate the strength of the compression 

zone. The criterion and the relevant equations are given in Fig. 2.1. The failure criterion 

consists of an ellipse for 6x and of a parabola for o /fý> -0.25, while the failure 

envelope is modelled as a parabola, taking the ratio of compression and tension strength 

of the concrete to be 0.125. 

Failure of the concrete occurs when the Mohr's stress circle touches the failure envelope. 

If the stress distribution in the compression zone is considered to be homogeneous for 

both the compression and the shear stress, then one particular stress circle is valid for all 

points in the cross section. However, when the stresses are distributed in a more uneven 

way, eg as shown in Fig. 2.2, then for each point in the compression zone another set of 

stresses applies and the respective Mohr's circles vary from point to point along the 

cross section. 
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Fig. 2.1 Failure Envelope and Failure Criterion for Compression Zone of an RC Beam 

Fig. 2.1 shows some Mohr's stress circles and as they all touch the failure envelope they 

can additionally be regarded as failure circles. This means that each point along the pe- 

rimeter of a circle represents a stress state causing failure in a plane inclined under the 

angle gyp. As Walther investigates the cross section perpendicular to the beam axis, only 

the stress state with 6x, Qy=0 and zxy is used for further scrutiny. From Fig. 2.1 it can be 

seen that all points representing a failure stress state in the xy direction are located on a 

curve which is an ellipse for 6x/fý_<-0.25 and a parabola for 6x/ff_>-0.25. Eqs. (2.4) and 
(2.5), describing the above explained failure criterion, can be derived by calculating the 

contact point A of the failure envelope with the failure circle from Egs. (2.1) and (2.2). 

This yields Eq. (2.3) for the abscissa of the contact point A. The mathematical discussion 

of Eq. (2.3) reveals that for 6/ffS-0.25 Eq. (2.4) is obtained by setting the root to zero. 
For values o, y 

_! -0.25 the abscissa of the contact point A is always 0.125. Hence 

Eq. (2.5) is derived from Eq(2.3) with cr /f'=0.125. 
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After the failure criterion is established it is possible to check whether a stress state with 

max, Qy=O and z leads to failure or not. From Fig. 2.1 it is clear that at failure ox fit is 

always less than the compression strength of plain concrete provided the shear stress 

acting simultaneously is other than zero. It is therefore desirable to derive a relationship 

which shows how the concrete strength in the compression zone depends on the applied 

shear force. This equation was found by Walther using the expressions given in Fig. 2.2 

together with the failure criterion represented by Eq. (2.4). 

It can be seen from this equation that j is a function of the shear ratio M/Vd which 

might be replaced by aid in the case of a beam subjected to concentrated loads. In 

Fig. 2.3 the shear ratio M/Vd is plotted against the normalised reduced compression 

strength of the concrete v fit/ff. For this graph Walther used a slightly modified equa- 

tion to account for the transverse reinforcement in the beam. This was accomplished by 

adding the parameter 17 giving the ratio of the yielding force of the transverse reinforce- 

ment to the total shear force in the cross section as depicted in Fig. 2.2.77 becomes 0 for 

a beam without stirrups and 1 if all shear is carried by shear reinforcement. Additionally, 

the influence of the vertical stresses 6y ;, 60 in the vicinity of a concentrated load is ac- 

counted for by shifting the curves towards yr=1 at a shear ratio of about 1.5. This meas- 

ure can be regarded to be reasonable, because the transverse stresses enhance the com- 

pression strength of the concrete. 

Although Walther gives only a more qualitative explanation for the length of the region 

under a concentrated load where a, stresses are substantial, it is possible to verify his 

value of about 2 to 2.5d with Schleeh's method (1973). It is obvious from Fig. 2.3 that 

the extension of the St. Venant disturbances is as long as the height of the beam. This 

means that the correct value becomes a/d=2 when both the concentrated load at the 

support and in the beam span are considered. This can be regarded to be in line with the 

value given by Walther. 
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a) Free Body Diagram 
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Fig. 2.2 Free Body Diagram, Stress Distribution and Concrete Law 

Up to this point only equilibrium has been taken into account by Walther, but now com- 

patibility considerations will be introduced. When a beam consisting of an isotropic mate- 

rial is loaded in the elastic range, its flexural and shear resistance can be calculated ap- 

plying the technical bending theory with Bernoulli's plane section hypothesis. However, 

when a reinforced concrete beam cracks it develops a highly anisotropic behaviour. In 

particular, in regions with inclined shear cracks the plane section hypothesis is no longer 

valid. This means that the depth of the compression zone in the shear span, which is 

needed to calculate the shear resistance, cannot be calculated using the simplifications of 

the technical bending theory. 



2.1 The Shear Failure Theory $ 

Walther considered the deformations of a beam under a load to occur mainly in the vi- 

cinity of the inclined cracks. When a crack opens, the two separated parts are distorted 

around the centre of rotation which is assumed to be at the tip of the crack. Two differ- 

ent parts contribute to the total deformation, as can be seen from Fig. 2.4. The upper part 

of the sketch shows the rotation of the beam due to moderate shear forces, which Wal- 

ther called the shear rotation. From the geometry of this deformation Eq. (2.8) can be de- 

rived and its evaluation reveals the similarity with the relation for the plane section hy- 

pothesis However, Bernoulli's equation is an infinitesimal description of 

the strain state all over the cross section, while Eq. (2.8) gives a finite formulation for the 

deformations concentrated in the vicinity of a crack. 

a) Shear Ratio/Compression Strength Relationship b) St. Venant's Principle for identifying 
Re ions o Disturbances 
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Fig. 2.3 Shear Ratio/Compression Strength Relationship and St. Venant's Principle 

At a further load stage near the ultimate limit, additional rotation occurs which increases 

the crack width at the top of the beam but not that at its bottom, because the longitudinal 

reinforcement restrains it. As a result of this restraint the concrete tooth tends to bend 

and hence, the crack opens in the middle part of the web. Walther named this the defor- 

mation of the web. The geometry of the total deformation including the shear rotation is 

given by Eq. (2.9) and shown in the lower sketch of Fig. 2.4. Comparison of both equa- 

tions shows that the deformations at high shear are accounted for by a factor k= which is 

always equal to or greater than 1 and depends mainly on the shear stress at the ultimate 
limit. 
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It is obvious that the next step in the theory must be the transition to an infinitesimal de- 

scription which means that As, and As, are to be replaced by the concrete and steel strain 

respectively. Walther, therefore, assumes As,, to be proportional to the depth of the com- 

pression zone increased by a factor 1/i% and ds� to be mainly dependent on the crack 

length and the shear ratio. The two compatibility equations which connect the quantities 

As, and As,, with the strains e, and e, respectively, are given in Fig. 2.4 as Egs. (2.10) and 

(2.11). Elimination of As,, and ds� and rearranging finally yields the crucial compatibility 

equation of Walther's shear theory, which is also shown in Fig. 2.4 as Eq. (2.12). 

Egs. (2.10) and (2.11) seem to be established in a rather arbitrary way, although Walther 

gives some reasonable explanations for the determination of the various relationships. 

Nevertheless, it seems that some parameters may have been chosen arbitrarily for the 

sake of simplicity. 

a) Geometry, of De ormations b) Compatibility, Equations 

a 

dsot=4su 1 
_1sinO 

(2.8) 

Aso = Asu k -1 sin 0 (2.9) 

eso=sýdý (2.10) 

ds"=Esd'n0k, 
1z (2.11) 

max. e, 
= 

kr 
4c 

(2.12) 
8S V 

VS 

kr = magnification factor due to web deformation 
k, = reduction factor due to bond slip 

Fig. 2.4 Deformations in a Crack and Corresponding Compatibility Equations 

Eq. (2.12), which replaces the plane section hypothesis in Walther's shear failure theory 

incorporates the special case of pure bending, when kr and consequently t/' is set to unity. 
Fig. 2.5 depicts an evaluation of Walther's calculations using both theories for pure flex- 

ure. As Eq. (2.12) is dependent on the bond factor ke, the normalised moment at the ulti- 

mate limit mu is a function of the diameter of the steel bars. Therefore, the values calcu- 
lated by using Eq. (2.12) are scattered over a certain range, which is shown in the graph 
by the shaded area, while the results obtained with the plane section assumption, are rep- 

resented by the dashed line. Eq. (2.12) also reveals that the shear theory allows a smooth 

transition from pure flexure to flexure with shear. 
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As mentioned before, the factor kr, representing the deformation in the web, is a function 

of the shear stress. Therefore, equation kz zu /z, >1 might apply, where zu denotes the 

shear stress at the ultimate limit and z,, the shear stress at the onset of cracking. If kz 1, 

then z�=zc which means that at a load stage where cracking commences, no web defor- 

mation in terms of tooth bending can occur. In the presence of transverse reinforcement 

the relationship would read kT (zu z', ) /zc >1 with zs=r, z,, where zs is equivalent to 

that portion of the shear force which is resisted by the stirrups. The final equation for kT 

derived by Walther (1964) was found to be wrong. Therefore, here only the correct for- 

mulation is given: 

zu 1- ail kT =z+ 
ý 

(2.13) 

In Eq. (2.13) a represents a factor which is 1.0 for inclined stirrups and 0.75 for vertical 

transverse reinforcement. This is a conservative measure which accounts for Walther's 

observation of a certain amount of tooth bending when using vertical stirrups even when 

i=1. For 77=0 Eq. (2.13) yields kz vu/z,, 21, and for i=1 it yields k, =] for inclined stir- 

rups (a=1) and kt 1+0.25z, ß/rc 21 for vertical stirrups (a=0.75). This trial proves that 

Eq. (2.13) is correct, while the equation for k= derived by Walther is not. 

The equation for the ultimate moment resisted by the cross section was derived by Wal- 

ther from the equilibrium of the free body of Fig. 2.2 and is given in Fig. 2.5 in a normal- 
ised form. The flexural resistance is dependent on the relevant parameters of the shear 
failure theory and yields lower values when a structure fails in shear. The shear failure 

theory of Walther uses a Mohr failure criterion to calculate the concrete strength in the 

compression zone of a beam. To account for the decreased depth of the compression 

zone in the shear span of a structure he introduced a compatibility relationship describing 

the deformations due to shear which are concentrated in the vicinity of a crack. His shear 
deformation relationship includes the influence of the longitudinal reinforcement on the 

deformations in the web and can manage the transition from pure flexure to flexure with 

shear. 
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Fig. 2.5 Normalised Moment m� against Longitudinal Reinforcement Ratio pi 
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With this theory Walther became the first researcher to describe the shear behaviour of 

reinforced concrete beams based on a physical model. However, his theory has also 

shortcomings. The main disadvantage is that at a certain stage, Walther was forced to 

introduce rather arbitrary assumptions which he could only explain in a more qualitative 

way. Therefore, his theory lost a part of its elegance and credibility and in the end be- 

came a semi empirical approach to shear design. Nevertheless, Walther's shear failure 

theory was in 1962 a great step forward and started a development into shear research 

which is not yet successfully concluded. 

2.2 The Tooth Model of Kani refined by Fenwick / Paulay 

In this section the tooth model of Kani (1964) and Fenwick/Paulay (1968) is briefly re- 

viewed in a more qualitative fashion, because it was later improved by Reineck, whose 

model will afterwards be presented in detail. 
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In 1964 Kani published a paper in which he developed a new theory for the shear transfer 

in an RC beam without transverse reinforcement. Since the early fifties, the use of de- 

formed steel bars had become increasingly common in RC design and it soon emerged 

that the enhanced steel bond of ribbed bars changed the performance of an RC beam in a 

substantial way. The visible sign of this new behaviour was a regular crack pattern which 

developed when a beam was loaded beyond yielding of the flexural reinforcement to fail- 

ure. Kani compared a heavily cracked beam with a comb and referred to the body be- 

tween two adjacent cracks as a concrete cantilever or tooth. 

When deformed steel bars are used in an RC beam the tension force in the steel decreases 

towards the support by generating bond stresses which act on the surrounding concrete 

and tries to bend the concrete tooth anchored in the compression zone of the beam. Kani 

assumed that after the resistance of a cantilever is reached it will break off dropping the 

bond stresses acting on it to zero. This procedure would lead to a steady transition from 

beam to arch action as the concrete teeth may gradually fail at their clamped ends. How- 

ever, arch action would only increase the shear resistance of a beam if the aspect ratio is 

below a significant value a/d which is usually between 2 and 3, otherwise a sudden shear 

failure would occur. 

In Kani's theory all bond stresses are resisted at the clamped ends of the concrete canti- 

levers. However, Fenwick and Paulay recognised that the main proportion of the shear is 

carried by aggregate interlock and dowel action. In their paper, published in 1968, they 

concluded from their intensive investigations that some 60% of the shear in a beam with- 

out transverse reinforcement is carried by aggregate interlock, while tooth bending and 

dowel action might contribute to the shear resistance by about 20% each. Fenwick / 

Paulay also confirmed that appreciable arch action occurs only when the shear ratio is 

less than 2.5 and extensive cracking ensures the bond slip of the longitudinal reinforce- 

ment necessary for the development of arch action. Fenwick/Paulay did not try to give a 

physical explanation of aggregate interlock and dowel action but established empirical 

formulae, with which they achieved good results compared with their testing. It was the 

work of Walraven on aggregate interlock in the early eighties which enabled many re- 

searchers to include aggregate interlock in their models in a less empirical manner. 
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2.3 The Shear Model of Reineck 

The mechanism of force transfer across cracks was not described in a satisfying manner 

until Walraven (1981) succeeded in developing a model which explained the friction 

between two adjacent crack surfaces. After that development, it was possible to improve 

the tooth model of Kani and Fenwick/Paulay by adding aggregate interlock to the model. 

It soon turned out that aggregate interlock was, besides stirrups, the most important 

mechanism of shear transfer in reinforced concrete elements. 

In his dissertation Reineck (1990) tried to treat the shear transfer along beams in a physi- 

cally consistent way. The following pages introduce the work of Reineck on the shear 

resisting mechanisms of RC elements without transverse reinforcement. The significance 

of this work is the introduction of kinematics to the model, which, together with consti- 

tutive relations and equilibrium considerations on free body diagrams, yields the various 

proportions of a shear force which are assigned to the different mechanisms of shear 

transfer, such as aggregate interlock or dowel action. When Reineck derived his me- 

chanical model for RC members without transverse reinforcement, he mainly focused on 

slabs, the most widespread structural element in everyday design practice. As little is 

known about their shear behaviour, it was desirable to establish a model which should be 

able to describe the load transfer to the supports at every load stage up to the ultimate 
limit. 

The basis of Reineck's model is the tooth model which was already mentioned earlier. 
Fig. 2.6 shows the shear region of a beam without stirrups. A discrete crack pattern was 

adopted with the first crack developing at a distance of h from the support, a crack 

spacing of scr = 0.7(d-c), and a crack inclination angle 0 of 60 ° 

The following shear carrying actions were identified: 

" Aggregate interlock 

" Flexure at the clamped end of the concrete tooth 

" Dowel action of the longitudinal reinforcement 
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a) Free Body Diagram and Concrete Tooth 
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Vý = shear force in compression zone 
Vd = shear force due to dowel action 
Vf = shear force due to aggregate interlock 

b) Independent Shear CarryiLg Actions 
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Fig. 2.6 Free Body Diagram, Concrete Tooth and Shear Carrying Actions. 

According to Reineck's assumptions, each shear carrying action will generate shear 

stresses in the compression zone of the cross section, which are added together to the 

shear force V. In the literature V. has often been referred to as the contribution of the 

concrete to the shear force, and Reineck shows with his model, as Kupfer has done be- 

fore him, that VV is triggered by secondary shear carrying actions in the web and not by 

arch action, which has to be ignored in B-regions of a beam where the plane section hy- 

pothesis of Bernoulli applies. Moreover, it was recognised that tooth bending cannot be 

assigned to the web below the neutral axis, but provides a certain amount of shear in the 

compression zone, however small it may be. 
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s= crack spacing 
b= beam width 
Tn = average shear stress 
VVd, Vb, Vf = proportions of V,, 
due to dowel action, tooth bending 
and aggregate interlock, respectively 
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As depicted in Fig. 2.6, each shear carrying action is treated separately and the total 

amount of shear, transferred through a cross section, is always the sum of the shear gen- 

erated by the various independent shear carrying actions. This is an important feature of 

Reineck's model because it ensures the ongoing shear transfer even in the case of the 

loss of a single shear carrying action. For instance, the tooth bending mechanism is con- 

sidered to be failing long before the ultimate limit is reached, in which case aggregate 
interlock and dowel action have to take over the proportion of the lost mechanism. 

Fig. 2.6 shows a set of equilibrium equations which can be derived from the provided 

sketches. Reineck assumed that the depth of the compression zone c can be at most O. 5z, 

where z denotes the internal lever arm. Then the shear force carried in the compression 

chord can be a maximum of one third the total shear force, resisted in the cracked sec- 

tion. With these equations, the stress and strain state in the chords are easily calculated. 
The derivation of the final equilibrium equation requires assumptions to be made con- 

cerning the distribution of the friction forces along the cracked surface. Reineck recog- 

nised that the dowel forces generated in the crack by the longitudinal reinforcement 

counteract the friction forces in the lower part of the crack. This is accounted for in his 

final equation of equilibrium: 
3z 

V=bzTf+4d-c Vd 

where if are the friction stresses at mid-depth of the crack. 

Up to now, only the equilibrium in a cross section has been considered. However, the 

derived equations are not sufficient for the solution of the statically indeterminate prob- 
lem. Other equations are necessary to determine the still redundant quantities c, z, Vd, 

and zy. Constitutive laws and kinematic relations are now needed to yield the still missing 

equations. 

For concrete in compression and steel in tension, simple bilinear stress/strain relations 

were adopted, because the concrete in chord and web is only under little stress. Fig. 2.7 

shows the material laws used, including that for the tensile strength of concrete. Reineck 

modelled aggregate interlock using a law which is based on the work of Walraven. When 

keeping the crack width constant at a level below 0.9 nun the friction is considered to be 

dependent on the relative displacement of the crack surfaces. However, until a slip of 

dmo is overcome, no friction stresses can be developed at all. 
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The friction is assumed to increase linearly until the maximum value zf, is reached at a 

displacement of dm,,. A further increase of friction stresses beyond zfu is only possible in 

the presence of normal stresses o which are not considered to be generated in members 

without transverse reinforcement. Reineck restricted the friction stress zfu to a value of 

less than 50% of the tensile strength of concrete and he further assumed, according to 

Walraven, that no friction occurs beyond a crack width of 0.9 nim. With the zf/dm- 

relationship of Fig. 2.7 it is now possible to calculate the crack friction as a function of 

the crack width and the mutual displacement of the crack surfaces. The material law for 

the dowel action was taken from Vintzeleou / Tassios (1986) and Baumann / Rüsch 

(1970), and the force/displacement relationship was derived by Hamadi/Regan (1980). 

a) Concrete and Steel Laws b) Material Law for AggLegate Interlock 
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Fig. 2.7 Material Laws for Concrete and Steel and Constitutive Relations for 
Aggregate Interlock 

Fig. 2.8 shows the equations and the Vd/dw graph. The second part of Fig. 2.8 depicts the 

kinematic relationship between the crack surface displacements dm and do on the one 
hand, and the crack displacements in horizontal and vertical direction du and dip, respec- 

tively, on the other hand. du and dw are made from deformations of the compression and 

tension zone under the various shear carrying actions described in Fig. 2.6. 
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a) Vr/dw-Relationship b) Gcomctrv.. pf Relative Crack Displacements 
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Fig. 2.8 Material Law for Dowel Action and Kinematics of Crack Displacements 
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Reineck calculated the deformations for a unit force using FE analysis and this gave 

equations for the displacements Au and dw in mid-depth of a crack, dependent on the pa- 

rameters c, z, Vd and e,. 

In the last step Reineck formulated compatibility equations to match crack width at re- 

inforcement level with steel bar elongation. Fig. 2.9 shows the geometrical conditions and 

the equation which was derived from them. For B-regions of an RC beam (see Schlaich/ 

Schäfer/Jennewein, 1987) without transverse reinforcement Reineck's model should now 

be able to predict both the ultimate shear force V� and, at every load stage below the ul- 

timate limit, each proportion of the shear force connected with its respective shear car- 

tying action. 
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When Reineck established his theory he tried to approach the structural behaviour of an 

RC member in an as realistic way as possible. Therefore, he abandoned assumptions 

which are normally introduced in shear theories for the sake of simplicity. For instance, 

Reineck dropped the simplification of a uniform stress and strain state in the web. With 

this his shear theory became rather complicated and it was no surprise that the verifica- 

tion of its supposed features revealed some shortcomings. 

Reineck described three different load stages, two of which are at service load level, 

while the third can be referred to as ultimate limit. He tried to prove his theory by recal- 

culating numerous tests described in the literature. One of these tests was carried out by 

Leonhardt/Walther (1964) and was part of a programme known as the Stuttgart shear 

tests. Reineck recalculated beam 7 and 8 at all three load levels and the results are given 

in his dissertation in various tables. 

Concrete teeth 
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Fig. 2.9 Conditions of Compatibility 
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dUL = ScrEsm = Scr(Es -i-QEs) 

sc, = crack spacing 
es,,, = average steel strain 
es = steel strain in crack 

It turned out that Reineck's theory is able to predict the ultimate limit of the above men- 

tioned beams in an accurate fashion. However, the main feature of the theory should be 

its ability to predict the various proportions of the shear force which might be attributed 

to the different shear carrying actions and this objective was only partly reached. While 

the results of Reineck's calculations on a load level slightly below the ultimate limit could 

be verified in a cross check in a satisfying manner, the results of his calculations on a load 

stage before the failure of the concrete cantilevers are simply wrong. 
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q=0.01 kx = 0.44 es = 0.00034 s, = 0.00023 tlf = -0.0034 qd = 0.0051 6r& = 

x/h = 4.04 Mutual displacenlents [n1J 0.080 

du dlv dn din d11/dn 

L 

f/2 

0.000030 

0.000012 

0.000013 

0.000010 

0.000032 

0.000016 
-0.000004 
0.000002 

-0.125 
0.125 

q=0.016 kx = 0.42 e, s = 0.00054 e, = 0.00038 qf = -0.0063 qd = 0.0087 61/fý _ 

x/h = 4.04 Mutual displacements [nil 0.134* 

du I dly Ail dn1 dm/dn 

L 

f/2 

0.000057 

0.000024 

0.000026 

0.000018 

0.000062 

0.000030 
-0.000006 
0.000004 

-0.097 
0.133 

q=0.023 kx = 0.41 es = 0.00077 e, = 0.00055 qf = -0.0080 qd = 0.0113 61/fý = 

x/h = 4.04 Mutual displacements [m] 0.194* 

du dlv dn dn1 dnt/dn 

L 

f/2 

0.000089 

0.000039 

0.000048 

0.000030 

0.000100 

0.000049 
-0.000003 
0.000006 

-0.030 
0.123 

"cri > ft -a failure of the tooth bending mechanism 

Tab. 2.1 Recalculation of Leonhardt's Tests (see Reineck, 1990, Fig. 3.7.3, Page 112) 

In Tab. 2.1 the correct values are depicted and it can be seen that Reineck's theory deliv- 

ers negative friction stresses in the crack which is in contrast to the physical reality. It is 

easy to verify that Reineck's results do not represent an equilibrium set of values. The 

reason for the problems at low load stages is that Reineck's equations are rather sensitive 

to some parameters, for instance the tensile strength of the concrete or the crack spacing, 

which are quantities of uncertain nature and therefore, difficult to estimate. 

Although section analysis normally provides an easier access to modelling of more so- 

phisticated features than FE procedures do, the above discussed shear model turns out to 

be too complicated to deliver correct results at all load stages. 
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2.4 The Compression Field Theory 

The compression field theory was developed in the seventies by Collins/Mitchell (1980) 

as a model to describe the behaviour of reinforced concrete members in pure torsion. 

When a beam is subjected to torsion the torque T is resisted by the shear flow q. Assum- 

ing a truss model it can be seen that chords and posts are under tension while the diago- 

nal struts are under compression (see Fig. 2.10). As the concrete is considered not to re- 

sist any tension, the tensile members must consist of reinforcing steel, while compression 

is carried by the concrete. 

To investigate the deformations of the truss members it is convenient to isolate a truss 

section as shown in Fig. 2.12. (a). Due to their respective stress state the truss members 

will undergo deformations, which means that members in tension are elongated and those 

in compression are shortened. Both chords carry the same tension force and hence their 

elongation dl is the same as well. As this also applies to the posts, a truss section may be 

replaced by a structural member, the stress and strain state of which can be described by 

Mohr's circles (see Fig. 2.11). This transition from truss model to structural member is 

possible, because the strain and stress state in the web is regarded to be uniform. 

a) Beam Subjected to Pure Torsion b) Truss Model for Pure Torsion 

T= torque q= shearfow T= 4Pa 

A0 = concrete area enclosed by the shear low path 

2P 
q =- a 

Fig. 2.10 RC Beam Subjected to Pure Torsion and Associated Truss Model 
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a) Structural Member 
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Fig. 2.11 Uniform Stress and Strain State in an RC Member under Pure Torsion 
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The stress state itself could be described as consisting of two parts: The stress state of 

the concrete and that of the steel providing it is smeared over the element. Fig. 2.11. (b) 

shows the stress state of the structural member and the Mohr's circle describing it. As 

the steel does not resist any shear, its stress state cannot be modelled with a Mohr's cir- 

cle. The Mohr's circle of the RC member is therefore obtained by adding the steel stress 

in the x and y direction to the respective points of the Mohr's circle for the plain con- 

crete. This procedure yields o= 6y = 0, and z,,, is taken from the concrete circle. Thus 

the circle of an infinitesimal element of the structural member is found and with it a com- 

plete description of its stress state. 

Fig. 2.11. (c) also shows the strain state of the RC member. The CFT regards the principal 

stresses as having the same inclination as the principal strains. This assumption is correct 

as the tensile strength of the concrete is neglected and, with it, aggregate interlock. The 

principal compression strain ed is the same for both the plain concrete and the structural 

member and coincides with the principal compression stress 6c2 in the concrete. The sec- 

ond principal strain e, is the total strain in the direction perpendicular to the strain ed and 

consists mainly of the smeared cracks. For the purpose of comparison, the transverse 

strain of the plain concrete ved is also depicted, and it is obvious that e1 must be much 

bigger than ved. 

By rotating the strain state in the xy direction of the beam axis, we receive the strain val- 

ues sx and Ey which are the strains of the longitudinal and shear reinforcement, respec- 

tively. As already mentioned the strain circle is valid everywhere in the beam, which 

means that 8x and sy have constant values and this is in line with statements on a truss 

model for pure torsion given earlier in this section. Eq. (2.15) is the compatibility equa- 

tion of the CFT and can be directly read from the strain circle in Fig. 2.11. This means 

that for each strain state the inclination angle 9 is fixed and cannot be chosen at random 

as was stated in earlier shear theories. Fig. 2.12 reveals the impact of the compatibility 

equation on the equivalent truss model: An arbitrarily fixed set of deformations does not 

meet Eq. (2.15), while a compatible set complies with it. 
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Collins/Mitchell (1980) derived the CFT by investigating a reinforced concrete beam in 

pure torsion. However, it was desirable to manage the transition to shear due to flexure. 

When modelling shear due to flexure with the truss analogy, it is obvious that the top 

chord is no longer in tension. The linear strain distribution along the depth of the struc- 

tural member which now replaces the constant strain value . 6x prevents the compression 
field theory from being applied without additional specifications. 

a) Isolated Truss Member 

d 1= etz cot B 
At =eiz 
Ad= 8dz/siltB 

b) Displacement Plan for an Arbitrary Set of 
Deformations 

c) Strain Distribution for a Beam 
with Shear from Flexure 

TENSION 
iº 

COMPRESSION 

EI 

C 

d) Displacement Plan for a Compatible Set of 
Deformations 

tan20=ddcos0+di tan0 ddsin0+dt 

tan20= Ed +El 

6d +6t 

61 = 0.5(611 +612) 

ei = strain in longitudinal direction 
et = strain in transverse direction 
ed = strain in principal compressive direction 

Fig. 2.12 Williot's Displacement Plan for Torsion, and Strain Distribution due to Flexure 
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Collins/Mitchell replaced the strain in beam axis direction e1 by the mean value of com- 

pression strain Ell in the top chord and tension strain in the bottom chord ere as shown in 

Fig. 2.12. (c). At least for T or I shaped beams this is an acceptable measure as usually 612 

is much bigger than er,, in which case ei is always a tensile strain and this complies with 

the basic assumptions of the CFT. 

The advantage of the compression field theory is the introduction of a compatibility rela- 

tion with the simple assumption of a homogeneous stress and strain state in the web of 

an RC member. The theory is rather accurate for its application on pure shear due to tor- 

sion and gives good results for shear from flexure and all combined actions at the ulti- 

mate limit level. 

2.5 The Modified Compression Field Theory 

The modified compression field theory of Vecchio/Collins (1986) is a further develop- 

ment of the CFT. The main difference is the utilisation of the tensile strength of concrete. 
Initially, the CFT was conceived as a multiple truss model, smearing its members more or 
less over the structure. The basic assumption postulated a uniform stress state repre- 

sented by a compression field inclined under a certain angle 9, to the horizontal. This an- 

gle 9, can be calculated using Eq. (2.15) (see Fig. 2.11). It will be shown later in Chapter 

3, that with the tensile strength of the concrete, an additional truss member has emerged 

making the truss indeterminate. Therefore, the constitutive laws had to be extended to 

include the tensile strength of the concrete. Vecchio/Collins (1986) derived the material 
laws for the MCFT from extensive testing on membrane elements. By evaluating meas- 

ured stress and strain circles they recognised that the concrete carries a substantial 

amount of stress in its principal tensile direction, despite the fact that the tested speci- 

mens were heavily cracked. The CFT included a further assumption: It was claimed that 

the principal direction of the concrete stresses should coincide with the principal strain 
direction of the cracked structure. This assumption was retained in the MCFT and once 

again it will be shown later in Chapter3 that this deprived the theory from treating the 

mechanism of shear transfer over a crack in an appropriate way. 
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Fig. 2.13 Equilibrium Conditions and Material Laws according to the MCFT 
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Fenwick/Paulay (1968), and later various other researchers, described aggregate inter- 

lock as an independent shear mechanism and Kupfer et al (1983) showed, that when ag- 

gregate interlock occurs, the principal direction of the concrete stresses must always de- 

viate to a certain degree from the principal strain direction. Due to this fact, the MCFT 

could not treat aggregate interlock as an independent shear carrying action, but only as a 

mechanism which provides friction and compression stresses in the crack to enable the 

redistribution of tensile stresses from the concrete to the steel. Consequently, aggregate 

interlock was dealt with in a sort of postprocessing, which represents a check as to 

whether the stirrups were capable of carrying the additional load. 
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However, the increase of stirrup stresses in. a crack is due to the loss of bond rather than 

the aggregate interlock action. This treatment of aggregate interlock restricted the 

MCFT to its application on reinforced concrete elements, which was not necessary, as 

shear transfer by aggregate interlock is not dependent on the presence of stirrups, as will 

be seen in Section 3.3. 

Fig. 2.13 shows a membrane element subjected to inplane stresses with the equilibrium 

conditions and also the material laws derived by Vecchio/Collins from their testing. It is 

assumed that shear forces are carried by the concrete alone, while normal forces are re- 

sisted by concrete and steel. 

2.6 Kupfer's Shear Theory for Slender RC Beams 

In 1983 Kupfer, Mang and Karavesyroglou published a paper in which they introduced a 

shear theory for slender RC beams similar to the MCFT, and in 1987 Kirmair and Mang 

released a companion paper treating the same theory in greater detail. The theory is 

based on the same assumption of a uniform stress and strain state in the web of an RC 

beam, but includes hook slip, loss of bond and shrinkage, and treats aggregate interlock 

in a more physical way. However, two major simplifications had to be introduced: The 

crack angle 0' was made an input quantity and has to be fixed before the start of each 

calculation and the strain in the horizontal beam axis direction sx was assumed to be con- 

stant over the web height. The aforementioned features restricted Kupfer's theory to dis- 

tinctly T and I shaped cross sections, as will be seen later in Chapter 3 in more detail. In 

the following, for simplicity the theory will be referred to as Kupfer's shear theory, al- 

though it is well-known that his co-workers contributed to the theory in a substantial 
fashion. In contrast to the MCFT, Kupfer's theory dealt with aggregate interlock as an 
independent shear carrying action. 
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Fig. 2.14 shows the truss model and an element of unit length with the forces acting on it 

and from the equilibrium of this element the given equations can be derived. The work of 
Walraven (1981) revealed that aggregate interlock depends largely on the mutual dis- 

placements of the surfaces of a crack. Therefore, to account for shear friction it was nec- 

essary to evaluate both v and w, which are the displacements in the crack direction and 

perpendicular to it, respectively. Kupfer was dealing with a truss model and assumed a 

uniform stress state, which means that the mutual crack displacements had to be smeared 

over the shear zone. The compatibility relations between the displacements v and w, and 

the strains -,, sy and yam, were derived by using Mohr's strain circle as depicted in 

Fig. 2.15. The resulting strain state in the web was then obtained as the sum of the strain 

states of plain concrete and smeared cracks. 

a) Truss Model and Element Stresses 
TX, 

6c2 
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Psfy = Txy tan 9, 
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b) Concrete Element between two Adjacent Cracks 

with the definition: 

pr = transverse reinforcement ratio 
602 = principal compression stress 
o,,, rdr = aggregate interlock stresses in crack 
a= crack spacing 
©, = angle of principal compression stress 0' = crack angle 

tan9c =1-dT/zxy 

AT = dr - 6r 

Ps. %y=Txy-Ar 

Fig. 2.14 Truss Model according to Kupfer's Theory 
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For the special case of EX =0 the equations for v and iv were derived and are given in 

Fig. 2.16. c=0 might be an acceptable simplification for non-prestressed reinforced con- 

crete beams as in that case the strain in the compression chord has the same order of 

magnitude as the strain in the tension chord. Also in Fig. 2.16 the Mohr's circles for the 

concrete strut and the web including the smeared cracks are depicted. In the equations 
for v and w, a is the crack spacing which is considered to have a constant value depend- 

ing on the reinforcement ratio pr and the diameter of the steel bars ds. It is worth noting 

that Kupfer's approach explicitly needs the crack spacing a while the modified compres- 

sion field theory does not. As already mentioned, this is because Vecchio/Collins did not 

treat aggregate interlock as an independent shear carrying action. 

a) Mohr's Stress Circle of the Web 
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X 

b) Displacement Mechanism and Mohr's Strain Circles of the Crack 
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Fig. 2.15 Stress State of Web and Strain State of Crack 
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The objective of Kupfer's theory is to calculate that proportion of shear which is not car- 

ried by stirrups. It was named dr and consists mainly of friction stresses Tdr and compres- 

sive stresses 6r perpendicular to them. Kupfer used the work of Walraven to calculate 

dt The constitutive equations for aggregate interlock as well as those for the concrete in 

compression are given in Fig. 2.16. 

a) Strain States of Plain Concrete and Complete Element 
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Fig. 2.16 Strain State of Plain Concrete and Complete Element Including Cracks 
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Abandoning the assumption that the principal compression stress direction of the con- 

crete coincides with the principal direction of the compressive strains in the web gener- 

ates three different angles in Kupfer's theory, which in the MCFT are altogether the 

same: The crack angle 0', the angle of the principal compression stress in the concrete 0 

and the angle of the principal compression strain in the web 0 It becomes obvious from 

this fact alone that Kupfer's theory is a rather complicated one and, therefore, 0' was 

treated as an input quantity making the theory more attractive, but also detracting from a 

part of its sophistication. It will be seen later in Chapter 3 that the complexity of the 

shear model triggered out by the dropping of simplifications leads to further problems, 

not yet solved in a satisfying way. 

2.7 Limit Analysis 

In this chapter a shear theory which has become known as limit analysis will be briefly 

reviewed. It was promoted by Thürlimann in Zurich and Nielsen in Copenhagen. The 

teams around both researchers developed design procedures based on concrete plasticity, 

but introduced slightly different compatibility considerations. Therefore, the summary 

given in this report includes both derivations, which have been taken from papers pub- 

lished by Grob/Thürlimann in 1976 and Nielsen/Braestrup/Bach in 1978. For the sake of 

simplicity the limit analysis procedures are here referred to as Thürlimann's or Nielsen's 

approach, although it is well-known that many other researchers have contributed to the 

development of the plasticity theory for concrete. 

In precisely the same way as the CFT or Kupfer's shear theory, the limit analysis was 

derived from considerations of a multiple truss smearing its stirrups over the web and 

assuming a principal compressive stress state inclined at a certain angle O. Fig. 2.17. (a) 

shows a shear wall element with the forces acting on it. According to the lower bound 

theorem, Thürlimann calculated the shear resistance of the cross section and the resis- 

tance of the tensile reinforcement by assuming yielding of the transverse and longitudinal 

reinforcement. Substituting 6, in Egs. (2.16) and (2.17) leads to a bending-shear interac- 

tion relationship, which is depicted in Fig. 2.17. (c). 
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Thürlimann assumed the strain state in the web as shown in Fig. 2.18. (a). The deforma- 

tions were considered to stem from the elongation of the reinforcement, while the con- 

crete was expected to be rigid. For s2 =Ed =0 this yielded the well-known compatibility 

equation tan26c=Ex/sy=sc/se. The principal tensile strain EI=ER is linked to the strain in x 

and y direction through equations s1sin2O =sRSln2O = s. =- rLand a cos26c =ERCOS20, = ey= 

6B. In Fig. 2.18. (b) these relations are illustrated for yielding of each reinforcement. 

a) Shear Wall Element b) Equilibrium Equations 
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t= stirrup spacing 
B, = angle of principal compressive stress = crack angle 

Ty = yield force of longitudinal reinforcement 
Sy = yield force of stirrups 
Mp = ultimate (plastic) bending moment 
Mpo = ultimate bending moment for pure bending 
Vp = ultimate (plastic) shear force 
Vpo = ultimate shear force for pure shear 

with Mpo = Tyh 

and Vyo = -�2TySyh/t 

Fig. 2.17 Shear Wall Element according to Grob/Thürlimann (1976) 
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Thürlimann restricted the angle of the compression field to values in the range of 0.5_< 

tanO <2.0, derived by testing and he gave a physical explanation by means of the crack 

model depicted in Fig. 2.18. (c). It can be seen from this model that for values tan0, <0.5 

and for yielding of the stirrups no aggregate interlock can occur. The same is valid for 

high values tan 0, >2.0 and for yielding of the longitudinal reinforcement. Both features 

were referred to as shear and bending mechanism, respectively. 

a) Strain State in the Web ofa Shear Wall Element 
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Fig. 2.18 Strain State and Limitation for the Crack Angle 
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a) Truss Model for RC Beam b) Equilibrium Equations 
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c= stirrup spacing 
p, y = transverse reinforcement ratio 
v= web effectiveness factor for 

concrete = crb If, 

vu = ultimate shear resistance 
6b = principal concrete stress 

Fig. 2.19 Truss Model and Shear Resistance according to Nielsen et al (1978) 

If tan 0. is in the given range of 0.5 =2.0 yielding of both reinforcements is necessary for 

the occurrence of a combined mechanism. However, if only one of both reinforcements 

yields, then the crack surfaces will interlock and hence, friction stresses can be generated, 

thus avoiding a premature shear failure. All three regions are distinguished in Figure 

2.17. (c), separated from each other by dashed lines. 

From the limit analysis procedures briefly reviewed here simple design rules were derived 

and incorporated in the Swiss standard SIA 162, making it, at that time, a modern code 

based on a realistic, physical model. - 
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Nielsen used the same truss model as Thürlimann for his approach to limit analysis. 

Fig. 2.19. (a) shows the truss model consisting of a top and bottom chord, an inclined 

compression field and smeared stirrups, and Fig. 2.19. (b) the equilibrium equations de- 

rived from it. For simplicity the transverse reinforcement here is assumed to be vertically 

arranged. By introducing material properties according to the theory of plasticity the 

shear strength is given by Egs. (2.18) or (2.19). From Eq. (2.18) one can read that the 

shear resistance increases with decreasing values of O. This is illustrated in Fig. 2.19. (c) 

and it is obvious that cross section II gives a higher stirrup yield force than cross section 

I. However, the increase in shear resistance is at the cost of higher forces in stringers and 

compression struts. This feature can also be interpreted as the ability of an RC structure 

to sustain an increase in load by adjusting the inclination angle O, provided the stringers 

and compression struts are not exhausted. This is in line with the lower bound of the the- 

ory of plasticity and was utilised by Nielsen to establish his web failure criterion, which 

was used instead of a compatibility equation to determine O. 

Eliminating 0, from Egs. (2.19) and (2.20) yields Nielsen's web failure criterion, which is 

given by Eq. (2.21) for stirrup yielding and Eq. (2.22) when the transverse reinforcement 

does not reach fy. The inclination angle for stirrup yielding becomes cot0, = -�vfWpf -I 

while cot O,, =1 is valid for csy < fý Nielsen verified the web failure criterion with the up- 

per bound method of the plasticity theory by assuming a failure mechanism with yield 

lines inclined at an angle /. 3 = 20c. By adjusting the web effectiveness ratio of the concrete 

under compression to a value of 0.755 v <0.85 he successfully recalculated shear tests 

described in the literature. However, the specimens were all moderately reinforced in 

shear. For beams with weak or no shear reinforcement the inclination angle of the com- 

pression struts becomes very small and the truss degenerates to a strut and tie mecha- 

nism. Nevertheless, Nielsen applied his theory on RC beams without transverse rein- 

forcement. His statement that `beams without stirrups fail in shear by diagonal tension 

without any apparent truss action' should obviously provide evidence for strut and tie 

action and the suitability of his theory, but was a misinterpretation of diagonal tension 

failure. Evidence for this criticism of Nielsen's statement is provided hereafter in a 

qualitative manner. 
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It has been well-known since the work of Fenwick/Paulay (1968) that the shear resis- 

tance of an RC beam without stirrups depends strongly on the tensile strength of the 

concrete. Walraven (1981) showed how tension is transferred across cracks and Reineck 

(1991) modelled a beam without shear reinforcement qualitatively with a truss, the ties of 

which are provided by the tensile strength of the concrete. The capacity of these tensile 

ties is given by aggregate interlock stresses dependent on the crack width. Once the dete- 

rioration of the web concrete has progressed and the failure crack has formed the aggre- 

gate interlock mechanism will fail, resulting in the sudden collapse of the beam. 

It will be seen later in Chapter 3, where arch action is briefly investigated, that in beams 

without stirrups ribbed longitudinal steel bars force the web to build a truss mechanism 

by activating the tensile strength of the concrete. Series EA to GB of the Stuttgart shear 

tests (1964) provide evidence for this truss although this was not explicitly stated in 

Leonhardt's test evaluation. 
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3 Investigations on the Local Element Level 

3.1 Some Basic Remarks 

As already mentioned in the introduction to this work, shear theories usually describe the 

behaviour of cracked reinforced concrete on a local element level and it is on this local 

level where effectiveness and reliability of a shear theory have to be checked. Intrinsi- 

cally, the CFT was conceived as a multiple truss model by smearing struts and ties over 

the structure, creating a uniform stress state in the web, which is represented by a com- 

pression field, inclined under a certain angle. This approach was further developed in the 

MCFT by additionally smearing the chords, thereby generating a membrane element with 

equal compatibility characteristics. Changing stress and strain conditions, for instance in 

a flexural member due to bending, can be modelled by splitting up the structure into ele- 

ments of any necessary size. 

It is obvious that this concept is similar to the way in which the FE method approaches 

the analysis of a structure. Therefore, the MCFT provides basic features, necessary for 

the implementation of a shear model in an FE program, in a quite natural fashion. 

Moreover, as will be seen later, the MCFT incorporates secondary shear carrying ac- 

tions, like aggregate interlock or dowel action, in an intrinsic manner, thus avoiding a 

conceptual weakness of the FEM, which is the proper treatment of local effects con- 

nected with the behaviour of cracked reinforced concrete. 

For the above reasons it was intended to implement the MCFT in an FE package (see 

Section 4.2), providing the theory covers the main features of shear transfer in a reason- 

able way. Therefore, in the following sections of Chapter 3, checks on the MCFT are 

described which should reveal whether the MCFT is a reliable theory on a local section 

analysis level. These checks are supplemented by comparisons with other shear theories 

and by some general investigations on mechanisms like arch action or the size effect, 

which are not implicitly covered by the material laws of the MCFT. 
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Fig. 3.1 Comparison of Features of CFT and MCFT 

3.2 CFT and MCFT Trusses 
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It was stated earlier that the CFT and the MCFT were derived from multiple trusses and 
it is desirable for the understanding of the theories to get to know what sort of trusses 

these are and how they react under load. Therefore, a cross section was subjected to a 

shear force and the response calculated at various load levels according to both theories. 
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Fig. 3.2. (c) shows the system data of the beam and Fig. 3.2. (a) and (b) two sets of equa- 

tions, one according to each theory. The CFT set consists of 4 equilibrium, I compatibil- 

ity and 3 constitutive equations. These 8 equations match the 8 unknowns N, O, a, 2, a,.,, 

o» E2, e, and sý The MCFT set, however, consists of 4 equilibrium, 2 compatibility and 

5 constitutive equations and these 11 equations match the 11 unknowns N, O, cri, o, 2, 

6c2max 6, o» -,, E2, Ex and sý It is obvious that the number of equilibrium equations re- 

mained the same, while the constitutive set had to be extended because of the introduc- 

tion of the tensile strength of the concrete. The second compatibility equation is only the 

first invariant of the strain tensor and was not needed in the CFT set. The introduction of 

the tensile strength of the concrete can be interpreted as an additional tensile tie in the 

truss model for the MCFT. Fig. 3.3 shows both the determinate CFT and the indetermi- 

nate MCFT truss and the calculations carried out with these two shear models are sum- 

marised in Tab. 3.1. 

a) Set o Equations According to CFT b) Set o Equations According to MCFT 

Equilibrium: 
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Fig. 3.2 Comparison of CFT and MCFT 
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The calculations according to the MCFT were performed using two different values for 

the tensile strength of the concrete. At first fit was set to 1.5MPa which is equal to a 

value of 0.33 �f,. This value was used by Vecchio/Collins (1982) for the recalculation of 

their PV panel tests and in fact, they calibrated their material laws for concrete in tension 

on this value which is the provision of the ACI, although they did not explicitly comment 

on that. However, it will be seen later in Section 3.4 that a tensile strength of 0.33 -�ff is 

not suitable in all cases were structural members are analysed with the MCFT. For in- 

stance, RC beams with stirrups which are subjected to flexure with shear need a higher 

value for the tensile strength of the concrete. It was found that a value of fir = 0.75 �f 

yields reasonable results and was, therefore, taken for a second set of calculations also 
depicted in Tab. 3.1. 

V fkNJ 50 100 150 200 250 300 

CT, T 0, f0J 27.5 33 37 39.5 41.5 43.2 

e1 f%oJ 2.6 3.0 3.3 3.6 3.9 4.2 

62 
" 

-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 

ßý1 [MPaJ 0.0 0.0 0.0 0.0 0.0 0.0 

6o2 -2.2 -3.9 -5.5 -7.2 -8.9 -10.6 

6=r " 95 155 200 245 285 320 

6ý " 400 400 400 400 400 400 
MCFT 0, f°J 45 43.8 43.3 43.2 43.2 43.2 

fý, =]. 5MPa 6r f%oj 0.045 0.6 1.4 2.2 3.1 4.1 

62 " -0.045 -0.1 -0.2 -0.4 -0.6 -1.0 

cra fMPaJ 
- 

0.9 1.1 1.0 0.9 0.8 0.8 1 

602 .1 -0.9 -2.5 -4.4 -6.2 -8.0 -9.8 

6u 0.0 40 105 165 220 280 

67 0.0 50 125 195 270 340 

MCFT 0, to] 45 45 45 43.8 43.5 43.4 
fý, =3.4MPa 61 f%oJ 0.045 0.09 0.14 1.1 2.1 3.0 

62 " -0.045 -0.09 -0.14 -0.3 -0.5 -0.7 

ca fMPaJ 0.9 1.8 2.7 2.3 2.0 1.9 

6c2 " -0.9 -1.8 -2.7 -4.8 -6.9 -8.7 

6s " 0.0 0.0 0.0 80 150 210 

Cry 0.0 0.0 0.0 90 180 250 

Tab. 3.1 Comparative Calculations with CFT and MCFT 
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For the calculations described in Tab. 3.1 the stirrup reinforcement was not kept constant 

but was increased from load stage to load stage. For the analyses carried out according 

to the CFT .,. y was taken to that value which for each load level ensured the onset of stir- 

rup yielding. The MCFT calculations were then performed with the same transverse steel 

ratio pSy. 
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Some conclusions can be drawn by examining Tab. 3.1. When applying the MCFT at low 

load levels the structure remains uncracked and behaves like an elastic isotropic material. 
For a tensile strength of 3.4 MPa it will even respond elastically nearly throughout the 

whole serviceability range, while the CFT analysis gives the response of a heavily 

cracked beam with yielding of the stirrup reinforcement at every load level. However, 

with increasing load the differences in the results reduce. 
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At the ultimate limit, which (for the CFT calculation) was reached slightly above 300kN, 

the CFT and the MCFT results with the lower tensile strength showed a rather similar 

structural behaviour although some differences remained. For the MCFT runs with a 

high, but reasonable, tensile strength of 3.4 MPa the differences with the CFT results 

remained more distinct. Ultimate limit was attained for f, =1.5 MPa at a load stage of 

340 Wand for fit=3.4 MPa at 370 kN, which is 10% and 20% more than the CFT value, 

respectively. This shows that the introduction of the tensile strength of the concrete re- 

lieves the stirrups and increases the section resistance. This is in line with the interpreta- 

tion of the tensile strength as an additional truss member. 

The above investigation provides evidence for the earlier statement that the significance 

of the MCFT seems to be more on the serviceability level than at the ultimate limit and in 

fact, this level is important for the evaluation of the ductility as the displacement at the 

onset of yielding is governed by the tensile strength of concrete. 

3.3 The Treatment of Aggregate Interlock in the MCFT 

When a reinforced concrete beam is subjected to a slowly increasing load, it will initially 

behave like an elastic, isotropic material carrying its internal forces by means of principal 

compression and tension stresses. Once cracks have started occurring a redistribution of 
forces takes place which goes on until the ultimate limit is reached. This redistribution 

mainly happens in cracks by transferring concrete stresses to the steel, and is possible 
because a cracked reinforced concrete beam can be considered as being an extremely in- 

determinate structure. In addition, in cracks friction forces are often generated, which are 

part of the redistribution process that transforms a beam, step by step, into a truss like 

structure. Fenwick/Paulay (1968) recognised that crack friction is an important and inde- 

pendent shear carrying mechanism and that it takes place when, due to the mutual dis- 

placement of the crack surfaces, the aggregate particles of the concrete are forced to in- 

terlock in each other. Kupfer et al (1983) showed that due to this aggregate interlocking, 

the principal concrete stresses always deviate to a certain degree from the principal strain 

direction. 
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Fig. 3.4 Aggregate Interlock in an Unreinforced and Transversely Reinforced Element 
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It was stated earlier that the MCFT assumes the principal stress direction of the concrete 

being coincident with the principal strain direction of the structural member and this is 

why Vecchio/Collins could not treat aggregate interlock as an independent shear mecha- 

nism. An investigation of the aggregate interlock procedure in the MCFT, briefly de- 

scribed below, reveals that for the equilibrium in a crack, both transverse and longitudi- 

nal reinforcement is necessary. However, this is against the nature of aggregate interlock 

as an original shear carrying action which is not dependent on the presence of reinforce- 

ment, as was proved by the work of Walraven (1981). For that reason, in the MCFT the 

aggregate interlock forces could not be part of the statically indeterminate section analy- 

sis process. 

This will now be explained using an unreinforced and a transversely reinforced element, 

typically found in the web of a beam. Fig. 3.4 gives details of both elements under inves- 

tigation. The free body diagrams belonging to cross sections 1-1 reveal the stress state 
between two adjacent cracks, while the free body diagrams which belong to cross sec- 

tions 2-2 show the stress state in a crack. Assuming that the free bodies 1-1 are all in 

equilibrium, then the free bodies 2-2 must also be in equilibrium, as the distance between 

the two cross sections can be infinitely small and the applied element load is for both the 

same. It is obvious that only for 0' ; 6, equilibrium of the free bodies 2-2 can be 

achieved. This proves that in the absence of either longitudinal or any other reinforce- 

ment, equilibrium cannot be ensured, as long as the friction stresses i, are assumed to 

act as depicted. However, a change of the direction of ri would violate the physical re- 

ality. Therefore, Fig. 3.4 gives evidence that, even though the element is unreinforced, 

aggregate interlock is able to transfer a certain amount of shear over a crack, provided 

the crack angle deviates to a certain amount from the angle of the principal stress direc- 

tion of the concrete. Fig. 3.4 clearly reveals that the main assumption of the MCFT pre- 

vents the theory from a physically correct treatment of aggregate interlock. However, it 

will be seen later in this chapter that aggregate interlock, as well as all other secondary 

shear carrying actions, are an intrinsic feature of the MCFT which do not need any ex- 

plicit treatment. 

It should be mentioned here that later in Section 4.1 (see Fig. 4.6) an additional explana- 

tion is given for the inability of the MCFT to treat aggregate interlock in a physically cor- 

rect fashion. 
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3.4 The Layered Approach to Flexure with Shear 

3.4.1 Program LAYER 

In their 1982 Publication, Vecchio/Collins reported a comprehensive set of shear tests on 

RC panels which was named the Toronto PV series. These tests served to calibrate the 

material laws of the MCFT. However, the constitutive model for cracked reinforced 

concrete so derived could not directly be applied on members subjected to combined 
flexure with shear, such as simple RC beams, as the MCFT assumes a uniform stress and 

strain state in the structural member under investigation. 

Q) General Truss Model for Flexure with Shear 
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Fig. 3.5 Truss Model and Cross Section of an RC Beam 



3.4.1 Program LA YER 45 

Fig. 3.5. (a) shows a truss model of a simply supported RC beam with a concentrated load 

in mid-span. It is obvious from the free bodies 1-1 and 2-2 that the section moment is 

carried by the chords and the shear force either by the vertical tensile tie or the inclined 

compression strut, depending on the cross section under consideration. Two important 

features of this truss should be mentioned here. At first, the truss model does not yield 

any shear distribution in the cross section which, therefore, has to be regarded as uni- 

form; an assumption against the physical reality. Second, the moment generates tensile 

stresses in the bottom chord and compression stresses in the top stringer. Smearing out 

of the truss members would not yield a uniform stress and strain state as required from 

the MCFT. This clearly shows that the MCFT cannot be applied on flexural members 

without additional considerations. 
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A general possibility to overcome the problems is to divide the structure into discrete 

horizontal layers. In such a model each layer represents its own truss. Once the normal 

strain distribution is considered to be constant in a layer, then both chords of a layer truss 

carry equal forces and hence, smearing out of the truss members would deliver a uniform 

stress and strain state as required by the MCFT. The accuracy of the method now only 

depends on the discretisation. Fig 3.5. (b) shows the model according to the layered ap- 
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proach. The various trusses are indicated as well as the horizontal strain gradient and the 

shear stress distribution. 

Vecchio/Collins (1982) incorporated the MCFT in a layered model for the analysis of RC 

beams under shear and flexure and the procedure was coded in a program named SMAL. 

Calculations with program SMAL revealed drawbacks some of which are summarised 
here. Good results with SMAL were only achieved when the analysed beams were well 

reinforced in both longitudinal and transverse direction. Beams without stirrups could 

not be investigated. However, the main disadvantage of SMAL is that the material laws 

are not capable of being modified. The tensile strength of the concrete is an input quan- 

tity, but tension stiffening at high strains cannot be modified. 
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In Section 4.2.3 a modification of the material laws of the MCFT is proposed and justi- 

fied, and it was intended to carry out all calculations with the same constitutive model. 

As this is not possible with SMAL, it was decided to code a completely new program for 

section analysis based on the MCFT, but with adapted material laws. This program was 

named LAYER and it revealed a much better performance than SMAL, especially when 

analysing RC beams with only little or no transverse reinforcement. Program LAYER, 

which was generally coded according to the procedure described in Vecchio / Collins 

(1982), will now be briefly introduced. 

The basic assumption of the section analysis program LAYER is the plane section hy- 

pothesis of Bernoulli which postulates that sections remain plane throughout the entire 

loading process. Therefore, at the beginning of each analysis, the normal strain distribu- 

tion of the investigated cross section has to be specified by estimating the top and bottom 

strain st and Eb , respectively. In addition, the shear stress distribution has to be specified, 

normally by assuming a constant shear flow which for rectangular beams is equivalent to 

a constant shear stress r. Once normal strain and shear stress distribution are fixed, 

then the xy stresses in concrete and steel can be calculated from the constitutive laws of 

the MCFT. Note that the constitutive laws are written in the principal direction and that 

all necessary rotations to the xy direction must be undertaken. 

The next step is to check the section equilibrium which is easily achieved with Egs. 3.1 

through to 3.3 (see Fig. 3.6). If equilibrium is not satisfied, then the strain gradient has to 

be adjusted until section equilibrium is warranted. At that stage the shear stress distribu- 

tion will still not be correct and, hence, this has to be fixed by first analysing a second 

section a short distance away from the first and then checking equilibrium of each layer. 

If equilibrium is not achieved, the shear stress distribution must be adjusted, which is a 

straightforward procedure consisting of setting the new shear stress distribution to that 

obtained at the end of the first run. A second run is then usually enough to obtain a suffi- 

ciently correct shear stress distribution in the cross section. Egs. 3.4 through to 3.7 of 

Fig. 3.7. (b) depict the procedure with which equilibrium of each layer has to be checked. 

Finally, Fig. 3.8 shows the flow chart of the complete program LAYER. 
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Fig. 3.8 Flow Chart of Program LAYER 
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3.4.2 Calculations with the Layered Model 

It was stated in the previous Section 3.4.1 that one of the reasons why program LAYER 

had to be coded was the fact that SMAL did not allow changes in the implemented con- 

stitutive model for the concrete. 
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Fig. 3.9 Cross Section and Modified Constitutive Model for Calculations with LAYER 

In Section 4.2 it is explained in some detail why it was desired to modify the material 
laws. The main reason is that the MCFT overestimates both the stiffness degradation of 

the concrete under compression and the tension stiffening of the concrete under tension. 

When dealing with structural elements subjected to pure shear both drawbacks will 

counter-act each other. This was the case with the PV panel tests of Vecchio/Collins 

(1982) with which they calibrated the material laws of the MCFT. However, for struc- 

tural members with dominant tension and little compression, the overestimation of tension 

C 'C 
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stiffening leads to far too high values for the ultimate capacity of the analysed elements. 

For example, a simple RC beam under pure tension analysed with the original constitu- 

tive laws of the MCFT would give a section capacity much higher than the yield strength 

of the steel which is not acceptable. Therefore, the slightly modified constitutive laws of 

program LAYER are given in Fig. 3.9. (b) while further explanations are provided in Sec- 

tion 4.2. Fig. 3.9. (a) shows two different cross sections and the material properties of an 

RC beam with which calculations were carried out in order to demonstrate features of 

the layered model suitable to clarify general issues on the stress and strain state in a 

cracked reinforced concrete member. The calculations are summarised in Tab. 3.2. 

Nr. Pjx 

[/] 
Psv 

[%] 

m 

[kNnt] 

V 

[kNJ 
a/d a,, 

[MPa] 

aY 

[MPaJ 
rx. 

/MPa] 
ssx 

[%0] 
ss, 

[%oJ 
Cross 

Sect 
Failure 

Mode 

1 2.7 0.3 525 250 5.0 420 420 3.1 2.0 4.0 1 Shear 

2 2.7 0.3 500 325 3.6 420 420 3.7 2.0 5.5 1 Shear 

3 2.7 0.13 500 250 4.7 420 420 2.9 2.0 14.8 1 Shear 

4 2.5 0.3 500 250 4.7 420 420 2.9 2.0 2.9 1 Shear 

5 2.4 0.3 500 200 5.9 420 410 2.3 2.0 1.95 1 Bending 

6 0.84 0.05 200 150 3.1 390 420 1.6 1.9 2.5 1 Shear 

7 0.84 0.05 220 75 6.9 420 135 0.7 2.1 0.6 Bending 

8 4.0 0.6 600 400 3.5 415 420 4.6 1.95 2.4 Shear 

9 4.7 0.6 600 400 3.5 295 420 5.9 1.4 2.8 1 Shear 

10 3.2 0.6 530 500 2.5 420 400 5.5 2.3 1.9 Bending 

11 3.2 0.9 585 250 5.5 420 420 5.3 2.0 4.3 2 Shear 

12 3.2 0.6 500 330 3.6 420 420 6.2 2.0 6.5 2 Shear 

Tab. 3.2 Calculations with the Layered Model of the MCFT 

The shear stresses z varied between 0.7 and 6.2 MPa, which means that the whole 

range from low to high shear was covered by the calculations. When the longitudinal re- 
inforcement reached a strain of 2%o after stirrup yielding, the program stopped con- 

verging and this was typically referred to as shear failure. When the longitudinal rein- 
forcement yielded before the stirrups then a bending failure was encountered, in which 

case the program did not reach the specified moment and the run was terminated. In 

Section 3.7, where Leonhardt's tests were recalculated, two more shear failures which 

the program is able to recognise will be described. One occurs when the concrete 

strength in the inclined compression strut is reached in heavily reinforced T beams lead- 

ing to web failure. The other occurs when the tensile strength of the concrete is exceeded 
in beams without any transverse reinforcement, thus announcing a shear tension failure. 
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3.4.3 Stress and Strain Distribution in RC Beams 

It was stated earlier that when an RC beam is modelled by just one truss it is not possible 

to specify any stress distribution in the cross section: In fact, only theories which are 

based on discretisation like the FE method or the layered approach of the MCFT can 

provide a distribution of stresses according to the assumptions the theory is based on. 

Therefore, in Fig. 3.10 the stress and strain distributions in the cross section according to 

some of the computer runs of Tab. 3.2 are shown. One sample for each shear range was 

chosen and in addition, as an extreme example for high shear, the recalculation of Leon- 

hardt's test beam Ti is also given. For calculations Nr. 1,7 and 10 the distribution of 

concrete stresses ate, shear stresses ry and normal strains s are depicted and for beam 

Ti two further graphs are plotted: The distribution of the shear flow and the corre- 

sponding quantity for the normal stresses. 

It can be seen from Fig. 3.10 that the shear stresses start increasing from 0 at the com- 

pression edge, reaching their highest values at the neutral axis where they remain nearly 

constant over the tension zone and then drop rapidly to 0 at the tension edge of the 

beam. The shear distribution reveals that most of the shear is carried in the tension zone 

and only a proportion of up to 30% is transferred above the neutral axis. Despite the fact 

that the forces in the compression zone are usually high, their vertical component re- 

mains small as the struts are only little inclined, generating low amounts of shear. How- 

ever, in the middle parts of the cross section, below the neutral axis where the inclination 

angle of the struts is in the range of 30 'to 50 ° high shear stresses can form although the 

compression forces are much smaller than above the neutral axis. It will be seen later in 

Section 3.9, where arch action is investigated, that in deep beams substantial shear is car- 

ried by a strut and tie mechanism and this proportion can be regarded as being evenly 
distributed for reasons given earlier. This means that shear is either more uniformly dis- 

tributed in the cross section or concentrated in the tension zone depending on the trans- 

fer mechanism which applies in an RC beam. From considerations of the layered ap- 

proach of the MCFT to date it can be stated that in a vertical cross section of an RC 

beam nominal shear stresses z. can only be assigned to areas where the compression 

forces are distinctly inclined and this is mainly the case between the neutral axis and the 

longitudinal reinforcement. In the compression zone of a beam and below the longitudi- 

nal reinforcement only little shear stresses z can be generated. 
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(see Tab. 3.2, Row Nr. 7) 
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d) Distribution for Extremely High Shear 
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Fig. 3.10 Stress and Strain Distribution in a Vertical Cross Section 
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Shear is either carried by compression struts or tensile ties depending on the free body 

under consideration (see Fig. 3.5). Therefore, in a structural model where trusses with 

varying inclination angles are arranged in horizontal layers, not only the forces in the 

compression strut vary but also the tension forces in the ties. This means that the stress 

in the stirrups cannot be constant over the beam height and in fact, the calculations with 

LAYER confirmed this feature of the MCFT. Moreover, in 1967 a test report was pub- 

lished by Rüsch and Mayer (see Fig. 21) in which they verified this prediction virtually 20 

years in advance when they measured the stirrup strains of beams at various levels of 

height. The fact that shear is mainly carried in the tension zone of a beam was postulated 

by many researchers in the past like Fenwick/Paulay, Kupfer, Reineck and others. How- 

ever, only the layered approach of the MCFT could visualise the shear distribution in a 

cross section in a striking way. 

In Fig. 3.10 the shear stresses zxy are depicted in an exaggerated manner compared with 

the normal stresses u,,. To show their real magnitude they are additionally indicated to 

scale in the graph for the o stresses. One can see that the normal stresses are in general 

much higher than the shear stresses, in particular in the compression zone of a beam. 

Moreover, at the tension edge the huge tensile stresses of the longitudinal reinforcement 

are not depicted in the graph (see also Fig. 3.13). This provides evidence of the fact that 

the load of a beam is carried by normal stresses rather than shear action. From that point 

of view the question of the shear distribution in a cross section is rather academic. 

From Fig. 3.10. (a) we can see that the normal stresses are distributed as we normally ex- 

pect them to be: High compression above the neutral axis and little tension below it in 

the tension zone of the beam. Surprisingly, when higher shear is involved, the tension 

below the neutral axis converts into compression and in extreme situations, when beams 

are subjected to very high shear, these compressive stresses can even become as high as 
in that region of a beam which is typically referred to as the compression zone. The 

MCFT provides a simple explanation for this unexpected behaviour. 

In Fig. 3.11. (a) the web of a beam is depicted as well as a membrane element which might 

be located somewhat below the neutral axis in the tension zone of the beam. Before 

cracking, the element can be considered as being under pure shear and its stress state 

could be as shown in Fig. 3.11. (b). When the load is raised, cracking will start to occur, 

substantially increasing the compression in the principal direction and slightly lowering 
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the value for the tension perpendicular to it. This is equivalent to a certain shift of the ran 

axis towards the tension side of the graph. The situation is qualitatively depicted in 

Fig. 3.11. (c) and it is obvious that the vertical cross section undergoes substantial com- 

pression stresses once cracks have commenced to form. A second, clearer illustration is 

given in Fig. 3.11. (d) where the compression in the tension zone is interpreted as the 

horizontal proportion of the compression force D in the concrete strut which has to 

counterbalance the tension force V cotO generated by the shear force V. 

a) Cross Section ofa Beam b) Stress State of the Untracked Beam 
under Flexure with Shear 
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Fig. 3.11 Compression Stresses in the Tension Zone of a Beam 

The compression stresses in the vertical cross section as they have been described are 

accompanied by substantial tensile strains in x and y direction and this is even more sur- 

prising than the occurrence of compression stresses in the web itself. A short explanation 

for this phenomenon will be given here. It is assumed that the membrane element investi- 

gated earlier is in a state of pure shear, although it is well-known that this applies only 

roughly in the web below the neutral axis, and it was stated that after cracking the stress 

state in the concrete is as given in Fig. 3.11. (c). In addition, Fig. 3.12. (a) shows the mem- 

brane element both in xy position and rotated to its principal direction. After cracking, 
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the element will undergo a substantial elongation in the tensile direction. When we fur- 

ther assume, for simplicity, that the total deformation is caused by the cracks alone, then 

the loaded element might look as shown in Fig. 3.12. (b). 

a) Untracked Membrane Element in xy and Principal Direction and Stress State 
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Fig. 3.12 Tensile Strains in Element Causing Compression in Plain Concrete 

It is obvious that both the transverse and, if available, also the horizontal reinforcement 

will be elongated by the deformation of the element. However, the stresses in the longi- 

tudinal reinforcement can only act in x direction and in the stirrups only in y direction. As 

no external normal forces are applied on the element, which is considered to be under 

pure shear, the stresses in the reinforcement must be balanced by the stresses in the con- 

crete. Consequently, the concrete in the tension zone comes under compression in both 

directions. 
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3.4.4 Effect of the Tensile Strength of the Concrete 

The comparison of results of CFT and MCFT calculations in Tab. 3.1 revealed differ- 

ences between both theories. The reason for this is the tensile strength of the concrete fi, 

which influences the response of an RC structure in a significant manner. It should be 

mentioned that Vecchio/ Collins referred to the introduction of fir as tension stiffening 

and this expression will be used here in the same way. An important observation was that 

the differences between CFT and MCFT become more distinct when fl is increased but 

tend to vanish when the ultimate limit is being approached. However, the results of 

Tab. 3.1 were computed with a particular cross section to which no moment was applied. 

Therefore, to obtain a more comprehensive image of the influence of the concrete's ten- 

sile strength and to illustrate the order of magnitude of stresses and strains encountered 

in the web of an RC beam, additional investigations were employed. Figs. 3.13 through to 

3.15 depict Mohr's circles for the layers of the beam used for scrutiny throughout this 

section and the properties of which are given in Fig. 3.9. The calculations were carried 

out with cross section 1 and section loads of M= 500 kNm and V= 250 kN, which were 

the ultimate limit values for the run with fi, = 0. The shear resistance of the cross section 

increased by about 30% when the tensile strength was added providing that the moment 

was kept constant. 

Fig. 3.13. (a) shows stress circles according to the MCFT with fl= 0, and Fig. 3.13. (b) the 

circles when the tensile strength was set to fýý = 0.75 �f,. For layers 1 and 2 the stress 

circles for the plain concrete are identical with the stress circles for the entire RC ele- 

ment, however, for layers 3 through to 8 the differences are so small that they could not 

be depicted in the chosen scale. Therefore, for layer 6 the procedure of transition from 

the plain concrete circle to the RC element circle is shown in Fig. 3.15 in a larger scale. 

As the layer is merely transversely reinforced, the stirrups have to balance the concrete 

stresses according to 6y =ay+ay=0. The unbalanced concrete stresses o- are equili- 

brated by both the longitudinal reinforcement in layer 9 and the force in the compression 

zone above the neutral axis. The procedure shown in Fig. 3.15 applies in general for each 

layer, but is of crucial importance here only in layer 9 which carries all the longitudinal 

reinforcement. Once again it becomes obvious that the section forces are mainly carried 

by normal stresses in the concrete of the compression zone and in the steel bars of the 

tension zone. This would be even more distinct if aT shaped beam was chosen for in- 

vestigation. 
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a) Mohr's Stress Circles for CL =0 b) Mohr's Stress Circles for J=0.75V 
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Fig. 3.13 Mohr's Stress Circles for the Cross Section of an RC Beam 
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a) Mohr's Strain Circles for ,. =0 b) Mohr's Strain Circles for ft = 0.75 if. 
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Fig. 3.14 Mohr's Strain Circles for the Cross Section of an RC Beam 
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a) Mohr's Stress Circles for Layer 6 b) Mohr's Stress Circles for Laver 6 
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Fig. 3.15 Mohr's Stress Circles for Layer 6 

The only substantial difference between the two methods revealed in Figs. 3.13 - 3.15 is 

the inclination angle 9,, which is much bigger when tension stiffening is introduced. This 

becomes clear as the relieved stirrups carry less tension and, therefore, only slight con- 

crete stresses are to be balanced, as is shown in Fig. 3.15. (b). The assumption of a stress 

state of pure shear, which was postulated earlier for the web below the neutral axis, is 

verified by the circles of layers 5 through to 8 in Fig. 3.13. (b). In addition, Fig. 3.14 shows 

that the tensile strength has a considerable influence on the strain state of a structure. As 

a result it is obvious that without tension stiffening a reliable evaluation of deformations 

is not possible. Fig. 3.14 gives evidence for the importance of reasonable constitutive 
laws which are particularly necessary for the calculation of deflections on the finite ele- 

ment level. 
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3.5 A Check on Kupfer's Shear Theory 

As mentioned earlier in the state-of-the-art report, Kupfer's shear theory (1983) was 

further developed mainly by Kirmair and Mang (1987). For the subsequent investigations 

the theory was used as described in Kirmair's 1987 publication, a short form of which 

was summarised in a paper issued in the same year. According to this version of the the- 

ory, a computer program was coded and some simple calculations were carried out on a 

rectangular cross section of a beam, subjected to a shear force V=300 W. No moment 

was applied to meet exactly the assumption of a constant strain distribution cx, in the 

knowledge that such a situation only occurs in the case of pure shear or in the vicinity of 

a zero point in a bending beam, as shown in Fig. 3.16. (a). The same cross section and 

material properties were chosen as in the calculation with the MCFT depicted in Fig. 3.2 

and the crack angle 0' was taken from the MCFT results of Tab. 3.1. 

a) Cross Section with M=O and V=const. b) Two Mohr's Stress Circles for the Web 
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Fig. 3.16 Stress State in Web of an RC Beam 
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It was stated earlier that Kupfer's shear theory includes hook slip, loss of bond of both 

longitudinal and transverse reinforcement, and shrinkage of the concrete. In Section 3.6, 

some explanation will be given on these features but for the time being they will be 

omitted. This means that the strains due to hook slip Ass and shrinkage ss are set to zero, 

while the bond factors for the longitudinal and transverse reinforcement as, and as,, re- 

spectively, are set to one. The calculation delivers a stress state pl and an angle 0, =34°. 

This angle was calculated by the program with Eq. (3.8) which was derived from equilib- 

rium considerations and this means that 0, should be the principal direction of the stress 

state pl. However, as Fig. 3.16 reveals, 0, =34° does not match the transformation condi- 

tions of the stress state pl. The correct value is 0, =31.6° and can be calculated with 

Eq. (3.9). With this value, the principal stresses become a, =-0.3 and 62 =-12.2 MPa. 

Surprisingly 6i is not found to be zero, as the equilibrium equations require. Assuming 0, 

=34° was the correct angle of the principal stress direction this would then yield a sec- 

ond stress state p2 which is derived by the equilibrium equation for 62 given in Kupfer's 

theory. Eq. (3.10) and the stress state p2 are shown in Fig. 3.16. (a). In addition, 

Fig. 3.16. (b) depicts Mohr's circles for both stress states. Noticeably, both circles have a 

common point A where they intersect each other, and in fact A determines the same shear 

stress T and transverse stress a,,,,, of which the latter is needed to design the stirrup re- 

inforcement. 

The conclusion of the calculation so far is that Kupfer's theory yields two different sets 

of stresses for the web. As the theory assumes a uniform stress state, only one stress set 

can represent the stress state in the tension zone of a beam. Admittedly, the difference in 

the stress circles is small and the vertical equilibrium is correct for both stress states as 
Fig. 3.17 proves. However, the above investigation reveals a certain flaw in Kupfer's the- 

ory. From the Mohr's circle the transverse reinforcement can be designed, or in the case 

of a given reinforcement the stirrup stress might be calculated using the stress in y direc- 

tion of the Mohr's stress circle. In the example, the transverse steel ratio is psy = 1.235 % 

which yields a steel stress of ay = -o y/psy = 3.6/0.01235 = 290 MPa. In a similar fash- 

ion one can calculate the steel stress of the longitudinal reinforcement. As there are two 
different values according to the different stress states pl and p2 it is not clear which 

value to take. 
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a) Vertical Cross Section b) Cross Section in Crack Direction 

-ill ý 
ý 
cý GD 
cli 

n N 

-I 
1 

JQ, y=-3,6MPa 
Qcx 

"Txy=5,3MPa 

I 
V=5.3 *283 *200 = 300 kN 

62 

V= (3.6/tan43.2°-0.8/ tan43.2°+2.3)200=283 
=300kN 

c) Cross Section in Principal Direction ofpj d) Cross Section in Principal Direction ofpz 

CTi4 1=0,3MPn 

ý 

Bc=31,6° 

z/tanE),: 
I 

I 

6a~ 
ý'//ý'ý 

,, , 
/`Tdr, 1=2,3MPa 
QT. º=O. SMPa 

ý'=43.2° 

z/tanO ' 

62fý 

0c=34,0° 

z/tanO. 

V= (3.6/tan31.6°-0.3/tan31.6°)200*283 = 300 kN V=3.6/tan34°*200*283 = 300 kN 

Fig. 3.17 Vertical Equilibrium in Various Cross Sections 
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The longitudinal reinforcement ratio is psx = 1.77 % and, therefore, p, gives cr = -6 /psx 

= 9/0.0177 = 510 MPa and pl yields a'sx = 7.7/0.0177 = 435 MPa. Both values are be- 

yond yielding, which means that the horizontal equilibrium cannot be satisfied with the 

given amount of longitudinal reinforcement. A check of Kirmair's equation for the force 

in the chords reveals the core of the problem. Kirmair calculates the horizontal force in 

the web, which must be equilibrated by the longitudinal reinforcement, from Eq. (3.11) 

given in Fig. 3.18 and this yields a value of asx = 3.27/0.0177 = 185 MPa, which is far 

below yielding. However, as we are dealing with a uniform stress state the shear stress at 

the edge of the web is not zero and must be taken into account. Fig. 3.18 shows the pro- 

portion of the shear stress which has to be included in the horizontal equilibrium. The 

theoretical stress in the longitudinal reinforcement then becomes o-. = 510 MPa, which 

is beyond yielding. 
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It is obvious that the calculated stress circles of Fig. 3.16 are not correct, as the longitu- 

dinal reinforcement is not able to carry the load. Usually, the part of the tensile stress in 

the longitudinal reinforcement generated by the shear force is small when high moments 

are applied to the cross section. Indeed, in this case the overstrength of the steel bars 

may carry the additional load. However, the above investigations show that the theory is 

not free of shortcomings. 

a) Free Body According to Kirmair b) Free Body Including the Shear Stress 
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Fig. 3.18 Horizontal Equilibrium in Web 

H= bz [(rd. + Tsy) col©' + 6r] (3.12) 

3.6 Comparison of MCFT and Kupfer's Theory 

In Sections 3.2 and 3.5 calculations were carried out on a rectangular cross section ap- 

plying both the MCFT and Kupfer's shear theory. In this section, some of the results are 

compared allowing for the presentation of further evidence that Kupfer's theory does not 

yield the correct stress in the longitudinal reinforcement. In addition, strain circles deliv- 

ered from calculations on the same cross section are investigated and compared in order 

to obtain an idea of the significance of features like hook slip, shrinkage and loss of 

bond, all of which are incorporated in Kupfer's theory. 

For a shear force of V=300 kN the CFT delivers a compression stress in the concrete 

struts of cr2=-10.6 MPa, a stirrup stress of cSy, =400 MPa, and a stress in the longitudinal 

reinforcement of a,, =320 MPa. The equivalent values for the MCFT calculation are 

Q2=-9.8 MPa, u y=340 MPa and Qsx=280 MPa. 
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It is clear that the introduction of the tensile strength of the concrete relieves the various 

element members, which results in decreased stress values. The calculation using 

Kupfer's theory yields o-2=-11.4 MPa, ass, =290 MPa and q,, =140 MPa. Obviously, the 

value asx is not reasonable. As the angle of the principal stress direction decreases from 

43.2 'to 34 ° it is correct that the stirrups are relieved and therefore, generate less ten- 

sion stress. However, as a countermove the stress in the longitudinal reinforcement must 

increase and exceed the CFT and MCFT values, as the correct calculation with Eq. (3.12) 

in Section 3.5 clearly demonstrated. 

Kupfer's theory includes hook slip, shrinkage and loss of bond for both reinforcements. 

These features are depicted in Fig. 3.19 and some additional explanations on them will be 

given here. Hook slip occurs when high tension stresses are applied to a steel bar the 

hook of which is cast in concrete. Fig. 3.19 shows the constitutive relationship for a bar 

with diameter 12 mm and a concrete strength of ff=30 MPa. It can be seen that the slip 

of the reinforcement bar depends strongly on whether the steel pull direction coincides 

with the cast direction of the specimen. This is because the concrete tends to settle below 

the hook and the tension force of the steel bar pushes it into the deteriorated concrete, 

thus causing a certain amount of relative displacement between steel and concrete. A 

longitudinal reinforcement bar which touches the hook at its highest point has a benefi- 

cial influence and prevents the hook from being completely pushed into the concrete. In 

Kupfer's theory the hook slip d is divided by the stirrup length giving the strain value tcs 

which is added to the overall strain c,, in the transverse direction. As will be seen later, 

def can become very high, depending on the beam depth and therefore the constitutive 

relations for the hook slip are to be handled carefully. 

When the tensile strength of the concrete is exceeded in an RC member, a crack will oc- 

cur causing a certain amount of bond loss along the steel bars. In a crack, the concrete 

stresses drop to zero, while in between them the concrete remains under tension. This is 

equivalent to the transfer of tensile stresses from steel to concrete between adjacent 

cracks, and decreases the strain in the transverse direction as the bulky concrete is much 

stiffer than the few slender steel bars. In Kupfer's theory this was taken into account by a 

factor asl with which the stirrup strain was multiplied. Kirmair derived a,, from constitu- 

tive equations for loss of bond whose value is always less than 1. In a similar fashion, the 

factor as, for the longitudinal reinforcement was introduced, but, in general, set to a 

value between 0.8-0.9. 
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a) Constitutive Relationship for Hook Slip b) Hook Slip in a T-shaped and a 
Rectangular Beam 
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d2»d1 -> no slip in rect. beam 

c) Stress State Caused by Stirrup Bond Stresses 
Uniform stress state according to Kirmair: - More physically correct stress state: 
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Fig. 3.19 Hook Slip and Loss of Stirrup Bond in Kupfer's Shear Theory 

Kirmair assumed a uniform stress state in the concrete which is caused by bond stresses. 

This stress state is depicted in Fig. 3.19. (c) in the left hand sketch whose principal tensile 

stress is o acting in the stirrup direction. This treatment of loss of bond generates nor- 

r 



3.6 Comparison ofMCFf and Kupfer's Theory 66 

mal and shear stresses along the crack edge which Kirmair added to the friction stresses 

o, and Tdr to yield the final stress state of the web. He now calculates the mutual crack 

displacements v and w with 0r and zcdr using Walraven's constitutive equations for ag- 

gregate interlock. However, this is not appropriate as Walraven's equations require 6, 

and rd, rather than 6c, and zcdr. In fact, the assumption of a uniform stress state created 

by bond stresses is to blame for that flaw, as in reality the stress distribution along the 

stirrup bars is as shown in Fig. 3.19. (c) in the right hand sketch. As can be seen from this 

the stresses at the crack edge are zero and no additional forces are generated in the crack 

which would be a physical contradiction anyway, since at a free edge no stresses of that 

manner can occur. Earlier in Section 3.5 it was stated that Kirmair's procedure yields 

two different sets of stresses for the stress state in the web. It is now obvious that the 

incorrect treatment of loss of stirrup bond caused this shortcoming. 

Kupfer added a 'certain amount of strain to the total transverse strain in the web to ac- 

count for shrinkage of the concrete. The reason for this is that shrinkage causes com- 

pression stresses in the reinforcement before an RC member is loaded. Once a force is 

applied the web must undergo deformations until zero stress is reached in the stirrups. 
This is equivalent to additional stirrup strains which increase the total transverse strain in 

the web. Typically the stirrup strain ec, due to shrinkage of the concrete is set to 0.23äo. It 

should be noted that transverse strains des due to hook slip and e,, due to shrinkage do 

not increase any stirrup stress but only contribute to the strain state of the web. 

In the following, results of calculations are discussed which have been carried out using 

the cross section and material properties of Fig. 3.2. (c) and a shear force V=300 kN (see 

also Haas/Pilakoutas, 1995). Fig. 3.20. (b) shows strain circles of the shear zone plotted 

from results of various computer runs with MCFT and Kupfer's theory. Strain circle I 

was obtained by Kupfer's theory using his constitutive equations for hook slip and loss 

of stirrup bond and circle II when hook slip, loss of bond and shrinkage was omitted. 

Circle III is the MCFT's circle and circle IV is the contribution of the concrete to the 

overall strain due to Kupfer's theory. Circle IV is depicted to give an idea of the order of 

magnitude of the strain in the web caused by cracking and bond slip. Initially, it is sur- 

prising that circle I, which is obtained by the standard procedure of Kupfer's theory, is 

much bigger than both the other circles. However, the evaluation of the data showed that 

the high value of the effective stirrup strain sy is mostly due to hook slip, which in the 

present case is highly overestimated. 
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In a rectangular beam shear cracks, causing loss of bond, pass through the stirrups at a 

relatively far distance from the upper hooks. However, for the occurrence of hook slip 

loss of bond is necessary in the vicinity of the hook. 
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Fig. 3.20 Comparison of MCFT's and Kupfer's Strain Circles 

Fig. 3.19. (b) describes the situation. In a rectangular beam the principal direction of the 

compression struts changes over the height of the member. At the bottom, compression 

struts have an inclination of nearly 90° to the horizontal, while at the top fibre they are 

virtually horizontal. In between, compression struts undergo a smooth transition from 

90° to 0°. This is visualised by the bending of shear cracks. The decrease of compression 

strut inclination coincides with a decline in stirrup stress, because a beam can be consid- 

ered to consist of trusses arranged in horizontal layers of a certain height. Consequently, 

the stirrup stress drops towards the top fibre of a beam. 
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This decrease of stirrup stresses was measured by Leonhardt in many'of his tests (see eg 

Leonhard/Walther, 1962, Page 34). It brings the crack propagation to a halt at a height 

which is usually far from the top fibre of a beam. This explains why in a rectangular beam 

the upper hooks do not yield any hook slip: The loss of bond provided by the crack, 

which is vital for any slip, does not occur in the vicinity of the hook. 

In distinctly T or I shaped cross sections conditions are different. The inclination angle of 

the compression struts is nearly constant over the web height and drops to zero once the 

compression chord is reached. This means that the stirrup stress remains constantly high 

up to the bottom of the chord, as visualised by the crack pattern of these beams, where 

cracks propagate straight through the web up to the chord at an angle of about 45°. 

Therefore, loss of stirrup bond occurs much nearer to the hook than in the case of a rec- 

tangular beam providing a substantial amount of hook slip. 

The above considerations prove that in the sample of Fig. 3.20 the upper hooks do not 

contribute to the hook slip at all, dropping the total value to far less than 50% of the cal- 

culated one. It is obvious that the constitutive equation for hook slip used in Kupfer's 

theory is one reason for its restriction to distinctly T or I shaped cross sections. Kupfer's 

circle II is only slightly smaller than the MCFT's circle and by introducing a small 

amount of hook slip and a normal value of shrinkage, Kupfer's circle coincides exactly 

with the MCFT circle. This gives evidence that the MCFT yields reasonable results con- 

cerning the strain state of a web under shear action, although the angle of the principal 

stress direction 0, according to both theories may differ to some extent. A check of the 

aggregate interlock stresses using the MCFT results and the data from the equivalent 

Kupfer run confirms the discrepancy in aggregate interlock modelling: The MCFT deliv- 

ers zero values for the crack friction and the accompanying compression stress, while 

Kupfer's theory gives substantial amounts of crack stresses zdrjJ = 1.8 and 6,, 11 = -0.55 
MPa (see Fig. 3.16). 

The results of the investigations up to now depict that the compatibility equation used in 

the MCFT provides a certain amount of shear transfer through secondary shear carrying 

actions in an implicit way. Therefore, aggregate interlock is an intrinsic feature of the 

MCFT as are all other secondary actions, and there is no need for their treatment in any 

post-processing procedure. 
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3.7 Recalculation of Leonhardt's Shear Tests with LAYER 

The most simple method to verify a theory is to confront it with test data which have not 
been used to establish the theory itself. In the early sixties Leonhardt/ Walther (1964) 

started a series of tests which became famous as the Stuttgart shear tests. The reputation 

of the tests to this day is based on both the methodology, with which Leonhardt/Walther 

investigated the whole shear range and the comprehensive description and evaluation of 

all relevant test data. Therefore the shear tests of Leonhardt /Walther were chosen to 

scrutinise the reliability of the MCFT. 

Beam ETI ET2 ET3 ET4 Ti E4 E5-1 E5-2 

Test Data I [m] 3.0 3.0 3.0 3.0 6.0 2.0 2.0 2.0 

bw [cm] 30 15 10 5 10 19 19 19 

It 35 35 35 35 90 32 32 32 

d 30 30 30 30 83 27 27 27 

a/d 3.5 3.5 3.5 3.5 3.0 2.8 2.8 2.0 
J. [MPaJ 26.2 26.2 26.2 26.2 24.2 32.3 32.3 29.9 

jet 11 4.2 4.2 4.2 4.2 4.0 4.2 4.2 4.6 
fy, 430 430 430 430 475 435 435 435 

ft 320 320 320 320 435 430 465 465 

A, [cm2J 12.6 12.6 12.6 12.6 85 12.7 12.7 12.7 

ply [%J 0.17 0.35 0.52 1.04 2.83 0.64 0.71 0.71 
Qsytest* [MPa] 115 150 250 

Pu test 
[kNJ 280 265 255 200 1600 375 380 530 

LAYER Concrete Layers 15 15 15 15 13 15 15 15 

Calculation Steel Layers 3 3 3 3 4 3 3 3 

Oyca! * [MPa] 175 270 265 

Pueal [kN] 290 260 250 195 1500 335 340 420 

Pu test/Pu ear 0.97 1.02 1.02 1.03 1.07 1.12 1.12 1.24 

Failure Mode** B SI S2 S3 S3 B B B/S2 
" EU and ET4 at serviceability level P=120 KN; Ti near ultimate limit P=1350 KN; ET1, ET2, E4, E5-1 and E5-2 no values 

"s B=Bending, S1=Shear (bending), S2=Shear (stirrup yielding), S3=Shear (diagonal compression) 

Tab. 3.3 Recalculation of Leonhardt's Beams with Transverse Reinforcement 
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Vecchio/Collins (1982) derived the constitutive laws of the MCFT from extensive testing 

of RC membrane panels. For the verification of their test data they used a concrete ten- 

sile strength of fa = 0.33 i�f,. When recalculating Leonhardt's tests, as well as other shear 

tests described in the literature (eg in Kani, 1967), this was found to yield values too 

conservative for the section resistance of the scrutinised beams. Moreover, the tensile 

strength given in the descriptions of the various tests was in general much higher than the 

value taken by Vecchio/Collins. Therefore, for recalculations f twas either set to 0.75 ij, 

or taken from the test descriptions. In nearly all cases, both values proved to deliver 

good results. 

In Tab. 3.3 the recalculation of a selection of shear tests are depicted. The tests were de- 

liberately chosen to reveal peculiarities of RC beams found to be worth mentioning. 

Some of the features are captured by the layered approach of the MCFT while others are 

not. The ET series was conducted at that time to investigate the influence of the web 

width on the capacity of reinforced concrete members. The series consisted of 4 speci- 

mens, the web width of which decreased in 4 steps from 30 to 5cm, while all other quan- 

tities, such as concrete strength, longitudinal and transverse reinforcement and beam 

height, remained the same. The purpose of the tests was to prove that the capacity of RC 

beams is not proportional to the web width bw when all other section properties are kept 

constant. The tests showed that the ultimate load dropped with bw by only 30% while the 

shear stresses in the web were nearly quadrupled. LAYER simulated this behaviour in a 

nearly perfect fashion, as can be seen from Tab. 3.3. 

For beams ET3 and ET4 computer runs were performed on the serviceability level of 

120 kN and stirrup stresses o-Sy, were compared with those measured by Leonhardt. From 

Tab. 3.3, it can be seen that the measured values are much smaller than the computed 

ones: For beam ET3 35%, and for beam ET4 even 45%. The reason for this is the as- 

sumption of the MCFT that principal stress and strain directions for the concrete should 

coincide. It was seen earlier that a direct consequence of this assumption is the additional 

coincidence of principal stress and crack direction, so that O'= 0, =0 becomes valid. 

However, Kupfer showed that due to aggregate interlock crack angle, principal concrete 

stress direction and principal strain direction always deviate from each other to a certain 

extent. For normal section conditions (see Fig. 3.21), which means that a positive mo- 

ment and a negative shear force act on a positive cross section, the relationship 0'>0, >O 

usually applies. This means that in reality the compression strut inclination is smaller than 
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given by the LAYER calculation. Consequently, the computed stirrup stresses are too 

high. 

This shortcoming becomes only significant on the serviceability level of distinctly T 

shaped beams which fail in shear, therefore, it can be considered as being of minor im- 

portance. For instance, the run with beam Ti on a load level slightly below the ultimate 
limit yielded stirrup stresses only some 5% higher than those measured during testing. In 

rectangular beams, in particular when failing in bending, the stirrup stresses are usually 
low and the differences vanish. 

When the inclination angle of the compression struts is overestimated the stirrup stresses 

will go up. However, in this case the longitudinal reinforcement will be relieved thus 

keeping the total amount of reinforcing steel at the same level. From this point of view 

the MCFT cannot be regarded as yielding an uneconomic design. 

- the positive x-axis penetrates a positive cross 
section from inside the element 

-a positive moment vector Mpoints in a positive 
cross section in positive z-axis direction 

-a negative shear force V points in a positive 
cross section in negative y-axis direction 

Fig. 3.21 Sign Rules for Cross Sections and Section Forces 

The beams of Leonhardt's E series which had a rectangular cross section all failed in 

bending and developed a flexural resistance which could not be verified with the material 

properties given in the test descriptions. The only possible explanation for this is that the 

yield strength of the reinforcing steel was higher than specified. It is surprising that 

Leonhardt did not comment on that issue. Despite the fact that the flexural resistance 

was 10 to 15% higher than the yield strength of the steel could account for, it can be 

seen from test E5-2 that a substantial amount of shear must have been transferred by 

arch action. This is true because the recalculation gave an ultimate load of only 420 kN 

by indicating a shear failure because of stirrup yielding. 
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From this result it becomes obvious that section analysis procedures are not suitable for 

calculations with RC elements having shear ratios in the range of 2.0. Kani (1964) 

showed with his shear valley that arch action becomes substantial when the shear ratio 

drops below a value of 2.5. This is the level where section analysis should no longer be 

employed. 

In Tab. 3.3 four different types of failure are specified. In fact, LAYER was able to iden- 

tify all these failure types in a proper way. Bending failure was encountered when, after 

yielding of the longitudinal reinforcement, a given moment could not be reached. Shear 

failure Si happened when after stirrup yielding the compression strength of the concrete 

was attained, and shear failure of type S2 occurred when after excessive stirrup yielding 

the longitudinal reinforcement approached the yield strain. Shear failure S3 was identified 

when the concrete in the web was exhausted by reaching the admissible value without 

getting convergence any longer. Finally, shear failure of type S4 occurred when, in runs 

without transverse reinforcement, the tension stress in the concrete of the web tried to 

exceed the admissible value and the run was terminated with convergence problems. In- 

deed, S4 was the typical shear failure that was encountered in all recalculations of RC 

beams without stirrup reinforcement when the shear ratio was between 2.5 and 7. 

The introduction of the tensile strength of the concrete in the MCFT is equivalent to an 

additional tensile tie which acts perpendicular to the compression strut. This was ex- 

plained in Sections 3.2 and 3.3 where it was shown that a crack does not interrupt the 

stress flow in this tensile tie as the aggregate interlocking forces ensure the ongoing 

transfer of tension stresses across a crack. If this is true then the MCFT truss is a stable 

mechanism even in the absence of those tensile ties which usually are supplied by the 

transverse reinforcement. In fact, when omitting the aggregate interlock check, LAYER 

can be used in exactly the same fashion as for beams with longitudinal and transverse re- 
inforcement. As already mentioned, the results, obtained from LAYER when applying 

the original constitutive laws of the MCFT (see Vecchio/ Collins, 1986), are useless as 

the relationship for the stresses a,, provides too much strength in its principal tensile di- 

rection. This is in particular true for beams with little or no transverse reinforcement. 

Tab. 3.4 contains a selection of tests carried out by Leonhardt/Walther (1964) on RC 

beams without transverse reinforcement. The selection includes the complete D-series 

performed to investigate the size effect, a curious structural behaviour encountered on 
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members without shear reinforcement. It can be seen that, when omitting the aggregate 

interlock check of the MCFT, LAYER is able to predict both ultimate load and failure 

mode in an appropriate way. Moreover, it can be seen from Tab. 3.4 that the program 

even captures the size effect to a certain extend. This will be briefly explained hereafter. 

Beam 6 7-1 8-1 9-1 DI D2 D3 D4 

Test Data 1 [nil 2.35 3.1 3.6 5.8 0.52 1.04 1.56 2.08 

b [cm] 19 19 19 19 5 10 15 20 

li 32 32 32 32 8 16 24 32 

d 27 27 27 27 7 14 21 28 

a/d 4 5 6 7 3 3 3 3 

j [MPaJ 30.2 30.2 30.2 30.2 38.0 38.0 39.4 36.1 

fit 
3.6 3.6 3.6 3.6 4.6 4.6 4.7 4.3 

fy, 420 420 420 420 460 435 420 450 

A, [cm2] 10.6 10.6 10.6 10.6 0.6 2.3 5.1 9.4 

P. 
test [kNJ 128 118 119 105 15 45 90 145 

mu, test [MPaJ 6.4 4.8 4.3 4.0 

SAAL Concrete Layers 15 15 15 15 11 11 11 11 

Calculation Steel Layers I 1 1 1 1 1 1 1 

Pu gat [kNJ 132 123 115 101' 13.5 45 94 145 

ni,,, ei [MPaJ 5.9 4.8 4.5 4.0 

P. test/Pu jai 0.97 0.96 1.04 1.04 1.11 1.0 0.96 1.0 

Failure Mode* S4 S4 S4 B S4 S4 S4 S4 

* 13=Bending, S4=Shear (diagonal tension) 

Tab. 3.4 Recalculation of Leonhardt's Beams without Transverse Reinforcement 
(see Leonhardt/Walther, 1964) 

It was recognised by many researchers (eg Leonhardt / Walther, 1964) that RC beams 

failing due to bending develop the same level of safety provided the mathematical condi- 

tions of similarity are met. This can be expressed by the equation: m� = M�/(bd2) = const, 

where M. is the section moment at the ultimate limit for an RC beam failing in bending. 

Leonhardt / Walther (1964) and Kani (1967) proved with their testing that the above 

equation does not apply for beams without stirrups failing in shear, which might be put 

simply by: ni�s = M, /(bd2) # cont. Here M�s denotes the section moment at the ultimate 

limit state for RC beams without stirrups failing in shear. This phenomenon was called 

size effect, and later in the 1980s could be explained by Reinhardt (1981) and Walraven/ 

Lehwalter (1990) by means of fracture mechanics. 
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For the sake of completeness it shall be mentioned that, in general, the size effect also 

applies to RC beams with web reinforcement failing in shear but the decrease in relative 

section strength is much smaller and, hence, the influence of h is usually neglected. How- 

ever, as will be seen in the next section, when a structural wall with little transverse re- 

inforcement but considerable length is analysed, the size effect might have a significant 

influence on the response of the wall. Tab. 3.4 reveals the size effect with decreasing val- 

ues msu for the members of the D-series consisting of the geometrically similar specimens 

Dl through to D4. 

3.8 The Calculation of Shear Deflections Using LAYER 

In contrast to deflections due to bending, the evaluation of shear deflections in a cracked 
RC member has always been a difficult and controversial procedure. In 1966 Dilger cal- 

culated shear deflections in a cracked concrete beam based on the deformations of a 

truss, through which he modelled the loaded structure. His idea was that shear deflec- 

tions must result from the deformations of those truss members which are linked to the 

transfer of shear. Consequently, he calculated shear deflections from the deformations of 

compression struts and tensile ties and assigned deflections due to bending to the chords. 
This means that for the calculation of shear deformations the chords are considered to be 

totally rigid while compression struts are shortened and tensile ties elongated. Fig. 3.22 

describes Dilger's method, through which he derived a cracked shear stiffness analogous 

to the elastic shear stiffness of isotropic material. Then he calculated the shear deflections 

of a cracked RC member in exactly the same way as for an uncracked beam. In his origi- 

nal work Dilger analysed a truss with inclined tensile ties. For the sake of simplicity and 
because this work concentrates on orthogonal grids of reinforcement, Dilger's original 
derivation was rewritten for vertical stirrups, as can be seen from Fig. 3.22. 
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KI = shear stiffness in untracked concrete element 
KI, = shear stiffness in cracked concrete element 
p= Poisson's ratio 

Fig. 3.22 Dilger's Approach to Calculating Shear Deflections in a Cracked RC Beam 

Dilger used only one truss for the entire beam height, as usual at the time. However, this 

assumption restricted his approach to distinctly T or I shaped cross sections, although he 

did not comment on this. It is, therefore, not surprising that he verified his method by 

recalculating Leonhardt's beam Ti, the cross section of which is given in Fig. 3.24. The 

method is certainly not to be used for rectangular beams where 9, varies to a great extent 

over the web height. 

If in Dilger's equation for K11, py is set to zero, then K11 will become zero as well. This 

means that Dilger's method yields no shear stiffness for beams without transverse rein- 
forcement. As we know, this is in contrast to the physical reality. The shear stiffness of 

an element without stirrups is provided by the tensile strength of the concrete which Dil- 

ger did not account for. It is true, Dilger can simulate the tensile strength by varying the 

inclination angle of the compression struts, in the same way as Kupfer does with his 

model, but an appropriate treatment of shear should include the additional tension tie 

which is supplied by the tensile strength of the concrete. 

1 
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Fig. 3.23 Calculation of the Shear Deflections of Leonhardt's Beam ET4 with the MCFT 
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In Dilger's equations two quantities remain obscure: The inclination angle 6, and the 

Young's modulus E. If Dilger's method is used for T shaped beams under high shear, 6, 

can be taken as approximately 45 ° However, E. can vary in a wide range and its specifi- 

cation in a cracked beam is uncertain. It is the simple constitutive model and the lack of a 

compatibility relationship for 6, which substantially restricts the method in its use for the 

calculation of shear deflections in a cracked reinforced concrete member. Nevertheless, 

Dilger successfully recalculated some of Leonhardt's test results, in particular the deflec- 

tions of the T beams under high shear, but it is obvious that the method is by nature not 

suitable for implementation in an FE program. 

It was explained in the first sections of Chapter 3 how the layered approach of the 

MCFT divides a structure in small portions, the stress and strain state of which can be 

considered to be uniform and is given by the constitutive laws of the theory. In this re- 

spect the MCFT is quite similar to the FE-Method which also models a structure with 

elements of finite size. However, it is clear that the layered approach is confined to 

structures with relatively simple shapes, such as beams or walls of constant cross sec- 

tions and without any voids. The constitutive laws of the MCFT, derived from extensive 

testing, conceive a virtually new material which simulates the physical behaviour of 

cracked reinforced concrete. The new material is based on the 6/s relationships of steel 

and concrete. It is completely described by its stress and strain states which can be visu- 

alised by Mohr's circles. The knowledge of the stress and strain state at each material 

point of the cracked reinforced concrete member enables the MCFT to calculate the de- 

flections of the structure. 

Fig. 3.23 shows this calculation for Leonhardt's beam ET4 for a load stage of 180 kN 

which is near the ultimate limit state. The procedure starts with the analysis of the vari- 

ous cross sections under consideration. The distance s between two adjacent cross sec- 

tions should be in the range of h/6, where h is the beam height. In this case s was taken 

to be 5.8 cm which means that in the shear span, 19 cross sections had to be analysed. 

The analysis delivers the stress and strain state in each layer necessary for both the equi- 

librium of the elements and that of the free beam bodies. From these data the curvature 

distribution given in Fig. 3.23. (c) was extracted. The moment due to unity M, was 

needed to calculate s�1` ý, which is the deflection under the load due to flexure. (51M" dl is 

necessary to determine S, ° the deflection under the load due to shear, as the shear pro- cal 
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portion factor ps refers to that point. The reason for this is the equivalence of the stress 

energy of the entire beam with the work of the load along its vertical displacement: 

ET=WL. The stress energy which is assigned to shear stresses and shear strains equals the 

work of the load along its vertical displacement due to shear and the energy assigned to 

normal stresses and normal strains consequently equals the work of the load along its 

vertical displacement due to flexure. Using this analogy the deflections generated by 

shear can be calculated, as the deflections due to flexure are known, as well as the ener- 

gies due to flexure and shear, EM and Ev, respectively. 

Between the two applied loads P, no shear occurs and, hence, the shear energy is zero. 

This means that the deflection due to shear under the load is equal to the deflection due 

to shear in mid-span: 5=5 S° ". This yields the surprising result that the propor- V cal 

tion of shear deflection to the total deflection is not constant, but increases from mid- 

span to the supports. This observation can be verified by the fact that the stress energy 
due to flexure decreases from mid-span to the supports to zero, whilst the shear energy 
decreases by a much smaller amount which is 50% at the most in cases where shear de- 

flections are higher than 15% of the total deflections. The significant finding here is that 

the shear proportion factorps increases towards the supports. 

For completeness it should be mentioned that the proportion of energy provided by the 

stresses and strains, cy and ey, respectively, is zero: 

I 6ysydV =I 6yE, YdV -F Tp-ya-, 
ys, dV = 0. 

The first term on the right side of the equation is the energy of the concrete stresses 

along the concrete strains and the second summation the energy of the steel stresses 

along the steel strains. The MCFT postulates that spy, which is the strain in the plain con- 

crete, is equal to e, which is the strain in the steel and both are equal to 8y, which is the 

strain in the cracked reinforced concrete. As in y-direction no stresses are applied to the 

RC element, the stirrup stresses must counterbalance the concrete stresses which means 

that psy6sy = -o-, y. With this, the above equation becomes zero. 

A selection of Leonhardt's shear tests was taken to carry out calculations of deflections 

using the aforementioned method. Some of the specimens had a rectangular cross section 

without transverse reinforcement, while others were T or I shaped with varying amounts 

of stirrups. The results are depicted in Tab. 3.5. It is obvious that in all cases the calcu- 
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lated deflections were smaller than the measured ones. This is typical for analyses based 

on the deformation method where structures tend to behave too stiffly. Therefore, quite 

the same observation can be made when evaluating deflection calculated with the finite 

element method. Sometimes the differences between the calculated and measured -values 

are substantial and it is assumed that other reasons might also have contributed to that 

gap. 

Beam: 5 7-1 9-1 ET1 ET2 ET3 ET4 E4 E5-2 E6 TI TA9 

Load: 

P [kN] 120 112 96 240 240 240 180 279 372 153 1400 600 

Deflections: 

Sresr [mm] 2.57 9.48 50.7 13.2 15.4 17.8 11.9 5.93 7.00 2.76 19.2 14.16 

SP! rest 0.32 1.79 12.3 3.64 5.28 7.25 3.83 0.95 - 0.49 - - 

Sear 2.15 8.64 42.1 8.00 9.97 11.4 9.00 4.80 5.57 2.45 13.9 8.21 

5pe0/ (shear) " 0.17 0.50 0.8 0.24 0.71 1.44 1.89 0.43 0.44 0.19 6.0 1.72 

SNea! (Bend) " 1.98 8.14 41.3 7.76 9.26 9.96 7.11 4.37 5.13 2.26 7.9 6.49 

Seal /Blest 0.84 0.91 0.83 0.61 0.65 0.64 0.76 0.81 0.80 0.89 0.73 0.58 

Spear/Scar 0.08 0.06 0.02 0.03 0.07 0.13 0.21 0.09 0.08 0.08 0.43 0.21 

Failure Mode*: S4 S4 B B Si S2 S3 B B S4 S3 B 

Ult. Limit: 

Purest [kN] 137 122 111 280 263 255 198 375 528 186 1600 700 

Puce! 11 136 118 105 290 260 250 195 362 512 185 1500 682 

Stirrups: 

ps [/] - - - 0.17 0.35 0.52 1.04 0.64 0.71 - 2.8 1.29 

Shear Ratio: 

a/d 3.0 5.0 7.0 3.5 3.5 3.5 3.5 2.8 2.0 2.8 2.8 3.3 

B=Bending, S1=Shear (bending), S2=Shear (stirrup yielding), S3=Shear (diagonal compression), S4=Shear (diagonal tension) 

Tab. 3.5 Deflections Calculated from Leor hardt's Shear Tests Using LAYER 

The applied load was always well above the serviceability level and in some cases near 

the ultimate limit. This means that plastic deformations might have occurred as well, al- 

though their amount cannot be high in beams mostly failing in shear. The method of cal- 

culating shear deflections explained above and shown in Fig. 3.23 does not account for 

plastic deformations and, hence, a part of the difference in calculated and measured val- 

ues might be attributed to that. In some of his tests Leonhardt gave the deflections that 

remained when the load was removed. Where available, these values were quoted in 

Tab. 3.5 and in fact, the sum of calculated and plastic deflections matches the measured 

ones quite well. 
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Furthermore, Tab. 3.5 reveals that in beams with a rectangular cross section no apprecia- 

ble shear deflections occur and, hence, their proportion is usually less than 10% of the 

total deflections, no matter whether the beam is stirrup reinforced or not. However, in 

transversely reinforced concrete beams which are distinctly T or I shaped, shear deflec- 

tions are higher than 20% and, under certain circumstances, for instance when very high 

shear stresses are generated, they can become as high as the deflections due to bending. 

In those beams occasionally a bending type of failure occurs, although high shear deflec- 

tions are present and this gives rise to the assumption that a design which avoids shear 

failure does not necessarily avoid high shear deflections as well. In Chapter 5, where the 

influence of shear deflection on the ductility of RC structures is scrutinised, this finding 

will be dealt with in more detail. 

In a building, quantities like deflection or ductility are global values and, as mentioned 

earlier, they can only be computed in a reasonable way by means of an FE method. 

Therefore, the results presented in this section can only give some indication of the di- 

rection which should be taken towards a general solution of the shear problem in FE 

procedures. Nevertheless, an investigation on displacement ductility will be presented 
here and the results will be used later to discuss calculations carried out with ABAQUS 

and given in Chapter 4 of this work. 

Once again, one of Leonhardt's tests (1964) was chosen to investigate how the ratio of 

shear and total deformation develops in a beam under high shear when the load ap- 

proaches the ultimate limit. Fig. 3.24 shows the cross section of Leonhardt's beam Ti 

and the co/8-relationship, where w is the ratio of shear and total deflection and 8 the total 

deflection at a certain load stage. The load which generates the deflection 8 is also given 
in the graph. Curve 1 represents the values given by Leonhardt where the deflections due 

to flexure were calculated from the relation 8M = fMM'/EI dx. I is the inertia moment of 

the cracked cross section, while E is the Young's modulus of the concrete in compres- 

sion. The proportion of 8 which is attributed to shear was then obtained as 8v = 8-8, V. 
Curve 2 was derived by calculating 8v from the MCFT described in the above section 

and 8M from the moment-curvature relationship of the given cross section. It can be seen 
from Fig. 3.24 that the deflections due to shear are dependent on the applied load. Before 

cracking starts 8v is between 0 and 20% 8. However, at the end of the serviceability 

level, which is at a load of 1000 kN, 8v becomes as much as 50% 8 and at the ultimate 
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limit the percentage is only slightly higher. This proves that even at the serviceability 

level, shear deflections can be important for the evaluation of the displacement ductility. 

a) Cross Section Beam Ti b) w/5-Relationshin 

t- 
ý 

150 w=ä, /öj 

A 

20 10 20 

. --. 

CD 
0 0 

rn 

'0i 1 . -. 

o. s+ 

0.4t 

o. z+ 

26 10 14 18 22 

0,2 0,6 1,0 1,4 

CÄ 
CÜL. 

TEST 

>ö [mm] 
s 

P[MN] " 

Fig. 3.24 w/S-Relationship for Leonhardt's Beam Ti (Dim. of Cross Section in cm) 

Finally, the influence of shear on the displacement ductility is checked using a wall inves- 

tigated in earlier work (see Haas/Pilakoutas, 1994). This wall was then scrutinised by 

means of a non-linear time history calculation with a macro wall element, coded as a user 
defined Fortran subroutine and added to the FE program ABAQUS (1994). An EC8 

compatible time acceleration history was employed and the top displacement of the four 

storey wall has been obtained to 6cm. The recalculation with section analysis procedures 

confirmed this value; however, nearly 50% of the now calculated top deflection was due 

to shear, although the wall was capacity designed and therefore, far from failing in shear. 

The above mentioned maximum top displacement was only reached by the MCFT 

method when the tensile strength of the concrete was set to zero, which is equivalent to 

omitting aggregate interlock. When the tensile strength was added to the model, the 

stiffness of the wall was increased substantially by about 50% and the wall remained 

nearly elastic under the same loading history, producing only a small top displacement of 

about 2 cm. The investigations on the structural wall show again that shear deflections 

are not to be neglected, especially in deep elements, even though they may develop a 
flexural type of failure and that the response depends strongly on the evaluation of the 

tensile strength of the concrete. 
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The calculation of shear deflections using the provisions of the MCFT have shown that 

deformations due to shear can be substantial. However, the test specimens failing in 

shear developed only little displacement ductility as shear failure usually occurs shortly 

after the onset of yielding, and this is one of the main reasons why these members do not 

dissipate much energy. If an RC structure was designed for such a displacement ductility 

the equivalent lateral forces due to earthquake excitation could not be reduced much, 

and hence, a highly uneconomic structure would result. Fortunately, modern codes pre- 

vent engineers from designing in this manner. However, the above wall was capacity de- 

signed and therefore far from failing in shear. Nevertheless, a substantial proportion of 

the displacement ductility was due to shear deflections and therefore, should be included 

in ductility considerations. In Chapter 5 when global quantities are scrutinised the above 

statement will be investigated in greater detail. 

3.9 Some Considerations on Arch Action 

For the investigations made in this section a simply supported and symmetrically loaded 

reinforced concrete beam was assumed. The shear force acting on a cross section in the 

shear span of such a beam is always given by the change rate of the bending moment M: 

V= dM/dx = d(T)/dx =- d7/dx + Tdz/dx. The physical interpretation of this purely 
formal derivation is that the shear force usually consists of two different parts, the first of 
which is caused by beam action while the second may be referred to as strut and tie ac- 
tion. It should be mentioned here that beam action is understood to consist of the previ- 
ously described shear carrying actions like stirrups, aggregate interlock, dowel action or 

even tooth bending, while strut and tie action occurs when a load props itself directly up 
on the support. Fig. 3.25. (a) and (b) gives an explanation for both shear force propor- 
tions: V, = ryb,, z is the shear force as described by the technical bending theory and V2 

=C sinO is the vertical part of the inclined compression force C. The question is to what 
extent each term contributes to the total shear force in the cross section. 
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It is obvious from Fig. 3.25. (b) that V2 can only develop when the tension force in the 

steel is constant over a certain beam length. Therefore, the proportion of T which re- 

mains at the supports may be responsible for shear transfer by strut and tie action while 
the rest must account for beam action. However, as will be described later in this section, 
only part of the tension in the steel bars which is still available at the supports can be at- 
tributed to strut and tie action, as the force in the tension chord of a truss does not drop 

to zero when approaching the supports. This fact is well-known and accounts for the im- 

portance of good anchorage of the longitudinal reinforcement in RC beams, even though 

no arch action may occur. 
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Fig. 3.25. (c) - (e) tries to clarify what will be understood here by beam, strut and tie, or 

arch action. Most shear theories and in particular the MCFT explain beam action by a 

truss which carries external loads via its various bearing members to the supports. In this 

model the shear is attributed to the inclined compression struts or the tensile ties and the 

section moment to the chords. It is important to verify that, when pure beam action oc- 

curs, the deviation of the internal forces is accomplished by struts and ties and not by 

external loads. In contrast to this the strut and tie mechanism will always transfer an ex- 

ternal load straight to the supports. In the case of arch action a distributed external load 

supplies the steady deviation of internal compression forces from mid-span to the sup- 

ports. Both strut and tie mechanism and arch action have in common that no deviation 

forces propagate from the tension chord to the compression struts thus gradually reduc- 
ing the tensile force in the longitudinal steel bars. 

Fig. 3.26 Shear Distribution in a Strut and Tie Mechanism 



3.9 Some Considerations on Arch Action 85 

Fig. 3.26 reveals the shear distribution in a cross section when the load is carried by a 

strut and tie mechanism. The shear stresses zýy are considered to be uniformly scattered 

along the vertical intersection line of the strut as a uniform principal compression stress 

state is assumed to apply. In reality the strut might bulge to a certain extent as the tensile 

strength of the concrete can also provide a certain amount of stress deviation in a com- 

pression strut as indicated in the figure. However, the curvature caused by fj is limited 

and this feature by nature cannot be referred to as arch action. In any case, the tensile 

strength causes a more parabolicly shaped shear distribution in the compression strut. 

When strut and tie or arch action occurs the shear is carried in the compression zone, but 

not necessarily at the upper edge of the beam, as is often claimed, because the compres- 

sion zone can also be situated near the lower edge, depending on the cross section under 

consideration (see Fig. 3.26). 

a) Single Truss c) Multiple Truss 

t=cot6 

b) Double Truss 

iý 

IIX 
ýý! % 

/ýý1 

cotB t=l 
1+ 

-2m) 2 

d) Smeared Truss 

t=0.75cot0 t=0.5cot0 

Fig. 3.27 Force in Tensile Chord at the Support dependent on the Chosen Truss Model 



3.9 Some Considerations on Arch Action 86 

It has already been mentioned that the force in the longitudinal reinforcement which re- 

mains at the supports is not always an indicator for a strut and tie mechanism. This is 

true because the stress in the tensile chord of a truss never drops to zero, not even in the 

vicinity of the supports. The stress conditions in the steel bars at the supports are de- 

picted in Fig. 3.27. When we assume a vertical unity force at the support of a truss, then 

the remaining force in the steel bars will be as high as cotO for a single truss. 

If the stirrups are considered to be perfectly distributed, then this value will drop to 0.5 

cote. In a real reinforced concrete member where the stirrups are well distributed the 

force might be between cote and 0.5 cote and can be calculated from the equation t= 

cote (1/2+1/2m) where m denotes the number of trusses. It is easy to recognise that for a 

single truss and for smeared stirrups the two given limit values arise. In their 1967 test, 

Rösch and Mayer measured strains in the longitudinal reinforcement of RC beams with 

various stirrup spacing. The evaluation of the test data verifies the above at least in a 

qualitative fashion (see Rüsch/Mayer, 1967, Figurel 8, Page 19). 

With the knowledge of the tension force at the supports it is possible to check from test 
data whether in a special case strut and tie action has occurred or not. Fig. 3.28 shows 
the redrawing of test results of Leonhard's specimens TAI I and Ti. From strain meas- 

urements carried out on longitudinal reinforcing bars in the span and near the supports 

steel stresses were calculated and plotted against the applied load. It can be seen that in 

mid-span of specimen TAl l the steel stresses followed almost exactly the dashed line 

given from a calculation according to the technical bending theory. The stresses near the 

supports at first followed the same dashed line up to a load of 20 tons but were in gen- 

eral slightly less, which means that at this load stage the concrete was only little cracked. 
At a service load of about 30 tons the values reached the dotted line calculated by ap- 

plying a 45 ° truss. This means that at this load stage a truss mechanism had already 
formed and that the steel force was generated by this truss rather than by a strut and tie 

mechanism. At higher load stages up to the ultimate limit the tension stresses in the lon- 

gitudinal reinforcement exceed the values from the 45 'truss by about 15%. However, 

not even this part of the tension could be attributed to strut and tie action as it is well- 
known that the concrete struts are substantially flatter than the crack inclination, thus 

producing higher values of tension stresses in the tensile chord near the support. 
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Beam TA11 was chosen because it provided the most unfavourable sample of Leon- 

hard's TA series. In all other shear reinforced specimens the stresses of the longitudinal 

reinforcement exceeded the values of the 45 'truss to a much lesser extent. Unfortu- 

nately, the strain measurements in the steel bars were carried out at a relatively far dis- 

tance to the supports. This was not only depicted in the test description but could be re- 

calculated by the given o line of the 45 ° truss. The calculated distance was obtained to 

be 42cm which is too far for a reliable proof calculation of the steel stresses at the sup- 

port. 
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Fortunately, another Leonhardt test could be utilised to carry out this calculation as this 

time the strain measurements were taken right in the vicinity of the supports. Fig. 3.28. (b) 

shows the stresses in the longitudinal reinforcement of beam Ti in approximately mid- 

shear-span and at the supports. While in mid-shear-span the steel stresses followed the 

truss line quite accurately, the steel stresses at the support could be verified as depicted 

in Fig. 3.28. (b). From the measurements it can generally be concluded that at load stages 

far below the service load the elastic bending theory for isotropic material applies. When 

reaching the service load the full crack pattern develops and the tension force in the lon- 

gitudinal reinforcement may be calculated using the truss analogy. At higher load stages 

up to the ultimate limit the tension stresses in the steel bars exceed the values from a 45 ° 

truss but are still compatible with flatter concrete struts due to aggregate interlock. It is 

worth noting that the shear ratio of the tested beams was 3.3 and 2.8 for specimens 

TAl1 and T1, respectively, and this gives evidence for the assumption that substantial 

strut and tie action occurs only at very low shear ratios of less than 2.5. 

The most impressive evidence for the occurrence of strut and tie, arch and beam action 

was given by Leonhardt by his comparative tests with RC members reinforced with ei- 

ther ribbed or plain steel bars. 8 specimens without transverse reinforcement were loaded 

to failure, 4 of which were fitted with ribbed bars while the others were reinforced with 

bright drawn engineering steel. Surprisingly, all specimens with smooth bars exhibited 

significantly higher failure loads than the corresponding beams with ribbed steel. 

The MCFT and the truss analogy provide a simple explanation for this unexpected be- 

haviour: The bond along the ribbed bars prevented the beams from the establishment of a 

strut and tie or arch mechanism by reducing the tension in the steel towards the supports. 

Consequently, a truss formed with compression struts and tensile ties to supply the lon- 

gitudinal reinforcement with the deviation mechanism necessary for the decrease of the 

tension force. In the absence of stirrups only the concrete could provide the tensile ties 

and hence, came under substantial tension. With the increase in load, shear cracks started 

to form and once the failure crack propagated from the support to the load, a redistribu- 

tion of forces towards a strut and tie or arch mechanism was no longer possible and a 

premature shear failure occurred. The described test series revealed impressively that 

even at a shear ratio of 2.8 no strut and tie or arching mechanism forms as long as ribbed 

bars are employed. 
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a) Compatibility Conditions in an RC Beam 
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Fig. 3.29 Deflections of an RC Beam 

Longitudinal reinforcement: 
AS = 1060 mm2 1=h 
EA5 = 220 MN 

Stirrups: 
As = 200 mm2 1=h 
EA5=40MN 

Concrete chords and struts: 
A, =21000inm2 1=h; 1.4h 
EAc = (EA), n,, ý = 630 MN 

Normalised deflections under load: 

S=S \ lmax 
(Ni)2 li (F4)i 

2Ph ' 2P) h (EA) 
, 

1.5=78 4.8=126 
2.3=42 5.8 =54 
3.8=18 6 8=17 

At the beginning of this section an equation was derived by merely differentiating the re- 

lation V= dM/dx. The physical interpretation was that in an RC member, beam and strut 

and tie or arch action always will occur simultaneously. Consequently, when both 

mechanisms are present in a structure, then compatibility conditions decide to what ex- 

tent each mechanism contributes to the total shear force. Fig. 3.29. (a) illustrates the prin- 

ciple: A structure is loaded by a force 2P which gives rise to the deflection & If two dif- 

ferent load carrying mechanisms are present then each mechanism will carry that propor- 

45° 
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tion of 2P which causes the deflection 8 in the same structure when consisting only of 

the respective transfer mechanism. This principle is the basis of each solution of an inde- 

terminate static problem and it ensures that a weak mechanism carries little load while a 

strong one has to carry much. 

It was the purpose of this section up to now to give evidence for the fact that in an RC 

beam, whether it is transverse reinforced or not, only little load can be transferred by a 

strut and tie or arch mechanism provided the shear ratio is higher than 2.0. If this is true, 

then beam action must be a strong mechanism for a/d > 2.0, while the strut and tie or 

arch mechanism must be a weak one. This is shown in Fig. 3.29. (b) by conducting a very 

simple calculation. A beam of various shear ratios was analysed by computing the de- 

flection at mid-span for two different load transfer mechanisms. The first mechanism was 

conceived as a truss while the second consisted of a strut and tie. It is obvious from the 

results that the truss mechanism is much stronger as long as the shear ratio is higher than 

2.0. The investigations in this section strengthen the well-known fact that no appreciable 

strut and tie or arch action can occur for shear ratios more than 2.0, no matter whether 

an RC member is transversely reinforced or not. This feature was the basis of all calcula- 
tions in this part of the work as section analysis procedures which include shear consid- 

erations are usually not able to cope with arch or strut and tie action. 
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4 Investigations Using the Finite Element Method 

4.1 Introductory Reflections 

The proper calculation of the deflections of a complex structure is only possible by 

means of a finite element analysis. As already mentioned, section analysis procedures are 

confined to investigations on the local element level, where they are powerful tools to 

scrutinise quantities such as the ultimate capacity of a cross section or the stress and 

strain state in an RC element. Moreover, it has been seen that secondary shear carrying 

actions could be easily added to a shear theory. In contrast to this, global values, for in- 

stance the top displacement of a high rise building under lateral load, cannot be obtained 

from section analysis as far too many cross sections have to be analysed and the summing 

up of strains, which is necessary to determine deflections, is virtually impossible when 
dealing with a complex building. 

Fortunately, this is the strength of finite elements and therefore, this method must be ex- 

clusively employed for the evaluation of global values such as deflections, inter-storey 

drifts or basement rotations. However, for the calculation of useful results in an FE 

analysis, the implementation of realistic material properties is of crucial importance. This 

fact is well-known since the early days of finite elements, and much work has been con- 

ducted on the development of material models which can accurately simulate the behav- 

iour of cracked reinforced concrete. In this section, a brief summary of the work on RC 

modelling is given to show which direction the research in material laws has taken in the 

last few decades. 
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Reinforced concrete is a composite material consisting of concrete and steel bars. 

Therefore, its physical behaviour is best described by the material laws of both constitu- 

ents and their interaction. Reinforcing steel is modelled as being linear elastic up to the 

yielding point and after the onset of yielding, as being either perfectly plastic or harden- 

ing. Kinematic hardening should be used when load cycles are applied to the structure to 

account for Bauschinger's effect. In contrast to reinforcing steel, the physical description 

of plain concrete is more elaborate and there exist various possibilities, the most common 

of which are both the elasticity and the plasticity theory. 

The plasticity theory was first derived from investigations on metals but later adapted to 

the requirements of concrete under triaxial compression (see eg Chen, 1982). Various 

researchers have developed plasticity based models which take account of the fully three 

dimensional behaviour of concrete (for instance Kotsovos, 1980) and more details on 

plasticity modelling in FE analysis are provided in the state-of-the-art report of the 

American Society of Civil Engineers (ASCE, 1993). However, the implementation of a 

plasticity model is quite demanding and the efforts might not be justifiable in cases where 

the response of a structure is governed by the tensile behaviour of the concrete and the 

yielding of the reinforcement. In this case, the elasticity theory provides a much easier 

access to a reasonable constitutive law for concrete, as will be explained later, even for 

cyclic loading. Although the plasticity theory was recently successfully implemented in a 

number of FE codes for the analysis of cracked reinforced concrete (see for instance van 
Mier, 1987), it can be stated that the elasticity theory, together with a fracture criterion, 
is more convenient for modelling concrete in plane stress in cases where cracking rather 

than crushing is the dominant feature of the element. Therefore, only material models 
based on the elasticity theory are briefly described here. 

Generally, there exist two different approaches to modelling plain and reinforced con- 

crete: The discrete and the smeared concept. 

4.1.1 Discrete Crack Concept 

Ngo and Scordelis were the first to introduce this concept. In their 1967 publication they 

described linear elastic analyses of RC beams with fixed crack patterns. Fig. 4.1 shows 

the finite element idealisation with the mesh they employed in their analysis. Also de- 

picted in the figure is the analytical model and the linkage element with which they simu- 
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lated the bond slip of the reinforcement. This first attempt was followed by some other 

researchers (eg Nilson, 1968), but it soon appeared that the concept was rather unwieldy 

as it often required a redefinition of the mesh during the course of an analysis. This, to- 

gether with the limited speed and space of the computers of those days, made the analy- 

sis time consuming and thus expensive. Moreover, the above features did not really 

match the nature of the finite element method and, therefore, it is not surprising that the 

concept was soon abandoned after these early attempts. 

For the sake of completeness it should be mentioned that the concept of discrete model- 

ling of displacement discontinuities is still widespread in use for the treatment of bond 

problems. However, in this case the location of the discontinuities is known from the be- 

ginning of the analysis and fixed throughout the calculation. Furthermore, due to the 

enormous increase in computational power, the concept was again picked up by some 

researchers (eg Wawrzynek and Ingraffea, 1987) introducing an approach by automati- 

cally generating discrete cracks. 
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Fig. 4.1 Discrete Crack Concept of Ngo and Scordelis (1967) 
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4.1.2 Smeared Crack Concept 

Because of the above mentioned problems with the discrete crack approach, it was desir- 

able to set up a constitutive model which imagines the concrete remaining a continuum 

even after cracks have started to form. This, of course, is only possible when the cracks 

are considered to be smeared out over the elements. Consequently, in 1968 this approach 

was introduced by Rashid, who replaced the initial isotropic stress/strain relationship af- 

ter cracking by an orthotropic one. 

Both equations the uncracked isotropic as well as the cracked orthotropic are given in 

Fig. 4.2, together with the orientation of the principal directions and the transformation 

matrix T with which the orthotropic material matrix is rotated into the xy direction. The 

uncracked elastic isotropic material matrix must be independent of its orientation, which 
is easily verified by building the matrix product TTE T. The values z12 and y12 are both 

zero by definition and are only given here for formal reasons. 
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Fig. 4.2 Rashid's Constitutive Model for Smeared Cracks 
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It is obvious that Rashid's attempt is equivalent to the setting to zero of both the normal 

stress perpendicular to the crack and the shear stress in the crack, which is in contrast to 

the physical reality. Consequently, the constitutive model was enhanced by adding the 

shear modulus G reduced by a factor ß which was named the shear retention factor. In 

addition, Poisson's ratio v together with the reduced Young's modulus UE, was also re- 

inserted. JiG was meant to account for aggregate interlock while pE should account for 

the transfer of the concrete stresses in principal tensile direction, also known as tension 

stiffening. Note that u becomes negative in the case of softening. 

Two popular versions of this constitutive model for concrete are shown in Fig. 4.3: One 

including off-diagonal terms to account for Poisson's effect, and one without. As they 

are both widespread in use up to now (see for instance Leibengood et al, 1986 and Rots/ 

de Borst, 1987), some features of the models will be explained here in more detail. 
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v= Poisson's ratio 
p= reduction factor for Young's modulus due to tension stiffening 
ß= shear retention factor 

Fig. 4.3 Fixed Crack Constitutive Models for Concrete in Principal Direction 

The material models of Fig. 4.3 are linearly elastic in both compression and tension as 

long as the tensile strength of the concrete is not reached. Once the cracking strain is ex- 

ceeded in principal direction the tension stress does not drop immediately to zero but 

follows a descending slope until zero stress is reached at a particular strain, which for 

plain concrete can be calculated from the fracture energy Gf. 
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This feature is called tension or strain softening and it is responsible for the presence of 

tensile stresses in the concrete, even though the tensile strain might exceed by several 

times the cracking strain. However, tension softening is not the only cause for the pres- 

ence of tensile stresses in the concrete of an element. There are two more features which 

generate tensile stresses upon cracking: Aggregate interlock and tension stiffening. As 

already mentioned, the reduced Young's modulus uE, accounts for the tensile stress in 

the concrete and should include all the above features. However, the literature only re- 

ports strain softening and, in the case of reinforced concrete, also tension stiffening as 

causes for concrete tensile stresses upon cracking. In an unreinforced element no tension 

stiffening can occur as it is linked to the loss of bond along reinforcing bars. 

a) Process Zone at the Tip Ofa Crack b) Stress/Crack Width Relationship Derived 
from Testing 
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d) Linear Strain Softening Model 

w= crack width 
Gf =fracture energy 
P, u, st = ultimate principal tensile strain due to strain softening 

Fig. 4.4 Strain Softening Model for Concrete in Tension (see Reinhardt, 1984 and 
van Mier, 1987) 
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Strain softening is confined to the so-called process zone at the tip of the crack. 

Fig. 4.4. (a) shows such a zone and it is assumed that, after microcracks have started to 

form, there is still enough material to bridge the crack faces which, at that stage of 

cracking, are not yet distinctly separated (see Reinhardt, 1984). The strain at zero tensile 

stress can be evaluated by means of the fracture energy which is necessary to separate 

the crack surfaces. The fracture energy is considered to be a material constant and can be 

calculated from the area below the stress/crack width relationship of plain concrete un- 

der tension. 

In an element, cracking occurs at an integration point and separates the whole area asso- 

ciated with it. Therefore, the element size and hence, the area connected with an integra- 

tion point must be fitted to the fracture energy. This imposes restrictions concerning the 

size of an element and accounts for a certain mesh sensitivity of the discretised model. 

Fig. 4.4. (b) gives the stress/crack width relationship for concrete in tension derived from 

testing and Fig. 4.4. (c) a simple approximation for the calculation of the fracture energy. 

Fig. 4.4. (d) depicts the linear strain softening model commonly used in FE programming 

for plain concrete (see van Mier, 1987). 

a) Sti fenin E feet o the Concrete b) SSimple Approximation for the Concrete Stress 
Due to Tension Stiffening and Strain Softening 
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Fig. 4.5 Tension Stiffening Concept 
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ES = Young's modulus of steel 
fy = yield stress of steel 
cu = strain at yielding of steel plus softening strain 

In cracked reinforced concrete the tensile stresses in the steel bars are not evenly distrib- 

uted, but concentrated to some extent in the cracks. This means that, due to equilibrium, 

the concrete between the cracks still has to carry tensile stresses. This has a stiffening 

effect on the structural element and, hence, has been called tension stiffening. This mate- 
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rial property is usually captured by simply increasing the strain at zero stress of the linear 

strain softening model by a certain amount which can be estimated from the yield strain 

of the reinforcement. Fig. 4.5 shows the tension stiffening concept and a stress/strain re- 

lationship which accounts for both strain softening and tension stiffening. It should be 

mentioned that the inclusion of tension stiffening in the constitutive model has a benefi- 

cial influence on the mesh sensitivity and usually enhances the performance of the FE 

material algorithm. In fact, as will be seen later in Section 4.3, the introduction of a high 

value for tension stiffening including strain softening is often necessary to ensure the 

convergence of an analysis, especially when little reinforcement is present in the struc- 

tural model. The reason for this behaviour is the mesh sensitivity which can cause an FE 

analysis not to converge to a unique solution. However, the interaction of reinforcement 

and concrete which is simulated by tension stiffening has a mitigating effect on the mesh 

sensitivity (see eg ABAQUS User's Manual, Vol. 1, Page 4.4.12-1,1994 or Bazant /Oh, 

1983). 

The shear stiffness ßG was reinserted in the cracked material stiffness matrix to account 

for secondary shear carrying actions such as aggregate interlock or dowel action. In 

contrast to aggregate interlock, dowel action can only occur in the vicinity of steel bars 

and hence, is confined to reinforced elements. Fig 4.6 shows an unreinforced element and 

the area associated with an integration point. Once the crack strain in principal tensile 

direction is exceeded, a crack will form which, at its nascent stage, has the direction of 

the principal compression stress. This means that no shear stresses can be generated 

along the crack surfaces. Only when the strain state changes, due to the crack displace- 

ments, can shear stresses develop which is connected with a rotation of the principal 

stress direction. This is depicted in Fig. 4.6 by Mohr's stress circle. In the standard case 

of a web of an RC beam the slope of the compression stresses will flatten. The Mohr's 

circle also reveals that when substantial shear stresses are generated the accompanying 

stress in the direction perpendicular to the crack will change from tension to compres- 

sion. As Walraven showed in his work on aggregate interlock, this feature is vital for the 

development of any higher shear stresses in a crack. Note that in the principal direction 

the stress, of course, remains tensile. However, this direction has then substantially 

changed in comparison with the crack direction. It was mentioned earlier in Chapter 3, 

that the assumption of a coincidence of principal stress and crack direction prevents the 

modified compression field theory from treating aggregate interlock in a physically cor- 

rect way. 
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a) Finite Element with Integration Point 
and Area Associated with it 

zw 
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c) Stress State in an Integration Point 

CRACK ANGLE 0' 

Fig. 4.6 Aggregate Interlock in FE Modelling 

b) Mohr's Stress Circle 
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The shear stress in a crack largely depends on its strain state and, hence, the shear reten- 

tion factor /3 should be calibrated by a constitutive relation for aggregate interlock, for 

instance by that one suggested by Walraven. The constitutive models for cracked con- 

crete which have briefly been described here, and the material stiffness matrices which 

are given in Fig. 4.3 are, because of their simplicity, very popular for implementation in 

FE programs. However, there are severe restrictions as well. The shear retention factor, 6 

and the factor u which accounts for tension stiffening are rather unknown quantities and 

no strict guidelines are available for their application. It is, therefore, not surprising that 

in the literature, for example for /3, a wide range of values is reported, reaching from less 

than J%o up to more than 50%. Finally, it should be mentioned that both models are not 

really suitable for cyclic loading as they are essentially based on linear elasticity together 

with fracture criteria. No plastic strain can be specified, especially for unloading in com- 

pression, and the same is valid for tension up to the tensile strength. Nevertheless, the 

material laws have recently been described for cyclic behaviour (Linde, 1993). 



4.1.2 Smeared Crack Concept 

a) Incremental Orthotropic Stress Strain Relationship in Principal Direction 

Non-symmetric form: 
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b) Incremental Orthotropic Stress Strain 
Relationship in Principal Direction 
Using Uniaxial Strains 
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c) Equivalent Incremental Uniaxial Strains 

with: A, � = dof /EI and 
ds2� = d62 /E2 follows: 

dsl� =12 (del + vde2) 
1- v 

ds2i =12 (vdsl +de2) 
1-v 

E, , E2 = incremental tangent material stiffness moduli 

del�, ds2� = incremental equivalent uniaxial strains 

Fig. 4.7 Non-linear Elastic Orthotropic Material Law for Concrete 

A more elaborate model for cracked concrete can be provided by using non-linear elas- 

ticity together with fracture criteria. The non-linearity is due to a non-linear response of 

concrete in compression. The general form of the incremental orthotropic stress/strain 

relationship is given in Fig. 4.7. (a), where E, and E2 are incremental tangent material 

stiffness moduli, the values of which are unknown and have to be determined from a 

suitable concrete model. The incremental material law is given in principal direction and 

can be rotated in the usual fashion to the xy direction by means of the rotation matrix T 

(see Fig. 4.2). The determination of El, E2 and G will be briefly described, using the 

equivalent uniaxial strain approach of Darwin/Pecknold (1976) which is, up to now, still 

commonly in use (see for instance Stempniewski, 1990). The shear modulus is derived 

from the assumption that its value is invariant to the orientation of the coordinate system. 

Hence, G can be obtained by equilibrating the shear terms of the material matrices in 

both principal and xy direction, yielding the expression given in Fig. 4.7. (d). 

1 aT 1_ uv2 
v2 

dz 1Z dz1Z 
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a) Uniaxial Concrete Law ofSaenz 
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ep = plastic strain corresponding 
to the envelope strain 

EE = initial tangent 
Young's modulus 

Es = secant modulus 6ý/e 
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b) Principal Stresses from the Saenz Curve Using equivalent Strains 
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Fig. 4.8 Principle of Equivalent Uniaxial Strain according to Darwin/Pecknold (1976) 

For the final determination of El and E2 the concrete law from which the uniaxial stresses 

should be taken has now to be specified. Darwin/Pecknold, who derived this method of 

treating a biaxial stress state by switching to equivalent uniaxial stress states, used the 

uniaxial concrete law of Saenz (1964) which is given in Fig. 4.8. The ascending branch of 

the curve is non-linear, while the softening of the concrete occurs along a linear slope. 

The crucial point of the method is that, for a stress state given in principal direction, the 

values can be taken from the Saenz curve provided the corresponding strains are taken as 

the equivalent values of Fig. 4.7. (c). El and E2 are then calculated with the linear expres- 

sions also given in Fig. 4.7. (c). It is obvious that this approach needs neither to specify the 

shear retention factor 8 nor the value p for tension stiffening, as the model is calibrated 

by a material law which in the present case is the Saenz curve. It can be seen from 

Fig. 4.8. (a) that the concrete law of Saenz was extended by Darwin/Pecknold to cyclic 

loading by introducing a remaining plastic strain ep upon unloading. This plastic strain 

value is calculated from an empirically derived equation given in Fig. 4.8. (a). 
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4.2 A User Defined Material for Cracked Reinforced Concrete 

It was stated in the introductory reflections to Chapter 4 that the method of Darwin/ 

Pecknold is based on non-linear elasticity together with a uniaxial concrete material law 

which was taken from the work of Saenz (1964). In a similar way, the material law for 

cracked reinforced concrete, derived from testing on shear panels by Vecchio/Collins 

(1986), can be prepared for its use in finite element analysis and fitted in a material rou- 

tine for calculations together with the commercial FE package ABAQUS (1994). 

ABAQUS is a general purpose finite element program which allows for connecting a 

user-defined constitutive model to its source code. The connection is achieved via an in- 

terface which supplies all necessary information and takes care of the proper transfer of 

data calculated in the user material (UMAT) and required from the main program. 

In modern FE programming, the role of the material routine is exactly defined. Once 

material non-linearities are present in a constitutive model, the task of the routine can be 

described as calculating at each integration point for a given strain state both the stress 

state and the tangent material stiffness matrix which from now on will also be referred to 

as the Jacobian. In addition, when cyclic loading is accounted for, the plastic proportion 

of the strain has to be specified in the material routine. ABAQUS needs the tangent ma- 

terial stiffness matrix to be supplied by the UMAT rather than the secant version, re- 

gardless of whether in an analysis the load can be applied in one increment or not. This is 

because ABAQUS uses for non-linear material problems a Newton/Raphson algorithm in 

its solver which requires the tangent values for convergence. For more details on non- 

linear solution techniques see Zienkiewicz/Taylor, 1991, or Bathe, 1982. 

In the Darwin/Pecknold method, both the stress state and the Jacobian were quickly ob- 

tained by means of the equivalent uniaxial strain concept. Because of the complexity of 

the constitutive model of Vecchio/Collins, known as the modified compression field the- 

ory (MCFT), it is more convenient to apply a different approach, although the use of the 

Darwin/Pecknold method would generally be possible as well. Therefore, the structure of 

the UMAT, and the way it works, will hereafter be described in detail. Cyclic and path 

dependent effects are deliberately not included as the work focuses mainly on more gen- 

eral issues connected with the shear behaviour of cracked reinforced concrete structures. 



4.2 1 Tangent Material Stiffness Matrix for Plain Concrete 

a) General Form of an Elastic Orthotropic Stress/Strain Relationship in Direction 
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Fig. 4.9 Derivation of the Tangent Material Stiffness Matrix of Plain Concrete 

For instance, deflections at the onset of yielding, necessary for any proper evaluation of 

the displacement ductility, are best obtained by an analysis which does not take cyclic 

effects into account. Note that a complete Fortran code is provided in Appendix A and, 

in addition, an input file for the analysis of a 4-storey wall is given in Appendix B. 

4.2.1 Tangent Material Stiffness Matrix for Plain Concrete 

The crucial part of any non-linear material programming is the derivation of the tangent 

material stiffness matrix for the concrete. When a smeared crack concept, together with a 

non-linear elastic fracture model, is adopted, the starting point is the elastic orthotropic 

stress/strain relationship, a general form of which is given in Fig. 4.9. (a). A brief explana- 

tion is given here for the indices in Fig. 4.9. As the stress state is considered to be that of 

the plain concrete, the normal stresses have been given the index c. For the shear stress, 

c was omitted as the shear inevitably has to be carried by the concrete. The strain state of 

the plain concrete is the same as the strain state of the reinforced concrete element and 

hence, no material index has been specified for strains at all. 
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a) Concrete in Compression 
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Fig. 4.10 Constitutive Model of the MCFT (see Vecchio/Collins, 1982) 
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(4.1) 

The first step towards developing the Jacobian is to establish the incremental form of this 

material law. The transition from a function to its incremental form is achieved by differ- 

entiating. When the function has only one dependent variable this is a trivial procedure. 

However, when more dependent variables are involved, as in the present case, the total 

differential has to be built. As each stress component is a function of the strain state, the 

total differential takes the form given in Fig. 4.9. (b) and can also be written in terms of a 

matrix equation. 

It is obvious from comparison that the matrix containing the partial differentials must be 

the tangent material stiffness matrix sought after. The next step involves the calculation 

of the various components of the Jacobian. This is only possible by evaluating the con- 

stitutive model under consideration. Therefore, the material laws of the MCFT are de- 

picted in Fig. 4.10. 
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a) Mutual Stress/Strain Dependencies 
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Fig. 4.11 Tangent Material Stiffness Matrix (Jacobian) for Plain Concrete in xy Direction 



4.2.1 Tangent Material Stiffness Matrix for Plain Concrete 106 

Fig. 4.10 reveals that the material laws are noted in terms of principal directions. How- 

ever, the components of the Jacobian are noted in xy direction and have, therefore, to be 

transformed in a suitable fashion. In Fig. 4.11. (a), the relations between a stress state in xy 

and principal direction are given. It is obvious that each component of the stress state in 

xy direction is a function of both the stress state in principal direction and the angle 99. 

Furthermore, the constitutive laws reveal that each component of the stress state in prin- 

cipal direction is a function of the strain state in principal direction. Finally, the relations 

between a strain state in principal and xy direction are depicted. The equations show that 

each strain component in principal direction is a function of both the strain state in xy 

direction and the angle 99. With these dependencies the components of the tangent mate- 

rial stiffness matrix can be expressed as shown in Fig. 4.11. (b). 
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Fig. 4.12 Evaluation of EE in Terms of Principal Direction 

The expression given for E, in Fig. 11. (b) is evaluated in Fig. 4.12 and, for complete- 

ness, the results of the evaluation of each component of the Jacobian are depicted in 

Fig. 4.13. For each component of the tangent material stiffness matrix in xy direction, the 

mathematical procedure up to now has yielded the corresponding expression in terms of 

principal direction. The various elements of the Jacobian can now be calculated from the 

material laws given in the constitutive model. 
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Fig. 4.13 Complete Tangent Material Stiffness Matrix for Plain Concrete in xy Direction 

For computational efficiency, it is more convenient to establish the Jacobian in principal 

direction and to rotate it in the UMAT to the xy direction, rather than to code the com- 

plicated expressions of the components of the tangent material stiffness matrix as they 

are given in Fig. 4.13. The easiest way to obtain the Jacobian in the principal direction is 

to use the transformation matrix Tin the well-known fashion. Fig. 4.14 once again shows 

the procedure. From this it is clear that the Jacobian in principal direction represents a far 

simpler mathematical expression than the tangent material stiffness matrix given in 

Fig. 4.13. However, the effort to perform the transformation is considerable. 

It is worth noting that the Jacobian does not contain any factors for adjusting tension 

stiffening or secondary shear carrying actions such as aggregate interlock. This is typical 

for tangent material stiffness matrices which are calibrated by empirically derived con- 

stitutive laws. For instance, the Jacobian derived from the Darwin/Pecknold concept and 

calibrated with the concrete law of Saenz, showed the same feature. In addition, the 
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shear stiffness component E33 =O. 5(6c1-6c2)/(El-E2) reveals that the applied method can 

be attributed to the rotating crack approach which is a direct consequence of the as- 

sumption that the principal stress direction of the plain concrete coincides with the prin- 

cipal strain direction of the reinforced element (Crisfield/Wills, 1989). In Chapter3 this 

assumption was expressed by 0, =0=0' and this means that when both stress and strain 

direction coincide, then the crack angle 0' coincides with each of the other angles as 

well. Consequently, a crack angle will change together with the stress state in the con- 

crete. This is to some extent against the physical reality and hence, this assumption was 

criticised byBazant and Oh (1983). It was shown earlier that Kupfer abandoned this as- 

sumption, which led to three different values for 00,0 and 0' but made the theory rather 

complex. 

[E' C112 = [T ]T [E'Clxy[T] 
Eil Eft 0 
E21 E22 0 

00 6cl - 6c2 

2(c, - 62) 

[E" 112 
= Jacobian for plain concrete in principal direction 

[Ej°] 
= Jacobian for plain concrete in xy direction (see Fig. 4.13) 

[Tý = transformation matrix (see Fig. 4.2) 

Fig. 4.14 Tangent Material Stiffness Matrix for Plain Concrete in Principal Direction 

In the linear elastic case, which is, for instance, given in the MCFT when both principal 

components of a stress state consist of tension stresses below the tensile strength (see 

Case 4 in Fig. 4.15), the Jacobian in principal direction yields the isotropic material stiff- 

ness matrix for v=0. This feature is equivalent to the fact that the above mentioned as- 

sumption for the coincidence of principal stress and strain directions suppresses the Pois- 

son's effect. Note that an isotropic material matrix is invariant of directions and there- 

fore, the Jacobian in xy direction must yield the same result which can easily be verified 

by the tangent material stiffness matrix of Fig. 4.13. 
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4.2.2 Assembling of the Jacobian in the UMAT 

In the derivations up to now the material laws have not been involved. They are now 

necessary to specify the values for the stiffness moduli E;; 
, 
E; 2 , 

E2 J and E22 
. These 

values depend on the stress and strain state given in an integration point at a certain stage 

of a calculation. Prior to the assembling of the Jacobian in the UMAT, the stress state in 

an integration point is calculated from the strain state by means of the material laws. 

Usually the strain state is supplied by the main program in xy direction. Therefore, the 

first step in the UMAT is its rotation to the principal direction. The next step is to deter- 

mine the concrete and steel stresses from the material laws and to rotate them back to 

the xy direction. Finally, concrete and steel stresses are added together to yield the stress 

state of the reinforced concrete element which has to be transferred to the main program 
in order to advance the analysis. 

Once the stress states of both the plain concrete and the steel are known the assembling 

of the Jacobian can too be performed. While the stiffness supplied by the steel to the 

material moduli is most easily calculated from the steel law, the proportion given by the 

plain concrete needs appropriate consideration. Generally, there are six different possi- 

bilities to distinguish. Fig. 4.15 shows the entire spectrum of sets of stiffness values for 

plain concrete. 

Fig. 4.15 reveals that in the occurrence of Case 3 the tangent material stiffness matrix be- 

comes unsymmetric. As this case represents a standard situation for concrete under high 

shear this unsymmetry will not be a rare event when analysing RC beams or shear walls. 

The unsymmetry of the Jacobian is caused by the material law for concrete in compres- 

sion which considers the compressive stress in principal direction as being a function of 

the strain in the principal tensile direction, provided the cracking strain is exceeded. 
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Fig. 4.15 Tangent Material Stiffness Moduli for Plain Concrete in Principal Direction 
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Because of the unsymmetric Jacobian, the solver of the main program has to invert the 

complete system stiffness matrix unless the initial stress method is used. This is time- 

consuming and expensive and is therefore a certain disadvantage of the material law of 

the MCFT. ABAQUS provides a solver for unsymmetric system stiffness matrices by 

specifying this feature on the input deck. However, many FE codes do not cater for that 

facility and, hence, a constitutive law causing unsymmetry in the Jacobian would be not 

suitable for implementation in such programs. 

a) Jacobian or Plain Concrete in xy Direction 

lEl 
ýL _[T-11 

T[E'c1r2[T-i1= 

tivith: 

U 

Cos 2o, sill 2o sin 0. cos Oc 
[T-1] 

= sin20C cos2oc -sinOc cosOC 

-2 sin B,, cos Oc 2 sin 9. cos 0, cos20C - sin20C 

[T-'] 
= inverse of [T] (see Fig. 4.2) 

b) Jacobian or Steel in xy Direction 
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E, r = Young's modulus of steel 
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c) Jacobian or Rein orced Concrete in xy Direction 
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Fig. 4.16 Tangent Material Stiffness Matrix of Reinforced Concrete Element 
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Fig. 4.16. (b) shows the tangent material stiffness matrix of the reinforcing steel when an 

orthogonal grid of steel bars is assumed. In addition, the transformation of both the Ja- 

cobian for concrete and steel to the xy direction is depicted and their assembling to the 

tangent material stiffness matrix of the reinforced concrete element. 

It is worth noting that the transformation matrix T-' of Fig. 4.16. (a) must be the inverse 

of the transformation matrix T of Fig. 4.2. In Fig. 4.2 the rotation from the xy direction to 

the principal direction is performed by applying T in the usual way and hence, the rota- 

tion back to the xy direction must be performed with the inverse of T. Therefore, the in- 

verse T-' is most easily obtained by replacing 9, by -B, in the transformation matrix T. 

The accuracy of the procedure can be verified by the matrix multiplication T-'* T which 

yields the unity matrix I. 

4.2.3 A Modification of the MCFT 

The material routine coded according to the rules described on the previous pages was 

extensively tested on a great variety of structural elements. It turned out that the per- 

formance of the UMAT was good in all cases where shear dominated the response of the 

analysed structure. However, when tension or compression rather than shear prevailed, 

the capacity could not be predicted in a satisfactory fashion. The investigation of this be- 

haviour revealed a shortcoming of the constitutive model of the MCFT which necessi- 

tated an adaptation of its laws. This improved the performance of the UMAT considera- 

bly and will be explained here in detail. 

Two features of the material laws of the MCFT are noticeable at first sight: The high 

values for both the compressive strength degradation and the tension stiffening. 

Fig. 4.17. (a) and (b) shows an RC panel loaded in pure shear which is equivalent to a 

uniform state of tension and compression. The compression strength of the concrete 

must be reduced according to the constitutive laws. However, the degradation is to some 

extent neutralised by the high value of tension stiffening which is introduced in the per- 

pendicular direction. The compressive strength degradation is dependent on the principal 

tensile strain which itself is a function of the principal tensile stresses. Due to the tension 

stiffening model of the MCFT the tensile stresses are considered to be relatively high, 

although the accompanying tensile strains might be high as well, in which case the princi- 

pal compression strength will be considerably reduced. The same result could have been 
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achieved with a constitutive model providing a smaller amount of strength degradation in 

conjunction with lower tension stiffening. 
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Fig. 4.17 RC Panels under Various Loading Conditions 
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However, this is only true for prevalent shear loading. Once panels are loaded in shear 

and compression as depicted in Fig. 4.17. (c), their response is mainly dependent on the 

compressive part of the constitutive law. This means that appreciable strength degrada- 

tion might occur although the straining in perpendicular direction is relatively low. 

Moreover, panels loaded in shear and tension as shown in Fig. 4.17. (d) are governed by 

the tension part of the constitutive law. This means that high tensile stresses are assigned 

to the concrete which is against the physical reality. A similar case is given when the 

specimens are only slightly reinforced or mild steel is used. Then tension stiffening con- 

tributes considerably to the response which results in an overestimation of the tensile 

strength. It is therefore necessary to check whether the proposed constitutive rules of the 

MCFT represent tension stiffening and compression strength degradation as realistic 

material properties for cracked reinforced concrete. 

A simple consideration on tension stiffening confirms that the MCFT overestimates the 

principal tensile stresses in the cracked concrete. The stresses due to strain softening can 

be considered to vanish once the principal tensile strains approach a value of approxi- 

mately 10 times the cracking strain. For normal concrete this occurs in the region of Mo. 

Tension stiffening stresses have dropped to zero by the time the tensile strain in xy direc- 

tion is in the range of the yield strain of the reinforcing steel, which normally happens at 

2 %o. Therefore, it can be assumed that at a strain of EI =4 %o, no appreciable tension 

stresses are present in the concrete. However, it is easy to verify that the constitutive 
laws of the MCFT assume tensile stresses of more than 50 % the tensile strength of the 

concrete at the above mentioned strain of 4%o. This is definitely a value which is far too 

high, even though aggregate interlock action might also generate some tensile stresses 

across cracks. 

In 1990, Kollegger/Mehlhorn reported tests on RC specimens biaxially loaded in com- 

pression and tension. The results clearly showed that the degradation of the compressive 

strength of the concrete is usually less than 40% the initial value. However, the constitu- 

tive laws of Vecchio/Collins assume a degradation of up to 80% the uniaxial strength. In 

fact, this shows that, as earlier suspected, the overestimation of tension stiffening super- 

sedes the underrating of the remaining compressive strength to yield good results in all 

cases where shear is predominant. 
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Panel Load Ratio 

zxy /6x /0y 

Longitud. Steel 

Px [%] f [MP a] 

Transverse Steel 

py [%] fy [MP a] 

ru [MPa] 

Test UMAT 

Ratio 

Tu lest 
/ 'ru cal 

Overestimation Due to Loiv Steel Reinforcement: 

PV2 1: 0: 0 0.18 428 0.18 428 1.16 1.57 0.74 

PV3 1: 0: 0 0.48 662 0.48 662 3.07 3.94 0.78 

Overestimation Due to Mild Steel: 

PV4 1: 0: 0 1.06 242 1.06 242 2.89 3.51 0.83 

PV6 1: 0: 0 1.79 266 1.79 266 4.55 5.69 0.80 

Overestimation Due to Predominant Tension: 

PB8 1: 2.98: 0 1.09 425 0.0 - 0.79 1.10 0.72 

PBIO 1: 5.94: 0 1.09 433 0.0 - 0.56 0.79 0.71 

Realistic Prediction for Pure Shear: 

PV22 1: 0: 0 1.79 458 1.52 420 6.07 6.21 0.98 

PV26 1: 0: 0 1.79 456 1.01 463 5.41 5.77 0.94 

PV27 1: 0: 0 1.79 442 1.79 442 6.35 6.47 0.98 

Underestimation Due to Predominant Compression: 

PV23 1: -0.39: -0.39 1.79 518 1.79 518 8.87 7.35 1.20 

PV25 ]: -0.69: -0.69 1.79 466 1.79 466 9.12 7.95 1.15 

Tab. 4.1 Results with UMAT Based on Original Constitutive Model of MCFT 

Tab. 4.1 shows results of calculations with a UMAT coded according to the original con- 

stitutive laws of the MCFT (see Fig. 4.10). The table contains five sorts of panels of the 

Toronto PV and PB series. It is obvious that the panels under pure shear were recalcu- 

lated in a proper fashion, provided they were reasonably reinforced with high strength 

steel. The panels additionally loaded in compression were distinctly underestimated, 

while the panels under tension developed a strength which was not reached by the tests. 

Because of the above mentioned features of the MCFT it was intended to modify the 

constitutive laws in a fashion which weakens the tensile response and improves the com- 

pressive behaviour according to the explanations of tension stiffening and strength deg- 

radation given before. The best way to achieve this aim would be to conduct a compre- 

hensive parametric study to calibrate the MCFT on a representative selection of test data. 

However, such a task would be beyond the scope of this work. Therefore, various modi- 

fications of the concrete laws of the MCFT were incorporated in the UMAT and tested 

against the experimental data of Leonhardt and Vecchio/Collins. This optimisation pro- 

cedure led to three minor adaptations of the model which are briefly explained hereafter. 
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The principal tensile stress in the concrete is assumed to have dropped to zero once a 

strain of approximately 4%o is reached. In addition, the strength degradation has been 

adjusted in such a way that it will decrease to a maximum of 50% the initial value at a 

tensile strain of 10%o. These measures, depicted in Fig. 4.18, proved to enhance the per- 

formance of the UMAT considerably, as will be seen in Section 4.3 dealing with the 

verification of the UMAT. 

A third small change to the constitutive law for concrete in tension was performed by 

replacing Eq. (4.1) from Fig. 4.10 by Eq. (4.2) from Fig. 4.18. Comparison of Fig. 4.10. (b) 

with Fig. 4.18. (b) clarifies the modification which ensures a smooth transition of the con- 

crete tensile stresses in the strain range beyond sc, . 
It should be mentioned that the dis- 

continuities in the tensile law did not lead to any apparent convergence problems. A 

straight line which was used as softening curve beyond the cracking strain did not reveal 

a significantly enhanced performance of the UMAT. 

a) Concrete in Compression b) Concrete in Tension 
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Fig. 4.18 Proposed Constitutive Model of the MCFT 
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4.3 Verification of User Material Subroutine 

4.3.1. The Toronto PV Series 

The modified compression field theory was derived by Vecchio/Collins from extensive 

testing on RC shear panels. It was intended to establish a material model for reinforced 

concrete elements which are mainly subjected to in-plane loading. Such structural ele- 

ments typically occur, for instance, in shear walls of high-rise buildings, in webs of box- 

girder bridges or in caissons of off-shore platforms. 

It is obvious that the tests which served for the calibration of the MCFT are best suited 

to check the proper implementation of the constitutive model in the user subroutine. 

Therefore, the Toronto tests of series PV were recalculated with the UMAT and the re- 

sults are presented in this section of Chapter 4. Fig 4.19. (a) shows the test set-up with 

the specimen, the shear keys and the loading jacks with which a well-defined load could 
be applied on the RC panels. Fig. 4.19. (b) depicts the analysed model with its element 

mesh and the 2D-Solid CPS4 which was chosen for calculations. 

Generally, all two-dimensional plane stress solid elements from the ABAQUS element 

library are suitable for employing together with the UMAT. In contrast, not every 2D 

Solid for plane stress problems can be used together with the standard material concrete 

options for the analysis of reinforced concrete structures. The reason for this is that the 

*REBAR option of ABAQUS Standard, which is necessary for the reinforcing of ele- 

ments, is not available for some of the 2D Solids, such as the 3-node linear element 
CPS3 or the 6-node quadratic element CPS6. This reveals that the UMAT offers a 

greater versatility in analysing reinforced concrete structures than the standard ABAQUS 

concrete options. Tab. 4.2 gives a brief overview of the usage of the most common plane 

stress elements together with ABAQUS Standard or UMAT. 

In the Toronto PV series, conducted between March 1979 and August 1981,30 RC 

shear panels were tested. Each specimen was 89 cm square and 7 cm thick. The test ob- 

servations reveal that some of the samples sustained a premature failure, especially in 

corner regions, which in most cases occurred because the shear keys pulled out of the 

concrete. Another reason for premature failures were voids in the concrete caused by 

poor casting. Although it is obvious that test results reported on specimens with a pre- 

mature failure are not reliable, some of the tests have nevertheless been recalculated. 
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Panel PV29 was loaded under changing conditions which are not further specified in the 

test descriptions and therefore, the recalculation of this panel was omitted. This means 

that a total of 19 tests were recalculated using the UMAT described above. 

a) Test Set-up and Specimen b) Anal scd Model 
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Fig. 4.19 Test Set-up for Toronto PV and PB Series and Analysed Model 

Tab. 4.3 shows all relevant data of the analysed specimens and Tab. 4.4 gives both the 

measured and the calculated ultimate shear stress of each sample. In addition, in Tab. 4.4 

the results of a nearly comprehensive recalculation of the PV series by Stevens/Uzumeri/ 

Collins/Will (1991) is depicted. Researchers who also analysed part of the tests were, 

among others, Crisfield / Wills (1989), Hu / Schnobrich (1990) and Feenstra / de Borst 

(1993). Comments on the results of their investigations will be given later in this chapter. 

Element Standard Material Options 

Plain Concrete Reinf. Concrete 

UMAT 

Plain +Reinf. Concrete 

CPS3 = 3-node linear yes no yes 
CPS4 = 4-node bilinear yes yes yes 

CPS4I = 4-node bilinear, incompatible modes yes yes yes 

CPS4R = 4-node bilinear, reduced integration yes yes yes 
CPS6 = 6-node quadratic yes no yes 

CPS8 = 8-node biquadratic yes yes yes 

CPS8R = 8-node biquadratic, reduced integration yes yes yes 

Tab. 4.2 ABAQUS Element Library for Plane Stress 2D Solids 
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The concrete laws of the MCFT do not explicitly specify the tensile strength of the con- 

crete. However, Vecchio/Collins (1986) and Stevens et al (1991) fixed fir at a level of 

0.33vf, which is in accordance with the provisions of the ACI. To avoid any adjusting of 

calculated values on test results this value was retained and kept constant throughout all 

calculations. This might be responsible for part of the differences in the predicted and 

measured ultimate capacity, as occasionally the cracking stress given in the test descrip- 

tion deviates appreciably from the tensile strength calculated from the above ACI equa- 

tion. 

Panel Loading Ratio 
Txy /6 /6y 

Longitudinal Steel 

px [%J f [MP a] 
Transverse Steel 
Py [Yo] 

. 
%y [MPa] 

Concrete ff =0.33'�fý 
[%o] J. [MPa] [AllPa] 

PV2 1: 0: 0 0.18 428 0.18 428 2.3 23.5 1.60 

PV3 1: 0: 0 0.48 662 0.48 662 2.3 26.6 1.70 

PV4 1: 0: 0 1.06 242 1.06 242 2.5 26.6 1.70 

PV6 1: 0: 0 1.79 266 1.79 266 2.5 29.8 1.80 

PV9 1: 0: 0 1.79 455 1.79 455 2.8 11.6 1.12 

PVIO 1: 0: 0 1.79 276 1.00 276 2.7 14.5 1.26 

P VI I 1: 0: 0 1.79 235 1.31 235 2.6 15.6 1.30 

PV12 1: 0: 0 1.79 469 0.45 269 2.5 16.0 1.32 

PV16 1: 0: 0 0.74 255 0.74 255 2.0 21.7 1.54 

PV18 1: 0: 0 1.79 431 0.32 412 2.2 19.5 1.46 

PV19 1: 0: 0 1.79 458 0.71 299 2.2 19.0 1.44 

PV20 1: 0: 0 1.79 460 0.89 297 1.8 19.6 1.46 

PV21 1: 0. -0 1.79 458 1.30 3 02 1.8 19.5 1.46 

PV22 1: 0: 0 1.79 458 1.52 420 2.0 19.6 1.46 

PV23 1: -0.39: -0.39 1.79 518 1.79 518 2.0 20.5 1.49 

PV25 ]: -0.69: -0.69 1.79 466 1.79 466 1.8 19.2 1.45 

PV26 1: 0. -0 1.79 456 1.01 463 1.9 21.3 1.52 

PV27 1: 0: 0 1.79 442 1.79 442 1.9 20.5 1.49 

PV28 1: 0.32: 0.32 1.79 483 1.79 483 1.9 19.0 1.44 

Tab. 4.3 Material Properties of Toronto Test Series PV 

Stevens et al (1991) developed a complete finite element program and implemented the 

MCFT in the material routine. They omitted the check of the reinforcement stresses in 

the cracks but extended the constitutive laws to include both confinement of concrete 

under compression and a more complicated relationship for strain softening of concrete 
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under tension. In addition, a factor was introduced to account for loss of bond and the 

stress/strain relation of the reinforcing steel was fitted with a work hardening rule. 

In contrast, the material laws of the UMAT remained nearly the same as those initially 

derived by Vecchio/Collins from the Toronto PV tests. A check of steel stresses in the 

cracks was also omitted as it was earlier argued that the increase of steel stresses in 

cracks is due to debonding rather than aggregate interlock. Hence, only the inclusion of a 

proper bond slip model would enable the program to carry out such a steel check. 

Moreover, it is the advantage of the MCFT that secondary shear carrying actions such as 

aggregate interlock and dowel action are an intrinsic feature of the theory. This is be- 

cause of the shear stiffness term E33 =O. 5(o- j-o-)/(sj-i& which delivers in an integra- 

tion point, for each stress and strain state, a certain amount of shear stiffness, even if the 

element is cracked. Therefore, no aggregate interlock, dowel action or bond slip has to 

be modelled explicitly. 

Panel Ultimate Shear Stress Tu [MPa] 

Test ABAQUS Stevens 
UMAT Standard et al 

Ratio Tu test Tu ca( 

ABAQUS Stevens 
UMAT Standard et al 

PV2 1.16 1.33 2.24 - 0.88 0.52 - 
PV3 3.07 3.17 2.57 3.38 0.97 1.19 0.91 

PV4 2.89 2.98 2.59 3.12 0.97 1.12 0.93 

PV6 4.55 4.75 3.13 5.30 0.96 1.45 0.86 

PV9 3.74 4.47 5.16 4.47 0.84 0.72 0.84 

PVIO 3.97 3.69 2.46 3.97 1.08 1.61 1.00 

PVII 3.56 3.60 2.36 3.96 0.99 1.51 0.90 

PV12 3.13 2.50 2.98 2.79 1.25 1.05 1.12 

PV16 2.14 2.35 2.46 2.27 0.91 0.87 0.94 

PV18 3.04 2.77 2.88 3.07 1.10 1.06 0.99 

PV19 3.95 3.67 3.29 3.87 1.08 1.20 1.02 

PV20 4.26 4.00 3.49 4.25 1.06 1.22 1.00 

PV21 5.03 5.06 3.90 5.16 0.99 1.29 0.97 

PV22 6.07 6.57 4.67 6.16 0.92 1.30 0.99 

PV23 8.87 7.55 9.71 7.37 1.17 0.91 1.20 

PV25 9.12 8.27 9.61 7.98 1.10 0.95 1.14 

PV26 5.41 5.80 4.14 5.37 0.93 1.31 1.01 

PV27 6.35 6.55 5.09 6.43 0.97 1.25 0.99 

PV28 5.8 5.91 4.17 5.59 0.98 1.39 1.04 

Tab. 4.4 Results of Recalculation of Toronto Test Series PV 
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For the recalculation of the Toronto shear tests neither confinement of concrete nor 

strain hardening of reinforcing steel was added to the material laws as it was obvious 

from the test concept that both features would not have affected the results of the recal- 

culation of the RC panels at all. Hence, the constitutive model of the MCFT was used in 

the form specified in Fig. 4.18. However, it is worth mentioning that for investigations on 

ductility, concrete confinement plays a major role and, therefore, its beneficial effect on 

the rotational capacity of plastic hinges is accounted for in all calculations reported in 

Chapter 5. 

The results of the calculations of the panel tests show that in terms of ultimate shear 

stress acceptable agreement with the test results could be achieved. Some values of Ste- 

vens et al (1991) are slightly better while most others are worse or virtually the same. 
Where distinct differences in calculated and measured values are encountered, both pro- 

grams either over or underestimated the measured values simultaneously. This demon- 

strates that the differences between analysis and testing are due to the assumptions of the 

MCFT. Both programs tend to overrate the shear resistance of panels reinforced with 
little or mild steel, while the shear resistance of panels loaded in shear and compression is 

noticeably underestimated. An explanation for this behaviour was given in Section 4.2, 

where a minor modification of the constitutive model was justified. 

Figs. 4.20 through to 4.22 show the shear response of all recalculated panels. In some of 

the graphs the response calculated by other researchers is also depicted. In addition, 

where the reinforcement ratio in x direction differs from that in y direction, the 0,, /z re- 
lationship is given in a graph as well. It can be seen that the calculated response of the 

various panels captures the post-peak behaviour quite well. Stevens et al (1991) give the 

mean value of the ratio zu rest/zucat and the coefficient of variation in their table. However, 

the mean value which is close to 1 is a rather meaningless quantity since the reason for 

the major deviations is known. As already mentioned, programs which are based on the 

MCFT, such as the UMAT or the FE code of Stevens et al (1991), obviously tend to 

overestimate the shear resistance in cases where panels are slightly reinforced, while un- 
derpredicting the shear resistance where high compression forces are applied together 

with shear. If the test series consisted exclusively of underreinforced panels subjected to 

pure shear, then the mean value would be far below 1, and a mean value much higher 

than 1 would be obtained if the test series only consisted of panels under combined com- 

pression and shear. Here, therefore, the specification of a mean value was omitted. 
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4.3.2 The Toronto PB Series 

In addition to the PV series of Vecchio/Collins (1982), a second test series was con- 

ducted by Bhide / Collins (1987). The specimens were longitudinally reinforced and 

loaded in combined uniaxial tension and shear. The test set-up and FE model were the 

same as for the PV series and are depicted in Fig. 4.19. Stevens et at (1991) recalculated 

a selection of the PB tests and, hence, these panels were also analysed using ABAQUS 

together with the UMAT. Tab. 4.5 shows load conditions, material properties and the 

calculated shear capacity in comparison with the test results and the predictions of Ste- 

vens et al (1991). 

Panel Load Ratio 
Tsy /c& /6y 

Longit. Steel 

Px f 
[%] [MPa] 

Concrete/ 
eýc fc fct 

[%oJ [MPaJ [MPaJ 

Ultimate Shear Stress 

ru [MPaJ 
Test UMAT Stev. 

Ratio 
Tu test 

/ 'tu ca! 
UMAT Stev. 

PB4 1: 0.96: 0 1.085 423 1.9 16.4 1.33 1.16 1.07 0.88 1.08 1.32 

PB5 1: 0.97. -1.03 1.085 415 1.8 23.5 1.60 2.64 2.93 2.43 0.90 1.09 

PB6 1: 1: 0 1.085 425 1.9 17.6 1.38 1.15 1.09 0.90 1.05 1.29 

PB7 1: 1.89: 0 1.085 425 2.2 20.2 1.48 0.86 1.01 0.72 0.85 1.19 

PB8 1: 2.98: 0 1.085 425 2.0 20.4 1.48 0.79 0.89 0.59 0.89 1.35 

PB10 1: 5.94: 0 1.085 433 1.9 24.0 1.62 0.56 0.73 0.55 0.77 1.02 

PB12 1: 0: 0 1.085 433 1.5 23.1 1.59 1.53 1.53 1.59 1.00 0.97 

PB14 1: 3.01: 0 1.085 489 2.8 41.1 2.12 1.54 1.40 1.43 1.10 1.08 

PB15 1: 0: 0 2.023 485 3.2 38.4 2.04 1.96 2.00 2.05 0.98 0.98 

PB16 1: 1.96: 0 2.023 502 3.2 41.7 2.13 1.42 1.55 1.44 0.91 0.99 

PB17 1: 5.93: 0 2.023 502 3.1 41.6 2.13 1.22 1.11 1.21 1.10 1.01 

PB18 1: 0: 0 2.195 402 2.2 25.3 1.66 1.72 1.72 1.72 1.00 1.00 

PB19 1: 1.01: 0 2.195 402 1.9 20.0 1.48 1.28 1.36 1.27 0.94 1.01 

PB20 1: 2.04: 0 2.195 424 1.9 21.7 1.54 1.42 1.26 1.14 1.12 1.25 

PB21 1: 3.08: 0 2.195 402 1.8 21.8 1.54 1.42 1.15 1.08 1.24 1.32 

PB22 1: 6.09: 0 2.195 433 2.0 17.6 1.38 1.03 0.88 0.98 1.18 1.05 

PB28 1: 1.98: 0 2.195 426 2.0 22.7 1.57 1.53 1.29 1.17 1.19 1.32 

PB29 1: 2.02: 0 2.023 496 2.6 41.6 2.13 1.49 1.55 1.44 0.96 1.04 

PB30 1: 2.96: 0 2.023 496 2.6 40.4 2.10 1.48 1.39 1.42 1.07 1.04 

PB31 1: 5.78: 0 2.023 496 3.0 43.4 2.17 1.15 1.14 1.36 1.01 0.84 

Tab. 4.5 Recalculation of Toronto Test Series PB (see Bhide/Collins 1987) 
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It should be mentioned that the Toronto PB series of Bhide/Collins was not performed to 

calibrate the material laws of the MCFT as was the case with the PV series of Vecchio/ 

Collins. It is, therefore, not surprising that the results occasionally revealed differences 

from the test results, although the mean deviation for calculations with the UMAT was 

less than 2%. This shows that the UMAT delivered distinctly better predictions than the 

FE analyses of Stevens et al (1991). The ABAQUS Standard concrete options could not 

recalculate the tests in a satisfactory fashion and, hence, no results were given in Tab. 4.5. 

For some of the panels the shear stress /normal strain response is given in Fig. 4.23. The 

comparison with the test values shows an acceptable agreement in all cases. As the lit- 

erature does not report much on FE analyses conducted with the PB panels, no results 

from other researchers were added. 

4.3.3 Comparison with ABAQUS Standard Options 

For the purpose of comparison, the complete Toronto PV series has been recalculated 

with the ABAQUS Standard concrete options. ABAQUS provides a rather complicated 

model for cracked reinforced concrete which is essentially based on concrete plasticity. It 

was stated earlier in Section 4.1 that these material models are best suited for 3D solids 

as the plasticity theory is well established for triaxial stress conditions. On the tensile side 

of the concrete the material laws are described by the well-known orthotropic material 

matrix including the shear retention factor ß to account for secondary shear carrying ac- 

tions and a sectionally linear strain softening rule. Additionally, for concrete under biaxial 

stress conditions the failure curve of Kupfer/Gerstle (1973) was implemented. 

ABAQUS allows for wide-ranging adjustment of the constitutive laws, but gives some 

reasonable recommendations as well. If nothing is specified on the input deck in the 

*SHEAR RETENTION option, then the default value for fi is one which means that a 

full shear retention applies. If the *FAILURE RATIO option is omitted, then the default 

set up accounts for an increase in biaxial compression up to 1.16f, and the cracking 

stress of concrete under tension is given by 0.09 fc. The recommendation for tension 

stiffening is that the tensile stresses should drop to zero after a strain of ten times the 

cracking strain has occurred. 
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Fig. 4.24 Material Set-up of the ABAQUS Standard Options for the PV Series 

The default values for the shear retention factor, the failure ratios and the recommenda- 

tions for tension stiffening have been retained for all calculations on the PV panels. In 

addition, a simple stress/strain relationship for concrete in compression was adopted. 

The material laws for concrete in uniaxial compression and for tension stiffening are de- 

picted in Fig. 4.24. (b). It should be mentioned that the results obtained from the default 

values are on the safe side. A shear retention factor 
,8=1 means that in terms of shear no 

cracking is assumed. A tensile strength of 9% of the compressive strength is a value 

which is in all cases higher than the 0.33'�fý taken for the calculations with the UMAT. 

In addition, the amount of strain softening can be considered appreciable. 
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The stress/strain relationship of concrete in compression is conservative against the pa- 

rabola of the MCFT and a softening in compression is not specified in the constitutive 

model. With these material properties it should be expected that the calculated response 

reveals the real behaviour of the specimens. However, it can be seen from the results in 

Tab. 4.4 that the ultimate resistance was seldom predicted in a satisfying fashion. The less 

sophisticated model of the UMAT reveals a much better performance in analysing the 

panel tests. 

4.4 Recalculation of Leonhardt's Shear Tests with UMAT 

The MCFT was conceived by Vecchio/Collins as a shear theory which assumes a uni- 
form stress and strain state in a particular area of a structural member. The panels of the 

PV test series were deliberately loaded in a way which ensured such uniform conditions. 
Hence, the theory could be directly applied on the recalculation of the specimens (see 

Vecchio/Collins, 1982). However, when stress and strain conditions change from point 

to point, as it is the case in an RC beam subjected to flexure with shear, then a structure 

must be modelled of small elements where the stress and strain state can be considered to 
be more or less uniform. On the edges of these elements conditions of equilibrium and 

compatibility must be satisfied. The layered model of Vecchio/Collins (1988) was based 

on this principle and fitted for the analysis of reinforced concrete beams. It is obvious 

that the most natural way to cope with such an approach to structural analysis is the fi- 

nite element method and from that point of view it seems to be quite normal to use the 

MCFT in an FE package not only for the calculation of shear elements but also for in- 

vestigations on RC beams. 
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In the past various types of finite elements have been developed according to the par- 

ticular purpose they should serve. For flexural members, in particular, one dimensional 

elements are commonly in use which are, in general, more conveniently applied than 2 or 

3-D solids. The reason for this is that they are much easier to handle with far less time 

needed on discretisation and data input. Usually, these structural elements provide gen- 

eralised section properties such as moments, shear forces or curvatures which are more 

simply dealt with than stresses and strains. However, the disadvantage of these elements 
is the poor performance concerning their shear behaviour. As a goal of this work is to 

clarify the effect of shear deflections on the ductility of RC members under bending and 

shear it is evident that a solid element based on a proper shear theory is more suitable for 

these investigations than the above mentioned beam elements. It should be noted that it is 

not intended to replace structural beam elements by plane stress solids which are com- 

paratively difficult to handle. For everyday design work, structural beam elements are 

more convenient than solids. Therefore, the UMAT should mainly serve as a tool for re- 

search on shear and is here only applied on beams to carry out investigations on the shear 

performance of RC members. 

Beam ETI ET2 ET3 ET4 TI E4 ES-1 E6 5 7-1 

P. test [kN] 280 263 255 198 1600 375 378 186 137 118 
PuaaJ [kNJ 288 245 248 188 1566 345 345 190 138 103 

Puteil /Pueai 0.97 1.07 1.03 1.05 1.02 1.08 1.09 0.98 0.99 1.14 

FailureMode* B Si 72 S3 S3 B B S4 S4 S4 
* B=Bending, S1=Shear (bending), S2=Shear (stirrup yielding), S3=Shear (diagonal compression), S4=Shear(diagonal tension) 

Tab. 4.6 Recalculation of Leonhardt's Beams with UMAT 

In Section 3.7 a selection of Leonhardt's shear tests was recalculated with program 
LAYER and the constitutive model of the MCFT was applied in the slightly adjusted 
form of Fig. 4.18. It was stated there and confirmed in the previous section that programs 
based on the MCFT tend to overestimate the resistance of structural members with little 

or no reinforcement. Therefore, the changes in the material laws specified in Section 4.2 

are applied here as well. 
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Tab. 4.6 gives results of analyses carried out on some of the shear tests of Leonhardt/ 

Walther (1964). Most of the arbitrarily chosen samples have also been recalculated with 

program LAYER (see Tabs. 3.3 and 3.4) and the material properties are given there. It 

can be seen from the results that the UMAT predicts the section resistance in a satisfac- 

tory fashion. 
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Fig. 4.25 shows the load/deflection response of the recalculated specimens. The curves 

reveal that the model always behaves somewhat too stiff. This is visualised in the graphs 

by the fact that the calculated deflections are in general smaller than the measured ones. 

Tab. 4.6 includes the recalculation of three beams without shear reinforcement. These 

beams failed in diagonal tension after the development of a distinct shear crack which 

propagated from the support towards the load. It is obvious that this local failure cannot 

be properly simulated with a theory which treats cracked reinforced concrete as a con- 

tinuous material in which the notion of stresses and strains applies. One should, there- 

fore, not expect too much of an analysis of a transversely unreinforced RC beam using an 

FE program the material subroutine of which is based on the MCFT. 

A finite element code for calculations with partly unreinforced RC members should at 

least incorporate features like aggregate interlock, dowel action and bond slip in an ex- 

plicit manner. However, the really correct approach would be a discrete concept for 

modelling structures with such distinct failures. With the recalculation of the specimens 

without stirrups, it was only intended to show that the introduction of fit provides 

enough strength, virtually as a new smeared truss member (see Fig. 3.3), to maintain a 

stable force carrying mechanism in an RC beam, even in the absence of transverse rein- 
forcement. 

Fig. 3.10 (see Page 52) depicts stress and strain distributions of various beams under fail- 

ure conditions. The cross sections to which the graphs apply are those situated exactly 

under the load. As no attention was paid to the phenomenon known as the St. Venant 

disturbances in the vicinity of concentrated loads (see Fig. 2.3, Page 8), the given stress 
distributions are only correct provided the load is applied in a way which is equivalent to 

the zý distribution shown in the graphs of Fig. 3.10. However, the load and its reaction 
forces at the supports were applied in a concentrated fashion. This reveals that the lay- 

ered approach of the MCFT cannot cope with St. Venant's disturbances and hence, the 

method will only yield correct stress and strain distributions at a distance from concen- 

trated loads which is, in beams, approximately equal to the beam height. Moreover, the 

straight sx distribution in Fig. 3.10 is input, since for program LAYER the plane section 

hypothesis of Bernoulli applies. It is clear that for cross sections under concentrated 
loads this assumption is not valid at all. 
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In contrast to program LAYER, the finite element method does not reveal such short- 

comings as it is a more general approach to structural analysis which is not restricted by 

a plane section assumption. Therefore, under concentrated loads more realistic stress and 

strain distributions are obtained. Fig. 4.26 shows the 6i, r and t distribution of beam 

Ti at the ultimate limit in three different cross sections. It is obvious that the stress and 

strain distribution of cross section 2-2 corresponds with the shape of the graphs of 

Fig. 3.10. (d), while conditions at the support and under the load are different. 
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Fig. 4.26 Stress and Strain Distribution in Various Cross Sections of Beam TI 

An important observation is that under concentrated loads the shear distribution is 

shifted towards the point of application A. This is a feature necessary for the occurrence 

of strut and tie action. Fig. 4.27 shows a half of Leonhardt's beam 3 in scale. This beam 

had a shear ratio of 2 and it is expected that an appreciable amount of load was carried 

by a strut and tie mechanism. Furthermore, it can be seen that the shear stresses r. are 

concentrated in the vicinity of the loads, while in the shear span the stresses are high in 

mid-height. This coincides exactly with explanations on strut and tie action given in Sec- 

tion 3.9 and depicted in Fig. 3.26. 
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For the occurrence of strut and tie action it is necessary that the centres of the shear 

stress distributions form a straight line from support to load. Once this line has a hori- 

zontal part as shown in Fig. 4.27. (b), then no strut and tie action will occur and stirrups 

are necessary for the deviation of the compression struts at the top and bottom of the 

beam. 

a) zy Distribution in Leonhardt's Beam 3 
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b) Schematically z Distribution in a Beam with and without Strut and Tie Action 

Fig. 4.27 zDistribution in a Beam with Strut and Tie Action 
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4.5 The Calculation of Shear Deflections Using the UMAT 

In Section 3.8 a method was presented how to calculate shear deflections in an RC beam 

using program LAYER. The method was essentially based on energy considerations with 

the main idea that deflections due to shear must be proportional to the shear energy while 

deflections due to bending can be assigned to the flexural energy present in a structure. 

In addition, the sum of both energies has to match the work of the applied load. 

This method will now be utilised to calculate the deflections of the beams of Tab. 3.5 (see 

Page 79) which were first analysed with LAYER. Fig. 4.28. (a) shows a plane stress ele- 

ment with 8 nodes and 9 integration points. The volume iV;, associated with an integra- 

tion point can be determined using the Gauß integration method. Flexural and shear en- 

ergy of an element are given in Fig. 4.28. (a) as well as the total energy of a structure 

which is simply the sum of the element energies. 

Beam: 5 7-1 9-1 ETI ET2 ET3 ET4 E4 E5-2 E6 TI TA9 

Load: 

P [kN] 120 103 96 240 240 240 180 279 372 153 1400 600 

Deflections: 

ölest [mm] 2.57 9.48 50.7 13.2 15.4 17.8 11.9 5.93 7.00 2.76 19.2 14.16 

öp(test 0.32 1.79 12.3 3.64 5.28 7.25 3.83 0.95 - 0.49 - - 
öcar 2.05 7.51 39.6 7.89 9.83 10.3 8.84 4.23 4.28 2.22 12.80 8.06 

övcat (shear) 0.10 0.30 0.79 0.47 0.98 1.34 1.68 0.34 0.30 0.22 5.89 1.93 

öyl ear (Bend) 1.95 7.21 38.8 7.42 8.85 8.96 7.16 3.89, 3.98 2.00 6.91 6.13 

öcal / ölest 0.80 0.79 0.78 0.60 0.64 0.58 0.74 0.71 0.61 0.80 0.67 0.57 

övcal / öca1 0.05 0.04 0.02 0.06 0.10 0.13 0.19 0.08 0.07 0.10 0.46 0.24 

Failure Mode*: S4 S4 B B SI S2 S3 B B S4 S3 B 

Ult. Limit: 

Pu test /7d'1J 137 118 111 280 263 255 198 375 528 186 1600 700 

Pucal 138 103 103 288 245 248 188 345 507 190 1566 667 

Stirrups: 

ps 1%1 - - - 0.17 0.35 0.52 1.04 0.64 0.71 - 2.8 1.29 

Shear Ratio: 

a/d 3.0 5.0 7.0 3.5 3.5 3.5 3.5 2.8 2.0 2.8 2.8 3.3 

* B=Bending, S1=Shear (bending), S2=Shear (stirrup yielding), S3=Shear (diagonal compression), S4=Shcar (diagonal tension) 

Tab. 4.7 Deflections Calculated from Leonhardt's Shear Tests Using UMAT 
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Fig. 4.28 Calculation of Shear Deflections of Leonhardt's Beam ET4 with the UMAT 
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For Leonhardt's beam ET4 the calculation of the shear deflections with program 

LAYER was given in Fig. 3.23 (see Page 76). For the purpose of comparison the same 

specimen was chosen to investigate the shear deflections with the UMAT. The results of 

these calculations are depicted in Fig. 4.28. (b). The energy contents of compression zone, 

web and tension zone are listed separately which reveals that more than half of the en- 

ergy is situated in the tension zone while the web carries nearly all the shear energy. In 

the compression zone no shear energy is present which confirms that in a distinctly T 

shaped RC beam the forces in the compression zone are flowing virtually horizontally 

without generating any appreciable shear. 

The specimens of Tab. 3.5 (see Page 79) were recalculated with the method described in 

Fig. 4.28 and the results are depicted in Tab. 4.7. It can be seen that the calculated deflec- 

tions were generally slightly smaller than those of Tab. 3.5. The calculated values were in 

a range of 60 - 80% the measured ones which is due to the well-known fact that FE 

codes based on the displacement method usually behave too stiff. This is visualised by an 

underestimation of calculated deflections. 

In Section 3.8 the deflections due to bending were obtained from Eq. (3.13) (see 

Fig. 3.23) by integrating the product of curvature and moment due to unity. This was 

possible as the plane section hypothesis of Bernoulli was retained in the layered ap- 

proach, resulting in a constant curvature distribution along the cross section of an RC 

beam. Usually, an FE algorithm is not restricted by a plane section assumption and 

therefore, the above method should not be applied to check the flexural part of the cal- 

culated deflections. In simple cases, especially when symmetric load conditions apply to a 

single-span beam, bending deflections can be extracted from the rotations of cross sec- 

tions which remain plane during the loading process. The procedure will be explained 
hereafter. 

Fig. 4.29. (a) shows half of a simply supported RC beam which is subjected to two sym- 

metrically arranged concentrated loads. Fig. 4.29. (b) gives the deformed shape in a 

qualitative fashion. The movements which the various particles of the beam undergo 
during the loading process can be considered to consist of both deformations due to 

strains sx , Ey and yam, and rigid body displacements. However, the cross section along the 

axis of symmetry remains plane and perpendicular to the beam axis even after applying 

the load. 
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Fig. 4.29 Bending Mechanism in a Symmetrically Loaded Single Span Beam 
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The deflection in mid-span seems to result out of a rigid body rotation alone, which is 

not influenced by the deformation of the beam itself. If the beam is imagined to consist of 

two separate parts, the deflection in mid-span can be considered to develop in two steps: 

At first, the separate parts will individually bend as indicated in Fig. 4.29. (b). Then the 

deformed parts will be moved to their end position by a rigid body rotation. 

In RC beams the strains Ey are negligibly small and, as the determination of deformations 

due to bending are the objective of the here described method, the shear strains yry to- 

gether with the transverse strains Ey should be excluded from the current considerations. 

In this case, the mid-span deflection 8hß 
, as indicated in Fig. 4.29. (b), is composed of the 

normal strains Ex alone. This means that 8hf could have developed as depicted in Figure 

4.29. (c): The bottom and top strains Ex elongate and shorten their respective fibre sepa- 

rately causing the same end rotation as those of Fig. 4.29. (b). This is true, as we are still 
dealing with a linearised theory in which deformations and displacements are small in re- 

lation to the total dimension of the structure. The deflection i5,, f is then generated in the 

same fashion as before by a rigid body rotation around the support of the beam half. 

The described method was applied to Leonhardt's beam ET4 to corroborate the ratio of 

shear to total mid-span deflection, which was derived with the energy method of Fig. 4.28 

asps = 19.6%. Fig. 4.30. (a) shows one half of Leonhardt's beam ET4 and the discretisa- 

tion with which the beam was analysed using the UMAT together with ABAQUS. In the 

elements along the lower and upper edge of the beam the integration points next to bot- 

tom and top are indicated in Fig. 4.30. (a). The normal strains 6x in these integration points 

are applied in the graph of Fig. 4.30. (b) along the beam length and the values are ap- 

proximated by straight lines to represent the 6x distribution in the top and bottom fibre of 

beam ET4 in a sufficiently exact manner. From the explanations to Fig. 4.29 it becomes 

clear that only the section rotation cpr contributes to the deflection due to flexure SAl. 

Therefore, both rotations of the end sections have to be determined. Fig. 4.30. (c) shows 

the procedure. First, the centre of movement has to be fixed which is accomplished by 

taking the centre of the area between the two 6x curves for the location of the zero point 

of the x-axis. Now the integration of the normal strains along the straight lines of bottom 

and top fibre starts from this point to the cross sections at the end of this half beam. 
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Fig. 4.30 Calculation of Deflections of Leonhardt's Beam ET4 
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This procedure yields the four values for urj - 114 which define both angles cUr and cPm of the 

end sections in the way given in Fig. 4.30. (c). The deflection due to flexure 8M is then 

easily obtained by multiplying cPr with half of the beam length 1/2. It can be seen from 

Fig. 4.30 that this method delivers a rather exact value for the deflection 8M and, hence, 

for 8v as the total deflection 8 is provided by the FE calculation itself. 
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5 The Ductility of Reinforced Concrete Walls 

It was stated in the introduction to this work that the forthcoming release of the EC8 will 
introduce capacity design procedures in the European design practice. The method is es- 

sentially based on the displacement ductility of a structure which is the ratio of top de- 

flection at the ultimate limit to that at the onset of yielding. The main idea is that the lat- 

eral design load specified in the code should be dependent on the ability of a structure to 

sustain large deformations far into the post-elastic range. Hence, the proper evaluation of 
deflections is crucial for the correct application of this method. 

It was an objective of this work to develop a tool which, in connection with a powerful 
FE program, enables the designer to properly calculate deflections and ductilities of an 
RC structure and to assess the necessary equivalent seismic load which is needed for a 

safe and economic earthquake design. 

In Chapter 4 the MCFT was incorporated in a material subroutine for ABAQUS. Nu- 

merous test runs proved the suitability of the implementation which together with 
ABAQUS provides an engineering tool for the reliable calculation of cracked reinforced 

concrete structures. 

In the last chapter of this work it is shown how this tool can be utilised for investigations 

on the ductility of RC walls, a structural element often used in buildings to resist lateral 

load especially due to earthquake excitation. 
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5.1 Seismic Design of an 8-Storey Wall 

A wall described and investigated in earlier work (see Haas, 1993 and Haas/Pilakoutas, 

1994) will be used for calculations with the UMAT. The wall may be part of a building 

consisting of a multi-storey structure above ground level with an open layout as it is 

typically found in office or administration buildings. Fig. 5.1 shows the sketch of the 

building. The lateral forces are resisted by one structural wall in each face of the building 

while the gravity loads are mainly carried by RC columns arranged in a regular grid. 

Fig. 5.2 depicts the derivation of the dynamic values and Fig. 5.3 the design of the wall in 

some detail. The provisions of the EC8 (1993) are met as well as the rules of the capacity 

design method. 
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Fig. 5.1 Floor-Plan and Elevation of an 8-Storey Building (Dimensions in Meters) 

Fig. 5.1 reveals that the wall fulfils all criteria for regularity in plan and elevation. There- 

fore, it is allowable to design the wall by means of the equivalent lateral force approach. 
The EC8 attributes particular emphasis to this possibility of a simplified design method, 

especially if the flow of forces is transparent. In this case the code provides simple equa- 

tions for calculating the base shear force and the distribution of the seismic action along 

the height of the wall. 
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b) Equivalent Lateral Forces 
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Design ground acceleration: 

ag = 1.6 m/s2 (see Haas, 1993) 

Subsoil class: B (see Haas/Pilakoutas, 1994) 

Parameters: (see EC8, Part 1-1, Tabs. 4.1 and 4.2) 

S=1 TB=0.15s 
ßo2.5 Tc=0.6s 
K, =1 Kd, = 0.667 
K2=2 Kd2=1.667 

Response spectrum: (see EC8, Part 1-1, Section 4.2.2) 

Se(TC)=1.6.2.5=4.0 m/s2 

S (T)=1.6.2.5 
0'6 

=1.32 m/s` e 1.82 

Design spectrum: (see EC8, Part 1-1, Section 4.2.4) 

0.610.667 
Sd(T)=0.16"=I =0.0478 

ýS(1-. 
82) 4 

Behaviour factors: 

qo=4 
KD=1 
KR=1 
K1 =I 

(scc EC8, Part 1-3, Sect. 2.3.2) 

(uncoupled walls) 
(ductility class 'high') 
(regular elevation) 
(wall system) 

(see EC8, Part 1-2, Sect. 3.3.2.2) Base shear force: 

Fb = SJ(T) iv = 0.0478 (2260+7.2610+2960) 
= 1125 kN 

Fig. 5.2 Dynamic Values of an 8-Storey Wall according to the EC8 (1993) 
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For the determination of the equivalent lateral forces the evaluation of the current wall 

stiffness is of crucial importance, provided the important first eigenfrequency is below a 

value of 1.7 Hz. The reason for this is the rapidly descending branch of the design spec- 

trum for a ground period of more than 0.6 s. An overestimation of the wall stiffness usu- 

ally results in too high lateral forces and, hence, in an uneconomic although conservative 

design. 

When assigning ductility class H, factor k,, 
, reflecting the prevailing failure mode in 

structural systems with walls, becomes equal to 1 and the highest possible value of the 

behaviour factor q, permitted by the EC8, is determined to be 4 for the wall system con- 

sidered. This value is also assumed to be the design displacement ductility Ud. Tile 

equivalent lateral forces due to this ductility level, and their distribution along the height 

of the wall are shown in Fig. 5.2. (b). When calculating these forces, the design response 

spectrum for subsoil class B and a ground acceleration of ag = 0.16 g were used, where 

g denotes the acceleration due to gravity. 

From Fig. 5.2. (b) it can be seen that a lateral force is applied at the base of the wall, be- 

cause the built-in level was lowered one storey for the purpose of calculating the 

equivalent lateral forces. The EC8 does not require this measure. However, it was con- 

sidered to be reasonable to introduce it here to provide conservative values for the mo- 

ment envelope and the shear force distribution due to a certain amount of rotation at the 

wall base. It is worth mentioning that the Swiss code SIA 160 comments on this issue 

and incorporated this design rule in its earthquake provisions. When computing the 

equivalent lateral forces and their distribution according to the EC8 (see Part 1-2, Equa- 

tion 3.3), the weight of the sub-foundation storey should not be regarded as part of the 

building, otherwise excessively high values for the lateral forces might be obtained. 

The lowering of the built-in level of the structural wall is a conservative measure for the 
determination of section moments and shear forces, but leads to unconservative estimates 

of the frequency of the first vibration mode of the building. Structures like the one being 

considered, invariably have their first eigenfrequency in the range of 0.5 to 2 Hz. How- 

ever, the lowering of the built-in level, decreases the frequency and, Bence, the spectral 
forces unjustifiably. To avoid this unfavourable behaviour it is necessary to stiffen up the 

bottom storey for the purpose of calculating the first eigenmode. 
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Fig. 5.3 Design for Flexure and Shear of an 8-Storey Wall 



5.1 Seismic Design of an 8-Storey Wall 147 

Fig. 5.3 shows the design for flexure and shear of the 8-storey wall (for more details see 

Haas, 1993). The moment and shear envelopes were obtained by means of the EC8 pro- 

visions which are based on capacity design procedures. The flexural resistance of the wall 

section at the built-in level was calculated with simple section analysis (see Haas, 1993). 

The seismic shear force at the base of the wall was computed with the magnification 

factor c to Vsd =E-V Sd , where V Sd is the sum of the equivalent lateral forces resisted 

by the structural wall. 

a) Designor Confinement 

ý ll 
e. r. %NSa =0.6 

N2a 
+Msal =0.6(r 1 56+ S6 

I =4. SMN 

AC =1.0"0.3=0.3m2 ko=0.9 Eb; 2 
=10"0.22 =0. -1 

Ao=0.9.0.2=0.18m2 1ý_>0.151�, =0.9in s=0.095in bo=0.2nn 

Y- bi" 0.4 
2 

0.11 ` 
an =1- =1- =0.63 a= 1- 

ýb =(1- 2 0ý) =0.53 6Ao 6.0.18 
0 

a= a� a, s = 0.63 . 0.53 = 0.33 vd = 
effNSd 

= 
4'5 

= 0.75 -ý v dmax - 0.55 
Ac fcd 0.3.20 

Required ratio of confining hoops: 
ll 

wwd =a (0.9vd +0.1)(0.35 
A° 

+0.15) = 0.33 
0.9.0.55+0.1/0.35 

- 
18 

+0.15) = 1.2 
o 

By shear reinforcement provided ratio of confining hoops: 

Wd 
4.0.2.0.000154 480 

= 0.4 = 
0.22.0.18 20 

b) Rein orcement Details 

OB20 . 12,5,12,5.08/ 12,5cm 
ý 

ý 

+7 

11 1H If 

H- 
ýýý 

---T2 

ti--2 L2a HOOPS d14/18cm 
.,.. n /, ý G___. 

ýo/ 1G. U1: 111 

Fig. 5.4 Design for Confinement and Reinforcement Details of an 8-Storey Wall 
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Fig. 5.4 depicts the design for confinement according to the Eurocode (see EC8,1993 

and Frangou / Pilakoutas, 1994) as well as material properties and some reinforcing de- 

tails. Finally, Fig 5.5 gives the FE discretisation together with the reinforcement ratios of 

the provided steel. The ratios have been obtained taking consideration of the design en- 

velopes for moment and shear. It can be seen from Fig. 5.4 that the EC8 provisions for 

the confinement of the compression zone requires a substantial amount of reinforcing 

steel, which in the present case is as much as three times the lateral reinforcement neces- 

sary to resist the seismic shear forces. 
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Fig. 5.5 FE Discretisation and Reinforcement Ratios of an 8-Storey Wall 
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5.2 Investigations on Ductility 

5.2.1 An 8-Storey Wall 

The 8-storey wall designed and detailed in the previous section was investigated with 

ABAQUS and the UMAT. Fig. 5.6 shows the load stage /deflection response of the 

structural wall. The normal forces were kept constant while the horizontal forces due to 

earthquake action were simultaneously increased until failure occurred. At a load stage 

of H=0.75 H1 the outer steel bars of the reinforcement started yielding at the wall 

base. This happened at a top displacement of 16.3 cm while the ultimate limit was 

reached at a top displacement of 63.6 cm. From these results a displacement ductility of 

, ue = 63.6 / 16.3 = 3.9 can be calculated, which coincides quite well with the nominal 

displacement ductility obtained from the EC8 provisions. For the purpose of comparison 

the load stage/deflection response of the same wall, however, without any confinement 

reinforcement, is also depicted. It is obvious that the confinement of the concrete in 

compression is crucial for the displacement ductility but does not significantly influence 

the flexural capacity of the structural member: The displacement ductility of the wall 

without confinement reinforcement is as little as 2.0 while the section resistance is only 

increased by approximately 10%. 
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Fig. 5.6 Confined and Unconfined Load Stage/Deflection Response of an 8-Storey Wall 
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Another important observation is that without confinement the wall fails early after the 

onset of yielding, while the ultimate limit of the confined wall is reached during heavy 

yielding of the flexural reinforcement. This is a structural behaviour widely appreciated in 

earthquake resistant design. The graph of Fig. 5.6 also reveals that cracks start forming at 

a load level of approximately 50% of the ultimate limit. 

In Paulay / Priestley (1992) a rule is derived for the evaluation of the displacement duc- 

tility of a structure. This rule claims that the non-linear load/deflection response of a 

structure might be approximated by an elastic/perfectly plastic relationship which can be 

composed by taking the displacement at 75% of the ultimate load as part of the approxi- 

mated curve. Fig. 5.6 shows the details, and the value for the displacement ductility ac- 

cording to the 75% rule becomes 3.2. 
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Fig. 5.7 Curvature Ductility of an 8-Storey Wall 



5.2.1 An 8-Storey Wall 151 

The design for confinement according to the EC8 (1993) should ensure a curvature duc- 

tility of mir = 1.2g2 for an isolated wall. With a behaviour factor of q=4 for the wall 

under consideration this yields a conventional curvature ductility factor (CCDF) of, u1ir = 

19.2. Fig. 5.7 shows the procedure how the curvature ductility P, [,, which is equivalent to 

the conventional curvature ductility factor u/fr of the EC8, can be obtained from the re- 

sults of the UMAT analysis. The calculation gives a value of 17 for the curvature ductil- 

ity 
, uo. For the purpose of comparison the curvature ductility was also determined from 

the 75% rule of Paulay/Priestley and from two expressions derived by Tassios (1989) 

and Pilakoutas/Elnashai (1991), respectively. It is obvious that the curvature ductility 

from the equation of Pilakoutas best matches both the value obtained from the provisions 

of the EC8 and that computed from the UMAT results. 
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Fig. 5.8 Relationship of Shear Deflections and Load Stage of an 8-Storey Wall 

An important issue in seismic design is to answer the question whether the deflections 

due to shear influence the ductility of an RC structure, which in the current case might be 

the 8-storey wall under consideration. It was, therefore, necessary to establish a relation- 

ship which provides, at every load stage, that proportion of the deflections which can be 

attributed to shear action. Fig. 5.8 depicts a graph in which the percentage of the top de- 

flection due to shear is plotted against the load stage. The shear deflections were calcu- 
lated by means of the energy method described in Sections 3.8 and 4.5 in detail. From the 
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relationship of Fig. 5.8 it can be seen that the portion of shear deflections is between 4 

and approximately 10% of the total deflections depending on the applied load. 

It is interesting to recognise that before failure this proportion drops to a certain amount. 

The reason for this is the fact that at the ultimate limit the longitudinal reinforcement is 

heavily yielding which is accompanied by a substantial increase in flexural energy, thus 

noticeably dropping the shear proportion of the total energy. Another observation is that 

the shear proportion remains nearly constant at a low level until cracks have started 
forming. If a linear elastic material was applied then this percentage would be constant 
for the complete load history. 
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Fig. 5.9 Load Stage/Flexural Deflection Response of an 8-Storey Wall 

With the graph of Fig. 5.8 it was possible to remove the deflections due to shear from the 

load stage/deflection relationship of Fig. 5.6, thus giving the curve shown in Fig. 5.9. The 

displacement ductility was now obtained to be 3.9 which is the same value extracted 
from the graph in Fig. 5.6. 



5.2.1 An 8-Storey Wall 

4-Storey Wall 

MI co 

ý SET 6ý 

ni-L1 ii- 
11-1'I -I- f -I-II I ýý PIII 
wý 
ýý 

11 1 11 2345 

If, 
U) 

III I SET 51 1 
[7 1,1_8 1 

.. 
II 1ý 

[1-11 111 11 W1.1 I1 11 iw 

NN 

WIW 

lul 

U] 

F'FFFHH 

b) 6-Storey Wall 
Y 

6 

11 01 
ý_ _ý 

Fý 
w 
u) 

11 
F SET 7w 

78m 

ýi ! 
m: 

Cl) I11 111 Cl) Id11 
NN 

Eý F 

ýH iýl 
111 

ýý 
', M MI 

- 

, I__ I 

ýI ý 

W1 WI 
Cl) ýýJI¶II 

SET 8 t) 
F- F 

iII IL--Jl i 1--]-T-T-" iNA Iii WIIii 

ý1ý2ý3 4 5ý6ý 

\ F4=480 kN 

px 

py 
F. =520 kN i N5 =560 kN 

a 
1Nq=720 

kN 

1N3 
=720 kN =36D kN 

F., =4O ? kN 

I N2 =720 IN 

Fj =]00 kN 
0,1 

1 N, =720 kN 

F7 '`=0 kN 
º1 

I N7=560 kN 

Fß=255 kN 

F,,,, =215 kN 

ýN5 
=720 kN 

IN5 
=720 kN 

1N4 =720 kN 

1N3 =720 kN 

F =]70 kN 

F3=130 

F2=85 k-N IN,, 
=720 kN 

F, =50 kN 
.11 NI =720 kN 

153 

ý shear reinforcem. 

ý 1011gll. Yell fOPCC/)l. 

SE T 1: p. r =0.0104 
py =0.0067 

SET 2 px =0.0052 
p}. =0.0067 

SET 3 px =0.0022 
py =0.0052 

SET 4 px =0.0022 
py =0.0028 

SET J px =0.0026 
P} =0.0027 

SE T6 px =0.0022 
py =0.0028 

SE T 1: pX =0.0123 
py, =0.0057 

SET 2 px =0.0062 
py =0.0057 

SE, T3 px =0.0022 
py =0.0051 

SET 4 px =0.0022 
py =0.0044 

SE T5 px =0.0022 
py =0.0041 

SET 6 p. r =0.0022 
py =0.0035 

SET 7 pr =0.0031 
py =0.0027 

SET 8 p. r =0.0022 
py =0.0027 

Fig. 5.10 Discretisation with Load Conditions and Steel Ratios of a4 and 6-Storey Wall 
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Similar results were calculated from two other capacity designed walls which, addition- 

ally, were detailed according to the provisions of the EC8. The results of the investiga- 

tion of these walls are presented in Section 5.2.2. It can, therefore, be stated that in 

structural walls, which are capacity designed and detailed according to the provisions of 

the EC8, the deflections due to shear do not affect the displacement ductility in a signifi- 

cant fashion. However, it will be seen later that this is not the case with squat walls 

which usually develop an appreciable amount of shear deflections. 

5.2.2 Analysis of a4 and 6-Storey Wall 

In Section 5.1 an 8-storey wall was designed and detailed according to the provisions of 

the EC8 and in Section 5.2.1 this wall was analysed using ABAQUS together with the 

UMAT. In the same way two rather similar walls were designed and investigated and the 

results are summarised here. The walls under scrutiny could be part of a building equal to 

that of Fig. 5.1 but with only 4 and 6 stories above ground level. 

Fig 5.10 depicts the discretisation of the walls and the reinforcement ratios obtained from 

the EC8 design as well as the loading conditions. Additionally, Tab 5.1 gives some dy- 

namic values necessary for the analysis of the walls. 

4-Storey Wall 6-Storey Wall 

1. Eigenfrequency f [Hz] 2.0 0.85 

Design Ground Acceleration ag [in/s2] 1.6 1.6 

Elastic Response Spectral Value S, (T) [m/s2] 4.0 4.0 

Behaviour Factor q [--J 3.4 4.0 

Normal Force at Wall Base Nb [MN] 2.7 4.2 

Seismic Base Shear Force Fb [MNJ 1.57 1.17 

Required Section Resistance 

at Wall Base 

MR 

VR 

[MNin] 

[MN] 

16.1 

2.5 

18.2 

3.1 

Mechanical Volum. Steel Ratio Wild 1-1 0.7 1.2 

Tab. 5.1 Seismic Design Values for a4 and 6-Storey Wall 
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From Tab. 5.1 it can be seen that the seismic base shear force for the 6-storey wall is less 

than that for the 4-storey wall. This is due to the much smaller first eigenfrequency of the 

taller wall and the reduction of the equivalent lateral forces connected with this feature. 

Nevertheless, the required shear resistance at the wall base is higher for the 6-storey wall 
because of the increased behaviour factor. 
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Fig. 5.11 shows the load stage/deflection response of both walls. Once again the results 

of the calculations concerning the unconfined walls are included in the figure to demon- 

strate the importance of the confinement of the concrete under compression. In addition, 
Fig. 5.11 depicts the relationship of 8v/8T and load stage. Finally, Tab. 5.2 summarises the 
investigations on displacement and curvature ductility. The analyses with the UMAT re- 

veal quite a good coincidence of calculated values and EC8 provisions. 
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4-Storey Wall 6-Storey Wall 

Behaviour Factor q (EC8) 3.4 4.0 

Displacement Ductility 4u 
UMAT, Onset of Yielding (Confined): 3.5 4.1 

(Unconfined): 1.9 2.4 

75% Rule (Confined): 4.9 4.3 

Conv. Curv. Ductility Factor ull, (CCDF, EC8): 13.9 19.2 

Curvature Ductility pp 

UMAT, Onset of Yielding (Confined): 12.5 16.8 

75% Rule (Confined): 16.9 19.0 

Tassios (1989): 9.4 11.5 

Pilakoutas (1992): 17.3 21.4 

Tab. 5.2 Displacement and Curvature Ductility for 4 and 6-Storey Wall 

In Fig. 5.12 the displacement ductility for each wall was calculated with the help of the 

respective load stage/deflection response, derived by using the graphs in Fig. 5.11. (b). It 

can be seen that the obtained ductilities are slightly higher than those computed from the 

load stage/ deflection relationships which include the shear deflections (see Fig. 5.11). An 

explanation for this behaviour will be given in the next section where the influence of the 

shear deflection on the displacement ductility is investigated with a squat wall which pro- 
duces a substantial amount of shear deflections. 

Load Stage/Flexural Deflection Response n 

4-Storey Wall G-Storey Wall 

o, 1 

Fig. 5.12 Load Stage/Flexural Deflection Response of a4 and 6-Storey Wall 



157 

5.2.3 Analysis of a Squat 1-Storey Wall 

a) Wall SW9 with Reinforcement Grid 
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Fig. 5.13 Wall SW9 (Pilakoutas, 1990) with FE Discretisation and Material Properties 
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In 1990 a series of squat walls with aspect ratio 2 was tested by Pilakoutas at the Impe- 

rial College in London. Wall SW9 from the test series was recalculated with the UMAT 

and the results are presented in this section of the work. 
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Fig. 5.14 Load Stage/Deflection and Load Stage/Normal Strain Response of Wall SW9 
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Fig. 5.13. (a) shows a redrawing of the wall with its reinforcing cage and Fig. 5.13. (b) the 

discretisation with the steel ratios. The material properties are specified in Fig. 5.13. (c) 

and Fig. 5.13. (d) and (e) contains the ultimate load and top displacement, according to 

testing and ABAQUS analysis, respectively. Fig. 5.14. (a) depicts the load stage/deflec- 

lion relationship of the wall and Fig. 5.14. (b) the load stagelnormal strain response at the 

integration points 1 of element I and 2 of element S. 

From the results of the analysis both the displacement and curvature ductility were de- 

rived as shown in Fig. 5.14. (a). It can be seen that the behaviour factor q calculated from 

the EC8 provisions coincides with the displacement ductility p obtained from the load 

stage/deflection response. However, the conventional curvature ductility factor (CCDF) 

, uiir, calculated according to the EC8, yields too low a value compared with the UMAT 

results. This gives rise to the assumption that the EC8 expression for the conventional 

curvature ductility factor (CCDF) 
, uJir = 1.2 qz delivers too high values for high behav- 

iour factors and too low values for ull, once q drops significantly. Tab. 5.3 reveals that 

the estimation of Pilakoutas confirms the results of the UMAT analysis. 

Wall SW9 

Behaviour Factor q (EC8) 2.7 

Displacement Ductility pa 
UMAT, Onset of Yielding: 2.7 

75% Rule: 2.9 

Convent. Curvature Ductility Factor pllr (CCDF, EC8): 8.8 

Curvature Ductility po 
UMAT, Onset of Yielding: 14.6 

Tassios (1989): 7.0 

Pilakoutas (1992): 12.6 

Tab. 5.3 Displacement and Curvature Ductility for Wall SW9 (Pilakoutas, 1990) 
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Fig. 5.15 depicts the relationship between the ratio of shear deflections to total deflec- 

tions and the load stage. In the elastic range before cracks have started to occur 8v/8r 

remains nearly constant at a level of approximately 15%. After the onset of cracking at a 

load stage of 40% of the ultimate limit the shear proportion of the total deflections in- 

creases and its maximum value is reached at more than 50%, when the longitudinal rein- 

forcement begins to yield. This happens just before the ultimate limit is reached at a load 

stage of 96%. Subsequently, excessive yielding of the longitudinal steel bars increases the 

element energy substantially, which is connected with a perceptible drop of the shear 

portion of the total element energy. Fig. 5.15 reveals that at the ultimate limit Sv/8r de- 

creases to approximately 30% and the post peak yielding leads to a further drop of 8v/Sr. 

Fig. 5.15 Ratio of Shear and Total Deflection versus Load Stage of Wall SW9 

Finally, Fig. 5.16 shows the load stage/flexural deflection response of wall SW9 and the 

displacement ductility calculated with the help of Fig. 5.15. Surprisingly, /Id becomes as 

much as 4 which is 50% higher than the value calculated from the load stage/dcflectio i 

response including shear deflections. The reason for this behaviour is the substantial drop 

of the proportion of shear to total energy triggered off by the post peak yielding of the 

longitudinal reinforcement. This gives evidence that in squat walls, where appreciable 

shear develops, a reliable investigation of the shear deformations must be included in 

ductility considerations, otherwise too high displacement ductilities might result from the 

evaluation of an analysis. 
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Fig. 5.16 Load Stage/Flexural Deflection Response of Wall SW9 (Pilakoutas, 1990) 
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6 Conclusions and Further Research Work 

The finite element analysis of cracked reinforced concrete structures is, up to now, es- 

sentially based on procedures which treat shear in a more general way by introducing pa- 

rameters like the shear retention factor, to account for shear mechanisms such as aggre- 

gate interlock or dowel action. A rather unsatisfactory feature of this method is that 

nearly no guidelines are available for the application of these parameters. It is, therefore, 

not surprising that the literature reports values for the shear retention factor in the range 

of about 5%o and more than 50%. 

It was the objective of this work to contribute to the idea of founding FE modelling of 

shear in RC members on a more elaborate method which complies better with the physi- 

cal reality of shear behaviour identified and described, on a section analysis level, by 

various shear theories in the last few decades. This goal was achieved in several steps, 

the first of which was the review of the most important shear theories for cracked rein- 
forced concrete. This review, summarised in the state-of-the-art report in Chapter 2, re- 

vealed merits and shortcomings and led to the modified compression field theory as a 

suitable shear model worth being implemented in an FE program. It was shown that the 

MCFT incorporates secondary shear carrying actions in an intrinsic fashion by applying a 

simple compatibility condition on which the MCFT is based. In addition, the assumption 

of a locally constant stress and strain state predestined the MCFT for its use in FE analy- 

sis. 

In Chapter 3 the MCFT was extensively checked to yield satisfactory results in compari- 

son to tests reported in the literature. To conduct these checks the section analysis pro- 

gram LAYER was coded which is based on a layered approach of analysing RC struc- 

tures. LAYER showed a much better performance than the program SMAL provided by 

the authors of the MCFT. However, a modification of the material laws had to be intro- 

duced to account for the gradual loss of shear transfer in element regions mainly sub- 
jected to flexure. 
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In contrast to SMAL which needs the specification of reinforcement in each element, 

LAYER can cope with unreinforced elements, thus enhancing the versatility of the sec- 

tion analysis program substantially: LAYER is able to analyse RC beams without shear 

reinforcement. 

Chapter 4 reports the development of a material subroutine which is based on the MCFT 

including the aforementioned modification on the tensile side of the material laws. The 

UMAT was tested in great detail by recalculating many tests described in the literature. It 

revealed in all cases a much better performance than the ABAQUS Standard options for 

cracked reinforced concrete, the shear behaviour of which is essentially based on the 

well-known parameters like the shear retention factor. 

In Chapter 5 the UMAT was utilised for investigations on ductility. The surprising result 

is that ductility calculations essentially based on flexural deflections deliver ftv values, 

which are higher than those derived from calculations including shear deflections. In ca- 

pacity designed structural walls, detailed according to the provisions of the EC8 and 

having an aspect ratio well above 2.5 with a flexural type of failure, this difference is less 

than 10% and might be negligible. However, squat walls with aspect ratios of less than 

2.5 can develop shear deflections of more than 50% of the total value. In this case, the 

displacement ductility of the structure is strongly influenced by the shear deflections 

which must be evaluated in a reliable fashion. 

With the newly developed UMAT an analysis tool for the reliable calculation of cracked 

reinforced concrete structures is now available to be used together with the highly rec- 

ognised commercial FE program ABAQUS. 

The material laws of the MCFT were derived from extensive testing on shear panels. It is 

obvious that this restricts to some extent their performance concerning structures with 
distinct flexural behaviour. Therefore, a modification on the tensile side of the material 

model was introduced which greatly improved the performance of the UMAT. However, 

it is desirable to calibrate the material laws on a more comprehensive selection of avail- 

able test data. It is expected that this measure, together with an extension to dynamic 

cyclic, path dependent loading, would further improve the capabilities of finite element 

analyses of cracked reinforced concrete with UMAT and ABAQUS. 
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Appendix A: Fortran Code for UMAT 

SUBROUTINE UMAT (STRESS, STATEV, DDSDDE, SE, SPD, SCD, RPL, 
& DDSDDT, DRPLDE, DRPLDT, STRAN, DSTRAN, TIME, DTIME, TEMP, 
& DTEMP, PREDEF, DPRED, CMNAME, NDI, NSHR, NTENS, NSTATV, 
& PROPS, NPROPS, COORDS, DROT, PNEWDT, CELENT, DFGRDO, 
& DFGRD1, NOEL, NPT, LAYER, KSPT, KSTEP, KINC) 

C 

C 

C 

C 

INCLUDE'ABA PARAM. INC' 

CHARACTER* 8 CMNAME 

INTEGER*4 NTENS, NDI, K 1, K2 

REAL*8 EMOD, ENU, EFAK, EG2, EG, A, B, C, Al, Bl, Cl, PHI, FC, 
& SIGCRACK, FACTOR, SIGCMAX, ECONCR, FACT2, MAMPS, 
& PSIG, SIGSX, SIGSY, ESTEEL, EZERO, RHOX, RHOY, EI, E2, Z1, Z2, 
& Ni, N2, N3, N4, EYIELDX, EYIELDY, 
& E11, E12, E13, E21, E22, E23, E31, E32, E33 

C 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 

& DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 
& STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), DPRED(1), 
& PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRDI(3,3) 

C 
C LOCAL ARRAYS 
C 

DIMENSION PEPS(2), PSIGC(3), ES(2), T(3,3), TT(3,3), TR(3,3), 
& STR(3), D(3,3), SIGC(3) 

C 
PARAMETER (ZERO=O. DO, ONE=1. DO, TWO=2. DO, THREE=3. DO, 

& FOUR=4. DO, SIX=6. DO, PI=3.14159265359) 
C 
C PROPERTIES 
C 
C PROPS(1) 
C PROPS(2) 
C PROPS(3) 
C PROPS(4) 
C PROPS(5) 
C PROPS(6) 
C PROPS(7) 
C PROPS(8) 
C PROPS(9) 
C PROPS(10) 
C PROPS(11) 

EMODUL CONCRETE (2*FC/EZERO) 
EZERO (CONCRETE STRAIN AT PEAK COMPR. STRESS) 
FC (CONCRETE STRENGTH) 
SIGMA CRACK 
EMODUL STEEL 
RHO X (REINFORCEMENT RATIO) 
RHO_Y (REINFORCEMENT RATIO) 
FACTOR 
EYIELDX (STEEL STRAIN AT YIELD ONSET, X-DIR. ) 
EYIELDY (STEEL STRAIN AT YIELD ONSET, Y-DIR. ) 
FACT2 
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C TOTAL STRAIN INCREMENT 
C 

DSTRAN(1)=DSTRAN(1)+STRAN(1) 
D STRAN(2)=D STRAN(2)+STRAN(2) 
DS TRAN(3 )=D S TRAN (3 )+S TRAN(3 ) 

C 
C ELASTIC PROPERTIES 
C 

EMOD=PROPS(1) 
EZERO=PROPS(2) 
EFAK=EMOD/(ONE-ENU**TWO) ' 
EG2=EMOD/(ONE+ENU) 
EG=EG2/TWO 
EYIELDX=PROPS(9) 
EYIELDY=PROPS(10) 
FACT2=PROPS(I 1) 
PSIGC(3)=0. D0 
ENU=O. DO 

C 
C STATE VARIABLES 
C 

C 

C 

STATEV(16)=DSTRAN(1) 
STATEV(17)=D STRAN(2) 
STATEV(18)=DSTRAN(3) 

STATEV(19)=STRAN(1) 
STATEV(20)=STRAN(2) 
STATEV(21)=STRAN(3) 

C ELASTIC STIFFNESS 
C 

C 
C 

CALL ASET(DDSDDE, ZERO, NTENS*NTENS) 

DO K1=1, NDI 
DO K2=1, NDI 

DD SDDE(K2, K 1)=EFAK*ENU 
END DO 
DDSDDE(K1, K1)=EFAK 

END DO 
DO K1=NDI+I, NTENS 

DDSDDE(K1, K1)=EG 
END DO 
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C 
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C PRINCIPAL VALUES FOR DSTRAN AND CRACK DIRECTION PHI 
C 

IF(DSTRAN(1). EQ. ZERO. AND. DSTRAN(2). EQ. ZERO. 
& AND. DSTRAN(3). EQ. ZERO) THEN 

GOTO 10 
ELSE 

C 
IF(DSTRAN(1). EQ. ZERO. AND. DSTRAN(2). EQ. ZERO) THEN 

PEPS(I)= 0.5*DSTRAN(3) 
PEPS(2)=-0.5 *DSTRAN(3 ) 
PHI=45. *PI/180. 

ELSE 
C 

& 
C 

IF(DSTRAN(1). EQ. ZERO. AND. DSTRAN(2). EQ. ZERO) THEN 
PEPS(I)= 0.5*DSTRAN(3) 
PEPS(2)=-0.5 *DSTRAN(3 ) 
PHI=45. *PI/180. 

ELSE 

A1=(DSTRAN(1)+DSTRAN(2))/TWO 
B 1=-DSTRAN(1)*DSTRAN(2)+ 

ONE/FOUR*DSTRAN(3)**TWO 

IF(DSTRAN(1). EQ. DSTRAN(2)) THEN 
PHI=45. *PI/180. 

ELSE 
Cl =D STRAN(3)/(D STRAN(1)-D STRAN(2)) 
PHI=ONE/TWO*ATAN(C 1) 

ENDIF 
C 

& 

C 
C 

IF(A1 * *TWO+B 1. LT. ZERO) THEN 
WRITE(6, *)'A1 **TWO+B 1=NEG. ', 

Al**TWO+B1 
PEPS(I)=A1 
PEPS(2)=A1 

ELSE 

IF(DSTRAN(2). GT. DSTRAN(1)) THEN 
PEPS(I)=A1-SQRT(A1 **TWO+Bl) 
PEPS (2)=Al+SQRT(A1 * *TWO+B 1) 

ELSE 
PEPS(I)=AI+SQRT(A1 **TWO+B1) 
PEPS(2)=A1-SQRT(A1 **TWO+Bl) 

ENDIF 
C 

C 

C 

IF(DSTRAN(1). EQ. ZERO. AND. DSTRAN(2). EQ. ZERO. 
& AND. DSTRAN(3). EQ. ZERO) THEN 

GOTO 10 
ELSE 

ENDIF 

ENDIF 

STATEV(4)=PHI* 180. /PI 
C 
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C CALCULATE PRINCIPAL CONCRETE STRESSES 
C 

FC=PROPS(3) 
SIGCRACK=PROPS(4) 
FACTOR=PROPS(g) 
SIGCMAX=FC 

C 

C 

C 

& 

C 

C 

C 

IF(PEPS(1). LT. ZERO) THEN 
SIGCMAX= FC/(0.8-FACT2*PEPS(2)/EZERO) 

IF(SIGCMAX. LT. FC) THEN 
SIGCMAX=FC 

ENDIF 

IF(PEPS(1). LT. TWO*EZERO) THEN 
P SIGC(1)=ZERO 

ELSE 
PSIGC(1)=SIGCMAX*(2*PEPS(1)/EZERO- 

(PEP S(1)/EZERO)* *TWO) 
ENDIF 

ENDIF 

IF(PEPS(2). LT. ZERO) THEN 
SIGCMAX= FC/(0.8-FACT2*PEPS(1)/EZERO) 

IF(SIGCMAX. LT. FC) THEN 
SIGCMAX=FC 

ENDIF 
C 

& 

C 

IF(PEPS(2). LT. TWO*EZERO) THEN 
PSIGC(2)=ZERO 

ELSE 
PSIGC(2)=SIGCMAX* (TWO *PEPS(2)/EZERO- 
(PEP S (2)/EZERO) **TWO) 

ENDIF 

ENDIF 
C 
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C 

C 
C 

& 

Fortran Code for UMAT 

IF(PEPS(l). GT. ZERO) THEN 

ECONCR=TWO*FC/EZERO 
EPSCRACK= SIGCRACK/ECONCR 

IF(PEPS(1). LE. EPSCRACK) THEN 
PSIGC(1)=PEPS(I)*ECONCR 

ELSE 
PS IGC (1)=SIGCRACK/(ONE+S QRT((PEP S (1)- 

EPSCRACK)*FACTOR)) 
ENDIF 

C 
IF(PEPS(1). GT. O. 004) THEN 

PSIGC(1)=O. D 
ENDIF 

C 

C 

C 

C 

C 

C 
C 

P SIG=S IGCRACK/(ONE+S QRT((0.0 02- 
& EPSCRACK)*FACTOR)) 

& 

C 

IF(PEPS(1). GT. 0.002. AND. PEPS(l). LE. 0.004) THEN 
PSIGC(1)=PSIG*(0.004-PEPS(I))/0.002 

ENDIF 

ENDIF 

IF(PEPS(2). GT. ZERO) THEN 

ECONCR=TWO*FC/EZERO 
EPSCRACK= SIGCRACK/ECONCR 

IF(PEPS(2). LE. EPSCRACK) THEN 
PS IGC (2)=PEPS (2) *ECONCR 

ELSE 
PSIGC(2)=SIGCRACK/(ONE+SQRT((PEPS(2)- 

EPSCRACK)*FACTOR)) 
ENDIF 

IF(PEPS(2). GT. O. 004) THEN 
PSIGC(2)=O. D 

ENDIF 
C 

C 

PSIG=SIGCRACK/(ONE+SQRT((0.002- 
& EPSCRACK)*FACTOR)) 

IF(PEPS(2). GT. 0.002. AND. PEPS(2). LE. 0.004) THEN 
PSIGC(2)=PSIG*(0.004-PEPS(2))/0.002 

ENDIF 
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C 
ENDIF 
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STATEV(5)=PSIGC(1) 
STATEV(6)=PSIGC(2) 
STATEV(7)=SIGCMAX 

C 
C ROTATE PRINCIPAL CONCRETE STRESSES IN XY-DIRECTIONS 
C 

TR(1,1)=COS(-PHI)**TWO 
TR(1,2)=SIN(-PHI)* *TWO 
TR(1,3)=TWO*COS(-PHI)*SIN(-PHI) 
TR(2,1)=SIN(-PHI)* *TWO 
TR(2,2)=C0 S(-PHI)* *TWO 
TR(2,3)=-TWO * CO S(-PHI) * SIN(-PHI) 
TR(3,1)=-COS(-PHI)* SIN(-PHI) 
TR(3,2)=COS (-PHI)* SIN(-PHI) 
TR(3,3)=COS(-PHI)**TWO-SIN(-PHI)**TWO 

C 

C 

DO K1=1, NTENS 
R=ZERO 
DO K2=1, NTENS 

R=R+TR(K1, K2)*P SIGC(K2) 
ENDDO 
SIGC(K1)=R 

ENDDO 

STATEV(8)=SIGC(1) 
STATEV(9)=SIGC(2) 
STATEV(10)=SIGC(3) 

C 
C CALCULATE STEEL STRESSES 
C 

C 

C 

C 

C 

C 

ESTEEL=PROPS(5) 

SIGSX=ESTEEL*DSTRAN(1) 
S IGS Y=E S TEEL *DS TRAN(2) 

IF(SIGSX. GT. EYIELDX*ESTEEL) THEN 
SIGSX=EYIELDX*ESTEEL 

ENDIF 

IF(SIGSY. GT. EYIELDY*ESTEEL) THEN 
SIGSY=EYIELDY*ESTEEL 

ENDIF 

IF(SIGSX. LT. -EYIELDX*ESTEEL) THEN 
SIGSX=-EYIELDX*ESTEEL 

ENDIF 

IF(SIGSY. LT. -EYIELDY*ESTEEL) THEN 
SIGSY=-EYIELDY*ESTEEL 

ENDIF 
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C 
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STATEV(11)=SIGSX 
STATEV(12)=SIGSY 

C 
C CALCULATE RC STRESSES 
C 

RHOX=PROPS(6) 
RHOY=PROPS(7) 

C 

C 

STRES S (1)=SIGC( I )+RHOX* SIGSX 
STRES S(2)=SIGC(2)+RHOY* SIGSY 
STRESS(3)=SIGC(3) 

STATEV(13)=STRESS(1) 
STATEV(14)=STRES S(2) 
STATEV(15)=STRESS(3) 
STATEV(16)=EPSCRACK 

C 
C CALCULATION OF STRESS ENERGY AT EACH INTEGRATION POINT 
C 

DO K1=1, NTENS 
STATEV(K1)=DSTRAN(K1)*STRESS(K1) 

ENDDO 
C 
C CALCULATE JACOBIAN FOR CONCRETE IN PRINCIPAL DIRECTIONS 
C 
C CASE NR 1: THE PRINCIPAL CONCRETE STRESSES PSIGC(I) ARE 
C BOTH NEGATIVE=COMPRESSION. 
C 

IF(PEPS(l). LT. ZERO. AND. PEPS(2). LT. ZERO) THEN 
C 

C 

EI 1=2*FC/EZERO-2*FC*PEPS(1)/EZERO* *2 
E12=0. OD 
E13=0. OD 
E21=0. OD 
E22=2*FC/EZERO-2*FC*PEPS(2)/EZERO* *2 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 
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ENDIF 
C 
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C CASE NR 2A: THE PRINCIPAL CONCRETE STRESS PSIGC(1) IS 
C POSITIVE=TENSION BUT THE PRINCIPAL CONCRETE 
C STRESS PSIGC(2) IS NEGATIVE=COMPRESSION. 
C HOWEVER, THE PRINCIPAL TENSION STRAIN PEPS(I) IS 
C LESS THAN THE CRACKING STRAIN EPSCRACK 
C 

& 
C 

C 

IF(PEPS(1). GT. ZERO. AND. PEPS(2). LT. ZERO. AND. 
PEPS(1). LT. EPSCRACK) THEN 

E11=2*FC/EZERO 
E12=0. OD 
E13=0. OD 
E21=0. OD 
E22=2*FC/EZERO-2*FC*PEPS(2)/EZERO* *2 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 

ENDIF 
C 
C CASE NR 2B: THE PRINCIPAL CONCRETE STRESS PSIGC(2) IS 
C POSITIVE=TENSION BUT THE PRINCIPAL CONCRETE 
C STRESS PSIGC(1) IS NEGATIVE=COMPRESSION. 
C HOWEVER, THE PRINCIPAL TENSION STRAIN PEPS(2) IS 
C LESS THAN THE CRACKING STRAIN EPSCRACK 
C 

& 
C 

IF(PEPS (1). LT. ZERO. AND. PEP S(2). GT. ZERO. AND. 
PEPS(2). LT. EPSCRACK) THEN 

EI 1=2*FC/EZERO-2*FC*PEP S(1)/EZERO * *2 
E12=0. OD 
E13=0. OD 
E2l=O. OD 
E22=2*FC/EZERO 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(l)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 

C 
ENDIF 

C 
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C CASE NR 3A: THE PRINCIPAL CONCRETE STRESS PSIGC(2) IS 
C NEGATIVE=COMPRESSION BUT THE PRINCIPAL 
C CONCRETE STRESS PSIGC(1) IS POSITIVE=TENSION 
C AND THE PRINCIPAL TENSION STRAIN PEPS(I) IS MORE 
C THAN THE CRACKING STRAIN EPSCRACK 
C 

IF(PEPS(1). GT. EPSCRACK. AND. PEPS(2). LT. ZERO) THEN 
C 

& 

C 

& 

C 

N1=1 
. O+SQRT(FACTOR* (PEPS(1)-EPSCRACK)) 

Z 1=SIGCRACK*FACTOR/(2* S QRT(FACTOR* (PEPS(1)- 
EPSCRACK))) 

N3 =0.8-FAC T 2* PEP S(1)/EZERO 

Ell=-Z1/N1**2 
E 12=0. OD 
E13=0. OD 
E21=2*FC*PEPS(2) *FACT2/(N3 **2*EZERO**2)- 

FC*PEPS(2)**2*FACT2/(N3**2*EZERO**3) 
E22=2*FC/(N3 *EZERO)-2*FC*PEPS(2)/(N3 *EZERO* *2) 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E3 3=(PSIGC(l )-PSIGC(2))/(2*(PEP S (1)-PEPS(2))) 

ENDIF 
C 
C CASE NR 3B: THE PRINCIPAL CONCRETE STRESS PSIGC(1) IS 
C NEGATIVE=COMPRESSION BUT THE PRINCIPAL 
C CONCRETE STRESS PSIGC(2) IS POSITIVE=TENSION 
C AND THE PRINCIPAL TENSION STRAIN PEPS(2) IS MORE 
C THAN THE CRACKING STRAIN EPSCRACK 
C 

C 

& 

C 

& 

IF(PEPS(1). LT. ZERO. AND. PEPS(2). GT. EPSCRACK) THEN 

N2=1 
. 
0+S QRT(FACTOR* (PEP S (2)-EP S CRACK)) 

Z2=SIGCRACK*FACTOR/(2* S QRT(FACTOR* (PEPS(2)- 
EPSCRACK))) 

N4=0.8-FACT2*PEP S(2)/EZERO 

E11=2*FC/(N4*EZERO)-2*FC*PEPS(1)/(N4*EZERO* *2) 
E 12=2*FC*PEP S (1)*FACT2/(N4*EZERO)* *2- 

FC*PEPS(1)**2*FACT2/(N4**2*EZERO**3) 
E13=0. OD 
E21=0. OD 
E22=-Z2/N2* *2 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E3 3=(P S IGC (1)-P S IGC (2))/(2 *(PEP S(1)-PEP S(2))) 

C 
ENDIF 
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C CASE NR 4: THE PRINCIPAL CONCRETE STRESSES PSIGC(I) ARE 
C POSITIVE=TENSION AND BOTH ARE LESS 
C THAN EPSCRACK. 
C 

IF(PEPS(1). GT. ZERO. AND. PEPS(2). GT. ZERO. AND. PEPS(1). LT. 
& EPSCRACK. AND. PEPS(2). LT. EPSCRACK) THEN 

C 

C 
ENDIF 

E11=2*FC/EZERO 
E 12=0. OD 
E13=0. OD 
E21=0. OD 
E22=2*FC/EZERO 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 

C 
C CASE NR 5A: THE PRINCIPAL CONCRETE STRESSES PSIGC(I) ARE 
C POSITIVE=TENSION AND PEPS(2) IS LESS 
C THAN EPSCRACK WHILE PEPS(l) IS MORE THAN 
C EPSCRACK 
C 

IF(PEP S (2). GT. ZERO. AND. PEPS (1). GT. EP S CRACK. AND. PEP S (2). LT. 
& EPSCRACK) THEN 

C 

& 
C 

C 

N1= 1. O+S QRT(FACT OR* (PEP S (l)-EP S CRACK)) 
Z 1=S IGCRACK *FACTOR/(2 *S QRT(FACTOR* (PEP S (1)- 

EPSCRACK))) 

E11=-ZI/N1**2 
E12=0. OD 
E13=0. OD 
E21=0. OD 
E22=2*FC/EZERO 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 

ENDIF 
C 
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C CASE NR 5B: THE PRINCIPAL CONCRETE STRESSES PSIGC(I) ARE 
C POSITIVE=TENSION AND PEPS(I) IS LESS 
C THAN EPSCRACK WHILE PEPS(2) IS MORE THAN 
C EPSCRACK 
C 

IF(PEPS(1). GT. ZERO. AND. PEPS(2). GT. EPSCRACK. AND. PEPS(1). LT. 
& EPSCRACK) THEN 

C 

& 
C 

N2=1 
. 0+S QRT(FACTOR* (PEP S (2)-EP S CRACK)) 

Z2=SIGCRACK*FACTOR/(2* SQRT(FACTOR*(PEP S (2)- 
EPSCRACK))) 

E11=2*FC/EZERO 
E12=0. OD 
E13=0. OD 
E21=0. OD 
E22=-Z2/N2* *2 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2*(PEPS(1)-PEPS(2))) 

C 
ENDIF 

C 
C CASE NR 6: THE PRINCIPAL CONCRETE STRESSES PSIGC(I) ARE 
C POSITIVE=TENSION AND PEPS(I) BOTH ARE MORE 
C THAN EPSCRACK. 
C 

C 

& 

C 

C 

& 

C 

IF(PEPS(1). GT. EPSCRACK. AND. PEPS(2). GT. EPSCRACK) THEN 

N 1=1. O+SQRT(FACTOR*(PEP S (1)-EP S CRACK)) 
Z 1=SIGCRACK*FACTOR/(2* SQRT(FACTOR*(PEP S(1)- 

EPSCRACK))) 
N2=1.0+S QRT(FACT OR* (PEP S (2)-EP S CRACK)) 
Z2=SIGCRACK*FACTOR/(2* SQRT(FACTOR*(PEPS(2)- 

EPSCRACK))) 

E11=-Z1/N1**2 
E12=0. OD 
E 13=0. OD 
E21=0. OD 
E22=-Z2/N2* *2 
E23=0. OD 
E31=0. OD 
E32=0. OD 
E33=(PSIGC(1)-PSIGC(2))/(2* (PEP S(1)-PEPS(2))) 

ENDIF 
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C 

DO K1=1, NTENS 
DO K2=1, NTENS 
DDSDDE(K1, K2)=ZERO 
END DO 

END DO 

DDSDDE(1,1)=E11 
DDSDDE(1,2)=E12 
DDSDDE(1,3)=E13 
DDSDDE(2,1)=E21 
DDSDDE(2,2)=E22 
DDSDDE(2,3)=E23 
DDSDDE(3,1)=E31 
DDSDDE(3,2)=E32 
DDSDDE(3,3)=E33 

C 
C ROTATE CONCRETE JACOBIAN IN XY-DIRECTION 
C FIRST ESTABLISH TRANFORMATION MATRIX [T] AND ITS TRANSPOSE 
C 

C 

C 

T(1,1)=COS(PHI)**TWO 
T(1,2)=SIN(PHI)**TWO 
T(1,3)=COS(PHI)*SIN(PHI) 
T(2,1)=SIN(PHI)* *TWO 
T(2,2)=COS(PHI)**TWO 
T(2,3)=-COS(PHI) * SIN(PHI) 
T(3,1)=-TWO*COS(PHI)*S1N(PHI) 
T(3,2)=TWO*COS(PHI)*SIN(PHI) 
T(3,3)=COS(PHI)* *TWO-SIN(PHI)* *TWO 

TT(1,1)=COS(PHI)**TWO 
TT(1,2)=SIN(PHI)**TWO 
TT(1,3)=-TWO*COS(PHI)*SIN(PHI) 
TT(2,1)=SIN(PHI)* *TWO 
TT(2,2)=CO S (PHI) * *TWO 
TT(2,3)=TWO*COS(PHI)* SIN(PHI) 
TT(3,1)=COS (PHI)* SIN(PHI) 
TT(3,2)=-COS(PHI) * SIN(PHI) 
TT(3,3)=COS(PHI)* *TWO-SIN(PHI)* *TWO 

DO K1=1, NTENS 
DO K2=1, NTENS 

R=ZERO 
DO K3=1, NTENS 

R=R+TT(K 1, K3) *DDSDDE(K3, K2) 
ENDDO 
D(K1, K2)=R 

ENDDO 
ENDDO 

C 
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C 

C 

DO K1=1, NTENS 
DO K2=1, NTENS 

DD SDDE(K 1, K2)=D (K 1, K2) 
END DO 

END DO 

DO K1=1, NTENS 
DO K2=1, NTENS 

R=ZERO 
DO K3=1, NTENS 

R=R+DDSDDE(K1, K3)*T(K3, K2) 
ENDDO 
D(K1, K2)=R 

ENDDO 
ENDDO 

DO K1=1, NTENS 
DO K2=1, NTENS 

DDSDDE(K1, K2)=D(K1, K2) 
END DO 

END DO 
C 
C CALCULATE JACOBIAN FOR STEEL 
C 

C 

C 

C 

IF(SIGSX. GT. ZERO. AND. DSTRAN(1). LT. EYIELDX) THEN 
E1=RHOX*ESTEEL 

ENDIF 

IF(SIGSX. GT. ZERO. AND. DSTRAN(1). GT. EYIELDX) THEN 
E1=ZERO 

ENDIF 

IF(SIGSX. LT. ZERO. AND. DSTRAN(l). GT. -EYIELDX) THEN 
E1=RHOX*ESTEEL 

ENDIF 

IF(SIGSX. LT. ZERO. AND. DSTRAN(1). LT. -EYIELDX) THEN 
E1=ZERO 

ENDIF 
C 
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C 

C 

C 

IF(SIGSY. GT. ZERO. AND. DSTRAN(2). LT. EYIELDY) THEN 
E2=RHOY*ESTEEL 

ENDIF 

IF(SIGSY. GT. ZERO. AND. DSTRAN(2). GT. EYIELDY) THEN 
E2=ZERO 

ENDIF 

IF(SIGSY. LT. ZERO. AND. DSTRAN(2). GT. -EYIELDY) THEN 
E2=RHOY*ESTEEL 

ENDIF 

IF(SIGSY. LT. ZERO. AND. DSTRAN(2). LT. -EYIELDY) THEN 
E2=ZERO 

ENDIF 
C 
C JACOBIAN FOR REINFORCED CONCRETE 
C 

DDSDDE(1,1)=DDSDDE(1,1)+E1 
DDSDDE(2,2)=DD SDDE(2,2)+E2 

C 
ENDIF 

10 RETURN 
END 
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*HEADING, UNSYMM 
2D Solid with UMAT (according to the MCFT) 
Analysis of a 4-Storey Wall, 96 Elements 
Ductility 3.4, EC8 
*NODE 
1,0.0,0.0 
7,6.0,0.0 
8,0.0,1.0 
14,6.0,1.0 
15,0.0,2.0 
21,6.0,2.0 
22,0.0,3.0 
28,6.0,3.0 
29,0.0,4.0 
35,6.0,4.0 
36,0.0,5.0 
42,6.0,5.0 
43,0.0,6.0 
49,6.0,6.0 
50,0.0,7.0 
56,6.0,7.0 
57,0.0,8.0 
63,6.0,8.0 
64,0.0,9.0 
70,6.0,9.0 
71,0.0,10.0 
77,6.0,10.0 
78,0.0,11.0 
84,6.0,11.0 
85,0.0,12.0 
91,6.0,12.0 
92,0.0,13.0 
98,6.0,13.0 
99,0.0,14.0 
105,6.0,14.0 
106,0.0,15.0 
112,6.0,15.0 
113,0.0,16.0 
119,6.0,16.0 
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*NGEN 
1,7 
8,14 
15,21 
22,28 
29,35 
36,42 
43,49 
50,56 
57,63 
64,70 
71,77 
78,84 
85,91 
92,98 
99,105 
106,112 
113,119 
*NSET, NSET=S1, GENERATE 
1,7,1 
*NSET, NSET=S2, GENERATE 
29,35,1 
*NSET, NSET=S3, GENERATE 
57,63,1 
*NSET, NSET=S4, GENERATE 
85,91,1 
*NSET, NSET=S5, GENERATE 
113,119,1 
*ELEMENT, TYPE=CPS4 
1,1,2,9,8 
*ELGEN 
1,6,1,1,16,7,6 
*ELSET, ELSET=SETI, GENERATE 
1,19,6 
6,24,6 
*ELSET, ELSET=SET2, GENERATE 
25,43,6 
30,48,6 
*ELSET, ELSET=SET3, GENERATE 
49,67,6 
54,72,6 
*ELSET, ELSET=SET4, GENERATE 
73,91,6 
78,96,6 
*ELSET, ELSET=SET5, GENERATE 
2,20,6 
3,21,6 
4,22,6 
5,23,6 
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*ELSET, ELSET=SET5, GENERATE 
26,92,6 
27,93,6 
28,94,6 
29,95,6 
*SOLID SECTION, ELSET=SETZ, MATERIAL=MATZ 
0.3 
*MATERIAL, NAME=MAT 1 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.0031, -31.0,2.0,210000.0,0.0104,0.0067,200.0 
0.00228,0.00228,0.24 
*DEPVAR 
21 
*SOLID SECTION, ELSET=SET2, MATERIAL=MAT2 
0.3 
*MATERIAL, NAME=MAT2 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.0026, -25.5,2.0,210000.0,0.0052,0.0067,200.0 
0.00228,0.00228,0.24 
*DEPVAR 
21 
*SOLID SECTION, ELSET=SET3, MATERIAL=MATS 
0.3 
*MATERIAL, NAME=MAT3 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.002, -20.0,2.0,210000.0,0.00223,0.0052,200.0 
0.00228,0.00228,0.24 
*DEP VAR 
21 
*SOLID SECTION, ELSET=SET4, MATERIAL=MAT4 
0.3 
*MATERIAL, NAME=MAT4 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.002, -20.0,2.0,210000.0,0.00223,0.0028,200.0 
0.00228,0.00228,0.24 
*DEPVAR 
21 
*SOLID SECTION, ELSET=SET5, MATERIAL=MATS 
0.3 
*MATERIAL, NAME=MATS 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.002, -20.0,2.0,210000.0,0.0026,0.00268,200.0 
0.00228,0.00228,0.24 
*DEPVAR 
21 
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*SOLID SECTION, ELSET=SET6, MATERIAL=MAT6 
0.3 
*MATERIAL, NAME=MAT6 
*USER MATERIAL, CONSTANTS=11, UNSYMM 
20000.0, -0.002, -20.0,2.0,210000.0,0.00223,0.00268,200.0 
0.00228,0.00228,0.24 
*DEP VAR 
21 
*BOUNDARY 
S1,1,3 
*STEP 
*STATIC 
*CLOAD 
S2,2, -0.1 
S3,2, -0.1 
S4,2, -0.1 
S5,2, -0.08 
*NODE PRINT, FREQ=O 
*EL PRINT, FREQ=O 
*END STEP 
*STEP, INC=1000 
*STATIC, RIKS 
*CLOAD 
29,1,0.22 
57,1,0.33 
85,1,0.43 
113,1,0.465 
*NODE PRINT, FREQ=2 
U 
*EL PRINT, FREQ=2 
SDV1 
SDV2 
SDV3 
*END STEP 

186 


