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A b s t r a c t

Longfield, S.A. 1998. River response to recent environm ental change in the Yorkshire Ouse 
basin, northern England. University o f  Leeds, Ph.D.

This study examines historical variations in flood frequency and magnitude in the Yorkshire 
Ouse basin, northern England, over the last 900 years. The causes o f  temporal and spatial 
variations in flooding are evaluated through investigation o f  clim atic and land-use controls.

Documentary evidence o f  flooding and clim ate suggests that a series o f large floods between 
1263 and 1360 were associated with clim atic deterioration from the Medieval Optimum. A 
shift to generally m ilder conditions between 1361 and 1549 resulted in no floods being 
documented in the Ouse basin The frequency o f  large magnitude floods increased dramatically 
between 1550 and 1680, as a result o f  low temperatures, increased surface wetness, more 
frequent snowfall and a southward shift o f  prevailing storm tracks over m iddle latitudes, 
associated with the onset o f  the "Little Ice A ge’. In contrast, during a w anner phase o f the 
Little Ice Age, between 1681 and 1763, the frequency o f  localised sum m er flooding increased 
in the Ouse basin due to more frequent high intensity, short duration convective storms. 
Extensive lowland flooding became more common between 1764 and 1799 due to an increase 
in heavy rainfall, followed by a 50-year period characterised by relatively moderate flood 
frequencies and magnitudes. The later half o f  the nineteenth century experienced high flood 
frequencies and m agnitudes, particularly in the 1870s and early-1880s, coinciding with high 
rainfall totals and a high incidence o f cyclonic flood generation.

Gauged flood and climate data, and land-use records indicate that the period between 1900 and 
1916 was characterised by very low flood frequencies and magnitudes, associated with low 
rainfall, warm tem peratures, and an increase in westerly flood generation. Between 1916 and 
1943 there were marked variations in flood m agnitude between the rural northern rivers and 
southern industrialised rivers. M agnitudes generally increased on northern rivers, w hilst on 
some southern tributaries o f  the Ouse, flood m agnitudes declined as a result o f  widespread 
channel im provem ent and flood defence schemes. Around 1944 a marked and sustained 
increase in flood frequency on northern rivers was associated with an increase in the incidence 
o f heavy daily rainfall, greater westerly flood generation and large-scale upland and lowland 
drainage. Very low flood frequencies and m agnitudes between 1969'and 1977 resulted from 
extremely low rainfall totals. W hereas the m ost recent period, between 1978 and 1996 has 
experienced some o f  the highest flood frequencies and magnitudes on record, associated with an 
increase in the frequency o f  floods generated under cyclonic and south-westerly synoptic 
situations, and a num ber o f  land-use changes promoting more rapid runoff including, large 
increases in upland livestock num bers, an increase in the area under winter-cereals and the 
cumulative effects o f  moorland gripping.
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C h a p t e r  1

I n t r o d u c t i o n

1.1. THE LAND-OCEAN INTERACTION STUDY (LOIS)

This research has been undertaken as part o f  the NERC funded Land-Ocean Interaction Study 

(LOIS), whose main objective is to 'quantify the exchange, transform ation and storage o f 

m aterials at the land-ocean boundary, and to determ ine how these parameters vary7 in time and 

space’ (NERC, 1994. p iv.) W ithin LOIS there are four main com ponents .

1. Rivers, Atmosphere, Coasts and Estuaries Study (RACS), with three sub-components :

i. R iver Basins - RACS(R)

ii. Atm osphere - RACS(A)

iii. Coasts and Estuaries - RACS(C)

2. Land-Ocean Evolution Perspective Study (LOEPS)

3. Shelf Edge Study (SES)

4. North Sea M odelling Study (NORM S)

W ithin each o f  these com ponents there are two ‘interdependent elem ents’, the Special Topic 

Programme and the Core Programme. The Special Topic Programm e has funded alm ost 

seventy research projects by NERC laboratories and UK universities, w hilst the Core 

Programm e provides support such as laboratory facilities, staff, and co-ordination o f  coring 

operations. This research project has been funded as part o f  LOEPS Special Topic 12 and has 

sought to evaluate ‘Holocene and historic environm ental change in the Yorkshire Ouse and 

Tees basins and assess its influence on sedim ent and chemical fluxes to east coast estuaries and 

the coastal zone’. There were three main aims o f  this project :

1 To investigate Holocene alluvial histories and environm ental change up to 300 BP.

2. To evaluate river response to environm ental change over the documentary' and instrumental 

period.
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3. To undertake mineralogical and geochemical studies to investigate patterns and controls o f 

metal dispersal and storage

This thesis focuses on the second o f these aims, whose primary objectives are outlined below.

1.2. RESEARCH OBJECTIVES

This thesis examines historical variations in flood frequency and magnitude, and the climatic 

and land-use controls o f  flood hydrology in the Yorkshire Ouse basin, northern England It has 

three main objectives :

1 To establish a database o f instaimental (last 100-years or so) and documentary (last 900- 

years or so) records o f flooding, climate and land-use in the Yorkshire Ouse basin.

2. To assess spatial and temporal variability within Ouse basin flood records.

3 To establish whether variations in flood frequency and magnitude coincide with basin scale 

alterations in land-use change, and/or hydroclimate reflecting changes in upper atmospheric 

circulations

1.3. RESEARCH SCALE  

Spatial Scale

As part o f  the RACS(R) core programme, a network o f  flow and water quality monitoring 

stations were established in the Yorkshire Ouse basin in 1993. These stations were designed to 

provide data on river discharges and fluxes o f  sediments, metals, nutrient and organic 

m icrocontam inants (NERC, 1994) in the middle and lower reaches o f  m ajor Ouse tributaries. 

Consequently, seven short (1-2 km) river reaches were selected (figure 1.1) in close proximity 

to these sites for detailed investigations into Holocene floodplain developm ent, as part o f  

LOEPS Special Topic 12, to provide a longer-term perspective for contemporary' sediment 

fluxes and storage. W ith respect to this thesis, the location o f  flood gauging sites chosen for 

analysis was restricted to the middle and lower reaches o f  the non-tidal Ouse basin, close to the 

study reaches used for the investigation o f  Holocene alluvial histories. Climate and land-use 

records, however, were collected (where available) on a basin-w ide scale.



Figure 1.1: Location o f  Holocene investigation sites
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T em pora l Scale

In order to com plem ent the longer-term Holocene alluvial study, the most appropriate timescale 

for investigation was the documentary period This is usually considered to span the last 300- 

400 years, although in the Ouse basin records o f flooding have been compiled from as early as 

the tenth century, a period spanning som e 900 years. This time period encompasses some 

significant climatic episodes including, cooling after the Medieval Optim um, the Little Icc Age 

and the recent ameleoration o f  climate (i.e. twentieth century'), which can all be examined in 

terms o f  flood response. The clim atic am eleoration following the Little Ice Age (c. 1X50) is o f  

particular significance given the predicted increases in future tem perature (e.g. Raper et at., 

1997), and may be used as an analogue o f  flood response to a warm ing clim ate (Rumsby, 

1991). Instrumental records o f  flooding, clim ate and land-use change become available towards 

the end o f  the nineteenth century' and allow for m ore detailed examination o f trends and 

linkages. Furthermore, the instrumental period coincides with the onset o f  m ajor anthropogenic 

modifications o f  river channels, floodplains and catchm ents, which can be investigated in 

conjunction with climatic variation

1.4. RESEARCH STRATEGY AND THESIS STRUCTURE

This project was carried out in four principal phases :

(1) D ata collection

Given the lack o f  an environmental database in the Ouse basin the initial phase o f  this 

project was to assess and collect all available data. Three main databases have been 

established from a variety o f  sources, (i) flood history (ii) clim ate history, and (iii) land-use 

history. Instrumental data have been obtained from a large-num ber o f  governm ent and 

professional sources, whereas docum entary evidence has been com piled largely from 

extensive archival research. These series were then examined in phase two.

(2) Analysis

The main aim o f  this phase was to examine spatial and temporal variations in flood 

frequency and magnitude, clim ate and land-use change. Flood records are analysed using 

various tim e series statistical techniques and flood frequency analysis during the 

instrumental period, and through establishing and exam ining flood frequency and magnitude 

data for each lowland tributary during the docum entary period. Climate series analysed 

include rainfall, temperature and atm ospheric circulations using sim ilar techniques to those 

outlined above. Finally, the spatial and tem poral variations in land-use changes are 

considered.

4



(3) Development

The next phase attempted to develop a m ethodology for investigating synoptic flood 

generation in a river basin. This allowed for the examination o f  the relationship between 

hem ispheric-scale atm ospheric circulations and flooding in the Ouse basin.

(4) Integration

The final phase o f  this research strategy was the integration o f  flood, climate and land-use 

records over the last 900 years, so as to identify key linkages between climate and land-use 

changes and variations in the flood record.

Chapter 2 reviews three aspects o f  the flood-related literature, (i) recent trends in UK flooding 

(ii) the clim atic controls, and (iii) the land-use controls o f  flooding Background information 

relating to the Ouse basin is presented in Chapter 3. This is followed by three chapters (4, 5, 

and 6) investigating variations in flooding, climate and land-use change respectively in the 

Ouse basin. Chapter 7 provides an integrated overview o f  flood response to environmental 

change in the Ouse basin, and Chapter 8 presents the principal conclusions o f  the study.
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C h a p t e r  2

R E V I E W  OF LIT ERA TU RE : 

Recent trends in flood frequency and magnitude in the UK : 

climatic and land-use controls

2.1 INTRODUCTION

The main aim o f this literature review is to outline the mechanisms by which changes in climate 

and land-use can affect flood frequency and magnitude. The chapter has three main sections, 

the first outlines observed variations in flood records in several areas o f  the UK over the past 

few hundred years or so. The second and third parts o f  this chapter consider in detail, how 

clim ate and land-use respectively, m ay influence flood hydrology.

2.2 RECENT TRENDS IN UK FLOODING: 1750-1995

This section reviews temporal trends identified in flood studies for several regions o f  the British 

Isles, namely, W ales, Scotland, and northeast England. In these areas both gauged and 

documentary flood records have been analysed for large num bers o f  rivers, to examine 

variations in flood frequency and magnitude. Examples are also considered in Ireland and 

Southern England.

One o f  the first studies that investigated long-term changes in flood frequency and magnitude in 

the UK was that o f  Howe et al. (1967), on the Upper Severn and W ye in mid-W ales. Analysis 

o f  a flood stage record for W elsh Bridge at Shrewsbury, suggested that the periods between 

1840-1880 and 1940-1964 were characterised by high flood frequency and magnitude. The 

intervening period was a  time o f  relatively low flood frequency and magnitude. These authors 

attributed the post-1940 increase to a rise in the incidence o f heavy daily rainfalls or storm 

events, but also conceded that land-use change, particularly pre-afforestation land drainage had 

‘aggravated’ the flood problem. Two later studies (W alsh et a l ,  1982; Higgs, 1987b) both 

agree that a re-evaluation o f  the Shrewsbury flood record suggests that the increase in flood 

frequency dates from the 1920s rather than the 1940s. These new data coincide with a  marked 

and sustained increase in flood frequency on the R iver Tawe in the Swansea Valley since the



1920s (Walsh et al., 1982) However, in this case the authors suggest that this basin was not 

affected by land-use changes, since the catchm ent is predominantly covered by grassland. This 

increase in flood frequency does coincide with an increase in heavy daily rainfall in South 

Wales.

Some o f  the most recent flood studies in W ales have been conducted by Higgs (1987a; 1987b; 

1987c) who updated and expanded the earlier work o f  Howe et al. (1967). Higgs showed that 

there had been a general decline in flood magnitude since 1968 at Bewdley (record length 1921- 

1983) which coincided with the construction o f  Clywedog Dam. However, over the same 

period (1968-1983) flood frequency increased. The decline in flood magnitude was attributed 

to a decline in winter precipitation, and the increase in flood frequency to agricultural land- 

drainage and pasture improvement. Higgs also demonstrated that the effects o f  Clywedog Dam 

were negligible as far downstream as Bewdley. Using return period analysis Higgs showed that 

‘even including the p o st-1968 decline in flood levels, the period since 1940 as a whole has 

witnessed a general increase in magnitudes and frequencies on the Severn’ (Higgs, 1987b, 

P 137.).

In Scotland flood studies have been undertaken over two main timescales. Detailed 

docum entary flood histories have been com piled for the upper Dee and the m iddle Tweed areas 

(M cEwen, 1986; 1987b; 1989, 1990). W hereas later studies have investigated more recent, 

shorter-term variations in flood frequency and magnitude (Black, 1996; Grew, 1996; Grew and 

W erritty, 1995) and flood seasonality (Black, 1992; Black, 1994; Black and W erritty, 1993; 

1997).

Over the documentary period (since c. 1750) historic flood chronologies were established (see 

McEwen (1987a) for data sources) for the upper Dee above Craithie (M cEwen, 1987b; 1989) 

and for the middle Tweed at Kelso and its tributaries, the River Leader, River Teviot and 

W hiteadder W ater (M cEwen, 1990). On the upper Dee three m ajor floods were recorded in the 

late eighteenth century (1768, 1782 and 1799) all o f  which were caused by sum m er frontal 

storms. Indeed, the most extrem e flood on record in the upper Dee, in August 1829 was also 

generated by sum m er storms, as were two o f  the three largest floods in the m iddle Tweed 

(August 1294 and A ugust 1948). M cEwen found that there had been a change in flood 

seasonality before and after 1900. Prior to 1900 floods generated by sum m er frontal storms 

were more common on the Dee, and associated with a  higher flood frequency between 1850 and 

1899. Between 1900 and 1976 flood frequency was lower, allied with an increase in winter 

flooding. In the former period, McEwen also suggests that snowm elt floods were common on

7



both the middle Tweed and Upper Dee associated with the later stages o f  the "Little Ice A ge’. 

During this period there was also clear evidence o f  a cluster o f moderate to extreme magnitude 

floods in the 1870s on the upper Dee, and between the 1870s and 1890s on the middle Tweed, 

particularly on the Teviot and W hiteadder McEwen suggests that this peak in magnitude 

coincided with an increase in the frequency o f moderate to extreme rainfall events.

Recent studies o f  flooding in Scotland have focused on examination o f gauged flood records, 

typically 20-30 years in length. The most detailed and comprehensive study into variations in 

flood frequency and magnitude in Scotland is that o f  Grew (1996), who analysed in excess o f 

130 peak-over-threshold (see section 4.2.1.) flood records Using time series techniques high 

flood frequencies were identified in the 1950s, 1980s and 1990s, with the late 1960s and 1970s 

experiencing relatively low flood frequencies Patterns in flood magnitude proved more 

difficult to characterise, however a com m on pattern in the majority o f records was a  marked 

decline in flood magnitude during the early 1970s. However, examination o f  annual maximum 

and peak-over-threshold flood records pre and po st-1988, in fifteen o f the largest river basins in 

Scotland, have revealed that, ‘Many Scottish rivers have registered new m aximum floods since 

1988, along with increases in the frequency o f  high flow occurrence and increases in annual 

ru n o ff (Black, 1996, p463.). This increase in m ajor flooding is particularly evident in westerly 

catchm ents, although no evidence was found o f  a sim ilar relationship in England and Wales, 

suggesting variations in seasonal precipitation between the areas (Black, 1996).

In northeast England documentary flood histories since the m id-eighteenth century have been 

evaluated for the Tyne basin (M acklin el al., 1992b; Passm ore et al., 1993; Rumsby, 1991; 

Rum sby & Macklin, 1994). It was found that the period between 1760 and 1799 was 

characterised by a high frequency o f  extreme magnitude floods (>20 year return period). Four 

events were estimated to have return periods in excess o f  100 years (December, 1763, 

N ovem ber 1771, March 1782 and July 1792). The largest o f  these events occurred in 

N ovem ber 1771 and Archer (1993) has suggested that this may be the largest flood ever to have 

occurred in Britain (discharge estimate o f  3900 m 3s 1 ±  780 m 3s 1 at Hexham). Large floods 

were also common between 1875-1894 and 1955-1969. Periods characterised by more 

moderate floods (5-20 year return period) occurred between 1820-1874 and 1920-1954. Low 

flood frequencies and m agnitudes were evident between 1800-1819, 1895-1919 and in the 

1970s. The m ost recent period has experienced an increase in severe flooding with large floods 

on the Tyne in 1986, 1990, 1991 and 1992.
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In contrast to the relatively unmanaged Tyne basin (Rumsby, 1991), the River Thames has been 

subject to many large-scale im provem ent schemes that have increased the carrying capacity o f 

the channel, particularly since the nineteenth century (NERC, 1986). In a recent study Crooks 

(1994) analysed peak water levels at 44 locks over a 200km stretch o f  the River Thames from 

the 1890s using cumulative deviations from the mean. It was concluded that there has been a 

constant rate o f flood events exceeding bankfiill since the 1890s, although a higher frequency o f 

extreme floods occurred prior to 1940. This was attributed to higher intensity rainfall during 

this period, and the fact that flood prevention schemes and channel dredging caused a localised 

decline in flood magnitude and event duration. Despite this conclusion, analysis o f the daily 

discharge record at Teddington on the Thames (gauged since 1883) suggests that the three 

largest floods occurred in November 1894 (1059 m ’s '), March 1947 (714 m ’s ') and September 

1968 (600 m V ) .

Finally, two studies in Ireland have also documented flood histories to assess variations in flood 

frequency. However, both rivers are situated in tidal reaches and are subject to floods caused 

by tidal surges. Tyrrell and Hickey (1991) com piled a  documentary flood chronology from 

local newspapers for the River Lee in the City o f  Cork in Ireland, for a 148 year period from 

1841 to 1988. The variability o f  flood frequency is examined in terms o f  climatic, riverine and 

tidal influences. It was concluded that flood frequency steadily increased from the 1840s until 

the 1920s when there was a dramatic rise. Peak frequencies occurred between 1925-1940 and 

1953-1966, and have shown a relative decline in the 1970s and 1980s. Rainfall was shown to 

be the principal cause o f m ost floods, however com binations o f  rainfall and tidal conditions 

were also shown to be significant, with the tidal influence becoming more important from the 

1930s to 1960s. In Northern Ireland, Prior and Betts (1974) compiled a documentary flood 

history for the River Lagan at Belfast between 1906 and 1972. 202 flood events were identified 

which caused disruption to traffic and damage. Flood frequency was found to be very high 

between 1906-1921, after 1921 there was a marked reduction in flood frequency, the opposite 

o f the trend shown on the Lee at Cork. High flood frequencies were again common between 

1938-1942 and 1953-1961.

In summary it would appear that the tim ing o f  m ajor variations in flood frequency and 

magnitude is often synchronous for a num ber o f  river basins. A series o f  m ajor floods occurred 

on both the Dee and the Tyne in the late eighteenth century, though the three m ajor floods on 

the Dee were all caused by sum m er frontal storm s, whereas those on the Tyne occurred in 

winter, spring and summer. Flood m agnitudes were again high between the 1870s and the 

1890s on the Dee, the Tweed and the Tyne. There is also evidence o f increased flood frequency
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and magnitude on the River Severn, although Howe et al. (1967) suggest this increase occurred 

between 1840 and 1880. A marked rise in flood frequency has been documented on several 

rivers around 1920. Around this time the frequency o f floods increased on the Tyne, the River 

Lee, and the Severn and Tawe in Wales In contrast flood frequency declined markedly on the 

River Lagan at Belfast around die 1920s. Evidence o f  increased flood frequency between the 

1950s and early 1960 can be seen in Scotland and Ireland, and extrem ely low flood frequencies 

and magnitudes in the late-1960s and 1970s are evident on every river. Similarly, the recent 

increase in flooding during the late 1980s and 1990 is clear in both Scotland and northern 

England

Rivers that have been subject to large-scale land-use change and/or m ajor improvement 

schemes often exhibit different trends to more natural rivers. For example, on the Thames, 

the po st-1940 decline in the frequency and extreme floods, which is not evident in Scotland or 

England, was attributed to channel dredging and flood alleviation schemes.

2.3. CLIMATIC CONTROLS OF FLOODING

2.3.1. Introduction

The relationships between climate and flooding are becoming increasingly im portant over a 

range o f  timescales. On the M ississippi river USA, Knox (1993) found that even, ‘m odest 

clim atic changes, generally sm aller than clim atic changes predicted by global circulation 

m odels for greenhouse gas increases, caused large and som etimes abrupt adjustm ents in both 

magnitudes and frequencies o f  floods’ (Knox, 1993, p432) , having far reaching implications 

for w ater engineers and geom orphologists alike. Over both historic and Holocene timescales in 

the United States (e.g. Knox, 1984; 1993, Knox et al., 1975) and Australia (e.g. Erskine and 

Bell, 1982) workers have investigated high frequency short term (20-30 years) clim atic changes 

and the response o f river systems. In the UK investigations o f  this type have traditionally 

focused on the role o f rainfall in flood generation (e.g. Howe et al., 1967). More recent 

research has moved towards the analysis o f  the synoptic conditions and large-scale atmospheric 

circulations which dictate rainfall patterns (e.g. Grew, 1996; Grew and W erritty, 1995; Higgs, 

1987c; Rumsby, 1991; Rumsby and Macklin, 1994, Longfield and Macklin, in press).

2.3.2. Controls of regional climate in the UK

Regional weather characteristics in the m id-latitudes, such as location o f  fronts, origin o f 

ainnasscs and the position o f  storm tracks arc controlled by the configuration o f  the 

circum polar vortex in the upper atmosphere (Hirschboeck, 1987). This is a circum polar flow o f
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winds from west to east around the Earth over both hem ispheres, caused by differential heating 

o f the Earth’s surface, and rotation o f  the globe (Lamb, 1982). Imbalance within the flow 

causes pressure gradients, and the formation o f  high and low pressure systems, or anticyclonic 

and cyclonic synoptic systems. A tm ospheric circulations, which steer synoptic systems, 

ultim ately dictate the character o f  UK weather, and it is analysis o f  circulation types that can 

most effectively define and explain clim atic variability (Kelly et al., 1997)

In order to assess the variability o f  atm ospheric circulation, a classification scheme is required. 

The main aim o f  such schemes is to 'identify a small num ber o f  patterns which occur most 

frequently, thereby describing much o f  the total variation in circulations with a relatively small 

num ber o f  patterns’ (El-Kadi & Smithson. 1992, p432)

2.3.2.1. The Lamb (1972) catalogue of atmospheric circulation types

Classification o f  large-scale atm ospheric circulations was pioneered in Europe by Franz Baur 

(cited in Kelly et al., 1997), who developed the European Grosswettcrlargen classification (see 

Y am al, 1994 for summary). However, by far the m ost frequently used classification for the 

British Isles is that developed by Lamb (1972), which is based on the general steering and 

character o f  weather patterns over the UK (Jones and Kelly, 1982).

Table 2.1 : Weather associated with Lamb circulation types over the British Isles

Circulation Type Weather Characteristics

Anticyclonic Mainly dry with light winds 
Some summer thunder
Warm in summer and cold or very cold in winter

Cyclonic Depressions stagnating or passing over UK
Wet or disturbed weather
Variable wind direction and sttength

Westerly Unsettled or changeable weather - most rain in N and W of UK 
Mild and stormy in winter 
Cool and cloudy in summer

North -westerly Cool with changeable conditions - particularly in N and E
Northerly Cold, disturbed weather in all seasons

Snow and sleet showers in winter - particularly in N and E
Easterly Cold in autumn, winter and spring 

Occasionally severe weather in south, with snow 
Snow or sleet showers in E and NE

Southerly Warm and thundery in spring and summer 
Mild or cold in winter depending on airmass origin

South-westerly Very high rainfall totals over whole country
Warm moist airmass

Based on Lamb (1972) and Barry and Chorley (1982)



Lamb (1972) has classified British Isles weather types on a daily basis since 1861, based on the 

location o f fronts and pressure systems, and direction o f  movement. Circulations are classified 

over the area 50° to 60° N and 10°W to 2°E. and represent one o f  the W orld 's longest set o f  

continuous daily weather charts (Kington, 1975; 1980) Seven primary weather types were 

recognised over the British Isles each with distinctive weather characteristics (table 2.1), five 

directional types (W, NW , N, E, and S) and two synoptic system types (cyclonic and 

anticyclonic). Lamb further recognised cyclonic and anticyclonic hybrids o f the directional 

types, and an unclassified non-directional category, thereby totalling 27 individual circulation 

types. This subjective classification scheme is derived from surface synoptic charts and charts 

at the 500 hPa level (approximately 5.5km altitude in the UK (Davies et al., 1997)) which 

describe flows higher in the atmosphere (Kelly et a!.. 1997)

A dvan tages and  lim ita tions of the  L am b (1972) catalogue

Detailed reviews o f  the lim itations o f the Lamb catalogue are given by El-kadi and Smithson 

(1992) and O ’Hare and Sweeney (1993), who state that problems primarily arise due to the fact 

that British Isles airflows are both com plex and constantly changing, and to simplify this into a 

practical system o f  classification is extremely difficult Eight m ajor limitations have been 

identified with respect to the Lamb classification :

1) Additional Classes : It is difficult to classify the sheer variety o f  UK weather into seven 

primary types, and the addition o f  the hybrid classes has further com plicated the situation.

2) Unclassified Type : Com plex airflows have to be included in the unclassified category.

3) Regional Variation : Marked differences in weather conditions can occur in different parts o f  

the British Isles on the same day. This could be a result o f  there being several airflow types 

over the British Isles at any one time. M ayes (1991) has suggested a regional breakdown o f  

circulation types would help redress the problem

4) Lack o f Objectivity : This is a very subjective system which is classified by the visual 

examination o f  data.

5) Synchronisation : Airflow type and associated weather may be difficult to correlate due to 

recording taking place at different times.

6) ‘W ithin-type’ variations : Relationships between Lamb types and precipitation may vary 

over long periods o f  time.

7) D istant origin : It is im portant to identify the origin o f  an airflow before it reaches the 

British Isles as weather characteristics can depend on this,
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8) Meso-scale and micro-scale processes The Lamb classification is at the synoptic scale and 

gives information about the ‘big picture' rather than giving precise information about fronts 

(meso-scale) or, for example, dewpoint temperature (micro-scale)

Despite these limitations the Lamb catalogue is a valuable source o f  long-term climatic data, 

indeed one o f  the ch ief advantages o f the catalogue is its length and simplicity, combined with 

the fact that each individual circulation type can be related to characteristic weather conditions 

(O ’Hare and Sweeney. 1993).

2.3.2.2. Circulation types : relationships with precipitation and recent trends 

The first investigation attem pting to relate precipitation to atm ospheric circulation types was 

carried out by Murray and Lewis (1966). Using an early version o f  the Lamb catalogue they 

developed the PCSM indices to simplify information about synoptic features o f  the weather 

over the British Isles. The P-index provided a measure o f progression or westerliness, the C- 

index cyclonicity, the S-index southerliness and the M-index meridionality. It was found that 

rainfall was closely correlated with a positive C-index (high frequency o f cyclonic days), and to 

a lesser extent, with a positive P-index (high frequency o f  westerly days), a finding reiterated in 

later studies (e.g. Murray and Benwell, 1970; Perry, 1968; 1969). However, these indices 

imply a m utually exclusive relationship between circulation types (Grew, 1996) (e.g. C-index is 

positive when the num ber o f  cyclonic days is high, and low when the num ber o f  anticyclonic 

days is high), which in fact is far more complex. By applying Principal Com ponent Analysis 

(PCA) to the Lamb catalogue Jones and Kelly (1982) also, in effect, derived four synthetic 

indices to describe variations in circulation types. The main advantage o f this approach being 

that the indices ‘are statistically uncorrelated and that a m aximum am ount o f  variance is 

accounted for in a m inimum num ber o f  indices’ (Jones and Kelly, 1982, p i 49 ). It was found 

that the first tw o components were significantly correlated with the England W ales precipitation 

(EW P) record, suggesting that enhanced anticyclonicity and/or decreased westerliness was 

associated with low rainfall, and enhanced cyclonicity and/or decreased anticyclonicity and 

westerliness were associated with high rainfall totals.

Although these studies suggest simple relationships between synoptic indices and precipitation 

they do not consider actual precipitation totals associated with individual Lamb types. Stone 

(1983a; 1983b) calculated mean daily precipitation for all 27 Lamb types over a 15-year period 

for central, eastern and southern England, and discovered that westerly, cyclonic and cyclonic- 

westerly circulations were three o f  the m ost frequently occurring types with high precipitation 

totals. A more com prehensive study o f  daily precipitation and Lamb types was undertaken by
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Sweeney and O ’Hare (1992) who mapped the geographical distribution o f the mean daily 

precipitation associated with each Lamb type based on rainfall data at 65 lowland stations in the 

British Isles dating as far back as 1875 Cyclonic-south-westerly type was found to deliver the 

highest mean daily rainfall totals over the whole area (see figure 2.1), followed by cyclonic- 

southerly and south-westerly circulations. Anticyclonic-northerly and north-easterly types were 

found to be two o f  the driest circulations Furthemiore, o f  the three m ost frequent types, 

westerly, anticyclonic and cyclonic respectively, the cyclonic type was found to have the 

highest daily mean precipitation (4.2mm), followed by westerly (3.6mm) and anticyclonic 

(0.8mm). Marked geographical variations in rainfall receipt were also evident within individual 

circulations (see figure 2.2). W hilst cyclonic type showed a fairly uniform distribution o f 

precipitation over the UK, westerly circulations were characterised by a marked west-east 

gradient in rainfall receipt, with areas to the east o f  m ajor upland regions being drier, 

particularly on the east coast o f  Ireland and to the east o f  the Pennines.

Investigations concerning inter-annual and inter-seasonal variability within Lamb types has 

revealed a number o f significant trends. The num ber o f  westerly days has declined markedly 

since the 1950s (Jones and Kelly, 1982; Lamb, 1972; Sweeney and O ’Hare, 1992), a  trend most 

pronounced in w inter m onths, though evident in all seasons (Briffa et al., 1990). The frequency 

o f  cyclonic-westerly circulations has also experienced a sim ilar decline. Cyclonic and 

anticyclonic circulations have shown a corresponding increase, especially in the 1980s. 

Furthermore, south-westerly circulations have increased dramatically since the 1960s, with a 

two fold increase in frequency (M urray, 1993; Sweeney and O ’Hare, 1992)

Figure 2.1 : Mean daily precipitation for Lamb circulation types in the British Isles.



Figure 2.2 : Mean daily precipitation for westerly and cyclonic Lamb circulation types at selected 
sites in the British Isles (after Sweeney and O 'Hare, 1992)
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2.3.3. Atmospheric circulations and flooding

In the northern hemisphere the intensity, duration, spatial distribution and type o f  precipitation 

(i.e. rain or snow) is determined by the configuration o f  circum polar upper air waves (the 

circum polar vortex) (Cham ey and DeVore, 1979; Hirschboeck, 1988; Lamb, 1977; 1982). 

Large-scale upper air waves in the circum polar vortex alternate between zonal (west to east) and 

meridional (north/south) forms. The strength, pattern and position o f  the circum polar vortex is 

itse lf controlled by the equator to pole tem perature gradient (Lamb, 1972). W anner conditions 

produce a low tem perature gradient resulting in a northward displacem ent o f  the circum polar 

vortex and strongly zonal flow characterised by low amplitude w idely spaced waves (Lamb, 

1977, 1982). Cooler conditions cause the circum polar air mass to be shifted southwards due to 

a  steeper tem perature gradient, resulting in a  more m eridional flow regime, with high am plitude 

waves and an increased num ber o f  meanders in the circum polar vortex (Lamb, 1977; 1982).

The relationships between upper atm ospheric configurations and flooding were first 

investigated by Knox et al. (1975) for the upper M ississippi valley, USA. These authors 

examined m onthly frequencies o f  atm ospheric circulation patterns which had been classified 

into 41 different types, or ‘elem entary circulation m echanism s’ for the Northern Hemisphere 

between 1899 and 1969 by Dzerdzeerskii (1971). This num ber was reduced to 9 types relating 

specifically to North Am erica by Knox et al. (1975) and variations w ithin these types were 

linked to flood frequency and m agnitude. This work was updated by Knox (1984) who divided 

a 1 15-year partial duration series o f  floods into 4 sub-periods on the basis o f  enhanced zonal or 

meridional circulation patterns. Meridional circulation was prevalent before 1895 and after



1950 and these periods coincided with higher flood m agnitudes The intervening periods were 

dominated by a more zonal circulation patterns characterised by moderate flood magnitudes. A 

sim ilar exercise was carried out by Higgs (1987c) on the River Severn at Bewdley with a 101- 

year record o f  daily mean flows, however the results showed significant differences to the work 

o f  Knox (1984). Periods with a zonal circulation regime were responsible for the highest flood 

m agnitudes, Higgs attributed this difference to two m ain factors. Firstly, it would be unlikely 

for the same flood producing mechanism to occur in both the m id-west USA and Severn 

catchment, and secondly, anthropogenic land-use change in the form o f  increased river 

regulation, afforestation, land drainage and pasture im provem ent have significantly impacted on 

the flood regime o f  the River Severn

In a more recent study, Rumsby and Macklin (1994) investigated changes in flood frequency 

and magnitude and the vertical channel response on the River Tyne, and found a relationship 

sim ilar to that o f  Knox (1984). Rumsby and Macklin (1994) used annual frequencies o f Lamb 

(1972) weather types to calculate periods o f  enhanced meridional and zonal circulations An 

intermediate category was also identified when zonal and meridional frequencies were close to 

the long-term mean. Additional breakpoints to those identified by Knox (1984) were 

established and relationships with flood frequency and magnitude were investigated Major 

floods (>20 year return period) were associated with enhanced meridional circulation, whereas 

more moderate (5-20 year return period) flood events were characteristic o f  zonal periods. 

Intermediate periods were characterised by low flood frequency and m agnitude.

These results raised the question as to why extreme flood events are more common when 

associated with m eridional configurations o f  the circum polar vortex. According to Rumsby and 

M acklin (1994) there are two synoptic characteristics which explain the relationship : (1) The 

high amplitude waves o f  meridional configurations can often be associated with stationary 

blocking situations which can lead to multiple peak, high intensity rainfall events (Rodda, 

1970; Hirschboeck, 1987). (2) Lower w inter tem peratures result in an increase in the frequency 

o f incursions by polar air m asses, resulting in greater snow receipts, higher soil wetness and 

low evapotranspiration rates combining to cause a large flood peak through increase runoff 

rates.

The im portance o f  geographical location in determ ining the m agnitude o f  floods generated by 

m eridional and zonal types can be illustrated by com paring the Tyne and Severn basins. The 

Tyne basin is located to the east o f  the Pennines, and is in the rain-shadow o f  westerly or zonal 

weather system s (Rumsby and Macklin, 1996). This area is more susceptible to meridional
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weather systems from the north and north-east which have gathered moisture from passage over 

the North Sea. W hereas the Severn basin is located on the west o f  the British Isles and 

consequently rainfall receipts are higher from zonal weather systems.

In all the studies considered thus far, relationships between flooding and atmospheric 

circulation types have been established using m onthly or annual groupings o f circulation types 

(e.g. zonal). Although this will give an indication o f the general character o f  climate over an 

extended period, it gives no indication o f  those synoptic situations that directly cause flood 

events. A recent study by Grew (1996) has addressed this problem Grew classified each 

individual flood event from over 130 Scottish POT records according to the circulation or 

weather type that ‘triggered’ the event. The Mayes (1991) regional airflow classification was 

used to determine the weather type on the day o f  flood and the preceding day. Once each flood 

had been classified, a primary (most common flood trigger) and secondary weather type was 

established for each site. It was found that three circulation types commonly trigger flood 

events in Scotland, cyclonic, westerly and south-westerly. The relative importance o f these 

types is heavily dependent upon geographical area Floods in the western half o f Scotland are 

more com m only triggered by westerly and south-westerly weather types, whereas floods in 

eastern Scotland are more often caused by cyclonic weather types. This relationship simply 

reflects the geographical variations in rainfall receipt which occur between weather types. Both 

westerly and south-westerly types have a marked west-east rainfall gradient and supply higher 

precipitation totals to the west o f  Scotland. In the east o f  Scotland it was suggested that 

cyclonic systems which are often associated with easterly rain-bearing winds from the North 

Sea have a greater influence on flood generation in this area.

Once primary flood trigger types had been identified for each site Grew attempted to link 

observed temporal variations in flood frequency and m agnitude records to variations in the 

frequencies o f  important flood trigger types. Despite concluding that ‘a straightforward 

relationship between the pattern o f flood frequencies and trigger weather types and/or flood 

seasonality does not ex ist’ (Grew, 1996, p i 74), some relationships were evident. In western 

Scotland a decline in flood frequency between the late-1960s and early-1970s was associated 

with a decline in the w inter (December-February) frequency o f  westerly and south-westerly 

weather types. In contrast, an increase in flood frequency after the early-1970s coincided with a 

rise in the w inter frequency o f  westerly and cyclonic w eather types. In eastern Scotland, 

declining flood frequency in the early-1970s was also associated with a decline in cyclonic 

frequencies in w inter and autum n (Septem ber-November). It proved much more difficult to 

establish links between flood magnitude and w eather types, and it was concluded that ‘the
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relationship between mean excecdances and weather types is one which cannot be readily 

explained by this research’ (Grew, 1996. p i 80)

2.4. LAND-USE CHANGE AND FLOODING

2.4.1. Introduction

Changes in land-use are often cited as contributory factors to variations in flood frequency and 

magnitude. It has been suggested that land drainage schemes (e.g. Caufield. 1982; Howe et at., 

1967; Oldfield. 1982) and even increases in livestock numbers (e.g. Sansom, 1996) can 

contribute to increased flooding Similarly, land-use changes such as river channelization (e.g 

Brookes, 1985) and the construction o f reservoirs (Higgs and Petts. 1988) have been shown to 

decrease flood m agnitude, at least at a local level Thus, the main aim o f  this section is to 

consider the effects that various changes in land-use may have on flood frequency and 

magnitude. The main areas considered are, changes in agricultural land-use and practices, land 

drainage, river channelization and reservoir construction

2.4.2. Agricultural practice and land-use change

Over the past two decades there has been a great deal o f  research on the effects o f  soil erosion 

on agricultural land. This work was prompted by a rise in the num ber o f  cases when severe 

erosion was reported in the 1970s and 1980s (Boardman, 1990; Boardman and Favis-M ortlock, 

1993). Any large-scale change in agricultural practices or land-use that alter rates o f  runoff 

from agricultural land may affect flood frequency, and, in particular, flood magnitude through 

alterations in the tim ing o f  flood peaks. Evans (1990) suggests a num ber o f  factors which 

control water erosion on agricultural land, including gradient, vegetation cover, soil surface 

roughness, rainfall intensity, the m orphology o f  eroding fields, soil type, crop type and 

cultivation m ethods. Not all o f these factors are im portant in terms o f  runoff reaching arterial 

river channels, however, the two most important are likely to be surface roughness (which 

affects infiltration rates) and cultivation techniques

In order to store and absorb rainfall the surface o f  soil needs to be rough (Evans, 1990). 

Rougher soil surfaces are associated with ploughing when com pared to cultivation by tines or 

discs. The sm oothest soil surfaces occur after seedbed preparation by harrowing, and then 

drilling (Evans, 1980, 1996). Smoother soil surfaces prom ote runoff due to a reduction in 

infiltration capacity, therefore it may be suggested that ploughing could reduce runoff when 

compared to unploughed land. Furthermore, topsoil can become com pacted by heavy farm 

machinery, resulting in low soil porosity and perm eability, and the resultant wheelings or
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‘tram lines’ can become particularly compacted by frequent use when applying fertiliser and 

pesticides for example (Evans, 1996), increasing the potential for rapid runoff

Allied to the perceived increase in soil erosion in the 1970s and 1980s were reports o f  a rise in 

the incidence o f  flooding caused by runoff from agricultural land in several areas o f  north

western Europe (Boardman et al., 1994). The affected areas were typically hilly with easily 

erodible silty loessial soils, which caused damage to nearby properties through the generation o f 

sedim ent laden ‘muddy floods'. In Britain two main factors have been cited as causing 

increased soil erosion and runoff on agricultural land; the intensification o f farming, and a 

significant change in land-use (Boardman and Favis-M ortlock, 1993). Intensification o f 

farming has resulted in larger fields with the removal o f  field boundaries such as hedgerows, 

the use o f  heavier farm machinery and a shift to monoculture. However. Boardman and Favis- 

M ortlock (1993) suggest that the most im portant factor in term s o f  increased erosion and runoff 

has been a  significant land-use change. This can be clearly illustrated in the South Downs o f 

south-east England, an area which has been subject to intensive study (e.g. Boardman, 1990; 

1995; Boardman et al., 1994). Serious damage to property in this area as a result o f  rapid 

runoff from ephemeral gullies was first recorded in 1976, and then again in 1982, 1987, 1991 

and 1993. All o f  these events occurred in autumn and early winter months (Boardman, 1995). 

It was found that the onset o f  the flooding and erosion problem coincided with a change in the 

crop type being grown in the area. Since the mid-1970s the dom inant crops were autumn-sown 

‘w inter’ cereals, as opposed to  the more traditional spring-sown cereals, since higher yields 

were obtained under a w inter sow'ing regime (Boardman, 1995). The increased flood risk was 

caused by inadequate crop cover o f  arable soils, by crops such as w inter wheat during the 

w ettest m onths o f  the year (October-M arch), resulting in enhanced runoff and erosion. Under a 

traditional spring-sowing regime the soil would not have been bare in the w inter months. 

Furthermore, soils are also exposed for longer periods since autum n-sown crops tend to develop 

more slowly than spring-sown crops (Frost et al., 1990). W ith respect to England and W ales as 

a  whole, the area under w inter cereals increased alm ost threefold between 1969 and 1983 

(Evans and Cook, 1986). Boardman et al. (1994) have also suggested five other farm 

m anagem ent techniques that may increase the risk o f  runoff generation, in conjunction with the 

shift to larger fields and erosion susceptible crops.

(1) The preparation o f  fine seedbeds : the risk o f  aggregate breakdown by rainfall increases.

(2) Reduction in organic m atter content o f  the soil through a lack o f  grass in crop rotations, and 

a reliance on chemical fertilisers.



(3) The rolling o f  fields after seed drilling : produces a compact surface with a low m icro

topography

(4) Vehicle wheel tracks : severe compacting can result in wheelings acting as channels.

(5) Direction o f ploughing : fields are commonly ploughed in downslope direction which may 

promote runoff generation.

Finally, a study by Heathwaite et al. (1990) examined the impact o f  large-scale conversion o f 

grassland to arable land (a common feature in recent agricultural history), and associated 

increase in livestock numbers on remaining grassland, on surface runoff and sediment 

production in south-west England These authors investigated claims that agricultural 

intensification such as this may accelerate soil erosion due to, (1) reduced soil organic m atter 

levels in arable areas (organic m atter is im portant for ‘soil particle cohesion' and ‘the 

m aintenance o f soil structural stability’), and (2) that increasing livestock numbers may 

accelerate erosion due to surface soil com pacting, and the stripping o f vegetation cover as a 

result o f  intense grazing. The effects o f  ploughing operations were also considered. Field 

measurem ents and hillslope plot experiments were carried out on five small (0.9-23.6 km 2) 

catchments around Slapton, south o f  Dartmoor, each with a distinctive land-use type. 

M easurements showed that infiltration capacity o f the soil increased following ploughing, 

whereas grazing cattle reduced infiltration capacity. Furthermore, experimental plot studies 

with sim ulated rainfall o f  12.5 mm hr"1 for a period o f  four hours were undertaken to examine 

the effects o f  different land-use types on infiltration capacity, runoff and soil bulk density (sec 

table 2.2).
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Table 2.2 : The effect o f  different land-use types on surface runoff from hillslopes (after Heathwaite 
et al., 1990)

Land use Rainfall 
intensity 
(mm h ')

Total runoff 
(mm)

Percentage 
runoff as 
rainfall

Infiltration
capacity 
(mm h ')

Bulk
density
(S cm *)

Temporary grass 12.50 2.3 5 12.33 0.96

Cereal 12.50 3.7 7 11.04 1.08

Bare ground 12.50 10.6 21 4.00 0.93

Lightly grazed 12.50 11.6 23 5.85 1.12
permanent pasture 
Heavily grazed 12.50 26.5 53 0.10 1.18
permanent pasture 
Heavily grazed 3.25 2.6 5 0.10 1.18
permanent pasture



The highest runoff volumes were recorded for heavily grazed permanent pasture (53% o f total 

rainfall input), with high soil compaction rates reflected in the low infiltration capacity (0.10 

mm hr"') and high soil bulk density (1.18 g cm"3). R unoff was also high from bare ground 

(21%  o f total rainfall input) even though the land had recently been ploughed and rolled 

Lowest runoff volum es were recorded on ungrazed land (i .e. temporary grassland and cereals) 

where high infiltration capacities and low bulk densities resulted in only 5 to 7% o f  rainfall 

being converted to runoff. On the basis o f  these rainfall-sim ulation results Heathwaite et al. 

(1990) also examined the effects o f land-use on predicted surface runoff in m ' ha’1 (see figure 

2.3). Sim ilar trends to those outlined above were evident and two main conclusions were 

drawn. First, the ‘surface runoff in the absence o f vegetation cover is up to ten times greater 

than land with intact crop cover (temporary grass and cereals)’, and second that ‘the magnitude 

o f  runoff increases if  grazing animals are present.’ (Heathwaite et al., 1990. p80).

Figure 2.3 : The effect o f  land-use on predicted surface runoff (m'hn ') (after Heathwaite et al., 1990)

□

Lightly grazed perm anent  pasture

T e m p o ra ry  grass

C erea l
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2.4.3. Agricultural land drainage

Hill (1976) suggests that ‘agricultural land drainage may be defined as the removal and disposal 

o f  excess water from the soil in order to increase its agricultural capability’ (Hill, 1976, p252). 

The main benefits o f  drainage schemes are to increase crop yields and improve crop and soil 

m anagem ent (Massey, 1973; Trafford, 1972). However, whilst the benefits for crop production 

are widely accepted, the effects o f  drainage schemes on downstream river flows has long been a 

controversial issue (see Bailey Denton, 1862). In a review o f the impacts o f improved land 

drainage on river flows in the UK, Robinson (1990) identified five main effects o f  artificial land 

drainage :

1. Tire effects o f  an increased drainage density

2. The effects o f  an enlarged available soil water storage capacity

3. The effects o f  storm characteristics and antecedent conditions

4. The effects o f  different types o f drainage

5. The effects o f  drainage extent and location within a catchment

The rem ainder o f  this section examines the type o f  drainage schemes utilised in the UK and 

considers in detail the findings o f  Robinson (1990), which represents the most com prehensive 

study into the downstream effects o f  land drainage schemes over a range o f spatial scales.

2.4.3.1. Types of drainage system used in the UK

In-field drainage in the UK typically consists o f  a system o f  sub-surface pipes, termed 

‘underdrainage’. However, in more marginal m oorland areas, usually in upland Britain, the 

cost o f  underdrainage is considered too expensive and open ditches are used to drain the land. 

Robinson (1990) reviews both techniques and suggests that there are two main situations where 

drainage is required. Firstly when surface soil layers are saturated due to low soil permeability 

(e.g. clay soils), or a perched water table, which does not allow the frec-drainage o f  surface 

water, and secondly when groundwater levels are high (usually associated with permeable 

soils). The layout o f  sub-surface drainage system s depends on soil type and the drainage 

problem being tackled. In heavy clay soils drains are usually closely spaced (5-15m), whereas 

drains associated with groundwater problem s are more w idely spaced (upto 40m). 

Furtherm ore, the required drain spacing in clay soils is often so small that the high density o f  

pipe system s required would be too expensive, consequently m ore economical secondary 

treatments are utilised that aid the movement o f  w ater to a less dense pipe system. The two 

main m ethods o f  secondary drainage are subsoiling and moling, carried out at spacings o f  1 to 2 

metres. Subsoiling introduces an artificial drainage structure into the soil by shattering and
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lifting o f  severely compacted subsoil layers through deep ploughing. In more plastic clayey 

soils a mole plough in the form o f a bullet shaped metal rod is used to create a ‘mole channel 

and Assuring o f upper soil layers (Robinson, 1990)

In m oorland areas the m ost widely used form o f  drainage is the cutting o f  open ditches, 

com m only referred to as ‘moorland gripping’. The main aim o f  this type o f  drainage is to 

improve the cover o f heather in moorland areas and therefore increase livestock and grouse 

numbers, although the success o f  this technique has been questioned (Stewart and Lance, 1983) 

Ditches are cut using a ‘Cuthbertson' drainage plough at spacings o f around 20m, and are 

approxim ately 40-45cm deep (Robinson, 1990).

2.4.3.2. The effects of land drainage on floods

Robinson’s (1990) review o f  literature relating to land drainage revealed two ‘schools o f 

thought' with respect to the effects on peak river flows. The first suggested that land drainage 

reduces downstream flooding, by increasing the capacity o f  the soil to absorb rainfall, and 

increasing travel times as a consequence o f  deeper flow pathways. The second suggested that 

land drainage increases downstream flooding through more rapid removal o f  water from soils 

Robinson argued that this was a ‘m ajor over-sim plification ' o f  the com plex processes involved, 

based on the results o f  field-scale (ranging from 0.005 - 13.5 ha) and catchment-scale (around 

17 km ) studies.

A t the field-scale, soil type was found to  be one o f  the m ost im portant factors controlling runoff 

response to drainage. It was found that ‘at wetter sites (high rainfall and/or high clay content) 

peak flows are reduced, whilst at drier sites (low er rain, more permeable soils) peaks are 

increased’ (Robinson, 1990, p i 87.), a finding which contradicted earlier studies (e.g. Bailey 

and Bree, 1981; Rycroft and Massey, 1975; Trafford, 1973). How'ever Robinson confirmed 

earlier findings that the type o f  drainage system installed is also a m ajor factor. Higher peak 

flows were evident at sites where secondary treatm ents had been applied, when compared to 

those with pipe drains alone (Armstrong and Garwood, 1991; Trafford and Rycroft, 1973). 

Similarly, higher peaks were associated with open ditch drainage system s when compared to 

subsurface drainage schemes (Paivanen, 1976). Furthermore, when assessing the effects o f  

drainage it is im portant to consider the age o f  the drains installed as they become less effective 

widi age. Typically pipe drains remain effective for around 50 years, whereas secondary 

treatm ents such as m oling and subsoiling are only effective for around 5 years, and therefore 

require more frequent renewal.
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At the catchm ent-scale Robinson found that the impacts o f  drainage may differ from those 

observed at the field-scale, primarily due to the effects o f  im provem ents to ditches and arterial 

channels, and the effects o f  routing o f  flows from different parts o f the catchment. 

Improvements to ditches tends to speed flows, sim ilarly improvements to the arterial channel, 

which often accompany land drainage schemes, tend to increase peak flows through reduction 

o f overbank storage and increased channel velocities.

W hen assessing the impact o f  drainage in river catchm ents one m ust also consider the extent 

and location o f  drainage schemes Clearly, schemes which cover only a small proportion o f  a 

catchm ent are unlikely to have a m ajor impact on peak flows Similarly, the effects o f  drainage 

schemes on larger catchments may be difficult to discern given the large num ber o f  varying 

characteristics over the basin (Robinson, 1990). However, the location o f  drainage schemes 

within a catchment will also influence the effect o f  peak discharge (Acreman. 1985b; Newson 

and Robinson, 1983; Robinson, 1990). For example, 'due to the lagging and routing o f 

subcatchm ent flows to the outlet, increases in peaks at one point in a channel network may 

result in decreases at other points in the system ' (Robinson, 1990, p 201 ) Furthermore, the 

synchronisation o f  flood peaks from different parts o f  the catchm ent is o f  crucial importance 

(W hitely, 1975; 1979). Any drainage schemes in the low'er parts o f  a catchm ent that slow 

runoff" into the main arterial channel may increase flood peaks, whereas schemes that speed 

runoff may reduce the flood peak, conversely, the effects may be the opposite in the upper 

reaches (W isler and Brater, 1959).

W ith respect to upland drainage, m ost studies have been concerned with the effects o f 

‘m oorland gripping’ and pre-afforestation drainage schemes. This type o f drainage usually 

takes the form o f  open ditches cut into poorly drained peat moorland. Increases in peak flows 

and flood frequency prior to forest canopy closure have been noted (Hyvarinen and 

Vehvilainen, 1981), principally due to increased drainage density (Robinson, 1979; 1981; 

1986). W ith respect to moorland gripping, drainage o f  blanket peat in the northern Pcnnines 

resulted in reduced tim e to concentration and increased peak flood discharge, in effect a  more 

‘flashy’ response as a result o f  increased speed o f  runoff (Conway and Millar, 1960; Robinson, 

1985). However, several studies have suggested that upland drainage has reduced downstream 

flood peaks (e.g. Burke (1975) working in the w est o f  Ireland) though these differences were 

attributed to variations in soil type, drainage type, ploughing pattern and clim atic characteristics 

(M cDonald, 1973a; 1973b; Robinson 1985).
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In summary, the effects o f  drainage schemes on downstream flood peaks depends 0 1 1  a large 

num ber o f  factors, such as soil type, climate, and the type, extent and location o f  drainage 

schemes within a catchment. The majority o f  studies have been undertaken at relatively small 

scales (catchments no larger than 20km ) and attem pting to assess the effects o f  drainage in 

larger basins is therefore difficult. Indeed Higgs (1987a) suggests that there are thus inherent 

dangers in extrapolating research results from one catchment study to others." (Higgs, 1987a, 

p56).

2.4.4. R iver channelization  : m ethods and  hydro logical consequences

‘River channelization in England and Wales has been undertaken for the purpose o f reduction 

or alleviation o f  flooding, drainage o f  agricultural land, benefit o f  navigation, or reduction or 

prevention o f  erosion.’ (Brookes el al., 1983, p 105). These channel im provem ent schemes 

occur in both urban and rural areas, and the main methods o f channelization have been 

summarised by Brookes (1985) as follows :

• R esectioning : the deepening and widening o f  river channels to increase capacity and 

contain flood water within the channel.

• R e a lig n m e n t: where river channels are shortened by artificial cutoffs.

• D iversions : where flood flows are diverted around areas that need to be protected (e.g. in 

urban areas where channel widening is not practical).

• E m b an k m en ts  : designed to contain high flows by artificially increasing channel capacity.

• B ank  p ro tec tion  : protection against bank erosion.

• L ined  channels : channels are lined w'ith concrete to speed flow velocities and prevent 

erosion. Usually constructed in major urban areas (e.g. London and Los Angeles).

• Other channelization schemes include the construction o f  cu lverts and channel 

m ain tenance, such as the removal o f obstm ctions and dredging. Channelization does not 

include com pletely artificial watercourses such as open ditches and pipes installed for 

drainage o f  agricultural land (Brookes, 1985).

The m ajority o f  research concerned with the environmental consequences o f  river 

channelization has been conducted in the USA. Brookes el al. (1983) review both North 

American and European research and suggest that m ost studies have been concerned with the 

m orphological (e.g. Daniels, 1960; Emerson, 1971, Parker and Andres, 1976) and ecological 

impacts (e.g. Bayless and Smith, 1967; Bouchard et al., 1979; Hansen, 1971; Muller, 1953; 

Schmal and Sanders, 1978) o f  channelization. However, diere have been a num ber o f studies 

that have attem pted to investigate the hydrological consequences o f  river channelization. The
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findings o f  some o f  the most significant studies have been sum m arised by Brookes (1985) arid 

are shown in table 2.3. Many o f these authors suggest that channelization schemes have 

increased downstream flooding (Emerson. 1971; Hillman, 1936; Lane, 1947). principally due to 

the reduction in floodplain storage capacity and increases in flow velocities. Similarly, 

Heneage (195 1) (cited in Brooks, 1985) reported that flood protection works o f  the River Trent 

(protecting an area o f 1012ha) increased downstream flood levels by 10-13cm, although model 

tests suggested that the effect only persisted a few miles downstream Furthermore, Engel 

(1985) (cited in Robinson, 1990) demonstrated that channel im provem ent on the River Rhine 

has resulted in increased peak flows and accelerated flood wave velocities. Engel estimated 

that a flood in December 1882 (before m ajor channel improvement) with a recorded discharge 

o f 4680 m V 1 at Maxau, would have exceed 6400 m V ,  and peaked three days earlier under 

1982 channel conditions (after m ajor channel improvements). However, on the River Tame 

upstream channelization works did not appear to have altered downstream flood response 

(W ood, 1981), Indeed it has been suggested that ‘it is an exaggeration to assume that 

channelization always causes downstream flooding’ (Keller, 1980, p 122).

In Britain channelization in the fonn o f  arterial channel improvements often precedes 

agricultural field drainage (Essery and W ilcock, 1990) for two main reasons (Robinson, 1990) :

1. To reduce water levels in the main channel in order to enable free-draining from outfalls o f  

field drainage

2. To increase channel capacity and reduce overspill onto river floodplains

Robinson (1990) analysed flow data before and after arterial drainage works for four British 

catchm ents and concluded that local flooding was reduced, but increased flood peaks and 

shorter response times were evident downstream. These effects appeared to be greatest for 

large m agnitude floods, since prior to arterial drainage these events were subject to large 

overbank storage volumes. It was also suggested that such schemes transfer the flooding 

probleni further downstream.

At the basin scale it is probably alterations in the tim ing o f  flood peaks from tributaries that 

control the response o f  rivers to channelization. I f  channelization results in the de- 

synchronisation o f flood peaks then downstream flood levels may be reduced, conversely if 

flood peaks are combined downstream flood levels m ay increase (Brookes, 1985). However, 

Keller (1980) has urged caution w'hen attem pting to interpret the effects o f  channelization and
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suggests that ‘each stream m ust be evaluated independently if  accurate predictions o f  

downstream flooding are to be achieved. Generalizations remain dangerous' (Keller, 1980, 

pi  22).

2.4.5. T he effects of reservo irs on flood flows

In a com prehensive review o f hydrological changes as a consequence o f  river regulation Higgs 

and Petts (1988) suggest that ‘any river im poundment will change the magnitude and frequency 

o f  flood flows at least to some degree’ (Higgs and Petts, 1988, p353). The principal effects o f  

reservoir construction on flood flows are concerned with the m agnitude and timing o f events. 

Flood m agnitudes are reduced through the attenuating effects o f  increased storage capacity 

provided by the reservoir. W hereas the tim ing o f  flood peaks from reservoirs are often lagged 

which can result in de-synchronisation o f  mainstream and tributary peaks (Petts, 1984; Petts 

and Lewin, 1979).

Reduction in the m agnitude o f  the mean annual flood has been noted by several authors. 

Construction o f  the Clatworthy Reservoir (catchm ent area o f  18.2 km ) on the River Tone in 

Exmoor, resulted in a  60%  reduction o f the mean annual flood below the dam (Gregory and 

Park, 1974). Petts and Lewin (1979) have also reported reductions o f  the mean annual flood by 

11% at Avon Reservoir, 14% at Stocks Reservoir on the River Hodder, and o f 39%  on Sutton 

Bingham Reservoir on the River Yeo, when com paring reservoir outflow and naturalised 

discharges. Furthennore, Gustard et al. (1986) calculated that for 29 regulated rivers in Britain, 

the m ean annual flood was reduced on average by 26% , when com pared to natural discharges.

The effects o f  reservoirs on flood peaks dim inishes downstream as the proportion o f 

uncontrolled catchm ent increases (Petts, 1984; Petts and Lewin, 1979). The effects o f  

C latw orthy Reservoir were evident downstream until the area impounded was less than 10% o f 

the total catchm ent area (Gregory and Park, 1974). On the upper Severn a decline in flood 

frequency and m agnitude after 1968 was found to coincide with variations in seasonal rainfall. 

H owever Clywedog reservoir was constructed in this year and it was suggested that ‘Clywedog 

Reservoir has probably accentuated this natural decline in floods at least for 40 km 

dow nstream ’ (Higgs and Petts, 1988, p 366).

W ith respect to flood magnitude Petts and Lewin (1979) used a Fortran Flood Routing Program 

to examine flood hydrographs in reservoired catchm ents. Table 2.4 shows the proportion o f 

catchm ent impounded and estimated peak flow reduction im m ediately downstream o f twelve 

British reservoired catchments. Peak flow was reduced between 9%  and 73%, dependent on the
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proportion o f catchm ent impounded. Generally, peak flow reductions are greatest for those 

catchments with the largest area impounded

29

Table 2.4 : Regulation ofpood discharges downstream o f  selected British reservoirs (after Petts and 
Lewin. 1979)

Reservoir / Area Proportion of catchment 
impounded (%)

Peak flow reduction (%)

Avon, Dartmoor 1.38 16

Fermvorthy, Dartmoor 2.80 28

Meldon, Dartmoor 1.30 9

Vymwy, mid-Wales 6.13 69

Sutton Bingham, Somerset 1.90 35

Blagdon, Mendips 6 84 51

Chew Manga, Mendips 8.33 73

Stocks, Forest of Bowland 3.70 70

Daer, S. Uplands 4 33 56

Camps, S. Uplands 3.13 41

Catcleugh, Cheviots 2.72 71

Ladybower, Peak District 1.60 42

Reservoirs often exhibit a seasonality o f  peak flow reduction, which is related to the operational 

rules o f  individual reservoirs. In sum m er dem and for water supply is often high, which results 

in draw-down o f  the water level in the reservoir. This results in increased potential storage 

capacity, which is particularly im portant in areas where convective sum m er storms cause floods 

(Higgs and Petts, 1988; Petts, 1984; Petts and Lewin, 1979). In w inter months reservoirs may 

be at or near spillweir capacity with little potential for flood storage, therefore having a lesser 

effect on the reduction o f  w inter peak flows.

Analysis o f  annual flood frequency distributions pre and post-reservoir construction (table 2.5) 

indicate that reservoirs are m ost effective at reducing peak flows for small and moderate 

m agnitude floods (lower pre and post-construction ratios). W hereas the regulation o f  rarer high 

m agnitude events is less effective (Higgs and Petts, 1988; Petts and Lewin, 1979).
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Table 2.5 : The ratios ofpost to pre-dam discharges fo r  flood magnitudes o f  selected frequency, and 
reduction in mean annualJlood (after Tetts and Irwin, 1979)

River / Reservoir Recurrence Interval (years)
1.5 ) 2.3 | 5.0 | 10.0

River Avon,
Avon Reservoir 
River Hodder,
Stocks Reservoir 
River Yeo,
Sutton Bingham Reservoir

0.90 0.89 0.93 1.02 

0.83 0.86 0.84 0.95 

0.52 0.61 0.69 0.79

Data are ratios o f  post to pre-dam discharges

In summary, reservoirs attenuate flood peaks due to storage o f  a portion o f the flood flow and 

de-synchronisation o f  tributary and m ainstream peaks The downstream impact depends upon 

the location o f  reservoirs, the frequency and order o f  the tributaries affected, the proportion o f 

the catchm ent impounded and the operational rules o f  the reservoir Peak flow reduction tends 

to be greatest in sum m er months and for m inor and moderate m agnitude flood events

2.5. SUM M ARY OF LITERATURE REVIEW

Temporal and spatial variations in flood frequency and magnitude have been identified in a 

large num ber o f  flood studies throughout the British Isles. These variations have been 

attributed to both climate and land-use changes, and com binations o f  the two In terms o f 

clim atic controls it appears that trends in precipitation and flooding have been linked to 

hem ispheric-scale atm ospheric circulation patterns in the USA and UK. Periods with enhanced 

m eridional (north/south) circulations, occurring under generally cooler conditions, have been 

shown to be associated with high magnitude flood events in north-east England. Periods with 

enhanced zonal (west to east) circulation types, which tend to occur under w anner conditions, 

are associated with a higher frequency o f  more moderate flood events. At a more regional- 

scale, individual circulations types have been identified which ‘trigger’ floods in Scotland. 

Cyclonic, westerly and south-westerly circulations were found to be the m ost important flood 

generating types, and links have been suggested between the annual and seasonal frequencies o f  

these circulations and variations in flood frequency

In term s o f  land-use controls, changes in agricultural practices such as the switch from spring to 

winter-cereals has been shown to increase the rate o f  runoff from agricultural land. Similarly 

the presence o f  grazing animals and intensification o f  farm ing have also been related to soil 

erosion and increased runoff. Alternatively, land drainage schemes can either increase or 

decrease peak flows into arterial channels depending on a large num ber o f  factors including, 

soil type, clim ate, and the type, extent and location o f  scheme installed. Channelization



schemes have been shown to reduce local flooding, although only shifting the problem further 

downstream , and finally, reservoirs have been shown to reduce flood peaks, primarily through 

the storage o f a portion o f the flood flow. However, at the basin scale, assessing both the 

spatial and temporal dim ensions o f  land-use impacts which may alter flood hydrology is o f  

param ount importance. A lthough, the task to disentangle the relative roles o f  each land-use 

type at such a large spatial scale is undoubtedly com plex Indeed, Higgs (1987a) points out that 

‘in larger catchments the averaging effects o f  differing land uses will mask that o f  individual 

treatm ents’ (Higgs, 1987a, p29), this problem being further complicated by climatic variation.
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C h a p t e r  3

B a c k g r o u n d  t o  s t u d y  a r e a  : t h e  Y o r k s h i r e  O u s e  B a s i n  

3.1. INTRODUCTION

The Yorkshire Ouse has eight m ajor tributaries, the Swale, Ure, Nidd. W harfe, Aire, Calder, 

Don and Derwent (see figure 3.1). Six o f  these rivers drain in a south-easterly direction from 

the Yorkshire Dales National Park area o f  the Pennines. O f the remaining two rivers, the 

Derwent drains in a  southerly direction from the North Yorkshire Moors and the Don in a 

north-easterly direction from the northern part o f  the Peak District National Park. The tidal 

limits o f  all rivers are shown in figure 3.1; the Ouse becomes tidal downstream o f  Nabum  Weir. 

At Skelton (SE 568 554) 6km upstream o f  York, the maximum recorded discharge is 622.0 

m V 1 recorded in January 1982, and the mean annual flood is 302.0 m V 1. The Yorkshire Ouse 

has a total catchm ent area in excess o f  9000 km at the confluence o f  the River Ouse and its 

most southerly tributary, the Don.

3.2. LATE Q UATERNARY GLACIAL HISTORY

The present day drainage system in the Ouse basin developed after the term ination o f  the Late 

Devensian glaciation (18000 - 13000 BP). During this period two ice masses encroached from 

the west, north and east (Kent et a l 1980). To the west, a  glacier from the Lake District 

breached the Pennines through Stainmore Gap and was split into tw o flows by the Cleveland 

Hills. The southerly tongue o f  ice was deflected south into the Vale o f  York. From the north

east, the North Sea ice sheet moved across H oldem ess and into the H um ber Gap, blocking 

drainage from the Vale o f  York and the Trent and Ancholm e valleys (Kent et al., 1980). The 

Vale o f  Pickering was also blocked by ice, forming Lake Pickering which overflowed through 

Kirkham Gorge to form the present-day course o f  the Derwent. Blockage o f  the northern Vale 

o f  York and the H um ber Gap also resulted in the formation o f a large proglacial lake, Lake 

Humber, which covered much o f  the low lying Vale o f  York and overflowed through the 

Lincoln Gap (Catt, 1987; 1990). This lake initially reached a level o f  33m AOD, which soon 

fell to  between 10 and 14m AOD (Gaunt, 1974). Lake Hum ber had infilled by around 11000 

BP. (Gaunt, 1981; Gaunt et al., 1971), and following breaching o f  the glacial deposits blocking 

the Humber, river system s developed on the fine grained lake deposits. Low sea-level around



Figure 3.1: Location o f  study area and tidal limits o f  m ajor rivers
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this tim e (Gaunt and Tooley, 1974; Pethick, 1990) caused river channels to deeply incise until 

around 8500 BP (Gaunt et al., 1971), when rising sea-level resulted in alluviation o f  valley 

floors.

3.3. BASIN GEOLOGY

The Ouse basin consists o f  four geologically distinct areas (fig 3.2), (1) the Yorkshire Dales in 

the north-west o f  the catchm ent which drain the upper Swale, lire, Nidd, W harfe, Aire and 

Calder are underlain by Carboniferous limestone and M illstone Grits. (2) The lower reaches o f  

these rivers flow across the Permo-Trias m agnesian limestone and m udstone Pennine piedmont.

(3) The Vale o f  York in underlain by Permo-Trias Sherwood Sandstones, and has a thick 

covering o f  Quaternary glacial and alluvial deposits. (4) The Derwent catchm ent to the north

east o f  the Ouse Basin drain the North Yorkshire Moors which are underlain by Jurasic rocks, 

on the south-eastern m argin o f  the Derwent there are outcrops o f  Cretaceous chalk, and the 

lower part o f  the system is dominated by Triassic mudstones and sandstones underling thick 

Quaternary deposits.

3.4. BASIN RELIEF

There are several distinct re lief zones in the Yorkshire Ouse basin (fig 3.3) Firstly, the 

Pennines on the west o f the catchment, encompassing the Y orkshire Dales National Park and 

the northern Peak District National Park, have peaks in excess o f  700m AOD. The highest 

point in the catchm ent is Great Shunner Fell between the head o f  the Swale and Ure at 713m 

AOD. The majority o f  rivers flow in a south-easterly direction through the steep-sided 

Yorkshire Dales and into the Vale o f  York. Secondly, the Vale o f  York is an area o f  low lying 

land which runs north-south between the highlands o f  the Pennines and the North Yorkshire 

M oors to  the southern edge o f  the basin, land to the south o f  York is predominantly less than 

20m AOD. Thirdly, the north-east o f  the catchm ent is dom inated by the North Yorkshire 

M oors with peaks in excess o f 450m AOD.

3.5. BASIN CLIMATE

Annual rainfall totals vary markedly over the Ouse basin and are strongly related to altitude. 

Figure 3.4 shows average annual rainfall isohyets over the basin between 1941 and 1970. 

Rainfall in excess o f  1800 m m yr'1 is com m on in the Pennine uplands on the western margin 

(-6 0 0  mAOD), and 600 m m yr'1 in lowland areas o f  the Vale o f  Y ork such as Selby (5 mAOD). 

The N orth Yorkshire Moors in the north-eastern part o f  the catchm ent receive less annual 

rainfall than Pennine areas, with average annual totals around 1000 m m yr 1 common at the 

highest altitudes around 400 mAOD. Annual average potential evapotranspiration is 543mm



Figure 3.2: Geology o f the Yorkshire Ouse Basin
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Figure 3.3: Relief o f the Yorkshire Ouse Basin

;hmond

River Ure

Scarborough

’Sheffield



Figure 3.4: Average annual rainfall isohyets 1941-1970
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over the entire Yorkshire area (NRA, Ndb). In the higher altitude, wetter parts o f  the catchment 

actual evapotranspiration falls just below potential evapotranspiration during average summer 

conditions, whereas in the Vale o f  York, actual evapotranspiration falls well below potential 

evapotranspiration between early and late sum m er (NRA, Ndc) Soil moisture deficits in 

sum m er range from 80mm in the Vale o f  York, to 30mm in Pennine areas and 60mm over the 

Derwent catchment.

3.5.1. Causes of precipitation in the British Isles and Ouse basin

Barrow and Hulme (1997) identify three main causes o f  precipitation in the British Isles :

(1) Frontal systems

(2) Local atm ospheric static instability (thunderstorms and thundershowers)

(3) A tm ospheric uplift by hills and m ountains (orographic precipitation)

Frontal systems are a form o f  cyclonic precipitation whose characteristics depend on stage o f 

developm ent and the type o f  low pressure system. The key feature o f  cyclonic precipitation is 

the ‘ascent o f  air through horizontal convergence o f  airstreams in an area o f  low pressure’ 

(Barry & Chorley, 1982, p93). The precipitation associated with frontal systems is spatially 

extensive, long duration and o f  moderate intensity. Rainfall receipt varies geographically over 

the British Isles, for example north-west Scotland receives particularly high precipitation totals 

due to a higher frequency o f  active frontal system s crossing the area from west to east, 

com bined with orographic effects (Barrow & Hulme, 1997).

The second type o f  precipitation caused by local atm ospheric static instability is associated with 

thunderstorm s and generally referred to as convective precipitation. This type results from the 

developm ent o f  convective cells due to heating o f  the land surface in sum m er (Barry & 

Chorley, 1982). Precipitation is often localised (20-50km ) and o f  high intensity and short 

duration. Due to die nature o f  these rainfall events they are often poorly recorded (W erritty & 

Acreman, 1984). In central and eastern England the frequency o f days o f  thunder are generally 

highest between the m onths o f  May and August (Barrow & Hulme, 1997).

A third type o f  precipitation in the British Isles is due to orographic influences or atmospheric 

uplift over mountain barriers which enhances precipitation totals on windward slopes and 

produces a rain-shadow effect on the leeward slopes. Barry and Chorley (1982) suggest that the 

intensity and frequency o f  w inter precipitation associated with cyclones is increased due to 

orographic effects.
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Snow is also a form o f  precipitation and rapid thaws or a com bination o f  rain and snowm elt can 

cause severe flooding. Snowfalls over the British Isles are generated from three main sources, 

frontal system s, instability showers and polar lows or troughs (Barrow & Hulme, 1997). These 

authors suggest that in general higher altitude areas in the north and east o f the British Isles 

receive a higher frequency o f  snow. Furthermore, areas such as the North Yorkshire Moors, in 

an easterly location and in close proxim ity to the coast, are more exposed to easterly, northerly, 

and north-easterly winds which are often snow-bearing in winter.

3.6. BASIN HYDROLOGY

3.6.1. Introduction

Long-term m onthly flow data for three selected flow gauging stations in the Ouse basin shown 

in figure 3.5 display a typical lowland UK distribution, with higher flows in winter months, 

particularly between October and March, and much lower levels in the sum m er months 

Similarly, the highest peak flows have also been recorded in w inter months at these three 

stations. Table 3 .1 shows the date o f  recorded peak flows at nine gauging stations, seven out o f  

the nine show new maximum peaks have been set since the beginning o f  1982, and three since 

1993.

Table 3 .1 : Peak flows at selected gauging stations

Gauging Station Catchment Area Peak Flow Length of Date of peak

(km2) (m V )  Record flow

38

Swale at Crakehill 1363.0 255.70 1955-1996 7 Mar 1963

Ure at Westwick 914.6 628.60 1958-1996 1 Feb 1995

Nidd at Hunsingore Weir 484.3 310.9 1935-1996 15 Sep 1993

Wharfe at Flint Mill Weir 758.9 368.30 1955-1996 1 Feb 1995

Ouse at Skelton 3315 622.0 1969-1996 5 Jan 1982

Aire at Armley 691.5 212.4 1961-1996 19 Oct 1967

Calder at Elland 341.9 411.3 1961-1996 27 Oct 1980

Don at Doncaster 1256.0 200.50 1959-1996 23 Jun 1982

Derwent at Buttercrambe 1586.0 124.8 1973-1996 5 Jan 1982

Source: River Flow Measuring Station Information Sheet (Institute o f  Hydrology)
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Figure 3.5 : Long-term statistics o f monthly mean flow and peak flow data at selected gauging 
sites. Mean flow  diagram shows low (black), average (white) and high (grey)
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3.6.2. Recent flooding in the Ouse Basin

A m ajor concern over recent years has been the apparent increase in severe flooding in the Ouse 

basin. In late January and early February 1995 new maximum peak flows were recorded on the 

River Ure at W estwick (628.6 m V )  and Kilgram Bridge (407.3 ill’s '1), and on the Wharfe at 

Flint Mill (368.3 m 3s '‘) (Law et al., 1997; Marsh & Sanderson, 1997; NERC, 1996), all o f 

which have records in excess o f  thirty years. At York a 119-year flood stage record shows the 

largest flood to be that o f  January 1982 (10.12 mAOD), maximum peak flows were also 

recorded on the Derwent at Buttercrambe (124.8 m 'V 1) and the W harfe at Flint Mill (362.8 m Y  

'). Severe flooding has also occurred at York in 1892, 1947. 1951. 1953, 1965, 1968, 1978 and 

1991

This section aims to highlight those meteorological conditions that generate extreme floods in 

the Ouse basin. Since the City o f  York has a long recorded history o f  flooding, it will be the 

focus o f detailed investigations in this thesis. This section explores the climatic causes o f  

several recent flood events in York, particularly that o f  January 1982.

The majority o f  floods at York are triggered by heavy prolonged rainfall, or a com bination o f 

snowm elt and rainfall in the w inter months. Summ er floods do occasionally occur at York, for 

example in A ugust 1857 flooding resulted when 103mm o f rain fell in York over a thirty hour 

period. However, the majority o f  severe floods are generated in winter. In 1978 heavy 

prolonged frontal rainfall saturated the catchm ent between the 24th and 28th o f December, a 

further band o f  heavy frontal rainfall was rapidly converted to runoff due to the saturated 

antecedent conditions and resulted in a flood level o f  9.85 mAOD (363.07 m Y 1 at Skelton) 

and m ajor disruption in the city. Although severe, this event was eclipsed only a few years 

later in January 1982 when flood damage was estim ated at £2 m illion in the York area. The 

Environm ent Agency (EA) further estimated that around 540 residential and industrial 

properties were flooded in the city and 18700 ha o f  arable land were affected in the surrounding 

area. The flood reached a peak level at the Viking Hotel o f  10.12 mAOD and a  peak flow o f 

622.0 m Y 1 at Skelton 6km upstream o f York. A com plex com bination o f  weather conditions 

triggered the flood. First, in m id-Decem ber a series o f  low pressure systems delivered heavy 

frontal precipitation in the form o f  snow, figure 3.6 shows this was concentrated in Pennine 

areas. By the end o f  December low pressure systems moved in from the south, bringing m ilder 

weather and moderate rainfall. The snowpack began to thaw, and at the beginning o f  January a 

depression associated with a warm front m oved over the region, accelerated the thaw and 

delivered heavy precipitation totals, particularly in the northern part o f  the basin (figure 3.7). 

Total precipitation over the catchm ent for the 25-days prior to the flood is shown in figure 3.8,



Figure 3.6: The 1982 Flood  -  Snowfall (water equivalent (mm)) 13tlr — 31 st December 1981
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Figure 3.7: The 1982 Flood -  Rainfall (mm) 1st -  6th January 1982

Figure 3.8: The 1982 Flood -  Total Precipitation (mm) 13th Decem ber 1981 -  6th January 1982
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and at Malham Tam and Arkengarthdale rain gauges in figure 3.9, these diagrams show very 

high precipitation totals in the headwaters o f  the northern tributaries upstream o f  York.

Figure 3.9
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Flood hydrographs for five gauging stations are shown in figure 3.10 and illustrate the effects 

reservoirs can have on flood peaks. An internal unpublished NRA report on the 1982 flood 

suggests that the low flood peak shown on the River Nidd at Hunsingore was the result o f  the 

attenuating effect o f  Angram and Gouthwaite reservoirs, which were relatively low prior to this 

flood. Conversely, flooding in the Boroughbridgc area was exacerbated by both the unregulated 

Swale and Ure area peaking at the sam e time.

Since 1982 further severe flooding has been experienced in February 1991 at York and 

Boroughbridge, and in February 1995 (see above), both o f  which were triggered by heavy 

frontal rainfall on a  snow covered catchment.

Precipitation prior to the 1982flood  at hvo sites in the Yorkshire Dales. 
Shaded bars indicate precipitation in the form o f  snow.

(a) : M a l h a m  T a r n  ( S D  894  672 A It : 395m  A O D )

D a t e
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Figure 3.10 .-.January 1982Jiood hydrograph derived from 15 minute flow data

D a t e  a n d Ti m e

3.7. BASIN LAND-USE

Figure 3.11 shows the principal land-use types over the Ouse basin. The Vale o f  York area is 

dominated by arable land, whereas the area between the Vale o f York and the higher altitude 

areas is covered predom inantly by permanent grassland and meadowland. The higher altitude 

peaks o f  both the Pennines and North Yorkshire Moors are composed o f heathland. moorland 

and rough pasture. In terms o f  population and industry, Jarvie et al. (1997) make the 

distinction between the ‘rural northern rivers' o f  the Derwent, Swale, Ure, Nidd and W harfe, 

characterised by low population densities, and the ‘southern urban industrial rivers’ o f  the Aire, 

Calder and Don, which are heavily populated, with m ajor population centres around Leeds, 

Bradford, and Sheffield.
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Figure 3.11: Land-use in the Yorkshire Ouse Basin

44



C h a p t e r  4

F l o o d  h i s t o r y  o f  t h e  Y o r k s h i r e  o u s e  b a s i n  s i n c e  t h e  

ELEVENTH C E N T U R Y

4.1. INTRODUCTION

The main objective o f  this chapter is to establish the spatial and temporal variability within 

Ouse basin flood records derived from documentary (last 900 years) and gauged (last 100 years) 

sources. The chapter is split in three main sections, the first investigating patterns within the 

gauged record, and the second dealing with docum entary evidence o f flooding. The final 

section sum m arises the m ain trends in flooding for the entire basin since the eleventh century. 

The results from this chapter can then be compared with spatial and temporal trends observed 

within clim atic series (Chapter 5) and land-use records (Chapter 6).

4.2 GAUGED FLOOD HISTORIES IN THE OUSE BASIN

4.2.1. Data sources

The acquisition o f  suitable long-term datasets is o f  paramount importance in any historical 

study. Typically the type o f  data available can be split into two tim e periods, the instrumental 

period where data have been system atically recorded, and the docum entary period where events 

are recorded on a less formal basis. The length o f  instrumental records varies depending on the 

type o f  data, daily rainfall records for example, are often much longer than system atic flood 

records. In general however, the instrumental period dates from the mid-nineteenth century, 

with documentary records extending m any centuries prior to this.

To investigate the im pact o f  long-term environmental change on variations in flood frequency 

and magnitude, the m ost fundamental dataset required is a detailed flood history o f  the Ouse 

basin. Once any variations are established in the flood record, it is possible to address the 

question as to what caused these fluctuations. H istoric clim ate (Chapter 5) and land-use records 

(Chapter 6) are compiled, records o f  daily rainfall, snow, and atmospheric circulations are used 

to assess clim atic links, and records o f  agricultural land-use, land drainage, reservoir



construction, and direct channel alterations, to assess any land-use influences. The temporal 

coverage o f records compiled for the Ouse basin extend over the instrumental and documentary 

period, whereas the spatial coverage is limited by the location o f  LOIS designated study sites 

(see section 1.3), particularly over the instrumental period This section describes how data 

were collected, and databases o f  instrumental and documentary floods compiled.

The Hydrological Data UK Yearbook 1994 (NERC, 1995) calculated that the average length o f  

flow record held in the National River Flow Archive was less than 23 years, and only 15 

stations could be considered continuous for a period o f over 50 years. The majority o f  gauging 

station records do not commence until the 1960s, indeed, it was not until 1948 that rivers 

boards were required to operate gauging stations at all (Hooke and Kain. 1982). A detailed 

review o f  the history o f river flow gauging in the UK is given by Lees (1987), who suggests 

that only a small num ber o f  rivers in the UK have gauged records which date back to the 

nineteenth centuiy, examples being the Lee at Fieldes W eir (from 1851), the Thames at 

Teddington (from 1883) and the Severn at Bewdley (from 1879). In the Ouse basin records 

have been com piled from various sources that date back to 1878 (Ouse at York), 1868 (Don at 

Doncaster), 1863 (Calder at Broadreach) and 1864 (Aire and Caldcr at Castleford), however 

some o f  these records have significant gaps or have not been updated since the publication o f  

the Flood Studies Report (NERC, 1975). Typically gauging starts around the 1950s and 1960s 

in the Ouse basin, however the longer ‘gauged’ records represent an as yet unexplored source o f  

long-term flood data.

Two types o f  flood record can be compiled from continuous flow data, an annual maximum 

(AM) series and a  peaks over threshold (POT) series, som etim es referred to as a partial duration 

series. Constructing an AM series sim ply involves extracting the highest recorded stage or 

discharge for each year records are available. POT scries are more complicated to compile, 

since each flood in the series above a specified threshold m ust obey the rules o f  independence 

defined by NERC (1975). These state firstly, that the discharge o f  a  given flood must fall by a 

m inim um  o f  one-third o f  its peak before rising to another, and secondly, that the time between 

successive flood peaks m ust be at least three tim es the mean time to peak at the gauging station. 

These rules ensure statistical independence between flood events and are summarised in figure

4.1.
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Figure 4.1 : Rules o f  independence for a POT series (from Shaw, 1994) -
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t > 3 tP and q  < —q,,

Both AM and POT series are used in this study since inform ation is required on both the 

frequency and m agnitude o f  flooding. AM scries only provide flood magnitude information 

whereas, both frequency and magnitude can be extracted from a POT database, however, by 

using both series, different aspects o f  flood magnitude can be investigated.

AM and POT data were initially obtained from the Institute o f  Hydrology (IH) for the gauging 

stations listed in table 4.1. These sites were chosen since they represent the longest flood 

records on each o f  the m ajor lowland tributaries o f  the Ouse basin and were in close proxim ity 

to the primary LOIS study sites. However, much o f  the data from IH needed to be updated to 

1996 since m any o f  the records ended around 1982. Post-1982 continuous flow data are held 

by the Environm ent Agency on their HYDROLOG Data M anagem ent System at both Leeds 

and York offices. Updating the AM series was a  simple task which can be quickly and easily 

output, directly from the HYDROLOG system. Updating a  POT series is a more com plex 

process since the rules o f  independence (NERC, 1975) m ust be obeyed, and a threshold set 

prior to extraction. The data obtained from IH had a pre-set threshold which had been chosen 

to give on average, five peaks per year, however, this threshold was based on the period o f  

record being analysed at the time o f  data extraction, and not necessarily a standard time period. 

This could cause problems since records extracted in a particularly wet period may have a 

higher relative threshold than those extracted during a particularly dry period with relatively 

little flooding (Bayliss, pers. comm ). It was therefore decided that new thresholds should be 

set for each site based on a standard time period allowing for more reliable inter-site 

comparison. A great deal o f  previous work on this subject has been carried out on Scottish 

rivers (e.g. Acreman, 1985a; Black, 1992; Grew, 1996), and in the m ost recent study by Grew 

(1996) the standard threshold adopted was an average o f  4.5 flood events per year over the ten



year period 1979-1988, which com plies with the recommendations o f  the Flood Studies Report 

(NERC, 1975). This period has also been used in this study in order to allow comparisons with 

the sites in northern England and Scotland Clearly, the m ajority o f  records from IH for the 

Ouse basin did not cover the period 1979-1988, therefore the threshold set by IH had to be used 

for initial extraction from the EA database. Once the initial threshold was set flow data were 

extracted from the HYDROLOG system specifying zero days independence, therefore giving 

even,' day the threshold was exceeded. Independence o f  flood peaks was than evaluated by 

viewing 15 minute flow data on com puter screen at the Leeds EA Office. In order to comply 

with the independence rules a 'tim e to peak’ had to be calculated for each o f the individual 

gauging stations. The method used by Black (1992) has been adopted here, whereby for each 

station the tim e to peak for the first five peaks in the record to be studied were noted, and the 

average value taken as the 'tim e to peak’ at that site. Flood peaks which satisfied both the niles 

o f  independence (outlined in figure 4.1) were then extracted and added to the existing IH data. 

All peaks were included upto the end o f December 1996. Once this task was complete the 

standard threshold could be set for the period 1979-1988 to have exactly 45 flood events, and 

the final POT series compiled. All sites, standard thresholds and summary information are 

shown in table 4.1, and their location given in figure 4.2.

The longest continuous record o f  flooding in the Ouse basin is at York (SE 602 517), however, 

this site is not a principal gauging station, and only stage data are available (crude rating curves 

have been derived for the Guildhall (figure 4.3(a)) and Ouse Bridge (figure 4.3(b)) recording 

sites (see below), although, these curves are based on very few m easurem ents, particularly at 

higher discharges, therefore flood stage has not been converted to discharge). The earliest 

records o f  flood stage in York begin in 1831 and were recorded by the Town Clerks Office at 

Ouse Bridge (datum 4.97m AOD) opposite K ing’s Staithe. how ever the record between 1831 

and 1878 cannot be considered system atic, since floods were noted in passing or derived from 

historical sources. Systematic gauging began in 1878 with all floods above 8.03m AOD (10ft 

above sum m er level) being recorded, these records were com piled by Farrant (1953) and 

subsequently updated by the NRA and EA. Between 1893 and 1968 the Guildhall gaugeboard 

(datum 4.98m AOD) was used for recording, and from 1969 onwards a Munro water level 

recorder and m etric gaugeboard (datum 5.00m AOD) has been in use situated near the Viking 

Hotel. The fact that the sites are only 200m apart enables us to assum e that the record is 

continuous and system atic since 1878, with more ad-hoc  stage recording dating back to 1831 

Establishing the independence o f  flood peaks was a  difficult task since m any o f  the early 

records have been lost (M ott, Hay & Anderson and Sir M. M acdonald & Partners, 1982), 

however, sim ply viewing the record and dates o f  flood events suggests that these peaks are 

independent since consecutive days o f  data do not appear in the record. Stability o f  channel
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Figure 4.2: Location o f LOIS study sites, flow  guaging station and historic flood  recording sites
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Figure 4.3 : Stage-discharge relationship : (a) Guildhall Recorder York (EA Dales Office ) 
(b) Ouse Bridge York (Farranl, 1953)

(b)



cross-section at the stage recorders is difficult to assess, however, between 1969 and 1982 the 

Yorkshire W ater Authority took hydrographic surveys o f the River Ouse three times a year 

between Nabum and Poppleton (figure 4.4). These surveys show that there has been no 

significant trend in cross sectional area over this period (only ±  3% o f  the mean) although these 

records are too short to draw firm conclusions. POT and AM  series have been updated to 1996 

for the Ouse at York from paper charts at York Environm ent Agency and more recently from a 

digital recorder which has been installed near the Viking Hotel.
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Figure 4.4 : Mean annual cross-sectional area 19 6 9 -1981 - R iver Ouse at York. Source, 
Mott, Hay & Anderson and Sir M. M acdonald & Partners, (1982)

Year

Problems with gauged data

1. Some o f  the records contained substantial gaps which could cause problems at the analysis 

stage. For example the Don at Doncaster has a 28 year gap between 1932 and 1960 in a 

POT series dating from 1868, and more sporadic gaps in the AM record. An attem pt was 

made to find the original charts for this site, however, due to the then National Rivers 

Authority moving offices several tim es, the whereabouts o f  old records has been difficult to 

establish resulting in these large gaps remaining in the data.

2. A second problem with updating records was encountered with two AM series which were 

published in the Flood Studies Report (NERC, 1975) historical section. The records for the 

Calder at Broadreach (1864-1968) and the Aire and Calder at Castleford (1863-1968) have 

not been updated from 1968 since the original source m aterial could not be located. The 

Environm ent Agency has been unable to find any reference to these two sites in their 

records. However, these two series are still included in the analysis since they provided 

valuable long-term inform ation w'hich can be com pared to  other sites in the Ouse basin such 

as York.



3 Certain sites such as the Calder at Elland were initially identified as possible sites for 

analysis, however closer inspection o f  the records revealed that different flow parameters 

had been recorded over different periods. Data under the 'f low ' param eter were available for 

this site from 1953, however, between 1973 and 198 1 this changed to ‘daily flow ’, then back 

to ‘flow ’ from 1982 onw'ards. It is important to recognise the difference between these two 

parameters, ‘flow ’ gives the instantaneous daily m axim um , whereas, ‘daily flow ' gives an 

average discharge for the whole water day. Clearly, m ixing the tw'o data sets could lead to 

m isinterpretation o f  apparent trends within a  particular data set.

4. Some sites may not be suitable for the analysis o f  long-term  trends since the flood peak may 

be severely truncated due to the banks being overtopped during a flood event, for example, 

the River Aire at Beal

4.2.2. Preparation of gauged flood data

Annual maximum (AM) and Peak over threshold (POT) series have been compiled from the 

sources outlined above. The patterns within both types o f  flood record have been analysed to 

explain recent (last 100 years) variations in flood frequency, magnitude and seasonality. The 

flood records considered represent the longest gauged sites available for each m ajor tributary in 

the Ouse basin, with a secondary consideration given to the proxim ity o f  primary LOIS study 

sites where Holocene floodplain histories have been evaluated.

One o f  the sim plest techniques used to investigate variations in flood records involves creating 

annual series for both flood frequency and m agnitude. Clearly, AM  data need no preparation 

since only the highest m agnitude event for each year is recorded, POT data however, require a 

degree o f  m anipulation prior to analysis. Annual flood frequency (AFF) series can be compiled 

from POT data simply by calculating the annual num ber o f  POT events over the standard 

threshold defined for each site, as explained in the previous section. M agnitude data can also 

be com piled on an annual basis using a technique recom m ended by Naden (1992), which gives 

the annual ‘mean exceedance’ o f  a POT series above the standard threshold. This technique has 

been used by Grew (1996) to produce m agnitude series for a large num ber o f  Scottish rivers, 

she states that the advantage o f  this method is that the annual value is specified relative to 

discharge threshold. The annual mean exceedance (AM E) has been calculated for each site 

with POT data using the following fonnula :
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Annual mean exceedance = — -------------
n

where

di = discharge o f  POT event 

T = POT threshold 

n -  annual frequency o f  POT events

4.2.3. Techniques of data analysis

Sim ple time series, non-param etric statistics and flood frequency analyses have been used to 

investigate variations in the three types o f  annual flood record available for analysis; annual 

maximum (AM) series, annual mean exceedance (AM E) and annual flood frequency (AFF) 

The following section outlines the principles o f  each o f  these techniques and how they can be 

applied to the analysis o f  flood records.

Time series analysis

To investigate the tem poral behaviour in flood records, graphical time series plots have been 

produced for each site showing both AM and POT derived data, these series are shown in 

figures 4.5 - 4.7 and have been smoothed using a sim ple 5-year m oving average. The long 

term  average is also plotted on each diagram to give an indication o f  overall trends, and relative 

variations over time, particularly periods o f  increased or decreased flood magnitude or 

frequency.

Statistical analysis

A num ber o f  basic sum m ary statistics and two simple statistical tests (a Runs Test which tests 

for randomness in a tim e series and the Kruskal-W allis test, which tests the statistical equality 

o f  three or more periods) have been used on the AM  and PO T flood data.

To determine whether or not a tim e series is statistically random, the Run Chart function in 

MINITAB has been employed. Two tests for non-random behaviour are calculated using this 

function. The first involves testing the num ber o f  runs that occur both above and below the 

median, where a run is defined as ‘one o f  more consecutive points on the same side o f the 

m edian’ (M INITAB Reference Manual, 1996. p9-4). A test statistic is calculated and the 

normal distribution used to give tw'o /^-values, which can indicate m ixing (two processes 

operating at different levels) or clustering o f  data. For the test to be significant at the 5%  level, 

one o f  the calculated /7-values m ust be less that 0.05; this being the case, then the null
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hypothesis (Hc) o f  a purely random series can be rejected in favour o f a non-random time series 

due to either m ixed or clustered data points.

The Run Chart function can also test for the number o f  runs up or down, where, in this case a 

run is defined as ‘one or more consecutive points in the same direction’ (M INITAB reference 

M anual, 1996, p9-5). This test is sensitive to two types o f  non-random behaviour, trends and 

oscillations, where an oscillation suggests the data fluctuate up and down rapidly, and a trend 

suggests a ‘sustained and system atic source o f variation w here the data tends to move or drift in 

the same direction’ (M INITAB reference M anual, 1996, p9-6) Again the null hypothesis is 

that the data are a statistically random series, /'-values and significance levels are calculated as 

above, and H„ can be rejected if  either value is less than 0.05.

The second statistical test em ployed is the Kruskal-W allis test, which is a nonparametric 

technique that can be used to test w hether certain sub-periods are statistically equal. The null 

hypothesis is that there is no difference between populations tested This technique has been 

used to test for any statistical difference between 5-year periods for AM, AM E and AFF data 

where 5-year periods have been standardised to end in 1996. A //-statistic  is calculated, and p- 

value given. W here /?-values lower than 0.05 indicate that there is a statistical difference 

between 5-year periods significant at the 5% level.

Flood frequency analysis

Flood frequency analysis is often used for engineering purposes when designing structures such 

as bridges, dam spillways and flood protection works. The technique uses past flood records in 

order to predict future flood-m agnitude relationships, assum ing that the flood regime has been 

stationary through time. Flood frequency analysis estim ates the relationship between flood 

discharge Q and return period T, where T is the time on average that elapses between two 

events o f  equal magnitude (W ilson, 1990). D ifferent m odels can be used to establish 

frequency-m agnitude (Q-T) relationships for AM  and POT data since each have distinct 

statistical properties.

In this study the POT m odel is applied to flood and clim ate data. Discharge or rainfall 

estimates for various return periods have been calculated and used to set a series o f  increasing 

thresholds for individual sites, to investigate the tim ing o f  specific magnitude events. 

Estimates o f  discharge for the 100-year flood (Qioo) and 100-year rainfall are also calculated on 

a seasonal basis, which enables specific seasons to be identified as generating higher magnitude 

flood events.



T he P O T  m odel

Estimation o f the Q-T relationship for POT data uses all independent peaks over a set threshold 

q0. This threshold can dictate how w'ell the model fits the flood data (Grew, 1996) and 

therefore m ust be given careful consideration before proceeding with the analysis. The mean 

annual num ber o f  floods ( X ) which exceed qrJ is given by the equation :
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where

M — num ber o f  peaks in POT series 

N  =  num ber o f  years in POT series

Naden (1992) used log-survivor functions and mean excess plots to argue that to obtain the best 

fit for the POT model the mean num ber o f  floods per year (A.) should be set to 3.0 or less. 

Consequently, Grew (1996) used X -  2.0, a value w'hich Cunnane (1989) suggests gives the 

m ost satisfactory exponential distribution fit. For these reasons a value o f  X = 2.0 was chosen 

in this study and the discharge threshold qrj raised accordingly for each site. Once a new 

threshold had been set, assuming an average o f  two peaks per year over the whole period to be 

analysed, the return period o f  each event in the series is calculated using the W eibull equation 

below :

m

where

T = Return period 

n = num ber o f  events 

m =  rank o f  event

The relationship can be plotted as a straight line by using a linear scale for discharge, and 

calculating plotting positions, or reduced variate values o f  T  using the following equation :

.y = In ( A, T)

Discharge estim ates o f  the T year flood can than be calculated from

QT = q0+ (3 In ( \  7)

where



(3 = standard deviation o f  POT data
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qmin is the sm allest discharge which exceeds the new threshold where X =  2 

Analysis of flood seasonality

In any investigation into seasonality o f flooding there m ust be a clear definition o f which 

months relate to each season, which can vary' depending on the tim e periods into which the year 

is to be split. Two different m onthly groupings have been used. Firstly, the year is split into 2- 

m onthly periods from, June-July, A ugust-Septem ber etc. The splits have been used for flood 

frequency analysis o f  seasonality and to investigate the frequency o f  floods in particular months 

over the whole period o f  record at a  particular site.

The second, more standard grouping o f m onths, uses three m onthly periods, where December- 

February are classed as winter, M arch-M ay as spring, June-August as summer, and Septem ber- 

Novem ber as autumn. Annual flood frequencies for each season have been calculated from 

POT records to establish temporal changes in seasonality. A slightly different approach is 

taken when plotting the seasonality o f  AM floods. In this case plots have been produced which 

show the day o f  each annual peak, where the 1st June o f  each year is taken to be day zero. This 

avoids splitting the record over the w inter period, when m ost floods occur, which would be the 

case i f  conventional calendar days were used.

4.2.4. Variability in flood frequency, magnitude and seasonality in the Ouse basin

4.2.4.L Gauging station histories

Prior to any analysis o f  long-term hydrological series it is essential to assess whether any non- 

stationarities exist within the history o f  the gauging station. Obviously, the further back in time 

flood records extend, the data are more prone to uncertainties such as stability o f  cross-section 

and reliability o f m easurem ent and collection techniques. Station histories at principal gauging 

stations have been assessed from Institute o f  H ydrology River Flow M easuring Station 

Information Sheets. However, assessing historic sites, where gauging was done on a less 

formal basis such as the Ouse at York, A ire and Calder at Castleford and the Calder at 

Broadreach is a  more difficult and som etimes an im possible task.

The two sites on the Aire and Calder which date to the nineteenth century were compiled in the 

Flood Studies Report (NERC, 1975). However, there is no indication o f  how these readings



were taken, or history o f  the site. Nevertheless, since these sites represent the only long-term 

quantitative evidence o f  flooding on these tributaries, they have been included in the analysis 

stage. At York, on the other hand, a detailed history o f  gauging is available and has been 

described is section 4.2.1. However, even in this case, cross-section stability has only been 

evaluated since 1969 (figure 4 4).

The station histories at the remaining sites, all principal gauging stations, suggest non- 

stationarities at several sites, which m ust be taken into consideration Pre-1965 data on the 

Wharfe at Flint Mill, and p re -1971 data on the Aire at Annley, are considered to be less reliable 

than later m easurements. More significantly, however, the station summaries docum ent that the 

gauging site has been shifted at two o f  the stations. On the Swale at Crakehill flows prior to 

1980 were measured at Leckbv Grange with a catchm ent area o f  1345.6 km 2, compared to 

1363.0 km 2 at Crakehill. Sim ilarly, pre-1973 data for the Derwent at Buttercrambe was gauged 

at Stamford Bridge, in this case however, there is only a negligible difference in catchment 

area. Clearly, if  m ajor variations are evident in these flood records at these critical dates, then 

both records m ust be considered suspect for analysis.

4.2.4.2. Annual maximum series (AM)

Table 4.2 shows the basic sum m ary statistics o f  the ten sites selected for analysis in this 

section, and their locations are shown in figure 4.2. Records are o f  variable length, the oldest 

record dating to 1863 on the River Calder at Broadreach, and the most rccent, on the Derwent 

dating to 1962. Tests for randomness were carried out on each AM series, using M IN ITA B's 

Run Chart function (section 4.2.3.), the results displayed in table 4.3 show only two sites, the 

Ouse at York and the Aire and Calder at Castleford, to be statistically non-random series at the 

5%  level, both tests suggesting clustering o f  data. However, the apparent random nature o f  the 

other AM series indicated by the Run Chart results could be accounted for by the fact that flood 

series, by their very nature, often show very high inter-annual variation. There may still be a 

general upward or downward tendency within these variations, however, a runs test will not 

show this to be significant since flood series will often vary considerably about the mean. 

Therefore, this may not always be the m ost suitable test for trends within a flood series.

The longest AM records available are, the Calder at Broadreach (1863-1968), the Aire and 

Calder at Castleford (1864-1968), the Don at Doncaster (1868-1996), and the Ouse at York 

(1880-1995). There are a number o f  problem s with some o f  these AM series which have been 

discussed in section 4.2.1. To recap briefly, it has been im possible to update both the Aire and 

Calder records from 1968, and there is a significant gap in the Don record. Clearly, the flood
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record at the Viking Hotel in York represents the longest continuous flood series in the Ouse 

basin, and is worthy o f detailed investigation The following section describes the York record 

in detail, the long Aire, Calder and Don records together, and the remaining shorter records

separately.

Long-term records of flood magnitude :

The Ouse at Viking Hotel - York

Figure 4.5 (a) shows the AM stage series at York since 1880, runs tests (table 4.3) suggest that 

this is a non-random series significant at the 0.5%  level. Similarly, a  Kruskall-W allis test on 

the standard 5-year periods (table 4.4) show that there is significant difference between 5-year 

periods at the 1% level.

The AM series at York indicate that the period 1880-1903 was characterised by magnitudes 

fairly close to the long-tenn mean, this trend only interrupted by the flood event o f  1892 There 

followed a  period o f  extremely low flood magnitudes in the early part o f  the twentieth century, 

until around 1915. From 1915 onwards there has been a 15-20 year ‘saw -tooth’ like cycle with 

progressively increasing stage which peaked in the early 1980s. Indeed, the highest flood 

m agnitudes over the whole period have occurred since 1977, with the two highest 5-year period 

averages being 1977-1981 (9.23m AOD) and 1992-1996 (9.07m AOD). W ithin this ‘saw

too th ’ cycle there are a  series o f  peaks and troughs, with peaks in m agnitude occurring in the 

late 1940s, m id-to-late 1960s, late 1970s to early 1980s and the early 1990s. Periods o f  low 

m agnitude occurred between 1902-1906 (the lowest on record), in early 1930s, early 1950s, and 

the early-to-mid 1970s.

The Aire, Calder and Don

The three other long AM  flood series are shown in figures 4.5(b) - 4.5(d). The Calder at 

Broadreach (figure 4.5(b)) is very different to the Ouse record at York. Tire highest flood 

m agnitudes occurred in the late nineteenth century, with a long and gradual decline evident 

since around 1903. The highest average m agnitudes occurred in the 1877-1881 5-year period, 

and the lowest after the 1940s. More recent changes in flood m agnitude, however, cannot be 

evaluated since this record only extends to 1968.

The Aire and Calder at Castleford (figure 4.5(c)) illustrate sim ilar trends to those observed on 

the Ouse at York for the period o f  record available (1864-1968), although the highest 

m agnitudes are again evident in the late nineteenth century. As with the Calder at Broadreach,
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there is a clear and marked decline in flood m agnitudes from around 1900 to 1920. A further 

period o f low magnitudes in the early to mid 1950s and higher magnitudes in the late 1960s is 

also common to both the Ouse and Aire records

The Don at Doncaster AM  record (figure 4.5(d)) m ust be interpreted with caution because 16 

years o f  the 129 year record are missing, however, several interesting trends are still evident. 

Again the late nineteenth century appears to be characterised by high flood magnitudes, which 

declined and remained low over the period 1900-1920. There then followed a series a large 

flood events on the Don between 1920 and 1948, some o f  the largest on record occurring in 

1931, 1941 and 1946. Lower magnitude floods were more common after this period except in 

the late 1960s when m agnitudes increased slightly.

Summary of long-term records of flood magnitude : 1863-1996

This period encompasses the longest flood records in the Ouse basin aiid problem s com m on to 

m any historical records arise, such as gaps in the data, reliability o f  m easurem ents, and 

updating old records. Nevertheless, after taking these factors into consideration several o f  these 

records display sim ilar trends. The three records that extend back to the 1860s (Aire and Calder 

at Castleford, Calder at Broadreach, and the Don at Doncaster) all show that the late nineteenth 

century was characterised by high flood m agnitudes, which experienced a  marked decline at the 

turn o f the present century. This is also evident, to a lesser extent, on the Ouse at York. Low 

flood m agnitudes dominated until around the 1920s, when the situation becom es more complex 

and individual sites start to show significant variation. The Calder at Broadreach shows a small 

increase in magnitudes in the 1920s and then a  steady decline to the end o f  the record (1968). 

W hereas, the Ouse at York, and the Aire and Calder at Castleford, exhibit sim ilar peaks and 

troughs in the po st-1920 period, with high m agnitudes in the late 1960s and low m agnitudes in 

the early to mid 1950s. The Don at Doncaster is sim ilar to the Ouse record from the 1950s 

onwards, however, prior to this period the highest m agnitudes on record for the R iver Don 

occurred between the 1920s and 1940s.

Recent records of flood magnitude : 1936-1996

Two o f  the oldest, com plete and continuously gauged records o f  discharge in the Ouse basin are 

the Nidd at Hunsingore and the W harfe at Flint Mill which are both broad-crested w eir gauging 

stations. AM series are shown in figures 4.5(e) and 4.5(f) respectively, and display a series o f 

synchronous peaks and troughs in magnitude. The 5-year running means show high flood 

magnitudes at both sites in the mid to late 1940s, m id to late 1960s, the early 1980s and the 

1990s. The relative m agnitude o f  these peaks does however differ between the two sites, the 

highest 5-year average AM value (table 5.3) occurring in 1947-1951 on the W harfe, and in
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1992-1996 on the Nidd. Common periods o f low flood magnitude are evident in both records 

in the 1930s, 1950s, early to mid 1970s, and the m id-to-late 1980s. The 5-year period with the 

lowest m agnitudes is 1972-1976 at both sites The timing o f  peaks and troughs in these records 

correspond closely to the variations observed in the York AM series, with a sim ilar cyclic 

pattern shown at all three sites. However, the W harfe at Flint Mill shows flood discharge to be 

progressively decreasing in 15-20 year cycles, the opposite to the trend at York. In contrast, the 

Nidd at Hunsingore shows a  progressively increasing discharge with the most recent period 

displaying the highest flood magnitudes. Runs tests indicate AM records at both sites are 

statistically random time series. There is also no significant difference between 5-year periods 

shown by the Kruskall-W allis test.

The four other gauging stations that have been studied have the shortest records o f flood 

magnitude and frequency. Two are gauged at broad-crested weirs, the Ure at W estwick Lock 

and the Aire at Armley, and the other two are gauged at crump weirs, the Derwent at 

Buttercrambe and the Swale at Crakehill (figures 4.5(g) - 4.5(j)). Each o f  these records display 

some sim ilarities in the tim ing and direction o f  flood magnitude changes discussed at the 

previous sites, however there are significant variations in some cases. Peaks in flood 

m agnitude are synchronous at all four sites in the m id-to-late 1960s, early-1980s, and in the 

1990s, with the exception o f the Derwent at Buttercram be where , although flood magnitudes 

do increase slightly after the m id-1980s low, this is not on the scale o f  the other three sites. 

Periods o f  low flood m agnitude in the early-to-m id 1970s and m id-1980s are also broadly 

similar, however, there are inter-site variations in the m ost recent period. The Swale at 

Crakehill and the Ure at W estwick show high flood m agnitudes in the 1990s, whereas the sites 

on the Aire and Derwent show a fall in flood m agnitude. In term s o f  5-year averages (table 

4.4), the Ure, Aire and Swale all show the lowest m agnitude in the period 1972-1976, and the 

Derwent in 1987-1991. Periods o f  highest flood m agnitude are more variable, highest averages 

on the Swale and Ure occur in 1992-1996, on the Aire in 1982-1986 and the Derwent in 1987- 

1991. On the Ure at W estwick there have been a  series o f  three extrem ely large flood events, in 

1982, 1991 and 1995 which appear disproportionately large com pared to other floods in the 

series, and no other site shows such a degree o f  variation. This m ay reflect errors in discharge 

measurement, or a  significant land-use change in the Ure catchm ent (which has been suggested 

by the NRA, see Sansom, 1996). All four tim e series are considered to be statistically random 

from Runs Test results (table 4.3), and only the Derw ent at Buttercrambe shows a statistical 

difference between 5-year periods at the 5% level (Table 4.4).
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Figure 4.5 : Annual maximum series (AM)

0 ------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1—
1863 1873 1883 1893 1903 1913 1923 1933 1943 1953 1963 1973 1983 1993

4 4 0  (f) : Wharfe at Flint Mill 1936-1996

1863 1873 1883 1893 1903 1913 1923 1933 1943 1953 1963 1973 1983 1993



D
is

ch
ar

ge
 

(c
um

ec
s)

 
D

is
ch

ar
ge

 
(c

um
ec

s)
 

D
is

ch
ar

ge
 

(c
um

ec
s)

 
D

is
ch

ar
ge

 
(c

um
ec

s)

66

Figure 4.5 : Annual maximum series (con'I)

( h ) : Ure at W estwick 1956-1996
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S u m m ary  chronology - an n u a l m axim um  (AM ) series

Analysis o f  AM series at ten different sites in the Ouse basin, over the period 1863-1996, has 

revealed several distinct periods characterised by sim ilar flood magnitudes. Over the period 

c q . 1865-1900, evidence from four m ajor lowland tributaries show a phase o f high flood 

m agnitudes, particularly on the Don, Aire and Calder. This was followed by a rapid decline in 

flood magnitudes over the period ca. 1900-1920, which is particularly evident on the Ouse at 

York and the Aire and Calder at Castleford. This decline is also visible in the Don at Doncaster 

record, although there were several relatively large floods during this period. On the Calder at 

Broadreach this marked decline in flood magnitude is also clear, but unlike the other sites flood 

m agnitudes continued to decline after this period until the end o f  the record in 1968. In 

general, flood magnitudes increased to a peak around 1930 on the Ouse and Don, and to a lesser 

extent on the Aire and Calder at Castleford From the 1930s onwards there appears to have 

been a series o f  peaks and troughs in flood m agnitude, synchronous throughout the Ouse basin, 

with the exception o f the Calder at Broadreach. Periods o f  high flood magnitudes occurred in 

the mid-1940s, m id-1960s, late-1970s to early-1980s, and in the 1990s. The only exception 

was the Derwent at Buttercrambe where m agnitude has decreased in the 1990s. Indeed, this 

m ost recent period (1992-1996) has shown the highest 5-year average AM values for m ost o f  

the northern Yorkshire Ouse (Swale, Ure, Nidd). Low flood magnitudes occurred in the 1950s, 

1970s and the mid-1980s, with the period 1972-1976 showing the lowest average m agnitudes 

on the Swale, Nidd, Ure, Wliarfe and Aire (at Armley).

4.2.4.3. Annual mean exceedance (AME)

Eight POT records have been compiled and AM E data calculated, summary statistics for these 

sites are shown in table 4.5. POT data were not available for the Aire and Calder at Castleford 

o r the Calder at Broadreach, and therefore only tw o sites, the Don at Doncaster (1868-1996) 

and the Ouse at York (1878-1996) extend back to the nineteenth century. On the Don at 

Doncaster there is a significant gap in the data between 1932 and 1960.

Run Chart results for AM E series are sum m arised in table 4.6 and show that all but one o f  the 

records, the Ure at W estwick, are random. The Run Chart results for the Ure suggest the non- 

random element to be a significant trend within the record. 5-year averages are given in table 

4.7 and agree closely with the AM  records. The period 1972-1976 showing the lowest average 

exceedance at six o f the sites, and 1992-1996 showing som e o f  the highest averages, 

particularly in the northern rivers, such as the Ure, Swale and Nidd.
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Table 4 .7 : A verage annuaI mean exceedance fo r  standard 5-year periods. Bold indicates highest 
average value, italics denote low est average value fo r  each site. Units in cumecs unless 
otherwise stated.

5-year  Period (27001)- (27002)- (27007)- (27021)- (27028)- (27041)- (27071)- Ouse-
Nidd W h a rfe Urc Don Aire D erwent Sw ale York

*

1872-1876 54.24...
1877-1881 50.29 0.36
1882-1886 53.30 0.42
1887-1891 52.00 0.43
1892-1896 54.34 0.57
1897-1901 37.98 0.31
1902-1906 2 2 .2 2 0.14
1907-1911 25.15 0.14
1912-1916 24.61 0.10
1917-1921 19.78 0.16
1922-1926 51.75 0.28
1927-1931 67.75 0.58
1932-1936 30.10 N o data 0.28
1937-1941 22.23 57.13 N o data 0.45
1942-1946 20.94 44.05 N o data 0.40
1947-1951 30.71 59.23 N o  data 0.48
1952-1956 12.50 25.56 N o data 14.52 0.1 1

1957-1961 16.54 29.51 47.41 21.71 15.87 21.39 0.37
1962-1966 3 1.25 56.44 59.66 21.46 28.08 19.87 27.69 0.46
1967-1971 50.54 52.23 60.09 39.97 21.32 14.51 35.16 0.41
1972-1976 17.69 19.03 42.18 13.47 13.36 6.29 13.12 0.24
1977-1981 34.90 44.70 60.14 35.04 19.42 22.78 27.89 0.65

1982-1986 39.58 46.71 56.03 28.77 35.24 2 0 .0 2 33.54 0.50
1987-1991 31.49 37.37 41.89 22.95 21.05 8.14 24.80 0.38
1992-1996 41.37 41.64 72.09 46.80 28.21 19.40 42.06 0.45

Kruskall-W all is 0.125 0.178 0.683 0.610 0.186 0.086 0.105 0.139
p-value

P-value must be lower than 0.05 to be significant at the 5% level 

* Stage record  (in AOD)
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Figure 4.6 : Annual mean exceedance series (AME)

(h) : Don at Doncaster 1868-1996
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The timing o f m ajor changes in flood m agnitude from AM E records are sim ilar to those 

identified in the AM series and are shown in figure 4.6. The late nineteenth century, late- 

1920s. mid-1940s. mid-to-late 1960s, m id-1970s to m id-1980s, and the 1990s were periods o f 

high flood magnitude Low flood m agnitudes are evident in the early part o f  the twentieth 

century until around 1920. and in the 1930s, 1950s, early-to-mid 1970s, and the mid-to-late 

1980s.

There are two notable variations in the AM E and AM diagrams. Firstly, on the Derwent at 

Buttercrambe, the AM record suggests that m agnitudes have declined in the 1990s, whereas the 

AM E record shows magnitude to be increasing. This would indicate that m aximum flood 

discharges are declining, but the frequency o f  more moderate flood events has increased. 

Secondly, the AM record for the Ure at W estw ick shows three very large flood peaks in 1982, 

1991 and 1995, these peaks have been ‘sm oothed’ by the AM E approach, w hilst still preserving 

the overall trends common to both scries.

AM and AM E series both show temporal variations in flood m agnitude, AM data represent the 

maximum peak per year, whereas AM E data represent the average annual exceedance over a 

standard threshold. Com parison o f  the tw o series show that the tim ing o f m ajor changes in 

flood magnitude are in close agreement. This suggests that it is not always necessary to use 

both m easures o f annual m agnitude, either will give a clear indication o f  significant temporal 

variations in flood magnitude.

4.2.4.4. A nnual flood frequency  (AFF)

Mean flood frequency values and other sum m ary statistics for each o f  the eight sites are given 

in table 4.8, and clearly show shorter flood records tend to have a higher mean annual 

frequency. This may suggest that flood frequencies m ay have been higher in the recent period. 

Run Chart summaries are given in table 4 9, and show that three o f  the eight flood frequency 

series are non-random, the Derwent, Don and the Ouse records all exhibiting clustered data 

points, with the Don also showing evidence o f  a trend. The remaining series are statistically 

random .

Annual flood frequency series are shown in figure 4.7. Only two POT records extend back to 

the nineteenth century, the Ouse at York and the Don at Doncaster. These series show that this 

early period was characterised by generally low flood frequencies, except between the late- 

1870s and early-1880s. From the 1880s until the 1940s flood frequencies remained extremely 

low. There followed a marked increase in flood frequency on the Ouse, Nidd and Wharfe
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Table 4.10 : Average annual flood  frequency fo r  standard 5-year periods. Bold indicates highest 
average value, italics denote lowest average value for each site

5-year Period (27001)- (27002)- (27007)- (27021)- (27028)- (27041)- (2707 0 - Ouse-
Nidd Wharfe Ure Don Aire Derwent Swale York

1872-1876 1.40
1877-1881 3.00 3.00
1882-1886 2.60 1.60
1887-1891 0.80 1.00

1892-18% 0.40 1.40
1897-1901 1.80 0.80
1902-1906 0.40 0.80
1907-1911 0.80 0.80
1912-1916 1.40 1.20

1917-1921 1.20 I 00

1922-1926 0.80 1.60
1927-1931 1.20 1.40
1932-1936 3.00 No data 1.20

1937-1941 4.00 2.80 No data 1.60
1942-1946 4.80 4.00 No data 3.20
1947-1951 4.80 4.80 No data 2.80
1952-1956 2.60 2.80 No data 4.00 2 .0 0

1957-1961 4.60 3.80 4.80 0.60 5.20 3.20
1962-1966 3.80 4.00 4.80 1.40 3.80 4.00 4.00 3.00
1967-1971 4.20 3.80 4.40 1.60 3.80 3.40 4.40 3.20
1972-1976 2.40 2.20 2.60 0 .2 0 1.80 2.20 1.60 1.00

1977-1981 5.00 5.20 4.00 4.20 4.20 6.80 5.40 4.20
1982-1986 3.80 4.40 4.80 4.20 4.20 3.40 4.40 4.20
1987-1991 3.60 3.00 4.80 2.80 3.40 2.40 3.60 3.80
1992-1996 3.00 2.60 3.60 1.80 2.80 1.80 4.20 3.20

Kruskall- Wallis 0.855 0.287 0.405 0 .0 0 0 0.733 0.092 0.256 0.007
P-value

P-value must be low er than 0.05 to be significant at the 5%  level
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Figure 4. 7 : Annual flood  frequency series (AFF)

( d ) : Wharfe at Flint Mill 1936-1996
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around 1944 Unfortunately, the m ajor gap in the Don POT record (1932-1960) occurs over the 

period when these dramatic changes in flood frequency are evident Large inter-annual 

variations in the Ouse, Nidd and W harfe records are evident in the 1950s. with 5-year running 

means staying close to the long-term average until the mid-1960s when there were several years 

with high flood frequencies at all sites. From around 1969 to 1977 there was a dramatic decline 

in flood frequency. Indeed, the 5-year period 1972-1976 (table 4 10). has the lowest recorded 

flood frequencies at six o f the eight sites. After 1977 flood frequencies increased dramatically 

with the period 1977-1981 showing the highest average frequencies at seven o f  the eight sites. 

A relative decline has occurred since the early-1980s through to the present at all sites, 

however, on the Ouse at York this decline has not been so pronounced.



4.2.4.5. A nnual flood frequencies over various th resh o ld s

This technique is used to detect temporal variation in the frequency o f floods over a specified 

magnitude. Each threshold is based on return period estimates using the whole POT record, for 

Q2. Qm and Q 20, calculated using the POT model outlined in section 4.2.3 This method allows 

for comparability o f  flood frequency and m agnitude between sites and has the principal 

advantage o f highlighting the tim ing o f extrem e events (>Qio )• A disadvantage o f  this 

technique however, occurs when the POT model does not fit the data well (e.g.; the Ure at 

W estwick - figure 4.8(a) ) and return period estim ates may be inaccurate.

78

Figure -I. H : F lood frequency curves fo r  (a) the Ure at W estwick and (b) the Ouse at York, 
showing exam ples o f  a p o o r  (a) and a g o o d  (b) f i t  o f  the P O T  model

(a) Ure at Wes twick : 1956-1996 (b) Ouse at York 1878-1995

n
O<

Ifl

Reduced Vari ate Reduced Van ate

Sim ilar trends to those already observed are shown clearly when exam ining floods over the Q2 

(fairly moderate events) threshold in figure 4.9. High frequencies o f  floods above this threshold 

occur in the late nineteenth century and decline dram atically in the early part o f  the twentieth 

century. Frequencies increase in the 1940s, and show peaks in the 1960s, late-1970s to early- 

1980s and the 1990s. These patterns confirm those already established from earlier analysis, 

however a num ber o f interesting variations from these trends are evident at higher magnitudes.

The frequency o f  floods over higher thresholds are shown for each site in figures 4.10 and 4.11 

In general peaks still occur around the dates outlined above, how ever the 1960s and 1990s 

appear to have a higher frequency o f  these high m agnitude events, particularly on the northern 

tributaries. The Don record shows a m arkedly different trend, with the majority o f  events >Qu> 

occurring in the late nineteenth century and between 1917 and 1931 The Ouse at York shows
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Figure 4.9 : Annuui frequency over Q , threshold for each site. * indicates start of record

(a) Don at Doncaster >158.75 cumecs
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Figure 4.10 : Annual frequency over Q w threshold for each site. * indicates start o f  record
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Figure 4 .1 1 : Annual frequency over Q }tl threshold for each site  * indicates start o f  record  
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that all but one o f  the thirteen >Qio events occurred after the 1920s, and four o f  the six >Q2o 

events have occurred since 1978, suggesting an increase in the highest magnitude events in the 

m ost recent period. Some or all o f  these four large flood events, 1978, 1982, 1991 and 1995, 

are also evident at Q ]0 or Q2o thresholds at all the other sites, however, some o f these records 

are relatively short, and long-term com parisons cannot be made, clearly illustrating that this 

kind o f  approach is better when applied to long records o f  flooding. The two long records that 

are available show the tim ing o f  high m agnitude floods to be markedly different.

4.2.4.6. Flood seasonality

Considerable variability in flood seasonality has been noted in the UK by Hewson (Nd) and 

Black (1992). Such variations may help to explain the observed shifts in flood frequency and 

magnitude in the Ouse basin, and also help to build a general picture o f  the flood characteristics 

o f  the area. Several techniques have been used in this study to investigate flood seasonality, the 

percentage frequency o f  POT floods in tw o-m onthly periods (Dec-Jan, Feb-M ar etc.), POT and 

AM  day o f flood diagrams (after May 31st), annual frequency o f  flooding in standard seasons 

(e.g. w inter = Dec-Jan), and Q-T relationships for individual seasons. The m ajority o f this 

section uses POT records since this includes all floods over the specified threshold, rather than 

sim ply one event per year, as in the AM  series.

2-monthly flood frequencies

The percentage o f  floods that have occurred in two m onthly periods, over the entire POT record 

for each site are shown in figure 4.12. These diagram s indicate that the dom inant period o f  

flooding occurs between December-January at all sites, followed by February-M arch and 

October-Novem ber respectively. The Derwent at Buttercram be shows February-M arch to be a 

much more im portant POT flood period than any o f  the other sites. All the other sites have 

their headwaters in Pennine regions, whereas the Derwent headwaters are in a much more 

easterly location in the North Yorkshire Moors. Black (1992) quotes work by Hewson (Nd) 

which concluded that peak flows tend to occur later in the year on eastern draining catchments.

Temporal variation in flood seasonality

Figure 4.13 shows the day o f  the AM flood w ith day zero being June 1st o f  each year. 5-year 

running means are also plotted to highlight long-tenn variability. For ease o f  site comparability 

figures 4.13 (a)-(d) and (e)-(g) are plotted on different tim escales dependant on the length o f  

record The tim e o f  year o f  the AM flood varies considerably with often large inter-annual 

variation. This leads to a  com plex overall pattern in the tim ing o f  flood peaks, although some 

com m on trends are evident particularly after the 1950s when more records are
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Figure 4.12 2-monthly flood frequency percentages over entire period  o f  POT record
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Figure 4.13 : Day’ o f  annual maximum (AM) f lo o d  (after May 31st)

(a) : Ouse at Viking - York 1880-1995

Year

(b) : Don at Doncaster 1874-1996
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( c ) : Nidd at Hunsingore 1934-1996
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( d ) : Wharfe at Flint Mill 1936-1996
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Figure 4.13 : Day o f  annual maximum (A M) flood  (after May JI si) ( ( 'on’t)

( e ) : Swale at Crakehill 1955-1996

Y e a r

( 0  : Ure at Westwick 1956-1996

Y e a r

(g) : Aire at Armley 1961-1996

Y e a r

( g ) : Derwent at Buttercrambe 1962-1996

Y ear



available Floods tended to occur earlier in the year in the 1950s and early-1970s. and later in 

the year in the mid-1960s and m id-1980s. These periods appear to be in phase with flood 

m agnitude changes, for example in the early-mid 1970s. when flood magnitudes were 

particularly low throughout the basin it appears that annual maxim a tended to occur on average, 

earlier in the year than higher m agnitude events such as those in the 1960s, that occurred in 

December-February. This m ay be a product o f  snow m elt influence and wetter antecedent 

catchm ent conditions, which will have a  greater influence in the later w inter months. The Ouse 

at York in particular, shows a strong link between flood magnitude and the time o f peak flood. 

However this relationship is not clear cut, the tim ing o f  magnitude changes and the time o f year 

o f  the flood events are not always in phase. The two long records on the Ouse and Don, show 

marked variations in the day o f  AM flood particularly in the late nineteenth century, which 

given the differences already established is not surprising, although since the Don record is 

incom plete interpretation becomes less reliable.

Diagrams o f  the annual frequency o f POT floods in standard seasons have been produced and 

are shown in figures 4.14 - 4.17. These diagrams confirm  that w inter (December-February) 

(figure 4.14) is the dom inant flood season, although there are a num ber o f  significant variations 

through time. Increasing frequencies o f  spring (M arch-M ay) ( figure 4.15) floods are often 

associated with periods o f  increased flood magnitude, distinct clusters o f  spring flood events are 

evident in the late-1940s, m id-late-1960s, and in particular since the mid-late-1970s. This 

confirm s the findings based on AM  data, that periods o f higher magnitude flooding are 

occurring in association with an increased frequency o f  floods later in the year. Furthermore, 

from evidence in the longer flood records, it appears that the frequency o f  autumn (September- 

November) (figure 4.17) flooding has declined significantly since the 1960s. This decline 

coincides with a relative increase in the incidence o f  spring floods. Finally, in general, when 

flood frequencies are high, POT events are com m on in all seasons, and not restricted to a w inter 

regime.

Flood frequency analysis and seasonality

Black (1992) used flood frequency analysis to investigate seasonality by determining the 

frequency-m agnitude relationships for different seasons on a large num ber o f  Scottish rivers. In 

this case, the POT model is applied for two m onthly periods at each site which have at least ten 

events over the whole period o f  record. An EXCEL m acro was used to calculate the discharge 

o f  the Q 100 event for each season, the Q 100/Q 5 grow th factor (table 4.11) and Q-T diagrams 

(appendix A), as described in section 4.2.3.

86



A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

A
nn

ua
l 

Fr
eq

ue
nc

y 
Fr

eq
ue

nc
y 

Fr
eq

ue
nc

y 
Fr

eq
ue

nc
y 

Fr
eq

ue
nc

y 
Fr

eq
ue

nc
y 

Fr
eq

ue
nc

y 
F

re
qu

en
cy

87

Figure 1.14 : Annual frequency o f  W inter (Decem ber - February) PO T floods. * Start of record
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Figure 4.15 : Annual frequency o f  Spring (March - May) POT floods  * StarI o f  record
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Figure 4.16 : A nnual frequency o f  Sum m er (June - A ugusl) PU T floods * Start of record
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Figure 4.17 : Annual frequency o f  A utum n (September - November) POT floods * Start of record
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Table 4.11 Discharge o f  f lo o d  and grow th fa c to rs  0 Utl/0< ,fbr each site (POT). All
discharges in m 3s  1 unless otherwise stated. Highest Q U)f) estimate fo r  each site 
shown in bold.

(a) : Ouse at the Viking H otel - York 1878-1995 *stage record  (m . tOD)

Season QlOO q 5 Growth Factor Q 1(10/Q5

Jun-Jul - - -
Aug-Sep 8.82 7.78 1.134
Oct-Nov 9.48 8.31 1.140
Dec-Jan 9.72 8.58 1.133
Feb-Mar 9.81 8.53 1.149
Apr-May 8.63 7.85 1.010

(b) : N idd at Hunsingore 1934-1996

Season QlOO Q? Growth Factor Q ,00/Qf

Jun-Jul - - -
Aug-Sep 346.67 97.46 3.557
Oct-Nov 240.15 119.46 2.010
Dec-Jan 266.82 145.06 1.839
Feb-Mar 227.20 123.00 1.847
Apr-May 187.13 87.51 2.138

(c) : Wharfe at Flint M ill 1936-1996

Season QlOO Qs Growth Factor Q 100/Q5

Jun-Jul - - -
Aug-Sep 360.18 182.87 1.970
Oct-Nov 334.97 218.63 1.532
Dec-Jan 386.60 250.35 1.544
Feb-Mar 416.07 251.32 1.656
Apr-May - - -

(d) : Aire a t A rm ley 1961-1996 f '

Season Q 100 q 5 Growth Factor Q 10o/Q?

Jun-Jul - - -
Aug-Sep - - -
Oct-Nov 218.92 130.15 1.682
Dec-Jan 214.32 145.66 1.471
Feb-Mar 174.70 123.03 1.420
Apr-May - - -
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(e) : Derwent at Buttercrambe 1962-1996

Season QlOO Q? Growth Factor Q l(,„/Q?

Jun-Jul - - -
Aug-Sep - - -
Oct-Nov 135.18 70.57 1.915
Dec-Jan 136.22 88.36 1.542
Feb-Mar 143.22 89.53 1.600
Apr-May 86.22 63.92 1.349

(j) : IJre at W estwick 1956-1996

Season QlOO Q»5 Growth Factor QI()0/Q5

Jun-Jul - - -
Aug-Sep - - -
Ocl-Nov 360.73 228.53 1.578
Dec-Jan 451.97 287.55 1.572
Feb-Mar 621.06 335.29 1.852
Apr-May - - -

(g) : Swale at Crakehill 1955-1996

Season QlOO Qs Growth Factor Q 10o/Q?

Jun-Jul - - -
Aug-Sep 209.41 133.90 1.564
Oct-Nov 248.76 158.48 1.570
Dec-Jan 244.18 174.13 1.402
Feb-Mar 264.77 177.08 1.495
Apr-May 201.01 142.78 1.408



These results indicate that although December-January is the most common period for flood 

events to occur, it is during the February-M arch period that the highest Qmo estimates are 

derived for six o f the eight sites, again suggesting that the highest flood magnitude occur later 

in year The lowest Q U)o estimates, where data are available are generally in April-Mav

Growth factors displayed in figure 4.18 do not appear to vary greatly at the majority o f sites, 

apart from on the Nidd at Hunsingore, where there are a series o f  large flood events in August- 

September.

Figure 4.18 : Seasonal growth fa c to rs  (Q kk/ Q s) fo r  entire p er io d  o f  P O T records at each site

+  Ouse  @  Y o rk  1X 7 8 -1 9 9 5

__W h a r f e  @  Fl int Mil l 1 9 3 6 - 1 9 9 6

__A ire  @  A rm  ley 1 9 6 1 - 1 9 9 6

__D e rw en t  @  B u t te rc ra m b e  1 9 6 2 - 1 9 9 6

^ __Nidd @  Hunsingore 1934-1 9 9 6

« __ Sv\ale @  C rakeh i l l  1 9 5 5 - 1 9 9 6

^ ___U r e @  W es tw ic k  1 9 5 6 - 1 9 9 6
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4.3. D O C U M EN TA R Y  FL O O D  H IS T O R IE S  IN T H E  O U SE  BASIN

4.3.1. In tro d u c tio n

Due to the relatively short length o f many gauging station records, evidence o f flooding from 

archive and documentary sources have been compiled to extend the period available for 

analysis The main aim o f  this section is to investigate docum entary evidence o f floods for 

each m ajor Ouse tributary in order to assess longer-term variations in flood frequency, 

m agnitude and seasonality.

4.3.2. D ata sources

Prior to the advent o f  flow gauging stations floods were often recorded on an ad-hoc basis, 

particularly if  an event caused loss o f  life or financial damage in a populated area. Historical 

evidence o f  floods can be found in a wide range o f  sources in the UK, and these have been 

sum m arised by Potter (1978) for England and W ales, by McEwen (1987) for Scotland, and 

Hooke and Kain (1982), for the UK in general. Sources include, ecclesiastical records, personal 

diaries, parish records, newspapers, floodstones and com pilations o f  large UK flood events (e.g. 

Acreman, 1989a; Acreman & Lowing. 1989; Brooks and Glasspoole, 1928; and Newson, 

1975). By incorporating historical flood evidence into studies o f flood frequency and 

magnitude, records o f  extreme flood events in particular can be extended considerably, indeed, 

both Archer (1987) and M cEwen (1990) suggest that docum entary flood records can be 

considered to be com prehensive back to c. 1750.

There is a paucity o f  detailed docum entary flood studies in the Yorkshire area in comparison to 

other parts o f  the UK (e.g. Howe el al.., 1967; M cEwen, 1989; M cEwen, 1990; Rumsby, 1991). 

The main published works for the area, such as Radley and Sim m s (1971), Piers (1977), and 

W aterman (1981), all com piled records o f  the highest flood events in the historical archives for 

heavily populated areas such as York and Leeds. W ith the exception o f  the Swale (W illiams, 

1957) and the W harfe area (Jones el al., 1984), detailed com pilations o f docum entary floods in 

the rest o f  the Ouse catchm ent has been relatively neglected, and therefore an extensive archival 

search was undertaken.

The main sources o f historic flood inform ation were local libraries, archive offices and regional 

offices o f  the Environm ent Agency. Every library and archive office at m ajor towns throughout 

Yorkshire were visited and catalogues consulted, although only indexed material relating to 

flooding was consulted due to time constraints o f  the project. Ideally, the oldest local 

new spaper nearest to each m ajor town in close proxim ity to a main Ouse tributary would be 

studied in detail over the entire period o f  publication, however the majority o f  newspapers
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were not indexed or were only partially indexed, such as the York Conrant and Keighley News. 

These indexed newspapers, when available however, proved a valuable source o f reference 

which could then be used to look up certain dates in more detailed local histories.

The data collected on docum entary flood histories can be sub-divided into two main sources; 

published and unpublished com pilations. Examples o f  published accounts relating to historic 

Yorkshire floods are contained in the Flood Studies Report (NERC, 1975), Radley and Simms 

(1971), Piers (1977), and Jones et al. (1984). Similarly, various local historical texts often 

describe the effects o f large floods in specific areas, examples include Baines and Baines 

(1881), Hargrove (1818), Mayhall (1859) and Dawson (1882). However, a great deal o f  

information was found from a  variety o f  unpublished sources, which significantly, have not 

previously been drawn together in one study to investigate the long-tenn trends in flooding over 

the Yorkshire area. Examples o f detailed unpublished sources include. Farrant (1953), 

W illiam s (1957), and the Yorkshire W ater Authority (1980). A complete list o f all the sources 

which contain inform ation on historic flooding in the Yorkshire area is given in Appendix B

L im ita tions of d o cu m en ta ry  flood records

The limitations and problem s surrounding the use o f documentary evidence have been 

described by m any authors (e.g. Archer, 1987; McEwen, 1987; Rumsby, 1991). Problems 

include (1) the com pleteness o f  records, which tend to be more detailed in recent centuries 

(Suttcliffe, 1987) due to improving standards o f  reporting. (2) the accuracy and reliability o f 

records is often doubtful, with historical accounts prone to exaggeration, which is compounded 

by the fact that m any accounts are descriptive in nature and offer no systematic m easurem ent to 

backup common claim s such as, ‘largest ever flood’. There is also the problem o f  non- 

stationarity as the result o f  changes in natural or anthropogenic channel controls (Archer, 1987). 

These can include, sluice im provements, floodplain developm ent and general channel 

m aintenance (NERC, 1975), all o f  which are difficult to quantify over an historical timescale. 

There is also a bias towards spatially extensive floods being recorded, rather than more 

localised moderate events. This spatial bias in reporting is further exaggerated since floods are 

generally only recorded where there are centres o f population. Despite these limitations, 

documentary evidence o f  floods remains an im portant source o f  often un-tapped information 

with which to  extend the instrumental period.
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4.3.3. V aria tions in flood frequency  an d  m agn itude in the O use basin  in ferred  from 

d o cu m en ta ry  sources

Documentary flood data have been com piled for each m ajor tributary, adopting the same 

m ethodology o f  site selection as for the gauged record, based on proximity to LOIS study sites 

(i.e. piedm ont and lowland areas). Only references which specifically name a particular 

tributary are included in each com pilation. The length and detail o f  records for the nine major 

tributaries varies considerably. Table 4.12 shows that the Aire, Swale, Calder and Ouse have 

the highest recorded num ber o f  floods, with other rivers being much less detailed This 

probably reflects location o f  population centres, since areas o f the Aire. Calder and Ouse are 

densely populated, whereas the more rural catchm ents o f the Ure, Nidd and Derwent are 

relatively un-populated, and floods less likely to be recorded. This is not the case for the River 

Swale, which has a detailed flood history from 1673 to 1953, compiled by W illiam s (1957), 

from extensive analysis o f  local archives and historical sources.

Table 4.12 : Length o f documentary record and number offloods recorded for each major Ouse 
tributary.
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River Period of record No of floods recorded Comments

Aire 1068-1939 44

Swale 1673-1953 43

Calder 1308-1967 34 22 with level data 1799-1882

Ouse 1263-1831 24 level data since 1831

Don 1655-1940 16

Wharfe 1673-1965 15

Derwent 1550-1932 14

Nidd 1763-1881 10

Ure 1732-1927 9

O f key importance to this study is the acquisition o f  the longest and m ost detailed records o f  

flooding which can be used in conjunction with the gauged record. York has been identified as 

a key site by the York Archaeological T aist, due to recent excavations o f alluvial sections in the 

North Street area (cf. Finlayson, 1993). Fortunately, floods have been well documented at 

Y ork, and often have level data which can provide a  direct comparison between recent and 

historical flood events.



4.3.3.1. Documentary flood history at York : 1263-1878 

Introduction

In comparison with other sites in the Yorkshire Ouse basin, York has been the subject o f 

several detailed studies into its docum entary flood history (e.g. Farrant, 1953; Radley and 

Simms, 1971; Piers. 1977; W atennan, 1981) The original settlem ent was designed by the 

Roman governor o f  Britain, Quintus Patillius Cerealis in AD 71 (Knight, 1944) between the 

confluence o f  the Rivers Ouse and Foss, providing a defensible position, water supply and 

navigable river. This long history o f  settlem ent has provided detailed documentary evidence o f 

flood events, with the earliest recorded flood in 1263.

Previous studies of documentary floods at York

A study by Radley and Simms (1971) inferred the severity o f  flooding at York since Roman 

times based on archaeological evidence. These authors suggested that severe flooding at York 

was less frequent in Roman tim es due to low er sea level, with land as low as 4.88m AOD being 

occupied in certain districts o f  York. This period was followed by a rise in sea level and an 

abandonm ent o f  settlem ents dated to AD 350-370. This reduction in population after the 

Roman withdrawal was attributed to increased flooding. The authors estimated a m axim um  

flood level o f  10.67m AOD from archaeological sections at York, and an increased severity o f  

flooding between the fifth and eleventh centuries. There followed a period characterised by 

reduced flood severity, which Radley and Simms (1971) suggest lasted as long as seven 

centuries. A lthough, in a study com m issioned to investigate flooding at York, Farrant (1953) 

com piled a documentary flood history to 1263 and concluded, in contrast to Radley and Simms 

(1971) that there has been a gradual increase in average flood levels at York since the thirteenth 

century. This conclusion, based on the evidence that ecclesiastical buildings and high class 

residences that are now in areas liable to flooding, would not have been constructed originally i f  

they had been subject to severe flooding, is com pounded by the fact that street levels were 

m uch lower in previous centuries (Farrant, 1953; W aterm an, 1981). Recent excavations by 

York Archaeological Trust at the North Street site suggest more com plex patterns o f flooding at 

York. A 9m sedimentary profile was excavated and logged, which was primarily composed o f  

the remains o f  waterfront structures, dum ped material such as shells, bricks and pottery', and 

sandy alluvial units. The profile was dated on the basis o f  potter)' assemblages, and is 

considered to represent the period between the second and fifteenth centuries. On examination 

o f  the alluvial units Hudson-Edwards et al. (in press) suggest that m ajor floods are likely to 

have occurred between the second to fourth centuries and the twelfth to fourteenth centuries, 

whereas the ninth to tenth centuries were characterised by more moderate flood events.
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The main aim o f  Farrant’s (1953) study was to investigate an apparent recent increase in 

'recurrent flooding’ in several districts o f  York It was suggested that Nabum weir, installed 

9.5km downstream o f  York to impound w ater for navigation purposes, may have contributed to 

this increase. Nabum weir and lock were constructed in 1757, in an attempt to reduce the 

problem o f  silting, which hindered navigation to York. Prior to diis time the Ouse was tidal as 

far as Swale Nab at the junction o f  the Ure and Swale (SE 430 660) (Farrant, 1953), after 

construction o f  the weir, Nabum became the new tidal lim it o f  the Ouse. This has important 

im plications for historical flood studies since spring tides significantly affected river levels at 

York prior to 1757. For example, a  spring tide in 1643 caused the river to rise by 5 feet 

(W ilson & Spence, 1788), and com bination o f  high spring tides and rapid snowmelt caused 

severe flooding at York in 1689 (Knight, 1944)

E x tend ing  the  gauged record  back to  1831

Flood stage data are available prior to  the start o f  system atic recording in 1878 The records 

were kept by the Town C lerk’s office and have been tabulated and stored at York City Library. 

Levels are recorded for floods that exceed 8.64m AOD at Ouse Bridge, which equates to 12 feet 

above sum m er level and would caused severe flooding in areas adjacent to the river. Levels 

were not recorded between 1857 and 1867, and no indication is given as to the methods o f  data 

collection, therefore the series cannot be regarded as a system atic POT record. However, 

inclusion o f  these data does extend the flood record at York considerably, and it can be 

assum ed with some confidence that the m ajority o f  floods are recorded, since flooding above 

this level would cause disruption in the City centre and would be worthy o f  note. The record is 

shown in figure 4.19, and suggests that the m iddle nineteenth century experienced fairly high 

flood magnitudes, particularly in the 1830s and 1850s. M agnitudes appear to have declined 

from the early 1870s onwards to the record lows in the early part o f  the twentieth century, with 

the exception o f  a large flood in October 1892. It has been suggested in a previous section that 

the m ost recent period, from around 1978 has been atypical in term s o f  flood m agnitudes, with 

particularly high events in 1978, 1982, 1991 and 1995. However, the level given by the Town 

Clerk records suggests that the flood o f  February 1831 exceed all these events. This raises the 

question as to the reliability and com parability o f  these early records, and will be discussed in a 

later section.
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F igure 4.19 : F loods over 8.64m AOD from  gau ged  and docum entary sources 
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Documentary floods records at York 1263-1831

The level o f  historic floods prior to 183 1 has often been recorded or estimated for some o f  the

largest events at York, however different sources sometimes show large variations in

magnitude. There are four main sources o f  historic stage data at York :

1. A table o f  past floods held at York City Library from 1263 to 1892 : These records were 

compiled from Town Clerk records and new spaper cuttings. Pre-1625 flood levels are 

estim ated from m axim um  levels suggested in contem porary accounts.

2. Table o f  past floods between 1263 and 1982 held at York Environment Agency: This 

appears to have been com piled from previous historical accounts such as Farrant (1953), 

Radley and Sim m s (1971) and the Flood Studies Report (NERC, 1975). Farrant (1953) 

states that there are no dircct references to levels prior to 1625, and therefore has estimated 

the flood stage for events in 1263, 1315, 1564 and 1614 on the basis o f  maximum level 

suggested in historical texts. These levels were surveyed in areas where it is assumed that 

changes in street levels have been at a minim um .

3. Flood marks on city wall plaque : The floods o f  1625, 1636. 1763, 1831, 1892 and 1947 

have been recorded on a plaque situated on the wall o f  a Franciscan friary in Tower Street 

(Piers, 1977). Fortunately these marks have previously been surveyed, since the plaque has 

recently been stolen.
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4. W aterman (1981) ; This author lists the flood rise above sum m er level for events between 

1263 and 1978. there is no indication o f the original source o f this data, and the levels are 

assumed to relate to the usual historical point o f  reference at Ouse Bridge (Datum 4.98m 

AOD)

Figure 4.20 shows an updated version o f  work by Longfield et al. (1995). which illustrates the 

extent o f variation in flood stage data between individual documentary sources. All available 

level data from the four sources outlined above are plotted, together with a gauged level for the 

1892 flood. The horizontal dashed lines represent the level o f  return periods calculated using 

the POT model on stage data available between 1878 and 1995 at York, and provides a means 

o f  comparison between the gauged and documentary' records

The range o f  estim ates between sources can be considerable For example, stage estim ates o f  

the 1263 flood, suggest this event could have a m odem  return period o f <10 years or a 

m aximum o f >200 years. S im ilar discrepancies, although o f a lesser m agnitude persist 

throughout the entire documentary record, illustrating the considerable difficulties when 

considering the magnitude o f  historic events. Furthermore, W aterman (1981) suggests that the 

floods o f  1564 and 1614 are the largest ever to have occurred at York, whereas Piers (1977) 

favours the largest event to be 1625, based on the level on the city walls. Tins is further 

complicated by Farrant’s (1953) findings, since he notes that, although the city wall plaque 

shows the 1625 event to be some 0.23m higher than 1636, a carving on the wall shows these 

two events to be o f  equal m agnitude, which the author has confirmed from early references, 

although he does not state which.
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F igure 4.21 : R econstructed extent o f  the 1625 f lo o d  a t York (from R adley  <£ Simms, 19^1)

102

Given these problem s o f  accuracy, inferences can still be made as to historic variations in flood 

magnitude and frequency. It is clear from figure 4.20 that even the m inim um  estim ates for 

events in 1564, 1625 and 1636 would give a  return period in excess o f  100 years if  viewed in 

the context o f  the recent record (since return period estim ates have been calculated using the 

1878-1995 record). This suggests, that these floods were indeed exceptional in two respects. 

Firstly, considering the lower street levels at this time, the spatial extent o f  flooding would be 

widespread, and secondly, the close grouping o f these events in time. Radley and Simms 

(1971) have attem pted to reconstruct the extent o f  flood water in the lower reaches o f  the Ouse 

basin for the 1625 flood, assum ing a m axim um  level o f  10.67m AOD (figure 4.21) at York. 

This caused widespread destruction throughout the Vale o f  York, and would suggest that flood 

levels o f  10.96m AOD im plied for the 1564 and 1614 events by W aterman (1981) are 

overestim ates, since a flood 0.29m higher than 1625 w ould be catastrophic. Although historical 

texts do suggest that the floods o f  1564 and 1614 were severe, it appears that the 1625 event, 

and possibly 1636 (Farrant, 1953) may have been the largest floods ever experienced at York.

In general, figure 4.20 suggests that exceptionally high flood m agnitudes were experienced in 

the seventeenth century. Several extrem e events occurred in the eighteenth century, although o f 

a lower m agnitude, and there was a particularly severe flood in 1831



Not all flood events that have been recorded at York have stage data, a complete list o f  all 

floods referenced is given in appendix B, and shown in figure 4.22 from 1263 to 1831 The 

fact that these floods are chronicled at York, which is prone to frequent severe flooding, 

suggests that these may be considered as large magnitude events This chronology probably 

records all the extreme flood events at York since around 1550. In figure 4 22 those floods 

with level data (12 in all) have been ranked according to their maximum estimate, and an 

approximate return period has been established by comparison o f those established from the 

gauged record. This flood chronology can be used to investigate flood frequency in more 

detail Four flood events are recorded between 1263 and 1360. however only the 1263 event 

level can be estim ated since references state that the flood waters reached the junction o f  Bridge 

Street and North Street (10.54m AOD suggested by W aterman (1981)). No floods were 

recorded for alm ost two centuries between 1360 and 1550, although whether this represents a 

period o f low flood frequency and magnitude is difficult to establish since records for this 

period are poor. A notable flood occurred in January 1564, attributed to a rapid and sudden 

thaw (Radley & Simms, 1971), although difficulty in establishing the magnitude o f  this event 

has already been discussed. The frequency o f  severe flooding increased dramatically in the 

m in-seventeenth century and from the late eighteenth century onw ards, whereas only two flood 

events were recorded in the early part o f  the eighteenth century. Those floods which have been 

recorded as having a significant snowm elt contribution are also highlighted in figure 4.22, and 

show that several o f  the largest events were influenced by snowmelt. There is an apparent 

tendency towards increased snowm elt flooding in the late eighteenth century'.

4.3.3.2. D ocum entary  flood h isto ry  of th e  O use basin

Documentary evidence o f  floods collected for all other m ajor Ouse tributaries is also 

sum m arised in appendix B. The earliest recorded flood in the entire Ouse basin occur on the 

River Aire in 1068 when W illiam the Conqueror was held up for three weeks by the swollen 

River Aire (W alker, 1934). The majority o f records however, date from the sixteenth and 

seventeenth century. The decadal frequencies o f docum ented floods for each tributary are 

shown in figure 4.23, and highlight the com plex and often non-synchronous tim ing o f  flood 

events. As discussed earlier in this chapter, this is probably a product o f  proxim ity to populated 

areas, where records are more likely to have been kept.

There appears to have been a period in the late thirteenth and early fourteenth centuries when 

several large floods were documented. O f the six events recorded between 1263 and 1360 on 

the Aire, Calder and Ouse, all occur independently, and are only referenced at one specific site.
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Figure 4.22 : Documentary f lo o d  history al York 1263-1X31
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This may suggest these events represent a series o f relatively localised floods, for example, on 

the River Aire in autum n 1322, W orseford, (1894) docum ents that meadow land was flooded in 

the Haddlesey area, and does not give any indication as to the effects elsewhere. However, 

some o f  these events were spatially extensive lowland floods, in 1263 at York for example, 

estimated levels suggest much o f the Vale o f York would have affected

There is no recorded incidence o f flooding in the Ouse basin from 1361 to 1549, although it is 

not until the early seventeenth century that there is real evidence o f  severe widespread lowland 

flooding. One o f  the largest events to occur in the Ouse basin is undoubtedly that o f March 23ul 

1615, when bridges at Elland at Keighley were destroyed by the Aire (Yorkshire W ater 

Authority, 1980; W alker, Nd), and a ten day flood peak persisted at York (Radley & Simms, 

1971). Interestingly, there is no evidence on any river apart from the Ouse at York, o f  the 1625 

and 1636 flood events, which given the suggested magnitude at York would alm ost certainly 

have affected the Aire, Calder and Don valleys.

The frequency o f floods recorded on these and other Ouse tributaries tended to increase tow ards 

the end o f the seventeenth century. Basin-wide lowland flooding occurred in Septem ber 1673, 

recorded on the Calder, W harfe and Swale, when the Calder damaged a bridge at Sowerby 

Bridge (Walker, Nd), and two bridges were washed away by the Swale at Brompton-on-Swalc 

(W illiams, 1957).

There followed a period from 1681 to 1763 when no floods were recorded on the River Aire, 

and relatively few on the Ouse at York (only in 1689 when the river was influenced by high 

spring tides and in 1715 and 1732). Those floods recorded on the Swale, W harfe, Calder, Ure 

and Derwent over this period all tend to be localised in upland or piedm ont regions. O f fifteen 

flood events which occurred in the Ouse basin between 1681 and 1763, only one event is 

recorded at more than one site. On February 2nd 1732, bridges at Masham. on the Ure (Lucas, 

1887), and Brompton, on the Swale (W illiam s, 1957), were washed aw'ay. The remaining 

thirteen floods appear to  have been localised to a specific tributary in an upland area, a prime 

example can be found in W harfedale in 1686 and was described as follows :

'on the 18tli February, the whole of England was visited by a tempest, accompanied with 
thunder, which committed great devastation. The inhabitants of Kettlewell and Starbotton, 
in Craven, were almost all drowned in a violent flood. These villages are situated under a 
great hill, whence the rain descended with such violence for an hour and a half that the 
hill on one side opened, and casting up water into the air to the height of an ordinary 
church steeple, demolished several houses, and carried away the stones entirely.’ Source : 
Summersgill Collection, Vol 1, Brief Accounts o f  Yorkshire Floods From 1564-1872.
Leeds City Library.
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Figure 4.23 : D ecadal frequencies o f  documentary floods far a ll tributat ies
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Many o f  these localised floods occurred between the months o f Ma\ and August, and were 

attributed to thunderstorm s or cloudbursts. On Mav 7th 1738 a severe thunderstorm caused the 

Calder headwaters to flood a chapel at Holmfirth (M orehouse, 1861). and on June 25th 1701 a 

cloudburst over the Swale headwaters resulted in a bridge over Grinton Beck being destroyed 

(W illiams, 1957).

Lowland flooding appears to have increased dramatically on the River Aire in the 1760s, 

declined in the 1770s and 1780s, and increased again between 1790 and 1830. Evidence from 

the Ouse documentary and gauged records tends to support the tim ing o f flood frequency 

changes on the Aire. Severe flooding appears to have become more frequent in the Ouse basin 

towards the end o f  the eighteenth century. In January 1790. a rapid thaw destroyed several 

bridges on the Aire, and was considered the 'greatest since 1715' on the Ouse at York. 

However, it was not until the nineteenth century that the m ajority o f  floods were recorded, with 

increases particularly evident on the Swale from the 1880s and the Wharfe in the 1860s. From 

this tim e onwards gauged data are available for the Ouse basin, and these compare well with 

some o f  the trends suggested by the docum entary records. For example on the Rivers Aire and 

Swale, documentary records indicate that flood frequencies were high in the late nineteenth 

century, and low in the first three decades o f  the twentieth century, with flood frequencies 

increasing on the Swale from around 1930 onwards. This compares well to the tim ing o f 

variations in flood frequency established from the gauged records.

4.3.3.3. S easonality  of d o cu m en ta ry  floods

The main patterns in seasonality identified from the gauged record suggest that the highest 

frequency o f  floods occur in the December-January period, and the highest magnitude events in 

the February-M arch period. To compare the seasonality o f documentary floods, the frequency 

o f  events in 2-m onthly periods has been plotted in figure 4.24. Unfortunately, some 

docum entary evidence gives no indication as to the month o f  flood, therefore these series do not 

represent the entire flood record. Unlike the gauged records, there is considerable variability 

between tributaries. The dom inant flood season for the Aire is December-January, whilst 

December-January and February-M arch are equally im portant on the Ouse at York, which may 

reflect the increased influence o f  snow m elt in the large, predom inantly rural Ouse catchment. 

This w inter flood dominance is not reflected w ithin the other documentary records, on the 

Calder, Don, W harfe, Derwent and Nidd the highest frequency o f  floods occur in the four 

months between June and September. These variations are likely to be a result o f  the location 

in each catchment where floods were recorded. Floods recorded in sum m er months tend to be 

localised upland events, whereas w inter floods tend be spatially extensive lowland events. The
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River Swale, which has one o f  the most detailed documentary records in the Ouse basin, 

provides a good example, where both types o f  events have been recorded Localised upland 

floods caused by cloudbursts or thunderstorm s are recorded in April 1821. July 1888 and June 

1899, extensive lowland floods occurred in November 1866, as a result o f heavy rainfall, and in 

December 1814 due to snowm elt (W illiams, 1957).

Variations in the long-term seasonality o f  the Ouse basin are difficult to assess for two reasons, 

firstly, the location o f recording varies through time, which can alter the type o f flood event 

recorded (e.g., upland sum m er thunderstorm or lowland flood caused by intense rainfall) 

Secondly, many events, particularly prior to the eighteenth century do not have the flood month 

recorded.
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4.4. SU M M A RY  O F F L O O D  V A R IA B IL IT Y  IN T H E  Y O R K S H IR E  O U SE BASIN 

SIN C E T H E  E L E V E N T H  C EN TU R Y

The previous sections have illustrated that there have been distinct variations in flood 

frequency, magnitude and seasonality over the last nine centuries or so. This section aims to 

summarise the patterns, and to identify anom alies from these general trends

4.4.1. V ariations in flood frequency  and  m agnitude

The earliest documentary evidence o f  flooding in the Ouse basin occurred in 1068 when the 

progress o f W illiam  the Conqueror was held up due the River Aire being in flood. Records for 

this early period are poor and it is not until the m id-thirteenth century' that there is evidence o f 

widespread flooding in the Ouse basin, with a series o f  large events recorded between 1263 and 

1360. From this time no floods were documented in the basin until 1550. and frequencies 

remained relatively low until the m id-seventeenth century when there were a series o f  

catastrophic flood events, which are possibly the largest events ever experienced in the Ouse 

basin in the historic period. A lthough m agnitudes were high, flood frequency remained low, 

particularly over the period 1681-1763 when only localised sum m er floods caused by 

thunderstorm s and cloudbursts were recorded rather than basin wide events The frequency o f  

large lowland floods increased m arkedly towards the end o f  the eighteenth century and 

remained high in the early part o f  the nineteenth century.

Gauged flood records are available in the Ouse basin from ju s t after the m id-nineteenth century 

and also show distinct variations in flood frequency and magnitude The later half o f  the 

nineteenth century was characterised by high flood m agnitudes, evident in both the northern 

and southern parts o f  the Ouse basin. Flood frequencies displayed a higher degree o f  

variability, with high frequencies common throughout the 1870s and early 1880s, followed by a 

decline in frequencies from the 1880s onwards. Over the period c. 1900-1920 there is evidence 

o f  a  rapid decline in flood m agnitude from elevated nineteenth century levels, to the lowest 

magnitudes experience throughout the whole record. Flood frequencies continued to decline 

and remain extrem ely low throughout this period. During the 1920s, both m agnitudes and 

frequencies increased slightly on the Ouse at Y ork and Aire and Calder at Castleford. 

However, the records on the Don at Doncaster and the Calder at Broadreach significantly 

deviate from this pattern. The 1920s represent the beginning o f  a gradual decline in flood 

magnitudes on the Calder at Broadreach, which continue until 1968. Whereas, a number o f 

large floods occur on the Don over this period. Relatively low flood frequencies and magnitude 

dominate between c. 1930-1944, the exception again being the River Don, where there were a
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num ber o f  large events during this time. There followed a period o f  high flood magnitude and 

a sustained increase in flood frequency around 1944 until around 1950. In the 1950s flood 

frequencies showed a high degree o f  inter-annual variability, whereas flood magnitudes 

declined considerably Frequencies stabilised, and were generally high throughout the 1960s, 

as were flood m agnitudes which peaked around 1965, however, from 1969 onwards, frequency 

and magnitude series both varied markedly. The 5-year period from 1972-1976 showed the 

lowest average flood magnitudes on record at five o f  the eight sites, and lowest average 

frequency at six From around 1977 m agnitudes and frequencies increased dramatically from 

the record lows o f  the early and mid 1970s. Indeed, the 1977-1981 5-year period showed the 

highest average flood frequencies at seven o f the eight sites. Frequencies reached a high in the 

early 1980s, and have since declined in the 1980s and 1990s. However, this decline is not as 

marked in the Ouse at York. Flood magnitudes displayed a slightly different trend, showing a 

sim ilar peak in the late 1970s to early 1980s, followed by a decline in the mid 1980s, but with 

magnitudes again increasing in the 1990s.

Anomalies from the trends described above m ay be an indication o f  the influence o f  land-use 

change, since clim atic induced variations would be expected to influence all tributaries at the 

same time. In general, it appears that flood records o f  the rural northern tributaries o f  the Ouse 

(i.e Derwent, Swale, Ure, Nidd, W harfe and Ouse) show a high degree o f correlation, although 

the scale o f  changes does vaiy. The more industrialised and urbanised catchments in the 

southern part o f  the basin (i.e. Aire, Calder and Don), tend to show unique temporal variations. 

For example, the Calder at Broadreach displays a  continuous decline in flood magnitude from 

the 1920s, and the Don at Doncaster has a  series o f  extrem e flood peaks from the 1920s to the 

1940s, not evident elsewhere in the Ouse. A nom alies do, however, occur on some o f the 

northern rivers, on the Ouse at York for example flood frequencies have remained well above 

average since around 1982, which coincides with the construction o f  the Foss Barrier flood 

defence scheme, some 400m downstream o f  the gauging site.

4.4.2. Variations in flood seasonality

Seasonality o f  documentary floods shows considerable variation which is probably a reflection 

o f  where events were recorded. In upland and piedm ont areas localised sum m er floods are 

more reported, in lowland areas more severe spatially extensive w inter flooding is recorded. 

Lowland sites such as the Aire and Ouse have the highest frequency o f events between 

December and March, whereas the m ajority o f  the other tributaries show the highest flood 

frequencies between June and September. Only in detailed records which record both upland
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and lowland events, such as on the River Swale, are high flood frequencies recorded in both 

these periods

These patterns differ markedly from those shown in the gauged record The highest frequency 

o f  flooding occurs in the December and January months, although higher magnitude events tend 

to occur later in the year, typically in February and March Sum m er flooding is relatively rare 

within AM and POT records. Temporal variations are also evident, with increases in spring 

flooding occurring the late 1940s, mid-late 1960s and late 1970s to early-1980s, again 

associated with increases in magnitude. The occurrence o f Autumn floods has declined since 

the 1960s, coinciding with an increase in spring events
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C h a p t e r  5

C l i m a t i c  v a r i a b i l i t y  i n  t h e  o u s e  b a s i n  s i n c e  t h e  e l e v e n t h  

C E N T U R Y

5.1. INTRODUCTION

The spatial and temporal variability o f  Ouse basin flood records has been established in Chapter 

4. The next stage is to address the question as to w hat has caused and controlled these observed 

changes. This chapter uses instrumental (last 135 years) and proxy (last 900 years) climate 

data for the Ouse basin and UK to investigate the long-term relationships between clim ate and 

flood variability. Three main clim atic parameters are investigated, rainfall, snowfall and 

atmospheric circulations.

It is often assum ed that variability in flood records will m irror changes in rainfall patterns, and 

therefore analysis o f  rainfall can be limited in explaining patterns within flood records (Grew,

1996). However, in this case it was felt that detailed analysis o f  long-term rainfall records 

would be beneficial since regional trends o f  clim atic variability could be established 

Snowmelt also plays an im portant part in flood generation, particularly in north-eastern 

England (Archer, 1981). Unfortunately, records o f snowfall and snow depth are poor when 

compared to rainfall records. How ever records o f  heavy snowfalls and particularly bad winters 

are available, albeit on a  country-wide scale, from the late nineteenth century and have been 

incorporated into this study.

Although analysis o f  instrumental and proxy records o f  precipitation can give an indication o f 

general climatic change in the Ouse basin over the last 900 years, it is the circulation o f  the 

atmosphere that ultim ately dictates the character o f  UK weather, and it is analysis o f  these 

circulation types that can m ost effectively define and explain clim atic variability (Kelly et al.,

1997). As discussed in C hapter 2, the m ajority o f  previous studies that have investigated the 

relationships between atm ospheric circulation and flooding, have inferred variations in 

circulation types from annual (Higgs, 1987a; 1987b, Rum sby and Macklin. 1994) or monthly



(Knox et a l., 1975) totals. Sim ilar to precipitation records, analyses o f  this type will only give 

an indication o f general trends in clim ate that affect flooding, and not the specific circulation 

types and weather conditions that generated a particular flood event. Grew (1996) has 

addressed this problem by classifying each individual flood event from a large number o f 

Scottish POT records according to the circulation type on the day o f flood and the previous day 

However the num ber o f days prior to a particular flood event that generate the flood may vary 

depending upon catchment characteristics, particularly the size and gradient o f the basin In 

this study a method has been developed using daily rainfall records to assess the num ber o f  

days prior to each flood event at each site which have caused the flood The circulation type on 

these particular days can then be determined and a dominant circulation type assigned to each 

event. The principal advantage o f  this approach is that the flood is classified according to the 

circulation type that provides the precipitation input, rather than assum ing that the circulation 

type on the day o f  the flood is the primary generator.

There are two m ain aims o f  this chapter. First, to establish long-term variability in precipitation 

records and assess whether this is reflected in the flood record. Secondly, to investigate the role 

o f  atm ospheric circulation types in generating flood events in the Ouse basin, and how this 

relates to m ore general annual and seasonal variability o f  circulation types through time. The 

chapter is split into two sections, the first evaluates the instrumental climate records and the 

second longer-term proxy and docum entary climate records

5.2. DAILY RAINFALL RECORDS IN THE OUSE BASIN 1873-1996

5.2.1. Introduction

Previous studies o f  rainfall in Yorkshire and Pennine areas have focused on localised extreme 

events (e.g. Chaplain, 1982; Meaden, 1984; Acreman, 1989b), the construction and 

investigation o f  com posite rainfall records (e.g. M ilner, 1968; Jones, 1981), investigation o f 

long records at an individual site (e.g. Smithson, 1976; Gregory, 1993), and the detailed study 

o f  the topographical controls o f  rainfall in a small area (e.g. Burt, 1984). None o f  these studies 

have the spatial or temporal resolution required to assess long-term variability o f  rainfall over 

the entire Ouse basin. Ideally a dense network o f  raingauges in excess o f 100-years length 

would provide this resolution, however, as with any historical study this is controlled by the 

availability o f  data. This section investigates variations in the longest daily rainfall records 

available in the area by analysing annual and seasonal rainfall totals and the occurrence o f 

extreme heavy daily rainfalls using POT records.
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5.2.2. Data sources

The first system atic m easurements o f  precipitation in the UK began in 1677. and there are 

currently over 8000 operational rain gauges (Jones et a /., 1997). However, the majority o f 

gauging did not start until the 1860s when G .J.Sym ons established the British Rainfall 

Organisation. In the Ouse area the longest continuous record o f  daily rainfall is at 

Blackmoorfoot (SE 096 130) and dates to 1873. Records o f daily rainfall used in this study 

have been selected on the basis o f  length and continuity. Most o f  the long continuous records 

are in lowland areas, however, occasionally some records are available in headwater or 

piedmont parts o f  the catchment.

Data were initially selected from a catalogue supplied from the Dales Area Office o f  the 

Environment Agency at York. This listed data on their RAINARK data logging and processing 

system which were available for analysis. A problem identified at this stage was that many o f 

the records that were listed were not com plete daily series, and often contained a  large amount 

o f  m onthly data. Since rainfall records were required to investigate flood generation, it was 

decided that only complete daily rainfall records would be used in this study, and those 

containing m onthly data were rejected. Further daily rainfall records were obtained from the 

M eteorological Office, some supplied on disk by M et Office commercial services, and others 

compiled directly from original paper records held at the M eteorological Office Archive. A 

complete list o f  sites used in this study, and where they were obtained, is given in table 5.1 and 

their location shown in figure 5.1. Only five o f  these sites however, were used in the analysis 

o f  long-term trends.

5.2.3. Preparation of rainfall data

Two separate series o f  rainfall data were constructed from raw data First, total annual rainfall, 

and annual seasonal rainfall totals were com piled using daily records. Seasons are classified in 

three m onthly periods; w inter is defined as December-January, spring as February-April, 

sum m er as M ay-July, and autum n as August-Novem ber. Secondly, a POT series for each site 

was constructed to investigate the incidence o f  heavy daily rainfall. The POT threshold was set 

to give an average o f  ten peaks per year over the standard period 1941 -1995. This threshold 

contains a higher num ber o f peaks per year than the flood records since not every day o f  rainfall 

over the threshold will contribute to  a  flood event, and therefore a  larger number o f  rainfall days 

need to be considered. In general the techniques o f  data analysis are sim ilar to those described 

for the flood record outlined in section 4.2.3.
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Figure 5.1: Location o f  rain gauges
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5.2.4. Variations in annual and seasonal rainfall series

Annual and seasonal rainfall totals for five long-term rain gauges in the Yorkshire area are 

shown in figures 5 2-5.6 These records indicate that the late nineteenth century was 

characterised by relatively low annual and seasonal totals with the exception o f the summer 

season which experienced higher totals in the 1870s and 1890s. This contrasts with the flood 

record which suggests that both flood frequencies and magnitudes were high at this time. There 

is evidence o f  a rise in annual rainfall at Blackmoorfoot and Sheffield W eston Park from the 

turn o f  the century which appears to relate to an increase in winter and spring rainfall 

particularly at Blackm oorfoot Large inter-annual variation in rainfall is evident between 1900 

and 1950 however there appears to be little overall trend during this period apart from at 

Blackm oorfoot where there is a decline in winter and spring rainfall in the mid-to-late 1930s 

followed by a slight increase in the 1950s. From the 1950s onwards there appears to have been 

a number o f  significant variations in rainfall totals particularly in spring (which is also reflected 

in the overall annual totals). Spring totals were relatively low in the mid-1950s, but rose to a 

particularly marked peak in the mid-1960s, which is associated with high flood m agnitudes and 

an increased incidence in spring floods. Throughout the 1950s and 1960s w inter and sum m er 

totals remained close to the long-term mean, although there is some evidence o f  slightly 

increase autumn totals in the mid-1960s. There followed a decline in annual rainfall in the late- 

1960s to m id-1970s particularly evident in spring, sum m er and autumn The late-1970s to mid- 

1980s again saw a marked increase in spring rainfall, associated w'ith the most marked period o f 

spring flooding in the entire historic record. Although, w hilst the 5-year running mean remains 

high over this period, there is actually a  high degree o f  inter-annual variation between spring 

totals. Since the m id-1980s both annual and seasonal rainfall totals have declined except in 

w inter which appear to be increasing throughout the 1990s

5.2.5.Variations in POT rainfall series

5.2.5.1. Annual POT rainfall frequency

Annual frequencies o f  POT rainfall events are shown in figure 5.7. The late nineteenth century 

was characterised by low rainfall frequency particularly in the 1870s and 1880s, whereas higher 

frequencies were more common in the 1890s and 1900s. In the first three decades o f  the 

twentieth century frequencies were relatively low at B lackm oorfoot, Sheffield W eston Park and 

Chesterfield, although not at Bradford L ister Park where the 5-year running mean indicates that 

high frequencies were common between 1911 and 1930. At the tw'o highest altitude rain 

gauges, M oorland Cottage and B lackm oorfoot there is evidence o f  a peak in frequencies in the 

m id-1940s, this trend is not apparent in any o f the lowland records. This peak was followed by
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f igure 5.2 : Annual rainfall at five long-term raingauges
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Figure 5.3 : Annual winter rainfall at five long-term raingauges

(a) : Blackmoorfoot 1873-1995

( b )  : Sheffield Weston Park 1883-1996
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Figure 5.4 : Annual spring rainfall at five long-term raingauges

( b ) : Sheffield Weston Park 1883-19%
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(a) : Blackmoorfoot 1873-1995
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Figure 5.5 : Annual summer rainfall at five long-term raingauges
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Figure 5.6 : Annual autumn rainfall at five long-term raingauges

( a ) : Blackmoorfoot 1873-1995

( b ) : Sheffield Weston Park 1883-1996

(c ) : Chesterfield 1906-1995
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Figure 5. 7 ; Annual frequency o f  rainfall days over POT threshold
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a decline at Moorland Cottage and Blackm oorfoot which reach a low in the mid-1950s, again 

over this period there appears to be little variation at Sheffield W eston Park and Bradford Lister 

Park, although there is a peak in frequencies at Chesterfield. The rainfall series appear to 

exhibit more common trends after the 1950s, when for example, there was a peak in the mid- 

1960s (a period o f high flood frequency and m agnitude) particularly pronounced at 

Blackmoorfoot. This was followed by a decline in the late-1960s to mid-1970s (a period o f low 

flood frequency and m agnitude), and a peak in frequencies between the late-1970s and mid- 

1980s (a period o f  high flood frequency and m agnitude). There has been variation between 

sites in the 1990s with a decline in heavy rainfall frequency at Sheffield Weston Park. Bradford 

Lister Park and M oorland Cottage, and a rise in frequencies at Blackmoorfoot and Chesterfield 

These rainfall POT series indicate that there is a com plex pattern o f  variation in heavy daily 

rainfalls, when often trends apparent in one record will not appear in another. Clearly, this type 

o f  analysis would benefit greatly by the inclusion o f  m ore long-term rainfall records which may 

be available at the M et Office archive, how ever the tim e constraints o f  this project only allowed 

for discovery, collection and processing o f  a relatively small num ber o f  sites.

5.2.5.2. Rainfall over various thresholds

Thresholds for the 5-year (M 5) and 20-year (M2o) rainfall events have been calculated using the 

PO T model described in section 4.2.3. and annual frequencies o f  daily rainfalls above this 

threshold plotted in figures 5.8 and 5.9 This technique allows for the investigation o f  the 

incidence o f  heavy daily rainfalls at a num ber o f  sites based on a common return period. A 

sim ilar method was em ployed for investigating the tim ing o f  specific flood magnitudes in 

section 4.2.4.5. and it was found that the tim ing o f  high m agnitude floods is often synchronous. 

This does not appear to be the case with heavy rainfall, the pattern is much more random and 

com plex w ith significant variations in the tim ing o f  heavy rainfall days between sites. This 

m ay be due to the fact that rainfall totals can vary m arkedly over relatively short distances 

(Gregory, 1993), and the fact that return periods have been calculated over different length o f 

records m ust also be considered.

In figure 5.8 the annual frequency o f  rainfall above the five year return period threshold shows 

that at B lackm oorfoot there appears to  have been an increase in the incidence o f  rainfall events 

since the 1950s with particularly high frequencies in the mid-1960s to early-1970s (coinciding 

with a period o f  high flood frequency and m agnitude). These trends do not appear to relate to 

any o f  the other records, at Sheffield W eston Park a series o f  events are recorded in the 1880s- 

1890s, 1920s-1930s and from the m id-1970s onwards. At M oorland Cottage groupings occur
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Figure 5.8 : Heavy daily rainfall - Annual frequency o f rainfall days • M , * start of record
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Figure 5.9 : Heavy daily rainfall - Annual frequency of rainfall days > M 2n * start o f  record
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in the 1930s-1940s. m id-1960s and from the mid-1980s onwards This large scale inter-site 

variation may suggest that this type o f  approach is limited when trying to explain trends in 

flood frequency and magnitude since the rainfall events being considered do not directly relate 

to individual flood events. However, figure 5.9 illustrates that when investigating higher return 

periods (20-years) interesting patterns can be established which can give an indication as to any 

general changes in the incidence o f  heavy rainfall All the records in figure 5.9 suggest that 

heavy rainfalls have become m ore common since the 1960s, and particularly in the mid-1980s, 

again a period o f  high flood frequency and magnitude. Probably the main disadvantage o f  an 

approach such as this is that w hilst general trends at an individual site may be illustrated, 

regional trends will not be evident since rainfall totals can vary markedly between stations on a 

particular day.

5.2.5.3. Seasonality of POT rainfall

Figure 5.10 shows 2-monthly frequencies o f  POT rainfall for each site. The highest frequencies 

tend to occur between October and January although frequencies are fairly high in all other 

seasons. This further illustrates the point that analysis o f  POT rainfall series will only give an 

indication o f the general character variations in rainfall since clearly this rather uniform 

distribution o f  rainfall days throughout all seasons does not m irror that o f  flooding and 

therefore will not represent a series o f  rainfall days that generated floods. Inter-site variability 

is also further em phasised by table 5.2 (diagrams shown in appendix C) where M l00 values have 

been calculated for each site using the PO T model. W hen only five rainfall stations are being 

analysed, the highest 100-year rainfall estim ated occurs in four different 2-monthly seasons, 

again illustrating inter-site variability which is not consistent with flood records where the 

m ajority o f  the largest Q Uxi estim ates occurred in the February-M arch season.

5.2.6. Links between rainfall and flood series

Records o f  annual rainfall and annual seasonal totals consider every day o f rainfall over each 

year or season. POT rainfall records only consider those days above a specified threshold. 

Both techniques have their lim itations when trying to establish links between these series and 

flood records. From the rainfall records examined in this study it is clear that these scries 

cannot explain the majority o f  variation in the flood record. As would be expected, in 

particularly wet periods, with high annual and seasonal totals and a  high incidence o f  POT 

rainfall events, flood frequency often tends to be higher. There is evidence o f this in the mid- 

1960s and between the late-1970s and m id-1980s, when high POT frequencies and increased 

spring rainfall are associated with high flood frequency. Conversely, during particularly dry 

periods such as between the late-1960s and mid-1970s flood frequencies were particularly low.



Figure 5 .10 : 2-monthly frequencies o f  POT rainfall expressed as a percentage of entire record
JJ= Jun-Jul, AS=A ug-Sep, ON=Oct-Nov, DJ= Dec-Jan, FM=Feh-Mar, A M=Apr-May
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Table 5.2 : Seasonal 100-year rainfall in mm and growth factors f  for each site (POT).
Highest 100-year rainfall shown in bold, and lowest in italics.

(a) : Blackmoorfoot 1873-1995

Season M.oo Growth Factor M100/M f

Jun-Jul 66.64 37.73 1.771
Aug-Sep 65.89 38.67 1.704
Oct-Nov 68.44 41.07 1.666
Dec-Jan 70.57 42.14 1.675
Feb-Mar 66.86 38.66 1.730
Apr-May 56.81 32.42 1.753

(b) : Sheffield Weston Park 1883-1996

Season M.oo Ms Growth Factor M100/M 5

Jun-Jul 71.31 38.43 1.856
Aug-Sep 60.45 34.16 1.769
Oct-Nov 48.06 29.35 1.637
Dec-Jan 42.75 27.05 1.581
Feb-Mar 48.41 27.86 1.737
Apr-May 56.43 31.06 1.817

(c) : Chesterfield 1906-1996

Season M  io o m 5 Growth Factor M100/IW5

Jun-Jul 66.61 35.77 1.862
Aug-Sep 53.51 30.74 1.741
Oct-Nov 47.75 28.20 1.694
Dec-Jan 46.06 27.35 1.684
Feb-Mar 39.79 23.32 1.706
Apr-May 42.00 24.23 1.734

(d) : Bradford Lister Park 1911-1996

Season M.oo Ms Growth Factor M100/M 5

Jun-Jul 59.29 33.37 1.777
Aug-Sep 65.47 37.17 1.763
Oct-Nov 50.49 30.97 1.630
Dec-Jan 48.19 29.97 1.608
Feb-Mar 46.07 27.52 1.674
Apr-May 48.40 27.69 1.748
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(e) : Moorland Cottage 1936-1995

Season MlOO Growth Factor M100/M 5

Jun-Jul 74.31 45.59 1.630
Aug-Sep 93.19 56.95 1.636
Oct-Nov 112.29 68.12 1.648
Dec-Jan 97.78 64.26 1.521
Feb-Mar 116.15 67.47 1.721
Apr-May 94.45 52.80 1.789

However throughout much o f  the instrumental period there appears to be no obvious links 

between rainfall series and variations in the flood record For example the late-nineteenth 

century was a period o f  high flood frequency and m agnitude, but there is little evidence o f 

increased POT rainfall events in the Yorkshire area at this time

The main problem with analysis o f  rainfall records is that many days are considered that do not 

directly influence flood events. To understand the direct controls o f  relationships between 

clim ate and floods, the period directly prior to each flood event m ust be studied, particularly in 

term s o f  the synoptic conditions which carried the precipitation and ultim ately ‘triggered’ or 

'generated ' the flood event. It is only by an approach such as this that we can move away from 

generalising long-term climate and flood relationships, and establish the direct causal 

mechanisms which control flood frequency and magnitude.
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5.3. V A R IA B IL IT Y  O F S N O W F A L L  1875-1995 AND LIN K S W IT H  FL O O D  S E R IE S

The importance o f snowm elt with respect to flooding in northern England has been discussed 

by several authors (e.g. Johnson & Archer, 1972; Jackson. 1978; Archer, 1981 ), with snowmelt 

producing some o f the largest flood events on record in the Ouse basin (e.g. 1947 and 1982). 

However, determining the long-term variations in snowfall occurrence and amount in the UK, 

is difficult due to the lack o f long records (Jones et a l., 1997). The longest record available for 

the UK was compiled by Jackson (1976), and was based on the earlier work o f Bonacina (e.g. 

Bonacina, 1927; 1936; 1948; 1955) who classified each winter between 1875-6 and 1974-5 

according to definitions ranging from ‘very snow y' to ‘little ' This work has been updated 

from 1978-9 to 1994-5 by Jones et al. (1997), and can be used to give a general indication o f 

long-term variability over a sim ilar timescale to some o f  the detailed flood records.

Figure 5.11 : Snowy winter classification fo r  1875-6 and 1994-5 : (top) overall winter rating on the
four-category scale, and (bottom) the number o f  the months classified as snowy per winter 
(from Jones et al., 1997)

Figure 5.11 shows the sum m ary o f  B onacina’s work by Jones et al. (1997). The authors 

suggest that the m ost w idespread and snowiest w inters on record are those o f 1875-76, 1878- 

79, 1885-6, 1916-17, 1946-47, 1962-63 and 1978-79. Furthermore there has been a significant 

lack o f  ‘snow y’ winters since the m id-1980s, with the years between 1986-7 and 1994-5 all 

being classified as having ‘little’ snow. The frequency o f  snowy months was relatively high in 

the late nineteenth century and declined over the period 1900 to around 1915. Further peaks in 

the num ber o f  snowy m onths occurred in the m id-1930s, around 1950, the m id-1960s, and the 

mid-1980s. These peaks all coincide to som e extent with peaks in flood m agnitude, however
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this link is very tentative since this record represents the UK as a whole, and the extent o f 

regional variations in unclear.

One o f the main problems when attem pting to investigate the role o f snow in flood generation 

over the historic timescale is that data are often sum m arised on a m onthly or 'w inter' basis and 

therefore do not allow' detailed analysis o f  snow depth im mediately prior to flood events. 

Several snow records for the Ouse basin have been published in the annual Snow Survey o f  

G reat B ritain , however the resolution o f  data varies from daily snow depth at Huddersfield 

(Oakes) between 1968 and 1977, to m onthly statistics for all other stations. Since these records 

are relatively short and cover a period o f  low' flood frequency and magnitude it was decided not 

to include these data in this study Longer-term records o f  the num ber o f snowdays at York 

between October and March exist between 1886 and 1993, and have been published on an 

annual basis by the Yorkshire Philosophical Society. This series is show'n in figure 5 12 and 

exhibits some o f  the trends suggested by Jones et al. (1997) It appears that the incidence o f 

snowdays was generally high in the late nineteenth century and declined from the turn o f  the 

century until around 1915. The w inter o f  1916-17 shows a particularly high num ber o f 

snowdays (as suggested by Jones et a l., 1997), however, between 1925 and 1960 the 5-year 

running mean shows little variation. The 1960s were characterised by extremely high and low 

totals, whereas from the 1970s until the m id-1980s there is little variation about the mean. 

Since the m id-1980s the num ber o f  snowdays has declined dramatically.

Figure 5.12 : Winter (October-March) snowdays at York 1886-1993. Compiled from annual reports o f  
the Yorkshire Philosophical Society

Year
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5.4. FL O O D  G E N E R A T IN G  A T M O S P H E R IC  C IR C U L A T IO N  TY PES

5.4.1. In tro d u c tio n

The next stage in attem pting to link clim ate to observed variations in flood frequency, 

magnitude and seasonality is to investigate the causal mechanisms o f individual flood events. 

The climate o f the UK is controlled by atm ospheric circulation patterns, and these have been 

classified on a daily basis into 27 different types by Lamb (1972) (see section 2.3.2.1) 

(Examples o f  surface and 500mb charts for two o f  the most common types, cyclonic and 

westerly, are shown in figure 5 13) The record covers the period 1861 to 1995 and therefore 

encompasses the entire period o f  gauged flood records in the Ouse basin By identifying the 

synoptic causes o f flood events through analysis o f  circulation types immediately prior to 

floods, a detailed picture o f  flood generation can be established One o f the only studies in the 

UK to take such a detailed approach is that o f  Grew (1996) who identified circulation types 

responsible for flood generation in Scotland. She found that three main types commonly 

‘triggered’ floods; cyclonic, westerly and south-westerly, and that the dominance o f  a particular 

type is heavily dependent on the geographical location o f  catchments Flood series from the 

west o f  Scotland were found to be dom inated by floods generating under westerly and south

westerly synoptic situations, whereas floods on the east o f  Scotland were shown to be more 

influenced by cyclonic circulation types.

Grew (1996) classified flood events based on the circulation type on the day o f  flood and the 

preceding day. Primary (m ost frequent flood generating type) and secondary circulation types 

were identified for each site on each day. In this study a slightly different approach has been 

taken, whereby each flood event is classified on the basis o f  the circulation type which 

delivered the majority o f  precipitation prior to the event. Using circulation types alone it is 

difficult to determine the period over which clim atic conditions have been important prior to a 

flood. Therefore it is hoped that by the incorporation o f  daily rainfall records, those days 

directly responsible for flood generation can be identified more clearly, and classified more 

accurately.

The main aim o f  this section is to identify circulation types that are important for flood 

generation in the Ouse basin and to establish w hether variations in the annual and seasonal 

frequencies o f  these types can explain the observed patterns in flood frequency, magnitude and 

seasonality.



Figure 5.13 : Typical examples o f  cyclonic and westerly Lamb circulation types, shown on surface and 
500mb charts (redrawn from Lamb, 1972).

5.4.2. Method for determining dominant flood generating circulation types 

To identify those circulation types im portant for flood generation each POT flood event has 

been classified as being caused by one individual circulation type by the following method. 

Records o f  daily rainfall were used to establish the specific days prior to each flood event which 

provided the majority o f  precipitation input. The daily rainfall records were chosen for each 

POT flood site based on proxim ity to the tributary being considered. Preference was given to 

upland raingauges since these tend to receive higher am ounts o f  rainfall, and therefore would 

make the task o f  distinguishing the im portant days m ore straightforward. Problems arose with 

some o f  the longer flood records such as the Ouse at York where the flood record extends to 

1878 whereas the longest upland rainfall record in the area, M oorland Cottage, only dates to 

1936. In this case the longer rainfall records (such as Blackm oorfoot) had to be used prior to 

records at M oorland Cottage. However, by overlapping a com m on period in both rainfall 

records it was found that there was a  good relationship between the sites on days o f heavy
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rainfall prior to flood events. A list o f  which raingauges were used for a particular POT flood 

record is given in table 5.3, and their location shown in figure 5.1.

Table 5.3 : Raingauges used in flood generating circulation analysis

Station Name Grid Ref Length of POT record Analysed

Record

Arkengarthdale N Y  990 03 0  ” .... 1971-1995 Sw ale

B lackm oorfoot R eservoir SE 096  130 1873-1982 O use, A ire, Don

C hesterfield  S. W orks N SK 391 742 1980-1996 Don

C hesterfield  S. W orks SK 392 746 1906-1979 Don

Silsden R eservoir SE 044  475 1961-1996 Aire

Birdsall H ouse SE 818  651 1907-1995 Dervvent

L ow er Barden R eservoir SE 035  563 1961-1995 W harfe

M oorland C ottage SD 807 923 1936-1995 Ouse, Sw ale, Ure, W harfe, Nidd

In order to capture the days o f  rainfall directly responsible for flood generation, a m aximum 

num ber o f  days prior to each flood event had to be set. A m aximum o f four days prior to the 

flood day was chosen (five days in all including day o f  flood), primarily due to the large size o f 

som e o f  the catchm ents and the fact that any longer duration may reflect antecedent conditions 

and not precipitation events directly responsible for the flood. This is not to suggest that 

antecedent conditions are not im portant in flood generation, they clearly are, this approach is 

attem pting to simplify a very com plex situation. The next stage was to define a m inimum 

threshold o f daily rainfall, so as to only consider those days with a significant volum e o f  rain. 

An arbitrary minim um  value o f  10mm o f  rainfall per day was taken for all raingauges. The 

rainfall totals on each day greater that 10mm on the four days o f rainfall prior to the event and 

the rainfall on the day o f  flood were then weighted using the following form ula :

2
W eighting = (D aily  rainfall - R ainfall threshold)

In this case the rainfall threshold is 10mm. This gives a  greater em phasis to those days with 

high rainfall totals. The circulation types corresponding to the rainfall days were then assigned 

the weighting value, and a total w eight calculated for each circulation type involved in a 

particular flood event. The circulation type with the highest weighted value was then taken as
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the dom inant synoptic type which generated that particular flood event. This process was 

repeated for each POT flood event at each site using an EXCEL macro

L im ita tions of the m ethod

W hen trying to sim plify an inherently com plex situation assumptions must be made, and in 

doing so can often introduce lim itations into the results o f  a study. In this case there are a 

num ber o f limitations which need to be considered prior to interpretation o f  results

1 Each flood event is classified as being generated by one individual circulation type, whereas 

in reality two or more types can com bine to produce a flood event However on 

examination o f  the raw data it became clear that the majority o f flood events were generated 

by one dom inant type which usually persisted over a number o f days prior to the flood 

event.

2. POT flood events at each flood gauging site are classified using only one, or som etimes two, 

daily rainfall records. It may be suggested that this will be unrepresentative o f  rainfall over 

the whole catchment.

3. Using this technique som e flood events were not classified due to a particularly low 

weighting value (i.e. very low rainfall input). This may add weight to the case for using a 

m ore detailed raingauge network, or m ay relate to pure snowm elt flood events with little or 

no rainfall input. The num ber o f unclassified floods at each site is shown in table 5.4

4. Finally, lim itations o f  the Lamb catalogue itse lf m ay influence the results o f  this study since 

the circulation patterns are classified on a UK scale, are their applicability to such a regional 

study may be questionable. A regional classification o f  airflow types such as that o f  Mayes 

(1991) m ay yield more relevant results, although as yet airflow types have not been 

classified for this area.
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Tabic 5.4 : Number o f  unclassified floods at each site in flood generating circulation analysis

Flood Site Total No of POT 

floods

No of POT floods 

unclassified

Percentage of POT 

floods unclassified

O use at York 252 11 4 .37

D on at D oncaster 164 18 10.98

N idd at H unsingore 242 26 10.74

W harfe at Flint M ill 215 1 1 5.12

S w ale  at Crakehill 171 6 3.51

Ure at W estw ick 169 8 4.73

A ire at A rm ley 122 17 13.93

D erw ent at Buttercram be 119 14 11.76

5.4.3. F lood g enera ting  c ircu la tio n  types in the O use basin

Once each PO T flood event has been classified the next stage is to identify the m ost important 

circulations that generate floods Table 5.5 shows the percentage and rank o f  POT floods 

generated by each individual circulation type at each gauging site. A cumulative percentage for 

each circulation type is also given, which is the sum o f  percentages at all sites and gives an 

indication o f  those circulations that are important for basin wide flood generation. The four 

m ost common circulation types that generate floods have been highlighted in table 5.5. they are 

cyclonic, westerly, cyclonic-westerly and south-westerly respectively, and account for 78.25% 

o f  all POT floods at the eight sites considered. Cyclonic and westerly types are by far the most 

important flood generating circulations, and are ranked as either 1 or 2 at all sites. The rank o f  

cyclonic-westerly ranges between 3 and 5, whereas the rank o f  south-westerlies ranges between

3 and 10 showing that the importance o f  this type as a flood generator can vary markedly 

between sites. South-westerlies appear to be far less im portant on the Derwent (rank = 8) and 

the Don (rank = 10) which m ay be due to their geographical location. On the Don at Doncaster 

cyclonic-easterly (rank =  3) and easterly (rank = 4) circulations are important flood generating 

types, although the overall percentage o f  floods generated by these types on the Don is still 

relatively low (10.27%). Floods that are generated under cyclonic conditions account for 

49.32%  o f POT events on the Don, the highest value at any o f the eight sites. This high 

dom inance o f  cyclonics and the influence o f  cyclonic-easterly and easterly circulations is 

probably due to its location in the south-eastern part o f  the Ouse basin. Similarly the Derwent, 

which is situated in the north-easterly part o f  the catchm ent also shows cyclonic circulations to 

be o f  disproportionate importance, cyclonics generate 40.00%  o f  POT events on the Derwent at 

Buttercrambe, whereas westerlies, the second m ost im portant type only generates 13.33% o f
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Ŵ l VO wn :m VO
< •— o n  , , , . Ov , I ON o t^v OO O ' OO O ' , • Wi r -

: — d d v ri •^r
fN CO ^ t d 0 4 d Ŵ i
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flood events Also unusual at this site is that southerly circulations are ranked as being the third 

m ost important flood generating type.

In general all other sites have Pennine headwaters and show the same circulation types to be 

important in flood generation However the most dom inant type varies between cyclonic and 

westerly, for example, even catchments which are in close proximity can show this variation, 

the Ure at W estwick suggests that westerlies are the dom inant flood generating type, whereas 

on the Swale at Crakehill cyclonics are more important. Overall it is clear that a relatively 

small number o f circulation types generate the m ajority o f  floods in the Yorkshire area, these 

being cyclonic, westerly, cyclonic-westerly and south-westerly

5.4.3.1. W ea th e r associated  w ith d o m in an t flood generating  c ircu lation  types 

To answer the question as to why a small num ber o f  circulation types control flood generation 

in the Ouse basin we m ust consider the relationships between circulations and the weather 

associated with them, particularly precipitation. Cyclonic circulation types have been identified 

as being the m ost im portant flood generating type in the Yorkshire Ouse area. The weather 

associated with the cyclonic type is often wet and disturbed (Lamb, 1972), however, one o f  the 

main features with direct relevance to flood generation in the eastern part o f  the UK, is that 

there is an absence o f a marked west-east precipitation gradient (O ’Hare & Sweeney, 1993). 

Due to the considerable variability o f  depression tracks over long periods, cyclonics tend to 

produce a fairly uniform distribution o f  precipitation over the British Isles (Sweeney & O 'H arc, 

1992). This com bined with the fact that cyclonics are one o f  the most frequently occurring 

circulation types (occurred 12.8% o f  the times between 1880-1980 (Sweeney & O ’Hare. 1992)) 

causes cyclonics to be proportionately more im portant than westerly circulation in flood 

generation in the Ouse basin. W esterly circulations are generally associated with unsettled or 

changeable weather, with the majority o f  rain falling the northern and western parts o f  the 

British Isles (Lamb, 1972). There is a marked west-east precipitation gradient associated with 

westerly type, with a prom inent rain shadow to the east o f  the Pennines (Sweeney & O ’Hare, 

1992). Despite this it is clear that westerly circulation types play an im portant role in flood 

generation in the Ouse basin, which may reflect the fact that the m ajority o f  tributaries have 

headwaters in the Pennines, which do receive high rainfall totals from westerly circulations. 

The influence o f  westerly type dim inishes in the m ost easterly catchm ents in the basin, the Don 

and Derwent, illustrating the rain shadow effect in easterly situations. In general terms westerly 

circulations occurred 18.9% o f  the time between 1880 and 1980 (Sweeney & O ’Hare, 1992), 

and is the m ost frequently occurring circulation type in the Lamb catalogue.
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Two other circulation types have been identified as being important, albeit to a lesser extent, for 

flood generation in the Ouse basin, cyclonic-westerly and south-westerly type The annual 

frequencies o f  these types arc much lower than those examined previously, cyclonic-westerlies 

occurred 4.0%  o f  the time between 1880 and 1980 and south-westerlies 2.6%  o f  the time 

(Sweeney & O ’Hare, 1992). Cyclonic-westerlies tend to yield high rainfall totals and the west- 

east contrast is not as high as with pure westerly circulations, resulting in proportionately more 

rainfall falling in eastern parts o f  the country. The influence o f  south-westerlies in flood 

generation again relates to the simple fact that high precipitation totals are common with this 

type, although there is a marked west-east contrast in rainfall receipts. South-westerlies are 

warm, m oist ainnasses and have been shown to trigger snowm elt flood events at a number o f 

locations (e.g. Jackson, 1978; Marsh & M onkhouse, 1991). If a catchm ent is snow covered and 

then a warm south-westerly circulation moves in to dominate the country, the associated rise in 

tem perature may cause a thaw. If this is com bined with rainfall, large flood events may result, 

indeed evidence for large snowm elt floods occurs throughout the historic record with a notable 

example in 1614 at York. It is therefore suggested that this circulation type is a particularly 

im portant flood generating type which m ay generate high m agnitude flood events given the 

right antecedent conditions.

On the Don at Doncaster cyclonic-easterly circulations were shown to be o f  some importance in 

flood generation. This type moves from east to w est and delivers high precipitation totals 

particularly in southern England. Rainfall totals are still fairly high in eastern England but 

dim inish as the weather type m oves to the west.

5.4.3.2. Relationships between flood magnitude and generating circulation types

To investigate whether certain circulation types generate floods o f  a particular magnitude POT 

flood records at each site have been divided into m agnitude categories defined as follows :

Minor f lo o d : > standard threshold <Q2

Moderate f lo o d : > 0 2 <Qio

M ajor f lo o d : — Qio

The sub-divisions are som ewhat arbitrary', though by using return periods to define magnitude 

categories, system atic inter-site com parisons can be made. The relationship between flood 

m agnitude and generating circulation type is undoubtedly a com plex one, therefore this 

approach sim ply attempts to  examine the num ber o f  floods generated by each circulation type 

in each m agnitude category. Tables 5.6 (a)-(c) show s the rank order o f  the num ber o f  POT
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Table 5.6(a) : Number o f  ‘minor' floods (>standard threshold <Q2) generated by circulation types 
at each site

C irculation
T ype

Rank O use Don Nidd W h a rfe Sw ale Ure Aire D erw ent Total no o f  Total %  
Floods

C 1 50 44 69 63 49 49 34 36 394 36.65

W 2 50 17 58 72 31 53 24 13 318 29.58

C W 3 15 5 16 18 16 18 5 5 98 9.12

SW 4 9 2 7 6 5 12 5 3 49 4.56

s 5 6 2 1 1 4 9 j 1 4 40 3.72

CN 6 5 1 4 -> 2 2 4 3 24 2.23
NW 7 2 0 2 4 4 5 ->J 1 21 1.95

U 8 4 1 5 1 3 2 0 4 20 1.86
CE =9 3 5 3 - 1 - J 2 17 1.58

C S W =9 4 2 5 1 2 I - 2 17 1.58

E = 11 1 4 1 - 2 - 1 2 1 1 1.02

CS = 11 1 1 3 1 1 1 - _> 1 1 1.02

N = 13 2 1 1 2 2 - - 2 10 0.93

C N W = 13 1 2 2 2 1 - - 2 10 0.93

A = 15 2 1 1 1 - - - 4 9 0.84

A W = 15 1 - - 3 2 2 1 - 9 0.84

SE 17 2 1 1 - 2 1 - 1 8 0.74

C N E 18 1 - - - 1 - 1 1 4 0.37

NE = 19 - - - - - 1 - 1 2 0.19

CSE = 19 - 1 - - - - 1 - 2 0.19

A NE 21 - - - - - - - 1 1 0.09

Table 5.6(b) : Number o f ‘moderate’ floods (> Q2 <Qm> generated by circulation types at each

C ircu lat ion  R ank O use  Don Nidd W h arfe
Type
C 1 21 20 12 4
w 2 27 3 4 6
SW 3 4 1 - 2
CW 4 8 - - 1
CN 5 1 4 - -

S =6 2 2 - -

CSW =6 2 - - 1
u 8 1 2 - -
NE =9 2 - - -
E =9 - 2 - 1
SE =9 - 3 - -
NW =9 1 1 - -
CE 13 - 2 - -
N = 14 1 - - -
CNE = 14 - 1 - -
CS = 14 - 1 - -

S w a le  Ure Aire D erw en t T ota l no T ota l %
o f  Floods

1 1 2 1 1 5 86 42.36

7 J 2 1 53 26.1 1

3 1 1 1 13 6.40

- 1 1 1 12 5.91

2 - 1 - 8 3.94

- - - 1 5 2.46

- 1 - 1 5 2.46
- - 1 - 4 1.97
1 - - - nj 1.48
- - - - 3 1.48
- - - - 3 1.48
- - 1 - 3 1.48
- - - - 2 0.99
- - - - 1 0.49
- - - - 1 0.49
- - _ _ 1 0.49
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Table 5.6(c) : Number o f  ‘major' floods (>QnJ generated by circulation types at each site

C ircu lation R ank O use Don N idd W harfe S w ale  U re A ire D erw ent T otal no T otal %
T ype o f Floods
C 1 5 8 *1J 0 -»J 2 I 22 35.48
W 2 2 1 1 4 2 2 - 12 19.35
U oJ 1 - 1 - 1 1 1 5 8.06
s w =4 1 - 1 - 1 - - -I.i 4.84
CE =4 1 2 - - - - 3 4.84
C W =4 - - 1 1 1 - - 3 4.84
CN =4 - - 1 - - 2 3 4.84
E =8 - - 1 - - 1 - 3.23
S =8 1 - - - - 1 ~) 3.23
C SW =8 1 - - 1 - - 2 3.23
A = 1 1 - - 1 - - - - 1 1.61
NE = 1 1 - - 1 - - - - 1 1.61
N = 1 1 - 1 - - - - - 1 1.61
C SE = 1 1 - 1 - - - - - 1 1.6!
C S = 1 1 - 1 - - - - - 1 1.61
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floods generated at each site by circulation types in the three magnitude categories. A total 

percentage o f  the frequency o f  floods generated by each circulation type at all sites is also 

given. Cyclonic and westerly types are by far the most important flood generators at all 

magnitudes, although significantly, the percentage o f total floods generated by westerly 

circulations declines as m agnitude increases, illustrating the importance o f cyclonic type for 

flood generation at higher magnitudes

A num ber o f  other circulation types also appear to be important for flood generation, albeit to a 

lesser extent. Common generating types are unclassified, cyclonic-easterly, cyclonic-northerly 

and southerly. Unclassified circulations are ranked as the third m ost important flood generator 

at ‘m ajor’ magnitudes, although still only account for 8.06%  o f floods o f this magnitude. It is 

difficult to assess the reasons for this im portance since several synoptic situations can be 

'unclassified’, such as when there are rapid changes in a tw enty-four hour period, or circulation 

system s are relatively small (Lamb. 1972).

A different overall picture is again evident on the River Don, which shows that northerly, 

cyclonic-south-easterly and cyclonic-southerly circulation types generate at least one flood 

classified as being a m ajor event. These types do not generate floods o f this m agnitude on any 

other tributary, although reasons for this are as yet unclear.

In sum m ary there are four main circulation types that are particularly im portant for flood 

generation in the Ouse basin, namely cyclonic, westerly, cyclonic-westerly and south-westerly. 

Detailed analysis o f  variations with all o f  the 27 individual Lamb types would be both time 

consum ing and may yield little in the way o f  explanation as to variations in flood frequency and 

m agnitude. In the following sections temporal variations in floods generated by the four main 

circulation types are evaluated, and how the annual and seasonal frequencies o f  those 

circulation types has varied through time.

5.4.3.3 Temporal variation in the incidence of floods generated by individual circulation 

types

Four atm ospheric circulation types have been identified that generate the m ajority o f  floods in 

the Yorkshire area, cyclonic, westerly, cyclonic-westerly and south-westerly. The frequency o f  

floods generated over tim e by these types will obviously vary to  some extent according to 

periods o f  high and low frequency identified in the POT flood records. The main aim o f  this 

section is to investigate w hether flood generation in certain tim e periods has been dominated by
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>. 14 : Annual frequency o f  floods generated by cyclonic circulations * start o f record
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Figure 5.15 : Annual frequency o f  floods generated by westerly circulations. * start o f  record
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Figure 5.16 : AnnuaI frequency o f floods generated by south-westerly circulations
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Figure 5.17: Annual frequency o f floods generated by cyclonic westerly circulations
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specific circulation types, and the general temporal variation within each o f  the four most 

common flood generating circulation types.

POT flood records for the Ouse at York and the Don at Doncaster extend to the late nineteenth 

century and show that this period was dominated by cyclonic flood generation particularly 

between the m id-1870s and m id-1880s (see figure 5.14). W esterly circulations generated less 

floods on the Don than the Ouse and south-westerly and cyclonic-westerly types accounted for 

relatively few events. Annual frequencies o f cyclonic and westerly generated floods remained 

low until the 1940s. Higher frequencies o f  floods were generated by westerly circulations in 

the m id-1940s particularly on the Nidd and W harfe. Since this time the num ber o f  westerly 

generated floods has decreased. Floods generated under cyclonic conditions also appear to have 

increased in the late-1940s and continued into the 1950s, unlike westerly circulations which 

were relatively low over this period From this tim e onwards it is difficult to distinguish 

distinct periods when one or m ore circulation type dominated flood generation, em phasising the 

com plex nature o f  flood generation and the fact that several circulation types can cause flooding 

in the same year. It does appear however, that between the late-1970s and m id-1980s, the 

incidence o f  cyclonic generated floods was increased at a number o f  sites. The frequency o f  

cyclonic floods has declined since the mid-1980s, and westerly generated floods have increased 

particularly and the Swale and Ure.

A particularly clear trend is evident in the incidence o f  south-westerly generated floods (figure 

5.16) which have shown a marked and sustained increase since the late-1960s. At York for 

example, in the 90-year period between 1878 and 1967 south-westerlies generated six flood 

events. W hereas in the 28-year period between 1968 and 1995 eight south-westerly generated 

floods have been recorded.

Floods generated under cyclonic-westerly circulations show variations between sites, with the 

Don, Derwent and Aire experiencing fewer cyclonic-westerly floods than the Ure, Swale, Nidd 

and Ouse, which show sim ilarities in the tim ing o f  events.

In general it appears that the frequency o f  floods generated by cyclonic and westerly 

circulations are fairly evenly distributed over tim e and it is difficult to suggest any periods 

when one type clearly dominated. Both types are o f  prim ary importance in generating floods in 

the Ouse basin, although westerlies appear to be o f  far less importance o f  the Don and Derwent.
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5.4.4. V ariab ility  of an n u a l an d  seasonal frequencies of L am b types, an d  links to flood 

frequency , m ag n itu d e  and  seasonality  series

The dom inant atm ospheric circulation types which generated floods and the timing o f  their 

occurrence has been established in the previous sections. In an attem pt to understand why 

certain circulations generate more floods in certain periods, this section investigates the annual 

and seasonal frequencies o f  the four Lamb types identified as being the most important in flood 

generation.

Clearly not every single day in the Lamb catalogue that is classified as being cyclonic, westerly, 

south-westerly or cyclonic-westerly will generate a flood event. This depends on the amount o f 

precipitation delivered by each circulation type which varies markedly from day to day. Even 

so it would be expected that if the annual frequencies o f  these individual Lamb types increases 

or decreases, this would also increase or decrease the possibility that a flood would be 

generated by that particular type. This is not suggesting that if  annual and seasonal frequencies 

o f a particular Lamb type are low that no floods will be generated by that type, but simply that 

the likelihood o f  a flood being produced by that type would be reduced

Annual and seasonal frequencies o f the four main flood generating types are presented since 

using annual frequencies alone may ‘m ask’ seasonal changes which cancel each other out 

(Grew, 1996). However, prior to analysis o f  the Lamb catalogue, the seasonal relationships 

between circulations types and floods need to be established. In table 5 .7 the num ber o f  floods 

generated by each circulation type has been calculated by com bining all eight POT records and 

totalling the num ber o f  floods generated by each type. A seasonal percentage was then 

calculated for each circulation type so that the dom inant season(s) could be identified when 

each type w ould be m ore likely to generate floods.

Table 5 .7: Percentage offloods generated in each season by each o f  the dominant flood generating 
circulations. Values have been calculated from all flood events at all eight POT sites.

South-westerly

(%)

Westerly

(%)

Cyclonic

(%)

Cyclonic-westerly

(%)

Winter 58.46 73.37 44.82 67.26

Spring 9.23 15.67 18.33 7.96

Summer 0.00 0.00 9.96 1.77

Autumn 32.31 10.97 26.89 23.01



Table 5.H : Mean annual frequencies o f Lamb circulation types expressed us a percentage of the 
entire record 1861-1995 The four most common flood generating circulation types 
are highlighted.

C ircu lat ion  Type M ean % Max % Min 7

A nticyclonic  (A) 18.24 27.95 6.56
A n ticyc lon ic-n orth -easter ly  (A N E ) 1.35 4.37 0.00

A n ticyclon ic-easterly  (AE) 2.41 5.48 0.27

A nticyc lon ic-sou th -easter ly  (A S E ) 0.95 3.28 0.00

A n ticyclon ic-southerly  (AS) 1.09 3.01 0.00

A nticyc lon ic -south-w ester ly  (A S W ) 0.88 3.29 0.00
A nticyc lon ic -w ester ly  (A W ) 4.60 1 1.48 1.64

A n ticyc lon ic -n orth -w ester ly  (A N W ) 1.47 3.56 0.00

A nticyc lon ic-norther ly  (A N ) 2.01 6.30 0.27

N orth-easterly  (N E ) 0.94 3.84 0.00

Easterly (E) 3.54 9.04 0.82

South-easter ly  (SE ) 1.74 5.75 0.27

South er ly  (S) 4.26 8.49 0.00

Sou th -w ester ly  ( S W ) 2.89 7.95 0.27

W esterly  (W ) 18.35 29 .32 8.74

N orth-w esterly  (N W ) 3.76 9.59 0.55

N ortherly  (N) 4.63 9.56 0.82

C yclon ic  (C) 13.10 21 .37 6.85

C y c lo n ic -n orth -easter ly  (C N E ) 0.39 1.91 0.00

C yclon ic -easter ly  (C E ) 1.10 3.56 0.00

C yc lon ic-sou th -easter ly  (C SE ) 0.46 1.92 0.00

C yc lon ic-sou th er ly  (C S) 1.24 3.84 0.00

C yc lon ic -south -w ester ly  (C S W ) 0.68 3.01 0 .00

C yclon ic -w ester ly  (C W ) 3.87 9.59 0.82

C yc lon ic -north -w ester ly  (C N W ) 0.88 2.47 0.00

C yclon ic -n orther ly  (C N) 1.30 3.84 0.00

Unclassified (U) 3.89 7.67 1.37
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Table 5.9 : Mean seasonal occurrence o f  Lamb circulation types per year expressed as a
percentage o f the entire Lamb catalogue 186!-1995 The four most common flood 
generating circulation types are highlighted.

C ircu lat ion  T ype W in te r  % S p rin g  % S u m m er  % A utum n %

A nticyclonic  (A) 16.3 18.8 19.0 18.9
A nticyc lon ic-north-easter ly  (A N E ) 0.8 1.8 1.4 1.3
A nticyclon ic-easterly  (A E) 1.9 3.5 2.3 1.9
A nticyc lon ic-south-easter ly  (A SE ) 0.9 1.0 0.8 I I
A n ticyclon ic-southerly  (A S) 1.4 0.9 0.9 1.2
A nticyc lon ic-sou th -w ester ly  (A S W ) 1.1 0.7 0.8 0.9
A nticyc lon ic -w ester ly  (A W ) 4.6 3.7 5.6 4.6
A nticyc lon ic-n orth -w ester ly  (A N W ) 1.2 1.4 2.0 1.2
A nticyc lon ic -norther ly  (A N) 1.5 2.6 2.3 1.7

N orth-easterly  (ME) 0.7 1.4 0.9 0.7
Easterly (E) 3.4 5.9 2.0 2.9

S outh-easter ly  (SE) 2.3 2.0 0.7 1.9

S outherly  (S) 5.5 4.4 2.5 4.8

S ou th -w ester ly  ( S W ) 4.1 2.1 2.2 3.1

W esterly  (W ) 22.8 13.5 17.7 19.4

N orth-w ester ly  (N W ) 3.7 3.4 4.6 *> -> J.J
N ortherly  (N) 3.6 5.6 4.7 4.6

C yclon ic  (C)
C y c lo n ic -n orth -easter ly  (C N E )

10.7
0.3

13.1
0.5

16.2
0.3

12,4
0.4

C yclon ic -easter ly  (C E) 1.0 1.4 0.9 1.1
C y clon ic-sou th -easter ly  (C S E ) 0.5 0.7 0.2 0.5

C yclon ic -south er ly  (CS) 1.3 1.4 1.0 1.3
C y c lo n ic -sou th -w ester ly  (C S W ) 0.8 0.5 0.6 0.8
C yclon ic-w es ter ly  (C W ) 4.1 2.8 4.4 4.1

C yclon ic-n orth -w ester ly  (C N W ) 0.8 To 1.1 0.7

C yclon ic -n orth er ly  (C N) 1.1 1.6 1.2 1.3

Unclassified (U) 3.7 4.2 3.8 3.9



The m ajority o f  floods generated by all four circulation types occur in winter, although the 

proportions can vary m arkedly. W esterly and cyclonic-westerly circulations show the highest 

w inter percentages and cyclonic the lowest Floods generated by cyclonic types arc more 

evenly distributed throughout the seasons, with even the sum m er period accounting for 9.96%  

o f  all cyclonic flood events. South-westerly floods are generated primarily in winter, although 

the percentage o f  floods generated in autum n is also particularly high.

A second point which needs to be raised prior to analysis o f  annual and seasonal frequencies o f 

individual circulation types concerns typical annual occurrences, which can significantly affect 

the range over which variation can take place. Grew (1996) suggests that it is variability in the 

most frequently occurring circulation types, which can have a large range o f  annual and 

seasonal values, that will have m ost influence on the flood record. Those circulation types with 

lower frequencies could not exhibit such a degree o f  variation, and therefore would not have as 

great an effect on the flood record.

Mean annual and mean seasonal occurrences o f  all Lamb types over the period 1861-1995 are 

shown in tables 5.8 and 5.9 . W esterly and cyclonic circulations are two o f  the m ost frequent 

types, occurring on average 18.35% and 13.10% o f  the time each year respectively. South

westerly and cyclonic-westerly only occurred on average 2.89%  and 3.87%  o f the time each 

year between 1861 and 1995. This may suggest that explanations for variations in the flood 

record may be m ore evident in cyclonic and westerly annual and seasonal frequencies.

Variations in the annual and seasonal frequencies o f  Lamb circulation types have been the 

subject o f  a large num ber o f  studies (see chapter 2). One o f  the m ost marked and sustained 

trends has been the decline in westerly circulations since the 1950s (Jones & Kelly, 1982) 

which is evident in all seasons (Briffa et a l., 1990), and has continued into the late-1980s 

(Sweeney & O ’Hare, 1992). Recent decades have seen a num ber o f  unusual variations, for 

example, the past two decades have seen an increase in anticyclonic and cyclonic synoptic 

systems, although variations are evident between seasons. Furtherm ore, Murray (1993) has 

shown that the 1980s have experienced the highest frequencies o f  southerly airflows over the 

entire Lamb catalogue. Sweeney and O ’Hare (1992) have shown that there has been a twofold 

increase in the frequency o f  south-westerly days since 1960, and a sharp decline in north

westerly days during the 1980s.

The trends outlined above represent m ajor changes in the Lamb catalogue over the past 135 

years, although m any more variations are evident on decadal scales. Figure 5.18 to 5.21 show
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annual and seasonal frequencies o f  the four circulations identified as being the dominant flood 

generators. The following section aims to establish associations between variations in flood 

frequency, m agnitude and seasonality, and variations in the frequencies o f the four main flood 

generating circulation types.

A peak in the num ber o f  floods generated under cyclonic conditions has been identified in the 

1870s and early 1880s. This period coincides with an increased num ber o f  cyclonic days in all 

seasons (figure 5.18), although lower frequencies are evident over the autumn period High 

frequencies o f  cyclonic generated floods also occurred in the mid-1940s and 1950s, although 

this period does not appear to coincide with particularly high or low cyclonic frequencies in any 

season. In the mid-1980s a higher num ber o f  floods generated under cyclonic conditions does 

coincide with a marked rise in the frequency o f  cyclonic days. There arc variations between 

seasons over this period, but since cyclonic floods tends to occur in all seasons the annual trend 

may be a  good indicator o f  the overall influence o f  cyclonic days.

Associations between the num ber o f  westerly generated floods and annual and seasonal 

frequencies are also evident. Prior to the well documented decline in westerly circulations in 

the 1950s (figure 5.19), the num ber o f  westerly generated floods was high, particularly on the 

Nidd, W harfe and Ouse. There is some evidence to suggest that the decrease in westerly 

circulations after the 1950s is reflected in the num ber o f  westerly generated floods, which 

appear to have declined on the Nidd and W harfe in particular. The frequency o f  westerly 

circulations has increased in w inter since the late-1980s, which is mirrored by an increase in 

westerly generated floods relative to the previous few decades on the Swale, Ure and to some 

extent on the Ouse.

The incidence o f  south-westerly generated floods has been shown to have increased since the 

1960s, which coincides with the marked rise in annual and seasonal frequencies o f  south- 

westerlies (figure 5.19). The majority o f  south-westerly floods occurred after 1980, and as 

previously discussed, the 1980s has been identified as the m ost southerly decade in the entire 

record (M urray, 1993). Since the m ajority o f  south-westerly floods arc generated in w inter and 

autumn, the frequencies for these seasons have been exam ined to assess any links. Particularly 

high frequencies o f  w inter south-westerly circulations in the m id-1970s does not coincide with 

a rise in the num ber o f soutii-westerly generated floods. However, the increasing number o f 

south-westerly generated floods in the 1980s is associated w ith a  rise in frequencies, both in 

w inter and autumn.



The relationship between cyclonic-westerly generated floods and annual and seasonal 

frequencies is less obvious (figure 5 21) A relatively large num ber o f  floods are being caused 

by cyclonic-westerly circulations despite the fact that annual and seasonal frequencies have 

been declining since the 1930s and remain very low.

Assessing the relationships between variations in circulation type and flood magnitude is more 

difficult since the discharge o f  any flood event is dependent upon many factors such as, 

antecedent conditions and precipitation intensity, and not sim ply the weather type which inputs 

the precipitation which triggers' or generates the event. Some sim ple relationships between 

flood magnitude and circulation types have been established in section 5.4.5 although these are 

general relationships and not an attem pt to explain temporal variations in flood magnitude. It 

would be unwise to suggest that observed changes in flood m agnitude are simply due to a 

higher or lower incidence o f  a particular circulation type, however recent trends in flood 

magnitude do appear to track the pattern o f  cyclonic days. Peaks in the num ber o f cyclonic 

days in the m id-1960s and between the late-1970s and early-1980s coincide with a period o f 

high flood magnitude. Conversely, low cyclonic frequencies between the late-1960s and mid- 

1970s coincide with a period o f particularly low flood magnitude.

In terms o f  flood seasonality one o f  the clearest variations in the flood record is the dramatic 

increase in spring POT events between the late-I970s and early-1980s. This may be due to the 

fact that the frequency o f  spring cyclonic circulations were high over this period. A second 

seasonal trend evident in the flood record is the decline in autumn floods since the 1960s. 

There appears to be no obvious explanation for this in terms o f the autumn frequencies o f 

circulation types, although a  tentative link may be that this coincides with the rapid decline in 

both westerly and cyclonic-westerly circulations.

In sum m aiy, several strong links between annual and seasonal frequencies o f  the dom inant 

flood generating circulation types and flood frequency have been established, particularly over 

the past thirty years or so. However, m any variations in flood frequency cannot be explained 

by this sim ple association, and links with flood magnitude are even m ore difficult to assess. 

Future work could attem pt to include more clim atic parameters such as snow depth and 

tem perature to investigate snowm elt floods, and to extend the period prior to the flood event 

that is considered in order to incorporate antecedent conditions into the study.
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( a )  : A n n u a l

Figure 5.18 : Annual and seasonal frequencies o f cyclonic circulation type I86I-IV95

( b )  : Winter (December-February)

( c ) : Spring (March-May)

( d )  : Summer (June-August)

( e ) : Autumn (September-November)
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Figure 5.19 : Annual and seasonal frequencies o f westerly circulation type 1861-1995

(a) : Annual

( b )  : Winter (December-February)

(c) : Spring (March-May)

( d ) : Summer (June-August)

( e ) : Autumn (September-November)
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Figure 5.20 : Annual and seasonal frequencies o f  south-westerly circulation type 1861-1995
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Figure 5.21 : Annual and seasonal frequencies o f cyclonic-tveslerly circulation type 1861-1995

( b )  : Winter (December-February)

(c) : Spring (March-May)

( d ) : Summer (June-August)

( e ) : Autumn (September-November)



5.5. PRO X Y C L IM A T E  R E C O R D S  : AD 1100- 1900

5.5.1. In tro d u c tio n

Sim ilar to flood records, prior to the advent o f  system atic recording o f  climate data, proxy 

sources must be em ployed to infer past climates. Sources o f  proxy climate data are 

com prehensively reviewed by Bradley and Jones (1995) and include tree ring data, pollen 

analyses, ice cores, m arine sedim ent cores and the use o f  documentary' evidence. Such data are 

often summarised for the British Isles as a whole or lim ited to an area where there are suitable 

sites for analysis, on peat-bogs for example. The aim o f  this section is to outline the climate 

history o f  the UK from around A D I 100, which covers the period over which the majority o f 

floods are documented in the Ouse basin. Records o f  tem perature, precipitation and 

atm ospheric circulation are considered. However due to the resolution o f the data (usually 

annual or decadal) detailed analysis such as that carried out over the gauged period cannot be 

attempted. General links between clim atic periods and the Ouse basin flood record are explored 

in the final section.

5.5.2. UK clim ate since th e  eleventh  cen tu ry

The period between AD 950 and 1300 has traditionally been called the 'M edieval Warm 

Period’ which was thought to represent one o f  the w arm est episodes since the beginning o f  the 

Holocene (Lamb, 1982). A lthough this may have been the case at certain times, more recent 

work has suggested that the climate o f  this period is far more com plex (Ogilvie & Fanner,

1997). These authors have re-analysed docum entary clim ate data between 1200 and 1440 from 

earlier work by Lamb (1977) and disregarded unreliable data through a  detailed source analysis 

techniques. Ogilvie and Farm er (1997) have re-calculated Lam b’s (1977) sum m er wetness and 

w inter severity indices and these data are shown in figure 5.22. From the revised index this 

diagram shows that the decades between 1220 and 1250 were characterised by a low w inter 

severity index, which increased between the decades 1260 and 1280. The 1290s showed a low 

w inter severity index and were followed by a prolonged period o f  increased w inter severity 

between 1300 and 1360. Between 1370 and 1420 there was a marked shift to a lower w inter 

severity index. A lthough w inter severity relates more to tem perature than wetness, it may be 

the case that precipitation totals were also high during these periods, particularly in the form o f 

snow. The sum m er wetness index shows greater decadal variation. However, since the 

m ajority o f  floods in the Ouse basin tend to occur in w inter this index is not considered in 

detail.
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Figure 5.22 .'Decadal indices o f  summer wetness (top) and winter severity (bottom) between AD 1220- 
1429, revised from Lamb (1977). Shaded decades are more severe (winter) or wetter 
(summer) than average (from Ogilvie and Farmer, 1997).

H,H. Lamb index ------- Revised index

UOO 1150 1.100 ________ J350_______________ UUO__________ 1450

1200 1250 1300 '350 1400 1450

Other evidence suggests that there was an increase in wind storms and sea floods on low lying 

coasts o f  the North Sea in the thirteenth century. Lam b (1982) has attributed this to an increase 

in sea level due to glacier melting, and/or that there was a  strengthened thermal gradient in 

latitudes between 50 and 65°N, due to arctic cooling which caused an increase in storm 

frequency and severity. After 1300, which is considered to represent the term ination o f the 

Medieval Warm Period, there was a period o f  cooling and a series o f  very wet summers and 

m ostly wet springs and autum ns (Lamb. 1982; Flohn & Fantechi, 1984).

Evidence from Bolton Fell Moss peat-bog near Carlisle suggests that the fourteenth and 

fifteenth centuries experienced particularly high surface wetness (Barber, 1981; Barber et al., 

1994). Over these tw o centuries there was an exceptionally high frequency o f  easterly winds 

which dom inated over 50-55°N and 60-65°N both in sum m er and w inter (Lamb, 1982).



Documentary reports o f  clim ate become more common in the sixteenth century, and it is 

generally accepted that there was a remarkably sharp change in the m id-sixteenth century from 

fairly warm conditions to the much cooler conditions experienced during the most recent 

Holocene neoglaciation, the ‘Little Ice A ge’. Recent studies have questioned traditional 

interpretations o f  clim ate during the Little Ice Age (e.g. Jones & Bradley, 1995). These authors 

suggest that this was a  period characterised by a  series o f  com plex clim atic anom alies, with 

marked seasonal contrasts and both warm and cold episodes. Rumsby and M acklin (1996) have 

sum m arised a num ber o f recent climate studies encom passing the Little Ice Age and suggest 

that cooling began after the m id-sixteenth century' and continued into the seventeenth century, 

there followed a w anner phase in the m id-eighteenth century and a second cooling phase in the 

late-eighteenth and early-nineteenth century. The nineteenth century has experienced a ‘cool- 

warm-cool oscillation’ (Rumsby and M acklin, 1996, p220) and the twentieth century has seen 

an am elioration in climate.

There are few long, reliable records o f  atm ospheric circulation prior to the start o f  the Lamb 

catalogue in 1861. Each day between January 1781 and Novem ber 1786 has been classified 

according to Lam b’s (1972) scheme based on maps derived by Kington (1975; 1980), however, 

this series is too short to be useful in this context. The only long-term data available are those 

compiled by Lamb (1967; 1972) which give the frequency o f  south-westerly surface winds 

derived from daily observations near London from 1699 and various diaries and monthly 

com pilations to the fourteenth century (figure 5.23). South-westerly surface winds relate to 

westerly atm ospheric circulations over the British Isles (Lamb, 1972; Kington, 1994), and can 

be used to make inferences as to the dom inance o f  westerly types over certain periods. The 

frequency o f  south-westerly winds was high in the fourteenth century and low in the early-to- 

m id fifteenth century. High frequencies were again evident from the late-fifteenth century to 

mid sixteenth century, from which tim e there was a period o f  fluctuation until the m id

eighteenth century when there is a marked decline. Frequencies increased from around 1800 to 

a peak in the 1940s. Exactly how these fluctuations relate to docum entary floods is difficult to 

establish, since these general trends are clearly not representative o f  the actual conditions that 

generated each flood event. These data and the general clim atic characteristics presented over 

the last 900-years or so represent the best data available, therefore general links between climate 

and docum entary floods will be attem pted, taking into account lim itations o f  the data.
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Figure 5.23 : Frequency o f  south-westerly surface winds over England since AD 1340, after Lamb 
(1972) and from Kington (1994).
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5.5.3. Links between documentary floods and climate records

General trends in clim ate over the last m illennium  have been outlined in the previous section. 

The aim o f  this section is to link periods with a distinctive flood regime to the prevailing 

clim atic conditions and assess any possible relationships.

Several large floods were recorded on the Ouse, Aire and Calder between the decades 1260 and 

1360. Notable precipitation extrem es over this period include a run o f  extrem ely wet summers 

and m ostly wet autum ns and springs between 1313 and 1317, and the decade 1360 was 

particularly wet (Lamb, 1982). High values o f  Ogilvie and F anner’s (1997) revised w inter 

severity index are evident throughout this period, apart from the 1290s (figure 5.22). 

Temperatures were generally declining from the M edieval Optimum (Lamb, 1982). Indeed the 

Bolton Fell Moss peat record (cf. Barber, 1981) show this to be a period o f  marked clim atic 

transition with surface wetness changing from dry conditions to very wet. This period o f  flood 

activity also coincides with an increase in storm iness with series o f  extremely severe sea floods 

occurring around North Sea coasts due to Arctic cooling and sea-level rise (Lamb, 1982). 

Lamb (1977) also suggests that rising sea level after 1300 caused tidal ranges to increase which 

would also cause the range o f  storm tides to increase.

Between the 1370s and 1550s no floods were recorded in the Ouse basin, the tim ing o f  which 

coincides with a marked decline in w inter severity index around the 1360s which continues 

until the end o f  the record in the 1420s. In general, conditions were m ilder and drier than the 

previous period although tem peratures were declining. However a short-lived warm phase was 

experienced in the early sixteenth century due to westerly winds over northern Europe and a 

high frequency o f  anticyclones affecting a zone o f  latitude 45-50°N (Lamb, 1982).



The period between 1550 and 1680 experienced the m ost severe flooding on record in the Ouse 

basin, events such as those in January 1564 and March 1614 on the Ouse at York having no 

m odem  or historical equal. Both these flood events and others in the basin were strongly 

influenced by snowm elt The early part o f  this period is generally regarded to represent the 

onset o f m ajor cooling across Europe associated with the Little Ice Age, during which annual 

tem peratures were greatly reduced and m ountain glaciers advanced in Alpine (Grove, 1988) and 

Scandinavian regions (Karlen, 1988). The Little Ice Age was not sim ply a cold period, both 

warm and cool episodes occurred within it, with the m ost widespread cooling phase between 

the seventeenth and nineteenth centuries (Bradley &  Jones, 1995). Marked variations in 

precipitation also occurred in the Little Ice Age. Lamb (1984b) suggests that extremely wet 

periods occurred when prevailing cyclonic storm tracks were shifted in a southerly direction 

due to the southward displacement o f  the Icelandic low, and also when stationary or slow- 

moving cyclonic circulations dominated, which w ould particularly effect those areas where 

south-westerly w inds delivered precipitation.

Between 1681 and 1762 the flood record indicates that localised sum m er flooding increased in 

the Ouse basin, with no large spatially extensive lowland floods being recorded. The early 

eighteenth century is generally considered to  represent a  warm er phase o f  the Little Ice Age 

(Lamb, 1982), and the Central England Tem perature (CET) record shows sum m er temperatures 

to be above average over this period (cf. Jones & Hulme, 1997). This increased incidence in 

sum m er flooding is probably a product o f  the m ore extreme seasonality that was experienced 

during the Little Ice Age, marked seasonal contrasts in both tem perature and precipitation being 

com m on between the seventeenth and nineteenth centuries (Rum sby & M acklin, 1996).

Towards the end o f  the eighteenth century instrum ental climate records are more common, and 

the hom ogenised England and W ales Precipitation (EW P) record commences in 1766 (c f  

Gregory et a l., 1991; W igley & Jones, 1987; W igley et a l., 1984) and therefore allows for the 

detailed examination o f  precipitation patterns over the historic period. In term s o f  flood 

frequency, it appears that extensive lowland floods were again widespread on the Ouse towards 

the end o f  the eighteenth century, one example is the Decem ber 1763 event which was noted on 

both the Aire and Ouse (Environm ent Agency, 1995). Flood frequencies increased on the Ouse 

and Aire in the 1760s when the EWP record shows above average totals, particularly in autumn 

{cf. Jones et a l., 1997). 1768 was the second wettest year in the EW P record between 1766 and 

1985 with 1247.3mm o f precipitation (W igley & Jones, 1987) and a notable flood was recorded 

in the Leeds and Bradford area in July 1768 w hen three bridges were destroyed (Piers, 1977).
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Flood frequencies were reduced in the 1770s and 1780s, which coincides with low EWP totals 

particularly in winter and autum n. Three o f  the top ten driest years in the EWP record between 

1766 and 1985 were recorded over this period, in 1780 (689.9m m), 1785 (719.4m m) and 1788 

(614.0m m ) (W igley & Jones, 1987).

Between 1790 and around 1810 flood frequencies increased slightly, particularly on the Ouse 

and Aire, the EWP record show this to be a period o f  variable rainfall

The period 1760-1799 has been identified by Rumsby and M acklin (1994) as a time o f 

increased frequency o f  large floods (>20 year return period) in the Tyne basin. They suggest 

that this is due to an enhanced meridional circulation regime (see chapter 3) due to cooler 

tem peratures resulting in a larger equator to pole tem perature gradient and a southward shift in 

clim atic zones. Between 1800 and 1819 the circulation o f  the atm osphere was classified as 

intermediate, with no dom inant circulation regime and reduced flood frequency and magnitude, 

and between 1820 and 1874 zonal airflows dom inated resulting in an increased frequency o f 

moderate (5-20 return period) flood events, due to w anner conditions that favour zonal flow 

which is characterised by a widely spaced, low am plitude configuration o f  the circum polar 

vortex. These periods appear to relate well to the tim ing o f  flood events in the Ouse basin, with 

high flood frequency and m agnitude in the late eighteenth century' and again in the late 

nineteenth century which has also been classified as being more m eridional in character (1875- 

1894). High flood frequencies are evident in the Ouse basin from the 1860s on the W harfe and 

the 1880s on the Swale, com bined with high frequencies and m agnitudes in early gauged at the 

tim e records on the Ouse, Aire and Calder. In terms o f  precipitation between 1860 and 1900 

three years appear in the top ten w ettest on record in the EW P series 1766-1985, these are 1872 

(1284.9m m), 1877 (1 144.1mm) and 1882 (1 146.2mm).

Gauged records are available on the Ouse basin from the late nineteenth century and links with 

climate have been discussed in a previous section.

165



5.6. F U T U R E  C L IM A T IC  C H A N G E S

In recent decades the clim ate o f  the British Isles has experienced some notable extremes, with 

well documented droughts in 1984. 1989-90 and 1995, and severe flooding in northern England 

in 1990, 1991 and 1995. Generally it appears that there has been a w anning trend in the British 

Isles over the last two or three centuries and especially over the last two or three decades (Raper 

e t a l., 1997). Evidence is increasing w hich suggests that these changes broadly m irror mean 

global trends, amid growing concern in recent years about the future im plications o f  greenhouse 

gas em issions and global warming. Estimates o f  future clim ate change can be derived from 

sim ple global-average box models to com plex three-dim ensional models which couple ocean 

and atmospheric systems, the latter is required to assess detailed regional patterns o f future 

clim ate changes (Raper et a l., 1997). In their recent paper Raper el al. (1997) summarise the 

results from HADCM 2, a com plex model developed at the Hadley Centre which couples a 

twenty-level ocean model to a nineteen-level atm osphere model Past and future estimates o f 

aerosol and greenhouse gas forcing were based on IS92a, which is one o f  six possible emission 

scenarios defined by the Intergovernm ental Panel on Climate Change (Leggett, 1992) for the 

tw enty-first century. Raper et al. (1997) suggest this scenario adopts intermediate assumptions 

about future global population, econom ic grow th, and the mix o f  conventional and renewable 

energy sources’ (Raper et a l., 1997, p329.). Under this scenario the model predicts a rise in 

global temperatures o f  around 1.5°C by 2050 com pared to the 1961-1990 average, and an 

increase o f  between 2.5°C and 3.0°C by the end o f  the next century.

However, Global Circulation M odels (GCM s) used for diese predictions are widely accepted as 

being subject to a num ber o f  limitations and uncertainties. One o f  the m ajor problems is the 

coarse spatial resolution o f  GCM grids which results in poor regional estimates o f future 

clim ate change (M itchell e t a l., 1990; W arrick & Barrow, 1991). N otwithstanding this problem 

the model suggests that for the British Isles there will be an increase in tem perature o f  between 

1.2°C and 1.6°C for w inter and sum m er over the thirty  year period centred on 2050, with a 

greater warm ing in the east than west. The m odel also predicts an increase in winter 

precipitation in Scotland o f  around 5%, and that the frequency o f  heavy rainfalls would increase 

over the British Isles, particularly in winter.

In general, clim ate change scenarios for the British Isles differ depending on the model and 

scenario applied, however there is a general consensus that precipitation will increase in winter 

(Am ell, 1992; Rowntree, 1990; Rowntree et a l ,  1993; UKCCIPG, 1991) and that this increase 

will be greatest in the north and west (Am ell, 1992; H ulm e & Jones, 1989; Santer et al., 1990). 

Several authors have also suggested that a warm ing o f  the British Isles w ould result in a
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reduction in snow-cover (e.g Am ell, 1992; Raper et a l., 1997; Rowntree, 1990; Rowntree el 

a l., 1993) Similarly there would also be a reduction in frost occurrence. Rowntree et al. 

(1993) estim ate that a 1°C rise in mean tem perature would result in a 25% decrease in frost 

frequency How these changes would relate to flooding in the Ouse basin is subject to debate, 

particularly since Smith (1993) suggests that GCM predictions for precipitation changes tend to 

be less reliable than those calculated for tem perature, and predictions o f  possible changes in 

extrem e events is often poorly understood. However, authors in the USA (Knox, 1993), 

Australia (Smith, 1993), and Britain (Beven, 1993) all suggest that future climate change 

predictions would cause marked changes in flood frequency and magnitude.

In term s o f  the Ouse basin, the most probable effect o f  postulated increases in w inter rainfall, 

storm iness and flood producing rainfalls, would be to increase flood frequency and magnitude. 

However, reduced snow-cover may have a significant effect on flood magnitude, since most o f  

the largest flood events in the basin are influenced by snowmelt. Therefore, extreme events 

caused by rapid snowm elt or rain-on-snow processes may become less frequent in a warmer 

world

Assessing the future effects o f  changes in the atm ospheric circulation is more difficult with 

often conflicting views. Rumsby and Macklin (1994) suggest that an increase in global 

tem perature would reduce the equator-pole tem perature gradient, and lead to an enhanced zonal 

circulation regime which would in turn, increase the frequency o f  westerly circulation types. 

W esterly circulations are often associated with m inor and moderate flood events in the Ouse 

basin and it could be expected that these events would increase in frequency if  westerly 

circulations were to increase. A lternatively Sweeney and O ’Hare suggest that a reduced 

thermal gradient would result in a continued decline in westerly circulations, which could cause 

an increase in large flood events due to increased convective activity and more intense 

depressions which has been postulated by Jones (1992).

Clearly there is a high degree o f  uncertainty as to the effects o f  predicted future clim atic change 

o f  flooding in the Ouse basin, although given the unprecedented rate o f  change predicted for the 

tw enty-first century, marked changes in flood regime can undoubtedly be expected.

167



5.7. SU M M A R Y  O F T H E  C L IM A T IC  C O N T R O L S  O F  F L O O D IN G  IN T H E  OUSE 

BASIN

A num ber o f  large floods were recorded in the Ouse basin between 1260 and 1360; a time o f 

marked clim atic transition characterised by a cooling trend from the Medieval Optimum, 

increased w inter severity, notable extrem es o f  precipitation and an increase in storminess. 

There followed a flood free period o f  around 180-years when no floods were documented, and 

conditions were generally m ilder and drier with less severe winters. Some o f the largest flood 

events in the Ouse basin were experienced around the tim e o f  the onset o f  the Little Ice Age, 

with particularly severe flooding between 1550 and the 1680s often with large snowmelt 

contributions. This period was also associated with a southward shift in the prevailing cyclonic 

storm tracks. During a warm er phase o f  the Little Ice Age localised sum m er flooding became 

more common, probably associated with elevated sum m er tem peratures and an increase in high 

intensity, short duration convective storms. Flood frequency and m agnitude increased 

m arkedly in lowland areas towards the end o f  the eighteenth and nineteenth centuries due to an 

increase in rainfall allied to an enhanced meridional atm ospheric circulation regime.

After the late nineteenth century gauged records o f  floods and climate allow for a much more 

detailed analysis o f  relationships. Exam ination o f  annual, seasonal and POT rainfall series have 

shown that rainfall patterns often m irror changes in flood frequency and magnitude. For 

example, peaks in flood frequency and m agnitude in the m id-1960s and between the late-1970s 

and m id-1980s were associated with increases in spring rainfall and the annual frequency o f  

POT rainfall events. However, variations in rainfall series cannot explain many o f  the trends 

evident in flood records since, annual and seasonal records consider every single day over a 

specified period, and PO T series, w hilst exam ining the tem poral variations o f  heavy rainfall do 

not necessarily relate to a  specific flood event which depends on a variety o f  factors such as 

antecedent wetness, intensity and duration o f  rainfall and the depth o f  snow over the catchment. 

Many o f  these variables are difficult, or im possible to assess over the period covered by the 

gauged flood record. Records o f  daily atm ospheric circulation date back to 1861, and since the 

character o f  the UK clim ate is controlled by these circulation types, an understanding o f the 

synoptic generation o f  floods in the Ouse basin would lead to a better understanding o f the 

m echanisms behind flood generation. To discern the direct controls o f flooding we m ust study 

the period directly prior to each flood event, therefore a m ethod was developed using POT 

flood records, daily rainfall records and the Lamb circulation catalogue to investigate the 

synoptic generation o f  flood events. It was found that four out o f  twenty-seven circulation 

types, cyclonic, westerly, cyclonic-westerly, and south-westerly generated 78.25% o f  all POT
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floods in the Ouse basin Cyclonic and westerly circulations were by far the most important 

types in terms o f flood generation, although the relative importance differed between 

tributaries Catchm ents on the west o f the Ouse basin with Pennine headwaters show'ed that 

sim ilar proportions on floods were generated by sim ilar circulation types, whereas the most 

easterly catchm ents showed significant differences. For example, on the Don and Derwent 

situated in the east o f  the catchm ent westerly and south-westerly circulations generated far 

fewer floods than anywhere else in the catchment, and the dominance o f  cyclonic circulations 

was greatly increased. The main reasons behind these patterns are that different circulations 

types deliver differing amounts o f  precipitation to different geographical areas. Cyclonic 

circulations do not exhibit the marked west-east rainfall contrast associated wdth westerly 

circulations and therefore cyclonic generated floods become more common on the eastern side 

o f  the catchment. Cyclonic circulation types also appear to generate the m ajority o f  the highest 

m agnitude events, whereas westerly circulations more com m only generate floods o f  a more 

m inor or moderate magnitude. Temporal variations in flood frequency appear to be linked to 

variations in the annual and seasonal frequencies o f  the important flood generating circulation 

types. A high proportion o f  westerly generated floods in the mid-1940s was associated with a 

peak in westerly frequencies in all seasons, the well docum ented decline in westerly frequencies 

since the 1950s appears to have resulted in a  reduced frequency' o f  floods generated by this 

type. Furthermore, an increase in flood frequency in the late-1970s to mid-1980s was allied 

with a  rise in the frequency o f  cyclonic frequencies and cyclonic generated floods. One o f  the 

m ost dramatic increases, however, has been shown in the annual and seasonal frequencies o f  

south-westerly circulation types. The marked increase from the 1960s has resulted in a rise in 

the num ber o f  south-westerly generated floods.

Predictions o f  future clim ate change suggest an increase in w inter precipitation, the frequency 

o f flood producing rainfalls and storminess, all o f  which could com bine to increase both flood 

frequency and magnitude. A t the hem ispheric scale, a w anner world w ould result in a reduced 

equator-pole temperature gradient which some authors suggest would result in an enhanced 

zonal circulation and an increase in westerly circulations over the UK. If  this were to be the 

case, then given associations derived in this chapter, this m ay suggest that the frequency o f 

m inor and moderate magnitude floods may increase. A llied to  this a  w anner world would 

result in less snowcover which m ay cause a  reduction in flood m agnitude. Other authors 

suggest that a decreased thennal gradient would further reduce the frequency o f  westerly 

circulations, and this m ay favour the generation o f  larger floods under cyclonic conditions due 

to an increase in convective activity and more intense depressions in the Ouse basin.
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C h a p t e r  6

L A N D - U S E  C H A N G E  IN T H E Y O R K S H I R E  O USE BASIN

6.1. IN T R O D U C T IO N

This chapter attem pts to evaluate m ajor land-use changes which have occurred in the Yorkshire 

Ouse basin over the past 150 years or so. The majority o f  records pertaining to land-use are 

relatively short, therefore longer term variations are less detailed and often derived from 

national assessments. Recently, it has been suggested that changes in land-use have resulted in 

increased flooding in several areas o f the basin, particularly areas subject to land drainage (see 

Caufield, 1982; Oldfield, 1982). It has also been suggested that there may be a link between 

greatly increased sheep num bers and increased flooding in the Yorkshire Dales (Sansom, 1996) 

In this case over-grazing leads to a reduced in the vegetation cover and higher rates o f  runoff.

Four main aspects o f  land-use change are investigated in this chapter, these are the tem poral 

and spatial variation in (1) agricultural land-use (2) agricultural land drainage (3) channelization 

in the basin and (4) reservoir construction. The final section attem pts to sum m arise m ajor land- 

use changes and com m ent on their effects on flood regime, and suggests links to the flood 

record. (Urbanisation is not considered in detail here, since the m ajority o f  towns and cities in 

Yorkshire were well established prior to gauged flood records, and it would be extremely 

difficult to assess the urban impact on flood hydrology over such a long period.)

6.2. A G R IC U L T U R A L  LA N D -U SE C H A N G E  IN T H E  Y O R K S H IR E  O U SE BASIN

One o f the most detailed datasets in the UK relating to land-use change is that derived from 

annual agricultural returns, which have been published since 1866. These records cover the 

entire period o f  system atic flood recording in the Ouse basin and com parisons can be m ade 

between large-scale changes in agricultural practices and variations within the flood record. 

This section reviews general agricultural trends in the UK from the mid-nineteenth century, and 

examines county statistics for the Ouse basin to assess regional agricultural change.

6.2.1. H isto ry  of B ritish  ag ric u ltu re  since th e  n in e teen th  cen tu ry

The main trends in nineteenth and early tw entieth century' agricultural land-use in Britain have 

been reviewed by Sheail (1973) and Cherry' and Sheail (in press), and post-war trends by Parry 

(1991). These reviews fonn the basis o f  this sum m ary which outlines the m ain temporal and



spatial variations in agricultural land-use change in Britain as a backdrop to those described for 

the Ouse basin in the next section.

The period between the mid-nineteenth century until the mid-1870s is regarded as the 

prosperous ‘high farming era’. Cherry and Sheail (in press) have estimated that 80% o f  the 

population were fed from home-grown produce during this period, which was facilitated by an 

expansion in undcrdrainage, the enlargem ent o f  fields, straightening o f boundaries, and a 

num ber o f  technological innovations such as the invention o f the steam plough and advances in 

fertilisers and breeding practices. This period o f  prosperity was followed by a severe 

depression in the last quarter o f the nineteenth century, which was particularly pronounced over 

the two periods between 1875-84 and 1891-99. This decline in UK agriculture was largely 

attributed to increasing overseas competition, with imports o f  wheat increasing two-fold 

between 1850 and 1872. The main consequence o f  this in terms o f  land cover was the reversion 

o f  arable land to grassland, and Cherry' and Sheail (in press) suggests that the area o f  land 

growing com  crops in Britain fell by 16% between 1868 and 1891 Between the end o f  the 

nineteenth century and the outbreak o f  W orld W ar One the agricultural economy recovered, 

although still remaining relatively unprofitable. Over the period 1871 to 1891 the gross output 

o f  English agriculture had fallen by 13%, however, by 1911 this had recovered to the 1871 

level.

The use and m anagem ent o f  farmland in England and W ales has been studied in detail by 

Sheail (1973) between 1915 and 1919, who suggests that both the governm ent and public 

became aw are o f  the need for increased home production. The objectives o f  British farming 

changed and the governm ent intervened in the m anagem ent and use o f  individual farms and 

fields for the first tim e, particularly encouraging the ploughing up o f  grassland areas for crop 

production.

After the First W orld W ar widespread economic depression set in which resulted in the 

reversion o f  arable to grassland for livestock production in the 1920s and 1930s (Bowler, 

1991). Demand was reduced for agricultural products and Parry (1991) estimated that arable 

land area declined by around 8% between 1931 and 1938. After 1938 there was an increase in 

ploughing grants and com pulsory powers w'ere given to the County W ar Agricultural Executive 

Com mittees, which reversed the trend o f declining arable area (Parry, 1991). Increased home 

production was required in the w ar period due to shipping blockade (Bowler, 1991), and the 

arable area increased by 8% between 1940 and 1943, and by 4%  in 1944 (Parry, 1991). This
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increase in arable land has been sustained upto the present day throughout the UK due to 

technological developm ents and the increased mechanisation o f  arable fanning.

Parry (1991) suggests there are four main com ponents o f  post-war land-use change in Britain, 

the growth o f  urban areas, changes in the agricultural sector, the extension o f  forest and 

woodland and the growth in com petition for rural land from what he terms ‘quasi-urban’ uses 

such as for recreation and w ater gathering. However, even though good quality agricultural 

land has been lost to urban development, and some upland areas to afforestation, Parry suggests 

that overall agricultural production has substantially increased since 1945. Changes in farm 

practices since this period w'hich have increased production include the intensification o f 

farming, increasing specialisation and the increasing scale o f operations In terms o f upland 

areas, Parry (1991) estim ates that between 1933 and 1980. 15% o f  UK rough land (unimproved 

land) has been transferred to improved farmland.

6.2.2. Agricultural land-use change in the Yorkshire Ouse basin since 1866

The first system atic annual return o f  crops and land-use was carried out in England and W ales 

in 1866 by the Board o f  Agriculture. Since this time, annual returns have been compiled for 

every agricultural holding on the 4 th July each year. The early returns were com pleted on a 

voluntary basis by individual fanners until 1925, when it became law that holdings o f  more 

than one acre m ust make an annual return (Hooke & Kain, 1982).

A num ber o f  problems concerning the accuracy and reliability o f  the annual agricultural census 

have been discussed in detail by Clark et al. (1983). These authors point out that the m ajor 

problem for historical studies are the changes in inform ation collection and presentation, which 

can reduce the comparability o f  data over tim e. This problem is difficult to address since the 

m ajority o f  early original records have been destroyed (Hooke & Kain, 1982). Further 

com plications include, errors by individual fanners and their lack o f  co-operation, particularly 

in the early period. Location o f  farm boundaries also cause problem s since particular holdings 

m ay not lie w holly w ithin one parish. Not w ithstanding these criticism s, Clark et al. (1983) 

stress that problem s o f  inaccuracy are more com m on within individual parishes, rather than at 

the county or national level and that, on the whole, 'the census is quite remarkably reliable by 

international standards’ (Clark et a l ,  1983, p i 19).

Parish data for England and W ales are available at the Public Records Office at Kew. However, 

due to the large study area and time constraints o f  the project, parish data were considered too 

detailed and county statistics were used, as these data are more readily accessible.
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Annual agricultural returns from 1866 to 1939 arc contained in a statistical appendix in the 

County Report to the First Land Utilisation Survey o f  Great Britain , and are available for the 

North (W ooldridge, 1945) and W est Riding (Beaver, 1941) o f  Yorkshire, which covers the 

majority o f the study area. These series were updated from 1939 to 1995 using the annual 

publication o f Agricultural Statistics. United Kingdom, between 1939 and 1990, and The Digest 

o f  Agricultural Census Statistics, United Kingdom, from 1991 onwards.

Com plications occurred within the data set due to large-scale county boundary reorganisation in 

1974. when the North Riding became North Yorkshire and the W est Riding, W est Yorkshire. 

Therefore, the data have been treated as separate series either side o f  this breakpoint. Two main 

land classifications were used between 1866 and 1980, total area o f  arable crops and total area 

o f  permanent grassland, which represent the majority o f  land cover in this area. Since 1980 

data presented in the reports have been much more detailed, documenting the area o f a large 

num ber o f  individual crops. Due to these problem s data from 1974 onwards have been 

amalgamated into arable and permanent grassland categories, and arbitrary units used as a 

measure o f  land area.

Annual area o f  arable crops, permanent grassland and rough grazing are shown in figure 6.1 for 

the North Riding o f  Yorkshire and in figure 6.2 for the W est Riding o f  Yorkshire. The trends 

displayed in these diagrams exhibit distinct sim ilarities with the national trends outlined in the 

previous section. The area o f  permanent grassland steadily increases, and arable area decreases 

from the start o f  the record until the end o f  the nineteenth century in the W est Riding and the 

start o f  the First W orld W ar in the North Riding. This represents a period o f  agricultural 

depression which was particularly pronounced in the last quarter o f  the nineteenth century. 

Between 1866 and 1914 the total arable area declined by 6.6%  in the North Riding and by 7.8%  

in the W est Riding, over the same period perm anent grassland increased in area by 13.8% in the 

North Riding and 12% in the W est Riding. The increased need for home food production in the 

First W orld W ar resulted in a 3% increase in arable area in the North Riding Between 1914 and 

1918. A fter this tim e a period o f  economic depression caused large areas o f  arable land to be 

reverted back to grassland. Arable area fell by 6.1%  in the North Riding and W est Riding 

between 1918 and 1939. However, the m ost dram atic shift in agricultural land-use occurred 

around the onset o f  the Second W orld War. Increasing governm ent grants and a sustained 

plough-up campaign caused a 12.3% increase in arable area in the North Riding and a  11.1% 

increase in the W est Riding. This was associated with a  marked decline in the area o f  

perm anent grassland which fell by 14.7% in the North Riding and 13.8% in the W est Riding o f  

Yorkshire.
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Post-war trends in the Yorkshire counties show that arable area declined slightly after the 

Second W orld War, and the area o f  perm anent grassland increased. Arable area has steadily 

increased in the North Riding since the mid-1950s, and area o f  permanent grassland has 

declined A different trend is evident in the W est Riding, a period o f  stability after the Second 

W orld W ar has been followed by a relative decline in the area o f  both arable and permanent 

grassland.

The area o f  rough grazing has increased steadily in both counties since the beginning o f  the 

record, associated with a rise in the num bers o f  livestock, although this increase has been more 

pronounced in the North Riding.

6.3. AGRICULTURAL LAND DRAINAGE IN THE YORKSHIRE OUSE BASIN

In response to extreme flooding in the Yorkshire Ouse basin in January 1982, Caufield (1982) 

reported the view expressed locally that recent upland and lowland agricultural drainage 

schemes may have exacerbated downstream flooding. Robinson (1990) suggests that the role 

o f  upstream drainage is often questioned when large floods occur, citing examples o f  studies in 

Scotland (Learmonth, 1950) and W ales (Howe et al., 1967) after a series o f  large flood events 

in the 1940s.

To assess the effects o f  agricultural land drainage schemes, data are required on the timing, 

extent, location and type o f  drainage within a catchment. Field drainage data were collected by 

M AFF in England and W ales between 1971 and 1980, in an attem pt to improve drainage 

system design (Robinson, 1990). Data over this period pertaining to the Ouse basin were 

requested from M AFF Unfortunately however, this information could not be located. 

Therefore, the main source o f  data relating to lowland underdrainage is found in country-wide 

reviews, such as Phillips (1989), for the nineteenth century, and Robinson (1990) for the 

twentieth century. Data relating to hill drainage is often m ore scarce, however, Robinson 

(1990) studied the tim ing and extent o f  m oorland gripping in the Yorkshire Dales. The work 

was carried out during a ‘window o f  opportunity’, when M AFF began to ease its normal 

confidentiality constraints as to where grant-aid for drainage schemes was given (Robinson, per 

comm ). Since this study, many o f  the original files have been destroyed under new M AFF 

policy (Robinson, 1990), and were not available for consultation. Chapter three reviewed 

various upland and lowland drainage techniques and their possible effects on flood regime. 

This section attem pts to investigate the temporal and spatial patterns o f  agricultural land 

drainage.

174



Fi
gu

re
 

6.
1: 

An
nu

al
 a

rea
 

of 
ar

ab
le 

cr
op

s, 
to

ta
l 

pe
rm

an
en

t 
gr

as
sla

nd
 

an
d 

ro
ug

h 
gr

az
in

g 
in 

the
 

No
rth

 
Ri

din
g 

18
66

-1
99

5

(sjjun XjKijqjK) B S jy

O
3Oat

O

(S 3 J i:p 9 i| ) c s j y



Fi
gu

re
 

6.
2:

 
An

nu
al

 a
rea

 
of 

ar
ab

le 
cr

op
s, 

to
ta

l 
pe

rm
an

en
t 

gr
as

sla
nd

 
an

d 
ro

ug
h 

gr
az

in
g 

in 
the

 
W

es
t 

Ri
din

g 
18

66
-1

99
5

(S3JBJD3l|) B 3 J V



177

6.3.1. History of agricultural land drainage in Britain

The need for agricultural im provem ent in Britain was realised soon after the enclosure o f 

com m on lands at the beginning o f  the seventeenth century (Robinson. 1990) However a lack o f 

suitable materials and reliable drainage systems resulted in little drainage activity Tile drains 

became available in the 1820s and resulted in the introduction o f  underdrainage in many areas. 

Although it was not until the late 1830s when suitable m aterials and reliable drainage systems 

were available, that large-scale land drainage was attem pted (Phillips. 1989), Tile making 

machines were invented in the 1830s and a reliable system o f  drainage had been developed by 

Jam es Smith, who advocated the use o f  closely spaced shallow parallel drains Drainage 

activity increased further in the 1840s due to the introduction o f governm ent drainage loans, 

new drain-pipe m aking machines, and an improved drainage system developed by Josiah Parkes 

who suggested the use o f  deep parallel drains (Phillips, 1989). The most intensive period o f 

underdrainage in the nineteenth century occurred over the thirty year period between 1840 and 

1869 (Phillips, 1989), which coincided with the "high fanning era’ o f agricultural prosperity 

(Robinson, 1990). There followed a prolonged period o f  agricultural depression towards the 

end o f  the nineteenth century which resulted in a marked reduction in the num ber o f  drainage 

schemes between the 1880s and 1930s (Nicholson, 1943; Trafford, 1970) In 1939 governm ent 

grant-aid was introduced in England and W ales towards the cost o f  undcrdrainage, hill drainage 

and arterial channel drainage (Robinson, 1990). The onset o f  the Second W orld W ar resulted in 

the need for increased agricultural production, which required pasture 'im provem ent for arable 

crops. Figure 6.3 shows the annual area o f  grant-aided field drainage in England and W ales 

between 1940 and 1980. The area drained annually has increased from 1939 and reached a 

peak o f  around 100 000 hectares per year in the 1970s (Stansfield, 1987; Robinson, 1990). 

Drainage statistics are not available after 1980, although Stansfield (1987) has estimated that 

around 50 000 hectares o f  existing drainage deteriorates and become ineffective each year, and 

suggests that the area drained in the late 1980s was less that this figure.
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Figure 6.3 : Area drained annually bv Grant Aided field drainage in England and Wales 1940-19H0. 
(redrawn from Stansfield, 1987).
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6.3.2. Temporal and spatial patterns of agricultural land drainage in the Yorkshire Ouse  

basin

It has been shown at the catchm ent scale that the im pact o f  land drainage on peak flows 

depends upon a num ber o f  site-specific factors (Robinson, 1990). One o f the key elements 

when trying to assess the effects o f  land drainage is the location o f drainage schemes within the 

catchm ent (Newson & Robinson, 1983; Robinson, 1990) as this can effect the tim ing o f  flood 

peaks from different parts o f the catchment. For example, drainage schemes in the lower 

reaches o f  a catchm ent which speed m noff into the m ain channel may reduce the flood peak 

downstream since this may not combine with peak flow from the uplands. Sim ilarly, lowland 

drainage schemes which slow runoff into the arterial channel m ay increase the peak flow. 

These effects m ay be the opposite w'hen considering upland drainage schemes (Newson & 

Robinson, 1983). O ther catchm ent factors such as variations in soils and slope m ay also cause 

a different response to drainage, as will the type o f  drainage scheme implemented, particularly 

when considering the spacing and density o f  drains, and w hether or not secondary treatm ent has 

been carried out. All o f  these factors com bine to m ake extrapolation from the results o f  plot 

and catchm ent studies to other areas very' difficult (Robinson, 1990). This study simply 

attempts to relate the tim ing o f  widespread drainage schem es to the flood record and assess the 

possible links. However, this is again limited by the availability o f  data, which are particularly 

poor prior to the 1940s. Because regional drainage data for the Ouse basin are not generally 

available, the m ajority o f  data considered comes from country-wide reviews o f  land drainage, 

some o f  which gives detailed inform ation on the geographical distribution o f  both 

underdrainage and hill drainage.
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The work o f  Phillips (1972) probably represents the only detailed study into land drainage in 

the Yorkshire area during the nineteenth century. The tim ing and extent o f underdrainage 

expenditure are considered for the Yorkshire estate o f  the Earl o f  Scarborough The estate was 

in the W est Riding o f  Yorkshire between Doncaster and Rotherham, and covered an area o f  

6041 acres in 1896. Although this is a very small area when compared to the Ouse basin, such 

a study can give an indication o f  the general trends o f  lowland underdrainage in the area. 

Phillips suggests that the tim ing and nature o f  undcrdrainage on the estate are broadly 

com parable to those suggested for England and W ales as a whole.

W idespread underdrainage began on the estate around 1840 associated with the availability o f  

cheap m aterials and reliable drainage schemes. The period o f  most intense drainage activity 

and expenditure occurred between 1861 and 1883. The decline in drainage activity after 1883 

was attributed to a declining agricultural economy and the simple fact that the majority o f  land 

would already have been treated by this time.

In his country-wide assessment o f  nineteenth century underdrainage Phillips (1989) presents a 

series o f  maps which show parishes in England that were subject to drainage rent-charge from 

loans taken to fund local underdrainage. Six maps are presented which cover the period 1847 

to 1899. In the Yorkshire area it appears that a large num ber o f  drainage schemes were initiated 

between 1850 and 1859 (figure 6.4), particularly in the piedm ont reaches o f  the River Swale, 

and throughout the Vale o f  York Figure 6.5 shows the extent o f  rentcharges upto 1899 and 

shows a sim ilar geographical distribution in the Ouse basin. There is little or no evidence o f 

the extent or distribution o f  underdrainage schemes from the late nineteenth century until the 

introduction o f  governm ent grant-aid in 1939, although in general this period was one o f 

agricultural depression and relatively little drainage activity. After 1939 statistics on the area o f 

land drained annually are available for England and W ales, although unfortunately not at the 

county or parish level. As previously discussed the area o f  land drainage has increased from

1939 to a peak in the 1970s (figure 6.6). Between 1971 and 1980 Robinson (1990) has mapped 

the geographical distribution o f  underdrainage on agricultural land in England and W ales and 

suggests that around one million hectares have been drained over this decade. Figure 6.6 shows 

that the m ajority o f  the areas that were drained over this period were in the south and east o f  

England. W ith respect to the Yorkshire Ouse basin, the m ajority o f  underdrainage has been 

concentrated in the southern part o f  the Vale o f  York. No statistics are available after 1980 

although it is generally accepted that the level o f  drainage activity has declined since the peak 

o f  the 1970s.
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Figure 6.4 : Parishes subject to draining rentcharge, 1850-1859. (from Phillips, 1989)

Figure 6.5 : Parishes subject to draining rentcharge, 1890-1899. (from Phillips, 1989)
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Figure 6.6 : Percentage o f  agricultural land in England and Wales underdrained in the period 
1971-80 (from Robinson, 1990)

The drainage schemes considered so far have all related to die underdrainage o f  agricultural 

land in Yorkshire. Hill drainage in upland areas in the fonn o f  moorland gripping (see chapter 

3) can also significantly affect peak flows. To recap, m oorland gripping is the cutting o f  open 

ditches into areas o f  moorland in an attem pt to im prove the land for sheep grazing and grouse. 

Robinson (1990) has conducted the only detailed survey o f  the tim ing and extent o f  m oorland 

gripping in the Yorkshire Dales area, where it has been suggested that this practice m ay have 

exacerbated flooding at York and Selby (Oldfield, 1983). Figure 6.7 shows the percentage o f  

land in the Yorkshire Dales which has had m oorland gripping between 1940 and 1985. 

Robinson suggests that the m ost heavily gripped areas (>50%  o f  the land) are in the upper 

reaches o f  the River Nidd, and in Arkengarthdale which is a  tributary o f the River Swale. The 

headwaters o f  all the m ajor northern tributaries in the Ouse basin have been subject to gripping 

to some extent, large areas where over 25%  o f  the land has been gripped occur not only on the
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F igure 6.7: Percentage o f  land in the Yorkshire D ales which had m oorland gripping
1940 -  1985. (after Robinson, (1990)
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Nidd and Swale, but also on the Ure and Wharfe. Robinson (1990) lias also estimated the 

tim ing o f  moorland gripping based on M AFF grand-aid records, which is shown in figure 6.8. 

Although this diagram only gives a crude decadal estim ate o f  the annual rate o f moorland 

gripping it does provide a basis for com parison with variations in the flood record. Large-scale 

gripping was initiated in the Yorkshire Dales in the 1940s as a result o f the introduction o f 

grant-aid and the greater need for livestock production after the Second W orld War. The 

Cuthbertson drainage plough was also introduced around this tim e which improved on existing 

methods o f gripping (Thom pson, 1948). This rate o f  drainage continued into the 1950s which 

were followed by a significant decline in the 1960s Rates o f  drainage increased markedly in 

the 1970s and declined in the 1980s to very low levels at present Robinson (1990) suggests 

this recent reduction in m oorland gripping is due to the fact that MAFF no longer encourages 

hill drainage o f this kind. Indeed recent concerns about the effects o f  gripping on downstream 

flooding and the erosion o f  gripped ditches resulted in a BBC documentary entitled 'All washed 

o u t’ as part o f  the Close Up North series. It is probably a com bination o f  these recent concerns, 

and the realisation that gripping does not significantly improve vegetation that has resulted in 

the cessation o f this practice in recent years.

Figure 6.8 : Rate o f  moorland gripping in the Yorkshire Dales (re-drawn from Robinson, 1990)
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6.4. C H A N N E L IZ A T IO N  IN T H E  Y O R K S H IR E  O U SE BASIN

6.4.1. In tro d u c tio n

River Channelization may be defined as the modification o f  river channels for the purposes o f 

flood control, land drainage, navigation and the reduction and prevention o f  erosion (Brookes 

et al., 1983, p97). M ethods o f channelization and their effects on flooding are considered in 

C hapter 2, however, channelization can include resectioning, realignment, channel diversions, 

em bankm ents, bank protection and general maintenance works (Brookes, 1985). The 

hydrological consequences o f  channel works may be to prevent local flooding but to increase 

flood levels downstream. At the drainage basin scale one o f  the most important consequences 

o f  channel im provem ent works may be to alter the tim ing o f  peak flows in tributary streams, 

which can either increase or decrease the flood peak in the main channel (Brookes, 1985). The 

effects o f  channelization schemes depends on the length o f river involved and channel 

characteristics, such as the degree o f meandering. Channelization does not include channels 

that are com pletely artificial, such as the drains and ditches constructed for farm drainage, nor 

does it include man-made structures within the channel such as weirs.

The main aim o f  this section is to assess the spatial and temporal patterns o f  channel works in 

the Ouse basin which m ay have affected flood levels. The m ajor areas considered are the 

construction o f  flood embankments, m ajor channel im provem ent schemes, flood defences and 

washlands (natural and controlled).

6.4.2. History of river management organisations in the Yorkshire Ouse basin

Although channel modification has been practised for at least five centuries (Johnson, 1954. 

cited in Brookes et al., 1983) it was not until the late 1920s that concerns were voiced as to the 

poor m anagem ent o f  land drainage and flood control in England and Wales. The River Ouse 

(Yorkshire) Catchm ent Board was originally set-up in 1922 following the prom otion o f  Local 

Bills by W est Riding County Council to control land drainage (Sheail, 1997). The River Ouse 

(Yorkshire) Catchm ent Board was ‘reconstituted’ (Sheail, 1997) in 1931 following the Land 

Drainage Act o f  1930 which established 46 Catchm ent Boards in England and W ales, and 

integrated the m anagem ent o f  flood control and land drainage for the first tim e (Brookes et al., 

1983). These authors suggest that the Act o f 1930 resulted in ‘a period o f intense activity 

involving substantial lengths o f  river’ (Brookes et al., 1983, p i 05). In 1951 the River Ouse 

(Yorkshire) Catchment Board was superseded by the Y orkshire Ouse River Board under the 

River Board Act o f  1948, which was itse lf superseded by the W ater Resources Act o f 1963 

which established 29 river authorities in England and W ales. The Yorkshire Ouse and Hull
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River Authority operated between 1965 and 1974 until the inauguration o f the Yorkshire Water 

Authority which was established after the W ater Act o f  1973, and formed part o f  10 regional 

water authorities in England and Wales. More recent river m anagement has been controlled by 

the National Rivers Authority between 1989 and 1996, and the Environment Agency since 

April 1996.

6.4.3. Data sources

Infonnation relating to the tim ing, location and extent o f  channel improvement schemes has 

been extracted from a num ber o f  sources. Schemes undertaken by the various river 

managem ent organisations outlined above arc described in their annual reports. These reports 

contain a wealth o f  infonnation relating to the incidence o f  flooding, climate characteristics for 

the year, as well as com pleted and proposed capital works and maintenance schemes. The 

majority o f  information relating to works com pleted on each m ajor Ouse tributary is far too 

detailed and generalised to be used in this study, usually relating to routine channel 

m aintenance in small areas. Typically, records detail works such as the seasonal mowing o f  

flood banks, m inor flood bank restoration and repairs, vennin  trapping, the removal o f  gravel 

shoals, and the clearance o f impeding vegetation within the channel. However, some reports do 

contain detailed records o f  m ajor im provem ent schemes. Extracting this infonnation would be 

a lengthy and time consum ing task since the reports often detail work completed in small areas 

for that particular year. Fortunately, summaries o f the tim ing o f  all m ajor channel im provem ent 

schemes in the Y orkshire Ouse were obtained from the Yorkshire W ater Authority in 1980 by 

Dr Andrew Brookes for a paper investigating the extent o f  channelization in England and W ales 

(see Brookes et al., 1983). and have been supplied for this project. Infonnation detailing the 

contem porary situation in the catchment, particularly relating to the location and scale o f  flood 

defence schemes, has been extracted from the consultation reports o f  NRA Catchment 

M anagem ent Plans which were completed around 1994.

6.4.4. Major channel improvement schemes and flood defences

6.4.4.1. Early channel embankment schemes and flood defences

The River Foss Flood Alleviation Draft Report (Mott, Hey & Anderson and Sir M M acdonald 

& Partners, 1982) investigated historical records relating to flood em bankm ent schemes both 

upstream and in the City o f  York. No records o f any large-scale schemes were discovered over 

the past 100 years, how ever the report does concede that the building and maintenance o f  flood 

em bankm ents would have been a continuous process over many years. Evidence for flood 

em bankm ent schemes in York itself does exist, several authors (e.g. Farrant, 1953; Radley and
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Simms, 1971) suggest that both the Romans and Saxons built em bankm ents in the city. It was 

not until the 12th and 13th centuries that evidence o f  em bankm ents around York exist, when 

com m issions were made for bank maintenance. This evidence m ust be regarded with some 

caution since there is no indication o f  the original source Farrant (1953) discusses periods 

when em bankm ents were likely to be widely extended to other areas o f  the Ouse catchment. 

For example, there was an increase in demand for agricultural produce during the Napoleonic 

W ars, meaning that low lying agricultural land would have had to be protected from flooding.

M ajor land drainage work was being carried out on the lower River Don as early as the 

seventeenth century. Cornelius Vermuyden drained the low-lying land to the east o f  Doncaster 

between 1626 and 1630. Firth (1997) gives a detailed account o f this work. Prior to any 

artificial alterations the Don split into three channels near Thom e, two o f  which drained into the 

River Trent and one into the Aire. The channels leading to the Trent were blocked and the 

entire flow diverted into the Aire. Unfortunately for Vermuyden this caused flooding o f land 

which had not been affected prior to the diversion. To solve the flood problem an artificial 

flood re lief channel was cut between New Bridge, near Rawcliffe and the Ouse at Goole. After 

a large flood the river began to permanently flow down the flood relief channel (known as the 

Dutch River), and the branch to the Aire silted up. Firth (1997) suggests that between the 

com pletion o f  this work and the late nineteenth century, few channel im provem ent and flood 

defence works were carried out In the late nineteenth century the raising and strengthening o f 

flood banks around Doncaster was initiated by the Dun Drainage Com missioners, and several 

controlled over-spill flood relief channels constructed, such as that at Black Pond which has 

operated during the floods o f  1886, 1892, 1931, 1932 and 1947.

After this tim e the first record o f a catchm ent wide increase in flood em bankm ent construction 

or at least m aintenance o f  embankments, is in 1930 following the Land Drainage Act which 

resulted in the cost for maintenance o f  flood em bankm ents being raised from the com m unity as 

a whole rather than the individual riparian land owners. On the Aire and Calder the river has 

been em banked by ‘successive generations o f  landow ners’ (Pellym ounter & Falconer, 1992, 

p i 87.) and has consequently developed a  com plex system  o f  washlands.

Clearly it is difficult to establish the tim ing and scale o f  past channel em bankm ent schemes. 

Although it is likely that embankments have been in place prior to the start o f  gauged flood 

records. After this time records o f  channel w orks im prove and the tim ing and scale o f 

im provem ent schemes can be assessed.
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6.4.4.2. M a jo r im provem en t schem es in the  O use basin  since 1931

Annual expenditure o f  the River Ouse (Yorkshire) Catchm ent Board between 1932 and 1950 is 

show'n in figure 6.9. This gives us an indication o f the scale o f  investm ent over tim e in three 

areas o f  the B oard’s main activities, channel im provem ent and new works, m aintenance o f  the 

channel and flood banks, and adm inistration costs.

Figure 6.9 : Annual expenditure o f  the River Ouse (Yorkshire) Catchment Board 1932-1950
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Y e a r  ( e n d i n g  3 1s t  March)

Redrawn from Clark and Simpson (1964)

Several years after the establishm ent o f the Catchm ent Board the majority o f  capital was spent 

on channel im provem ent and new works, this investm ent increasing markedly over the whole 

period, and particularly since the Second W orld War. Expenditure on channel m aintenance and 

adm inistration has also increased over this period, although not as rapidly. The location o f 

m ajor im provem ent schemes between 1934 and 1980 is shown in table 6.1. The m ajority o f 

these schemes were not initiated until the 1960s, although exceptions include the River Don 

Im provem ent Scheme which com m enced in 1934.



Table 6.1 : Major river improvement schemes in the Ouse basin 1934-1980
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River/Area Date of Scheme

Sea Cut (Artificial watercourse constmcted 1800-1810) 1955-1975

Upper River Derwent and River Hertford 1950-1978

Rivers Rye, Severn, D ove & Riccal 1948-1979

Costa Beck 1954-1955

Lower River Derwent 1951-1974

River Foss 1970-1980

River Aire 1965-1980

River Calder and tributaries 1965-1980

River Don 1934-1978

River Deam e 1960-1980

River Rother 1960-1975

River W ent 1960-1980

Ea Beck (tributary o f the River Don north o f Doncaster) 1960-1980

(This information was supplied by Dr Andrew Brookes o f the Environment Agency Original source was Mr 

Savage o f the Yorkshire Water Authority - Rivers Division dated 3,d December 1980.)

Table 6.2 : Channelization on the River Don upto 1976 (Work carried out by Yorkshire Water 
Authority and predecessors)

Location Date Details of improvement
G oole to Doncaster 1934-1962 Enlargement and embankment lining

Rawcliffe Bridge (Dutch River) 1964-1965 Protection /  embanking

Sykchouse Landing 1966- Protection /  embanking

Swinton 1966- Embanking /  realignment
Swinton 1967 Protection /  dredging
Goole 1968 Bank protection

Goole - New Bridge 1968 Raising banks /  protection

Upstream o f N ew  Bridge 1968 Stone revetment

Thom e Workshop 1968 Stone revetment / realigning

Long Sandhall 1968 Protection

Swinton 1970 Embankment

Sprotborough Ings 1970 Dredging /  embankment

Rotherham 1971 Embankment /  flood wall

Rotherham 1972 Embankment /  protection

Kilnhurst 1976- Enlargement

(This information was supplied by Dr Andrew Brookes of the Environment Agency. Original source was Mr 
Savage of the Yorkshire Water Authority - Rivers Division dated 3rd December 1980.)



The River Don has been subject to a large num ber o f  channelization schemes which are 

sum m arised in table 6.2 . Many o f  these works have been conducted in the tidal reaches 

between Doncaster and Goole, however this area still needs to be considered since the main 

flood gauging site on the Don is at Doncaster. After the com pletion o f the lower Don 

im provem ent scheme in the early 1960s attention was turned to areas o f  river upstream o f  

Doncaster. Controlled w ashlands were constructed above Doncaster on the Rivers Don, Rother 

and Deame. W ashlands were formalised on the River Rother from the late-1950s at Cranklow, 

Treeton and W oodhouse M ill, and on the Deame from the early-1960s, at Deame Mouth, 

Harlington, North Ings, Bolton upon Deame, W om bwell Ings, Darfield, Houghton and 

Cudworth

In summary, the m ajority o f  im provem ent schemes between the 1930s and 1980 were carried 

out on the southern industrialised and heavily populated rivers o f  the Aire, Calder and Don A 

num ber o f  schemes have also been carried out on both the upper and lower Derwent since the 

1950s. In contrast there is a notable absence o f  m ajor im provem ent schemes on the northern 

Ouse tributaries including the Sw'ale, Ure, Nidd, and W harfe

6 .4 .4 .3 . C ontem porary  flood defences and w ash lan d s

W hilst inform ation relating to past river im provem ent and flood defence schemes is often 

difficult to obtain, an assessm ent o f  contemporary' flood defences is a relatively straight-forward 

task which indicates the cum ulative extent o f  past schemes. The information sum m arised 

below has been extracted from National Rivers Authority Catchm ent M anagem ent Plan 

Consultation Reports, and Firth (1997) for the River Don. An overall summary is given in 

table 6.3, which details the length o f ‘m ain river’ (where the Environm ent Agency ‘can control 

all activities on the protected bank-side land and undertake im provem ent and maintenance 

w orks’ (NRA, Ndb, p60.)) and flood defences, and the people and property protected in house 

equivalents. In this table the num ber o f house equivalents protected per kilom etre o f  main river 

has been calculated, and clearly shows the highest values to be on the southern Ouse basin 

rivers, particularly the Calder, Aire and Don. This is sim ply indicative o f  the fact that these 

rivers flow through highly populated and industrialised areas, whereas the Swale, Ure, Nidd and 

W harfe for example flow through rural farming areas.

This section details the location and type o f  flood defences in each Ouse tributary, which have 

been sub-divided according to Catchment M anagem ent Plan divisions (i.e. Swale, Ure and 

Ouse; N idd and W harfe; Aire; Calder; Don, Deam e and Rother; Derwent ). Maps showing the
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location o f  flood defences and washlands have been redrawn from Catchment Management 

Plans and are shown in Appendix D.

(a) River Derwent - (Source : NRA (Ndb); See map in Appendix D(i))

The m ajority o f  main river on the Derwent is embanked on one or both sides protecting arable 

land in the upper reaches and small town such as Stamford Bridge in the lower reaches. In the 

m iddle reaches o f  the Derwent between Malton and Stamford Bridge there are no m ajor flood 

defences. Below Stamford Bridge extensive flood em bankm ents have created large washland 

areas such as W heldrake Ings, Ellerton Ings and North Duffield Carrs. In the early nineteenth 

century the ‘Sea C ut' was constructed on the upper Derwent which is a totally artificial, man- 

made channel, which diverts flood flows from the Derwent headwaters, via a sluice, directly 

into the North Sea

Other large-scale man-made features on the Derwent include Barmby Tidal Barrage and lock 

situated at the confluence with the Ouse. This barrage is used to reduce peak surge tide levels 

at flood prone towns such as Selby. Under high tide and tidal surge conditions the barrier on 

the Derwent is opened to allow the tide to enter the lower reaches o f  the Derwent.

(b) Rivers Swale, Ure and Ouse - (Source : NRA (Ndc); See map in Appendix D(ii))

Flood em bankm ents on the River Swale extend from Catterick to the confluence with the Ure. 

W ashland areas are the main form o f  flood defence and are used to store flood water when the 

em bankm ents have been over-topped. The main washlands on the Swale are situated at 

Morton, M yton and Ellenthorpe. The Ure is em banked in isolated sections, particularly around 

W ensley, Jervaulx, Nunwick and Newby, with m ajor washlands in the lower reaches around 

Aldborough and Nunwick. Boroughbridge is situated at the confluence o f  the Swale and Ure 

and a m ajor flood defence scheme was completed in 1988. However, the town was flooded in 

1991 when Aldborough Ings bank was over-topped. This bank has subsequently been raised to 

a 100-year return period protection level. Downstream o f  Boroughbridge m ajor washlands are 

located at Linton-on-Ouse and around the City o f  York.

Flood defences in and around York

The second largest flood on record at York occurred in 1947 (peak stage o f  9.96m AOD) and 

caused £100 000 worth o f  damage and affected in excess o f 1000 buildings. Similarly, the 

largest event on record (peak stage o f  10.12m AOD) in 1982 flooded some 70ha o f  land in the 

eastern part o f  the city along the River Foss, Tang Hall Beck and Osbaldwick Beck due to the 

Ouse ‘backing u p ’ the River Foss. Estimates suggest that this single event caused £2 million
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worth o f damage. It was floods such as 1982, 1947 and 1978 which prompted the building o f 

Y ork’s m ajor flood defences such as the Foss barrier and North Street schemes.

T he Foss B ar r ie r

In the past most o f  the widespread flooding in York occurred directly adjacent to the River 

Ouse and along the River Foss and its tributaries. Prior to construction o f  the Foss barrier, the 

River Foss had sufficient capacity to carry storm w ater up to the 100-year flood (Miles, 1987). 

The normal water level o f  the Foss was 7.6m AOD which is 2.6m above that o f  the Ouse, this 

being due to the lock at Castle M ills Bridge. Once the water level exceeded 7.6m AOD the 

w ater backed up the Foss and often caused flooding. It was for this reason that the Foss Barrier 

was built, feasibility studies being carried out in 1982 and the barrier completed in 1988 at a 

total cost o f  £3 .63million. The defence level o f  the barrier is 10.45m AOD.

O th e r defences a ro u n d  Y ork

The City o f  York now has widespread flood defences, however, Arnold (1995) points out that it 

was not until after the floods o f  1978 and 1982 that state funding became available for flood 

am elioration schemes in urban areas. In the city itse lf there are a num ber o f  flood defence 

schemes, for example around Acomb Landing, Leeman Road, North Street and Lower Ebor 

Street where earth em bankm ents and brick or atone clad wall are common. The extensive 

washland area o f  Clifton Ings is around 2km upstream  o f  Lendal Bridge and is controlled via 

flood gates built into the river banks. By flooding this area the water level at York can be 

reduced by up to  150mm, and when full the Ings can hold around 2 m illion cubic metres o f 

water (NRA, Ndc).

(c) R ivers N idd and  W h arfe  - (Source : NRA (1994); See map in Appendix D(iii))

There are no m ajor urban flood defences on the Nidd, however there are extensive 

em bankm ents from around Knaresborough to the confluence with the Ouse creating large 

washland areas. As discussed in section 6.5.1., Gouthwaite reservoir can be drawn-down to 

reduce peak flows and help alleviate downstream flooding. Downstream o f  Ilkley on the River 

W harfe there are extensive natural washlands, particularly around Pool and New ton Kyme. 

M ajor controlled washlands have being formalised around Tadcaster and Ryther.

(d) R iver A ire  - (Source : NRA, (1993); See map in Appendix D(iv))

The upper Aire has been extensively embanked, creating large areas o f  washlands, particularly 

downstream o f  Keighley. Controlled washlands have also been constructed around Skipton, 

Cononley and Kildwick. Downstream o f  Leeds a num ber o f  controlled washlands have been
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constructed over the past thirty years, including, St. Aidans, Fairbum Ings. Knottinglev Ings, 

Eggborough Ings and Snaith Ings.

(e) R iver C a ld er - (Source : NRA (Nda); See map in Appendix D(v))

On the Calder both controlled w ashlands and m ajor flood defence works have been 

im plemented to address the problem o f  flooding, which is ‘mainly a legacy o f the industrial 

revolution’ (NRA, Nda, p53.). Due to the steep valley sides there are relatively few washland 

areas on the Calder upstream o f  the confluence with the River Colne near Huddersfield Below 

Huddersfield controlled washlands have been constructed in the areas around W akefield, 

Altofts, Methley and Castleford A large num ber o f  channel improvement and flood defence 

schemes have also been implemented on the Calder around. Todm orden. M ytholmroyd, 

Sowerby Bridge, Copley, Elland, Brighouse, Dewsbury, Horbury, W akefield and Methley.

In recent years a great deal o f  capital has been invested in channel im provem ent and flood 

defence, schemes include the Dewsbury area between 1988 and 1998 with an estim ated cost o f  

£16 m illion, on the River Spen 1986 to 1997 (estim ated cost o f £3.7 m illion), and in the Fenay 

Beck area (cost o f  £4.6 m illion) (see W inders (1991)).

(f) R iver Don - (Source : Firth (1996)).

Since the m id-1980s the ch ief flood defence strategy on the River Don has been to improve the 

use o f  washland areas for flood control. It has been estimated that this improved operating 

strategy has reduced the risk o f  flooding at Doncaster from a  1 in 40 year flood to a 1 in 150 

year flood (Firth, 1996) (see figure 6.10). On the upper Don flood protection works have been 

concentrated on tributary streams such as the R iver Sheaf (see Young and Cross, 1992). 

Similarly, since the late-1970s and early-1980s com prehensive im provem ent schemes have 

been carried out on the Rother and Deame.

6.5. R E S E R V O IR S  IN T H E  Y O R K S H IR E  O U SE BASIN

The docum ented effects o f  reservoirs on flood peaks have been discussed in Chapter 2 and 

include the attenuation o f  flood peaks due to storage o f  a  portion o f  the flood flow and the de- 

synchronisation o f  tributary and mainstream peaks (Petts, 1984; Higgs & Petts, 1988; Petts & 

Lewin, 1979). The downstream im pact o f  reservoirs depends on a num ber o f  factors, namely 

location o f  the reservoirs within the catchment, the frequency and order o f  the tributary streams 

which are affected, the percentage area o f  the catchm ent that is impounded and the operational 

rules o f  the individual reservoirs. M ost studies have investigated the downstream  impact o f 

individual reservoirs (e.g. Gregory & Park, 1974; H iggs, 1987a). W hen attem pting to assess 

the effects o f  reservoirs on flood flows in the Ouse basin the situation is far more complex
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since there are a large num ber o f  reservoirs which have been constmcted in different areas o f  

various sub-catchments and at different times. In some cases there are a series o f  reservoirs on 

a particular tributary when other areas remain relatively unaffected Due to considerations such 

as this, and the large spatial scale being considered it is only possible to suggest the probable 

effects o f  reservoirs on downstream flood peaks based on parameters such as the total 

percentage o f  a catchm ent that is impounded. However, it is possible in some cases to examine 

flood data before and after a m ajor construction project upstream o f  a gauging station and 

assess any attenuation effects This is also not possible, for example the largest reservoir by 

catchm ent area in the Ouse basin is Gouthwaite on the River Nidd which drains an area o f 

50.87 km 2 The gauging station used for analysis in Chapter 4 was the Nidd at Hunsingore 

with a catchm ent area o f  484 3 km 2. This reservoir alone impounds 10.5% o f the total 

catchm ent area upstream o f  the gauging station However, this reservoir was constructed in 

1901 whereas flood data are not available on the Nidd until 1936. Occasionally the 

construction o f  a large reservoir has occurred in a period when flood records exist, for example, 

Grimwith reservoir in the R iver W harfe catchm ent was built in 1984 and drains 3.78%  o f  the 

catchm ent upstream o f  the gauging station at Flint Mill. Even so this is still complicated by the 

presence o f  other reservoirs in the catchment. Taking these limitations into consideration the 

main aims o f  this section arc to assess (1) the location o f  reservoirs within Ouse basin sub

catchments. (2) the percentage area o f  a sub-catchm ent which is impounded by reservoirs. (3) 

the tim ing o f  reservoir construction. (4) any possible or discernible affects on flood records in 

the Ouse basin.

Data pertaining to reservoir location, date o f  construction, useable capacity and catchm ent area 

were obtained from Yorkshire W ater Services Ltd. The data were sub-divided according to 

location within one o f  the m ajor Ouse tributaries (Swale, Ure, Nidd. Ouse, W harfe Aire, 

Calder. Don) to enable the area above each gauging station used for analysis in Chapter 4 to be 

calculated. Two o f  the gauging sites have not been considered, the Calder at Broadreach, since 

a reliable catchm ent has not been established, and the Derwent at Buttercrambe, since there arc 

no significant reservoirs in the Derwent catchment.

6.5.1. Reservoir location and general information

The location o f  reservoirs in Ouse basin sub-catchm ents are shown in appendix E, these 

diagrams are based on National Rivers Authority Catchm ent M anagement Plan maps and 

therefore grouped according the their scheme. Table 6.4 sum m arises inform ation on reservoirs 

within each individual catchment.
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The River Swale (appendix E(i)) is natural to within 10% o f  the 95 percentile flow (IH gauging 

station summary sheets) and is relatively unaffected by reservoirs The catchment contains only 

three small reservoirs in the Cod Beck area.

The River Ure also has three im pounding reservoirs (appendix E(i)), although only o f a 

moderate size they are larger than those on the Swale, with the largest being Leighton reservoir
3 3 2with a useable capacity (UC) o f 4955 10 m and a  catchm ent area (CA) o f 22.88km .

Some o f  the largest reservoirs in the Ouse basin are located in Nidderdale (appendix E(ii)). 

Two o f these large reservoirs, Scar House (UC = 9414 103m \  CA = 30.10km 2) and Angram 

(UC = 4736 103m \  CA = 14.65km2) were constructed to supply water to the Bradford area. 

Further downstream Gouthwaite reservoir was built around the turn o f  the century to maintain 

flows for mill owners and other industrial uses. Com pensation water releases from Gouthwaite 

are m anaged for a num ber o f  activities ranging from m aintaining a water supply for fishing to 

the reduction o f  peak flows by providing flood storage capacity during winter months (NRA, 

1994).

In the W harfe catchm ent (appendix E(ii)) there are no im pounding reservoirs on the Wharfe 

itself. Upstream o f  Bolton Abbey, Grimwith reservoir on the River Dibb is used for 

compensation flows and upper and lower Barden reservoirs on Barden Back are utilised for 

public water supply to Leeds and Bradford. In the W ashburn Valley which joins the Wharfe 

downstream o f  Otley, there are four fairly large reservoirs also used for water supply, 

Thruscross, Fewston, Swinsty and Lindlev W ood, all o f  which have a useable capacity 

exceeding 2900 1 0 \n \

There are eighteen im pounding reservoirs in the Aire catchm ent (appendix E(iii)) mainly used 

for public water supply. These fairly small im poundm ent schemes are concentrated on the 

River W orth and Harden Back, and to the north-west o f  Bradford. None o f these reservoirs 

have a catchm ent area exceeding 9km 2, and are not sufficient to m eet the supply demands o f  the 

m ajor industrial areas and conurbations downstream, therefore w ater is imported from the Ure, 

Nidd, W harfe, Ouse and Derwent catchments both from reservoirs and river intakes.

The Calder catchment (appendix E(iv)) is characterised by a  large num ber o f  small impounding 

reservoirs for water supply. M ost are concentrated on the right-bank tributaries o f  the Calder 

and include the areas around Cragg Brook, the River Rybum , Black Brook, the R iver Colne and 

the River Holme. Left-bank tributaries which are impounded include Hebden W ater and
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Luddenden Brook. A small num ber o f  reservoirs are also located further downstream on the 

Owler Beck to the south o f W akefield In the Calder catchment only two o f  the thirty-four 

listed by Yorkshire W ater have a catchm ent area greater than 1 Okm' these being Baitings and 

Scammonden

In the Don catchment (appendix E(v)) the upper reaches are heavily reservoired for public water 

supply. The majority are concentrated upstream o f  Sheffield on the River Don, the Little Don, 

Ewden Beck, the River Loxley and River Rivelin Eight out o f  the twenty-two reservoirs in the 

area have a catchment exceeding 10km , the largest o f  which by area is Broomhead reservoir 

(UC = 4937 10V ,  CA = 21.96 km 2) built in 1934.

6.5.2. P ercen tage area  of ca tch m en t affected by reservo irs

The next stage in this analysis is to assess the percentage area o f individual catchments that arc 

affected by impounding reservoirs upstream o f  the gauging stations where flood records have 

been analysed. Gregory and Park (1974) found that Clatworthy reservoir (CA = 18.2 km ) on 

the River Tone had no significant affect on flows when less than 10% o f  the catchment area was 

reservoired. Although, the situation is more com plex in the Ouse basin due to consecutive 

reservoirs in various tributaries and differences in the catchm ent areas o f reservoirs, this figure 

has been adopted as an indicator to assess any possible effects o f  reservoirs on flood flows. 

Therefore taking the somewhat arbitrary value o f  10% as being significant it would be expected 

that the affects o f  reservoirs would be greatest on the Nidd in term s o f  flood peak attenuation, 

since 21.68%  o f  the catchm ent above the gauging station at Hunsingore has been impounded 

(see figure 6.11). Indeed, in Chapter 3 it has been shown that the flood peak o f  January 1982 

was reduced on the Nidd due to reservoir storage. Noticeable affects may also be expected on 

the W harfe, Don and Aire and Calder at Castleford, although the extent o f  this is unclear. 

W hereas it would be expected that the effects o f  floods would be relatively negligible on the 

Swale, Ure, Ouse and Aire (upstream o f  confluence with Calder). However, these simple 

conclusions are com plicated by the fact that construction o f reservoirs has varied through time, 

which will be considered in the next section.
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Figure 6.11 : Total percentage area o f  catchment impounded upstream o f  gauging stations (dashed 
line represents 10% catchment area impounded)
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6.5.3. The timing of reservoir construction

Petts (1984) suggests that the m ajor period o f reservoir construction in the UK did not begin 

until the early 1900s, which coincided with advances in concrete and earth moving technology 

However in western Europe high rates o f  dam construction were experienced between 1840 and 

1880, and in particular between 1900 and 1940, with the m ajority o f  im poundm ent schemes 

prior to the 1950s being relatively small.

Figure 6.12 shows the cum ulative percentage area o f  catchm ent upstream o f  each gauging site 

that was im pounded by reservoirs over time. As discussed above, the catchm ents which are 

m ost likely to have been significantly affected are the Nidd, W harfe, Don and the Aire and 

Calder catchm ents when combined. On the River Nidd all the reservoirs were built between the 

late nineteenth century and 1936, the largest o f  these being Scar House (1936), Gouthwaite 

(1901) and Angram  (1913). Six relatively small reservoirs draining a total area o f  77.79km 

were constructed in the nineteenth century on the W harfe, and three in the twentieth century 

draining an area o f  61.08km 2. Two o f  the largest schemes were Thruscross reservoir in the 

W ashburn Valley built in 1966 and Grimwith on the River Dibb built in 1984. The two 

remaining catchm ents where reservoirs may have a  significant effect are the Aire and Calder 

combined, and the River Don. These catchm ents show a  much different pattern in the tim ing o f 

reservoir construction. In the Aire and Calder catchm ents the reservoirs built in the late 

nineteenth century and early tw entieth century were com paratively small when considering
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Figure 6.12 : Cumulative percentage area o f  catchment impounded upstream o f  gauging stations
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those on the Nidd for example. Between 1838 and 1907 forty-two impounding reservoirs were 

constructed in the Aire and Calder catchments, giving a total UC o f  28301 103m 3 and draining a 

total area o f  143.69km2. The largest reservoir constructed in this period was at Blackmoorfoot 

in 1876 (UC = 2968 103m 3; CA = 8.12km 2). Slightly larger reservoirs were built after this 

tim e, for example between 1908 and 1971 ten reservoirs were built with a combined UC o f 

24432 103m 3, draining an area o f  60.50 km 2 Clearly, the total UC o f  these reservoirs over the 

two periods is very similar, yet far fewer were constructed in the latter period reflecting the 

change to building larger reservoirs A sim ilar trend in construction is evident on the River 

Don. Between 1938 and 1907 seventeen reservoirs were built with a total UC o f  28480 103m3 

and a drainage area o f  134.78 km2. Some o f  these reservoirs were relatively large, such as 

Damflask built in 1896 (UC = 5106 lO V ;  CA = 15.17km2) and Langsett built in 1905 (UC = 

5492 103m 3; CA = 21.06 km 2). Only five reservoirs were built between 1928 and 1975 with a 

total UC o f  16245 103m 3 draining an area o f  40.84 km 2.

6.6. SU M M A RY  O F  LA N D -U SE H IS T O R Y  AND L IN K S T O  FL O O D  R E C O R D S

This section aims to sum m arise three main aspects o f  land-use change. First, the possible 

effects o f  individual land-use changes on flooding, second, the spatial and temporal patterns o f  

land-use change in the Ouse basin, and third, any relationships with observed variations in 

flood records. However, disentangling the relative im portance o f  individual land-use changes 

in such a large basin is com plicated by possible ‘averaging effects’ o f different land-uses which 

m ay mask variations caused by individual treatm ents (Higgs, 1987a). Given these difficulties, 

and the further com plications introduced by clim atic variation (see Chapter 5), the relationships 

suggested here are sim ply based on examination o f  the tim ing o f  large-scale changes in land- 

use, and any associated variation in flood records which cannot be fully explained by a climatic 

hypothesis (for example, variations in flood records caused purely by climatic factors would be 

expected to result in a  synchronous response throughout the basin, whereas it is unlikely that 

land-use changes would cause such a  response since treatments are often localised.)

A g ricu ltu ra l land -use  change

Different agronomic practices have been shown to affect n ino ff from agricultural land. 

Experiments suggest that rates o f  runoff are highest from heavily grazed pasture, and also from 

bare ground (e.g. recently ploughed), although ploughing may reduce runoff when compared to 

unploughed land by providing a rougher soil surface. The lowest rates o f  runoff were 

experienced on ungrazed land, such as tem porary grassland and cereals (Heathwaite et al., 

1990). Intensification o f  farm ing has also been cited as a cause o f  increase runoff and erosion 

on farmland, and includes practices such as the removal o f  field boundaries to enlarge fields,
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and more intensive use o f  large farm machinery which can compact soils (Evans, 1990). 

Furthermore, a shift to the growing o f  'w inter cereals’ has also been cited as the cause o f 

increased runoff and erosion in areas such as the South Downs (Boardman. 1990; 1995), since 

the soil surface is often left bare and unprotected in wet w inter months.

Temporal patterns o f agricultural land-use in the Ouse basin reflect those experienced generally 

in England and Wales. There was a period o f  agricultural prosperity between the 1880s and the 

mid-1870s, known as the ‘high farming era’ This was a time o f  agricultural intensification, 

increasing arable area, and high rates o f  field underdrainage There followed a period o f 

depression, from the 1870s until W orld W ar 1 during which tim e many arable areas reverted 

back to grassland and pasture. During W orld W ar I there was a short period o f  increased food 

production and hence arable area. The inter-w ar period was again one o f  depression when 

m any arable areas reverted back to grassland. W ith the onset o f  W orld W ar II came the need 

for increased home food production, and arable area increased dramatically, to a level which 

has broadly been sustained to the present day.

L an d  d ra in ag e

The effects o f  land drainage schemes on peak flows is com plex and has been shown to vary 

with soil type, clim ate and the type, extent and location o f schemes w'ithin a catchment. Field- 

scale response to  land drainage can be different from catchm ent-scale response, since at the 

catchment-scale, im provem ents to outfall and arterial channels m ust be considered, and the 

associated effect on flood peak synchronisation. In general, peak flows are higher from open 

ditches (e.g. m oorland gripping) than from sub-surface pipe system s (underdrainage) with 

secondary treatments (e.g. m oling and subsoiling), and peaks from the latter are higher than 

from sub-surface pipe system s alone. However, this does not necessarily imply that peak flows 

into arterial channels are increased by all types o f  drainage scheme. For example, at the field- 

scale, Robinson (1990) found that at wetter sites (i.e. soils with a  high clay content and/or 

receive high rainfall) underdrainage reduces peak flows, whereas at drier sites (i.e. more 

permeable soils and/or receive low rainfall) drainage increases peak flows.

In the Ouse basin there was a period o f intense underdrainage between 1840 and 1869 (Phillips, 

1972; 1989) corresponding with the era o f  high fanning. M ost schemes at this tim e were 

concentrated in the piedm ont reaches o f  northern rivers and in the Vale o f  York. The 

agricultural depression that followed (1880s-1930s) resulted in a marked reduction in drainage 

activity. In tandem with agricultural land-use change, a m ajor increase in drainage activity was 

initiated around the tim e o f  the onset o f  W orld W ar II. G overnm ent grant-aid schemes were
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introduced around 1939 towards the cost o f  drainage system s, and resulted in a large increase in 

field underdrainage. Also around this tim e there was a m ajor increase in hill drainage or 

‘m oorland gripping’ which will have undoubtedly increased rates o f  runoff in upland areas 

(although the extent and scale o f  downstream impacts are less clear). Much o f  this drainage 

activity was concentrated in the headwaters o f  the northern rivers, most notably in Nidderdale 

and Arkengarthdale (tributary o f  the Swale). The practice o f  gripping was ended in the 1980s, 

although by this tim e a large area o f  the Dales had been gripped, and as a result o f  severe 

erosion many o f the drains have enlarged considerably, resulting in larger and more efficient 

runoff channels.

R iver channelization

River channelization schemes tend to reduce local flood levels, but often cause increased flood 

levels downstream (e.g. Emerson, 1971) by reducing floodplain storage capacity, and increasing 

flow velocities. As with other forms o f land-use change, channelization may affect the 

synchronisation o f  flood peaks, though the extent o f  this is uncertain since the effects o f 

individual schemes are only likely to persist for a few miles downstream (Heneage, 1951). 

Even so, it m ust not be assum ed that channelization always results in increased downstream 

flooding (Keller, 1980).

There has been a long history o f em banking in the Ouse basin, dating back to Roman times in 

the City o f  York. On the tidal section o f  the River Don there has been much historical drainage 

and channel alteration, principally by Vermuyden in the 1620s. Around Doncaster evidence 

from the late nineteenth century suggests that floodbanks were strengthened and raised, and a 

flood relief over-spill channel constructed (Firth, 1996). In general however, it is alm ost 

im possible to assess the tim e o f em bankm ent construction in much o f  the Ouse basin since it is 

likely that em banking has been carried out by ‘successive generations o f  landowners’ 

(Pellym ounter and Falconer, 1992, p i 87) over many centuries. It was not until the 1930s, after 

the Land Drainage Act o f  1930 and the establishm ent o f the R iver Ouse (Yorkshire) Catchm ent 

Board, that intense activity began. The m ajority o f  channel im provem ent and flood defence 

schemes were initiated in the 1960s, and concentrated in the southern industrialised, and 

heavily populated areas (i.e. the Aire, Calder and Don catchments).
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Reservoirs

Reservoirs can affect the magnitude and tim ing o f  flood events; flood magnitude may be 

reduced due to increased storage capacity provided by the reservoir, and flood peaks may be 

‘lagged’, resulting in de-synchronisation o f  mainstream and tributary peaks. The effects of 

reservoirs dim inish downstream , studies have suggested that the effects are evident until the 

im pounded area is less than 10% o f the total catchm ent area (Gregory' and Park, 1974), and on 

the River Severn, the effect o f  C lywedog reservoir were discernible for around 40km 

downstream (Higgs, 1987a; Higgs and Petts, 1988). Reservoirs are m ost effective at reducing 

peak flows o f small and moderate magnitude flood events, although the impact also depends on 

reservoir location, the proportion o f the catchm ent impounded, and the operational rules o f the 

reservoir.

In the Ouse basin a large num ber o f  reservoirs have been constructed in different sub

catchm ents and at different times, making the task o f isolating the effects o f  individual 

reservoirs alm ost im possible. Only general trends may be identified in the tim ing, size and 

location o f  construction. Reservoirs on the Swale and Ure are few and small, and would not 

have any significant im pact on flood flows at the gauging stations considered here. W hereas, 

on the Nidd there are three large reservoirs, including Gouthwaite which is used to reduce 

downstream peak flows by the Environm ent Agency. The total area impounded above 

Hunsingore on the Nidd is 21.7%, so we m ay expect some degree o f  peak flow reduction, 

although since all the reservoirs were constructed prior to flow gauging there is no way to 

investigate this. On the W harfe there are four large reservoirs in the W ashburn Valley, 

suggesting that lower peak flows may be expected from this part o f  the catchment. Two o f  the 

largest reservoirs in the W harfe catchment were built during the gauging period, Tlm iscross in 

1966 and Grim with in 1984, which together impound 11.8% o f  the catchm ent area above the 

gauging station at Flint Mill. In the southern rivers there is a change in the character o f 

im poundm ent schemes, reservoirs tend to be sm aller and more numerous.

Land use change and links to flood records

To examine any relationships between changes in agricultural patterns and flooding the most 

suitable record to use is the Ouse at York, since this is a  long, continuous record, and has a 

predominantly rural catchm ent area. One o f  the m ost striking trends in the record occurs 

around 1944 when there is a dramatic and sustained increase in flood frequency (the m ajority o f 

which are o f  m inor and m oderate m agnitude, i.e. <Qu>)- This period coincides with a  series o f 

rapid land-use changes. First there is a  marked increase in the area o f  arable land, and a decline 

in grassland area associated with the need for increased hom e food production in W orld
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W ar II. There is also a marked rise in underdrainage schemes associated with this ‘plough-up’ 

campaign, and m oorland gripping was widely practised in the Yorkshire Dales for the first 

time. Upland drainage alm ost certainly increased the rate o f runoff from the uplands, although 

the effects o f  lowland drainage and increased arable area are more difficult to establish. We can 

say with some confidence however, that the com bination o f  these changes significantly altered 

flood regime in the Ouse basin around this time.

A second relationship between changes in agricultural practices and flooding may also be 

evident. The m ost recent period, from the late-1970s onwards, has experienced the highest 

flood frequency and m agnitude on record at several sites. Although clim atic relationships have 

been suggested (Chapter 5), the increase in area under 'w inter cereals' (see Evans and Cook, 

1986) has also dramatically increase over this period, and has been linked to increases severe 

flooding in other areas o f  England (Boardman. 1990; 1995). This most recent period has also 

seen marked increase in grazing pressure, particularly in the Yorkshire Dales (Sansom, 1996). 

Sheep num bers have increased by nearly 40%  since 1982, and Sansom has suggested that this 

m ay have contributed to  recent severe flooding in W ensleydale, by prom oting more rapid 

runoff through loss o f  vegetation cover and poaching o f  the soil. Furthermore, the cum ulative 

affect o f  alm ost 50-years m oorland gripping m ust be considered, since this would prom ote 

more rapid runoff from the upland.

In summary, it appears that a com bination o f  increased upland and lowland drainage, and the 

conversion o f  grassland to arable land contributed to an increase in flood frequency on the Ouse 

at York. This is m ost probably due to increased rates o f  runoff from the uplands synchronising 

with downstream peaks. There also appear to be a link between increasing areas o f  winter 

wheat, increased grazing pressures and the cum ulative effects o f  land drainage, and a  marked 

increase in flood frequency and m agnitude since the late-1970s.

Flood m agnitude records for the rivers Aire, Calder and Don show different trends to those on 

northern rivers (unfortunately there are no long, continuous flood frequency records for the 

Aire, Calder or Don). Both the Calder at Broadreach, and the Aire and Calder at Castleford 

show highest flood magnitudes in the late nineteenth century (although these records only 

extent to 1968), after which tim e magnitude declined m arkedly, particularly on the Calder. 

This is m ost likely a consequence o f channel im provem ent schemes initiated in the 1930s, 

which would reduce local flood levels, particularly in the built-up industrialised and heavily 

populated sections o f  river. A sim ilar effect m ay also be evident on the Don, where a  series o f 

large floods between 1920 and 1948 prompted extensive flood defence schemes around the
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Doncaster area, again reducing local flood levels. This is in contrast to the northern rivers 

where channelization schemes are not widespread.

Finally, considering the effects o f  reservoirs on flood flows is a difficult task given the 

variations in scale, tim e o f  construction and catchm ent areas o f  individual schemes. 

Catchm ents may have large numbers o f reservoirs and isolating the effects o f  individual 

schemes is almost im possible However, a qualitative assessm ent suggests that the effects o f 

reservoir may be discernible on the Nidd. Wharfe, and to a lesser extent on the southern rivers. 

On the Wharfe for example, there is some evidence o f declining flood levels since the mid- 

1960s, not evident in other records This may relate to the construction o f Thruscross (1966) 

and Grim with (1984) reservoirs in the catchment.
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C h a p t e r  7 

O v e r v i e w  :

River response to recent environmental change in the Yorkshire Ouse basin

There are two main aims o f  this summary chapter. First, to integrate records o f  flooding, 

climate and land-use change derived from the analyses in chapters, 4, 5, and 6, and suggest the 

principal factors that have influenced variations in flood frequency and m agnitude over the past 

900-years or so. Second, to examine the role o f  hem ispheric-scale atm ospheric circulation 

patterns in flood generation.

7.1 H YDROLOGICAL, CLIMATIC AND LAND-USE CHANGES IN THE OUSE  

BASIN 1263-1996

The following chronology integrates temporal and spatial variations in land-use, clim ate and 

flood hydrology since the eleventh century in the Yorkshire Ouse basin. The tim e period has 

been sub-divided according to hydrological characteristics (see table 7.1), based on an 

assessm ent o f  the tim ing o f  m ajor changes in flood frequency and magnitude.

Gauged flood records allow for m ore detailed analysis than documentary records, and a higher 

degree o f  sub-division can be established. Consequently the chronology presented here is split 

into tw o main periods, one pertaining to the docum entary record (1200-1899), and the other to 

the gauged record (1863-1996), although there is some degree o f  overlap (i.e. the period 1863- 

1899). Summary diagrams have been produced for both periods and show the principal 

variations in flood frequency and magnitude, clim ate and land-use where data are available.
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Table 7.1 : Hydrological characteristics o f  sub-periods

Sub-period Type of flood data Hydrological Characteristics

1263-1360 D ocum entary Series o f  large flood events recorded

1361-1549 D ocum entary No docum ented floods

1550-1680 D ocum entary High frequency o f  h igh m agnitude floods

1681-1763 D ocum entary Localised sum m er flooding in upland and piedm ont 

regions

1764-1799 D ocum entary High flood frequency and m agnitude

1800-1849 D ocum entary M oderate flood frequency and m agnitude

1850-1899 D ocum entary and G auged H igh flood frequency and m agnitude

1900-1915 G auged V eiy  low flood frequency and m agnitude

1916-1943 G auged V ariation betw een sites. G enerally increasing 

m agnitude and very  low flood frequency

1944-1968 G auged D ram atic and sustained increase in flood frequency. 

V ariable flood m agnitude

1969-1977 G auged Very' low flood frequency and m agnitude

1978-1996 G auged Very high flood frequency and m agnitude

Figure 7.1 sum m arises the docum entary period (1200-1899), and the data presented are based

on the following information.

(1) C lim ate

(i) Temperature : The tem perature graph presented shows 50-year averages o f  annual and 

w inter tem peratures in central England. Between 1200 and 1658 data have been derived 

from diarists and other documentary sources by Lamb (1977). Between 1659 and 1900 the 

hom ogenised Central England Temperature record (CET) (see Jones and Hulme, 1997; 

Parker et al., 1992) is presented as a  50-year moving average (obtained from the Clim atic 

Research Unit at the University o f  East Anglia).

(ii) R ain fa ll: Rainfall series show 50-year averages expressed as a percentage o f  the 1915-1950 

average, o f  annual and September-June rainfall for England and Wales. Data between 1200 

and 1768 are derived from Lamb (1977) from various documentary sources. Data between 

1769 and 1900 are derived from the England and W ales Precipitation record (EWP) (see 

Gregory et al., 1991; Jones et al., 1997; W igley and Jones, 1987; W igley et al., 1984), and



expressed as a 50-year moving average (EWP obtained from the Climatic Research Unit at 

the University o f  East Anglia).

(iii) Bog-surface wetness High resolution proxy clim ate change evidence from Bolton Fell 

Moss in Cum bria was obtained from Barber et al. (1994). High DCA axis I scores represent 

dry periods, w hilst low axis 1 scores represent wetter periods.

(2) Floods

(i) Decadal flood  frequency : Decadal flood frequency in the Ouse basin has been derived by 

am algam ating the documentary flood records from all m ajor lowland tributaries (see 

appendix B). Localised upland sum m er floods have been excluded from this series in order 

to show only extensive lowland flood events.

(ii) F lood magnitude . The series shown plots maximum flood estimates from the documentary 

record at York (see section 4.3.3.1. for detailed description).

Chapter 6 showed that records o f  land-use change are very poor until the mid-nineteenth 

century, and therefore no data can be presented for the documentary period. Below is a 

chronology detailing the m ajor secular trends in flooding and climate change for the 

docum entary period based on the above data and findings in chapters 4 and 5.
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1263-1360

Documentary evidence suggests that there were a series o f  large floods during this period. 

These events may have been relatively localised since each flood is recorded at only one site. 

However, it is more likely that this reflects the paucity o f documentary evidence in this early 

period. These floods coincide with a marked clim atic transition, with clim atic deterioration 

evident from around 1200 AD (Lamb, 1977). Temperatures were declining from the Medieval 

Optimum, reflected in a high winter severity index (Ogilvie and Farmer, 1997). Though 

rainfall totals also appeared to be declining in this period, some notable precipitation extremes 

were recorded. There was a run o f  extrem ely wet summers and m ostly wet autum ns and 

springs between 1313 and 1317, with the 1360s being a  particularly wet decade (Lamb, 1977, 

1982). The raised m ire sequence at Bolton Fell Moss indicated a shift to increased surface 

wetness in this period (Barber et al., 1994), probably as a consequence o f  declining 

tem peratures and reduced rates o f  evapotranspiration. An increase in storm iness also occurred 

in this period resulting in severe flooding along North Sea coasts as a result o f  rising sea level 

(Lamb. 1977, 1982). In summary, this period was characterised by increased flooding 

associated with marked clim atic deterioration and increased surface wetness.

1361-1549

N otwithstanding the paucity o f  documentary evidence prior to the eighteenth century (Archer, 

1987; Rumsby, 1991), no floods were recorded in this period, suggesting a reduced frequency 

o f  severe noteworthy floods. This coincided with a marked decline in the w inter severity index 

(Ogilvie and Farmer, 1997) and a shift to generally m ilder conditions, though temperatures 

declined in the early part o f  this period (Lamb, 1982). There was also evidence o f  a short-lived 

warm phase in the early sixteenth century, attributed to an increased frequency o f  anticyclonic 

weather system s (Lamb, 1982). Proxy climate evidence at Bolton Fell Moss suggests this warm 

phase m ay have occurred slightly earlier. In general, however, surface wetness declined from 

the beginning o f  this period until the end o f  the sixteenth century when there was a dramatic 

increase in surface wetness.

1550-1680

This period was characterised by an increased frequency o f  very high m agnitude floods. Events 

such as those recorded in March 1615 and Septem ber 1673 were basin-wide floods which 

caused widespread damage and disruption. Evidence from the Ouse at York suggests that the 

magnitude o f  these and other floods in 1564, 1625 and 1636 was extrem ely high, some with no 

m odem  or historical equivalent. Many o f  these floods were generated by snowmelt, or
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rain-on-snow events, and coincide with the m ajor Europe-wide cooling associated with the 

Little Ice Age. Temperatures were extremely low. though marked seasonal variations were 

evident. 50-year average rainfall totals suggest that rainfall was also low in this period, 

although a shift towards increased surface wetness in evident, particularly after 1600. Large- 

scale upper atm ospheric circulations have been inferred from proxy temperature and 

precipitation records (Lamb, 1977; 1982) and suggest that a reduced equator-pole temperature 

gradient caused northern Hemisphere climate zones to be shifted southwards. This caused more 

frequent blocking and m eridionality in m iddle latitudes, and a southward displacement o f 

prevailing depression tracks, often resulting in snowy cold weather in the British Isles (Lamb, 

1977). It has been suggested by Rumsby and Macklin (1996) that the Little Ice Age was a 

period o f low rates o f  fluvial activity due to reduced flood frequency and m agnitude, although it 

appears that in the Ouse basin, wet antecedent conditions, associated with cool temperatures 

and low rates o f evapotranspiration com bined with more frequent snowfall, m ay have resulted 

in an increase in the frequency o f  high magnitude floods.

1681-1763

The late-seventeenth to m id-eighteenth century was characterised by an increased frequency in 

the incidence o f  localised sum m er flooding, and a reduced incidence in widespread lowland 

flooding. The m ajority o f  floods in this period were caused by thunderstorm s and cloudbursts 

between May and August. Temperature and rainfall totals were increasing from the lows o f  the 

Little Ice Age until around 1725 when both slightly declined. Indeed, the early part o f  the 

eighteenth century is generally regarded as a w anner phase o f  the Little Ice Age with above 

average tem peratures in summer. These elevated sum m er tem peratures may have caused an 

increase in high intensity, short-duration convective sum m er stonns and associated flooding.

1764-1799

The num ber o f  floods recorded in docum entary sources increased markedly in this period, 

probably as a  consequence o f  increasing population and improved and more frequent 

chronicling o f  events. In general this period was characterised by high flood frequency and 

m agnitude, particularly in the 1760s. There followed a relative decline in flood frequency in 

the 1770s and 1780s and an increase in the 1790s. A run o f  severe winters occurred in the 

1760s and marked the onset o f  a deterioration in clim ate w hich lasted until the end o f the 

century (Lamb, 1977). Extremes o f  precipitation were also com m on in this period, with both 

wet and dry events (W igley et al., 1984), and surface wetness was very low. In terms o f 

atm ospheric circulations, Kington (1976) suggests that meridional circulation patterns were
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particularly frequent and strong in the late-eighteenth century over the British Isles, coinciding 

with a 22%  reduction in the strength o f  zonal circulations occurring in mid-winter.

1800-1849

This period was characterised by moderate flood frequencies, and magnitude records at York 

show' that only one large m agnitude event occurred (1831). Annual temperatures remained 

relatively stable, w hilst w inter tem peratures increased. Rainfall records indicate that totals were 

increasing throughout this period, and the raised m ire sequence at Bolton Fell M oss suggests 

that surface wetness was high. No m ajor land-use changes are recorded in this period.

1850-1899

Documentary and gauged records (see figures 7.2 and 7.3) suggest that this was a period o f high 

flood frequency, m ost notably in the 1870s and early-1880s. Flood magnitudes were also high, 

particularly on the Don at Doncaster and the Calder at Broadreach This coincidcd with high 

rainfall totals in the 1870s and 1880s and increasing w inter temperatures. Cyclonic circulations 

were the dom inant flood generator on both the Ouse (Cyclonic 0.45 events per year, westerly

0.41 events per year 1878-1899) and the Don (Cyclonic 0.6 events per year, westerly 0.2 events 

per year 1868-1899). W ith respect to land-use change, the 1850s until the m id-1870s represent 

the ‘high farm ing’ era, which experienced an increase in arable crops and a m ajor expansion in 

field underdrainage. The last quarter o f  the nineteenth century represents a period o f 

agricultural depression, when many arable areas reverted back to grassland and there was a 

marked reduction in land drainage schemes.
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Figures 7.2 and 7.3 sum m arise information relating to the gauged (1863-1996) period. Two 

diagram s are presented to highlight the different hydrological response between northern 

(Swale, Ure. Nidd. W harfe. Ouse and Derwent) and southern (Aire, Calder and Don) Yorkshire 

rivers The data presented are based on the following information and general findings outlined 

in chapters 4, 5 and 6.

(1) C lim ate

(1) Temperature : Annual average and 5-year moving average tem peratures have been plotted 

for York (obtained from annual reports o f  the Yorkshire Philosophical Society) and Central 

England (CET - obtained from the Clim atic Research Unit at the University o f East Anglia).

(ii) Rainfall : Annual and 5-year moving average rainfall totals are plotted for York (obtained 

from annual reports o f  the Yorkshire Philosophical Society) and England and W ales (EW P - 

obtained from the Clim atic Research Unit at the University o f  East Anglia). The annual 

frequency o f  POT rainfall events at Blackmoorfoot is also presented.

(iii) Dominant flood  generating atmospheric circulation  : The circulation type that generated 

the m ajority o f  POT floods in each hydrological sub-period has been calculated for the Ouse 

and Don.

(2) Floods

(i) Figure 7.2 shows the gauged flood history o f  the Ouse at York and is considered to be 

representative o f  northern rivers. Three flood series are presented (1) annual maximum 

flood (2) Floods over Q I0 and Q20 thresholds (3) Annual flood frequency.

Figure 7.3 shows annual maximum series for the Don at Doncaster and the Calder at 

Broadreach. Annual flood frequency on the Don, and floods over Q 10 and Q20 thresholds are 

also plotted.
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(3) L and-use

M ajor land-use changes have been graphically sum m arised from chapter 6 and represent the 

principal variations in both northern and southern rivers. The following land-use factors are 

considered.

(a) Moorland gripping

(b) Rates o f  underdrainage

(c) The tim ing o f  increasing w inter wheat

(d) The rapid increase in sheep num bers

(e) Agricultural trends

(f) Channel improvements

1900-1915

Flood frequencies and m agnitudes declined markedly in this period on both northern and 

southern rivers. No floods >Q 2 were recorded on any river, and lowest 5-year average AM 

levels were evident on the Ouse at York and the Aire and Calder at Castleford between 1902 

and 1906. Flood frequencies were also extremely low on the Ouse at York, with three 

consecutive 5-year period averages showing the lowest recorded flood frequencies (0.8 events 

per year) between 1897 and 1911. Furthermore, on the Don at Doncaster two o f  the lowest 5- 

year average flood frequencies also occurred in this period.

Temperatures were generally warm er than those o f  the late-nineteenth century, w hilst both 

annual rainfall and the frequency o f  heavy daily rainfalls were relatively low. W esterly 

circulations were the dom inant flood generator on the Ouse (0.31 events per year) followed by 

cyclonic type (0.25 events per year). However on the Don, the cyclonic type dom inated flood 

generation (0.5 events per year).

Few significant land-use changes are evident in this period. Drainage activity was very low, 

associated with a generally stable period in the agricultural economy. Though with the onset o f  

W orld W ar One, there was a reversion o f grassland to arable land.

1916-1943

Significant variations in flood m agnitude are evident between sites in this period. Flood 

m agnitude generally increased from the record lows o f  the previous period on the Ouse at York
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and on the Aire and Calder at Castleford. However, on the Don at Doncaster there were a series 

o f  large floods, whilst on the Calder at Broadreach flood m agnitudes generally declined. Flood 

frequencies remained low over this period.

In terms o f  climate, annual tem peratures increased throughout this period, and annual rainfall 

totals were high, particularly in the late-1920s to early-1930s, and towards the end o f this 

period. W esterly circulations continued to dominate flood generation on the Ouse (0.54 events 

per year), whilst cyclonic type generated the majority o f floods on the Don (0.53 events per 

year).

However, it is more likely that land-use changes caused the inter-site variations in flood 

magnitude. M ost significantly perhaps, is the inauguration o f  the River Ouse (Yorkshire) 

Catchm ent Board in die early-1930s, which marks the onset o f  increased and sustained channel 

modification. The m ajority o f  schemes were carried out on the southern industrial and heavily 

populated rivers o f  the Aire, Calder and Don, and it is these rivers that show the most marked 

variations in magnitude during, and after this period. On the Don at Doncaster for example, the 

series o f  large floods observed in this period may appear disproportionately large in an 

historical context, since large-scale channel improvements after this time have significantly 

reduced flood flows in this area. Similarly, the continued decline in flood m agnitudes o f  the 

Calder is probably a response to channel alterations. In contrast, the Ouse at York and 

upstream tributaries were relatively unmanaged at this tim e, and probably represent a more 

natural response to  clim atic factors, particularly since drainage activity was very low due to 

economic depression, until the introduction ofgran t-aid  in 1939.

1944-1968

The 1940s marks the onset o f  very' significant changes in land-use, climate and flood regime. 

On the Ouse at York there was a marked and sustained increase in flood frequency. There is 

also some evidence o f  this increase on the Nidd and W harfe, although records are too short to 

draw firm conclusions. There appears to have been large inter-annual variations in flood 

frequency on the Ouse, Nidd and W harfe in the 1950s, followed by high flood frequency in the 

m id-1960s. Furthermore, there w'as a cluster o f  spring POT floods in the late-1940s and the 

m id-to-late 1960s. Flood m agnitudes were more variable over this period, northern rivers show' 

that peaks occurred in the m id-to-late 1940s and the m id-to-late 1960s. However, northern and 

southern rivers show significant variations in magnitude. On the River Calder at Broadreach
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and the Don at Doncaster, flood m agnitudes declined throughout this period. On the Aire and 

Calder at Castleford, whilst the peaks and troughs in magnitude appear to coincide with 

northern rivers, the scale o f  this variation differs, with much less variation evident

Flood m agnitude records on the northern rivers appear to track peaks and troughs in rainfall 

series, particularly in the mid-late 1940s and the 1960s. Peaks in heavy daily rainfall also tend 

to coincide with peaks in flood frequency and magnitude W esterly atm ospheric circulations 

generated the majority o f  floods in the north, generating 1.! events per year on the Ouse at 

York, followed by cyclonics which generated 0.9 events per year. On the southern rivers 

cyclonic circulations were the dom inant flood generator (0.8 events per year on the Don), 

followed by westerly circulations (0.2 events per year on the Don). The annual frequency o f 

westerly circulations has declined markedly since the 1950s (Briffa et a l ., 1990; Jones and 

Kelly, 1982), and this is reflected by a reduced num ber o f  floods generated by westerly 

circulations, particularly in the later part o f  this period. However, there appear to be no clear 

clim atic explanation for the large increase in flood frequency at York, which m ay relate to a 

series o f  large-scale land-use changes.

W ith respect to the northern rivers increasing grant-aid resulted in a m ajor expansion o f 

m oorland gripping in the Yorkshire Dales, which continued throughout this period. There was 

also an increase in lowland underdrainage after 1939, associated with a m assive plough-up 

campaign which converted large areas o f  grassland in to arable land, to m eet demand for 

increased hom e food production during the Second W orld War. This may have resulted in 

more rapid runoff from the uplands and slower a in o ff from the lowlands com bining flood peaks 

downstream. Effects such as these are likely to be greatest for small and moderate floods 

(Higgs, 1987a) and m ay explain the increase in frequency o f  events o f this magnitude. 

Variations in flood m agnitude between northern and southern tributaries m ay be explained by 

increasing channel im provem ent and modification schemes in the southern rivers which would 

have reduced local flood peaks.

1969-1977

Flood frequencies and m agnitudes were extremely low between 1969 and 1977. Six o f  eight 

POT records showed that the lowest 5-year average flood frequencies occurred between 1972 

and 1976. Similarly five o f  the eight AM records showed that the low est 5-year average 

m agnitudes were also recorded between 1972 and 1976. These low  flood frequencies and 

m agnitudes coincides with a well documented period o f  low rainfall, evident in annual, 

seasonal and PO T rainfall series. W hilst flood frequencies were low , those floods that did



218

occur were predominantly generated by cyclonic circulations No m ajor land-use changes were 

initiated in this period

1978-1996

All rivers in the Yorkshire Ouse basin showed a dram atic increase in flood frequency and 

m agnitude during this period. Flood frequencies peaked in the early 1980s and declined 

slightly in the late 1980s and 1990s, though still relatively high in an historical context. In the 

10-year period between 1977 and 1986 all eight POT records experienced the highest 5-year 

average flood frequencies Flood m agnitudes peaked in the late-1970s to early 1980s, followed 

by a decline in the mid 1980s, and an increase in the 1990s. Furthermore, five AM records 

showed the highest 5-year averages in this period, particularly between 1992 and 1996 on 

northern rivers. Large m agnitude floods have been particularly frequent in this period, at York 

for example, four out o f  the six floods exceeding Q2o in the 1 19-year record have occurred since 

1977 (i.e. 1978, 1982, 1991 and 1995). Similarly, these large floods have been registered on all 

other northern rivers, however, the magnitudes recorded on the River Ure were exceptional. In 

contrast, flood m agnitudes have been lower on the southern rivers, with m ost events not 

exceeding the Qm threshold, probably as a consequence o f  earlier channel improvement and 

flood defences.

This period has also experienced an increase in the frequency o f  spring flood events, associated 

with an increase in spring rainfall. In general, annual, seasonal and POT rainfall records peaked 

around the m id-1980s, in-phase with flood record peaks. More significantly, the increase in 

flood frequency and m agnitude in this period has been associated with an increase in the 

incidence o f  floods generated by cyclonic circulations, as a consequence o f  an increase in the 

frequency o f  cyclonic days per year in the Lamb catalogue. The num ber o f  floods per year 

generated by cyclonic circulations was 1.3 and 1.5 on the Ouse and Don respectively, by far the 

highest frequencies in the instrumental period. The num ber o f  floods generated by south

westerly circulations has also increased m arkedly, particularly on the Ouse at York associated 

with an increase in the frequency o f south-westerly days.

Land-use changes which may have exacerbated these increases in flood frequency and 

magnitude include the cumulative effects o f  m oorland gripping, since the continued erosion o f  

‘g rip s’ has resulted in a dense network o f  deep artificial channels in some areas o f  the Dales, 

that undoubtedly speed runoff from the uplands. Furtherm ore, increasing cultivation o f  ‘winter 

w heat’, and increasing sheep num bers in the Yorkshire Dales m ay also have promoted more 

rapid runoff from agricultural land.
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Figure 7.2 : Summary diagram fo r  northern Yorkshire rivers 1878-1996
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Figure 7.3 : Summary diagram fo r  southern Yorkshire rivers 1863-1996

H-̂lflhLi iiliidi
U nderd ra inage  

A gricu ltu ral reg im e

Increase  in w in te r w heat (U K ) 

R apid  Increase  in sheep  num bers

H-------- 1-
C harfnel im provenfents

-H----- 1—l--------1—1---- H-------- H------- 1-------- I- -I-----1---1

©

©

©

©

1863 1873 1883 1893 1903 1913 1923 1933 1943 1953 1963 1973 1983 1993

©  A nnual C E T . ®  A nnual EW P. ®  A nnual frequency  o l'P O T  rain fall a t B lack m o o rfo o t 

© A M  series  - Don at D oncaster. ©  Q IO  (c irc le ) and 0 2 0  (triang le) PO T  floods at D oncaster.

© A M  series - C a ld e r a t B roardreach . ®  D om inan t flood g e nerating  c ircu la tio n  ty p r (D on) (C  - cy clon ic) 

© A n n u al flood frequency  - Don at D oncaster.

© L an d -u se  ch an g es  : ( l)R a tes  o f  u nderd ra inage  : low  rates (grey  a rea) and  h igh  rates (b lack  area)

(ii) increase  in w in te r w heat, (iii) Inc reasing  sheep  num bers in the  Y o rk sh ire  D ales.

(iv ) A gricu ltu ral trends : show ing  periods o f  dep ression  (g rey  area), s tab ility  (w hite  a rea) and rev e rs io n s  o f  

grassland  to  arab le  land (b lack  areas).



221

S u m m ary

A series o f large floods were documented between 1263 and 1360. associated with a marked 

clim atic deterioration. Tem peratures were declining from the Medieval Optimum, and a run o f 

severe winters and extremes o f  precipitation resulted in increased surface wetness. The 

severity o f  w inters declined and there was a shift to generally m ilder conditions between 1361 

and 1549 when no docum entary floods were recorded This w anner phase was attributed to an 

increase in the frequency o f  anticyclonic weather systems. In contrast the period between 1550 

and 1680 experienced an extremely high frequency o f large magnitude floods This period 

coincides with the onset o f  the Little Ice Age, characterised by very' low temperatures, 

increasing surface wetness, more frequent and severe snowfalls, and seasonal extremes o f 

temperature and rainfall. This climatic deterioration resulted in a southward shift o f  prevailing 

depression tracks and an increase in blocking and m eridionality in middle latitudes. However, 

during a warm er phase o f  the Little Ice Age there appears to have been an increase in the 

frequency o f  localised sum m er flooding between 1681 and 1763. During this period sum m er 

temperatures were above average and may have resulted in more frequent high intensity, short 

duration convective storms. Extensive lowland flooding again increased between 1764 and 

1799, particularly in the 1760s and 1790s, associated with severe winters, heavy rainfall and an 

increase in the frequency o f meridional circulations in the late eighteenth century. This was 

followed by a period o f  fairly moderate flood frequency and magnitude between 1800 and 1849 

when annual rainfall was increasing and surface wetness was high. The period 1850-1899 was 

characterised by high flood frequency and m agnitude, particularly in the 1870s and early-1880s, 

coinciding with high rainfall totals and a high incidence o f  cyclonic flood generation. A phase 

o f  intense underdrainage activity also occurred in the early part o f this period, followed by a 

relative decline in the last quarter o f  the century.

Gauged flood records indicate that the period between 1900 and 1916 was characterised by very 

low flood frequency and magnitude, associated with low rainfall, warm er tem peratures and an 

increase in westerly flood generation on northern rivers. Drainage activity was relatively low 

during this period as a result o f  a  stable agricultural economy. The period 1916 to 1943 was 

characterised by marked variations in flood m agnitude between northern and southern rivers. 

W hile m agnitude generally increased on the northern rivers, m agnitude declined on some o f  the 

southern rivers as a result o f  channel im provem ent and flood defence works. Flood frequency 

remained relatively low over this period. Around 1944 there was a marked and sustained 

increase in flood frequency on the northern rivers. This was associated with an increase in the 

incidence o f  heavy daily rainfalls, greater westerly flood generation and m ajor land-use
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changes. The num ber o f  moorland gripping and underdrainage schemes accelerated 

dramatically in response to the introduction o f governm ent grant-aid Furthermore, a massive 

plough-up campaign resulted in large areas o f  grassland being converted to arable land. These 

changes may have caused increased rates o f  runoff from the uplands and slowed runoff from the 

lowlands, resulting in greater flood peaks in the lowland areas Further variations in flood 

m agnitude between northern and southern rivers was again evident in this period, as a result o f  

continued intense channel managem ent on the southern rivers systems. Between 1969 and 

1977 both flood frequency and flood magnitude declined to very low' levels, principally due to 

reduced rainfall In contrast, the m ost recent period between 1978 and 1996 has experienced 

some o f the highest flood frequencies and magnitudes on record, with new maximum peak 

discharges recorded on many rivers. This increase has been associated with increasing rainfall 

and more significantly, increases in the frequency o f  floods generated under cyclonic and south

westerly circulations, com bined with an increase in annual frequencies o f  these circulation 

types. A num ber o f  land-use changes have also occurred in this period u'hich are likely to have 

prom oted m ore rapid runoff from agricultural land. First, there has been an increase in the area 

o f  crops under winter-sown regimes, and second there has been a dramatic increase in sheep 

numbers, both o f  which have been shown to increase runoff. Furthermore, the cum ulative 

effects o f  m oorland gripping and the continued erosion o f  these channels has further increased 

runoff from the upland areas.

There are a  num ber o f sim ilarities and differences between variations in flood frequency and 

m agnitude on the Ouse and other British flood series. For example, a high frequency o f  large 

floods has been docum ented on the Rivers Dee, Tyne and Ouse in the late eighteenth century'. 

Similarly, between the 1870s and 1890s a num ber o f  large events have been recorded on the 

Dee, Tweed, Tyne, Severn and Ouse. Low flood frequency during the first two decades o f  the 

twentieth century' on the Tyne is also mirrored by Ouse basin records. However, m any rivers in 

the UK experienced an increase in flood frequency in the 1920s, w'hereas the m ajor increase in 

flood frequency on the Ouse is dated to the 1940s, associated w'ith increasing heavy daily 

rainfalls and agricultural land-use changes. Very low flood frequencies and magnitudes in the 

late-1960s and 1970s have been recorded throughout the UK, including the Ouse. Furthermore, 

the extrem ely high flood frequencies and magnitudes experienced since the early-1980s is also 

a feature com m on to m ost UK flood records. These nation-wide, synchronous variations in 

flood frequency and m agnitude suggest that short-term clim ate change is the prim ary driving 

mechanism explaining variations in flood records (hemispheric-scalc atm ospheric circulations 

and linkages to UK flooding are examined in the next section). However, the effects o f land-
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use changes can further ‘sensitise’ catchm ents to clim ate changes (M acklin et a /., 1992a). In 

the Ouse basin for example, it appears that a com bination o f  a shift in climate in the last two 

decades which has increased the frequency and cyclonic and south-westerly atmospheric 

circulations, and m ajor large-scale land-use changes have resulted in some o f the highest flood 

frequencies and magnitudes on record. A lthough, it appears that m ajor channel modifications, 

particularly for flood defence purposes can significantly alter natural flood response. There is 

evidence o f this on the R iver Thames since the 1940s and on the southern Ouse basin rivers 

since the 1930s.

7.2 H E M IS P H E R IC -S C A L E  A T M O S P H E R IC  C IR C U L A T IO N S  AND FL O O D IN G

One o f  the key research aim s o f  this project was to examine to role o f  atm ospheric circulations 

in flood generation (reviewed in section 2.3.3.). Rumsby and M acklin (1994) studied large- 

scale circulation types and flood response in the Tyne basin, northern England. Specific 

hem ispheric-scale configurations o f  the upper atm osphere were found to relate to variations in 

flood frequency and m agnitude. M ajor floods (>20 year return period) were found to occur 

more frequently in periods with an enhanced m eridional (north/south) circulation, whereas more 

moderate floods (5-20 year return period) were found to occur more frequently under an 

enhanced zonal (west to east) circulation regime. These authors used annual frequencies o f  

circulation types from the Lamb catalogue to classify periods as being enhanced zonal, 

m eridional or interm ediate (no dom inant regime). This study has investigated flood generation 

on an event basis, and therefore allows for more detailed examination and re-evaluation o f  flood 

and circulation relationships.

Zonal circulation types in the Lamb catalogue are westerly, south-westerly and north-westerly, 

and their anticyclonic and cyclonic hybrids. M eridional circulation types in the Lamb catalogue 

are northerly, southerly, easterly, north-easterly and south-easterly, and their anticyclonic and 

cyclonic hybrids.

To investigate which individual meridional and zonal circulation types generate floods in the 

Ouse basin we can examine the results o f  the flood generating circulation study undertaken in 

chapter 5, which classified 1340 POT flood events as being generated by one individual 

circulation type. Tables 7.2 & 7.3 show the num ber o f  POT floods in the Ouse basin generated 

by m eridional and zonal circulation types. This illustrates that meridional circulation types 

generated relatively few floods, only 12.76 %, w hilst zonal types generated 46.87%  o f  all POT 

events. Zonal and m eridional types com bined generated 59.63%  o f  all POT flood events,
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however the classification outlined by Rumsby and M acklin (1994) does not include pure 

cyclonic circulations. This one type alone generated 502 POT floods (37.46%) in the Ouse 

basin The importance o f  cyclonic circulations is em phasised further with respect to flood 

magnitude. Table 7 4 shows the number o f  POT floods generated by zonal and meridional 

types and the individual cyclonic category for the flood magnitude ranges defined in section

5.4.3.2 Meriodional types generate far fewer floods than zonal or pure cyclonic circulation 

W hilst the percentage o f  floods generated by meridional types increases with m agnitude, this 

type only accounts for one quarter o f  POT floods over the Qio threshold At the highest 

magnitudes, cyclonic circulations generate the majority o f  flood events. These findings indicate 

that the zonal and meridional classification suggested by Rumsby and Macklin (1994) does not 

take account o f one o f  the most important flood generating circulations in the Ouse basin (i.e. 

cyclonic).

However, figure 7.4, which shows AM and AFF, and floods greater than Qm and Q2o at York, 

suggests that m eridional periods are indeed characterised by high flood frequency and 

m agnitude as suggested by Rumsby and M acklin (1994). Furthermore, zonal periods tend to 

show more moderate m agnitudes and frequencies, w hilst interm ediate periods are characterised 

by very low flood frequencies and m agnitudes. Given the fact that meridional circulations 

types generate relatively few large flood events, an alternative explanation must be sought as to 

why these periods tend to experience high flood frequency and magnitude. The answer to this 

question undoubtedly requires further detailed investigation, however a tentative hypothesis can 

be suggested. During periods o f  enhanced m eridional circulation the frequency o f  zonal 

weather types is relatively low. W esterly circulations are the dom inant zonal type and have 

been shown to be im portant in flood generation in the Ouse basin. However, when the 

frequency o f  westerly circulations declines, this is often associated with an increase in cyclonic 

circulations (P.D. Jones pers. comm.). Therefore, it m ay be that increased flood frequencies 

and m agnitudes experienced during m eridional periods is a result o f  increasing cyclonic 

activity, com bined with generally wetter antecedent catchm ent conditions as a result o f  lower 

tem peratures and increase wetness often experienced in meridional periods. The importance o f 

cyclonic circulations is further em phasised by the m ost recent period, characterised by an 

increase in anticyclonic and cyclonic circulation types, which has experienced the highest flood 

frequencies and m agnitudes on record. Clearly, this is an area w orthy o f  more detailed and 

robust investigation since it does appear that hem ispheric-scale variations in atmospheric 

circulation coincide with changes in flood regime.



Table 7.2 : Number o f  PO T floods in the Ouse basin generated by zonal circulation types.

Circulation type No of POT flood generated % of zonal floods

Anti cyclonic-south-westerly (ASW) 0 0

Anticyclonic-westerly (AW) 9 1.43

Anticyclonic-north-westerly (ANW) 0 0

South-westerly (SW) 65 10.35

Westerly (W) 383 60.99

North-westerly (NW) 24 3.82

Cyclonic-south-westerly (CSW) 24 3.82

Cyclonic-westerly (CW) 113 18.00

Cyclonic-north-westerly (CNW) 10 1.59

Total number of zonal POT floods 628

Table 7.3 : Number o f  POT floods in the Ouse basin generated by meridional circulation types

Circulation type No of POT flood generated % of meridional floods

Anticyclonic-north-easterly (ANE) 1 0.58

Anticyclonic-easterly (AE) 0 0

Anticyclonic-south-easterly (ASE) 0 0

Anticyclonic-southerly (AS) 0 0

Anticyclonic-northerly (AN) 0 0

North-easterly (NE) 6 3.51

Easterly (E) 16 9.63

South-easterly (SE) 11 6.43

Southerly (S) 47 27.49

Northerly (N) 12 7.02

Cyclonic-north-easterly (CNE) 5 2.92

Cyclonic-easterly (CE) 22 13.67

Cyclonic-south-easterly (CSE) 3 1.75

Cyclonic-southerly (CS) 13 7.60

Cyclonic-northerly (CN) 35 20.47

Total number of meridional POT 

floods

171
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Table 7.4 : The magnitude o f  PO T floods generated by meridional, zonaI and cyclonic circulations

Flood Magnitude Met idional Zonal Cyclonic (C)

No. % No. % No. %

Minor (standard threshold < 0 2) 136 13.93 522 49.62 394 37.45

Moderate (> = 0 7 < Qio) 27 13.57 86 43.22 86 43.22

Major (>= Ql0) 14 25.00 20 35.71 22 39.29

Global-scale clim ate phenom ena have also been shown to impact on atmospheric circulation in 

the northern hemisphere m id-latitudes Teleconections between El Nino-Southern Oscillation 

(ENSO) ‘w arm ’ and ‘co ld ’ events, and atm ospheric circulation in Europe (Fraedrich. 1990; 

Fraedrich and M uller, 1992) and British Isles (W ilby, 1993) have been proposed Over Europe, 

the European G rossw etter daily classification o f  circulation types was used to examine the 

response o f  w inter atm ospheric circulation to warm (26 events) and cold (22 events) ENSO 

extremes between 1880 and 1989 (Fraedrich and Miiller, 1992). It was found that in the winter 

months following an ENSO warm event that on average precipitation declined in Scandinavia, 

but increased in western, south-w estem  and central Europe. This was attributed to a shift in the 

position o f  the mean cyclone track (see figure 7.5) over the British Isles and central Europe. In 

general, warm ENSO events tend to produce more cyclonic Grossw etter situations over western 

and central Europe than cold ENSO events, which tend to shift the mean cyclone track north, 

over Scandinavia, increasing precipitation in this region. S im ilar results were obtained by 

W ilby (1993) who used the Lamb catalogue to examine the effects o f  ENSO extremes on UK 

circulation types, and found that on average, cyclonic type tended to occur more frequently 

during the w inter o f  a warm ENSO event. Given the relationship between cyclonic circulations 

and flooding highlighted in this thesis, this m ay influence flood response in the Ouse basin, and 

other parts o f  the UK, and is again highlighted as an area o f future research in term s o f  the 

large-scale clim atic controls o f  flooding in the UK.
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Figure 7.4 : Flood frequency and magnitude ut York during meridional, zona! and intermediate periods

©

©

©
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®  Clim ate regim e as defined by Rumsby and Macklin (1994)
M = m eridional, Z = zonal, I = interm ediate, A/C = increased anticyclonics and cyclonics 
©  Annual maximum flood on the Ouse at Y ork 1880-1996 
©  Annual flood frequency on the Ouse at Y ork 1878-1996 
©  Floods > Q |0 on the Ouse at York 

© Floods >Q 20 on the Ouse at York
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Figure 7.5 : Number o f  the daily occurrence o f  cyclones in 5° latitude by 5° longitude grid  cells 
during an ensemble-averaged warm ENSO and cold ENSO event in winter, each comprised o f  
eight episodes (1952-1989). (From Fraedrich and Midler, 1992)
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C h a p t e r  8

C o n c l u s i o n s

The principal research aim o f  this study has been to investigate variations in flood frequency 

and magnitude in the Yorkshire Ouse basin, and to examine the causes o f  these variations with 

respect to climate and land-use change. Documentary flood records dating to the eleventh 

century and a num ber o f  exceptionally long gauged flood records in the Ouse basin represent a 

previously unexplored source o f  flood data with which to examine linkages between long-term 

flood response and clim ate and land-use changes. This concluding chapter outlines the main 

findings o f  this research and makes a num ber o f  recommendations for future study.

1. Historic variations in flood frequency and magnitude in the Ouse basin

A num ber o f  large floods were recorded between 1263 and 1360, followed by a prolonged 

period o f  low flood frequency and magnitude between 1361 and 1549 when no floods were 

documented. Some o f  the highest magnitude flood events on record were docum ented between 

1550 and 1681, whereas more moderate magnitude, localised sum m er floods becam e more 

prevalent between 1681 and 1763. High flood frequencies and m agnitudes were evident 

between 1734 and 1799, and 1850 to 1899, with the intervening period experiencing fairly 

moderate flood frequencies and magnitudes. The early twentieth century was characterised by 

extremely low flood frequency and m agnitude, particularly between 1900 and 1915. Flood 

frequencies remained relatively low over the period 1916 to 1943, whereas m agnitude series 

showed a high degree o f  inter-site variation. W hilst flood m agnitudes generally increased at 

m ost sites throughout this period, flood records on the Calder show m agnitudes to be declining, 

and on the River Don there was a series o f  very large floods towards the end o f  this period. 

Around 1944 there was a marked and sustained increase in flood frequency, particularly on the 

Ouse at York, until around 1968. Over this period flood m agnitudes became more variable, 

with greater divergence between northern and southern Ouse tributaries. The northern rural 

rivers showed peaks in m agnitude in the m id-to-late 1940s and the m id-to-late 1960s, whereas 

on the Calder and Don m agnitudes progressively declined. The period between 1969 and 1977 

experienced a shift to extrem ely low flood frequency and magnitude evident at all sites. This 

was followed by a period characterised by very high flood frequency and magnitude with record



5-year averages. Flood frequency peaked in the early 1980s and declined slightly towards the 

1990s. Flood m agnitudes peaked in the late 1970s to the early 1980s and again in the 1990s.

2. Climatic controls of flooding in the Ouse basin

The documentary record

Two periods o f  marked clim atic deterioration have been associated with a series o f large flood 

events in the Ouse basin. The first o f  this occurred between 1263 and 1360 when temperature 

was declining from the Medieval Optimum and there were increases in w inter severity and 

storminess. This was also a period o f high surface wetness and reduced rates o f 

evapotranspiration. The second period occurred around the tim e o f  the onset o f  the Little Ice 

Age, between 1550 and 1680 Some o f  the largest magnitude floods ever recorded occurred 

during this period and were often as a result o f  snowm elt or rain-on-snow processes associated 

with lower tem peratures and a southward shift in the prevailing cyclonic storm tracks.

O ther periods in the documentary record were characterised by less frequent and lower 

m agnitude flooding. Between 1361 and 1550, generally m ild conditions and decreasing winter 

severity resulted in no floods being documented. Localised sum m er floods were more frequent 

between 1681 and 1763, during a w arm er phase o f  the Little Ice Age when sum m er 

tem peratures were above average and the frequency o f  convective stonus increased

M ore detailed clim ate records from the m id-eighteenth century indicate that two further periods 

o f  high flood frequency and magnitude in the late-eighteenth and late-nineteenth centuries were 

associated with increased rainfall totals.

The gauged record

Analysis o f  annual, seasonal and POT rainfall series found that such data are often lim ited when 

trying to establish links with long-term flood series, since such records consider every' day (i.e. 

annual and seasonal) or days above a specified threshold (POT), which do not specifically relate 

to individual flood events. W hilst som e obvious linkages between rainfall and flood series are 

evident, such wetter periods tending to coincide with periods o f  high flood frequency, it became 

clear that studying the flood generation process on an event basis would significantly enhance 

understanding o f  flood and climate interactions.

The m ethodology developed to investigate synoptic flood generation using daily rainfall 

records and the Lamb catalogue indicated that four circulation types generated the majority o f
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floods in die Ouse basin, cyclonic, westerly, cyclonic-westerly and south-westerly respectively. 

The importance o f  individual types can vary according to geographical location, for example, in 

the m ost easterly areas o f  the Ouse basin (i.e. Don and Derwent catchments) cyclonic and 

easterly circulations are the dom inant flood generators, w hilst westerly circulations are 

relatively unimportant. This is linked to the geographical precipitation delivery o f  circulation 

types, since westerly circulations have a west-east precipitation gradient, whereas cyclonic 

circulations are generally slower moving and tend to deliver a more uniform distribution o f 

rainfall Cyclonic circulation types also generate the majority o f  m ajor floods in the Ouse 

basin, whilst the importance o f  westerly circulations declines with increasing magnitude. 

Several periods characterised by high flood frequency and magnitude coincide with a high 

frequency o f  cyclonic days and an increase in cyclonic flood generation, particularly the m id- 

l'870s to mid-1890s, the late-1940s and 1950s, and between the late-1970s and mid-1980s. A 

higher frequency o f  westerly generated floods was evident in the 1940s, but declined after the 

1950s, as a result o f  a marked decline in the annual frequency o f westerly circulations. 

Furthermore, south-westerly generated floods have increased dramatically since the late-1960s 

associated with increasing annual occurrence o f  south-westerly types In terms o f  seasonality, 

floods generated under westerly and cyclonic-westerly circulations occur m ost frequently in 

winter. Floods generated under cyclonic conditions are m ore evenly spread throughout the 

seasons, and south-westerly generated floods tend to occur m ost frequently in w inter and 

autumn.

W ith respect to links with large-scale (hemispheric) circulation patterns, previous work has 

suggested that large floods tend to occur in periods with enhanced meridional (north/south) 

circulations, moderate floods in periods with enhanced zonal (west to east) circulation, and low 

m agnitude floods in intermediate periods, with no dom inant circulation regime. This study 

found that meridional circulation types generated relatively few flood events (12.8%  o f  all 

POT floods), and further em phasises the importance o f  cyclonic circulation types which 

generated 37.4% o f  all POT floods, and was the m ost im portant type with respect to generating 

high magnitude floods. Zonal circulation types generated 46.9%  o f  POT floods and were 

shown to be im portant at both m oderate and m ajor flood m agnitudes.
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Future climate change

The effect o f  future climate change on flood frequency and magnitude in the Ouse basin is 

difficult to assess given the uncertainties surrounding GCM  predictions. Climate change 

scenarios for the British Isles give a  general consensus that with rising temperatures 

precipitation will increase in w inter and that this will be greatest in the north and west. The 

most probable effect o f  postulated increases in winter rainfall, storminess and flood producing 

rainfalls in the Ouse basin would be a continued increase in flood frequency and magnitude. 

However, rising temperatures, may reduce snow-cover which could have a significant effect on 

flood m agnitude, since most o f  the largest historic flood events in the Yorkshire Ouse basin 

have been influenced by snowmelt.

Assessing the future effects o f  changes in the atmospheric circulation on flooding is. however, 

more problematic. Rumsby and Macklin (1994) suggest that an increase in global temperature 

would reduce the equator-pole temperature gradient and lead to an enhanced zonal circulation 

regime, which would in turn increase the frequency o f  westerly circulation types. Alternatively 

Sweeney and O 'H are (1992) and Jones (1992) suggest that a reduced thermal gradient would 

result in a  continued decline in westerly circulations, which could result in a  higher frequency 

o f  large flood events because o f  increased convective activity and more intense depressions.

3. Land-use controls of flooding in the Ouse basin

Temporal and spatial variations in four main areas o f  land-use change have been investigated, 

(1) agricultural land-use and practice (2) agricultural land drainage (3) river channelization (4) 

reservoir construction, and linkages to flood series suggested. Detailed records o f  land-use are 

available from around the m id-nineteenth century, therefore only the effects on the gauged 

flood record can be considered.

One o f  the m ost marked variations in the flood record occurred around 1944, when flood 

frequency dramatically increased on the Ouse at York. This rise was associated with a  num ber 

o f  significant land-use changes. Around this tim e there was a large-scale expansion in land 

drainage associated with increased demand for hom e food production, and the introduction o f 

governm ent grant-aid towards the cost o f  such schemes. W idespread m oorland gripping in the 

Yorkshire Dales is likely to have increased rates o f  runoff from the uplands, whereas in the 

lowlands, field underdrainage o f  the heavy clay soils in the Vale o f  York, and a  conversion o f 

grassland (for livestock) to arable land may have reduced runoff rates. This probably resulted 

in a synchronisation o f  peak flows from upland and lowland areas and hence to the observed 

rise in flood frequency. Furtherm ore, periods o f  economic depression or stability, when
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drainage activity is generally reduced and arable land tends to revert back to grassland, are often 

associated with low flood frequency and magnitude, particularly between 1900-1915 and 1969- 

1977.

Inter-site variations in flood magnitude can also be attributed to land-use changes. Generally 

declining flood m agnitudes on southern industrialised rivers from the 1930s onwards appears to 

be associated with the establishm ent o f  Catchment Boards and initiation o f channel 

im provem ent and flood defence schemes, which are likely to have reduced local flood levels. 

This is in direct contrast to the rural rivers in the northern part o f  the Ouse basin which are 

relatively unmanaged, where flood m agnitudes generally increase from the 1930s

More recent changes in land-use which may have affected flood frequency and magnitude are 

the rapid increase in livestock numbers, particularly in the Yorkshire Dales, and a shift towards 

the cultivation o f  w inter cereals, although these linkages are very tentative and require more 

detailed study. However, it appears that the threefold increase in areas o f  the UK under w inter 

wheat and the large increase in sheep num bers in the Yorkshire Dales may have significantly 

increased runoff rates, and be partially responsible for the recent extreme flood frequency and 

m agnitude levels.

However, in m ost cases variations in flood series must be interpreted by considering the 

interactions between clim ate and land-use changes. For example, the 1944 increase in flood 

frequency at York was associated with increases in land drainage and large-scale changes in 

crop production, and an increase in the incidence o f  heavy daily rainfall. Furthermore, the m ost 

recent period which has experienced some o f  the highest flood frequencies and magnitudes on 

record, has been associated with an increase in the frequency o f  cyclonic and south-westerly 

generated floods and increases in livestock numbers and w inter cereals. In short, there are often 

several contributory factors forcing changes in flood regime. Undoubtedly clim ate is the 

prim ary driver behind these changes, but the scale and direction o f  flood variation can be 

further sensitised by variations in land-use.
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4. R ecom m endations fo r fu tu re  study

This study represents the first m ajor investigation o f the response o f  Ouse basin rivers to recent 

environmental change, and has consequently highlighted many areas that would benefit from 

more extensive investigation.

Firstly, the location o f  flood series examined in this study were confincd to the lower reaches o f 

m ajor Ouse tributaries, in order to dovetail with other elements o f  the LOIS project. Clearly, 

understanding o f  flood response in the Ouse basin would be significantly enhanced by the 

incorporation o f  upland and piedm ont areas, therefore moving towards a more complete basin- 

wide approach. Significantly, some research is already being carried out in upland areas o f the 

Yorkshire Dales (e.g. M errett and M acklin, in press) concerned with establishing the long-term 

flood history o f  this area, derived from analysis o f  coarse floods deposits A future research 

aim therefore would be to widen the spatial-scale o f  study, and incorporate a variety o f 

techniques to derive flood histories, including sediinentological, documentary and gauged 

evidence.

Secondly, allied with a basin-w ide flood studies approach is the need to improve the temporal 

and spatial resolution o f  clim ate data. However, the key clim atic driver governing flood 

response is undoubtedly atm ospheric circulation. This study has highlighted the im portance o f 

specific atm ospheric circulation types in flood generation, and there is considerable scope for 

further developm ent in this area to improve understanding o f  synoptic flood generation. The 

m ethodology developed in this thesis for identifying circulation types that generate floods 

would benefit from the inclusion o f  more clim atic parameters. For example, little work has 

been conducted relating to  the synoptic cause o f  snowm elt floods. Tem perature, rainfall and 

snow data (if available) could be used for this purpose to examine both snowm elt and rain-on- 

snow flood events. Furtherm ore, an index o f  antecedent catchm ent conditions could also be 

incorporated into this analysis to examine synoptic situations prior to floods w hich may 

promote flood generation.

This study has also highlighted that w hilst there appears to be a relationship between large-scale 

configurations o f  the upper atm osphere (e.g. zonal and meridional) and flood response, this is 

often poorly understood and is an im portant area for future research. These linkages between 

atm ospheric circulation and flooding could be investigated at a range o f  spatial scales, but is, 

however, dependent on the existence o f  a long daily classification Classification schemes 

which could be used range from regional (e.g. the M ayes catalogue, see Mayes, 1991.), national 

(e.g. the Lamb catalogue), European (e.g. the European Grosswetter, see Baur, 1947.), and
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hemispheric-scale (e.g. Dzerdzeevskij, 1970). At the global-scale events such as ENSO 

extremes and their effects on flood regime in the UK may also be a profitable area of future 

investigation.

The third area that would benefit from more extensive investigation is that of land-use change. 

Major large-scale land-use changes associated with land drainage, channel modifications and 

agricultural land-use and practice have been shown to coincide with variations in flood series. 

Data relating to land-use change is often generalised and of poor spatial resolution, highlighting 

the need to acquire more detailed datasets, which would greatly enhance understanding of 

basin-scale interactions between land-use and flood hydrology. In the Ouse basin for example, 

more detailed information relating to the timing and extent of moorland gripping in the 

Yorkshire Dales could be gained from the analysis of aerial photographs. The spatial resolution 

o f agricultural data could also be improved by collecting data at the parish rather than county 

level (available at the Public Record Office at Kew). Furthermore, given the importance of the 

recent switch to winter cereals in other parts o f the UK, a survey of this practice in the Ouse 

basin would also be extremely useful This thesis also showed that information relating to the 

timing and extent of flood embankment construction was virtually non-existent. At present this 

author is undertaking a survey of historical maps and aerial photographs to evaluate the utility 

o f such a technique in established the timing of major embankment construction schemes.

In conclusion, all of the above recommendations should be considered together when 

examining how they affect flood response at the basin-scale. Given the problems associated 

with ‘averaging’ effects of land-use changes and the difficulty in disentangling climate and 

land-use driven changes in flood regime, the future emphasis o f study should focus on 

interactions between changes in the different aspects o f land-use and climate. A more complete 

understanding of the processes operating at the basin-scale may be aided by computer 

modelling of these interactions based on a high resolution spatial database.
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Appendix A : Key to flood frequency distribution diagrams in Appendix A(i) - Aivii)
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Appendix A (i) : Seasonal frequency distributions - Ouse at York IK7,S-IW5
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Appendix A (ii) : Seasonal frequency distributions - Nidd at Hunsingore 1934- / 996
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Appendix A (Hi) : Seasonal frequency distributions - Wharfe at Flint M ill 1936-1996
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Appendix A (iv) : Seasonal frequency distributions - Swale at Crakehill / 955-1996
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Appendix A (v) : Seasonal frequency distributions - Ure al Wes/wick I 956-1W6
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Appendix A (vi) : Seasonal frequency distributions - Aire al Armley 1961-1996
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A (vii) : Seasonal frequency distributions - Derwent at Buttercrambe 1962-1996
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Appendix B : Documentary F lood Histories
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Appendix B(i) : River Aire Documentary Flood History 1068-1939

Year M onth Day Description Source

No.

1068/69 W illiam  the conqueror stopped for 3 weeks by swollen
n * • w River Aire

27.49.57

1322 Autumn Meadow land flooded1 57

1 594 Jan 5"' Sudden great flood14 14

1602 Jan
~,rd
J ‘the like not seen o f 60 years before' 14 14

1615 Mar
**» -> rd 
Z J Thaw. Aire and Calder broke banks and caused much 

damage14

14

1615 Sep 16th Heavy rain. Bridge at Keighley Destroyed4 47

1616 Sep 21'" Continuous rain for 36 hours with great E wind. Houses 

flooded at Leeds14

14

1680 33

1681 A great flood at Leeds2’' 28

1763 Jun 27th Skipton ‘greatest fall o f rain ever known’ 10 10.28

1763 Dec 26,h Sudden thaw and heavy rain. Flooding at Leeds17 17.21.33

1766 July 2 1st Disastrous storm "’ 10

1768 Jul Flood carried away three bridges and did much damage 

at Leeds and Bradford17

17.28

1775 Oct
2 i si

Severe flooding throughout the Aire, several bridges 

destroyed17

17.21.28.30.33.4

1.59

1790 Dec Sudden thaw and heavy rain, several bridges 

destroyed17

17.30

1795 Feb 9 th Heavy rains and sudden thaw51 17.28.30.33,51.5

4

1798 Summer Severe storms. At Castleford the Aire rose by six feet in 

ha lf an hour1

9.21

1799 Aug 16th
9

Rainstorm 9.1 1.21.28.30,33

1806 Jan 16th Leeds and Wakefield flooded1' 17.30

1807 ‘destructive floods” " 30

1810 Jan Flooding at Keighley
43

1815 Dec 30th Sudden thaw. Lower streets o f Leeds flooded17 17.21.28.33

1816 ‘destructive floods’30 M)
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1822 Feb
-.Kl
J Storm. Leeds flooded1

17.31

1823 Dec
2| s.

Lower streets in Leeds flooded111 28

1824 Dec 21st Lower streets in Leeds flooded1
17.21

1825 Dec Floods at Keighley4’
43

1837 Dec 21st Three days heavy rain. Four or five feet o f  water in 

some Leeds streets17

17

1840 Jan 25lh Heavy rains. Lower streets in Leeds flooded1
17.21

1846 April 6,h Level on stones near railway bridge

1849 Oct Level on stones near railway bridge

1856 Aug 9 th Two inches o f rain at Leeds17 17

1857 Dec Floods at Keighley4 43

1861 Feb
Q th

Level on stones near railway bridge

1866 Nov 17th Serious damage below Castleford3 ’
2.30.;

1867 Feb 7/8'h Flooding at Keighley - not as big as 1866" 44

1872 Jun Severe thunderstorm, flooding at Keighley, Otley and 

Halifax46

46

1872 Oct Floods in Airedale46 46

1872 Nov 18/20th Floods throughout Yorkshire, very serious in Aire 

Valley17

17

1880 Dec Flooding at Keighley. Rapid thaw42 42

1882 Feb
-* rd 
J Leeds flooded28 21.28

1892 Oct 16'" Serious flooding in lower reaches5; 57.59

1936 Dec 14th Highest flood recorded in upper Aire Valley59 Keighley 

flooded40

40,59

1939 Jan 15/16th Castleford59 39.59
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Appendix B(ii) : River Ouse at York Documentary Flood History 1263-1S31

Year

1263

1315

1316

1360

1550

1564

1615

1625

1636

1655

1689

1715

1732

1763

1771

1783

1784 

1790

1794

1795 

1809 

1822 

1831

M onth

July

January

March

October

January

December

Nov

February

January

Description

Passed over end o f  Ouse Bridge, reached junction of 

Bridge Street and North Street11

Floods surrounded the castle and washed away part of 

earthworks", ‘a huge and lasting one' ”

Flood water from the Ouse and Foss entered the moat and 

caused the curtain wall to collapse "

Flooded underground prison so that it was useless for the 

custody o f felons "

Derwent and Ouse”

Snow and great frost. Two arches o f Ouse Bridge washed 
n

away.

Ouse ran down North Street and Skeldergate with great 

vio lence." A  ten-day peak. ”  Thaw14

On City wall plaque 

On City wall plaque

Ouse-Humber ‘ye like scarce memorable’ ."

A mighty flood met spring tides. A very long frost.11

Bridge Street flooded"

A great snowfall, rain and a high w ind .11

,55
River Ouse ‘n uncommon height

Thaw.

Thaw. Greatest since 1715.

Lower Ouse basin like a lake. ‘On o f the greatest floods 

ever know n."

February Snow.

February Ouse and all other rivers.

February Frost snow and ra in ." Third highest mark on City W alls .”

^evel data is available from 183 1 onwards

Source No.

11.52.56.58.5*)

11.30.33.59.60 

.'2.5')

3. 11.17.20.24.28..'0.52. 

58.59.60

I.4 .11.14.16.28.33.52.5

K

I I.31,33.52.58.59

11.31.33.58.59

11,1.3,16.33.53.56

11.33.52.58

11.33

11.33.52.56.58

11.16.31.33.56.58.59 

55

58

11.16.21.28.33 

11.31

11.24.33

3.11.52.58 

58

I 1.17.33.59

11.31.33.52.58.59
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Appendix B(iii) : River Calder Documentary Flood History 1308-1967

Year M onth Day Description Source

1308 Damage to wooded bridge at bottom o f Kirkgate4 ’
4<)

1330 Dec Prolonged heavy rain. Bridge destroted4J
4‘)

1615 Mar 23rd Thaw. Calder broke banks14
14

1615 Sept I6 ,h Bridges at Elland and Keighely destroyed 47 ’
47.5‘J

1616 Sept
27't.

38 hours continuous rain with E wind. Calder 'very great'"
14

1673 Sept l l * Bridge at Sowerby Bridge damaged47
47

1674 Oct 31s' Water seven yards deep either side o f Wakefield Bridge '
51

1680 Aug 26"' Wakefield, storm.21
21

1722 May 18"' Ripponden near H alifax1
I7 .2 I.J3 .J7 ..

1729 Nov 8"’ Severe flooding at Dewsbury and W akefield";
5I.5‘)

1738 May
til

Severe thunderstorm. Flood forced its way into a chapel at 

Holm firth-’

">>

1767 Dec 7/8"’ Severe damage at Dewsbury. Higher than 1729?)
33.59

1775 Severe flooding at Castleford5 J
59

1777 July
23 rd

Thunderstorm, Holm firth2’
23

1795 Heavy rains and sudden thaw31
51.54

1799 Aug 17th Serious flooding at Sowerby Bridge59
21.28.47.59

1821 Sept 21st Black-Sike M ill reservoir Burst17
17

1822 May 20th H olm firth18, severe thunderstorm '1
21.28

1837 Dec 22nd Highest flood in half century 1810-1860. Damage along 

whole length o f  River Calder,;

51.54.59

1844 June 24"' Thunderstorm. Flooding at Halifax and Huddersfield21
21

1852 Feb 5"’ Bilberry Reservoir burst - H olm firth '7
17.21

1855 Oct 26"’ Prolonged heavy rain48
48

1857 Aug 14'" R ipponden17
17.3.3

1859 Aug
>-j til

Heavy rains. Flood at Hebden Bridge48
48

1866 Nov
17"’

In lower reaches this was the highest flood recorded (except 

possibly 1775)59

2.51.59

1892 Oct 15"’ Lower and m iddle reaches5)
59
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1901 Nov 12th Severe flooding in upper reaches 1
5‘>

1916 Aug 14,h Todmorden flooded5
s

1931 Nov 4"’ Todmorden flooded5 5

1938 Aug 12th Cloudburst. Chaos at WalsdeiV
>

1944 Jan
-I I'll

Z J Highest flood in 50 years in middle reaches5’
59

1946 Sep 20th Worst flood since 1866' ’
25.59

1960 Nov
27",

Extensive flooding along Calder Valley5’
5‘J

1967 Oct 17th Flooding at Wakefield and Dewsbury”

Local portfolio No. 128, c om p iled  by J.B .W alker. The H a lifax  G uard ian .

•  Levels from Mr W. Oates o f M irfield in February 1853, River Calder.
1799 Aug

^iul
16 J

1806 Jan 6,h 16 4

1815 Dec 6 15 4

1818 Jan - 13 3

1824 Dec 24 12 7

1825 Nov 28 12 0

No flood from this time reached 12ft

1833 Nov 22 12 1

1834 Jan 27 13 1

1835 Jan 16 12 8

1836 Mar 17 J 11

1837 Feb 23 12 6

1837 Dec 20 15 0

1838 Oct 29 12 2

1839 Nov 29 12 2

1840 Jan 24 7 1

1840 Jan 26 12
->
J

1840 Aug 17 12 6

1840 Nov 16 12 5

1843 Oct 28 12 4

1845 Oct 28 12 8

1845 Dec 28 13 6

1852 Feb 5 13 6

• ‘ In addition to these floods, Mr Oates informed us that during the same period, thirty-two other floods 

were registered at M irfield, wherein the water rose above six feet higher than the dam stones near 

Mirfield; but none o f  these attained to 12 feet; they may be excluded from the list o f  great floods.’
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Appendix B(iv) : River Derwent Documentary Flood History/ 1550-1932

Y ea r M onth Day Description Source

1550
-o

1754 Rye flood ’2 22

1787 Borobeck flood"' 22

1799 Sep Hundreds o f acres flooded26 20

1846 Extensive flooding in Ryedale 9 59

1866 Sep 34

1866 Nov 16"' Heavy rain" 2

1869 Dec Thunderstorm. North riding rivers rose rapidly 4 34

1892 Oct Heavy flooding 4 34

1914 Flooding at Pickering29 29

1925 Dec Pickering flooded ’4 34

1927 Aug 25 th Flooding at Pickering2 ’ 29

1931 Sep Disastrous floods in Ryedale and Eskdale^ 34.59

1932 May Flooding at Pickering 9 29
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Appendix B(v) : River Don Documentary Flood Histon1 1655-19-11

Year M onth Day Description Source

1655 Extensive Flooding at Ouse confluence5’
59

1729 Jun 21s' Flood at Sheffie ld14
14

1755 Aug 5"’ Great flood - washed away several bridges °
.'5

1768 Nov Great Hoods’"
'5

1797 Aug
17"'

Don and Sheaf ‘swelled to an amazing height’
35

1799 Aug
7 ,h

Don and Sheaf overflowed ^
35

1806 Jan 16"' One o f the highest floods ever remembered ’
35

1807 May
^nd

Rapid rise'7
17

1834 Ju 1
35

1850 Jan Lower Don19
59

1866 Nov 16"' Heavy rain"
2

1886 May 14th Highest level in 50 year period^
59

1892 Oct 16th Lower reaches3 ?
59

1931 Sep 4'"
59

1932 May 24th Extreme flooding in Doncaster3 ’
59

1941 Oct 1st Highest recorded discharge through Doncaster J
59
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Appendix B(vi) : River Wharfe Documentary Flood History 1673-1965

Year M onth Day Description

1673 Sep II" ' Bridges between Kettlewell and Otley destroyed'1

1686 Kettlewell and Starbotton ‘ the height o f an ordina 

steeple’ 12

1758 Flood at Tadcaster church ’7

1857 Aug

1866 Nov 16'"
•>

Heavy rain"

1868 Jun 8'" ‘disastrous flood ’ in uplands’6

1869 Feb

1869 Dec 18th Kettlewell. Largest in 10 years, 3 inches higher th 

186918

1872 Jun 18th ‘damage on east side o f W harfedale’ 18

1874 Oct 2151 Largest in 16 years'8

1881 Mar
rd

J Three days o f snow. Uplands

1886 Nov

1891 Aug 25"’ Uplands, ‘one o f the biggest floods o f the present
>36

century

1900 Jul 12th
•)

Ilkley. 5.4 to 6 inches o f rain

Source No.

6.8.28.50

12.17.19,33

36

18

18

18.33

18

33.36

43

36
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Appendix B(vii) : River Swale Documentary Flood History 1673-1953

Compiled from :

W illiam s, H .B. 1957. Flooding Characteristics of the River Swale. Unpublished PhD Theses, 

Department o f C ivil Engineering, University o f Leeds.

Year M onth Day Description

1673 Sep I I "’ Brompton-on-Swale flooded, two bridges washed away.

1682 Jul Flooding around Brompton-on-Swale.

1683 Dec 19lh Reeth bridge damaged.

1697 Winter Several bridges damaged.

1701 Jun 25th Cloudburst. Destroyed bridge over Grinton Beck.

1732 Feb 2 nd Flooding at Brompton-on-Swale.

1753 Jan 17lh Brompton bridge washed away.

1771 Nov 16“' Serious flooding throughout northern England, ‘damage about 

R ichmond terrible’ . Many bridges lost or damaged in the SwaU

1814 Dec 1 0 th Heavy rain and thaw, ‘greatest flood ever known (except that o 

1771)’

1821 Apr 25,h Thunderstorm. Rapid rise o f the river.

1822 Feb 2 nd Bridge over Gunnerside Beck destroyed. At Topcliffe this floot 

was higher than in 1947.

1828 Jul 13th ‘The greatest flood ever known at this season’ . Isles Bridge 

damaged.

1835 Mar
H ",

Thaw.

1866 Nov 16"’ Heavy rainfall. Flooding near Swale Nab.

1878 Nov 15"’ Record flood at Thirsk.

1881 Mar
gth

Banks broke at Langton and Scruton. Flooding throughout the 

Swale.

1882 Feb Highest recorded levels at Topcliffe 5 9

1883 Jan 29th Thaw. Severe flooding throughout Swaledale, and Catterick. 

M any bridges destroyed. ‘The river rose 30ft at Keld’

1888 Jul 25th Cloudburst, ‘one o f the biggest summer floods ever known 

swept down Swaledale’ .

1890 Jan 25"’ Gunnerside bridge washed away.

1892 Sep I s’ Swaledale and R ichmond flooded.

1892 Oct 15'" Heavy rain. Swale burst banks at Scruton, Morton Bridge and
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Fairholme. Flooding at Topcliffe.

1894-95 8 ft above normal at Gunnerside Bridge

1897 Mar Catterick flooded, Langton Bridge damaged

1899 July 1 2 th Cloudburst. Upper Swaledaie. Many bridges damaged or 

destroyed, at Keld, Thwaite and Muker.

1900 Oct
2 7 1 1 1

Brompton-on-Swale flooded

1908 Jun
id

J Cloudburst.

1910 Feb 17"’ Thaw and heavy rain, with strong SW  wind. Low lying land 

flooded.

1914 Jun 1 0 "' Cloudburst above Gunnerside. Flooding at Gunnerside and 

Topcliffe.

1916 Dec 29"' Rain on snow. Reeth flooded.

1925 Jan I s' Flooding at Reeth, Grinton, Langton and Brompton-on-Swale.

1927 Sep
2 | st

Flooding worst near Northallerton. Also serious flooding at 

Kirkby Fleetham and Morton-on-Swale. Topcliffe also Hooded

1930 Jul 2 2 nd Northallerton flooded.

1931 Sep 5 th Swale overflowed at Myton.

1931 Cloudburst. Catterick flooded.

1936 Dec 14"' Heavy rainfall. Reeth, Grinton, Scruton and Morton flooded.

1941 Feb 28th Snowmelt. ‘ S im ilar to 1947 flood, being an inch or two higher’

1944 Apr Flooding at Richmond.

1946 Jun Heavy rain.

1947 Mar 2
River only a few feet from the top o f Topcliffe Bridge. Flooding 

throughout the Swale and Yorkshire.

1950 Feb 15th ‘The biggest flood in 25 years’ submerged large areas o f 

Swaledaie.

1950 Sep 5th Flooding at Keld, Grinton and Richmond.

1953 Summer Flood at Muker.
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Appendix B(viii) : River Ure Documentary Flood History 1732-1927

Year M onth Day Description Soi

1732 Feb 2 nd Bridge at Masham washed aw ayl!i IS

1763 Dec Heavy snowfall and long duration rainfalT ’ 59

1771 Greatest for many centuries5 9
5^

1822 Feb 2 nd Masham ‘great flood ’ 18
IS

1866 Nov 16"’ Heavy rain 2 Boroughbridge flooded 5 5 2.55

1868 Feb High levels recorded5 9 59

1883 Jan 29Ih Boroughbridge flooded 5 5
55

1927 Sep
2| si

55
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Appendix B(ix) : River Nidd Documentary Flood History / 763- / AW /

Year M onth Day Description Source No.

1763 Jul Ramsgill Hooded'' ”

1764 Jul 4<" Thunderstorm, Ramsgill flooded 7
7 '.8

1777 Jul Ramsgill flooded’ 18.33

1825 May 6 "' Severe flooding around Pately Bridge11'
IX

1852 Sep 29th
18

1866 Nov 16"' Heavy rain”
2

1868 Feb I s' A foot higher than 182518
IS

1872 Jun
33

1881 Jul 6 ,h
IS

1881 Nov 28th
IS

Heights above M ill threshold, Pately Bridge

Feb 1 1868 3.6

May 6 1825 2 . 6

Sep 29 1852 2 . 0

Jul 4 1777 1.7

Jul 6 1881 0 . 6

Nov 28 1881 0.9

Between July 6 th and Nov 28"' 1881 a series o f seven floods occurred, with the largest on 28lh Nov J 7
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Appendix C : Key to rainfall frequency distribution diagrams in Appendix C fi) - C'(v)

Season

Reduced Varia te (y)



R
a
in

fa
ll

 
(m

m
) 

R
a
in

fa
ll

 
(m

m
) 

R
a
in

fa
ll

 
(m

m
)

278

Appendix C (i) : Seasonal frequency distributions (Rainfall) - Blackmoorfoot 1873-1996
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Appendix C (it) : Seasonal frequency distributions (Rainfall) - Sheffield Weston Park INX3-I996

Jun- Ju l Aug-Sep

Reduced Var ia te  Reduced Varia te

Oct-Nov

Reduced Varia te

Dec-Jan

Reduced Variate
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Appendix C (iii) : Seasonal frequency distributions (Rainfall) - Chesterfield 1906-1996
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Appendix C (iv) : Seasonal frequency distributions (Rainfall) - Bradford Lister Park 191 1-1996

Jll 11-Jul

Reduced Varia te

Aug-Sep

Reduced Variate

Oct-Nov

Reduced Varia te

Feb-Mar

Dec-Jan

Reduced Variate

Apr-May
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Appendix C (v) : Seasonal frequency distributions (Rainfall) - Moorland Cottage 1936-1995

Jun-Jul Aug-Sep

Reduced Variate Reduced Variate

Oct-Nov Dec-Jan

Reduced Variate Reduced Variate

Feb-Mar Apr-May

Reduced Variate Reduced Variate
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Appendix D (i): Washlands in the Derwent catchment
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