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Abstract 

Contemporary theories of causal induction have focussed largely on the 

question of how evidence in the form of covariations between causes and 

effects is used to compute measures of causal strength. A very important 

precursor enabling such computations is that the reasoner notices that a cause 

and effect have co-occurred. Standard laboratory experiments have usually 
bypassed this problem by presenting participants directly with covariational 
information. As a result, relatively little is known about how humans identify 

causal relations in real time. What evidence exists, however, paints a rather 

unflattering picture of human causal induction and converges to the conclusion 

that humans cannot identify causal relations if cause and effect are separated 
by more than a few seconds. Associative learning theory has interpreted these 

findings to indicate that temporal contiguity is essential to causal inference. I 

argue instead that contiguity is not essential, but that the influence of time in 

causal inference is crucially dependent on people's beliefs and expectations 

about the timeframe of the causal relation in question. 
First I demonstrate that humans are capable of dissociating temporal 

contiguity from causal strength; more specifically, they can learn that a given 

event exerts a stronger causal influence when it is temporally separated from 

the effect than when it is contiguous with it. Then I re-investigate a paradigm 

commonly used to study the effects of delay on human causal induction. My 

experiments employed one crucial additional manipulation regarding 

participants' awareness of potential delays. This manipulation was sufficient 

to reduce the detrimental effects of delay. Three other experiments employed 

a similar strategy, but relied on implicit instructions about the timeframe of the 

causal relation in question. Overall, results support the hypothesis that 

knowledge mediates the timeframe of covariation assessment in human causal 
induction. Implications for associative learning and causal power theories are 

discussed 



2 

1. From Covariation to Causation 

1.1. Hume and His Heritage 

The world as given to us is a flux of sensations. Yet humans and other 
intelligent species have evolved to partially predict and even control their 

environment. How do people structure the world of sensations? What enables 

them to manipulate their surroundings based on their forecasts? In other 

words, how do people learn about the causes of events? David Hume 

(1777/1902) pointed out the fundamental problem for the acquisition of causal 

structures: the human sensory system is not receptive to causality per se: we 

cannot "see", "hear", "feel", "taste", or "smell" causal relations. Since causal 

relations are not explicitly represented in the input, the Humean argument 

goes, causation must be inferred by some process of induction based on 

evidence available to our senses. Some researchers have argued that certain 

physical events give rise to direct causal perception (e. g., the launching effect 

of collision events, see Michotte, 1946/1963), but a critical analysis of the 

argument (Cheng, 1993) revealed that simple perceptual mechanisms alone 

cannot explain people's complex causal attribution patterns. Instead, most 

researchers in the area now agree that humans use covariational information 

about the presence and absence of candidate causes and effects to infer causal 

relations. For a binary candidate cause c and effect e, the former perceived as 

occurring before the latter, covariation information can be represented in a 2x2 

contingency table (Figure 1-1) where cell a contains the frequency of the joint 

presence of a candidate cause and the effect, cell b the frequency of events in 

which the candidate is present but the effect absent, cell c the frequency of 

events in which the candidate is absent but the effect present, and cell d the 

frequency of events in which both candidate and effect are absent. 
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Figure 1-1. A 2x2 contingency table and proposed strategies for contingency 
judgments (adapted from Shimazaki, Tsuda, & Imada, 1991)1]. 

Effect e 
present absent 

0 
U) 
U) 
cd 
c) 
G) 

c 
cU 
0 

G) 
Cl) 
a) 16- CL 

C 

CO 

.o cc 

a b 
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Strategy Calculation 

Cell-a Compare cell a with other three 

cells 
AF Compare cell a with cell c 
AD Compare (a+d) with (b+c) 

OP Compare (a/a+b) with c/(c+d) 

Philosophers, social psychologists, cognitive psychologists, learning 

theorists, and computer scientists have vigorously debated how causality can 
be inferred from a contingency table. Several simple decision rules (see 

Figure 1-1) were proposed to suggest how causation can be inferred from 

observable frequencies. A few decades ago the AP rule was identified as the 

normative measure of causality extracted from contingency information (e. g. 

see Jenkins & Ward, 1965). AP is often referred to as the contingency 
between e and c and can also be expressed in terms of conditional 

probabilities: 
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Equation 1. OP = P(e c) - P(e 1-, c) 

with P(e1c) being the probability of e given the presence of c, and P(el-, c) the 

probability of e given the absence of c. If AP is noticeably positive, c would be 

inferred to produce e (be a generative cause of e), and if AP is noticeably 

negative, c would be inferred to inhibit e (be a preventive cause of e). If AP is 

neither positive nor negative, c does not influence e and there is no causal 

relationship between the two. More recent attempts to describe human causal 
induction (e. g. Anderson & Sheu, 1995) proposed to add weights into the AP 

rule. The rationale behind this endeavour is that humans do not appear to be 

equally sensitive to the four cells of a contingency table. Such a modified AP 

rule 

Equation 2. wo + w1P(e I c) - w2P(e 1-, c) 

or a weighted linear model (Schustack & Sternberg, 1981; as cited in 

Anderson & Sheu, 1995) 

Equation 3. wo + w, a + web + w3c + w4d. 

of course allow the weights to be set post-hoc and thus give greater degrees of 
freedom to provide a better fit to actual causal judgment data obtained in 

experiments than the standard AP rule. Typically, it has been claimed that the 

a and b cells of a contingency table as displayed in Figure 1-1 are deemed to 

be most informative for the discovery of a causal relation (e. g. Anderson & 

Sheu, 1995), and the weights for such parameterised models were adjusted 
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accordingly. A more recent analysis of the argument (Over & Green, 2001) 

has shown, however, that this is only the case for scenarios where both the 

cause and the effect are rare. In situations where causes and effects are very 

common, the c and d cells carry the crucial information, and weights would 

need to be ordered differently. 

1.2. The Associationist Approach 

Another prominent account of human causal induction also claims to 

address the problem posed by Hume (1739/1888) and likewise takes 

information about temporal order and the presence and absence of candidate 

causes as its starting point. But the way in which this information is parsed so 

as to come to an understanding of cause is radically different from the 

previously outlined approaches, in that it does not entail any rules which "read 

off' information from an episodic memory with a figurative contingency table. 

Rather, "causal judgment is seen as reflecting no more than the strength of the 

relevant association between the mental representations of the cause and 

effect, with the principles governing such attributions being those of 

associative learning. " (Shanks & Dickinson, 1987 p. 230). In an associationist 
framework, mental representations of causal strength are not the product of a 

retrospective reasoning process. Instead, causal strength is accounted for in 

the continually updated association between candidate causes and effects. The 

principle underlying all associationist theories is strikingly simple: if on a 

given occasion (learning trial) a cue and an outcome co-occur together, the 

association between them will increase, if the cue occurs by itself without the 

outcome, or if the outcome happens on its own without the cue's presence, the 

association will decrease. The most prominent associative learning model has 

been the Rescorla-Wagner model (RWM) (1972), originally proposed to 

explain the processes underlying Pavlovian conditioning: 
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Equation 4. LVcs = acs - Pas - (A - YV) 

with AVcs being the change in associative strength between a conditioned 

stimulus CS (the cue, e. g. a flash of light) and an unconditioned stimulus US 

(the outcome, e. g. a foot shock) on a given learning trial and acs and ßßs as 

learning parameters that respectively represent the salience of the CS (e. g. the 

light's brightness) and the US (e. g. the shock's intensity). I is the outcome of a 

given trial and is usually 1 if the US is present and 0 otherwise. Finally, IV is 

the sum of all associative strengths of all present CSs and is therefore 

interpreted as the "expected outcome" of a given trial. In the RWM and 

related associationist theories learning consists of reducing the discrepancy 

between the expected and the actual outcome. When there is a difference 

between A and EV on a given learning trial, the associative weights of all cues 

present on that trial are updated according to the rule specified in Equation 4. 

Eventually, after many trials, the discrepancy between the expected outcome 
IV and the actual outcome A will approximate zero - learning has reached 

asymptote. In other words, the cues can fully predict (or explain) the outcome. 
Attempting to use the RWM to account for human causal induction of course 

reduces reasoning to associative learning: the candidate cause c is mapped 

onto the CS, the effect e onto the US, and the causal power of c is mapped 

onto c's associative strength. 

Researchers applying the RWM typically distinguish between two 

versions of the model, depending on assumptions about the learning parameter 
P. If ß is assumed to be constant between trials on which the US is 

respectively present and absent (ßus = flu-s), the model is referred to as the 

restricted RWM. If one allows the value of ß to vary between these trials, the 

unrestricted RWM applies (Miller, Barnet, & Grahame, 1995; Lober & 

Shanks, 2000 introduced the terms restricted vs. unrestricted RWM). Usually 

the presence of the US is assumed to be more salient than its absence, because 

the vast majority of empirical results requires the parameter ordering that 
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follows from this assumption (/3w > ßßS) to fit the data (Shanks, 1991; cf. 

Wagner, Logan, Haberlandt, & Price, 1968; Rescorla & Wagner, 1972). 

Chapman and Robbins (1990) demonstrated that the restricted RWM 

converges in its asymptotic predictions to a simple AP rule for the special case 

in which there is only one stimulus cue. The unrestricted RWM, however, 

does not compute AP. Wasserman, Chatlosh, Elek, & Baker (1993) offered a 
formula that allows one to calculate asymptotic predictions of the RWM with 

unequal values of fl. 

Equation 5. V 
"rymp - 

ßusa ßusc 
ßusa + ßusb ßusc +d 

where a, b, c, and d refer to the four cells of the contingency table displayed in 

Figure 1-1. Regardless of the exact values one chooses the parameters to take, 

with Pus > flu-s, the (absolute) magnitudes of the judged causal strengths will 

be smaller as P(el-ic) = c/(c+d), the base rate of e, increases for any fixed 

positive or negative OP. But if Pus < ß, contrary to the typical assumption, 

the RWM would predict the opposite trend: the (absolute) magnitudes of the 

judged causal strengths should be larger as P(el-c) increases for any fixed 

positive or negative OP. Regardless of assumptions about ß, the RWM 

predicts that P(el-, c) influences the absolute causal strengths for candidates 

with equal positive AP in the same direction as those with equal negative AP. 

Section 1.5 will review some empirical results relevant to these predictions. 

It should be pointed out here that the focus of research on human 

associative learning (i. e. attempting to explain human causal induction with 

associative learning theory) has undergone a change in the last two decades. 

Early studies (e. g. Shanks, 1985,1987,1991) were concerned with the actual 
learning process and investigated acquisition functions. Contemporary 
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investigations (e. g. Shanks & Lopez, 1996; Shanks, Lopez, Darby, & 

Dickinson, 1996; Lober & Shanks, 2000; Perales & Shanks, 2000) seldom do 

this anymore and focus on asymptotic predictions and final judgments instead. 

One of the motivations that led to the development of the RWM was to 

account for the well documented phenomenon of blocking in animal learning 

(Kamin, 1969; as cited in Rescorla & Wagner, 1972): When one cue is 

established as a strong predictor for an outcome, subsequent exposure to a 

compound of the perfect predictor and a novel cue produces very little 

conditioning to the new element. In terms of the RWM the outcome is then 

already fully explained by the established predictor and updating of any 

associative weights, including the one from the novel stimulus, has become 

unnecessary. 

In the 1980s associationism rose in its popularity as an explanation of 

human causal learning. Attracted by the similarity between cues and outcomes 

and causes and effects, researchers aimed to explain human causal learning 

through associative principles. The replication of a blocking effect in human 

causal learning led Dickinson and his associates (see Shanks & Dickinson, 

1987; and Shanks, 1993b for an overview) to propose that causal learning can 

be reduced to associative learning. A substantial amount of subsequent 

experimental evidence supported this general proposal, and in particular the 

RWM (Shanks, 1985,1987,1993a; Shanks & Dickinson, 1987; Wasserman et 

al., 1993). 

However, the glory of the reductionist approach proposed by the 

associationists did not live up to the expectations. Sparked by the growing 

interdisciplinary interest in theories of causation, and by vigorous debate 

between associationists and other theorists (Melz, Cheng, Holyoak, & 

Waldmann, 1993; Shanks, 1991; Shanks & Lopez, 1996; Waldmann & 

Holyoak, 1992,1997), the "Psychology of Learning and Motivation" series 

saw the publication of a volume on causal learning in 1996 (Shanks, Holyoak, 

& Medin, 1996). The opening chapter of this volume, written by the 
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prominent associationist researchers A. G. Baker, Robin Murphy, and Frederic 

Vallee-Tourrangeau, sums up one of the main shortcomings of an associative 

perspective on causal reasoning: "... experience is stored as a small number of 

associative strengths. ... information about past events is lost in the 

computation. In other words, these models do not have episodic memory. " 

(Baker, Murphy, & Vallee-Tourangeau, 1996 p. 1). It seems hard to justify 

how any insightful reasoning process, including causal inference, could be 

come by without the assumption of an episodic memory. 

Another important prerequisite for the intelligent judgment of cause is 

the insight into causal directionality, as Waldmann, in the same volume 
(1996), sums up concisely: 

One of the most important examples of abstract causal knowledge that 

may affect the processing of the learning input is knowledge about 

causal directionality. We know that the causal arrow is directed from 

causes to their effects and not the other way around. This fundamental 

property of causal relations is of the utmost pragmatic importance as it 

provides the basis for our abilities to reach goals. Effects can be 

achieved by manipulating causes, but causes cannot be accomplished 
by manipulating their effects. Thus it is extremely important to be able 

to distinguish between causes and effects. (Waldmann, 1996, p. 52) 

An associationist model is incapable of making the crucial distinction 

between cause and effect. Its scope only entails cues and outcomes. The 

standard adoption of associative models to causal learning maps cues to causes 

and effects to outcomes. By the same rationale a physician who reasons that 

the presence of certain bacteria in the stomach is the cause for an ulcer does so 

not by virtue of a learning mechanism specifically devoted to discover causal 

structures. Instead, the task is hypothesized to be performed by a simple 

associative learning algorithm, equivalent to mechanisms assumed to drive a 

rat's behaviour in a Skinner box. 
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Such associative learning algorithms fail to encompass causal 

directionality. However, human causal reasoners are capable of eventually 

realizing that the ulcer is actually the cause of bacterial presence, rather than 

being produced by the bacteria, if the data structure supports this inference 

(Hagmayer & Waldmann, 2001). In other words, humans can distinguish 

between predictive reasoning (bacteria causes ulcer) and diagnostic reasoning 
(bacteria are an effect of ulcer), even when they are first presented with the 

effect (i. e. a symptom) and subsequently with the cause, as is usually the case 
in medical decision making. 

Ironically the blocking paradigm which was the boon for 

associationism in the 1980s also proved to be its bane in the 1990s. In an 

associative framework cues compete for associative strength, just like causes 

do in causal reasoning. However, by the fundamental fact of causal 

asymmetry, effects collaborate in explanatory strength rather than compete 

against each other. If, for example, the presence of a specific kind of bacteria 

is established as an effect of an ulcer, and subsequent learning experience 

reveals that tissue swelling is also a result of ulcer, acquisition of diagnostic 

explanatory strength in the second effect will not be significantly impaired by 

the already established explanatory strength of the first effect. Michael 

Waldmann demonstrated this distinction between predictive and diagnostic 

causal learning very impressively using a standard blocking paradigm 
(Waldmann & Holyoak, 1992,1997; Waldmann, 2000). The same input (cue) 

was introduced as cause in one condition, and as an effect in the other, 

consequently the outcome was labeled "effect" in the first and "cause" in the 

latter group. After having learnt the perfect pairing between cue and outcome, 

participants in Waldmann's experiments were presented with a second cue that 

was always paired with the already established cue; this compound of cues 

was also always followed by the outcome. The results indicated uniformly 

that people are sensitive to causal asymmetry. When participants thought that 

the cues were causes, the second cue competed with the first cue, which was 
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already established as a perfect predictor. Since participants had no 

information about the effectiveness of the second cue on its own (it was 

always paired with the established cue), ratings of association between the cue 

and the outcome were weaker in the second, blocked cue than in the first. 

However, when participants believed that the cues were effects, and the 

outcome a common cause of the effects, the cues did not compete in 

associative strength and participants readily gave equally high ratings to both 

the established and the "blocked" cue. The RWM of course, failing to capture 

the directionality of the causal arrow, erroneously predicts blocking between 

effects in a diagnostic tasks, just as it (correctly) predicts blocking between 

causes in a predictive task. 

1.3. Discovering Causes from Covariation Alone? - The Power 

View 

Apart from all the problems resulting from its reductionist perspective, 

the associationist approach suffers from a problem that cripples all purely 

covariation based models: as any introductory statistics textbook admonishes, 

covariation does not necessarily imply causation. Many events follow each 

other regularly, yet we are unwilling to infer a causal relation between them. 

The famous rooster on the farm crows each morning just before sunrise (and 

the sun does not rise on other times of day when the rooster does not crow), 

yet we do not infer that the rooster's crowing causes the sun to rise. One 

prominent answer to the problem of how to decide when a covariation 

warrants causal inference goes back to Kant (1781/1965) and is called the 

power view. Advocates of this power view claim that prior knowledge (often 

referred to as knowledge of mechanism) about a plausible connection between 

cause and effect helps humans to interpret covariation information. 

Specifically, power theorists would argue that unless one knows of or 

perceives a causal link or mechanism between a candidate cause and an effect, 
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one cannot infer a causal relation between them (cf. Ahn, Kalish, Medin, & 

Gelman, 1995; Bullock, Gelman, & Baillargeon, 1982; Michotte, 1946/1963). 

One event thus causes another by virtue of exerting its causal power, by 

transmitting energy. A prime example is the understanding that butter melts in 

a heated pan: the stove emits heat (energy), raising the temperature of the pan, 

which in turn makes the butter melt. In a power framework, effects do not 

simply follow their causes, rather they are produced, or generated by them. 

The rooster on the farm may exhibit statistical regularity in its crowing just 

before sunrise (just like heating precedes melting), but it lacks the critical 

mechanism or power present in the melting butter example. 

The power view has intuitive appeal, but suffers from circularity: 

according to this view one cannot infer that a relation is causal unless one 

knows of a mechanism which causally explains the relation, in other words, to 

identify a relation as causal, one needs to first know that it is causal. Prior 

knowledge certainly guides the interpretation of covariation input towards 

causality, as is evident from Waldmann's studies on predictive and diagnostic 

reasoning. Nonetheless, such knowledge does not come out of the blue and 

unless one is willing to claim that it is innate, it must be learnt somehow. The 

power view thus pushes the problem pointed out by Hume one step back, but 

ultimately fails to solve it. Also, it only makes predictions about the 

circumstances under which a covariation is interpreted as causal but not how 

so, and therefore lacks the computational description of causality present in the 

contingency and associationist models. 

1.4. The power PC theory 

A third alternative to causal induction put forward by Cheng (1997) 

adopts the Humean notion that causality must be computed from observable 

evidence (i. e. covariation), but also entails a Kantian framework in that it 

proposes that humans innately postulate that there exist causes in the world 
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that have the power to produce events and causes that have the power to 

prevent events and that the goal of causal induction is to infer these powers 
from observable evidence. A primary motivation for Cheng's power PC 

theory was to account for previously unexplained empirical phenomena of 

causal induction. One such phenomenon is the non equivalence of covariation 

and causation as, for example, in the problem of a "ceiling effect": when 

experimentally testing whether a manipulation c produces an effect e one 

cannot draw a valid conclusion regarding c's power to produce e if e happens 

all the time, irrespective of c's presence. Expressed probabilistically, a ceiling 

effect occurs when P(e1c) = P(el-, c)=1.0 All purely covariation based models, 
including all associationist models, cannot represent causal strength as a 

variable separate from its value. As a result, neither can represent a state of 
knowledge where causal strength is unknown (i. e. the variable has no value), 
but covariation has a definite value. In the ceiling effect example, OP=O and 

all models yield a definite value of causal strength (the contingency models 

and both the restricted and unrestricted RWM yield 0). Yet, it becomes 

immediately obvious that causal inference is not warranted in such a situation. 
Wu and Cheng (1999) demonstrated that humans are sensitive to ceiling 

effects and their analogs in preventive scenarios, when P(e1c) =P(ej--Ic)=1.0 

participants in these situations reliably concluded that an outcome from such 

an experiment is uninformative; purely covariation based models were thus 

refuted. 

Cheng's power PC theory (1997) can account for the uninformative 

nature of results embodying a ceiling effect by postulating causal power as a 

variable that is distinct from its value. It follows from the theory that when 

causes alternative to the candidate cause c both occur and influence e 
independently of c, and AP is non-negative, the generative power of c to 

produce e is 
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Equation 6. q, = 
AP` 

1-P(e j-, c) 

For a non-positive AP, the same set of assumptions except that c may now 

potentially prevent instead of produce e yields 

Equation 7. P, = -Ap` 
P(e 1--c) 

The unwillingness of people to estimate causality in a ceiling effect situation 

logically follows from Equation 6.: it is undefined when P(eJ-, c)=1.0 due to 

division of 0 by 0. The two equations illustrate some important empirical 

consequences predicted from the power PC theory. One implication is that 

scenarios involving equal levels of AP but different values for P(et-, c) should 

yield different causal judgments. When Equation 6. applies, candidate causes 
in scenarios with equal nonnegative APs should be judged to have increasingly 

large generative power as P(el-, c) increases, but does not equal 1. In contrast, 

when Equation 7. applies, candidates with equal nonpositive APs should be 

evaluated to have increasingly small preventive power as P(el-, c) increases 

towards 1. When P(el-, c)=0, Equation 7. is undefined: a reasoner cannot draw 

any conclusions about the power of c to prevent e, if e never happens in the 

first place in c's absence. When AP=O, both equations predict judgments of 

causality to be 0, as long as the denominator of the relevant equation is not 

also 0. The predictions derived from the power PC theory reflect descriptions 

of human causal judgments on an ordinal level only. Note that (a) P(el--Ic) 

influences the (absolute) magnitude of estimated causal strength in opposite 

directions for preventive and generative causes, and (b) the direction of these 

influences is not dependent on any parameter settings. 
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Let me illustrate the intuitive nature of these predictions with an 

example. Suppose you are a researcher trying to evaluate the effectiveness of 

several new headache relieving drugs. In one study you administer the new 

drug to a group of eight participants and a placebo to a control group of eight 

participants. You find that all eight participants in the control group complain 

about headaches, whereas only six of the eight participants in the experimental 

group suffer from headaches. OP= P(e1c) - P(el-, c) = . 75 - 1.00 = -. 25. 

Assuming that all alternative causes of headaches are constant across the two 

groups, you will assume that if not for the drug, all eight participants in the 

drug group would have had headaches, just as in the control group. The drug, 

therefore, has a small preventive power, preventing headaches with a 

probability of . 25. In another study, four out of eight participants in the 

control group and two of eight in the treatment group reported headaches; AP 

= P(e1c) - P(el-, c) == . 25 -. 50 = -. 25. Again, assuming that alternative 

causes remain constant between groups, these causes would have produced 
headaches in four of the eight participants in the drug group, just as in the 

control group. The drug therefore prevents headaches in two of these four 

participants, yielding a probability of . 50 to prevent headaches. Thus, 

although AP = -. 25 here, as in the preceding study, one would attribute a 

higher preventive power to the latter candidate. 

1.5. Evaluation of the different Approaches 

The above approaches differ fundamentally in what they postulate the 

reasoner assumes to remain invariant across contexts. According to the 

computational causal power approach (power PC theory, Cheng, 1997) that 

which stays constant are (unobservable) causal relations in the environment; 

according to purely covariational models (i. e. decision rules like AP) and 

associationist models (e. g. RWM), it is (observable) covariations between 

entities. It follows that the goal of a computational causal power approach is 
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to infer (distal) causal relations between entities in the world, whereas purely 

covariational and associationist models aim to gather features of the proximal 

stimulus. 

Several predictions regarding causal judgments can distinguish the 

computational causal power approach from purely covariational and 

associationist accounts. Recall that the power PC theory predicts that, with an 
increasing base-rate of e, the absolute values of causal judgments of candidates 

with the same AP will increase when AP is positive, decrease when AP is 

negative, and remain at 0 when AP is 0. Table 1-1 illustrates these predictions. 

Table 1-1. Predictions from power PC theory for contexts with non-positive 

and non-negative values of AP (preventive and generative 

contexts, respectively). Undefined values of causal power are 
indicated with a hyphen (-). 

Generative Scenario 

P(e1c) P(el-. c) AP Causal 
Power 

1.00 0.00 1.00 1.00- 

Preventive Scenario 

P(e1c) P(el-c) JP Causal 
Power 

0.00 1.00 -1.00 1.00 

1.00 0.25 0.75 1.00 0.00 0.75 -0.75 1.00 
0.75 0.00 0.75 0.75 0.25 1.00 -0.75 0.75 

1.00 0.50 0.50 1.00 0.00 0.50 -0.50 1.00 
0.75 0.25 0.50 0.67 0.25 0.75 -0.50 0.67 
0.50 0.00 0.50 0.50 0.50 1.00 -0.50 0.50 

1.00 0.75 0.25 1.00 0.00 0.25 -0.25 1.00 
0.75 0.50 0.25 0.50 0.25 0.50 -0.25 0.50 
0.50 0.25 0.25 0.33 0.50 0.75 -0.25 0.33 
0.25 0.00 0.25 0.25 0.75 1.00 -0.25 0.25 

1.00 1.00 0.00 - 0.75 0.75 0.00 0.00 
0.50 0.50 0.00 0.00 
0.25 0.25 0.00 0.00 
0.00 0.00 0.00 0.00 

1.00 1.00 0.00 0.00 
0.75 0.75 0.00 0.00 
0.50 0.50 0.00 0.00 
0.25 0.25 0.00 0.00 
0.00 0.00 0.00 - 
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Also recall that, whereas the power PC theory is parameter-free, no consistent 

parameter settings of the RWM can predict such a pattern of results. 

Furthermore, the AP rule postulates AP as the sole indicator of causal strength 

and therefore cannot accommodate any kind of base-rate influence at all. 

A first empirical test of these predictions (Buehner & Cheng, 1997) 

demonstrated a clear base-rate influence for situations with constant AP. More 

importantly, it also produced an interaction between the sign of AP (positive 

vs. negative) and the direction of the base-rate influence. Figure 1-2 illustrates 

Buehner & Cheng's results. Although these findings unequivocally refuted 

simple decision rules like AP and both variants of the RWM, the debate 

between computational causal power theorists and associationists is not yet 

resolved. Buehner & Cheng's data, while supporting the power PC theory's 

predictions regarding base-rate influence, actually also produced results 

problematic for the theory. Recall that causal judgments in conditions with 

AP=O should be zero, irrespective of the value of the base-rate P(el-, c). This 

was clearly not the case, as the bottom lines in both panels of Figure 1-2 

appear to be significantly influenced by the base-rate. Also, there was a 

substantial influence of AP on the causal ratings of candidates with the same 

causal power (e. g. the topmost data points in both panels of Figure 1-2 all 

share identical causal power of 1, yet these conditions elicited different causal 

ratings, which appear to be influenced by changes in AP). 

Lober and Shanks (2000) replicated Buehner & Cheng's results, and 

interpreted them as evidence against the power PC theory. Although they 

admitted that the interaction between the sign of AP and the direction of the 

base-rate influence effectively rejected the RWM (Perales & Shanks, 2000), 

they still defended an associationist position by pointing out that Pearce's 

(1987) model of stimulus generalization can in principle predict this 

interaction. It actually turns out that two of the more complex decision rules, 

the weighted zIP model (Anderson & Sheu, 1995, Equation 2), and the 

weighted linear model (Schustack & Sternberg, 1981, Equation 3) can also be 
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Figure 1-2. Results from Buehner & Cheng (1997). Lines connect 

conditions with identical values of AP. 
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fitted to the data patterns reported by Buehner & Cheng, Lober & Shanks, and 

Perales & Shanks. 

However, Buehner and Cheng (Buehner, Cheng, & Clifford, 2001; 

Cheng & Buehner, 2000) have argued that the deviations from the predictions 

of the power PC theory are actually a result of ambiguities in the experimental 

materials and are not rooted in fundamental properties of the reasoning 

process. They presented a follow-up experiment with clearer materials 

(Buehner et al., 2001). While the results (see Figure 1-3) still preserved the 

main feature - the sign of AP and the base-rate interact to influence causal 

judgments - other factors no longer influenced causal judgments: causal power 

as predicted by the power PC theory proofed to be the sole determinant of 

judged causal strength. In particular, conditions with identical causal powers 

of . 75 were not longer sensitive to variations in AP, and conditions with AP 

(and causal power) of 0 were no longer influenced by variations in base-rate. 
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Figure 1-3. Results from Buehner et al. (2001). Base-rate is represented on 

the abscissa. Solid lines connect conditions with identical levels 

of AP, dashed lines connect conditions with identical causal 

powers but varying levels of AP. Because judgments of 

preventive causal strength are plotted as negative values, an 
interaction between base-rate influence and the sign of AP is 

reflected by identical slopes for preventive and generative 
judgments. 
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The debate between computational causal power theorists and 

associationists is still going on, but the focus is shifting more and more 

towards technical and methodological details. Regardless of what future data 

on human causal judgment will show, one can already make some definitive 

statements about the mental leaps from covariation to causation. Cheng's 

(1997) analysis has made an enormous contribution to the field of causal 

reasoning research. Her derivations have shown that the AP rule, which was 

until then held as the normative measure of causal strength, in fact often offers 
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a poor estimate of causal strength. The causal power equations (Equation 6 

and Equation 7) she proposed have replaced AP as the normative benchmark 

against which human reasoning ought to be compared. Even contemporary 

associationists (e. g. Lober & Shanks, 2000; Perales & Shanks, 2000) agree that 

Cheng's power PC theory is a normative theory of causal induction. The 

remaining disagreement is whether it also is a descriptive model of the 

judgment processes. 
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2. With (or Without? ) Temporal Contiguity to 
Causation 

The preceding chapter reviewed recent research aimed at shedding 
light onto the question of how humans infer causal relations from sensory 
information. Because this research has focused primarily on the question of 

what exactly is inferred from available evidence (i. e. how to obtain measures 

of causal strength from covariational information), a very important aspect of 

causality has largely been overlooked: the temporal relation between causes 

and effects. In order to derive causal knowledge from covariation, an 

organism must first be able to successfully identify (in real-time) that two 

events have co-occurred. 

The work I have analyzed in chapter 1 always bypassed this problem 

by presenting participants with information that was already processed in some 

way. The vast majority of experiments either supplied participants with 

covariational information presented in contingency tables, or employed pre- 

defined, discrete, learning trials. Buehner and Cheng (1997), for instance, 

used fictitious lab reports in their experiments. Each lab report represented a 

particular rat and informed the participant whether or not this rat had been 

vaccinated against a certain virus, and whether or not this rat developed the 

disease associated with the virus in question. In other words, in these 

experiments it was always perfectly clear whether or not a candidate cause and 

effect co-occurred or not. 

Unfortunately, real-life outside experimental psychology laboratories is 

not as neatly organized as the average causal reasoning experiment. Some 

events have immediate outcomes, others do not reveal their consequences until 
later. While it is an understood necessity that every cause must precede its 

effect to some extent (although these time spans sometimes may well be below 

our perceptual threshold, e. g. between flicking a switch and a bulb lighting 

up), cognitive psychologists know relatively little about people's sensitivity to 
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. 
frame of causal relations. Experimental work most closely relevant to the time 

the problem has investigated the importance of temporal contiguity in causal 

induction. 

2.1. Previous Investigations into the Role of Temporal 

Contiguity in Causal Induction 

2.1.1. Michotte's (1946/1963) Launching Paradigm 

One of the earliest investigations related to the question of how 

temporal contiguity influences causal induction was reported by Michotte 

(1946/1963). His experimental apparatus consisted of a disk covered by a 

mask except for a small slit (the view-port). Painted on the disk were circular 

lines centred around the midpoint of the disk. The lines were not perfect 

(concentric) circles, however, but instead had some curvature (i. e. the distance 

from the midpoint changed with the angular distance from the slit). Figure 2-1 

depicts typical disks as Michotte used them. If the disks were rotated behind 

the mask, the viewer perceived the lines as approaching and receding objects. 

Michotte employed various disks with different line parameters in his 

experiments in order to vary the spatial and temporal parameters of the objects 

perceived by the participant. For my purposes here, one configuration is of 

particular importance: the one that is commonly referred to as the "launching 

paradigm". In this setup, one object (A) is perceived as moving towards a 

stationary object (B). As soon as A collides with B, B moves away on the 

same trajectory, while A remains stationary. This usually creates a powerful 

impression of causality: object A "launched" object B, in other words A 

caused B's movement. If, however, the disks were arranged in such a way that 

object A appeared to collide with B, and then both A and B remained 

stationary for a couple of seconds, followed by B moving away, the causal 
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Figure 2-1. Typical disks as used by Michotte (1946/1963). The horizontal 

line in (c) represents the view-port. Taken from Michotte, A. E. 

(1946/1963). The perception of causality (T. R. Miles, Trans. ). 

London, England: Methuen & Co. 
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illusion disappeared: A no longer appeared to cause B's motion; instead B 

appeared to move on its own. 

Based on his findings, Michotte put forward his theory of "perceptual 

causality"; his claim was that certain (physical) events give rise to direct 

causal perception. He cited participants' subjective reports of the powerful 

causal illusions, more particularly statements indicating that participants could 

not "help" but see A cause the motion of B, even though they knew A and B 

were simply drawings on paper disks and were in no way causally linked. 

Michotte's claims were, of course, in stark contrast to Hume's (1739/1888) 

notion of causality as an idea, a construct resulting from a mental process. 
Michotte's claims, however, also shared one important aspect with Hume's 

theories about causality: they emphasised the role of temporal contiguity in 

causal induction. Just as Hume pointed out 200 years earlier: Michotte's 

findings appeared to experimentally demonstrate "that whatever objects are 

consider'd as causes or effects are contiguous" (Hume, 1739/1888, p. 75). 
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2.1.2. Shanks, Pearson, & Dickinson's (1989) Instrumental 

Paradigm 

Although Michotte's (1946/1963) demonstrations of the importance of 

temporal contiguity for causal judgment influenced subsequent work on 
human causal judgment, they at the same time had only limited 

generalizability. One restriction was that the launching paradigm was based 

on one-trial observations, whereas the bulk of causal learning literature 

emerging between the 1960s and 1980s was concerned with causal judgments 

derived from covariational information, i. e. multiple pairings of causes and 

effects (e. g. Jenkins & Ward, 1965; Allan & Jenkins, 1980; Mendelson & 

Shultz, 1976; Siegler & Liebert, 1974; Shanks, 1985,1987; Wasserman & 

Neunaber, 1986). Another mostly methodological concern was that the 

majority of this work employed instrumental learning paradigms, i. e. 

experimental situations in which participants interacted with the apparatus, 

rather than passively watching it as in Michotte's studies. Typically, 

participants had to find out how strongly pressing a button or a key caused a 

certain event (usually a bulb lighting up). The apparatus would be constructed 
in such a way that there was a probabilistic relationship between the 

participants' actions and the effect. Participants in such studies were left to 

interact with the apparatus either for a fixed amount of time (e. g. 2 minutes), 

or until they emitted a certain number of responses (e. g. 25 key presses). After 

this period of evidence sampling, they had to indicate the extent to which their 

actions caused the effect. 

Inspired by Michotte's (1946/1963) earlier work, it seemed only 
logical for Shanks, Pearson, and Dickinson (1989) to systematically 
investigate the role of temporal contiguity in human causal induction from an 
instrumental paradigm. Their task involved judging how strongly pressing the 

SPACE bar made a triangle flash on a computer screen. Participants could 
interact with the computer for a fixed amount of time and sampled evidence by 
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repeatedly pressing the SPACE bar and observing whether or not the outcome 

occurred. The apparatus was programmed to let the triangle flash with . 75 

probability each time participants pressed the SPACE bar (and never when the 

bar was not pressed). Shanks et al. varied the temporal interval between 

(reinforced) presses and the occurrence of the effect from 0 seconds to 16 

seconds. Participants' estimates of causal effectiveness decreased 

systematically as the delay increased. In fact, if causal actions and observed 

effects were separated by more than two seconds, participants in Shanks et 

al. 's study evaluated a . 75 contingency schedule to be just as ineffective as 

non-contingent control conditions. In other words, participants could no 

longer distinguish between causal and non-causal relations after a delay of 

more than two seconds. Several subsequent studies reported by Reed (e. g. 

1992; 1999) used a similar paradigm and reported the same results: delays 

always impaired causal judgments. Reed's experiments focussed on 
"signalling" as a way to alleviate the detrimental effects of delay. He adapted 

Shanks et al. 's paradigm, but added a signal (usually a row of Xs) to fill the 

gap between participants' (reinforced) key presses and the triangle lighting up. 

Reed could show that such signals alone significantly improved the assessment 

of delayed contingencies, even though the signals were never mentioned in the 

instructions. One could argue, however, that contingencies are no longer 

delayed, if participants receive immediate feedback (via the signal) about the 

effectiveness of their actions, even though the instrumental action and the 

reinforcer are, strictly speaking, still separated in time. Be that as it may, Reed 

reproduced Shanks et al. 's finding regarding detrimental effects of delay in the 

control conditions that involved the absence of immediate feedback. 

2.1.3. Developmental Studies in the Piagetian Tradition 

Developmental psychologists in the 1970s were interested to find out 
which of the two Humean (1739/1888) cues to causality - contiguity and 
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regularity (covariation) -are more fundamental to children's conceptions of 

causality. Piaget (1969; as cited in Siegler & Liebert, 1974), had argued that 

causal reasoning in children under the age of seven or eight years was 
basically immature, in that young children always rely on temporal contiguity 

as a cue for causality, irrespective of the degree of regularity. I will review 

two experiments that aimed to contrast the two Humean cues against each 

other. The basic strategy employed in both of these studies was to construct a 

situation where an effect could be explained by either of two candidate causes. 
One candidate consistently covaried with the effect, but was not contiguous 

with it; the other candidate did not consistently covary with the effect, but was 

contiguous with it. 

2.1.3.1. Mendelson & Shultz's (1976) Bell Box Study 

Mendelson and Shultz (1976) employed an apparatus consisting of two 

wooden boxes. One (bottom) box housed a bell inside it, and the ringing of 

this bell constituted the effect; the task of the participants (children between 

4.5 and 7.5 years of age) was to explain what made the bell ring. The other 
(top) box had two holes on its top, into which marbles could be dropped by the 

experimenter. The holes were marked by different colours; dropping a marble 
in an individual hole (A or B) constituted a candidate cause. An additional 

manipulation consisted in whether or not the two boxes were connected by a 

rubber tube ("physical model present vs. absent"), positioned in such a way to 

elicit the imagination that balls dropped in one box could travel down the tube 

to the bell box (the paper is frustratingly vague about the details of this 

manipulation). Regardless of this manipulation, the two boxes never were 

actually connected, and marbles dropped in the top box never travelled down 

the tube to the bell box; marbles always remained in the top box, and the bell 

in the bottom box was always controlled by a hidden footswitch operated by 

the experimenter. 
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Children were presented with three different observations: 1. ) a ball 

was dropped in hole A, five seconds later a ball was dropped in hole B, 

followed by an immediate ringing of the bell (A-BX). 2. ) a ball was dropped 

in hole B, but nothing happened (B), 3. ) a ball was dropped in hole A, and five 

seconds later the bell rang (A-X). Each child had the opportunity to make 

each observation twice, resulting in six observations altogether. It is evident 

that A consistently covaried with the effect, but was separated from it by a five 

second delay, while B did not consistently covary with the effect, but on trials 

where B and X co-occurred, they were contiguous. After completing the 

observation phase, the experimenter asked the child four questions: a) if A is 

present, will X happen? b) if B is present, will X happen? c) what makes X 

happen? d) Make X happen, using either A or B. Mendelson and Shultz 

assigned values of 0 and 1 to each answer in such a way that 1 always 
indicated a preference of causal attribution to A, and 0 reflected a preference 
for B. 

The results from Mendelson & Shultz (1976) indicate that children in 

the model: present condition preferred the consistent, non-contiguous cause A, 

whereas children in the model: absent condition (the boxes apparently were 

spatially separated and unconnected, although the article does not mention 

this) mostly attributed causality to the contiguous, inconsistent cause B. The 

authors' attempt to determine which of the two Humean cues to causality is 

more fundamental failed: 

It is somewhat hazardous to conclude anything about the relative 
importance of covariation and temporal contiguity from the results of 
this experiment. Either principle may be applied, depending on the 

existing conditions. Such a conclusion leaves unanswered the question 

of the fundamental basis of causal attribution. How does a child 
"know" when to apply covariation and when to apply temporal 

contiguity? Is there yet another, more essential, principle of causal 
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inference which is used to construct this knowledge? (Mendelson & 

Shultz, 1976, p. 412) 

There is one aspect of Mendelson & Shultz' (1976) paradigm that is 

hugely problematic: it rested on deceiving the participants. Regardless of 

which condition the children were in, the effect never really had anything to do 

with either one of the two candidate causes A or B. Even though the children 

could not see the foot switch through which the experimenter controlled the 
bell, one cannot know whether the children might not have considered the 

possibility that something other than A or B was responsible for ringing the 

bell. Because the procedure did not give the participants the possibility to 

express such a belief, but instead forced them to pick either A or B, they may 
have just selected one of them according to some preference, or even 

randomly. Mendelson & Shultz performed an analysis that ruled out that 

children responded randomly, but that still does not guarantee that participants 

responded according to their causal beliefs. Be that as it may, there is a 

contiguity bias inherent in the data, suggesting that temporal contiguity is 

important for causal induction. The principal finding of a main effect of 

model present vs. absent will be discussed in section 2.2.3. 

2.1.3.2. Siegler & Liebert's (1974) Light Bulb Study 

Siegler & Liebert's (1974) procedure involved an electrical apparatus 

consisting of three boxes; one was a computer on which, when turned on, 
lights would flash according a to pre-programmed quasi random sequence, one 

was a "card programmer" into which differently coloured IBM cards could be 

inserted, and one was a stand on which a light bulb was mounted. The 

children (5 to 6 and 8 to 9 year olds) were instructed that their task was to find 

out what makes the bulb light up. The procedure was always as follows. The 

experimenter turned the computer on, which, presumably (not explicitly 

mentioned, however), made the lights on the computer flash, and emit clicking 

noises. During the next 80 seconds the (effect) light bulb on the stand 
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illuminated eight times at pre-programmed random points for one second each. 
Presumably (although, again, not explicitly specified), the computer continued 

to emit clicking noises and flash its lights for the whole 80 seconds. After this 

period, the experimenter explained to the children, "Now we've seen that the 

computer can make the light go on". He next mentioned that there would also 
be another way of making the light go, and that would be by inserting cards 
into the programmer. He explained that he would insert 6 (or 12) different 

cards into the programmer. The instructions explicitly emphasised that both 

the computer and the card programmer could make the light go, but every time 

that the bulb would light up, the child would have to decide whether the light 

was turned on by the computer or the card programmer. 

The timing between inserting the card and the bulb lighting up was 
determined according to four experimental conditions: 1) the light flashed 

immediately each time the card was inserted (100% contiguous, 6 trials), 2) 

the light flashed 5 seconds after the card was inserted (100% delay, 6 trials), 3) 

the light flashed 6 out of 12 times a card was inserted, and when it did, it did 

so immediately, and the light never flashed on any of the other trials (50% 

contiguous, 12 trials), 4) the light flashed 6 out of 12 times a card was inserted, 

but only 5 seconds after the card was inserted, and at no other time (50% 

delay, 12 trials). Thus, every participant observed the effect 6 times, and every 
time they had to indicate whether they thought the computer or the card caused 
the bulb to light up on that trial. After the last trial, children were asked 

whether they thought "overall" it was the card or the computer that made the 
light flash. 

Analyses on both the trial-by-trial and the overall attribution data 

revealed significant effects of contiguity only, but no main effects of 

regularity: participants were more likely to identify the programmer as the 

causal agent, if the light flashed immediately after a card was inserted, 

irrespective of whether the light flashed 100% or 50% of the time a card was 
inserted. A more detailed analysis of the trial-by-trial data revealed that 
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towards the end of the experiment the older age group (8 to 9 year olds) 

showed some sign of recognizing the importance of regularity. 

The most problematic aspect of Siegler and Liebert's (1974) paradigm 
is the way they set the two competing causes (computer and programmer) 

against each other. The computer was always presented as a good plausible 

cause on its own before the actual experiment begun. Furthermore, the pre- 

experimental 80 seconds exposure to it demonstrated that the computer 

controls the light completely randomly. The card programmer, in contrast, 

was never presented in isolation, but always in conjunction with the computer 

also being activated. This constitutes a classic blocking paradigm (see section 
1.2): if a novel candidate cause (here: card programmer) is only ever presented 
in the presence of an already established predictor (here: computer), and the 

presence of both candidates produces the effect, one cannot learn anything 
definitive about the causal status of the novel cue. Instead, one has to be 

uncertain, and rely on other sources for causal judgments. The contiguity bias 

in the data thus may reflect a primitive form of the representativeness heuristic 

(Tversky & Kahneman, 1974). In the contiguous conditions children observed 

an instantaneous pairing between inserting the card and the bulb lighting up. 
This evidence might have violated their ideas about the randomness with 

which the computer caused the bulb to light up during the pre-experimental 

exposure. This violation of the idea of randomness might then have led them 

to attribute causality to the card instead of to the computer. In the delayed 

conditions, in contrast, the feedback was not in such direct opposition to the 

randomness experienced before. Even with 100% regularity, the pairing 
between card and light may have been hard to notice, particularly with a host 

of clicking and flashing happening on the computer in the intervening five 

second interval. Regardless of the methodological and theoretical criticism 

one can cite against both Siegler & Liebert's (1974) and Mendelson and 
Shultz' (1976) studies, they both suggest that temporal contiguity is a very 
important principle in children's causal induction. 
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2.1.4. Human Sensitivity to the Timeframe of Causal Relations 

in Real World vs. Laboratory Tasks: A Paradox? 

The preceding sections reviewed experimental evidence relevant to the 

question how people can identify causal relations in real time, in situations 

where the co-occurrence between cause and effect is not as self-evident as in 

the kind of experiments discussed in chapter 1. This evidence paints a rather 

unflattering picture of human causal induction, however. Across very 
different experimental paradigms the results converged to the same 

conclusion: if cause and effect are separated by more than a few seconds, 

people fail to correctly identify the causal relation between them. 

This finding clashes with everyday causal cognition, where people 

seem to be able to identify with relative ease causal relations where cause and 

effect are separated in time such as those between infection and outbreak of a 

disease, sexual intercourse and pregnancy, or sowing seeds and plants 

growing. Before I proceed to try and resolve this paradox, I will review in 

sections 2.2.1 and 2.2.2 how two major theoretical frameworks - 

associationism and causal power as introduced already in chapter 1- explain 

the importance of temporal contiguity demonstrated in laboratory studies. The 

third major approach to human causal induction reviewed in chapter 1, 

computational causal power (Cheng, 1997) remains silent about issues of delay 

and temporal contiguity, and will therefore not be discussed in section 2.2. 

Unlike associationism which offers process models of causal induction, the 

power PC theory is a computational level description (Marr, 1982) of the 

inference process which takes covariational information as its input. 

Variations in temporal contiguity therefore fall outside its scope. I will, 
however, come back to this point in section 6.3. 
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2.2. Explanations for the Importance of Temporal Contiguity 

Section 2.1 reviewed experimental results from studies inspired very 

different theoretical backgrounds. Michotte's (1946/1963) studies on 

mechanical causality were influenced by the causal power view (Kant, 

1781/1965) as outlined in section 1.3. Shanks et al. 's (1989) paper, on the 

other hand, followed an associationist tradition. Although experiments carried 

out in both the causal power and the associationist tradition revealed 

converging results regarding the importance of temporal contiguity, the 

reasons given as to why participants either failed to report a causal relation, or 

reported a substantially degraded relation when cause and effect were 

separated by only a few seconds, vary between accounts. 

The developmental studies described in section 2.1.3 were inspired by 

a Piagetian framework, and were mostly aimed to illustrate how causal 
induction changes as the child reaches Piaget's various developmental stages. 
These theories are not relevant for my purposes here, but some aspects of the 

findings bear direct relevance to the explanations reviewed here, and I will 

point those out in section 2.2.3. 

2.2.1. Associationism 

According to an associationist interpretation of causal inference, causal 

learning is identical to associative learning. Judged causal strength reflects no 

more than the associative strength between candidate cause (equivalent to a 

conditioned stimulus or response) and effect (unconditioned stimulus) (Shanks 

& Dickinson, 1987). Every time a cause and an effect co-occur together, the 

association between them is strengthened until it reaches the maximum 

strength the effect can support (i. e. asymptote), and every time the cause fails 

to produce the effect, the cause-effect association weakens (cf. section 1.2). 
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Associationist theorists were very much inspired by David Hume's 

(1739/1888) treatise on causality (in fact, the name "associationism" probably 

goes back to Hume's philosophical enquiries about how "associations" can 

give rise to "complex ideas"). Hume had postulated two necessary 

cornerstones for causal relations: contingency and contiguity. Section 1.2 

already discussed how associationism accommodates contingency as a cue to 

causality. But claiming heritage to Hume also entails holding contiguity as an 

essential cue to causality. 

Shanks and Dickinson (1987, p. 231), in a paper outlining the 

principles of an associationist account of human causal learning explained the 

importance of temporal contiguity as follows: "Contemporary accounts are 

usually silent about the actual interevent interval over which an association can 

be formed, but all argue that the size of the increment in associative strength 

accruing from a pairing decreases as the contiguity is degraded. " The message 

is clear: compared to immediate cause-effect pairings, delayed ones will 

always deliver weaker evidence for the causal relation in question. This is not 

to say that associationism would claim that humans can only learn causal 

relations when cause and effect follow each other immediately, even though it 

is certainly tempting to jump to this conclusion. In a more recent theoretical 

paper David Shanks wrote about his earlier experiments: "It should be 

emphasized (... ) that much longer delays can certainly be tolerated in other 

situations. The slope of the contiguity function is likely to be highly task- 

specific. " (Shanks, 1993b, p. 323). This statement was clearly intended to 

account for such rare findings as the Garcia effect (Garcia, Ervin, & Koelling, 

1966; Garcia & Koelling, 1966), which demonstrated that animals can bridge 

considerable time-spans in taste-aversion learning paradigms. In such 

experiments, the animal typically has free access to a substance with a novel 

flavour (e. g. saccharin flavoured water). Some time after having ingested the 

novel tasting substance, the animal is made to feel ill (either by being injected 

with apomorphine hydrochloride, e. g. Garcia et al., 1966; Schafe, Sollars, & 
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Bernstein, 1995; or by being exposed to X-rays, Garcia & Koelling, 1966). 

Garcia could show that the animals attributed the experienced sickness to the 

new food (rather than a competing predictor, say, a flashing light), and that 

they could learn the relation even when CS (flavour) and US (illness) were 

separated by a 75 minute delay. The critical aspect of this finding for my 

purposes is that such taste-aversion learning experiments have shown animals 

to be capable of forming cue-to-consequence associations even when the 

stimuli are considerably separated in time. Such long delays can only be 

tolerated in this specific paradigm, however, which led theorists to propose 

that gustatory and olfactory cues are "biased" to be associated with internal 

malaise, "even when these stimuli are separated by long time periods" (Garcia 

et al., 1966, p. 122). 

Associationism does not provide any clues about which parameters 
determine how much delay participants can tolerate in certain situations, or 

how one could explain "biases" or "task-specificity" other than by attributing 

them to hard-wired preferences (the same as prior knowledge? ) shaped by 

natural selection (as suggested by Garcia et al., 1966; Garcia & Koelling, 

1966). Be that as it may, an associationist account of human causal learning 

implies that temporal contiguity between cause and effect is an essential 

component for successful causal induction. The experimental results I have 

reviewed in section 2.1.2 suggested that humans fail to identify causal agency 
if their own causal actions are separated from the effects by more than two 

seconds. Even though one can neither interpret these results to reflect absolute 
boundary conditions constraining the inference process, nor get any hints as to 

how such boundary conditions might be determined, associationism is clear in 

postulating that contiguity is an important principle in causal induction. 

Everything else being equal, contiguous cause-effect sequences should always 

result in stronger impressions of causality than non-contiguous sequences. 

This postulate received a serious blow in 1995 when Glenn Schafe and 

colleagues (Schafe et al., 1995) published a study which re-investigated the 
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boundary conditions of taste-aversion learning in rats. Their experiments 

showed that rats failed to associate a novel taste with illness, if the CS-US 

interval was very short (10 seconds), and only learned the connection if CS 

and US were separated by delays of at least 15 minutes. In other words, a 

delayed pairing of CS and US resulted in higher increments of associative 

strength then a contiguous pairing of the same stimuli. This finding of course 

is in stark contrast to the principles of associative learning, which postulate the 

importance of contiguity (cf. Dickinson, 2001). To my surprise, Schafe et al. 's 

paper has received very little attention in the scientific community, and there 

are no suggestions as to how associationism could be modified to explain their 

result. 

2.2.2. Causal Power 

According to the causal power view (Ahn, Kalish, Medin, & Gelman, 

1995; Bullock, Gelman, & Baillargeon, 1982) the crucial component of causal 
inference is knowledge about some causal power or mechanism linking cause 

and effect. The regular co-occurrence between a cause and an effect can only 

be rendered to reflect a causal relation, if the reasoner knows of a causal 

mechanism that explains how the cause could bring about the effect. In 

Michotte's (1946/1963) launching paradigm the stimuli created a visual 
illusion of two moving objects. Even though the observer knew that he or she 

was not viewing real physical objects, but only drawings on paper disks, the 

illusion was strong enough to get the observer to apply his or her knowledge 

about the physical properties of impact to the stimuli. Our world experience 

tells us that if a moving object collides with another, stationary, object, and the 

force of impact is sufficiently large to set the stationary object in motion, it 

does so at the instant of impact. Because participants in Michotte's and 

similar studies presumably applied their naive understanding of physics to the 

task, they evaluated contiguous launching events as reflecting a causal relation 



36 

(A caused B to move away), but refrained from doing so if contiguity was 

disrupted by a delay (B moved on its own). 

The causal power explanation for why previous experiments revealed 

contiguity as an important prerequisite in causal induction differs from the 

associationist explanation in one very important respect. Whereas 

associationism holds contiguity as an essential cue to causality, causal power 

theory does not make any such claims. Whether or not a particular action 

sequence gives rise to a causal impression depends on the observer's 

assumption about the potential mechanism linking cause and effect. If the 

assumed mechanism implies immediacy (as in the launching paradigm), only 

contiguous sequences should be interpreted as causal, whereas delayed 

sequences should fail to create such impressions. One could, however, easily 
imagine a causal mechanism that does not imply immediate cause-effect 

pairings, for instance as between sexual intercourse and giving birth. If the 

reasoner assumes such a delayed mechanism, delayed sequences should 

readily be judged as causal, whereas immediate sequences should fail to create 

a causal impression. According to causal power theory, there is nothing 

special about temporal contiguity. What matters are the assumptions about the 

causal mechanism that the reasoner brings to the task. 

2.2.3. Einhorn and Hogarth's (1986) Knowledge Mediation 

Hypothesis 

As I have already mentioned in chaper 1, associationism was inspired 

by Hume's (1739/1888) philosophy of causality, while causal power was 

endorsing a Kantian (1781/1965) understanding of cause. A decade before 

Cheng's (1997) formal unification of these two seemingly mutually exclusive 
frameworks, Einhorn and Hogarth (1986) already had tried to combine useful 

aspects from both philosophies. Cheng's analysis focused exclusively on the 

question how human reasoners can take the mental leap from covariation to 
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causation, and did not address the necessary precursor: how intelligent 

organisms notice regularities (covariations) in the first place. Einhorn and 

Hogarth's review did not offer a formal analysis or computational model the 

way Cheng's article did, but addressed the problem of temporal contiguity. 

Einhorn and Hogarth (1986) postulated, in line with Hume's 

(1739/1888) treatise, that contingency (i. e. covariation) and contiguity both are 

very important cues to causality. The earlier developmental work I reviewed 
in section 2.1.3 had tried to identify which of the two principles places 

stronger constraints on the inductive process, but failed to come to any 

definitive conclusions: "It is somewhat haphazard to conclude anything about 

the relative importance of covariation and temporal contiguity (.... ) Either 

principle may be applied, depending on the existing conditions. " (Mendelson 

& Shultz, 1976, p. 412). Einhorn and Hogarth argued that the main function of 

contiguity is to be an "important cue for directing attention to contingencies 

between variables, and such contingencies may then be considered as to their 

causal significance. " (Einhorn & Hogarth, 1986 p. 10). In other words, 

contingency or covariation is the more important one of the two cues; 

contiguity merely enables the reasoner to notice a covariation, but the crucial 

information relevant for causal assessment lies in the covariation itself. A 

subsequent formal analysis of a range of developmental data (including the 

experiments reviewed in section 2.1.3) by Cheng (1993) confirmed Einhorn 

and Hogarth's point by showing that covariation is a necessary component of 

all causal relations, even in those paradigms that aimed to contrast contiguity 

and covariation against each other. 

So far, Einhorn and Hogarth's (1986) analysis fits the paradoxical 
findings from the laboratory studies that uniformly demonstrated how people 

fail to identify causal relations when cause and effect are separated by a delay. 

However, Einhorn and Hogarth also accounted for our intuitions about 

everyday causal inference, where people can recognize causal relations 
involving delays as follows: 



38 

When temporal and/or spatial contiguity is low (or temporal contiguity 

is erratic), inferring causality becomes more difficult. That is, in the 

absence of contiguity, relations are hard to develop, unless one uses 
intermediate causal models to link the events (... ). For instance, the 

temporal gap between intercourse and birth requires some knowledge 

of human biology and chemistry to maintain links between those 

events (Einhorn & Hogarth, 1986, p. 10). 

This Knowledge Mediation Hypothesis of course borrows heavily from 

the causal power account described in section 2.2.2. In fact, Einhorn and 
Hogarth (1986) go on to illustrate that in certain scenarios high temporal 

contiguity may conflict with other cues to causality, most notably covariation. 
Consider the example of a non-smoking man who takes up smoking on a 

particular day and is diagnosed with lung cancer the following day. The high 

temporal contiguity and perfect contingency between smoking and lung cancer 

conflict with each other. Even though we hold smoking as an established 

cause for lung cancer, the timeframe in this example is much too narrow to 

render the causal connection plausible. Some other alternative causes (perhaps 

having worked as a coal miner for 20 years) must have produced lung cancer 
in this example. 

Einhorn and Hogarth's (1986) knowledge mediation hypothesis 

somehow fuses the explanations offered by associationism and causal power. 
Although it acknowledges temporal contiguity as a useful cue that helps to 

identify contingencies between causes and effects, it does not bestow an 

especially privileged role to it. People can overcome the need for temporal 

contiguity, if they know of some causal link, mechanism, or chain that takes 

time to unfold. In other words, the influence of time is mediated by prior 
knowledge. Whether or not a particular (contiguous or delayed) covariation 

will be judged causal depends on the assumptions about the causal mechanism 
(in particular the assumptions about the timeframe of this mechanism) that a 

reasoner brings to the task. The Knowledge Mediation hypothesis nicely 
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accounts for Mendelson and Shultz' (1976) findings: children were more 

likely to attribute causality to a delayed candidate cause, when they were given 

a rationale for this delay (a rubber tube through which the marble might have 

travelled); in the absence of such a rationale (no connection between the 

boxes), they could not bridge the temporal gap and attributed causality to a 

contiguous alternative instead. 

It is important to distinguish the Knowledge Mediation hypothesis 

from the signalling effect (cf. section 2.1.2). The typical finding from 

signalling experiments (e. g. Reed, 1992,1999) is that a neutral novel signal 

stimulus delivered immediately after the occurrence of a reinforced response 

can bridge the temporal gap between response and outcome, relative to control 

conditions involving the same temporal gap but no signal stimulus. The 

crucial difference between Signalling and Knowledge Mediation is that the 

former, but not the latter relies on noticeable changes regarding the perceived 

evidence to alleviate detrimental effects of delay. A visible signal, such as a 

row of Xs, is perceivable evidence; assumptions about causal mechanisms, in 

contrast, are not. 

2.3. Distinguishing Knowledge Mediation from 

Associationism 

2.3.1. Generating Predictions 

For the purposes of generating predictions, the knowledge-mediation 

and causal power accounts do not differ. Both frameworks state that whether 

or not a particular covariation will be identified as causal depends on the 

reasoners' prior assumptions about the causal mechanism in question. They 

are, therefore, top-down approaches to causal reasoning: pre-existing mental 

concepts or structures determine how subsequent sensory experience will be 

parsed and processed. It follows that identical sensory experiences could 
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potentially be parsed differently, if the reasoner applies different assumptions 

to the task. Imagine that a person presses a button, and a minute later a green 

light illuminates. If the person assumes the connection between the button and 

the light to be an ordinary electric circuit, this delayed course of events would 

not qualify as a causal sequence. Our prior knowledge about electricity entails 

that the connection is very fast, below our perceptual threshold; the light 

should turn on instantly, but it did not. Probably the electric circuit is broken 

(or button and light never were connected in the first place), and the light lit up 
for some other reason (e. g. someone else might have turned it on with a 
different switch). If, however, the person assumes the button triggers a timer- 

relay, as on a pedestrian crossing, a delay of one minute between pressing the 

button and the signal changing is within the expected range, and the causal 

connection is obvious. Because the assumptions about the causal mechanism 
(and the implications about the timeframe of the relation) were different in the 

two situations, the very same sensory experience of a delayed covariation will 

give rise to a causal interpretation in the latter, but not the former scenario. 
Whether delay is detrimental to causal induction or not therefore depends on 

the temporal assumptions the reasoner brings to the task. A logical 

consequence of the above argument is that Knowledge Mediation under 

certain circumstances would also predict a detrimental effect of contiguity. If 

a reasoner expects a delayed relation, immediate contingencies should not be 

attributed to the causal relation in question. If the person pressed the button 

and an instant later the traffic light turns green, one would most likely think 

that either the light would have changed anyway, or that someone else had 

already pressed the button earlier. 

The bottom-up nature of associationism stands in stark contrast to the 

top-down ideas of Knowledge-Mediation. In associationism, sensory 

experiences give rise to mental connections (associations) according to the 

laws of a specific learning mechanism, and every abstract idea can be reduced 

to be the result of associations. Prior knowledge has no place in such an 
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account, unless it is the result of previous associations itself (i. e. pre-existing 

associative strengths between a particular cue and outcome). What is not, 

possible, however, is that abstract ideas influence how sensory experience will 
be parsed. The same covariational evidence should always give rise to the 

same causal impression. While associationism acknowledges that different 

stimuli and effects may vary as to how far they can be separated by a delay for 

reasoners to still learn the connection successfully (Shanks, 1993b), it cannot 

account for different interpretations of exactly the same evidence, as outlined 
in the previous paragraph. Moreover, it also predicts that if two situations are 
identical in all respects, except that in one the relation between cause and 

effect is more contiguous than in the other, the contiguous pairing should 

consistently give rise to stronger impressions of causal strength. In 

associationism it is not possible that a delayed relation elicits a stronger 

association than an immediate relation. Schafe et al. 's (1995) results that I 

reviewed in section 2.2.1 have already contradicted this principle. 

2.3.2. Current Evidence does not Favour One Account over the 

Other 

Knowledge-mediation in causal inference is well studied, but research 
has mainly focused on how prior beliefs interact with covariation assessment: 
how prior knowledge determines whether a given covariation will give rise to 

causal impressions or not (e. g. White, 1995; Ahn et al., 1995; but see also Lien 

& Cheng, 2000), and how previously acquired category structures (Waldmann 

& Hagmayer, 1999) or assumptions about the direction of learning (predictive 

vs. diagnostic, see Waldmann & Holyoak, 1992; Waldmann, 2000) influence 

covariation assessment in causal induction. However, whether and how 

beliefs about the timeframe of causal relations influence adults' assessment of 
delayed or contiguous contingencies is not yet clear. 
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A careful analysis of the predictions derived from the knowledge 

mediation and associationist accounts and the experimental materials 

employed in previous investigations reveals that current findings as reviewed 
in section 2.1 cannot distinguish between these two competing explanations. 
The reason for this lack of discrimination is that all these experiments 

employed scenarios where participants either expected contiguous cause-effect 

pairings, or used paradigms that lend themselves to such interpretations. 

Michotte's (1946/1963) and related perceptual causality experiments 

presented participants with images of colliding objects. Participants brought to 

the task their world knowledge about the physical properties of impact and 
therefore expected immediate motion after impact. If this expectation was 

violated, the sequence was judged as non-causal. The same principle applies 
to Shanks et al. 's (1989) instrumental paradigm, although the similarity is not 
immediately obvious. The experiment was conducted on a computer, and even 
though computers were not as widely used then as they are now, 

undergraduate students probably already had basic ideas about, if not prior 

experience with, interacting with computers. Among these ideas certainly is 

that a computer is an electronic device, and therefore, like a light bulb 

connected to a light switch, should - in principle - react to input immediately. 

Again, causality was underestimated or even negated, if this expectation of 
immediacy was violated. In fact, Shanks et al. were already aware that this 

particular problem could potentially limit the generalizability of their results: 
"subjects in judgment studies such as ours assume that the word `causes' in the 

experimental instructions means ̀ causes immediately'. After all, they 

presumably have considerable experience of the immediacy of cause-effect 

relations in such electrical devices as computers" (Shanks et al., 1989, p. 155). 

The pattern of findings reported in the experimental literature - delays 

impair causal reasoning performance - is thus compatible both with the 
Knowledge Mediation hypothesis and the associative learning approach, which 
denies knowledge mediation. It is impossible to know whether participants in 
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earlier experiments refrained from attributing causality to delayed event 

sequences because temporal contiguity is essential to causal learning (as 

associationism would argue), or because an expectation of immediacy was 

contradicted by an experienced delay (as predicted by the Knowledge 

Mediation account). What is needed to disentangle the predictions from both 

accounts and to allow a systematic investigation into the role of temporal 

contiguity in causal induction is a paradigm that explicitly addresses and 

manipulates participants' expectations about the timeframes of the causal 

relations in question. In addition, participants would have to be exposed to 

immediate as well as delayed cause-effect pairings. In other words, the design 

would comprise the factors (experienced) Time and Knowledge/Assumptions 

(about the timeframe). Either temporal contiguity is as essential for causal 
learning as associationism suggests, in which case one would only expect a 

main effect of time, but no effects or interactions associated with Knowledge. 

Alternatively, contiguity may not be essential to causal induction, but 

meaningful interpretations of event streams crucially hinge on knowledge 

about the timeframe of the causal relation in question, in which case different 

temporal assumptions should lead to diverging interpretations of identical 

evidence, i. e. one would expect main effects and/or interactions associated 

with Knowledge. Such studies would effectively constitute an experimental 

test of Einhorn & Hogarth's (1986) knowledge mediation hypothesis, which is, 

surprisingly, still lacking in the literature. Mendelson and Shultz' (1976) 

study, which preceded Einhorn & Hogarth's review by a decade, comes closest 

to such a design. The physical model (rubber tube) present vs. absent 

manipulation effectively manipulated whether or not a delay between cause 

and effect was plausible. Unfortunately their paper lacked overall 

methodological rigor and the analysis of the data left many questions 

unanswered. This may well be a reason for why it was not even cited in 

Einhorn & Hogarth's review. 
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2.4. A New Paradigm 

Anne Schlotmann (1999) reported a developmental study that involved 

immediate and delayed causal relations, and also explicitly manipulated 

participants' knowledge about the timeframe of the causal mechanism in 

question. The paradigm relied on the basic idea used by Mendelson and 

Shultz (1976), but Schlottmann improved the method considerably. Her 

apparatus consisted of a "mystery box" which could contain one of two toys. 

The box had two holes on its top, and the toys inside the box could be placed 

in such a way that balls dropped into the holes fell onto the toy. One of the 

toys made a bell ring immediately if a ball was dropped onto it (the weight of 

the ball made a see-saw swing and hit the bell), while the other toy made the 

bell ring a few seconds after the ball was dropped onto it (the ball rolled down 

a sloped runway to crash into the bell). There was always only one toy inside 

the box, and it was positioned in such a way that only balls dropped from one 

of the two holes fell onto it and subsequently made the bell ring. Participants 

(five to ten year old children and a control group of adults) were left to explore 

the box and the two mechanisms, and learned that one mechanism made the 

bell ring immediately, while the other one involved a delay. The children then 

had to predict how long each mechanism would take to make the bell ring. 
They were also asked to make diagnostic inferences ("Which mechanism is 

inside the box, the slow one or the fast one? ") after observing one ball being 

dropped in a hole, followed by the bell ringing either immediately or after a 
delay. Children of all age groups performed very accurately on these tasks, 

both when the fast and the slow mechanism were inside the box. This result 
indicates that they could use their knowledge of the different timeframes of the 

mechanism to bridge temporal gaps. 

The critical test in Schlottmann's study (1999), however, pitted 
knowledge of mechanism and contiguity directly against each other and 
involved a forced choice between a delayed and a contiguous candidate cause. 
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First, the experimenter put the slow mechanism inside the box and confirmed 

that the child understood that the slow mechanism was inside the box. The 

child did not know, however, under which hole the mechanism was placed. 
The experimenter then dropped a ball in one hole (unbeknownst to the child: 

the one with the slow mechanism under it), waited for a couple of seconds, and 

then dropped a second ball in the other (ineffective) hole. The dropping of the 

balls was carefully timed so that the bell would ring immediately after the 

second ball was dropped. Children then had to indicate which ball they 

thought had made the bell ring. Results showed that contiguity was necessary 

at least for 5 and 7-year olds: they (erroneously) preferred to attribute causality 

to the second ball (contiguous cause), even though they explicitly knew that 

the operating causal mechanism involved a delay. Older children and the 

control group of adults correctly attributed causality to the first ball 

(noncontiguous cause). Schlottmann's results from the forced-choice task 

show that contiguity is a very important cue to causality at least for young 

children, but her results from the exploration phase also show that even young 

children could learn that the slow mechanism involved a delay, and could 

successfully use this knowledge to draw simple causal inferences of both 

predictive and diagnostic nature. In the complex forced-choice task they 

failed, however, presumably because they could not integrate knowledge of a 
delayed mechanism with the immediate perceptual feedback of contiguity they 

received through the second (noncausal) ball. Adults and older children 
learned that mechanism was superordinate to contiguity, and could thus 

successfully integrate the contiguous feedback with their knowledge of 

mechanism to come to the correct conclusion. 

Schlottmann's (1999) study and results from the exploration phase 

provides very specific support for the knowledge mediation hypothesis 

(Einhorn & Hogarth, 1986), but her paradigm has some limitations that make 
it hard to generalize from her results. In particular, her experiments fall 

outside the scope of associative learning theory. The exploration phase, during 
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which participants learned about the two possible configurations of the 

apparatus was mostly driven by acquiring physical concepts and understanding 

how each of the two mechanisms worked. Although the children experienced 
balls being dropped into the mystery box several times, one could hardly refer 

to these encounters as learning trials in an associative learning sense. 

Participants' feedback was mostly in the form of a Socratic dialogue with the 

experimenter (e. g. "The slow runway ball is dropped first, and when it is 

almost there, then the fast seesaw ball is dropped second", Schlottmann, 1999, 

p. 307). Associative-learning algorithms operate via error-correction, driven 

by whether the effect occurs or not, given the presence of a particular 

candidate cause, but cannot represent feedback of such complex quality as in 

Schlottmann's study. Another limiting factor that is true for all causal learning 

paradigms in the mechanistic tradition is that they usually employ 
deterministic causal mechanisms. Both mechanisms in Schlottmann's study 

always made the bell ring, the only difference being how quickly they did so. 
Most causal relations, however, are probabilistic. One of the key advantages 

of covariation-based theories (including associative learning, but also the 

computational causal power approach, Cheng, 1997) is that they explicitly 

account for knowledge gained from probabilistic feedback. Furthermore, 

Schlottmann's paradigm involved observations of and interactions with real 

physical mechanisms (e. g. see-saws and runways). While this constitutes an 
important overall strength, it precludes conjectures about what may have 

contributed to participants' poor performance in typical laboratory tasks as 

reviewed in section 2.1, which often employed artificial stimuli (e. g. 

presentations on a computer screen). Finally, the dependent measures in 

Schlottmann's study were based on a forced-choice between two options. 
Systematic studies on the impact of delay (e. g. Shanks et al., 1989) used rating 

scales to probe causal judgments. Only the latter procedure, but not the 

former, is sensitive to gradual decreases in judged causal strength due to 

delays. 
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In the remainder of this thesis, I will examine whether Schlottmann's 

(1999) findings extend to learning derived from situations more commonly 

used in causal learning tasks with adult participants. The tasks I employed 

involved instrumental learning with probabilistic reinforcement. Participants 

were instructed to learn how strongly a particular action causes an outcome on 

a computer screen, and had to indicate their causal beliefs on a rating scale. 

As in Schlottmann's study, I employed immediate and delayed causal 

relations, but I manipulated participants' expectations about the timeframe of 

the causal relations in the instructions they received. First, however, I will 

investigate whether temporal contiguity by itself plays a privileged role in 

causal induction independent from how it may or may not interact with 

knowledge about the timeframe of causal relations. The experiment that I will 

report in chapter 3 employed a completely novel context, where (adult) 

participants could not apply any notions of mechanism. Instead, causal 
knowledge could only by learned from observing contingencies. In contrast to 

Schlottmann's design, this study will pit contiguity against contingency rather 

than against knowledge of mechanism. In particular, it will address whether 

adults can integrate these two Humean cues and come to an analogous 

conclusion that contingency is superordinate to contiguity. One could 

therefore also say, that this first study follows the tradition of Mendelson & 

Shultz (1976) and Siegler & Liebert (1974). 
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3. Experiment I: 
Contiguity vs. Contingency as Cues to Causal 
Strength 

Experiment I explored people's sensitivity to time as an indicator of 

causal strength. More specifically, this experiment investigated whether 

people are capable of learning that the causal effectiveness of a certain event 

can vary depending on the temporal relation between the causal event and the 

target effect. According to previous results, people do attach various causal 

powers to the same events, depending on the degree of cause-effect contiguity. 

In Shanks et al. 's study (1989), for instance, participants reported that the same 

physical action (pressing SPACE) became less causal the further in time it was 

separated from the effect. Such results show that people degrade estimates of 

causal effectiveness for an event, if it is temporally separated from the effect. 
In other words, temporal distance served as a cue that indicated a decay of 

causal effectiveness. Shanks et al. 's findings have been interpreted to mean 

that temporal contiguity is essential for human causal induction. 

An alternative hypothesis is that people use time as a more general 

indicator of causal strength. Under such an interpretation, temporal contiguity 

would not be essential and would not play a specially privileged role; it would 

merely be one of many values that the variable "time" can take, and it would 

not necessarily always facilitate the discovery of causal relations. If reasoners 

are sensitive to time as a variable that can carry causal information, then one 

should not only be able to demonstrate decays of judged causal effectiveness 

as temporal contiguity is degraded, but also the reverse fording. In particular, 

people should be able to learn that temporal distance sometimes may indicate 

an increase in causal effectiveness. 
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Figure 3-1. Causal structures employed in Experiment I. The causal 

effectiveness of candidate causes cl and c2 changes dependent 

on the temporal position with respect to the effect e. 
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Experiment I sought to investigate whether people's sensitivity to time 

as a variable that carries information about causal effectiveness is confined to 

one direction only (i. e. degradation in temporal contiguity always indicates 

decays in causal effectiveness), or whether people can likewise learn the 

reverse relation (i. e. degradation in temporal contiguity sometimes may 

indicate increases in causal effectiveness). The paradigm adopted in 

Experiment I used events completely novel and unfamiliar to participants, in 

order to avoid any effects of prior knowledge or experience. Over a series of 

learning trials participants sampled information about the causal effectiveness 

of two candidate causes to produce an effect. Information was presented in 

such a way that only one cause occurred on any given learning trial, and the 

temporal position of that cause could be early or late in the observation period. 

At the end of each observation period participants were informed whether or 

not the effect occurred. To test whether people are sensitive to time as a 

dimension in general, a causal structure as illustrated in Figure 3-1 was 

employed: one cause (cl) had a strong causal effectiveness if it occurred late 

in the episode (i. e. contiguous with the effect), but a weak effectiveness if it 
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occurred early in the episode (i. e. non-contiguous with the effect); the causal 

power of the other cause (c2) had the opposite relation with respect to time: c2 

had a weak causal effectiveness if it occurred late (i. e. contiguous with the 

effect), but a strong effectiveness if it occurred early (i. e. non-contiguous with 

the effect). 

If people are able to make full use of time as a predictor of causal 

strength, their evaluations of causal strength for the relevant episodes should 

reflect the true underlying causal structures of both cl and c2. Specifically, 

they should report that cl is a strong cause if it occurs late, but a weak cause if 

it occurs early in the episode, and that c2 is a weak cause if it occurs late, but a 

strong cause if it occurs early in the episode. Alternatively, if contiguity is 

essential to causal induction, participants would be expected to correctly 
identify the causal structure of cl only, because its structure is aligned in such 

a way that causal effectiveness decays as contiguity is degraded. Because 

temporal position changed the causal effectiveness of c2 in the opposite 
direction of what would be expected from such an account, one would expect 

causal ratings not to reflect the change in causal effectiveness in the same 

systematic way as for cl. 

3.1. Method 

3.1.1. Participants 

Twenty-four students enrolled in an undergraduate psychology course 

at the University of Sheffield participated to fulfil part of a course requirement 

or to receive a small nominal payment. 
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3.1.2. Materials, Design, and Procedure 

Instructions asked participants to pretend they were space troopers on a 

mission at a foreign planet, where they had to monitor an alien rocket launch 

site and a crater near the site. They were told that aliens sometimes pop out of 

the crater, and that their mission was to find out how strongly the aliens 

popping out of the crater caused the rocket to launch. The instructions 

specified that participants would watch the crater and site during several 

observation periods, and that all observation episodes had the same fixed 

duration. At the end of each episode participants had to predict whether they 

thought the rocket would launch or not. The instructions stressed that every 

episode constituted an independent observation, and whether or not the rocket 
launched in a particular episode was solely determined by what happened 

during that episode. 

The causal structure implemented in this experiment involved one 
binary effect (the rocket launches vs. doesn't launch) and two candidate causes 

(big vs. small alien popping out of the crater). The temporal position (i. e. 

occurrence) of a candidate cause within a 12s fixed length observation period 

was either early or late (2s or 9s after start of an observation period, 

respectively). The experiment included two levels of causal power (1.0 and 

. 3); causal powers were assigned such that one cause (cl) had a causal power 

of 1.0 if it occurred late in the episode, and a power of .3 if it occurred early in 

the episode. The other cause, c2, had the reverse assignment; c2's power was 

.3 if it occurred late in the episode, and 1.0 if it occurred early in the episode 
(see Figure 3-1). The assignment of the two types of stimuli (big or small 

alien) to the causal roles (cl vs. c2) was counterbalanced. In one group (Cl- 

Big), cl was the big and c2 the small alien, in the other group (Cl-Small) cl 

was the small and c2 the big alien. For example, in the Cl-Big group, 

episodes containing a late popping of the big alien or an early popping of the 

small alien were assigned a 100% probability of rocket launch; episodes 
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containing an early popping of the big alien or a late popping of the small alien 

were assigned a 30% probability of rocket launch (see Table 3-1). There were 

also base rate episodes, which involved neither cl nor c2 and which were 

never followed by a rocket launch. 

Table 3-1. Causal structures in Experiment I for the two counterbalancing 

groups. Temporal Position is defined relative to start of episode. 
Probability denotes the probability that a given episode was 
followed by a rocket launch. Base rate trials involving neither 
Cl or C2 are represented by a hyphen (-). Each combination of 

candidate cause and temporal position occurred 10 times. 

Group Candidate Cause Temporal 
Position Probability 

C1 (big) 2s 0.33 
9s 1.00 

C1-Big C2 (small) 2s 1.00 
9s 0.33 

- n/a 0.00 

Cl (small) 2s 0.33 
9s 1.00 

CI -Small C2 (big) 2s 1.00 
9s 0.33 

- n/a 0.00 

The experiment comprised five categories of observation periods: four 

types of periods produced by factorial combination of candidate cause and 

temporal position (C1-early, C1-late, C2-early, C2-late), plus a base rate trial 
involving neither cl nor c2. Each type of episode occurred 10 times 

throughout the experiment. Whether or not a particular episode was followed 
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by the effect was determined by the underlying causal structure. For instance, 

three out of the ten episodes with cl occurring early, and all ten episodes with 

cl occurring late, were followed by a rocket launch. Trials were scheduled 

randomly. The experiment was carried out on a Macintosh computer 

programmed with PsyScope (Cohen, MacWhinney, Flatt, & Provost, 1993). 

A learning trial consisted of a 12s observation period followed by a 3s 

countdown period and the outcome event. The observation periods consisted 

of a background picture of the launching site accompanied by a 12s outer 

space sound effect. Candidate causes occurred during the observation period 

according to the scheduled trial type. The candidate causes were 2s long 

animations of a green alien popping out of the crater and making a beeping 

sound. The big alien measured 9 cm, the small alien 4 cm. Figure 3-2 and 

Figure 3-3 are screenshots from these animations and illustrate the proportions 

between aliens and rocket. Immediately after each observation phase, a 

countdown from 5 to 0 was displayed in the top left corner of the screen with 
3cm large yellow numbers. Each number flashed for 500ms, and a siren-like 

sound was played during the 3s countdown phase. During the countdown 

phase participants had to indicate whether they thought the rocket would 

launch or not by pressing Y or N on the keyboard, respectively. If participants 
did not make a prediction within the 3s countdown phase, they were prompted 

to do so after the countdown reached 0. Once participants made their 

prediction and the countdown phase had reached its end, the outcome event 

was displayed. The outcome consisted either of a 3s animation showing the 

rocket's lift-off superimposed on the background picture or an unaltered 3s 

display of the background picture with the rocket stationary on the launching 

pad. The lift-off sequence was accompanied by a launching sound, and the no- 

launch display was accompanied by a sad sounding beep. 



Figure 3-2. Experiment I: Small alien popping out of the crater. 

Figure 3-3. Experiment I: Big alien popping out of the crater. 
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The 50 trial learning-phase was followed by a test phase. Participants 

were instructed that they would observe the launching site again but that now 

they would not be able to observe whether the rocket launches or not. Instead, 

they were asked to predict for each observation period, how likely it was that 

the rocket launches. There were a total of 4 test trials, one for each 

combination of candidate cause (cl, c2) and time (early, late). The test trials 

consisted of an observation period as described above, followed by a judgment 

prompt. For each test trial, participants were asked to imagine seeing 100 

episodes like the one they've just seen and to indicate how many of these 100 

episodes they thought would be followed by a rocket launch. 

3.2. Results 

Participants evaluated cl as a strong cause if it occurred late in the 

episode (M=76.42, STD=22.60), but as a weak cause if it occurred early 
(M=47.46, STD=31.47); participants evaluated c2 in exactly the opposite 

direction with respect to time, c2 received low causal rating when it occurred 

late (M=49.79, STD= 32.73), but high ratings when it occurred early in the 

episode (M=72.21, STD=25.27). Mean causal ratings for cl and c2 were 

subjected to a 2x2 repeated measures ANOVA with the factors candidate 

cause (cl, c2) and time (early, late); the significance level was set to . 05. A 

preliminary analysis revealed that the counterbalanced assignment of the two 

candidate causes to the two alien sizes (big, small) did not produce any 

significant effects or interactions, so the main analysis collapsed over this 

factor. As expected, neither candidate cause nor time produced any significant 

main effects on their own, but there was a highly significant candidate cause x 

time interaction, F(1,23)=10.40. 
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Figure 3-4. Mean ratings of causal effectiveness of cl and c2 in Experiment 

I, depending on their temporal position with respect to the effect. 

Error bars denote standard errors. 
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Figure 3-4 illustrates the nature of the interaction. These results 
indicate that participants correctly identified the underlying causal structure 

implemented in this experiment. In particular, they were sensitive to changes 
in each candidate's causal strength brought about by the temporal position. 
Participants could not only learn that the causal effectiveness of cl decays the 

further in time it moved away from the effect, but they also learnt that the 

effectiveness of c2 increased as temporal contiguity with the effect was 
degraded. 

3.3. Discussion 

Experiment I demonstrated that people are capable of learning to use 

temporal information to distinguish between strong and weak causal relations. 

Information about the causal strength of two candidates to produce an effect 
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was presented. Causal strengths for each candidate varied as the temporal 

position of the candidate changed within an observational period. One 

candidate, cl, was a perfect predictor if it occurred late in the episode, in 

which case it was closely followed by the effect. If cl occurred early in the 

episode (thus temporally separated from the potential occurrence of the 

outcome), the causal effectiveness dropped to . 3. The other candidate, c2, was 

only a weak predictor if it occurred late in the episode (thus contiguous with 

the potential delivery of the outcome). If c2 occurred early, however, it 

always produced the effect later on, so that c2 and the effect were non- 

contiguous to each other. The true underlying causal structure for cl thus was 

congruent with the idea that temporal contiguity is essential for causal 
induction, while the causal structure for c2 contradicted it. Participants 

correctly learned the causal structures of both cl and c2, as indicated by the 

candidate cause x time interaction, and they learnt them both equally well, as 
indicated by the absence of a main effect of candidate cause. 

This finding indicates that temporal contiguity is not essential for 

human causal induction. Participants did not exclusively focus on the 

temporal relation between candidate causes and effect as a direct indicator of 

causal strength. Instead, they attended to the true changes in underlying causal 

strength, and used temporal position flexibly to identify those changes. In 

other words, they integrated the two Humean (1739/1888) cues to causality, 

contingency and contiguity, to come to a rational understanding of cause. 
Experiment I also demonstrated that people understand the importance of time 
in causal induction. The explanatory (causal) power of the same physical 

event with respect to a particular outcome can vary depending on when in time 

(relative to the outcome) the event occurs. As pointed out by Einhorn & 

Hogarth (1986) temporal contiguity is often necessary to render a particular 

event a plausible candidate cause for an outcome (as in the launching 

paradigm, see Michotte, 1946/1963). Sometimes, however, certain events 

cannot be plausible causes of an outcome if they occurred contiguously with it, 
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but can only be rendered causal by an intervening delay (as, for example, 

sexual intercourse as a cause of giving birth, c. f. Einhorn & Hogarth, 1986). 

In these two preceding examples, reasoners presumably draw on prior 

knowledge about the timeframe of the relevant causal mechanisms involved, 

when they evaluate the evidence. Experiment I used a completely novel 

scenario, however, disallowing the recruitment of prior knowledge to solve the 

task. Participants nonetheless successfully unravelled the complexities of the 

employed causal structures, showing that humans can learn the timeframe of 

causal relations from probabilistic feedback. 

3.3.1. Causal Reasoning or Categorization? 

An alternative interpretation of these results is to recast the reasoning 

task in Experiment I as one of categorization rather than causal learning. 

Participants were presented with learning episodes of a fixed duration. 

Whether or not the effect occurred after the end of each episode depended on 

what happened when within each episode. A categorization task thus would 

be to decide whether a particular episode is or is not likely to result in a rocket 

launch. What and when of course reflect the two dimensions relevant for 

solving the task: stimulus type (cl vs c2, for each counterbalancing group 

associated with a particular alien size, big or small) and time of occurrence 
(early, late). Because each dimension took on only two possible values, the 

dimensions were dichotomous. Furthermore, the two dimensions were 

completely independent from each other: having a particular value on one 
dimension, say time: early, did not constrain in any way what the value on the 

other stimulus dimension (size) would be. Time and Size thus were the two 

separable (Gamer, 1974) dimensions relevant for stimulus classification. 

Stimuli were structured in such a way that both of the two dimensions 

were necessary for the classification task, because the classification rule 
followed a principle of exclusive disjunction. In order to be followed by a 
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rocket launch every time, the episode needed to include either cl late in the 

episode or c2 early in the episode; if cl occurred early, or c2 late, the episode 

would be a weak causal episode. Garner (1974) called this a "condensation" 

task, and showed that people understand that they need to process both 

dimensions to carry out the classification. Such condensation tasks are usually 

a little bit harder than tasks that can be solved by attending to one dimension 

only. In so called "filter" tasks, for example, only one dimension (say, time) 

would be relevant for the classification, the other dimension (say, size) would 
be irrelevant; one could decide the causal status of the episode merely by 

attending to time, with the size of the stimulus having no impact on the 

classification at all. In "correlation" tasks, the two dimensions would correlate 
in determining the category structure, i. e. "Small&Early" would need to be 

discriminated from "Big&Late". "Small&Late" and "Big&Early" would not 

enter such a correlation task, as they never include the full set of combinations 
(in which case it would be impossible to form a correlational structure). 
Participants can solve correlation tasks by attending to one dimension only, 
but which one they attend to does not matter, either size or time both carry the 

distinctive information. 

The candidate cause x time interaction shows, however, that 

participants separated the two dimensions, and realized that they need to 

process them both in order to make correct classifications. The particular 

nature of the interaction and the absence of main effects for time or candidate 

cause furthermore show that participants grasped the exclusive disjunction 

between the two dimensions. Participants correctly classified the four possible 

event types (Big&Early, Big&Late, Small&Early, Small&Late) into strong 

and weak causal episodes. 
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3.3.2. Going beyond categorization 

One limiting factor of Experiment I is that it was based on discrete 

learning trials. Within each episode it was perfectly clear whether, when, and 

what stimulus occurred. This discrete trial structure is of course what made it 

possible to recast Experiment I as a categorization task: discrete events had to 

be classified according to an underlying causal structure into those that were 
highly likely, and those that were less likely to be followed by the effect. 

Causal induction problems outside experimental psychology laboratories 

rarely comprise such conveniently marked event boundaries, however. 

Instead, reasoners have to apply their notions about the timeframe of the causal 

relation in question to a continuous stream of events: first, to be able to decide 

whether a given event coincided with an outcome at all, or whether the 

temporal distance was so great that assuming co-occurrence would not be 

warranted (e. g. having eaten undercooked chicken three weeks ago does not 

covary with the symptoms of a food poisoning today); second, to decide what 

the implications of the temporal relation between event and outcome are 

(having eaten undercooked chicken is more likely to be the cause of food 

poisoning, if one has eaten the chicken 12 hours ago than if one has eaten it 1 

hour ago, because symptoms of Salmonella infection usually develop between 

12-24 hours after ingestion). 

It thus appears sensible to shift the focus of investigation away from 

studies based on discrete learning trials, and employ a continuous paradigm 
instead. In such a paradigm the participant is exposed to a continuous stream 

of events. Causal episodes take place within the continuous flow of time, and 

are not specially marked. It is thus the task of the observer/reasoner to decide 

how to segment the event stream, and, more importantly for my purposes here, 

to apply assumptions about the timeframe of the causal relation in question 

onto the continuous stream of events. In other words the reasoner has to 

decide how much time can plausibly pass between an occurrence of a 
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candidate cause and an effect, so that the co-occurrence is interpreted as 

evidence for the causal relation in question. Beyond that limit, an occurrence 

of the effect would be attributed to alternative causes, and thus interpreted as 

evidence against the causal relation in question. 

Several studies employing such a continuous paradigm have been 

reported, most notably from David Shanks and colleagues (e. g. Shanks & 

Dickinson, 1987; Shanks et al., 1989). Apart from employing a continuous 

paradigm, these studies differed from Experiment I in another important way. 

All these previous studies involved constant identical causal structures, and 

only varied the temporal distance between cause and effect. Contrary to the 

paradigm I employed in Experiment I, temporal position in these studies thus 

did not signal a change in true causal effectiveness. Rather, the causal action 
(a button press) had the same programmed effectiveness in all conditions, and 

the only thing that changed was the delay after which the delivery of the 

outcome took place. Shanks et al. and several replications uniformly reported 

that cause-effect delays of more than two seconds induced a failure in 

participants to recognize a causal relation. The causal relations Shanks et al. 

employed were based on moderately strong contingencies (. 75), but if cause 

and effect were separated by more than two seconds, participants reported 

them to be equivalent to non-contingent control groups. 

Experiment I demonstrated that people are able to learn that the extent 

of temporal separation between cause and effect may indicate decreases (and 

increases) in causal effectiveness. The true underlying causal (or probabilistic) 

structure did in fact change in Experiment I, and the pattern of change was 
determined by both stimulus dimensions (time and size), according to a 

principle of exclusive disjunction. Participants' sensitivity to the temporal 

dimension therefore was only rational. In Shanks et al. 's experiments (1989), 

however, changes in the extent of temporal separation between cause and 

effect were not accompanied by changes in the underlying causal structure; the 

contingency between cause and effect remained constant at . 75, irrespective of 
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the degree of cause-effect contiguity. Shanks et al. 's participants nonetheless 

reported weaker causal relations in the delayed than in the immediate 

conditions. This finding suggests two interpretations. 

1. ) Particpants in Shanks et al. 's study were irrational. Although Experiment 

I has shown that contiguity was not essential for successful causal induction, 

this finding was based on a discrete trial structure. Shanks et al. 's study, on 

the other hand employed a continuous paradigm. It may well be that the 

identification of a delayed causal relationship is much harder in such a 

continuous paradigm than it was in the trial-based study in Experiment I. If 

temporal contiguity is indeed essential for causal induction (from continuous 

event streams), then reasoners should always attend to the temporal dimension, 

even in situations where it has no relevance for the causal relation in question. 

Postulating a rigid fixation to a particular stimulus dimension (time), 

regardless of its informative value is clearly at odds with a rational perspective 

of human reasoning. 

2. ) Particpants in Shanks et al. 's study have brought to the task their own 

prior beliefs about the causal relation in question. Shanks et al. openly 

admitted that "subjects in judgment studies such as ours assume that the word 

`causes' in the experimental instructions means ̀ causes immediately'. After 

all, they presumably have considerable experience of the immediacy of cause- 

effect relations in such electrical devices as computers" (Shanks et al., 1989 p. 
155). Participants' failure to correctly evaluate delayed causal relations thus 

could simply reflect a mismatch between their expectations about the task, and 

the feedback they received during the task. The available data do not allow 

one to favor one explanation over the other. 

The remainder of this thesis will be dedicated to empirical 

investigations that do allow a contrast between these two interpretations. The 

strategy I employed was to replicate Shanks et al. 's experiment as closely as 

possible, with one important modification: I manipulated participants' 

assumptions about the timeframe of the causal relation in question. 
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Experiments H and III explicitly controlled those assumptions by informing 

one group of participants that the causal relation may involve a delay, while 

the other group of participants was not informed about delays. Experiments 

IV through VI employed implicit manipulations; cover stories induced 

participants to either assume an immediate or delayed relation. 
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4. Experiments II and III: 
Explicit Manipulation of Timeframe Assumptions 

4.1. Experiment II 

Experiment II was closely modelled after Shanks et al. 's (1989) 

original paradigm. Participants were instructed that their task was to find out 
how strongly pressing the SPACE bar caused a triangle to light up on the 

computer screen. As in the original experiment, I programmed the apparatus 

to produce an effect with a probability of . 75 if the participant pressed SPACE. 

In earlier studies (e. g. Shanks et al., 1989, Experiments 1 and 2) such 

probabilities were defined relative to experimenter-defined learning trials. 

This usually means that only the first response within a specified time-bin (e. g. 

is) is recorded and subjected to the reinforcement schedule. Employing such 

arbitrary learning trials unnecessarily reduces the ecological validity of the 

procedure, as the participants are usually not informed about the restrictions of 

the underlying trial structure. It potentially also results in a discrepancy 

between the programmed and the objectively achieved cause-effect 

contingency. If participants ever respond at a rate that is higher than the 

frequency of trial-spaces (e. g. more than once a second), a substantial 

proportion of their responses would not be subjected to the reinforcement 

schedule and thus be effectively unreinforced. Experiment II therefore did not 
involve any pre-defined learning trials, but employed a truly continuous 

paradigm instead. 

I employed two experimental (master) conditions within-subjects, one 
involving immediate cause-effect pairings (contiguous condition), and one 
involving cause-effect pairings separated by a 4s delay (delay condition). To 

check whether participants could distinguish between causal and non-causal 

conditions, I furthermore employed two yoked control conditions. In these, 

the apparatus played back the outcome pattern participants had generated on 
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the previous experimental condition, and participants' actions had no 

consequences at all. The crucial modification from Shanks et al. 's (1989) 

earlier procedure was that I manipulated participants' expectations about the 

timeframe of the causal relation in question between subjects. One group of 

participants was told that sometimes the triangle would light up only after a 

certain delay (Instruction group), while the other group of participants received 

no such instructions (No instructions group). 

4.1.1. Method 

4.1.1.1. Participants 

Fifty-one volunteers (40 females, 11 males) were recruited via a 

departmental notice board and through the University of Sheffield's volunteer 

email distribution list. Some participated to fulfil part of a course requirement, 

others received a small nominal payment. One participant failed to comply 

with the instructions and was dropped from the analyses. 

4.1.1.2. Design 

In a mixed design the factor instruction about delay (Instruction/No 

Instruction) was manipulated between subjects, and the factor time 

(contiguous/delay) within subjects. Each participant worked on two blocks, 

each consisting of one of the two experimental (master) conditions (contiguous 

or delay) followed by a corresponding control (yoked) condition. In both 

experimental conditions the probability that a key press would produce the 

effect P(e1c) was set to . 75. This probability was not defined per unit of time 

(i. e. relative to a specific time-bin); in other words the schedule did not employ 

learning trials of any kind. If a response resulted in an effect, it followed it 

instantly in the contiguous condition, and after a4 second delay in the delay 

condition. Responses made during the delay period and presentation of the 
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effect were recorded but had no programmed consequences. More 

specifically, if participants pressed the SPACE bar several times in a row, each 

response triggered the probability generator until it first scheduled an outcome. 

Any subsequent responses between the first successful key press and the 

occurrence of the outcome had no chance to produce further outcomes, but 

were still recorded as unreinforced responses. 

In the experimental conditions the effect never occurred in the absence 

of a response, i. e. P(el-, c) was set to 0. In the yoked control conditions the 

effect occurred totally independently of the participants' behaviour: the 

apparatus played back the outcome pattern that participants had produced in 

the preceding experimental condition. Responses made during the yoked 

conditions were recorded but had no programmed consequences. The order of 

conditions was constrained by the blocks so that yoked control conditions 

immediately followed their corresponding experimental master conditions. 
Whether a participant worked on the contiguous or delay block first was 

counterbalanced between subjects. The two blocks were only used as a means 

to control the administration of the master/yoke pairs. Participants saw and 

worked on four conditions, but were unaware that the conditions were 

organized in two blocks. 

4.1.1.3. Materials, Procedure, and Apparatus. 

The experiment was carried out on Apple Macintosh computers located 

in separate cubicles and programmed in Macromedia Director 7.0. 

Participants used the keyboard to make responses and enter causal ratings. 

After the experimenter started the computer program, participants read 

the following instructions on the screen (modified from Shanks et al., 1989) 

Please read the following instructions very carefully. Take as much 

time as you like. Your task in this experiment is to judge the extent to 
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which you can make something happen on the computer screen. There 

will be a triangle on the screen like this: 

The outline of an equilateral triangle with sides 10 cm long was 

presented on the screen below the text. The instructions continued: 

Now press the SPACE bar and see what happens... 

When the participant pressed the SPACE bar, the triangle lit up in red 
for 500ms, accompanied by a beep. The red triangle and beep constituted the 

effect. After the effect had occurred, the triangle reverted to its original 

outline state and the instructions continued: 

... and press it a few more times ... 

The participant had to press the SPACE bar and observe the triangle 

flash for another four times. The instructions then continued: 

... the triangle lights up. 

Tell the Experimenter when you are ready to proceed 

When the participant indicated that she was ready, the experimenter 

pressed the RETURN key and the instructions continued: 

Sometimes the triangle might light up of its own accord, like this: 

The triangle flashed four times at 2s intervals, irrespective of any 

responses. The instructions then continued: 

Your task in this experiment is to find out whether pressing the SPACE 

BAR has any effect on whether or not the triangle lights up. At any 
time you may choose whether or not to press the SPACE BAR. You 

can press it as often or as little as you like. However, because of the 

nature of the task it is to your advantage to press it some of the time 

and not to press it some of the time. 

Tell the Experimenter when you are ready to proceed 
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When the participant indicated that she was ready, the experimenter 

pressed the RETURN key and the instructions continued: 

Sometimes the triangle will flash when you press the SPACE BAR, 

and sometimes it will not. 

Participants in the Instructions present group then read: 

Sometimes pressing the SPACE BAR will cause the triangle to light up 

immediately and sometimes it will cause the triangle to light up after a 

certain delay like this... 

(Press the SPACE BAR) 

The triangle then flashed 4s after the participant's first response. The 

instructions continued: 

(... and press it a few more times) 

Participants then had to press the SPACE bar to produce a delayed 

effect four more times. On each occasion, the first recorded keypress launched 

the delay and produced the effect. Any key presses participants made during 

the delay had no consequences. 

Both groups of participants then read: 

You must judge the extent to which pressing the SPACE BAR is the 

cause of the triangle lighting up 

Tell the Experimenter when you are ready to proceed 

When the participant indicated that she was ready, the experimenter 

pressed the RETURN key and the instructions concluded: 

You will be given four different problems, each lasting two minutes. 

The relationship between pressing the SPACE BAR and whether or not 

the triangle lights up will be constant within each problem but may 

well differ from one problem to the next. 
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At the end of each problem you will be asked to give an estimate on a 

rating scale of the extent to which you think pressing the SPACE BAR 

caused the triangle to light up during that problem. 

If you are ready, then the Experimenter will start the first problem for 

you 

If the participant had no further questions, the experimenter then 

started the experiment and left the room. Participants then worked on four 

problems for two minutes each. After each problem, the screen blanked out 

and the following text appeared: 

Type in a number to indicate your judgment of the extent to which 

pressing the SPACE BAR caused the triangle to light up. 

Use a scale from 0 to 100. 

100 indicates that pressing the SPACE BAR always caused the triangle 

to light up, 

0 indicates that pressing the SPACE BAR had no effect on whether or 

not the triangle lit up. 

Click the OK button after typing in your judgment and the experiment 

will continue. 

Your judgment: 

After participants had entered their answer on the keyboard and clicked 

the OK button on the bottom of the screen, they proceeded to the next 

problem. The experiment lasted about 15 minutes. 
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4.1.2. Results 

4.1.2.1. Behavioural Data 

All statistical analyses adopted a significance level of . 05, except 

where otherwise noted. Table 4-1 displays the mean number of responses 

produced per minute, the number of outcomes per minute, and the obtained 

probabilities that a response triggered an outcome, P(e1c). In contrast to 

earlier, learning-trial based, studies (e. g. Shanks et al., 1989; Reed, 1992) I 

calculated P(e1c) as the actual probability that any response - even those made 

during a delay period - produced an effect. Outcome presentation during the 

two yoked control conditions was entirely independent of participants' 
behaviour, so Table 4-1 lists the P(e1c) values for these conditions as 0. 

However, participants' responses will sometimes by chance be followed by 

outcomes in yoked conditions, so the actual value of P(e1c) may not accurately 

reflect participants' subjective perceptions. Table 4-2 therefore additionally 

reports the average number of responses made before each outcome (counted 

from the delivery of the preceding outcome). Note that the average value of 
1.3 responses before an outcome in the contiguous master condition reflects 

that on average 3 out of 4 responses (i. e. 75%) were followed by an outcome. 

Overall participants responded less in the delay (M=17.98, STD=16.39) 

compared to the contiguous experimental (master) conditions (M=24.9, 

STD=18.49); they also responded less when they expected a delayed relation 
(Instruction group, M=16.62, STD=15.57) than when they did not expect a 
delay (No Instructions group, M=26.26, STD=18.58). An ANOVA on the 

response rates revealed a main effect of Instruction, F(1,46)=7.301, a Time x 
Master/Yoke, F(1,46)=6.414, and a Instruction x Master/Yoke x Order of 
Problems F(1,46)=6.346 interaction, plus a marginal Timex Instruction 

interaction, F(1,46)=3.401, p=. 072. 
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Table 4-1. Experiment II. Mean Response Rates', Outcome Rates', and 

P(e1c) in the Contiguous and Delay Master and Yoked 

Conditions for participants informed and uninformed about 

potential delays who worked on the delayed problems in the first 

or second block. 

Time 
Contiguous Delay 

Group Master Yoked Master Yoked 

Informed 
Delay 1st 25.42 8.23 11.65 12.08 
Delay 2nd 18.00 20.25 11.08 14.88 

Response Rate 
Uninformed 

Delay 1st 21.13 23.71 17.42 25.13 
Delay 2nd 34.23 27.81 31.19 37.15 

Informed 
Delay 1st 19.27 5.04 
Delay 2nd 12.63 4.13 

Outcome Rate 
Uninformed 

Delay 1st 15.58 5.38 
Delay 2nd 25.96 6.81 

Informed 
Delay 1st 0.78 0.65 
Delay 2nd 0.72 0.59 

P(eýc) 0.00 0.00 
Uninformed 

Delay 1st 0.73 0.51 
Delay 2nd 0.76 0.32 

Note. Outcome Rates are identical for Master and Yoked conditions because 

the latter played back the outcome pattern generated in the former. P(elc)=O 

for all Yoked conditions because responses made during Yoked conditions 

were never subjected to the reinforcement schedule. See text for discussion. 

per minute 
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Table 4-2. Experiment H. Mean Number of Responses emitted before 

Outcomes, and Mean Proportion of Outcomes which were not 

preceeded by any response in the Contiguous and Delay Master 

and Yoked Conditions for participants informed and uninformed 

about potential delays who worked on the delayed problems in 

the first or second block 

Time 
Contiguous Delay 

Group Master Yoked Master Yoked 

Informed 
Delay 1st 1.26 0.53 1.77 1.57 

Responses Delay 2nd 1.39 1.39 2.12 3.07 
before Outcome Uninformed 

Delay Ist 1.39 2.55 2.95 4.30 
Delay 2nd 1.32 1.11 4.36 4.85 

Informed 
Delay Ist 0.00 0.69 0.00 0.34 

Proportion of Delay 2nd 0.00 0.31 0.00 0.26 Outcomes not 
preceded by Uninformed Responses 

Delay 1st 0.00 0.57 0.00 0.24 
Delay 2nd 0.00 0.59 0.00 0.25 



73 

An ANOVA of the average number of Outcomes per minute revealed 

that the delay conditions produced significantly fewer outcomes per minute 
(M=5.36, STD=2.41) than the contiguous conditions (M=18.53, STD=14.01), 

F(1,46)=54.606 (see Reed, 1992 for a similar finding). As Table 4-1 shows, 

actual P(e1c) values in the master conditions were lower in all delay conditions 
(M=. 51, STD=. 27) compared to contiguous (M=. 75, STD=. 08) conditions (cf. 

Reed, 1992). This fording was particularly strong for the group who did not 

receive instructions about a potential delay (M=. 41, STD=. 27), and can be 

attributed to their generally higher response rate. Higher response rates 
lowered the actual P(e1c) in the delay but not the contiguous conditions, 
because a high response rate implies that proportionally more responses will 

occur during delay periods, and thus will not be reinforced. 

Figure 4-1. Experiment II: Scatterplot of Response Rate against actual 

probability that a response triggered an outcome. Response Rate 

is defined as average number of responses emitted per minute. 
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An ANOVA on the P(elc) values revealed significant main effects of 

Time, F(1,46)=42.705, Instructions, F(1,46)= 8.195, and a Timex Instructions 

interaction, F(1,46)=7.950. Figure 4-1 plots actual values of P(elc) against 

response rate for each participant in the contiguous and delay experimental 

conditions. Visual inspection reveals that participants in the contiguous 

condition consistently experienced contingencies within a relatively narrow 

range around the programmed value of . 75 (+1-. 15); in the delay condition, 
however, participants' experienced contingencies were inversely proportional 

to their response rate. In other words, the evidence for a causal relationship 
became weaker as participants attempted to sample more of this evidence. 

To summarize, the behavioural data show that a delay of reinforcement 

resulted in considerably lower actual (experienced) contingencies than the 

value programmed in the reinforcement schedule. The objective evidence for 

a causal relation thus was noticeably weaker in the delay than the contiguous 

conditions. Note that this factual difference is completely independent of any 
detrimental effects outcome delays may have on the subjective evaluation of 

causal relations. In addition, if participants were ignorant of the possibility of 

a delay, they responded at a high rate compared to participants informed about 
delays, which lowered the contingency even more. 

4.1.2.2. Causal Judgments 

Figure 4-2 displays mean ratings of causal effectiveness for 

experimental (Master) and control (Yoked) conditions for participants who did 

and did not receive delay instructions. Visual inspection reveals that 

participants could distinguish between contingent (i. e. experimental) and non- 

contingent (i. e. control) conditions. Paired t-tests between the four 

Master/Yoke pairs corroborated this observation, all ts(24)>3.4. Because my 
focus is on contingency and delay as determinants of judged causal strength, 

subsequent analyses will concentrate on the experimental conditions. 
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Figure 4-2. Experiment II: Mean ratings of causal effectiveness in 

experimental master (top) and yoked control (bottom) conditions. 
Error bars indicate standard errors. 
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In the experimental conditions, a delay in the response-outcome 

relation generally resulted in lower causal ratings, but to a lesser extent if 

instructions informed participants about potential delays. An ANOVA of 

causal ratings in the experimental conditions revealed a highly significant 

effect of Time, F(1,46)=53.774, significant effects of Instructions, F(1, 

46)=3.900, and a Timex Instructions interaction, F(1,46)=8.755, confirming 

the qualitative pattern described above. The counterbalancing factor order of 
Conditions - whether a participant worked on the block containing the 

contiguous condition first and on the delayed one second, or vice versa - also 

Contiguous Delay 
Time 
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produced a main effect, F(1,46)=16.536, and a marginal Timex Order of 

Conditions interaction, F(1,46)=3.876, p=. 055. 

4.1.3. Discussion 

Experiment II revealed several interesting new facts about the impact 

of reinforcement delays in human instrumental causal learning. On the purely 

behavioural side, three main findings stood out: a) instructing participants 

about potential outcome delays induces them to respond less often compared 

to participants ignorant of that possibility, b) irrespective of instructions, 

outcome delays lead to fewer responses and thus result in fewer outcomes 

produced per minute (cf. Reed, 1992 who found the same result), and c) 

employing a reinforcement delay while maintaining the programmed 

contingency schedule leads to lower actual (experienced) contingencies 

relative to immediate reinforcement, and hence to weaker objective evidence 

for the causal relation in question. 

Three key aspects characterize participants' ratings of causal 

effectiveness: a) participants distinguished between contingent and non- 

contingent conditions, thus demonstrating a genuine capacity to identify when 

their actions were and were not causally related to the effects; b) when a delay 

separated actions from outcomes, participants generally rated their actions to 

be less effective, compared to conditions employing the same programmed 

contingency with immediate reinforcement; c) this detrimental effect of delay 

on participants' ratings of effectiveness was less pronounced if participants 

were instructed beforehand about the possibility of outcome delays. 

Knowledge thus mediates the influence of delay in human causal induction. 

4.1.3.1. Problems with the Free-Operant Procedure 

Analysis of the behavioural data has shown that introducing a 4s delay 

between response and outcome significantly lowered the experienced cause- 
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effect contingency. It is next to impossible to tell whether participants 

generally provided lower ratings of causal strength in the delay condition 

simply because the objective evidence - the cause-effect contingency - was 

weaker, or because of detrimental effects outcome delays may have on the 

formation of causal beliefs (cf. Shanks & Dickinson, 1987; Shanks et al., 

1989), or a combination of the two. Visual inspection of Figure 4-3 suggests 

however, that, in general, causal ratings in both the contiguous and delay 

conditions corresponded well to the actual contingencies sampled by each 

participant. I used regression to predict causal ratings from actual 

contingencies, with the intercept forced to be zero. A regression coefficient 

of 100 in this analysis would indicate perfect correspondence between 

contingency and causal judgment, while higher and lower values would 

indicate over- and under-estimation, respectively. The regression results 

suggest that actual contingency in fact is a very good predictor of causal 

ratings in both the contiguous (R2--. 98,0=1 11.93) and delay (R2=. 72, J3=90.47) 

conditions. Lower average ratings of causal effectiveness in the delay 

condition thus may indeed reflect participants' sensitivity to the weaker 

evidence for the causal relation in question. 

In order to analyse the influence of delay on causal ratings in addition 

to, or independent from the difference in contingencies between the immediate 

and delay group, one may be tempted to perform an Analysis of Covariance on 

the judgment data, with contingency as the covariate. Shanks et al. (1989) 

performed such an analysis and reported that delay still had a detrimental 

effect on causal judgments, even when contingency was taken into account. 

Unfortunately, this is not a valid analysis, at least for the data from the current 

experiment, as the covariate - contingency - is completely confounded with 

one of the independent variables - time. Another possibility is to compare 

judgments of only those participants who experienced similar contingencies in 

both the immediate and delay conditions. 
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Figure 4-3. Experiment II: Ratings of causal effectiveness in the Contiguous 

and Delay conditions plotted against the actual contingencies 

experienced by each participant. 
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A further ANOVA on participants' causal ratings included only 

participants who experienced a contingency of . 57 or higher in both the 

contiguous and delay condition. I chose . 57 as the cut-off point because it was 

the lowest actual contingency sampled from the contiguous condition. This 

criterion left me with 36 participants who received delay instructions and only 
12 participants who received no delay instructions. No main effects or 
interactions were significant, most notably no effect of Time, F(1,20) =0.72 1. 

This finding supports the idea that action-outcome delays may have no direct 

detrimental effects on human causal judgments other than lowering the 

objective evidence (contingency) for the causal relation in question. 
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4.1.3.2. Order effects: The impact of previously experienced 
contiguity 

One finding from the ANOVA of causal ratings in the contingent 

condition came as a surprise: the counterbalancing factor Order - whether 

participants received the contiguous problem first and the delayed one last, or 

vice versa - produced a significant main effect. This finding warrants closer 

examination. Comparable previous studies (Shanks et al., 1989; Reed, 1992) 

either did not control for the order of conditions, or reported analyses 

collapsed over this factor. Figure 4-4 illustrates the order effect on causal 

ratings for the contiguous and delayed experimental conditions. Visual 

inspection reveals that the counterbalancing order had a particularly strong 

effect on participants' evaluation of the delayed contingencies: participants 

gave much higher ratings to delayed contingencies if they had not already 

experienced the contiguous problems than if they had. A linear contrast 

comparing causal ratings in the delay conditions from participants who first 

worked on the immediate conditions to those who worked on it last revealed a 

significant difference between the two groups, F(1,46)=19.029. More 

importantly, a comparison of the two hatched bars in the top panel of Figure 

4-4 shows that causal ratings from participants in the instruction group did not 

seem to be significantly reduced, by a 4s delay, if the delayed problem was 

experienced as the first problem (M for Time: Os =87.77, M for Time: 4s = 

74.70), t(24)=1.515, n. s. This non-significant finding of course means a 

failure to reject the null hypothesis, and one has to be careful when 

interpreting such a result. A good way to measure the interpretability of the 

result is to compute the power of the test. I performed a power analysis as 

described in Howell (1997) on this particular comparison. I set the 

hypothesized difference between the two means for Time: Os and Time: 4s 

under H, to be 30. This value was based on an overall difference of 34 

between causal ratings derived from the Os and 4s conditions, collapsed over 

the factors Instructions and Order. The effect size d is then computed 
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according to the formula d=, u, pJa 1_x2 where µ, µ2 is the hypothesized 

difference and ax, -x2 is the standard deviation of the difference scores. For this 

test, the effect size was d=. 96, which in turn gives a power value of . 94 for 

N=13 (the number of participants who received delay instructions and first 

worked on the delayed problems). In other words, the probability to correctly 

reject the null hypothesis (i. e. to discover a difference, if there really is one) is 

94%. With such a high power, one is in a reasonable position to interpret a 

null finding to indicate the absence of an effect. 

This order effect means that a traditionally held (single) determinant of 

judged causal strength - associative strength - (c. f., e. g. Shanks & Dickinson, 

1987) falls short for two reasons. Causal judgments derived from identical, 

delayed, cause-effect contingencies were more accurate when participants a) 

thought a cause-effect delay plausible compared to when they had no reason 
for such expectations and b) when they were first confronted with the delayed 

problem compared to first working on a contiguous problem and seeing the 

delayed one next. This means that both prior knowledge and experience 

influence the way people reason about causal relations. Other related work 

(Buehner & Hagmayer, 2001) has shown that people's inferences from 

delayed causal episodes depend dramatically on whether participants have 

previously encountered delayed or contiguous action sequences. In Buehner & 

Hagmayer's experiment participants interpreted delayed event sequences to 

indicate a generative causal relation if they previously experienced similarly 

delayed episodes; however, they interpreted the same delayed event sequence 

to indicate a preventive causal relation, or no relation at all, if they previously 

experienced contiguous episodes. Although associative learning theory in 

general (see Shanks & Dickinson, 1987) predicts that delays result in weaker 

judgments of causal strength, it cannot capture the mediating effects that prior 

knowledge and experience have on the impact of delay, unless one could re- 

interpret them as pre-existing weights or associative strengths. I will return to 

this question in the General Discussion. 
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Figure 4-4. Experiment II: The effect of experienced contiguity. Bars 

represent mean ratings of causal effectiveness in Contiguous and 
Delay conditions for participants who did (top) and did not 

receive instructions about potential delays (bottom), split by 

whether they experienced the Delay block first and the 

Contiguous block second, or the Delay block second and the 

Contiguous block first. Only experimental (master) conditions 

are displayed. Error bars indicate standard errors. 
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4.2. Experiment III 

Experiment II revealed that whether and how strongly cause-effect 
delays impair causal judgments crucially depends on both prior knowledge and 

experience. Experiment II also demonstrated that the detrimental effect of a 4s 

delay may disappear completely under optimal conditions. Analysis of the 

contingency structures in Experiment II revealed that a4 second delay 

significantly lowered the actual contingencies experienced by the participants, 

even though the delay and contiguous conditions shared the same programmed 

contingency (. 75). The standard Free-Operant procedure employed in 

Experiment II and earlier studies (e. g. Shanks et al., 1989, Experiment 1; 

Reed, 1992, Experiments 1 and 2) thus precludes an unambiguous assessment 

of direct effects of action-outcome delays, unconfounded by weaker objective 

evidence. The aim of Experiment III is to allow such an assessment. I 

modified the Free-Operant procedure so that every response, including those 

made during delay periods, was subjected to the reinforcement schedule. As 

in Experiment II, there were no arbitrarily defined learning-trials. 

My hypothesis is that ensuring equally strong evidence for the causal 

relation in the contiguous and delay conditions will generally reduce the 

detrimental effect of delay. Furthermore, results from such an optimised 

paradigm should provide even stronger support for the knowledge-mediation 

hypothesis. In particular, I predict that participants in the instruction group 

will no longer judge the causal effectiveness of pressing SPACE to be weaker 
in the delay than in the contiguous condition. I also expect that all 

participants, regardless of whether they were instructed about potential delays 

or not, will evaluate the delay condition in Experiment 3 as more causal than 

in Experiment 2. 
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4.2.1. Method 

4.2.1.1. Participants 

Fifty volunteers (42 female, 8 male) were recruited via a departmental 

notice board and through the University of Sheffield's volunteer email 
distribution list. Some participated to fulfil part of a course requirement, 

others received a small nominal payment. Three participants failed to comply 

with the instructions and were dropped from the analyses. 

4.2.1.2. Materials, Procedure, Apparatus, and Design 

The apparatus was programmed to subject every response to the 

reinforcement schedule, including those made during delay periods. All other 

aspects of materials, procedure, apparatus, and design were identical to 

Experiment II. 

4.2.2. Results 

4.2.2.1. Behavioural Data 

Table 4-3 displays the mean numbers of responses produced per 

minute, outcomes per minute, and the mean obtained probabilities that a 

response triggered an outcome P(elc), as defined above. Table 4-4 additionally 

lists the average number of responses made before each outcome. 
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Table 4-3. Experiment III. Mean Response Rates`, Outcome Rates', and 

P(e1c) in the Contiguous and Delay Master and Yoked 

Conditions for Participants informed and uninformed about 

potential delays who worked on the delayed problems in the first 

or second block 

Time 
Contiguous Delay 

Group Master Yoked Master Yoked 

Informed 
Delay 1st 
Delay 2nd 

Response Rate 
Uninformed 

Delay Ist 
Delay 2nd 

41.05 19.00 
23.25 11.21 

43.42 20.63 
24.67 27.67 

12.23 18.64 
11.67 12.46 

17.58 26.33 
16.00 11.08 

Informed 
Delay 1st 30.64 8.82 
Delay 2nd 17.08 8.63 

Outcome Rate 
Uninformed 

Delay 1st 31.79 12.88 
Delay 2nd 18.13 11.75 

Informed 
Delay 1st 0.71 0.73 

P(elo) 
Delay 2nd 0.74 0.00 0.75 0.00 

Uninformed 
Delay 1st 0.74 0.77 
Delay 2nd 0.75 0.79 

per minute 



85 

Table 4-4. Experiment III. Mean Number of Responses emitted before 

Outcomes, and Mean Proportion of Outcomes which were not 

preceeded by any response in the Contiguous and Delay Master 

and Yoked Conditions for Participants informed and uninformed 

about potential delays who who worked on the delayed problems 
in the first or second block 

Data Group 

Time 
Contiguous Delay 

Master Yoked Master Yoked 

Informed 
Delay 1st 1.48 1.00 1.42 3.57 

Responses Delay 2nd 1.32 0.93 1.34 1.25 

before Outcome Uninformed 
Delay 1st 1.34 0.72 1.30 2.04 
Delay 2nd 1.35 3.11 1.31 1.07 

Informed 
Delay 1st 0.00 0.61 0.18 0.32 

Proportion of Delay 2nd 0.00 0.61 0.28 0.40 
Outcomes not 
preceded by Uninformed Responses 

Delay 1st 0.00 0.64 0.32 0.40 
Delay 2nd 0.00 0.45 0.37 0.57 

Overall, participants made fewer responses under a delayed (M=14.42, 

STD=9.50) as compared to a contiguous reinforcement schedule (M=32.93, 

STD=25.47), and in control (yoked) than experimental (master) conditions. 

An ANOVA on the response rates revealed significant main effects of Time, 

F(1,43)=44.09, Master/Yoke, F(1,43)=9.78, and of Order, F(1,43)=4.25, as 

well as an Timex Master/Yoke interaction, F(1,43)=8.92, and a Time x 

Master/Yoke x Order interaction, F(1,43)=6.42. The latter interaction can be 
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explained by increased levels of responding in the contiguous experimental 

problems from the group of participants who first worked on the delayed 

problems. Unlike Experiment II, whether or not participants were instructed 

about potential delays did not significantly influence response rates. 

As in Experiment II and earlier studies, outcome delays resulted in 

fewer outcomes per minute. An ANOVA on the average number of outcomes 

per minute revealed main effects of Time, F(1,43)=29.54, and Order, 

F(1,43)=5.12, as well as a Timex Order interaction, F(1,43)=6.43. The main 

effect of Order and the Timex Order interaction are a consequence of the 

order effect on response rates described above: higher response rates in the 

contiguous problems from participants who had already worked on the delayed 

problems compared to those who had not, resulted in correspondingly more 

outcomes to be produced per minute. 

Inspection of the P(e1c) values in Table 4-3 shows that, as intended and 

contrary to Experiment II, introducing an action-outcome delay did not lower 

the actual probability that a response produces an outcome. An ANOVA 

revealed no significant effects, most notably no effect of Time, F(1,43)=2.21. 

Visual inspection of Figure 4-5, the analogue of Figure 4-1 from Experiment 

H, reveals that participants' feedback about the probability that their responses 

produce outcomes varied in a relatively narrow range around the programmed 

value . 75 in both the contiguous and delay conditions. Unlike Experiment H, 

this objective evidence for a causal relationship between actions and outcomes 

did not grow weaker, but instead stabilized as participants sampled more of 

this evidence. 
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Figure 4-5. Experiment III: Scatterplot of Response Rate against actual 

probability that a response triggered an outcome. Response Rate 

is defined as average number of responses emitted per minute. 
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To summarize, the behavioural data in Experiment III show that 

although a delay of reinforcement led participants to respond at a lower rate 

compared to immediate reinforcement, it did not degrade the experienced 

probability that responses produce outcomes as it did in Experiment II. This 

need not mean that participants' experienced contingency is unaffected by the 

action-outcome delay, however. Because every response made in the 

contingent conditions was subjected to the reinforcement schedule, including 

those made during delay periods, the resulting action-outcome pattern in the 

delayed problem may create an (erroneous) perception of P(el-, c) >0. 

Specifically, if participants in the delay condition pressed SPACE several 
times in a row, each of these responses would have produced with 75% 

probability an outcome 4 seconds later. The resulting pattern thus could look 

like the one displayed in Figure 4-6, where some outcomes occur immediately 

0 
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Figure 4-6. A possible action-outcome pattern from the Delay condition in 

Experiment III, resulting from the modification employed in the 

free-operant procedure. 
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after other outcomes, without any responses apparently preceding them. 

Consequently, some participants may have had the impression that the effect 

sometimes occurs "on its own", i. e. P(el-ic) >0. Note, however, that delays in 

Experiment II lowered the objective evidence for the causal relation in 

question. 

In Experiment III, in contrast, the objective evidence was constant 

between immediate and delayed conditions, but delays may still have produced 

weaker subjective impressions of this evidence. It is not possible to measure 

such apparent values of P(el-, c), because the experimental design deliberately 

avoided pre-defined learning trials. Table 4-2 and Table 4-4 provide, 

however, the averaged proportion of outcomes that were not directly preceded 

by any response in Experiments II and III, respectively. While this measure by 

no means is equivalent to P(el-, c), it offers some insight into participants' 

experienced action-outcome structures. An average of 18% to 37% of 

outcomes in the experimental delay condition of Experiment III took place 

without a response occurring since the previous outcome. The strict free- 

operant procedure employed in Experiment H in contrast, guaranteed that this 

measure was 0% in both the contiguous and delay conditions. 
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4.2.2.2. Causal Judgments 

Figure 4-7 displays mean ratings of causal effectiveness for 

experimental (Master) and control (Yoked) conditions for participants who did 

and did not receive delay instructions. Visual inspection reveals that 

participants could distinguish between contingent (experimental) and non- 

contingent (control) conditions. Paired t-tests between the four Master/Yoke 

pairs corroborated this observation, ts(22)>6.2 for the comparisons in the 

Instruction group, and ts(23)>4.6 for the comparisons in the No Instructions 

Figure 4-7. Experiment III: Mean ratings of causal effectiveness in 

experimental master (top) and yoked control (bottom) conditions. 
Error bars indicate standard errors. 
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group. Again, subsequent analyses will concentrate on the experimental 

conditions. 

As in Experiment II, an action-outcome delay generally resulted in 

decreased judgments of causal strength. An ANOVA for causal ratings in the 

experimental conditions revealed a significant effect of Time, F(1,43)=26.66, 

and a Time x Instructions interaction, F(1,43)=5.3 1. I was mostly interested 

to see whether Time still had a significant effect in the group of participants 

who received instructions about potential delays. Planned comparisons 
between ratings in the contiguous and delayed conditions revealed that the 

effect of Time was significant only in the No Instructions group, t(43)=5.23; 

even though causal ratings were likewise higher in the contiguous than in the 
delayed condition, Time failed to produce a significant effect in the Instruction 

group, t(43)=2.01, as I predicted. Again, one has to be cautious about 
interpreting a null finding, but a power analysis with an effect size d=. 62 

(based on the observed overall difference of 20 between contiguous delayed 

conditions for participants who received delay instructions) reveals that the t- 

test has power of . 85 with N=23 (the number of participants in the Instruction 

group). This corresponds to the power value of . 84 indicated by the statistics 

package (StatView) for the Time x Instructions interaction. 

As expected, the modification of the Free-Operant procedure overall 

resulted in a somewhat less pronounced effect of Time in Experiment III 

compared to Experiment II; causal judgments in the delay conditions were 
higher in Experiment III than in Experiment II (a cross-experimental 

comparison of ratings in the delay condition fell short of significance, 
however, t(96)=1.75, p=. 08). Unlike in Experiment H, the order of conditions 
did not significantly influence causal ratings. 
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4.2.3. Discussion 

Experiment III replicated the most important finding of Experiment II: 

if participants were aware that outcome delays might occur, they could 

accommodate them much better than if they were ignorant of potential delays. 

In order to eliminate the confounding of delay with lower contingencies and 

thus weaker objective evidence for the causal relations, Experiment III 

employed a modified reinforcement procedure that ensured that every response 

was subjected to the reinforcement schedule. As I predicted, this change in 

procedure improved the accuracy of causal ratings in the delay condition both 

for participants who were and were not instructed about potential delays. 

More importantly, causal relations involving a 4s delay were no longer 

evaluated as significantly less causal than contiguous causal relations, if 

participants were informed of potential delays. 

The order of conditions - whether participants worked on the 

contiguous or delay block first - had a somewhat different impact on 

participants' behaviour and judgments in Experiment III than in Experiment II. 

In Experiment H, order had no systematic influence on participants' patterns of 

responding and evidence sampling, but had clear effects on participants' causal 

ratings. When evaluating delayed causal relations, participants in Experiment 

II were significantly more accurate when they had not already worked on a 

contiguous problem, than when they had. In fact, the detrimental effect of 
delay was no longer significant in the group of participants who were aware of 

potential delays. In Experiment III, order influenced participants' behaviour 

of responding and evidence sampling, but did not affect the accuracy of causal 

ratings. Presumably the order effect on causal ratings disappeared because the 

modified Free-Operant procedure from Experiment III improved accuracy 

overall, leaving no room for the order effect to manifest itself. 
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4.3. Discussion and Summary of Experiments II and III 

Experiments H and III investigated the roles of temporal contiguity and 
delay in human causal induction from free operant procedures. In line with 

earlier studies (e. g. Shanks & Dickinson, 1987; Shanks et al., 1989; Reed, 

1992), these experiments showed that cause-effect delays generally lead to a 
degradation of causal judgments. I investigated the claim that temporal 

contiguity is essential for human causal induction, and contrasted it with the 

hypothesis that participants' incapability to correctly identify delayed causal 

relations may reflect a mismatch between their expectations regarding the 

timeframe of the causal relations and the actual feedback they received. When 

interacting with computers, people by default expect their actions to produce 
immediate results. To control for expectation-experience mismatches when 

experiencing delays in the computer-controlled paradigm, I manipulated 

whether participants were made aware of the possibility of delays or not. 
Instructions either explicitly mentioned that in some conditions the causal 

action may produce the effect only after a certain delay, or did not mention 

delays at all. In line with predictions derived from Einhorn & Hogarth (1986), 

such knowledge about potential delays crucially mediated how participants 

interpreted delayed causal relations. In both experiments, participants derived 

higher estimates of causal strength from identical free-operant procedures 

(implemented with a 4s reinforcement delay), if they were aware of potential 
delays compared to if they were ignorant of potential delays. Experiment II 

also showed that Free-operant procedures, often used to study the influence of 
delay on human causal induction, are actually ill-suited for this purpose, 

because they confound delay with weaker objective or subjective evidence for 

the causal relation in question. When I improved the procedure in Experiment 

III to curtail this problem, participants who were aware of potential delays no 
longer evaluated delayed causal relations as significantly weaker than 

contiguous ones. Because this modified Free-Operant procedure was so 
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successful, the remaining experiments will all employ this improved 

procedure. 

Experiments II and III have shown that reasoners take into account 

explicit instructions about the timeframe of a causal relation when evaluating 

evidence sampled from a continuous paradigm. Under optimal conditions 

these explicit instructions eliminated the detrimental effect of delay in human 

causal induction, so that causal ratings derived both from immediate as well as 
delayed cause-effect pairings reflected the underlying contingency alone, 

unbiased by the degree of contiguity. This result is noteworthy by itself, given 

the number of reports that have claimed that cause-effect delays always impair 

causal judgment. 

Experiments II and III adapted Shanks et al. 's (1989) method and thus 

employed very impoverished stimuli. Shanks et al. pointed out that 

participants in their experiment presumably expected an immediate causal 

relation. In order to test the hypothesis that expectations about the timeframe 

guide the parsing of causal episodes it was thus necessary to instruct a sub- 

group of participants in Experiments II and III explicitly about potential 

delays. However, in everyday causal cognition reasoners evaluate evidence in 

the absence of explicit instructions about the timeframe. Rather, they recruit 

existing knowledge about the physical world around them and apply this 

knowledge when evaluating a particular causal relation. Experiments IV 

through VI tested whether the findings from Experiments II and III also extend 

to a more ecologically valid setting. Rather than instructing participants 

explicitly about the timeframe of the causal relation in question, the goal was 

to create scenarios involving different causal mechanisms that would elicit 

implicit assumptions of either immediacy or delay. 

Another limitation on the generalizability of the results from 

Experiments II and III is that the paradigm they employed only allowed a one- 

sided test of Einhorn and Hogarth's (1986) knowledge mediation hypothesis. 

The experimental setup, by default, would have triggered expectations of an 
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immediate causal relation. Experienced delays between causes and effects, 

which otherwise resulted in degraded causal judgments, could be tolerated 

without significant negative effects when participants were aware of the 

possibility of delays. In other words, knowledge could bridge temporal gaps 

to the extent that delayed and immediate contingencies gave rise to equivalent 
impressions of causal strength - the detrimental effect of delay disappeared. 

Recall, however, that Knowledge Mediation under certain circumstances also 

predicts a detrimental effect of contiguity (see sections 2.2.3 and 2.3.1. ). To 

test this strong prediction of the Knowledge Mediation hypothesis, it would be 

essential to create scenarios where reasoners assume that a delay between 

cause and effect is not only merely plausible (as in Experiments II and III), but 

also necessary. The scenarios I picked in Experiments IV through VI were 

geared to allow such a strong test of Einhorn & Hogarth's Knowledge 

Mediation hypothesis. 
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5. Experiments IV through VI: 
Implicit Manipulation of Timeframe Assumptions 

5.1. Questionnaire study preceding Experiments IV through 

VI 

In order to ensure that the scenarios to be employed in the next 

experiments really do elicit the desired assumptions about the timeframe of the 

involved causal relation, I decided to first gather data on people's expectancies 

about the timing of cause and effect in various different scenarios. I created 

ten scenarios, half of which I thought would imply a contiguous causal 

relation, and half a delayed causal relation (see Appendix A for full 

descriptions of each scenario). The ten scenarios were combined in an online- 

questionnaire that asked participants to simply provide estimates about how 

much time they thought passes between cause and effect in each scenario. 

The scenarios from Appendix A were arranged in five different random 

orders to create five different questionnaire sheets. Questionnaires were 

written in the HTML programming language to be viewable with any standard 

Internet browser. After the description of each scenario (see Appendix A), 

there was a prompt "Put your answer here. Please specify minutes (m) or 

seconds (s)" followed by a field where participants could enter their estimates. 

People were solicited to fill out the questionnaire via a mass-email containing 

a WWW link sent to staff and postgraduate students in the Department of 
Psychology, University of Sheffield, and to researchers in the EU T&MR 

network TACIT. A snowball technique was used, asking each recipient to 

forward the message to friends and colleagues. The link in the e-mail pointed 

participants to a page containing an invisible randomiser that determined 

which of the five different random orders of the ten scenarios was displayed. 

Participants were asked to imagine each of the ten scenarios and to indicate 

what length of cause-effect delay they would expect in each scenario. After 
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they had entered their expectations for all ten scenarios, they had the 

opportunity to leave their email address and supply comments or queries in 

case they wished to receive a debriefing message via email. 

Table 5-1 lists the mean and median expected delays (in seconds) 

collected from the first questionnaire (N=54), plus frequency counts for five 

temporal categories. Analysis of the responses and comments revealed that 

some participants thought that the "Journalist", "Grenade" "Database", and 

"Infrared" scenarios were ambiguous with respect to the timeframe they imply. 

I therefore refined these scenarios (see Appendix B) and collected data from 

another 38 participants. Table 5-2 lists the outcome of the refined 

questionnaire. 

Table 5-1. Results from first web-based questionnaire, N=54. Time 

estimates are all displayed in seconds. The top five scenarios 

were meant to induce expectations of delay, the bottom five 

expectations of immediacy 

Mean Median S. D. 
<1s 

Entries per category 
is 1-5s 5-10s >10: 

Journalist 14.14 2.00 43.92 8 14 12 10 10 
Elevator 43.49 30.00 35.34 0 0 0 2 51 
Pedestrian 48.06 30.00 33.46 1 0 0 2 51 
Grenade 5.36 3.00 5.85 5 6 18 18 6 
Database 13.24 6.00 15.02 3 1 10 23 16 

Keyboard 0.13 0.00 0.27 50 4 0 0 0 
Lightswitch 0.20 0.00 0.39 48 5 1 0 0 
Infrared 0.59 0.10 1.44 40 9 3 1 0 
Camera 0.32 0.10 0.47 44 6 2 0 0 
Doorbell 0.30 0.10 0.39 43 10 0 0 0 
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Table 5-2. Results from refined web-based questionnaire, N=38. Time 

estimates are all displayed in seconds. 

Mean Median S. D. 
<1s 

Entries per category 
is 1-5s 5-10s >10" 

Journalist 18.69 2.00 53.02 6 10 6 7 7 
Elevator 48.14 30.00 44.04 1 0 0 2 33 
Pedestrian 48.49 30.00 43.08 0 1 0 0 36 
Grenade 15.31 8.00 16.77 2 2 5 11 15 
Database 5.32 1.00 11.80 17 3 7 4 6 

Keyboard 0.07 0.00 0.20 36 1 0 0 0 
Lightswitch 1.88 0.00 9.72 32 4 0 1 1 
Infrared 0.53 0.10 0.95 29 5 3 1 0 
Camera 0.39 0.10 0.49 28 9 1 0 0 
Doorbell 0.36 0.00 0.64 30 6 2 0 0 

The questionnaire study confirmed that people do have specific 

expectations about cause-effect delays and are able to express them. 

Moreover, the expected distinction between "immediate" and "delayed" 

scenarios was clearly reflected in participants' response patterns. Expectations 

in the five contiguous scenarios all clustered around 0 seconds with very little 

variance; expectations for the delayed scenarios varied considerably, both 

between and within scenarios. The findings of the questionnaire study were 

encouraging in that they demonstrated that people are aware of scenario- 

specific cause-effect delays. 

The scenarios to be employed in the next experiment had to fit several 

constraints. Participants should have the opportunity to gather as much 

evidence as they wished, so the ideal causal relation would be one without a 

"refractory period". The "elevator" scenario, for instance, implies a 

considerable refractory period: once the effect happens (elevator arrives), it 

would not be possible to observe the effect again for a long time, as the 
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elevator would stay there until someone else calls it to a different floor. To put 

it differently, it should be possible and plausible to observe multiple 

occurrences of the effect in a short time interval. Another obvious constraint 

for the delayed scenarios was that the expected delay should be noticeably 

different from zero, but at the same time be not too large, as a very long delay 

would not be pragmatic in a typical laboratory experiment. After all these 

considerations, I decided that the (refined) Grenade scenario best fit the 

requirements for implying a delayed relation. For the contiguous relation I 

picked the Light switch scenario, because similar scenarios have already been 

employed in other causal reasoning experiments (e. g. Wasserman et al., 1993). 

5.2. Experiment IV 

Experiment IV is a more ecologically valid extension from 

Experiments II and III. Unlike in Experiments II and III, participants in 

Experiment IV were not explicitly instructed about the timeframe of the causal 

relation in question. In contrast, two different cover stories served to create 

two distinct scenarios, aimed at implying expectations about immediate or 

delayed causal mechanisms. The suitability of the scenarios for this purpose 

has been determined by the questionnaire study reported in 5. As in 

Experiments II and III, participants could sample evidence from a free-operant 

paradigm. There was one constant cause-effect contingency (. 75), but the 

degree of cause-effect contiguity varied from immediate (Os delay) to 2s and 

5s delay. 

If knowledge and expectations about the timeframe of a causal relation 

indeed influence how reasoners parse event streams, they should affect the 

degree of causal beliefs reasoners infer from the evidence. More precisely, 

identical covariational structures should give rise to different causal beliefs, 

depending on participants' assumptions about the timeframe of the causal 

relation in question. If participants think the relation in question implies 
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immediate cause-effect pairings, episodes containing such immediate pairings 

should be evaluated causally. If expectations of immediacy are violated by the 

experience of delayed cause-effect pairings, the same episode should be 

judged as non-causal, and occurrences of the effect should be attributed to 

alternative causes other than the candidate in question. On the other hand, if 

participants think that the relation in question involves a causal mechanism 

that takes time to unfold, an episode involving delayed cause-effect pairings 

would be expected to elicit high judgments of causal effectiveness. If, 

however, such delay assumptions are violated by the experience of contiguous 

cause-effect pairings, the episode should be evaluated as non-causal, and the 

covariation should be judged as spurious. 

Experiment IV thus allows a two-sided test of the knowledge- 

mediation hypothesis. Experiments II and III could only test whether the 

detrimental effect of a cause-effect delay is attenuated once reasoners were 
instructed that a delay was plausible. The instructions in Experiments II and 
III merely stated that a delay was possible. It was never mentioned as 

necessary. The Light bulb and Grenade scenarios employed in Experiment IV, 

however, are very specific in terms of the time span they imply between cause 

and effect. Just as immediacy is necessary for the Light bulb scenario to be 

plausible, a delay is necessary for the Grenade scenario to be believable. A 

bulb lighting up five seconds after one has flicked a switch, or an explosion 

several miles away immediately after one has launched a grenade should both 

fail to create a causal impression. Whereas the time elapsing between cause 

and effect is too long in the first scenario, it is too short in the second scenario 

to be deemed plausible. 

There are two ways to test knowledge-mediation with respect to the 

timeframe of causal relations. One way is to compare causal ratings derived 

from identical covariations manifested in immediate and delayed cause-effect 

pairings and to check whether evaluations of delayed pairings improve when 

participants are given a rationale for the delay. This was the strategy followed 
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in Experiments II and III. Another way is to likewise compare causal ratings 

in immediate and delayed cause-effect pairings, but this time to check whether 

evaluations of immediate pairings decrease when participants expect a delay. 

Experiment IV will allow both tests. 

Experiment IV adopted a similar methodology as Experiment III. 

Participants sampled evidence in a Free-Operant procedure, modified as in 

Experiment III to guarantee stable objective evidence across delays. 

Expectations about the timeframe of the causal relations were manipulated 

implicitly via two different cover stories. Unlike in Experiments II and III, 

however, this manipulation was implemented within participants, i. e. every 

participant was exposed to each of the two scenarios. Another difference in 

methodology concerned the control conditions. Experiment IV did not employ 

yoked control conditions like Experiments II and III. Instead, two control 

conditions were included where the outcome sometimes occurred on its own, 
independent of the participant's behaviour. The reason for this change was 

that Experiment IV included three levels of delay (0s, 2s, and 5s), and 

including yoked control conditions for each of them would have made the 

experiment too long. 

5.2.1. Method 

5.2.1.1. Participants 

18 undergraduate students (6 male, 12 female, median age: 19) from 

the University of Sheffield participated either to fulfill a partial course 

requirement or to receive a small nominal payment. 

5.2.1.2. Design 

I combined two thematic scenarios and five levels of causality to 

produce a2x5 within subject design. Scenario had the levels Light bulb and 
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Grenade. The five levels of causality involved three experimental and two 

control levels. The three experimental conditions all shared the conditional 

probability P(eic)=. 75, but had different cause-effect delays (0,2, and 5 s). In 

these three experimental levels the outcome never happened unless the 

participant pressed the button (P(eI-ic)=0). There were no pre-defined 

learning trials, i. e. any button press triggered the effect with a probability of 

. 75 after the relevant delay. Responses made during a delay period were also 

recorded and subjected to the reinforcement schedule. Each condition lasted 2 

minutes. The two control conditions involved 24 background outcomes, 

which were not influenced by the participant pressing or not pressing the key. 

These background outcomes were randomly scheduled within each 2-minute 

condition with the restrictions that (a) one background event occurred in each 

of 24 5-second intervals and (b) background events were separated by at least 

500ms. One control level employed P(elc)=0 (so that participants' actions were 
ineffective), the other P(elc)=. 75 with an action-outcome delay of 0 seconds. I 

included the control conditions to check whether participants can distinguish 

between causal and non-causal conditions, and to provide them with 

experience of conditions where the effect indeed sometimes occurred on its 

own, as stated in the instructions (see below). In each scenario (Light bulb and 

Grenade) there were thus three experimental conditions with P(elc)=. 75 and 0, 

2, or 5s delays, and two control conditions, one with P(elc)=. 75 and Os delay, 

but an additional 24 background events, and one with P(e1c)=0 and 24 

background events. 

For the four levels with a programmed value of P(eic)=. 75, the mean 

value actually obtained was . 76. 

5.2.1.3. Materials and Procedure 

I used a Macintosh 8500 computer, running Macromedia Director 7.0, 

to administer the experiment. Participants read instructions on the screen, 

telling them that in this experiment they had to learn to what extent their 
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actions caused something to happen on the computer screen. They then 

proceeded to a specific description of the first scenario. The Light bulb 

scenario asked participants to imagine that a switch and light bulb displayed 

on the screen were connected. It further instructed them about another switch 

in a different room invisible to them. Other persons might flick that switch 

sometimes, so that when the bulb lights up, it could be either due to the 

participant's or other people's action. The instructions for the Grenade 

scenario were structurally identical, but asked participants to imagine that a 

FIRE! Button operated a grenade launcher to fire shells into a training range, 

and that other people might also fire shells into the range (see Appendices C 

through E). 

In the Light bulb conditions, the computer displayed a drawing of a 

light bulb centrally against a gray background. 2cm below the light bulb was a 

white rectangular push-button labeled "Lightswitch" which inverted its colors 

when participants clicked on it with the mouse. An effect was represented as 

the bulb illuminating in yellow for 500ms accompanied by a whistling sound. 

In the Grenade scenario, the screen centrally displayed a rectangular viewing 

window (5 x 12 cm). The window displayed a view of the horizon with lines 

of schematic trees on the left and right side of the landscape. Approximately 

2cm below the window was a blue rectangular push-button labeled "FIRE! ". 

An effect was implemented as a 500ms display of a red and orange mushroom 

cloud in the center of the landscape, accompanied by an explosion sound. To 

make the representations more realistic, a continually repeating 20-second 

sound loop of gunfire and battlefield noises provided background sound in the 

Grenade scenario. The Light bulb scenarios were accompanied by a 

continually looping 20-second piece of funky music. Each condition lasted 2 

minutes. At the end of each condition, participants had to indicate whether or 

not there was a causal relation between clicking the button and the outcome by 

selecting one of two radio buttons. If a participant indicated and confirmed 
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that there was no causal relation, the answer was scored as 0. If participants 
indicated that there was a causal relation, they read the following prompt: 

Nobody else is (turning on the light / causing explosions). 

If you clicked the switch 100 times, 

(how often would the bulb light up? / how many explosions would 

occur? ) 

Participants then had to enter a number between 1 and 100, confirm 

their entry and then proceeded to the next condition. After having worked on 

all five conditions in one scenario (Lightbulb or Grenade), participants 

received instructions and worked on the five conditions for the other scenario. 
The order of conditions within a scenario was random, and the order of 

scenarios was counterbalanced between subjects. Participants worked 
individually and the experiment lasted about 30 minutes. 

5.2.2. Results 

Table 5-3 displays participants' mean ratings for all five levels of 

causality, broken down by scenario. Mean causal ratings in the experimental 

condition with P(elc)=. 75 and a Os delay were close to the normative level for 

both the Lightbulb (80.00) and the Grenade (81.56) conditions. As the 

temporal delay increased, ratings decreased in both scenarios. Results from 

the control conditions show that when P(e1c)=. 00, causal ratings were lower 

than in any of the three experimental conditions. However, introducing 24 

"uncaused" events but maintaining P(elc)=. 75 with no delay did not produce 

substantially lower ratings than the corresponding experimental conditions. 

Due to heterogeneity of variance between the conditions, parametric 

statistics are not warranted. For the Light bulb scenario the number of 

participants who rated the P(elc)=. 75, Os delay experimental condition higher 

than the corresponding control condition (P(elc)=. 75 , Os delay, 24 background 
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events) was 9, and the number of participants who rated the experimental 

condition lower than the control condition was 9, with no ties. There thus 

seems to be no difference between this pair of control and experimental 

conditions. For the Grenade scenario, the number of participants who rated 

the experimental condition higher than the control condition was 9, the 

number of participants who rated the experimental condition lower than the 

control condition was 6, with 3 ties. A paired sign test gives the probability of 

this result as p=. 61. The addition of 24 randomly scheduled outcomes thus did 

not significantly decrease participants' evaluations of causal strength. This 

finding is clearly at variance with associative learning and computational 

causal power approaches. Even though the continuous, trial-free, paradigm I 

used does not allow a formal assessment of P(el-c), it is evident that adding 

"uncaused" background events increases the base-rate, the probability of the 

effect occurring in the absence of the candidate cause. In contrast to the three 

experimental conditions, that all employed P(e1c) = . 75 and P(eJ-ic)=0, this 

control condition employed a value of P(el-, c) greater than 0. Numerous 

studies in the past (see Shanks, Holyoak et al., 1996 for an overview) have 

shown that increasing P(el-, c) while keeping P(e1c) constant (i. e. lowering the 

objective contingency) results in degradations of causal judgments. Section 

5.3.3.1 will come back to this abnormal finding and discuss why it might have 

occurred. 
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Table 5-3. Mean causal ratings from Experiment IV. Control conditions 
included 24 background events. Standard deviations in brackets. 

N=18 

Scenario 

Condition P(elc) Delay Lightbulb Grenade 

0.00 n/a 3.44 (11.78) 11.39 (20.13) 
Control 

0.75 Os 71.67 (25.38) 69.17 (28.56) 

Os 80.00 (9.08) 81.56 (11.83) 
Experimental 0.75 2s 59.17 (29.57) 56.11 (35.67) 

5s 50.17 (36.61) 52.39 (43.61) 

The main point of interest in this study was how the causal assessment 

of identical contingencies is affected by cause-effect-delays, and how 

knowledge mediates the influence of delay, so further analyses exclude the 

control conditions. Inspection of Figure 5-1 suggests a main effect of delay, 

unmediated by knowledge about the timeframe of the causal relation. The 

variance between the experimental conditions varied considerably, however, 

so an ANOVA is not warranted. It may be worthwhile to take a look at the 

distribution patterns of causal ratings in the experimental conditions, to 

understand how these differences in variance came about. Figure 5-2 displays 

histograms of the causal ratings in the six experimental conditions. In both the 

Light bulb and Grenade scenarios ratings for the Os delay conditions scattered 

closely around 80 and varied widely for the 2s delay conditions. For the 5s 

delay, ratings in the Light bulb scenario were also extensively distributed, but 

low ratings (0 to 10) are the largest category. However, in the grenade 

condition the 5s delay produced a bi-modal distribution of judgements: 

participants largely either rated the causal relation to be non-existent (0 -10) or 

to be perfectly deterministic (90-10), with five participants providing ratings in 

between those extremes. 
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Figure 5-1. Experiment IV: Mean ratings of causal strength for experimental 

conditions. Error bars indicate standard errors. 
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Figure 5-2. Experiment IV: Distribution patterns of causal ratings. 
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To investigate whether the impact of delay is mediated by knowledge, I 

computed difference scores for each participant's ratings in the Os and 5s 

conditions of each scenario and subjected them to an paired t-test. The 

Os 2s 5s 
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influence of delay was the same in the Light bulb (M=29.83, STD= 34.14) and 

Grenade (M=29.18, STD=41.27) scenarios, t(17)=. 08, n. s. 

5.2.3. Discussion 

In the Light bulb scenario participants expected an immediate causal 

link between their actions and the outcomes. Ratings in this scenario were 

extremely close to the implemented contingency when there was no action- 

outcome delay and dropped when a delay was introduced. In the context of 

switching on a light, temporal contiguity thus seems to be an important 

constraint of the causal relation: when an implausible delay separated cause 

and effect, participants gave lower causal ratings than when cause and effect 

followed each other immediately, despite equal contingencies in the 

conditions. 

In the Grenade scenario participants expected a delayed causal relation. 

According to Einhorn and Hogarth (1986) such expectations should bridge 

temporal gaps between causes and effects and render immediate cause-effect 

pairings noncausal. Contrary to this hypothesis, participants did not rate the 

causal effectiveness associated with immediate contingencies lower under 

Grenade than Light bulb instructions, t(17)=. 52, n. s. The immediate feedback 

of a high positive contingency in the no-delay conditions was sufficient to 

establish an impression of a causal link between participants' actions and the 

outcomes, despite prior expectations about delay. In the absence of this 

immediate feedback, mean causal ratings dropped just as much in the Grenade 

as in the Light bulb scenario. Experiment IV thus demonstrated a main effect 

of delay in causal assessment of identical contingencies, but failed to 

demonstrate evidence for knowledge mediation. It is not clear, however, why 

the Grenade cover story produced a bi-modal distribution of causal ratings in 

the 5s delay condition, but this point will be addressed again in section 5.3.3.1. 
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Overall, the detrimental effect of delay observed in Experiment IV was 

not as drastic as in Shanks et al. (1989), who reported that introducing a delay 

of 2 seconds into a . 75 contingency already produced a drop from 73 to 40 on 

a rating scale from 0 to 100. Section 5.3.3.1 will discuss why delay might 

have had a lesser impact on causal judgments in Experiment IV than in 

comparable earlier studies. 

5.2.3.1. Prior Experience of Contiguity and Within-Subjects Design 

In retrospect the design employed in Experiment IV may have been 

sub-optimal to study knowledge-mediation in assessment of delayed causal 

relations for a number of reasons. Because the experiment was conducted on a 

computer, the knowledge manipulation induced by the cover stories may not 

have been convincing enough. Participants were very aware that the computer 

controlled the presentation of outcomes. Every participant rated each 

combination of delay and contingency twice, once with Light bulb, once with 

Grenade instructions. It seems therefore especially plausible that participants 

noticed the structural identity between the problems. Another reason for the 

absence of knowledge mediation in Experiment IV could be that (previously) 

experienced contiguity is a very powerful cue to causality. Participants 

generally underestimate delayed contingencies more severely if they 

previously encountered contiguous as compared to delayed contingencies 

(Buehner & Hagmayer, 2001). In other words, once participants have noticed 

that the critical covariation sometimes is contiguous, subsequent exposure to 

non-contiguous covariations fails to elicit appropriate estimates of causal 

strength (this rationale also explained the order effect I found in Experiment 

II). The logical way to circumvent both of these problems is to forfeit the 

economy of a within-subject design and collect data between-subjects instead. 



109 

5.3. Experiment V 

Experiment V is a fully between-subject replication of Experiment IV, 

but included only the three experimental conditions. Every participant thus 

worked on only one of the six possible combinations of Scenario and Delay. 

5.3.1. Method 

5.3.1.1. Participants 

124 volunteers (103 female, 21 male) participated. 73 of them were 

undergraduate students from the University of Sheffield and participated as 

part of a lab class, the remaining 51 participants were visitors to the 

Department of Psychology, Sheffield, and participated as part of an Open Day 

Demonstration. 

5.3.1.2. Design, Materials, and Procedure 

The design and materials were identical to Experiment V. Because the 

experiment was run in large groups, all the sound effects (background 

music/gunfire and whistle/explosion) were removed in order to keep mutual 

disturbance at a minimum. The initial instructions now informed participants 

that they would solve one problem, lasting about two minutes. Subsequently, 

participants read the specific instructions relevant for their assigned scenario 

and then proceeded to the experiment. Students enrolled in the lab class were 

split into three large groups of about 25 students each to be run on consecutive 

days. After students were seated at individual computers in the classroom, the 

experimenter divided the classroom into two groups (window side vs. side 

facing the wall) and gave each group instructions on where to locate the 

relevant experimental program on their computer. Participants then started the 

program themselves and followed the instructions on the screen. This 
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procedure assigned each participant to one of the six experimental conditions. 

Participants who took part during the Open Day demonstration were also led 

into the classroom and were seated in front of a computer each. Group size 
during the Open Day demonstration varied from about 12 to 20 persons. Each 

group was randomly assigned one of the six experimental conditions, but an 

effort was made to achieve approximately equal sample sizes overall in each 

group. The Lightbulb/Os cell comprised 19, the Lightbulb/2s 19, the 

Lightbulb/5s 18, the Grenadel0s 22, the Grenade/2s 27, and the Grenade/5s 19 

participants. The experiment lasted about five minutes altogether. Once all 

participants were finished, they were dismissed from the computer lab and 

proceded to another classroom. Undergraduate students were debriefed by 

email a few days after data collection was completed, Open Day visitors were 
debriefed after completion of the experiment. 

5.3.2. Results 

Figure 5-3 displays participants' mean causal ratings in each of the six 

conditions. As in Experiment IV, causal ratings generally decreased as the 

cause-effect delay increased. In contrast to Experiment IV, however, Cover 

Story also influenced participants' rating behaviour, particularly in the two 

conditions involving a 5s delay. Causal ratings in the 5s Grenade condition 
(M=47.63, STD-44.73) were considerably higher than in the 5s Light bulb 

condition (M=17.83, STD=32.06). 
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Figure 5-3. Experiment V: Mean ratings of causal strength. Error bars 

indicate standard errors. 
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A somewhat irregular finding is the pattern of ratings in the Os delay 

conditions; the Light bulb scenario (M=55.79, STD=36.35) elicited lower 

causal ratings than the Grenade scenario (M=73.09, STD=26.93). This result 

not only contradicts the predictions of Einhorn & Hogarth's (1986) 

knowledge-mediation hypothesis (the difference is in the opposite direction 

than what would be expected, cf. introduction to 5.2), but also is at variance 

with the results from Experiment IV, where cover story had no influence 

whatsoever in the Os delay condition. An inspection of the distribution 

patterns of causal ratings (Figure 5-4) reveals that this irregular result is due to 

four participants who provided a non-causal (zero) rating in the Os Light bulb 

condition. Maybe some participants did not understand the rating instructions. 

It may well have been the case that the large group setting in which 

Experiment V was run made it harder for some participants to concentrate on 

the task, which in turn would result in more noise in the data. Figure 5-4 also 

shows that the distribution patterns in the 5s conditions of Experiment V are 

more extreme than they were in Experiment IV. The 5s Light bulb condition 

was rated as non-causal by an overwhelming majority of participants in 

Experiment V, compared to a more flattened distribution in Experiment IV. 

Os 2s 5s 
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Figure 5-4. Experiment V: Distribution patterns of causal ratings. 
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The 5s Grenade condition again gave rise to a bi-modal distribution, similar to 

Experiment IV. 

Although the data from Experiment V do not show the problematic 

heterogeneity of variance as the data from Experiment IV, one still has to be 

cautious about applying and interpreting parametric statistics, because the data 

are clearly not normally distributed. I will present the outcome of an ANOVA 

and relevant post-hoc tests anyway, and then show that the key findings are 

similar when using non-parametric tests. 

An ANOVA with alpha level of . 
05 revealed significant main effects 

of Delay, F(2,118)=7.804, and Cover Story, F(l, 1 18)=4.99 1. If knowledge 

mediates the timeframe of covariation assessment in causal reasoning, one 

would expect an interaction between Delay and Cover Story. The interaction 

would indicate that whether or how strongly delay influences causal judgment 

depends on people's assumptions regarding the timeframe of the causal 
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relation in question. The Delay x Cover Story interaction fell short of 

significance, however, F(2, l 18)=2.063, p=. 13. Tukey HSD post hoc tests 

(with an alpha-level set to . 05) revealed that within the Light bulb scenario, the 

condition involving a 5s delay received significantly lower ratings than both 

the Os and 2s conditions; the difference between the Os and 2s condition was 

not significant. In the Grenade scenario none of the three differences between 

conditions was significant. It thus appears that Delay had no effect on causal 

ratings in the Grenade scenario. The non-parametric alternative to a factorial 

ANOVA is the Kruskal-Wallis Analysis of Variance, which, however, only 

allows one-way tests. I performed two separate non-parametric one-way tests, 

one for the Light bulb, and one for the Grenade scenario. According to the 
Kruskal-Wallis test, Delay significantly influenced causal ratings in the Light 

bulb, H(2)=11.81, p<. 003 but not the Grenade scenario, H(2)=2.60, p>. 25. 

The above set of comparisons considers the detrimental effect of delay 

on causal judgments derived from constant contingencies, and allows one to 
decide whether the effect disappears or is weakened in scenarios where people 

expect a delay. Another way to analyse whether and how knowledge and 
delay interact in influencing causal judgment is to compare causal ratings 
between conditions involving identical delays and check for an influence of 
Cover Story. Such comparisons are not focussed on detrimental effects of 
delay. Instead, they inform us whether the same objective evidence (identical 

covariations manifested with equal delays) is evaluated differently, depending 

on participants' assumptions about the timeframe of the causal relation. 
Tukey's HSD (with alpha level . 05) revealed that Cover story produced 

significantly different causal ratings in the 5s conditions only: participants 

were more willing to judge a delayed contingency as causal if they expected a 
delay (in the Grenade scenario) than if they expected immediacy (in the Light 

bulb scenario). A non-parametric alternative to this set of comparisons would 
be to compute separate Mann-Whitney U statistics for each of the three Delay 
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conditions and check for an effect of Cover Story. The Mann-Whitney-U 

statistics were not significant in any of the three comparisons, however. 

5.3.3. Discussion 

Experiment V replicated the main finding of Experiment IV (and 

Experiments II and III), in that cause-effect delays generally impaired causal 

ratings in conditions with constant contingencies. In Experiment IV this 

detrimental effect of Delay was universal, and unmediated by knowledge as 

manipulated implicitly via Cover Story. I have argued that the failure to obtain 

any effect of Cover Story could have been the result of the within-subjects 

nature of Experiment IV. Participants were exposed to each reinforcement 

schedule (e. g. 75 contingency manifested with 5s delay) twice, once with 
Light bulb and once with Grenade instructions. It is thus very likely that they 

noticed the fundamental structural identity between the pairs and consequently 
learned that Cover Story concerned only a superficial alteration. This kind of 

transfer or learning effect was not possible in the between-subjects design of 
Experiment V, where each participant only worked on one problem, and 
indeed Cover Story did prove to be effective to influence how participants 

evaluated covariational evidence. 

This methodological improvement of abolishing learning and transfer 

effects came with a price, however: the between-subject design (or the large 

group setting in which it was implemented) of Experiment V resulted in more 

extensively distributed data. This greater overall noise made it difficult to 

draw any firm conclusions from the data. Inspection of the distribution 

patterns of causal ratings (Figure 5-4) does reveal a clear influence of both 

Delay and Cover Story, however, and suggests that this influence was 

particularly strong in the conditions involving a 5s delay. Inspection of the 

means (Figure 5-3) further suggests that participants in the Grenade scenario 

were more willing to judge a delayed contingency as causal than participants 
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in the Light bulb scenario. One cannot interpret too much into this finding, 

however, particularly since it rests on a bi-modal distribution of ratings in the 

5s Grenade condition. This bi-modal distribution pattern was also found in 

Experiment IV. The repeated occurrence of such an abnormality admonishes 

explaining it away by mere statistical noise. Rather, it implies that there must 

have been a fundamental ambiguity in the experimental materials that led to 

this bi-modal distribution. There are in principle two ways how a causal 

judgment experiment can be afflicted by ambiguity: the evidence presented 

from which subsequent causal judgments are meant to be derived can be 

problematic, or the dependent variable used to probe causal judgments can 

elicit more than one interpretation. Experiment II identified a serious problem 

inherent in the Free-Operant procedure, which resulted in unstable evidence 

for the causal relation. Given that Experiment III showed that a simple 

improvement to the procedure considerably alleviated the problem (and 

subsequent experiments employed this improved procedure), the first 

alternative seems not to be a likely candidate. This leaves the dependent 

variable used to probe causal ratings, and the next subsection will examine 

how the question I asked participants in Experiments IV and V might have 

confused some participants under certain conditions. 

5.3.3.1. Perceptual or Causal Judgments? 

The dependent variable employed in Experiments IV and V was based 

on a frequency estimate couched in a counterfactual question: 

Nobody else is (turning on the light / causing explosions). 

If you clicked the switch 100 times, (how often would the bulb light 

up? / how many explosions would occur? ) 
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I chose this question format over the more traditional rating scale 

"How strongly do you think clicking the switch causes the bulb to light up / 

explosions? " because my earlier work (Buehner et al., 2001) showed that 

standard rating scales are often problematic in causal reasoning research. 
Buehner et al. found that when people base causal estimates on a traditional 

rating scale, judgments can actually reflect a conflation of causal strength and 

the reliability of the information provided. 

Consider a participant who provides a low rating in answer to the 

above question. Her low rating is equally consistent with a strong belief that 

clicking the switch does not cause explosions at all as it is with a weak belief 

that clicking the switch does cause explosions, possibly even strongly, but she 
just does not know for certain. Employing a standard rating scale can then be 

especially problematic when both reliability and strength vary within the same 

experiment, as was the case in Buehner et al. 's study, where participants 

worked on multiple conditions with varying contingencies and a constant 

number of trials per condition. Consider, for example, causal ratings derived 

from two non-contingent conditions, one in which the effect never happened at 

all (P(e I c) = P(e I -, c)= 0), and one in which it happened equally often in the 

experimental and control groups (P(e (c) = P(e I -'c)= . 75). If the number of 

learning trials in each condition is constant, say eight, it follows that one 

would be more confident of the non-causal status in the former than the latter 

condition. Assuming that alternative causes are constant between the 

experimental and control groups, the cause would have had eight trials to 

"prove" its power in the first condition, and it failed on all eight of them. By 

that same rationale the cause would have had only two trials left to show its 

power in the second condition (alternative causes already produce the effect 

75% of the time, i. e. 6 out of 8 times), and it failed on both. Providing a 

constant number of trials across conditions therefore leads to varying 

reliability between these conditions: because there were more trials on which 

the cause could have but in fact failed to prove its power in the former 
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condition than in the latter, participants might be more confident of a 

noncausal rating in the former condition, leading to a causal rating closer to 0. 

The frequency estimate couched in a counterfactual question 

constituted an enormous improvement in Buehner et al. 's paradigm, as it was 

no longer susceptible to the conflation of reliability and strength. Using 

frequency as the dependent measure increased the concreteness of the 

reasoning task and improved overall accuracy. Gigerenzer and Hoffrage 

(1995), for instance, showed that performance on a fairly complex reasoning 

task requiring Bayesian inference improved dramatically, if the information 

(and question) was phrased in frequency format, rather than in probabilities. 

In the current experiment, reliability was not an issue, however, as there was 

only one contingency. Although it may be true that frequency estimates in 

general allow more accurate representations of people's (causal) beliefs than 

ratings on a scale, the frequency estimate procedure may not be the best way to 

assess causal judgments in the context of delays. 

Imagine a participant who experiences a high contingency 

implemented with an implausible long action-outcome delay. Although the 

participant may think that the causal relation is weak, she still observes that 

effects are frequently preceded by candidate causes. Consequently, a high 

frequency estimate would be consistent with the perceptual quality of the 

learning experience. In other words, the number provided could be based on a 

projection from causal beliefs about the candidate cause (the measure I 

intended it to be), or on a projection from the belief about how strongly 

alternative causes produce the effect, or a combination of the two. Because the 

question format used in Experiments IV and V was ambiguous, some 

participants may have provided perceptual judgments while others gave actual 

causal ratings. This would also explain the heterogeneity of variance in the 

experimental conditions of Experiment IV, and the abnormal finding in the 

control conditions of Experiment IV. In the control conditions of Experiment 

IV the abnormal finding was that adding a substantial number of "uncaused" 
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effects while maintaining P(e1c) at . 75 did not lower causal ratings. This result 

is at variance with all existing accounts of causal learning, both associative and 

causal power based accounts. If the probability of the effect given the cause 

P(e1c) stays the same, but the probability of the effect given the absence of the 

cause P(el-, c) increases - as was the case when inserting "uncaused" 

background events - all theories predict that causal judgments should 

decrease. However, if the judgments given by participants are not pure 

estimates of causal strength, but are confounded with estimates of the base- 

rate, then there is no reason to expect that judgments should decrease. On the 

contrary, they might even increase, which in fact they did in some participants. 

Another problem with the rating procedure in Experiments IV and V 

has to do with the wording of the counterfactual question: "Nobody else is 

(turning on the light / causing explosions)". While I intended it to be 

interpreted as a counterfactual, it may well be that some participants did not 

process the statement as a counterfactual, but as a true statement instead. It 

would have been better to phrase the statement as "Suppose nobody is.... " 

Without this addition, some participants may have taken the statement at face 

value, which of course would have violated what they learnt in the 

instructions, namely that another person is also trying to cause the effect. 

Because the statement may thus have overridden the initial instructions, some 

participants could have consequently assumed that P(eI--, c) was 0 all along. 

This in turn would have led them to attribute all occurrences of the effect to 

their button presses, as - according to their belief - no other plausible cause 

existed. This interpretation can explain both why increases in P(eI-, c) while 

keeping P(e1c) constant did not lower causal ratings, and why the overall effect 

of delay was not as substantial as in comparable earlier studies (e. g. Shanks et 

al., 1989). 

The frequency estimate procedure is also potentially confusing with 

respect to the timeframe, both over which one has to imagine pressing the 

button 100 times and over which one has to imagine the occurrence of 
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potential effects. Given the reinforcement procedure employed in these 

experiments (a . 75 contingency implemented with 0,2, or 5 seconds delay), it 

is not straightforward to envision what would happen if one pressed the button 

100 times. Because these experiments dealt with causal relations elapsing in 

continuous time, frequency estimates are probably conceptually harder to 

represent than ratings on a scale. Frequency estimates work fine in 

experiments that do not deal with evidence sampled over continuous time. 

Buehner et al. 's (2001) participants, for instance, had to learn whether 

particular medications produced headaches as side-effects in populations of 

allergy patients. After studying a datasheet providing covariational data in 

visual format, participants had to imagine 100 patients all of whom did not 

have a headache, and were then asked how many of them would have a 

headache if they had taken a particular medication. It is evident that frequency 

estimates in this context are much easier to grasp than in Experiments IV and 

V. For all these reasons I decided to change the dependent variable used to 

probe causal estimates in the last experiment to a standard rating scale. 

5.4. Experiment VI 

Experiment VI was a replication of Experiment V, but used a rating 

scale to probe for causal ratings, and employed the Os and 5s conditions only 
in order to obtain a larger sample in these two maximally informative 

conditions. 

5.4.1. Method 

5.4.1.1. Participants 

160 (116 female, 44 male, median age 18) visitors to the Department of 

Psychology, Sheffield participated as part of an Open Day Demonstration, run 

on 4 separate days. Participants were randomly assigned to the four 
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conditions, but an effort was made to achieve approximately equal numbers in 

each cell. The Lightbulb/Os cell comprised 57, the Lightbulb/5s 36, the 

Grenade/Os 36, and the Grenade/5s 31 participants. 

5.4.1.2. Design, Materials, and Procedure 

The materials were identical to Experiment V, with two exceptions: the 

number of conditions included in the study (only the Os and 5s conditions were 
included), and the dependent variable used to probe causal ratings. After 

having sampled evidence from the continuous paradigm for two minutes, 

participants had to rate causal strength on a scale from 0 to 100. I wanted to 

keep the possibility that participants base their ratings on the perceptual quality 

of the feedback at a minimum. To this end, I labelled the extreme ends and 

midpoints of the scale in such a way that would encourage participants to 

provide ratings based on their causal beliefs, i. e. 0 means that clicking the 

switch has no influence on whether or not the effect occurs, 50 means that 

clicking the switch moderately causes the effect, and 100 means that clicking 

the switch strongly causes the effect (see also Appendix F). 

A comparison of the rating scales employed in Experiment VI with the 

materials used in Experiments II and III reveals that they are nearly identical. 

The reason for this is that although conceptually Experiments II and III 

preceded Experiments IV through VI, data collection for Experiments IV 

through VI took place before Experiments II and III. It was thus possible to 

learn from the flaws of Experiments IV and V and employ the same rating 

procedure in Experiments II and III as in Experiment VI. 
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5.4.2. Results 

Figure 5-5. Experiment VI: Mean ratings of causal strength. Error bars 

indicate standard errors. 
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Figure 5-5 displays mean ratings of causal strength in the four groups. 
As in Experiments IV and V, participants interpreted contiguous contingencies 

as highly causal in both the Light bulb (M=74.1, STD=12.51) and Grenade 

(M=74.7, STD=12.56) scenarios. The 5s delay generally resulted in lower 

ratings of causality; this fording was more pronounced in the Light bulb 

(M=38.9, STD=27.44) than the Grenade (M=51.2, STD=20.82) group. 

Visual inspection of Figure 5-6 reveals that the distributions of causal 

ratings were considerably more normal than in Experiments IV and V. Causal 

ratings in the 5s Grenade condition in particular did not follow a bi-modal 

distribution anymore, but instead scattered mostly between 30 and 80, 

producing a flattened normal distribution. 

Os 5s 
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Figure 5-6. Experiment VI: Distribution patterns of causal ratings. 
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The data in Experiment VI satisfy all key assumptions for parametric 

statistics, so I will report an ANOVA on the causal ratings with Delay and 

Cover Story as independent variables. The significance level was again set to 

. 
05. The ANOVA revealed main effects of Delay, F(1,156)=95.272, and 

Cover Story, F(1,156)=4.556, and a marginal Delay x Cover Story interaction, 

F(1,156)=3.811. The Delay x Cover Story interaction indicates that the impact 

of delay on causal ratings was mediated by assumptions about the timeframe 

of the causal mechanism. Tukey HSD post-hoc tests (with an alpha level of 

. 
05) revealed that estimates of causal strength in the conditions involving a 5s 

delay were significantly higher in the Grenade scenario than in the Light bulb 

scenario. When implemented with Os delay, estimates were identical in both 

80 100 0 20 
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scenarios. This result shows that participants were more willing to judge a 

delayed contingency as causal when they thought the delay was plausible 

(Grenade) than when they thought it was not (Light bulb). 

Visual inspection of Figure 5-5 reveals that nonetheless the main effect 

of Delay was very strong, both in the groups receiving Light bulb and Grenade 

instructions. However, the Delay x Cover Story interaction and the result of the 

post-hoc tests show that the effect of Delay was less marked in the conditions 

with the Grenade instructions. 

5.4.3. Discussion 

Experiment VI replicated the most important result of Experiment V. 

Implicit assumptions about the timeframe of a causal relation determined how 

delayed contingencies were evaluated with respect to causal strength. 

Whereas this interaction of Delay and Cover Story could only be interpreted 

with caution in Experiment V, Experiment VI afforded much clearer results. 
Causal ratings no longer followed a bi-modal distribution, a sign that the 

dependent variable used to probe participants' estimates of causal strength was 

much clearer and less ambiguous than in Experiments IV and V. 

The Delay x Cover Story interaction was straightforward to interpret: 

given a constant cause-effect contingency of . 75, a 5s delay always impaired 

causal judgments relative to no delay; this detrimental effect of delay was less 

pronounced when participants thought a delay was plausible (Grenade 

instructions) than when they expected immediate cause-effect pairings (Light 

bulb instructions). This finding partially supports Einhorn & Hogarth's (1986) 

knowledge-mediation hypothesis: participants bridged temporal gaps between 

causes and effects better when they assumed a causal mechanism that took 

time to unfold, than when they contemplated an immediate mechanism. A 

stronger and complete support of Einhorn & Hogarth's hypothesis would 

additionally require that contiguous contingencies be not interpreted as 
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evidence for a causal relationship if reasoners assume a causal mechanism that 

requires a delay between cause and effect. The questionnaire data I reported in 

section 5.1 showed that people have fairly strong expectations that about five 

to ten seconds should pass between firing off a grenade and observing an 

explosion several miles away. Nonetheless, participants disregarded these 

temporal assumptions when they evaluated contiguous contingencies in the 

Grenade scenario; they provided equally high estimates of causal power in the 

Grenade and Light bulb scenarios, even though they assumed a delayed 

mechanism in the former and an immediate mechanism in the latter scenario. 

5.5. Discussion and Summary of Experiments IV through VI 

There were two motivations behind Experiments IV through VI. First, 

to test whether the results from Experiments II and III replicate in a more 

ecologically valid paradigm, and second, to allow a strong test of Einhorn & 

Hogarth's (1986) Knowledge Mediation hypothesis. The experimental 

procedure employed in Experiments IV through VI was similar to Experiments 

II and III in that both paradigms were based on a Free-Operant procedure 

implemented with probabilistic feedback. Participants were exposed to a 

reinforcement schedule for a fixed time, during which they could make 

responses (mouse clicks) whenever they wanted. They were then asked to 

indicate how strongly they thought their actions produced an outcome on the 

computer screen. The crucial difference between the two sets of studies was 

that Experiments IV through VI employed concrete stimulus materials and 

asked participants to imagine real world causal mechanisms, whereas 
Experiments II and III employed very impoverished stimuli, that bore no 

relevance to real world causal mechanisms. This distinction meant that in 

Experiments IV through VI it was no longer necessary to explicitly inform 

participants about potential delays; instead, these experiments employed two 
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different cover stories and scenarios, and relied on participants' implicit 

assumptions about the timeframe of the causal relation in question. 

Experiment IV failed to replicate the principal finding from 

Experiments II and III - an interaction between Instructions and Time. 

Instead, causal judgments decreased as the delay increased, regardless of 

participants' assumptions about the timeframe of the relation in question. 

Experiments V and VI were between-subject replications of Experiment IV; 

Experiment VI also employed a less ambiguous rating procedure as 
Experiments IV and V. With these methodological improvements, it was 

possible to replicate the principal fording from Experiments II and III: 

knowledge (as manipulated implicitly via instructions) and degree of 

contiguity interacted to influence participants' estimates of causal strength. 

Experiments V and VI thus could show that knowledge mediates the 

timeframe of covariation assessment in causal reasoning, and extended the 

findings from Experiments II and III to a more ecologically valid paradigm. 
Participants in Experiments V and VI bridged temporal gaps between 

candidate causes and effects without being explicitly told to do so (as in 

Experiments II and III); instead, they recruited their world knowledge about 

the causal mechanisms in question to help them bridge the gaps. 

The second motivation behind Experiments IV through VI was to 

allow a strong test of Einhorn and Hogarth's (1986) Knowledge Mediation 

hypothesis. I intentionally picked the Grenade scenario, because it implies that 

a delay between cause and effect is not only plausible, but even necessary. A 

grenade cannot cause an explosion several miles away the instant it is fired off; 
it has to fly through the air, and this takes several seconds (participants' 

estimates of the cause-effect delay were around 8s, see section 5.1). 

Knowledge Mediation predicts that immediate cause-effect pairings, which 

contradict expectations of a delayed causal mechanism, should not be 

interpreted as evidence for a causal relation. Experiments IV through VI 

failed, however, to provide any support for this strong prediction of the 
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Knowledge Mediation hypothesis. Contingencies implemented with Os delay 

always gave rise to high causal ratings, regardless of the assumptions about the 

timeframe as manipulated through the cover story. Note that even though 

instructions likewise had no influence on causal ratings derived from 

contiguous conditions of Experiments II and III, this finding bore no relevance 

to the strong interpretation of the Knowledge Mediation hypothesis, as the 

instructions in Experiments II and III merely stated that delays were 

possible/plausible - the cover stories employed in Experiments IV through VI 

implied that a delay was necessary in the Grenade scenario 

Does this imply that contiguity is more important than expectations 

about the timeframe of the causal relation? That contiguity overrides temporal 

assumptions? Not necessarily. It is true that all previous research on this topic 

(including Shanks et al., 1989; and Schlottmann, 1999) showed that contiguity 
is a very powerful cue to causality. It facilitates the discovery and appropriate 

assessment of contingencies. Previous studies, however, uniformly showed 

that the assessment of causal relations in the absence of contiguity is very 
hard, so much that delays of more than 2 seconds cannot be tolerated (Shanks 

et al., 1989). My results showed that this hardship can be alleviated by explicit 

or implicit knowledge about the timeframe of the candidate relation. As 

Schlottmann's results from the 5 and 7 year olds and my results from the 

contiguous conditions showed, experienced contiguity may even appear to 

override knowledge-based expectations about the timeframe of the causal 

relation in question, suggesting a bottom-up contiguity bias. What is unclear 

as yet is whether adults, when reasoning about complex probabilistic causal 

relations will always behave like 5-7 year olds, or whether they could in 

principle appreciate the necessity of delays. 

One explanation for the strong effect of temporal contiguity in 

Experiments IV through VI could be that the task was administered on a 

computer. As discussed earlier, people have very rich conceptions about (and, 

in most cases, a great deal of experience with) interactions with computers. 
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Consequently, participants in my experiments must have been aware that the 

computer controlled all aspects of the stimulus display. I tried to minimize the 

impact of this problem by employing a between-subjects design in 

Experiments V and VI, but apparently did not succeed completely. This 

change ensured that participants could not notice the structural identity 

between Light bulb and Grenade problems. However, even when solving only 

one short problem of 2-minute duration, participants in the Grenade scenario 

had no reason to believe that a delay between cause and effect was necessary. 
I managed to induce participants in the Grenade scenario of Experiments V 

and VI to think that a delay between their actions and the display of outcomes 

was plausible, but could not get them to assume it was essential. 

Another possible reason for why Experiments IV through VI failed to 

provide support for the strong claim of the Knowledge Mediation hypothesis 

could be a discrepancy in the amount of experience participants had with the 

(imagined) causal mechanisms. A typical undergraduate student probably is 

exposed to the Light bulb problem in the real world several times throughout 

the day. We are surrounded by electric light nearly everywhere we go, and we 

use it regularly. Consequently, we have a vast amount of experience with the 

simple causal connection between a light switch and the bulb lighting up. The 

Grenade scenario, in contrast, is probably unfamiliar to most students. In fact, 

probably none of my participants ever had any direct experience with this 

causal mechanism in real life. As a consequence, participants' beliefs about 

the timeframe of the causal mechanism in question could have been more 

stable in the Light bulb than in the Grenade scenario. In other words, when 

participants were subjected to a mismatch between their assumptions about the 

timeframe of the relation in question and the experienced temporal feedback, 

they might have been more willing to update their beliefs about the Grenade 

than about the Light bulb scenario. 

Despite of these explanations, it is important to stress here that 

participants in Experiments IV through VI were "correct" (in a normative 
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sense) in assigning high causal ratings to contiguous conditions in both the 

Light bulb and Grenade scenarios. After all, their actions really did cause the 

outcomes with a probability of . 75, and the computer never produced the 

outcome unless they pressed the button. Because participants knew that the 

computer controlled stimulus display and feedback, it would have even been 

irrational for them to deny the existence of a causal link between their actions 

and the outcomes in the Os Grenade scenario. Participants would have had to 

explicitly disregard objective evidence that suggested a strong causal link in 

order to conclude that the Os Grenade condition was non-causal. If one wanted 
to demonstrate knowledge-mediation on contiguous contingencies it seems 
imperative to create a scenario where delays indeed are judged to be necessary, 

and it seems likely that a Free-Operant procedure on a computer will never be 

able to meet this requirement. Real physical causal mechanisms, like the ones 
in Schlottmann's (1999) study are probably better suited for strong tests of 
Einhorn & Hogarths (1986) hypothesis. Adult participants in her study easily 
learnt that a five second delay was necessary when the slow toy was inside the 
box. 
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6. General Discussion and Outlook 

6.1. Summary 

I began this thesis with a review of the most influential theories of 

human causal induction. With the exception of the perceptual causality 

approach (1946/1963) most theories have taken up Hume's (1739/1888) 

analysis of causal induction: causal relations are unobservable; they are the 

result of a mental process which operates on observable evidence in the form 

of co-occurrences between candidate causes and effects. The main focus of 

recent research in this area has been on illuminating the exact nature of the 

mental leap from covariation to causation. One ongoing debate is, for 

example, whether the nature of the process is rule-based or associative. The 

rival accounts can be distinguished by their predictions on how manipulating 

certain aspects of the covariational evidence (e. g. base-rate, or direction of 

learning) affect causal judgments. As a consequence, most of the recent 

empirical work has been aimed at supporting one, and refuting the other 

account (e. g. Baker et al., 1996; Baker, Vallee Tourangeau, & Murphy, 2000; 

Buehner & Cheng, 1997; Buehner et al., 2001; Lober & Shanks, 2000; Perales 

& Shanks, 2000; Shanks & Lopez, 1996; Waldmann & Holyoak, 1992,1997; 

Waldmann, 2000; for an overview see Shanks, Holyoak et al., 1996). 

Although this debate was, and still is, highly fruitful and productive, it also 

meant that one important precursor for causal induction from covariation has 

largely been forgotten or ignored. In order to derive causal knowledge from 

covariation, a reasoner first has to notice that cause and effect have co- 

occurred. Most empirical studies have circumvented this problem by 

providing participants with covariational evidence (condensed in contingency 

tables, or presented in discrete trial structures). What little evidence relevant 

to this question existed (Michotte, 1946/1963; Shanks et al., 1989; Reed, 1992, 

1999), however, painted a rather unflattering picture of human causal 
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induction: people could not correctly identify causal relations in laboratory 

tasks, if cause and effect were separated by more than two seconds. 

These findings are at variance with our intuitions about every day 

causal inference where people apparently can reason about causal relationships 

that involve considerable delays. I have identified how two major theoretical 

frameworks account for the paradoxical laboratory findings. Associationism 

stresses the importance of temporal contiguity for causal induction and states 

that non-contiguous action sequences should always give rise to lower 

impressions of causal strength than comparable contiguous pairings. Causal 

power, on the other hand, does not bestow a privileged role to contiguity; 

whether or not a particular covariation gives rise to a causal impression 

crucially hinges on the reasoner's assumptions about the mechanism linking 

cause and effect. Knowledge about the causal mechanism also entails 

assumptions about its timeframe; consequently, whether or not delayed causal 

relations are identified correctly depends on the reasoner's beliefs about the 

causal mechanism in question. 

I have next pointed out that existing empirical data cannot distinguish 

between these two rivalling accounts. Relevant previous experiments had 

always employed causal mechanisms that created assumptions of immediacy 

in participants. When these expectations were paired up with experienced 

delays, participants could not identify causal relations correctly. Delayed 

cause effect pairings may have failed to elicit causal impressions either 

because contiguity is essential to causal induction (as associationism argues), 

or because of a mismatch between belief and experience (the Knowledge 

Mediation account). 

In its empirical part, this thesis contained six experiments that 

investigated the role of temporal contiguity in human causal induction. 

Experiment I sought to clarify whether people (erroneously) attach more 

importance to temporal contiguity than to covariation. This was not the case; 

participants' causal judgments were solely determined by the true underlying 
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causal structure, as manifested in two different contingencies. Identical 

contingencies were interpreted equivalently, regardless of whether they were 

implemented with contiguous or delayed cause effect pairings. Temporal 

contiguity thus plays no privileged role in human causal induction. 

Experiment I also revealed that humans understand the importance of time in 

causal induction. When the same physical event had different causal powers 

with regard to the effect, depending on its temporal position relative to the 

effect, participants used this temporal position to correctly indicate how likely 

they thought the effect would occur. 

Experiments II through VI were dedicated to direct tests of Einhorn 

and Hogarth's (1986) Knowledge Mediation hypothesis. Experiments II and 

III used the same paradigm as Shanks et al. 's (1989) original study, where 

participants evaluated the causal effectiveness of various instrumental 

contingencies. The cause-effect contingency always remained at a constant 

high value, but the cause-effect contiguity was either immediate or delayed. 

The important modification from Shanks et al. 's procedure was that my 

experiments manipulated whether or not participants were explicitly instructed 

that the causal relation sometimes might involve a delay. When participants 

were alerted to delays, their causal ratings derived from delayed contingencies 

were significantly higher compared to ratings from a group of participants who 

were ignorant of the possibility of delays. Furthermore, participants no longer 

distinguished between immediate and delayed contingencies if the conditions 

were optimal (no order effects, no confounding of contiguity and 

contingency). Experiment II also revealed a serious methodological problem 

associated with the use of Free-Operant instrumental paradigms in causal 

reasoning research: Decreasing the cause-effect contiguity automatically 

results in lower cause-effect contingencies, and thus weaker objective 

evidence for the relation in question. Experiment III (and all subsequent 

experiments) employed a modified Free-Operant procedure that considerably 

alleviated this problem. 
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Experiments IV through VI sought to extend the findings from 

Experiments II and III to a more ecologically valid paradigm, and were 

designed to allow a stronger test of Einhorn & Hogarth's (1986) hypothesis. 

Rather than instructing participants explicitly about the timeframes of causal 

relations, these experiments used two different cover stories. The Light bulb 

scenario was aimed at eliciting expectations of immediate, the Grenade 

scenario expectations of delayed cause-effect pairings. Unlike the instructions 

in Experiments II and III, which stated that delays are merely plausible, the 

Grenade cover story was intended to create the assumption that a delay was 

necessary. Various methodological problems in the procedures of Experiment 

IV and V prevented a successful replication of the principal findings of 

Experiments II and III. I curtailed these problems in Experiment VI and could 

replicate the Knowledge Mediation effect. The results did not pass the strong 

test, however, as contiguous contingencies were always rated as highly causal, 

even when the cover story implied a delayed causal mechanism. This failure 

is probably not indicative of the superordinate nature of contiguity, however, 

but rather reflects participants' rational inference strategies (discounting the 

assumptions elicited by the cover story and attending to the objective evidence 

of a strong instrumental contingency). 

6.2. Re-considering the Paradox between Real World and 

Laboratory Causal Cognition 

My motivation in this thesis was to resolve the paradox between 

previous experimental results - humans fail to identify causal relations 
involving more than a few seconds of delay - and everyday causal cognition, 

where people apparently can reason about delayed causal relations with 

relative ease. The analysis of the literature identified two theoretical 

explanations for participants' poor and apparently irrational performance in 

previous tasks. 
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According to the associationist perspective, cause-effect delays always 

result in weaker increments of associative strength. Everything else being 

equal, delayed event sequences thus give rise to weaker impressions of 

causality than do immediate cause-effect pairings. This framework of course 

has been inspired by theories of animal learning, with the openly admitted 

agenda of scrutinizing similarities between animal conditioning and human 

learning (see e. g. Shanks & Dickinson, 1987). In the very specific 

environment an animal faces in a typical Skinner box, responding less on 
delayed than on immediate reinforcement schedules may be a perfectly 

rational behaviour. After all, the utility or expected gain from responding 

typically decreases as the interval between response and outcome increases. 

Utility and causality are not equivalent concepts, however. Consider the 

following two reinforcement schedules: schedule A delivers one unit of reward 
(say, a food pellet) with a probability of 75% given a response; schedule B 

delivers three units of reward with the same probability. Although the two 

schedules have identical underlying causal structures, the expected gain from 

responding is three times higher on schedule B as compared to A. 

Consequently, schedule B should elicit higher levels of responding (cf. 

Shanks, 1993b). A similar argument can be made about delay of 

reinforcement. Although two schedules may have identical underlying 

probabilistic structures, one employing a reinforcement delay will produce a 
lower rate of reinforcement (conditional on responding) relative to a schedule 

that delivers immediate reinforcement. Anderson and Sheu (1995) have 

pointed out this important distinction between probabilities and rates, and 

showed that human causal judgment in their continuous paradigm was 

sensitive to rates rather than probabilities (for a rate based account of 

conditioning, see Gallistel & Gibbon, 2000). This sensitivity to rates presents 

a key to unravelling the paradox between experimental results and everyday 

causal cognition. 
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Anderson and Sheu (1995) suggested that judgments of causal strength 

in a continuous paradigm are a function of the contrast between the rates of the 

effect occurring given the presence versus the absence of the cause. Such 

conditional rates R(e1c) and R(el-, c) of course can only be defined relative to a 

specific timeframe. The observer needs to have some basis for attributing 

effects either to the candidate cause (thus increasing estimates of R(e1c)), or to 

the background of alternative causes (increasing estimates of R(el-, c)). 

This nicely resonates with the second explanation for participants' poor 

performance I found in the literature: Einhorn and Hogarth's (1986) 

knowledge mediation account. According to this theory, the impact of delay 

on causal learning depends on the expectations about the timeframe of the 

relation in question. If reasoners assume that a candidate cause should exert 
its influence immediately, they will attribute delayed occurrences of the effect 

to alternative causes, and not to the candidate in question. Such a mismatch 
between knowledge and experience often results in a perfectly rational 

rejection of the causal relationship in question, for instance when people do 

not "perceive" a causal relationship in delayed manifestations of Michotte's 

(1946/1963) launching paradigm. However, if experimenters do not take 

sufficient care to check whether the properties of the reasoning task they 

employ indeed match up with participants' expectations, seemingly irrational 

behaviour and judgment may arise. 

Whether or not it was irrational for Shanks et al. 's (1989) participants, 
for instance, to deny the existence of a causal relationship even when in fact 

they were in control of the stimulus presentation lies of course in the eye of the 

beholder. The experimenter is focused on the fact that the contingency stays 

constant across problems despite increases in the delay, and hence thinks the 

true causal effectiveness of key presses is likewise constant (this need not even 
be the case, as the behavioural data from Experiment II showed, section 
4.1.2.1). Participants, on the other hand, come to the experiment with rich 

conceptions about computers; they expect that their actions have immediate 
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consequences (cf. Shanks et al., 1989 p. 155). Furthermore the instructions in 

Shanks et al. 's paradigm (and all the relevant replications, including this one) 

explicitly mentioned that the apparatus sometimes might produce the effect on 

its own, independent of participants' behaviour. This statement was only 

fulfilled in the yoked control conditions (and that seems to be the only purpose 

of the yoked conditions), but participants do not know this. In fact, one can 

even point out the similarity to the blocking paradigm (see section 1.2) that 

already crippled Siegler & Liebert's (1974) study (cf. section 2.1.3.2). The 

instruction phase explicitly introduced the computer as a cause that sometimes 
brings about the effect, and one can never know whether a given flash of the 

triangle in the Free-Operant phase was brought about by the computer, or by 

one's key press. If the expectations about immediate feedback are fulfilled, it 

is easy to recognize the causal relation between key presses and the outcome; 
if, however, the expectations are violated, it is only rational to attribute 

causality to the background, which was already been established as a predictor 

My experiments have shown that the seemingly irrational detrimental 

effect of delay disappears if the quality of the feedback created through the 

experimental paradigm does not diverge from participants' expectations. The 

paradox thus is not one between participants' performance in laboratory tasks 

and their performance in the real world, but rather one between experimenters' 

conceptions of the reasoning processes involved when participants solve 

causal induction tasks in laboratories and the apparent complexity of the 

computations required to solve such tasks, both in the real world and in 

laboratories. Human causal induction was probably perfectly rational all 

along, but psychological theories of causal induction might sometimes have 

been irrational. 
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6.3. Can Associationism Account for Effects of Knowledge 

Mediation? 

I set up this thesis around two competing explanations for the 

detrimental effect of delay in causal learning found in laboratory tasks: 

associative learning theory and the knowledge mediation account. While the 

former postulates that experienced delays always result in weaker associations 

relative to immediate pairings (see e. g. Dickinson, 2001 for further 

implications of such an account), the latter proposes that the influence of delay 

depends on prior knowledge or experience. Such complex knowledge falls 

outside the scope of associative learning theory. Consequently, it predicted no 
influence whatsoever of experimentally induced delay assumptions. Instead, 

the experience of cause-effect delays should have uniformly weakened causal 

ratings, irrespective of knowledge. Experiments II, III, and VI clearly 

contradicted this prediction. The influence of delay was significantly less 

prominent when participants were aware of potential delays, just as predicted 
by Einhorn & Hogarth (1986). I could thus, for the first time, demonstrate that 

participants evaluate identical covariations experienced in a continuous free- 

operant paradigm differently, depending on the temporal assumptions 

participants bring to bear. Knowledge thus mediates covariation assessment in 

human causal induction. Proponents of the associative learning account of 

course would not deny the existence of knowledge in intelligent organisms, 
but their approach limits them considerably as to how knowledge could be 

acquired and represented: "... experience is stored as a small number of 

associative strengths. ... information about past events is lost in the 

computation. In other words, these models do not have episodic 

memory. "(Baker et al., 1996 p. 1). 

The prospects for associative learning need not be so grim, however. 

A meta-analysis of a range of data in the animal learning literature (Gallistel & 

Gibbon, 2000), for instance, has shown that animals react to changes in rates, 
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acquire information about the timeframe of causal relations, and use this 

information as a basis for their behaviour. Gallistel and Gibbon's rate-based 

account thus could explain how prior experience of delayed relations improves 

subsequent performance on similarly delayed relations, without the need to 

draw on complex conceptions of causal mechanism as envisioned by Einhorn 

and Hogarth (1986). Could such a low-level psychophysical account explain 

the results in our experiments? One can certainly raise the point that 

participants in Experiments II and III who received instructions about the 

delay actually experienced the delayed relation repeatedly in the instruction 

phase. This could have sparked some low-level learning about the timeframe 

of the relation, which in turn may have helped subsequent assessment of 

delayed relations. The order effect I found in Experiment II would fit in nicely 

with such an account: the beneficial effect of delay instructions was drastically 

reduced if participants experienced a contiguous relation between the delay 

instructions and working on the delayed scenario. Other related studies done 

by me (Buehner & Hagmayer, 2001) have shown that evaluations of delayed 

target contingencies change dramatically depending on whether participants 

experienced contiguous or delayed contingencies in a prior priming phase. 

Participants evidently acquired specific notions about the timeframe of 

candidate relations and applied those notions to the evaluation of the target 

contingencies. 

However, Experiments V and VI also demonstrated the Knowledge 

Mediation effect in the absence of specific prior experience; in these 

experiments, the instructions simply described an immediate (light switch -> 
light bulb) or delayed (grenade launcher -> explosion) causal mechanism. 

This difference between cover stories alone lead to different interpretations of 

exactly the same evidence sampled from Free-Operant procedures. The most 

parsimonious explanation for the whole range of results then seems to be that 

knowledge about the timeframe of the relation in question (be it acquired via 

experience or description) influences the parsing of causal episodes. 
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Knowledge Mediation and associative learning theory need not necessarily be 

mutually exclusive accounts, however. It may well be that the former operates 

on top of the latter. In such a unified framework, knowledge would define the 

timeframe over which events were to be classified as co-occurrences, while the 

actual event parsing algorithm could be associative in nature (although of a 

radically different nature than most conditioning accounts; causal learning 

algorithms need to be symbol manipulating, see e. g. Holyoak & Hummel, 

2000; Cheng & Buehner, 2000). 

A similar argument holds for the power PC theory (Cheng, 1997), 

which is a computational level description (Man, 1982) of rational causal 

inference(cf. section 1.4). This theory takes covariational data as its input, but 

makes no assumptions or restrictions about where the data is sampled from 

(trial-by-trial learning, summary data, described situations, etc. ). It is thus 

evident that the power PC theory on its own makes no predictions about the 

influence of delay or knowledge-mediation. Rather, assumptions about the 

timeframe of the causal relation in question would determine whether a 

specific occurrence of an effect would be attributed to the candidate cause in 

question, or to alternative causes. Once this allocation has taken place, the 

power PC theory specifies how the evidence is interpreted. 

6.4. Direct Detrimental Effects of Delay on Causal Judgment? 

From Free-Operant to Classical Conditioning Procedures 

Towards the beginning of this thesis I presented an apparent paradox 
between experimental results and untutored everyday causal inference. I have 

tried to resolve the paradox and have shown that what is paradoxical is that 

experimenters have tried to apply what appear to be oversimplified 

conceptions about causal induction to describe an evidently complex 

computational problem. My experiments have demonstrated that there could 
have been several reasons why participants in previous causal induction 
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experiments reported degraded judgments of causal strength if cause and effect 

were separated by a delay. Experiments II through VI gave clear evidence that 

the impact of delay depends on people's assumptions about the timeframe of 

the causal relation in question. Experiment II has additionally shown that an 

action-outcome delay in a free operant procedure may result in weaker 

objective evidence for a causal relation by lowering the actual values of P(e1c). 

When I took efforts to guarantee stable values of P(e1c) across delays in 

Experiment III, the impact of delay in the instruction group was no longer 

significant. 

The logical question then is, whether cause-effect delays actually do 

exert a direct detrimental influence on causal reasoning at all. Previous reports 

claiming the existence of such direct detrimental effects of delay may have 

employed procedures that confounded delay with weaker evidence, or 

presented participants with a mismatch between expectations and experience 
(or a combination of the two). Shanks and Dickinson (1987) have already 
identified that one result of delay might be to weaken the subjective evidence. 
They reasoned as follows: 

Presumably delaying an outcome makes it possible that the subjects 

will classify this outcome as being one that occurred in the absence of 
the action rather than in conjunction with it. This classification serves 
to decrease the subjects' estimates of OP both by reducing their 

perceived value of P(O/A) and by enhancing that of P(O/-A). [P(e1c) 

and P(eH-, c), respectively] (Shanks & Dickinson, 1987, p. 234). 

Shanks and Dickinson developed a procedure aimed at testing their argument. 
Participants had to judge how effective the pressing of certain keys was in 

producing an outcome on the screen. In contrast to the paradigm employed in 

their other paper (Shanks et al., 1989), participants now could alternate 
between pressing one of two keys (A3 and A4). Both keys produced the 

outcome with P(elc)=. 75, but A4 did so only after a 4s delay. P(el-, c) was set 
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to . 25 (presumably defined relative to a1s time-bin, although this is not 

explicitly mentioned). In line with their other findings, participants evaluated 

pressing the A4 key as significantly less causal than pressing A3. Shanks and 
Dickinson interpreted this finding as evidence against the above argument: 

If the effect of contiguity is mediated by a change in the perceived 

contingency, we should expect to have observed a decrement in the 
judgments not only for A4 but also for A3. ... delaying the outcome for 

A4 does not just decrease the perceived P(O/A4) but also 

correspondingly increases P(O/-A4). As these delayed outcomes were 

unlikely to have occurred in close association with A3, they should 

also have served to increment P(O/-A3), thus reducing the perceived 

contingency for A3 as well as A4. (Shanks & Dickinson, 1987 p. 235) 

Unfortunately, Shanks and Dickinson did not provide an analysis of the 
behavioural data that would corroborate their claim. There is no reason to 
believe that participants did not attribute the (delayed) outcomes they 

produced by pressing A4 to their subsequent presses of A3. Under such an 
interpretation, delaying the outcome for A4 would still have decreased the 

perceived P(O/A4), but crucially, it would also have increased the perceived 
P(O/A3). Without an analysis of the response-outcome structure, Shanks & 

Dickinson's contention remains an untested speculation. It is, however, 

weakened by the fact that participants overestimated the causal effectiveness 

of A3 (see Figure 3 in Shanks & Dickinson, 1987 p. 236), both in comparison 
to two identical control conditions (Al, A2) which were not paired with a 
delayed condition, and relative to the objective contingency. The 

overestimation of A3 suggests that participants did in fact over-estimate 
P(O/A3), contrary to Shanks and Dickinson's claims. 

Be that as it may, Shanks and Dickinson's (1987) argument was one 

about the subjective experience derived from the evidence at hand. While this 
is an important problem, the ambiguity in both Shanks and Dickinson's and 

my data from Experiment III shows that controlling the subjective experience 
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participants derive from Free-Operant procedures may not be as simple as one 

would like. Experiment II showed, however, that delays in a standard free- 

operant procedure (as employed in Shanks et al., 1989, Experiment 1; and 
Reed, 1992, Experiments 1 and 2) result in weaker objective evidence for the 

causal relation in question, which is of course a far more serious problem. 
Analysis of the behavioural data from experiments II and III have shown that a 
Free Operant procedure may not be the best paradigm to systematically study 

the influence of delay on human causal induction; one easily falls into the trap 

of providing weaker objective or subjective evidence for the causal relation 

when introducing a delay. 

A more promising approach could be to apply methods borrowed from 

classical conditioning. Rather than asking participants to interact with the 

apparatus (instrumental paradigm), one would program the apparatus to 

display candidate causes and effects according to some programmed schedule; 

participants would be first asked to observe the evidence, and then to derive 

causal estimates from it. The evidence could take the form of a movie where 

some events regularly follow one another. The experimenter could still vary 

the essential parameters contingency and contiguity. Such a strategy would 

preserve ecological validity by allowing the repeated presentation of 

information (and thus still falls within the scope of associative learning 

theory), but would also permit the experimenter full control over the stimulus 

presentation; the apparatus could readily be programmed to provide stable 

evidence for the causal relation across delays. Future research, based on such 

new paradigms that fully eliminate any confounds of delay with weaker 

evidence for the relation in question, may allow even stronger tests of the 

Knowledge Mediation hypothesis. 
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6.5. From Probabilities to Rates 

The experiments reported in this thesis combined and extended earlier 

studies investigating the influence of delay in human causal induction. As in 

Schlottmann's (1999) developmental study, I manipulated participants' 

expectations about the timeframe of the causal relation in question. To allow a 
full comparison with the predictions of the associative learning account, I 

employed a paradigm similar to the one used in Shanks et al. 's (1989) seminal 

study, amended with a few improvements. For reasons of ecological validity I 

abolished the notion of pre-defined learning trials. This of course made any 

implementation of P(el--ic) other than 0 impossible, because conditional 

probabilities are always defined relative to some event. While it was still 

possible to implement a probability that a given response triggered an 

outcome, it was no longer possible to implement a probability that "no 

response" triggered an outcome, because there was no pre-defined length of 

time that could be classified as a period of no response. Consequently, it is no 
longer possible to refer to action-outcome pairings in general as manifestations 

of a contingency schedule in the traditional sense. 

This was not a problem for the experimental conditions in Experiments 

II through VI because the outcome never occurred unless it was triggered by a 

response, so the contingencies were in fact identical across all experimental 

conditions. The experimental conditions deliberately employed P(ej-, c)=0, 

because my focus was on observing the influence of delay in its purest form, in 

conditions where causal power would be easiest to infer. I therefore thought it 

best not to place extra computational workload (dedicated to the discounting of 

effects caused by the background) on the participants. 

However, future research in a continuous paradigm such as the one I 

used may wish to address more complex situations, ones that also allow a 

systematic examination of the impact of effect base-rates greater than zero. A 

probabilistic notion of causality does not really apply to such scenarios, so 
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current theories based on such notions (including associative learning) will 

need to be superseded by a framework that embraces the continuous paradigm 

more adequately. Such a framework will probably be based on rates rather 

than probabilities (for a rate-based account of conditioning see Gallistel & 

Gibbon, 2000). Another important limitation of probabilities is that they are 

restricted by an upper bound of 1, whereas rates are unconstrained (except by 

perceptual limitations of the reasoner, see Gallistel, 1990; and Cheng, 1997). 

This problem particularly applies to evaluations of generative causes. 
Consider a task commonly employed in causal reasoning experiments 
(Wasserman et al., 1993, p. 176): 

To implement the ... contingencies, I defined 1-s sampling intervals. If 

the subject tapped the telegraph key at least once at any time during the 

sampling interval, the light [effect] occurred with the conditional 

probability of P(OIR) at the end of the interval; otherwise, the 

conditional probability of the light was P(OINoR). 

Both conditional probabilities in Wasserman et al. 's experiment ranged 
from . 00 to 1.00. There is, however, no reason why participants should know 

that the rate was artificially limited to one effect per second. The light could 

conceivably have flashed more often than that. Applying a probabilistic 
framework to such continuous paradigms thus may produce drastically 

different conceptions of task characteristics between experimenters and 

participants. Anderson and Sheu (1995) have shown that humans indeed base 

their causal judgments on rates rather than probabilities, when sampling 

evidence from a continuous paradigm. 

Analogously to the probabilistic contrast P(e1c) - P(ej-, c) used in 

contemporary causal reasoning theories (see chapter 1), a rate-based 
framework could involve a contrast of the effect-rate conditional on the 

presence or absence of the candidate cause, R(e1c) - R(el-, c) (c. f. Anderson & 

Sheu, 1995). Regardless of whether one adopts a probabilistic or a rate-based 
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notion of causality, however, knowledge about the timeframe of the causal 

relation in question will always be critical for the computation of an adequate 

contrast, as the reasoner needs to have some basis for deciding whether a 

particular effect should be attributed to the candidate or to alternative causes. 

6.6. Knowledge-based Causal Induction 

I have demonstrated that different beliefs about the timeframes of 

causal relations result in different interpretations of identical covariations. 

Prior knowledge mediates causal inference in many other interesting ways. 

Michael Waldmann, for example, showed that different assumptions about 

causal models (predictive vs. diagnostic learning) likewise result in different 

interpretations of identical covariations (see Waldmann, 1996 for an 

overview). Both his work and the experiments presented here demonstrated an 

interaction between bottom-up (covariation assessment) and top-down 

(knowledge mediation) components in causal induction. Associationism is at a 

loss explaining such interactions, as it disallows any influence of knowledge 

(be it assumptions about structure or delay) beyond pre-existing associations. 

The causal power approach, although it accounts for knowledge mediation, 

suffers circularity: it cannot explain how knowledge is acquired in the first 

place. Cheng's (1997) power PC theory combines bottom-up and top-down 

components, and suggests that all aspects of causal knowledge can ultimately 

be derived from observation. Lien & Cheng (2000), for instance, 

demonstrated that humans are able to derive abstract categories of causal and 

non-causal entities from experienced covariations, and use this category 

knowledge when classifying novel objects as genuine or spurious causes. 

Power assumptions that distinguish causal from non-causal covariations thus 

are not shrouded in mystery or innateness but can themselves be inferred from 

covariation. 
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What lies ahead is to determine how people acquire assumptions about 

the timeframe of causal relations (other than extracting them from 

experimental instructions). Analogously to Lien & Cheng's findings, future 

research may show humans to be capable of deriving surprisingly well- 
formulated temporal assumptions from statistical information. Once again 

David Hume can inspire our search: "In vain, therefore, should we pretend to 

determine any single event, or infer any cause and effect, without the 

assistance of observation and experience" (1777/1902 p. 30). 
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Appendices 

Appendix A Scenarios for Questionnaire preceding 
Experiments IV through VI 

Q1. Imagine you are an officer in a military training range. Your job is to test 

ammunition. How much time would you expect to pass between firing off a 

shell and being able to see the explosion in the training range? 

Q2. How much time do you expect to pass between flicking a light switch and 
the light going on? 

Q3. Imagine you are at a pedestrian crossing. How much time do you expect 
to pass between you pressing the button and the light signal turning green? 

Q4. Imagine you are an engineer. Your job is to test an infrared remote control 
for a simple device located in the same room as you. How much time do you 

expect to pass between pressing the button on the remote control and the 

device to operate? 

Q5. Imagine you are a journalist reporting back to Europe from Australia. You 

have set up a satellite link both to send recordings to your studio in Europe and 
to see on TV in "real-time" what your colleagues in Europe receive from you. 
How much time do you expect to pass between you sending a signal and being 

able to see it on your TV? 

Q6. Imagine you are standing in front of an elevator. How much time do you 

expect to pass between pressing the button and the elevator to arrive? 
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Q7. How much time do you expect to pass between pressing a key on the 

computer keyboard and the corresponding character to appear on the screen? 

Q8. How much time do you expect to pass between pressing the button of a 

camera and being able to hear the shutter click? 

Q9. How much time do you expect to pass between pushing the button of a 
doorbell and the bell ringing? 

Q10. Imagine you are searching a database on the internet. How much time do 

you expect to pass between clicking on a button (e. g. "submit") and the 

corresponding action becoming visible on the screen? 
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Appendix B Revised Scenarios for Questionnaire 

Ql. Imagine you are an officer in a5 by 5 mile military training range. Your 

job is to test a grenade launcher. How much time would you expect to pass 
between launching a missile and being able to see the explosion in the training 

range? 

Q4. Imagine you are an engineer. Your job is to test an infrared remote control 

for a TV located in the same room as you. How much time do you expect to 

pass between pressing the button on the remote control and TV to operate? 

Q5. Imagine you are a journalist reporting back to Europe from Australia. You 

have set up a satellite link to send recordings to your studio in Europe. On 

your TV you will see what your colleagues in Europe receive from you. How 

much time do you expect to pass between you sending a signal from Australia 

to Europa and being able to see it on your local TV back in Australia? 

Q10. Imagine you are looking for information on the internet. How much time 

do you expect to pass between performing an action (e. g. clicking on a button) 

and the consequences (e. g. the button lighting up) becoming visible on the 

screen? 
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Appendix C General Instructions for Experiments IV 

through VI 

In this experiment you have to evaluate the extent to which your 

actions can cause something to happen. There will be a button on the 

computer screen and your task is to observe whether clicking it causes 

something to happen on the screen. 

You can choose at any time whether or not to click the button. You can 

click it as often or as little as. like. However, because of the nature 

of the task it is to your advantage to click it some of the time and not to 

click it some of the time. 

The effectiveness of you clicking the button stays the same within a 

particular condition but may well vary between problems. 

At the end of each problem you will be asked whether clicking the 

button causes the outcome and if so, how strongly it causes the 

outcome. 

You will work on two different scenarios with five problems per 

scenario, each lasting about two minutes. 
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Appendix D Specific Instructions for Light bulb scenario 

In the upcoming five problems there will be a lightbulb and a 
lightswitch on the screen. Your task is to judge the extent to which 

clicking the switch causes the bulb to light up. 

Imagine that the lightbulb is connected to the switch you can click on 

and to a switch in another room that other persons can flick without 

you being aware of it. Thus, if the bulb lights up, it may be because 

you clicked the switch or because a person in the other room flicked 

the second switch. 

You can choose at any time whether or not to click the switch. You can 

click it as often or as little as you like. However, because of the nature 

of the task it is to your advantage to click it some of the time and not to 

click it some of the time. 

You will work on five different problems with the lightbulb, each 

lasting for 2 minutes. The relationship between your clicking the 

switch and the bulb lighting up will be constant within each problem 
but may well differ from one problem to the next. 

At the end of each problem you will be asked whether and how 

strongly clicking the lightswitch makes the bulb light up. 
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Appendix E Specific Instructions for Grenade scenario 

In the upcoming five problems you will view a military training range 
from a command post several miles away. Your task is to find out 

whether clicking on a "FIRE! " button produces explosions in the range. 

Imagine that the "FIRE! " button operates a grenade launcher which is 

situated in your post and fires grenades into the training range. When a 

grenade you've fired hits the training range, you will see an explosion. 

However, an officer in another post is also firing into the range. Thus if 

you see an explosion, it may be because you clicked the "Fire! " button 

or because the second officer in the other post launched a grenade. 

You can choose at any time whether or not to click on "Fire! ". You can 

click it as often or as little as you like. However, because of the nature 

of the task it is to your advantage to click it some of the time and not to 

click it some of the time. 

You will work on five different problems with the grenade launcher, 

each lasting for 2 minutes. The relationship between your clicking 

"Fire! " and explosions in the range will be constant within each 

problem but may well differ from one problem to the next. 

At the end of each problem you will be asked whether and how 

strongly clicking "FIRE! " causes explosions in the range. 



160 

Appendix F Rating Instructions in Experiment VI 

1 Light bulb Scenario 

We will now ask you how clicking the switch affects whether or not 

the bulb lights up. 

Please use the rating scale on the bottom for your judgment. 

0 means that clicking the switch has no influence on whether or not 

the bulb lights up, 

i. e. the bulb lighting up is completely independent from your 

clicking 

50 means that clicking the switch moderately causes the bulb to light 

up. 

i. e. half of your clicks make the bulb light up 

100 means that clicking the switch strongly causes the bulb to light up, 

i. e. everytime you click the switch, the bulb lights up. 

Please use values in between if your estimate is between two numbers. 

What effect does your clicking the switch have on the bulb lighting 

up? 
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2 Grenade Scenario 

We will now ask you how clicking the switch affects whether or not 

explosions happen. 

Please use the rating scale on the bottom for your judgment. 

0 means that clicking the switch has no influence on whether or not 

explosions happen, 

i. e. the explosions are completely independent from your 

clicking 

50 means that clicking the switch moderately causes explosions, 

i. e. half of your clicks produce explosions 

100 means that clicking the switch strongly causes explosions, 

i. e. everytime you click the switch, an explosion happens. 

Please use values in between if your estimate is between two numbers. 

What effect does your clicking the switch have on the explosions? 


