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Abstract 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily 

characterised by motor neurone (MN) degeneration and death. ALS can be sporadic (sALS) 

or familial, with a number of associated gene mutations, including C9orf72 (C9ALS). 

Previous studies have found impaired gene expression, implicating pathways involved with 

RNA metabolism and inflammation/immune response. DNA methylation is an epigenetic 

mechanism whereby a methyl group is attached to a cytosine (5mC), usually resulting in 

gene expression repression. 5mC can further be oxidised to 5-hydroxymethylcytosine 

(5hmC). DNA methylation has been studied in other neurodegenerative diseases, but little 

work has been conducted in ALS.  

The aim of this thesis is to elucidate DNA methylation’s role (if any) in the decline of MNs 

without the interactions from other cell types, which may mask MN-specific DNA methylation 

changes. 

Immunohistochemical analysis found higher levels of 5mC and 5hmC in ALS in the residual 

lower motor neurones (LMNs) of the spinal cord, with C9ALS displaying the highest global 

methylation. Interestingly, in LMNs with TDP43 pathology, a loss of 5mC and 5hmC from the 

nucleus was observed.  

LMNs were then extracted from a subset of the same cases using laser capture 

microdissection (LCM). Following this, DNA was extracted from the LMNs and underwent 

analysis using the MethylationEPIC array. Results indicated a global hypermethylation in 

C9ALS, with both hypermethylation and hypomethylation detected at the single gene level in 

ALS. GO and pathway analysis implicated RNA metabolism changes. The MethylationEPIC 

dataset was then compared to pre-existing mRNA expression data, with overlapping hits 

undergoing pathway analysis. Changes were found in cell signalling, inflammation and 

immune response and cell death/apoptosis. 

In conclusion, DNA methylation is a contributory factor in ALS. Data presented in this thesis 

suggests that hypermethylation is a prominent factor. Further studies are warranted to 

further understand the role of DNA methylation in ALS. 
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Chapter 1: Introduction 

This project aims to determine whether abnormal DNA methylation in motor neurones and 

glia is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). 

1.1 Amyotrophic Lateral Sclerosis 

ALS is the most common motor neurone disease. It is characterised by progressive motor 

function loss brought on by degeneration and death of motor neurones (MNs), first described 

in 1869 (Charcot and Joffroy, 1869). Degeneration is seen in both upper motor neurones 

(UMN) and lower motor neurones (LMN), leading to muscle weakness, spasticity and 

atrophy, with death typically occurring three years after disease onset. According to the 

criteria usually used for ALS diagnosis, El Escorial, the incidence of ALS is 1.5-2 per 

100,000 people, per year, with a prevalence of 5-7 per 100,000 people worldwide (Ludolph 

et al., 2015). 

The cause of ALS is unknown. Risk factors include having an immediate family member 

diagnosed with the disease, a lifestyle with vigorous prolonged exercise (Harwood et al., 

2009) and advanced age. The mean age of onset varies from 50 to 65 years of age, with 

only 5% of cases displaying onset below 30 years of age (Zarei et al. 2015). 

1.2 Current treatments in ALS 

There are currently two drug treatments available, Riluzole and Edaravone (Jaiswal 2019). 

Riluzole was introduced into the clinic for ALS in 1994, after randomised controlled trials 

showed a modest increase in patient survival by 2-3 months (Miller et al. 2012). Edaravone, 

approved by Japan in 2015 and the USA in 2017, followed this. Edaravone modestly slows 

the decline in motor function in ALS patients (Edaravone Writing Group 2017). The 

mechanisms of action for both drugs are poorly understood, and no other treatments are 

available for ALS (Petrov et al. 2017). Due to the modest effects of these drugs, it is of high 

importance that research into the complex nature of ALS is carried out in order to provide 

more effective treatments. 

1.3 Causes and genetics of ALS  

ALS is classified as either familial ALS (fALS) or sporadic ALS (sALS): fALS is defined as 

having a family history of ALS, potentially with a known associated gene mutation. sALS 

refers to cases with no known family history of the disease, potentially with no identified 

mutation, with the potential for reduced penetrance. There appears to be overlap between 

these, with some disease-causing mutations being observed in some sALS cases. This may 



18 
 

be due to a number of reasons, including: de novo mutations, family members having died 

before they developed the disease or contact has been lost with family members who may 

carry the mutant gene.  Sporadic cases account for the majority of cases, (90-95%), with 

males being more affected than females, at a ratio of 1.5:1 (Love, et al., 2015). The 

approximate age of disease onset for sALS is 60 years, with approximately 25% of first 

diagnoses being made under 50 years old. The age of onset in fALS is approximately ten 

years earlier than sALS.  fALS makes up 5-10% of diagnoses, defined as specific associated 

genetic dominant inheritance of a mutated gene or having an intermediate family member 

with the disease, although some non-autosomal dominant cases have been reported (Zarei 

et al. 2015). Some cases are familial, but the causative gene is unknown. 

The first mutations identified in fALS were in the gene encoding an antioxidant ubiquitous 

enzyme, superoxide dismutase 1 (SOD1). This gene has been implicated in 20% of fALS 

cases and 5% of sALS cases. The mutations result in structural instability, with misfolding of 

the enzyme. This creates aggregates in the MNs within the central nervous system (CNS). 

Other gene mutations known to harbour causative mutations in ALS include TAR DNA 

binding protein (TARDBP) and fused in sarcoma (FUS), which account for 5-10% of all fALS 

cases. More recently, a mutation in the chromosome 9 open reading frame (C9orf72) gene 

was discovered to be implicated in ALS.  This is found in 37% of fALS cases and 7% of 

sALS cases, making it the most commonly mutated gene (Rademakers, 2012). Mutated 

C9orf72 is also associated with frontotemporal dementia (FTD), which defines a group of 

disorders where the frontal and/or temporal lobes degenerate. This leads to changes in 

behaviour, language and movement, with FTD sometimes being seen in patients also 

suffering from ALS, known as FTD/ALS. 

1.3.1 TDP43 

TAR DNA-binding protein 43 kDa (TDP43) is coded for by the TARDBP gene (Ou et al., 

1995) and acts as a transcriptional repressor. TARDBP’s chromosomal location is 1p36.22, 

from base pairs 11,012,622 to 11,030,528 (see figure 1.1). TDP43 includes six cysteine 

residues, with four of these (Cys 173, Cys 175, Cys 198 and Cys 244) being located in two 

RNA recognition motifs (RRM1 and RRM2). The remaining two cysteine residues (Cys 39 

and Cys 50) are located in the N-terminal domain (Valle and Carrì, 2017). TDP43 contains 

repetitive functional domains. These are referred to as low complexity or prion-like domains, 

which are defined as low complexity sequences found in RNA proteins that have been 

shown to drive protein aggregation in neurodegeneration, and to some extent, normal 

function as well (Hill et al., 2016). Mutations in the TARDBP gene are rare and account for 
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approximately 1% of sALS cases and 4% of fALS cases (Scotter, Chen and Shaw, 2015). 

However, TDP43 proteinopathy is frequently seen in ALS (see section 1.3.2). 

  

Figure 1.1: Visual representation of the chromosomal location of the 
C9orf72 and TARDBP genes 
(A) The C9orf72 gene has a chromosomal location of 9p21.1, with a molecular 
location of base pair 27,546,546 to base pair 27,573,866. (B) The TARDBP gene 
has a chromosomal location of 1p36.22, with a molecular location of base pair 
11,012,622 to base pair 11,030,528 (Genome Decoration Page, NCBI). 

B 

A 
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TDP43 has multiple nucleic acid processing functions and belongs to the heterogeneous 

nuclear ribonucleoprotein (hnRNP) family and has multiple mRNA targets: Sephton et al., 

2011 characterised the transcriptome-wide binding sites of TDP43 in homogenates of mouse 

brain by RNA immunoprecipitation followed by sequencing.  This revealed thousands of 

RNA species, many of which were RNA processing genes. TDP43 plays a role in mRNA 

stability regulation by recruiting CNOT7/CAF1 deadenylase on mRNA 3’UTR. This leads to 

poly (A) tail deadenylation, and therefore shortening (Fukushima et al., 2019). The length of 

the Poly (A) tail is important during mRNA translation, with a longer poly (A) tail increasing 

the duration of the mRNA translation process. The rate-limiting step of the message 

decaying is the shortening of the poly (A) tail. Hence, this could have a damaging effect on 

mRNA translation (Rubin and Halim 1993). 

While TDP43 has both RNA and DNA processing roles, the former has been well studied, 

with the latter relatively neglected. Thus, a literature search using Google Scholar on 

14/08/2019 was conducted, which yielded the following results: 

 Key words: “TDP43” AND “RNA processing” AND “ALS” yielded 4,280 results 

 Keywords: “TDP43” AND “DNA processing” AND “ALS” yielded 52 results. However, 

on closer inspection of these hits, only RNA processing roles of TDP43 were 

discussed 

 

TDP43 is mainly localised to the nucleus, but also shuttles to and from the cytoplasm. Within 

the nucleus, TDP43 regulates splicing of both non-coding and protein-coding genes involved 

in neuronal survival in neurodegeneration (Tollervey et al., 2011) and mitochondrial 

homeostasis maintenance by regulating mitochondrial transcript processing (Izumikawa et 

al., 2017). In the cytoplasm, TDP43 is also involved in transcription regulation, and stress 

granule formation in response to oxidative insult (Higashi et al., 2013), as well as having a 

role in normal skeletal muscle formation and regeneration. Stress granules are mRNA-

arresting ribonucleoprotein particles (RNPs) which form after transient cell stress to stop 

translation and aid in the regulation of cell metabolism (Vogler et al., 2019). TDP43 also 

regulates its own mRNA transcription levels through a negative feedback loop, with TDP43 

binding via the 3’ untranslated region (UTR) to the TARDBP mRNA transcript (Ayala et al., 

2011). 

While TDP43’s RNA processing roles are well documented, the role TDP43 plays in DNA 

processing is less well understood. It is thought to act through homologous DNA pairing 

through its DNA binding domain. In 1995, TDP43 was identified as a cofactor that binds to a 

regulatory element in the long terminal repeat of the human immunodeficiency virus type 1 

(HIV-1), resulting in in vitro transcription being repressed from this element (Ou et al., 1995). 
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However, studies carried out after this point focused solely on the RNA-related roles of 

TDP43. Therefore, DNA processing represents an under-researched area that could be of 

high significance in understanding the role TDP43 plays in ALS. 

1.3.2 TDP43 pathology in ALS 
TDP43 has been posited to have many pathological roles in ALS, including changes in 

protein stability and degradation, impaired cytoskeletal function and altered homeostasis of 

DNA and RNA binding proteins (Peters, 2015). 

A hyper-phosphorylated, ubiquitinated and cleaved form of TDP43 is associated with ALS. It 

is observed in almost all cases of sALS, and most cases of mutation-associated ALS (with 

the exception of cases with mutations of FUS and SOD1) (Manuela Neumann et al., 2006), 

henceforth referred to as pathologic TDP43. This pathologic TDP43 is found in the form of 

pre-inclusions, defined as cells displaying diffuse cytoplasmic TDP43 with concomitant loss 

of nuclear TDP43, and cytoplasmic inclusions, defined as dense aggregates in the 

cytoplasm, again with loss of nuclear TDP43. These inclusions are seen in a subset of 

residual neurones and glia.  Unlike cytoplasmic stress granule formation, when pathologic 

TDP43 inclusions form, it is believed that the cell will not recover.  

Oxidative stress, excitotoxicity and neuroinflammation have been shown to cause TDP43 to 

delocalise from the nucleus, where it is normally found, into the cytosol, where it forms large 

aggregates and oligomers, which are associated with synaptic loss and neuronal death 

(Bozzo et al., 2016; Ederle and Dormann, 2017).   

The four stages of TDP43 proteinopathy in ALS are summarised in table 1.1 (Brettschneider 

et al., 2013). These four stages pertain to the spread of inclusions through the brain.  Other 

classification systems for TDP43 pathology do exist (Tan et al., 2015; Nelson et al., 2019). 

However the system described in by Brettschneider et al., 2013 is the most relevant to ALS.    

The links between ALS pathogenesis and TDP43 protein function are yet to be elucidated. 

However, one possible mechanism includes a toxic loss of function occurring in nuclear 

TDP43 due to disruption of pathways in which TDP43 is involved. Another possible 

mechanism is that the TDP43 cytoplasmic inclusions produced in ALS MNs represent a toxic 

gain of function, leading to MN death (Hill et al., 2016).  
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Table 1.1: The four stages of TDP43 proteinopathy in ALS. 
Stage Areas TDP43 proteinopathy is observed 
I • Motor cortex: neurones from layers II, III, V and VI 

• Neocortex: projection neurones 

• Spinal cord ventral horns: large motor neurones 

• Cranial nerve nuclei: V, VII, X, XI and XII 

II • Prefrontal cortex 

• Some precerebellar nuclei 
• Reticular formation  
• Substantia nigra pars compacta: dopaminergic neurones 

III • Prefrontal granular cortex layers; all apart from layer IV 

• Parietal and temporal cortices: sensory areas (pyramidal 
cells) 

• Inferior colliculus 

• Striatum nuclei 
• Claustrum projection neurones 

IV • Anteriomedial temporal lobe neuronal groups 

• Hippocampal neuronal groups: dentate fascia granular cells 
and pyramidal neurones of Ammon’s horn 

• Cerebellum: some involvement in dentate nuclei 
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1.3.3 FUS 
FUS is a ubiquitously expressed gene, encoded by 15 exons, that belongs to the hnRNP 

family and has many features in common with TDP-43. Structurally, FUS contains an RNA 

recognition motif, C-terminus, a zinc finger motif, and multiple Arg-Gly-Gly repeats. It is 

mainly localised to the nucleus, but shuttles between nucleus and cytoplasm (Mackenzie, 

Rademakers and Neumann, 2010). Nuclear FUS is involved in the regulation of 

transcription, as well as splicing, of thousands of target genes. Within the cytoplasm, FUS is 

part of the formation of RNA transport granules and stress granules (Ayala et al., 2011). 

FUS accounts for approximately 5% of fALS cases and 1% of sALS cases, with 58 

pathogenic FUS mutations identified, with most of these mutations found in the conserved C-

terminus (Lagier-Tourenne et al., 2013), which is required for DNA/RNA binding and the 

modulation of alternative splicing (Zinszner et al., 1997). Mutant FUS is associated with 

misfolded RNA-binding proteins and the formation of aggregates in the cytoplasm, similar to 

in TDP43 pathology (Ederle and Dormann, 2017). These characteristics make it highly 

similar, both structurally and functionally, to TDP43. These similarities also therefore 

implicate nucleic acid processing in ALS disease pathogenesis.  

1.3.4 C9orf72  

C9orf72 is a gene involved in endosomal trafficking regulation and forms part of the C9orf72-

SMCR8 complex, which regulates autophagy (Yang et al., 2016). This gene can be mutated 

in ALS, with C9orf72 mutations taking the form of a hexanucleotide repeat expansion 

comprising a GGGGCC repeat, found in the first intron of the gene, between two non-coding 

exons.  It is located on 9p21.2 from base pair 27,546,546 to base pair 27,573,866 (Homo 

sapiens annotation release 108,GRCh38.p7, Genome Decoration Page, NCBI) (see figure 

1.1). Three transcripts of C9orf72 exist. Variants 1 and 3 contain different non-coding first 

exons, exon 1b for variant 1 and exon 1a for variant 3. These are fused to coding exons 2-

11, with both variants encoding the same 481 amino acid protein. Variant 2 contains exon 1a 

fused to coding exons 2-5, encoding a 222 amino acid protein (DeJesus-Hernandez et al., 

2011) (see figure 1.2, adapted from: Haeusler et al., 2016). A normal number of repeats is 

three, with an intermediate number being 4-27 repeats, which has less certain pathological 

significance. ALS caused by C9orf72 mutations (C9ALS) is normally defined by greater than 

30 repeats (Love et al., 2015).  
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1.3.4.1 C9orf72 pathophysiology in ALS 

Three principal aetiological mechanisms for C9orf72 related ALS are posited: loss of function 

through haploinsufficiency; RNA toxicity from transcript accumulation and proteotoxicity (see 

figure 1.3). 

 

1.3.4.2 Haploinsufficiency in C9orf72-ALS 
There are lower levels of C9orf72 protein found in C9ALS cases, and thus reduced 

expression levels. With respect to haploinsufficiency, cellular roles for C9orf72 have been 

suggested to include the regulation of autophagy and endosomal trafficking in primary 

neurones and neuronal cells (Farg et al., 2014). On knockdown of C9orf72, an increase in 

the autophagosome marker light chain 3 (LC3) was found. This suggests that C9orf72 may 

be involved in the regulation of endocytosis and autophagy (Webster et al., 2016).  C9orf72 

variant 2 showed decreased transcription levels in cells from mutation carriers (DeJesus-

Hernandez et al., 2011), suggesting loss through haploinsufficiency as a possible 

aetiological mechanism.  

C9orf72 knockout mouse models have been developed to test the haploinsufficiency 

hypothesis of C9orf72 pathogenesis (Burberry et al., 2016; Sudria-Lopez et al., 2016). 

Evidence of this hypothesis was seen in lower C9orf72 protein levels in C9ALS/FTD patients 

(Waite et al., 2014). Sudria-Lopez et al., 2016 showed that full ablation of C9orf72 in all 
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tissues results in reduced survival rates, as well as disordered immunity. However, no effect 

on motor function was detected, as well as no ALS-type pathology: No MN degeneration or 

gliosis was present, as well as no abnormal ubiquitination or TDP43 pathology. This is 

similar to findings by Burberry et al., 2016, who also noted lower survival rates, with no 

changes to number of spinal cord (SC) MNs, and no gross changes in SC or brain. In this 

mouse model, an increase in inflammatory cytokines was observed, as well as 

autoimmunity, with increased levels of GFAP-immunopositive glia detected. The inability to 

develop a mouse model that accurately replicates the pathology of ALS indicates that the 

role of pathological studies of human tissue is of vital importance. 

1.3.4.3 C9orf72-ALS and RNA toxicity 
RNA toxicity may result from the accumulation of bidirectionally-transcribed sense 

(GGGGCC) and anti-sense (CCCCGG) transcripts which appear to sequester RNA binding 

proteins, leading to defective processing of pre-messenger RNA (Cooper-Knock et al., 

2015). 

RNA containing the C9orf72 expansion repeat forms nuclear RNA foci, which are toxic. 

These interact with and sequester RNA binding proteins, leading to transcriptome defects. 

Both sense and anti-sense RNA transcripts are produced. A similar mechanism is involved 

in other neurodegenerative diseases caused by repeat expansions, including Huntington’s 

disease (HD) (Wang et al., 2013) and myotonic muscular dystrophy (Machuca-tzili et al. 

2005). 

1.3.4.4 C9orf72-ALS and proteotoxicity 
Proteotoxicity is impairment of cell function as a result of protein misfolding. In the context of 

C9orf72-ALS, this is caused by the production of dipeptide repeat proteins (DPRs) from an 

unconventional form of translation from expanded nucleotide repeats. This process is 

referred to as repeat-associated non-ATG (RAN) translation, it occurs in all reading frames, 

resulting in the production of five DPRs in C9forf72-related FTD/ALS. These DPRs are 

aggregation-prone and can accumulate in the CNS (Ash et al., 2013).  The DPRs are also 

associated with toxicity, in the form of TDP43 proteinopathy, microgliosis and extramotor 

involvement (Moens et al., 2019).  

1.4 The neuropathology of ALS 

Some gross brain abnormalities are observed in ALS, including macroscopic atrophy of the 

SC anterior nerve roots. There may also be atrophy of the pyramids in the medulla and, on 

occasion, the precentral gyrus.  Some reduction in the white matter of the corticospinal tract 

can occur. At the microscopic level, neuronal and axonal loss is seen. This is characterised 
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by degeneration and loss of the large MNs in the anterior horn (AH) of the SC and the motor 

nuclei of the brainstem. Myelinated axon loss is present in both the lateral and anterior 

corticospinal tracts of SC and there may be decrease in AH size (Saberi et al., 2016). TDP43 

proteinopathy is also a major neuropathologic marker of ALS, and is previously discussed in 

section 1.3.2. 

1.4.1 Extramotor structures affected in ALS  
All cases of ALS show TDP43 pathology in motor regions, with some cases displaying 

TDP43 pathology in nonmotor regions. Clinically, this continuum of pathology from motor 

system to motor and extra motor pathology to more dominant nonmotor pathology can be 

observed in patients who display motor symptoms, and those that present with cognitive 

symptoms, which is normally classified as FTD. Frontotemporal lobar degeneration-TDP 

(FTLD-TDP) cases display prominent nonmotor pathology in the frontal and  temporal lobes 

(Arai et al., 2006). Some cases of FTLD-DTP also have additional motor pathology. Some 

patients present with both motor and cognitive symptoms, and can be diagnosed with 

FTD/ALS(Mackenzie, Rademakers and Neumann, 2010). There is significant correlation 

between the location of TP43 pathology and the clinical phenotype of ALS and FTD (Tan et 

al., 2015). 

Neuronal TDP43 pathology has been observed in the hippocampus and neocortex (Geser et 

al., 2008), as well as in the hippocampus and neocortex (Neumann et al., 2006). Extramotor 

involvement in ALS pathology is noted in stage II of pathology, as determined by 

(Brettschneider et al., 2013) (discussed in section 1.3.2), with the prefrontal cortex showing 

signs of pathology. This spreads to involve further extramotor regions in stages III and IV. 

Microglial activation can also be observed in extramotor regions, and will be further 

discussed in section 1.4.2. 

1.4.2 Neuroinflammation and glial pathology in ALS 
Neuroinflammation in ALS is characterised by astroglial activation, T-lymphocyte infiltration, 

overproduction of inflammatory cytokines and microglial activation.  

Microglia are monocytes, forming the active immune defence system of the CNS, and can 

have both neuroprotective and neurotoxic functions. Microglia become activated and 

undergo morphology changes, broadly classified as either M1 (classical activation/pro-

inflammatory) or M2 (anti-inflammatory), which can be further sub-divided into alternative 

activation and acquired deactivation. However, recent studies have suggested that this 

classification system is too simplistic, with some microglia not falling into either of these 

categories (Friedman et al., 2018; Böttcher et al., 2019). This was determined through single 

cell analysis of mouse and human cortex, where phenotypes that were transcriptionally 
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distinct from the M1/M2 classifications were found. Microglia have multiple functions, 

including: CNS development, innate immune function (pathogen recognition), phagocytosis, 

cytotoxicity and inflammation/immune response modulation (Boche et al, 2013). In ALS, 

microglia are activated. Widespread microglial activation has been observed in living ALS 

brains using positron emission tomography (PET), with a correlation between intensity of 

microglial activation in motor cortex (MCx) and severity of clinical MN deficits observed (Liu 

and Wang, 2017). This microglial pathology also correlates with UMN degeneration severity 

in ALS, with activated microglia releasing proinflammatory cytokines and reactive oxygen 

species in response to neuronal stress, leading to increased inflammation in ALS brains 

(Saberi et al., 2016).  

Microglial pathology is also present in nonmotor and extramotor regions in ALS 

(Brettschneider et al., 2012), with PET analysis showing microglial activation in the cerebral 

cortex (particularly the MCx), supplementary motor regions and temporal cortex (Corcia et 

al., 2012). Astrocytes have a number of roles, including supporting endothelial cells of the 

blood brain barrier (BBB), extracellular ion balance maintenance, providing nutrients to 

nervous tissue and repair of the brain/CNS after injury, with  a trophic effect on neurones 

(Saberi et al., 2016). Astrocytes have been implicated in ALS pathology (Allen, Shaw and 

Ferraiuolo, 2017). Pathologic astrocytes display increased immunoreactivity for GFAP and 

the calcium binding protein S100β, as well as expressing inflammatory markers (Saberi et 

al., 2016). 

1.5 DNA damage in ALS 

DNA damage is a mechanism proposed to be involved with the pathogenesis of a number of 

neurodegenerative diseases, including ALS. DNA damage can be caused by the cell itself, 

referred to as endogenous DNA damage. This can be caused in a number of ways, 

including: oxidative damage, apoptosis, excision repair and depurination (disruption of the 

bond between deoxyribose in the DNA backbone and either base A or G, causing the base 

to be removed, resulting in a depurinated sugar). DNA damage can also be caused by 

external influences that the cell is exposed to. This is referred to as exogenous DNA 

damage, and includes; physical damage caused to the cell, such as radiation, or through 

chemical agents, such as cytotoxic drugs (Brown and Jackson, 2015). This damage can 

have a number of forms, including damage to the sugars or bases of DNA, single stranded 

breaks (SSBs) and double stranded breaks (DSBs). DSBs may be lethal to the cell and may 

not  be capable of being repaired (Kuo and Yang, 2008).  

Histones are proteins that form a major component of chromatin. The function of a histone is 

to package and order DNA into nucleosomes (structural subunits), with histones found to 



29 
 

play a role in gene regulation. There are currently five known families of histones. One of 

these families is H2A. This core histone molecule is made up of individual histone proteins: 

H2A, which has the greatest number of variants (H2A.1, H2A.2, H2A.X and H2A.Z), as well 

as H2B, H3 and H4. This histone core, along with DNA, make up the nucleosome complex 

(see figure 1.4). H2AX is a variant of the H2A protein, with H2AX making up around 10% of 

the total H2A protein in humans. The H2AX protein has been found to be incorporated into 

histones throughout the DNA and is unique in its structure due to its carboxyl tail. The 

carboxyl tail sequence is highly conserved, with one serine at position 139, and one 

glutamine residue at position 40. Together, the serine and glutamine residue make up the 

SQ motif. In the presence of DNA damage, H2AX is phosphorylated on serine at position 

139 to produce γH2AX. The γH2AX protein is one major marker of DSBs, it is recruited to 

sites of DNA damage, where it then recruits other components of the DNA repair machinery.  

DNA damage response (DDR) is activated by a cell with the aim of repairing damage. 

However, if the DNA cannot be repaired, this induces apoptosis. In one study, IHC identified 

an upregulation of DDR markers, including γH2AX, in lumbar MNs from C9ALS cases (Farg 

et al., 2017). This is in contrast to Vazquez‐Villaseñor et al., 2019, who conducted IHC in the 

MCx and frontal association cortex (FACx). γH2AX+ neuronal and glial nuclei quantification 

in sALS indicated no difference in γH2AX expression. Potential conflict between these 

findings could be caused by a number of factors. This includes that different antibodies for 

γH2AX were used in each study. Another is that different regions were focused on, and 

finally, one study focuses on C9ALS cases, with the other focusing on sALS cases. It could 

be that differences in DNA damage exist between sALS and C9ALS cases.  

Many other genes known to have mutations in some cases of ALS including SETX, EWSR1 

and TAF15, have roles in DNA damage and repair, suggesting a role for DNA integrity in 

ALS pathophysiology.    
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1.6 Epigenetics: DNA methylation  
Epigenetic changes are defined as stable alterations that are made to either DNA or histone 

proteins that alter gene expression, but do not affect the base sequence. Epigenetic 

mechanisms are involved in gene expression regulation and are required for specific cell-

type gene expression (Tammen, Friso and Choi, 2013). Little research has been conducted 

into the possibility of epigenetic pathology in ALS. DNA methylation is the most studied 

epigenetic mechanism in cancer and other forms of neurodegeneration including Alzheimer’s 

disease (AD) (Qazi et al., 2018), and is the process of attaching a methyl group to a 

cytosine. This usually results in gene silencing caused by the methylated cytosine directly 

preventing the binding of transcription factors to the gene promoter by changing the 

chromatin structure (see figure 1.5). DNA methylation has also been shown to be involved in 

promoting genomic stability (Robertson and Wolffe, 2000). 

DNA methyltransferases (DNMTs) are responsible for the attachment of methyl groups to 

cytosine nucleotides in DNA and have two classes: De novo DNMTs are able to newly 

methylate cytosines, setting up DNA methylation patterns (DNMT3a and DNMT3b), while 

maintenance DNMTs maintain these DNA methylation patterns (DNMT1).  

DNMT3a has previously been shown to have higher DNA methylation activity than DNMT3b 

(Takeshima et al., 2006), and its role has not yet been elucidated in ALS. Hence, the priority 

of the DNMT IHC in this study focused on DNMT1 and DNMT3a, with the aim to move on to 

DNMT3b. The role of DNMTs in neurodegeneration is discussed further in section 1.12. 

Cytosine methylation results in the formation of 5-methylcytosine (5mC). This can be 

oxidised by ten-eleven translocation (TET) enzymes to 5-hydroxymethylcytosine (5hmC). 

Further oxidation results in further demethylation into 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (Ito et al., 2011). Terminal deoxynucleotidyl transferase (TdT) or 

thymine DNA glycosylase (TDG) convert 5fC and 5caC back to unmethylated cytosine by 

base excision repair (Zhang et al., 2012) (see figure 1.6). 

5mC is implicated in gene expression repression, synaptic plasticity, gene imprinting, 

chromatin structure maintenance and X-chromosome inactivation.  It is enriched in genes 

encoding proteins with function in neurones and other nervous system cells (Jin et al., 2011). 

5hmC is present in high levels in fully differentiated neurones (Coppieters et al., 2014) and 

low levels in stem cells (Orr et al., 2012), suggesting 5hmC is present in areas of low cell 

proliferation. Global 5hmC loss has been detected in cancers (Pfeifer, Kadam and Jin, 

2013), suggesting that 5hmC cannot be maintained in proliferating cells (Jin et al., 2011). 

5hmC is mostly absent from non-gene-encoding regions of DNA (Jin et al., 2011), and is 

largely found at CpG sites and promoter regions, as is 5mC. CpG sites are DNA regions 
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where a cysteine is followed by a guanine, separated by a phosphate (Illingworth and Bird, 

2009).   

5hmC levels have been shown to be generally present at 10% of the levels of 5mC in the 

genome (Branco, Ficz and Reik, 2012), but with higher levels present in the CNS (Globisch 

et al., 2010). 5fC and 5caC levels are even less abundant in the genome than both 5mC and 

5hmC (Ito et al., 2011).  
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1.7 DNA methylation and ageing  
There are well-established alterations in gene expression in the brain with age (Dillman et 

al., 2017), which may be due to alterations in methylation.  Thus, Kraus and colleagues 

(Kraus et al., 2015) quantified the number of neurones positive for nuclear 5hmC in 

neurologically healthy cases at post mortem at a variety of age ranges: foetus (range 17-30 

weeks), adolescent (range 15-23 years), adult (range 39-42 years), elderly (range 57-68) 

and aged (range 78-81 years). It was found that the cortex had 50% greater numbers of 

positively-stained neuronal nuclei, while the white matter had 200% greater numbers of 

5hmC-positive (5hmC+) glia in the aged group compared to the other groups. The internal 

granular cell layer (largely neurones) and the molecular cell layer of cerebellum, composed 

of only glial cells, showed a significant increase of 5hmC from foetus until adulthood, where 

levels then started to decrease. Purkinje cells exhibited 5hmC positive nuclear staining in all 

age groups. As this study suggests there are varying levels of 5hmC over a lifespan, this 

raises the possibility of changes in 5hmC levels over time may play a role in ageing and 

neurodegeneration. Variations in 5hmC levels over time, plus the relatively higher levels of 

5hmC in the brain compared to the rest of the body suggests it could be a target for 

dysregulation in abnormal ageing, and therefore a potential contributory factor in 

neurodegenerative diseases (López, Fernández and Fraga, 2017). A study of 5hmC in 

mouse cerebellum found increased levels of 5hmC genes associated with 

neurodegeneration in aged mice (Song et al., 2011). Accordingly, as an increase in DNA 

hydroxymethylation is associated with ageing, it raises the possibility of vulnerability to age-

related neurodegenerative diseases.  

1.8 Epigenetic clocks 
Epigenetic drift is defined as alterations of DNA methylation within cells associated with age, 

with a general net loss of DNA methylation during ageing (Horvath and Raj, 2018). 

Epigenetic age estimators, referred to as epigenetic clocks, indicate how biologically aged a 

specific tissue or blood is in comparison to the chronological age of an individual based on 

the pattern of gene methylation seen. Horvath’s clock is the most well-known of the 

‘epigenetic clocks’ (Horvath, 2013). Epigenetic age estimators use sets of CpGs, known as 

clock CpGs, plus an algorithm to estimate the age of a tissue. Epigenetic clock algorithms 

have been used to study age-related neurodegenerative conditions, including Alzheimer’s 

disease (AD), dementia, Huntington’s disease (HD) and Parkinson’s disease (Horvath and 

Raj, 2019), with findings suggesting an accelerated epigenetic age in those with 

neurodegenerative conditions compared to those who were neurologically healthy. This 

suggests that increased epigenetic age could be a factor in other neurodegenerative 

diseases, including ALS. 
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1.9 DNA methylation in neurodegeneration 

Abnormal global (within tissue as a whole) and local (within a specific cell population) DNA 

methylation patterns have previously been associated with several neurodegenerative 

diseases, including AD and HD (Pook, 2012; Lu et al., 2013). 

The majority of epigenetic studies have been carried out in AD. IHC studies of 5mC and 

5hmC in AD have shown both hypo and hypermethylation in different brain regions, making 

it difficult to determine the global trend of methylation in AD/neurodegeneration for the brain 

overall (Roubroeks et al., 2017). A study by Ellison et al. 2017 conducted gas 

chromatography/mass spectrometry (GC/MS) in a number of brain regions, analysing brains 

from both early and late stage AD. Findings show that there were global changes in both 

5mC and 5hmC levels in the early stage brains, but that late stage brains showed similar 

5mC and 5hmC levels to controls. A decrease in 5mC was found in cases displaying 

dementia with Lewy bodies (DLB) and frontotemporal lobar degeneration (FTLD) compared 

to controls. An increase in 5hmC was found in pre-clinical AD, in cases displaying mild 

cognitive impairment, and in FTLD/DLB cases compared to controls. 

Lunnon et al., 2014 found hypermethylation in the chromosomal region associated with the 

Ankyrin 1 (ANK1) gene in entorhinal cortex, superior temporal gyrus and prefrontal cortex of 

AD brains using the Illumina 450k array platform. This has 450,000 probes to detect DNA 

methylation at various sites. ANK1 was also found to be hypermethylated in other studies of 

different brain regions, such as in the entorhinal cortex (Smith et al., 2019) and the temporal 

cortex (De Jager et al., 2014). Further, a study of the prefrontal cortex and superior frontal 

gyrus found HOXA to be hypermethylation. This is of interest, as HOX genes help maintain 

akyrin locus expression (Smith et al., 2018). Another study, focusing on late-onset AD 

superior temporal gyrus, showed a number of differentially methylated regions (DMRs), 

mostly displaying hypermethylation (Watson et al., 2016). Together, these findings indicate 

that not only do DNA methylation levels vary in different regions of the AD brain, but 

changes in DNA methylation also vary based on early or late stage AD.  

Aside from AD, studies of HD have shown loss of 5hmC and increased 5mC (Villar-

Menéndez et al., 2013), in the putamen of HD patients, as well as genome-wide 5hmC loss 

in the striatum and cortex of HD mouse brain (Wang et al., 2013). Further studies are 

needed to identify if this is a causal factor in disease onset, or has arisen as a consequence 

of disease progression.  
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1.10 DNA Methylation in ALS 

Thirty six percent of C9orf72 expansion carriers display expansion-specific 

hypermethylation, observed in the 5’ CpG island in the promoter region of C9orf72, around 

200 base pairs upstream of the 5’ end of the GGGGCC repeat (Xi et al., 2012). 

High variability in global methylation status across the genome has been detected between 

different familial groups with C9orf72 mutations, as determined by predicting the two CpG 

islands immediately flanking the C9orf72 repeat. However, similar methylation levels in 

C9orf72 were detected within familial groups (Xi et al., 2013). A correlation was observed 

between a higher degree of methylation and shorter disease duration. This disease 

modifying mechanism is similar to that seen in Huntington’s disease, which is also caused by 

a repeat expansion and is similarly associated with differential methylation of the HDD gene 

(Villar-Menéndez et al., 2013). No hypermethylation was detected in persons with a normal 

number of repeats, defined as up to 43 in this study.  

CpG islands and sites near to promoter regions of nearby genes in the region of the C9orf72 

expansion repeat were also hypermethylated, suggesting more CpG islands are present due 

to the C9orf72 repeat expansion, resulting in increased methylation as a result of the repeat, 

leading to  lower mRNA expression. These findings have to be regarded with a little caution, 

as this study used homogenated tissue, which can mask each cell type’s individual 

contribution to disease. Looking at DNA methylation of specific cell types would be of use to 

determine each cell type’s role in the onset of disease: ALS is characterised by neuronal cell 

death, astrogliosis and microgliosis. This may result in altered cell proportions, which could 

affect methylation profiles observed when the various cell types are pooled without 

compensation for intergroup differences in cellular composition. 

Ebbert et al., 2017 conducted a study of human post-mortem (PM) cerebellum and frontal 

cortex, and performed reduced representation bisulphite sequencing (RRBS). This method 

combines the use of restriction enzymes with bisulphite conversion, resulting in the 

enrichment of areas of the genome with high CpG content. Differentially methylated DNA 

methylation profiles were found, including in TARDBP and RANGAP1, a gene that interacts 

with C9orf72 expanded RNA. This implicates ALS-related pathologies in extra motor and 

non-motor regions, and could represent an ‘early-phase’ of ALS, as the motor regions are 

generally more affected, with neurodegeneration more evident. Collectively, these studies 

suggest a role of DNA methylation in C9ALS. 
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1.11 Gene methylation and sporadic ALS 

Gene methylation may be significant to ALS aetiology outside the context of C9orf72 

mutations: The first study to investigate the role DNA methylation played in ALS was an 

epigenome wide association study (EWAS)  (Morahan et al., 2009). Frontal cortex from ten 

sALS patients and 10 controls underwent DNA methylation analysis using Affymetrix 

GeneChip Human Tiling 2.0R arrays. A number of genes were found to be differentially 

methylated, with pathway analysis showing altered DNA methylation in genes involved in 

calcium homeostasis, oxidative stress and neurotransmission. Aside from demonstrating 

altered methylation, albeit with the limitation of using tissue homogenates, this study 

demonstrates that regions outside of the motor system are affected in ALS. 

A second study to use EWAS in ALS, has shown global increases in 5mC and 5hmC levels 

in post mortem sALS spinal cord, but not in blood (Figueroa-Romero et al., 2012). This 

suggests that the DNA methylation profiles in the CNS differ from those of blood.  This 

highlights that blood biomarkers may not be a good indicator of crucial DNA methylation 

changes in ALS and illustrates the need for understanding cell specificity of DNA methylation 

patterns. Genome-wide expression profiling of total RNA was also conducted in this study. 

Gene enrichment analysis of these data identified several biological functional categories 

that had also been identified in 5mC profiling, allowing comparisons between the 5mC 

methylation patterns and the mRNA expression analysis data. 112 epigenomes were 

identified as showing concordant direction of DNA methylation and mRNA expression 

changes. These had functional enrichment for immune response and neurone adhesion. 

1.12 DNMTs and neuronal degeneration 
Feng et al., 2010 knocked down DNMT1 and DNMT3a in the forebrain excitatory neurones 

of adult mice and found that while there was no neuronal loss, the size of the neurones were 

significantly smaller than that of the control type mice. Behavioural changes related to 

learning and memory were found, with DNA methylation levels significantly decreased, and 

altered expression in genes related to synaptic plasticity. This study highlights the relevance 

of studying DNMTs in neurodegeneration. 

Chestnut et al., 2011 tested the hypothesis that DNMTs could mediate neuronal cell death. 

DNMT3a expression was experimentally promoted in NSC34 cell culture, which led to 

degeneration. Camptothecin was then used to induce apoptosis. In response to this, levels 

of DNMT1 increased fivefold, with levels of DNMT3a increasing twofold, as detected by 

DNMT enzyme-linked immunosorbent assay (ELISA). An accumulation of 5mC was also 

seen in the nucleus of these cells, detected by immunofluorescence microscopy. This finding 

suggests that neuronal degeneration and death is regulated by DNMTs. 
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Oh et al., 2016 isolated human bone marrow mesenchymal stromal cells from ALS patients 

and found that DNMT1 was excessively expressed. When these cells were treated with the 

DNMT inhibitor RG108, PCR analysis confirmed that there was increased expression of the 

anti-senescence genes TERT, VEGF and ANG, and a decrease of the expression of 

senescence genes ATM and p21. This suggests that excessive DNMT1 (and by association, 

potentially DNA methylation) could be associated with increased senescence. Štalekar et al., 

2015 knocked down TDP43 in a neuroblastoma cell line, and found that expression of 

DNMT3a was significantly downregulated. Together, this suggests that DNMT1 and 

DNMT3a are potential players in the pathogenesis of ALS, and that they may have a 

functional involvement with TDP43, a protein known to be mutated in ALS. Of note is the 

availability of pre-existing drugs targeting DNA methylation, in the form if DNMT inhibitors, 

providing possible candidate treatments (Foulks et al., 2012; J. Li et al., 2017). 

1.13 Concluding remarks: What next for DNA methylation in 

ALS? 

Only a small amount of work has been conducted thus far to elucidate the effects of DNA 

methylation in ALS. Work performed on other neurodegenerative diseases, in particular AD, 

gives promise of a possible association between epigenetics and ALS that warrants further 

investigation. The most pressing matter is the ability to conduct experiments on individual 

cell types. The contribution of each cell type present within the brain and CNS would be 

expected to have different DNA methylation patterns, with all cells contributing to disease. 

Therefore, determining each cell type’s specific role in relation to disease is important. DNA 

methylation patterns in individual cell types within the normal ageing brain also need to be 

studied in order to understand which DNA methylation patterns are present within healthy 

individuals. This would aid further studies on DNA methylation in neurodegeneration.  

Aside from DNA methylation, a small study has been conducted as part of this thesis to 

assess DNA damage in ALS. Data from this supports prior findings of a lack of DNA damage 

in neurones in ALS (Vazquez‐Villaseñor et al., 2019), and therefore the main focus of this 

thesis will be ALS and DNA methylation. 
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1.14 Hypotheses and Aims 

This study has the following aims: 

Overall aim 1: Assess global DNA methylation, DNA hydroxymethylation and DNA 

damage levels using immunohistochemistry. 

1. To conduct a pathological investigation of the levels of DNA methylation and 

hydroxymethylation in control, sALS and C9ALS CNS spinal cord (SC), motor cortex 

(MCx) and anterior frontal cortex (AFCx) using IHC for 5mC and 5hmC. This will be 

conducted for anterior horn (AH) LMNs, as well as glia of the AH, lateral corticospinal 

tract (LCT) and dorsal column (DC) in SC, as well as glia in the white matter and 

UMNs in the grey matter of MCx and neurones in AFCx. 

2. To investigate the methylation status of LMN cells with and without TDP43 

proteinopathy in the anterior horn using the same methods as in aim 1.  

3. To use the spread of TDP43 proteinopathy in the brain to study DNA methylation in 

controls and sALS with TDP proteinopathy versus those that have not developed 

TDP43 proteinopathy in the anterior frontal cortex . The sALS cases without TDP43 

proteinopathy may also provide data on any early changes that occur, as an 

intermediate between control and sALS with TDP43 pathology cases. C9orf72-ALS 

cases will also be assessed in this region. These cases are characterised by 

significant TDP43 pathology in this locus.  

4. To investigate the localisation and levels of γH2AX in SC for control, sALS and 

C9ALS cases using IHC.  

5. To assess the relationship between γH2AX status and TDP43 proteinopathy in MNs, 

also using IHC. 

These studies will test the following hypotheses in relation to aim 1: 

1. There is greater expression of 5mC and 5hmC in ALS cases than in healthy controls 

in SC AH MNs and glia. 

2. The same effect seen in SC will also be seen in MCx/upper motor neurones and 

AFCx.  

3. Higher expression of 5mC and 5hmC will be observed in MNs displaying TDP43 

proteinopathy  

4. There will be no difference in γH2AX expression in glial and MNs cells in ALS versus 

controls 

5. γH2AX expression will be higher in MNs with TDP43 proteinopathy compared to MNs 

not displaying TDP43 proteinopathy. 
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Overall aim 2: Quantify DNA methylation at single nucleotide resolution 

1. To assess DNA methylation in MNs from control, sALS and C9ALS SC at the gene 

level using the Illumina Methylation 850k EPIC BeadChip arrays. MNs will be 

collected from PM formalin fixed paraffin embedded (FFPE) SC tissue using laser 

capture microdissection (LCM). DNA will then be extracted before undergoing 

bisulphite conversion and microarray analysis using the MethylationEPIC BeadChip. 

Data will be analysed using the R package RnBeads. 

2. To attempt validation of the findings of the MethylationEPIC BeadChip using the 

creation of a bisulphite converted- next generation sequencing methyl library (BS-

NGS) from the same cases.  

3. To compare DNA methylation patterns from the MethylationEPIC BeadChip with 

mRNA expression data. The data collected from this will be used to assess the effect 

of DNA methylation on mRNA expression in diseased MNs. 

These studies will test the following hypotheses in relation to aim 2: 

1. Hypermethylation will be observed in ALS cases versus healthy controls. 

2. Any methylation changes in MNs between ALS cases and healthy controls will be 

more marked in C9orf72-ALS cases versus sALS cases, with this methylation 

affecting the mRNA transcriptome on these neurones, therefore impacting upon 

disease process. 
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Chapter 2: Materials and Methods 

2.1 Suppliers 

Abcam PLC, Discovery Drive Cambridge Biomedical Campus, Cambridge CB2 0AX, UK. 

Abgent Inc., 9765 Clairemont Mesa Blvd, Suite C, San Diego, CA 92124, USA. 

Applied Biosystems Inc., 850 Lincoln Centre Drive, Foster City, CA 94404, USA.  

Beckman Coulter, Oakley Ct Kingsmead Business Park London Road High Wycombe 

Buckinghamshire HP11 1JU.  

Eppendorf Ltd., Eppendorf House, Gateway 1000 Whittle Way, Arlington Business Park, 

Stevenage SG1 2FP, UK.  

Fisher Scientific Inc., Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG, 

UK.  

GenWay Biotech. Inc., 6777 Nancy Ridge Drive San Diego, CA 92121, USA.  

Hamamatsu Photonics UK Ltd., 2 Howard Court Tewin Road, Welwyn Garden City, 

Hertfordshire, AL7 1BW, UK.  

Illumina®., Watson Building 11 , Granta park, Great Abington, Cambridge, CB21 6GP, UK.  

Leica Microsystems Ltd., Davy Avenue, Knowhill, Milton Keynes, MK5 8LB, UK.  

Life Technologies Ltd., 3 Fountain Drive, Inchinnan Business Park, Paisley, PA4 9RF, UK.  

Proteintech Group., 4th Floor, 196 Deansgate, Manchester, M3 3WF, UK.  

Qiagen., Skelton House, Lloyd St N, Manchester M15 6SH.  

R&D Systems, 614 McKinley Place NE, Minneapolis, MN 55413, USA. 

Santa Cruz Biotechnology, Bergheimer Str. 89-2, 69115 Heidelberg, Germany. 

Thermo Scientific., 168 Third Avenue, Waltham, MA 02451, USA.  

Vector laboratories Ltd., 3 Accent Park, Bakewell Road, Orton Southgate, Peterborough, 

PE2 6XS, UK.  

Zymo Research., Mülhauser Str. 9, 79110 Freiburg im Breisgau, Germany. 

2.2 Immunohistochemistry  

A table of standard laboratory solution preparations used is summarised in appendix II. 

2.2.1 Human tissue for immunohistochemistry  

Formalin-fixed paraffin-embedded (FFPE) human PM SC, MCx and AFCx was obtained 

from the Sheffield Brain Tissue Bank (SBTB). For this study, sections were used from three 

groups: controls, sALS and ALS caused by C9orf72 mutations (C9ALS). Groups were age- 

and sex-matched, as far as was possible. Case details are summarised in table 2.1 for 

γH2AX MNs and γH2AX glia, table 2.2 for SC DNA methylation and hydroxymethylation, 

table 2.3 for FCx DNA methylation and hydroxymethylation and table 2.4 for MCx DNA 
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methylation and hydroxymethylatino. For the γH2AX study, full demographics for the cohort 

were unavailable. This resulted in being unable to statistically control for variables within this 

study. While this is not ideal, it is representative of the limitations of working with human 

tissue. Previous findings within the laboratory group found no difference in γH2AX was 

observed between ALS and controls (Vazquez‐Villaseñor et al., 2019) (discussed in section 

1.5). However, it was considered important to determine if there is a difference within the 

ALS group for MNs displaying TDP43 pathology, and those that were not. This latter stage, 

focusing only on ALS cases, have full demographic details available. 

Ethical approval for this study has been granted by the Management Committee of SBTB, 

which in turn has ethical approval to provide tissue for research under the provision to act as 

a Research Tissue Bank, as approved by the Scotland A Research Ethics Committee (ref. 

08/MRE00/103) (see appendix I). 
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2.2.2 Immunohistochemistry – an overview 
IHC was conducted to visualise the cellular localisation antigens of interest in cells and 

tissues. The standard avidin/biotinylated enzyme complex (ABC) staining method was 

utilised, in conjunction with 3,3’-diaminobenzidine (DAB) (both Vector Laboratories, UK) for 

visualisation.  All work was carried out at room temperature (RT), unless otherwise stated.  

5 µm sections of SC were cut onto positively charged slides. Sections were cut sequentially 

onto two or three slides, as described in figure 2.1 and dried at 37  Cͦ overnight. Sectioning in 
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this manner allows the same MN nuclei to be visualised in multiple sections. For frontal and 

MCx, one 5 µm section per slide was used. One of two conditions was used for antigen 

retrieval. These conditions are summarised in figure 2.2.  
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2.2.3 Immunohistochemistry 
IHC was carried out for γH2AX, TDP43, 5mC and 5hmC. Conditions for all primary 

antibodies used are summarised in table 2.5. Mrs Lynne Baxter conducted the 

immunostaining for γH2AX. Antibody optimisation was also carried out for numerous DNMT1 

and DNMT3a primary antibodies, also summarised in table 2.5. 

Sections were subjected to IHC using the standard ABC technique. The mouse Vectastain 

Elite kit was used for 5mC, with the rabbit Vectastain Elite kit used for γH2AX, TDP43 and 

5hmC (Vector Laboratories, UK). The substrate DAB (Vector Laboratories, UK) was used in 

conjunction with all Vectastain Elite kits (Vector Laboratories, UK). 

Positive controls were used to assess the efficiency of the staining. Either negative controls 

or IgG controls were conducted, with the primary antibody step omitted from one section in 

each IHC run. 

1) Section blocking: either 1.5% normal horse serum (150 µL horse serum 

concentrate in 10 mL Tris-buffered saline (TBS)) for 5mC, or 1.5% goat serum (150 

µL goat serum concentrate in 10 mL TBS) for γH2AX, TDP43 and 5hmC for 30 min. 

erum was removed from sections using gentle tapping. 

2) Primary antibody incubation: 150 µL mouse monoclonal 5mC antibody was added 

to the section at 1:100 dilution overnight RT (Genway Biotech, GWB-BD5190). 150 

µL TDP43 rabbit monoclonal antibody was applied to section at 1:4,000 dilution for 1 

hour RT (Proteintech, cat no. 10782-2-AP), with 150 µL 5hmC rabbit monoclonal 

antibody applied at 1:32,000 for 1 hour at RT (Abcam, cat no. ab214728).  

3) Sections were washed in TBS for 5 min. 

4) Secondary antibody incubation: 0.5% biotinylated secondary antibody was applied 

for 30 min (50 µL in 1.5% horse serum for 5mC, 50 µL in 1.5% goat serum for 

γH2AX, TDP43 and 5hmC). 

5) Sections were washed in TBS for 5 min. 

6) ABC incubation: ABC reagent was applied (100 µL reagent ‘A’ and 100 µL reagent 

‘B’ in 10 mL TBS, prepare at least 30 minutes before use) and incubated for 30 min. 

7) Sections were washed in TBS for 5 min. 

8) DAB incubation: DAB substrate (Vector Laboratories, UK) (100 µLµL buffer, 200 µL 

DAB and 100 µL hydrogen peroxide with 5 mL dH2O) was prepared and incubated 

on sections for 2-10 min.  

9) Sections were washed in dH2O to quench any further enzymatic action.  

10) Sections were counterstained with Harris’ haematoxylin (Leica, UK) for 2 min, 

followed by rinsing in tap water. 
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11) Sections were submerged in Scott’s tap water to blue before rinsing in tap water. 

12) Rapid dehydration: Sections were dehydrated in graded alcohols (70%, 95%, 100% 

and 100%) for 30 seconds each. 

13)  Sections were cleared in xylene for 5 min and mounted using DPX (Leica, UK) and 

glass cover slips (Fisher Scientific, UK).  

14) Sections were incubated overnight at 37 ͦC to set. 



52 
 

 



53 
 

2.2.4 Antibody optimisation 

Optimisation was carried out for 5mC, 5hmC, DNMT1 and DNMT3a antibodies to assess the 

most appropriate antigen retrieval method and antibody dilution. A number of conditions 

were trialled, summarised in table 2.6. 
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2.2.5 Antibody specificity 

Antibody specificity checks were carried out for both 5mC and 5hmC to ensure that any 

immunopositive staining observed was specific. Pre-absorption of the antibodies was carried 

out, as well as DNase treatments. Positive and negative controls were also used throughout. 

2.2.6 Slide scanning 

All slides that underwent IHC for γH2AX, TDP43, 5mC, and 5hmC were scanned using the 

Hamamatsu NanoZoomer slide scanner (Hamamatsu Photonics, Japan) to create a digital 

whole slide images.  

2.2.7 Inter-rater reliability testing 

Cohen’s kappa coefficient (Cohen 1960) was used to assess the robustness of the method 

and ensure reproducibility. This method allows for a measure of inter-rater agreement to be 

calculated. This method takes the possibility of chance agreement into account, and is 

therefore a more robust indication of inter-rater reliability than simple percentage agreement. 

A series of both MNs and glia were classified by two independent observers (JRH and 

CAM). Inter-rater reliability testing was conducted for both 5mC and TDP43 staining, as well 

as in all three groups. This is summarised in figure 2.3. 

An inter-rater reliability test (Cohen’s Kappa) was conducted to assess the reliability, validity 

and reproducibility of cell counting. This calculation is a chance-corrected version of the 

observed agreement. High agreement between observers indicates diagnosis consensus as 

well as consensus on the interchangeability and reliability of the ratings. All cell counting was 

conducted over seven cases, including three control cases, two sALS cases and two C9ALS 

cases, with a total of 140 cells graded independently by the two raters (JRH and CAM) per 

assessment. Inter-rater reliability levels were ≥0.82, indicating high reproducibility between 

raters (see figure 2.3). An example of γH2AX immunopositivity can be seen in figure 3.1. 

An inter-rater reliability test in the form of Cohen’s Kappa calculation was conducted to 

assess the reliability, validity and reproducibility of cell counting. This calculation is a chance-

corrected version of the observed agreement. High agreement between observers indicates 

diagnosis consensus as well as consensus on the interchangeability and reliability of the 

ratings. All cell counting was conducted over seven cases, including three control cases, two 

sALS cases and two C9ALS cases, with a total of 140 cells graded independently by the two 

raters (JRH and CAM) per assessment. Inter-rater reliability levels were ≥0.81, indicating 

high reproducibility between raters (table 2.3).  
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2.2.8 Cell counting 
Quantitative analysis was conducted for the assessment of MNs and glia using the 

Hamamatsu NanoZoomer NDP.view 2 digital pathology software (Hamamatsu Photonics, 

Japan). MNs were counted in the AH, with glia being counted in the AH, LCT and DC of SC. 

Neurones and glia were also assessed in the fourth and fifth layer of motor cortex and AFCx. 

All immunohistochemical staining and cell counting was conducted blind to prevent 

unconscious bias. 

All total cell counts were converted to percentages in order to account for variances in total 

cell numbers within each case to allow for direct comparisons.  

Sequential sections stained for γH2AX, TDP43, 5mC and 5hmC and were matched, and the 

same MN was identified in adjacent tissue sections, as shown in figure 2.1. MN nuclei were 

graded to assess nuclear immunopositive and immunonegative staining, as described in 

figure 2.4. 

Global immunopositive cell counts were taken for MNs and glia of γH2AX, TDP43, 5mC and 

5hmC in SC, with cell counts for 5mC and 5hmC also taken for motor cortex and AFCx as 

indicated in figure 2.5. 
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2.2.9 Statistical analysis of cell counting data 

Statistical analysis was carried out using either SPSS version 24 or 25. One-way ANOVA 

was used to test differences in global levels of methylation between the three groups 

(controls, sALS and C9ALS), as well as the TDP43 pathology levels between the three 

groups, as data was found to be normally distributed. One-way ANOVA was also used to 

assess any potential relationships between γH2AX/5mC/5hmC status in the MNs and 

TDP43 pathology. All one-way ANOVA analysis was followed by Tukey post-hoc tests to 

identify any significant differences in expression of γH2AX/5mC/5hmC and TDP43 between 

control, sALS and C9ALS cases. Sex differences were investigated using multiple t-tests in 

order to identify if any significant differences in expression were present. For all experiments, 

data was normally distributed, resulting in either ANOVA or multiple t-tests being appropriate 

statistical tests. 

2.3 Preparation for microarray and next generation sequencing 

2.3.1 Cases used in MethylationEPIC array 
FFPE human PM SC was obtained from the SBTB. For this study, sections were used from 

three groups: controls, sALS and C9ALS, with n=6 for each cohort (total n=18). Cases were 

age and sex matched, as far as was possible. Details of cases used are shown in table 2.7.  



61 
 

 

 

 

 

 

 

 

 

 

 

 



62 
 

2.3.2 Toluidine Blue stain 
1) 10 µm sections of SC were mounted onto uncharged slides. 

2) Sections were dewaxed in two changes of xylene for 5 min each. 

3) Sections were rehydrated through graded alcohols: (100%, 100%, 95% and 70%) for 

5 min each. 

4) Sections were rinsed in distilled water. 

5) This was followed by transferring to 0.01% toluidine blue (TB) for 1 min. 

6) Sections were rinsed in distilled water. 

7) This was followed by dehydration through graded alcohols (70%, 95%, 100%, 100%) 

for 30 s each. 

8) Sections were cleared in xylene for 10 min. 

9)  Finally, sections were dried for 1 hour in a fume hood. 

2.3.3 Laser capture microdissection 
LCM was used to extract LMNs from the AH. The principles of LCM are illustrated in figure 

2.6. The Arcturus VERITASTM laser capture microdissection system (Applied Biosystems, 

UK), in conjunction with Arcturus Capsure Macro LCM Caps (Life Technologies, UK),  was 

used with the following settings: 30µm spot size, 70 mW laser power, 2500 µsec pulse, 1 hit, 

200 mV laser intensity and 0 msec delay. MNs were first visualised using the TB stain, then 

picked and imaged, all at x20 magnification. Approximately 10,000 cells in total were 

collected, across six caps, per case. 
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2.3.4 DNA extraction 
Total DNA was extracted from the MNs collected on the LCM cap using the Zymo quick-

DNATM FFPE kit (Zymo research, Germany). As samples had already undergone 

deparaffinisation and rehydration during the TB staining process, these steps were not 

carried out. Instead, the protocol was begun from the tissue digestion stages: 

1. LCM caps containing extracted MNs were placed in sterile 1.5 mL centrifuge tubes 

(Eppendorf, UK) along with 45µL nuclease free water, 45 µL 2× digestion buffer and 

10 µL Proteinase K. The digestion buffer breaks down cell and nuclear walls, 

releasing the DNA. Proteinase K digests contaminating proteins and nucleases that 

contribute to DNA degradation.  

2. Incubated at 55 Cͦ for 4 hours followed by 94 ͦC for 20 minutes, to halt digestion. 

3. Added 5 µL RNase A to each sample and incubated for 5 minutes at RT.  

4. Added 350 µL genomic lysis to each buffer (a nucleic acid protector) to each sample.  

5. Transferred mixture to a Zymo-Spin™ IIC column in a collection tube. 

6. Centrifuged at 10,000 ×g for 1 min, discarding the flowthrough. 

7. Added 400 µL wash buffer 1 (containing a protein denaturant), centrifuged at 10,000 

xg for 1 min, discarding the flowthrough. 

8. Added 700 µL wash buffer 2 (containing Tris hydrochloride to increase cell 

membrane permeability), centrifuged at 12,000 ×g for 1 min, discarding the 

flowthrough. 

9. Added a further 200 µL wash buffer 2 and centrifuged at 12,000 ×g for 1 min, 

discarding the flowthrough. 

10. Transfered spin column to new, sterile 1.5 mL tube and added 25 µL elution buffer to 

the spin column membrane. Incubated for 5 min at RT. 

11. Eluted DNA by centrifuging at 16,000 ×g for 30 s. 

12. Repeated steps 10-11 to give a total elution volume of 50 µL. 

2.3.5 Bisulphite conversion 
Bisulphite conversion allows unmethylated and methylated cytosines to be distinguished: 

Methylated cytosines remain unchanged, whereas unmethylated cytosines are converted to 

uracil (summarised in figure 2.7). Bisulphite conversion was carried out using the Zymo EZ 

DNA Methylation-Direct Kit (Zymo Research, Germany).   
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1) Approximately 250 ng of DNA was used per sample, and made up to a total 

volume of 20 µL with nuclease free water.  

2) Added 130 µL of CT conversion agent to each sample and mixed via gentle 

pipetting. This agent contains sodium bisulphite which allows for the conversion 

of unmethylated cytosines to uracil.  

3) Incubate at 95 Cͦ for 30 seconds to denature the DNA, followed by an incubation 

at 50 Cͦ for 1 hour. This cycle of 95 Cͦ/50 Cͦ was repeated for 16 cycles to allow for 

the sulphonation and hydrolytic deamination steps required for bisulphite 

conversion.  

4) Added 600 µL of M-binding buffer (to aid DNA solubility) each spin column, 

placed in a collection tube.  

5) Loaded samples into their corresponding spin columns and inverted to mix, 

followed by centrifugation at 10,000 ×g for 30 s. Discarded flow through. 

6) Added 100 µL wash buffer and centrifuged at 10,000 ×g for 30 s, discarding flow 

through. 

7) Added 200 µL desulphonation buffer (this allows the desulphonation process to 

occur, resulting in the conversion of uracil sulphonate to uracil) and incubated for 

20 min at RT. Centrifuged at 10,000 ×g for 30 s, discarding flow through. 

8) Added 200 µL wash buffer and centrifuged at 10,000 ×g for 30 s. Repeated this 

step. 

9) Transferred spin column to new, sterile 1.5 mL tube and added 10 µL elution 

buffer to column membrane and incubated for 1 min at RT. 

10) Centrifuged at 16,000 ×g for 30 s to elute. Repeated steps 9-10 to give a total 

elution volume of 20 µL. 
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2.3.6 DNA quality and quantity checks 

2.3.6.1 NanoDrop 

A NanoDrop 1000 spectrophotometer (Thermoscientific, UK) was used as per 

manufacturer’s instructions to assess DNA quantity and quality. DNA quantity was measured 

in ng/µL, and quality assessed by the 260/280 absorbance ratio. This ratio measures the 

absorbance of UV light at wavelengths 260nm and 280nm. The 260nm measurement refers 

to the amount of DNA in the sample, with the 280nm measurement referring to the amount 

of protein present in a sample. An absorbance ratio of 1.8 is viewed as an indicator of ‘pure’ 

DNA (ThermoScientific NanoDrop Spectrophotometer TO42 technical bulletin). NanoDrop 

measurements were taken after both the DNA extraction and bisulphite conversion. 

2.3.6.2 Agilent HS DNA chip 

To determine both the quality and quantity of DNA within the methyl library, an Agilent high 

sensitivity DNA chip was used. This allows for the sizing of fragments within the library to be 
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calculated, along with quantification for dsDNA samples ranging from 50 to 7,000 base pairs. 

Chip analysis was carried out on the Agilent 2100 Expert software as per manufacturer’s 

instructions. All samples indicated a high enough quantity and suitable quality of DNA to be 

taken forward for DNA methylation analysis using the MethylationEPIC BeadChip. 

1. Left DNA dye concentrate and gel matrix to equilibrate to RT for 30 min in the dark 

before vortexing the dye concentrate and transferring 15 µL of the concentrate to the 

gel matrix.  

2. Vortexed the gel matrix for 10 s, then transferred to a spin filter and centrifuged at RT 

for 10 min at 2240 xg.  

3. Added 9 µL gel-dye mix to the ‘G’ well surrounded by a circle on the chip.  

4. Placed the chip was in the priming station with the plunger set at 1 mL. Pressed the 

plunger down and held for 60 s before releasing.  

5. After waiting a further 5 s, pulled the plunger up to the 1 mL mark.  

6. Added 9 µL of gel-dye mix to remaining wells marked ‘G’.  

7. Added 5 µL DNA marker to the ladder well and each of the 11 sample wells.  

8. Added 1 µL DNA ladder to the ladder well, and 1 µL sample into the relevant sample 

wells.  

9. Placed the chip into the vortexer for 60 s at 2400 rpm.  

10. Transferred the chip to the 2100 bioanalyser, where analysis of the chip was then 

run. 

2.4 Illumina Infinium MethylationEPIC BeadChip 

The Illumina® Infinium® MethylationEPIC BeadChip is a method allowing for methylation 

profiling using bisulphite converted DNA and whole-genome amplification in conjunction with 

BeadChip technology to measure signal intensity in order to determine methylation status at 

specific CpG loci. Single base extension is carried out on DNA hybridised to the BeadChips, 

which incorporates labelled nucleotides. C and and G nulceotides are labelled with biotin, 

whilst A and T nucleotides are labelled with dinitrophenyl.  

Methylation status at CpG sites can be determined using beta values, which are calculated 

using the equation detailed in figure 2.8. A summary of reagent preparation prior to 

conducting the protocols detailed from section 2.4.1 and beyond are provided in appendix 

IV. Details on reagents used in the MethylationEPIC protocol can be found in appendix VI, 

with a summary of control used in appendix VII. 
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2.4.1 DNA Amplification 

1. Transferred 20 µL of bisulphite converted DNA to the corresponding well in a 96 

well plate.  

2. Added 20µL of MA1 and 4 µL 0.1 N NaOH into each well. MA1 minimises sample 

evaporation, while NaOH denatures and neutralises the samples prior to 

amplification.  

3. Sealed the plate and vortexed at 1,600rpm for 1 min. 

4. Centrifuged at 280 ×g for 1min.  

5. Incubated for 10 min at RT to allow denaturation and neutralisation.  

6. Added 68µL of random primer mix (RPM) to each well with 75µL MSM, a multi-

sample amplification master mix.  

7. Resealed plate and vortexed at 1,600 rpm for 1 min. 

8. Centrifuged at 280 ×g for 1 min.  

9. Transferred plate to Illumina hybridisation oven at 37 ͦC for 24 hours. During this 

process, DNA is incubated and isothermally amplified in order to increase the 

amount of DNA available by several thousand folds. 

2.4.2 DNA fragmentation 

1. Removed samples from hybridisation oven and centrifuge at 280 ×g for 1 min.  

2. Added 50µL FMS to each well. FMS contains potassium chloride (for 

fragmentation) and sodium chloride (to stabilise the DNA).  

3. Resealed plate and vortexed at 1,600rpm for 1 min. 

4. Centrifuged at 280 xg for 1 min.  

5. Incubated plate at 37 Cͦ for 1 hour for fragmentation. 
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2.4.3 DNA precipitation and resuspension 

1. Centrifuged the plate at 280 ×g for 1min. Removed the seal and added 100 µL PM1. 

PM1 contains ammonium acetate, which is a salt often used in samples with high 

dNTPs and oligosaccharide content, and aids precipitation of the fragmented DNA.  

2. Resealed the plate, and vortexed at 1,600 rpm for 1min.  

3. Incubated the plate at 37 Cͦ for 5 min, then centrifuged at 280 xg for 1 min.  

4. Added 300 µL 100% 2-propanol and resealed the plate. 

5. Inverted the plate ten times, and incubated at 4 Cͦ for 30 min, allowing isopropanol 

precipitation to occur.  

6. Centrifuged at 4 Cͦ at 3,000 xg for 20 min to allow the precipitated DNA fragments to 

collect and pellet at the bottom of the wells.  

7. Unsealed the plate and inverted onto paper towels to decant the supernatant. Firmly 

tappred the plate onto the towels for 1 min to remove any excess liquid.  

8. Left the plate inverted on a tube rack for 1 hour at RT to dry the DNA pellet. A blue 

pellet containing the DNA could be observed at the bottom of each well. 

9. Added 46 µL RA1 to resuspend. Resealed the plate by placing the plate onto the 

heat sealer and pressing until all wells create distinguishable indentations in the foil.  

10. Transferred plate to the hybridisation oven at 48 Cͦ for 1 hour. RA1 contains several 

components, namely formamide, which is used as a protectant in tissue preservation, 

and sodium chloride, used for DNA stability. This incubation period allowed the 

pelleted DNA to be resuspended in solution prior to hybridisation.  

11. Vortexed at 1,600 rpm for 1 min, then centrifuged at 260 ×g for 1 min. 

2.4.4 DNA hybridisation to BeadChip 

1. Placed plate on a heat block at 95 ͦC for 20 min to denature the DNA prior to 

hybridisation.  

2. Whilst the plate was incubating, the hybridisation chambers were assembled. 

Gaskets were placed into the chambers, and 400 µL PB2 was into the humidifying 

reservoirs. PB2 contains polypropylene glycol, which is a humectant, and keeps 

samples from drying out by attracting and retaining moisture from the air. Placed lids 

on the chambers immediately to avoid evaporation.  

3. Left the plate to cool to RT for 30 min, then pulse centrifuged at 280 ×g for 1 min. 

Removed the seal.  

4. Place BeadChips in the chamber inserts, orientated so that the barcode end of the 

BeadChip matches the barcode symbol on the chamber insert. Added 25 µL of 

sample into the corresponding well of the BeadChip.  
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5. Loaded the chamber inserts containing the BeadChips into the chamber, with the lid 

placed on top. Locked the Chambers and transferred them to the hybridisation oven 

and incubated overnight for 16 hours. During this incubation, the fragmented DNA 

annealed to locus-specific 50mers, which are attached to the BeadChip. 

2.4.5 Washing, Extension and Staining of the BeadChip 

2.4.5.1 Washing 

1. BeadChips were removed from the hybridisation oven and cooled to RT for 30 min.  

2. During this period, two wash dishes were filled with 200 mL PB1 each. Placed 150 

mL PB1 into the multi-sample BeadChip alignment fixture in preparation for the wash 

steps. 

3. Removed the BeadChips from the chambers.  Peeled off and discard the seal on the 

BeadChip. Transferred the BeadChips to the first wash dish containing PB1 and 

moved up and down for 1 min. Repeated this process in the second wash dish 

containing PB1. During this process, any unhybridised or non-specifically hybridised 

DNA was washed away.  

4. Placed BeadChips in the alignment fixtures required for the staining process. Placed 

spacers on top of BeadChips, followed by a glass back plate. Use of the spacer 

allows a small inlet to allow the staining procedure to occur. Clamped each BeadChip 

to secure. 

2.4.5.2 Single base extension 

Single base extension enables the incorporation of fluorescently labelled ddNTPs at the 3’ 

CpG site. This allows the unmethylated to methylated cytosine conversions to be measured.  

1. Placed BeadChip into the chamber rack holder, which was set to 44 Cͦ. Added 150 

µL RA1, a wash solution, into the reservoirs of the BeadChips and incubated for 30 s. 

Repeated this step five times.  

2. Added 450 µL of XC1, a buffer solution containing the salt sodium phosphate dibasic, 

to each reservoir and incubated for 10 min.  

3. Added 450 µL XC2 to each reservoir, and incubated for 10 min. This solution 

contains glycerol and sucrose, which are both viscous and prepare the BeadChip for 

the addition of staining solution, and ensures that solutions applied coat all of the 

BeadChip.  

4. Added 250 µL TEM to each reservoir and incubated for 15 min. TEM contains 

magnesium chloride, a cofactor needed for DNA polymerase to work correctly. This 
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incubation starts the extension process, with single base extension of the oligos on 

the BeadChip. The DNA hybridised to the BeadChip acts as the template, and 

detectable labels are incorporated into the extended DNA. This allows the 

methylation levels to be determined when the BeadChips are scanned.  

5. Added 450 µL Formamide/1 mM EDTA to the reservoirs and incubated for 1 min to 

wash residual TEM off the BeadChips. Repeated this step to ensure all TEM was 

removed from the BeadChips.  

6. Incubated the BeadChips for 5 min, then added 450 µL XC3 and incubate for 1 min. 

Repeated this step. 

7. Set the chamber rack holder to 32 ͦC before commencing BeadChip staining.  

2.4.5.3 Staining 

1. Added 250 µL STM, a two-colour master mix used to stain the BeadChip, to each 

reservoir and incubated for 10 min.  

2. Washed with 450 µL XC3 for 1 min each, followed by a 5 min incubation.  

3. Added 250 µL ATM, an anti-stain colour master mix, and incubated for 10 min, 

followed by two washes with 450 µL XC3 for 1 min each, then a 5 minute incubation.  

4. Added 250 µL STM incubated for 10 min, followed by washing twice with 450 µL XC3 

for 1 min, then incubating for 5 min.  

5. Added 250 µL ATM and incubated for 10 min, again followed by washing twice with 

450 µL XC3 for 1 min, followed by a 5 min incubation.  

6. Added 250 µL STM for a last time, and incubated for 10 min. Conducted the final 

wash two steps in 450 µL XC3 for 1 min each, followed by a 5 min incubation.  

7. Removed BeadChips from the chamber racks and placed on the lab bench.  

2.4.5.4 Washing and coating 

1. Removed BeadChips from the apparatus, and placed in 310 mL PB1 to wash. Moved 

BeadChips up and down in the PB1 ten times to remove all residual staining and 

washing residues. Left the BeadChips to soak in PB1 for 5 min.  

2. Transferred BeadChips to 310 mL XC4, and moved up and down 10 times in the 

solution, followed by soaking for 5 min. XC4 is very viscous, and was used to coat 

the BeadChips prior to scanning.  

3. Removed BeadChips from XC4 and placed on a tube rack to dry in a fume hood for 

50 min.  
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2.4.5.5 Imaging the BeadChip 

1. Once dry, BeadChips were placed in the Illumina® HiSeq® 2500 scanner.  

2. Logged into the Illumina account, select ‘access by BeadChip’, and added BeadChip 

identification codes. Once the HiScan found the BeadChips, scanning occurred. 

During the scanning process, a laser is used to excite the fluorophores of the single-

based extension products on the beads. The light emitted from the fluorophores is 

recorded by the scanner, with the proportion of DNA methylation being calculated by 

comparing the ratios of methylated cytosine signal to unmethylated signals. IDAT 

files were created, logging all this information. 

2.4.6 Horvath Epigenetic Clock Analysis 

The DNA methylation age of the three experimental groups (control, sALS and C9ALS) were 

analysed using the Horvath DNA Methylation Age Calculator 

(https://horvath.genetics.ucla.edu/html/dnamage). Beta values generated from the RnBeads 

data analysis was used as input for the calculator. Whilst the calculator is set up for the 27K 

and 450K arrays, it is still suitable for use in conjunction with the MethylationEPIC arrays, 

with a few changes made to the R code beforehand (see appendices; Horvath, personal 

communication).  

2.5 Zymo Pico Methyl-SeqTM Library Formation for Next 

Generation Sequencing 

2.5.1 Human spinal cord tissue  

Table 2.8 details cases used in this experiment. FFPE human PM SC was obtained from the 

SBTB. For this study, sections from were used from three groups: controls, sALS and 

C9ALS, with n=4 for each cohort (total n=12). Cases were age and sex matched, as far as 

was possible.  

http://labs.genetics.ucla.edu/horvath/dnamage


73 
 

 

2.5.2 Bisulphite converted DNA repair 
Bisulphite conversion of DNA results in degradation and loss of DNA. To counter this 

degradation, a repair reaction was conducted. 

1. For each sample, a reaction with the following was set up in a 0.2 mL tube on ice: 5 

µL bisulphite converted DNA, 2 µL nuclease free water, 10 µL DNA repair buffer and 

2 µL DNA repair enzyme mix.  

2. Samples were vortexed and microcentrifuged before placing them in the 

thermocycler with the programme run as detailed: 30 °C for 30 min to allow for 

double stranded synthesis and fragment end polishing, followed by 68 °C for 15 min 

to denature the DNA repair enzymes and end the reaction.  
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2.5.3 Random Primer Amplification 
1. Samples were first primed and amplified. For each reaction: 2 µL PrepAmp Buffer 

(5x), 1 µL PrepAmp primer, and 7 µL bisulphite converted DNA. Mixed via pipetting. 

2. Incubated on the following cycle: 98 °C for 2 min, 8 °C holding temperature, followed 

by temperature of steps at 16, 22, 28, 36 and 36.5 °C for 1 min each, with the cycle 

ending at 37 °C for 8 min.  

3. During the 8 °C holding temperature step, added the following PrepAmp mixtures: 1 

µL PrepAmp buffer (5x), 3.75 µL PrepAmp Pre mix and 0.3 µL PrepAmp Polymerase. 

Hold the reaction mix at 8 °C for 4 min, before continuing with the cycle described 

above. 

4. Repeated this cycle, with only 0.3 µL PrepAmp Polymerase being added in the 8 °C 

hold phase, instead of the PrepAmp mix. 

2.5.4 Purification 
1. Mixed samples at a 4:1 ratio of DNA binding buffer to sample via pipette, then 

transferred to a spin column and centrifuged at 10,000 ×g for 30 s to bind the sample 

to the column.  

2. Added 200 µL DNA wash buffer, then centrifuged at 10,000 ×g for 30 s. Repeated 

this step to ensure thorough washing of the sample.  

3. Conducted a dry spin to remove all residual liquid.  

4. Transferred the column to a 1.5 mL tube, and added 6.3 µL DNA elution buffer to the 

column membrane. Incubated for 1 min at RT to allow the elution buffer to bind to the 

DNA.  

5. Eluted samples by centrifugation at 10,000 xg for 30 s. Repeated steps 4 and 5 to 

create a total of 12.6 µL eluate. 

2.5.5 Adapter ligation and amplification 
1. Added adapters to the newly amplified DNA samples: 12.5 µL LibraryAmp Master 

Mix (2x), 1 µL LibraryAmp primers and 11.5 µL sample after purification.  

2. Incubated samples at 94 °C for 30 s, followed by ten cycles of: 94 °C for 30 s, 45 °C 

for 30 s, 55 °C for 30 s, 68 °C for 1 min. Then, incubated at 68 °C for 5 min. 

2.5.6 Index Primer ligation and Amplification 
1. Assigned samples a specific index (see table in appendix XII) to allow for 

identification when sequencing.  

2. Added 12 µL sample to 12.5 µL LibraryAmp master mix (2×) and 0.5 µL assigned 

Index Primer, to give a total reaction volume of 25 µL.  



75 
 

3. Incubated at 94 °C, followed by conducting the following cycle ten times: 94 °C for 30 

s, 58 °C for 30 s, and 68 °C for 1 min. Then, incubated at 68 °C for 5 min. 

4. Conducted the Agilent high sensitivity DNA chip, as detailed in section 2.3.6.2. 

2.5.7 Methyl Library Sequencing – Adapter Removal 

After undergoing Agilent high sensitivity DNA chip analysis, adapter peaks that could 

potentially interfere with sequencing and data interpretation were removed with AmPure XT 

magnetic beads (Beckman Coulter, A63881).  

1. Allowed beads to warm to RT for 5 min. 

2. Mixed DNA sample with the beads at a 1:1 ratio, with thorough mixing via pipetting. 

3. Transferred the sample/bead mixes to a U-bottomed 96 well plate and incubated at 

RT for 5 min before transferring to a magnetic stand for 2 min.  

4. Discarded the supernatant and washed bead pellets in 200 µL 70% ethanol for 30 s.  

5. Removed and discarded the ethanol.  

6. Removed the plate from the magnetic stand and resuspended pellets in 40 µL 

nuclease free water. Pellets were disrupted by pipetting and thoroughly mixing with 

the water.  

7. Incubated sample/bead mixes at RT for 2 min, before transferring to the magnetic 

stand. 

8.  Incubated for a further 1 min to allow beads to pellet.  

9. Removed eluate and transferred to a 0.2 mL tube.  

2.5.8 Illumina sequencing 

Samples were then sequenced on the Illumina® HiSeq® 2500, using rapid mode. This mode 

was chosen due to availability of the scanner, and that rapid mode is most suited to short 

read applications, which is the case for this cohort. 

2.5.9 BS-NGS Quality Control and Pre-Analysis 

Quality control was performed on the Bisulphite NGS datasets using the ‘FastQC’ function in 

Galaxy (Andrews 2010, http://www.bioinformatics.babraham.ac.uk/projects/fastqc). This 

analysis performs a series of tests, including the total number of reads, GC content and 

sequence length see table 2.9 for more details. Whole genome bisulphite sequencing was 

conducted, with paired end reads, with a read length of 66bp. Samples were multiplexed for 

sequencing, followed by demultiplexing as part of the data analysis processing.  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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The tool ‘Bismark’ was used to map the sequencing reads from the BS-NGS data to the 

human genome hg38 (Krueger and Andrews, 2011) and determine the levels of CpG 

methylation. 
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2.6 RnBeads analysis of MethylationEPIC and BS-NGS 

datasets 
Bioconductor and the programming language R (version 3.5.0), using the RnBeads package 

in conjunction with a GUI vignette, known as the RnBeads Data Juggler, were used to 

analyse the BeadChip and  BS-NGS datasets (Assenov et al., 2014; Müller et al., 2019). The 

RnBeads package allows for single base pair resolution analysis of DNA methylation 

datasets. In the case of the MethylationEPIC BeadChips, IDAT files containing the data 

collected from the scanned BeadChips was loaded into the Data Juggler. For the BS-NGS 

dataset, the BED files containing the sequencing data was loaded into the data juggler. 

A .csv file containing case details was also loaded into the data juggler (see appendix VII). 

Parameters were set in order to conduct analysis as detailed in table 2.10. 

 

As part of the RnBeads analysis, beta-mixture quantile (BMIQ) normalisation was used. This 

is an intra-samples normalisation method that corrects the bias of type-II probe values found 

on the MethylationEPIC array (Liu and Siegmund, 2016). Type I probes take up double the 

amount of space on the BeadChip in comparison to type II probes, but are required to 

enable sufficient measurement of methylation at dense CpG regions. Type II probes have a 

lower dynamic range, but take up less space on the BeadChip. A combination of type I and 

type II probes on the BeadChip allows for a balance of high sensitivity with a large number of 

probes (Pidsley et al., 2016). Probe filtering to remove cross-hybridising probes and the 

removal of SNP-enriched probes was also carried out as part of the RnBeads analysis 

pipeline. Quantile-Quantile plots (QQ plots) were analysed, indicating normal distribution of 

data generated using the MethylationEPIC array (appendix X). Average beta values for 

controls were 0.29, and 0.36 for ALS.  
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2.6.1 Significance sorting for MethylationEPIC and BS-NGS 

datasets 

All analysis was sorted based on differentially methylated promoters, with a false-discovery 

rate adjusted significance cut-off at α= 0.05. This was then further sorted by identifying which 

promoters were classed as either hypomethylated or hypermethylated in ALS versus control. 

It was decided that the focus should be on analysis of promoters. Primarily, this was due to 

promoters being where gene transcription is initiated, with promoters controlling mRNA 

polymerase binding to DNA in order to transcribe DNA into mRNA, and eventually, a 

functional protein. As DNA methylation has been established to alter gene expression, it was 

decided that priority should be given to gene promoters. If more time was available, further 

analysis would have been conducted in genes and CpG islands. 

2.6.2 Gene ontology analysis 

The classification system ‘Protein analysis through evolutionary relationships’ (PANTHER) 

(Mi et al., 2019) was used to conduct analysis on molecular function and biological 

processes on the promoters identified as differentially methylated in the ALS groups 

compared to controls in both the MethylationEPIC and the pre-existing mRNA expression 

dataset (Highley et al., 2014). Prior gene ontology analysis was also conducted within the 

Highley et al., 2014 paper using the database for annotation, visualisation and integrate 

discovery (DAVID) (https://david.ncifcrf.gov/home.jsp) (Huang et al., 2009). Functions in 

RnBeads also allowed for gene ontology analysis, with this function being enabled. 

2.6.3 mRNA expression data 

Pre-existing mRNA expression data (Highley et al., 2014) for control, sALS and C9ALS 

cohorts was used as a comparison for the MethylationEPIC dataset. Case details for the 

mRNA expression data are summarised in table 2.11.  

https://david.ncifcrf.gov/home.jsp
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The mean age of the control group was 61.7 (SD=9.6), 65.7 (SD=5.9) for sALS and 54.7 

(SD=7.6) for C9ALS. The combined mean age of sALS and C9ALS cases was 60.2 

(SD=8.5). t-tests were carried out determine if any significant difference in age could be 

observed between the groups. No significant difference was detected (control v sALS 

p=0.54, control v C9ALS p=0.31, control v ALS combined p=0.78, sALS v C9ALS p=0.12).    

In this study, six control cases, three sALS cases and three C9ALS cases were used.  LMNs 

were extracted from SC sections using LCM, followed by RNA extraction. These samples 

then underwent mRNA expression analysis using the Affymetrix GeneChip Human Exon 1.0 

ST Arrays, with analysis carried out using the Partek Genomics Suite Analysis software. The 

dataset for this study is freely available on the GEO database (series record: GSE33855). 

3195 genes were found to be differentially expressed in ALS cases versus controls. Of 

these, 1537 (48.1%) of cases were downregulated, with 1658 (51.9%) upregulated in ALS 

(p<0.05).  

2.6.4 Comparison of MethylationEPIC to mRNA expression 

data 

Venny 2.1.0 was also used to identify any overlap in promoters that were significantly 

differentially methylated in the MethylationEPIC dataset and differentially expressed genes 

(regardless of p-value) of the mRNA expression dataset. This was decided as the 

expression data is purely a validation of the MethylationEPIC in order to establish if direction 

of change matches, rather than the statistical significance of this. Of the cohort identified as 

significantly different for methylation, with corresponding changes in expression, a 

comparison was carried out to identify if the direction of change was the same. Promoters 

identified as hypermethylated were expected to see a decrease in expression, whilst 

promoters identified as hypomethylated were expected to show an increase in expression. 
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Chapter 3: Histological characterisation of DNA damage in 

ALS spinal cord 

3.1 Introduction  
DNA damage is posited as part of the pathogenesis of neurodegeneration, with one of these 

damages being in the form of double stranded breaks (DSBs) (Merlo et al., 2016). These 

DSBs have the potential to be lethal to a cell. Once a DSB is detected, repair machinery, 

including H2AX, is recruited to the site of damage. H2AX then becomes phosphorylated to 

form γH2AX and recruits further repair machinery to the site. Therefore, γH2AX is seen as a 

suitable marker for DSBs. 

Previous findings of studies into DNA damage in ALS have been contradictory, with one 

study finding an upregulation of γH2AX expression in lumbar motor neurones within the 

spinal cord of C9ALS cases compared to controls (Farg et al., 2017). This is in contrast to 

more recent findings by Vazquez‐Villaseñor et al., 2019. In this study, IHC analysis was 

performed on neuronal and glial populations in motor and frontal cortices from sALS cases, 

with no difference in γH2AX expression found. Together, this suggests further experimental 

studies are required to further understand the role, if any, DNA damage plays in ALS. 

The first aim of this thesis was to conduct a pathological investigation into the localisation 

and levels of DNA damage in motor neurones (MNs) and glia of the spinal cord (SC). 

Additionally, the DNA damage status of SC MNs displaying TDP43 pathology were 

investigated. 

3.2 Hypotheses tested 
1) No difference in DNA damage will be observed in ALS in MNs and glia of the SC 

when overall levels of damage are assessed, independently of TDP43 status. This 

hypothesis was tested by conducting IHC in conjunction with the DNA damage 

marker γH2AX, scoring MNs and glia for immunopositivity. 

2) There will be higher levels of DNA damage in MNs displaying TDP43 pathology 

compared to MNs without TDP43 pathology. To test this hypothesis, whole slide 

images of adjacent sections stained for γH2AX and TDP43 were aligned such that 

the same MN could be identified in adjacent sections. MN nuclei were then graded as 

immunopositive or immunonegative for each marker. 
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3.3 Methods Overview 
 

Detailed methods for this chapter can be found in section 2.2. In summary, sequential 

sections of FFPE human cervical spinal cord were immunohistochemically stained with 

γH2AX and TDP43 using standard ABC-HRP staining techniques. Sections were then 

scanned using the Hammamtsu NanoZoomer slide scanner (Hamamatsu Photonics, Japan). 

Case details can be seen in table 3.1. Sequential sections stained for γH2AX and TDP43 

respectively, were matched up, and the same MN identified in each section. MN nuclei were 

then graded as immunopositive or immunonegative for both γH2AX and TDP43. Total cell 

counts for MN were conducted for both γH2AX and TDP43 in the AH in order to assess 

global levels of expression, as well as total cell counts for γH2AX glia in the AH, LCT and 

DC.  Statistical analysis was carried out in the form of student t-tests and ANOVA, where 

appropriate. Values were considered to be significant at p<0.05, unless otherwise stated. 
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3.4 Results 
γH2AX is a marker of double stranded DNA (dsDNA) breaks. The immunostaining pattern 

observed in the anterior horn of the spinal cord reveals localisation of γH2AX 

immunostaining to the nucleus of motor neurones, where nuclear DNA is present. Some 

cytoplasmic γH2AX can be observed in motor neurones, potentially reflective of dsDNA 

breaks in mitochondrial DNA (figure 3.1). γH2AX immunostaining can also be found 

localised to the nucleus of glial cells. 
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3.4.1 No difference in γH2AX levels in ALS spinal cord LMNs 

Total MN cell counts (irrespective of TDP43 status) in the AH were conducted, assessing 

nuclei for γH2AX immunopositivity, a marker of DNA damage. No differences were observed 

between any groups (see figure 3.2): Control cases displayed immunopositive nuclear levels 

of 50.5%±26.3, sALS was 52.1%±19.9, with C9ALS at 73.2%±19.7. No significant difference 

was detected between control v sALS (p=0.93), control v C9ALS (p=0.21) or sALS v C9ALS 

(p=0.17), as determined by Student t-tests (SPSS v24). Post-hoc power analysis was 

conducted on the cohort (G*power v3.1.9.4, Faul et al., 2007), with a power of 0.61 

recorded. A figure of 1.0 represents an ideal cohort, suggesting this study was 

underpowered. Predicted power analysis determined a cohort of 55 samples would yield a 

power of 0.87. 
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3.4.2 γH2AX levels in glia in spinal cord do not differ between 

controls and ALS 

No difference was observed in the percentage of γH2AX-positive glia in any of the regions of 

SC assessed (p≥ 0.13 for all comparisons) (see table 3.2 and figure 3.3). 
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3.4.3 TDP43 pathology does not relate to DNA damage in ALS 

LMNs of the spinal cord  
MNs identified as immunopositive for γH2AX were then assessed for TDP43 pathology to 

identify if there was any relationship between DNA damage and TDP43 pathology. No 

difference in γH2AX was observed between MNs positive or negative for TDP43 pathology 

(p=0.64) (figure 3.4). For MNs identified as having no TDP43 pathology (i.e. nuclei were 

positive for TDP43), γH2AX expression levels were 25.7%±18.4. For MNs displaying TDP43 

pathology (nuclei were negative for TDP43), γH2AX levels were 28.7%±13.8. 
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3.5 Discussion  
In this chapter, a pathological characterisation of DNA damage in ALS LMNs and glia of the 

SC has been conducted. Using IHC, assessments of global levels of DNA damage were 

conducted using the marker γH2AX. The results suggest that this was not an issue for ALS 

LMNs and glia of the SC.   

Walker et al., 2017 analysed MNs of the AH in cervical SC in C9ALS cases. Compared to 

controls, higher levels of γH2AX immunopositivity were found in the C9ALS cohort. 

However, only 50 MNs were assessed per case (compared to 200 in the current study), with 

case numbers being low in this cohort (n=6 for each group).  Post-hoc power analysis 

detailed in section 3.4.1 indicated this study was underpowered, which suggests that the 

samples size was not large enough in this case. Differing distributions of both age and sex of 

samples could also be a contributory factor in the non-concordance of the data presented in 

this chapter when compared to Walker et al. 2017, with the study presented in this thesis 

having a predominantly male cohort.  No outliers were identified when analysing the data 

presented in figures 3.2, 3.3 and 3.4. When comparing this to the findings of Walker et al. 

2017, the findings of this thesis did not replicate these findings. In the Walker paper, large 

variation is seen in the data. For example, one control has less than 5% γH2AX positive 

MNs, while another control sample displayed nearly 90% γH2AX MN positivity.  

High variability between human samples is a frequent occurrence due to many factors. This 

includes post-mortem delay, but mainly variance seen naturally due to differing 

environmental factors. Batch variability can also be problematic. However, this wasn’t the 

case for this study as all experiments were carried out in the same batch. One drawback of 

this study is the potential unknown impact of all the control samples being males, and the 

ages being unknown. This makes it difficult to assess the impact of this on the findings of the 

study. Ideally, replication of this experiment with a sex and age matched cohort is preferable. 

Due to tissue availability, this was not an option in this study. Age and sex statistical analysis 

on this cohort was carried out wherever possible to mitigate the issues identified with this 

study (see table 2.1 for statistics related to this). The advantages and disadvantages of 

using IHC to study DNA pathology are discussed at length in section 4.5.9. 

A study of sALS cases which conducted IHC for both γH2AX and TDP43, determined that 

with increased nuclear TDP43 loss, an increase in γH2AX was also observed (Mitra et al., 

2019). However, this study did not assess TDP43 pathology and γH2AX status within the 

same MN. Rather, they conducted a field cell count and then compared the overall levels of 

both TDP43 pathology and γH2AX status. While this still useful, it cannot account for the 

specificity of determining what exactly is happening at a single cell level.  
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The results presented in this chapter are in agreement with findings by Vazquez‐Villaseñor 

et al., 2019. This study assessed the levels of γH2AX in neurones and glia of the MCx and 

frontal association cortex and found no changes in the levels of γH2AX when comparing 

ALS to controls. Further weight to this validation of the findings by Vazquez‐Villaseñor et al., 

could also be attributed to the use of the same antibody (R&D systems). 

Results presented in this study suggest that no difference in DNA damage levels were 

observed in LMNs or glia of the SC. An increase in DNA damage is associated with 

increased age (Konopka and Atkin, 2018), with all groups indicating some level of DNA 

damage for both MNs and glia. However, these were not significantly higher in the ALS 

groups versus controls.  

When comparing the results discussed in this chapter to others indicating increased levels of 

DNA damage in ALS, another factor to consider is the impact of using end-stage disease 

tissue. PM tissue is usually from individuals who are at the later stages of disease, and this 

was the case for the cohort used in this study. It could be that only the MNs and glia most 

resistant to DNA damage remained at the time of death, and the other MNs who have 

succumbed to ALS and died off were more susceptible to DNA damage. 

Another limitation of using PM tissue is the availability of samples. For this study, low cohort 

numbers were used (n=6 for each cohort). Low cohort numbers are also a common feature 

in the other studies discussed above (Walker et al., 2017; Mitra et al., 2019). Ideally, larger 

cohorts would be used, as this would be more representative of the general ALS MN and 

glial populations. High variability is also a common issue when using PM human tissue, with 

humans naturally having variable levels due to genetic, epigenetic and environmental 

factors. This is reflected in the current study, with high variability being observed in all 

cohorts. This variability may mask genuine changes occurring within certain cell types, with 

associations only emerging when looking at larger cohorts. This was partially addressed in 

this study through the use of matching single MNs for both TDP43 pathology and DNA 

damage, as it focused in the individual cell, rather than focusing on a global phenomenon. 

The most extensive and thorough study, and therefore arguably the most representative of 

the ALS neuronal population, was that conducted by Vazquez‐Villaseñor et al., 2019. This 

gives weight to the findings of this study, as although the study by Vazquez‐Villaseñor et al.  

was not conducted in SC, as was the focus of characterisation conducted in this chapter, it 

did focus on tissues affected in ALS. MCx is highly affected in ALS, with frontal association 

cortex showing signs of neurodegeneration, which could contribute to cognitive decline in 

ALS. Overall, this chapter provides additional weight to existing studies that DNA damage 

levels in MNs and glia of the SC is not increased in ALS when compared to controls. 
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DNA damage has also been posited as a potential contributory factor in other 

neurodegenerative diseases, such as Alzheimer’s disease. An immunohistochemical 

analysis in human post-mortem hippocampus and frontal cortex displayed an increase in 

γH2AX in both neurones and astrocytes in cases of mild cognitive impairment and 

Alzheimer’s disease when compared to controls, which was replicated in a second cohort. 

However, as was the case in the study presented in this thesis and in the Walker et al. 2017 

paper, the primary cohort used was small, with two male controls, three mild cognitive 

impairment cases (one male, two female) and eight Alzheimer’s disease cases (seven male, 

one female). The secondary cohort in this study expanded the cohort size to eight controls 

(seven female, one male), seven mild cognitively impaired cases (three male, one female) 

and eight Alzheimer’s cases (six male, two female) (Shanbhag et al., 2019), with large 

variation seen in presented data. This study again highlights the issues of variability and 

small cohort sizes are also present in the wider field of neurodegenerative studies. 

What this chapter does establish is the varied nature of using human post-mortem tissue 

and the limitations that come with this, such as batch variation, sample variability and the 

importance of age and sex matching samples. These factors could go some way in 

explaining the lack of consensus both is ALS and in the wider neurodegeneration field as to 

the role of DNA damage. Further studies are required to address these issues in order to 

establish the role, if any, DNA damage plays in neurodegeneration. 
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Chapter 4: Histological characterisation of DNA 

methylation and hydroxymethylation in ALS 

4.1 Introduction  
This thesis aimed to elucidate DNA pathology in ALS. After finding in the previous chapter 

that DNA damage is not significantly increased, other DNA pathologies were explored in the 

form of DNA methylation. 

DNA methylation (5mC) is the addition of a methyl group to cytosine, usually resulting in 

gene expression repression. 5mC can be further oxidised to DNA hydroxymethylation 

(5hmC). Increased levels of both 5mC and 5hmC have been implicated in 

neurodegenerative disease, most notably in Alzheimer’s disease. A few studies have been 

conducted looking into changes in DNA methylation and hydroxymethylation in ALS, with the 

general consensus being hypermethylation and hyperhydroxymethylation (Roubroeks et al., 

2017). Whilst many of these studies have been conducted in human tissues, these studies 

focused on homogenates, with the involvement of each cell type not being elucidated. This 

raises issues of cell-specific changes potentially being masked. Therefore, it is of value to 

elucidate if any cell-specific changes in DNA methylation and hydroxymethylation are 

present in ALS glia and neurones. 

The first aim of this chapter was to conduct a pathological investigation into the localisation 

and levels of DNA methylation in neurones and glia of the SC, MCx and AFCx. Additionally, 

the methylation status of SC MNs within ALS cases with and without TDP43 pathology were 

investigated. 

4.2 Hypotheses  
1) Increased DNA methylation and hydroxymethylation will be observed in ALS in all 

areas (SC, MCx and AFCx). This will be more marked in C9ALS cases. This 

hypothesis was tested by scoring MNs and glia for immunopositivity for 5mC and 

5hmC. 

2) There will be higher levels of DNA methylation and hydroxymethylation in MNs 

displaying TDP43 pathology. To test this hypothesis, whole slide images of adjacent 

sections stained for 5mC and TDP43 or 5hmC and TDP43 were aligned such that the 

same MN could be identified in adjacent sections. MN nuclei were then graded as 

immunopositive or immunonegative for each marker. 
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4.3 Methods Overview 
Detailed methods for this chapter can be found in section 2.2. In summary, sequential 

sections of FFPE human cervical spinal cord were immunohistochemically stained with 5mC, 

5hmC and TDP43 using standard ABC-HRP staining techniques. Sections were then 

scanned using the Hammamtsu NanoZoomer slide scanner (Hamamatsu Photonics, Japan). 

Sequential sections stained for 5mC/5hmC and TDP43 respectively, were matched up, and 

the same MN identified in each section. MN nuclei were then graded as immunopositive or 

immunonegative for both 5mC/5hmC and TDP43. Total cell counts for MN were conducted 

for both 5mC/5hmC and TDP43 in the AH in order to assess global levels of expression, as 

well as total cell counts for 5mC/5hmC glia in the AH, LCT and DC.  To test if there were any 

sex differences in the expression of 5mC/5hmC in MNs and glia, male and female cases 

within each experimental group were statistically compared using one-way ANOVA in 

conjunction with Tukey post-hoc analysis. Values were considered to be significant at 

p<0.05, unless otherwise stated. An overview of cases used in the studies relevant to this 

chapter can be seen in table 4.1. 
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4.4 Results 
Within the anterior horn of the spinal cord, motor neurones displayed immunopositivity for 

5mC and 5hmC, localised to the nucleus (figure 4.7). Immunopositivity within the nucleus of 

glial cells could also be observed in the anterior horn, lateral corticospinal tracts and dorsal 

column regions of the spinal cord. In the motor cortex and frontal cortex, nuclear 

immunostaining for 5mC and 5hmC is observed in neurones in grey matter, and glia of the 

grey and white matter (figures 4.8 and 4.9). 

Within the anterior horn of the spinal cord, TDP43 immunopositivity can be seen localised to 

the nucleus of motor neurones in control cases (figure 4.12, panel a). Within sALS and 

C9LAS cases within the anterior horn of spinal cord, TDP43 is mainly localised to the 

nucleus. However, in motor neurones displaying TDP43 pathology, a loss of nuclear TDP43 

and TDP43 cytoplasmic aggregates is observed (figure 4.12, panel b and c). Within the 

motor cortex, TDP43 was localised to the nucleus of neurones in controls (figure 13, panel 

a). for sALS and C9ALS cases, the majority of neurones displayed TDP43 immunopositivity 

in the nucleus. However, a subset of neurones displayed TDP43 pathology, with TDP43-

positive aggregation in the cytoplasm and loss of nuclear TDP43 (figure 4.13, panel b, c and 

d). 
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4.4.1 Antibody optimisation 
In order to establish the optimal conditions for IHC and subsequent analysis, a series of 

conditions were tested, as detailed below: 

 Tissue source: FFPE  

 Antigen retrieval method: Solutions at pH 6, pH 6.5 and pH 9 were tested, along with 

either pressure cooker or microwave methods 

 Primary antibody incubation conditions: 1 hour/RT, overnight/RT and overnight/4 ºC 

 Primary antibody dilutions: Ranges trialled from 1:50 to 1:64,000 

Antibody optimisation was conducted for 5mC, 5hmC, DNMT1 and DNMT3a (figure 4.1 for 

5mC, 4.2 for 5hmC, figure 4.3 for DNMT1 and 4.4 for DNMT3a).  
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A number of factors were considered when establishing the optimum conditions for each 

antibody. This included assessment of levels of immunostaining, localisation of the 

immunostaining and levels of non-specific background staining. Optimal conditions were 

established for 5mC and 5hmC, with other conditions being discounted as they either have 

no immunolabelling of nuclei or non-specific immunolabelling.  

 Detailed below are the optimal conditions for 5mC and 5hmC antibodies:  

 5mC: pH 6.5 tri-sodium citrate (TSC) / microwave antigen retrieval, 1:100 primary 

antibody dilution overnight at RT on FFPE tissue. 

 5hmC: pH 6 pressure cooker antigen retrieval, 1:32,000 primary antibody dilution 

overnight at RT on FFPE tissue. 

Antibody optimisation was unsuccessful for DNMT1 and DNMT3a, despite extensive trials. 

For all DNMT antibodies used, none showed nuclear-specific staining, with high background 

detected. Despite conducting a thorough range of antigen retrieval techniques, antibody 

dilutions and incubation times, antibodies for both DNMT1 and DNMT3a failed to provide 

clear immunoreactivity. Therefore, this part of the project was not carried forward for analysis 

in ALS v control cohorts. 

4.4.2 Specificity testing of 5mC and 5hmC 
5mC and 5hmC immunostaining was localised to the nucleus, with immunostaining of both 

neurones and glia displayed. Specificity testing was conducted to ensure that 

immunopositive staining was specific.  

DNase treatment was carried out to denature all DNA. This should result in no DNA being 

present for the 5mC and 5hmC antibodies to bind to, resulting in no positive immunostaining.  

Separately, antibody pre-absorption was also carried out to completely saturate the antibody 

by binding it to DNA. This should result in no antibody receptors being left to bind to DNA 

when applied to the tissue. If any binding of the antibody to the tissue was found to result in 

immunopositive staining, this would suggest that the antibody also binds to other targets. No 

immunopositive staining was observed in the DNase or pre-absorbed experiments, 

suggesting that antisera bind specifically with minimal artefactual cross labelling. This is 

summarised in figure 4.5 for 5mC and figure 4.6 for 5hmC.  

Representative examples of immunostaining can be observed for 5mC and 5hmC in the 

anterior horn of spinal cord for control, sALS and C9ALS cases in figure 4.7. Figure 4.8 

provides representative images of 5mC in frontal and motor cortices in all experimental 

groups, with figure 4.9 providing examples of 5hmC immunostaining in frontal and motor 

cortices for all experimental groups. 
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4.4.3 Negative controls 
Negative controls were used to determine the levels of background staining for IHC and 

assess if any cross-reactivity has taken place. Negative controls involved the omission of the 

primary antibody from the initial incubation step, along with the use of an isotype control at 

the same concentration of the same host species as the antibody. Isotype controls were 

used to determine the level of non-specific background that could be attributed to the use of 

primary antibodies. No background staining was observed in the negative controls for any of 

the antibodies used. Only nuclei counterstained with haematoxylin was present (see 

appendix III). 

4.4.4 Methylation does not correlate with age 
Analysis was conducted on the control cohort to determine if levels of DNA methylation in 

neurones correlates with age at time of death. This was conducted in SC, MCx and AFCx.  

Linear regression analysis was used, with no correlation detected for both 5mC and 5hmC 

DNA methylation markers (figure 4.10; for 5mC, R2= 0.0226 for SC, 0.003 for MCx and 

0.0221 for AFCx for 5mC; for 5hmC, R2=0.0362 for SC, 0.0206 for MCx and 0.0021 for 

AFCx). While this was not an original aim or hypothesis, this calculation was conducted to 

add reassurance that aberrant age effects were not responsible for any changes in DNA 

methylation observed.  
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4.4.5 5mC and 5hmC levels in spinal cord lower motor 

neurones are higher in ALS compared to controls 
First, a count of MNs that were positive and negative for both 5mC and 5hmC (irrespective 

of TDP43 status) was performed in the AH. These cell counts were converted into 

percentages to allow for direct comparison between cases that had differing numbers of 

MNs present. These 5mC and 5hmC data (visualised in figure 4.11) suggest that DNA 

methylation and hydroxymethylation levels are significantly higher in residual MNs of the AH 

in ALS when compared to controls (p≤0.01). No difference was observed between the two 

ALS groups (p≥0.53) (table 4.2).  

Considerations for technical reasons as to why a significant difference in 5mC/5hmC 

expression was observed between control and ALS samples have also been considered. 
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These include tissue quality, number of motor neurones present in samples and specific 

motor neurone populations within each sample. Tissue quality can influence how well 

antibodies can bind to tissue, however in this case, statistical analysis of tissue differences 

indicated no differences of note between tissues. Another way these potential differences 

were mitigated was using tissue from the same brain bank. This results in all samples being 

processed via the same methods/protocols, limiting the effects of different handling and 

tissue processing systems on the findings of this chapter.  

As ALS is characterised by motor neurone degeneration and death, it is feasible to assume 

that some control cases may have more motor neurones present that ALS cases, resulting in 

more opportunity to gather large numbers of motor neurones from control samples. This was 

controlled for in this instance by assessing multiple cross sections of tissue from each case, 

and limiting the number of motor neurones counted to approximately 200 motor neurones 

per case. Another consideration is the motor neurone population present within samples. It is 

possible that specific motor neurones present in control samples may not be present in ALS 

samples. It is feasible that within the ALS cases, motor neurones which are particularly 

susceptible have perished, and only motor neurones that are more resistant have remained, 

which could result in differences between control and ALS cases. This is discussed in 

section 4.5.3. Even with the above considerations, as the effect is seen in both 5mC and 

5hmC, this acts as a semi-validation, and gives more weight to the findings of this chapter 

being genuine. 
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4.4.6 Relationship between TDP43 pathology and 5mC and 

5hmC status 

Having established higher levels of methylation in the LMNs of both sALS and C9ALS cases 

compared to controls, it was next decided to investigate whether there was any effect of 

TDP43 pathology on DNA methylation at the individual cell level. This was to establish if any 

relationship between TDP43 pathology and DNA methylation status is present in ALS MNs 

within the SC. Examples of immunopositive and immunonegative MNs are seen in figure 

4.12, figure 4.13 and figure 4.14. Adjacent sections immunostained for 5mC and TDP43 and 

adjacent sections immunostained for 5hmC and TDP43 were digitised and then aligned such 

that the same MN nuclei was visualised in multiple sections, and assessed for both DNA 

methylation markers and TDP43 pathology, as seen in figure 4.15 for 5mC and figure 4.16 

for 5hmC. MNs identified as immunopositive for the relevant methylation marker (5mC or 

5hmC) were then assessed for TDP43 pathology. High levels (mean±SD) of 5mC and 5hmC 

were present in MN nuclei expressing TDP43 (72.7%±15.5 for 5mC; 86.9%±6.0 for 5hmC). 

However, a significantly lower percentage of MN nuclei displayed immunopositivity for 5mC 

and 5hmC in neurones with TDP43 pathology where nuclear TDP43 was absent (27.7±37.9, 

p=0.00002 for 5mC, and 50.7%±=16.6, p<0.00001 for 5hmC) (figure 4.17).  
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4.4.7 5mC and 5hmC levels in glia in spinal cord do not differ 

between controls and ALS 
Counts of 5mC and 5hmC positive and negative glia were similarly carried out in the AH, 

LCT and DC of the SC.  Two-tailed t-tests were conducted, with no significant differences 

observed for any intergroup comparisons in any of the regions investigated (see figure 4.18, 

plus table 4.3).  No sex differences were observed in any regions: AH (all p≥0.22), LCT (all 

p≥0.41), DC (all p≥0.80). Comparisons were also conducted, comparing the levels of DNA 

methylation between regions. No differences were observed between any regions (p≥0.05). 



121 
 

 

 

 



122 
 

 

 

 

 

 

 



123 
 

4.4.8 No difference in 5mC or 5hmC neurone expression in 

motor cortex or anterior frontal cortex 
p62 is a ubiquitin binding protein that functions as an autophagosome cargo protein that 

targets proteins that bind to it, resulting in selective autophagy. All AFCx cases used for the 

current IHC study had been assessed for p62 pathology. This pathology is indicative of 

TDP43 pathology in sALS (Cykowski et al., 2018; Rossor et al., 2019). Therefore, the p62 

pathology status of sALS cases were used as an indicator of TDP43 pathology. All C9ALS 

cases displayed p62 pathology in the MCx and AFCx and previous (unpublished) 

observations by our group have failed to find C9ALS cases that are negative for TDP43 

pathology, C9ALS cases were not stratified. In addition, for both sALS and C9ALS cases, all 

motor cortices displayed inclusion pathology.  Therefore, the MCx data were not stratified in 

this manner.  

 

Having assessed the methylation and hydroxymethylation status of neurones and glia in the 

SC, we next wished to assess this in the MCx and the AFCx (outside the pyramidal tract).  

For the MCx cohort, no intergroup differences were present for either 5mC (p≥0.24) or 5hmC 

(p≥0.22) (table 4.4 and figure 4.19).  

 

Initially, for the AFCx cohort, analysis was conducted combining the sALS cases regardless 

of inclusion pathology (n=11 for controls, n=38 for sALS, n=12 for C9ALS). Intergroup 

comparisons for 5mC and 5hmC were non-significant (p≥0.20), with the exception of the 

comparison between control v sALS 5mC immunopositive levels (p=0.04) and sALS v 

C9ALS 5hmC immunopositive levels (p=0.02) (also seen in table 4.4 and figure 4.19). 

 

Thus, the anterior AFCx data was split into those displaying inclusion pathology (n=13) and 

those that were not (n=17). Eight cases had no inclusion data, so were excluded from further 

analysis. There were no significant difference observed for all comparisons (p≥ 0.05) (table 

4.5 and figure 4.20). No sex differences were observed in MCx neurones (p=0.09 for 5mC, 

p=0.33 for 5hmC), with no sex differences present in FCx neurones (p=0.06 for 5mC, 0.09 

for 5hmC).  
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4.4.9 No difference in 5mC or 5hmC glial expression in motor 

cortex or anterior frontal cortex 
For 5mC and 5hmC levels, there were no significant differences were observed between 

between controls and ALS cohorts in either the MCx or AFCx (figure 4.21; For AFCx, p≥0.41 

for 5mC and p≥0.24 for 5hmC; for MCx, p≥0.19 for 5mC, and p≥0.17 for 5hmC; table 4.6). 

As was the case for the neurones, glia showed no differences between sexes (p=0.36 for 

MCx 5mC, p=0.09 for MCx 5hmC, p=0.40 for AFCx5mC, AFCx p=0.91 for 5hmC).  
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4.4.10 DNA methylation levels are higher in the neurones of the 

spinal cord compared to motor cortex and frontal cortex 
Cell type-specific DNA methylation level differences between regions were also analysed. 

DNA methylation levels were compared between SC, MCx and AFCx. For this analysis, all 

cases from each cohort were pooled. For both neuronal cells, the highest levels of DNA 

methylation were seen in the SC, with comparisons between SC v AFCx and SC v MCx both 

being significantly higher (p≤0.005) (table 4.7). When focusing solely on the control group, 

this pattern was still observed (p≤0.0003). 
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4.4.11 Disease survival duration does not correlate with degree 

of methylation 
Within the cohort of ALS cases, there was a variation in survival rates. In this case, survival 

rate referred to the length of time between initial diagnosis of ALS and death. In order to 

establish if there is any correlation between DNA methylation status and survival rates in 

neurones, linear regression analysis was conducted in SC. No correlation between DNA 

methylation levels and survival rates was detected (figure 4.22). For 5mC, R2= 0.0003, and 

R2=0.2289 for 5hmC in for SC. 

 

4.5 Discussion 
In this chapter, a pathological characterisation of DNA methylation in ALS has been 

undertaken. Using IHC, assessments of levels of DNA methylation were conducted, using 

the DNA methylation markers 5mC and 5hmC. The results provide evidence supporting the 

role of LMN-specific DNA methylation and hydroxymethylation in ALS. Additionally, further 

investigation into the LMNs of the AH in SC related TDP43 pathology to loss of DNA 

methylation from the nucleus. Mutual validation was observed through the use of two 

separate markers (5mC and 5hmC).  

4.5.1 Residual motor neurones of the spinal cord display 

significantly higher levels of DNA methylation in ALS 

The first hypothesis was that an increase in DNA methylation would be observed in ALS, 

with the highest levels in C9ALS. In the initial analysis of MNs in the SC, this was the case 

for both markers of DNA methylation used (5mC and 5hmC), with significantly higher levels 

of both DNA methylation and hydroxymethylation observed in sALS and C9ALS cases 
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compared to controls. However, no differences in expression was observed when comparing 

sALS and C9ALS.  

Other studies have previously established that DNA methylation changes occur in ALS, but 

all have limitations. Figueroa-Romero et al., 2012 conducted a study of DNA methylation in 

sALS SC, determined by ELISA plates for 5mC and 5hmC. They found that, as in the study 

discussed in this chapter, an increase in DNA methylation was present for both markers of 

methylation. However, this was a tissue homogenate, and this thesis shows the cell-specific 

nature of DNA methylation changes. Another consideration is the cell proportions in this 

study, as ALS is characterised by MN loss, so this will be reflected in the use of 

homogenates. Blood analysis was also conducted, showing no differences. This also 

indicates the importance of cell-specificity.  

4.5.2 TDP43 pathology associates with loss of DNA 

methylation from the LMN nucleus 

The second hypothesis of this chapter was that DNA methylation would be associated with 

TDP43 pathology in LMNs of the SC within the ALS groups. In cells displaying TDP43 

pathology (i.e. loss of nuclear TDP43 staining), a loss of DNA methylation from the nucleus 

was found. This was the case for both 5mC and 5hmC. ALS is primarily a disease of the 

MNs, so it is to be expected that for the ALS samples, some MNs will have already 

undergone cell neurodegeneration and death. Even though a relationship between DNA 

hypomethylation and TDP43 pathology was found, there is no confirmation of the direction of 

causation. One possibility is that only resilient MNs are observed in the tissue, which display 

DNA hypermethylation, with other less resilient MNs dying off before the patient died. This 

highlights another limitation of using PM tissue, as it is representative of end stage disease, 

with no indication of the DNA methylation changes, if any, taking place during the course of 

the disease. 

It is prudent to point out that the MNs displaying TDP43 pathology were only a small subset 

in comparison to the whole MN population. This is relevant, as when neurones as a whole 

are examined, the majority will not display TDP43 pathology. This means that when the 

whole population of MNs is analysed without respect to TDP43 status (as in 4.5.1 above) the 

data will be biased towards DNA methylation levels seen in neurones without TDP43 

pathology.  

A number of potential reasons for the association with nuclear TDP43 loss and 

hypomethylation can be posited. Firstly, TDP43 pathology may affect cells with 

hypomethylation more than cells without TDP43 pathology, and hypermethylation plays a 

neuroprotective role. Another possibility is that the TDP43 pathology causes the drop in DNA 
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methylation. Finally, another currently unknown factor could be responsible for both the 

TDP43 pathology and DNA methylation loss. Unfortunately, the direction of causation is 

unable to be determined with the use of PM tissue. It is possible to conduct mechanistic 

experiments in model systems to address this, as both the levels of TDP43 pathology and 

DNA methylation can be manipulated in order to establish causation. This is discussed 

further in section 6.2. 

 

As seen in figure 4.11, figure 4.17 and section 4.4.5, some variation in 5mC/5hmC and 

TDP43 expression was observed when compared with expression levels observed in the 

total cell counts of 5mC/5hmC and TDP43. Only a subset of motor neurone nuclei was able 

to be visualised and matched up in the TDP43 association studies as nuclei were only able 

to be visualised in subsequent sections for a selection of the total numbers of motor 

neurones present. This reduced the number of motor neurones assessed in the TDP43 

pathology/DNA methylation and TDP43/DNA hydroxymethylation association studies. 

Further, the number of motor neurones displaying TDP43 pathology is relatively small, 

resulting in a small number of cells being assessed in the TDP43 pathology association 

studies. 

4.5.3 DNA methylation is higher in spinal cord MNs compared 

to neurones of the motor cortex and anterior frontal cortex 
To assess whether levels of DNA methylation are higher in the SC, levels of DNA 

methylation were compared between SC, AFCx and MCx. Significantly higher levels were 

found in the SC (table 4.7). Together, these findings suggest a LMN/SC specific effect, again 

raising the possibility of selective vulnerability.  

Selective vulnerability refers to the tendency for a given pathological process (ALS in this 

instance) to affect some CNS regions or cell populations more than others.  Vulnerable 

neurones are more likely to succumb to cytotoxic events, such as cell death related 

signalling, neuroinflammation and synaptic toxicity (Fu et al., 2018). TDP43 pathology 

mapping studies, such as those discussed in section 1.3.2, suggest that protein aggregates 

accumulate in regions of primary vulnerability, before spreading to areas of secondary 

vulnerability.  

A number of potential causes have been posited in relation to selective vulnerability. A risk 

factor associated with many neurodegenerative diseases, ALS included, is ageing. This is 

the consequence of aged neurones coming to the end of their lifespan. This lifespan may 

vary between neurones, dependent on their function, past exposure to stress and their 

genetic predisposition. Protein homeostasis is also implicated, with some neurones 
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theorised to be more affected by how TDP43 protein aggregates disrupt normal protein 

homeostasis networks. In the IHC studies presented in this chapter, different levels of 

methylation and hydroxymethylation in spinal cord are observed, compared to the brain.  

Therefore, the spinal cord LMNs have methylation pathology in spinal cord, whereas no 

methylation pathology is seen in neurones of the MCx or AFCx. It may be that spinal cord 

requires greater methylation (for reasons unknown) and that may make it selectively 

vulnerable to TDP43 pathology.  Exploring the pathological mechanisms that methylation 

protects is an interesting possibility to research (discussed further in section 6.4). 

4.5.4 Methylation and hydroxymethylation in the motor cortex 

and anterior frontal lobe  
No intergroup differences were found in MCx or AFCx (figure 4.19). The original hypothesis 

was that there would be intergroup differences in MCx and AFCx.  Based on this 

assumption, the intention was to use the sporadic ALS inclusion positive and negative cases 

as a way to look at whether DNA methylation differences were seen before or after the 

arrival of inclusion pathology in the anterior frontal cortex. However, given that the MCx data 

show that dysmethylation is not seen in the forebrain, the premise for this strategy was not 

sound.  Therefore only archival p62 data was used, rather than conducting further TDP43 

IHC in the AFCx.  Furthermore, it was found that the presence of absence of inclusion 

pathology in the frontal lobes did not affect methylation. One hypothesis for this is that 

TDP43 pathology affects a lesser percentage of neurones in the forebrain than in LMNs, 

another is the potential role of selective vulnerability (discussed in section 4.5.3).  

Overall, a change in DNA methylation and hydroxymethylation was observed in ALS in the 

LMNs of SC, which were not observed in either the MCx or AFCx. This could imply a 

different pathologic process and would also suggest that further studies in DNA methylation 

and hydroxymethylation in ALS should focus on the SC. 

4.5.5 Levels of DNA methylation in glia are unchanged in ALS 
Glial cells were counted in the AH, LCT and DC of the SC, as this encompassed glial cells in 

both grey and white matter. Counting was also conducted on glial cells in the white matter of 

AFCx and MCx. In all regions analysed, no difference was detected in the levels of DNA 

methylation between control and ALS. This further supports the notion that DNA methylation 

is a LMN specific phenomenon.  

While ALS is primarily a disease of the MNs, it is also well established that glial cells play a 

fundamental role in the disease, in both neuroprotective and neurotoxic roles (Pehar et al., 

2018). Glia make up 90% of all CNS cells. Astrogliosis and microglial activation are present 

in most neurodegenerative diseases, and can contribute to the pro-inflammatory phenotype 
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found in ALS (Staszewski and Prinz, 2014). It has also been shown to lead to alterations in 

neuronal-glial interactions, which lead to synaptic function decline and ultimately, neuronal 

death (Li et al., 2011). Most studies have focused on DNA methylation changes in glia in 

neurodevelopment (Neal and Richardson, 2018). No studies to date have been conducted to 

assess DNA methylation levels of glial cells in ALS, but studies have been performed in AD, 

with contradictory results: One study found global hypermethylation in AD (Rao et al., 2012), 

another found global hypomethylation in AD (Mastroeni et al., 2011), and a third study found 

no global differences in DNA methylation in AD (Schwob et al., 1990). 

 

With this large variability in findings for AD, and lack of publications for ALS glia and DNA 

methylation in mind, an analysis of glial cells in ALS is warranted. It is important to note that 

the studies presented in this chapter are only a measure of global DNA methylation, and it is 

probable that at the gene level, changes in DNA methylation will be present in glial cells.  

Following from this, a limitation of the current study is that multiple glial subtypes have been 

grouped together. Given that DNA methylation levels are different in neurones in regions 

focused on within this study, it would be of value to perform separate cell counts of these 

different cellular subtypes to fully understand DNA methylation patterns of glial cells in ALS. 

There is also evidence to suggest that methylation is potentially a bigger issue for non-

mitotic cells versus mitotic cells (discussed in section 1.6). As neurones are post-mitotic, it is 

not surprising that methylation changes are observed in ALS. A potential way to conduct this 

would be through double staining for both a glia marker and DNA methylation marker. 

4.5.6 DNA methylation and the normal ageing brain 
To ensure that any significant findings were due to ALS, and not due to DNA methylation 

changes associated with age, linear regression analysis was conducted in this study, finding 

that no changes were present (section 4.4.4). 

Both increases and decreases in DNA methylation are found to occur with increasing age, 

dependent on the particular tissue or gene studied (Richardson, 2003), with DNA 

methylation in the brain and CNS being significantly higher than other regions of the body 

(Wilson et al., 1987).  

In general, a trend for reduced DNA methylation with increasing age in the brain is posited 

(Catania and Fairweather 1991). Ageing at the cell/organ level can be characterised by 

reductions in response to intercellular signals, which could in turn result in changes to 

normal pathways for gene expression. A potential mechanism for this could be DNA 

methylation. A hypothesis favoured by Catania and Fairweather in 1991 suggested that 
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methylated regions of DNA could become selectively lost during ageing, with DNMTs also 

becoming less efficient over time. 

A study conducted by Hernandez et al., in 2011 investigated methylation changes occurring 

in different regions of the brain, analysed using the Illumina DNA methylation 27k arrays, 

one of the predecessors of the current MethylationEPIC BeadChip array. In this study, the 

frontal cortex, cerebellum, pons and temporal lobe underwent analysis, with the age range of 

donors being vast (1 years to 102 years), in order to establish any changes in DNA 

methylation associated with chronological ageing. Interestingly, this study identified ten loci 

displaying a positive correlation with DNA methylation and ageing, which is in disagreement 

the general consensus. 

Together, what these findings do establish is the complexity of DNA methylation changes 

that occur in the brain and CNS in normal ageing. Therefore, it was important to establish 

that any changes observed in DNA methylation levels between the control and ALS cohorts 

was actually a result of healthy v disease changes, and not changes associated with age. 

Linear regression analysis was also conducted on the association of survival rates and DNA 

methylation levels, again to establish if any changes to DNA methylation in the ALS cohort 

could be explained by another factor. This analysis also showed no correlation between 

survival rates and DNA methylation levels (figure 4.22).  

The effects of age on methylation may be a potential mechanism for the increasing 

prevalence of neurodegeneration in general, and ALS in particular, with age. The studies 

discussed above find changes in methylation with age, but this was not found in the cohort 

used in this chapter. It is probable that no effect was seen in the cohort used for this study as 

a very narrow range of ages were used, whereas the studies discussed previously in this 

section detail changes over a prolonged period of time. Another factor is that IHC is a very 

course measure of methylation across the genome, whereas the studies that found age-

related epigenetic drift involved larger numbers of cases, and used techniques allowing for 

gene-specific DNA methylation changes to be analysed. 

Together, this gave confidence that any changes seen were because of DNA methylation 

changes that have occurred due to ALS, and not as a consequence of chronological age or 

disease duration.  

4.5.7 Study limitations 
As with any study, this study has a number of limitations. These include the small number of 

controls for the MCx cohort (n=8). Post-hoc power analysis was performed for the spinal 

cord study (power of 0.87), frontal cortex study (power of 0.83) and motor cortex (power of 
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0.77) using G*power v3.1.9.4 (Faul et al., 2007). A ‘perfect’ study would have a power of 1.0, 

which is not the case for the cohorts used in this study. However, the recorded powers do 

indicate that the studies are of a reasonable size, with powers of 0.87, 0.83 and 0.77 

indicating sufficient power to be appropriate for the context of the study (human samples, 

time available for analysis). In order to increase the power of these studies and to make the 

findings more representative of the general population, increasing the cohort size and 

carrying out replication in samples from another brain bank could be of value.  

Variability between raters can also be a potential source of lack of reproducibility, as 

individual cells are identified/interpreted differently (Alafuzoff et al., 2006). In this case, inter-

rater reliability tests were conducted to ensure raters were assessing and determining cell 

immunopositivity status in reproducible ways. These tests revealed that inter-rater reliability 

was high, suggesting this limitation was reduced, and had an added level of robustness.  

It is important to note that two samples used in the control cohort were aged 26 and 39, 

which is lower than in the ALS cohort. No lower cut off for age was enforced in this study, as 

there was low availability of control tissue available, which reduced the number of limitations 

that could be placed on the study. To ensure that age was not a contributory factor in any 

significant results, statistical analysis was carried out, with no significant difference found 

when comparing the cohorts (table 2.3). After consideration, it was decided that having a 

larger cohort of control samples was of higher importance than removal of younger samples 

from the control cohort. 

IHC can be viewed as a course measure of 5mC and 5hmC expression. This is further 

compounded by the limitations of DAB as a visual representation of immunopositivity. All 

cells analysed will have varying levels of 5mC and 5hmC present within them. However, IHC 

visualised with DAB cannot be classed as quantitative due to this only being a measure of 

the absence or presence of DAB immunostaining. Therefore, this is only a course measure 

of 5mC and 5hmC present within a cell. This highlights the issue of sensitivity, with the 

potential for low levels of 5mC and 5hmC within the cell not being detected due to the lack of 

sensitivity associated with DAB. This is addressed by the use of the MethlationEpic array 

discussed in chapter 5, which assesses DNA methylation at the single gene level. 

The major limitation in this study, and with the use of PM tissue in general, is that is it 

representative of ‘end stage’ disease. Therefore, these findings may not reflect the DNA 

methylation status of ‘early stage’ ALS. A number of efforts have been used to account for 

this. The use of frontal cortex can be viewed as a representation of ‘early stage’ ALS, as it is 

one of the last regions to be affected.  
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Even with the limitations discussed above, FFPE tissue and histological studies are of high 

value. FFPE cases are generally well characterised and are neuropathologically assessed 

for signs of ALS, with data including age, sex and disease survival usually available for 

cases. It is important to characterise cells from PM sources, as the cells are taken from their 

native environment, and deductions made from these are more representative of the 

heterogeneous tissues of the body. This is not possible using cell models. 

Another issue when using PM tissue is that it is only ever possible to find a correlation, and 

correlation does not imply the causation of the effect seen. This can be addressed through 

the manipulation of disease models, such as cell culture, zebrafish models and mouse 

models. This is discussed at length in section 6.2.  

The final issue is that when conducting the analysis of the difference in DNA methylation and 

hydroxymethylation in LMNs with and without TDP43 pathology, the effect observed was the 

opposite of what was hypothesised. Considerations for this include that the hypothesis 

tested was prior to the awareness of the study by Štalekar et al., 2015, which saw TDP43 

proteinopathy with decreases in DNMT3a expression. In retrospect, had we been aware of 

this study prior to hypothesis making, it may have resulted in a change of hypothesis. This 

finding highlights that replication is necessary. 

4.5.8 Suggestions for future works  

Suggestions for future work would include replicating the findings of this chapter in another 

cohort from a different brain bank, as well as replicating these findings in the cohort used in 

this study by another independent rater.  

Once DNMT antibodies are more developed and have been applied to both IHC and 

neurodegeneration, it would be of use to determine levels of DNMTs in neurones. DNMTs 

are catalysts for the methylation of cytosine, so it would be plausible that if DNA methylation 

were lost from the nucleus, that DNMT levels would also be less in the nucleus. A study to 

determine if any association between DNMT expression and TDP43 pathology was present 

would be of use, and if this mimics the findings of the study in this chapter, where TDP43 

pathology was associated with DNA methylation loss from the nucleus. A study of similar 

design, where DNMT status and DNA methylation status in the same nucleus was identified 

would also help to understand the association of DNA methylation and its catalysts. Another 

alternative is conducting reverse transcriptase-polymerase chain reaction (RT-PCR) analysis 

on LMNs extracted from frozen tissue using laser capture microdissection.  

A study of the hippocampal AD brain showed an increase in 5mC and 5hmC levels, while 

also exhibiting a decrease in 5fC and 5caC (Bradley-Whitman and Lovell, 2013), which are 
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the intermediates in the demethylation pathway (figure 1.6). Potential reasons for this are the 

absence of a mechanism to restore normal DNA methylation levels, which results in 5mC 

and 5hmC accumulation. As an increase of 5mC and 5hmC levels is detected in LMNs in the 

study described in this chapter, as was shown in the study by Bradley-Whitman and Lovell, it 

would also be interesting to observe if a decrease in 5fC and 5caC is present in ALS LMNs. 

In order to understand the causative factors in the correlation found between TDP43 

pathology and loss of DNA methylation from the nucleus, experimental manipulation needs 

to be carried out. One way to do this would be to manipulate TDP43 levels, either by 

knockdown or introducing a transgene, and then assessing if any changes in DNA 

methylation levels occur. Conversely, DNA methylation levels could be manipulated by drugs 

targeting DNMTs, knockdown, or upregulation of DNMTs and assess what happens to 

TDP43, potentially under conditions of cell stress. This is discussed further in section 6.2.3. 

4.5.9 Antibody optimisation, antibody specificity and the 

limitations of immunohistochemistry 

In this study, all DNMT antibodies trialled failed to produce specific immunoreactivity with 

minimal non-specific staining. Many factors can affect the variability in successful IHC. 

These include the IHC methods carried out, the type of tissue used and the variety of 

antibodies available. IHC variability can be caused by the use of either FFPE or frozen 

tissue. Both types of tissue are fixed, but their properties do differ from each other. Frozen 

tissue is fixed using acetone; with FFPE tissue fixed using formalin. With these fixation 

processes comes differences in epitope availability, and therefore antibody recognition. 

Benefits of using frozen tissue mean that this is overcome. However, frozen tissue does 

have its limitations, including specialised storage (and potential for tissue degradation if 

stored incorrectly) and poor morphology once IHC has taken place. This makes for 

increased difficulty in assessing IHC. These limitations are addressed in the use of FFPE. 

Throughout this study, both monoclonal and polyclonal antibodies have been utilised, with 

benefits and limitations to both. Monoclonal antibodies tend to be more specific, as they 

should only recognise one epitope on a protein. The caveat of this is that FFPE tissue is 

vulnerable to the loss of this single epitope due to both the fixation process, antigen retrieval 

and post-mortem degradation, and cross-reactivity, and non-specific reactivity can still occur. 

This could result in IHC failing, with no immunostaining taking place. In contrast to this, 

polyclonal antibodies recognise many epitopes. However, with this less specific binding 

comes the risk of false positives. This is due to cross-reactivity which results in high 

background signal.  
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There are many potential reasons as to why the DNMT antibodies could not be optimised. 

One is incompatibility with tissue from the brain bank used in this study. A solution to this 

would be to trial the antibodies in tissue from another brain bank, or use tissue from the 

same brain bank from a region unrelated to the brain/CNS, to determine if this is a 

brain/CNS specific phenomenon. However, the possibility of the two points raised above is 

low, as a large number of antibodies from a variety of manufacturers were tested. With this 

being the case, it would be reasonable to assume that some of them would be compatible. 

Another consideration is that DNMTs are expressed in such low levels in neurones and glia 

that they are undetectable, with the most likely reason being that the DNMT antibodies are 

simply not adequate yet. This conclusion was reflected in the immunostaining detailed in this 

study. Non-specific staining was found in the majority of antibodies and conditions trialled, 

highlighting that the DNMT antibodies currently available are not yet of a useable quality to 

establish genuine patterns of immunostaining, and potentially that the antibodies are of poor 

quality and are incapable of binding to their target even in optimal conditions. 

A web search was conducted using the supplier website ‘references’ function to identify if 

any of the DNMT antibodies used had now been published in the neurodegeneration field to 

compare immunostaining to (summarised in table 4.8). All DNMT antibodies were mainly 

published in cancer fields, with a focus on the use of western blotting. Few publications were 

for the use of IHC. One study used the Abcam DNMT1 antibody for IHC (Mastroeni et al., 

2010), but no images showing the DNMT1 IHC were published, and no evidence of 

specificity testing was present in the publication.  
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If there were no limitations on tissue, further antigen retrieval processes could be trialled, 

such as enzymatic antigen retrieval and formic acid antigen retrieval. For enzymatic antigen 

retrieval, sections are immersed in a solution containing the enzyme Trypsin, with Trypsin 

digesting proteins into smaller peptides by selectively cleaving proteins at the C-terminal 

side of lysine and arginine amino acid residues. Formic acid antigen retrieval breaks the 

cross-links formed during the tissue fixation process, which may have helped unmask 

antigens relevant to the DNMT antibodies trialled. 

Consideration was given to conducting further optimisation of DNMT antibodies. However, it 

was decided not to conduct further trials on frozen tissue. This was due to a number of 

factors, one being the availability of frozen tissue. Fewer samples were available as frozen 

tissue, which would have reduced the size of the cohort considerably. Due to the extensive 

nature of the DNMT antibody optimisations already carried out on FFPE tissue, it was 

deemed that the use of precious frozen tissue to further this optimisation trial was unjustified, 

as potentially large amounts of tissue would be used in the optimisation alone, even before 

applying this to a cohort.  

Further, one of the aims of this study was to determine the TDP43 pathology status of LMNs. 

The TDP43, 5mC and 5hmC antibodies were all optimised in FFPE, which allowed the same 

MN to be visualised in multiple sections. Therefore, the comparison between TDP43 

pathology/DNA methylation status and DNMT immunopositivity would not be able to be 

determined within the same MN when using FFPE for the TDP43, 5mC and 5hmC and 

frozen tissue for DNMTs. 

In conclusion, without adequate DNMT antibodies, detection of changes in levels of DNMTs 

within the brain/CNS remain challenging. Obtaining biopsies of tissue throughout the course 

of disease would also be of benefit, and help to counteract the end-stage nature of post 

mortem tissue, whilst providing a picture of DNA methylation changes in ALS over time. 

4.5.10 Final remarks 

In conclusion, the findings of this study suggest greater levels of DNA methylation and 

hydroxymethylation in ALS LMNs, with a loss of DNA methylation from LMN nuclei 

correlating with TDP43 pathology. 

The study described in this chapter details a comprehensive pathological characterisation of 

DNA methylation in ALS in two motor areas severely affected in ALS (SC and MCx), and 

one extra-motor region (AFCx) that shows signs of neurodegeneration during ALS, and can 

therefore be indicative of ‘early’ and ‘disease progression’ signs of disease. 
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Samples sizes were reasonable for the scale of the project (SC n=30, AFCx n=61, MCx 

n=41), and are equal to or larger than cohorts previously assessed for DNA methylation 

using IHC by others (Roubroeks et al., 2017). For the TDP43 pathology/DNA methylation 

study, the cohort size was large. However, a possible improvement on this study would be to 

replicate this analysis in a cohort derived from a different brain bank to ensure 

reproducibility. 
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Chapter 5: Genome-wide analysis of DNA methylation in 

ALS lower motor neurones 

5.1 Introduction 

The pathological studies carried out in chapter 4 suggest higher levels of DNA methylation 

and DNA hydroxymethylation are present in ALS MNs, with this effect not seen in glial cells 

or neurones of the motor and frontal cortices. This suggested a MN-specific phenomenon. In 

order to further understand DNA methylation changes in ALS MNs, MNs were extracted from 

the AH of human FFPE PM cervical spinal cord by laser capture microdissection, resulting in 

a neuronally enriched DNA sample, which has then undergone analysis by Illumina® 

Infinium® MethylationEPIC BeadChip. A flow diagram of the steps conducted in this chapter 

are seen in figure 5.1. A number of studies on DNA methylation in neurodegeneration used 

the HumanMethylation450 BeadChip array, which contained over 450,000 probes to 

measure DNA methylation levels at the single-gene level, the precursor to the 

MethylationEPIC array (Taskesen et al., 2017). The HumanMethylaiton450 array was the 

precursor to the MethylationEPIC array, which contains over 850,000 probes. Hence, the 

decision was made to use the MethylationEPIC array to allow for potential comparisons 

between the dataset generated in this study compared to datasets available from previous 

studies originating from other laboratory groups.  

It was found by IHC in section 4.4.5 that there were greater levels of methylation in sALS 

and C9ALS in residual LMNs of the SC compared to controls, an effect not seen in glial cells 

or in neurones of the motor or anterior frontal cortices.  In section 5.4.2, using the Illumina® 

Infinium® MethylationEPIC BeadChip platform, greater levels of residual LMN DNA 

methylation in C9ALS cases are demonstrated, compared to control cases with intermediate 

(but not significantly different) levels of methylation in sALS. Concerning the previous 

chapter and this chapter, the overall increase in DNA methylation seen using the 

MethylationEPIC platform is validated by the IHC data in section 4.4.5. 

Further, attempts to validate some of the individual differentially methylated genes identified 

on the Illumina platform using the Zymo Methyl-SeqTM Library will be also be discussed. To 

ensure a direct comparison, twelve of the sixteen samples used in the MethylationEPIC 

analysis were used. This was the maximum number of samples available for this study due 

to resources and time constraints (laser capture microdissection is very time consuming).  
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The aims of this chapter were as follows: 

1. To validate the finding of increased global DNA methylation in residual LMNs using 

IHC (section 4.4.5) 

2. To identify if there were any specific genes or pathways dysregulated in residual 

LMNs 

3. To compare any gene-level dysregulation found to pre-existing mRNA expression 

data to establish if the DNA methylation changes correlate to the expected changes 

to mRNA expression 

5.2 Hypotheses 

1. Higher levels of DNA methylation will be observed in ALS groups compared to 

controls. To test this, the total number of methylated sites will be assessed and 

compared between each of three experimental groups: Controls, sALS and ALS 

associated with C9orf72 mutations (C9ALS). 

2. This increase in DNA methylation will be more marked in C9ALS cases compared to 

sALS cases.  

3. This increase in DNA methylation in ALS cases will affect the neuronal mRNA 

transcriptome, and thus impact on the disease process. To test this hypothesis, 

promoters identified as significantly differentially methylated in ALS will be compared 

to pre-existing mRNA expression data.  

4. There will be greater levels of methylation in the ALS groups, being most marked in 

the C9ALS cases.   

5. A significant number of differentially methylated genes identified using the Illumina 

platform will be found to be differentially methylated using the Zymo Methyl-SeqTM 

Library.  

5.3 Methods Overview 
 

A more detailed description of methodologies employed in this chapter are described in 

chapter 2. In summary, MNs were stained with toludine blue and extracted from the 

anterior horn of human FFPE cervical spinal cord using laser capture microdissection 

(LCM). DNA was then extracted, quantified and bisulphite converted. Samples then 

underwent DNA methylation analysis using the Illumina® Infinium® MethylationEPIC 

BeadChip. Briefly, this entailed a series of steps including DNA amplification and 

fragmentation, followed by precipitation and resuspension. DNA was then hybridised to 

the BeadChip, stained and scanned. A summary of this process can be seen in fig. 
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During the scanning process, an IDAT file was created for each BeadChip, detailing the 

methylation status of DNA. IDAT files were then analysed using the package RnBeads in 

the programming language R to identify any significantly different DNA methylation 

expression between the three experimental groups; control, C9ALS and sALS. 

Significance values were set at p<0.05, unless otherwise stated. An overview of cases 

used in studies presented in this chapter can be seen in tables 5.1. 
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5.4 Results 

5.4.1 RnBeads quality control 
Quality control was conducted and summarised in table 5.2. The Greedycut algorithm was 

used to remove CpGs/samples containing the largest fractions of measurements deemed 

unreliable. This is calculated based on detection p-values and/or read coverage. The 

Greedycut algorithm removed 496,306 unreliable probes. No samples were removed. QQ 

plots were used to assess normal distribution of the samples, which was found to be the 

case (see appendix X). The Greedycut algorithm was chosen as part of the quality control 

process for a number of reasons. At the time of analysis, there were few studies published 

using the MethylationEPIC array, with no prior knowledge of conducting analysis on this 

array within the department. When deciding which method was most appropriate, 

considerations were given to a number of factors, such as the availability of published 

literature detailing the analysis procedure, the level of expertise needed to conduct the 

analysis and the level of support available from various sources when carrying out the 

analysis. Specific to the Greedycut algorithm, this was chosen as it was part of the standard 

RnBeads analysis protocol recommended for use with the MethylationEPIC array. The 

Greedycut algorithm also provided a balance between filtering the data to an adequate level 

and conducting the analysis in a reasonable timeframe. Firstly, it was part of the standard 

RnBeads analysis protocol for the MethylationEPIC array. Samples were deemed to be 

unreliable by the Greedycut algorithm based on the read coverage and detection p-values, 

with Greedycut filtering out probes with a detection p-value of >0.05. The removal of 496,306 

probes, while high, is reflective of the DNA quality extracted from the FFPE tissue, with the 

bisulphite conversion process degrading the DNA further. While these probes could have 

been included in further analysis, it was deemed that a smaller amount of better quality and 

more reliable results was preferable over a larger amount of less representative results. 
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5.4.2 Comparison of total number of methylated regions 

The total number of methylated DNA probes was calculated and compared between the 

three experimental groups (n=6 in each group, total n=18).  The C9ALS cases had the 

highest number of methylated probes (mean of 419,966 probes methylated, SD=98,783), 

followed by sALS cases (mean of 309,017 probes methylated, SD=57,157), with control 

cases displaying the lowest number of methylated probes (mean of 263,207 methylated 

probes, SD=38,856). A significant difference (p=0.011) was detected between control and 

C9ALS groups in the number of probes methylated revealing a greater number of probes in 

the latter (figure 5.2).  Significant differences were not detected when comparing control and 

sALS groups, or sALS and C9ALS groups, which were at intermediate levels between the 

other two. Post-hoc power analysis was conducted using G*Power v3.1.9.4 (Faul et al., 

2007) to assess the achieved power of the test, which was 0.87. In a perfectly powered 

study, a figure of 1.0 is found. Analysis was also conducted to assess the ideal sample size, 

which was 24 samples, compared to the 16 samples that were used in the array. If 24 

samples were used, the expected power of the experiment was 0.96. In conclusion, this 

study was slightly underpowered. This was unavoidable due to the time consuming nature of 

LCM, and the finite length of this project. 
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5.4.3 ALS has significantly differentially methylated promoter 

regions 
Analysis presented in the previous section found increased numbers of methylated sites in 

C9ALS cases compared to controls, with intermediate, but not significant levels in sALS 

cases. The next step was to look at the significance of this in specific genes. This is a more 

focused analysis of gene promoters, compared to the analysis conducted in the previous 

section, which identifies all methylated sites, irrespective of location or significance in the 

genome. The analysis presented in this section focuses only on promoters of known genes. 

RnBeads analysis documents were first converted from csv files to excel files. The sort 

function was used to order the hits according to ‘comb.p.val’. This is the normalisation 

corrected p significance value. All hits where p<0.05 were taken forward for further analysis. 

The significant hits were then sorted according to the official gene symbol. The control 

versus disease (sALS plus C9ALS pooled) analysis indicated 613 hits were significantly 

differentially methylated in ALS versus controls. A further 522 hits were identified which had 

no gene name, and were therefore recorded as ‘NA’. Searches using GeneCards 
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(https://www.genecards.org/) were conducted on these 522 hits to identify if any gene name 

could be found. A further 119 hits were identified, with 403 identified as novel transcripts with 

no known gene name or associated information. For this reason, only the 613 originally 

identified and the 119 subsequently identified as genes were taken forward for further 

analysis, totalling 732, with the unidentified 403 removed from further analysis. 

Of the 732 total hits identified, 402 promoters were identified as significantly 

hypermethylated in ALS, with 330 hits identified as significantly hypomethylated in ALS 

(figure 5.3, section b). The degree of dysmethylation was more profound in the 

hypermethylated promoters, with a mean increase in methylation of 21.8% in ALS compared 

to controls, with hypomethylated promoters showing a mean decrease in methylation of 

9.4% in ALS versus controls. 

 

5.4.4 Promoter type analysis 

The human gene database GeneCards (https://www.genecards.org/) was used to identify 

the promoter types, based on the 732 hits identified from the RnBeads analysis. Of the 732 

promoters, 378 were identified as protein coding, 202 as pseudogenes and 122 identified as 

RNA genes (figure 5.3, section a). 

https://www.genecards.org/
https://www.genecards.org/
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5.4.5 Promoter GO enrichment and pathway analysis 
Gene ontology (GO) analysis was conducted as part of the RnBeads analysis. The GO 

analysis conducted used a hypergeometric test, which addresses the hierarchical structure 

of the ontology. This corrects for the possibility of multiple pathways being annotated by the 

same genes being covered by parent terms (Falcon and Gentleman, 2007). The GO 

pathways identified were then split into promoters that were hypermethylated in ALS, and 

those that were hypomethylated (table 5.3). Benjamini-Hochberg corrected p-values were 

calculated, with only those that had a p-value of <0.01 considered.  A number of pathways 

involved with neurodegeneration were found. For hypermethylation, most hits implicate RNA 

processing, nucleic acid processing and RNA splicing. This GO analysis was used as it was 

part of the RNBeads standard pipeline, and therefore makes for easier comparison between 

other datasets analysed using the RnBeads method, and the method controls for genes 

found in multiple pathways being covered by a parent term. 
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5.4.6 Comparison of MethylationEPIC promoters with gene 

expression data 

MethylationEPIC promoters identified as significantly differentially methylated were 

compared to pre-existing mRNA expression data (Highley et al., 2014) to determine the 

relationship between the two datasets. Promoters identified as hypermethylated were 

compared to mRNA expression hits identified as downregulated, with promoters identified as 

hypomethylated being compared to mRNA expression data identified as upregulated.  

In order to establish if the mRNA expression and MethylationEPIC platforms were 

compatible, with overlapping targets, the probes on the arrays (promoters/genes) were 

assessed to see the level of overlap, and ultimately, the suitability of comparing data from 

the two platforms. First, all of the gene promoters assessed for methylation (regardless of p-

value) in the  MethylationEPIC dataset were compared to all the hits in the mRNA 

expression analysis to determine if there was any overlap in the probes assessed in both 

systems. This determined that there was an overlap of 14,193 hits between the systems 

(figure 5.4, section a). The 732 promoters found to be significantly differently methylated in 

the MethylationEPIC array were compared to the entire mRNA platform (regardless of 

mRNA p-value). This was carried out to establish if the expected direction was reflected in 

the datasets (figure 5.4, section b). Of these, 279 were found to be present in the mRNA 

expression dataset. These 279 hits were then assessed to determine if they matched the 

expected direction of change (hypermethylation with downregulation, hypomethylation with 

upregulation). In total, 136 hits matched the expected direction of change. 
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5.4.7 GO analysis comparison between MethylationEPIC and 

mRNA expression 
In the paper by Highley et al., 2014, gene ontology analysis was conducted using DAVID, 

and is summarised in table 5.4. In both analyses on genes with increased expression and 

decreased expression in ALS, RNA splicing was implicated. This is complementary to the 

findings from the MethylationEPIC dataset, which found RNA metabolism dysregulation 

(table 5.3). 
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5.4.8 PANTHER pathway analysis comparison 
PANTHER pathway analysis was carried out (http://pantherdb.org/) on both the 

MethylationEPIC datasets (separate analysis for hypermethylation and hypomethylation) and 

mRNA expression dataset (separate analysis for upregulation and downregulation) to 

identify pathways associated with the gene promoters/mRNA expression identified as 

significantly differentially methylated/significantly differentially expressed in ALS.  

In total, PANTHER pathway analysis has 177 pathways in its repositories. For the 

hypermethylated MethylationEPIC dataset, 18 pathways were identified, with 17 of these 

pathways also picked up in the mRNA downregulated expression pathway analysis (table 

5.5). For the hypomethylated MethylationEPIC dataset, 51 pathways were identified as being 

affected. Of these, 43 pathways were also present in the mRNA upregulated expression 

pathway analysis (table 5.6). This indicates a high level of overlap in the pathways found to 

be implicated in each dataset. Other pathway analyses repositories were considered but not 

used, as PANTHER was found to be the most up to date (last revised April 2018) compared 

to other repositories such as DAVID, which was last revised October 2016. PANTHER has 

been used in a number of publications using the MethylationEPIC’s precursor, the 

HumanMethylation450 BeadChip array. In order to facilitate potential dataset comparisons in 

the future, PANTHER was deemed to be an appropriate pathway analysis tool to facilitate 

any future analyses. 

For the hypermethylation MethylationEPIC dataset, multiple pathways involved in 

neurodegeneration were implicated (AD-presenilin pathway, HD), as well as inflammation (B 

cell activation, cadherin, interleukin and inflammation mediated by chemokine and cytokine 

signalling) and cell signalling (Notch signalling). For the hypomethylation MethylationEPIC 

dataset, pathways involved in neurodegeneration (AD-presenilin pathway, HD and 

Parkinson’s disease (PD)), inflammation (B cell and T cell activation, TGF beta signalling) 

and cell death (apoptosis signalling, p53 pathway and TGF beta signalling) were found.  

Together, the findings for both hypermethylation and hypomethylation implicate pathways 

previously associated with ALS, and suggest a key role for RNA metabolism dysmethylation 

and dysregulation. 
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5.4.9 Comparison of MethylationEPIC and mRNA expression at 

the single gene level 
The 136 hits identified in section 5.4.6 were further assessed. Of these hits, 29 were 

hypermethylated/downregulated. Of these 29 hits, 25 were protein coding. Analysis into the 

protein coding hit functions was conducted using GeneCards to assess if they matched the 

pathways identified (table 5.7). This identified genes involved in inflammation and immune 

response (ITLN2, SIGLEC1, SH3RF1), cell signalling mediation (CD151, TSPAN31), cell 

death (HSPB7, RPS19BP1) and RNA metabolism/transcriptional regulation (RNF17, 

ZNF273, UBP1, NCOA4).  

This process was repeated with the hits that were hypomethylated/upregulated, of which 104 

were protein coding (table 5.8). Genes involved in inflammation and immune response were 

present (FYN, CCL18, BCL10, CNR2, ISG15, CLEC4A, CXCL1, GIMAP5, KLRG1 and 

MSC), along with cell signalling response (FYN, NOXA1, RHEBL1, PIK3C2A, PREX2 and 

ITGA8). Hits for cell death were also present (NCAM1, PCSK9, TEAD2, BCL10, COMMD4, 

SIDT2, RHEBL1, PIK3C2A, CYCS, TRAF2, SET and KLF4), along with RNA 

metabolism/transcriptional regulation (HBP1, ARNTL, TEAD2, ARID3B, NFE2L2, ZNF383, 

ZNF417, HNRNPUL1, CASZ1, SF3A1, PRPF4B, SET, KLF4 and MSC). Also of interest is 

the hypomethylation of SERPINA1 (20.3% hypomethylation in ALS versus controls), which 

has previously been implicated in ALS (Ebbert et al., 2017). 
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5.4.10 Horvath epigenetic clock analysis 
The Horvath epigenetic clock algorithm was originally created for use in conjunction with the 

450k array, but can be modified for use with MethylationEPIC arrays (Horvath and Raj, 

2018). It relies on a series of probes related to biological ageing, originally identified in the 

oncology field. Due to the nature of using FFPE tissue, not all the probes necessary for 

calculating the Horvath were present in the dataset. Of the 28, 587 probes used to calculate 

DNA methylation age, 15,711 (55%) of probes were missing. This results in a less accurate 

determination of epigenetic age. Therefore, results of this calculation were discounted.  

5.4.11 Quality control for BS-NGS 
Initial quality control analysis was conducted using the FastQC programme on Galaxy 

(https://usegalaxy.org/). The programme Bismark 

(https://www.bioinformatics.babraham.ac.uk/projects/bismark/) was then used to align the 

methylation sequencing data to the human genome sequence (hg38), generating BED files 

which were then analysed using RnBeads. FastQC analysis indicated that all samples 

sequenced were classed as good, as represented in figure 5.5. However, Bismark sequence 

alignment to hg38 was poor for all samples. This is demonstrated in table 5.9. The column 

labelled ‘sequence without alignment’ (highlighted in red) gives an indication of how many 

sequences could not be aligned using the reference human genome sequence (hg38). As 

seen in table 5.9, large percentages of sequences were not aligned. As poor alignment to 

hg38 was observed, a consideration to alignment with hg37 was given, as there was a 

possibility that the data could be better aligned to this version of the human genome 

sequence. However, as all the samples showed poor alignment, and the alignment 

percentages were small, this suggests earlier issues at stages such as library formation and 

sequencing, possibly due to the input DNA not being of sufficient quality to perform 

sequencing, meaning that any analysis carried out on this dataset would be unreliable. Due 

to this reason, alignment to hg37 was not attempted.  

https://usegalaxy.org/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
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5.4.12 Total methylation sites for BS-NGS 
Cytosine methylation was calculated using Bismark, with controls at 65.25%±6.2, sALS 

71.3%±10.3 and C9ALS 70.7%±8.0. No significant difference in methylation levels were 

detected between any groups. Control v sALS (p=0.36), control v C9ALS (p=0.37) and sALS 

v C9ALS (p=0.94) (figure 5.6). Post-hoc power calculations were performed using G*power 

v3.1.9.4 (Faul et al., 2007), indicating that the sample size of 12 used in this study was 0.71, 

indicating the study was underpowered. Increasing the study cohort to 20 samples would 

have increased the power of the study to 0.92. However, as LCM is a very time consuming 

procedure and BS-NGS is expensive, it was not feasible to increase the cohort size for this 

experiment. 
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5.5 Discussion 
In chapter 4, it was established that residual LMNs in sALS and C9ALS cases showed 

hypermethylation compared to controls. For C9ALS cases, this was validated in the findings 

presented in this chapter, with global methylation levels showing C9ALS being significantly 

more methylated than controls.  There was an intermediate level of methylation for sALS 

cases that lay between that of these groups that was not statistically significant. Methylation 

was further analysed at the gene level, with 732 promoters being identified as significantly 

differentially methylated, 402 of these promoters were identified as hypermethylated (figure 

5.3), with a mean increase in methylation of 21.8% in ALS. Combined with findings of 

changes at the single gene level, GO analysis and PANTHER pathway analysis also found 

dysregulation in RNA metabolism. These findings were validated using PANTHER pathway 

analysis, which showed strong overlap between the datasets at the pathway/GO level. This 

is in keeping with the existing literature which highlights the importance of focusing on the 

general mechanisms implicated in disease before continuing analysis at the single gene 

level (Pita-Juárez et al., 2018). After implicated pathways had been established, 

comparisons of MethylationEPIC and mRNA expression data were made at the single gene 

level, which supported the findings of the pathway analysis, with hypermethylation of genes 

involved in inflammation/immune response, apoptosis/cell death and cell signalling (table 

5.7). 

5.5.1 Increased DNA methylation in C9ALS 
The total number of methylated sites were calculated to determine a measurement of global 

DNA methylation levels. The findings support those seen in the previous chapter, with a 
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significant global increase in DNA methylation in C9ALS cases. sALS cases showed an 

intermediate, level of DNA methylation, but this was not significantly different to other 

groups. Overall, this finding indicates a global hypermethylation in C9ALS, with intermediate 

increases in sALS (although not significant). This is supported in the literature, with global 

increases in 5mC and 5hmC in sALS SC (Figueroa-Romero et al., 2012) and in the 

cerebellum of C9FTD/ALS patients (Belzil, Nouri-mahdavi and Raoof, 2008). Increased DNA 

methylation has also been observed in SOD1-ALS (Coppedè et al., 2017). Further, global 

levels of 5mC were increased in sALS, as well as C9ALS cases (which showed the highest 

increase in 5mC levels), as well as in spinocerebellar ataxia type 1 and type 2 in blood 

(Hamzeiy et al., 2018). Together, these findings implicate global hypermethylation in 

neurodegenerative disease of MNs, and a strong case for hypermethylation specifically in 

ALS. 

5.5.2 Changes in DNA methylation are present in ALS at the 

single gene level 
Studies on the DNA methylation status of particular genes in ALS is sparse. Therefore, 

genes found to be downregulated at the RNA levels in datasets within published literature 

could be seen as potentially indicative of DNA methylation changes. Below will be 

considerations for genes that show similar changes in both mRNA expression and DNA 

methylation. For example, in both the mRNA expression dataset from Highley et al., 2014 

(from LMNs extracted using LCM from ALS cases) and the MethylationEPIC dataset 

described in this chapter, the gene RNF17 was dysregulated. This gene is involved in 

transcriptional activity regulation, and has previously been found to be downregulated in the 

hippocampus of APPswe/PS1dE9 double transgenic AD mice (Wan Nasri et al., 2019). While 

this is not in ALS, it does suggest a potential dysregulated role in neurodegeneration, and is 

consistent with the findings discussed in this chapter. 

When considering changes in methylation at the single gene level, little difference is 

observed between sALS and C9ALS, with few significantly differentially methylated 

promoters identified. This suggests that similar promoters are being affected in both sALS 

and C9ALS versus controls, but that the dysmethylation of these similar promoters is more 

severe for the C9ALS cases. GO analysis of separated lists for hypermethylation and 

hypomethylation in ALS revealed DNA methylation changes in genes associated with 

aberrant RNA metabolism, a process which is heavily implicated in ALS (Mackenzie, 

Rademakers and Neumann, 2010). This is discussed further in section 5.5.2.1. 



173 
 

5.5.2.1 GO analysis: RNA metabolism and ALS 

GO analysis of the MethylationEPIC hypermethylated promoters in combined sALS and 

C9ALS by RnBeads heavily implicated RNA metabolism (section 5.4.5), with analysis 

implicating alternate RNA splicing in the mRNA expression dataset. Four pathways were 

found to include RNA splicing. RNA splicing is the removal of introns (non-coding 

sequences) from pre-mRNA, and the subsequent joining of exons (protein coding 

sequences), to allow for mRNA translation by ribosomes in the nucleus to take place. These 

are: mRNA 5’ splice site recognition (GO:0000395), spliceosomal complex assembly (GO: 

0000245), RNA splicing, via transesterification on reactions with bulged adenosine as 

nucleophile (GO:0000377) and RNA splicing (GP: 0006397). Two pathways were found to 

implicate ribonucleoprotein complexes. Ribonucleoprotein complexes are macromolecular 

complexes made up of RNA and RNA binding proteins. These are: ribonucleoprotein 

complex subunit organisation (GO: 0071826) and ribonucleoprotein complex biogenesis 

(GO:0022613). mRNA processing was also implicated (GO:0006397). Broadly, mRNA 

processing involves the processing of primary mRNA transcripts to create functional 

mRNAs. This process can include 3’ cleavage and polyadenylation, 5’ capping, mRNA 

splicing and RNA editing. Together, this suggests broad-reaching dysmethylation in RNA 

metabolism is present in ALS LMNs.  

mRNA processing is made up of a number of steps, including: splicing, polyadenylation, 

editing, transport and translation, which are all highly dynamic processes. These processing 

steps are closely involved with RNA binding proteins (RBPs). RBPs are responsible for 

transcriptome maintenance by controlling the regulation of RNA processing and transport. 

They also modulate co-transcriptional and post-transcriptional transcript processing. RBPs 

bind RNA molecules at specific sequences/secondary structures to facilitate RNA processing 

in both the nucleus and cytoplasm (Nussbacher et al., 2015). Finally, RBPs provide multi-

functional roles by associating with many different protein complexes, and can therefore 

influence many processing steps of its RNA targets. With this wide reaching impact, and the 

dynamic nature of mRNA processing, even small changes in RBP expression can cause an 

amplification effect on subsequent RNA processing steps, such as expression, splicing and 

translation of RNA transcripts. This could lead to global dysfunction.  

RBPs have previously been implicated in ALS, such as in aggregation, including TDP43 

pathology, and sequestration by transcripts/abnormal proteins with pathological repeat 

expansions, such as that of C9orf72 (Nussbacher et al., 2019). 
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5.5.2.2 Overlap of MethylationEPIC with mRNA expression 
The main aim of this chapter was to ascertain the changes in DNA methylation occurring in 

LMNs, and which pathways/processes were implicated. Secondly, considerations on 

elucidating the relationship between mRNA expression and DNA methylation changes were 

also sought, as well as corroboration with the findings of the previous chapter. A further aim 

was to compare MethylationEPIC with mRNA expression data at both the individual gene 

level, and at the level of cellular processes. This was to observe if any key promoters or 

pathways were found to be affected in both datasets. 

While there was little relationship between DNA methylation and mRNA expression at the 

level of individual genes, a strong overlap between mRNA expression and MethylationEPIC 

PANTHER pathway analysis was found (section 5.4.8, table 5.5 and table 5.6). This 

implicated pathways and processes associated with inflammation (B cell and T cell 

activation, interleukin signalling and notch signalling), and cell death (apoptosis, p53 

pathway and TGF beta signalling). These processes will be discussed in relation to ALS 

below. 

5.5.2.3 Inflammation and immune response 
PANTHER analysis of hypermethylated hits identified B cell activation, cadherin signalling, 

interleukin signalling and inflammation mediated by chemokine and cytokine signalling 

pathways. Genes found to be hypermethylated were also found to be involved in 

inflammation and immune response (ITLN2, SIGLEC1, SH3RF1). Further, PANTHER 

analysis of hypomethylated hits identified B cell activation, T cell activation and TGF beta 

signalling (table 5.8). At the single gene level, hypomethylation was seen in genes involved 

in inflammation and immune response (FYN, CCL18, BCL10, CNR2, ISG15, CLEC4A, 

CXCL1, GIMAP5, KLRG1 and MSC). This heavily implicates dysmethylation of pathways 

and genes involved in inflammation in ALS. 

Inflammation has been implicated in ALS, with microglia (the monocytes of the CNS), B cells 

(which mature into antibody-producing cells) and T cells (involved in cellular immunity) all 

being implicated in pathogenesis (Allen, Shaw and Ferraiuolo, 2017). Global inflammatory 

responses have been found in the mutant SOD1 (mSOD1) mouse model, and higher levels 

of Cox-2 (which plays a key role in inflammation) has also been found in PM human sALS 

SC (Almer et al., 2001). The role of B cells in ALS pathogenesis has not been thoroughly 

explored; the role of T cells has been investigated. One study has found T-helper cells in 

close proximity to degenerating corticospinal tracts, with T-helper and T-suppressor cells 

found in the ventral horns of post-mortem sALS SC (Engelhardt, Tajti and Appel, 1993), with 

others finding an increase in CD4+ T-helper cells in ALS induced pluripotent stem cells 
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(iPSCs) (Song et al., 2016) and a decrease in CD8+ T-suppressor cells (Chen et al., 2014). 

Takeuchi et al., 2010 found increased circulating B and T cells in the mSOD1 mouse model, 

with Cady et al., 2014 finding increased expression in the microglial activating gene TREM2 

in sALS SC and SOD1 G93A mice, as detected by qualitative reverse transcriptase-

polymerase chain reaction (qRT-PCR).  Finally, a study of mSOD1 mice which artificially 

depleted mature B and T cells showed reduced microglial activation at end stage disease, 

along with enhanced disease progression (Alexianu, Kozovska and Appel, 2001). What is of 

interest, is that the majority of studies into gene expression related to inflammation and 

immune response is the variety of gene expression changes, with both downregulation and 

upregulated found (McCauley and Baloh, 2019). This is comparable with the data found 

using the MethylationEPIC in this chapter, where both hypermethylation and 

hypomethylation of pathways and genes associated with inflammation and immune 

response were found. Together, these results show that immune response is differentially 

regulated in the LMNs of ALS, both in terms of DNA methylation and corresponding mRNA 

expression analysis. 

While inflammation and immune response is generally associated with glial cells, there is 

precedent for neurones to exhibit inflammatory/immune response-associated pathway 

responses. One study extracted MNs from the spinal cord of post-mortem frozen human 

ALS tissue and conducted mRNA expression analysis using the Affymetrix Human Genome 

U133 Plus 2.0 GeneChip. Upon analysis, it was found that one module was enriched for the 

GO category ‘immune system process’, finding inflammation responses in MNs (Cooper-

Knock et al., 2017). 

Although it is atypical to observe inflammation-related pathways in a motor neurone-enriched 

sample, consideration was given to the genes highlighted in both single-gene and pathway 

analysis indicating other unknown functions of these genes. As can be observed in table 5.7, 

many of these genes also perform other functions separate from immune response that 

could be differentially methylated and expressed in MNs as part of ALS pathogenesis. 

However, there is potential for other cell types traditionally associated with inflammation and 

immune response, such as astrocytes and microglia, acting as a contaminating factor in the 

LCM-neuronally enriched samples, as tissue immediately surrounding the MNs could have 

been collected. The limitations of this are discussed at length in section 5.5.5. 

5.5.2.4 Apoptosis and cell death 

PANTHER pathway analysis of hypomethylated hits implicated a number of pathways 

involved in apoptosis and cell death (table 5.6). These pathways included apoptosis 

signalling, the p53 pathway and TGF beta signalling, all of which will be considered below. 
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Also, hypomethylation of genes associated with apoptosis and cell death were also found 

(NCAM1, PCSK9, TEAD2, BCL10, COMMD4, SIDT2, RHEBL1, PIK3C2A, CYCS, TRAF2, 

SET and KLF4). HSPB7 and RPS19BP1 were found to be hypermethylated, with 

RPS19BP1 being a direct regulator of SIRT1, which is involved in p53/TP53 apoptosis. 

p53 is a transcription factor capable of inducing apoptosis. This is through the upregulation 

of pro-apoptotic genes and the downregulation of anti-apoptotic genes. qRT-PCR analysis of 

ventral horns from ALS human PM SC isolated by LCM found increases in p53 expression 

(Eve, Dennis and Citron, 2007). This study also conducted microarray gene expression 

analysis on ventral horns isolated by LCM from the SC of the Wobbler mouse model. While 

not a model of ALS, its characteristics include rapid MN death and motor deficits. Increase 

p53 expression was observed, which was also validated in qRT-PCR and western blot. 

Immunocytochemistry in PM ALS MNs of the SC and MCx detected the presence of p53, 

which was not seen in controls (Martin, 2000). IHC on ALS human PM spinal cord also 

showed an increase in p53 in MNs, but this was not observed in the UMNs of the MCx. This 

is supportive to findings of the previous chapter, where changes in DNA methylation and 

hydroxymethylation were seen in LMNs of the SC, but not in neurones of the MCx (section 

4.4.5).  

Within the MethylationEPIC dataset, hypomethylation of NCAM1 and BCL10 were found, 

which are involved in TGF beta signalling. TGF beta is a regulator of survival and apoptosis 

in cells. It acts via specific receptors, which activate multiple intracellular pathways. This 

results in the phosphorylation of Smad2/3 proteins. These proteins then associate with the 

mediator Smad4. This complex then translocates to the nucleus, where it binds to DNA and 

regulates the transcription of multiple genes. Overproduction of TGF beta in the mSOD1 

mouse model has been found to accelerate ALS disease progression (Endo et al., 2015). 

Increased TGF beta levels were also found in the serum of ALS patients (Iłz̈ecka, 

Stelmasiak and Dobosz, 2002).  

In summary, both hypermethylation and hypomethylation in pathways and at the individual 

gene level implicate changes in cell death and apoptosis in ALS, which correlates to existing 

literature on the role of cell death and apoptosis in ALS. 

5.5.2.5 Cell signalling 
At the single gene level, CD151 and TSPAN31 were hypermethylated, with Notch signalling 

also being implicated in the hypermethylated hits. Downregulation of CD151 mRNA was also 

observed by Jiang et al., 2005, in motor neurones from human post mortem sALS spinal 

cord. CD151 was also downregulated in the lumbar SC of SOD1-ovberexpressing transgenic 

mice (D’Arrigo et al., 2010). A Drosophila model of spinal muscular atrophy (SMA), a MN 
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disease, found TSPAN31 was downregulated in the SMA mutants compared to wild type 

(Lotti et al., 2012). 

Notch is a transmembrane receptor and a master regulator in the CNS, where it coordinates 

signalling cascades, modulates cell fate decisions and mediates cell-to-cell communication. 

Our analysis suggests that genes associated with Notch signalling are hypermethylated. No 

studies have been conducted in ALS to determine the DNA methylation status of Notch 

signalling in ALS, but studies have been conducted on gene expression. Increases in gene 

expression associated with Notch signalling were found in the NSC34 cell line, which had 

been stably transfected with human mutant SOD1 G93A. IHC on the mSOD1 G93A mouse 

model, focused on genes associated with Notch signalling (Notch1, Jagged1, Hey1, Hes1 

and Maml1), were found to be increased in ALS compared to wild-type controls (Wang et al., 

2015). With hypermethylation being an indicator of downregulation of gene expression, this 

finding is in opposition to that of our study. However, other studies have been found to detect 

a downregulation in Notch signalling in ALS. This was determined via qRT-PCR, focusing on 

gene expression of Notch-associated genes (HES1, HEY1, NFKappaB and cyclophilins), 

which found decreases in gene expression in the middle frontal gyrus of PM human C9ALS 

tissue and in induced pluripotent stem cell (iPSC)-derived cortical neurones of C9ALS 

patients (Yang et al., 2015). The discrepancy in findings could be down to the use of 

different techniques and tissues used in analysis. However, the findings by Yang et al., 2015 

are in PM tissue, as is the case with the studies described in this chapter, along with iPSCs. 

Both of these materials are derived from human origin, whereas the study by Wang et al., 

2015 used a model of ALS, which is not as representative of humans. 

Together, this supports the findings of the study presented in this chapter, and gives 

potential targets at the single gene level. 

5.5.2.6 Calcium homeostasis 
Within the MethylationEPIC data, a slight hypomethylation/upregulation was observed for 

ITPR2 (hypomethylation in ALS of 1.6% (p=0.04), with mRNA expression showing a fold 

change of 1.24 (although non-significant). ITPR2 is involved in glutamate-mediated 

neurotransmission in neurones, and is highly expressed in MNs (Bosch et al., 1999). It is the 

main regulator of intracellular calcium and is a receptor for inositol 1,4,5-triphosphate, which 

is a second messenger that mediates intracellular calcium release,  

ITPR2 has previously been implicated in ALS, with analysis of sALS blood showing 

upregulation (van Es et al., 2007). Increases in the regulation of ITPR2 can have an effect 

on neuronal vulnerability due to higher concentrations of intracellular calcium. These 
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increases can lead to selective degeneration and death of MNs, with cells that overexpress 

ITPR2 being shown to have increased cell death (Gutstein and Marks, 1997). 

Within the MethylationEPIC dataset, SRI is found to be hypermethylated (12.2% higher DNA 

methylation in ALS (p=0.012)). SRI encodes a calcium-binding protein which relocates from 

the cytoplasm to the endoplasmic reticulum when intracellular calcium levels are raised. If 

this gene is hypermethylated/downregulated, it could be that the protein is no longer being 

produced to the same levels, thus allowing intracellular calcium levels to increase. Combined 

with the increased ITPR2, this could indicate than dysmethylation has a role in calcium 

homeostasis dysregulation in LMNs affected by ALS. 

Calcium ions are held in reserve within the endoplasmic reticulum. Calcium ions are 

released into the cytosol upon extracellular signalling which detect lowered levels of 

cytosolic calcium ions. This signalling is activated by neurotransmitters.  Calcium 

homeostasis is important in neurones, with calcium ions found to be involved in a number of 

functions. These include controlling dendritic responses to neurotransmitters, gene 

expression regulation through signalling to the nucleus and neurotransmitter release 

initiation from presynaptic terminals. Calcium ions are also involved in the regulation of 

neuronal excitability, cell proliferation and cell death (Gleichmann and Mattson, 2011).  

Calcium homeostasis dysregulation has been highly implicated in ALS pathogenesis, and is 

involved in MN selective vulnerability and in defective proteins associated with ALS. SOD1 

aggregation has previously been linked to calcium overload in the mSOD1 G93A mouse 

model (Tateno et al., 2004) and in a murine cell culture expressing human SOD1 (Tradewell 

et al., 2011).  

TDP43 aggregation has also been implicated in calcium homeostasis dysregulation, with 

increased calcium levels found to activate the calcium ion-dependent calpain protrease, 

which cleaves TDP43 at the C terminal. This forms the N-terminal segments, which are 

aggregation prone and found in ALS (Aggad et al., 2014; Yamashita and Kwak, 2014).  

One study generated iPSCs from ALS patients, with calcium imaging revealing mutant 

TDP43 showing increased basal intracellular calcium levels. Further, this study also showed 

elevated expression of voltage gated calcium channels in iPSCs derived from patients with 

mutant C9orf72, as measured by qRT-PCR (Bursch et al., 2019). 

5.5.2.7 SERPINA1 
SERPINA1 is a serine protease inhibitor, which is part of a larger family of serine protease 

inhibitors, which includes SERPINA3. SERPINA3 has previously been implicated in both AD 

(Kalsheker, 1996; Kamboh et al., 2006) and PD (Wang et al., 2001). SERPINA1 has been 

shown to be both differentially expressed and methylated in ALS by Ebbert et al., 2017. In 

this study, it was found that the methylome profiles of sALS and C9ALS cases overlapped, 
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which was also the case in the data presented in this chapter. This study conducted both 

RNA sequencing (RNA-seq), qRT-PCR and RRBS to determine gene expression and DNA 

methylation changes, respectively. SERPINA1 had significant increases in gene expression 

and hypomethylation in sALS frontal cortex and sALS and C9ALS cerebellum. This is the 

same effect observed in our analyses, which showed a 1.0 fold increase in gene expression 

(although not significant), and a 20.3% decrease in DNA methylation (p=0.006). Combined, 

these results indicate that serine protease inhibitors may obstruct neuronal function in 

neurodegenerative disease. 

Considerations were given to comparing the datasets produced by Ebbert et al., 2017 as the 

datasets were carried out in human post-mortem sALS and C9ALS brain. However, a 

number of factors prevented this comparison. The Ebbert study focused on frontal cortex 

and cerebellum homogenates, areas not typically associated with ALS pathology. This raises 

the issue of masking of cell-specific responses and differences in ALS pathology generally 

observed when comparing a highly affected area such as spinal cord with less affected 

areas such as frontal cortex and cerebellum samples, with comparisons therefore not 

reflective of region-specific responses. 

5.5.2.8 Limitations of comparing MethylationEPIC and mRNA 

expression data 
Many of the promoters were not validated using this comparison. This can be attributed to a 

number of reasons. First, it is not just one step between methylation and mRNA expression, 

with multiple other regulatory systems involved in the interim stages. These include mRNA 

transcription, alternative splicing, RNA transport, mRNA stabilisation and nonsense 

mediated decay (Butti and Patten, 2019). Another factor to consider is the influence of other 

epigenetic mechanisms. This includes histone modifications and microRNA (miRNA), which 

are both involved in transcription regulation. Histone modifications are also highly implicated 

in mRNA expression, along with chemical modifications. Histone modifications can result in 

both loosening of the DNA, allowing for transcription to occur, and tighten DNA, repressing 

transcription. Modifications on the N-terminal of histone tails include acetylation, 

phosphorylation and ubiquitination. These modifications can influence how tightly bound the 

DNA is packed, therefore also affecting transcription. The cohorts used in the analysis are 

different from each other, so natural variation will be observed as a consequence of this.  

Another consideration is that the mRNA expression dataset is now five years old, with 

newer, more robust expression analysis tools now available (discussed further in section 

6.4.2). RNA levels in general are prone to high levels of fluctuation, and these fluctuations 

can be rapid. This is in contrast to age-related DNA methylation changes, which are 
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generally regarded as more stable alterations. The mean differences in methylation between 

<35yo and >55yo is only 3.2% (Horvath and Raj, 2019), based on the average change 

observed based on the subset of CpGs used to calculate epigenetic age, and it is therefore 

unlikely that these small changes in will be reflected at the RNA/protein levels. Further, 

epigenetic changes in general occur in small number of cells, with different types of cells 

exhibiting different changes, which might not be seen in analysis of a collection of cells. One 

solution to this is to do single cells analysis (discussed in section 5.5.9). It may be that the 

cell has no desire to transcribe a given gene. Thus the promoter can be as unmethylated as 

possible, however if the relevant transcription factor has not been produced as the cell has 

no need for that protein, it will not be expressed. Equally, while a gene may be methylated to 

some degree, it may still be transcribed if sufficient transcription factor is produced. Finally, 

while the individual genes did not show complete correlation, the GO/PANTHER analyses 

demonstrated that there was dysmethylation which affected similar processes to altered 

mRNA expression, such that the cell was using the same pathways.   

5.5.3 Study limitations  
Limitations of using PM tissue have been discussed previously in sections 3.7 and 4.5.7, 

with the limitation of using LCM discussed in section 5.5.4. Here, further limitations specific 

to the MethylationEPIC findings of this chapter will be discussed.  

First, the study was underpowered (see section 5.4.2), as assessed by G*Power. In ideal 

circumstances, had ample time and resources allowed, greater number of samples would 

have been used. The use of FFPE tissue is also uncommon in DNA methylation analysis, 

with subsequent extracted DNA being of reasonable, but not perfect quality (as evidenced by 

the lack of ability to accurately calculate the DNA methylation age of samples, see section 

5.4.10).  

As per the analysis conducted in chapter 4 (section 4.4.6), separating out LMNs that 

displayed TDP43 pathology from those who did not, and conducting separate DNA 

methylation analysis on these, would have been of benefit. However, this is unfeasible due 

to the relative small population of LMNs displaying TDP43 pathology compared to LMNs not 

displaying TDP43 pathology. In order to gain enough material to conduct this, large amounts 

of spinal cord tissue would be required, which is not possible for such a precious resource.  

It was established in section 4.5.3 that higher DNA methylation and hydroxymethylation were 

seen in neurones compared to glia. It would have been useful to extend the MethylationEPIC 

study to include analysis of glial cells, as it is likely that DNA methylation changes at the 

single gene level would be present, especially considering the potential role of 
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dysmethylation in inflammation and immune response (section 5.5.2.3), in which glial cells 

are involved with.  

Methylation levels observed in the MethylationEPIC data relate to methylation types 

combined (5mC, 5hmC), whereas the IHC studies were focused solely on 5mC and 5hmC. 

This could be why different results are observed in these experiments. Further IHC studies 

focused on 5hmC may help to elucidate this. A potential solution to this is to use modified 

bisulphite sequencing to determine 5hmC levels. This can be done through the use of Tet-

assisted bisulphite sequencing (TET-BS), or oxidative bisulphite sequencing (Ox-BS). TET-

BS uses the Tet enzyme to distinguish between 5mC and 5hmC. In this method, 5hmC is 

protected by glycosylation, whereas 5mC is converted to 5caC using Tet. When sequencing, 

any Cs in the sequence are interpreted as 5hmC. The benefit of using this method is that it 

provides a direct measurement of 5hmC, but it does rely on the Tet enzyme, which does not 

have 100% efficiency, and it is also very expensive to produce (Yu et al., 2012). Ox-BS 

provides measurements of both 5mC and 5hmC. Normal bisulphite conversion is conducted 

to determine 5mC levels, as well as an additional bisulphite run containing an oxidative step 

to allow for measurement of 5hmC. In this step, 5fC is sensitive to deamination by bisulphite 

treatment. So, bisulphite conversion of the oxidised DNA converts 5fC to uracil, with any 

remaining Cs interpreted as 5mC. After this, both the regular BS DNA and the ox-BS DNA 

are sequenced and compared, with 5hmC levels inferred from the differences in 5mC and 

5fC levels. However, this method required two runs of sequencing, which can be costly, and 

is not a direct measurement of 5hmC (Booth et al., 2013). 

5.5.4 Laser captured MNs from FFPE tissue are compatible 

with the MethylationEPIC BeadChip 
Most analyses using the MethylationEPIC method are on samples where large quantities of 

tissue or cells are available. For instance, cell cultures or PM tissue homogenates. The 

combination of using FFPE tissue with LCM-MNs has not previously been attempted. This 

chapter indicates that this method is viable but time consuming, allowing for cell-specific 

methylation analysis to be conducted. Flow cytometry could address this, as it has 

previously been used to sort specific neuronal populations (Martin et al., 2017). In this paper, 

a method is described whereby FFPE human frontal cortex tissue is tagged with NeuN, a 

neuronal marker, followed by flow cytometry to isolate this population. While this technique is 

useful, the NeuN marker doesn’t distinguish between MNs and other types of neurones, and 

this method was only found to be successful in FFPE samples that were fixed a maximum of 

eight weeks prior to the experiment and involved large quantities of tissue in comparison to 
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the study described in the chapter, which is unrepresentative of the majority of FFPE brain 

tissue available and is incompatible with human post-mortem spinal cord. 

5.5.5 Benefits and limitations of laser capture microdissection 
LCM is a widely used and tested method of extracting a specific cell type from PM tissue in 

order to produce an enriched sample of a particular cell type. This has also been the case in 

this study thus far, with MNs successfully being extracted from FFPE SC tissue (see 

appendix III for image of laser captured MNs). Bisulphite conversion on these samples was 

also successful (see section 5.4.1), which allows further analysis to take place.  

However, some considerations have to be taken into account when conducting this further 

analysis. As FFPE tissue was used throughout this project, the limitations of this type of 

tissue need to be acknowledged. FFPE produces poorer quality DNA when compared to 

frozen tissue due to the DNA fragmentation that occurs during the tissue fixation, processing 

and embedding. However, there are also many benefits to using FFPE tissue in a project 

such as this one, including that FFPE tissue is easier to store than frozen tissue. Recent 

advances of techniques using FFPE tissue have also been developed. In the future, the 

Illumina® Infinium® MethylationEPIC BeadChip should be used to create DNA methylation 

profiles from a large cohort, to increase the power of the experiment, with MNs collected 

from the FFPE tissue. This method is now adapted for use with this tissue type (Illumina® 

Infinium® MethylationEPIC BeadChip data sheet), requiring an input of 250 ng. The 

NanoDrop 1000 spectrophotometer analysis of the DNA extraction and bisulphite conversion 

data suggests ample DNA is present within the samples for this to be successful (section 

5.4.1). 

5.5.6 Horvath clock analysis 
Horvath clock methylation analysis could not be accurately predicted for this dataset. This 

could be because of a number of factors. On factor to consider is that the Horvath equation 

is optimised for the 450k array, and some of the probes used to calculate methylation age 

are not present in the MethylationEPIC array. However, a study by McEwen et al., 2018 

suggests that the Horvath clock is appropriate for use with the EPIC array. In this paper, 

DNA methylation analysis was carried out on human primary monocytes using both the 450k 

array and the MethylationEPIC array, followed by carrying out Horvath clock analysis. 

Methylation age prediction between he 450k and MethylationEPIC was highly correlated, 

suggesting the Horvath lock is applicable to the MethylationEPIC array. 

More likely responsible for the Horvath algorithm not being appropriate was the low quality 

DNA as the sample input. This led to nearly half of the probes on the MethylationEPIC array 
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being discarded in the Greedycut filtering stage. This again lowered the number of probes 

used to calculate methylation age. Therefore, the results of this calculation were not reliable, 

as they have not been calculated using all probes that the algorithm relies on for accuracy. 

 

5.5.7 Compatibility of archival FFPE LCM tissue and BS-NGS  

The outcomes of the BS-NGS section of this chapter suggest that the Zymo Methyl-SeqTM 

Library method is not compatible with DNA from LCM/FFPE. This was characterised by the 

poor alignment with the reference genome, and the low number of sequence reads 

generated from the NGS data. This could be due to a number of factors. Firstly, the 

compatibility with low quality, low input archival DNA samples could affect the ability of the 

library indexes to bind to DNA present in the sample. This would significantly affect the 

amount of DNA that proceeds through all stages to the final sequencing. The method 

employed in this study requires many washes and steps where DNA could potentially be 

lost, with shorter DNA fragments more likely to be lost compared to longer sections of DNA. 

This leaves FFPE more vulnerable to this kind of loss, as DNA from FFPE tissue is usually 

shorter than frozen tissue due to the tissue fixation process, which can cause the 

fragmentation of DNA. Poor alignment with the reference genome would also indicate this, 

as fewer reads and many small fragments of DNA are difficult to map. This method also 

uses PCR amplification, which can introduce bias, which could have resulted in the mis-

amplification of DNA, thus meaning alignment could not occur. 

5.5.8 Limitations and benefits of frozen versus FFPE tissue 
Frozen tissue has been most commonly used in sequencing/array-based post-mortem 

experiments. There are a number of reasons for this, including that frozen tissue has not 

undergone any tissue fixation processes, meaning no DNA cross-linking and reducing the 

chance of introducing contaminants into experiments. DNA and RNA extracted from frozen 

tissue is generally of higher quality than FFPE tissue. During the FFPE tissue fixation 

process, DNA becomes fragmented and is subject to degradation during this process. The 

formalin fixation causes these DNA breaks, resulting in a decline in DNA quality. Over time, 

this degradation continues, with shorter DNA fragments. For example, a 20 year old FFPE 

sample would have poorer quality, more fragmented DNA that a 2 year old FFPE sample, 

where the DNA fragments would be longer, and therefore the DNA would be of a higher 

quality. Another consideration is the comparison of datasets, as it is preferable to comp-are 

datasets where samples have undergone similar processing techniques, resulting in it being 

preferable to compare datasets generated from frozen material to be compared to other 

datasets also originating from frozen material. 
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However, the use of FFPE in array and sequencing studies is gaining popularity as analysis 

tools improve. The benefits of using FFPE tissue in studies of this type are vast. For 

example, there is generally greater availability of FFPE tissue in brain banks when compared 

to the more ‘precious’ resource of frozen tissue. This can result in obtaining larger 

experimental cohorts, and can give scope to more easily sex and age matching experimental 

groups, with archival FFPE tissue more likely to be available. Other practicalities of using 

FFPE tissue include not requiring specialist storage facilities, as is the case with frozen 

tissue requiring freezer storage. 

5.5.9 Options for future studies 
There is precedent in the cancer field of using FFPE tissue in conjunction with sequencing 

technologies, such as FFPE tissue from human tumour biopsies undergoing reduced 

representation bisulphite sequencing (RRBS) (Ludgate et al., 2017). While this is based on 

the use of tissue homogenates with a large DNA input, it does suggest that technologies are 

being developed to better utilise FFPE tissue in sequencing-based experiments. A relatively 

new technology that could alleviate the need for error-prone PCR amplification steps is 

nanopore technology, such as that designed by Oxford Nanopore Technologies, which has a 

raw base-called error rate of <5% (Amarasinghe et al., 2020). This is a technique that allows 

for the detection of base modifications through the use of electrolytic currents. Long, single 

molecules of DNA can be sequenced with no bisulphite conversion or PCR amplification 

required. Simpson et al., 2017 details a method for the successful identification and analysis 

of the DNA methylation marker 5mC in Escherichia coli DNA using nanopore technology. 

The competitor for nanopore technology is the PacBio single-molecule real-time (SMRT) 

long-read sequencing method. This technique detects fluorescent events corresponding to 

the addition of a specific nucleotide by a polymerase attached to a well, with a raw base-

called error rate of <1% (Amarasinghe et al., 2020). However, these techniques may 

currently be incompatible with FFPE tissue, as FFPE tissue usually has short fragments of 

DNA, with the nanopore and SMRT techniques optimised to read long pieces of DNA. 

Another current caveat is the relatively large amount of input DNA required for both 

techniques, which would be feasible for homogenates. This thesis has shown that DNA 

methylation changes are neurone-specific. A potential solution for this is to conduct the long-

read sequencing on tissue homogenates and then apply bioinformatics tools to filter for 

neuronal specific markers. While these techniques are still in their infancy, as the techniques 

become more refined and the sample input need and cost of the procedures are reduced, 

these techniques could become a viable option for the study of PM tissue, albeit frozen 

rather than FFPE. 
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A further possible option is single cell -omics, which would allow for DNA methylation and 

mRNA expression analysis to be conducted in the same cell. However, this still relies on 

bisulphite conversion and PCR amplification. Single cell -omics was conducted by Linker et 

al., 2019, where single differentiating human induced pluripotent stem cells underwent both 

single-cell RNA sequencing and single cell bisulphite conversion and sequencing. While the 

starting material use in this study was of significantly higher quality, with DNA still being 

intact, it does indicate that this method is becoming more widely used, and is suitable for low 

DNA input. Bisulphite conversion is potentially not well suited towards single cell omics, due 

the DNA degradation associated with the bisulphite conversion process, as well as the error-

prone PCR amplification process after this (Karemaker and Vermeulen, 2018).  

 

Within the cancer field, a study has been published in which single ovarian cancer cells were 

extracted from FFPE tissue using LCM. Following this, whole genome amplification, PCR 

purification and bisulphite conversion were conducted prior to sequencing. Of the 12 cells 

separately isolated, three were successful in this process, with differing DNA methylation 

profiles for each cell, indicating that DNA methylation is heterogeneous even within the same 

cell populations (Q. Li et al., 2017). Another study using neurones isolated from frozen PM 

human frontal cortex identified 21 neuronal subpopulations based on the DNA methylation 

profiles of the cells (Luo et al., 2017). Together, these studies indicate that current methods 

are becoming increasingly useful in the study of PM tissues, and the potential for FFPE/LCM 

techniques like the one utilised in this thesis, for conducting single cell DNA methylation 

analysis. 

5.5.10 Final remarks 
Results presented in this chapter corroborate the findings of the 5mC and 5hmC IHC 

presented in chapter 4, with an increase in global DNA methylation associated with C9ALS 

in lower motor neurones. Further to this, DNA methylation changes in gene promoters were 

also found in ALS, implicating pathways involved in RNA metabolism. This hypermethylation 

implicated cell signalling, cell death/apoptosis and inflammation/immune response, which 

have all previously been implicated in ALS pathogenesis. 

Concerning the suitability of archival FFPE, LCM samples and their viability as a DNA 

source for BS-NGS, this chapter highlights the current limitations in conducting cell-specific 

pathological studies in FFPE PM tissue using BS-NGS, and details potential new 

technologies to address this. 
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Chapter 6: Conclusions and future work 

ALS is a fatal neurodegenerative disease characterised by motor neurone (MN) 

degeneration and subsequent death. The current project aimed to define the DNA 

methylation-specific changes in MNs and glia in both sporadic ALS and ALS due to 

mutations of C9orf72. This included conducting an immunohistochemistry (IHC)-based 

pathological study of DNA methylation and hydroxymethylation in spinal cord, motor cortex 

and anterior frontal cortex (SC, MCx and AFCx). The association between TDP43 pathology 

and DNA methylation and hydroxymethylation was also investigated in lower MNs of the SC. 

Further, in order to establish gene-level DNA methylation changes occurring in ALS MNs, 

LMNs were extracted from SC tissue and subjected to analysis in the form of the 

MethylationEPIC BeadChip. The study also aimed to understand the relationship between 

findings of the MethylationEPIC BeadChip and mRNA expression data.  

6.1 Main findings of the project 
 IHC for DNA markers 5mC and 5hmC showed greater DNA methylation and 

hydroxymethylation levels in residual LMNs of the SC in ALS. This was not found in 

glial cells, or in neurones of the MCx or AFCx. This suggests cell- and region- 

specific DNA methylation and hydroxymethylation changes occur in ALS.  

 This was further seen in the MethylationEPIC BeadChip array for ALS cases due to 

mutations of C9orf72 (C9ALS), where an increase in the global methylation levels of 

LMNs isolated from the SC via LCM. Significantly greater DNA methylation were 

observed in the C9ALS group when compared to controls, with sALS at an 

intermediate level (although this was non-significant).  

 Analyses of individual genes using the MethylationEPIC platform also revealed DNA 

methylation changes in ALS. The majority of changes noted in ALS showed an 

increase in methylation in promoters of protein coding genes, suggesting potential 

functional impacts. However, significant hypomethylation was also detected at the 

gene level.  

 Comparing the findings of the MethylationEPIC array to pre-existing mRNA 

expression data at the GO/pathway level found overlaps in the involved pathways, 

implicating cell signalling, apoptosis/cell death and inflammation/immune response.   

 TDP43 pathology corresponds with loss of DNA methylation from LMN nuclei, 

observed using IHC. TDP43 has unknown roles in DNA binding, suggesting that an 

interaction with DNA methylation is plausible. This potentially also relates to the 

dysregulation in RNA metabolism found. 
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6.2 Models of ALS and DNA methylation 
A potential issue with conducting pathology-based studies is understanding the direction of 

causation. In this project, a relationship between ALS and hypermethylation is present. 

However, it is impossible to know if ALS causes hypermethylation, hypermethylation causes 

ALS, or that a completely different mechanism is causing both ALS and hypermethylation.  

The underlying pathogenesis of degeneration in MNs is mostly unknown. It is therefore 

useful to investigate the pathogenic features that lead to MN degeneration, and ultimately, 

death. This is a current issue with PM tissue, as it only gives an indication of the DNA 

methylation status of cells that have survived, and not those that have perished during the 

course of disease. Using models can overcome this, with investigations into both the onset 

and progression of disease feasible. Unlike with the use of human post-mortem tissue, 

animals can be sacrificed at various time points within the disease, which allows any 

changes in DNA methylation to be detected and mapped over time. This gives an indication 

of any changes that occur with age (when studying the wild type group), and any changes 

associated with disease progression detected in the modified group. Another benefit is that 

any environmental factors, such as diet, weight and exercise can be managed and are more 

homogeneous than with humans. 

Genetic models of disease are the most common. A potential issue in using genetic models 

of disease is that of overexpression-specific effects, which are usually needed in order for 

the model to exhibit signs of neurodegeneration prior to death. This therefore is not a 

complete mimic of the disease state in humans. Consideration in how to overcome this 

include the use of Clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISP-associated protein-9 nuclease (cas9) (CRISPR-Cas9) and induced 

pluripotent stem cell (iPSC)-derived neurones. Below are sections discussing for the most 

used models in ALS currently. The mutations that these models are based on only account 

for 5-10% of diagnosed cases, with most diagnoses of ALS defined as sALS. This highlights 

the need of models to replicate sALS. 

CRISPR/Cas9 is a genomic editing tool. Originally, CRISPR/Cas makes up part of the 

bacterial natural defence system, which is now being used as an RNA-guided editing tool for 

DNA. Cas9 is an RNA-guided DNA endonuclease enzyme. It creates double stranded 

breaks at particular genomic locations, which trigger DNA repair pathways. This contributes 

to the desired genomic modification. The method has been used to create a zebrafish model 

of ALS by introducing point mutations in TARDBP and FUS genes (Armstrong et al., 2016), 

and a C9orf72 deficient mouse model of ALS (Sullivan et al., 2016). In regard to DNA 
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methylation, this system could be used to study the DNA methylation changes in wild type 

versus mutation, to identify what pathways are dysregulated.  

6.2.1 Zebrafish models  

The use of zebrafish is well-documented in ALS. They are useful as they have similar gene 

homology to mammals (approximately 70%) and have had their DNA methylation profiles 

characterised (Howe et al., 2013). This makes them a good option for vertebrate-specific 

aspects of DNA methylation. Compared to mouse models, zebrafish models are a simple 

system, with rapid development and large egg numbers. Zebrafish are also easy to 

genetically modify, with genes previously implicated in neurodegeneration being highly 

conserved between humans and zebrafish (Morrice, Gregory-Evans and Shaw, 2018). 

However, there are some limitations with the use of zebrafish models, mainly being that they 

are not mammals and do not have UMNs. The zebrafish genome codes for eight DNMT 

orthologs, including DNMT1 and DNMT3, with similar protein structures to human orthologs. 

Having both DNMT1 and DNMT3 orthologs also indicates some level of both de novo and 

maintenance of DNA methylation in zebrafish (Goll and Halpern, 2011). 

Unfortunately, no studies to date have been published considering DNA methylation 

changes in ALS, or the neurodegeneration field more generally, using the zebrafish model. 

However, in our lab, it has successfully been shown that 5mC and 5hmC antibodies detailed 

in this study are compatible with zebrafish (unpublished works). This potentially highlights 

the use of zebrafish in studying DNA methylation in ALS. The use of zebrafish to study DNA 

methylation in conjunction with TDP43 proteinopathy may be problematic, as unlike humans, 

zebrafish have two TARDBP genes (TARDBP and TARRBPL) (Hewamaddumal et al., 

2013). Considerations as to suitable models to study this are discussed in section 6.2.3. 

6.2.2 Mouse models  

Mouse models of DNA methylation have started to be developed. These are mostly in the 

cancer field, with genetic manipulation targeting genes that are DNA methylation regulators 

in the form of DNMT inhibitors (Conerly and Grady, 2010). However, steps have been taken 

to progress this into the neuroscience field (Landgrave-Gómez, Mercado-Gómez and 

Guevara-Guzmán, 2015). A rat model of epilepsy studied the global DNA methylation 

changes within the hippocampus, which showed hypermethylation. This was comparable to 

studies of human epilepsy hippocampal tissues (Kobow et al., 2013). Fuso et al., 2011 

manipulated the TgCRND8, a model of AD which overexpresses mutant human APP, mouse 

line to cause B vitamin deficiency, with this resulting in hypomethylation, as determined by 
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BS-sequencing. Interestingly, B vitamin metabolism was found to be hypomethylated in 

PANTHER pathway analysis (table 5.6). 

The CRISPR/Cas9 system has recently been used to target DNA methylation machinery.  

Tet1 fusion proteins targeted to methylated promoter sequences caused increased 

transcription activation, while Cas9 targeting of DNMT3a fusion proteins to unmethylated 

promoter sequences caused gene silencing. Further, this study isolated mouse post-mitotic 

cortical neurones from embryos, using Cas9 to conduct targeted demethylation of BDNF 

promoters, which resulted in increased BDNF expression (Liu et al., 2016). 

A mouse model of neurodegeneration (senescence-accelerated mouse P8 (SAMP8), 

characterised by learning and memory deterioration with age) has also been studied in the 

context of DNA methylation. SAMP8 mice that had environmental enrichment showed 

increase 5mC levels, with an increase in expression of antioxidant genes, and a decrease in 

expression of inflammatory diseases (Griñan-Ferré et al., 2016). Carrying out a similar study 

in an ALS-specific mouse model would be of use, with the findings of the SAMP8 acting as a 

validation to any dysmethylation observed. 

6.2.3 Cell culture models  

iPSC neurones derived from ALS patients is another consideration in studying DNA 

methylation changes in ALS. However, it is still being established if neurones derived from 

iPSCs retain their original DNA methylation profiles. 

A study by de Boni et al., 2018 investigated how suited iPSCs are to epigenetic modelling. In 

this study, the DNA methylation patterns and gene expression of mature neurones derived 

from hESCs were compared to DNA methylation patterns and gene expression of mature 

neurones derived from iPSCs. The 450k DNA methylation array (the precursor to the 

MethylationEPIC) was used, in conjunction with the HT12v4 gene expression array. Results 

found that DNA methylation patterns and gene expression were highly preserved between 

the hESCs and iPSCs, both at the global level and the single gene level. While this may be 

useful for developmental studies, it does suggest that this may not be representative of aged 

neurones. Choi et al., 2015 also found the same effect, with RNA sequencing only identifying 

49 differentially expressed mRNA, with reduced representation bisulphite conversion 

showing little changes in DNA methylation patterns. Further, Teichroeb, Betts and Vaziri, 

2011 found that the transcriptome of neuronal iPSCs and hESCs had a match rate of 99.6%, 

indicating high conservation. However, when translating this to comparisons with native 

human tissue, large transcriptional differences were found between iPSCs and primary 

midbrain dopamine neurones (Xia et al., 2016). This indicates that there are discrepancies 

that require futher studies to establish the differences in DNA methylation profiles of mature 

native neurones versus those derived from fibroblasts and redifferentiated. 
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Once the DNA methylation profile retention of neurones derived from iPSCs is established, it 

could provide a useful model for understanding the association of TDP43 proteinopathy and 

DNA methylation. While not focused on DNA methylation, Tank et al., 2018 conducted a 

genome-wide study of RNA stability using RNA sequencing in iPSCs derived from sALS and 

C9ALS patients. The role of TDP43 accumulation was also hypothesised to contribute to 

RNA instability in patient ALS iPSC-derived neurones. This was tested by overexpressing 

TDP43 in control neurone iPSCs and conducting RNA sequencing. 1,330 hits were 

identified, with 75% of these described as destabilised, compared to neuronal iPSCs that did 

not have TDP43 overexpression. Destabilisation of both ribosomal and mitochondrial 

transcripts were found, with liquid chromatography-mass spectrometry (LC-MS) also 

showing reductions in mitochondrial components. Compensatory increases in protein 

synthesis were also present. Validation of the RNA sequencing were then conducted on 

sALS and C9ALS SC, conducting qRT-PCR, which again found reduced abundance of 

RNAs that were related to the ribosome and mitochondrial oxidative phosphorylation. This 

approach could be used to study TDP43 proteinopathy in ALS, and its possible association 

with DNA methylation. Conducting DNA methylation analysis on neuronal iPSCs that have 

overexpression of TDP43 versus those that are wild type, followed by comparing the DNA 

methylation profiles of both, would give some indication of dysmethylation associated with 

TDP43 expression. 

Considerations for this current thesis include the finding by others that  age-specific gene 

expression signatures are not maintained during the reprogramming of fibroblasts into iPSCs 

(Mertens et al., 2015). The implicated pathways (ribosome biogenesis and oxidative 

phosphorylation) are essential for cells that are metabolically active, such as MNs (Jung, 

Yoon and Holt, 2012; Smith, Shaw and De Vos, 2017). Mitotic cells, such as glia or iPSCs 

can potentially address abnormalities in these pathways through cell division, but this has 

larger implications for post-mitotic MNs, which cannot perform this function. Due to the 

origins of iPSCs, namely the cell reprogramming, there is potential for epigenetic remodelling 

to occur, which would raise the issue of viability of iPSCs to model DNA methylation in ALS.  

In conclusion, the use of iPSCs to study DNA methylation changes is still being investigated, 

and careful considerations need to be taken when using this model in DNA methylation 

studies.  

6.3 Cell specificity 
In order to understand a particular cell type’s role in disease pathogenesis, the ability to 

extract cells of interest from human tissue is of vital importance. LCM is a technology which 

allows for isolation of particular cell types, and has successfully been shown to isolate MNs 
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from human tissue in neurodegenerative disease (Batra et al., 2016). In ALS, LCM has 

previously been used to isolate MNs in order to investigate mRNA expression changes 

(Highley et al., 2014). However, this technology has not been employed when studying DNA 

methylation changes. In this study, a method for isolating an enriched MN population and 

conducting and analysing gene-level DNA methylation changes was developed. An 

advantage of working with enriched cell populations over the use of whole-tissue 

homogenates is that the individual pathological mechanisms of disease specific to particular 

cell types can be elucidated. These differences may be masked when using whole tissue 

homogenates.  

It has been successfully demonstrated in this study that cell-specific differences in DNA 

methylation occur (hypermethylation and hyper-hydroxymethylation in ALS LMNs). Previous 

studies have also established the difference in DNA methylation in neuronal versus non-

neuronal cell populations. PM human prefrontal cortices from neurologically healthy donors 

underwent fluorescence activated cell sorting (FACS) using the neuronal marker NeuN. This 

was followed by pyrosequencing, with differential expression of transcription factors found in 

neurones when compared to the non-neuronal population (Iwamoto et al., 2011). Kessler et 

al., 2016 analysed cell-specific signatures using the 450k DNA methylation array on PM 

neurologically healthy human cortex, finding that neurones exhibited higher levels of DNA 

methylation than the non-neuronal population. This was then verified in mouse cortex using 

pyrosequencing.  

Price et al., 2018 conducted whole genome bisulphite sequencing (WGBS) on human PM 

prefrontal cortex using NeuN/FACS and also found differences in DNA methylation between 

neurones and non-neuronal cells. PM human prefrontal cortex was also sorted using FACS 

to separate out different types of neurones (medial ganglionic eminence-derived inhibitory 

GABAergic interneurons and excitatory glutamatergic neurones) and oligodendrocytes. 

These cell populations then underwent WGBS, with highly distinct profiles being found for 

each cell type (Kozlenkov et al., 2018). Four brain regions from neurologically healthy PM 

brains (anterior cingulate gyrus, hippocampus, prefrontal cortex and nucleus accumbens) 

underwent FACS sorting for neuronal and non-neuronal populations. Findings showed 

significant differences in DNA methylation patterns in both neuronal and non-neuronal 

populations and between the different brain regions (Rizzardi et al., 2019). The finding that 

different neurones from different regions exhibited distinct DNA methylation profiles could go 

some way in explaining why differences in DNA methylation were observed between the 

LMNs of the SC compared to the UMNs of the MCx and neurones of the AFCx (section 

4.5.3). This was also seen in a study of post mortem human AD occipital lobe, whereby flow 

cytometry was used to sort neurones from other cell types (mainly glia), again using NeuN. 
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The 450K DNA methylation array was then used, which detected genes with cell-type 

specific DNA methylation signatures for both neuronal and glial populations (Gasparoni et 

al., 2018).  

Combined with the findings of the studies detailed in this thesis, this literature highlights that 

differences in DNA methylation signatures at both the global and single gene level are 

present between neurones and non-neuronal cells. This is highlighted in both neurologically 

healthy brain/CNS tissues, as well as in neurodegenerative disease. Further to this, there is 

emerging evidence that even within neurones, there are differences in DNA methylation 

(Kozlenkov et al., 2018). This is supported by the IHC findings discussed in section 4.5.3, 

which found differential expression of both methylation and hydroxymethylation in LMNs of 

the SC compared to UMNs of the MCx and neurones of the AFCx. A limitation of the above 

studies, as well as a limitation of IHC studies of glia (section 4.4.7), is that the different glial 

cell populations were not separated out into astrocytes, microglia and oligodendrocytes. It is 

probable that differences in these cell populations will also be present, due to their differing 

roles within the brain and CNS. What is also of note is that many different techniques, 

tissues, laboratories and cohorts (neurologically healthy, AD and ALS) were used. However, 

what the above literature does highlight is that complimentary finding are present. This 

suggests a genuine phenomenon, rather than findings being as a result of experimental 

procedure. 

6.4 Beyond the scope of this project: future works 
A multi-pronged approach, much like the one used in this project, is the most viable option 

for further studies into the role DNA methylation plays in ALS. These include further, 

expanded studies on PM tissues used in conjunction with experimental models, which allow 

for manipulations of both TDP43 and DNA methylation levels. Each are discussed below. 

6.4.1 Immunohistochemical studies 
Repeating the IHC studies in another cohort would be of use. This would enable 

determination of if this effect is specific to the cohort used within this study, or if this is 

representative of the DNA methylation and hydroxymethylation status of LMNs in ALS. 

Further studies on the cohort used in this project is also warranted.  

Antibodies for 5fC and 5caC, DNA demethylation markers (summarised in figure 1.6) are 

beginning to come to market. This gives the potential for methylation status determination of 

a cell all the way through the methylation pathway. Once DNMT antibodies have become 

available, DNMT characterisation in LMNs would be a useful addition, as it is directly 
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involved in the DNA methylation pathway, and may be aberrant, and therefore the cause of 

altered methylation changes.  

6.4.2 MethylationEPIC and mRNA expression studies 
The main limitation with the study presented is the small numbers of cases that underwent 

MethylationEPIC analysis. This was due to a number of factors: availability of tissues, the 

time consuming nature of LCM, and limited financial resources. Expanding the cohort size 

would increase the robustness of findings presented. Power analysis on the cohort used in 

the MethylationEPIC experiment indicated that the experiment was underpowered (section 

5.4.6). Increasing the cohort size would increase the power of the experiment, and thus and 

deductions made from this analysis.  

Although mRNA expression data was available for comparison in this study, the data 

available was from a different cohort. In addition, better methods for analysing mRNA 

expression are now available, as the dataset used in this study was five years old. RNA-seq 

is the whole transcriptome sequencing of RNA to establish gene expression changes. It has 

many benefits over the array method used for comparison in this study. A number of studies 

have been conducted to compare arrays and RNA-seq to determine gene expression 

changes, with RNA-seq outperforming arrays, with higher sensitivity, better detection of low 

abundance transcripts and higher agreement with qPCR validation (Wang et al., 2014). 

RNA-seq is also better for determining alternative-splicing and discovering novel splicing 

events at the genome-wide level, whereas arrays have poor validation for splicing events. 

However, they are well suited to detecting splicing events on well-described transcription 

regions. However, cost is a factor, with RNA-seq being more expensive (Romero et al., 

2018). 

It would be useful to LCM extract MNs, and then divided the same sample into two, one for 

MethylationEPIC analysis and one for mRNA expression analysis, so that any deductions 

are directly comparable. Other useful analyses could also be carried out on the 

MethylationEPIC dataset generated during this project. This includes the use of the ‘genomic 

regions enrichment of annotations tool’ (GREAT). This analysis technique can be used to 

analyse the annotations of nearby genes to allow for analysis of non-coding genomic regions 

(McLean et al., 2010). 

Another viable option would be to perform analysis of differentially methylated regions 

(DMRs), which comprise multiple consecutive methylated CpG sites. DMRs are defined as 

genomic regions that have varying DNA methylation statuses among samples, and have the 

possibility of functional regions that may be involved in gene transcription regulation. 

Analysis of DMRs have the potential to identify and therefore allow characterisation of 
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networks associated with ALS disease development and progression. Many packages are 

available for such analysis, for example, DMRcate (Peters et al., 2015). If time permitted, 

this would have been a suitable next step for further analysis. 

A future advancement in the field could be the study of mitochondrial DNA methylation and 

its effect in ALS. Mitochondrial DNA methylation is not covered in the MethylationEPIC array, 

so this is a reassurance of a lack of mitochondrial DNA contamination in the 

MethylationEPIC array dataset, however it does highlight that other techniques need to be 

utilised to study mitochondrial DNA methylation.  

Mitochondrial impairment and increased oxidative stress are features associated with 

neurodegeneration. Impaired meth levels of the mitochondria regulatory region (D-loop 

region) in both animal models, PM brain regions or circulating blood levels of patients with 

AD, PD and ALS (Devall et al., 2017). In general, very little research has been conducted in 

the area of mitochondrial DNA methylation in neurodegeneration. Mitochondrial DNA doesn’t 

have histone-like packaging proteins. Therefore, it is more susceptible to oxidative damage 

and is therefore prone to a higher rate of mutation when compared to nuclear DNA. 

However, it is harder to study mitochondrial DNA than nuclear DNA due to methodological 

limitations. Mitochondrial DNA has no CpG islands and is organized into tightly packed 

nucleoprotein complexes known as nucleoids (Coppedè and Stoccoro, 2019). One study has 

detected mitochondrial DNA methylation levels across varying human brain regions using 

methylated DNA immunoprecipitation sequencing which is based in the affinity capture of 

methylated DNA eith an antibody specific to 5mC (Devall et al., 2017).  

Mitochondrial DNA methylation and hydroxymethylation can currently be measured through 

ELIsA, antibodies, BS-NGS and pyrosequencing. BS-NGS may be problematic as 

mitochondrial DNA has a circular structure, so it would have to be linearized before it could 

be sequenced. Other factors to consider are the high DNA input currently required to carry 

out these studies, as well as issues with cell-type isolation issues and the high cost and 

study complexity associated with mitochondrial DNA methylation studies (Coppedè and 

Stoccoro, 2019). 

6.4.3 ALS/DNA methylation experimental models 
The correlation between loss of both DNA methylation and hydroxymethylation from the 

nuclei of LMN and TDP43 pathology within the LMNs of SC in ALS has been established 

(section 4.5.2).  

Within the MethylationEPIC data, GO analysis highlighted differential methylation within RNA 

metabolism (section 5.5.2.1). TDP43 pathology has been implicated in multiple RNA 
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metabolism processes, including splicing, transport, RNA stability (Prasad et al., 2019). A 

third of transcribed RNAs contain TDP43 binding sites (Polymenidou et al., 2011; Tollervey 

et al., 2011), which recapitulates the key functions of TDP43 in RNA splicing and transport 

regulation. Combining this knowledge with the RNA dysregulation found within the 

MethylationEPIC dataset suggests that TDP43 could be involved with DNA methylation. 

Currently, no cell model studies have been conducted into the relationship between TDP43 

and DNA methylation. However, a study conducted by Štalekar et al., 2015 did knockdown 

TDP43 in a neuroblastoma cell line, with DNMT3a being downregulated. These cells will 

have lost TDP from the nucleus, with loss of DNMT3a potentially indicating a loss of DNA 

methylation from the nucleus, as was seen in the IHC studies presented in section 4.5.2.  

Lower expression of DNMT3a upon knockdown of TDP43 could represent loss of DNA 

methylation from the nucleus, as DNMTs are a key enzyme in the methylation of cytosine. 

This was observed in the LMNs of the SC in ALS, where loss of methylation and 

hydroxymethylation from the nucleus correlated with TDP43 pathology (section 4.5.2). 

TDP43’s DNA binding roles are not well understood, but it is possible that it plays a role in 

DNA methylation, which is why the correlation between TDP43 pathology and loss of 

methylation and hydrozymethylation is observed. A consideration of the study conducted by 

Štalekar et al., 2015 is that the validity of using neuroblastoma cell lines for DNA methylation 

studies into ALS have not been studied, and evidence presented in section 6.2.3 suggests 

that, following further studies to understand DNA methylation profiles, the most viable cell 

model to use for DNA methylation studies in ALS is neurones derived from iPSCs. 

A cell culture of neurones derived from iPSCs, where TDP43 is knocked down and DNA 

methylation changes are detected would be useful to determine causality, and validate the 

findings of IHC studies presented in this thesis (section 4.5.2). Also conducting this in 

reverse, with DNA methylation levels manipulated through the use of DNMT inhibitors such 

as RG108 or approved DNA methylation-targeted drugs (Da Cotsa et al., 2017), with 

analysis then conducted on levels of nuclear TDP43 would be useful. This would help to 

determine if there is a direct causation of DNA methylation and TDP43, or if there is another 

external factor affecting both TDP43 and DNA methylation. Further, it would be interesting to 

see if TDP43 binds to any of the dysmethylated genes identified in this study (chapter 5), as 

it has been found that TDP43 binds methyl CpG binding protein 2 (MECP2) RNA (Sephton 

et al., 2011), which gives weight to the findings of chapter 4, that TDP43 proteinopathy 

associates with loss of methylation and hydroxymethylation from LMN nuclei. 
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6.5 Overall conclusions 

Global hypermethylation is observed in LMNs of the ALS SC in both IHC and microarray 

studies. At the single gene-level, both hypermethylation and hypomethylation changes are 

present in ALS LMNs, with GO analysis implicating RNA metabolism dysregulation. 

Overlaps in hypermethylation/downregulation of gene expression and 

hypomethylation/upregulation of gene expression in the MethylationEPIC and mRNA 

expression datasets found changes in pathways involved in apoptosis, cell signalling and 

inflammation/immune response, all of which have been found to be dysregulated in PM 

tissues and in animal and cell models of ALS. Further, TDP43 pathology correlated with loss 

of both methylation and hydroxymethylation in LMNs. Combined with the RNA dysregulation 

found in the MethylationEPIC dataset, a role of TDP43 in DNA methylation is possible. 

 

In general terms, DNA methylation has been shown to be altered in ALS in this study as well 

as others. This is also the case for other neurodegenerative diseases, suggesting possible 

overlaps in pathways that warrant further analysis. What has also been shown is that 

different cell types exhibit different levels of DNA methylation, so homogenates are 

potentially not good for determining each cell type’s role, but are a good indicator of global 

changes occurring in tissue.  

In conclusion, developing a clearer understanding of mechanisms of DNA methylation in 

ALS may be of importance to potential therapeutic treatments. Drugs specifically targeting 

epigenetic mechanisms are now on the market, and can be potentially of use in ALS. 
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Appendix II: Laboratory solution recipes 
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Appendix III: Examples of positive and negative controls for 

5mC, 5hmC and TDP43 immunohistochemistry 
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Appendix IV: Example of laser capture microdissection 
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Appendix V: Preparation of reagents for MethylationEPIC 
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Appendix VI: MethylationEPIC solutions 
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Appendix VII: Summary of controls used in MethylationEPIC 
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Appendix VIII: CSV file for MethylationEPIC analysis using 

RnBeads 
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Appendix IX: RnBeads script 
Conducted on 08/02/2019 

source(http://bioconductor.org/biocLite.R) 
biocLite(c(“RnBeads”,”RnBeads.hg38”,”RnBeads.hg19”)) 
library (RnBeads) 
install.packages(“Shiny”) 
install.packages(“doParallel”) 
install.packages(“devtools”) 
install.packages(“RPMM”) 
devtools::install_github(“daattali/shinyjs”) 
suppressPackageStartupMessages(library(RnBeads)) 
rnb.rub.dj() 
2019-02-08 11:18:04     1.2  STATUS STARTED RnBeads Pipeline 
2019-02-08 11:18:04     1.2    INFO     Analysis Title: RnBeads Analysis 
2019-02-08 11:18:05     1.2    INFO     Initialized report index and saved to index.html 
2019-02-08 11:18:05     1.2  STATUS     STARTED Loading Data 
2019-02-08 11:18:05     1.2    INFO         Number of cores: 8 
2019-02-08 11:18:05     1.2    INFO         Loading data of type "idat.dir" 
2019-02-08 11:18:05     1.2  STATUS         STARTED Loading Data from IDAT Files 
2019-02-08 11:18:05     1.2    INFO             Added column barcode to the provided sample 
annotation table 
2019-02-08 11:18:05     1.2    INFO             Detected platform: MethylationEPIC 
2019-02-08 11:18:27     1.5  STATUS         COMPLETED Loading Data from IDAT Files 
2019-02-08 11:20:13     1.0  STATUS         Loaded data from C:\Users\UOS\Documents\idat 
2019-02-08 11:20:14     1.5  STATUS         Predicted sex for the loaded samples 
2019-02-08 11:20:15     1.4  STATUS         Added data loading section to the report 
2019-02-08 11:20:15     1.4  STATUS         Loaded 16 samples and 866895 sites 
2019-02-08 11:20:15     1.4    INFO         Output object is of type RnBeadRawSet 
2019-02-08 11:20:15     1.4  STATUS     COMPLETED Loading Data 
2019-02-08 11:20:21     1.0 WARNING     Zip not found on this Windows system, this 
RnBSet object will not be saved. See the instructions for installing ZIP on Windows in the 
FAQ section of the RnBeads website. 
2019-02-08 11:20:21     1.0    INFO     Initialized report index and saved to index.html 
2019-02-08 11:20:27     1.0  STATUS     STARTED Quality Control 
2019-02-08 11:20:27     1.0    INFO         Number of cores: 8 
2019-02-08 11:20:27     1.0  STATUS         STARTED Quality Control Section 
2019-02-08 11:20:52     1.2  STATUS             Added quality control box plots 
2019-02-08 11:22:51     1.2  STATUS             Added quality control bar plots 
2019-02-08 11:22:54     1.2  STATUS             Added negative control boxplots 
2019-02-08 11:22:54     1.2  STATUS         COMPLETED Quality Control Section 
2019-02-08 11:22:54     1.2  STATUS         STARTED Visualizing SNP Probe Data 
2019-02-08 11:22:54     1.2  STATUS             STARTED Mixups Visualization Section 
2019-02-08 11:23:00     1.4  STATUS                 Added SNP Heatmap 
2019-02-08 11:23:00     1.4  STATUS                 Calculated Manhattan distances between 
samples based on SNP probes 
2019-02-08 11:23:01     1.4  STATUS                 Added SNP-based Distances 
2019-02-08 11:23:01     1.4  STATUS             COMPLETED Mixups Visualization Section 
2019-02-08 11:23:01     1.4  STATUS         COMPLETED Visualizing SNP Probe Data 
2019-02-08 11:23:05     1.5  STATUS     COMPLETED Quality Control 
2019-02-08 11:23:05     1.5    INFO     Initialized report index and saved to index.html 
2019-02-08 11:23:11     1.0  STATUS     STARTED Preprocessing 
2019-02-08 11:23:12     1.0    INFO         Number of cores: 8 
2019-02-08 11:23:12     1.0  STATUS         STARTED Filtering Procedures I 



222 
 

2019-02-08 11:23:13     1.5  STATUS             STARTED Removal of SNP-enriched Sites 
2019-02-08 11:23:13     1.5  STATUS                 Removed 17371 sites using SNP criterion 
"3" 
2019-02-08 11:23:13     1.5  STATUS                 Saved removed sites to 
C:\Users\UOS\Documents\rnbeads_report\preprocessing_data/removed_sites_snp.csv 
2019-02-08 11:23:13     1.5  STATUS                 Added a corresponding section to the report 
2019-02-08 11:23:13     1.5  STATUS             COMPLETED Removal of SNP-enriched Sites 
2019-02-08 11:23:19     1.1  STATUS             Retained 16 samples and 849524 sites 
2019-02-08 11:23:19     1.1  STATUS         COMPLETED Filtering Procedures I 
2019-02-08 11:23:19     1.1  STATUS         STARTED Summary of Filtering Procedures I 
2019-02-08 11:23:20     1.3  STATUS             Created summary table of removed sites, 
samples and unreliable measurements 
2019-02-08 11:23:21     1.3  STATUS             Added summary table of removed and retained 
items 
2019-02-08 11:23:21     1.3    INFO             Subsampling 117371 sites for plotting density 
distributions 
2019-02-08 11:23:21     1.5  STATUS             Constructed sequences of removed and 
retained methylation values 
2019-02-08 11:23:30     1.5  STATUS             Added comparison between removed and 
retained beta values 
2019-02-08 11:23:30     1.5  STATUS         COMPLETED Summary of Filtering Procedures I 
2019-02-08 11:23:30     1.5  STATUS         STARTED Manipulating the object 
2019-02-08 11:25:35     1.5  STATUS             Removed 17371 sites (probes) 
2019-02-08 11:25:35     1.5    INFO             Retained 849524 sites and 16 samples 
2019-02-08 11:25:35     1.5  STATUS         COMPLETED Manipulating the object 
2019-02-08 11:25:35     1.5  STATUS         STARTED Normalization Procedure 
2019-02-08 11:29:40     1.6  STATUS             Performed normalization with method bmiq 
2019-02-08 11:31:12     1.3  STATUS             Performed normalization with method "bmiq" 
2019-02-08 11:31:24     1.5  STATUS             Added comparison between non-normalized 
and normalized beta values 
2019-02-08 11:31:25     2.2  STATUS             Added histogram of observed beta shifts 
(magnitude of correction) 
2019-02-08 11:31:26     2.2  STATUS             Added 2D histogram of observed beta values 
and shifts 
2019-02-08 11:31:27     2.1  STATUS             Added normalization section 
2019-02-08 11:31:27     2.1  STATUS         COMPLETED Normalization Procedure 
2019-02-08 11:31:33     1.4  STATUS         STARTED Filtering Procedures II 
2019-02-08 11:31:34     1.8  STATUS             STARTED Probe Context Removal 
2019-02-08 11:31:34     1.8  STATUS                 Removed 2985 probe(s) having not 
acceptable context 
2019-02-08 11:31:34     1.8  STATUS                 Saved removed sites to 
C:\Users\UOS\Documents\rnbeads_report\preprocessing_data/removed_sites_context.csv 
2019-02-08 11:31:34     1.8  STATUS                 Added a corresponding section to the report 
2019-02-08 11:31:34     1.8  STATUS             COMPLETED Probe Context Removal 
2019-02-08 11:31:34     1.8  STATUS             STARTED Removal of Sites on Sex 
Chromosomes 
2019-02-08 11:31:34     1.9  STATUS                 Removed 19438 site(s) on sex 
chromosomes 
2019-02-08 11:31:34     1.9  STATUS                 Saved removed sites to 
C:\Users\UOS\Documents\rnbeads_report\preprocessing_data/removed_sites_sex.csv 
2019-02-08 11:31:34     1.9  STATUS                 Added a corresponding section to the report 
2019-02-08 11:31:34     1.9  STATUS             COMPLETED Removal of Sites on Sex 
Chromosomes 
2019-02-08 11:31:35     1.9  STATUS             Retained 16 samples and 827101 sites 
2019-02-08 11:31:35     1.9  STATUS         COMPLETED Filtering Procedures II 
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2019-02-08 11:31:35     1.9  STATUS         STARTED Summary of Filtering Procedures II 
2019-02-08 11:31:41     1.6  STATUS             Created summary table of removed sites, 
samples and unreliable measurements 
2019-02-08 11:31:42     1.6  STATUS             Added summary table of removed and retained 
items 
2019-02-08 11:31:42     1.7    INFO             Subsampling 122423 sites for plotting density 
distributions 
2019-02-08 11:31:42     1.8  STATUS             Constructed sequences of removed and 
retained methylation values 
2019-02-08 11:31:52     1.5  STATUS             Added comparison between removed and 
retained beta values 
2019-02-08 11:31:52     1.5  STATUS         COMPLETED Summary of Filtering Procedures II 
2019-02-08 11:31:52     1.5  STATUS         STARTED Manipulating the object 
2019-02-08 11:33:55     1.5  STATUS             Removed 22423 sites (probes) 
2019-02-08 11:33:55     1.5    INFO             Retained 827101 sites and 16 samples 
2019-02-08 11:33:55     1.5  STATUS         COMPLETED Manipulating the object 
2019-02-08 11:33:55     1.5    INFO         Imputation was skipped, data set may still contain 
missing methylation values 
2019-02-08 11:34:01     1.2  STATUS     COMPLETED Preprocessing 
2019-02-08 11:34:07     1.1 WARNING     Zip not found on this Windows system, this 
RnBSet object will not be saved. See the instructions for installing ZIP on Windows in the 
FAQ section of the RnBeads website. 
2019-02-08 11:34:07     1.1    INFO     Initialized report index and saved to index.html 
2019-02-08 11:34:13     1.1  STATUS     STARTED Tracks and Tables 
2019-02-08 11:34:13     1.1    INFO         Number of cores: 8 
2019-02-08 11:34:14     1.1  STATUS         STARTED Generating Tracks and Tables 
2019-02-08 11:34:14     1.1  STATUS             STARTED Exporting sites 
2019-02-08 11:34:14     1.1  STATUS                 STARTED Creating BED Files 
2019-02-08 11:34:14     1.1  STATUS                     Converting to GRangesList 
2019-02-08 11:34:19     1.6  STATUS                     Exporting sample con1 
2019-02-08 11:34:23     1.5  STATUS                     Exporting sample con2 
2019-02-08 11:34:27     1.7  STATUS                     Exporting sample con3 
2019-02-08 11:34:31     1.6  STATUS                     Exporting sample c91 
2019-02-08 11:34:32     1.6  STATUS                     Exporting sample c92 
2019-02-08 11:34:36     1.5  STATUS                     Exporting sample c93 
2019-02-08 11:34:39     1.7  STATUS                     Exporting sample s1 
2019-02-08 11:34:43     1.6  STATUS                     Exporting sample s2 
2019-02-08 11:34:44     1.5  STATUS                     Exporting sample s3 
2019-02-08 11:34:48     1.7  STATUS                     Exporting sample s4 
2019-02-08 11:34:52     1.7  STATUS                     Exporting sample s5 
2019-02-08 11:34:55     1.7  STATUS                     Exporting sample c94 
2019-02-08 11:34:59     1.7  STATUS                     Exporting sample c95 
2019-02-08 11:35:03     1.6  STATUS                     Exporting sample c96 
2019-02-08 11:35:04     1.7  STATUS                     Exporting sample con4 
2019-02-08 11:35:08     1.7  STATUS                     Exporting sample con5 
2019-02-08 11:35:12     1.5  STATUS                 COMPLETED Creating BED Files 
2019-02-08 11:35:12     1.5  STATUS                 STARTED Creating Track Hub -- bigBed 
2019-02-08 11:35:12     1.5 WARNING                     Skipped conversion bed -> bigBed for 
region type sites; could not find the tool bedToBigBed 
2019-02-08 11:35:12     1.5  STATUS                 COMPLETED Creating Track Hub -- bigBed 
2019-02-08 11:35:12     1.5  STATUS                 STARTED Creating UCSC Track Hub -- 
bigWig 
2019-02-08 11:35:12     1.5 WARNING                     Skipped conversion bedGraph -> bigWig 
for region type sites; could not find the tool bedGraphToBigWig 
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2019-02-08 11:35:12     1.5  STATUS                 COMPLETED Creating UCSC Track Hub -- 
bigWig 
2019-02-08 11:35:12     1.5  STATUS             COMPLETED Exporting sites 
2019-02-08 11:35:12     1.5  STATUS         COMPLETED Generating Tracks and Tables 
2019-02-08 11:35:12     1.5  STATUS         STARTED Writing export report 
2019-02-08 11:35:29     1.3  STATUS         COMPLETED Writing export report 
2019-02-08 11:35:30     1.3  STATUS     COMPLETED Tracks and Tables 
2019-02-08 11:35:30     1.3    INFO     Initialized report index and saved to index.html 
2019-02-08 11:35:30     1.3  STATUS     STARTED Covariate Inference 
2019-02-08 11:35:30     1.3    INFO         Number of cores: 8 
2019-02-08 11:35:31     1.4  STATUS         STARTED Age Prediction using predefined 
predictor 
2019-02-08 11:35:34     1.7  STATUS         COMPLETED Age Prediction using predefined 
predictor 
2019-02-08 11:35:34     1.7  STATUS         STARTED Adding Age Prediction Section to 
Report 
2019-02-08 11:35:52     1.5  STATUS             Added Comparison Plot 
2019-02-08 11:35:55     1.5  STATUS             Added Error Plot 
2019-02-08 11:35:55     1.5  STATUS         COMPLETED Adding Age Prediction Section to 
Report 
2019-02-08 11:35:56     1.6  STATUS         Calculated LUMP estimates 
2019-02-08 11:35:56     1.6  STATUS     COMPLETED Covariate Inference 
2019-02-08 11:35:56     1.6 WARNING     Zip not found on this Windows system, this 
RnBSet object will not be saved. See the instructions for installing ZIP on Windows in the 
FAQ section of the RnBeads website. 
2019-02-08 11:35:56     1.6    INFO     Initialized report index and saved to index.html 
2019-02-08 11:36:02     1.1  STATUS     STARTED Exploratory Analysis 
2019-02-08 11:36:02     1.1    INFO         Number of cores: 8 
2019-02-08 11:36:03     1.1  STATUS         Designed color mappings for probe type and CGI 
status 
2019-02-08 11:36:24     1.6  STATUS         STARTED Dimension Reduction Techniques 
2019-02-08 11:36:35     1.6    INFO             Mapping 3 traits to point colors and types 
2019-02-08 11:43:41     1.2    INFO             Principal components that explain at least 95 % 
of the total variance: 13 
2019-02-08 11:43:41     1.2    INFO             Saved percentage of total variance to 
pca_variance_explained_1.csv 
2019-02-08 11:43:42     1.2    INFO             Principal components that explain at least 95 % 
of the total variance: 11 
2019-02-08 11:43:42     1.2    INFO             Saved percentage of total variance to 
pca_variance_explained_2.csv 
2019-02-08 11:43:43     1.2    INFO             Principal components that explain at least 95 % 
of the total variance: 10 
2019-02-08 11:43:43     1.2    INFO             Saved percentage of total variance to 
pca_variance_explained_3.csv 
2019-02-08 11:43:44     1.2    INFO             Principal components that explain at least 95 % 
of the total variance: 9 
2019-02-08 11:43:44     1.2    INFO             Saved percentage of total variance to 
pca_variance_explained_4.csv 
2019-02-08 11:43:45     1.2    INFO             Principal components that explain at least 95 % 
of the total variance: 12 
2019-02-08 11:43:45     1.2    INFO             Saved percentage of total variance to 
pca_variance_explained_5.csv 
2019-02-08 11:43:46     1.2  STATUS             Created scatter plots and CDFs summarizing 
the reduced dimensional representations 
2019-02-08 11:43:46     1.2  STATUS         COMPLETED Dimension Reduction Techniques 
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2019-02-08 11:43:46     1.2  STATUS         STARTED Tests for Associations 
2019-02-08 11:43:46     1.2    INFO             Testing the following traits for associations: 
Sample_Group; Age; Sentrix_ID; Sentrix_Position; Predicted Male Probability; Genome-wide 
methylation; predicted_ages; age_increase; Immune Cell Content (LUMP) 
2019-02-08 11:43:46     1.2  STATUS             Created 10000 sample permutations 
2019-02-08 11:46:30     1.2  STATUS             Computed correlations between principal 
components and traits. 
2019-02-08 11:46:41     1.2  STATUS             Computed pairwise correlations between traits. 
2019-02-08 11:46:41     1.2  STATUS         COMPLETED Tests for Associations 
2019-02-08 11:46:56     1.7  STATUS         STARTED Methylation Value Distributions - 
Sample Groups 
2019-02-08 11:47:13     1.7  STATUS         COMPLETED Methylation Value Distributions - 
Sample Groups 
2019-02-08 11:47:13     1.7  STATUS         STARTED Methylation Value Distributions - 
Probe Categories 
2019-02-08 11:48:08     1.8  STATUS         COMPLETED Methylation Value Distributions - 
Probe Categories 
2019-02-08 11:48:08     1.8  STATUS         STARTED Sample Clustering 
2019-02-08 11:48:08     1.8  STATUS             STARTED Agglomerative Hierarchical 
Clustering 
2019-02-08 11:48:10     1.3  STATUS                 Performed clustering on sites using 
correlation as a distance metric 
2019-02-08 11:48:11     1.3  STATUS                 Performed clustering on sites using 
manhattan as a distance metric 
2019-02-08 11:48:12     1.3  STATUS                 Performed clustering on sites using 
euclidean as a distance metric 
2019-02-08 11:48:12     1.3  STATUS                 Performed clustering on promoters using 
correlation as a distance metric 
2019-02-08 11:48:12     1.3  STATUS                 Performed clustering on promoters using 
manhattan as a distance metric 
2019-02-08 11:48:12     1.3  STATUS                 Performed clustering on promoters using 
euclidean as a distance metric 
2019-02-08 11:48:13     1.5  STATUS                 Performed clustering on tiling using 
correlation as a distance metric 
2019-02-08 11:48:13     1.5  STATUS                 Performed clustering on tiling using 
manhattan as a distance metric 
2019-02-08 11:48:13     1.5  STATUS                 Performed clustering on tiling using 
euclidean as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on genes using 
correlation as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on genes using 
manhattan as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on genes using 
euclidean as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on cpgislands using 
correlation as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on cpgislands using 
manhattan as a distance metric 
2019-02-08 11:48:13     1.6  STATUS                 Performed clustering on cpgislands using 
euclidean as a distance metric 
2019-02-08 11:48:13     1.6  STATUS             COMPLETED Agglomerative Hierarchical 
Clustering 
2019-02-08 11:48:14     1.6  STATUS             STARTED Clustering Section 
2019-02-08 11:48:14     1.6  STATUS                 STARTED Generating Heatmaps 
2019-02-08 11:48:14     1.7  STATUS                     STARTED Region type: sites 
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2019-02-08 11:49:43     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:49:48     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:49:53     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:49:58     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:02     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:07     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:12     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:17     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:22     1.7 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage average . Discarding row dendrogram 
2019-02-08 11:50:27     1.7 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:31     1.8 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:36     1.8 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:41     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:46     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:50     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:50:55     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:51:00     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:51:05     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage complete . Discarding row dendrogram 
2019-02-08 11:51:10     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:15     1.6 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:19     1.7 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:24     1.7 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:29     1.8 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:34     1.8 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:38     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:43     1.4 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
2019-02-08 11:51:48     1.5 WARNING                         Could not cluster rows of the heatmap 
with method manhattan and linkage median . Discarding row dendrogram 
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2019-02-08 11:51:53     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:51:58     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:03     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:07     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:12     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:17     1.7 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:22     1.7 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:27     1.8 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:31     1.8 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage average . Discarding row dendrogram 
2019-02-08 11:52:36     1.4 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:52:41     1.4 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:52:46     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:52:50     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:52:55     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:53:00     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:53:05     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:53:10     1.7 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:53:15     1.7 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage complete . Discarding row dendrogram 
2019-02-08 11:53:20     1.7 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:24     1.8 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:29     1.8 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:34     1.4 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:39     1.4 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:44     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:48     1.5 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:53     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:53:58     1.6 WARNING                         Could not cluster rows of the heatmap 
with method euclidean and linkage median . Discarding row dendrogram 
2019-02-08 11:54:03     1.6  STATUS                     COMPLETED Region type: sites 
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2019-02-08 11:54:03     1.6  STATUS                     STARTED Region type: promoters 
2019-02-08 11:57:20     1.3  STATUS                     COMPLETED Region type: promoters 
2019-02-08 11:57:20     1.4  STATUS                     STARTED Region type: tiling 
2019-02-08 12:00:42     1.4  STATUS                     COMPLETED Region type: tiling 
2019-02-08 12:00:42     1.4  STATUS                     STARTED Region type: genes 
2019-02-08 12:04:00     1.4  STATUS                     COMPLETED Region type: genes 
2019-02-08 12:04:00     1.4  STATUS                     STARTED Region type: cpgislands 
2019-02-08 12:07:23     1.4  STATUS                     COMPLETED Region type: cpgislands 
2019-02-08 12:07:23     1.4  STATUS                     Created 540 heatmaps based on the 
clustering results 
2019-02-08 12:07:23     1.4  STATUS                 COMPLETED Generating Heatmaps 
2019-02-08 12:07:23     1.4  STATUS                 STARTED Adding Color Legends 
2019-02-08 12:08:22     1.4  STATUS                 COMPLETED Adding Color Legends 
2019-02-08 12:08:22     1.4  STATUS                 STARTED Estimating Optimal Numbers of 
Clusters 
2019-02-08 12:08:39     1.4  STATUS                     Estimated number of clusters based on 
mean silhouette value 
2019-02-08 12:08:39     1.4  STATUS                 COMPLETED Estimating Optimal Numbers 
of Clusters 
2019-02-08 12:08:39     1.4  STATUS                 STARTED Overlapping Clusters with 
Sample Traits 
2019-02-08 12:08:40     1.4  STATUS                     Computed adjusted rand indices and 
saved to exploratory_analysis_data/adjusted_rand_indices_1.csv 
2019-02-08 12:08:40     1.4  STATUS                     Computed adjusted rand indices and 
saved to exploratory_analysis_data/adjusted_rand_indices_2.csv 
2019-02-08 12:08:40     1.4  STATUS                     Computed adjusted rand indices and 
saved to exploratory_analysis_data/adjusted_rand_indices_3.csv 
2019-02-08 12:08:40     1.4  STATUS                     Computed adjusted rand indices and 
saved to exploratory_analysis_data/adjusted_rand_indices_4.csv 
2019-02-08 12:08:40     1.4  STATUS                     Computed adjusted rand indices and 
saved to exploratory_analysis_data/adjusted_rand_indices_5.csv 
2019-02-08 12:08:53     1.4  STATUS                 COMPLETED Overlapping Clusters with 
Sample Traits 
2019-02-08 12:08:54     1.4  STATUS             COMPLETED Clustering Section 
2019-02-08 12:08:54     1.4  STATUS         COMPLETED Sample Clustering 
2019-02-08 12:08:54     1.4  STATUS     COMPLETED Exploratory Analysis 
2019-02-08 12:08:54     1.4    INFO     Initialized report index and saved to index.html 
2019-02-08 12:09:00     1.1  STATUS     STARTED Differential Methylation 
2019-02-08 12:09:00     1.1    INFO         Number of cores: 8 
2019-02-08 12:09:00     1.1  STATUS         STARTED Analysis 
2019-02-08 12:09:00     1.1    INFO             Using 0 permutation tests 
2019-02-08 12:09:00     1.1    INFO             Using columns: Sample_Name,Sample_Group 
2019-02-08 12:09:00     1.1    INFO             Using region types: 
promoters,tiling,genes,cpgislands 
2019-02-08 12:09:07     1.1  STATUS             STARTED Retrieving comparison info 
2019-02-08 12:09:07     1.1  STATUS             COMPLETED Retrieving comparison info 
2019-02-08 12:09:07     1.1  STATUS             STARTED Computing differential methylation 
tables 
2019-02-08 12:09:07     1.1  STATUS                 STARTED Comparing: C9ALS vs. 
non.C9ALS (based on Sample_Group) 
2019-02-08 12:09:07     1.1  STATUS                     STARTED Computing Differential 
Methylation Table 
2019-02-08 12:09:07     1.3    INFO                         Conducting differential analysis using 
limma 
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2019-02-08 12:09:52     1.6    INFO                         535 p-values are NA. They are treated as 
1 in FDR adjustment 
2019-02-08 12:09:54     1.8  STATUS                     COMPLETED Computing Differential 
Methylation Table 
2019-02-08 12:10:01     1.2  STATUS                     STARTED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:10:25     1.5    INFO                         4 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:10:25     1.6  STATUS                         Computed table for promoters 
2019-02-08 12:12:55     2.0    INFO                         79 p-values are NA. They are treated as 
1 in FDR adjustment 
2019-02-08 12:12:56     1.8  STATUS                         Computed table for tiling 
2019-02-08 12:13:18     2.0    INFO                         2 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:13:18     2.0  STATUS                         Computed table for genes 
2019-02-08 12:13:34     2.2  STATUS                         Computed table for cpgislands 
2019-02-08 12:13:34     2.2  STATUS                     COMPLETED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:13:35     1.8  STATUS                 COMPLETED Comparing: C9ALS vs. 
non.C9ALS (based on Sample_Group) 
2019-02-08 12:13:35     1.8  STATUS                 STARTED Comparing: Control vs. 
non.Control (based on Sample_Group) 
2019-02-08 12:13:35     1.8  STATUS                     STARTED Computing Differential 
Methylation Table 
2019-02-08 12:13:35     2.1    INFO                         Conducting differential analysis using 
limma 
2019-02-08 12:14:22     2.0    INFO                         536 p-values are NA. They are treated as 
1 in FDR adjustment 
2019-02-08 12:14:23     2.2  STATUS                     COMPLETED Computing Differential 
Methylation Table 
2019-02-08 12:14:32     1.4  STATUS                     STARTED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:14:59     1.9    INFO                         4 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:15:00     1.9  STATUS                         Computed table for promoters 
2019-02-08 12:17:34     2.1    INFO                         79 p-values are NA. They are treated as 
1 in FDR adjustment 
2019-02-08 12:17:34     2.3  STATUS                         Computed table for tiling 
2019-02-08 12:17:56     2.2    INFO                         2 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:17:56     2.3  STATUS                         Computed table for genes 
2019-02-08 12:18:13     2.2  STATUS                         Computed table for cpgislands 
2019-02-08 12:18:13     2.2  STATUS                     COMPLETED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:18:13     2.3  STATUS                 COMPLETED Comparing: Control vs. 
non.Control (based on Sample_Group) 
2019-02-08 12:18:13     2.3  STATUS                 STARTED Comparing: sALS vs. non.sALS 
(based on Sample_Group) 
2019-02-08 12:18:13     2.3  STATUS                     STARTED Computing Differential 
Methylation Table 
2019-02-08 12:18:14     2.3    INFO                         Conducting differential analysis using 
limma 
2019-02-08 12:19:00     2.4    INFO                         535 p-values are NA. They are treated as 
1 in FDR adjustment 
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2019-02-08 12:19:01     2.4  STATUS                     COMPLETED Computing Differential 
Methylation Table 
2019-02-08 12:19:10     1.4  STATUS                     STARTED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:19:34     1.9    INFO                         4 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:19:35     1.9  STATUS                         Computed table for promoters 
2019-02-08 12:22:02     2.4    INFO                         79 p-values are NA. They are treated as 
1 in FDR adjustment 
2019-02-08 12:22:03     2.0  STATUS                         Computed table for tiling 
2019-02-08 12:22:23     2.1    INFO                         2 p-values are NA. They are treated as 1 
in FDR adjustment 
2019-02-08 12:22:24     2.1  STATUS                         Computed table for genes 
2019-02-08 12:22:40     2.2  STATUS                         Computed table for cpgislands 
2019-02-08 12:22:40     2.2  STATUS                     COMPLETED Computing Differential 
Methylation Tables (Region Level) 
2019-02-08 12:22:40     2.3  STATUS                 COMPLETED Comparing: sALS vs. 
non.sALS (based on Sample_Group) 
2019-02-08 12:22:40     2.3  STATUS             COMPLETED Computing differential 
methylation tables 
2019-02-08 12:22:48     1.3  STATUS             STARTED Differential Methylation GO 
Enrichment Analysis 
2019-02-08 12:22:48     1.3  STATUS                 STARTED Comparison:  C9ALS vs. 
non.C9ALS (based on Sample_Group) 
2019-02-08 12:22:48     1.3  STATUS                     STARTED Ontology:  BP 
2019-02-08 12:22:48     1.3  STATUS                         STARTED Region Level 
2019-02-08 12:22:48     1.3  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:22:48     1.3    INFO                                 Rank cutoff: 100 
2019-02-08 12:23:38     1.7    INFO                                 Rank cutoff: 500 
2019-02-08 12:24:43     2.0    INFO                                 Rank cutoff: 1000 
2019-02-08 12:25:56     1.8    INFO                                 Rank cutoff: 4 (auto-select) 
2019-02-08 12:26:14     1.7  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:26:14     1.7  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:26:14     1.9    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:26:14     1.9  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:26:14     1.9  STATUS                             STARTED Region Type: genes 
2019-02-08 12:26:15     1.9    INFO                                 Rank cutoff: 100 
2019-02-08 12:27:00     1.8    INFO                                 Rank cutoff: 500 
2019-02-08 12:28:03     2.0    INFO                                 Rank cutoff: 1000 
2019-02-08 12:29:15     1.8    INFO                                 Rank cutoff: 3 (auto-select) 
2019-02-08 12:29:45     2.0  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:29:45     2.0  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:29:45     2.0    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:29:45     2.0  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:29:45     2.0  STATUS                         COMPLETED Region Level 
2019-02-08 12:29:46     2.0  STATUS                     COMPLETED Ontology:  BP 
2019-02-08 12:29:46     2.0  STATUS                     STARTED Ontology:  MF 
2019-02-08 12:29:46     2.0  STATUS                         STARTED Region Level 
2019-02-08 12:29:46     2.0  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:29:46     1.8    INFO                                 Rank cutoff: 100 
2019-02-08 12:30:09     1.8    INFO                                 Rank cutoff: 500 
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2019-02-08 12:30:32     1.9    INFO                                 Rank cutoff: 1000 
2019-02-08 12:30:57     1.9    INFO                                 Rank cutoff: 4 (auto-select) 
2019-02-08 12:31:07     2.0  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:31:07     2.0  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:31:07     1.8    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:31:07     1.8  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:31:07     1.8  STATUS                             STARTED Region Type: genes 
2019-02-08 12:31:07     1.9    INFO                                 Rank cutoff: 100 
2019-02-08 12:31:35     2.0    INFO                                 Rank cutoff: 500 
2019-02-08 12:31:59     1.8    INFO                                 Rank cutoff: 1000 
2019-02-08 12:32:23     1.9    INFO                                 Rank cutoff: 3 (auto-select) 
2019-02-08 12:32:43     1.9  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:32:43     1.9  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:32:43     1.9    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:32:43     1.9  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:32:44     1.9  STATUS                         COMPLETED Region Level 
2019-02-08 12:32:44     1.9  STATUS                     COMPLETED Ontology:  MF 
2019-02-08 12:32:44     1.9  STATUS                 COMPLETED Comparison:  C9ALS vs. 
non.C9ALS (based on Sample_Group) 
2019-02-08 12:32:44     1.9  STATUS                 STARTED Comparison:  Control vs. 
non.Control (based on Sample_Group) 
2019-02-08 12:32:44     1.9  STATUS                     STARTED Ontology:  BP 
2019-02-08 12:32:44     1.9  STATUS                         STARTED Region Level 
2019-02-08 12:32:44     1.9  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:32:44     1.9    INFO                                 Rank cutoff: 100 
2019-02-08 12:33:40     1.9    INFO                                 Rank cutoff: 500 
2019-02-08 12:34:51     2.1    INFO                                 Rank cutoff: 1000 
2019-02-08 12:36:09     2.2    INFO                                 Rank cutoff: 5 (auto-select) 
2019-02-08 12:36:24     1.9  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:36:24     1.9  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:36:24     2.1    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:36:24     2.1  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:36:24     2.1  STATUS                             STARTED Region Type: genes 
2019-02-08 12:36:24     2.1    INFO                                 Rank cutoff: 100 
2019-02-08 12:37:17     2.1    INFO                                 Rank cutoff: 500 
2019-02-08 12:38:22     2.2    INFO                                 Rank cutoff: 1000 
2019-02-08 12:39:33     2.5    INFO                                 Rank cutoff: 3 (auto-select) 
2019-02-08 12:39:54     2.5  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:39:54     2.5  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:39:54     2.5    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:39:54     2.5  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:39:54     2.5  STATUS                         COMPLETED Region Level 
2019-02-08 12:39:54     2.5  STATUS                     COMPLETED Ontology:  BP 
2019-02-08 12:39:54     2.5  STATUS                     STARTED Ontology:  MF 
2019-02-08 12:39:54     2.5  STATUS                         STARTED Region Level 
2019-02-08 12:39:54     2.5  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:39:55     2.1    INFO                                 Rank cutoff: 100 
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2019-02-08 12:40:15     2.3    INFO                                 Rank cutoff: 500 
2019-02-08 12:40:38     2.5    INFO                                 Rank cutoff: 1000 
2019-02-08 12:41:00     2.3    INFO                                 Rank cutoff: 5 (auto-select) 
2019-02-08 12:41:09     2.5    INFO                                 Could not conduct enrichment 
analysis as associated genes are not in GO database. 
2019-02-08 12:41:09     2.5  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:41:09     2.5  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:41:09     2.4    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:41:09     2.4  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:41:09     2.4  STATUS                             STARTED Region Type: genes 
2019-02-08 12:41:09     2.4    INFO                                 Rank cutoff: 100 
2019-02-08 12:41:31     2.4    INFO                                 Rank cutoff: 500 
2019-02-08 12:41:54     2.2    INFO                                 Rank cutoff: 1000 
2019-02-08 12:42:16     2.3    INFO                                 Rank cutoff: 3 (auto-select) 
2019-02-08 12:42:26     2.3  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:42:26     2.3  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:42:26     2.3    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:42:26     2.3  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:42:26     2.3  STATUS                         COMPLETED Region Level 
2019-02-08 12:42:26     2.3  STATUS                     COMPLETED Ontology:  MF 
2019-02-08 12:42:26     2.3  STATUS                 COMPLETED Comparison:  Control vs. 
non.Control (based on Sample_Group) 
2019-02-08 12:42:26     2.3  STATUS                 STARTED Comparison:  sALS vs. non.sALS 
(based on Sample_Group) 
2019-02-08 12:42:27     2.3  STATUS                     STARTED Ontology:  BP 
2019-02-08 12:42:27     2.3  STATUS                         STARTED Region Level 
2019-02-08 12:42:27     2.3  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:42:27     2.4    INFO                                 Rank cutoff: 100 
2019-02-08 12:43:14     2.5    INFO                                 Rank cutoff: 500 
2019-02-08 12:44:19     2.6    INFO                                 Rank cutoff: 1000 
2019-02-08 12:45:28     2.5    INFO                                 Rank cutoff: 4 (auto-select) 
2019-02-08 12:45:28     2.5  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:45:28     2.5  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:45:28     2.6    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:45:28     2.6  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:45:28     2.6  STATUS                             STARTED Region Type: genes 
2019-02-08 12:45:28     2.6    INFO                                 Rank cutoff: 100 
2019-02-08 12:46:22     2.4    INFO                                 Rank cutoff: 500 
2019-02-08 12:47:22     2.6    INFO                                 Rank cutoff: 1000 
2019-02-08 12:48:29     2.6    INFO                                 Rank cutoff: 2 (auto-select) 
2019-02-08 12:48:29     2.6  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:48:29     2.6  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:48:30     2.6    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:48:30     2.6  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:48:30     2.6  STATUS                         COMPLETED Region Level 
2019-02-08 12:48:30     2.6  STATUS                     COMPLETED Ontology:  BP 
2019-02-08 12:48:30     2.6  STATUS                     STARTED Ontology:  MF 
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2019-02-08 12:48:30     2.6  STATUS                         STARTED Region Level 
2019-02-08 12:48:30     2.6  STATUS                             STARTED Region Type: promoters 
2019-02-08 12:48:30     2.7    INFO                                 Rank cutoff: 100 
2019-02-08 12:48:51     2.8    INFO                                 Rank cutoff: 500 
2019-02-08 12:49:14     2.6    INFO                                 Rank cutoff: 1000 
2019-02-08 12:49:37     2.7    INFO                                 Rank cutoff: 4 (auto-select) 
2019-02-08 12:49:37     2.7  STATUS                             COMPLETED Region Type: 
promoters 
2019-02-08 12:49:37     2.7  STATUS                             STARTED Region Type: tiling 
2019-02-08 12:49:37     2.8    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:49:37     2.8  STATUS                             COMPLETED Region Type: tiling 
2019-02-08 12:49:37     2.8  STATUS                             STARTED Region Type: genes 
2019-02-08 12:49:37     2.9    INFO                                 Rank cutoff: 100 
2019-02-08 12:49:55     3.1    INFO                                 Rank cutoff: 500 
2019-02-08 12:50:17     2.9    INFO                                 Rank cutoff: 1000 
2019-02-08 12:50:38     2.7    INFO                                 Rank cutoff: 2 (auto-select) 
2019-02-08 12:50:38     2.7  STATUS                             COMPLETED Region Type: genes 
2019-02-08 12:50:38     2.7  STATUS                             STARTED Region Type: cpgislands 
2019-02-08 12:50:38     2.7    INFO                                 Not annotated with entrezID --> 
Skipped 
2019-02-08 12:50:38     2.7  STATUS                             COMPLETED Region Type: 
cpgislands 
2019-02-08 12:50:38     2.7  STATUS                         COMPLETED Region Level 
2019-02-08 12:50:38     2.7  STATUS                     COMPLETED Ontology:  MF 
2019-02-08 12:50:38     2.7  STATUS                 COMPLETED Comparison:  sALS vs. 
non.sALS (based on Sample_Group) 
2019-02-08 12:50:38     2.7  STATUS             COMPLETED Differential Methylation GO 
Enrichment Analysis 
2019-02-08 12:50:50     2.2  STATUS         COMPLETED Analysis 
2019-02-08 12:50:50     2.2  STATUS         STARTED Saving temp objects for debugging 
2019-02-08 12:50:50     2.2 WARNING             Zip not found on this Windows system, this 
RnBDiffMeth object will not be saved. See the instructions for installing ZIP on Windows in 
the FAQ section of the RnBeads website. 
2019-02-08 12:51:32     2.2  STATUS         COMPLETED Saving temp objects for debugging 
2019-02-08 12:51:32     2.2  STATUS         STARTED Report Generation 
2019-02-08 12:51:32     2.2  STATUS             Added introductory section 
2019-02-08 12:51:32     2.2  STATUS             STARTED Adding Site Level Information 
2019-02-08 12:51:32     2.2  STATUS                 STARTED Selection of rank cutoffs 
2019-02-08 12:51:34     2.8  STATUS                 COMPLETED Selection of rank cutoffs 
2019-02-08 12:51:34     2.8  STATUS                 STARTED Adding scatterplots 
2019-02-08 13:00:36     2.2  STATUS                 COMPLETED Adding scatterplots 
2019-02-08 13:00:45     2.2  STATUS                 STARTED Adding volcano plots 
2019-02-08 13:08:04     2.2  STATUS                 COMPLETED Adding volcano plots 
2019-02-08 13:08:04     2.2  STATUS                 STARTED Adding tables 
2019-02-08 13:10:45     2.7  STATUS                 COMPLETED Adding tables 
2019-02-08 13:10:45     2.7  STATUS             COMPLETED Adding Site Level Information 
2019-02-08 13:10:45     2.7  STATUS             STARTED Adding Region Level Information 
2019-02-08 13:10:45     2.7  STATUS                 STARTED Selection of rank cutoffs 
2019-02-08 13:10:46     2.6  STATUS                 COMPLETED Selection of rank cutoffs 
2019-02-08 13:10:46     2.6  STATUS                 STARTED Adding scatterplots 
2019-02-08 13:14:10     2.2  STATUS                 COMPLETED Adding scatterplots 
2019-02-08 13:14:16     2.2  STATUS                 STARTED Adding volcano plots 
2019-02-08 13:18:21     2.2  STATUS                 COMPLETED Adding volcano plots 
2019-02-08 13:18:21     2.2  STATUS                 STARTED Adding tables 
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2019-02-08 13:19:07     2.8  STATUS                 COMPLETED Adding tables 
2019-02-08 13:19:07     2.8  STATUS                 STARTED Adding GO enrichment analysis 
results 
2019-02-08 13:41:07     2.5  STATUS                 COMPLETED Adding GO enrichment 
analysis results 
2019-02-08 13:41:07     2.5  STATUS             COMPLETED Adding Region Level 
Information 
2019-02-08 13:41:07     2.5  STATUS         COMPLETED Report Generation 
2019-02-08 13:41:07     2.5  STATUS     COMPLETED Differential Methylation 
2019-02-08 13:41:08     2.5    INFO     Initialized report index and saved to index.html 
2019-02-08 13:41:19     2.2  STATUS     STARTED Saving RData 
2019-02-08 13:41:19     2.2 WARNING         Zip not found on this Windows system, this 
RnBDiffMeth object will not be saved. See the instructions for installing ZIP on Windows in 
the FAQ section of the RnBeads website. 
2019-02-08 13:42:01     2.2  STATUS     COMPLETED Saving RData 
2019-02-08 13:42:12     2.2  STATUS COMPLETED RnBeads Pipeline 
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Appendix X: QQ plot from MethylationEPIC analysis 
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Appendix XI: PANTHER analysis of mRNA expression data 
Conducted February 2019. 
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Appendix XII: Indexes used for BS-NGS 
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Appendix XIII: FastQC summary table for BS-NGS samples 
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Appendix XIV: Permissions for reuse of figures/tables 
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