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Abstract 

The provision of care in a hospital includes a series of activities that are often recorded 

in the electronic health record (EHR) systems. Analysing the data in these EHRs has 

the potential to support the understanding of care processes and exploring the 

opportunities for process improvement.  

One of the emerging data analytics approaches for such analyses is process mining, 

and one critical challenge in working with EHR data is that processes might change 

over time. This thesis uses a process mining approach to detect process change over 

time and analyse the impact of those changes on the EHR data. The overall aim is to 

summarise the attributable change in the data due to process so that clinicians can 

better analyse the data.  

Three datasets were used in this study to understand the variability of the EHR 

systems. The first dataset is a publicly available EHR data that was used for 

developing the methods and supporting the reproducibility of the research. The second 

dataset is a de-identified subset of the database of cancer patients from the Leeds 

Cancer Centre. The second dataset was used in the experiments to improve on the 

results of  a previous study using the same dataset. The third dataset was the full Leeds 

Cancer Centre  EHR database after more comprehensive ethics was approved. In the 

third dataset, experiments were done to analyse the impact of a known system change 

on clinical pathways and to explore process change over time without a known system 

change. All three datasets were analysed using process mining. 

Process mining was shown to be useful for analysing clinical pathways and exploring 

process changes over time. It can be used to visualise the process before and after a 

known change. When the system change is unknown, process mining can be used to 

explore the process execution over time and identify the potential period where the 

system was changed. This thesis explores some aspects of the complex inter-

relatedness of process and user interface (UI) of the EHR system.  
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Chapter 1  
Introduction 

1.1 Overview 

The provision of care in a hospital is delivered through healthcare processes. 

Healthcare processes can be described as a series of activities in the diagnosis, 

treatment, and follow-up of any disease aimed at improving patient health [1]. In 

modern healthcare, these activities are often recorded in a structured way using 

computerised information systems within the hospital. The information systems 

collect, store and manage data about these healthcare processes [2]. Analysing these 

data could be beneficial to build an understanding of healthcare processes, differences 

in processes, what results in the best outcome, and opportunities for improvement. As 

data volume grows, data analysis needs to improve to keep pace. This is especially 

important when considering that a large amount of data is collected during healthcare 

transactions every day. In the last few decades, many advancements in data analytics 

approaches have been introduced. Process mining is one of the emerging approaches 

that has the potential to offer new and interesting insights that help improve healthcare 

[3, 4].   

The most common type of computerised information systems in a hospital is the 

Electronic Health Record (EHR) system [5, 6]. Clinicians use EHR systems to record 

the activities that they do in relation to the care they provide. Examples of activities 

in a treatment process within a hospital are screening, admission, investigation, 

pathological test, surgery, chemotherapy, and radiotherapy. The flow from one 

activity to the others for a patient in a clinical setting is known as a care pathway [7] 

or clinical pathway [8]. Analysis of the recorded data in the EHR system is potentially 

useful to assess the quality of the care pathways. 

Process mining is an analytic approach to discover, monitor, and improve a process 

by analysing the data about that process [3, 4]. The input of process mining is an event 

log, which contains data about the process of interest. Process mining proposes a 

systematic approach to use that event log to create process models. A process model 

is a representation of the process from a specific perspective [4]. The discovered 

process model can then be used to check the conformance of the individual cases, and 
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to improve the process. Process mining has been used in many case studies and 

various organisations, such as education [9], insurance [10], and healthcare [11]. In a 

healthcare setting, a care pathway is a process to be analysed with process mining. 

One critical challenge in process mining is that the process might change over time 

[3]. Process mining is most useful when analysing a large volume of data, which is 

not easily analysed with manual approaches. Such data may be collected over a long 

period. A common approach in analysing these data in process mining is to assume 

that the process has not changed during the period of the study. In reality, processes 

are frequently changed over time. There are many reasons for that, for example, the 

organisation needs to align with a new procedure, the staff find an alternative way to 

do a process, a software upgrade, or the User Interface (UI) of the information system 

might need to be improved by introducing a new feature. 

This thesis explores the opportunity for accessing EHR data and using a process 

mining approach to analyse care pathways, considering the possibility of process 

changes over time. The motivation of this thesis is to help make the healthcare process 

mining community more aware of the impact of process changes in process mining 

projects. The aims are: (1) to develop methods based on process mining to analyse the 

impact of changes in UI of EHR systems on clinical pathways, (2) to examine the 

applicability of process mining on different EHR datasets, and (3) to analyse EHR 

data to retrospectively examine the treatment process on Leeds patients diagnosed 

with cancer. This thesis focuses on the changes in the UI of EHR systems as a starting 

point of the analyses and discussed related aspects of system changes over time. Three 

datasets were used in this study to investigate the variability of EHR data. The 

challenges of this study need to draw on the insights from computer science and 

medical science. 

 

1.2 Understanding the problem domain 

To illustrate the range of challenges the thesis will explore, this section describes an 

example of a patient journey in a hospital. This example is based on a fictitious person 

entirely based on the discussions with clinical experts. The example is explored from 

the health service, process mining and information system perspectives. 
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1.2.1 An illustrative example 

An illustrative example is provided by following the journey of Jane, a patient in a 

hospital. Jane was referred by her General Practitioner (GP) on an urgent basis to a 

gynaecologist in a hospital. The gynaecologist met her in an outpatient consultation. 

After checking on the detailed history and examination, the gynaecologist requested 

a range of tests (investigations) including an ultrasound scan, blood test, and 

hysteroscopy. Hysteroscopy is a procedure where a fibre optic camera is used to 

directly visualise the internal anatomy of the womb and obtain biopsy samples if 

required. The results of the investigations were then discussed in a multi-disciplinary 

team (MDT) review. The MDT review is held to get a consensus view of the 

gynaecologist, oncologist, radiologist, pathologist, and other healthcare professionals. 

Jane’s pathology sample confirmed a diagnosis of cancer. The outcome of the MDT 

review was a recommendation to proceed to surgical treatment. 

A few days later, Jane brought back to the hospital to meet with a gynaecological 

oncologist. During the appointment, the test results and cancer diagnosis were 

explained to Jane. They discussed the recommended course of surgery as the first and 

definitive treatment. Jane agreed and was formally consented for surgical treatment. 

Jane attended the hospital two weeks later where she was admitted for her surgical 

procedure. The operation successfully removed all of the visible tumours and she was 

discharged awaiting results of the surgical histology. At the follow up appointment, 

the surgeon met Jane explaining that the operation was successful and that the 

pathology showed healthy tissue and clear margins from her surgical resection. Jane 

was then followed up with annual outpatient visits for five years after which she was 

discharged with no signs of recurrent disease. 

Jane’s case is used as an example to illustrate one possible pathway for cancer 

treatment in a typical NHS hospital providing specialised cancer services. This 

example will now be further discussed from the health service perspective, the process 

mining perspective, and the information system perspective. 

1.2.2 Health service perspective 

The important stakeholders from the health service perspective are the patients, the 

clinicians, and the health service managers. Most obviously, the patient is the main 

stakeholder, along with their family who cares about the sequence of patient 
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treatment. Jane’s journey can be seen as one example of an individual care pathway 

from the patient perspective. For Jane, the patient, it is important to know the details 

of each activity, who will deliver the treatment, when and how long it will last, and 

what are the results of the treatment. It is upsetting for the patient to be diagnosed 

with cancer, so the more detail given and the clearer their understanding about the 

individual pathway the better. When the gynaecologist did some tests, for example, 

Jane needs to know what will be tested, how will it be done and what to expect. When 

Jane and the oncologist discuss the course of treatment, Jane needs to know her 

options and risks of each option. The gynaecologist needs to explain this based on his 

or her understanding of previous care pathways that he or she is aware of. 

Another important stakeholder is the clinician who executes the activities within the 

process. This refers to a clinician with specific expertise, but also as part of a 

Multidisciplinary Team (MDT) within a hospital. The clinician is interested in the 

treatment given to a patient under their care. In Jane’s example, when the 

gynaecologist sees Jane in a consultation, the gynaecologist needs to know what has 

been done to the patient, what her current condition is, and what should be done as 

the next step in the pathway. When the clinicians meet in an MDT meeting, they need 

to discuss Jane’s care pathway from different perspectives. Process mining can be 

used to analyse durations, variants, and pathways from different perspectives needed 

by clinicians. 

Within a hospital, a health service manager is also a stakeholder who cares about 

patient treatments in the hospital. The health service manager is responsible for 

directing, coordinating, and administering medical and non-medical resources, 

facilities and services. Health service managers would be interested in Jane’s journey 

to see how the medical and non-medical resources within the hospital provide health 

services for patients. Health service managers need to plan, direct, and coordinate 

health services. From Jane’s example, the health service managers manage the 

medical resources, facilities, and services in the oncology unit, the pathology unit, and 

the surgery unit to support Jane’s treatment. They need to plan the services, analyse 

how the services have been used, how clinicians work from time to time, and what 

can be done to improve overall performance. They might need to see the sequence of 

Jane’s treatment and to know if the sequence conforms to the standard guidelines of 

the treatment process. They might be interested to know the duration of each event in 

Jane’s journey and how those durations conform to the guidelines of the services. 
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They might need to detect possible delays in Jane’s journey and to know the cause of 

the delay. They might also need to identify ways to improve the outcome of Jane’s 

treatment. 

Those might be easily done for one patient journey, but a health service manager 

needs to analyse the journeys of all patients within a hospital. Those patients might 

have various sequences of events in their treatment, depending on many conditions, 

such as their symptoms, age group, and other characteristics. The hospital might also 

apply various treatment approaches for different patients that might later result in a 

different sequence of events or different durations from the same sequence of events. 

The health service managers need some approaches to analyse those variations. 

Process mining is one of the promising approaches to analyse durations, sequence of 

events, variants, and other related analysis. 

1.2.3 Process mining perspective 

Jane’s journey can be represented as a sequence of discrete events: referral, outpatient 

consultation, investigation, test result consultation, diagnosis, admission, surgery, 

after-surgery consultation, and discharge. The clinicians who undertook these events 

included the gynaecologist, the oncologist, the pathologist, and the surgeon. In each 

of those activities, the clinicians entered the details of the events in the EHR system. 

The EHR system added some extra information about the events, for example, the 

exact timestamp when the event was performed. 

A typical EHR system records clinical information in a complex database structure. 

That includes the details of the event in a specific data format. The event names are 

stored along with the clinician’s login information, and the timestamp when the event 

happened. Those recorded details are the minimum components of an event log, which 

can later be analysed to understand the recorded events that have happened within the 

hospital. The structure of the EHR system is generally more complex than what is 

needed for process mining. Thus, the first challenge is to extract and transform the 

details of the events in the suitable format for process mining. 

A process mining approach is used in this study to analyse such data. In Jane’s 

example, the treatment process is described in a series of events as actions to achieve 

the outcome of being cancer free. A systematic approach can be used to select and 

find the information needed in analysing clinical pathway using process mining 
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approaches. The recorded event name, clinician name, and timestamp of each event 

can be used to discover the sequence of events that happened to any particular patient. 

Jane’s journey, for example, can be represented in the following sequence: GP 

referral à outpatient consultation à investigation à pathology test à MDT review 

à diagnosis à test results consultation à admission à surgery à after-surgery 

consultation à discharge. The sequence of events of many patients might create 

splitting pathways depending on what is found and what actions are taken. 

From the sequence of the events of many patients, a process mining approach can be 

used to analyse the patient pathways within a hospital. The sequence of events can be 

compared to the guidelines related to cancer treatment. One example of the guidelines 

in the NHS is cancer waiting time target, for example, the 62-days wait pathway. This 

guideline requires the pathways from referral to treatment to be completed in no more 

than 62 days (two months) [12]. 

This representation omits things, of course, and this might be worth noting. For 

example, when Jane and the oncologist discussed and agreed the course of treatment, 

there might have been a long discussion on how the diagnosis has upset the patient, 

what options had been given by the clinician, and other considerations. This 

discussion is not represented in the sequence of events. Some details are possibly 

recorded in in free text and can be built in to increase the completeness of the analysis 

in process mining. In this example, process mining only takes account of the sequence 

itself and not any free text which might, for example contain the reason why the 

sequence occurred. This would remain as a limitation of this study, as the analysis is 

carried out based only on the recorded data. 

1.2.4 Information system perspective  

The EHR system can be seen as a type of information systems where the main users 

are the clinicians and other healthcare professionals including surgeons and 

pharmacists. They interact with the information system through the UI. As users work 

with the system, they input data, do some actions, and get outputs through the UI 

designed in the system. The UI through which the users interact with the information 

system plays an important part in the success of the information system. A good UI 

design can play a key role in the success of the systems, including EHR systems [13]. 
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This can be related to Jane’s journey as the example. When Jane came to the hospital, 

her journey was recorded as data in the EHR system. Some details were typed in 

manually by clinicians in the hospital or recorded automatically by the EHR system. 

For example, the admission staff who admitted Jane for surgery would enter Jane’s 

medical information, including the date of the GP referral. The oncologist in Jane’s 

oncology consultation entered more details in Jane’s medical information, including 

the scheduled date for the pathology test. When the oncologist submitted the 

information, the EHR system would automatically record the time when the oncology 

consultation took place. The pathologist might have added medical information 

before/after the pathology test, while the pathology system automatically recorded 

pathology test results and the time when the pathology test was conducted. 

The users of the EHR system in Jane’s example were the admission staff, the 

oncologist, the pathologist, and the surgeon. Those users worked to input data, do 

some actions, and get outputs through the UI of the EHR system. For example, the 

admission staff who admitted Jane checked if Jane had already been registered in the 

system, checked some personal details to make sure that the data are valid, inputted 

some medical information, and received confirmation from the EHR system that the 

data had been updated. 

Looking back at Jane’s journey, all of Jane’s treatment was facilitated by the 

information systems. The admission system was used to record Jane’s information on 

hospital admission and discharge. The oncology system was used by the oncologist 

to record details of the consultations. The pathology system was used by the 

pathologist to record pathology test results. The surgery system was used by the 

surgeon and the surgery team to record information regarding Jane’s surgery. In fact, 

Jane’s journey is actually  recorded in greater detail than outlined above, for example 

including when the referral is received, the system makes the appointment, generated 

the letter, was updated if Jane called to change the appointment, probably resulted in 

requested per-appointment details, scheduled the time of the appointment, recorded 

the time that the patient enters the consultation room and the time of the next 

appointment, etc. Whenever the information system was used, the UI had an important 

part to play in the success of the EHR system. 

For example, when Jane visited the hospital to get admitted, the admission staff 

needed to check if Jane had already been registered. The UI required the staff to type 
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in a National Health Service (NHS) number, last name, or date of birth to correctly 

identify Jane. When the data produced a match, the staff were then required to see and 

verify Jane’s personal information. The UI needs to be designed in such a way that 

personal information can be presented in a suitable layout to make it easy for the staff 

to see all important information on the screen. The staff might ask Jane some 

questions to see if any information requires to be updated, for example, Jane’s home 

address. The staff then need to enter the date of the GP referral, along with some other 

details such as GP name and/or address. The UI of the EHR system needs to be 

designed such that the date of GP referral can be inputted in a standard format to avoid 

any error. The regular GP name or address might be presented as a list to improve 

efficiency. 

1.2.5 System change 

Over time, the EHR system might change for several reasons. Some users may find 

that a button is missed out most of the time because it is too small, so the developer 

team makes it bigger. Other users may find that a menu is placed in the wrong order 

that does not agree with the order of the care process, so the developer team moves it 

to the correct order. There might also be a change in the guidelines for patient 

treatment that requires changes in the records. Another time, the hospital might decide 

to join an initiative to connect the EHR system to all care records throughout the city, 

so the developer team makes some changes to adjust the EHR system. In an extreme 

example, the hospital might decide to change the EHR system to another system 

completely. All these examples show that the EHR systems have some changes at 

different levels, for various purposes. 

To relate to Jane’s example, the EHR system where Jane’s journey is recorded might 

have faced several changes. Those changes might affect the way Jane’s journey is 

recorded in the database of the EHR system. For example, if five years ago, the 

hospital had a separate pathology system to record all pathology test activities within 

the hospital. The hospital only started to record pathology test results in the last five 

years. Whenever a pathology test is done, the EHR system would record the test result 

and make it available to be updated by the clinicians, as required. If Jane had come 

five years earlier, her records in the EHR system would not include any activities 

related to the pathology tests. In this case, the analysis would reveal that Jane’s 

journey was not complete because she did not have a pathology test. This does not 
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mean, of course, that Jane had been diagnosed without a pathology test but illustrates 

an effect of a system change over time. 

This thesis focused on the changes in the UI of EHR systems. The aim is to build a 

method to examine and analyse different types of UI changes and the effect of those 

changes on the processes. The process change is analysed using a process mining 

approach. Process mining is used in this study because it can be useful in analysing 

and understanding processes through the event log automatically generated in the 

information system. The current literature in process mining has shown promising 

results in the analysis and understanding of the processes. Still, there are limited 

studies discussing the effect of system changes on process changes over time. This 

study demonstrates the suitability of using process mining for process change analysis 

within the healthcare domain, to understand the suitability for using EHR given 

changes over time and how to control for the change over time. The motivation of this 

thesis is to make contributions to the healthcare process mining community [14], 

where one of the main challenges is the complexity due to the changes over time. 
 

1.3 Objective, hypothesis, and research questions 

The objective of this research is to detect and analyse process changes in EHR 

systems. In aiming to meet this objective, the key hypothesis is that process mining 

can be used to analyse process change in the EHR system. The Research Questions 

are developed by breaking down the key hypothesis, as presented in Figure 1.1.  

 

Figure 1.1 Research Question development. The left side shows the primary questions with 

two possible cases connected with solid arrows. The right side shows the measurement 

questions in either one of two cases (2 or 3 on the left), connected with dashed arrows. 
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The first research question is “Is it possible to analyse changes in the care processes 

in an e-health system using process mining?” (RQ-1). This research question can be 

split into two based on the pre-condition whether a process change point is known or 

not: “Is it possible to analyse process change from a given UI change?” (RQ-2) or “Is 

it possible to detect a point in time when a care process changed?” (RQ-3). In a case 

where UI changes have been documented, it may be possible to know the exact point 

in time when the change happened. If this is the case, the analysis focuses on how a 

given UI change affects the care process. Another case is where a care process is 

undertaken over a long period, the process might have been changed over time. In this 

case, the analysis focuses on how to characterise this process change over time. 

Further, Figure 1.1 shows that this research needs to find parameters that can be used 

to characterise process changes (RQ-4). Those parameters can be defined based on 

process characteristics. A process can be characterised from many representations and 

perspectives, for example, based on the sequence of activities, based on the duration, 

or based on the outcomes. Each of those representations and perspectives may change 

over time. To support this question, this research needs to consider how best to 

represent the care pathways (RQ-5). The fundamental question is how to extract an 

event log, a dataset of patient pathways, from the EHR system (RQ-6). The database 

was not developed from a process perspective; hence the initial challenge is to get the 

correct data required to analyse processes.  

 

1.4 Study approach 

The general approach of this study was to explore the dataset of patient pathways as 

extracted from the EHR system, test the hypothesis through some experiments of 

process change analysis, and evaluate the results through discussions with clinical 

experts. The main inputs of this research were the EHR database, the information 

about a UI change, and advice on clinical treatments. The EHR database was explored 

to extract the data related to the process change. Using process mining approaches, 

those data were transformed to represent and characterise the process as needed by 

clinical experts to better understand the process change. Based on those 

representations and characteristics, the analysis was completed by discovering 

process changes over time. The output was presented in many visualisations to 

support understanding of the process. 
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The methodology in this study is adapted from the two well-established process 

mining methods, the L* life-cycle model [3] and the Process Mining Project 

Methodology (PM2) [15], and they are discussed in more detail in Chapter 3. The 

study started with planning and justification to define the scope, research questions, 

and the data of this study. It was followed by Extraction, Transformation, and Loading 

(ETL) of the identified data required for this study. The next stage is the main part of 

this study, where the process mining and process change analysis was done. The 

process change analysis [16] was conducted by partitioning the event log over time 

and by process mining each of them to discover the process models over time. The 

last stage is evaluation, which was conducted through both a statistical evaluation and 

a clinical evaluation. The statistical evaluation was done using hypothesis testing, to 

test if there is a statistically significant change before and after a change point in time. 

The clinical evaluation was done through focused group discussions with clinical 

experts to unravel the real changes happening within the EHR system. 

Based on the study planning and justification, the datasets used in this study were 

chosen from two data sources to understand the variability of the EHR systems. The 

datasets came from two data sources: one from a hospital in the United States of 

America (USA) and one from a hospital in the United Kingdom (UK). The USA 

represents a country with a non-universal healthcare insurance system where 

healthcare services are largely provided by private providers [17]. The UK represents 

a country with a universal government-funded health system, also known as single-

payer healthcare [18]. By analysing datasets from the USA and the UK, this study 

may be extended to an international comparison of healthcare services. The data 

provenance of those two data sources are described in the following section. 

1.4.1 Data sources 

There are two data sources for this study. These are: the Beth Israel Deaconess 

Medical Center (BIDMC), USA, and the St James’s University Hospital (SJUH), UK. 

Those two data sources come from hospitals located in two cities of comparable size. 

Without trying to compare those two hospitals with one another, the following 

sections present the overview of those two data sources. 
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1) The Beth Israel Deaconess Medical Center in Boston, USA 

The first data source was the EHR of the BIDMC hospital in Boston, USA. This 

hospital was formed in 1996 by a merger of Beth Israel Hospital (founded in 1916) 

and New England Deaconess Hospital (founded in 1896). BIDMC is a private hospital 

for Harvard Medical School and is located in Boston [19].  

Boston is the capital and the most populous city of Massachusetts in the US. The city 

covers 89.63 square miles (232.14 km2) with an estimated population of 694,583 in 

2018. In addition, there are hundred thousands of people who travel to Boston for 

work, education, healthcare, and special events. The population rises to 1.2 million 

during working hours and 2 million during special events. Boston is a home to an 

affluent population and is a wealthy city with one of the highest costs of living in the 

USA[20]. 

In March 2019, the BIDMC joined Beth Israel Lahey Health, a new healthcare system 

in the US, along with 11 other hospitals. Since the merger, the hospital has consisted 

of two campuses, the East (former Beth Israel) and the West (former Deaconess). The 

East Campus houses most of the primary care, outpatient, clinical and administrative 

functions. The West Campus retains the department of human resources, the 

emergency department, inpatient care, and many specialists. The medical center has 

more than 6,000 full-time employees. The BIDMC provides 673 licensed beds, which 

includes 493 beds in medical/surgical department, 77 beds in critical care and 62 beds 

in obstetrics/ gynaecology (OB/GYN) [19]. 

2) The St James’s University Hospital in Leeds, UK 

The second data source for this study was the EHR of the SJUH in Leeds, UK [21]. 

This public hospital was originally the Leeds Moral and Industrial Training School 

built in 1848 and was named as St James’s University Hospital in 1970, which is 

located in Leeds, UK.  

Leeds is a city in West Yorkshire, England, UK. Leeds has one of the most diverse 

economies and the fastest rate of growth in the UK. The city covers 213 square miles 

(551.7 km2) with an estimated population of 789,194 in 2018. Leeds economy is one 

of the most diverse of all the UK main employment centres. Leeds  is one of the largest 

business centres in the UK with around a quarter million people are employed in the 

Leeds City Region in the financial and professional sector [22].  
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Along with five other hospitals, SJUH is managed by the Leeds Teaching Hospitals 

NHS Trust (LTHT). The LTHT is the largest provider of specialised services in 

England [23]. The SJUH provides 997 beds, including the new oncology building, the 

Bexley Wing. The Leeds Cancer Centre is one of Europe’s largest cancer centres with 

350 beds and 1,600 staff [24]. 

1.4.2 Overview of the datasets 

The EHR data from those two data sources were made accessible to the researcher. 

Initially, access was gained to the open accessible dataset from the BIDMC, USA. 

This is called the Medical Information Mart for Intensive Care III (MIMIC-III). The 

second dataset was the de-identified subset of the Patient Pathway Manager (PPM) 

data from the LTHT. This is called the PPM Chemotherapy dataset. Subsequently, the 

third dataset was accessible from the full access of PPM dataset. This is called the 

PPM Cancer dataset. The second and third datasets came from the same data source, 

but were considered as two different datasets due to their data access, anonymisation 

process, and the scope of the datasets.A summary of the datasets in this study is 

presented in Table 1.1. 

Table 1.1 Data summary 

Dataset Hospital EHR System Experiment 

1) MIMIC-III 
(n=46,520) 

BIDMC, 
Boston 
USA 

- Carevue 
- Metavision 

1. Colorectal cancer patients (n=1,600) 
2. All patients (n=46,520) 

2) PPM 
Chemotherapy 
(n=31,511) 

LTHT, 
Leeds UK 

Patient 
Pathway 
Manager 
(PPM) 

Breast cancer patients receiving EC-
90 adjuvant chemotherapy between 
2003 – 2012 (n=738) 

3) PPM Cancer 
(n>2.5M) 

1. Breast cancer patients receiving 
EC-90 adjuvant chemotherapy 
between 2014-2018 (n=733) 

2. Referral to diagnosis of Leeds 
patients diagnosed with 
endometrial cancer (n=1,664) 

3. Referral to first treatment of Leeds 
patients diagnosed with 
endometrial cancer (n= 949) 

4. Cancer patients  

* n = number of patients 
Those three datasets were carefully chosen to represent variability of EHR data. The 

MIMIC-III dataset includes patients in critical care units only. MIMIC-III was chosen 

because this is publicly available and supporting reproducibility of the research using 
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the same dataset. The PPM Chemotherapy dataset is an extract of patient data 

consisting data of patients receiving chemotherapy in the LTHT. This dataset 

represents a specific cohort of patients following a general pathway of chemotherapy 

treatment. The PPM Cancer dataset is the full dataset of cancer patients in the LTHT. 

This dataset represents a larger cohort of patients with many different pathways 

followed. Analysis of the PPM Cancer dataset was also supported with adirect access 

to representatives of clinicians and PPM developers. For simplicity and consistency 

reasons, the dataset names to be used in this research are the MIMIC-III dataset, the 

PPM Chemotherapy dataset, and the PPM Cancer dataset. Case studies of these 

datasets are described in Section 3.4 and are explored in more detail in Chapters 4–6. 

 

1.5 Thesis structure 

This thesis is structured based on the experiments conducted on the three datasets as 

three separate case studies. The case studies are presented as separate chapters but 

experiments are numbered chronologically based on the order on which they were 

conducted. The structure of this thesis and description of the chapter headings are as 

follow. 

1) Introduction 

This chapter introduces the importance of improving healthcare processes through 

data. An illustrative example of a patient journey is presented to set a problem 

definition which can be seen from different perspectives i.e. the health service 

manager, process mining, and information system perspectives. The UI change is then 

introduced to highlight the main focus of this study. This chapter is concluded with 

the establishment of research objectives, research questions, approaches, and the 

thesis structure. 

2) Background 

This chapter summarises the literature in healthcare and technical areas as the 

background for this thesis. The healthcare background includes a review of healthcare 

systems, electronic health record research, coding standards, process guidelines, and 

cancer. The technical background includes workflow technology and process 

modelling, process modelling notation, process mining, process mining in healthcare, 

process mining to analyse process changes, and statistical approaches. 
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3) Methodology 

This chapter describes the general methodology and the three datasets used in the 

study. The four main steps in the general methodology following the PM2 are: (1) 

Plan and Justify; (2) Extract, Transform, Load; (3) Mine and Analyse, and (4) 

Evaluate. The three datasets used in this study are the MIMIC-III data, the PPM 

Chemotherapy data, and the PPM Cancer data. Each dataset will be treated as a 

separate case study and will be discussed in a dedicated chapter. Chapter 3 describes 

the general methodology, while Chapters 4–6 are organised around the three datasets. 

4) Case study 1: Experiments using the MIMIC-III dataset 

The first part of this chapter explores the MIMIC-III dataset in terms of the data 

characterisation, data provenance, scope, representativeness, data quality, data 

variety, and the limitations. 

The second part of this chapter describes how process mining has been used to analyse 

the data from the MIMIC-III dataset, following the steps in the general methodology. 

It starts with the description of cancer patient treatments in the BIDMC data source; 

followed by introducing a new stage called the Database Reconstruction; ETL; 

process discovery and conformance checking; and comparing processes in CV and 

MV systems. 

5) Case study 2: Experiments using the PPM Chemotherapy dataset 

The first part of this chapter explores the PPM Chemotherapy dataset in terms of the 

data characterisation, data provenance, scope, representativeness, data quality, data 

variety, and the limitations. 

The second part of this chapter describes how process mining has been used to analyse 

the PPM Chemotherapy database, following the steps in the general methodology. It 

starts with the description of PPM Chemotherapy data; followed by ETL; process 

discovery and conformance checking; and the process analytics. The process analytics 

include process mining to reproduce data analysis in chemotherapy process, trace 

clustering for similarity analysis, and the detection of system changes and their effects 

on treatment processes in the PPM EHR system. 

6) Case study 3: Experiments using the PPM Cancer dataset 

This chapter explores the PPM Cancer dataset in terms of the data characterisation, 

data provenance, scope, representativeness, data quality, data variety, and limitations. 
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This chapter describes how process mining has been used to analyse the PPM Cancer 

data, following the steps in the general methodology. It starts with the description of 

PPM Cancer data from the PPM database; followed by ETL; process discovery and 

conformance checking; and the process analytics. The process analytics include the 

windowing methods, process comparison and the detection of system changes and 

their effects on treatment processes in the PPM EHR system. 

7) Discussion 

This chapter explores the challenges on healthcare process mining, the data analytics 

to analyse processes, process change analysis, the effect of system change in 

healthcare processes, and the contributions of this thesis. The challenges on healthcare 

process mining include data access and ethics approval, data quality, data 

understanding, and the data and process visualisation. Contributions of this thesis 

include using the process mining approach on three datasets, exploring the dimensions 

of process change analysis, and time window selection to analyse the process. 

8) Summary 

This chapter concludes the whole study with the findings in terms of the method 

developed and the case studies explored in the study. This chapter also identifies 

future work to be done based on the findings and lessons learned in the study. 

1.6 Summary 

This first chapter has introduced the research undertaken during this PhD, by 

providing an overview and an illustrative example in order to understand the problem 

domain. The example has been explored from the perspectives of health service, 

process mining, and information systems. UI change has been introduced as one main 

challenge to be explored in this study. The aim, research objectives, research 

questions, approaches, and the thesis structure have also been presented. The next 

chapter will review the literature which builds the background for this study. 

There is an opportunity to improve healthcare through the application of process 

mining to EHR data, but there are some challenges as described. The impact of UI 

changes on the data is one of these challenges. The case study method will be adopted 

based on the pragmatic availability of data to test the hypothesis that process mining 

can be used to understand process change over time. 



 

Chapter 2  
Background 

Chapter 1 introduced this thesis as a study that needed both healthcare and technical 

expertise. Here in Chapter 2, the literature within the healthcare and technical 

background is reviewed to develop the context of the study. This chapter includes a 

jointly-authored publication presented in the IEEE International Conference on 

Information Communication and Management (ICICM) entitled “Process mining in 

oncology: a literature review” [25]. This literature review paper is summarised in 

Section 2.2.4.2. 

2.1 Healthcare background 

The relevant background to healthcare is presented in this section. Healthcare is a 

complex domain that includes the prevention, diagnosis, and treatment of disease, 

injury, illness, and other conditions in people [26]. Healthcare is delivered by health 

practitioners or providers i.e. primary care, secondary care, tertiary care, community 

care, and public health. Healthcare professionals include doctors, nurses, therapists, 

pharmacists. The following subsections have been structured to describe the general 

introduction to healthcare systems, how the healthcare data has been used in the EHR 

research, some coding standards and process guidelines related to this study, and a 

description of cancer as a specific domain analysed in this study. 

2.1.1 Healthcare systems 

A healthcare system is the organisation of people, institutions, and resources that 

deliver healthcare services to meet the health needs of the populations. According to 

the World Health Organization (WHO), a healthcare system consists of all 

organisations, people and actions to promote, restore, or maintain health. The goals 

of healthcare systems are good health for the populations, responsiveness to the 

expectations, and fair funding [27].  

Healthcare systems vary across countries [27]. They can be classified based on the 

funding body supporting the healthcare system. Some countries with universal 

government-funded health systems are Australia,  Canada, and UK. Some countries 
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with universal public insurance systems are China, Japan, and United Arab Emirates. 

Some countries with universal public-private insurance system are Austria, Chile, and 

Germany. Some countries with universal private health insurance are Netherlands and 

Switzerland. Some countries with non-universal insurance systems are Egypt, 

Indonesia, and the USA. This thesis analyses healthcare data from the USA and UK 

as two countries with different type of healthcare systems. 

The healthcare system in the USA is a non-universal insurance system, where 

healthcare is operated under a mixed market healthcare system. It is mostly funded by 

private health insurance and a small number are funded by public health coverage 

such as Medicare, Medicaid, and the Veteran Health Administration [28]. Some states 

in the USA are moving towards universal healthcare coverage, including Minnesota 

and Massachusetts. In this study, the USA healthcare system was explored to analyse 

the MIMIC-III data from the Beth Israel Deaconess Medical Center (BIDMC) 

hospital. No additional information was required in order to perform the analysis of 

the dataset.  

The healthcare system in the UK is a single-payer system, where healthcare is 

controlled by the government, funded by leveraging taxes and redistributing across 

the population, and made available to all citizens [29]. In this thesis, the UK healthcare 

system was explored by using  data from the Leeds Teaching Hospitals NHS Trust 

(LTHT) as a secondary/tertiary care provider. Relevant details of the healthcare 

system were discussed with clinical experts during the experiments using the datasets. 

2.1.2 Electronic Health Record research 

Information is one of the main components of a healthcare system. The Electronic 

Health Record (EHR) is the computerised format of healthcare information, which 

stores the health-related data of all patients treated within a healthcare institution, 

which may include records of patients’ referral, symptoms, past medical history, 

physical examination, diagnosis, tests, procedures, treatment, medication, and 

discharge [30]. An EHR contains the clinical histories of patients, which are stored to 

support the clinical care delivery for patients, improve the performance of the clinical 

practice, and facilitate clinical research. In any implementation, an EHR can be fully 

integrated or partially integrated in the healthcare institution. 
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The EHRs in general have been used for many research projects, including 

epidemiology [31], observational research, safety surveillance and regulatory uses, 

and prospective clinical research [32]. The benefits of using EHRs in clinical studies 

include, among others, integrating large amounts of medical information, enabling a 

longitudinal study of diseases, and enabling linkage to other datasets. The actual 

benefits of a study using EHRs compared to other studies are that (1) savings in cost, 

time, and labour are possible because additional data collection is not needed, and (2) 

it supports decision making based on the recorded data in the EHR, which is known 

as evidence-based decision making. The challenges to using EHRs in research are 

related to data quality, complete data capture, and heterogeneity between systems. 

From a pathway point of view, the challenges are that the EHR data recorded for 

clinical purpose might contain much more details that are not needed in the analysis, 

not recorded complete sequence of patient pathway, recorded in different levels of 

detail than needed, or might spread in different systems with different recording 

formats. The first challenge to work with the EHR data is therefore how to find the 

suitable data needed for the analysis. 

One interesting type of observational research in the EHR systems is clinical pathway 

analysis. A clinical pathway is a sequence of events in the patient care with a specific 

clinical problem [8]. The purpose of clinical pathway analysis varies from analysing 

patterns and deviations of the clinical pathway to analysing outcomes. Analysing 

patterns of clinical pathways is important in understanding medical behaviours and 

the order of activities in patient treatment [33]. Analysing outcomes are important to 

recommend procedures and treatments suitable for patients to gain positive health 

outcomes. By observing the recorded data in the EHR systems, pathways analysis can 

be supported by the recorded data as the evidence of any findings.  

Process mining is a promising approach in order to analyse the patterns of clinical 

pathways based on the data recorded in the EHR system. It is particularly interesting 

as a secondary use of routinely collected data in the healthcare settings to understand 

and improve health services [34]. The main input for process mining is an event log, 

which records the events in a pathway as they are undertaken by clinicians in a clinical 

setting. The models discovered by analysing the event log are representatives of the 

pathways being analysed. More details about process mining and how it can be used 

for clinical pathway analysis is presented in Section 2.2.3. 
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2.1.3 Coding standards: the International Classification of Diseases 

There are a range of coding standards used worldwide, but the International 

Classification of Diseases (ICD) is the most widely used for classifying diseases. It is 

mandated by the World Health Organisation (WHO) for the statistical analysis of 

diseases and mortality. ICD is a standard for the diagnostic classification that can be 

used for ensuring coding consistency in clinical and research purposes. [35] 

The first version of this system was introduced in 1893. After several changes, the 

ICD-9 (1978) was introduced to revise the standards and to reflect advances in health 

and medical science over time. The ICD-10 (1994) allowed for significantly more 

codes and permitted the tracking of many new diagnoses and procedures. The ICD-

10 is an extension of the ICD-9 with additional codes. It is possible to map codes from 

ICD-9 to ICD-10. The latest version, ICD-11, was released in June 2018, but it is not 

currently used in practice. [36]  

In this study, the MIMIC-III data used the ICD-9 codes while the PPM data used the 

ICD-10 codes. Understanding of both ICD-9 and ICD-10 codes is important in order 

to support analysis of specific cohorts of patients.  

2.1.4 Process guidelines 

Several guidelines are used in healthcare to standardise processes within the EHR 

system. Some of these are followed internationally, nationally, and locally. The 

process guidelines followed in this study based on the UK healthcare system are the 

National Institute for Health and Care Excellence (NICE) guidelines as national 

guidelines in the UK and the Leeds Health Pathways as local guidelines in the LTHT. 

Process guidelines in the US healthcare system are not discussed because there was 

no direct access to the BIDMC hospital to confirm which ones were followed. 

The NICE pathway guidelines are evidence-based recommendations for health and 

care in England. The NICE is an executive public body in the United Kingdom, a part 

of  the Department of Health that provides national guidance and pathways to conduct 

health and social care in England and Wales. NICE assesses the recommended 

treatment of diseases medically and economically [37]. For example, there is specific 

guidance based on the condition of breast cancer, more specifically in advanced (stage 

4) breast cancer [38]. The pathway is presented as an interactive flowchart, which 

includes information and support, imaging assessment, pathological assessment, and 
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the management of a person with suspected advanced breast cancer. The NICE 

guidance is a high level standard that needs to be broken down into a detailed level 

suitable to specific practices in hospitals.  

The Leeds Health Pathways (LHP) [39] are a set of local guidelines adopted by the 

LTHT and other organisations including the Yorkshire Cancer Network. They were 

adopted from the guidelines from various professional bodies including NICE. The 

LHP is provided as part of the clinical guidelines in the LTHT for patient treatment 

in various diseases. In gynaecology, for example, it provides guidelines for abnormal 

bleeding (post-menopausal/pre-menopausal), management of premenstrual 

syndrome, and lumps and bumps, among others. The guideline includes background 

information or scope of pathway, information resources for patients and carers, 

development and updates to the pathway, and referral forms. More details referring to 

the LHP about specific types of cancer are presented in Sections 2.1.6. 

Understanding the guidelines and ontology of the healthcare domain is a part of this 

study, as a reference in discovery and conformance checking steps. Generally, ICD 

codes are used to code diagnoses and procedures, while the NICE pathways and the 

LHP are useful as guidance of patient treatment. It is important to check if the 

discovered process models are conforming to the guidelines used in the healthcare 

processes to assess the quality of the guidelines and possibly find best practices. 

2.1.5 Cancer  

Cancer is a leading cause of death worldwide. There were an estimated 9.6 million 

deaths caused by cancer in 2018 [40]. The five most common causes of cancer death 

are breast, colorectal, liver, lungs and stomach cancers. In the UK, cancer is the fourth 

leading cause of death [12]. There are around 164,000 cancer deaths every year 

(2014–2016), with the most common being lung, bowel, breast, and prostate cancers 

[41]. 

Cancer is a group of diseases involving abnormal cell growth. Cancer has the potential 

to invade or spread to other parts of the body [42]. Other terms used are malignant 

tumours and neoplasms. Cancer is a genetic disease caused by changes to the genes 

that control how cells grow and divide. A cancer that spreads from the original place 

to another place in the body is called metastatic cancer [43]. Most cancers are 

recognised through the presenting symptoms or through screening. The definitive 
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diagnoses would require the examination of a tissue sample by a pathologist. There 

are more than 100 types of cancer, which are named from the organs or tissues where 

the cancers form. 

The general guidance for cancer contained in the NICE guidelines is NG12 for 

suspected cancer: recognition and referral [44]. This guideline outlines appropriate 

investigations in primary care on children, young people, and adults with symptoms 

that could be caused by cancer. The recommendations are organised by the site of the 

suspected cancer, the symptom, and the findings of primary care investigations. The 

guideline is provided for healthcare professionals, people involved in clinical 

governance in both primary and secondary care, and also for people with suspected 

cancer and their families and/or carers. 

2.1.6 Cancer types 

The following sections discuss the three types of cancer analysed in this study, which 

are colorectal, breast, and endometrial cancers. The selection was based on 

discussions with clinical experts to get representative cohorts of cancer patients in 

those three datasets. 

2.1.6.1 Colorectal cancer 

Colorectal cancer is cancer that develops from the colon or rectum (part of the large 

intestine). It is also known as bowel cancer, colon cancer, or rectal cancer. The risk of 

getting colorectal cancers is increased by old age and lifestyle factors. Less than 5% 

of cases are due to genetic disorders. The five year survival rate in the United States 

is around 65%. Globally, colorectal cancer is the third most common type of cancer, 

making up about 10% of all cases [45]. 

Diagnoses may be obtained through a physical exam and history, faecal occult blood 

test (FOBT), x-rays, sigmoidoscopy or colonoscopy, followed by medical imaging 

[46, 47]. Surgery is the most common treatment for all stages, especially for cancers 

that are confined within the wall of the colon.  The other types of treatment such as 

chemotherapy and immunotherapy are undertaken in specific conditions. In people 

with incurable colorectal cancer, palliative care is recommended. Palliative care can 

consist of procedures to relieve symptoms or complications from the cancer but do 

not attempt to cure the underlying cancer. 



- 23 - 

2.1.6.2 Breast cancer 

Breast cancer is the development of cancer from breast tissue. Globally, breast cancer 

affects about 12% of women and is the most common cancer in women. The risk of 

breast cancer is increased by many factors, including a family history of breast cancer. 

It is sometimes caused by BReast CAncer (BRCA) gene mutations [48]. 

There are 34 guidance points, 4 pathways, 2 quality standards, and 8 advice points 

contained in the NICE guideline for breast cancer. Most of them are related to specific 

treatment or diagnostics guidance. The general guidance topics are: Advanced breast 

cancer diagnosis and treatment (CG81) [49]; Familial breast cancer (CG164) [50]; 

and Suspected cancer recognition and referral (NG12) [44]. The LTHT guidelines for 

the treatment pathway of breast cancer is started with a referral from a GP or other 

source [51]. Breast cancer is diagnosed by physical exam, mammogram, ultrasound, 

MRI, blood chemistry studies, and biopsy of the affected area of the breast. Surgery 

is the main treatment for breast cancer, which may be followed by chemotherapy or 

radiation therapy, or both. There might also be adjuvant therapy and neoadjuvant 

therapy applied. Adjuvant therapy is drug used after and in addition to surgery, while 

neoadjuvant therapy is chemotherapy or other types of therapy before surgery. 

2.1.6.3 Endometrial cancer 

Endometrial cancer is a uterine cancer that begins in the inner uterine lining 

(endometrium) because of an abnormal growth of cells that then can spread to other 

parts of the body. This is the third most common cause of death in cancers (newly 

occurred in 320,000 women in 2012) which only affect women, after ovarian and 

cervical cancer. This mostly occurs in women between the ages of 60 and 70. The 

most frequent type of endometrial cancer (80%) is endometrioid carcinoma [52]. 

There is only one NICE guidance point specific for endometrial cancer, that is the 

laparoscopic hysterectomy for endometrial cancer, published in September 2010 [53]. 

This is a surgical procedure to remove the uterus. The more general guideline related 

to endometrial cancer is the NICE guideline NG12 for suspected cancer: recognition 

and referral [44]. The LTHT guidelines for the treatment pathway of endometrial 

cancer is started with a referral from a GP to post-menopausal bleed clinic [54]. It is 

triaged by the benign Gynaecology team. Some tests are done including ultrasound 
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and hysteroscopy. If cancer is confirmed, the most common treatment is surgery, with 

consideration for radiotherapy or chemotherapy for special cases. 

2.1.7 Cancer waiting times 

One important performance indicator for cancer treatment in the UK is the cancer 

waiting time. The NHS has set maximum waiting time standards for cancer treatment. 

The achievement of the national cancer waiting times is considered to be an indicator 

of the quality of cancer diagnosis, treatment, and care. There are some standards for 

waiting times for cancer [12], including: 

1. 14-day (two weeks) wait. This requires patients who had an urgent GP referral for 

suspected cancer to be first seen by a specialist within two weeks. This is targeted 

to support early diagnosis in order to spot cancer early and improve survival.  

2. 31-day wait. This requires patients to receive their first cancer treatment within 

31 days of a decision to treat. It is also required for a maximum 31-day wait for 

subsequent treatment where the treatment is surgery, or is a course of 

radiotherapy, or is an anti-cancer drug regimen. 

3. 62-day wait. This requires patients to wait for no more than two months (62 days) 

between the date of an urgent GP referral for suspected cancer or an NHS cancer 

screening service and the first definitive treatment for cancer. There are also 

requirements for a maximum 62-day wait for the first definitive treatment 

following a priority upgrade of the patient for all cancers. 

In the UK, cancer waiting times data are collected from NHS providers in monthly 

and quarterly reports. These reports are used to monitor cancer waiting times targets 

and plan service improvements. Summary of overall performance against all cancer 

waiting time standards in 2018-2019 ranged from 79.1% to 99.3%. The lowest 

performance (79.1%) was for the 62-day wait for first treatment following an urgent 

GP referral for all cancers. The highest performance (99.3%) was for the 31-day wait 

for second or subsequent treatment on anti-cancer drug treatments [55]. 

Understanding cancer waiting times standards is important in this study as a starting 

point to understand the important quality indicator of cancer treatment. Pathway 

analysis with a process mining approach is useful to examine factors contributing to 

the achievement of these standards. 
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2.2 Technical background 

The literature reviewed in this technical background section starts with an overview 

of workflow technology and process modelling. Workflow technology is the root of 

process mining, both aim to analyse the sequence of activities in a process and create 

a process model based on the sequence. It is then followed with a focus on process 

mining, process mining in healthcare, and process mining to analyse process change 

analysis. This section is closed with a presentation of the statistical approaches used 

in this study. 

2.2.1 Workflow technology and process modelling 

Workflow technology was formalised by the Workflow Management Coalition 

(WfMC) through the Workflow Reference Model [56]. The WfMC was founded in 

1993 and is a global organisation of adopters, developers, consultants, analysts, as 

well as university and research groups working in workflow and BPM. The 

formalisation of the Workflow Reference Model was followed by the Workflow 

Patterns initiative, started in 1999 [57], as a conceptual basis for workflow technology 

and process modelling.  

A workflow management system is a system that defines and manages processes 

through the software whose order of execution is driven by a computer representation 

of the workflow process logic [60, 62]. Historically, models of the workflow have 

spanned from the very informal to the very formal. Other pieces of literature use the 

term “business process” or “process” to refer to “workflow”. 

There are many approaches for representing processes, such as state transition 

diagrams [59], Unified Modelling Language (UML) [69, 70], Business Process 

Modelling Notations (BPMN) [62] and Petri nets [63]. All of these process model 

types are useful for different purposes, for example, to view the process from various 

angles, to structure discussions among stakeholders, to analyse performance, or to 

“play out” different scenarios and provide feedback. Each of these four process 

modelling notations (state transition diagram, UML, BPMN, and Petri nets) are 

described in more detail in Section 2.2.2. 
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2.2.2 Process modelling notations 

In process modelling, many notations can be used, including transition systems, UML 

activity diagrams, BPMNs, and Petri nets. Each of these notations is described in this 

section along with an example for a typical pathway to illustrate the similarity and 

differences. 

1) Transition system diagram 

The most basic process modelling notation used is a transition system or state 

transition diagram. It consists of states and transitions, which may be marked with 

labels chosen from a set [64]. The formal definition of a transition system is a set of 

states, activities, and transitions (S, A, T) [4]. A state is an identifier with a unique 

label. A transition connects two states and is labelled with the name of an activity. A 

transition from state p to state q is written as p à q. The states are represented by 

black circles, the actions by directed arcs, and the transitions connected two nodes by 

an arc. Multiple arcs can have the same label. 

Figure 2.1 shows an example of a transition system modelling six defined activities 

in a hospital administration process of a cohort of patients. The formal definition is as 

follows: S = {S1, S2, S3, S4, S5, S6, S7, S8}, Sstart = {S1}, Send = {S8}, A = {ED reg, 

admission, ED out, discharge, death, death|discharge} and T = {(S1, ED reg, S2), 

(S2, ED out, S3), (S2, ED out, S4), …, (S7, discharge, S8)}. 

 
Figure 2.1 A transition system example. Transitions represent activities in the process 

flowing from one state to the other. The modelled process flows from START to END. 

 
Any process model with executable semantics can be mapped into a transition system. 

Transition systems are simple but have limitations to express concurrency [65]. Given 

the concurrent nature of business processes, there are a variety of options for more 

expressive models. 
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2) Unified Modelling Language Activity Diagrams (UML ADs) 

UML AD is one of the UML diagram types, which consist of structural diagrams and 

behaviour diagrams. The UML structural diagrams represent the static view of a 

system model, which include a class diagram, component diagram, and deployment 

diagram. The UML behaviour diagrams represent the dynamic view of a system 

model, which include a sequence diagram, activity diagram, and state machine 

diagram [61]. All of these diagrams were created to standardise the design of a system. 

A UML AD is constructed from a number of shapes connected with arrows. The 

actions are represented by rounded rectangles, decisions represented by diamonds, the 

start (split) or end (join) of concurrent activities represented by bars, the start (initial 

state) of the workflow represented by a black circle, and the end represented by an 

encircled black circle. In process modelling, actions are also known as activities. 

There is also a possibility to represent multiple actors involved in a process through 

the swim lanes. A swim lane is a visual representation of a route through the activity 

diagram which represents the activities performed by a particular set of actor(s). 

Figure 2.2 shows a UML activity diagram of the same hospital administration process. 

This diagram consists of six actions (admission, ED reg, ED out, death | discharge, 

death, discharge) with one pair of concurrent activities, and three decisions.  

 
Figure 2.2 A UML activity diagram. Rounded rectangles represent the activities, diamonds 

represent the decisions. The modelled process flows from a black circle as the START to a 

encircled black circle as the END. 

 
One advantage is that this diagram follows the UML modelling language that is 

intended to provide a standard way to visualise the design of a system. It can be seen 

as a combination of a structured flowchart with a traditional data flow diagram. If a 

typical flowchart cannot express concurrency, the join and split symbols in the UML 

activity diagrams can resolve this. Therefore, it is easily understood by both analysts 

and stakeholders. This diagram can also be mapped into a state transition diagram or 

a flowchart [66]. 
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3) Business Process Modelling Notation (BPMN) 

BPMN was developed by the Business Process Management Initiative (BPMI) and is 

maintained by the Object Management Group (OMG). BPMI was established in 2020 

and is a non-profit organisation that promote the standardisation of common business 

processes. OMG was founded in 1989 and is a consortium that develops a 

heterogeneous distributed object standard. BPMI and UML were merged in 2005. 

BPMN was adopted as a standard by OMG in 2006. BPMN is a standard for capturing 

business processes in system development. [62]. 

An example of a process model in the BPMN notation is shown in Figure 2.3. This 

process model represents a hospital administration process of a cohort of patients. The 

obvious differences compared to the UML AD are in the notations that represent the 

start and end actions, decisions, split and join (and/ or). The use of gateways in BPMN 

makes it simpler than the use of diamonds and bars in the UML AD. 

 

Figure 2.3 A BPMN process model. Rounded rectangles represent the activities, gateways 

represent the decisions. 

 

Both BPMN and UML are managed by OMG, which make both diagrams very similar 

to each other. Both BPMN and UML AD were developed to be equally easy to 

understand by the analysts and the stakeholders [67]. BPMN emphasises the 

possibility to model different events and exceptions for routing a process. This makes 

BPMN is suitable to model clinical pathways in healthcare domain [68, 69].  

4) Petri Nets 

A Petri Net is a process modelling technique invented by Carl Adam Petri [63]. Since 

then, Petri Nets have been used to model and analyse many kinds of processes. Petri 

Nets are widely used for workflow modelling [75, 76] because of the clear and precise 

formal semantics, intuitive graphical nature, basic properties, and the availability of 

many analysis techniques.  
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An example of a Petri Net showing the hospital administration process of a cohort of 

patients is presented in Figure 2.4. It consists of places and transitions, connected by 

arcs from a place to a transition or vice versa. 

 
Figure 2.4 A Petri Net. Empty nodes are places and rounded rectangles are transitions that 

represent the transitions of activities in the event log. 

As described above, a large number of process modelling notations can be used as 

care pathway modelling techniques in healthcare research. Process models can be 

used for many purposes, such as: to structure discussions with stakeholders from 

several backgrounds; to support documentation; to verify and find errors in a process; 

to analyse performance; or to configure a system [4]. In this study, process models 

are used in the process discovery task of process mining based on the data recorded 

in the event log. 

2.2.3 Process mining 

The development of workflow technology was continued by the establishment of the 

Institute of Electrical and Electronics Engineers (IEEE) Task Force on Process 

Mining in 2009 [3]. This task force promotes the research, development, education 

and understanding of process mining. The term “process mining” was coined by van 

der Aalst to describe a specific type of workflow analysis and has been used widely 

since 2003. Process mining joins the ideas of process modelling and analysis on one 

side and data mining and machine learning on the other side.  

The idea of process mining is to discover, monitor, and improve real processes by 

extracting knowledge from event logs readily available in the information systems 

[72]. The processes being analysed are the real processes as they were recorded in the 

information systems, not the assumed processes. The goals of process mining are to 

detect previously unknown process structures, to analyse the occurrence of process 

pathways in the system, or to quantify the conformance of the process to guidelines 

[73]. Three general steps of process mining are process discovery, conformance 

checking, and enhancement. Each of those will be explored in this section. 
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Process mining can be done from several perspectives [74]: 

• The control-flow perspective focuses on the ordering of activities. 

• The organisational perspective focuses on how resources (e.g. people, systems, 

roles, and departments) are involved and related. 

• The case perspective focuses on the properties of cases. A case can be 

characterised by its path in the process, by the actors working on it, or by the 

values of the corresponding data elements. 

• The time perspective is concerned with the timing and frequency of events. 

The main focus of this research is the control-flow perspective to understand the 

patterns of activity sequences. However, an additional perspective is needed in this 

research, which is the time perspective, to analyse the process change over time. 

2.2.3.1 Process discovery 

Process discovery is the most common and challenging task in process mining 

projects to create a process model based on traces captured in the event log. Some 

algorithms have been proposed for this process discovery task. The models can be 

presented following notations mentioned in Section 2.2.1 such as transition systems, 

UML activity diagrams, BPMN, or Petri Nets. These models could then be used for 

conformance checking, enhancement, and further analysis. The main algorithms for 

process discovery are: 

1) Alpha (α) miner  
The α algorithm [75] is one of the first process discovery algorithms that can handle 

concurrency. This algorithm receives an input of an event log and returns an output 

of a Place/Transition net (P/T-net). The α algorithm checks the relationships of two 

activities, e.g. if a task is always followed by another task, it is likely that there is a 

causal relation between them. The algorithm marks the relationships as: follows (>), 

causality (à), parallel (||), or choice (#). Those relationships are formalised as follow. 

Let W be an event log over T, i.e., 𝑊	 ⊆ 𝑇∗. Let 𝑎, 𝑏	 ∈ 𝑇: 

1. Follows relation: 𝑎 >" 𝑏 iff there is a trace 𝜎 = 𝑡#	𝑡%𝑡&	…	𝑡'	and 𝑖	 ∈

{1, … , 𝑛 − 1} such that 𝜎 ∈ 𝑊 and 𝑡#	 = 𝑎 and 𝑡()#	 = 𝑏, 

2. Causality relation: 𝑎 →" 𝑏 iff 𝑎 >" 𝑏 and 𝑏 ≯" 𝑎, 

3. Parallel relation: 𝑎 ∥" 𝑏 iff 𝑎 >" 𝑏 and 𝑏 >" 𝑎, and 

4. Choice relation: 𝑎#"𝑏 iff 𝑎 ≯" 𝑏 and 𝑏 ≯".  
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These marked relationships are then used to create a process model. The resulting 

process model contains activities with ingoing arcs and outgoing arcs. 

The advantage of the alpha miner is its ability to work on a structured process. The 

limitation is that it is really depends on the relationship between two tasks. It means 

that this algorithm cannot correctly mine incomplete and/or noisy event logs and 

cannot detect the occurrence of duplicated tasks in a process. The alpha algorithm 

infers wrong relationships in incomplete and/or noisy event logs. Duplicate tasks will 

never be captured by the alpha algorithm because they will have the same label [76].   

2) Fuzzy miner 
A fuzzy miner [77] was proposed to overcome problems with unstructured processes. 

This algorithm uses the concept of significance and correlation metrics to simplify 

views of a process at a suitable level of abstraction. Significance measures the relative 

importance of activities (nodes) and/or their relations (edges). It can be defined based 

on the level of interest. Correlation measures how two events following one another 

are closely related. In the simplified model, the algorithm preserves highly significant 

activities and activity relations (behaviours), aggregates less significant but highly 

correlated behaviours, and abstracts other behaviours.  

The fuzzy miner works based on an approach to measure long-term relationships. For 

example, when the sequence A,B,C is found in an event log, the relations are not only 

Aà B and Bà C, but also the length-2-relationship Aà C. Subsequently, this 

algorithm applies three transformation methods to the process model, which are 

conflict resolution, edge filtering, and aggregation and abstraction. The conflict 

resolution solves the problem of conflicting nodes, which include length-2-loops (e.g. 

Aà Bà Aà B), exception (e.g. most of the time AàB but there are also insignificant 

Bà A), and concurrency (i.e. if A and B can be in any order). The edge filtering 

approach evaluates each edge Aà B by its utility, which is a weighted sum of its 

significance and correlation. This is formulated as 𝑢𝑡𝑖𝑙(𝐴, 𝐵) = 𝑢𝑟. 𝑠𝑖𝑔(𝐴, 𝐵) +

(1 − 𝑢𝑟). 𝑐𝑜𝑟(𝐴, 𝐵), where 𝑢𝑟 ∈ [0,1] is a configurable utility ratio. A larger value 

for ur will preserve more significant edges, while a smaller value will only include 

highly correlated edges. The aggregation and abstraction step preserves highly 

correlated groups of less-significant nodes as aggregated clusters and removing 

individual less-significant nodes, based on the node cut-off parameter. This approach 

results in an adjustable level of abstraction of process models. 
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3) Inductive miner 
An inductive miner (IM) [78] is a process discovery framework based on process trees 

as hierarchical representations of process models. A process tree is an abstract 

representation of a block-structure network. The IM works by recursively selecting 

the root operator that best fits the event log, dividing the activities in the log into 

disjoint sets, and splitting the log using those sets into sub-logs. IM can handle 

infrequent behaviour and deal with huge models and numbers of event logs. The 

limitation is that an IM often produces models with high fitness but low precision due 

to over-generalised behaviours within the log. 

There are some variants of Inductive Miner, including the Inductive Miner – 

infrequent (IMf), Inductive Miner - incompleteness (IMc), and Inductive Miner – life 

cycle (IMlc). The IMf proposed to add infrequent behaviour filter based on the Pareto 

principle (80-20 rule) to create an 80% model by filtering out the infrequent activities. 

Compared to IM, models discovered by IMf have a lower fitness, higher precision, 

equal generalisation and comparable simplicity [79]. The IMc proposed probabilistic 

behavioural relations to make IM less sensitive to incompleteness [80]. The IMlc 

handles life cyle data and distinguishes concurrency and interleaving.  

Inductive miner and its variants have also been implemented as a plugin in ProM (see 

Section 2.2.3.5). The output of the ‘Mine Petri net with inductive miner’ is a Petri net, 

while the output of the ‘Mine process tree with inductive miner’ is a process tree. A 

process tree is a hierarchical representation of a process model. The root is ‘seq’ 

represents sequence/ order of all of its children, with the leaves represent the activities 

connected by some operators. Those operators are xor (one of its children need to be 

executed), or (at least one of its children needs to be executed), and (all of its children 

need to be executed in any order), concurrent (all of its children need to be executed 

and may overlap in time), and loop (the first child must be executed and followed by 

a choice to terminate or execute the second child and the first child, and make the 

same choice again). 

For example, the event log from experiment 1 in case study 1 as discussed in Section 

4.3, can be processed using IM and resulted in a process tree or in a statechart as 

presented in Figure 2.5. 
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Figure 2.5 An example of a process tree. The root ‘seq’, with the leaves represent the 

activities connected by operator xor, or, and, or concurrent.  

The process tree can later be visualised as a process tree itself, as a BPMN, as a state 

chart, or as a Petri net, using the ‘Convert process tree to Petri net’ plugin. Inductive 

miner provides an expressive sematics to create process a model as a process tree, 

which is convertible into other notations. 

4) Heuristics miner 
A heuristics miner algorithm [81] focuses on calculating dependency and trace 

frequencies of events in building a process model. This algorithm consists of three 

steps: (1) Constructing a dependency graph based on the event log, (2) Establishing 

the input-output expressions based on the type of dependencies between activities, 

and (3) Discovering the long-distance dependency relations.  

In step 1, a dependency graph is created by analysing causal dependencies. The causal 

dependencies in a heuristics miner can be seen as an extension of the alpha algorithm. 

Let W be an event log over T, i.e., 𝑊	 ⊆ 𝑇∗. Let 𝑎, 𝑏	 ∈ 𝑇: 

1. Directly follows relation: 𝑎 >" 𝑏 iff there is a trace 𝜎 = 𝑡#	𝑡%𝑡&	…	𝑡'	and 𝑖	 ∈

{1, … , 𝑛 − 1} such that 𝜎 ∈ 𝑊 and 𝑡#	 = 𝑎 and 𝑡()#	 = 𝑏, 

2. Dependency relation: 𝑎 →" 𝑏 iff 𝑎 >" 𝑏 and 𝑏 ≯" 𝑎, 

3. Never follow relation: 𝑎#"𝑏 iff 𝑎 ≯" 𝑏 and 𝑏 ≯" 𝑎, and 

4. Concurrent relation: 𝑎 ∥" 𝑏 iff 𝑎 >" 𝑏 and 𝑏 >" 𝑎, 
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5. Short loop: 𝑎 ≫" 𝑏 iff there is a trace 𝜎 = 𝑡#	𝑡%𝑡&	…	𝑡'	and 𝑖	 ∈ {1, … , 𝑛 − 2} 

such that 𝜎 ∈ 𝑊 and 𝑡#	 = 𝑎 and 𝑡()#	 = and 𝑡()%	 = 𝑎, 

6. Long distance dependencies: 𝑎 >>>" 𝑏 iff there is a trace 𝜎 =

𝑡#	𝑡%𝑡&	…	𝑡'	and 𝑖 < 𝑗 and 𝑖, 𝑗	 ∈ {1, … , 𝑛} such that 𝜎 ∈ 𝑊 and 𝑡#	 = 𝑎 and 

𝑡*	 = 𝑏. 

The additional feature proposed in heuristics miner compared to alpha miner is the 

frequency-based metrics, to indicate the certainty of dependency relation between two 

activities A and B. In step 2, a causal matrix is then built to map the input-output 

expressions based on the type of dependencies between activities. In step 3, long 

distance relationships are considered to be included in the final process model. 

The heuristics miner is one of the algorithms with a good performance in process 

mining [82]. It can be used to discover the main behaviour recorded in an event log. 

This algorithm can handle noise and incomplete event logs. Heuristics miner has also 

been implemented as a plugin in ProM as described in Section 2.2.3.5.  

Heuristics miner is also the basic algorithm of the interactive Data-aware Heuristics 

Miner (iDHM) [83], which improved this algorithm with an interactive parameter 

setting and a built-in conformance checking. This plugin accepts an event log as the 

input and can produce many results in an interactive manner. Process models can be 

presented as a directly-follows graph, a dependency graph, a causal net, a data causal 

net, a data Petri net, and a Petri net. This plugin can export the resulting model for 

further analysis. 

2.2.3.2 Conformance checking 

Conformance checking is the second common task in process mining that focuses on 

checking if the event log conforms to the model and vice versa [4]. The model can be 

discovered through process mining or created based on the standard expected from 

the process. This checking can be used to detect, locate, and explain deviations, to 

quantify trace variants, and to measure performance of the model. When a case in the 

log does not conform to the model (or the other way around), it can be analysed 

whether the model does not reflect reality or if the case deviates from the model. 

There are four main criteria to evaluate the quality of the discovered model in process 

mining, which are fitness, precision, generalisation, and simplicity [79, 87]. These 

four metrics are computed on a scale from 0 to 1, where 1 is optimal. A good model 

has high values on all four criteria. Each of those will be described as follows. 
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1) Replay fitness 

A model with a good replay fitness allows the behaviour seen in the event log. This 

means that all traces in the log can be replayed by the model from beginning to end. 

In other words, a fitness of 1 means that the model can reproduce every trace in the 

log. There are various ways of defining fitness at the case level or at the event level. 

The alignment-based fitness metric [85] is the most commonly used in process mining 

that compares the sequences of activities in the event log aligned to the process model 

based on insertions and deletions. The final replay fitness score (Qrf) [86] is calculated 

as follows: 

𝑄+, =
𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑎𝑙𝑖𝑔𝑛𝑖𝑛𝑔	𝑚𝑜𝑑𝑒𝑙	𝑎𝑛𝑑	𝑒𝑣𝑒𝑛𝑡	𝑙𝑜𝑔

𝑚𝑖𝑛𝑖𝑚𝑎𝑙	𝑐𝑜𝑠𝑡	𝑡𝑜	𝑎𝑙𝑖𝑔𝑛	𝑒𝑣𝑒𝑛𝑡 log 𝑜𝑛	𝑚𝑜𝑑𝑒𝑙	𝑎𝑛𝑑	𝑣𝑖𝑐𝑒	𝑣𝑒𝑟𝑠𝑎 

where the denominator is the minimal costs when there is no match between the event 

log and process model. Conformance checking to check on trace fitness has also been 

implemented as a plugin in ProM in Section 2.2.3.5. 

2) Precision 

A model is precise if it does not allow for too much behaviour and it is not 

underfitting. An underfitting model allows for behaviours very different from what 

was seen in the log. A precision of 1 indicates that any trace produced by the model 

is contained in the log. 

The alignment-based precision metric [85] calculates based on an aligned event log 

and compares the number of different activities that occurred to the total number of 

activities possible in the model. The precision score (Qp) [85] is calculated as follows: 

𝑄- =	
𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑚𝑜𝑑𝑒𝑙 

where the context is related to the level of precision being measured, i.e. in the log 

level or the case level. Conformance checking to check on precision and 

generalisation has also been implemented as a plugin in ProM as described in Section 

2.2.3.5. 

3) Generalisation 

A model should generalise and not restrict behaviour to the traces seen in the event 

log [86]. A model that does not generalise is “overfitting”, which means that it 
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specifically fits only the examples in the event log. In a tree representation, consider 

the frequency of each node to be visited to produce the given log. The formula is as 

follows: 

𝑄. = 1 −
Σ'/012(√#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠)3#

#𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡𝑟𝑒𝑒  

The alignment-based generalisation is related to alignment-based fitness and 

alignment-based precision.  

4) Simplicity 

This metric is based on the fact that the best model is the simplest model that can 

explain the behaviour seen in the event log [86]. Simplicity can be measured through 

complexity, with the lower complexity representing the more simple model. The 

complexity of a model can be measured by the number of nodes and arcs in the graph. 

In a tree representation, this can be measured by comparing the size of the tree with 

the number of activities in the log. If each activity is represented exactly once in the 

tree, the simplicity is high. This is represented by the following formula. 

𝑄2 = 1 −
#𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 + #𝑚𝑖𝑠𝑠𝑖𝑛𝑔	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

#𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	𝑡𝑟𝑒𝑒 + #𝑒𝑣𝑒𝑛𝑡	𝑐𝑙𝑎𝑠𝑠𝑒𝑠	𝑖𝑛	𝑒𝑣𝑒𝑛𝑡	𝑙𝑜𝑔 

The effort to make the model simpler is mostly related to pre-processing the steps, for 

example, by filtering the activities included in the process discovery. 

2.2.3.3 Enhancement 

The third task in process mining is enhancement. The idea of enhancement is to adapt 

the target process model to better reflect the reality based on process dicovery and 

conformance checking tasks. This task repairs or extends the discovered process 

model using additional information from different perspectives of the process 

recorded in the event log.  

The first type is process model repair. A model might need to be repaired to comply 

with the real execution of the process. For example, if the model shows two sequential 

activities that in reality can happen in any order, the model may be corrected to reflect 

the reality. The second type is the extension, where additional perspectives are 

considered to improve the discovered process model, such as the data perspective, the 

resource perspective, and the performance perspective. 
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2.2.3.4 Process mining methodology 

This section presents several process mining methodologies from the literature. The 

first formal process mining methodology is the L* life-cycle model, published by the 

process mining community in the process mining manifesto in 2011 [3]. This model 

has been further improved as a Process Mining Project Methodology (PM2) [15], to 

support iterative analysis. Other methodologies are the Process Diagnostics Method 

(PDM) [87] to discover several perspectives of a business process and Business 

Process Analysis in Healthcare environments (BPA-H) [88] for the healthcare 

domain. Another methodology proposed in healthcare process mining is the Question-

Driven Methodology [89] that focuses on the importance of defining questions to be 

answered with process mining. Related work by Zhou et al. [90] proposed a 

framework where a business process is continuously optimised using process mining. 

The ClearPath method [91] extended the PM2 with a process simulation approach, 

which is beneficial in engaging with domain experts. 

All those methodologies can be related to the general data mining method, such as the 

Cross-Industry Standard Process for Data Mining (CRISP-DM) [92]. CRISP-DM is 

the most widely-used analytics model in data mining projects. This model breaks the 

process of data mining into six major phases: business understanding; data 

understanding; data preparation; modelling; evaluation; and deployment. An 

overview of the main process mining methodologies is as follow. 

1) L* Life-cycle model 

The L* life-cycle model [3] is the first model proposed for process mining projects. 

This model covers the five stages of a process mining project. The Planning and 

justification (Stage 0) is to understand the data and the domain. The process mining 

team needs to extract the event data, models and other inputs (Stage 1). Those inputs 

are needed to create a control-flow model and connect the event log (Stage 2). When 

the process is structured, the next step is to create integrated process model (Stage 3). 

The insights can be used for operational support (Stage 4).  

The L* life-cycle model is useful as a basic sequential methodology. This model 

provides a general description of each of its stages, making it more flexible in 

covering different techniques and methods, but the description is not technical enough 

to be implemented directly. Another limitation is that the L* life-cycle model does 

not explicitly encourage iterative analysis. 
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2) Process Mining Project Methodology 

The Process Mining Project Methodology (PM2) [15] consists of six stages. The 

Planning (Stage 1) aims to set up the project by identifying research questions, 

selecting business processes, and composing the project team. The Extraction (Stage 

2) contains three activities, which are: determining the scope, extracting event data, 

and transferring process knowledge. The Data Processing (Stage 3) is then done by 

creating views, aggregating events, enriching event logs, and filtering logs. The 

Mining and Analysis (Stage 4) includes process discovery, conformance checking, 

enhancement, and process analytics. The Evaluation (Stage 5) is to diagnose, verify 

and validate the analysis findings to improvement ideas based on the project goals. 

The results would be used in Process Improvement and Support stage (Stage 6) to 

modify the actual process execution. The main stages in PM2 are shown in Figure 2.6. 

 
Figure 2.6 The overview of PM2 methodology.  Reproduced from [15]. The key components 

are listed under them main diagram and the key stakeholders on the top right. 

 
This methodology was designed to support process mining projects aiming to improve 

process performance or compliance with rules and regulations. This methodology is 

suitable for both structured and unstructured processes. The PM2 methodology is 

highly iterative and emphasises the need for collaboration between process analysts 

and business experts. It also provides detailed guidance in every stage, which makes 

it more actionable in real projects. Both L* life-cycle model and the PM2 methodology 

are adopted in this study, with more specific approaches needed to adjust to the 

specific purpose of the experiments. 
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3) Question-driven methodology 

This methodology was proposed by Rojas et al. [89] as an approach for healthcare 

process mining. Healthcare process mining needs to provide answers to frequently-

posed questions about processes in the healthcare system. This methodology contains 

six stages and each one of those is described in the following paragraph. 

The data extraction (Stage 1) contains an identification of available data in the 

Hospital Information System (HIS), ensuring the availability, and verifying the data 

quality. This includes the identification of frequently-posed questions from the 

domain experts. The questions drive the steps in the next stages. The event log 

creation (Stage 2) identifies specific data needs, creates the event log, and includes 

characteristics of each activities. The filtering (Stage 3) covers basic, clinical, and 

question-driven filtering. The data analysis (Stage 4) includes the selection of data, 

statistical, and data mining analyses. The process mining (Stage 5) includes 

identifying the tool, data analysis and process mining cycle. The results evaluation 

(Stage 6) identifies domain experts, defines feedback instruments, and obtains 

feedback. 

4) ClearPath method 

This method was proposed by Johnson et al. [91] by extending the PM2 method with 

a process simulation approach to address issues of poor quality and missing data. This 

approach is also useful to support stakeholder engagement. The main stages follow 

those in PM2. The main difference is that clinical experts were engaged as 

interviewees within an iteration and/or in the Clinical Review Board at the end of each 

iteration. It is suggested that this be done through the use of simulations. In this study, 

the idea of engaging clinical experts within an iteration is done through discussions 

providing the visualisations resulted from process mining approaches. 

In this research, the L* life-cycle model and the PM2 method are referred to 

as two well-known base methodologies. The basic stages are following those of the 

L* life-cycle model. The iteration approach and detailed steps of the data processing 

were derived from the PM2. Other methods including the question-driven method and 

ClearPath method were used in the detailed steps within the stages. More details about 

the general methodology followed in this study are described in chapter 3. Some 

additional methods applied and described in specific experiments. 
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2.2.3.5 Process mining tools 

Process mining tools range from the commercial software to open-source, from 

implementation of one algorithm to a framework for many algorithms. Some 

important tools are presented in this section. 

1) DISCO 

DISCO is a commercial software for process mining produced by Fluxicon [93]. It is 

a visualisation tool with process models and metrics compatible with ProM. DISCO 

is focused on being a tool to create visual maps from process data, optimise the 

performance, control deviations, or explore variations. DISCO is based on the fuzzy 

miner [77] with several improvements in scalability and robustness. The fuzzy miner 

allows for simplification and abstraction based on the activities and paths. Further 

discussion on the fuzzy miner is presented in Section 2.2.3.1. 

2) ProM framework 

ProM is an open-source process mining framework used for academic purposes that 

combines different tools and algorithms on the same dataset and compares the mining 

results [94]. This framework accepts event log input in an XES, MXML, CSV, and a 

generic eXtensible Markup Language (XML) format, typically contained in an audit 

trail or transaction log of some complex information systems. Process discovery and 

conformance checking can be done using several plugins in ProM. The ProM 

framework allows for interaction between a large number of plugins. A plugin is a 

module that implements an algorithm, where the implementation agrees with the 

framework. Some plugins are provided for import, export, mining, analysis, and 

conversion purposes. Some process discovery plugins used in this study are described 

in more detail in Section 2.2.3.1. 

3) The bupaR packages in R  

bupaR is an open-source suite to handle and analyse business process data in R. It was 

developed by the Business Informatics research group at Hasselt University, Belgium. 

The bupaR packages provide R libraries to explore and visualise event data and 

monitoring processes [95]. The main package is bupaR, which provides the basic 

functionality for handling event data. The other supporting packages are included for 

exploratory and descriptive analysis, reading and writing eXtensible Event Stream 
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(XES) files, creating process visualisations, and creating process dashboards. More 

details about bupaR are given in Appendix F.2. 

This study uses ProM as the main tool for process mining because its plugins 

support many types of analysis in this study. DISCO and bupaR packages are used as 

supplemental tools. DISCO was used because of the simplicity of use, while bupaR 

is used because of the availability in R supports a huge range of functionalities. 

2.2.4 Process mining in healthcare 

Process mining has been useful to analyse healthcare processes for process discovery 

from event logs [101, 102], for conformance checking [98], and for mapping 

resources to processes [78, 104]. Previous studies found that process mining 

algorithms are not sufficiently efficient for unstructured processes [100]. Most mining 

algorithms have problems in analysing event data from clinical workflows, either due 

to difficulties in constructing a valid process model or in reflecting reality in the 

models [73]. Despite the flaws, the concept of process mining carries great potential 

in helping to analyse clinical workflows and their variations. This sets a strong 

background to improve currently available process mining techniques for clinical 

pathway analysis. 

A previous review was done by Eric Rojas et al. [101] on process mining in healthcare. 

They found that most process mining case studies in healthcare were in oncology. 

However, there were only four different oncology datasets at the time of the review, 

including the dataset in the Business Process Intelligence Challenge (BPIC) 2011. 

This finding suggests that there is a great opportunity to find other oncology datasets 

to be analysed using process mining with a wider range of clinical questions. This 

review suggested three main algorithms, in process mining for healthcare, which are 

fuzzy miner [77], heuristics miner [81], and trace clustering [102]. 

2.2.4.1 Process mining in oncology 

As part of this study, a systematic review of previous studies using process mining in 

oncology has been published [25]. This section summarised that paper.  

This systematic review was done in July 2016 to analyse the current literature based 

on the following query: 
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(“process mining” OR “data mining” OR “machine learning” OR 

“pathway analysis”) AND (“event log” OR “patient flow”) AND 

(“oncology” OR “cancer”) 

There were 758 papers retrieved in Pubmed, BMJ Open, Journal of Clinical 

Oncology, ACM DL, and Google Scholar. Three steps were undertaken to find the 

most related papers: title-based, abstract-based, and full-text filtering. In each step, 

the article was included if it was: (i) no duplication, (ii) a peer-review conference 

paper or journal article, and (iii) relevant to process mining in oncology. At the end 

of the filtering steps, in-depth ancestor search was performed  to include articles in 

the references of the selected papers. As a result of this, 37 papers were selected. Five 

themes emerged in the study: (1) process and data types; (2) research questions; (3) 

process mining perspectives, types and tools; (4) methodologies; (5) limitations and 

future work. A summary of the results is presented in the following paragraphs.  

(1) The most commonly used dataset was from the BPIC 2011 [103], which was used 

by 24 of the 37 papers. It is an anonymous dataset from the Netherlands which was 

made available for the challenge. The most common cancer type analysed was 

gynaecological cancer (24 papers), all using the BPIC dataset.  

(2) The most common research question was the applicability of process mining in 

the healthcare domain, specifically in oncology. This research question was broken 

down into several questions that included what happened, why did it happen, what 

will happen, and what is the best that can happen. 

(3) All 37 papers applied at least one of three perspectives (control-flow, performance, 

and organisational) and one of three types (discovery, conformance, and 

enhancement) of process mining [3]. All papers, except one [104], discussed the 

control-flow perspective by analysing the pattern of the activity sequences. Most of 

the papers (27 of the 37) discussed the performance perspective, but only 5 discussed 

the organisational perspective. All papers, except two [109, 110], studied discovery 

from a control-flow perspective. In terms of tools, 24 papers used the ProM toolkit 

(www.promtools.org) [94]. ProM toolkit is the de facto standard in the process mining 

research community and can be combined with other tools, such as R Studio and Java 

[106], Alchemy and BUSL [107]. Other papers proposed their own tool [113–120]. 

In case studies other than oncology, process mining was implemented using the 

DISCO commercial tool (www.fluxicon.com/disco), such as in [121–123].  
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(4) Only one paper [119] clearly mentioned the L* life-cycle model as the 

methodology used in the study. Eleven papers [84, 110, 112, 114, 125–132] proposed 

new algorithms and/or techniques. The methodology followed by the other ten papers 

was using available plugins and/or functionalities in existing tools to solve the 

problem in their case study.  

(5) The paper identified data, techniques, and team limitations. Data limitations were 

related to limited access to the data, data quality problems, attributes not available 

from the data being extracted, or the dataset was available in inappropriate levels of 

detail [108, 114, 115, 125–127, 134–136]. Technique limitations were related to the 

chosen functionalities. Team limitations were identified in two papers [136, 137]. 

This systematic review gave insight that process mining is applicable in oncology, 

and there is a great opportunity for this to be improved,especially with regard to the 

technical aspect. This research works on the control-flow and performance 

perspectives. In terms of process mining types, this research will explore discovery, 

conformance checking, and enhancement. The literature review suggested that the 

most widely-used package is the ProM toolkit, which will also be used in this research. 

2.2.4.2 Challenges for process mining in healthcare 

An obvious challenge for process mining in healthcare is the data quality. Process 

mining projects work with event logs, which are automatically generated by the 

information system within a hospital. Data quality issues in process mining as 

discussed in a book by van der Aalst [4] can be related to the quality of the event logs.  

In this study, the quality of data being used in process mining was assessed using 

Weiskopf and Weng framework [133] as a generic data quality assessment approach. 

This framework structures data quality assessment in five dimensions and seven 

methods. The five dimensions are completeness, correctness, concordance, 

plausibility, and currency. The seven methods are comparison with gold standards, 

data element agreement, data source agreement, distribution comparison, validity 

checks, log review, and element presence. 

A previous study by Homayounfar [134] found that the challenging characteristics of 

healthcare processes are that they are complex, multidisciplinary, ad hoc, and 

dynamic. The complexity is mainly caused by the heterogeneity of the diseases, the 

treatments of patients, and the clinical expert judgements. This is also related to the 
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multidisciplinary characteristic of healthcare processes. Treatment of a patient would 

involve hospital departments consisting of many different roles (doctors, nurses, etc.) 

which are highly specialised in their areas.  

The main challenge addressed in this study is related to the ad-hoc and dynamic nature 

of the healthcare processes. Ad hoc changes in healthcare processes are an inevitable 

result of the dynamic nature of the healthcare provision. Those changes can happen 

within different levels of the healthcare system, for example, a new clinical target 

from the government, an introduction of new procedures, or technological 

developments.  

This is related to Leavitt’s diamond [135], where the healthcare data can be seen as 

an output of a complex relation of four forces (structure, process, technology, people). 

The idea is that in any organisation, everything is connected and changing one thing 

can impact another. Those four forces are always changing and affecting each other. 

For example, a change in the technology used in the healthcare information system 

will change the way a task is done by the people in the hospital organisational 

structure. It is therefore not suitable to treat the healthcare process as a static process 

and analysing the changes over time becomes crucial. The four interconnected forces 

of Leavitt’s diamond are illustrated in Figure 2.7. 

 
Figure 2.7 Leavitt’s diamond [135]. It illustrates the four interconnected forces (structure, 

process, technology, people) in healthcare data.  

 
A common analysis of healthcare processes by treating dataset across a long duration 

of time as one static dataset would result in a high number of variants, which is 

difficult to interpret. The dynamic characteristic is especially interesting in this study, 

which further analyses the healthcare process changes over time. Those four forces 

are being analysed through discussions with both clinical- and technical experts. 
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2.2.5 Process mining to analyse process changes 

2.2.5.1 Concept drift 

In process analytics, the process might be changing while being analysed, due to 

periodic/seasonal changes, or due to changing conditions. This condition is known as 

concept drift [136]. Two types of concept drift detection approaches have been used, 

i.e. stream evolution monitoring [142, 143] and data distribution comparison in two 

time windows [144, 145]. 

Three challenges exist when dealing with concept drift. These are:  

1) Change point detection (Did the process change? If so, when?) 

2) Change localisation and characterisation (What has changed?) 

3) Change process discovery (How to unravel the process change?) 

There are four perspectives in business process analysis: control flow, data, resource, 

and time perspectives. One or more of these perspectives may change over time. The 

control flow perspective deals with the behavioural and structural changes in a process 

model. The data perspective refers to the changes in the requirement, usage, and 

generation of data in a process. The resource perspective deals with the changes in 

resources, their roles, and organisational structure, in relation to the process. The time 

perspective concerns the timing and frequency of events [141]. 

Four classes of drift are: sudden drift, gradual drift, recurring drift, and incremental 

drift. Sudden drift refers to a substitution of an existing process P1 with a new process 

P2 where P1 ceases to exist from the moment of substitution. Gradual drift refers to a 

scenario where a current process P1 is replaced with a new process P2 where both 

processes coexist for some time with P1 discontinued gradually. Recurring drift 

corresponds to a scenario where a set of processes P1 and PN  reappear after some time 

(substituted back and forth) that commonly caused by a seasonal influence. 

Incremental drift refers to a scenario where a substitution of process P1 with PN  is 

effected via smaller incremental changes [16]. 

Most approaches use a sliding window approach [146–148], where events in different 

windows are compared using statistical methods to detect significant changes. The 

data of process features are split into groups based on time windows. The options are 

to split it with overlapping or non-overlapping windows, with same-size or same-

duration windows, or with a more advanced technique of adaptive windowing. For 
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each iteration, two subsequent windows are compared statistically to investigate if 

there is a significant difference between the two windows. More details about the 

statistical approach are presented in Section 2.2.6. 

A new approach is proposed in this study to use process mining techniques to detect, 

localise and characterise process change over time. The main input of this approach 

is an event log. An event log L can be split into sub-logs of s traces each. An additional 

challenge is that an event log consists of traces that span in a time duration rather than 

data points. More details about the statistical approach are presented in Section 2.2.6.  

2.2.5.2 Change point detection 

In process change analysis, the first challenge is to detect concept drift in the processes 

and to identify the periods at which these changes have taken place. Change point 

detection involves two primary steps, which are capturing the characteristics of the 

traces, and identifying when the characteristics change. Some approaches to detect a 

change point include statistical testing [141], trace clustering [144], or abstract 

representation [145].  

A change point can be detected by statistical testing over feature vectors. Potential 

control-flow changes in the processes over time are detected through analysing the 

event log. Statistical hypothesis testing is used to evaluate and compare groups of 

data. Because there is no known a priori distribution of the feature values in an event 

log, non-parametric tests are suitable methods for change point detection. For each 

iteration, two subsequent sub-logs are compared, which means that two-sample tests 

are needed. Both univariate and multivariate hypothesis tests are considered, because 

the comparison can be made to one activity or a set of activities. The limitation is that 

it requires identification of the features and window sizes for change point detection 

[141].  

Another approach for change point detection is trace clustering. The idea of change 

point detection using trace clustering is to cluster the traces inside a time window 

based on the average distance between each pair of activities in the traces. A similarity 

matrix is used to record the similarity between cases. To detect potentially interesting 

change points, compute the change in the values of the similarity matrix over time. 

This method requires that window size be defined; it also cannot deal with loops 

[144].  
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Another approach is based on an abstract representation of a polyhedron. This 

approach sets prefixes in a random sample of traces in the event log and computes the 

fitness of subsequent prefixes of traces against the constructed polyhedron. A 

polyhedron can be described as the sets of solutions of a set of linear inequality 

constraints with rational (Q) coefficients. Let P be a polyhedron over Qn, then it can 

be represented as the solution to some system of m inequalities 𝑃 = {𝑋|𝐴𝑋 ≤ 𝐵} 

where 𝐴 ∈ 𝑄4×' and 𝐵 ∈ 𝑄4. The domain of polyhedra provides the operations 

required in abstract interpretation, including intersection and join. The limitation of 

this approach is that the entire detection process has to be executed from the start, 

which decreases the scalability of the approach [145]. 

2.2.5.3 Change localisation and characterisation 

When a process change has been detected, the next step is to localise the regions of 

change and to characterise the nature of the change. This is related to both the nature 

of the change (sudden, seasonal, gradual, or incremental) and the perspective of the 

change (control-flow, data, resource, or performance). The general approach [16] is 

to analyse each activity pair individually or as a subset. One important task in the 

analysis of process change is process comparison. Four papers proposed several 

aspects related to process comparison are presented in the following paragraphs. 

Delta analysis [146] provides a basis for process comparison by generating a 

similarity measure between the model and event logs. This method maps sequences 

of the traces, compares them to the reference model, and evolves the reference model 

based on the deviations in the log. This method is suitable for business process 

improvement in general, but allows free modelling of activity flow that result in an 

exponential space and time to check whether a log fits a process model.  

Another approach has been to explore three similarity metrics [147], including (i) 

node matching similarity that compares the labels and attributes of the process model 

elements, (ii) structural similarity that compares element labels as well as the topology 

of process models, and (iii) behavioural similarity that compares element labels as 

well as causal relations captured in the process model. The node matching similarity 

was based on pairwise comparisons of nodes or attributes, the structural similarity 

was based on the graph-edit distance between two graphs, and the behavioural 

similarity was based on the indirect relations between nodes or attributes. This 
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approach is simple as it is based on the well-known causality graph, but the 

experimental results showed that the time performance is not optimal.  

A cross-organisational comparison [118] using comparison points with process 

mining techniques has also been proposed. Using this approach, the models of a 

similar process in many different organisations can be compared based on pre-defined 

comparison points. This approach is limited as it relies on the domain experts to 

provide a set of pre-defined comparison points. 

In general, there are four categories of process comparison, which are: model-based 

comparison, conformance-based comparison, log-based comparison, and 

performance-based comparison. Model-based comparison is based on the control-

flow comparison, where the structural properties of the models are compared [148]. 

A limitation of this approach is that the differences in terms of frequency or any other 

process metrics are not detectable. Conformance-based comparison is based on the 

conformance perspective of process mining. Two event logs can be compared based 

on their conformance to one reference model. A limitation of this approach is that it 

relies on the validity of the reference model. Log-based comparison [149] detects 

relevant differences between processes based on the event logs, as implemented in the 

‘Process Comparator’ plugin in ProM [150]. This approach takes two event logs and 

visualises the differences using annotated transition systems. A limitation of this 

approach is that the event logs need to be completely representative of the process. 

Performance-based comparison compares process performance based on pre-defined 

comparison points such as waiting times, throughput, and Length of Stay (LoS) [118]. 

A limitation of this approach is that it relies on the availability and capability of 

domain experts to define the comparison points.  

2.2.5.4 Change process discovery 

The next step is to discover process change or to unravel the nature of the change. 

One important approach for change process discovery is through focus group 

discussions with domain experts [151] to discuss the findings and reveal the nature of 

change. This method involves a group of people participating in an interactive 

discussion focussing on specific issues. The nature of change can be related to one or 

more forces in the Leavitt’s diamond, i.e. the technology, people, structure, or task/ 

process. Process mining approaches can be used to support the discovery of process 

change based on the recorded data of the process in the event log. 
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In terms of process change analysis, this study focuses on an offline setting for process 

change analysis in healthcare. The change point detection is done using a windowing 

approach to find significant changes in the execution of the process over time. The 

statistical approach is used to test the hypothesis of this study. Process comparison is 

done based on all four categories, which are model-based, log-based, conformance-

based, and performance-based comparisons. The purpose of using all of those 

comparison categories is to get a thorough understanding of the process change. 

2.2.5.5 Process mining and user interface (UI) design 

In this research, process mining is used to test the effects of UI design on care 

processes within an EHR system. The goal of UI design is to create systems that are 

modelled based on the characteristics and tasks of the users. The systems are built to 

increase user productivity, satisfaction, and acceptance as well as decrease user errors, 

and user training time [152]. 

An EHR system is an information system processing and managing the patient records 

in a hospital. It covers organisational processes such as medical order entry and the 

medical treatment processes such as diagnostic procedures for a particular patient 

[153]. While organisational processes help to coordinate healthcare professionals and 

organisational units, treatment processes are linked to the patient. Those two types of 

processes should be covered within a hospital, either separately or in a centralised 

system, to support better care delivery to the patients. 

Healthcare providers are challenged by the increasing amount of information 

collected routinely in clinical settings. There is a greater need to utilise technologies 

to manage such information efficiently. Information technology is changing the way 

patient information is obtained and gathered and can impact the decision-making 

processes of clinicians. For example, if poor information is displayed, the delivery of 

care might be inefficient, which may include redundant ordering of tests or missing 

important information in the diagnosis of the patient. The key is to have the right 

information at the right time in the right place for the right clinicians. 

The previous literature summarised in this section builds an understanding of the 

challenges of this study. There are some techniques implemented in the literature, 

including process change analysis and concept drift, but they haven’t been 

implemented in the healthcare domain. As presented in Section 2.2.4.2, process 
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mining in healthcare is challenging, with one particular challenge on the change over 

time. In this research, process change analysis will focus on how EHR system change 

affects the actual process represented in the event logs of the EHR system. 

2.2.6 Statistical approach 

Statistical approaches have been used in process mining projects. Different statistical 

approaches can be used in descriptive and inferential ways to describe the event log 

[86, 106], to check conformance of the model to the log [153], or to compare between 

two logs [16]. These references show that the statistical approach can be applied in 

different stages of process mining projects to improve the confidence of the findings. 

In this study, descriptive statistics are used to describe the sample data being collected, 

while the inferential statistics of the sample data are used in the process comparison.  

The main statistical tests are required in the process comparison step of this study. 

Hypothesis testing was needed to evaluate and compare groups of data. The choice of 

a particular test is dependent on the nature of the data and the objectives of the 

experiment. The parametric test can be used when the data have a particular 

distribution, e.g., normal distribution, and non-parametric test if no particular 

distribution is known. There are two groups of data to be compared, so that the suitable 

test is a two-sample test. Tests dealing with scalar data elements are called univariate 

tests, while those dealing with vector data elements are multivariate tests. For 

example, the independent univariate two-sample t-tests are suitable where data are 

collected from two separate groups of parametric scalar data [154].  

There are some plugins in ProM that implement statistical tests, including Process 

Comparator and Concept Drift plugins. These two plugins were explored in the early 

stage of the study. Both of them are not sufficient to be used as the only technique in 

this study and need to be combined with other techniques. These two plugins are 

described in the following subsections. 

2.2.6.1 Process comparator: compare variants of a process 

The Process Comparator plugin [150] compares variants of a process, which can be 

derived from the same process in different locations, in different groups of people, or 

in different timeframes. This plugin requires two event logs or more to be compared. 

The differences visualised using transition systems annotated with measurements. 
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The statistical test used in this plugin is the two-tailed “Welch’s t-test”, also known 

as the “two-tailed t-test with different variances”. This test is suitable when the two 

sets of measurements come from independent populations, such as from two event 

logs from two groups of patients. The results are visualised in an annotated transition 

system, using visual properties (e.g. thickness and colour) of nodes and arcs. The 

graphic visualisation can be adjusted to represent trace frequency, elapsed time, 

sojourn time, remaining time, or duration. This plugin also allows us to filter out rare 

behaviour with the frequency filtering capability. The default alpha significance level 

(α) in this test is 5%. 

The differences will be presented in a range of colours based on the effect size oracle 

which, given two multisets of measurements, returns the size of the effect (i.e. how 

small or large is the difference) and the sign of the difference (+/-) within a certain 

scale. Cohen’s d is used to measure effect size, which measures the difference of 

sample means in terms of pooled standard deviation units. The ranges of d values can 

be categorised: d = ± 0.2 is considered as a small effect, d = ± 0.5 is considered as a 

medium effect and d = ± 0.8 is considered as a large effect. 

2.2.6.2 Concept drift: hypothesis test to analyse process changes 

The Concept Drift plugin [16] is available in ProM for hypothesis testing and is useful 

in analysing process changes. The analysis of the process change was done by splitting 

the event log into two sub-logs (before-log and after-log) with non-overlapping 

windows. The change point can be set to a specific date where there may be a specific 

change that has happened on a known date. In order to make this test more general, 

the date of the change point will be incrementally changed with a moving window 

approach. The test would then compare those two logs based on several comparison 

methods. Statistical hypothesis testing can then be used to evaluate the differences 

between the before- and after-logs. 

Based on general statistical approaches, two-sample univariate and multivariate tests 

are used. The two hypothesis tests for univariate two-sample are Kolmogorov-

Smirnov test (KS test) and the Mann-Whitney U test (MW test), and the test for 

multivariate data is the two-sample Hotelling T2 test. The hypothesis tested by the KS 

test is “Do the two independent samples (populations P1 and P2) represent two 

different cumulative frequency distributions?”, while the hypothesis tested by the 

MW test is “Do the two independent samples have different distributions with respect 
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to the rank-ordering of the values?”. The multivariate Hotelling T2 test is a 

generalisation of the t-test and evaluates the hypothesis “Do the two samples have the 

same mean pattern?”. All of these tests yield a significance probability assessing the 

validity of the hypothesis on the samples [141]. 

The suggested framework for analysing concept drifts in process mining consists of 

five steps: (1) feature extraction and selection, (2) generate populations, (3) compare 

populations, (4) interactive visualisation, and (5) analyse changes. The main input is 

an event log, and the main output is the detected change. 

2.3 Summary 

This chapter has reviewed the related literature that builds the background of this 

study, including the published systematic literature review [25] in 2016 that has been 

cited in 28 articles. The complexity of the healthcare domain makes it important to 

build an understanding of healthcare background. Cancer as a specific disease 

analysed in this study to understand the definition, characteristics, and the target of 

cancer treatment. The technical background in this study is in process mining and how 

this approach has been applied in healthcare and process change analysis.  

Based on the literature review on the healthcare background, it is evidenced that there 

are limited numbers of process mining projects in healthcare. Most process mining 

studies in healthcare have used artificial data provided in process mining challenges. 

On the other side, with the high complexity nature of healthcare data, process mining 

is a potential approach to analyse the processes in healthcare settings. One of the 

important challenges is that many aspects of healthcare practices might change over 

time. Based on the literature of the technical background, it is shown that many 

articles have been published to propose different techniques for process mining and 

detecting change from the data, but none of them have been specifically proposed to 

tackle the complexity of healthcare data. Based on this understanding of the current 

literature, the general methodology and data sources to be used in this study are 

presented and described in Chapter 3. 

  



 

Chapter 3  
Methodology 

Chapter 2 presented the healthcare and technical background that helped build an 

understanding of the literature for this study. Chapter 3 presents the general 

methodology, the details of each stage and the three datasets that have been used in 

this study. The general methodology has been built based on the background 

knowledge of the complex nature of healthcare data and the suitability of the available 

techniques in process mining and process change analysis in the literature. The 

general methodology has been adjusted to the specific characteristics of each case 

study. One additional methodology related to this chapter has been presented and 

published as a jointly-authored publication in the 2018 Process-Oriented Data Science 

for Healthcare entitled “The ClearPath method for care pathway process mining and 

simulation” [91].  

3.1 Main stages of the general methodology 

The main methodology used in this research is the Process Mining Project 

Methodology (PM2) [15] as an improvement of the original L* life-cycle model [3]. 

Table 3.1 shows the main stages in those two methods, along with the main stages of 

the general methodology in this study. 

Table 3.1 Main stage development 

Process mining method 
L* life-cycle (2011) PM2 (2015) This study 

0. Plan and justify 1. Planning 1. Planning and 
justification 

1. Extract 2. Extraction 2. Extraction, 
Transformation, and 
Loading (ETL) 

3. Data processing 

2. Create control-flow model 
and connect event log 

4. Mining and analysis 3. Mining and analysis 

3. Create integrated process 
model 

<< side stage during Stages 2 to 
4: interpret, redesign, adjust, 
intervene, support >> 

5. Evaluation 4. Evaluation 

4. Operational support 6. Process improvement 
and support 

<< not applicable >> 
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As presented in Table 3.1, the methodology in this study commenced with Stage 1 

(Planning and justification). Both the L* life-cycle model and the PM2 method started 

with the planning stage, to set the scene and justify the importance of the process 

mining project. In the L* life-cycle model, Stage 1 consists of understanding the 

available data and understanding of the domain, while the PM2 method suggested that 

Stage 1 consists of selecting the business process, identifying research questions, and 

composing the project team. In this study, Stage 1 followed the same stage as in the 

PM2 method but extended it with the question-driven method for identifying research 

questions [89]. It is also important to note that very little is mentioned about 

justification in the PM2 methodology. In this study, justification is important as this 

is necessary for academic research to justify the planning scientifically. The suitability 

of the data to be used in this study has also been extensively explored through a data 

quality assessment following the Weiskopf & Weng framework [133]. 

Stage 2 (ETL) is the next stage of this study. It combines the extraction and data 

processing stages in the PM2 method. It is renamed to make it consistent with the 

general data analysis approach, i.e. ETL. This was also done to reflect the specific 

conditions in the three datasets in this study. The full datasets were accessible for this 

study, and each analysis required an iteration of ETL as a subset of the datasets based 

on a specific cohort of patients. The L* life-cycle model did not explain the extraction 

steps in detail but suggested that the output of this stage are historical data, handmade 

models, objectives, and questions. The PM2 method specified three steps in the 

extraction steps: determining scope, extracting event data, and transferring process 

knowledge. The PM2 method explicitly added a data processing stage that consisted 

of creating views, aggregating events, enriching logs, and filtering logs. In this study, 

both extraction and data processing were combined and renamed as Stage 2 (ETL). 

The name was chosen to improve clarity and was based on the basic approach for 

general data analysis. The steps in Stage 2 follow the steps suggested in the extraction 

and data processing stages in the PM2 method. 

Stage 3 (Mining and analysis) was named after the same stage in the PM2 method and 

is the main part of this study. In the L* life-cycle model, process discovery and 

conformance checking are done in the ‘create control-flow model and connect event 

log’, while the enhancement is done in the ‘create integrated process model’. This 

study followed the PM2 method, where process mining and process analytics are 

combined into one stage. Process mining includes process discovery, conformance 
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checking, and enhancement. Process analytics were focused on process change 

analysis based on a concept drift analysis [16]. Process analytics in the Patient 

Pathway Manager (PPM) Cancer case study was done with and without a known 

change. When a change is known, the event log is split into before and after the 

change. It is followed by process comparison of those two sub-logs. When there is no 

prior information on a change, other methods adopted in the process analytics are the 

signal decomposition method [155] and the Statistical Process Control (SPC) method 

[156]. 

Stage 4 (Evaluation) was the final stage of this study. In the L* life-cycle model, the 

evaluation was included as additional steps to interpret, redesign, adjust, intervene, 

and support the analysis of the process of interest. In the PM2 method, the evaluation 

was done to diagnose, verify, and validate the results of the previous stages. In this 

study, Stage 4 was done to evaluate the findings in the statistical and clinical 

perspectives. The statistical evaluation done in this study was focused on the 

hypothesis testing to find statistically significant differences between the sub-logs 

over time. The clinical evaluation was done to ensure that the results are meaningful 

from a clinical perspective. 

The methods were followed by the Operational support in the L* life-cycle model 

and by the Process improvement and support in the PM2 method. Both stages 

suggested the implementation of the findings into the real-life process. This is not 

applicable in this study and is not included in the method. 

 

3.2 General methodology 

The general research methodology was developed as described in the previous 

section. It is based on the PM2 method and is extended for process change analysis. 

There are four main stages as mentioned in Section 3.1: (1) Planning and justification, 

(2) ETL, (3) Mining and analysis, and (4) Evaluation. The overview of the general 

methodology is presented in Figure 3.1. 
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Figure 3.1 Research methodology. The dashed blocks represent main stages, the boxes 

represent steps within a stage, connected by straight arrows. The blue texts explain the details 

of each step specific in this study. 

 

Each stage presented in Figure 3.1 is discussed in more detail in Sections 3.2.1–3.2.4. 

Process change analysis is an important part of this study and is described separately 

in Section 3.3. 
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3.2.1 Planning and justification 

This stage focused on identifying the business process, research questions, and project 

team as starting points for the project. This stage followed PM2 except on: (i) 

additional data quality assessment which followed the Weiskopf & Weng framework, 

(ii) research questions were identified which followed the question-based 

methodology, and (iii) project team involvement followed the ClearPath method. 

In this study, the business process was defined based on a cohort of cancer patients, 

which included colorectal cancer, breast cancer, and endometrial cancer patients. 

Those cohorts were chosen through careful discussion with clinical experts. A careful 

data quality assessment was also done to check if the dataset was suitable for process 

mining. The assessment was done following the Weiskopf & Weng framework. 

Datasets were assessed to check their completeness, correctness, concordance, 

plausibility, and currency to be analysed with process mining. 

Research questions were identified based on previous related studies and general 

research questions for process mining projects. The additional methodology referred 

to in this stage was question-driven methodology, which suggests that frequently 

posed questions are identified from the very beginning of the data analysis. Some 

frequently posed questions were adapted as the initial questions: 

1) What are the most followed paths and the exceptional paths? 

2) Are there differences in care paths followed by different patient groups? 

3) Do we comply with internal and external guidelines? 

4) How was the process changed over time? 

5) Can process mining be used to analyse the effect of User Interface (UI) 

changes to the care process?  

Project team identification was defined in the early stage of this study, which included 

computer scientists and clinical experts. The two clinical experts are: (1) Professor 

Geoff Hall, a senior oncologist and senior lecturer in Medical Oncology and Cancer 

Informatics, and (2) Dr Kieran Zucker, an honorary clinical oncology registrar and 

clinical research fellow at the University of Leeds. Based on the ClearPath method, 

an important focus on composing the project team was to engage clinical experts 

through a clinical review meeting at the end of every stage of the study.  
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3.2.2 Extraction, transformation, and loading 

This stage follows the PM2 method except that the full datasets were accessible so 

that a sequence of ETL was done for each experiment. The additional step is to 

initially re-build the database in a database management system or to access the 

database directly. 

The Extraction stage was done to extract event data and (whenever possible) 

reference models from the system, based on the initial planning and justification made 

in the previous stage. The extraction scope can be defined for each cohort of patients, 

based on the focus on the analysis in that cohort. This stage requires an understanding 

of the available data to determine the level of granularity, time period, and attributes 

needed for the analysis. 

For formalisation purpose in this study, the following definitions were used: 

Definition 1 (Event logs). An event log E is a set of events (c, a, t). An 

event happening in a timestamp t is described by a case identifier c and an 

activity label a. A trace T is a sequence of a subset of events happening to 

a case c ordered by a timestamp t, where TÎ E. 

Definition 2 (Process models). A process model M is a directed graph 

modelling the traces T in the event log E. The process model M draws 

activities a as nodes and the possible paths p between nodes as arcs from 

one node to another. Standard process mining algorithms can be used to 

discover process models with additional components identified, such as 

the frequency of nodes and arcs as the occurrence of a and p in E, 

respectively.   

The Transformation stage was based on the data processing stage in PM2, as follows:  

1) Creating views 

The views created in this study are based on the understanding of the data structure 

and the research questions. Generally, the view would be to analyse the patient 

journey during a cancer treatment pathway, where patient ID is the case ID, a 

particular action during the treatment is the activity, the clinician who did the activity 

is the resource, and the time when that activity was done by the resource is the 

timestamp. The event log is then a collection of events recorded in {case ID, activity, 

resources, timestamp} format. 
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2) Aggregating events 

The events might need to be aggregated to reduce complexity and improve the 

readability of the process model being discovered. This can be done to get process 

models with different levels of details, based on the details required in the research 

question. 

An example in this study is in the analysis of a chemotherapy pathway. In the analysis 

of chemotherapy cycles, fine-grained event names were used, which are Cycle 1, 

Cycle 2, Cycle 3, etc. When it was required to get a general pathway of patient 

journeys, the event name is Chemotherapy, which was then being analysed with other 

events such as Referral, Outpatient, and Surgery.  

3) Enriching logs 

Log enrichment was done by adding information to the event log. This can be done 

by computing additional data or by adding external data. An example in this study 

was by adding duration and year of diagnosis. The process duration for each patient 

was calculated as the number of days between the first activity and the last activity. 

The year of diagnosis was used to group the patients based on the year of diagnosis 

date for each patient.  

4) Filtering logs 

The last type of transformation is the filtering, which can be done based on the 

attribute, the variance, and/or the compliance. Attribute-based filtering was done by 

removing events or traces based on the values of a specific attribute, such as the event 

names, or the duration. For example, in one experiment of the PPM Cancer case 

study, to focus on the pathways from referral to diagnosis, all events that happened 

before referral and after diagnosis would be filtered out. Variance-based filtering was 

done to group similar traces to split the event log to discover simpler process models. 

For example, in this study, the log was partitioned based on the year of the diagnosis. 

Compliance-based filtering was done to remove traces or events that do not comply 

with a given rule or process model. For example, in this study, patients were not 

included if there was no referral recorded in the 120 days before a cancer diagnosis. 

The Loading stage was done by loading the extracted and transformed event data to 

the process mining tools, including DISCO [93], ProM [94], and bupaR [95]. In 

DISCO and ProM, extraction and transformation are straight forward and are easily 
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performed  through the UI. A form is provided in both tools to upload an event log in 

.csv or .xes file, then specify the case-id, event-id, resource, start- and end- time. In 

bupaR, an event log can be recorded as a data frame, for example, to create an event 

log from a table {PID, act, time}, as follow: 

event_log %>%  

  eventlog(case_id = “PID”, activity_id = “act”, timestamp = “time”) 

DISCO was used to gain a quick insight from an event log along with the statistical 

details of the event log for further analysis. The limitation is that DISCO only 

provided a process discovery using a fuzzy miner. ProM was used to explore other 

algorithms for process discovery, such as a heuristics miner [83] and an inductive 

miner [157]. The bupaR was used for better support in statistical analysis and 

discussion with clinical experts. 

3.2.3 Mining and analysis 

This stage includes the main tasks of process mining, which are: process discovery, 

conformance checking, and enhancement. Those were done as a process analytics 

approach to gain insights about the process from the data. Each of those main tasks is 

described in the following sections. 

3.2.3.1 Process discovery  

In this study, process discovery was performed using several available algorithms 

DISCO, ProM, or R language. The main algorithms used for process discovery are 

the fuzzy miner in DISCO, the interactive Data-aware Heuristics Miner (iDHM) 

plugin in ProM 6.8, and bupaR in the R language. The fuzzy miner in DISCO was 

mainly used in the MIMIC-III case study, because it was straight forward and reliable 

to use in common situations. The iDHM plugin in ProM was used as a comparable 

tool that provided better connectivity with other tasks in ProM through data filtering 

and conformance checking plugins. Especially in the PPM Cancer case study, bupaR 

was used because the R language was originally supported in the hospital-networked 

PC, while DISCO and ProM had limited support due to regular updates that needed 

to be done by IT support in the hospital. More details about fuzzy miner, heuristics 

miner, and bupaR have been presented in Section 2.2.3.1. The decision to use an 

algorithm and a tool was based on the data characteristics, the capability of the 
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algorithm to handle that type of data, and the suitability of the output of the algorithm 

for the next analysis in the study.  

In this study, the results of process discovery task were presented through process 

models, trace variants, dotted charts, and other visualisations from the event log. The 

main visualisation is a process model, which usually followed by other visualisations 

to support the specific analysis. Unless otherwise stated, the properties of each 

visualisation are described as follows. 

1) Process model 

A process model presents a sequence of events as defined in Definition 2 in Section 

3.2.2. In this study, a process model can be visualised as a directly-follows graph, a 

heuristics net, a state transition diagram or a Petri Net.  

Figure 3.2 shows an example of a process model from an experiment in Chapter 6. It 

begins with a START node and finishes with an END node. These properties of the 

process model resulted from three tools DISCO, bupaR, and ProM.  

 

Figure 3.2 An example of a process model (bupaR). A node represents an activity and an 

arc represents a path from one activity to another. Nodes and arcs are labelled with the number 

of patients having those activities and paths. Nodes and arcs are colour-coded with a darker 

colour representing a more frequent activity or path.  

 

The input is event log in .csv or .xes format. In ProM, an event log in .csv format can 

be transformed into .xes format using a plugin “Convert CSV to XES”. The event log 

can go through some transformation steps as described in Section 3.2.2. The tools 

would then create a process model. In DISCO, the process model can be seen in the 
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“Map” tab and is adjustable to filter based on the percentage of the most frequent 

activities and/or paths. In bupaR, the syntax to create a process model from an event 

log is as follow: 

event_log %>% process_map() 

There are also some other syntaxes to adjust the frequency value shown in the process 

model. For example, to show relative frequency and median (day), as follow: 

event_log %>% process_map(type=frequency(“relative”)) 

event_log %>% process_map(performance(median,“day”)) 

In ProM, an additional step is needed to select a process discovery plugin, for example 

by choosing a plugin “interactive Data-aware Heuristics Miner (iDHM)”. The 

resulting process model could then be adjusted to show some features needed for the 

next analysis. 

2) Trace variant diagram 

A trace variant diagram represents trace variants as the sequence of events. A trace 

variant diagram can be created in ProM, DISCO, or bupaR. Figure 3.3 shows an 

example of a trace variant diagram from an experiment in Chapter 6, showing the 

most frequent trace variants (top five variants showing >85%).  

 

Figure 3.3 An example of a trace variant (ProM). A colour-coded and named shape 

represents an event. Each line represents one trace variant. Additional information on the left 

show the number of traces of each trace variant and the percentage from the complete log. 

 

In ProM 6.8, an event log can be visualised in a dotted chart by Select visualisation 

>Explore Event Log (Trace Variants/ Searchable/ Sortable) (LogEnhancement). In 

DISCO, trace variants can be found in the Cases tab and are shown as a table or a 

flowchart-like graph. In bupaR, trace variants can be shown using following syntaxes: 



- 63 - 

  event_log %>% trace_explorer() 

  event_log %>% trace_explorer(coverage=0.8) 

The two syntaxes show all trace variants and the top 80% variants, respectively. 

 

3) Dotted chart 

A dotted chart shows traces over time. In this research, a dotted chart shows patient 

pathways over the treatment duration. Figure 3.4 shows an example of a dotted chart 

from an experiment in Chapter 5.  

 

Figure 3.4 An example of a dotted chart (ProM). An activity is presented as a colour-coded 

dot, including the START and END activities. The x-axis shows the time relative to the start 

of the trace and the y-axis shows patient, ordered from the shortest to the longest duration. 

    
A dotted chart can be created in ProM or bupaR. In both tools, an event log is needed 

as an input. In ProM 6.8, an event log can be visualised in a dotted chart by Select 

visualisation > Dotted Chart (LogProjection). The resulted dotted chart can be 

adjusted by setting the x-axis attribute, y-axis attribute, trace sorting, color attribute, 

shape attribute, attribute statistics, and connect/ disconnect events. In bupaR, a dotted 

chart can be created using the following syntax: 

  event_log %>% dotted_chart(x=”absolute”, y=”start”) 
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4) Process comparison diagram 

A process comparison diagram shows an annotated transition system resulting from 

the Process Comparator plugin in ProM, as presented in Section 2.2.6.1. Figure 3.5 

shows a process comparison diagram from an experiment in Chapter 6. 

 

Figure 3.5 An example of a process comparison diagram. A node represents an activity 

and an arc represents path between activities. Node and arc thickness represent trace 

frequency. Colours represent the percentage differences in activities and paths in the two 

event logs. Blue means the percentage of trace frequency in the first group is higher than in 

the second group and red means the reverse. 

 
Figure 3.5 shows a process comparison diagram. In this study, the trace frequency is 

chosen. The alpha significance level was set as the default 5%. In ProM 6.8, this 

diagram can be built from at least two event logs using the Process Comparator 

plugin. The plugin asks to set Group A and Group B, then shows the graph. There are 

two settings that can be adjusted, which are transition system settings (graph 

properties and filter) and comparison settings (process metrics and alpha significance 

level). 
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3.2.3.2 Conformance checking  

Conformance checking was done to check if the resulting model could represent the 

reality captured in the event log. Conformance checking can also be seen as an attempt 

to measure the quality of the process model resulted from the process discovery. The 

conformance checking was performed using some plugins in ProM, including: 

1) Replay Log on Petri Net for Conformance Analysis 

This plugin accepts a Petri net and an event log. It provides conformance values based 

on cost-based fitness analysis [158, 159]. This plugin measures fitness that represents 

to what extent the process model captures the observed behaviour. This is achieved  

by identifying skipped and inserted activities. Skipped activities are activities that 

should be performed based on the model, but do not happen in the log. On the other 

hand, inserted activities are activities that occur in the log, but should not happen 

based on the model. Both skipped and inserted activities affect fitness value. The 

output is a Petri net annotated with replay results. For example, in Figure 3.6, Petri 

net can be presented with a legend and its global statistics. 

 

Figure 3.6 An example of a Petri net with a legend and its global statistics. The Petri net 

is annotated with replay results. The left window shows the log-model alignments, while the 

right window shows the list of deviations.  
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In Figure 3.7, the log-model alignment maps each case with the process model to 

show deviations. Some statistics are also presented, which include the statistics from 

reliable alignments and statistics including unreliable alignments. Other options of the 

visualising the results are ‘time between transition analysis’, ‘trace alignment of 

alignments’, ‘visualise p-alignments as graphs, and ‘visualise p-traces as graphs’. 

 

Figure 3.7 An example of a replay result presented as the alignment to the log. The left 

window presents the log-model alignments. The list of deviations is in the legend in the right 

window. 

   
The ‘Replay a log on Petri Net for Conformance Analysis’ plugin can be used for 

checking conformance of a log to a process model in Petri net notation. The results 

can be presented in many ways, including the annotations in the Petri net along with 

detail information for each activity, each transition, and for the complete model. The 

information include calculation time, trace fitness, move-model and move-log fitness. 

2) Measure Precision/Generalisation 

This plugin provides precision and generalisation values as mentioned in [85]. This 

plugin measures the precision of a process model given an event log by first aligning 

the traces in the log to the model. In this study, the “Replay a log on Petri Net for 

Conformance Analysis” plugin was used by providing a Petri net, the Petri net replay 

result from point (1), and the event log. The results are presented simply as the 

precision and generalisation values. 
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For example, the event log from experiment 1 in case study 1 as discussed in Section 

4.2 can be used as an input along with the Petri net resulted from the iDHM plugin as 

shown in Figure 3.6 and the Petri net replay results as presented in Figure 3.7. The 

results are a precision value of 0.86345 and a generalisation value of 0.99586. 

The enhancement involved additional data, time, and performance 

perspectives to analyse the process model. An example of additional data perspective 

involved adding details from other tables in the database. Another example in the 

additional time perspective was the calculated time duration. In the performance 

perspective, the additional data was gathered from discussions with clinical experts to 

define several ways to describe performance of patient treatment. 

The process analytics focused on process change analysis, following the approaches 

in concept drift analysis. More details about the process change analysis done in this 

research are presented in Section 3.3. 

3.2.4 Evaluation 

The objective of the evaluation stage was to ensure that the findings could answer all 

the original research questions and were meaningful for the domain experts. 

Evaluation of this study includes both statistical evaluation and clinical evaluation. 

The evaluation was effected  through a series of focus group discussions in formal 

meetings. The statistical and clinical experts were invited to a discussion at the end of 

an iteration to verify and validate the results. Group discussions were also conducted 

during all the stages of the study to evaluate the approaches taken in each step and to 

gather inputs from the experts to enrich the next steps. 

The statistical evaluation was performed to evaluate the results of the mining and 

analysis stage. Process models discovered in the process mining stage were evaluated 

using the conformance values of trace fitness, precision, and generalisation metrics 

using the plugins in ProM 6.8.  Process change analysis was evaluated using t-test and 

hypothesis testing approaches. When a change point was detected, statistical 

evaluation was performed to test if the detected change was statistically significant. 

A complete statistical evaluation was done in the PPM Cancer experiments. It was 

performed based on the insights from the MIMIC-III and the PPM Chemotherapy 

experiments. Ciaran McInerney, Ph.D., a statistical analyst helped in the statistical 

evaluation in the PPM Cancer experiments. 
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The clinical evaluation was conducted through discussions with clinical experts. This 

was done in the PPM Chemotherapy and PPM Cancer analyses. Whenever required, 

other experts were also consulted. In the PPM Chemotherapy case study, there were 

also discussions with the previous research team, including Karl Baker and Elaine 

Dunwoodie. In the PPM Cancer case study, there were also discussions with the PPM 

training team, the PPM development team, and the Leeds Care Record (LCR) research 

team. The PPM development team members with whom discussions were held in this 

study included Colin Johnston, Nigel Stanworth (PPM Release Manager), and Jonny 

Smith. Discussions with the LCR research team was effected through Julia Millman, 

the program manager of LCR. The final evaluation was done by Professor Geoff Hall, 

a senior lecturer in Medical Oncology and Chief Clinical Information Officer at the 

LTHT. 

3.3 Process change analysis 

Process change analysis followed the approaches in concept drift analysis [16]. This 

step analysed the treatment processes and how they had changed over time. There are 

three main challenges in dealing with concept drift analysis. These are: change point 

detection, change localisation and characterisation, and change process discovery. 

The approaches taken in this study to address those challenges are as follows: 

3.3.1 Change point detection 

The first challenge was to detect a point in time where the process had been changed. 

A straightforward method to do this was to split the data based on a specific event as 

a reference. This was done in the analysis of the PPM Cancer data by partitioning the 

event log based on a pre-defined duration/ window size. In this study, the partitioning 

was done based on the diagnosis year, as illustrated in Figure 3.8. 

  
Figure 3.8 Illustration of log partitioning approach. Each year partition consists of traces 

of patients diagnosed in that particular year. For each iteration, two subsequent year partitions 

are being compared. 
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In addition to Definition 1 and 2 in Section 3.2.2, the following definition is applied: 

Definition 3 (Log partitions). A partition P is a subset of an event log E 

based on partitioning criteria. The partitioning is done such that a trace is 

grouped into a partition with no duplication in other partitions. For this 

study, the partitioning was done based on the year of the timestamp t of 

the diagnosis. The event log was therefore split into partitions based on 

the year of diagnosis of each patient. There are clearly many partitioning 

options that could be adopted. 

As presented in Section 2.2.5.2, some approaches have been proposed to detect 

change points. This study used a statistical testing approach to find significant 

differences between the processes. This approach is flexible enough to test differences 

based on various features describing processes. 

In this study, change detection was performed in the PPM Chemotherapy and PPM 

Cancer analyses. Change detection was not possible in the MIMIC-III dataset due to 

the date shifting approach during the data creation by the MIMIC-III team. The 

documentation of the MIMIC-III data mentioned that the hospital information system 

from which the MIMIC-III data were collected had been changed and this was used 

as a starting point to analyse changes in the MIMIC-III database.  

In the PPM Chemotherapy and PPM Cancer analyses, the PPM Electronic Health 

Record (EHR) from which the data was collected is continually growing. The 

development team works to make many changes in many aspects of the PPM EHR 

based on the changing needs of the clinical teams. In the PPM Chemotherapy analysis, 

change detection was done by comparing traces in different years. In the PPM Cancer 

analysis, change detection was done to a GP Tab change as a known change and by 

analysing monthly records to detect the unknown changes. Two different approaches 

in the PPM Cancer case study were the multi-level approach and a combination 

approach of signal decomposition and Statistical Process Change (SPC) chart. Each 

of them will be described in the following sections. 

3.3.1.1 A multi-level approach for identifying process change 

In this approach, the process comparison was done using several metrics at three 

different levels: process model level, trace level, and activity level. For the model-

level comparison, a general process model was built using interactive Data-Aware 
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Heuristics Miner (iDHM) in ProM from the complete event log. iDHM was chosen 

because this plugin supported interactive adjustment to the level of details needed in 

the analysis. The model-level behaviour was described by the conformance values in 

the replay fitness, precision, and generalisation of each sub-log to the general model. 

The trace-level behaviour was described by durations and the proportion of trace 

variants in the sub-logs. The activity-level behaviour was described by activity 

frequency and its percentage in the sub-logs.  

The metrics for those three levels of process comparison are presented in Table 3.2. 

This approach was used in a case study of endometrial cancer pathways from GP 

referral to the diagnosis of cancer, as presented in experiment 6 of the PPM Cancer 

case study in Section 6.3. 

Table 3.2 Metrics for multi-level process comparison 

Level Metrics Description 
Model Replay fitness The ability of the model to accurately reproduce the traces 

recorded in the log. 
Precision The proportion of the behaviour allowed by the model 

which is not seen in the event log. 
Generalisation The ability of the model to reproduce the future behaviour 

of the process. 
Trace Duration The number of days of the pathway from Referral to 

Diagnosis. 
Variant 
proportion 

The proportion of variants in the sub-log that were one of 
the most frequent variants in the complete log. 

Activity Frequency The number of patients having a specific event within one 
year. 

Percentage The percentage of patients having a specific event out of all 
patients within a year. 

3.3.1.2 Signal decomposition and Statistical Process Control (SPC) chart for 

identifying process change 

This approach identifies process change based on the pattern of monthly records in 

the EHR system. The hypothesis is that it is possible to detect change points based on 

the monthly records over time. A plot was created based on the observed number of 

monthly records per activity. The observed plots were decomposed using a signal 

decomposition technique [160]. The underlying assumption of this approach is that 

the observed plot can be decomposed to find the trend, seasonal, and remainder 

patterns over time, such that: 𝑦! = 𝑇! +	𝑆! + 𝑅! ,	where 𝑦6 is the observed data, 𝑇6	is 

the trend component,	𝑆6 is the seasonal component, and 𝑅6 is the remainder/ random 
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component, all at period t. The remainder plot was then being analysed using the 

Statistical Process Control (SPC) chart [161] to get the change points with statistically 

significant different values from the previous period. 

Two main functions in R were used in this approach: (1) the decompose() function in 

the fpp2 package for signal decomposition, and (2) the qic() function in the qicharts2 

package for SPC chart. The decompose() function accepted a time series object of the 

observed data. For example, the monthly frequency of an activity can be defined and 

plotted as follow. 

# define and plot time series data 

ts_data = ts(data$monthly, start=c(year_start,month_start), 

end=c(year_end,month_end), frequency=12) 

The signal decomposition processed the monthly records of an activity to separate the 

trend, seasonal, and remainder patterns in the observed data. This study uses the 

classical additive decomposition to separate trend and seasonal patterns from the 

remaining/random data. 

The trend pattern was based on the moving average smoothing, i.e. m-MA, meaning 

a moving average of order m. An m-MA can be written as  𝑇)! =
"
#
∑ 𝑦!$%&
%'(& , where 

m = 2k+1. The estimate of the trend-cycle at time t is based on the average values of 

the time series within k period of t. The idea is that the observations during the nearby 

periods are likely to be close in value. The average is therefore eliminating some of 

the randomness in the data. A trend can be a long-term increase or decrease in the 

data, or a ‘changing direction’ when it goes from an increasing trend to a decreasing 

trend or vice versa. In this study, the trend pattern was based on the 12-MA smoothing, 

meaning that an average was counted from 6 months before and 6 months after a 

specific month. The consequence of this was that no value was calculated in the first 

6 months and the last 6 months of the duration of the study. Other options to use 3-

MA, 4-MA, and 6-MA were also tested but did  not improve the results. This is why 

the 12-MA was chosen, which also implies the yearly average of  monthly frequency. 

The seasonal pattern is a fixed and known frequency. In this study, seasonal pattern 

is the monthly frequency. It was chosen to make sure that enough data are available 

in each season (month) while the individual data is not de-identified. Other options to 

analyse seasonal pattern in the daily, weekly, or quarterly frequency are also possible. 
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The observed data were de-trended by subtracting the trend component from the 

observed data. The average was then calculated from the same period over the years, 

such that  𝑆+! = 	𝑦! −	𝑇)!. For example, the seasonal component for January is the 

average of all de-trended January values over the years.  

The random/ remainder component was calculated by subtracting the estimated 

seasonal and trend-cycle components: 𝑅)! = 	𝑦! −	𝑇)! −	𝑆+! .	It represents the observed 

signal after subtracted by the trend and seasonal patterns. For example, signal 

decomposition of a monthly frequency of an activity is as follows: 

#signal decomposition 

decompose_data = decompose(ts_data, "additive") 

plot(decompose_data) 

An example result is shown in Figure 3.9. 

 

Figure 3.9 An example of a signal decomposition result. It shows the observed pattern, the 

trend pattern, the seasonal pattern, and the random/ remainder pattern. The x-axis is time and 

the y-axis is variance over the means. 

 

The random/ remainder component was further analysed using the Statistical Process 

Control (SPC) chart. SPC is commonly used for understanding process variation over 

time [156]. The remainder pattern was plotted to see the variability of the monthly 

records. The signals were compared to the upper and lower control lines. Change 
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points were detected where the signal varied outside the control lines. This approach 

was used in an experiment on cancer pathways, as presented in experiment 8 of the 

PPM Cancer case study in Section 6.5. 

In this study, the SPC chart was built using qicharts2 library in R. The main function 

used in this study is qic() function, which creates run charts from time series data. A 

run chart is a point-and-line graph showing measures or count over time. Three 

horizontal lines are presented as the control lines. A centre line (CL) expressing the 

median, while upper control limit (UCL) and lower control limit (LCL) represent the 

upper and lower boundaries of variations in the data. The control limits are placed at 

± 3 standard deviations from the centre line. Variation of values between LCL and 

UCL is considered as common cause variation that is present in any process, which is 

also called random variation or noise. Values outside the the control lines are 

considered as non-random variation or signal, which is caused by phenomena that are 

not normally present in the system. For example, the SPC chart of the remainder 

pattern of a monthly frequency of an activity can be resulted from a code as follow: 
#input:  

data_df <- ts_reshape(dec_data$random, type=”long”) 

qic(value, data=data_df, chart="i", ylab='Count', xlab='Month') 

This syntax resulted in an SPC chart as presented in Figure 3.10. 

 
Figure 3.10 An example of the SPC chart. It shows the variability over the means of the 

random/ remainder pattern. The x-axis shows month and the y-axis is count. Red dots 

represents the points where there were significant changes in the variability over means. 

3.3.2 Change localisation and characterisation 

After a change point was detected, the next task was to localise and characterise the 

change. This task involved both the identification of change perspective (for example: 

control-flow, data, resource, sudden, gradual, recurrent, incremental) and the exact 

change itself. Different types of data and process change require different techniques 



- 74 - 

in change localisation and characterisation. In this study, the method for change 

localisation and characterisation was built and improved in the three datasets. 

Change localisation and characterisation stage in the MIMIC-III data consisted of 

model-based and log-based comparisons. The model-based comparison was done 

using the DifferenceGraph plugin in ProM. This plugin compares two process models 

and visualises the differences between those two models. The log-based comparison 

was done using the Process Comparator plugin in ProM. This plugin compares trace 

frequencies in two event logs and visualises the significant differences. This stage in 

the PPM Chemotherapy data was done following the conformance-based change 

detection. Sub-logs created based on the diagnosis years were then being compared 

to each other on their trace fitness, precision, and generalisation. This stage in the 

PPM Cancer data was done based on the metrics for multi-level process comparison, 

as presented in Table 3.2. For change point detection using the multi-level approach, 

this stage was required to be done for each metric in the three different levels. A 

specific challenge in this task was to identify a significant change in the process based 

on those metrics in the three different levels of process comparison. 

3.3.3 Change process discovery 

Having now identified, localised, and characterised the changes, the next step is to 

relate the findings with the discovery of the change process to unravel the evolution 

of the process. This step can be done by analysing different perspectives of the 

changing process, such as using the performance metrics. The most important method 

in this step is the frequent focus group discussions with the domain experts. 

The detected change points were discussed with the clinical experts. The discussions 

focused on the possible nature of the changes. The changes can be caused by several 

reasons, such as a change in the organisational structure in the hospital, a change in 

the guideline for cancer treatment, a change in the technology used within the hospital 

information system, or a change in the people who did the treatment process. 

In this study, the change process discovery was done in the PPM Chemotherapy and 

PPM Cancer case studies. The change process discovery was conducted through 

discussions with clinical experts and the development team. Change process 

discovery was not possible in the MIMIC-III analysis because there is no direct access 

to clinical experts and because of the date shifting approach for anonymisation.  
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3.4 Case studies 

Three case studies were built from the three datasets in this study: the MIMIC-III, the 

PPM Chemotherapy, and the PPM Cancer datasets. Each one of these is introduced 

in this section and explored in more detail in Chapters 4 to 6. 

3.4.1 Case study 1: Experiments using the MIMIC-III dataset 

The MIMIC-III dataset is a large, single-centred database comprising information 

relating to patients admitted to the Intensive Care Units (ICUs) in the Beth Israel 

Deaconess Medical Center (BIDMC) [25, 26, 168]. The MIMIC-III database was 

developed and has been maintained by the Laboratory of Computational Physiology 

at Massachusetts Institute of Technology (MIT) since 2003 [25, 26]. This database 

has been de-identified by removal of all protected health information. Public access 

to this data was made available through the National Institutes of Health (NIH).  

The data covers 53,423 distinct hospital admissions for 38,597 adult patients (aged 16 

years or above) admitted to the ICUs between 2001 and 2012. It contains data such as 

medication, laboratory measurements, charted observations during a patient’s stay in 

the intensive care unit, and de-identified notes of the patient’s stay. One important 

challenge was to select suitable tables for process mining. This challenge and how it 

was addressed in this study are described in Chapter 4. There are 16 out of 26 tables 

in the MIMIC-III database containing timestamped events. Those tables were used to 

discover process models based on the specific cohort of interest. The other 10 tables 

were used as reference tables during the analysis, such as PATIENT table to support 

analysis of the selected patients in a cohort. 

Two different systems were in place over the data collection period. The Philips 

CareVue Clinical Information System (CV) was used between 2001–2008 and the 

iMDsoft MetaVision ICU (MV) was used between 2008–2012. This condition leads 

to the opportunity to compare the process models of those two systems. The MIMIC-

III team provided the database combining data from both systems. In this study, 

clinical data from two systems were separated to be compared one another and 

analysed further with process mining approach. One limitation of using this dataset is 

that the deidentification process obscured the real dates. Another limitation is that 

there was no direct access to the clinical experts of this hospital, so that it was not 

possible to discuss the findings with the clinical experts. Despite the limitations, the 
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MIMIC-III dataset was useful to build initial method for process change analysis 

using process mining in this study, because (1) the MIMIC-III dataset is publicly 

accessible, therefore supports reproducibility of related research using the same 

dataset, and (2) there was a known system change to replace the CV system with the 

MV system, so that change characterisation and localisation can be done. 

3.4.2 Case study 2: Experiment using the PPM Chemotherapy dataset 

The Patient Pathway Manager (PPM) Chemotherapy dataset is the clinical data of 

cancer patients receiving chemotherapy treatment in the Leeds Cancer Centre during 

the period 1996–2015. This dataset was used in two previous studies in the research 

group entitled (1) “Using Routine Clinical Dataset to Develop Risk Algorithms in 

Oncology” (Ref: 13/NS/0128) [34] and (2) “Profiling Neutrophil Counts in Patients 

with Cancer During Cycle One of Chemotherapy” (IRAS ID 207804). The PPM 

Chemotherapy dataset consists of the clinical data of 31,511 patients in 13 tables. It 

was de-identified for the purpose of the previous study. There is no timestamp 

identified, but there is the possibility to obtain the sequence based on Age (in the 

number of days) and Years, which enable a historical pathway to be extracted for 

every patient. Those tables are related with a Patient ID (PID) which identify patient 

IDs. Later during this study, the dataset was backed up in a secured external driver for 

easier and safer access by restricted researchers. 

The data came through automated extraction processes from patient hospital records 

and financial data held at the Leeds Teaching Hospitals NHS Trust (LTHT) to support 

patient care. Data analysts within LTHT provided non-identifiable data from records 

of all cancer patients in the PPM EHR system used by the hospital. The non-

identifiable data had been encrypted and transferred to a secure environment – the 

University of Leeds Integrated Research Campus (UoL IRC). There was no known 

change identified at the beginning of the experiment of this case study.  

In this study, the PPM Chemotherapy data was used to analyse six cycles of adjuvant 

chemotherapy in patients diagnosed with breast cancer between 2004 and 2013. 

Process mining was used to highlight variations from standard pathways of 

chemotherapy including the evidence of incomplete treatment and adverse events. 

This has also shown changes in the pathway over time.  
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The limitation of using these data in this study is related to the anonymisation 

undertaken during data collection, where all dates were replaced with the patient age 

as a number of days. This anonymisation approach makes it impossible to include the 

fine-grained level of dates. For example, it was not possible to analyse busy days in 

the hospital, because there was no real date included in the anonymised dataset. 

Despite this limitation, the number of days recorded for each event can be used to 

infer sequence of events in patient treatments. 

3.4.3 Case study 3: Experiments using the PPM Cancer datasets 

The Patient Pathway Manager (PPM) is the EHR system developed and used in the 

LTHT. It holds the records of more than 3 million patients. Initially developed in 2003 

[165] to support the collection of key information for the National Cancer Dataset and 

reporting of Cancer Outcomes Services Dataset [166]. The PPM system was built 

around a standard SQL Server 2005 infrastructure and is viewed and administered via 

a User Interface (UI) application constructed and developed using Visual Basic. It 

was then extended by LTHT in 2010 as a web-based Electronic Patient Record (EPR) 

and known as PPM+. The web-based PPM Portal went live in March 2012. This 

system integrates electronic data held within the Trust into a single EHR database. 

PPM+ is the current development of the PPM system which delivers the EPR for 

LTHT staff and the Leeds Care Records (LCR). LCR integrates patient records across 

health and social care organisations in Leeds citywide. The PPM system was 

developed into PPM+ and used within Trust since 2013. The PPM+ accesses the same 

database of the PPM with additional connections to other IT systems, including 

primary care data. Following common terms used in the LTHT, the web-based PPM+ 

is now referred to as PPM and the older version of PPM is referred to as PPM1. 

In this study, the data is extracted from the PPM Query database, a copy of a real-life 

PPM database. The ethics approval of the PPM Cancer dataset was through an NHS 

honorary contract and an Integrated Research Application System (IRAS) to gain the 

Health Research Authority (HRA) Approval (REC Reference 18/HRA/0410). LTHT 

provided non-identifiable data from records of a group of cancer patients. An 

automated process was used to produce the non-identifiable row-level data in line 

with the Information Commissioner’s Office (ICO) and NHS standards. 
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Along with the data from the PPM Query database, this study used data from the PPM 

Splunk and PPM JIRA. The PPM Splunk records all user access to the PPM system, 

which is useful in analysing system usage for specific functionalities being examined. 

The PPM JIRA contains details of changes that had happened to the system, including 

the type of changes, contents of the release when the change(s) were applied, when 

they were applied, and any supporting training notes.  

In this study, the PPM Cancer dataset was used to analyse process change over time. 

One experiment explored a process before and after a known change happened, while 

two experiments were done to explore process change without a known change at the 

beginning of the experiment. The limitation of using this dataset is that the growing 

nature of the database makes it difficult to analyse the data alone without analysing 

documentations of the PPM system and discussing with clinical experts and the 

development team. The documentation and discussions were needed to reveal the 

changes that happened to the system during the long period of data collection. 

 

3.5 Summary 

This chapter has explained the general methodology and datasets used in this study. 

The main stages in the general methodology were built based on the L* life-cycle 

model and the PM2 method. The four main stages were: (1) planning and justification, 

(2) ETL, (3) mining and analysis, and (4) evaluation. Additional methods were 

followed to complete some other steps within the stages, which are the question-based 

methodology, the ClearPath method, the concept drift analysis, and signal 

decomposition and SPC methods. The ClearPath method has been published [91] and 

cited in 11 articles. Some of the steps in the general methodology were not applicable 

in the case studies because of the specific limitations of each case study. 

The next three chapters present the three case studies based on the three datasets used 

in this research. All three case studies apply the methodologies that has been presented 

in this chapter. Chapter 4 describes the MIMIC-III data as the first case study. Chapter 

5 describes the PPM Chemotherapy data as the second case study. Chapter 6 describes 

the PPM Cancer data as the third case study.  



 

Chapter 4  
Case study 1: Experiments using the MIMIC-III dataset 

The MIMIC-III is the first case study and is presented in this chapter. The data quality 

assessment part in Section 4.1.3 has been presented in a poster at the Informatics for 

Health 2017 conference in Manchester, UK. The abstract was published in the Journal 

of Innovation in Health Informatics [167]. The work was extended and published in a 

full journal paper entitled “The assessment of data quality issues for process mining 

in healthcare using MIMIC-III, a freely available e-health record database” in the 

Health Informatics Journal [168]. Section 4.2 has also been presented in an IEE 

conference in Indonesia and published in a conference paper entitled “Process mining 

in oncology using the MIMIC-III dataset” in the Journal of Physics: Conference Series 

[169]. Part of the work in this chapter was also presented in a joint presentation in the 

workshop of the Worldwide Universities Network (WUN) 2017 in New York, USA. 

4.1 Data description 

Overview of the MIMIC-III dataset has been presented in Section 1.4.2 and has been 

described in Section 3.4.1. More details of this dataset are presented in this section. 

4.1.1 Data characterisation 

The data source of the MIMIC-III dataset has been described in Section 1.4.1, and the 

overview of the dataset has been described in Section 3.4.1. The concept-level Entity-

Relationship (E-R) diagram of the MIMIC-III database is displayed in Figure 4.1. 

 
*event-related entities are in bold 

Figure 4.1 The concept-level E-R diagram of the MIMIC-III database. Five reference 

tables are: drgcodes, d_icd_diagnosis, d_icd_procedures, diagnosis_icd, procedure_icd. 
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Figure 4.1 shows the concept-level E-R diagram of the MIMIC-III database. Time in 

the MIMIC-III database is stored with one of two suffixes: TIME (down to the minute) 

and DATE (down to the day). There is also charttime indicating when the observation 

was made and storetime indicating when it was validated. In this study, the event logs 

were created using charttime attributes, as this is closest to the time of actual 

measurement. All patient data in the MIMIC-III database were de-identified and all 

dates randomly shifted to the future so that dates are internally consistent for the same 

patient but inconsistent across patients. 

4.1.2 Scope 

In this study, the MIMIC-III v1.3 was used. This version was released on 10 

December, 2015 [162]. It contains a wide range of data such as the admissions and 

discharges, ICU stays, laboratory measurements, outpatients, and charted 

observations during patient stays in the ICU. Data were curated by the MIMIC-III 

team from archives of critical care information systems, hospital Electronic Health 

Record (EHR) databases, and the Social Security Administration Death Master File. 

The rich nature of the MIMIC-III dataset provides the timestamped data of clinical 

events in the 16 event tables, which is suitable for process mining. 

In this study, the MIMIC-III database was used to provide a test case and to build a 

methodology for healthcare process mining. The patients from the MIMIC-III 

database were included if they were diagnosed with colorectal cancer, at least once. 

Colorectal cancer was chosen as a case study because this is one of the most common 

types of cancer. Colorectal cancer has already been discussed in Section 2.1.6.1 by 

providing related pieces of literature. 

4.1.3 Data quality 

The data quality assessment of the MIMIC-III dataset was done following the 

Weiskopf & Weng framework [133]. The data quality was assessed with a specific 

focus for process mining projects. The data quality assessment, as presented in the 

journal paper, was conducted following the L* life-cycle model [3] with an adaptation 

before the extraction stage. This was done by reconstructing the database in a local 

database management system (PostgreSQL). The idea was to get the fullest possible 

dataset from the MIMIC-III database that can be iteratively extracted later to create 

smaller subsets, mined, and assessed for the quality. 
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Five out of the seven methods suggested in the Weiskopf & Weng framework have 

been used to assess the data quality of the MIMIC-III database for process mining. 

Those methods resulted in some findings in four out of five dimensions of data 

quality. Two methods (gold standard and log review) were not applicable due to the 

anonymisation process done by the MIMIC-III database provider. A summary of the 

data quality assessment is presented in Table 4.1.  

Table 4.1 Data quality assessment of the MIMIC-III database 

dimension 
method 

completeness correctness concordance plausibility currency 

Element presence Y Y Y Y N 
Data element agreement Y N N N N 
Data source agreement Y Y Y N N 
Distribution comparison Y N Y Y N 
Validity check Y Y N N N 
Gold standard <<not applicable>> 
Log review <<not applicable>> 

*Y = yes (applied) *N = no (the method cannot be used to assess the dimension) 

4.1.3.1 Element presence 

Element presence was done by checking the presence of the three minimum attributes 

for process mining: case_id, activity and timestamp. The case_ids are available in the 

16 event tables are the subject_id and hadm_id. Another possible case id is icustay_id, 

but it is not available in seven tables (admissions, callout, cptevents, labevents, 

microbiologyevents, noteevents, and services). One patient (subject_id) might have 

more than one hospital admission (hadm_id) and one admission might have more than 

one ICU stay (icustay_id). The icustay_id is only available for events recorded during 

ICU stays. Those ids represent the event granularity options for process mining that 

process miners should be aware of in the analysis. 

The activities are available in all 16 event tables. Activity names are recorded directly 

in nine tables (admissions, callout, cptevents, icustays, noteevents, prescriptions, 

microbiologyevents, services, and transfers). The activity names were referred from 

the d_items table in the other six tables (chartevents, datetimeevents, inputevents_cv, 

inputevents_mv, outputevents, and procedureevents_mv). There are two levels of 

granularity in the d_items table: label (fine-grained level) and category (coarse-

grained level). Another table (labevents) has to refer to the d_labitems table. 
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The timestamps are available in all 16 event tables. The date versus time and charttime 

versus storetime issues, as presented in Section 4.1.1, are important in process mining 

projects. The different granularities of the timestamps (date – down to the day, and 

time – down to the minute) presents some issues in process mining. When tables 

having different granularity of timestamps are combined, the sequence of the events 

and the process duration might be incorrect. Four tables can be used to analyse activity 

duration because they recorded the start and end times. Those tables are the icustays, 

inputevents_mv, procedureevents_mv, and transfers tables. 

4.1.3.2 Data element agreement 

Data element agreement was done to compare two or more elements in the database 

to see if they report the same or have compatible information. In this study, the data 

element agreement was done by tracing back to the MIMIC-III website and the data 

descriptor. The preliminary assumption was that the data descriptor described the 

MIMIC-III database accurately, but this was not always the case. 

There are three findings related to completeness of the case_ids, level of detail of the 

timestamps, and plausibility of the data. Completeness of the case ids was found to be 

dependent on the case_id chosen for the analysis. When the case_id is subject_id or 

hadm_id, the admissions and transfers tables are complete. But when the case id is 

icustay_id, the icustays and transfers tables are complete. Depending on the case_id 

used in the analysis, completeness of all other tables can be checked by reference to 

those tables. The plausibility issues have been found by comparing the data duration 

with the MIMIC-III data descriptor. The MIMIC-III data descriptor specified that the 

dates had been shifted into the future to the years 2100 to 2200. It was found that some 

events were dated before 2100 and after 2200. This might be caused by historical data 

such as test results and scheduled events, such as scheduled treatments. In this study, 

there are no immediate data quality issues, but this could cause an error if the events 

were selected by a date range. 

  



- 83 - 

4.1.3.3 Distribution comparison 

Distribution comparison was done to compare the records in the MIMIC-III database 

to the data descriptor [162]. This was done to check completeness, concordance, and 

plausibility of the event tables in the MIMIC-III database. 

The subject_id is complete in all event tables, but the hadm_id and icustay_id are not. 

There are 70 missing spec_itemid in the microbiologyevents table, but those can be 

replaced entirely by spec_type_desc. In the admissions table, there are missing 

timestamps (37%) that represent patients who are not dead or not admitted in the 

Emergency Department (ED). Without access to the data source, there is no way to 

decide if the missing values are because the events did not happen or because they 

were not recorded correctly. 

Some tables have missing timestamps: callout (26%), cptevents (82%), 

microbiologyevents (7.5%), noteevents (15%), and transfers (11%). The MIMIC-III 

documentation mentions that the collection of callout data only began part way 

through the MIMIC-III database and with date shifting this missing data has been 

spread at random. Incomplete timestamps in the charttime of microbiologyevents and 

noteevents tables can be derived by linking to chartdate but consider that the 

granularity level would be different. This incompleteness also happened in cptevents, 

prescriptions, and transfers tables so process mining would be unreliable. 

4.1.3.4 Validity checking 

Validity checking was done by querying data from each table and between related 

tables, to determine if the values ‘make sense’ in the problem domain. The findings 

were related to the ICD-9 codes and duplicate records between different tables. 

The MIMIC-III database provides reference tables, which are d_icd_diagnosis 

describing the diagnosis codes and d_icd_procedures describing the procedure codes. 

The analysis of those two tables found that 144 out of 14,711 (0.98%) diagnosis codes 

are missing and 16 out of 258,082 (0.01%) procedure codes are missing. The 

percentages of the missing codes are small, but they can be significantly affected the 

analysis of a specific cohort containing those missing codes. 

There was also a duplication problem between different tables, for example, 

datetimeevents and admissions tables. In the datetimeevents table, there is a ‘hospital 

admit date’ that is duplicated with admittime in the admissions table. For those 
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duplicates, 1,696 out of 24,549 (7%) admissions are matched, while 22,658 out of 

24,549 (92%) have earlier admission dates in the admissions table compared to those 

in the datetimeevents table. In this case, the admission dates in the admissions table 

was selected, and the duplicated records in the datetimeevents table were ignored. 

4.1.3.5 Data source agreement 

Data source agreement was checked to compare data from two sources of the 

MIMIC-III database, which are CV and MV. The CV system was used during 2001–

2008 and the MV system was used during 2008–2012. The CV system was provided 

by Philips and was used to archive clinical data at the bedside of the ICU patients 

admitted to the BIDMC during 2001–2008. The MV system was used to archive the 

clinical data of patients admitted during 2008–2012. It is important to note that the 

duration of the records in the CV system (8 years) was longer than the duration of the 

records in the MV system (4 years). Patients in those two systems have data archived 

in different formats. Another consequence is that the patients recorded in the CV 

system have records from a longer duration than those in the MV system. 

In this study, it is important to know that the data source of the MIMIC-III database 

had been changed. A backward approach has been used to create separate event logs 

from the two EHRs. Those event logs were then used to discover two process models 

that could then be compared. This is described in more detail in Section 4.3 

(Comparing CV and MV systems). 

4.1.4 Representativeness 

Patients were included in the MIMIC-III database if they had at least one ICU stay. 

All clinical data for those patients were also included. This database is therefore a 

comprehensive example of EHR data from a large hospital. Representativeness of this 

database has been explored based on age group at first admission. 

A description of the MIMIC-III dataset was presented in Section 3.4.1. Figure 4.2 

shows the age groups at first admission. There were 1,991 patients (4.28%) excluded 

because their age was calculated to be over 300 at their first admission. This limitation 

is due to the time-shifting done by the MIMIC-III team to protect patient 

confidentiality. The MIMIC-III data description also mentioned that patients who 

were older than 89 years at any time in the database have had their date of birth shifted 

to obscure their age. 
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Figure 4.2 Distribution of age groups at the first admission. The x-axis shows the number 

of patients (in thousand/ K) and the y-axis shows the age groups at first admission. Gender 

are colour-coded with Male on the left and Female on the right. 

 
Figure 4.2 shows the distribution of age groups at first admission. Of a total of 46,520 

patients in the MIMIC-III dataset, there were 7,872 neonates (18%) and 36,674 adult 

patients (82%) aged 16–89. There were 25,424 male (57%) and 19,150 female (43%) 

patients. Those numbers have been checked to be in agreement with the MIMIC-III 

data descriptor. The patients in the 0–9 years group are from the CV system, which 

included newborns. 

Representativeness of the MIMIC-III dataset is high. Figure 4.2 shows that all patient 

groups and both genders are represented in the data. There was a small number of 

patients in the young age group (10–19), which corresponds to the real-life situation.  

However, a result of this small number of young patients means that the analysis of 

this cohort may not be robust. 

4.1.5 Data variety 

The data variety of the MIMIC-III dataset can be explored by describing the variety 

of diagnosis and procedure codes of the patients. The distribution of patients in 18 

diagnosis groups is presented in Table 4.2. It shows that all groups of diagnoses are 

represented in the MIMIC-III patients, allowing a range of analysis from ICD code 

001 to 999, and E&V. Each patient had 0 to 144 different diagnosis codes. The most 

common diagnosis group is the External causes of injury and supplemental 

classification (n = 34,457/ 74.1%), followed by the Diseases of the circulatory system 

(n = 32,503/ 69.8%) and the Endocrine, nutritional and metabolic disease, and 

immunity disorders (n = 27,440/ 58.9%). There are 47 patients had a null (0.10%). 
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Table 4.2 Distribution of diagnosis groups. A patient might have more than one diagnosis 

and included in more than one group. Percentage (%) is calculated over the total patients. 

ICD code Diagnosis Label n % 

001-139 Infectious and parasitic diseases 11,577 24.89 

140-239 Neoplasms 7,361 15.82 

240-279 Endocrine, nutritional and metabolic diseases, and immunity 
disorders 

27,440 58.99 

280-289 Diseases of the blood and blood-forming organs 15,661 33.64 

290-319 Mental disorders 13,400 28.80 

320-389 Diseases of the nervous system and sense organs 12,744 27.39 

390-459 Diseases of the circulatory system 32,503 69.87 

460-519 Diseases of the respiratory system 19,973 42.93 

520-579 Diseases of the digestive system 16,730 35.96 

580-629 Diseases of the genitourinary system 16,765 36.04 

630-679 Complications of pregnancy, childbirth, and the puerperium 161 0.35 

680-709 Diseases of the skin and subcutaneous tissue 5,097 10.96 

710-739 Diseases of the musculoskeletal system, connective tissue 8,391 17.97 

740-759 Congenital anomalies 2,990 6.43 

760-779 Certain conditions originating in the perinatal period 5,321 11.44 

780-799 Symptoms, signs, and ill-defined conditions 16,910 36.35 

800-999 Injury and poisoning 19,318 41.53 

E&V External causes of injury and supplemental classification 34,457 74.07 

Null  47 0.10 

 

The distribution of patients within the 18 procedure groups is presented in Table 4.3. 

It shows that all groups of procedures are represented in MIMIC-III, allowing the 

analysis of many types of procedures, from procedure 01 to procedure 99. Each 

patient had 1 to 98 different procedure codes. The most common procedure group is 

the Miscellaneous diagnostic and therapeutic procedures (n = 32,939/ 78.03%), 

followed by the Operations on the cardiovascular system (n = 24,623/ 58.33%) and 

the Operations on the digestive system (n = 9,885/ 23.42%). There are also 4,079 

patients (9.66%) having Procedures and interventions, not elsewhere classified.  
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Table 4.3 Distribution of procedure groups. Note thata patient might receive more than one 

procedure and thus be included in more than one group. Percentage (%) is calculated over the 

total patients. 

ICD code Procedure label n % 

00 Procedures and interventions, not elsewhere classified 4,079 9.66 

01-05 Operations on the nervous system 5,105 12.09 

06-07 Operations on the endocrine system 189 0.45 

08-16 Operations on the eye 194 0.46 

17 Other miscellaneous diagnostic and therapeutic procedures 37 0.09 

18-20 Operations on the ear 56 0.13 

21-29 Operations on the nose, mouth, and pharynx 700 1.66 

30-34 Operations on the respiratory system 7,208 17.07 

35-39 Operations on the cardiovascular system 24,623 58.33 

40-41 Operations on the hemic and lymphatic system 1,239 2.94 

42-54 Operations on the digestive system 9,885 23.42 

55-59 Operations on the urinary system 1,066 2.53 

60-64 Operations on the male genital organs 2,234 5.29 

65-71 Operations on the female genital organs 286 0.68 

72-75 Obstetrical procedures 52 0.12 

76-84 Operations on the musculoskeletal system 3,465 8.21 

85-86 Operations on the integumentary system 2,595 6.15 

87-99 Miscellaneous diagnostic and therapeutic procedures 32,939 78.03 

The distribution of diagnosis and procedure groups in Table 4.2 and Table 4.3 show 

that the variety of the data in the MIMIC-III database is wide. This means that this 

database, despite the limitation due to the anonymisation, is suitable for a range of 

healthcare studies.  

4.1.6 Limitations of using MIMIC-III for process mining 

The MIMIC-III database represents real healthcare data, with some limitations that it 

contains only the data of Critical Care patients and there is no direct access to the 

clinicians in the hospital. This leads to the limitation that the full analysis can only be 

done based on the available data. Despite this limitation, there are also some 

publications and websites describing this data that can be used to support analysis in 

this study. 
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Some identified limitations specific for process mining were omissions, incorrectness, 

incompleteness, and inaccuracy. Those can happen in different levels i.e. the events, 

case attributes, activity names or codes, timestamps, and attributes. This means that 

quality checking should be done thoroughly. This is because, for example, 

incorrectness could happen to an event, an activity name, a timestamp, or any other 

attribute. Another significant limitation is that all the dates have been shifted to future 

years (between 2100 and 2200) consistently for each patient to randomly distributed 

future dates. This means that analysis related to time between different patients, such 

as workflow analysis looking at busy days and the impact of bottlenecks e.g. of 

patients waiting for care on a busy day, cannot be deduced. 

Despite these issues, the overall data quality of the MIMIC-III dataset was found to 

be good; there is a rich set of detailed event data covering a 10-year period and it 

comes from a representative of a real-life hospital. The MIMIC-III dataset still 

contains detailed information of real healthcare processes for individual patients 

during their time in the hospital including comprehensive details on administrative 

activities (admission, discharge, transfer to a ward, etc.) and clinical activities (triage, 

test and scans, diagnosis, etc.). Another reason why this dataset was suitable for this 

study was that there were a system change in the MIMIC-III dataset with a possibility 

to work out on separating patient admissions from those two different systems. It was 

a great opportunity for this study to compare processes in those two systems. 

Section 4.1 has described the data characteristics, scope, data quality, 

representativeness, data variety, and the limitations of using MIMIC-III dataset in this 

study. Sections 4.2 and 4.3 go on to present two experiments using the MIMIC-III 

dataset. Section 4.2 presents the first experiment to apply process mining on the 

MIMIC-III dataset. The challenge of this experiment was on selecting the suitable 

tables to represent the patient pathways. Section 4.3 presents the second experiment 

to compare process in CV and MV as two subsequent systems. The challenge was to 

find a way to separate records in CV and MV and then compare the processes. Section 

4.4 summarises this chapter. 
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4.2 Experiment 1: Process mining on the MIMIC-III dataset 

This section presents the first experiment aimed to assess the suitability of the 

MIMIC-III dataset to be analysed using process mining approaches. A cohort of 

patients diagnosed with cancer was selected based on an initial discussion with UK-

based clinical experts. Implementation of the main stages of the general methodology 

in this case study is presented in this section. 

4.2.1 Stage 1: Planning and justification 

Stage 1 was done by understanding the available data from the data descriptions on 

the official website and in papers related to MIMIC-III [162]. Historical data were 

generated from 16 event tables in MIMIC-III. There were no handmade models used 

in this study. The general research question was “Can the MIMIC-III database be 

used for process mining in healthcare?”. This detailed research question was based 

on generic types of questions that are frequently posed by medical professionals in 

process mining projects, which are: 

1) What are the most followed paths and what exceptional paths are followed? 

2) Are there differences in care paths followed by different patient groups? 

3) Where are the long waiting time activities in the process? 

4.2.2 New stage: Database reconstruction 

An additional stage in this study was database reconstruction. It was necessary to 

reconstruct the MIMIC-III dataset from the csv files to create a relational database in 

a local database management system (PostgreSQL). This stage included downloading 

the 26 csv files (6.2 GB in total) along with scripts to import the data into the 

PostgreSQL database. 

Figure 4.3 presents the concept-level E-R diagram of the 26 tables in the MIMIC-III 

database. The approach of this study was to reconstruct the database to get the fullest 

possible dataset. The reconstructed database was then used for iterative extractions 

based on several criteria.  
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Figure 4.3 Entity-Relationship (E-R) diagram of the MIMIC-III database. The entities 

in red contain timestamped information which can be used to construct event log data for 

process mining. 

4.2.3 Stage 2: Extraction, transformation, and loading 

This stage started with selecting records of patients diagnosed with cancer. This 

selection was based on the ICD codes in the diagnoses_icd table for cancer diagnosis 

(140x-239x) [170]. Those patients were later grouped based on the cancer types, as 

presented in Table 4.2 in Section 4.1.5. 

In total, 7,361 patients had at least one cancer diagnosis and were selected in this 

study. Those patients were then grouped based on the 13 types of cancer (see Table 

4.4). The three largest groups are group 7, group 2, and group 8.  The median age of 

patients in each cancer types ranges from 46 years (group 5) to 74 years (group 9). 

Median hospital length of stays (LOS) is 8 to 15 days, while the median ICU length 

of stay ranges from 2 to 3 days.  
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Table 4.4 Summary of cancer type in the MIMIC-III data 

Type Description  
(ICD9 codes in brackets) a b c d e f 

1 Malignant neoplasm of lip, oral cavity, and 
pharynx (140-149) 87 135 135 65 8 3 

2 Malignant neoplasm of digestive organs and 
peritoneum (150-159) 1,400 2,012 2,148 68 10 2 

3 Malignant neoplasm of respiratory and 
intrathoracic organs (160-165) 1,056 1,540 1,561 69 8 2 

4 Malignant neoplasm of bone, connective 
tissue, skin, and breast (170-175) 238 337 336 61 8 2 

5 Kaposi's sarcoma (176) 14 19 20 46 8 2 

6 Malignant neoplasm of genitourinary organs 
(179-189) 724 1,025 1,076 73 9 2 

7 Malignant neoplasm of other and unspecified 
sites (190-199) 2,846 3,950 4,003 64 8 2 

8 Malignant neoplasm of lymphatic and 
hematopoietic tissue (200-209) 1,110 1,692 1,876 62 14 3 

9 Neuroendocrine tumours (209-209) 26 38 42 74 15 3 

10 Benign neoplasm (210-229) 1,215 2,036 2,127 59 8 2 

11 Carcinoma in situ (230-234) 45 65 66 70 13 2 

12 Neoplasms of uncertain behaviour (235-238) 588 1,065 1,145 65 10 2 

13 Neoplasms of uncertain nature (239) 60 105 108 67 9 2 
Note: a = distinct patients, b = distinct admissions, c= distinct ICU stay id, d = median age (years), 

 e = median hospital LOS (days), f = median ICU LOS (days) 

Extraction of all cancer patient records was done by selecting records of cancer 

patients from each event table in MIMIC-III. For example, the query to extract cancer 

patient records in chartevents table is as follow. 

SELECT  

  c.subject_id, c.hadm_id, d.label, d.category, c.charttime 

FROM  

  Chartevents c, d_items d, diagnoses_icd di 

WHERE  
  c.itemid = d.itemid AND c.subject_id IN 

  (SELECT DISTINCT subject_id FROM mimiciii.diagnoses_icd  

 WHERE icd9_code BETWEEN '14%’ AND ‘24%'); 

All 16 event tables in the MIMIC-III database had been extracted using this method. 

They were then combined to create an allevents table. The three largest tables are 

chartevents, labevents, and inputevents_cv. A summary of the extracted records is 

presented in Table 4.5. 
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Table 4.5 Summary of table extracted 

# Table Name Patients Activities Rows Percentage 
1 admissions 7,361 5 35,843 0.07 
2 callout 4,771 6 27402 0.05 
3 chartevents 7,359 2,580 38,766,594 76.07 
4 cptevents 6,707 4 19,310 0.04 
5 datetimeevents 5,648 148 925,542 1.82 
6 icustays 7,345 2 22,976 0.05 
7 inputevents_cv 3,924 756 1,833,886 3.60 
8 inputevents_mv 3,850 251 664,209 1.30 
9 labevents 7,351 556 6,912,233 13.56 
10 microbiologyevents 3,553 47 11,670 0.02 
11 noteevents 5,351 584 129,712 0.25 
12 outputevents 7,278 415 824,665 1.62 
13 procedureevents_mv 3,853 114 53,440 0.10 
14 prescriptions 6,900 2,697 685,648 1.35 
15 services 7,357 18 15,657 0.03 
16 transfers 7,361 8 29,708 0.06 

allevents table 51,649,231  

The allevents table was created by combining all tables contained 51,649,231 rows, 

which would result in a ‘spaghetti’ model if directly used for process discovery. It is 

also important to mention that the original allevents table is dominated by chartevents 

(76.07%). Straightforward use of process mining will contain only chartevents and 

exclude other events. Further transformation of the dataset was then essential. 

Transformation was performed in several steps, as shown in Figure 4.4. A 

transactional table was created consisting of subject_id, activity, category, tname, 

charttime and records were inserted from all tables extracted before.  

Data processing was followed the steps in PM2 methodology: (1) Filtering log – by 

excluding tables with a high percentage of missing data (callout, cptevents, and 

prescription) and handling duplicate records by keeping only one of them, (2) 

Enriching log –by creating three levels of details (table name, category, and activity 

label), (3) Creating views – this was done based on the level of detail needed in the 

next stage based on two general types of events recorded in the tables, administrative 

and clinical events, and (4) Aggregating events – this was done by applying “Merge 

subsequent events >> Merge taking first event” plugin in the ProM software. 

A summary of those data transformation steps is shown in Figure 4.4. 



- 93 - 

 

Figure 4.4 Data transformation. It includes log filtering, log enrichment, views creation, 

and event aggregation. 

 
Loading, the final step in this stage was done by importing the file to ProM and 

processing it to discover process models using the specified algorithm/plugin. Unless 

otherwise stated, all plugins in ProM were applied with default parameter settings. 

4.2.4 Stage 3: Mining and analysis 

The next stage of this study was process mining and analytics. Process mining was 

done through process discovery, conformance checking, and enhancement. Process 

analytics was done to compare pathways of patient groups and analyse waiting times. 

The general research question for this step was “Can the MIMIC-III database be used 

for process mining in healthcare?”. The initial algorithm was the heuristics miner. 

Analysis and conformance checking were done to ensure that the discovered models 

represent realities in clinical settings. This was done by balancing the fitness, 

precision, and generalisation measures of the process model quality dimensions. 

Figure 4.5 shows the trace variant diagram as one result. It shows the five most 

common variants out of 104 variants from 8,912 traces. The pathways represented the 

reality where patients could be admitted to standard hospital admission or registered 

through the ED, and could later be discharged from the hospital. The interesting 

pattern was that there were some patients discharged fully before actually being 

discharged from the ICU (ICU out) (see the fourth and fifth traces). This finding 

reflected the administrative process within the hospital. 
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Figure 4.5 The five most common variants (from ProM). It shows the top five variants 

covering for >70% traces in the event log. 

 
Figure 4.6 shows the discovered process model in the Business Process Modelling 

Notation (BPMN). This process model has a fitness score of 0.971, a precision score 

of 0.881 and a generalisation score of 0.989. All three conformance values were high, 

showing that the discovered model is indeed a good representation of the event log. 

A UK-based oncologist then reviewed the discovered models for sense-checking. One 

possible data quality issue was that discharge took place after death and ICU out took 

place after discharge. Those were found to reflect the hospital’s standard 

administrative processes. There are also variations in the administrative steps as 

presented in Figure 4.6. 

 

Figure 4.6 The BPMN process model of admissions and ICU stays  (from ProM). This 

model shows variations in the administrative steps. 

 
Following the same method, process models were created from each group to answer 

the research question “Are there differences in care paths followed by different patient 

groups?”. The pathways of the three most common groups are shown in Figure 4.7.  
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Figure 4.7 Process models of three most frequent cancer types  (from ProM). The 

process models show visual differences between patient groups. 

 
The models of cancer type 2, type 7, and type 10 were reviewed by a UK clinical 

expert based on their visual utility. Some important findings are: (1) ICU in, ICU out, 

admission and discharge always happened in all three cancer types regardless of the 

sequence; (2) ED registration, ED out and death are possible events in all three types; 

(3) admission happened as the first event or after ED registration in all five types; and 

(4) death in type 10 is possibly happened only after ICU out, while it can happened 

before ICU out in the other four types. 

Analysing differences of the pathways of different types of cancer can also be done 

by comparing conformance values, i.e. trace fitness, precision, and generalisation. 

The result is summarised in Table 4.6. Summary of the results shows that process 

models of all cancer types are representative of the traces, with average fitness of 

0.843, average precision of 0.798, and average generalisation of 0.966. The minimum 

value is on the precision of cancer type 13 (0.692) and the maximum value is on the 

precision of cancer type 5 (1.000). 
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Table 4.6 Conformance values of each type of cancer 

* F = fitness, P = precision, G = generalisation, MN = malignant neoplasm 

Type Description F P G 

1 MN of lip, oral cavity, and pharynx (140-149) 0.813 0.767 0.961 

2 MN of digestive organs and peritoneum (150-159) 0.813 0.816 0.977 

3 MN of respiratory and intrathoracic organs (160-165) 0.830 0.826 0.981 

4 MN of bone, connective tissue, skin, and breast (170-175) 0.819 0.822 0.952 

5 Kaposi’s sarcoma (176) 0.800 1.000 0.978 

6 MN of genitourinary organs (179-189) 0.825 0.809 0.982 

7 MN of other and unspecified sites (190-199) 0.835 0.822 0.991 

8 MN of lymphatic and hematopoietic tissue (200-209) 0.894 0.716 0.995 

9 Neuroendocrine tumours (209-209) 0.898 0.619 0.855 

10 Benign neoplasm (210-229) 0.830 0.808 0.982 

11 Carcinoma in situ (230-234) 0.882 0.859 0.975 

12 Neoplasms of uncertain behavior (235-238) 0.849 0.813 0.978 

13 Neoplasms of uncertain nature (239) 0.872 0.692 0.950 

average 0.843 0.798 0.966 

Further analysis in this stage has been done to explore the waiting times for the 

admission pathways of all cancer patients, in order to answer research question 

“Where are the long waiting time activities in the process?”. In this stage, the models 

have been extended by adding a time perspective.  

The BPMN model was analysed with the “Replay a Log on Petri net for Performance/ 

Conformance Analysis” in ProM. The result was added on the original BPMN, as 

shown in Figure 4.8.  

 

Figure 4.8 Waiting time analysis. This is a combined output from the BPMN Analysis, 

Convert BPMN diagram to Petri Net, and Replay a Log on Petri net plugins. 
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The analysis revealed that the longest waiting time is in ICU out (4.07 days on 

average), while the second longest waiting time is ICU in (2.70 days on average). The 

long waiting times in ICU in and ICU out give the insight to dig deeper into the lower 

level of activities between ICU in and ICU out to understand which activities 

contribute to the long waiting time in the ICU. 

4.2.5 Stage 4: Evaluation 

Evaluation of this experiment was done by analysing the suitability of the MIMIC-III 

dataset for process mining. The MIMIC-III database does not contain an event log, 

but it is possible to analyse the clinical processes in the MIMIC-III database with 

process mining approaches through the extraction of event data in 16 out of 26 tables 

within the MIMIC-III database. A new stage is needed to reconstruct the database in 

a database management system, such as MS SQL Server or PostgreSQL. The database 

reconstruction stage has been presented in Section 4.2.2. Evaluation of the findings 

was achieved by discussions with a UK-based oncologist. This approach has a quality 

concern that the UK-based oncologist might not have enough knowledge about the 

USA healthcare system. The task of the oncologist was only to do sense-checking and 

raise concerns on any possible issues related to the USA healthcare system. 

An additional evaluation was done using 5-fold cross-validation. The event log was 

randomly partitioned into five equal-sized partitions (also called as folds). One fold 

was used as the validation data to test the model while the remaining four  folds were 

used as the training data to build the process model. The cross-validation was done 

five times so that each of the five folds used exactly once as the validation data. The 

final results were estimated from the average of the five values of fitness, precision, 

and generalisation. The results of this evaluation are presented in Table 4.7. It shows 

that the process model represents the traces in the event log (high fitness) with 

relatively high precision and high generalisation. 

Table 4.7 The results of five-fold cross-validation 

# Training folds Validation fold Fitness Precision Generalisation 
1 2, 3, 4, 5 1 0.97024 0.6984 0.9873 
2 1, 3, 4, 5 2 0.96156 0.8254 0.9794 
3 1, 2, 4, 5 3 0.96961 0.9029 0.9838 
4 1, 2, 3, 5 4 0.97389 0.6803 0.9873 
5 1, 2, 3, 4 5 0.96792 0.8793 0.9784 

average 0.968644 0.79726 0.9832 



- 98 - 

4.3 Experiment 2: Comparing CV and MV systems 

This experiment aimed to identify the effects of the change in the EHR system from 

CareVue (CV) to MetaVision (MV). In this experiment, all patients in the MIMIC-III 

dataset were included. The first challenge in this experiment was to separate 

admissions from the CV and MV systems.  

4.3.1 Stage 1: Planning and justification 

Stage 1 (planning and justification) was done by understanding the dataset and 

identifying research questions. The research questions are: 

1) Is it possible to create separated logs from CV and MV systems? 

2) Can process mining be used to analyse differences in care paths in two systems? 

Because all dates in the MIMIC-III have been shifted, a simple comparison of dates 

was not possible. However, there is a db_source column in the d_items table to 

identify the data source of each admission in the tables linked to the d_items table. 

This column will be used to create separated logs for CV and MV systems. In this 

experiment, process mining approach will be used in the model-based and log-based 

comparisons to analyse differences in care paths in the two systems.  

4.3.2 Stage 2: Extraction, transformation, and loading 

The checking on itemid column in d_items table is presented in Table 4.8. The 

differences between the two EHR systems can be identified through four tables: 

chartevents, datetimeevents, inputevents, and outputevents. The dbsource hospital 

would be ignored because our focus was on the CV and MV systems used. 

Table 4.8 Details of itemid in d_item table 

dbsource linksto occur 
CareVue chartevents 4,982 

datetimeevents 52 
inputevents_cv 2,929 
outputevents_cv 1,087 

MetaVision 
 
 
 
 

chartevents 924 
datetimeevents 141 
inputevents_mv 422 
outputevents_mv 74 
procedureevents_mv 125 

hospital microbiologyevents 436 
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This logic was used to insert a field in the admissions table that indicated which of 

the two systems had been used to record the admission. These new fields were used 

to extract the records in those tables and transform them into event logs of the CV 

and MV systems. The proportion of patients in the CV, MV, and both systems, is 

shown in Figure 4.9. 

 

Figure 4.9 Proportion of CV, MV and both systems' patients.  The ‘both’ group refers 

the number of patients who had records in both CV and MV systems. 

As presented in Figure 4.9, the number of patients in the CV and MV only groups are 

not balanced. It is also important to note that within the data collection, the durations 

of the system usage were indeed imbalanced. The CV system was used for eight years 

(2001–2008) while the MV system was used for four years (2008–2012). A patient 

might have admissions in both the CV and MV systems. Only patients in the CV and 

MV groups were used. 

The two separated event logs were then loaded to the process mining tools. Both logs 

compared to each other within the model-based and log-based comparison. The 

model-based comparison was done to compare process models discovered in those 

two systems. The log-based comparison was done to compare event logs in those two 

systems. Both model-based and log-based comparisons were done in the mining and 

analysis (stage 3) of this experiment. 

4.3.3 Stage 3a: Model-based comparison 

The model-based comparison started with discovering the process models of the 

separated event logs and followed by comparing those two process models. The 

process discovery step was done by loading the allevents table into the process mining 

tools to create a process map using several algorithms. Some tools used in this study 

were DISCO, ProM, and bupaR. The process model of all 16 events is not presented 

here because it is too complex.  

As an illustration, Figure 4.10 shows the process model of five admission events of 

26,762 patients in the CV system. There are 74,779 events in total for all patients, 
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consisting of 30 variants. The most frequent variant is: Admission à Discharge (n= 

9,273 / 40.2%). The median case duration is 7.4 days and the mean is 11 days. The 

second most frequent variant is ED registration à Admission à ED out à Discharge 

(n= 9,263 / 40.16%). The median case duration is 7.4 days and the mean is 10.6 days. 

These two variants are the two most frequent ones with and without the ED episode. 

 
Figure 4.10 Process model of admissions in the CV system showing 70% of the most 

common paths (from DISCO) 

The process models discovered from the CV and MV event logs were then compared 

using the DifferenceGraph plugin in ProM 5.2. This plugin identifies differences and 

commonalities between two process models. The result is presented in Figure 4.11. 

 

Figure 4.11 DifferenceGraph of admissions in CV and MV resulted from ProM. The red 

arcs represent the differences in the two event logs. 
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Figure 4.11 shows the differences between admissions in the CV and MV systems, 

which found changes in the last activities that happened within those two systems. 

The admissions in CV ended with either discharge (35,788 or 99.874%), death (26 or 

0.073%), or ED out (19 or 0.053%). But all admissions in MV ended with discharge 

(19,623 or 100%), suggesting that MV has better consistency on the administrative 

records than CV.  

The CV process model gave a fitness score of 0.9996, a precision score of 0.8784, 

and a generalisation score of 0.9006; while the MV process model gave a fitness score 

of 0.9990, a precision score of 0.9382, and a generalisation score of 0.8916. This 

suggested that both models can replay the observed behaviour (high fitness), describe 

the system generally (high generalisation), and not allow for too much divergent 

behaviour (high precision). The combination of interpreting event frequencies, the 

DifferenceGraph, and the conformance measures leads to the conclusion that the EHR 

system change did affect the process model and quality and required further 

investigation. More results of model-based comparison is presented in Appendix C.3. 

The limitation of this approach is that it is depended on the visual difference of the 

models. Future improvements are needed to improve this approach. 

4.3.4 Stage 3b: Log-based comparison 

Log-based comparison of patient data in CV and MV systems was done using log 

profiling and process comparator approaches. The grouping into CV and MV 

admissions were done based on the method described in Section 4.3.1. Log profiling 

was done for each table in the MIMIC-III database. 

For example, from the admissions table, some important information is: 

- NEWBORN admissions only happened in CV, and are excluded in the 

experiment. The proportion is presented in Table 4.9. 

Table 4.9 Proportion comparison of CV and MV 

Database Admission type Patients Admissions % Admissions 
CareVue EMERGENCY 15,499 18,508 80.24 

ELECTIVE 3,433 3,594 15.58 
URGENT 941 964 4.18 

MetaVision EMERGENCY 13,492 16,112 83.53 
ELECTIVE 2,831 2,955 15.32 
URGENT 223 223 1.16 
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- The average admission duration in MV (8.97 days) is shorter than CV (10.67 

days). 

- There were data quality issues detected in CV where ED duration < 0. After non-

valid data were excluded, the average ED duration in MV (0.23 days) was shorter 

than CV (0.28 days), as presented in Figure 4.12. 

    

Figure 4.12 Comparison of hospital admission of CV and MV patients on admission 

durations (left) and ED durations (right). 

 
Figure 4.12 shows that both the average of admission durations and the average of ED 

durations in MV are shorter than in CV. The results of log profiling from the other 

tables are documented in detail in Appendix C.2. 

Log-based comparison [149] aims to detect relevant differences between processes 

based on what was recorded in event logs. In this study, the log-based comparison 

was done using the Process Comparator plugin in ProM [150]. This plugin compares 

two event logs: CV as the first log and MV as the second log. The traces in those two 

event logs are merged to create the reference log. Process metrics in this experiment 

is trace frequency, with an alpha significant level of 5%. The significant difference 

between the two logs is presented as a state transition diagram annotated with colours 

based on the oracle of the effect size. The colour legend is shown in Figure 4.13. 
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Figure 4.13 Colour legend in the Process Comparator plugin (from ProM). Darker 

colours represent higher significance differences. Red represents lower average in group 1 

than in group 2; blue represents higher average in group 1 than in group 2. 

 
The log-based comparison was done per table to compare processes in the CV and 

MV systems. For example, the log-based comparison was done to the admissions in 

the CV and MV systems. Characteristics of the admissions in the two systems are 

presented in Table 4.10. 

Table 4.10 Characteristics of the admissions in CV and MV systems 

Characteristics CV MV 

Cases [hadm_id] 23,066 19,290 

Events 74,779 65,213 

Event classes 5 5 

Events per case * 3 [2-5] 3 [2-5] 

Event classes per case * 3 [2-5] 3 [2-5] 

Variants 30 20 

Pair-wise difference 71.43% 

* average [min – max] 

Table 4.10 shows that admissions in the CV system are larger than the MV system. 

The number of event classes (5), events per case (3 [2-5]) and event classes per case 

(3 [2-5]) are the same in both systems. The number of variants in CV (30) is larger 

than in MV (20), suggesting that the variability in the older system is higher than in 

the new system. The Process Comparator plugin shows that the pairwise difference is 

71.43%.  

The detailed differences are shown in Figure 4.14. The comparison diagram in Figure 

4.14(a) shows that the frequency of patients having ED registration and ED out in MV 

are larger than CV, while the frequency of patients with death records in CV is larger 

than MV. Figure 4.14(b) shows that the trace durations are similar in both systems, 

with slightly longer duration in CV than MV. 
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(a) metric: trace frequency (b) metric: duration 

Figure 4.14 Comparison diagrams of hospital admission of CV and MV patients. The 

trace frequency metric shows more significant differences than the duration metric. 

 
A technical challenge in doing this comparison is that the processing time of the 

Process Comparator plugin in ProM 6.8 is high. Some tables could not be compared 

using this plugin because of the processing time. There are only six tables that can be 

compared using the process comparator plugin. Those are: admissions, callout, 

labevents, noteevents, outputevents, and services. Of those six tables, the noteevents 

table has the highest difference (92.31%) between the CV and MV systems. This was 

followed by outputevents (87.50%) and services (78.75%). The highest difference in 

the noteevents is apparently due to the highly different number of event classes in CV 

(21) and MV (1165). The number of events per case and variants is consequently high. 

The outputevents both in CV and MV have 12 event classes, but the number of events 

per case and variants in those two systems are highly different. The services have 19 

event classes in CV and 17 event classes in MV. The high difference is apparently 

because the average number of events per case in both systems is one, meaning that 

most patients only have one event in services. The results are summarised in Table 

4.11. 
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Table 4.11 Log-based comparison summary 

Tablename DB Cases Events Event 
classes Events per case* Var Diff.(%) 

admissions 
CV 23,066 74,779 5 3 [2-5] 30 

71.43 
MV 19,290 65,213 5 3 [2-5] 20 

callout 
CV 7,037 32,635 4 5 [3-23] 85 

50 
MV 15,698 89,245 6 6 [3-35] 366 

labevents 
CV 22,763 1,744,263 6 77 [1-300,203] 21,108 

72,73 
MV 19,176 878,686 6 46 [1-76,333] 16,774 

noteevents 
CV 22,081 347,882 21 16 [1-931] 244 

92.31 
MV 7,331 175,715 1165 24 [1-701] 6,724 

outputevents 
CV 21,915 1,781,202 12 81 [1-5208] 943 

87.50 
MV 18,697 1,228,067 12 66 [1-2104] 3,352 

services 
CV 23,045 29,530 19 1 [1-7] 484 

78.75 
MV 19,278 24,810 17 1 [1-9] 505 

* average [min – max] 

4.3.5 Stage 4: Evaluation 

Evaluation of this experiment has been done by analysing the suitability of the 

methods used to compare processes in two different systems. The source of the data 

collected in the MIMIC-III was changed in 2008. A backward approach was done to 

mark hospital admissions with the data source from which they had been recorded, 

which are the CV and MV systems.  

Comparison of the processes in those two data sources (CV in 2001–2008 and MV in 

2008–2012) was conducted to explore the effects of a system change to the treatment 

process. The comparison was done based on the process model and log conformance. 

The model-based comparison on the administrative events in CV and MV found some 

interesting results, such as that discharge is recorded in all patients in MV, but not in 

CV. This suggested that the system change has improved the consistency of the data 

recording. The log-based comparison with the Process Comparator plugin in ProM 

resulted in the percentage of difference between two logs at a time. This method is 

robust and based on a statistical test that can be adjusted as required.  The examples 

of the resulted comparison diagrams in Figure 4.14 are easy to understand and 

showing the differences of two logs based on trace frequency and duration of the 

process. The limitation of using the process comparator plugin was that this method 

was technically limited and only applicable to five out of 11 tables in this experiment. 
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This suggested a potential research experiment to create a new method for log-based 

comparison. This is explored further with the PPM Cancer data in Chapter 6. 

4.4 Summary 

This chapter has described the analysis of the MIMIC-III dataset. The assessment of 

the data quality has been published in a journal paper in 2018 [168] and cited in 7 

articles. Some parts of experiment 1 have been published in a conference paper in 

2018 [169] and cited in 7 articles. 

This case study can be analysed based on different perspectives, as described in 

Section 1.2. From the health service perspective, process mining has been able to 

answer frequency posed questions, such as those in the first experiment in Section 

4.2. Health service professionals can get some insights into the most followed paths 

and the exceptional paths, the differences in care paths followed by different patient 

groups, and the long waiting time activities in the process. From the process mining 

perspective, this case study has been shown how MIMIC-III can be used for process 

mining in healthcare. Some limitations have been discussed, but the experiments have 

shown that process discovery and conformance checking can be applied to analyse 

MIMIC-III dataset. From the information system perspective, experiment 2 in Section 

4.3 concluded an important lesson learned that a system change affected the data 

recorded in the system. Limited discussion of the clinical perspective in this case study 

is due to the limited access to the data source of the MIMIC-III database.  



 

Chapter 5  
Case study 2: Experiments using the PPM Chemotherapy Data 

Analysis of the MIMIC-III dataset as the first case study was presented in Chapter 4. 

This chapter presents the experiments using the Patient Pathway Manager (PPM) 

Chemotherapy dataset as the second case study. Section 5.1 presents the data 

description of the PPM Chemotherapy dataset. Section 5.2 and Section 5.3 present the 

two experiments in this case study. Section 5.2 has already been presented in a poster 

in the NCRI Cancer Conference 2018 in Glasgow, UK, entitled “Process mining to 

explore variation in chemotherapy pathways for breast cancer patients”. The abstract 

of the poster has been published in the British Journal of Cancer supplement [171]. 

5.1 Data description 

The PPM Chemotherapy dataset was introduced in Section 1.4.2 and described in 

Section 3.4.2. This section explores this dataset in more detail. 

5.1.1 Data characterisation 

The PPM Chemotherapy dataset is a pseudonymised dataset transferred from the 

LTHT to a secure SQL database on a virtual machine at the University of Leeds 

(UoL). The data has been checked, cleaned, and aggregated before approval for 

transfer to the research team. The previous study used the PPM Chemotherapy data 

to define a predictive model identifying patients receiving cancer treatment who were 

at the highest risk of developing life-threatening complications, such as neutropenia. 

There are 13 event tables in the PPM Chemotherapy dataset, as presented in Figure 

5.1. All tables are related based on the Patient Identification (PID), except the 

TestResultsBlood and the TestResultsMicrobiology tables that are linked based on the 

Knowledge Transfer Partnership ID (KTPId) and were extracted from the Result 

database. The KTPId was the identifier used in the previous study using this dataset. 
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Figure 5.1 The database structure of the PPM Chemotherapy data.  Blue dot marks the 
Age attribute that later be used to create a generated timestamp. 

 

5.1.2 Scope 

The scope of the dataset for this study can be described as follows. This dataset 

contains the routinely collected data of cancer patients (ICD-10 codes C00–C97, 

D00–D48) who were first diagnosed between 2004 and 2012, and treated with 

chemotherapy, in the Leeds Cancer Centre. As of 13 August 2013 (PPM 

Chemotherapy data collection), there were 1.76M patients in the PPM EHR system 

with 92,044 of them having received chemotherapy or radiotherapy. The PPM EHR 

system has been used since 2003 to hold the clinical records of all cancer patients 

including their diagnosis, treatment and outcome treated at the LTHT. 

The data included patient demographics (age, gender, ethnicity, distance from LTHT), 

details of chemotherapy drugs and doses, details of the cancer diagnosis and related 

co-morbidity, results of blood tests, results of microbiological investigations, details 

of acute admissions and outpatient reviews. Further discussions with clinical experts 
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suggested that the selection of events included in the PPM Chemotherapy dataset are 

suitable in analysing the chemotherapy pathways in cancer patients. Specific scope 

was suggested to focus on breast cancer patients receiving EC-90 as an adjuvant 

chemotherapy. 

5.1.3 Data quality 

Data quality of the PPM Chemotherapy dataset was assessed based on the Weiskopf 

& Weng framework [133]. The completeness was checked through element presence 

checking, the correctness and plausibility were checked through validity checking, 

and the concordance through element agreement. Each of the data quality dimensions 

is presented in the following paragraphs. 

The completeness of the data was checked based on the element presence checking 

of the three minimum required attributes for process mining, which are case_id, 

activity, and timestamp. There were no timestamps available in the dataset, but Age 

(in the number of days) was recorded for each activity. Those Age columns were then 

used to generate dates by assigning ’01-01-2020’ as the date of birth for all patients. 

A summary of the element presence checking is presented in Table 5.1. 

Table 5.1 Element presence checking of PPM Chemotherapy dataset 

Table source Element presence 
case_id [%] Activity [%] Time (AgeAt-) [%] 

Admissions PID [91] AdmissionMethod [91] Admission, Discharge [91] 
AdmissionWard_ 
StayLocation 

PID [91] *WardLabel+Start [91] 
*WardLabel+End [91] 

WardStayStart [91] 
WardStayEnd [91] 

ChemoCycles PID [92] Cycle Number [92] CycleStarted [92] 
ChemoDrugs PID [99] Drug Label [99] DrugGiven [99] 
ChemoRegimens PID [99] RegimenLabel [99] RegimenStartDate [99] 
Death PID [56] ‘Death’ [56]  Death [56] 
Diagnosis PID [98] dx_ICD10Label [98] Diagnosis [64] 
Outpatients PID [92] AppointmentTypeDesc [91] TimeOfOPClinic [92] 
Patients PID [100] **‘Death’ [36] Death [36] 
Radiotherapy PID [53] IntentLabel+ SiteCode [53] Radiotherapy [53] 
Surgery PID [68] ProcedureLabel Surgery [68] 
TestResultsBlood PID [93] Term [93] OrderDate [93] 
TestResultsMicrobiology PID [50] Source [50%] OrderDate [50] 
* Activity names are created based on available recorded Age (in number of days) 

** ‘Patients’ table contains only Death events, duplicated but Death’ table is complete 



- 110 - 

The correctness of the PPM Chemotherapy dataset was examined through a validity 

check. Some doubts had been discussed with the domain experts and those have been 

validated, such as: (1) Chemotherapy cycle numbers were recorded with a range of 1 

to 93; (2) Cycle max days were recorded with a range of -7 to 547; and (3) Year of 

diagnosis ranged from 1921 to 2015. The recorded year of diagnosis 1921 suggested 

a data quality problem and required a filtering step to include only a reasonable range 

of diagnosis year. Some others were excluded from the data, such as: (1) Age at 

discharge = NULL; (2) Four cases ended with Admissions; (3) Age at Radiotherapy 

= -13959; and (4) Six missing values in ProcedureLabel. All those findings represent 

incorrect records in the data. This condition happened because, when the PPM 

database had begun to be used to record data, older records were manually typed in 

from the paper-based records. 

The concordance of the PPM Chemotherapy dataset was checked through element 

agreement. Some important findings are: (1) the ChemoCycles, ChemoDrugs, and 

ChemoRegimens tables contain different numbers of patients, as should be the case. 

A discussion with clinical experts revealed that the ChemoCycles table is the most 

reliable among those three tables. (2) ‘Death’ events were recorded in two tables: the 

Death table and the Patients table. The records in the Death table are more than those 

in the Patients table. 

The plausibility was checked through validity checking. The PPM Chemotherapy 

dataset contains the records of 31,511 patients diagnosed with cancer between 1921 

and 2012, of whom 29,009 had received chemotherapy, 21,395 surgery and 16,792 

radiotherapy in Leeds. From a discussion with a domain expert in the early stages of 

this study, we had confirmed that these numbers did not represent the whole number 

of cancer patients. This is because the data collection was focused on the patients 

receiving chemotherapy only and was not meant to reflect the reality where there 

should be more patients receiving radiotherapy than those receiving chemotherapy. 

5.1.4 Representativeness 

The representativeness of the PPM Chemotherapy dataset is related to the PPM 

Cancer data, the database where the PPM Chemotherapy dataset was extracted from. 

The PPM Cancer data was extracted from the PPM EHR system in the LTHT. The 

Leeds Cancer Centre in the LTHT is one of the largest specialist cancer centres in the 

UK [21]. Based on this fact, the data of cancer patient treatment in the PPM Cancer 
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dataset can be argued to be representative of the data of cancer patient treatment in 

the UK. Additional analysis of the representativeness was done by checking if the 

most common cancers in the UK can also be found as the common cancers in the PPM 

Cancer dataset. 

In the UK, there were 303,135 new cancer diagnoses registered in 2016. Over half 

(52.7%) of all registrations were either one of four cancer types (ICD-10 codes): 

breast cancer (C50), prostate cancer (C61), lung cancer (C34), and colorectal cancer 

(C18–C20) [172]. The PPM Chemotherapy dataset consists of the data of patients 

who had at least one diagnosis of cancer between 1921 and 2015. Table 5.2 shows the 

occurrence of those four most common cancer types in the PPM Chemotherapy 

dataset. 

Table 5.2 Representativeness of PPM Chemotherapy dataset 

Cancer diagnosis Occurrence Patients (%) Rank 
Breast cancer (C50) 5,616 3,952 (32.6%) 2 
Prostate cancer (C61) 1,116 901 (7.4%) 10 
Lung cancer (C34) 4,286 3,205 (26.4%) 3 
Colorectal cancer (C18-C20) 6,151 4,418 (36.4%) 1 

All four cancers 17,169 12,131  

Table 5.2 summarises number of patients in the PPM Chemotherapy dataset for the 

four most common types of cancer. The differences in the rank of the most common 

types of cancer is possibly because the PPM Chemotherapy dataset contains the data 

of patients treated with chemotherapy only. It is also possible that the patients are 

different, especially due to the referral hospital aspect. Based on an article on the 

Cancer Research UK website [173], the treatments for patients diagnosed with 

prostate cancer are radiotherapy (30%), surgery (15%), and chemotherapy (3%). 

Based on this analysis, the PPM Chemotherapy dataset is representative of colorectal 

cancer, breast cancer and lung cancer, but not for prostate cancer patients. 

5.1.5 Data variety 

The data variety of the PPM Chemotherapy dataset can be explained by exploring the 

diagnosis groups. The diagnosis in the PPM Chemotherapy dataset was recorded 

based on the ICD-10 diagnosis codes. The distribution of the diagnosis groups is 

presented in Table 5.3. 
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Table 5.3  Diagnosis group distribution in PPM Chemotherapy data 

# Description Patients 

1 (C00–C14) Malignant neoplasms, lip, oral cavity and pharynx 1,418 

2 (C15–C26) Malignant neoplasms, digestive organs 8,914 

3 (C30–C39) Malignant neoplasms, respiratory system and intrathoracic 
organs 

3,563 

4 (C40–C41) Malignant neoplasms, bone and articular cartilage 268 

5 (C43–C44) Malignant neoplasms, skin 1,326 

6 (C45–C49) Malignant neoplasms, connective and soft tissue 966 

7 (C50–C58) Malignant neoplasms, breast and female genital organs 6,318 

8 (C60–C63) Malignant neoplasms of male genital organs 1,745 

9 (C64–C68) Malignant neoplasms, urinary organs 1,832 

10 (C69–C72) Malignant neoplasms, eye, brain and central nervous system 835 

11 (C73–C75) Malignant neoplasms, endocrine glands and related structures 153 

12 (C76–C80) Malignant neoplasms, secondary and ill-defined 749 

13 (C81–C96) Malignant neoplasms, stated or presumed to be primary, of 
lymphoid, haematopoietic and related tissue 

4,248 

14 (C97) Malignant neoplasms of independent (primary) multiple sites 0 

15 (D00–D09) In situ neoplasms 803 

16 (D10–D36) Benign neoplasms 1,778 

17 (D37–D48) Neoplasms of uncertain or unknown behaviour 370 
 

The PPM Chemotherapy dataset contains all cancer diagnosis groups, except on 

Malignant neoplasms of independent (primary) multiple sites (C97). Of all 31,511 

patients recorded in the PPM Chemotherapy dataset, the three most common 

diagnoses are the cancer of digestive organs (8,914 patients/ 28%), breast and female 

genital organs (6,318 patients/ 20%), and lymphoid, haematopoietic and related tissue 

(4,248 patients/ 13%). 

5.1.6 Limitations of using the PPM Chemotherapy dataset 

The PPM Chemotherapy dataset was used for analysing cancer treatment pathways in 

the Leeds Cancer Centre. Some limitations identified in this study are in its 

representativeness, anonymisation on dates, and data granularity. 

The representativeness limitation was due to the specific focus on data extraction. 

The PPM Chemotherapy dataset consists only of the clinical data of cancer patients 

receiving chemotherapy. Chemotherapy is one of three common treatments for cancer 



- 113 - 

patients (other than surgery and radiotherapy). This means that the dataset consists 

only a part of the total number of cancer patients and is not representative of the whole 

population of cancer patients in the LTHT.  

The anonymisation limitation was due to the approach taken to de-identified dates in 

the database. The dates were replaced with a calculated age of the patients (in the 

number of days since date of birth) when they experienced the events. In this study, 

this is a limitation because one of the required attributes needed in process mining is 

the timestamp. This limitation has been approached by creating generated dates. This 

makes it possible to analyse activity sequences for each patient, but not for cross-

patient analysis, such as workload and bottleneck analysis.  

The granularity limitation was that all the generated dates provide only analysis 

measured down to the day and there was no way the order of activities that happened 

on the same day could be further defined. This was not an issue in analysing 

chemotherapy cycles because it is not possible for a patient to get two cycles within 

the same day. This issue became a problem when analysing chemotherapy combined 

with other events, such as pathology and investigation. 

 

5.2 Experiment 3: Process mining the PPM Chemotherapy dataset 

The PPM Chemotherapy dataset was used previously to develop risk algorithms in 

oncology. This dataset contains non-identifiable data of chemotherapy patients treated 

in the LTHT. This experiment aims to apply process mining approach to analyse the 

variability of the treatment process in the PPM Chemotherapy dataset. The analysis 

was focused on chemotherapy treatment. The initial challenge was that the dataset has 

been de-identified, where all dates were transformed into the patient age in the number 

of days. The sequence of activities is reliable, but analysis across patients such as 

examining busy time was not possible.  

5.2.1 Stage 1: Planning and justification 

This experiment aimed to reproduce the previous research [34] using the same data. 

The contribution of this experiment was to improve the previous study by providing 

a structured method for pathways analysis using process mining approaches. The 

primary research question was “Can process mining be used to analyse the variability 

of treatment in the PPM Chemotherapy dataset?”. 
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The table structures of the PPM Chemotherapy dataset have been presented in Figure 

5.1. The real year was available in two tables: ChemoCycles and Diagnosis. Chemo 

cycle years were recorded from 1996 to 2015. The experiment of the PPM 

Chemotherapy dataset description included the steps to identify elements of the event 

log from the PPM Chemotherapy dataset. The experiment documentation of the PPM 

Chemotherapy dataset description is presented in Appendix D.1. 

5.2.2 Stage 2: Extraction, transformation, and loading 

The extraction of the dataset for this experiment was done to select all events related 

to all eligible patients. Patients were included if they had (i) a diagnosis of metastatic 

breast cancer (ICD-10 C50) and received adjuvant epirubicin and cyclophosphamide 

(EC-90) chemotherapy or (ii) colorectal cancer (ICD-10 C18–C20) and received 

palliative oxaliplatin and infusional 5-fluorouracil chemotherapy. Those selection 

criteria followed the previous study. The selected cohort consists of 738 breast cancer 

patients and 418 colorectal cancer patients, a total of 1156 patients. 

The three basic elements of the dataset required for process mining are case id, activity 

name, and timestamp. A summary of those three basic elements in the PPM 

Chemotherapy dataset is as follows: 

• Case IDs are available in all tables: PID/KTPId, AdmissionId, or RegimenId. 

This study used PID/KTPId to analyse the pathways of patients. PID is the 

patient identification from the PPM database and KTPId is the patient 

identification from the Result database. 

• Activity name can be derived from each table except for Patients table. For 

example, the activity name from the Admissions table is admission, while the 

activity names from the ChemoCycles table are Cycle-[number of cycles]. 

• There is no timestamp identified, but there is the possibility to obtain the 

sequence based on Age (in the number of days) and Years in the tables. 

The event log can be created by combining all records in those identified in the event 

tables. The details of the allevents table are presented in Table 5.4. The allevents table 

contains more than 21 million records, with the three most frequent activities being 

TestResultsBlood (83.54%), Outpatients (4.56%), and Admissions (3.73%). As shown 

in Table 5.4, the database is dominated by TestResultsBlood due to the focus of the 

data collection for the previous research related to blood test results of patients 
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receiving chemotherapy. In this study, the focus is on analysing the pathways of 

patients receiving chemotherapy and not on the test results. 

Table 5.4 Details of the allevent table 

# Source Activity 
Class 

Patients Total Rows % 

1 Admissions 2 28,609 794,863 3.73 

2 AdmissionWardStayLocation 360 28,609 469,886 2.20 

3 ChemoCycles 93 29,009 198,096 0.93 

4 ChemoDrugs 301 31,421 706,670 3.31 

5 ChemoRegimens 2945 31,354 67,707 0.32 

6 Death 1 17,701 17,701 0.08 

7 Diagnosis 653 30,753 56,123 0.26 

8 Outpatients 69 28,878 973,177 4.56 

9 Radiotherapy 541 16,792 31,703 0.15 

10 Surgery 1345 21,395 74,889 0.35 

11 TestResultsBlood 34 29,151 17,814,931 83.54 

12 TestResultsMicrobiology 23 15,678 118,947 0.56 

Total   21,324,693 100 

 

A direct use of the allevents table to create process models would result in a spaghetti 

model and would not be understandable. Some alternatives to analyse the process are 

to select events of interest or to analyse specific cohorts of patients. This study focused 

on the first approach to select events of interest. 

Data transformation was done following the Process Mining Project Methodology 

(PM2) approach, which includes creating views, aggregating events, enriching logs, 

and filtering logs. These were done with ProM 6.7 plugins. A summary of the data 

processing is as follows: 

- Change the order of events having the same timestamp. This was important 

because the timestamp data are in days. The order of events was set to follow the 

logical order of the events based on a discussion with clinical experts. 

- Merge subsequent events. This was done to merge some routine test results, 

including neutropenia and bacteraemia. Only the first occurrence of the event was 

considered when an event repeated in sequence. 



- 116 - 

- Rename/merge events as required. For example, Elective admission (S2) à 

Chemotherapy (S1) = Chemotherapy (S1). This reflected the condition where the 

chemotherapy event was also recorded as an elective admission. 

- Add artificial START and END events. Each trace was added by a START before 

the first event and an END after the last event. This was needed because the 

current ProM plugins cannot deal with multiple start and end events, so that it is 

important to ensure that all traces have exactly one START and one END event. 

Additional work was done by following the activity coding done in the previous study 

[34]. The list of activity codes, names, and their descriptions is presented in Table 5.5. 

Table 5.5 Activity codes and descriptions of the allevent table 

Code Activity Description 

S1 Chemotherapy Chemotherapy was delivered 

D0 Home discharge Home discharge after chemotherapy 

S2 Elective admission Hospital attendance other than chemotherapy 

F1 Admission Other type of admissions 

D7 Neutropenic GP contact with neutropenia (neutrophil count <1.5x109/L) 

S6 Bacteraemia Bacteraemia (positive blood culture) during admission  

D3 Urgent outpatient Urgent review in outpatient 

D6 Death Death during hospital stay 

5.2.3 Stage 3: Mining and analysis 

This stage included process mining and process analytics. The process discovery was 

done to the selected events, using the Interactive Data-aware Heuristic Miner (iDHM) 

plugin in ProM. The iDHM plugin allows several representations to be chosen, 

including the directly-follows graph, dependency graph, causal net, or Petri Net. 

1) Process mining of the general events 

Process discovery resulted in a directly-follows graph as presented in Figure 5.2. A 

directly-follows graph describes what activities follow one another directly, based on 

the records in the event log. It was chosen because this graph provides important 

information visually, including START and END events, colours representing activity 

frequencies and arcs with the number of patients following the paths.  
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Figure 5.2 Directly-follows graph the PPM Chemotherapy dataset. This is a result from 

the interactive Data-aware Heuristics Miner (iDHM) plugin in ProM. 

 
 

Figure 5.2 shows that patient pathways are started with either an Elective admission, 

Admission, or an Urgent outpatient. Patients from an Elective admission or Urgent 

outpatient might go for a round of Chemotherapy and Home discharge repeatedly 

until this is followed by either a Neutropenia, Admission, Elective admission, or 

Urgent outpatient. Following an Admission, patients might also have a Neutropenia, 

Bacteraemia, Elective admission, Urgent outpatient, or Death. 

2) Process mining of the chemotherapy cycles 

Further analysis was done to focus on the events during the chemotherapy cycles of 

breast cancer patients receiving EC-90 chemotherapy (n= 738). This was done by 

analysing a lower-level event, which is the chemotherapy cycle number. The results 

were a process model, a trace variant, and a dotted chart shown in Figure 5.3-5.5. 

It is evidenced in the process model in Figure 5.3 that the number of patients from 

one cycle to the next is decreasing. The median duration between chemotherapy 

cycles is 21 days, which reflects the common duration in the treatment. 
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Figure 5.3 Process model showing 70% of the most common pathways. It was built in 

DISCO. The number below an activity name shows the number of patients undertaking that 

activity. The number on arc shows the detail of the flow [number of patients; median 

duration]. 

 

Figure 5.4 shows the six most common trace variants followed by more than ten 

patients. The most common trace variant is a sequence of Cycle 1 to Cycle 6 (n=120; 

16.3%), followed by a sequence of Cycle 1 to Cycle 3 (n=56; 7.6%), and a sequence 

of Cycle 1 to Cycle 3 followed by an Emergency admission (n=37; 5%). It is shown 

that Emergency was mostly happened after Cycle 3 (see Variant 3) or Cycle 6 (see 

Variant 4), while Neutropenia happened after Cycle 5 (see Variant 6). 
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Figure 5.4 The six most common trace variants of chemotherapy cycles. Activities 

included are Cycle 1 through Cycle 6, Neutropenia, and Emergency. 

 
Figure 5.5 shows a dotted chart of routine chemotherapy cycles of patients treatments 

of up to 7 years. The diagram shows groups of patients who had not completed six 

cycles of chemotherapy, who completed six cycles of chemotherapy, and who had 

more complicated courses of treatment. In total 51% (n=376) of patients did complete 

all six cycles,  with 21% of the total (n=158) without any acute event while 30% 

(n=218) had at least one acute event including emergency admission or neutropenic 

sepsis. Of the 49% (n=362) patients who did not complete six cycles, 28% (n=207) 

had acute events with the remainder 21% (n=155) not completing for other reasons. 

 
Figure 5.5 Dotted chart showing patient pathways over treatment duration. The x-axis 

shows duration from the first activity. The y-axis shows patient id, sorted from the shortest to 

the longest durations. 
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3) Process analytics: conformance-based process change over time 

Another analysis was done to identify process change over time. Conformance 

checking was done by analysing the conformance values of the process model. A 

reference process model has been presented in Figure 5.2 with a fitness of 0.826, a 

precision of 0.342, and a generalisation of 0.999, suggesting that the model did 

represent the traces in the event log, was generalisable, but not very precise. 

The analysis was enhanced to examine the process changes over time. It was done by 

checking the conformance of the event log per year to the reference process model.  

Table 5.6 Fitness, precision, and generalisation over years 

Year Events Cases Variants (%) Fitness Precision Generalisation 

2004 2,555 20 20 (100) 0.7828 0.3112 0.9500 

2005 4,363 32 31 (97) 0.8843 0.2784 0.9832 

2006 3,155 29 29 (100) 0.8745 0.3296 0.9755 

2007 4,083 44 43 (98) 0.8743 0.3029 0.9927 

2008 13,082 143 136 (95) 0.7484 0.3385 0.9986 

2009 14,889 173 154 (89) 0.7354 0.3459 0.9981 

2010 13,781 147 138 (94) 0.7447 0.3327 0.9986 

2011 14,255 168 138 (82) 0.7451 0.3669 0.9989 

2012 13,377 138 118 (86) 0.7568 0.3583 0.9963 

2013 14,302 149 125 (84) 0.7711 0.3719 0.9962 

2014 21,803 24 24 (100) 0.7622 0.3894 0.9632 

Average 0.78905 0.33869 0.98647 

 

The results are displayed in Table 5.6. It shows that the number of cases each year 

ranges from a minimum of 20 in 2004 to a maximum of 173 in 2009. The trend of the 

increasing number of cases from 2004 until 2013 was discussed with clinical experts 

and was said to conform the reality. This was related to the fact that the hospital is a 

large cancer centre with a growing capacity of cancer treatment. The fitness ranges 

from 0.7354 to 0.8843 (average = 0.7891). The precision ranges from 0.2784 to 

0.3894 (average = 0.3387). The generalisation ranges from 0.95 to 0.9989 (average = 

0.9865). The trend of those conformance values is presented in Figure 5.6.  
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Figure 5.6 Trend of trace fitness, precision, and generalisation over time. The 

generalisation was generally steady, while precision and fitness fluctuated over time. 

 
Figure 5.6 shows that the precision and fitness are not steady over time, suggesting 

there must be some changes. There is also a trade-off between fitness and precision 

where a more precise model would have lower fitness. There are two periods where 

the process had potentially changed, which are 2004-2005 and 2007-2008. 

5.2.4 Stage 4: Evaluation 

The evaluation was done through discussions with clinical experts. Those included a 

researcher of the previous study using the same dataset, a database administrator of 

the de-identified dataset, and a senior oncologist working with the PPM database. 

Discussions were done to get a description of the previous study, identify potential 

gaps in the research, and evaluate both intermediate and final results. 

Discussion on the early stages was done to plan and justify the experiment. It was also 

done to discuss the decisions on the extraction, transformation, and loading steps. 

Results of this early discussion include the order of the same timestamp and merging 

events. The clinical expert provided the logical order of events happened on the same 

day. Merging events were also decided based on a suggestion by the clinical expert to 

filter out duplicated records in the dataset. 

General comments of the intermediate and final results are that process mining is 

potentially useful to improve the previous study generating process model of 

chemotherapy treatment. The analysis is particularly helpful to visualise the variations 

from standard chemotherapy pathways, including incomplete treatment and adverse 

events. The conformance-based comparison was also useful for analysing process 

change over time, but the metrics need to be improved to identify change points 
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reliably. The detected change points were likely related to the introduction of the PPM 

EHR system in 2003 and the change from PPM1 to the current PPM in 2007. 

One limitation was that the preprocessing relied on the selection of the best set of 

events. It requires a good understanding of the dataset and a specific cohort of patients. 

This experiment was started by analysing the higher-level process as presented in 

Figure 5.2. It was then followed by examining the chemotherapy cycles including the 

adverse events, as shown in Figure 5.3- Figure 5.5. The decision to analyse the more 

specific pathway can be seen as a way to select the best set of events of interest. The 

more detailed analysis of the chemotherapy pathways is presented in Appendix D.2. 

 

5.3 Experiment 4: Trace clustering for similarity analysis 

The most obvious challenge of doing process mining in healthcare data is handling 

the high number of trace variants. One way to solve this is to apply trace clustering to 

cluster similar traces into one grouping. The experiment was done with hierarchical 

clustering using edit distance in the PPM Chemotherapy dataset. The complete step 

by step of this experiment is presented in this section. 

5.3.1 Stage 1: Planning and justification 

This stage was done to plan and justify the experiment. This experiment aims to 

improve the analysis of the variability of treatment in the PPM Chemotherapy dataset. 

The primary research question was “Is it possible to use trace clustering to analyse 

the variability of treatment in the PPM Chemotherapy dataset?”. This is an additional 

experiment to support the previous experiment with a specific focus on exploring the 

potential to use hierarchical trace clustering method. The hypothesis was that the 

hierarchical clustering could be used to group similar traces and create separated 

process models for each cluster. This experiment used Python and DISCO. 

5.3.2 Stage 2: Extraction, transformation, and loading 

General stages in this experiment followed those done in Experiment 3 as presented 

in Section 5.2. The additional steps were:  

(1) coding activity names,  

(2) creating an edit distance matrix,  

(3) hierarchical trace clustering,  
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(4) determining the optimal number of clusters,  

(5) retrieving clusters, and  

(6) describing process models of the clusters.  

Step (1) was part of Stage 2 and is described in the following paragraph. Step (2) to 

step (6) were parts of Stage 3 and are described in Section 5.3.3.  

Coding activity names was done to simplify the activity names into a character for the 

edit distance matrix creation. The coding step was done using pandas library in 

Python. Traces were hierarchically clustered using the scipy.cluster.hierarchy library. 

The optimal number of clusters was determined using the silhouette method. The 

activity names are presented in Table 5.7. The four most frequent activities are 

Chemotherapy (n=1,072 / 100%), Day case review (n=798/ 74.4%), Home discharge 

(700/ 65.3%), and Urgent outpatient (n=664/ 61.9%). 

Table 5.7 Coding activity name, the occurrence, and the number of patients 

Code Activity Name Occurrence (%) n (%) 
A Chemotherapy (S1) 5,910 (23.5) 1,072 (100) 
B Urgent outpatient (D3) 1,944 (7.7) 664 (61.9) 
C Non-neutropenic (S5) 1,192 (4.7) 603 (56.3) 
D Day case review (D4) 7,179 (28.6) 798 (74.4) 
E Death (D6) 388 (1.5) 388 (36.2) 
F Admission non-neutropenic (S4) 1,308 (5.2) 541 (50.5) 
G Home discharge (D0) 1,928 (7.7) 700 (65.3) 
H Neutropenic (D7) 1,107 (4.4) 511 (47.7) 
I Not bacteraemia (S8) 884 (3.5) 425 (39.6) 
J Elective admission (S2) 618 (2.5) 360 (33.6) 
K Admission progressing neutropenic (S9) 41 (0.2) 38 (3.5) 
L Bacteraemia (S6) 143 (0.6) 108 (10.1) 
M Admission neutropenic (S7) 324 (1.3) 218 (20.3) 

5.3.3 Stage 3: Mining and analysis 

The process mining step of the complete event log resulted in a process model, as 

presented in Figure 5.7. The fitness score was 0.826 and the precision score was 0.342. 

The median duration was 24.4 months and the mean duration was 28.9 months. The 

number of events per patient ranged from 1 to 220, with a mean of 21. There were 

1,042 variants out of 1,072 patients, suggesting that this process had high variability 

and there was a need to find groups of patients having similar traces to create simpler 

and more understandable process models. 
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Figure 5.7 General process model resulted from DISCO with 80% activities and 0% paths 

 

In the analysis step, the edit distance matrix was created using the Levenshtein 

distance [174]. It was originally used to measure the distance between two words as 

the minimum number of single-character edits (insertions, deletions, or substitutions) 

required to change one word into the other. This method is suitable for this experiment 

because the Levenshtein distance is a string metric for measuring the difference 

between two sequences. A trace with the coded activity names created a sequence of 

letters, thus comparing those sequences is the same as comparing words. The code to 

create a distance matrix is as follow. 

#create distance matrix 
import editdistance 

import numpy as np 

np.set_printoptions(threshold = np.inf) 
def f(x,y): 

    return editdistance.eval(x,y) 

     
def cartesian_product(*arrays): 

    la = len(arrays) 

    dtype = np.result_type(*arrays) 

    arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) 
    for i, a in enumerate(np.ix_(*arrays)): 

        arr[...,i] = a 

    return arr.reshape(-1, la) 
     

v=np.vectorize(f) 

arr = cartesian_product(cva.activity, cva.activity).T 
arr = v(arr[0, :], arr[1, :]) 
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dist_df = pd.DataFrame(arr.reshape(-1, cva.shape[0]), 
index=cva.index, columns=cva.index) 

dist_df 

The output is a distance matrix, as follow. 

trace  1    2    3    4    5    6    7    8    9    10  ...   1070  1071  1072  
trace                                                   ...                    

1          0    2    2    4    6    5    2    4   16   35 ...    88    8   26    

2          2    0    1    2    8    3    4    3   14   33 ...    87    6   24    

3          2    1    0    3    8    4    4    2   15   34 ...    86    6   25    

4          4    2    3    0   10    5    6    2   13   32 ...    86    5   22    

5          6    8    8   10    0    8    4   10   22   38 ...    94   14   32    

6          5    3    4    5    8    0    6    6   17   30 ...    87    8   25    

7          2    4    4    6    4    6    0    6   18   36 ...    90   10   28    

8          4    3    2    2   10    6    6    0   13   33 ...    84    6   24    

9         16   14   15   13   22   17   18   13    0   27 ...    73   12   17    

10        35   33   34   32   38   30   36   33   27    0 ...    63   29   21 

… 

[1072 rows x 1072 columns] 

The next step was to use the edit distance matrix to create a hierarchical clustering 

using scipy.cluster.hierarchy. This library clustered data based on agglomerative 

clustering [175], where objects are clustered based on their similarity. Pairs of objects 

with high similarity were merged iteratively until all objects are combined in one big 

cluster. The result can be presented as a tree-based representation of the objects, 

named a dendrogram.  

Traces were hierarchically clustered using the scipy.cluster.hierarchy library. The 

code of the hierarchical clustering is as follow. 

#hierarchical clustering 

import scipy.cluster.hierarchy as hcl 
from scipy.spatial.distance import squareform 

from scipy.cluster.hierarchy import dendrogram 

import matplotlib.pyplot as plt 
 

linkage = hcl.linkage(dist_df, method='ward') 

#ward minimises the sum squared distances within all clusters 

plt.figure(figsize=(20, 10)) 
plt.title('Hierarchical Clustering Dendrogram') 

plt.xlabel('sample index') 

plt.ylabel('distance') 

dendrogram( 
    linkage, 

    truncate_mode='lastp',  # show only the last p merged clusters 

    p=10,  # show only the last p merged clusters 
    leaf_rotation=90.,  # rotates the x axis labels 

    leaf_font_size=8.,  # font size for the x axis labels 

    show_contracted=True  
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The resulting dendrogram from this experiment is shown in Figure 5.8, which groups 

1,072 traces hierarchically.   

 
Figure 5.8 Hierarchical clustering dendogram. X axis shows trace number grouped into 10 

clusters at the lowest level, Y axis shows distance based on the edit distance matrix. 

 

Based on the hierarchical clustering result, the next step was to determine the optimal 

number of clusters. There are two ways to do this, which are internal and external 

methods. Internal methods use the information of the clustering to evaluate the 

goodness of the clustering structure and can be used for estimating the number of 

clusters without any external data. Some methods to measure internal information of 

the clustering are Davies-Bouldin index, Dunn index, and Silhouette coefficient. 

External methods compare the clustering result to externally known labels, such as 

the provided class labels. In this experiment, the internal methods are suitable because 

there was no prior knowledge of the class labels.  

An internal method used in this experiment was the silhouette coefficient [176], which 

reflects the compactness/ cohesion (how close are the objects within the same cluster) 

and separation (how well-separated a cluster is from other clusters) of the cluster 

partitions. The silhouette coefficient measures how well an object is clustered and 

estimates the average distance between clusters. The formula is  

𝑺𝒊 = (𝒃𝒊 − 𝒂𝒊)/𝐦𝐚𝐱	(𝒂𝒊, 𝒃𝒊) 
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where bi is the dissimilarity between i and its neighbour cluster and ai is the average 

dissimilarity between i and all other points of the cluster where i belongs. Clustered 

items with a high average of silhouette value are considered well clustered. The 

summary of the silhouette coefficient for two to ten clusters is presented in Figure 5.9. 

 
Figure 5.9 Silhouette coefficient of k = 2 to k = 10. The silhouette coefficient decreases as 

the number of clusters (k) increases.  

 
Cluster 1 consist of traces of 839 patients (78%). The process model of cluster 1 (see 

Figure 5.10) is very similar to the general process model presented in Figure 5.7. The 

median duration is 24.4 months and the mean duration is 28.9 months. The most 

frequent variant consists of patients who received six cycles of Chemotherapy (S1) 

(n=21, 2.5%). The second variant consists of six S1 followed by an Urgent outpatient 

(D3) (n=20, 2.4%). The third variant consists of six S1 followed by a Not neutropenic 

(S4) (n=10, 1%). The average number of events per patient is 16 (min=1, max=46). 

Further analysis compared the trace frequency of each activity. The average difference 

is 5%. The highest difference is in the trace frequency of Admission not neutropenic 

(5%), where 50% of patients in the complete dataset had this activity but only 40% of 

patients in this cluster had this activity. The other activities had 7% or less difference 

on the trace frequency between this cluster and the complete dataset. The process 

model of cluster 1 is presented in Figure 5.10. 
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Figure 5.10 Process model of cluster 1. The process model is very similar to the general 

process model. 

 
The process model of cluster 2 in Figure 5.11 consists of patients having different/ 

exceptional traces. The median duration is 36.4 months and the mean duration 37.8 

months, both showing longer durations compared to cluster 1. Events per patient 

ranged from 4 to 220, with a mean of 41. There are three activities that are frequent 

in cluster 2 but not frequent in cluster 1 nor the complete log, which are Admission 

non-neutropenic (n=199/ 85%), Non-neutropenic (n=191/ 82%), and Not bacteraemia 

(n=156/ 66%).  The process model of cluster 2 is presented in Figure 5.11.  
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Figure 5.11 Process model of cluster 2. It shows process model of patients having 

exceptional care pathways (n=233/ 22%). 

5.3.4 Stage 4: Evaluation 

This experiment aimed to find an alternative way to group patients based on their 

similarities. The clustering method was separating the common traces from the 

exceptional ones. As presented hierarchically in Figure 5.8, two clusters were 

separating 838 traces (78%) from 233 traces (22%). The next level created three 

clusters of 839 traces (78%), 10 traces (1%), and 223 traces (21%). The final clusters 

were also not meaningful to separate patient groups in cancer treatment.  

An insight gained from this experiment is that there is an opportunity to create a new 

method or to improve the available methods for analysing process variants in cancer 

treatment. Another insight was that the differences between clusters could be 

characterised by the differences of activity frequency, as described in Section 5.3.3. 

Trace clustering would not be explored further in this thesis, but other approaches to 

characterised differences of process models based on trace duration and activity 

frequency will be used in the next case study. 



- 130 - 

5.4 Summary 

This chapter has described the analysis of the PPM Chemotherapy dataset. The PPM 

Chemotherapy dataset was used as an extract of the PPM database with a specific 

focus on records of patients receiving chemotherapy treatment within the LTHT. The 

analysis was initially done by reproducing the clinical pathway analysis in the 

previous study, with an improvement in the structured method proposed in this study. 

Discussions with clinical experts focused on how the visualisations resulting from the 

process mining approach can be useful to support understanding of the pathways.  

An additional analysis of the PPM Chemotherapy dataset was done to explore the 

possibility of using a trace clustering approach to find different patterns within a 

process. The results, as presented in Section 5.3, show two clusters with visual 

differences compared to the complete dataset. But it appears that the trace clustering 

was done to separate the outlier/ the infrequent traces from the main cluster. A lesson 

learned from this experiment was that trace clustering can be used to find different 

patterns within a process, but a better approach is needed for process change analysis. 

This case study can be seen from different perspectives, as described in Section 1.2. 

From the health service perspective, the process model in Figure 5.3, for example, are 

useful for the health service manager for understanding the pathway of patients 

receiving chemotherapy. From the process mining perspective, this case study has 

been shown how the dataset can be used for process mining in healthcare, despite 

some limitations due to the de-identification process. From the information system 

perspective, the conformance-based change detection in Section 5.2.3 shows that 

conformance values over the years are not constant. This finding implies that the 

process has been changed. It has been confirmed by a member of the PPM developer 

team that the detected changes were related to the introduction of the PPM software 

in 2003 and a major improvement in 2007.  

The analysis of the PPM Chemotherapy dataset can be seen as an exercise to get used 

to the complete data in the PPM Cancer dataset. Once the ethical access to the PPM 

Cancer dataset was granted, this study then used the dataset in the next experiments. 

  



 

Chapter 6  
Case study 3: Experiments using the PPM Cancer Data 

Analysis of the Patient Pathway Manager (PPM) Chemotherapy dataset produced a 

range of useful results that have been presented in Chapter 5. This chapter presents 

the analysis of the PPM Cancer dataset through four experiments. The PPM Cancer 

dataset also includes the patients selected in the Chemotherapy dataset. 

Section 6.2 has been presented in an invited joint presentation at the Public Health 

England National Cancer Registration and Analysis Service (PHE NCRAS) seminar 

in 2018. Section 6.3 was presented and published in the 2019 Process-Oriented Data 

Science for Health (PODS4H) entitled “A multi-level approach for identifying 

process change in cancer pathways” [177]. A journal paper is prepared to extend that 

paper into the International Journal of Environmental Research and Public Health 

(IJERPH) Special Issue of PODS4H19. Section 6.4 summarises another journal paper 

that is prepared for a jointly-authored publication entitled “Process mining to explore 

variations in the 62-day pathways of endometrial cancer” [178]. Section 6.5 presents 

additional work with process change analysis on the whole PPM Cancer dataset.  

6.1 Data description 

Overview of the PPM Cancer dataset has been presented in Section 1.4.2 and has been 
described in Section 3.4.3. More details of this dataset are presented in this section. 

6.1.1 Data provenance 

The PPM Cancer dataset was generated from direct access to the PPM Query 

database. This database is a copy of the live database of the PPM EHR system, which 

contains data on patient treatment in the LTHT from 1990 until the present. The 

characteristics of the PPM EHR system in the LTHT were presented in Section 5.1.1.  

The database contains information about all patients within the hospital, including 

cancer patients. Access to this database was made possible through the hospital 

infrastructure in the secure environment (UoL IRC). Along with the PPM Query 

database, other resources are also accessible. Those are the PPM Splunk, a web-based 

application management that captures real-time user access, and the PPM JIRA, a 

project management software used by the development team in the LTHT. 
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6.1.2 Representativeness 

The PPM Query database is an exact copy of the PPM live database, as used in the 

LTHT. PPM is a mature EHR that captures the comprehensive clinical data of all 

patients receiving treatment within the LTHT. The PPM Cancer dataset consists of 

the clinical data of more than 3 million patients, of which more than 270,000 patients 

have at least one cancer-related diagnosis (the number is growing). The system 

integrates data from multiple systems within the LTHT, including patient admissions, 

treatments (chemotherapy, surgery, and radiotherapy), pathology, investigations, 

Multidisciplinary Team (MDT) meetings, consultations, and outpatients. The PPM 

dataset is one of the largest EHRs in the UK, and this makes this data highly 

representative for cancer treatment analyses. 

6.1.3 Data characterisation 

The PPM Query database was accessed based on ethics approval. It contains 49 tables 

in the Leeds table schema (see Appendix E.1). Every table was checked to be used in 

process mining to analyse patient pathways during their cancer treatment. The main 

step was to check each column in those 49 tables to find potential columns to be a 

case id, an activity name, a resource name, and a timestamp that refer to an event in 

patient treatment. This step needed several iterations of a careful investigation of each 

table, documentation review, and discussion with clinical experts. 

One important challenge was that one table might contain more than one activity, and 

the activity names might need to be inferred from the recorded timestamp. For 

example, Admissions table has some potential columns: PatientID, AdmissionDate, 

ContactSpecialityLabel, DischargeDate, DischargeMethodLabel. There were two 

activities identified in this table, which were Admission and Discharge that was 

inferred from AdmissionDate and DischargeDate, respectively. The PatientID was 

identified as the case id. ContactSpecialityLabel was identified as the resource name 

of Admission and DischargeMethod Label was identified as the resource name of 

Discharge. The timestamps of Admission and Discharge were AdmissionDate and 

DischargeDate, respectively. 

Overall, 12 out of 49 tables had the minimum requirements for process mining and 

were selected to extract patient pathways. This selection is presented in Appendix E.2. 

The list of selected columns from each table for process mining is shown in Table 6.1. 
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Table 6.1 Detail of columns for process mining 
* if NULL, use cn_ContactTypeCode_CodeLabel from Contact reference table 

# Table case id resource timestamp 

1 Admission em_PatientID em_ContactTypeLabel em_AdmissionDate 

2 ChemoCycles ecc_PatientID ecc_CycleContactTypeLabel ecc_CycleStartDate 

3 Consultation eb_PatientID eb_ContactTypeLabel eb_ConsultationDate 

4 Diagnosis dx_PatientID dx_ContactTypeLabel dx_DiagnosisDate 

5 Investigation en_PatientID en_ContactTypeLabel* en_EventDate 

6 MDT Review ev_PatientID ev_ContactTypeLabel* ev_EventDate 

7 Outpatient op_PatientID op_ActualContactTypeLabel op_ClinicDate 

8 Pathology esp_PatientID esp_ContactTypeLabel* esp_PathologyDate 

9 Patients pt_PatientID NULL pt_DeathDate 

10 Radiotherapy er_PatientID er_ContactTypeLabel er_EventDate 

11 Referral ef_PatientID ef_SourceCodeLabel ef_ReferralDecisionDate 

12 Surgery es_PatientID es_ContactTypeLabel* es_SurgeryDate 

6.1.4 Data quality 

The data quality of the PPM Cancer dataset was assessed based on the data quality 

framework for process mining of EHR data [179]. This framework was built based on 

methods and dimensions of data quality assessment [133]. An important approach 

proposed in this framework was to register potential data quality dimensions and 

analyse them. The result is summarised in the following paragraphs. 

The completeness of the data was assessed with element presence, data element 

agreement, data source agreement, distribution comparison, and validity checking 

methods. The main concern was to find missing data in case, event, activity name, 

and timestamp. Completeness checking on the 49 tables in the PPM Cancer dataset 

was done by analysing the data and discussing the results with the clinical experts. 

One important finding was that the completeness of the data changes over time. This 

is because the PPM system is evolving. For example, Outpatient activity started to 

appear in patient records in 2006. This is not because patients before 2006 were never 

seen in any Outpatient activities, but because this activity just started to be recorded 

in the PPM system in 2006.   

The correctness of the data was assessed with element presence, data source 

agreement, and validity checking methods. The main focus was to analyse imprecise 

data in case, event, activity name, and timestamp. One important finding is that the 

Surgery table contains event data of all types of surgeries, including diagnostic 
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surgery and therapeutic surgery. A clinical expert categorised the main procedures of 

the surgeries to separate those two. As a result, there are two activities derived from 

the surgery events: Diagnostic Surgery and Surgery. Another issue found during the 

analysis is that some events were recorded with the date and 00:00:00 was added as 

the hour, minute and second. This led to a problem where those events seem to have 

occurred in the middle of the night, when they actually did not. 

The concordance of the data was assessed with element presence, data source 

agreement, and distribution comparison methods. The main focus was to analyse 

irrelevant data in case, event, activity name, and timestamp. This was done by 

examining columns in all tables within the PPM database to find relevant columns for 

process mining. There are 12 tables relevant for process mining of cancer treatment 

pathways, and some other tables used as reference tables. For example, the Contacts 

table was used as a reference table for defining the resource from the original table.  

The plausibility of the data was assessed with element presence and distribution 

comparison. The main focus was to find incorrect data in case, event, activity name, 

and timestamp. One example of an issue found in the plausibility of the PPM Cancer 

data was the surgery types. Early iterations on the pathway analysis found that the 

number of surgery records was too high, suggesting that the majority of patients had 

undergone surgery in their cancer treatment. Further discussions with clinical experts 

found that this was because surgery can be categorised into diagnostic surgery and 

[therapeutic] surgery. The issue of 00:00:00 as default time is also a critical problem 

in process mining. When the sequence of events is analysed, the events with 00:00:00 

time would be treated as the first event during the day and obstruct the real sequence 

of events. 

The currency of the data was assessed with a log review. The assessment was to check 

if they were recorded in the PPM EHR within a reasonable period of time following 

the activity. One issue found in the currency of PPM Cancer dataset was that there are 

records dated back to the 1990s, while the PPM EHR had only begun to be used in 

the LTHT in 2003. Discussions with the development team suggested that these data 

were manually recorded in the PPM database by the team in the early years of the 

PPM EHR system use. Another possible issue was data error, which might have 

occurred during data recording. To handle this issue, the analysis did not use any data 

before 2003. 
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The most crucial issue in the process mining of the PPM Cancer dataset is that the 

PPM database is supporting PPM software, an EHR system developed in the LTHT. 

The system was inevitably changed over time for many reasons. Some examples of 

the reasons are the changes needed when a clinician found an error in the system, the 

changing guidelines for the treatment of a specific type of disease, and the decision 

taken by the hospital to connect with other services outside the hospital. The naturally 

changing environment made it challenging to analyse the data with process mining. 

The process mining results for a subset of the data during a specific period might be 

different from those from another period. 

6.1.5 Data variety 

In the complete set of the PPM database, data variety is high. The PPM database was 

focused on recording data in cancer treatment since 2003 and has been underpinned 

to manage all data within the whole Trust since 2012. Further improvement was made 

in 2014 to join the Leeds Care Record (LCR), an integrated digital care record system 

across the Leeds city region. Those major changes are important as starting points to 

help understand the high complexity and high variety of the PPM dataset. For this 

research, data analysis focused on cancer patient records in the PPM database.  

The variety of cancer patients can be identified by the number of patients diagnosed 

with cancer during 2002–2017, as presented in Table 6.2. The most common cancer 

type in the PPM Cancer set is the C00–C75 (61.65%), followed by C81–C96 (55.55%) 

and D10–D36 (26.35%). One patient might have more than one type of cancer and 

can be included in more than one group. 

Table 6.2 The number of patients based on cancer types 

ICD code Cancer type Patients % 
C00-C75 Malignant neoplasms, stated or presumed to be 

primary, of specified sites, except of lymphoid, 
haematopoietic and related tissue 

236,244 61.65 

C76-C80 Malignant neoplasms of ill-defined, secondary and 
unspecified sites 

7,203 1.88 

C81-C96 Malignant neoplasms, stated or presumed to be 
primary, of lymphoid, haematopoietic and related 
tissue 

21,285 55.55 

D00-D09 In situ neoplasms 12,546 3.27 
D10-D36 Benign neoplasms 100,989 26.35 
D37-D48 Neoplasms of uncertain or unknown behaviour 4,930 1.29 
Total 383,197 100.00 
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6.1.6 Limitations of using PPM Cancer dataset in this study 

The limitations of using the PPM Cancer dataset in this research are closely related to 

the challenges of analysing real-life datasets. The PPM EHR system is a growing 

system, with a development team working continuously to improve and make changes 

as required by the hospital. This condition causes the quality of the PPM Cancer 

dataset varies over time. The long duration of data stored in the PPM Cancer dataset 

means it is not possible to assume that no changes happened to the process over that 

time. It is also not possible to understand the complete history of the changes that 

happened to the system based on the documentation only. 

One approach for change analysis is to separate one change and investigate the effects 

on the related process. Another approach is to analyse the process and detect the 

changes based on a specific pattern of interest (trend, seasonal, or residual patterns). 

 

6.2 Experiment 5: GP tab change analysis  

As mentioned in Section 6.1.6, the most critical issue in using the PPM database is 

that the system was changed over time. This study focused on the changes evidenced 

in the User Interface (UI) of the PPM EHR system, but the reasons for the UI changes 

are out of this discussion. This limitation was because the reason behind a change 

might not be evidenced in the data. 

All user interactions are recorded in the PPM Splunk, and every time a user views 

data in the PPM EHR system, the system automatically updates the data in the system. 

Whenever the PPM EHR system is changed, those changes are recorded in the PPM 

JIRA software. The PPM developer team uses the PPM JIRA software as a dashboard 

to track issues and changes to the PPM EHR system. From the PPM JIRA, detailed 

information about the change can be found in timely order, including the request for 

change, processing, and the release of the new updated version. 

In this research, UI changes in the PPM Cancer dataset were explored in two types of 

experiments. The first one was to analyse a process change when a change is known. 

For this purpose, the introduction of a General Practitioner (GP) Tab was chosen as a 

change of interest. The experiment using the GP Tab change is presented in this 

section. The second type of experiment was to detect changes without prior 

knowledge about any change and is presented in the next sections. 
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6.2.1 Stage 1: Planning and justification  

This stage was done to plan and justify the experiment. This experiment aims to 

examine the effects of GP tab introduction in cancer treatment. The primary research 

question is “Is it possible to analyse process changes from a given UI change?”. The 

GP Tab introduction is one example of a UI change in the PPM EHR system. The GP 

Tab allows clinicians to access patient records within the GP system required to 

support clinical decisions for patient treatment. This requires a change in the PPM 

EHR system, to provide access to the GP records.  

The GP Tab is a feature in the PPM EHR system presenting the GP information (such 

as diagnosis, allergies, and medications) recorded for patients registered with a Leeds 

GP taking part in the LCR. This GP Tab was introduced in July 2014. An illustration 

of the GP Tab in the PPM EHR system is presented in Figure 6.1. 

 
Figure 6.1 The GP tab in the PPM EHR system. This preview is from the official website 

of PPM support [180]. 

 

In this experiment, the usage of the GP Tab in the PPM EHR system is recorded in 

the PPM Splunk. The record of GP Tab usage was then analysed to explore the pattern 

of this usage over time. The record was also transformed into an event log and 

combined with the event log of the cancer treatment. The combined event log was 

used to explore the effect of the GP Tab access on the cancer treatment. For this 

experiment, the scope was breast cancer patients receiving chemotherapy from 2014 

to 2018. This experiment included clinical experts in every stage. 
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6.2.2 Stage 2: Extraction, transformation, and loading 

The extraction was done through a query in the PPM Splunk. The view of the query 

page in PPM Splunk is presented in Figure 6.2. This view contains detailed data on 

the date and time, page address, patient id and user id recording a time when a 

clinician had accessed the GP Tab page of a patient. There is also a bar chart 

visualising the number of records on a daily basis. The bar chart shows an obvious 

pattern of weekday- and weekend- usages. 

 
Figure 6.2 Records of user access in the PPM Splunk. Confidential information such as 

patient ID and dates are blocked in black. 

 

The result of the query was plotted in a bar chart representing the number of clicks on 

the GP Tab every day from July 2014 until December 2018. The plot is presented in 

Figure 6.3. 

 
Figure 6.3 GP tab clicks each day. It shows that the number of clicks generally increased 

over time, with steady fluctuations showing the pattern of weekday- and weekend- usages. 

 
In March 2018, there was an improvement of the Medical Interoperability Gateway 

(MIG) from MIG1 (GPv1) to MIG2 (GPv2). MIG is the gateway to integrate the GP 

SystmOne/EMIS into the LCR. The transition period from the GPv1 to GPv2 can be 

captured in the monthly usage from 2017 to 2018, as shown in Figure 6.4.   
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Figure 6.4 Monthly usage of GP tab during 2017-2018. The blue dots are monthly usage 

of the older version (GPv1) and the orange dots are those of the new version (GPv2). 

 
 

During September 2017 to February 2018, both versions were accessed by the 

clinicians. A small number of clinicians (7 to 14 users) clicked through the GPv2 from 

September 2017 to January 2018. The GPv2 was later tested by a larger number of 

clinicians (1,117 users) in February 2018 and fully replaced the GPv1 from March 

2018. The GPv1 was deprecated completely in March 2018. 

6.2.3 Stage 3: Mining and analysis 

Stage 3 of this experiment was undertaken to combine cancer patient events in the 

PPM Cancer dataset of the GP Tab access within the PPM Splunk. The initial analysis 

was done by checking the intersection of cancer patients in the PPM Splunk and the 

PPM Cancer records. The GP Tab access in the PPM Sclunk is from July 2014 to 

April 2018. The cancer patients included in the experiment were those diagnosed with 

C% or D% during 2002–2017. There were 46,547 out of 339,127 cancer patients 

(37%) who had their GP Tab clicked by clinicians. On the other hand, there are 46,547 

out of 171,468 GP Tab access (16%) are the GP Tab of cancer patients. 

Process mining was done to continue the analysis of the chemotherapy treatment of 

breast cancer patients, as presented in Section 5.2. This experiment analyses Leeds 

patients diagnosed with breast cancer (C50) who received EC-90 as adjuvant 

chemotherapy from 2014 to 2018, and whose GP Tab was clicked by clinicians. There 

were 733 patients included in this selection. The analysis was done to explore GP Tab 

access during chemotherapy cycles. The event log was a combination of patient events 

in the PPM Cancer dataset and the GP Tab access of those patients in the PPM Splunk.  
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Figure 6.5 shows the process map containing the flow from Cycle 1 of chemotherapy 

to the subsequent cycles up to Cycle 6. During the course of chemotherapy, the GP 

Tab might be accessed by clinicians. The most frequent sequence is that the GP Tab 

was accessed after Cycle 6 for 160 out of 339 GP Tab clicks (47%). This was 

discussed with clinical experts. The clinicians might need to check on patient records 

in the GP Tab after the sixth cycle to decide whether to discharge the patient or to 

suggest another treatment. The next most frequent one was after Cycle 3 for 110 clicks 

(32%). The possible case was that clinicians needed to check on patient records in the 

GP Tab after Cycle 3, to decide if the next cycles should be delivered as planned or 

not. Another interesting finding was that in 326 clicks (96%), the GP Tab click is the 

last activity in the pathway, or at the end of the treatment. 

 
Figure 6.5 Process model of GP tab access during chemotherapy cycles. This was built 

using bupaR. It shows that GP Tab was mostly accessed after Cycle 3, Cycle 6, or Cycle 4.  

 
 

6.2.4 Stage 4: Evaluation 

In this experiment, the evaluation was done in both statistical and clinical aspects. The 

results of the statistical evaluation were presented along with each result in Stage 3 

above. The clinical evaluation was done through discussion with clinical experts and 

is presented in the following paragraphs. 

In Stage 1, clinical experts suggested the scope of the study. Some known changes in 

the PPM EHR system were discussed with the clinical experts, the development team, 

and the software training team. The GP Tab change was chosen based on the 

availability of the related data to explore process change. One important insight from 
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the software training team was that for some new features introduced in the PPM 

software, there was a period when training was given to the clinicians to introduce the 

use of a new feature. This training period might affect the analysis of system usage. 

It was found that the training and testing period of the GP Tab introduction was from 

September 2017 to February 2018. 

In Stage 2, clinical experts evaluated the extraction step and suggested some changes. 

This included a change to focus on the effect of the GP tab introduction to the 

chemotherapy cycles. The decision to focus on one specific process and one change 

of UI was chosen to localise the change and the effects of that change to the treatment 

process. It was followed by a discussion with the programme manager of Leeds Care 

Record (LCR). LCR is the initiative to create integrated records of patients across 

providers and between different systems in Leeds. The GP tab introduction was part 

of the LCR program. The approach undertaken in this experiment was said to be 

promising to analyse the effect of the introduction of different functionality in the 

LCR program. The additional data from the PPM JIRA was also suggested by the 

development team to get complete records of the change. The PPM JIRA was useful 

to gather as many information as possible about a change being analysed. 

In Stage 3, the evaluation was done through a discussion of the results from the 

clinical perspective. The idea of combining user access records in PPM Splunk with 

the treatment records in the PPM Query database was good to analyse the effect of a 

system change to the treatment process. Another possibility discussed was to analyse 

PPM Splunk separately to be compared to the process model discovered from the 

patient record. Since PPM Splunk recorded all actions done by clinicians during 

patient treatment, the treatment process itself should be reflected in the records. 

 

6.3 Experiment 6: Endometrial cancer pathways from referral to 

diagnosis 

This experiment was done to explore process change over time without a prior known 

change. The endometrial cancer pathway was chosen in this experiment because of 

clinical expert availability. This was also because endometrial cancer is one of the 

most common cancers in the gynaecology department, and it was understood that the 

procedure for endometrial cancer had not been changed radically within the last 15 
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years. In this study, analysis of the endometrial cancer pathway was focused on the 

change process analysis, to detect and analyse change points over time. Based on a 

discussion with clinical experts, analysis can be done into two steps. The first step is 

the pathway from GP referral to diagnosis and is presented in this section. The second 

step is the pathway from GP referral to first treatment that represents the 62-day 

pathway and is presented in Section 6.4. 

This section explores the process change analysis of endometrial cancer treatment. 

This experiment followed the general methodology described in Chapter 3. The 

changes found were analysed to find process evolution within the system. The 

complete stages have been published [177] and the important findings are summarised 

in Sections 6.3.1 to 6.3.4. 

6.3.1 Stage 1: Planning and justification 

Stage 1 (planning and justification) in this experiment was done by understanding the 

data and additional resources of PPM development [21]. The scope of the experiment 

is the analysis of Leeds patients diagnosed with endometrial cancer during 2003–

2017. The analysis focused on the pathway from GP referral to the diagnosis of 

endometrial cancer. The research questions are: 

1)  What is the pathway of endometrial cancer from referral to diagnosis? 

2) Are there differences in care paths over time? 

The experiment involved clinical experts and a statistician during all stages of the 

study. This was done through regular discussions at the end of each stage. 

6.3.2 Stage 2: Extraction, transformation, and loading 

The extraction was done by obtaining all the events that happened to the selected 

cohort from GP referral to diagnosis. The criteria were to include: (1) all patients who 

have a legitimate care relationship with the LTHT, (2) those who have a 

definitive/primary diagnosis of endometrial cancer (C54 and C55), (3) those with a 

GP referral as the start event and the diagnosis as the end event, and (4) those having 

a maximum duration of 120 days. These selection criteria were applied in a database 

query to create an event log. The extraction was done by selecting columns for process 

mining: case_id, activity, resource, and timestamp. For this experiment, there were 

943 patients with a total of 96,067 events in the event log. 
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The transformation was done to filter the extracted event log as required. This 

included removing missing values, merging subsequent events, and adding artificial 

START and END events. Two additional filtering processes were performed to split 

Surgery and to handle the same-day events. Surgery was split based on two types of 

surgery (diagnostic and therapeutic surgeries) into Diagnostic Surgery and Surgery 

activities. Same-day events were ordered based on the logical sequence of the events 

as discussed with the clinical experts. The number of events and patients having those 

events for each activity in the final event log is presented in Table 6.3. 

Table 6.3 Detail of events in the event log 

# Activity Events n n (%) 

1 Admission 605 519 55% 

2 Chemotherapy 1 1 0.1% 

3 Consultation 357 152 16% 

4 Death 1 1 0.1% 

5 Diagnosis 943 943 100% 

6 Diagnostic Surgery 972 809 86% 

7 Discharge 284 256 27% 

8 Investigation 1,759 738 78% 

9 MDT Review 395 231 24% 

10 Outpatient 228 149 16% 

11 Pathology 1,239 860 91% 

12 Radiotherapy 1 1 0.1% 

13 Referral 1,854 943 100% 

14 Surgery 274 258 27% 

Total 8,915 943 100% 
* n = number of patients 

 

Table 6.3 shows that all patients have Referral and Diagnosis, as these are required 

as the start and end events of the process. The most infrequent activities are 

Chemotherapy, Radiotherapy, and Death. Along with Surgery, Chemotherapy and 

Radiotherapy are the treatment types for cancer. Those treatments commonly happen 

after diagnosis. In some cases, the diagnosis and the first treatment happened on the 

same day, hence they are extracted from this case study. 
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6.3.3 Stage 3: Mining and analysis 

The mining and analysis stage in this study was done through process mining and 

process analytics. Process mining includes process discovery and conformance 

checking. Process analytics was performed to analyse process change over time using 

a multi-level process comparison approach and is presented in Section 6.3.4. 

Process discovery was performed using iDHM, as a plugin in ProM that provides 

many options for process model abstraction. The input is an event log created as 

presented in Section 6.3.2. The directly-follows graph is shown in Figure 6.6 below. 

 

Figure 6.6 The directly-follows graph, showing process model of the pathway. 

 
Figure 6.6 shows the most frequent pathways from referral to diagnosis of endometrial 

cancer in the 943 patients. For simplicity, the process model shows the eight most 

frequent activities and the most frequent paths between them. The Outpatient, 

Consultation, and MDT Review activities were omitted to produce a simple diagram. 

The Outpatient activity appeared in 149 out of 943 patients (16%), Consultation 

appeared in 152 patients (16%), and MDT Review appeared in 231 patients (24%). 

Conformance checking was performed to check conformance of the reference model 

to the traces in the event log [86]. The reference model was discovered from the 

complete event log using iDHM plugin. The general process model was highly 

representative of the complete event log with a replay fitness of 0.809, a precision of 

0.83, and a generalisation of 0.996. This means that the process model can accurately 

reproduce the traces recorded in the log, allows behaviours that are not seen in the 

event log, and can reproduce predicted future behaviours of the process. 
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6.3.4 Process change analysis with a multi-level approach 

The analysis of process change over time was done by comparing the process in three 

levels of detail: process model, trace, and activity levels, as presented in Table 3.2 in 

Section 3.3.1. The idea was to explore process changes by comparing process 

execution over time within those three levels. The process-model level compares 

replay fitness, precision, and generalisation of the general process model to the traces 

over time. The trace level compares duration and variant proportion over time. The 

variant proportion compares the proportion of the general variants in the sub-logs. 

The activity level compares the frequency and percentage of the activities over time.  

A summary of the process-model comparison results is presented in Table 6.4. It 

shows that the general process model was representative of each year log.  

Table 6.4 Summary of multilevel comparisons 

 

The median [Interquartile Range (IQR)] of the replay fitness is 0.86 [0.10], the 

precision is 0.78 [0.03], and the generalisation is 0.93 [0.06]. All three conformance 

measures were similar across all years. The exceptions were in 2004 when the 

precision dropped, 2011 when the replay fitness dropped and the generalisation 

increased, and 2016 when both trace fitness and precision started to increase. 

Therefore, the three potentially significant change points are 2004, 2011, and 2016. 

The trace comparison was done by examining the trace duration and variant 

proportion for each yearly sub-log. There is no obvious qualitative pattern in the trace 
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duration, except on the IQR. The IQR generally decreases across the years, with the 

exception of the increasing IQR on 2005 from 42 to 71 days (68%), on 2008 from 32 

to 45 (39%), on 2010 from 34 to 49 days (44%), on 2011 from 49 to 50 days (2%), 

and on 2015 from 41 to 48 days (18%). Based on this analysis, five periods were 

detected as potential changes: 2005, 2008, 2010, 2011, and 2015. There is no obvious 

pattern in the variant proportion over time, except the waving trend of the first variant 

(Referral à Investigation à Pathology à Diagnostic Surgery à Diagnosis) and the 

decreasing trend of the other variants. 

The activity comparison was done by analysing the percentage of each activity for 

the number of patients each year. The activities were grouped into frequent activities 

(³ 60%), infrequent activities (< 60%), and high-varied activities in between. 

Qualitatively, the periods of 2004, 2011, and 2016 were marked by changes in the 

frequency of the activities. In 2004, all activities had a significant increase, except for 

the infrequent activities. In 2011, there are significant increases in the four infrequent 

activities, while Discharge decreased to be lower than the four infrequent activities. 

In 2016, the frequency of the infrequent activities was increased except for Outpatient. 

6.3.5 Stage 4: Evaluation 

In this experiment, statistical evaluation was presented along with the results 

described in Stage 3. The multilevel approach for process change analysis was found 

to be useful to support discussions with the statistical and clinical experts in this study. 

The clinical evaluation was done through discussions with the clinical experts and a 

member of the development team within the hospital. The discovered process model 

reflected the general pathway from referral to diagnosis of endometrial cancer. There 

was no significant change in the duration and sequence of the pathways that the 

clinical experts were aware of, which confirmed the trace-level comparison. A 

concern was raised about some trace variants having an Admission without a 

Discharge. This is the case where the Discharge happened after Diagnosis and was 

not included in this experiment. One important discussion in the activity-level 

comparison was that the EHR system is continually evolving. Some activities had 

only begun to be recorded in later years, such as Outpatient (2006) and Consultation 

(2008). The multilevel comparison was successfully captured the system changes. 
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6.4 Experiment 7: The 62-day pathways of endometrial cancer 

This section describes the analysis of the endometrial cancer pathway from GP 

referral to the first treatment. This reflects the 62-day wait pathway and is a 

continuation of the analysis in Section 6.3. The stages of the analysis followed the 

general methodology presented in Chapter 3 and are very similar to the stages of the 

analysis in Section 6.3. The specific steps for this experiment of the 62-day pathway 

are presented in this section. Those steps that are similar are not presented again in 

order to avoid duplication. 

6.4.1 Stage 1: Planning and justification 

This study expands the first experiment to answer two research questions: 

1) What is the general pathway of endometrial cancer from GP referral to the 

first treatment? 

2) Are there differences in care paths followed by different patient groups? 

The first research question was addressed by analysing all the events that happened 

to the patients during the period from GP referral to the first treatment. The second 

research question was explored by creating patient groups based on the types of first 

treatment they received for their cancer, their age at diagnosis, and the year of 

diagnosis. The three types of cancer treatment are surgery, chemotherapy, and 

radiotherapy. The age of patients was grouped into ten-year ranges. The year of 

diagnosis ranges from 2003 to 2018. These grouping criteria were selected based on 

the clinical expert suggestion that process change over time might be related to the 

treatment types and age range. 

6.4.2 Stage 2: Extraction, transformation, and loading 

Extraction was done from the PPM Query database in the Microsoft SQL Server 

database management system. Patient records were extracted using R codes with 

embedded SQL queries. The extracted records were then transformed into an event 

log containing case_id, event names, resource names, and timestamps. Patient data 

were carefully selected from 12 tables as identified in Section 6.1.3. Event names 

were derived directly from the table names with further adjustment based on 

discussions with clinical experts. There are timestamps (down to the day) in each of 

those 12 tables that are used directly in this study. 
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The selection criteria were similar to those in the experiment in Section 6.3. The 

criteria were to include: (1) all patients who have a legitimate care relationship with 

the LTHT, (2) those who have a definitive/primary diagnosis of endometrial cancer 

(C54 and C55), (3) those with a GP referral as the start event and first treatment 

(chemotherapy, radiotherapy, or surgery as the end event, and (4) those having a 

maximum duration of 240 days. 

The transformation was done to create an event log and adjust it to be used in process 

mining. The event log was filtered following the same approaches as mentioned in 

Section 6.3.2. There were 949 patients selected with a total of 17,413 events. The 

selected events were between July 2001 and May 2018. The duration of the traces 

ranged from 5 days to 238 days, with a median duration of 62 days and a mean of 79 

days. There were 921 trace variants out of those 949 patients, suggesting a high 

variability of the traces among patients. In this study, the variability was explored 

based on the first treatment, patient age at diagnosis, and the year of diagnosis. The 

proportion of patients in each group is presented in Table 6.5. 

Table 6.5 Proportion of patients in each group 

First treatment  Year of diagnosis 

Group N (%)  Group N (%) 

Surgery 877 (92%)  2003 29 (3%) 

Radiotherapy 49 (5%)  2004 38 (4%) 

Chemotherapy 24 (3%)  2005 44 (5%) 

   2006 51 (5%) 

Age at diagnosis  2007 54 (6%) 

Group N (%)  2008 57 (6%) 

20s (20-29) 3 (0.3%)  2009 48 (5%) 

30s (30-39) 10 (1%)  2010 64 (7%) 

40s (40-49) 54 (6%)  2011 94 (10%) 

50s (50-59) 205 (22%)  2012 94 (10%) 

60s (60-69) 318 (34%)  2013 105 (11%) 

70s (70-79) 245 (26%)  2014 87 (9%) 

80s (80-89) 105 (11%)  2015 80 (8%) 

90s (90-99) 9 (0.9%)  2016 52 (5%) 

   2017 52 (5%) 
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Table 6.5 shows the high variability of the cohort, based on the three grouping criteria. 

The first treatment groups show that the most frequent first treatment is surgery 

(92%), as confirmed by the clinical experts. The most frequent age groups at diagnosis 

are the 50s (22%), 60s (34%), and 70s (26%). There was an increasing trend of the 

number of patients over the years except in years 2009 and 2014–2017. Some groups 

had a small number of patients in them, for example patients who were diagnosed in 

their 20s. This has been confirmed with clinical experts to reflect the real proportion 

of endometrial cancer patients. The groups with a small number of patients were not 

analysed further to comply with the information governance and prevent re-

identification of the patients. 

6.4.3 Stage 3: Mining and analysis 

The process mining step was done through process discovery and conformance 

checking. The process model is presented in Figure 6.7. 

 
Figure 6.7 Process model of endometrial cancer 62-day pathways   

Figure 6.7 shows the simplified pathways with a minimum frequency of 0.1. 

Conformance checking was done in ProM and this showed conformance values as 

follows: a trace fitness score of 0.83, a precision score of 0.80, and a generalisation 

score of 0.995. These values show that the model is highly representative of the 

general pathway of endometrial cancer treatment. The three infrequent activities not 

presented in the process model are Chemotherapy (24 or 0.1%), Radiotherapy (49 or 

0.2%) and Death (1 or 0.006%). Other highly-frequent activities which are not 

presented in the process model, so might happen in many points within the sequence, 

are Consultation, MDT Review, and Outpatient. 

The variability can be presented as a dotted chart, or as the distribution of the pathway 

duration, as shown in Figure 6.8. This shows that the highest frequency is at 62 days. 

A long tail of duration > 62 days reflects the real circumstances of patients with more 

complicated conditions. 
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Figure 6.8 Histogram of the duration of endometrial cancer 62-day pathways 

 
The process model, trace variants, dotted chart, and the histogram of the pathway 

duration of the 62-day pathway of endometrial cancer are the supporting evidence of 

the complexity of the pathway. The variability is the focus of the process analytics. 

The process analytics step was done by analysing pathway variations based on the 

first treatment, the age at diagnosis, and the year of diagnosis. The groupings were 

shown in Table 6.5. For each grouping, a comparison was done to the pathway 

duration and the percentage of activity presence in the traces. 

Based on the first cancer treatment, there are three groups: Chemotherapy, 

Radiotherapy, and Surgery. Variability of the treatment duration in those three groups 

was compared. The shortest median duration is Chemotherapy (min 15 days, median 

60 days, max 228 days). This is followed by Surgery (min 5 days, med 62 days, and 

max 233 days). The Radiotherapy group (min 27 days, med 97 days, and max 238 

days) had the longest median duration among the three. Surgery is the most common 

treatment with a median duration similar to the target duration (62 days). 

The next comparison was done using the Process Comparator plugin in ProM. This 

plugin compares the percentage of trace frequencies having activities over all patients 

within a group. The alpha significant level is 5%. A summary of the differences 

between two groups is presented in Table 6.6. Based on the age at diagnosis, the 

patients were grouped into their 20s, 30s, 40s, 50s, 60, 70s, 80s, and 90s. The 

comparison was done by comparing the duration of treatment within the group of 

patients. The results show no specific trend on the treatment duration based on the age 

at diagnosis. The four most frequent groups have a very similar distribution of 

treatment duration, which are the 50s, 60s, 70s, and 80s groups.  
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Table 6.6 Process comparison based on the first treatment 

Group 1 Group 2 Difference Differences (Group 1 : Group 2) 

Surgery Chemotherapy 14.08% Outpatient (40% : 71%) 
Consultation (55% : 79%) 
Discharge (40% : 75%) 

Surgery Radiotherapy 11.11% Admission (93% : 71%) 
Outpatient (40% : 59%) 
Discharge (40% : 63%) 

Chemotherapy Radiotherapy 4.6% - 

The next comparison was using the Process Comparator plugin. A summary of the 

pair-wise differences is presented in Table 6.7. This shows that the differences 

between two groups range from 0% to 10% (average 3.6%). The group with the most 

significant difference is the 90s group (average 7.3%). Based on age at diagnosis, 

patients can be grouped into their 20s, 30s–40s, 50s–80s, and 90s. 

Table 6.7 Pair-wise differences (%) based on the age at diagnosis.  Percentage is color-

coded from red as the highest to green as the lowest difference. 

  20s 30s 40s 50s 60s 70s 80s 90s 
20s                 
30s 2.63               
40s 3.17 0             
50s 3.39 3.28 1.64           
60s 3.33 3.33 3.33 0         
70s 3.33 1.67 3.23 5.17 0       
80s 2.99 2.94 1.56 3.28 1.64 0     
90s 2.7 4.76 6.67 8.47 10 10 8.82   

Based on the year of diagnosis, the patients were grouped into 2003 to 2017. The 

comparison was done based on the treatment duration. The result shows the variability 

of the treatment duration based on the year of diagnosis. The trend of the median 

duration as shown in Figure 6.9 increased in 2003 (84 days) to 2005 (97 days). It 

decreased slightly in 2006 (66 days) to 2012 (57 days). It then increased in 2013 (72 

days) followed by a decrease in 2014 (61 days) to 2017 (60 days). 
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Figure 6.9 The treatment duration based on the year of diagnosis.  A box shows the first 

quartile, median, and the third quartile. The lines show the variability from the minimum to 

the maximum duration. The dashed line shows target duration (62 days). 

 

6.4.4 Stage 4: Evaluation 

In this experiment, the evaluation was done using both statistical and clinical 

evaluation. The results of the statistical evaluation were presented along with each 

result in Stage 3. The other detailed results of this experiment are presented in the 

paper prepared for a journal. The results of the clinical evaluation in each stage of this 

experiment are summarised in the following paragraphs. 

In Stage 1, planning and justification was done as discussed with clinical experts. 

They suggested grouping the patients to explore the variations in cancer treatment. 

The resulted patient groups were based on the first treatment, the age at diagnosis, and 

the year of diagnosis.  

In Stage 2, discussions with clinical experts were conducted to validate the 12 tables 

selected in this study. The clinical experts also suggested a limitation on the GP 

referrals as the start event to include only referrals from the GP to one of four 

oncology specialisms. Those four specialisms are gynaecology, gynaecology 

oncology, medical oncology, and clinical oncology. Another input from the clinical 

experts was to separate diagnostic and therapeutic surgeries. The last input from the 

clinical experts in this stage was to limit the pathway duration up to 240 days. This 

was based on the real practice that, when they need to diagnose a patient, they consider 

events up to eight months before the diagnosis only. A longer time period is too long 

for the events to be related. In the transformation step, because the database contained 
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timestamps in the granularity of days, some events seemed to happen in parallel when 

they were recorded on the same day. This was handled by setting an order based on 

the logical sequence provided by clinical experts. 

In Stage 3, clinical expert feedback was that the visualisations resulting from this 

experiment are interesting and useful for further analysis of the pathways. Some 

limitations raised for each visualisation type (process model, dotted chart, boxplot 

diagram) were focused on that fact that there is not one visualisation to fit all 

requirements within the analysis. This was reflected as an opportunity to improve the 

visualisation approaches in process mining. A potential future work is to list a set of 

process mining visualisation methods along with their features and a list of frequently-

posed questions in pathway analysis. Those two lists could then be mapped to build a 

guidance on the recommended visualisation methods for different questions of 

pathway analysis. 

This experiment provides evidence that the PPM Cancer dataset contains sufficient 

data for analysing cancer pathways from GP referral to the first treatment. The 

question-driven methodology has been applied and is suitable for an exploratory study 

to analyse variants in a treatment pathway. 

 

6.5 Experiment 8: Cancer treatment change analysis  

This experiment was done to detect change points in the monthly records of events 

related to cancer treatments. The experiment was to show a change pattern in the 

system usage and aims to find change points where the system has been potentially 

changed. It is important to note that this experiment was conducted only for the larger 

cohort of all cancer patients. This was done to get a larger dataset that can be flexibly 

partitioned into subsets based on the monthly records. It is not possible to do this 

experiment in a cohort of patients having a specific type of cancer without breaching 

the rule of small number limitations. For example, as presented in Table 6.5, the 

number of endometrial cancer patients over the years ranged from 29 to 105 patients. 

If that number of patients were then partitioned into months, there would only be 2 to 

9 patients per month. Those numbers are too small and patients might be identified. 
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6.5.1 Stage 1: Planning and justification 

The data for this experiment included all events of cancer patients in the PPM Cancer 

dataset. The analysis was done to examine the number of monthly records of each 

activity of interest and to detect change points based on the pattern of the monthly 

records. The monthly duration was chosen to get a smaller size of sub-logs without 

breaching the information governance requirement to work on small size samples. 

The research question was “Is it possible to detect change points based on the monthly 

records over time?”. This experiment included a team of computer scientists, clinical 

experts, and statisticians. 

6.5.2 Stage 2: Extraction, transformation, and loading 

The extraction was done by a query to get the number of monthly records of each 

activity related to cancer treatment in the PPM Cancer dataset from 2003 to 2018. The 

events were recorded in 12 tables, as identified in Section 6.1.3.  

The transformation was done to transform the number of monthly records of each 

activity from 2003 to 2018 into a time-series object in R. This section presents the 

step-by-step analysis of the Diagnosis events and summarises the findings of the other 

events. Diagnosis is the baseline in this experiment because it was used in the 

selection criteria. Patients were included in this experiment if they have been 

diagnosed with cancer. The complete result of each event is shown in Appendix E.3. 

6.5.3 Stage 3: Mining and analysis 

The process mining step in this stage was done by creating a process model of cancer 

treatment in the PPM Cancer dataset. The process model was very complicated and, 

as such, is usually called a spaghetti model.  

The process analytics was done to analyse process change over time. The time-series 

object was then decomposed using the signal decomposition method for additive time 

series. This method resulted in four plots mapping:  

(1) the observed signal showing the monthly records of an activity in the event log,  

(2) the trend signal showing the increasing/ decreasing pattern of the observed plot,  

(3) the seasonal signal showing the monthly average of the observed signal, and  

(4) the random/ residual signal showing the residual signal from the observed signal 

minus the trend and the seasonal pattern.  
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For example, the result of the Diagnosis event is presented in Figure 6.10. 

 
Figure 6.10 Decomposition of monthly records of diagnosis.  It consists of four plots 

mapping the observed, trend, seasonal, and random/ residual plots over time. 

 
 

The first plot in Figure 6.10 represents the observed signal as the monthly records of 

diagnosis with minimum 807, median 3,641, mean 3,512, and maximum 7,568. The 

trend is presented in the second plot and was based on 12-moving average. The trend 

can also be explained by fitting a linear model on the observed signal. The fitted linear 

model for monthly records of diagnosis is presented in Figure 6.11. 

 
Figure 6.11 Fitted linear model of monthly records of diagnosis. The monthly records 

increased over the years with a coefficient of 33.6. 

 

The seasonal pattern as shown in the third plot of Figure 6.9 is the monthly average 

of the observed signal. It presents the variability of the number of diagnosis records 

in a year. The minimum is in December (-296) and the maximum is in July (186). 
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The residual/ random signal is presented in the fourth plot. The residual signal was 

analysed using a Statistical Process Control (SPC) approach. The idea is to plot the 

variability of the monthly diagnosis records after subtracting the trend and seasonal 

patterns. The change points were detected as the residual signal varied outside the 

control lines. Figure 6.12 shows the SPC chart of the monthly diagnosis records.  

 
Figure 6.12 The SPC of residual signal of monthly diagnosis records. The blue signal 

shows the variance over means of the monthly records. One detected change point is in May 

2018 where the signal is over the upper control line. 

  
 

The steps of analysing monthly records with the signal decomposition and SPC 

methods were performed on each of the 12 activities. Details of the steps in those 12 

activities are presented in Appendix E.3. The results were summarised in the statistical 

evaluation and discussed with clinical and technical experts. 

6.5.4 Stage 4: Evaluation 

The evaluation was done in two steps: statistical evaluation and clinical evaluation. 

The statistical evaluation was done by summarising the results of the steps in Stage 3 

for each activity. The clinical evaluation summarises the feedback from the clinical 

experts about the findings. 

The statistical evaluation started with a summary of the fitted linear model and is 

presented in Table 6.8. The p-value of the fitted linear model indicates the relationship 

between the number of monthly records and time. A small p-value means it is unlikely 

that the relationship is due to chance. The coefficients are colour coded to easily spot 

the activities having the highest coefficient to the lowest. The activity with the highest 

coefficient is Outpatient, and the lowest is Radiotherapy. All activities have a small 

p-value, except Radiotherapy. The p-value of Radiotherapy is more than 0.05, which 

means that there is not enough evidence to declare a relationship between the number 

of Radiotherapy records and time. 
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Table 6.8 Summary of the fitted linear model of the trend pattern 

activity coef adjusted R2 p-value 

Discharge 113.6616 0.8146 < 2.2e-16 

Consultation 72.78571 0.7631 < 2.2e-16 

Chemotherapy 12.6943 0.9111 < 2.2e-16 

Diagnosis 33.59295 0.9566 < 2.2e-16 

Investigation 376.0788 0.9156 < 2.2e-16 

MDT Review 39.9816 0.9678 < 2.2e-16 

Outpatient 791.9042 0.7555 < 2.2e-16 

Pathology 24.8572 0.6626 < 2.2e-16 

Radiotherapy 0.1599 0.002322 0.2317 

Referral 222.2942 0.8401 < 2.2e-16 

Surgery 41.24259 0.8681 < 2.2e-16 

A summary of the seasonal pattern is presented in Table 6.9. Based on this table, 

activities are mostly at their minimum average in December, except for Consultation 

and Chemotherapy. Consultation was at the minimum average in August while 

Chemotherapy was at the minimum average in February. 

Table 6.9 Summary of the seasonal pattern 
 

Activity Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Admissions 525 -1052 1131 -728 287 194 621 -266 63 429 147 -1350 

Discharge 237 -1048 1130 -631 304 181 690 -215 -54 491 72 -1157 

Consultation 4 134 354 -100 -28 415 98 -650 275 -425 91 -167 

Chemotherapy 19 -161 48 -41 -4 4 54 40 26 45 17 -47 

Diagnosis -93 -214 147 -68 92 163 186 -44 -15 56 86 -296 

Investigation 2468 -1266 2452 -688 463 179 1405 -1490 -140 1131 120 -4634 

MDT Review 101 -177 50 -146 -67 162 224 -128 45 135 107 -306 

Outpatient 3200 -8416 1939 -2370 770 5126 4956 -5704 3862 5730 4474 -13567 

Pathology 10 -253 222 -172 8 128 51 -232 147 212 320 -440 

Radiotherapy 4 -48 2 -42 -30 8 12 -22 5 101 76 -66 

Referral 802 -1348 2154 -377 601 1438 1262 -1739 204 1155 -88 -4064 

Surgery 26 -318 270 -279 -56 215 170 -241 177 284 346 -594 

Key: Red = Maximum, Yellow = Minimum 
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Statistics of the seasonal pattern is presented in Table 6.10. The variability of the 

seasonal pattern can be described based on the interquartile range (IQR) value. An 

IQR represents the middle 50% of values ordered from the lowest to the highest. The 

activity with the highest IQR is Outpatient with 7,798 and the lowest IQR is 

Radiotherapy with 38.1. 

Table 6.10 Statistics of the seasonal pattern 

Activity Min. Q1 Med. Q3 Max. IQR 
Admissions -1349.8 -381.6 170.4 452.7 1130.8 834.3 
Discharge -1157.3 -319.4 126.4 351.0 1130.0 670.4 
Consultation -650.4 -116.8 47.5 169.0 415.1 285.8 
Chemotherapy -161.1 -13.1 18.0 41.2 53.8 54.3 
Diagnosis -295.9 -74.4 20.5 106.0 186.3 180.4 
Investigation -4633.6 -832.5 149.6 1199.5 2467.7 2032 
MDT Review -305.5 -132.5 47.2 113.8 223.9 246.3 
Outpatient -13567.0 -3203.6 2569.5 4594.4 5729.6 7798 
Pathology -440.3 -187.2 30.6 163.1 319.9 350.3 
Radiotherapy -65.7 -30.1 3.4 8.0 101.0 38.1 
Referral -4064.1 -376.6 600.5 1235.3 2153.7 1611.9 
Surgery -593.8 -241.4 98.4 214.8 345.8 456.2 

A summary of the detected change points based on the random/residual pattern is 

presented in Figure 6.13. January 2004 was detected as a change point based on five 

activities (Admission, Discharge, Investigation, Outpatient, and Referral). It was 

followed by February 2004 based on four activities (Admission, Discharge, 

Investigation, and Outpatient), October–November 2003 based on three activities 

(Admission, Discharge, and Investigation) and October 2014 based on three activities 

(Admission, Discharge, and Radiotherapy). 

 
Figure 6.13 Number of activity change points by month. It shows the number of activities 

where change points were detected, over time.  
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The clinical evaluation was done through a discussion of the findings of this 

experiment. Some comments from the clinical experts were related to each finding 

and were mostly on the change points detected from the residual analysis using SPC. 

The details of the analysis of each event are presented in Appendix E.3. Some 

important comments are summarised as follow. 

The Admission and Discharge are two related activities which record the hospital 

admission and discharge of a patient. The pattern of detected change points based on 

the admission and discharge are very similar. Both suggesting three change points in 

2004, 2011, and 2014. Discussion with the clinical experts revealed that admissions 

were recorded as a copy from another system in the early years of the PPM system 

(2003–2004) and those had been completely migrated in later years. 

The Consultation shows change points detected in March–June 2018. This was 

discussed with the clinical experts and was apparently related to the fact that 

Consultation was moved into another system recently and was in the process of 

migration during 2018. 

The Chemotherapy shows a change point detected in July 2014. Based on discussion 

with the clinical experts, this is likely due to the change when clinicians in the 

haematology department started to do chemotherapy, whereas previously this could 

only be done by clinicians in the gynaecology and gynaecology oncology 

departments. 

Across activities, there are two periods where changes had potentially happened: 

October 2003-January 2004 and October 2014. October 2003-January 2004 was the 

early period of PPM implementation. Further discussions revealed that the change in 

October 2014 was due to the launching of the Leeds Care Record initiative. 

 

6.6 Summary 

This chapter has presented four experiments using the PPM Cancer dataset. The first 

one analysed the pathway from referral to the diagnosis of endometrial cancer. This 

has been published in a conference journal in 2019 [177]. The second one analysed 

the 62-day pathway of endometrial cancer, which is the pathway from referral to the 

first treatment of cancer. This is prepared for a journal paper [178]. The third one 

presented the analysis of a GP Tab as a feature in the PPM EHR system. The GP Tab 
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was treated as a known change in the system and was analysed to explore how this 

feature had been used during chemotherapy cycles. The fourth one explored the 

records in the PPM EHR system to detect change points down to the month. The case 

study of PPM Cancer dataset can also be seen from a different perspective, as 

described in the following paragraphs.  

From the health service perspective, process models discovered using process mining 

approaches are useful to visualise the pathways and further analysis. For example, 

experiment 6 and 7 in this case study can express process models in several 

visualisations, such as directly-follows graph in Figure 6.6. Future analysis was done 

following multi-level approach to analyse pathways in process-model, trace, and 

activity levels.  

From the process mining perspective, this case study has been shown that the PPM 

Cancer data can be used for process mining in healthcare. As a representative of real-

life healthcare data, the PPM Cancer dataset has been shown to provide sufficient data 

needed in process mining. The limitation of using process mining has been presented 

in Section 6.1.6. Due to the high number of data and variations of those data, a 

straight-forward approach to use process mining has not resulted in useful insight 

about the process. This has been addressed by proposing a combined approach of 

signal decomposition and SPC chart.  

From the information system perspective, this case study has been shown two 

experiments to analyse process change over time, which are experiment 5 and 

experiment 8. Experiment 5 shows how GP tab change has been used as an example 

of a known change in the system. The analysis has been done by creating an event log 

by combining user access log in the PPM Splunk and patient log in the PPM Query 

database. Experiment 8 proposed a new approach to analyse process change over time 

based on signal decomposition and SPC chart. The detected change points were then 

being discussed with experts to find the potential reasons behind those changes. 

The next chapter summarises discussions based on Chapters 1–6 of this thesis. It 

serves as a critical exploration of the literature review and method development 

explored in this study and as a reflection on the experiments conducted in the three 

case studies described in Chapters 4–6. 

  



 

Chapter 7  
Discussion 

Chapters 4 to 6 presented the analysis of the case studies based on the methodology 

described in Chapter 3. In this chapter, a discussion on the findings and lessons 

learned in this study is presented. This includes a reflection on the method, the 

challenges with healthcare process mining, the process change analysis, and the effect 

of system change on the healthcare process. This chapter is concluded by a discussion 

on the contributions of this thesis. 

7.1 Reflection on the method 

The standard method presented in Chapter 3 has been applied to the three case studies. 

The method evolved and was refined, as presented in Figure 7.1.  

 
Figure 7.1 Reflection on the method. The final method (right) has been put into the context 

of the key inputs and outputs in the healthcare environment (left). 
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As presented in Figure 7.1, the healthcare process in reality is complicated by the 

multifaceted nature of the organisational structure, process, people, and technology. 

These are also known as four forces in Leavitt’s diamond, as discussed in Section 

2.2.4.2. All of these facets are captured by the Electronic Healthcare System (EHR) 

through its User Interface (UI). They are then processed by the application and 

recorded in the database of the EHR. The data in the database was extracted, 

transformed, loaded (ETL), mined and analysed in this study, and later reviewed 

based on both a statistical and clinical evaluation. 

The benefit of process-oriented data analysis is that it uses the routinely collected data 

within the EHR. In terms of research, it means that there is no additional process or 

effort required for data collection. Another advantage is that the analysis can be done 

in a relatively short time over a relatively long duration of the data. By using the 

routinely collected data within the EHR, the process model discovered reflects the 

real execution of the treatment process. 

7.2 Answering research questions 

The six Research Questions (RQs) as presented in Section 1.3 have been broken down 

and answered through experiments using three datasets. The summary is as follow. 

(RQ-1) It is possible to analyse changes in care processes in EHR using process 

mining. This has been answered through experiment 2 as presented in Section 4.3, 

experiment 3 in Section 5.2, and all four experiments using the PPM Cancer dataset 

in Sections 6.2 – 6.5. This research questions covered RQ-2 and RQ-3. 

(RQ-2) It is possible to analyse process changes from a given UI change. This has 

been answered in experiment 2 in Section 4.3 and experiment 5 in Section 6.2. The 

MIMIC-III dataset provides a case where the EHR system was changed from a version 

to another. Process changes have been analysed by comparing the trace of the process 

before and after the system change. The analysis of a UI change in the PPM Cancer 

dataset is represented by an introduction of GP tab as a new feature in the PPM EHR 

system. Process mining approach has been used to analyse the usage of the new 

feature within the care pathway of chemotherapy cycles. 

(RQ-3) It is possible to detect a time point when a care process changed and this has 

been shown through experiment 6 – 8 in Sections 6.3 – 6.5. Experiment 6 analysed 

process changes in the pathways from GP referral to the diagnosis of endometrial 
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cancer. The multi-level approach applied in this experiment found several change 

points in the pathway. Experiment 7 explored the variability of the pathway from GP 

referral to the first treatment of endometrial cancer and the 62-day target. The 

variability of the pathway was explored based on the type of the first treatment, the 

age at diagnosis, and the year of diagnosis. Experiment 8 analysed the process change 

in the dataset of all cancer patients in the PPM system. Some change points were 

detected and reflected different causes of process change, including the early stage of 

EHR system implementation, the introduction of a new system to record an event in 

the EHR system, and the change in the structural organisation to the upgraded capacity 

of the care service in the hospital. 

(RQ-4) A process change is characterised by many parameters. This has been 

explored in experiment 4 in Section 5.3 and in experiment 6 through the multi-level 

approach in Section 6.3. Those parameters include replay fitness, precision and 

generalisation in the process-model level; trace duration and variant proportion in the 

trace-level; and frequency and percentage of activities in the activity level. 

(RQ-5) The best representation of care pathways depends on different perspectives 

for analysing care pathways and the properties of different options have been explored 

in Section 3.2.3.1. The options are to visualise the care pathway as a process model, 

a trace variant diagram, a dotted chart, or a process comparison diagram, among 

others. All experiments in this research explored those options and presented the best 

ones to support the visualisation of the experiment results. 

(RQ-6) The extraction of the dataset of patient pathways from the EHR system can be 

done by identifying events related to the patient pathways, extracting those events and 

transform them into an event log with minimum components of case id, activity name, 

and timestamp. Those steps represented stage 1 (planning and justification) and stage 

2 (extraction, transformation, and loading) in the study method. 

Some challenges in working with healthcare data have been reviewed in Section 

2.2.4.2 and are described in more detail in Section 7.3. The analysis in this research 

was heavily dependent on the data quality, which is dependent on many aspects of the 

collection, design, structure, management, and policy of the data. The quality of the 

analysis results was also dependent on the ETL, tools, method, and clinical experts. 

Another limitation is that the discovered process models can only represent what has 

been recorded in the data. 
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7.3 Challenges on working with healthcare data 

During this study, there were some challenges identified in performing process mining 

using healthcare data. The main challenges were related to data access and ethics 

approval, data quality, data understanding, and data visualisation. These will be 

discussed in the following sections. 

7.3.1 Data access and ethics approval 

Healthcare data are personal and sensitive. The procedures to gain access to the data 

varied based on the institutions managing the data. In this study, three datasets were 

used, and three different approaches were undertaken to gain access to the data. 

The MIMIC-III database is accessible after completing the National Institutes of 

Health (NIH) Protecting Human Research Participants training course. Upon 

completion, the certificate (as presented in Appendix B.1) had to be uploaded along 

with the MIMIC-III access request through a PhysioNetWorks login account. Another 

requirement was the need to sign a data use agreement. When access is granted, the 

MIMIC-III database can be downloaded as comma-separated (.csv) files. Those files 

can be imported to any major database frameworks such as MySQL, PostgreSQL, and 

Oracle. In this study, PostgreSQL was used.  

The PPM Chemotherapy dataset was used in two previous studies as described in 

Section 3.4.2. The front page of the IRAS application is presented in Appendix B.2. 

Access to the PPM Chemotherapy dataset was gained by joining the research team 

working on this dataset. This process was accompanied by a series of discussions with 

the PPM developer team to support connectivity setting and data understanding. Some 

challenges were solved through those discussions, for example, we had to decide 

whether data would be accessed from a University-networked PC or a hospital-based 

PC. We also submitted a request to create a Virtual Research Environment (VRE) in 

the Leeds Institute of Data Analytics (LIDA), but that was not successful. Once the 

decision was made, i.e. to enable access using a remote desktop connection from a 

University-networked PC, the process was completed within a week. 

The PPM Cancer dataset is an extract of the PPM live database, as described in 

Section 3.4.3. In this study, access to the database was through a hospital-networked 

PC in a LIDA secure room. The access arrangement to the PPM Cancer dataset was 

made through two approaches which were the LTHT Honorary Contract and the 
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Integrated Research Application System (IRAS) application. The LTHT Honorary 

Contract was first submitted in July 2016 and access granted in December 2016 (a 

five-month processing time). The IRAS application took longer. It was first created 

in April 2016, progressed and finally submitted on November 2017, and the approval 

outcome was granted in April 2018 (a two year processing time). Access to the PPM 

Cancer dataset began in January 2017, and access to the complete data was given in 

March 2018. The processing time of the ethics approval delayed the progress of the 

experiments with the PPM Cancer dataset. 

7.3.2 Data quality 

Data quality is a critical challenge in data analytics, including healthcare process 

mining. The EHR data were collected for clinical purposes to support clinicians 

providing treatment for their patients. When those EHR data are used for research 

purposes, the suitability of the data may be compromised. This condition may result 

in an extensive amount of data cleaning and filtering needed for the research. 

In this study, the data quality of each dataset was assessed following the Weiskopf & 

Weng framework [133]. This framework specifies five data quality dimensions: 

completeness, correctness, concordance, plausibility, and currency. Those five 

dimensions were assessed using seven methods: element presence, data element 

agreement, data source agreement, distribution comparison, validity check, gold 

standard, and log review. The main purpose of the data quality assessment in this 

research was to assess its suitability for process mining. Data quality of the datasets 

for process mining has been discussed in Sections 4.1.3 (MIMIC-III), 5.1.3 (PPM 

Chemotherapy), and 6.1.4 (PPM Cancer).  

The main data quality issues for process mining in healthcare can be identified as 

incompleteness, incorrectness, impreciseness, or irrelevancy [104]. These can happen 

in different levels of the event log: case, event, attribute, activity names, timestamp, 

or resource. The general approach to handle data quality issues was to identify the 

issues and exclude the unsolved issues. The advantage is that this approach resulted 

in high-quality data for further analysis. The disadvantage is that the resulting data 

was relatively small and might not representative of the complete dataset. This is the 

only possible approach within the MIMIC-III data analysis because access to the 

hospital is not possible. In the PPM Chemotherapy and PPM Cancer datasets, this 

approach can be minimised through frequent discussions with the clinical experts. 
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Another lesson learned from analysing the three datasets in this study was that the 

data quality was continually changing over time, due to many changes happening 

within the system. In the MIMIC-III dataset, the system change from CareVue (CV) 

to MetaVision (MV) was the system change of interest. Process comparison in the 

CV and MV systems has been discussed in Section 4.3. In the PPM Chemotherapy 

and PPM Cancer datasets, the data quality changes were found when comparing the 

process execution over time. Conformance-based change detection in PPM 

Chemotherapy dataset has been presented in Section 5.2.3. In the PPM Cancer dataset, 

process change has been analysed based on a known change in Section 6.2 and 

without a known change in Section 6.3 – 6.5.  

7.3.3 Data understanding 

Data understanding is another challenge in analysing healthcare data. This challenge 

is related to many factors, such as coding standards, semantic meaning, and also data 

quality. Understanding the nature of the EHR system, coding standards, process 

guidelines, the nature of cancer as a complicated disease, and UK standard for cancer 

waiting times have been effected by reviewing the related literature, as presented in 

Section 2.1. The nature of healthcare data as ‘big data’ [181] increased the challenge 

to understand the data completely. Big data can be described in the five Vs. The 

Volume of big healthcare data refers to the vast amount of data recorded in the system. 

The Velocity refers to the speed at which new data is generated and the speed at which 

data moves around. The Variety refers to the different types of data in the HIS, which 

includes among others administrative data, clinical data, radiology, and imaging. The 

Veracity refers to the messiness or trustworthiness of the data. The Value refers to the 

usefulness of the data in the specific domain. 

Based on the analysis of the three datasets in this study, this challenge was related to 

the different conditions within the three different datasets. The understanding of the 

MIMIC-III dataset was done completely based on the available documentation, both 

from the website of the MIMIC-III dataset and published papers analysing the 

MIMIC-III dataset for many other purposes. This understanding was limited because 

there was no direct access to the hospital that provides the data. Another limitation 

was due to the anonymisation approach undertaken by the data curator of the MIMIC-

III dataset, where times were shifted to the future dates. Some analysis was not 
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possible, such as the analysis of busy days, the impact of a bottleneck, etc. This has 

been presented in Section 4.1.6. 

The understanding of the PPM Chemotherapy and PPM Cancer datasets was done 

based on the available documentation, data exploration, and through discussion with 

the clinical experts and the development team. The documentation of the data 

structure of the PPM Chemotherapy and PPM Cancer datasets is limited. Direct 

exploration of the data is therefore required and this, in turn, requires a significant 

amount of time. The documentation of the system change in the PPM Cancer dataset 

was provided through access to PPM JIRA. In the PPM JIRA, all records of system 

changes can be found, including the change request, steps undertaken in the execution 

of the change, and the release notes. Further discussion with the clinical experts and 

the development team were found to be useful to complete the understanding. 

7.3.4 Data and process visualisation 

This study involved both computer science and clinical insights. Knowledge transfers 

between those two disciplines were completed through several discussions. Thus, a 

good visualisation approach to support the discussion was required. Basic data 

visualisations to describe different perspectives of the dataset have been used in this 

study, such as bar charts, line charts, histograms, box-and-whisker plots. 

During the analysis, some visualisation approaches were used to facilitate discussions 

with the clinical experts. The results of the process mining have been presented in 

several complementary ways. The challenge was to decide which one of the 

visualisations can be used to present the results in the best way. As discussed in 

Section 3.2.3.1, the main visualisations are process models, trace variants, dotted 

charts, and comparison diagrams.  

A process model is the main output of process discovery in process mining. A process 

model can be presented in several diagrams, such as a transition system, a UML 

activity diagram, a BPMN model, or a Petri Net as described in Section 2.2.2. In 

general, a process model is a diagram showing the sequence and the flow from one 

activity to another. Additional information can be presented in a process model such 

as the number of traces and the median or average time between events. Colouring 

and thickness can also be used to show the frequency or importance of the event and 

the path from one event to another. 
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A trace variant diagram shows the sequence of events happening to traces, grouped 

by the trace variants. An example of a trace variant diagram is shown in Figure 4.5 in 

Section 4.2.4. It is normally sorted in descending order of the frequency of the traces 

in the trace variants. This visualisation is useful to see the variability of the pathways. 

Limitations of a trace variant diagram are that it is not representing the duration of 

activities in the process and that one variant is represented as one sequence without 

representing the volume/ proportion of the variant relative to the population. 

A dotted chart shows the spread of activities over time. An example of a dotted chart 

is shown in Figure 5.5 in Section 5.2.3. The most common setting is to have a dotted 

chart with time on the x-axis and patients on the y-axis. One line in the dotted chart 

shows the pathway of a patient over time. A dotted chart is useful to gain insight on 

the pathways from the time perspective. A limitation of a dotted chart is the difficulty 

to represent the general pathway of a group of patients. This limitation is because one 

dot in the dotted chart represents one event happening to one patient, giving a fine-

grained level of pathway. 

A comparison diagram is a state transition diagram showing activities as boxes and 

the paths between activities as directed arcs from one box to another. In these terms, 

a comparison diagram can also be seen as a process model. The difference is that a 

comparison diagram represents a process model from the comparison of two event 

logs. It is then annotated and colour-coded to visualise the differences in those two 

event logs. The advantage of using a comparison diagram is that it combines process 

models from two event logs being compared as one diagram. The limitation is that the 

combined process model increases complexity. 

7.3.5 Process change over time 

The main challenge discussed in this study is the healthcare process changes over 

time. Any analysis done in healthcare should consider those changes and how they 

affect the process of interest. This was also the case in the healthcare process mining 

projects. It is important to collect and analyse a large amount of data to get a better 

result for process mining. The trade-off is that a large amount of data are mostly 

collected during a long period of time. The EHR system collecting those data might 

have been changed. If the data is assumed to be static, the process model and the 

analysis of it would be invalid. The conformance of the discovered process model 

needs to be measured over time. In the first and second experiments of the PPM 
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Cancer dataset case study, it was evidenced that the process has been changed over 

time. This change was analysed with the multilevel approach proposed in this study. 

Data in an EHR system is an output of a complex combination of organisational 

structure, task, people, and technology [135]. A change in an EHR system could be a 

change in organisational structure, task, people technology, or a combination of those 

aspects. The specific cause of a change was not discussed in this study. A change in 

the EHR system is an interplay between those aspects. For example, when there is a 

change in the organisational structure, the system will need to change the task, people, 

and technology. The detected changes were discussed with the clinical experts to 

reveal the possible reasons behind those changes, but there was no specific method to 

differentiate change in the organisational structure or the task, people, or technology.  

The process change analysis in the MIMIC-III was effected based on a system change 

documented in the MIMIC-III data descriptor. This change could be seen as a change 

in technology. The findings showed that the organisational structure, task, and people 

were also changed. This has been discussed further in Section 4.3.5. 

The analysis in the PPM Chemotherapy dataset was done by comparing process 

models over years, based on the value of trace fitness, precision, and generalisation. 

This analysis found differences in the process models, that could be used to represent 

processes or task. This has been discussed further in Section 5.2.4. 

The analysis in the PPM Cancer dataset was achieved in two ways: with or without a 

known change prior to the analysis. With a known change, analysis of the effect of 

GP tab change showed an example of a technology change. The finding showed the 

evidence of organisational-, task-, and people- changes. Without a known change, the 

findings showed evidence of changes in all four aspects. As discussed in Section 6.5.4, 

it revealed that the technology has changed over time, from a software focused on 

supporting cancer data collection to an EHR system in the whole hospital trust, from 

a software coded in Basic to a web-based application. The EHR system is also 

evolving, with some organisational-, task- and people- changes found where the 

activities were started to be recorded in the system at different years, additional task 

was given to a department, and organisational change to join a larger initiative 

combining the EHR system with those of other institutions. 
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7.4 Process change analysis 

In this thesis, one of the main tasks was process change analysis. This analysis was 

done by partitioning an event log to create subsets over time and performing a process 

comparison between two consecutive time windows. The partitioning approach was 

applied, as illustrated in Figure 3.8. The general method of using process mining to 

analyse process changes has been built upon the available approaches in the literature 

including concept drift analysis, as described in Section 2.2.5. The problem 

dimensions of process change analysis are illustrated in Figure 7.2 below. 

 
Figure 7.2 Problem dimensions of process change analysis. Each dimension needs to be 

analysed in the initial stage of process change analysis. 

 

It is important to understand as many dimensions as possible in the initial stage of 

process change analysis, to plan and justify the method correctly. Each of the problem 

dimensions in Figure 7.2 is described in the following paragraphs. 

In term of the modes of handling, a process change analysis can be done in an online 

or offline mode. This study was in the offline mode, which means that the process 

change analysis was not performed on the real-life/real-time data but was performed 

on the extracted data. An unusual condition on the three datasets used in this study 

was that access to the datasets was provided to the full database. This condition is 

advantageous in that it enabled further extractions as required in each experiment. 

Based on the duration of change, this study analysed both the momentary and 

permanent changes. In the MIMIC-III dataset, the system was changed permanently 

from CV to MV in 2008 with a clear separation of hospital admissions. In the PPM 

Chemotherapy dataset, no specific system change was analysed, but the data 
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partitioning technique was used to analyse process change over time. A conformance-

based comparison was undertaken to compare the conformance of two consecutive 

years, which reflect the momentary change in the process. In the PPM Cancer dataset, 

the GP Tab implementation was an example of a permanent change. On the other 

hand, a momentary change was also explored using the data partitioning technique 

combined with a multilevel approach of consecutive years comparisons. 

Based on the perspectives, this study focused on the control-flow perspective, but also 

analysed the data and time perspectives. The control-flow perspective was used to 

analyse changes in the sequence and flow of events. The data and time perspectives 

were used to provide supporting details of the control-flow perspective. 

The pattern of change analysed in this study was a sudden/abrupt change. The 

sudden/abrupt change is the basic type of change which might also support the finding 

of other patterns of changes. When a sudden change happened several times with a 

repeating pattern, a recurring change is potentially identified. When a sudden change 

occurred several times with a non-repeating pattern, an incremental change or a 

gradual change is potentially identified. 

The sub-problems of the process change explored in this study were the detection, 

localisation, characterisation, and enhancement/unravelling of the process change. 

When a change is known, change detection is straightforward. For example, in the 

MIMIC-III dataset (CV to MV) and in the PPM Cancer dataset when the GP Tab 

introduction was being analysed. When a change was unknown, change detection was 

done by uniformly partitioning the data over time and comparing the process 

execution within each time window. Change localisation and characterisation were 

done by digging deeper into the process based on the identified change. The 

enhancement was done through discussions with the clinical experts and the 

development team to reveal the possible reasons for the process change. 

The nature of the change revealed that the enhanced sub-problem ranged from the 

real change of process execution to the change within the EHR system. The change 

in the MIMIC-III dataset was known to be caused by the change of the EHR system. 

The changes in the PPM EHR system were more complicated because they were a 

combination of many changes in the system. Process changes were found through 

process comparison over time. An example of system changes was that some activities 

were not found in the early years because they were not recorded yet in the system.  
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7.5 The effect of system change on healthcare processes 

A system change in an EHR system could happen any time and for many different 

reasons. This research explored some reasons behind a system change. In the MIMIC-

III dataset case study, a system change happened in 2008 when the hospital replaced 

the EHR system with a new one. In the PPM Chemotherapy dataset case study, there 

were no system changes known initially. The analysis of the process revealed that 

there were differences in the conformance values over time. This finding suggested 

that there were process changes. The more complicated condition happened in the 

PPM Cancer dataset case study. The dataset contains clinical data of the patients over 

16 years (2003 to 2018). The PPM EHR systems had begun to be used in the hospital 

in 2003. Some changes had taken place in those 16 years. In 2010, the PPM1 that was 

focused on cancer treatment records only was expanded to the PPM that covered the 

whole Trust. In 2014, there was an introduction of a GP Tab that enabled clinicians 

in the hospital to check on patient records in the GP system during consultations. 

Among the three case studies, the PPM Cancer dataset was the best fit for this study. 

It was because this dataset was a copy of a real-time database, complete with the real 

advantages and real limitations. The main benefits were that it represented actual 

healthcare processes in a busy hospital and that it came with an excellent connection 

to clinical experts and the development team. The limitations were that the dataset 

was raw and had not been curated. The PPM Cancer dataset case study was also 

suitable for this study because there were some documentations of system changes 

over time, which was used by the developer team to record the progress of system 

changes and communicate within the team. The access to the complete data of patient 

treatments, the clinical experts, and the development team of the EHR system were 

three success factors in analysing process change within a healthcare setting. 

There were four experiments to analyse the effect of system change in the healthcare 

process in the PPM Cancer dataset case study. They were experiments 5-8 in Section 

6.2 - 6.5. The experiment on the GP Tab change analysis was to test the effect of a UI 

change on the process. The process mining approach was a suitable approach to reveal 

the use of the GP Tab during chemotherapy cycles. This experiment was 

representative of the process change analysis based on a known system change. On 

the other hand, experiments 6-7 worked on analysing process change over time on the 

endometrial cancer pathways, guided by the UK cancer waiting time standard, as 



- 173 - 

described in Section 2.1.7. Experiment 8 was done to detect process change without 

any prior information of a possible system change. The experiment explored the 

system usage to detect change point(s) that had possibly occurred within the system. 

 

7.6 Contributions of this thesis 

The motivation of this research is to contribute to the community, specifically the 

Process-Oriented Data Science for Health (PODS4H) community [8]. There are four 

contributions of this thesis: the case studies for healthcare process mining, the 

multilevel approach for identifying process change, the signal decomposition 

approach for change analysis, and the time window selection for process analysis. 

Each of them will be described in the sections below. 

7.6.1 Case studies for healthcare process mining 

The first contribution of this study was to apply process mining approaches in three 

different datasets, i.e. the MIMIC-III, the PPM Chemotherapy, and the PPM Cancer 

datasets. All three datasets did not come from process-aware information systems. A 

process-aware information system is a software system that manages and executes 

processes based on process models. Process mining in process-aware information 

systems is straightforward, which means that analysis can be done based on the 

process models referred to in the information system development. Because that was 

not what happened in the three datasets used in this study, additional steps were 

needed to assess if the quality of the datasets were sufficient for process mining. These 

additional steps included the data quality assessments focusing on the completeness 

and validity of the data for process mining. This assessment was done in the data 

understanding steps, which led to different challenges within the three different 

datasets. 

The MIMIC-III dataset is representative of a typical database in an EHR system. This 

dataset is publicly accessible and has been curated following the good practice of 

sharing sensitive healthcare data. Those are why the MIMIC-III dataset is suitable for 

data analytics projects focused on method development. In this study, the MIMIC-III 

dataset was used in the first year of study to focus on the exploration of the process 

mining techniques available in ProM plugins, the DISCO tool, and R libraries. The 

MIMIC-III dataset was first used in a process mining project in our research group, 
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including in this study. There is still a wide range of possibilities to use the MIMIC-

III dataset for many other studies in process mining. 

The PPM Chemotherapy dataset was initially extracted for a study focused on 

analysing the effect of adverse events in cancer treatments, especially chemotherapy. 

The previous study was done using specifically developed software and a Markov 

model to produce a schematic diagram of patient pathways during chemotherapy. This 

current study improved the method used in the previous study by applying process 

mining as a structured approach to analyse patient pathways during chemotherapy as 

a cancer treatment. This dataset is rich with clinical details and is potentially useful 

for future work with different focuses. 

The PPM Cancer dataset is the third dataset in this study. This study is the first study 

implementing process mining in this data. The complexity of the data served as an 

additional challenge in this study. Unlike the other two datasets, the PPM Cancer 

dataset is the complete database and a duplicate of the live database recording the 

clinical data of the patients in the PPM system at the LTHT. The issues of data quality 

and data understanding in this data were different. In the PPM Cancer dataset, data 

understanding was gained through frequent discussions with the development team 

and the clinical experts.  

Apart from the patient records, the analysis in the PPM Cancer dataset was also 

supported by PPM Splunk recording real-time user access. The web-log provided in 

the PPM Splunk is also potentially useful for future work. The web-log in the PPM 

Splunk could be useful to reveal patient treatment and further analysis in the 

organisational perspective, such as to find if a specific clinician or a group of 

clinicians might have developed a best practice in doing their tasks. 

The PPM EHR system was initially developed to support data collection of the 

national reporting on cancer treatment within the LTHT. This EHR system was then 

adopted to cover all services within the hospitals. It means that the data structure was 

changed from serving the needs of cancer reporting to supporting the day-to-day 

operations in the hospitals. Another aspect of the PPM Cancer dataset was that the 

PPM EHR system is an in-house software system. Discussions with the development 

team of the PPM revealed that the system had been through many changes over time. 

Apart from those changes, cancer treatment has also been changed over time. 
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7.6.2 The multi-level approach for identifying process change 

The second contribution of this study was the multilevel approach for identifying 

process change. This approach resulted in a jointly-authored publication and was 

presented at the PODS4H 2019 in Vienna, Austria. The case study used in the paper 

was the analysis of the pathway from referral to the diagnosis of endometrial cancer, 

as described in Section 6.3. Some details of the approach were presented in Section 

3.3.1.1. A summary and reflection of this approach are discussed in this section. 

The general methods followed in the proposed approach are the L* Lifecycle Model 

and the Process Mining Project Methodology (PM2); both have been described in 

Section 2.2.3.4. The general methodology was extended with a focus on the process 

analytics stage to analyse process changes over time. This approach allowed the 

detection of changes by comparing process execution from one year to another. 

Process change detection, localisation, and characterisation were performed at the 

model, trace, and activity levels. This was based on the understanding that a process 

can be represented as a process model, a set of traces, or a set of activity sequences. 

Those three levels have different levels of granularity. Comparison in those three 

levels revealed differences in three levels of granularity. 

This approach was developed based on the available tools and plugins. The process 

discovery was done using the interactive Data-aware Heuristics Miner (iDHM) plugin 

in ProM. The conformance checking was done using the available plugins to calculate 

trace fitness, precision, and generalisation values. The process comparison was done 

on three different levels. The comparison in the process model level was performed 

using the same plugins as for the conformance checking. In the trace level, the 

duration and variant proportion were compared using bupaR in R. The comparison in 

the activity level was done based on the frequency and percentage of patients having 

a specific activity within a year. 

This approach supports the exploration of process change analysis when the change 

is not known in advance. The graphical data visualisations were used to support 

discussions with the clinical experts about process evolutions. Future work could 

perhaps review the partitioning method, the comparison metrics, and the reference 

model discovery. The partitioning method carried out in the experiment was by 

partitioning the log into sub-logs based on the calendar year of diagnosis. Potential 

improvements could be to work on more detailed levels based on, for example, a 



- 176 - 

monthly or weekly basis. The comparison metrics could be examined further to 

improve the process comparison. The reference model was discovered using iDHM, 

but other options could include using an inductive miner, fuzzy miner, or manually 

drawing the process model based on clinical guidance. 

7.6.3 The signal decomposition approach for change analysis 

The third contribution was the combination approach of signal decomposition and the 

Statistical Process Control (SPC) for process change analysis. This approach was 

applied to analyse a cohort of cancer patients in the PPM Cancer dataset, as presented 

in Section 6.5. This section provides a summary and reflection of this approach. 

This approach was initially planned to improve the experiment of endometrial cancer 

pathways. The problem was that the number of patients in each sub-log based on the 

year of diagnosis was too small. It was a significant limitation because a small sample 

is not representative of the population. A small sample also breaches the information 

governance rule to exclude the granular information of fewer than six cases. 

The input was the number of monthly records in each activity of interest. The central 

part of the approach was the signal decomposition that was done using an R library. 

The results are separated plots of the trend, seasonal, and random signals. It means 

that the number of monthly records was analysed to see the trend over time, the 

seasonal/monthly pattern, and the random/residual signal. The seasonal pattern was 

explained to see the months when the average number of records was at a minimum 

or a maximum value. The residual signal was analysed using SPC to detect change 

points outside the control lines. 

This approach successfully revealed several types of system changes, as referred to as 

the dimensions of Leavitt’s diamond. Some technology changes were in 2003 when 

the PPM EHR system started to record cancer treatment events only and 2018 when 

consultation started to be recorded in another system. One organisational structure 

change was in 2010 when the PPM EHR system was underpinned to be used 

throughout the whole hospital. One task change was evidenced in 2014 when the 

haematology department started to deliver chemotherapy that previously could only 

be done by clinicians in the gynaecology and gynaecological oncology departments. 

This approach is potentially useful to be applied to other case studies with large 

datasets. 
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7.6.4 The time window selection to analyse process 

The fourth and final contribution of this thesis was the time window selection to 

analyse the process. Process analysis studies generally work with a relatively long 

duration of data. The duration of the MIMIC-III dataset is 12 years (2001–2012), the 

PPM Chemotherapy dataset is nine years (2004–2012), and the PPM Cancer dataset 

is 16 years (2003–2018). The longer the duration, the more likely the data is prone to 

changes in the system and/or the process. 

A common method in data analysis is to assume that the data is static, and the large 

volume of data is analysed at the same time. This study revealed the possibility that 

many changes had happened in the process, and those changes were evidenced in the 

data. The proposed multilevel approach for process change analysis could be used to 

analyse those changes. Some changes identified using this approach were the 

evolution of data collection within an EHR system, the increasing capacity of the 

service, the introduction of a new feature in the EHR system, and the additional 

assignment of a particular role. 

One important issue in the process change analysis is the time window selection. In 

the PPM Cancer dataset case study, the event log was split into yearly sub-logs based 

on the calendar year of diagnosis. Further partitioning of the log into months, weeks, 

days, or hours could be considered in order to detect changes in a smaller window. 

The important points to consider are the expected duration of the process of interest 

and the size of the data within each time window. The window size should not be 

smaller than the expected process duration and the number of data points in each time 

window should not be smaller than the number required for an accurate analysis. For 

example, in the PPM Cancer dataset case study, the experiments were done to analyse 

the pathway from referral to diagnosis of endometrial cancer. The clinical experts 

suggested the inclusion of pathways of a maximum of 120 days. In this case, the 

window size should not be smaller than 120 days (4 months). If the window size is 

smaller than four months, many of the traces would be excluded in the study. The 

information governance rule of this study prevented the revealing of the information 

of six patients or less. This limitation made it not possible to make partitions of the 

event log into smaller sizes. 
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7.7 Summary 

This chapter discussed the findings and reflections on the method and experiments of 

this research. Process change analysis as the main part of this research has been done 

using process mining. This approach has been applied to the three datasets. The 

challenges on working with healthcare data for process mining are related to many 

factors, including the data access and ethics approval, data quality, data 

understanding, data and process visualisations, and process change analysis. Despite 

those challenges, the method proposed in this research has been successfully applied 

to the three datasets to analyse process change over time. Contributions of this thesis 

include the three case studies for healthcare process mining, the multi-level approach 

for identifying process change, the signal decomposition approach for change 

analysis, and the time window selection to analyse the process.  

  



 

Chapter 8  
Summary 

This thesis has presented a literature review, a methodology development, three case 

studies analysed using the methodology, and a discussion. The research objective was 

to use process mining approaches to detect and analyse process changes in the EHR 

systems. This chapter summarises the thesis by providing the conclusions and future 

work of this study. 

 

8.1 Conclusions 

This study has explored process mining methods for analysing data that were routinely 

collected within hospital information systems. Three case studies were presented: the 

MIMIC-III dataset, the Patient Pathway Manager (PPM) Chemotherapy dataset, and 

the PPM Cancer dataset. The conclusions of this research are summarised below 

following the thesis structure. 

8.1.1 Conclusion from the literature review 
A literature review of process mining in oncology was conducted in the early phase 

of this study. The important findings are as follows: 

1) The most common case study in healthcare process mining is in cancer, more 

specifically in gynaecology. Process mining in gynaecology was found in 24 

of the 37 papers (65%) reviewed in the early stages of this study. Even though 

cancer is the most common, a limited number of case studies are available. 

Previous studies have mostly used a dataset in the Business Process 

Intelligence Challenge (BPIC) 2011. 

2) The most common analysis in healthcare process mining is from the process 

discovery and the control-flow perspective. Most studies worked in process 

discovery, as found in 35 of the 37 papers (95%) reviewed. Process discovery 

was commonly followed by a control-flow analysis to examine the 

relationship between one activity and the others. 

3) The most commonly used tool for process mining in healthcare is the ProM 

framework. The ProM framework is a de facto standard in the process mining 
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research community and can be combined with other tools. ProM is also the 

primary tool used in this study, along with some additional tools, such as 

DISCO and bupaR. 

4) Limitations in healthcare process mining projects include data, technique, and 

team limitations. Data limitation is related to the sensitivity and confidential 

nature of healthcare data. Technique limitation revealed an opportunity for 

method development. Team limitation is a reminder to include 

multidisciplinary experts in the team. 

A further literature review was done during the research to explore publications in 

healthcare and technical backgrounds. Literature in the healthcare background 

includes healthcare systems in the US and the UK, EHR research, coding standards, 

process guidelines, and cancer. Literature in the technical background includes 

workflow technology, process modelling notations, process mining, process mining 

in healthcare, process mining for process change analysis, and statistical approach. 

One important point is that process change analysis is an understudied area in process 

mining projects. Most process mining projects worked with an assumption that the 

dataset is static. This research shows that this assumption is not reasonable for studies 

with long-duration datasets. 

8.1.2 Conclusion from the methodology development 

The main stages of the general methodology in this study were built based on the L* 

life-cycle model and the Process Mining Project Methodology (PM2) as the two well-

known process mining methods. Additional methods adopted in this study were the 

question-based methodology, the ClearPath method, concept drift analysis, signal 

decomposition, and SPC methods. The four main stages are: (1) planning and 

justification, (2) extraction, transformation, and loading (ETL), (3) mining and 

analysis, and (4) evaluation. 

The main part of this study is the process analytics in the third stage. Process analytics 

in this study was done for process change analysis. The main steps in process change 

analysis are: change detection, change characterisation and localisation, and the 

unravelling of the process evolution. The general change detection was to split the 

event log into sub-logs based on time. Those sub-logs were then compared to see the 

variance over time. Change characterisation was done through a more in-depth 

analysis of the variability over time. The unravelling process evolution was done 
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through discussions with clinical experts. There are two types of process change 

analysis based on the initial condition, which are with and without a known process 

change. Both types were explored in this research. 

8.1.3 Conclusion from the experiments on the MIMIC-III dataset 

The MIMIC-III dataset was the first dataset used in this study. It was suitable for this 

study because it is a publicly available healthcare dataset so that the study using this 

dataset is reproducible by other studies. There is no event log provided directly in the 

MIMIC-III database, but there are 16 event tables recording timestamped clinical 

events relating to patient treatments. Those tables can be easily transformed into an 

event log suitable for process mining. The database has been through a de-

identification process and is available for research through ethical clearance. It is 

another advantage for a study to have a curated dataset that makes it ready for many 

types of analysis.  

An assessment of the data quality found that, despite some limitations, the MIMIC-

III dataset can be analysed with process mining and is useful for method development 

in the studies. For this study, the MIMIC-III dataset is specifically suitable to test the 

effect of system change. The documentation of the MIMIC-III dataset explained that 

the system from which the clinical data in MIMIC-III came was changed in 2008 from 

the CareVue (CV) system (2001–2008) to the MetaVision (MV) system (2008–2012). 

The limitation of using the MIMIC-III dataset was due to its de-identification 

procedures. All dates recorded in the MIMIC-III database had been shifted, consistent 

for the same patient but randomly distributed in the future. It is mainly an issue in 

process mining that limits cross-patient analysis, such as workload and bottleneck 

analysis. Another obvious limitation was that there was no direct access to clinical 

experts from the hospital. 

8.1.4 Conclusion from the experiments on PPM Chemotherapy dataset 

The PPM Chemotherapy dataset was an extract from the PPM database with a specific 

focus on the clinical records of patients receiving chemotherapy treatment in the 

Leeds Teaching Hospitals NHS Trust (LTHT). This dataset had been used in a 

previous study and had been curated for that study.  
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In this study, the PPM Chemotherapy dataset was analysed by reproducing the 

previous study and improving it with a structured methodology for pathway analysis 

using process mining. The result was presented in a process model and dotted chart 

to show the flow of the activities during chemotherapy cycles. One important finding 

from the clinical perspective is that patients who underwent chemotherapy fell into 

three categories: those who stopped before the sixth cycle of chemotherapy, those 

who completed six cycles of chemotherapy without any complications, and those who 

had more complicated treatment over the years. The dotted chart presented those three 

groups of patients in a clear visualisation. 

This dataset has also been used to analyse process change over time. It is evidenced 

that the conformance values of the process had been changed over the years. An 

additional analysis was done to explore the possibility of using a trace clustering 

approach to find different patterns within a process. For this cohort, there were 

changes in 2004–2005 and 2007–2008. The conformance-based comparison was the 

only comparison performed on the PPM Chemotherapy dataset and is a primary 

method to compare processes over time. 

8.1.5 Conclusion from the experiments on the PPM Cancer dataset 

The third case study was done using the PPM Cancer dataset. Among the three 

datasets used in this study, the PPM Cancer dataset was the most complex. Access 

was given to the complete database, which is a copy of the original raw version of the 

live database in the PPM Electronic Health Record (EHR) system. The advantage of 

using this dataset was that it represented the real data in a large hospital in the UK. 

The PPM dataset also came with a direct connection to the clinical experts and the 

development team within the hospital. 

Four experiments were conducted in this case study. The first experiment was done 

to analyse a known change in the EHR system and its effect on the cancer treatment. 

The change of interest is the GP tab introduction, which was a part of the Leeds Care 

Record (LCR) initiative to integrated care records from many providers including GP 

and hospital. In this experiment, the GP tab introduction was related to the 

chemotherapy cycles of breast cancer patients. The records of user access in the PPM 

Splunk was combined with the records of patient treatment in the PPM Cancer dataset. 

The findings showed potentially useful insights to examine the effects of the 

introduction of a feature in the EHR system to the cancer treatment. The second and 
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third experiments were done to analyse the pathways of endometrial cancer patients. 

Those two experiments resulted in two methods to investigate process change over 

time, when there was no prior information about any change in the system. The fourth 

experiment was done to explore all events related to cancer treatment in the PPM 

database for process change analysis. 

8.1.6 Conclusion from the discussion 

This study is a process-oriented data analytics study using process mining and process 

change analysis approaches. The datasets analysed in this study were the routinely 

collected clinical data from the EHR system. The advantages were that those datasets 

recorded the real execution of treatment processes within the hospital and that no 

further effort was required for data creation. The limitations were that the data quality 

was dependent on many factors, including the data collection, data recording, and the 

data management of the EHR system. A specific characteristic of the datasets is the 

high veracity of the data, which leads to high variability over time due to many 

possible changes that happened in the system. 

The challenges on the healthcare process mining included data access and ethics 

approval, data quality, data understanding, data and process visualisation, and process 

change over time. The process change over time was the main challenge explored in 

this study. The dimensions of process change analysis are the modes of handling, 

change duration, perspective, the pattern of change, sub-problems, and the nature of 

change. One crucial aspect is the time window selection to analyse the process. This 

aspect has been explored in different experiments in this research, especially using 

the PPM Cancer dataset with the monthly and yearly record analysis. 

 

8.2 Presentation and feedback  

The contributions of this thesis as described in Section 7.5.4 are the case studies for 

healthcare process mining, the multi-level approach for identifying process change, 

the signal decomposition approach for change analysis, and the time window selection 

to analyse the process. These contributions can be seen as a way to contribute to the 

community of healthcare process mining, more specifically to the alliance of Process-

Oriented Data Science for Healthcare (PODS4H), and in the broader communities of 
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related studies. This study contributes to the technical and clinical aspects of the 

healthcare process mining studies. 

Published contributions of this study included three posters presented at international 

conferences, four paper presented at international conferences, and one paper 

published in an international journal, as listed in the front pages of this study. Other 

than those eight publications, some parts of this study have been presented in seven 

further events to gather feedback from a range of communities. Those events are: 

1) Guest lecture in the MSc class of data mining (5 May 2016) 

This was an hour-long joint-presentation with Owen Johnson on an introduction to 

process mining. There were around 30 students who attended the lecture. I presented 

an illustrative example of analysing healthcare data using process mining. The dataset 

for this presentation was a fictional data from Leeds Accident and Emergency (A&E). 

The students were actively trying to find patterns in the small event log. This 

presentation is not explicitly presented in this thesis but has developed the foundation 

of understanding process mining as the fundamental approach in this study. 

2) LIDA Seminar: health informatics and data analytics (10 November 2016) 

This is one of the Leeds Institute of Data Analytics (LIDA) seminar series. I presented 

the idea of this study to test the effect of UI design on the healthcare process. Other 

presenters in this seminar were Owen Johnson and Professor John Fox. Owen 

presented a general introduction to mining, modelling, and improving care pathways 

with big data. I presented my work as a case study of process mining in oncology. 

Professor John Fox is the main speaker presented Artificial Intelligence (AI) in 

medicine: data science meets knowledge management. He is a professor at Oxford 

University and the Chairman and Co-founder of OpenClinical. 

One insight gained from the presentations was that organisations are complex systems 

where task, technology, people, and structure are interrelated and mutually adjusting. 

One important piece of feedback given by a data scientist after the seminar was that 

healthcare data are naturally messy, and that might provide a real challenge for my 

study. This has been addressed by applying a quality assessment of the datasets. 

3) School of Computing PhD symposium (17 January 2017) 

This is an annual PhD symposium within the School of Computing, University of 

Leeds. There were around 20 people attended the presentation. I introduced myself 
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and my study plan for this thesis. The material presented was based on the literature 

review of process mining in oncology, as published in the conference in 2016. 

An interesting piece of feedback from this symposium was that I would need to define 

the characteristics of the UI change and not confuse it with other types of changes. 

This has been reflected in the fourth research question in this study, where a process 

change is characterised by a significant change in one or more metrics of the multi-

level approach. 

4) WUN Data Science Thematic Workshop (1 May 2017) 

This was the World University Network (WUN) data science thematic workshop: 

wellness data for healthy societies. The workshop was presented in New York, as part 

of the annual WUN Conference and AGM. Eric Rojas (Pontifical Catholic University 

of Chile) and I joined in Owen Johnson (the main supervisor of this research) 

presentation. I presented the method and progress of our studies in the comparative 

analytics of patient pathways data.  

One interesting insight from this workshop was that there were several groups in other 

countries working on pathway analysis closely related to my study. Their concern 

during the workshop was on finding a general method to be applied to different 

countries. A follow-up discussion occurred in Cambridge to explore the possibility of 

joint research between Leeds and Cambridge hospitals. The publication on the data 

quality assessment of the MIMIC-III is written in collaboration with Eric Rojas as a 

follow-up result of this workshop [168]. 

5) PHE NCRAS seminar (23 May 2018) 

This is one of the routine seminars hosted by Public Health England National Cancer 

Registration and Analysis Service (PHE NCRAS). This event was held in London and 

was broadcast throughout the PHE network. It was a joint-presentation with Owen 

Johnson entitled “Process mining of cancer pathways using Electronic Health 

Records”. Owen presented some challenges understanding real pathways of care and 

how EHR can help. I presented some of the progress made in the analysis of the PPM 

Chemotherapy and the PPM Full datasets. 

One interesting insight from this seminar was that PHE NCRAS has a team dedicated 

to pathway analysis, but they have not used any process mining approach in their 

work. Further exploration on the official website of PHE NCRAS found information 
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about cancer treatment, cancer statistics, routes to diagnosis, cancer outcome metrics, 

and other topics related to this study. 

6) School of Computing PhD Symposium (14 February 2019) 

This was an annual PhD symposium within the School of Computing, University of 

Leeds. I presented the method and progress of my study in this thesis. The main focus 

of the presentation was on the analysis of process change over time. The material 

presented in this event was the interim result as later published in the PODS4H 2019. 

One interesting discussion was about how best to present the results of this study to 

the clinical experts. This discussion is addressed in Section 7.3.4 on data and process 

visualisation. The outstanding discussion is that there is a range of options to visualise 

the results. The choice should be taken by considering what the most important 

message to relay to the clinical experts is. 

7) Manchester healthcare analytics group seminar (14 June 2019) 

This was an internal seminar held by the healthcare analytics group, University of 

Manchester. Eric Rojas (Chile), Frank Fox (Ireland; a member of our healthcare 

process mining research group), and I presented our studies in healthcare process 

mining. I presented some results from my experiments with the PPM Chemotherapy 

and the PPM Cancer datasets. 

One interesting discussion in this seminar was about the meaningfulness of the results 

from the clinical perspective. This can be seen as a potential to use the question-driven 

approach, and this has been addressed in the general method of this research. An 

engagement with the clinical experts is needed during the research. 

 

8.3 Future work 

This study shows some potentials to be used and improved in future work in 

healthcare process mining studies. Future work could improve this study in five 

directions, as described in the following paragraphs. 

The first direction could be to improve the method to capture patient characteristics 

in the analysis. This improvement would enhance the usefulness of the study for the 

clinical experts. This is also based on the feedback that this study could be more useful 

for epidemiology study. By improving the method to capture patient characteristics 
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and relating those characteristics to the process mining results, process mining can be 

more useful in an epidemiology study. 

The second direction is the potential to use process mining to create event log by 

combining software usage log with patient treatment records. Experiment 5 with the 

GP tab analysis shown that this approach is potentially useful to add another 

perspective in the typical process mining approach. Software usage log could be 

included in the process discovery step to enhance the process model representing the 

patient treatment pathways with other actions done by the users during patient 

treatment. 

The third direction could be to support the interpretation of the results by statistical 

analysis. Regular complaints by clinical and statistical experts are that this research 

lack of statistical evidence. Interpreting process mining results using statistical 

analysis could demonstrate stronger evidence of the significance of the results. Some 

statistical approaches have been applied in this study, but there are still opportunities 

to improve this analysis with a more sophisticated statistical approach. 

The fourth direction could be to widen the use of the proposed methods in healthcare 

case studies. This could include many different cohorts of patients and the exploration 

of many other guidelines and expected pathways within the guidelines. This thesis 

provides evidence that the general method can be applied in two different data sources 

and three different datasets. The multi-level approach to detect process change over 

time is relatable to many real-life settings in the hospitals. Understanding the change 

over time provides a valuable insight to get a better understanding of the dynamic 

nature of the healthcare processes. 

The fifth and the last direction could be to improve the method for international 

comparison of healthcare processes. The datasets included in this study were from the 

USA, a country with a non-universal healthcare system dominated by private 

providers, and from the UK, a country with a universal government-funded healthcare 

system. Other countries have healthcare systems similar to either one of these or a 

combination of both. The successful implementation of this method in the datasets 

from the USA and the UK open up an opportunity for international comparison of 

healthcare processes. 
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8.4 Final remark 

Process mining has been applied to many studies in the healthcare domain. One 

understudied area is the analysis of process change. When process mining is applied 

to a dataset over the years, the process might have changed, and the change might 

evidence in the data. This thesis explores the opportunity to use process mining 

approach to analyse process change over time. The method proposed in this study has 

been applied to three different datasets. It is shown that process mining can be used 

to analyse process change over time. When a change is known in the initial stage of 

the study, process mining can be used to analyse the process before and after the 

change point. When a change is unknown, process mining can be used to detect 

change points by creating partitions of the data over time and comparing the process 

characteristics in the subsequent partitions.  

On the other side, EHR systems are generally evolving. The EHR systems might be 

changed because of four factors affecting process and data, which are the structure, 

process, technology, and people. This thesis focused on the impact of UI change on 

clinical pathways, but those four factors of change are inseparable in the discussions 

during the research. Process mining studies need to consider the interplay between 

those four factors when analysing the impact of changes in the EHR systems.
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Appendix A 

Training summary 

Summary of the planned training, courses, conferences and workshops undertaken 
during this study are as follow. 

Domain A. Knowledge intellectual abilities 

A1. Coursera and FutureLearn online courses 
# Course Host Grade Hours 
1 Interprofessional Health Informatics University of Minnesota 100%   8 
2 Process Mining: Data Science in Action Eindhoven Univ of Technology 91% 24 
3 Java Programming: Solving Problems 

with Software 
Duke University 92.9% 16 

4 Programming Foundations with 
JavaScript, HTML and CSS 

Duke University 81.4% 16 

5 Intro to Process Mining with ProM Eindhoven Univ of Technology 96% 16 
6 Process Mining in Healthcare Eindhoven Univ of Technology 94% 16 
7 The Data Scientist's Toolbox John Hopkins University 96% 16 
8 R Programming John Hopkins University 95% 16 
9 Getting and Cleaning Data John Hopkins University 94% 16 
10 Exploratory Data Analysis John Hopkins University 98% 16 
11 Reproducible Research John Hopkins University 94.9% 16 
12 Statistical Inference John Hopkins University 97.5% 16 
13 Regression Models John Hopkins University 96% 16 
14 Applied Plotting, Charting and Data 

Representation in Python 
University of Michigan 98.3% 16 

15 Intro to Data Science in Python University of Michigan 93.8% 16  
  Total hours 260 

A2. YCHI/ LIHS courses 
# Code Course Hours 
1 YCHI5010m Informatics in Health Care 40 
2 YCHI5015m The Legal, Ethical and Professional Considerations in Healthcare  40 
3 YCHI5030m Process Modelling, Benefits and Change 40 
4 YCHI5045m Statistics for Health Sciences 40 
5 YCHI5055m Health Data Analytics and Visualisation 40 

 
       
  Total hours 200 

A3. Conferences, workshops, and seminars 
# Conference Year Hours 
1 Process Mining Camp 2016 8 
2 Cancer Data and Outcomes Conference 2016: Using data to drive services 2016 16 
3 Health Insights – Regional One Day Event 2016 8 
4 The Ideas in Practice Conference – Big Data: Turning Data into Value 2016 8 
5 The First Leeds Precision Oncology Symposium 2016 8 
6 The 6th Int. Conf. on Information Communication and Management 2016 16 
7 2016 NCRI Cancer Conference 2016 16 
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# Conference Year Hours 
8 LIDA Seminar: Process Analytics in Healthcare 2016 4 
9 UK Health Data Analytics Network Workshop 2017 16 
10 Informatics for Health 2017 2017 24 
11 LIDA Seminar: Big Data and Ethics and Pre-seminar Ethics Workshop 2017 2 
12 Tableau Workshop  2017 8 
13 The WUN Data Science Thematic Workshop 2017 16 
14 Cancer Data and Outcomes Conference 2017: Using data to drive services 2017 16 
15 Data in Applied Health Research Seminar 2017 2 
16 International Conference on Data and Information Science 2017 16 
17 LIDA seminar: Introduction to big data in public health 2018 3 
18 PHE NCRAS Seminar: Process mining of cancer pathways using EHRs 2018 2 
18 The 2018 NCRI Cancer Conference 2018 18 
19 UK launch of the International Society for Digital Health 2019 2 
20 PODS4H – Workshop Process-Oriented Data Science for Healthcare 2019 8 
21 The 2019 Business Process Management Conference  2019 24 

 
       

 Total hours   239 

Domain B. Personal effectiveness 
# Course Host Hours 
1 A balancing act – dealing with the stress of doing a research degree SDDU 3 
2 Time management during your research degree SDDU 3 
3 Preparing for your transfer engineering SDDU 3 
4 Project managing your research degree SDDU 3 
5 Health and Safety Training for DSE Users UoL 4 
6 Fire Safety Training UoL 4 
7 Manual Handling Training UoL 4 

     
Total hours 

 
24 

Domain C. Research governance and organisation 
# Course Host Hours 
1 Ethics & ethical review SDDU 2 
2 Ownership, confidentiality and secrecy in research SDDU 2 
3 Research Conduct on VLE UoL 4 
4 CIEH Health & Safety course UoL 4 
5 NIH web-based training on “Protecting Human Research Participants” MIMIC 8 
6 The finishing thesis writer OD&PL 2 

     
Total hours 

 
22 

Domain D. Engagement influence and impact 
# Course Host Hours 
1 Introduction to research impact SDDU 3 
2 Working effectively with your supervisor SDDU 3 
3 Reading critically to write critically PGR workshop Language 3 
4 Foundational Level: Writing purposely workshop Language 3 
5 Giving effective seminar and conference presentations (Science, 

Engineering and Maths) 
SDDU 3 

6 Giving effective poster presentations (online) SDDU 3 
7 An Introduction to Effective Research Writing SDDU 2 

     
Total hours 

 
20 
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Appendix B 

Ethical approvals 

Following are the ethical approvals to access the data used in this study. 

B.1 The MIMIC-III Database Access  

To access the MIMIC-III database, it is required to complete a web-based training 

course from the National Institutes of Health (NIH) entitled “Protecting Human 

Research Participants”. The certificate for completing this course is presented below. 
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B.2 The PPM Chemotherapy Extract Access  

To access the PPM Chemotherapy extract of the PPM database, I was included in the 

research team working on this dataset. The study title was “The use of routine clinical 

datasets to develop decision support rules and risk algorithms in cancer patients on 

treatment”. The first page of the ethical approval for this project is presented below. 
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B.3 The PPM Cancer dataset access  

To access the PPM Cancer Dataset, I went through two ethical approvals: 

1) Get NHS LTHT Honorary Contract 

An Honorary Contract is a clinical interaction or period of education or 

observation which involves Trust employees or patients. The first page of the 

Honorary Contract for this study is presented below. 
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2) IRAS application 

The Integrated Research Application System (IRAS) is a single system for 

applying for the permissions and approvals for health, social and community care 

research in the UK. This study falls under the requirement to gain the Health 

Research Authority (HRA) Approval. The first page of the HRA approval is 

presented below. 
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Appendix C 

Experiments of the MIMIC-III dataset 

C.1 Data quality assessment of the MIMIC-III dataset 

  
  
  
 
 School of Computing 

EXPERIMENT 
DOCUMENTATION 

 
Date of experiment 
01/05/2017 Experiment title: 

Data quality assessment of process 
mining using MIMIC-III database Experiment code 

M3-DQ-ALL001 Researcher's name:   
Angelina Kurniati 

Area of investigation 

This experiment is a data quality assessment of MIMIC-III dataset for process mining.  The 

complete report of this experiment has been published in a paper in the Health Informatics 

Journal. 

Data source 

The MIMIC-III dataset is analysed per table. 

Research questions 

(1) Can the MIMIC-III database be used to better understand data quality issues for 

process mining in healthcare? 

(2) What are the data quality issues for process mining with MIMIC-III? 

(3) How might the change in the EHR system in 2008 affect the data quality? 

Hypothesis 

Weiskopf &Weng (W&W) framework can be used to identify data quality issues for 

process mining with MIMIC-III. 

Method 

The general method used in this experiment is an adaptation of the L* lifecycle model, 

which includes data quality assessment. The methodology consists of Plan and justify 

(Stage 0), Database reconstruction (new stage), Extract (Stage 1), Create a control-flow 

model (Stage 2), Create integrated process model (Stage 3), and Data quality assessment 

(new stage). Database reconstruction was added to support Data quality assessment and 

trigger the next iterations. 
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Result and Discussion 

1) Planning and justification have been done by specifying three research questions. 

Q1 was addressed through a cancer-specific example, Q2 was addressed by 

applying the Weiskopf& Weng framework, and Q3 was addressed by investigating 

the differences of processes in CV and MV systems. 

2) Database reconstruction was needed as a foundation to support iterative 

experiments on data quality assessment. The downloaded data were in .csv files (26 

files, more than 6 GB in total) and were imported to a PostgreSQL database. The 

concept level Entity-Relationship Diagram (ERD) is presented in the following 

Figure. 

 

The entities in bold contain timestamped information which can be used to construct 

an event log for process mining. 

3) Extraction, transformation, and loading (ETL). Extraction was done multiple 

times from the reconstructed database. For example, the admission table in the 

MIMIC-III database was extracted by selecting [admittime, dischtime, 

edregtime, edouttime, deathtime] of cancer patient admissions 

[icd9_codes 140x-239x]. Process discovery was done using three plugins in ProM: 

(1) Convert CSV into XES, (2) Add artificial events >> START and END events, 

and (3) BPMN Analysis using Heuristics Miner. The Q1 (Can the MIMIC-III 

database be used to better understand data quality issues for process mining in 

healthcare?) was addressed to find the most followed admission paths of cancer 

patients. The five most common variants and BPMN process model of admissions 

are presented in the following Figure. 



- 197 - 

 

4) Process analytics was done by extending with time and resource perspective. In 

this experiment, it was done to study the effect of EHR change, which addressed 

Q3 (How does the change in the EHR system in 2008 affect the data quality?). The 

approach was to work backwards from the inputevents_cv and inputevents_mv 

tables to identify which hospital admissions has been recorded on which EHR. We 

also identified the differences through four tables: chartevents, datetimeevents, 

inputevents, and outputevents. Each admission was marked with CV, MV, or both; 

then we created separate event logs from each data sources. We then compared the 

models using DifferenceGraph plugin in ProM.  

5) Data quality assessment was done based on the W&W framework, which has been 

summarised in Table 4.1 in Section 4.1.3. 

Conclusion 

Despite some limitations found in this data quality assessment, the MIMIC-III database was 

found to be sufficient for process mining projects. The three minimum components required 

for process mining are available in 16 tables in the MIMIC-III database. Process miners can 

also specify different levels of details needed in the analysis.  
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C.2 Log profiling for CV-MV comparison 

  
  
  
 
 School of Computing 

EXPERIMENT 
DOCUMENTATION 

 
Date of experiment 
07/03/2018 Experiment title: 

Data profiling of MIMIC-III dataset for 
CV-MV comparison Experiment code 

M3-CVMV-PRF001 Researcher's name:   
Angelina Kurniati 

Area of investigation 

This experiment is data profiling of MIMIC-III dataset as an initial step for CV-MV 

comparison.  

Data source 

The MIMIC-III dataset is analysed per table. 

Research question 

Is analysing each table in the MIMIC-III dataset provides initial information for CV-MV 

comparison? 

Hypothesis 

Data profiling would give initial information for CV-MV comparison. 

Method 

1) Extraction has been done by database reconstruction process in PostgreSQL. 

2) Create event logs of each event tables with [case_id, activity, timestamp, tsource] 

format, with: 
     case_id = subject_id/ hadm_id/ icustay_id 

     activity = {identified in Table 4.5} 

     timestamp = {column named -time in each table} 

2) Save as .csv files 

3) Load into DISCO and ProM (if possible), and analyse the result. 

Result and Discussion 

Data profiling was done to analyse the similarities and differences of patient data in CV and 

MV systems. This analysis was done per table in the MIMIC-III database. Only data profiles 

that potentially related to process mining are presented here. 
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1. Admissions 

This table sourced from hospital databases, to define a patient’s hospital admission, 

HADM_ID. 

o NEWBORN admissions only happened in CV (7,863 admissions/ 23.46%). It has 

also been described in the data descriptor that NEWBORN admissions were not 

included in the MV extracts. It was due to the limitation of the de-identification 

procedure to maintain confidentiality. 

EHR System Admission type Admissions % 

CV Elective 3,983 11.88 

Emergency 20,649 61.61 

Newborn 7,683 23.46 

Urgent 1,020 3.04 

MV Elective 2,960 15.33 

Emergency 16,130 83.51 

Urgent 224 1.16 

o There were data quality issues detected in CV where ED duration < 0 (98 

admissions). After non-valid data excluded, the average ED durations in MV 

(0.212 days) are shorter than CV (0.238 days). It means that ED duration has been 

shortened in the new system. 

     

o There are 204 records without admission location in CV, but there is none in MV.  
It means that data quality is improved in the new system, in term of recording 

admission location. 
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2. callout 

Provides information when a patient was READY for discharge from the ICU, and 

when the patient was actually discharged from the ICU. 

o Acknowledge status are mostly Acknowledged both in CV (8,078/ 91.61%) and 

in MV (15,560/ 99.01%). 

 
o Both in CV and MV, the three most common callout units are MICU, SICU, and 

CSRU. In both systems, callout units were rarely recorded, with Null value of 

8,208 (93.08%) in CV and 14,914 (94.90%) in MV. 

 

3. caregivers 

Defines the roles of caregivers in CV and MV databases. Some caregiver types are 

only available in MV, which are: attending, pastoral care, rehabilitation, research 

assistant, and social worker. There are a significant number of NULL values in CV 

(43.25%), but none in MV.  
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4. chartevents 

Contains all charted data for all patients in CV and MV databases. 

Characteristic CV MV 
Distinct subject_id 25,505 16,116 
Distinct hadm_id 29,541 19,248 
Distinct icustay_id 31,329 20,582 
Distinct itemid 5,100 1,868 
Distinct cgid 1,177 1,358 

5. cptevents 

Contains current procedural terminology (CPT) codes, which facilitate billing for 

procedures performed on patients. 

Characteristic CV MV 
Distinct subject_id 16,279 15,856 
Distinct hadm_id 19,588 19,250 
Distinct costcenter "ICU"167737 

"Resp";57934 
"ICU";242727 
"Resp";34406 

Distinct cpt_cd 971 1786 
Distinct cpt_number 970 1780 
Distinct cpt_suffix 0 1 
Distinct ticket_id_seq 550 531 
Distinct description 4 4 

 

6. d_items 

This is the reference table to separate CV and MV records in the other tables. 

Information available in the d_items table are: 

Characteristic CV MV 
Distinct itemid 9059 2992 
Distinct 
abbreviation 

0 (all NULL) 2907 

Linksto chartevents, datetimeevents, 
inputevents_cv, outputevents 

chartevents, datetimeevents, 
inputevents_mv, outputevents, 
procedureevents_mv 

Distinct category 23 68 
Distinct unitname 0 (all NULL) 53 

Parameter types in MV system: checkbox (c), datetime (d), numeric (n), numeric with 

tag (nt), process (p), solution (s), and text (t). 

Linksto c d n nt p s t 
chartevents v  v v   v 
datetimeevents  v      
inputevents_mv      v  
outputevents  v v    v 
procedureevents_mv     v   
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7. d_labitems 

This is the reference table to separate CV and MV records in the labevents table. 

Information available in the d_labitems table are: 

Characteristic CV MV 
Distinct itemid 705 675 
Distinct label 557 534 
Distinct fluid 13 12 
Distinct category 6 6 
Distinct loinc_code 572 552 

8. datetimeevents 

Contains all date formatted data in the CV and MV databases. Column ‘resultstatus’ is 

Null in all rows. Columns ‘warning’ and ‘error’ are mostly Null in CV, but not in MV. 

Characteristic CV MV 
Distinct subject_id 11395 16116 
Distinct hadm_id 12759 19242 
Distinct icustay_id 13495 20559 
Distinct itemid 28 131 

9. diagnosis_icd 

This table contains ICD diagnoses for patients in ICD-9 codes, which were generated 

for billing purposes at the end of the hospital stay. 

 

10. drgcodes: contains diagnosis-related groups (DRG) codes for patients. *per admission 

DRGs are used to categorise inpatient hospital visits severity of illness, risk of 

mortality, prognosis, treatment difficulty, need for intervention, and resource intensity. 

The DRG system was developed for statistical classification of hospital cases. 

(icd.codes/articles/what-is-drg) 

Characteristic CV MV 
Distinct drg_code 1515 1512 
Distinct description 1126 940 

 

* icd.codes/articles/what-is-drg 
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11. icustays 

This table defines each ICUSTAY_ID in the database. The ICUSTAYS table is 

derived from the TRANSFERS table, grouped based on ICUSTAY_ID, and excluded 

rows without ICUSTAY_ID. 

Characteristic CV MV 
First_careunit 

 

Unit #sid #hid #iid 
CCU 4024 4328 4455 
CSRU 5040 5260 5478 
MICU 7555 9025 9452 
NICU 4795 4914 4984 
SICU 3610 3875 4082 
TSICU 3133 3205 3298 

 

 

Unit #sid #hid #iid 
CCU 2165 2320 2373 
CSRU 2909 3053 3189 
MICU 6793 8121 8521 
SICU 3504 3775 3975 
TSICU 2527 2599 2702 

 
 

Last_careunit 
 

Unit #sid #hid #iid 
CCU 4024 4328 4455 
CSRU 5040 5260 5478 
MICU 7555 9025 9452 
NICU 4795 4914 4984 
SICU 3610 3875 4082 
TSICU 3133 3205 3298 

 

 

12. inputevents 

Inputevents in the CV system is in inputevents_cv table and inputevents in the MV 

system is in inputevents_mv table. Observations in those two tables are not duplicated 

and can be unioned to create complete inputevents when needed. Only the 

CHARTTIME is available in CV, while STARTTIME and ENDTIME are available in 

MV. The CHARTTIME in CV is correspond with starttime. 

Characteristic CV MV 
Distinct subject_id 25,450 16,012 
Distinct hadm_id 29,353 19,111 
Distinct icustay_id 31,011 20,393 
Distinct itemid 2,794 274 
Distinct cgid 1,078 500 
   

13. labevents 

This table contains all laboratory measurements for a given patient, including 

outpatient data. Lab measurements for outpatients do not have a HADM_ID. The item 

identifiers can be explained with reference to d_labitems table.  

Characteristic CV MV 
Distinct itemid 705 675 
Distinct subject_id 25404 16087 
Distinct hadm_id 30040 19581 

Additional columns are value, valuenum, valueuom, and flag. Value contains the value 

measured for the itemid. If the value is numeric, valuenum contains the same data in 

numeric format, otherwise valuenum is null. Valueuom is the unit measurement for the 

value. Flag indicates whether the value is abnormal or not. 
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14. microbiologyevents 

This table contains microbiology information, including tests performed and 

sensitivities.  

Characteristic CV MV 
Distinct subject_id 19,454 16,420 
Distinct hadm_id 22,840 18,574 
Distinct spec_itemid 89 81 
Distinct org_itemid 282 215 
Distinct spec_itemid 30 29 

15. noteevents 

This table contains all notes for patients. There is no HADM_ID for outpatients and 

for inpatients who was not admitted to the ICU for that particular hospital admission. 

The main part of this table is the text, which contains all notes for patients and is 

potential to be analysed with text analytics. 

Characteristic CV MV 
Distinct subject_id 25,532 15,867 
Distinct hadm_id 30,376 19,445 
Distinct category 13 15 

Distinct description 2,025 2,812 
Distinct cgid 1,215 1,087 
Distinct text 1,175,306 634,789 

16. outputevents 

This table contains output data for patients. Metavision ITEMID values are all above 

220000, while a subset of commonly used medications in CareVue data have ITEMID 

30000-39999. ISERROR is a Metavision checkbox where a caregiver can specify that 

an observation is an error. 

Characteristic CV MV 
Distinct subject_id 24,251 15,932 
Distinct hadm_id 27,951 18,951 
Distinct icustay_id 29,405 20,200 
Distinct itemid 1,035 70 
Distinct cgid 1,038 837 

17. patients 

This table contains all charted data for all patients. DOB has been shifted for patients 

older than 89. The median age for the patients whose date of birth was shifted is 91.4. 

DOD is the date of death for the given patient, merged from DOD_HOSP (from the 

hospital database) and DOD_SSN (from the social security database), giving priority 

to DOD_HOSP if both were recorded. Patients table contains 25,534 CV patients and 

16,116 MV patients. 

Gender CV MV  Expire flag CV MV 
M 14,491 9,040  0 15,358 11,397 
F 11,043 7,075  1 10,176 4,718 
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18. prescriptions 

This table contains medication related to prescriptions, sourced from the hospital 

provider order entry database. DRUG_TYPE provides the type of drug prescribed. 

DRUG, DRUG_NAME_POE, DRUG_NAME_GENERIC are various representations 

of the drug prescribed to the patient. FORMULARY_DRUG_CD, GSN, NDC provide 

a representation of the drug in different coding systems. GSN is the Generic Sequence 

Number, NDC is the National Drug Code. ROUTE is the route prescribed for the drug. 

Characteristic CV MV 
Distinct subject_id 20,801 16,096 
Distinct hadm_id 24,574 19,587 
Distinct icustay_id 25,393 20,544 
Distinct drug 3,253 2,700 
Distinct prod_strength 3,245 2,139 
Distinct route 67 71 

 

19. procedureevents 

Contains procedures for patients in MV database.  

Characteristic Distinct values 
subject_id 16,024 
hadm_id 19,124 
icustay_id 20,405 
itemid 116 
location 96 
cgid 957 

 

20. procedures_icd 

This table contains ICD procedures for patients in ICD-9 procedure codes. The ICD 

codes are generated for billing purposes at the end of the hospital stay. Seq_num 

provides the order of the performed procedures. ICD9_code can be joined to the 

d_icd_procedures table to get the descriptions. 

Characteristic CV MV 
Distinct subject_id 23,601 14,122 
Distinct hadm_id 27,832 16,898 
Seq_num 1-40 1-40 
Distinct icd9_code 1,719 1,557 

21. services 

This table lists services under which a patient was admitted/ transferred under. While 

a patient can be physically located at a given ICU type, they are not necessarily being 

cared for by the team which staffs that ICU. 

Characteristic CV MV 
Distinct subject_id 25,520 16,110 
Distinct hadm_id 30,484 19,736 
Distinct prev_service 17 17 
Distinct curr_service 20 

*Not in MV: NB (Newborn at hospital), 
TRAUM (trauma), NBB (newborn baby), 

PSYCH (psychiatric)  

17 
*Not in CV: - 
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22. transfers 

This table records physical locations for patients throughout their hospital stay. The 

ICUSTAYS table is derived from this table. ICUs have moved throughout the years, 

same WARDID may be an ICU for patient A but not an ICU for patient B. 

EVENTTYPE describes what transfer event occurred, which includes transfer, admit, 

and discharge. There are 15 events in CV with eventtypes = NULL, but none in MV. 

Characteristic CV MV 
Distinct subject_id 25,534 16,115 
Distinct hadm_id 30,514 19,748 
Distinct icustay_id 31,749 20,759 
Distinct prev_wardid 53 45 
Distinct curr_wardid 53 45 
LOS 81.465 [0 – 20,880] 63.029 [0 – 7,612.52] 

 

 

Conclusion 

The log-based comparison reveals some important information to consider in the next step 

in process mining to analyse process changes in CV and MV systems in the MIMIC-III 

database. Differences in columns and data details recorded in the CV and MV systems 

should be considered when comparing process in those two systems. For example, newborn 

admissions were only included in the CV system and not in MV. The consequence is when 

the comparison is done to all records in the CV and MV systems, they will not be 

comparable. Calculation of the average age at admission will also include newborn 

admissions in the CV system and not in the MV system.  

Another insight gained from this experiment is that it is not valid to analyse all data in the 

MIMIC-III database without considering two different systems from which the admissions 

were recorded. Data profiling of those two EHR systems revealed many differences in the 

data level that affected the process analysis. 
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C.3 Model-based comparison of CV-MV 

  
  
  
 
 School of Computing 

EXPERIMENT DOCUMENTATION Date of 
experiment 
18/03/2018 

Experiment title: 
Model comparison of MIMIC-III for 
CV-MV Experiment code 

M3-CVMV-
MDL001 

Researcher's name:   
Angelina Kurniati 

Area of investigation 

This experiment is model comparison of MIMIC-III tables as a part of CV-MV 

comparison.  

Data source 

The MIMIC-III dataset is analysed per table. 

Research question 

Is comparing process models of each table in the MIMIC-III dataset provides initial 

information for CV-MV comparison? 

Hypothesis 

Model comparison would give control-flow change information for CV-MV comparison. 

Method 

1) Extraction has been done in database reconstruction process in PostgreSQL. 

3) Create event logs of each event tables with [case_id, activity, timestamp, tsource] 

format, with: 

     case_id = subject_id/ hadm_id/ icustay_id 

     activity = {identified in M3-TRS-DES001} 

     timestamp = {identified in M3-TRS-DES001} 

2) Save as .csv files 

3) Load into DISCO and ProM (if possible) 

 - Merge subsequent events 

 - Add artificial START and END events 

 - Create PN with Heuristics Miner 

4) Analyse the results 
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Result and Discussion 

Model comparisons were done by creating a process model for each table in CV and MV. 

This is expected to reveal control-flow changes in CV and MV systems.  

1. Admissions 

CV 

 
MV 

 
Differences 

- In CV, ED out can happen before or after admission. In MV, admission 

happened as an optional activity before ED out. 

2. callout 

CV 

 
MV 

 
Differences 

- There are four activities in CV and five activities in MV. The one additional 

activity in MV is first reservation. This additional activity happens after callout 

acknowledge and before callout outcome.  

- In CV, callout update is an optional activity happened after callout create and 

before callout acknowledge. In MV, callout update happened in the backward 

path after callout outcome and before callout acknowledge. 

 

Conclusion 

The model comparison reveals some important information to consider in the next step in 

process mining to analyse process changes in CV and MV systems in the MIMIC-III 

database. The limitation of this approach is that it is heavily dependent on the visual 

differences of the process models. There was an opportunity to find a more structural/ 

quantitative way to analyse the differences in the properties of two process models. 
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Appendix D 

Experiments of the PPM Chemotherapy dataset 

D.1 Data description of the PPM Chemotherapy dataset 

  
  
  
 
 School of Computing 

EXPERIMENT 
DOCUMENTATION 

Date of 
experiment 
13/02/2017   Experiment title: 

PPM Chemotherapy Data Description Experiment code 
CHE-ALL000 Researcher's name:   

Angelina Kurniati 

Area of investigation 

This experiment is for understanding PPM Chemotherapy dataset through building data 

description, which include creating an event log from each table in the database, with the 

minimum format is [case_id, activity, timestamp]. 

Data source 

The dataset is a copy of DB2-2016 database, which is an anonymous dataset of cancer 

patient treatment in Leeds Cancer Centre during 1996-2015. This database was originally 

created to develop decision support rules and risk algorithms in cancer patients on treatment. 

Research question 

Is the PPM Chemotherapy database can be used for process mining? 

Hypothesis 

The tables in the PPM Chemotherapy database can be used as it provides at least minimum 

requirements for process mining. 

Method 

1) Extract by copying the DB2-2016 database in SQL Server from all potentially useful 

tables. 

2) Describe each table for understanding each attribute and the relations between attributes. 

This includes identifying columns needed for process mining (especially activities) and 

identifying splitting attributes for next experiments. 

3) Transform to create event log with [case_id, activity, timestamp] format. For example, 

admissions table has been transformed into an event log with: 

     case_id = PID/ KTPId 

     activity = {admission, discharge} 

     timestamp = {GenDateAtAdmission, GenDateAtDischarge} 
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* all timestamp attributes are created by generating dates based on ages (in number of 

days) with ’01-01-2020’ as the date of birth for all patients. 

4) Save as .csv files 

5) Load into DISCO and ProM (if possible), and analyse the result. 

Result and Discussion 

1) Admissions 

The ADMISSIONS table gives information regarding the patient’s admission to the 

hospital. It is linked to other tables through PID and AdmissionId. 

Table columns: 

Column Data type Distinct Missing Description 
PID unique id 28,609 0 Case id 
AdmissionId int 397,444 0  
AgeAtAdmission int 33,388 0 Activity  
ContactSpecialityCode int 80 910  
ContactSpecialityLabel nvarchar(100) 80 910  
AdmissionMethod varchar(9) 3 0  
MethodCode Int 17 0  
MethodLabel nvarchar(100) 17 0  
AgeAtDischarge int 33,365 25 0 – 36,649 

Number of rows 397,444 

Notes:  

(1) Potential case_id = PID;  

(2) AgeAtDischarge=0 in 25 admissions;  

(3) Potential activities: ‘Admission’ and ‘Discharge’ or AdmissionMethod/ MethodLabel 

Details: 

Cases  : 28,609 

Events  : 794,863 

Events per case : min 2, mean 28, max 1020 

Mean case duration : 35.3 months 

Median case duration: 17.1 months 

Case duration : 0 days – 12 years 11 months 23 days 

Variants  : 500 

Variance checking shows that 80% of cases can be represented by 4% of variants: 
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The admission table can be used for process mining, providing that this table contains the 

minimum requirements for process mining. 

2) AdmissionWardStayLocation 

The AdmissionWardStayLocation table gives detailed information regarding the patient’s 

admission to the hospital, ward stays location, start and end of staying. It is linked to other 

tables through PID and AdmissionId. 

Column Data type Distinct Missing Description 

PID unique id 28,609 0 Case id 

AdmissionId int 397,423 0  

AgeAtAdmissionDischarge int 33,365 37 0-36,649 

AgeAtWardStayStart int 33,730 0 0-36,642 

AgeAtWardStayEnd int 33,748 7 0-36,649 

ew_WardLabel nvarchar(100) 360 0  

Number of rows 469,886 

Two important points are:  

(1) AgeAtAdmissionDischarge is identical with AgeAtDischarge in the Admissions table. 

(2) Potential activitiy is WardLabel. 

Details: 

Events    : 469,886 

Cases   : 28,609 

Events per case  : min 1, mean 16.5, max 517 

Activities   : 360 

Mean case duration : 35.3 months 

Median case duration : 17.1 months 

Case duration  : 0 days - 12 years 11 months 23 days 

Variants  : 24,460 
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Fuzzy model: 

 
(1.7% activities, 0% paths, showing case frequency) 

The fuzzy model above shows the most frequently assigned ward is ward 80 (n=12,336), 

followed by ward 96 (n=8,045) and ward 97 (n=4,687). A further search has been done and 

found that ward 80 is the oncology ward, ward 96 is an acute assessment ward, and ward 97 

is an oncology ward for patients with different types of cancer. 

3) ChemoCycles 

The ChemoCycles table provides detail information regarding chemotherapy cycles of the 

patient. This is linked to other tables through PID and RegimenID. 

Column Data type Distinct Missing Description 

PID unique id 29,009 0 PID-Cycle = 1-m 

CycleID int 198,096 0 RegimenID-CycleID = 1-m 

RegimenID int 56,624 0 PID-RegimenID = m-m 

AgeWhenCycleStarted int 28,399 0 2-36,626 

YearCycleStarted int 20 0 1996-2015 

CycleNumber int 93 0 1-93 

CycleMaxDays int 131 0 -7 – 547 

CycleCalculatedLength int 131 0 -7 – 547 

Number of rows 198,096 

Notes: (1) Potential case_id: PID, CycleID, RegimenID 

 (2) Potential activities: CycleNumber 
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Number of cycles started per year: 

 

The diagram above shows that the number of cycle started is generally increasing over the 

years, but the number of subsequent cycles is decreasing. It has been further analysed in the 

experiment 3 using the PPM Chemotherapy dataset as presented in Section 5.2. 

Fuzzy models: 

 
(8% activities, 1.7% paths) 

(case frequency) 

(caseID = PID) 

 
(8% acts, 2.1% paths) 

(case freq) 

(caseID = 

PID+RegimenID) 
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* The left model shows model with caseID = PID, which is not fair, because a patient 

might have more than one RegimenID and the ChemoCycles might represent cycles of 

different regimen. This setting would be needed to combine this event log with event 

logs from other tables. 

* The right model shows model with caseID = PID+RegimenID, which represent 

ChemoCycles for each regimen of each patient. It shows that patients are generally 

followed subsequent cycles, with 61 patients (0.12%) repeated cycle 1 and 20 patients 

(0.04%) had to go back to cycle 1 from cycle 4.  

Details: 

Events    : 198,096 

Cases   : 56,624 

Events per case  : min 1, mean 3, max 91 

Activities   : 93 

Mean case duration : 78.3 days 

Median case duration : 42 days 

Case duration  : 0 days - 6 years 6 months 17 days 

Variants   : 1,105 

4) ChemoDrugs 

The ChemoDrugs table provides detail information regarding chemotherapy drugs given to 

the patients. This is linked to other tables through PID and RegimenID. 

Column Data type Distinct Missing Description 

PID unique id 31,421 0 > PID in Admissions table 

DrugID int 706,670 0 unique 

RegimenID int 59,639 32,683 High missing values 

AgeWhenDrugGiven int 34,184 0 2 – 36,720 

DrugLabel varchar(max) 301 0 Count:[ 1- 81,501] 

DrugDose float 435 3 Explaining DrugLabel 

DoseUnit varchar(max) 12 3 Explaining DrugDose 

DrugLabelMapped varchar(max) 291 11,971 Mapped 1-1 to DrugLabel 

DrugTherapyType varchar(max) 19 11,971 High missing values 

Number of rows 706,670 

Notes: 

(1) Some missing RegimenID can be replaced by:  

a. referencing to ChemoRegimen table, when AgeAtRegimenStartDate = 

AgeWhenDrugGiven, leaving with 9,799 missing values 

b. referencing to ChemoCycles table, when AgeWhenCycleStarted = 

AgeWhenDrugGiven, leaving with 5,151 missing values 
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(3) There are 11 DrugLabel that are not mapped to DrugLabelMapped  and 

DrugTherapyType 

(4) Potential activities: DrugLabel / DrugLabelMapped 

(5) Potential splitting attributes: DrugTherapyType  

Attribute values: 

 

DrugTherapyType freq 
Cytotoxic 515677 
Calcium folinate 44148 
Biological Modifier 37140 
Monoclonal Antibody 25514 
Cytoprotective 22852 
<<NULL>> 11971 
Other 11676 
Biphosphonate 10380 
Glucocoeticoid 9628 
Kinase Inhibitor 7536 
Hormone therapy 5136 
Vaccine 2859 
Anti-emetic 1183 
Bisphosphonate 566 
Hormone 201 
Additive 142 
Antibiotic 40 
Antiviral 18 
Cytokine Growth Factor 3 

 

Fuzzy model: 

 
(1.7% activities, 8.4% paths, showing case frequency) 
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Details: 

Events    : 706,670 

Cases   : 76,995 

Events per case  : min 1, mean 9, max 448 

Activities   : 301 

Mean case duration : 81.7 days 

Median case duration : 27 days 

Case duration  : 0 days - 17 years, 2 months, 13 days 

Variants  : 12,791 

5) ChemoRegimens 

The ChemoRegimens table provides detail information regarding chemotherapy regimens 

of the patient. This is linked to other tables through PID and RegimenID. 

Column Data type Distinct Missing Description 

PID unique id 31,354 0 Count:[1-33] 

RegimenID int 67,707 0 unique 

AgeAtRegimenStartDate int 22,744 0 Relative 

RegimenLabel varchar(max) 2,945 0 Count:[1-1389] 

Intent varchar(max) 7 12,687  

RegimenLabelMapped varchar(max) 547 8,972  

LinkedDiagnosisId int 32,490 4,360  

LinkedDiagnosisICD varchar(max) 68 4,360  

DiagnosisLinkMethod varchar(max) 3 4,360  

CourseOfSameChemo int 14 0  

Number of rows 67,707 

Notes:  

(1) Potential activities: RegimenLabel,  

(2) Potential splitting attributes: Intent, LinkedDiagnosisICD, DiagnosisLinkMethod. 

Details: 

Events    : 67,707 

Cases   : 31,354 

Events per case  : min 1, mean 2, max 33 

Activities   : 2,951 

Mean case duration : 37.7 weeks 

Median case duration : 0 milliseconds 

Case duration  : 0 days – 18 Years, 5 Months, 24 Days 

Variants  : 2,951 
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Fuzzy model: 

 
(0.3% activities, 0% paths) (showing case frequency) 

The above fuzzy model shows a model where a case consists only of a small number of 

activities. Based on the following details, each case consists of 1 to 33 activities, with an 

average of 2. 

6) Death 

The Death table provides information about the AgeAtDeath and LastCycleBefore Death. 

It is linked to other tables through PID. 

Column Data type Distinct Missing Description 

PID unique id 17,701 0  

AgeAtDeath int 11,214 0 28 - 36,649 

LastCycleBeforeDeath int 10,504 1,317 (in age- days) 2 – 36,089 

Number of rows 17,701 

Notes: 

(1) Potential activity: Death 

(2) There is no attributes potentially useful as splitting attribute in this table. 

(3) Because this table consists of only one activity, it wouldn’t be useful to use this table 

alone in process mining, and will be combined with the other tables. 

 

7) Diagnosis 

The Diagnosis table provides information about the patient diagnosis. It is linked to other 

tables through PID. 

Notes:  

- Potential activities: dx_ICD10Label. 

 



- 218 - 

Column Data type Distinct Missing Description 

PID unique id       30,753  0  

AgeAtDiagnosis int       20,132  0 0 - 36609 

YearOfDiagnosis int             63  0 1921-2015 

dx_DiagnosisID int       56,123  0 unique 

dx_ICD10CDS nvarchar(50)           507  7,892  

dx_ICD10Label nvarchar(100)           518  6,422  

TStage nvarchar(100)             32  44,387  

NStage nvarchar(100)             19  44,905  

MStage nvarchar(100)             12  45,634  

StageLabel nvarchar(100)             74  45,147  

dx_DiseasePhase int               3  421  

dx_DiseasePhaseLabel nvarchar(100)               3  421  

dx_CancerStatus int               7  77  

dx_CancerStatusLabel nvarchar(100)               7  77  

dx_MorphologyCDS nvarchar(50)           471  8,464  

dx_MorphologyCode int           521  8,261  

dx_MorphologyLabel nvarchar(100)           521  8,261  

dx_SiteCDS nvarchar(50)           265  614  

dx_SiteLabel nvarchar(100)           278  0  

dx_Her2Status int               8  54,774  

HER2Status_Label varchar(35)               6  54,784  

dx_EstrogenReceptorStatus int             11  54,540  

OestrogenReceptorStatus_Label varchar(16)             10  54,545  

dx_ProgesteroneReceptorStatus int             10  54,762  

ProgesteroneReceptorStatus_Label varchar(16)               9  54,775  

DistrictLevelPostcodeAtDiagnosis (if 
known) 

varchar(8000) 166 51,108  

DrivingDistanceFromLTHT_Miles float 1,065 54,570  

Number of rows 56,123 
Details: 

Events    : 56,123 

Cases   : 30,753 

Events per case  : min 1, mean 2, max 21 

Activities   : 278 

Mean case duration : 22.9 months 

Median case duration : 0 millis 

Case duration  : 0 days – 18 Years, 5 Months, 24 Days 

Variants   : 6,063 
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Fuzzy model: 

 
(4.8% activities, 0% paths, showing case frequency) 

 

8) Outpatients 

The Outpatients table provides information about the outpatient visits. It is linked to other 

tables through PID. 

Column Data type Distinct Missing Description 
PID unique id 28,878 0  
AgeAtTimeOfOPClinic int 34,438 0  
op_AppointmentTypeCode int 166 28,580  
AppointmentTypeDescription nvarchar(255) 69 47,564 NULL=‘Not Known’ 

Number of rows 973,177 

Notes:  

(1) Potential activities: AppointmentType Description (‘Not Known’ treated as an 

activity).  

(2) Potential splitting attribute: none. 
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Fuzzy model: 

 
(7% activities, 7% paths, showing case frequency) 

Details: 
Events    : 926,797 

Cases   : 28,878 

Events per case  : min 1, mean 32, max 399 

Activities   : 69 

Mean case duration : 54.7 months 

Median case duration : 42.8 months 

Case duration  : 0 days – 14 Years, 6 Months, 19 Days 

Variants  : 23,868 

9) Patients 

The Patients table provides information about the outpatient visits. It is linked to other 

tables through PID. 

Column Data type Distinct Missing Desc 

PID unique id 31,511 0  

Gender nvarchar(100) 2 27  

EthnicCategory nvarchar(100) 20 1514   

AgeAtDeath int 11,214 13,810  

DistrictLevelPostcode nvarchar(4) 693 45  

DrivingDistanceFromLTHT_Miles float 4,341 3,655  

DayOfWeekOfBirth nvarchar(30) 7 1  

Number of rows 31,511 

Notes:  (1) Potential activities: death (duplicate with Death table). (2) Missing ethnic 

categories: NULL=1514, Not given – 4881, Not collected – 234, Not stated – 192. (3) 

Potential splitting attributes: Gender, EthnicCategory, DistrictLevelPostcode, and 

DistrictLevelPostcode. (4) The Patients table is potentially useful for patient 

characterisation, such as proportion of male versus female patients and proportion of patient 

ethnicity. 
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10) Radiotherapy 

The Radiotherapy table provides information about the radiotherapy treatment. It is linked 

to other tables through PID. Radiotherapy is one of three possible treatment for cancer, 

along with chemotherapy and surgery.  

Column Data type Distinct Missing Description 

PID unique id 16,792 0  

AgeAtRadiotherapy int 15,212 0 one invalid (-13959) 

IntentCode  nvarchar(50) 4 4,495  

IntentLabel nvarchar(100) 5 3,298  

SiteCode nvarchar(50) 232 5,361  

SiteLabel nvarchar(100) 236 4,720  

Number of rows 31,703 

Notes: (1) Potential activity: ‘Radiotherapy’,  

 (2) Potential splitting attributes: IntentLabel, SiteLabel 

Fuzzy model: 

 
(4.7% activities, 0% paths) (showing case frequency) 

The above fuzzy model shows a possibility to use SiteLabel as the activity name. It 

resulted in a model of site progression of cancer. The model shows that the most frequent 

activity is ‘Unknown’, which should be excluded from the model, with a risk of losing 

information of the most common site label. 

Details: 

Cases   : 16,792 

Events   : 31,160 

Events per case  : min 1, mean 2, max 30 

Mean case duration : 45.3 weeks 

Case duration  : 0 millis – 12 years 7 months 6 days 

Variants   : 3,361 
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11) Surgery 

The Surgery table provides information about the surgery treatment. It is linked to other 

tables through PID. Surgery is one of three possible treatment for cancer, along with 

chemotherapy and radiotherapy. 

Column Data type Distinct Missing Description 

PID unique id 21,395 0 Case id 

AgeAtSurgery int 22,199 0 Activity 

ProcedureCode nvarchar(50) 1,237 26,134  

ProcedureLabel nvarchar(100) 1,345 6 23,389 Unknown 

Number of rows 74,889 

Notes: Potential activity: ‘Surgery’ / ProcedureLabel 

Fuzzy model: 

 

(1% activities, 0% paths, showing case frequency) 

The above fuzzy model shows that the most frequent activity is ‘Unknown procedure 

created by Pathology import’. A discussion with clinical expert confirmed that this activity 

can be further analysed from the Pathology table, which unfortunately was not included in 

the PPM Chemotherapy dataset. 

Details: 
Cases   : 21,395 

Events   : 74,695 

Events per case  : min 1, mean 3, max 50 

Mean case duration : 22.5 months 

Median case duration : 22.6 weeks 

Case duration  : 0 millis – 12 years 7 months 6 days 

Variants   : 3,361 
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12) TestResultsBlood 

The TestResultsBoold table provides information about the results of blood tests. It is 

linked to other tables through PID. 

Column Data type Distinct Missing Description 

PID unique id 29,151 0 KTPId 

AgeAtOrderDate int 34,971 0 0 – 36,751 

Value varchar(50) 21,063 577 Numbers, some started with < 
or > 

Units varchar(50) 16 1,037,211  

Term varchar(256) 34 0  

Number of rows 17,814,931 

Notes: (1) Potential activities: Term; (2) Potential splitting attribute: Term+Value 

(3) A possible data quality issue is that some values started with < or > when they 

are expected to be in a numeric format. 

(4) TestResultsBlood table contains most of the data in the PPM Chemotherapy 

dataset (71 million/ 83%) 

13) TestResultsMicrobiology 

The TestResultsMicrobiology table provides information about the results of microbiology 

tests. It is linked to other tables through PID. 

Column Data type Distinct Missing Description 
PID unique id 15,678 0 KTPId 
AgeAtOrderDate int 27,823 0  
Source varchar(max) 23 0  
Positive bit 2 0 0/1 
PossibleContaminant bit 2 0 0/1 

Number of rows 118,947 

Notes: (1) Possible activities: Source 

 (2) Possible splitting attributes: Source+Positive 

Details: 

Cases   : 15,678 

Events   : 88,049 

Events per case  : min 1, mean 6, max 187 

Mean case duration : 12.9 months 

Median case duration : 29 days 

Case duration  : 0 millis – 11 years 9 months 28 days 

 Variants  : 3,093 
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Fuzzy model: 

 
 

(43% activities, 0% paths) (showing case frequency) 

 

Conclusion 

This experiment shows that all tables except Patients table are potentially useful for process 

mining. Patients table contains no timestamped event, but is useful for patient 

characterisation. Some tables can be used for process mining combined with other tables 

(Death, Radiotherapy, Surgery), some tables cannot be used as event log but will be useful 

as a reference table (Patients), while the other 9 tables can analysed using process mining 

by themselves. Some data quality issues are identified and has been described for each table 

in this experiment. 
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D.2 Process mining of chemotherapy pathways  

  
  
  
 
 School of 
Computing 

EXPERIMENT 
DOCUMENTATION 

Date of experiment 
05/10/2018 

Experiment title: 
Process mining of EC-90 chemotherapy 
pathways of breast cancer patients  

Experiment code 
PPMC-SBRI-BC001 

Researcher's name:   
Angelina Kurniati 

Area of investigation 

This experiment is for using process mining to explore variations in chemotherapy 

pathways for breast cancer patients. 

Data source 

The dataset is a subset of SBRI dataset from PPM Chemotherapy data (712 variants of 

738 patients).  

Research question 

Can process mining be used to explore variations in chemotherapy pathways for breast 

cancer patients? 

Hypothesis 

Process mining can be used to explore variations in chemotherapy pathways for breast 

cancer patients. 

Method 

1) Extraction and transformation has been done in CHE-ALL000. Patients were 

included if they had a diagnosis of metastatic breast cancer (ICD-10 C50) and received 

adjuvant epirubicin and cyclophosphamide (EC-90) chemotherapy. 

3) Create event log of all events with [case_id, activity, timestamp, tsource] format, 

with: 

     case_id = PID/ KTPId 

     activity = {identified in CHE-ALL000} 

     timestamp = {identified in CHE-ALL000} 

2) Save as .csv files 

3) Load into DISCO and ProM (if possible), and analyse the result. 
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Results and Discussion 

1) Extraction and transformation has been done by selecting events of interest. 
Event name Occurence Percentage 

Neutropenic 836 17.2% 
Cycle 1 732 15.0% 
Cycle 2 725 14.8% 
Cycle 3 699 14.3% 
Emergency 611 12.5% 
Cycle 4 487 9.9% 
Cycle 5 402 8.3% 
Cycle 6 380 7.8% 

2) The event log is illustrated below. 

 
3) The event log above has been loaded to ProM and DISCO for further analysis. The 

resulted process model, trace variant diagram, and dotted chart presented in Figure 
5.3 – Figure 5.5 in Section 5.2.3.  

4) Further analysis has been done to examine the cycles leading to an emergency 
admission or a neutropenic condition. The following table shows that most patients 
who had emergency admission got it after Cycle 3, Cycle 6, or Cycle 1; while most 
patients who had Neutropenic condition got it after Cycle 3, Cycle 2, or Cycle 1. 

Cycle 
number 

Cycle leads to Emergency Cycle leads to Neutropenic 
N (%) med; mean  N (%)  med; mean 

Cycle 1 81 (11) 8 d; 18.4 d 94 (13) 19 d; 23.1 d 
Cycle 2 52 (7) 8 d; 43.9 d 123 (17) 19 d; 20.6 d 
Cycle 3 117 (16) 28 d; 27.3 w 142 (19) 18 d; 61.1 d 
Cycle 4 64 (9) 14d; 27.3 w 84 (11) 19 d; 16 d 
Cycle 5 22 (3) 13.5 d; 19.2 w 70 (9) 19 d; 33.5 d 
Cycle 6 90 (12) 13.5 m; 20.8 m 57 (8) 14 d; 26.4 w 

5) Another discussion with clinical experts was that it seems that a lot of patients stopped 
chemotherapy after Cycle 3. This is presented in Figure 5.4 as the second (n=56; 
7.6%)  and third trace variant (n=37; 5%). The clinical expert explained that this was 
because the analysis was done in only one regimen (EC-90). The regimen might have 
changed in the subsequent cycles. This condition is out of the scope of the experiment. 

Conclusion 

This experiment shows that process mining of routine data can show extensive variations 
from standard chemotherapy pathways including incomplete treatment and adverse 
events. Future work is needed to explore potential causal links and understand changes in 
the pathways over time. 
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Appendix E 

Analysis of the PPM Cancer dataset 

E.1 Table description of the PPM Cancer dataset 

The following table contains list of table and the details of PPM Cancer dataset. 

# table name # columns 
data type* 

id char num time 
1 Admissions 63 1 36 22 4 
2 Annotations 71 1 29 36 5 
3 AssessmentActivities 8 2 0 2 4 
4 AssessmentResults 5 2 1 2 0 
5 Assessments 3 2 0 1 0 
6 COSDInvestigations 24 0 14 6 4 
7 COSDPathology 39 0 25 9 5 
8 COSDRegistration 84 0 68 9 7 
9 COSDSurgery 32 0 18 8 6 

10 CWTReferralTreatmentComplete 52 0 26 22 4 
11 CancerWaitingTimes 142 1 58 62 21 
12 CareEpisodes 56 1 30 19 6 
13 ChemoCycles 94 1 43 42 8 
14 ChemoDrugs 153 1 75 67 10 
15 ChemoRegimens 77 1 34 35 7 
16 Consultations 77 1 38 35 3 
17 DataForIBMPOC 4 0 3 1 0 
18 Diagnosis 318 1 153 155 9 
19 Event 23 1 2 15 5 
20 EventAdmission 13 1 0 12 0 
21 EventBloodTest 59 1 1 56 1 
22 EventMetadata 69 5 12 41 11 
23 EventMetadataSummaries 6 1 2 2 1 
24 EventWardStay 22 1 16 5 0 
25 InvestigationEx 50 1 20 26 3 
26 Investigations 85 1 47 32 5 
27 LastContacts 55 0 35 18 2 
28 MDTReview 82 1 45 29 7 
29 Organisation 10 1 6 3 6 
30 Outpatients 99 1 52 40 3 
31 Pathology 335 1 160 171 3 
32 PatientOrganisation 8 1 4 3 0 
33 PatientOrganisationVersion 37 1 25 8 3 
34 PatientPCT 3 0 2 1 0 
35 Patients 90 1 55 29 5 
36 Radiotherapy 103 1 47 48 7 
37 RadiotherapyEx 76 1 33 37 5 
38 Referrals 99 1 53 36 9 
39 StratifiedMedicineResultsBase 10 0 7 3 0 
40 StratifiedMedicine_TabulatedResultsXML 233 0 203 3 27 
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# table name # columns 
data type* 

id char num time 
41 Surgery 160 1 97 55 7 
42 TrialActivityContactOrg 105 1 56 35 14 
43 TrialConsultationActions 22 1 9 10 3 
44 TrialRecruitmentInstitution 57 1 20 28 8 
45 TwoWeekWaitReferrals 25 1 17 6 2 
46 WardStays 81 1 45 29 6 
47 Watch 2 1 2 2 2 
48 WatchDefinition 12 1 97 8 7 
Total 3,333 40 1,724 1,324 245 

*id includes uniqueidentifier 
*char includes char, nchar, nvarchar, varchar 
*num includes bit, float, int, numeric, real, tinyint, varbinary 
*time includes date, datetime 

E.2 Data selection of the PPM Cancer dataset 

The following table contains description of table name, columns, and data types in the 

database which was used in this study. 

*Code: C=case_id, A=activity_id, R=resource, T=timestamp 

#) TABLE_NAME COLUMN_NAME DATA_TYPE CODE 
1) Admissions 
 
 
  

em_AdmissionDate datetime T, A 
em_ContactSpecialityLabel nvarchar R 
em_DischargeDate datetime T 
em_DischargeMethodLabel nvarchar A 
em_PatientID int C 

2) ChemoCycles 
 
 
 

ecc_CycleContactSpecialityLabel nvarchar R 
ecc_CycleNumber int A 
Ecc.PatientID int C 
ecc_CycleStartDate datetime T 

3) ChemoDrugs 
 
 
 

ecd_DrugEndDate datetime T 
ecd_DrugLabel nvarchar A 
ecd_DrugStartDate datetime T 
Ecd_CycleCOntactSpecLabel nvarchart R 
ecd_PatientID int C 

4) ChemoRegimens 
 
  

ec_ContactSpecialityLabel nvarchar R 
ec_RegimenEndDate datetime T 
ec_RegimenLabel nvarchar A 
ec_RegimenStartDate datetime T 
ec_PatientID int C 

5) Consultations 
 
  

eb_ConsultationDate datetime T 
eb_ContactMethodLabel nvarchar A 
eb_ContactSpecialityLabel nvarchar R 
eb_PatientID int C 

6) Investigations 
 
  

en_PatientID int C 
en_InvestigationLabel nvarchar A 
en_ContactSpecLabel nvarchar R 
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#) TABLE_NAME COLUMN_NAME DATA_TYPE CODE 
en_ContactTypeLabel int C 

7) Diagnosis 
 
  

dx_ContactSpecLabel nvarchar R 
dx_DiagnosisDate datetime T 
dx_ICD10CDS3 nvarchar A 
dx_ContactTypeLabel nvarchar R 
dx_PatientID int C 

8) MDTReview 
 
  

ev_EventDate datetime T 
ev_EventDetail nvarchar A 
ev_PatientID int C 
ev_TeamName nvarchar R 

9) Outpatients 
 
 
 
  

op_AppointmentDate datetime T 
op_AppointmentTypeCodeLabel nvarchar A 
op_ClinicConsultantContactSpecialityLabel nvarchar R 
op_ClinicDate datetime T 
op_ClinicType nvarchar A 
op_PatientID int C 

10) Pathology 
 
 
 
 
 
  

esp_ContactSpecialityLabel nvarchar R 
esp_HistologyReportDate datetime T 
esp_PathologyDate datetime T 
esp_PatientID int C 
esp_ReceivedDate datetime T 
esp_SiteCodeLabel nvarchar A 
esp_SpecimenTypeLabel nvarchar A 

11) Patients  pt_BirthDate datetime T 
pt_CauseOfDeathCode int A 
Pt_DeathPlace nvarchar A 
pt_DeathDate datetime T 

12) Radiotherapy 
 
 
 
  

er_BookedDate datetime T 
er_ContactTypeLabel nvarchar R 
er_EndDate datetime T 
er_EventDate datetime T 
er_PatientID int C 
er_TypeCodeLabel nvarchar A 

13) Referrals 
 
 
 
 
 
  

ef_AcceptedDate datetime T 
ef_FirstAppointmentDate datetime T 
ef_PatientID int C 
ef_ReceivedDate datetime T 
ef_ReferralDecisionDate datetime T 
ef_ReferralTypeLabel nvarchar A 
ef_ReferredByContactSpecLabel nvarchar R 
ef_ReferredToContactSpecLabel nvarchar R 

14) Surgery 
 
 
 
 
 
  

es_DecisionDate datetime T 
es_MainProcedureLabel nvarchar A 
es_MethodLabel nvarchar A 
es_PatientID int C 
es_ProcedureText nvarchar A 
es_SurgeonSpecialityLabel nvarchar R 
es_SurgeryDate datetime T 
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E.3 Analysing PPM Cancer data change points 

  
  
  
 
 School of Computing 

EXPERIMENT 
DOCUMENTATION 

Date of experiment 
25/06/2019   

Experiment title: 
PPM Cancer data change points Experiment code 

PPMQ-CH0002 Researcher's name:   
Angelina Kurniati 

Area of investigation 

This experiment is the detection of the change points of the data. The findings in the 

previous experiment show a change pattern in the system usage. This experiment focused 

on finding change points where the system has been potentially changed. 

Data source 

The dataset is all events of cancer patients in the PPM Cancer data, which was accessed in 

the secure room in LIDA. Specifically, the data of monthly records is analysed. Details of 

the R libraries used in this experiment is in Appendix F.2. 

Research question 

Is it possible to detect change points where system is potentially changed? 

Hypothesis 

It is possible to detect change points based on the system usage over time. 

Method 

For each event:  

1) Query to calculate monthly frequency of each activity from 2003 to 2018. 

2) Create a time-series (ts) object using R library stats. Frequency = 12. 

3) Signal decomposition to subtract trend and seasonal pattern from the observed 

pattern. Time series patterns are trend (based on 12-moving average), seasonal 

(monthly average), and random. R library used in this experiment is fpp2. 

4) Fit a linear model to analyse the trend, using R library stats. This is analysed based 

on the coefficient, adjusted R2, and p-value. The coefficient represents the intercept 

and slope in the linear model. The adjusted R2 shows how well the model is fitting 

the actual data. The p-value shows the significance of the relationship. 

5) SPC chart to detect time points with significant change of activity frequency over 

time. R library used in this experiment is qicharts2. 

6) Analyse the results. 
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Results 

Admission (Min 7761; Med 26102; Mean 24467; Max 35669) 

 

Fitted trend: (coef = 115.0181, adjusted R2 = 0.8144, p-value < 2.2e-16) 

 

SPC to detect change points: 

 
Change points: 

Month 10-2003 11-2003 1-2004 2-2004 3-2004 3-2011 10-2014 

value -2600.5 -3323.6 3316.4 2979.1 2522.8 2771.4 2456.9 
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Change points mapped into bar chart of monthly records: 

 

The trend of Admission shows an increasing pattern by 115 records per month and is higher 

than the trend of Diagnosis. The change points detected in October-November 2003, 

January – March 2004, March 2011, and October 2014.  

The changes in October – November 2003 reflected the early stage of PPM EHR system 

implementation. The change in March 2011 and Oct 2014 were likely related to the major 

changes in the PPM EHR system. In 2011, PPM EHR system were started to be adopted to 

manage data in the whole hospital, where previously used only to record events related to 

cancer treatment. In 2014, PPM EHR system has been improved to join the Leeds Care 

Records (LCR) and connected to other providers such as General Practitioners (GPs), 

community and adult social care. 

Discharge (Min 7754; Med 26025; Mean 24338; Max 35564) 
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Fitted trend: (coef = 113.6, adjusted R2 = 0.8146, p-value < 2.2e-16) 

 

 

SPC to detect change points:  

 
 

Change points: 

Month 10-2003 11-2003 12-2003 1-2004 2-2004 3-2011 10-2014 

value -2474.9 -3317.6 -2448.4 3456.5 3063.8 2431.5 2583.8 

 

The number of Discharge records by month is very similar to those of admissions.  

The trend is that there is an increase of 113.6 per month and is higher than the trend of 

Diagnosis. The trend shows that Discharge records increased by 113.66 per month. Three 

periods where change potentially happened are in October 2003 to February 2004, March 

2011, and Oct 2014.  

The change in Oct-2003 to Feb-2004 were most likely related to the fact that PPM EHR 

system were just started to be used in the LTHT. The change in March 2011 is when the 

PPM EHR system was started to be adopted to manage data in the whole hospital. In October 

2014, PPM EHR system has been improved to join the Leeds Care Records (LCR) and 

connected to other providers such as General Practitioners (GPs), mental health, community 

and adult social care. 
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Consultations (Min 1; Med 5788; Mean 6459; Max 15025) 

 
Fitted trend: (coef = 72.78571, adjusted R2 = 0.7631, p-value < 2.2e-16) 

 
SPC to detect change points: 

 

Change points: 

Month 3-2018 4-2018 5-2018 6-2018 

value 1714.8 2182.6 2218.8 2418.6 

 



- 235 - 

Change points mapped into bar chart of monthly records: 

 

The trend of Consultation shows an increasing pattern by 72.78 records per month and is 

higher than the trend of Diagnosis. The change points detected in March–June 2018 were 

because Consultation was in the process of migration into a new system during 2018. 

Chemotherapy (Min 615; Med 1818; Mean 1971; Max 3559) 

 

Fitted trend: (coef = 12.6943, adjusted R2 = 0.9111, p-value < 2.2e-16) 
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SPC to detect change points: 

 

Change points: 

Month 7-2014 

value 378.5 

Change points mapped into bar chart of monthly records: 

 

Chemotherapy is one of three cancer treatment types, along with surgery and radiotherapy. 

The trend of monthly records of chemotherapy in the PPM EHR system is increasing. One 

change point is detected in Jul-2014. This was discussed with clinical expert and was 

apparently because of a change in people authorized to do chemotherapy. Previously, it can 

only be done by clinicians in the gynaecology and gynaecology oncology departments. In 

2014, clinicians in the haematology department was started to be authorized to do 

chemotherapy. 

Diagnosis (Min 807; Med 3641; Mean 3512; Max 7568) 

Diagnosis can be said as the baseline in this experiment. This is because diagnosis was used 

in the selection criteria. More detailed results of the analysis of the monthly Diagnosis 

records are presented as an example in Section 6.6.3. 
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Investigation (Min 38; Med 48662; Mean 45835; Max 94323) 

 
Fitted trend: (coef = 376.0788, adjusted R2 = 0.9156, p-value < 2.2e-16) 

 
SPC to detect change points: 

 
Change points: 

Month 10-2003 11-2003 1-2004 2-2004 4-2017 6-2017 8-2017 

value -7072.8 -7504.5 6716.1 6852.2 -9932.0 -8249.7 9058.2 
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Change points mapped into bar chart of monthly records: 

 

MDT review (Min 183; Med 3658; Mean 3744; Max 8135) 

 

Fitted trend: (coef = 39.9816, adjusted R2 = 0.9678, p-value < 2.2e-16) 
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SPC to detect change points: 

 

There is no change point detected based on the MDT review records. In the other word, 

the increasing trend is stable. 

Outpatient (Min 1977; Med 140584; Mean 133371; Max 205905) 

 

Fitted trend: (coef = 791.9042, adjusted R2 = 0.7555, p-value < 2.2e-16) 
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SPC to detect change points: 

 
Change points: 

Month 1-2004 2-2004 3-2004 4-2004 5-2004 6-2004 

value -28878,6 -24813 -42320.3 41464.8 28405.8 24579.7 

Change points mapped into bar chart of monthly records: 

 

Pathology (Min 8; Med 5126; Mean 4571; Max 6740) 
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Fitted trend: (coef = 24.8572, adjusted R2 = 0.6626, p-value < 2.2e-16) 

 

SPC to detect change points: 

 

Change points: 

Month 7-2005 

value -1911.8 

Change points mapped into bar chart of monthly records: 
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Radiotherapy (Min 474; Med 633; Mean 647.1; Max 1229) 

 

Fitted trend: (coef = 0.1599, adjusted R2 = 0.00232, p-value = 0.2317) 

 

SPC to detect change points: 

 

Change points: 

Month 10-2007 10-2013 10-2014 11-2014 4-2015 6-2015 11-2015 11-2017 

value 424.4 276.8 248.6 155.9 272.9 277.2 202.7 253.0 
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Change points mapped into bar chart of monthly records: 

 

Referral (Min 14223; Med 36088; Mean 39371; Max 63584) 

 

Fitted trend: (coef = 222.2942, adjusted R2 = 0.8401, p-value < 2.2e-16) 

 



- 244 - 

SPC to detect change points: 

 
Change points: 

Month 12-2003 1-2004 

value 8397.9 9329.3 

Change points mapped into bar chart of monthly records: 

 

Surgery (Min 56; Med 6480; Mean 5745; Max 9214) 
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Fitted trend: (coef = 41.24259, adjusted R2 = 0.8681, p-value < 2.2e-16) 

 

SPC to detect change points: 

 

Change points: 

Month 7-2005 

value -1616.724 

Change points mapped into bar chart of monthly records: 

 

Conclusion 

Each activity has different pattern of trend, seasonal, and change point(s) detected based on 

this method. Further evaluation of the results have been presented in Section 6.6.4. 
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Appendix F 

Overview of Plugins and Library 

F.1 Log Skeletons: A Classification Approach to Process Discovery 

Overview 

This is a rule-based approach to visualize log skeleton model. This model is related to the 

Declare constraint model with a way to classify traces. The better the discovered model can 

classify trace conformance to the event log, the better the discovery algorithm is supposed 

to be. 

Description 

An event log can be seen as a bag (or multi-set) of sequences of activities (or activity 

traces). Every activity trace can be extended with an artificial start activity and an end 

activity (called as an extended log), to explicitly gives a better picture of the activity log in 

the end. 

 

From the extended log, some relations can be defined, i.e. always after, always before, often 

next, often previous, never together, and next (one way or both ways). For example, the 

event log from experiment 1 in case study 1 as discussed in Section 4.3 can be visualised 

as the following log skeleton showing the ‘always after’ and ‘always before’ relations. 

Some important information visualised is that edout is not always after edreg, and discharge 
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is not always after admissions. This indicates data quality issues of the completeness of 

edout and discharge. 

 

Conclusion 

This plugin is one of the analytics plugins in ProM. This plugin visualises relations of 

activities in the event log as a log skeleton.  

F.2 bupaR 

Overview 

This is a package of functionalities for process analysis in R. This package is related to the 

other packages, including edeaR (exploratory and descriptive event-data analysis), 

processmapR, and processmonitR. 

Description 

The bupaR package is the core package of the framework that provides functions to create 

the objects and to support transformations such as mutate, filter, group_by, and mutate. The 

minimum required attributes to create an event log are case identifier, activity label, and 

timestamp. For example, the event log from experiment 2 in case study 3 as discussed in 

Section 6.4 can be created in bupaR with the following sintax. 

-- input: a dataframe endcancer of PatientID, Activity, Actor, Dated 
evlog <- endcancer %>%  

 mutate(status=”complete”, activity_instance = 1:nrow(.))%>% 

 mutate(Dated=as.Date(Dated, format=’%Y-%m-%d’))%>% 

 eventlog(case_id=”PatientID”,activity_id=”Activity”, 

 activity_instance_id = “activity_instance”,  

 lifecycle_id = ”status”, timestamp = “Dated”,  

 resource_id = “Actor”) 

The edeaR package provides methods for describing and selecting process data, and for 

preparing event log data for process mining. Event data can be explored based on the time, 

organisational, and structuredness perspectives. Time perspective includes three metrics, 

i.e. throughput time, processing time,  and idle time. Organisational perspective includes 

resource frequency, resource involvement, and resource specialisation metrics. For 

example, to analyse throughput time of processes in an event log, the following sintax can 

be used. 
evlog %>% throughput_time (“activity”) %>% plot 
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The processmapR package provides several visualisations of the data, such as process 

maps and dotted chart. The visualisations are customisable to support different needs in the 

study. This includes options to present the absolute/ relative frequency or performance 

profile in term of mean, median, or custom profile in the process model. For example, the 

pathways of endometrial cancer from referral to diagnosis can be visualised using a process 

map presenting median durations. This can also be combined with a filtering function in 

edeaR to include only top 30% of the most frequent traces. The complete syntax is as 

follow. 
evlog %>% filter_trace_frequency(percentage=0.3)  

 %>% process_map(type=performance(median, units=”days”)) 

Output: 

 
The processmonitR package provides a set of process dashboards. Some predefined 

dashboard are performance dashboard, activity dashboard, rework dashboard, and resource 

dashboard. Those dashboards combined some functions in the bupaR packages to provide 

more interactive visualisation of data and process of interest. 

Conclusion 

This package has been useful in the PPM Cancer case study in this thesis. Data description 

of event log has been made easy by bupaR with summary() sintax. The process discovery 

used in this package is visualised in state transition diagram. The analysis has been 

combined with many other basic packages in R such as stats, ggplot, and sqldf. 

 

 


