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Swarm robotics is a relatively new and multidisciplinary research field with many potential
applications (e.g., collective exploration or precision agriculture). Nevertheless, it has not been
able to transition from the academic environment to the real world. While there are many po-
tential reasons, one reason is that many robots are designed to be relatively simple, which often
results in reduced communication and computation capabilities. However, the investigation of
such limitations has largely been overlooked.

This thesis looks into one such constraint, the computational constraint of swarm robots
(i.e., swarm robotics platform). To achieve this, this work first proposes a computational index
that quantifies computational resources. Based on the computational index, a quantitative study
of 5273 devices shows that swarm robots provide fewer resources than many other robots or
devices. In the next step, an operating system with a novel dual-execution model is proposed,
and it has been shown that it outperforms the two other robotic system software. Moreover,
results show that the choice of system software determines the computational overhead and,
therefore, how many resources are available to robotic software. As communication can be a
key aspect of a robot’s behaviour, this work demonstrates the modelling, implementing, and
studying of an optical communication system with a novel dynamic detector. Its detector im-
proves the quality of service by orders of magnitude (i.e., makes the communication more reli-
able). In addition, this work investigates general communication properties, such as scalability
or the effects of mobility, and provides recommendations for the use of such optical commu-
nication systems for swarm robotics. Finally, an approach is shown by which computational
constraints of individual robots can be overcome by distributing data and processing across
multiple robots.
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Since time immemorial, humankind has been developing tools/machines to increase pro-
ductivity, efficiency or to reduce risks. With the industrial revolution, we learned to build
powered machines that perform repetitive tasks. From that time forth, an increasing number
of processes have been automated [[Groover||2007; |Chui et al.[2015; Degryse|2016[]. Today’s
technology enables us to automate devices that interact with humans [Sheridan|[2016} [Kolling
et al.|[2016; |(Goodrich and Schultz/2007]], vehicles [[Okuda et al.|[2014; 'Yuh|2000; [Chao et al.
2010], agriculture [Edan et al.|[2009; |Grift et al.|2008]], and more. These machines are, in many
cases, called robots.

While the definition of robotics varies (e.g. [[Cambridge University Press|2016] or [[Ox-
ford University Press|2016]), in this work, robots are mobile or stationary electromechanical
devices that interact with their environment. This definition enables a large number of clas-
sifications [Siciliano and Khatib|[2016], one of them being the operation environment, such
as air [Valavanis and Vachtsevanos||2014; |Gupte et al.|2012], space [Flores-Abad et al.|2014;
Ellery| 2000], underwater [[Yuh et al.|2012; Williams et al.|2016]], and earthbound [Diller et al.
2013]]. A second classification relates to the size of the robots that can vary from aircraft-sized
robots [Herrick|2000|] down to micro-/nanorobots [[Arab and Feng|2014]]. Another classification
refers to the number of robots, for instance, single-robot systems (e.g. surgical robots [Taylor
et al.|2008]]) or multi-robot systems [locchi et al.[2001]].

One area of robotics in which this work is situated, swarm robotics, studies large numbers
of relatively-simple robots, whose autonomous behaviour emerges through local interaction
with the environment and other robots [Sahin/2005]]. However, this definition is vague when
considering the terms “large numbers”, “relatively simple”, and “local interaction”. While
Benil [2005] defines a swarm as too large to deal with a few-body problem (> 102) and too
small to deal with statistical averages (< 10%3), [Hamann| [2018]] avoids specifying swarm ro-
botics over the number of robots (i.e., “if robots implement a swarm behaviour then it should

1



2 CHAPTER 1. INTRODUCTION

be considered a swarm [... ]”). When it comes to the complexity of an individual robot, “re-
latively simple” should be understood in such a way that a single robot is either incapable
or inefﬁcien concerning a given task. When looking at local interactions, these can be
divided into interactions with the environment and with other robots (i.e., communication).
Interactions with the environment are performed by sensors and actuators, and [Sahin/ [2005]]
even declared actuation a key property of swarm robotics as it distinguishes swarm robotics
from, for instance, sensor networks. While explici communication is not always used,
Brambilla et al.|[2013]] describe communication as another key property of swarm robotics as
it is essential to allow collaboration and cooperation between robots. Finally, swarm robotics
has a further key property, decentralisation. While it is only indirectly written in the defini-
tion of swarm robotics, many within the swarm robotics community agree that swarm robotics
systems should not access centralised control or global knowledge [Sahin| 2005} [Sahin and
Winfield 2008; [Brambilla et al.|[2013}; [Hamann|2018]]. Hamann| [2018]] goes as far as describ-
ing systems that use centralised communication systems (e.g., Bluetooth or Wifi) as not to be
swarm robotics systems.

Swarm robotics has a wide range of potential applications [Sahin and Winfield|2008; |Tan
and yang Zheng|2013]] including foraging [|Acar et al.[2003]], precision agriculture [Beni[2005;
Ruckelshausen et al.[2009; Yaghoubi et al.[2013; Bangert et al.|[2013]], pattern formation [Bah-
ceci et al.[2003]], transportation [Dorigo et al.[2006; |Chen et al.|[2015]], search and rescue [Kan-
tor et al.|[2003; [Stormont 2005; |Winfield et al. [2016]], and collective exploration [Ducatelle
et al.|20115; |Dorigo et al.,|2013]]. Swarm robotics’ qualities of robustnesj@ ﬂexibili
and scalabili open the door to its comprehensive implementation spanning a variety of
disciplines [Sahin|[2005; Brambilla et al.|2013; [Hamann|2018]|. In particular, applications that
have proven pressing, such as plastic extraction from the sea [Rojas|[2018|] or space debris
collection [Shan et al.|2016], could benefit from these properties. However, to the author’s
knowledge, swarm robotics is almost exclusively operated in academic environments and has
not been able to bridge the gap’"’|between the academic and the real world.

While the lack of real-world systems can result from a wide range of reasons, [Hamann
[2010]] for instance describes that swarm robotics’ inter-disciplinary as potentially harmful to
the progress: “[... ] it might imply the relevance of a vast number of fields making the research
unclear and all efforts will inherently be incomplete.” Currently, this incompleteness mani-
fests itself in such a way that the majority of swarm robotics research focuses on task-specific
or emergent behaviour and tends to overlook other areas, such as systems research or digital
communication. Another aspect of it is an interdependency between conducted research and
available robots/hardware. While research advances can improve the capabilities of robots, it
is also plausible that the robots that are available to the researchers influence which problems
are investigated and which type of solutions are found. For instance, if an available robot has
a relatively small amount of sensors and computational resource it is the author’s firm
belief that the research outcome will more likely be a minimalistic approach. Another hurdle
could be a potential conflict between the dynamic, complex, and unpredictable nature of the
real world and relatively-simple robots with their local interaction capabilities. However, the
research into the capabilities and limitations of robots has been scant. While the author admits

10 nefficient, in this context, is task-specific and can be interpreted as either requiring too much time or producing
inaccurate outcomes.

10Ty plicit communication describes an active state change of a medium or environment that can be observed by
other robots. An active state change can be, for instance, the emission of light or radio signals. In other words, if
the information is emitted and received, it is explicit communication.

10HR obustness is the capability to operate despite the malfunction of parts of the system.
L0V Elexibility is the capability of performing different tasks.

10V 3calability is the capability to maintain or even improve performance when adding robots.

0VIThe technical or technological hurdles that require overcoming for a system to be deployed in the real world is
often referred to as the reality gap.
L0VI Computational resources are memory and processing time.
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that the issue at hand is complex, finding the answers to the questions of “how many com-
putational resources are available on a typical platform?”, “how are the resources managed?”,
“what are their limitations?”’, and “how can the limitations be reduced or even overcome?”’
can only benefit the understanding of why swarm robotics has not yet left its mark outside the
academia.

1.1 Problem Statement

Arguably, one of the biggest challenges swarm robotics currently faces is bridging the gap
between conceptual or academic work and real-world applications. As mentioned earlier, this
is not for the lack of prospective uses, swarm robotics does have the potential to make an
impact in an already technologically advanced world in real terms. However, the probable
reasons behind this gap have not been investigated and the respective research is lacking.

The problem that this work tackles is to show how resources of the “large numbers of
relatively-simple” robots can be used to overcome computational limitations of a single ro-
bot. As solutions to real-world problems can be complex, robots, particularly ones with few
computational resources, often prove inadequate to solve the task at hand. Moreover, with the
increased complexity of these solutions, fewer robots will provide sufficient computational re-
sources to be of consequence. For instance, if a solution requires visual object recognition, a
simple swarm robot, such as the e-puck [Mondada et al.|[2009]] that has the required sensors,
would not be able to perform the given task as it cannot store a single image. However, with
enough robots, it should be possible to provide sufficient resources to solve such a task.

In order to utilise the resources of groups of robots, additional problems need addressing.

(I) The first problem is to specify what “relatively-simple” means with regard to compu-
tational resources and what implication the given resources have on robots and their
software. With the knowledge of how many resources are available, potential trends of
the robot’s usage and of the performed applications can be found. This could be used to
identify potential limitations based on the robot’s resources.

(I) The second problem is to identify how are computational resources managed and used
on robots. Fundamentally, robots with more resources can potentially execute more
complex software. However, when a more demanding system software’ 7is used, fewer
resources are available to the robot, which could impact the robot’s behaviour. On the
other hand, if system software is appropriately chosen, it can provide a wide range of
features easing the development of robots.

(III) The third problem is to identify how communication is managed and used on robots.
While communication is used often in swarm robotics (e.g., [Rubenstein et al.[[2014;
Garattoni and Birattari|[2018]]), there is little research on communication systems, their
requirements, and their properties. However, when behaviours are based on communica-
tion and the communication system is not adequately investigated, communication errors
can bias the outcome and, in the worst case, lead to wrong research conclusions. On the
other hand, when chosen appropriately, communication systems can reduce the costs of
communications (i.e., better quality of service and reduced transmission times).

By tackling these three issues, the foundations are laid to approach the main problem in which
multiple robots collectively provide their local computational resources via a network to solve
a common goal.

L11gystem software is a software that provides a platform for other software to be executed.
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1.2 Objectives

Based on the presented problem, the overall aim of this thesis is to demonstrate that the com-
putational constraints of individual robots can be overcome by distributively utilising the re-
sources of the group of robots. The specific objectives of this work are:
* To analyse the computational resources on swarm robots (i.e., swarm robotic platforms),
how they can be classified, and how they impact the software that can be used.

* To investigate how resources are managed and made available to robotic behaviour soft-
ware and to exploit that knowledge to develop a framework that reduces computational
overhead.

* To investigate how communication is managed and used on swarm robots and to demon-
strate how to increase the quality of servic

* To demonstrate a new approach to how a group of robots connected via a network can
utilise and manage computational resources to solve a problem that a single robot could
not.

1.3 Preview of Contributions

The contributions of this thesis are:

* A metric to quantify the computational resources, namely computational index, and a
classification of robots based on an in-depth study of the said indexes of 46 state-of-the-
art robots and 5227 other computer systems. Under this new classification, a robot can
be either non-computational, severely-constrained, weakly-constrained, or minimally-
constrained. In addition, an analysis of software for robots demonstrated on which class
of robots the respected software could be deployed, which indicates trends and possible
limitations of robots.

* The design and implementation of a novel operating system for swarms of severely-
constrained mobile robots, OpenSwarm. Its novelty is the proposed execution model
within its hybrid kernel that allows thread-based preemptive scheduling for computation-
ally-intensive tasks as well as event-based cooperative scheduling for swiftly-responsive
tasks. Additionally, the software design enables the exchange of events via a network al-
lowing distributed computation. It is open-source and lightweight with a small memory
footprint of 2 kB of RAM and 10 kB of ROM.

* The systematic evaluation of OpenSwarm on physical robots is achieved by comparing it
to other robotic system software and a hardware-nea implementation. In this study,
the computational and memory overhead, as well as the performance are compared
showing that the choice of system software can effect executed behaviours, even when
executing computationally minimalistic approaches.

* The first model describing the signal characteristics of the infra-red communication of
the widely used robotic platform, e-puck. The model is validated against data from real
robots. This model is also applicable to any device using the same components or the
e-puck’s successor, e-puck 2.

1-2IThe quality of service describes the overall performance of a network. It can be measured by several paramet-
ers, such as bit rate, package loss, or transmission delay.

!-31n this thesis, hardware-near describes the control of hardware functions directly through registers and flags.
I3 performance, in this context, refers to the time an algorithm needs and the accuracy of the result.
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* SwarmCom, a formally defined communication system for e-puck robots. Its key prop-
erty is the dynamic detector that adapts to the ambient light during runtime and, more
importantly, adapts its decision threshold to the incoming signal. This reduces bit-error
probability by orders of magnitudes (i.e., more reliable communication). SwarmCom is
evaluated against libIrcom [Gutiérrez et al.|20095] in a static and dynamic environment,
and it is demonstrated to outperform the latter.

* Studies on communication properties, such as mobility and scalability, show properties
of short-range optical communication systems in general. Experiments demonstrate that
mobility increases the average communication errors by magnitudes of power. Evalu-
ations with up to 30 robots show that optical communication systems are scalable in
particular for high—densit robot swarm. Overall, these insights apply not only to
SwarmCom but also to any short-range and optical communication system.

* A proof-of-concept demonstrating that a group of severely-constrained robots can col-
lectively utilise their resources, which enables the storing and processing of large data
exceeding the capabilities of a single robot. It also shows that the proposed system, the
first such system on severely-constrained robots, can virtualise sensors enabling the use
of augmented environments and can integrate other infrastructure.

Note that these contributions are based on software and behaviours implemented and deployed
on e-puck robots. As shown in Chapter 2] an e-puck robot is one of the most computationally-
constrained robots. Unlike a Kilobot [Rubenstein et al.|2012] (an even more constrained ro-
bot), it provides capabilities that are commonly used in swarm robotics, such as differential
drive, proximity sensors, accelerometers, gyroscope, microphones and a camera. The choice
of sensors offered by an e-puck is in many cases available only on less-constrained platforms,
such as marXbot [Bonani et al.|[2010]. The e-puck has been chosen because it provides these
common features while facing severe computational constraints. In addition, the e-puck is
widely used in the swarm robotics community and, therefore, this work could benefit a wider
audience.

1.4 Publications

This thesis represents the author’s work and has lead to several original contributions to sci-
entific knowledge. The presented work is built around the following peer-reviewed publications
(two journal and one international conference papers):

S. M. Trenkwalder (2019). ‘Miniature Robots: Their Computational Resources,
Classification, & Implications.” IEEE Robot. Autom. Lett., 4(3):2722-2729

S. M. Trenkwalder, Y. K. Lopes, A. Kolling, A. L. Christensen, R. Prodan, and
R. GroB (2016). ‘OpenSwarm: An event-driven embedded operating system for
miniature robots.” In ‘Proc. 2016 IEEE/RSJ Int. Conf. Intell. Robots and Syst.
(IROS 2016),” (pp. 4483-4490). Piscataway, NJ: IEEE

S. M. Trenkwalder, I. Esnaola, Y. K. Lopes, A. Kolling, and R. Grof
(2019). ‘SwarmCom: An Infra-Red-Based Mobile Ad-Hoc Network
for Severely Constrained Robots.”  Auton. Robots, (pp. 1-22). URL
https://doi.org/10.1007/s10514-019-09873-0

The second publication was presented as a full paper at the international conference 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in South Korea.

13 Hjoh-density swarms describe groups of robots that can occur in large numbers on small space — for instance,
234 e-pucks could be placed within a square metre.
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Chapter 2] [3] and {f] are based on and extend the material of the first, second, and third publica-
tion, respectively.

During the PhD project, the author has also contributed to the following projects that are
not featured in this thesis.

1.5

F. Perez-Diaz, S. M. Trenkwalder, R. Zillmer, and R. Grof3 (2016). ‘Emergence
and inhibition of synchronization in robot swarms.” In ‘Proc. 2016 Int. Symp.
Distrib. Auton. Robot. Syst. (DARS 2016),” Berlin, Germany: Springer

Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Grof3 (2016).
‘Supervisory control theory applied to swarm robotics.” Swarm Intell., 10(1):65—
97

Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Grof3 (2017).
‘Probabilistic Supervisory Control Theory (pSCT) Applied to Swarm Robotics.’
In ‘Proc. 16th Conf. Auton. Agents and Multi-Agent Syst. (AAMAS 2017),” (pp.
1395-1403). Richland, SC: IFAAMS

Thesis OQutline

This thesis is structured in six chapters, including the current introductory chapter. The remain-
ing work is organised as follows:

Chapter[2]investigates the question “How many computational resources does a relatively-
simple robot possess?” and “What limitations can be expected regarding software?”. To
provide an answer to these question, Section proposes a quantification for compu-
tational resources and then applies it to 38 robots and 5227 other computation devices,
which results in a computation classification of devices. In Section and robotic
system software and tasks are investigated with regard to their computational require-
ments and which computational classes of robots have performed them. Section [2.4]
summarises and draws concluding remarks.

Based on the conclusions drawn in the previous chapter, Chapter [3] investigates the
concept of embedded operating systems for severely-constrained robots. In particular,
Section [3.1] reviews how existing operating systems manage computational resources.
Based on that, Section [3.2] proposes a new operating system with a novel execution
model. In Section the system is evaluated and compared to other operating systems
and robotic system software. Section [3.4] summarises and draws concluding remarks.

As communication is often considered a key aspect in swarm robotics, Chapter [] in-
vestigates communication systems and their properties on swarm robots. First, existing
communication systems are reviewed in Section [d.1] Then, the structure of a swarm
robotics network is defined in Section .2] Section [4.3] derives a model describing the
signal properties, which is subsequently used to design an optical ad-hoc network in
Section4.4] In Section[4.5] the proposed communication system and its novel dynamic
detector are evaluated in several configurations, including static and dynamic settings.
After comparing the performance of the system to an existing communication system,
the chapter is summarised and concluded in Section 4.6]

Chapter [3] presents a proof-of-concept that combines the insights and the work of the
previous chapters by proposing, in Section [5.1] to utilise the computational resources of
multiple robots via a network to solve a task that a single robot could not solve individu-
ally. In Section[5.2] the system is evaluated with real robots storing and processing data
distributively. Section[5.3|summarises and concludes the chapter.
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Finally, in Conclusions, this work’s research findings and their limitations are presented.
In addition, the chapter provides suggestions for potential future work.



CHAPTER 1. INTRODUCTION



Robotic Systems

—>- 00— DO

Contents
2.1 Computational Quantification & Classification . . .. ... ....... 10l
2.2 Robotic System Software . . . .. .. ...ttt i i
23 RoboticTasks . . . . v v v vt it i i ettt e e e e e e e 24|
24 DESCUSSION . ¢ v v v vttt et e e e e e e e e 23

Robotic systems, or robots, are machines designed to interact with their environment [Si-
ciliano and Khatib|[2016]]. The interaction is enabled by sensors and actuators as well as a
computer system that manages and coordinates those action. As robots are designed to per-
form a variety of tasks in a range of environments, many different types of robots exist. Typical
categorisations are based on their physical properties (e.g., actuators), operation environment
(e.g., grounded or airborne), field of application (e.g., medical or educational) or the number
of robots (e.g., single or multi-robot systems) as shown in [Dobral[2014; |Siciliano and Khatib
2016; IEEE 2019]]. While each of these categories describe a robot’s interaction capabilities,
the computational aspects, which are paramount to perform actions, are commonly overlooked.

The computation is commonly performed by embedded systems [Marwedel|[2006]. These
systems can operate from millions to multiple billions of Instructions Per Second (IPS) with
a few kilobytes to tens of gigabytes of memory, respectively. For instance, an ATMega 328
can process 2.0 - 107 IPS and access 2 kB of primary memory (RAM) and an Intel i7-9700
can process 1.6 - 10! IPS and access up-to 128 GB of RAM. While high processing speeds
enable complex calculations in short time, it is often traded for low-power (i.e., longer mobility
and lower heat production), reduced size, weight, and costs. These properties are essential
particularly to areas deploying many miniature robots — such as swarm robotics.

Bearing in mind this trade-off, the specification of the number of resources during the
design of a robot is often based on experience and convictions instead of systematic selection.
This stems from a lack of systematic compariso of resources and a lack of knowledge of
the requirements of future application@ As a result, this chapter investigates:

* how to quantify resources of computer systems,

2017y particular, it is difficult to compare systems providing more memory to the ones with more processing power.
20When trading off one resource against another, a system can be constrained to a smaller number of tasks that it
can perform. For instance, image processing on an e-puck robot [Mondada et al.[2009] is only possible on a small
subset of the image, as the requirements to process a complete frame exceed the resources of the robot.

9
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Table 2.1: Classification of constrained IoT/WSN devices [Bormann et al.[[2014].

Class RAM ROM

CCD 0 . < 10kB = < 100kB
CCD 1 . ~10kB | ~100kB
CCD2 . ~50kB  ~250kB

* how robots can be compared and classified,
» what robotic software can be deployed, what computational resources it requires, and
what function it provides.

2.1 Computational Quantification & Classification

This work investigates devices based on a random-access machine (i.e., a Turing machine)
with finite memory length as defined in [Robic|2015]. In other words, a device must contain
at least one microprocessor unit (MPU) that executes instructions on registers and randomly
accesses memor This definition covers the majority of devices including robots. However,
systems such as quantum computers or biological systems are not considered as computation
is performed differently and these systems are rarely used in robotics.

Table shows 46 common robots and their resources. It is divided into three sections
— non-miniature robots (grey), miniature robots (blue), and micro-/nanorobots (green). In this
work, a robot is miniature if it is milli- or centimetre-sized as it is used in the literature (e.g.,
[Martel et al.|2001}; Nardi and Holland|[2007; Bonani et al.|2010]]). Micro- and nanorobots are
considered to be sub-millimetre sized.

While there is a lack of quantification and classifications standards in robotics, |Bormann
et al.| [2014] provides this for the Internet-of-Things (IoT) and Wireless Sensor Networks
(WSN)./Bormann et al.|[2014]] quantifies the computational resources solely based on the avail-
able memory (RAM and ROM) and introduces three classes of constrained devices (CCD) —
CCD 0, 1, and 2 — as shown in Table 2.1l However, when applying this to a list of robots
shown in Table it is evident that many robots exceed the limits of the classification. There-
fore, the classification is insufficient for robotics.

When investigating the robots of Table[2.2] it can be seen that their computational resources
vary from severely limited [e.g., a single 8-bit MicroController Unit (MCU)] to virtually un-
limited for most software (e.g., two servers within one robot). However, it is currently not clear
how to quantify computational power (e.g., how an increase in processing power compares to
an increase in memory).

21TRandom-access memory (RAM) is memory where any element can be written to/read from by the processor
independently of any previous access.



Table 2.2: Non-miniature? (grey), miniature® (blue), and nano-/micro-robots® (green), their computational resources, and classification. The table includes only
robots for which data could be obtained from publications, datasheets, manuals, or project websites. Note that Entert., Educ., Med., and Reconf. stand for
entertainment, educational, medical, and reconfigurable, respectively.

Robot MPU/MCU S ]?n F\)]‘J'l:;:::::t Group Network Cj'mi

ﬁz":; AT Intel i7 4  64bit  3.4GHz 4GB 128 GB Asi‘;fl‘;fgn HTJ’rfla}:jlfd Eﬂvﬁget Single >2 191'% 317 O
icMu:tta wtalbhoos Intel Core Duo 2 2 64 bit 2.3 GHz 1GB ) Ground Humanoid (\é\/geNd) Single > 2 19003 29.7 Co
Egumllier P Intel Atom 4 32bit  1.91 GHz 4GB 32 GB Ground Humanoid E‘gﬁ::;mﬁ Mu?::gRlzbm >2 190'_63 301 Oy
[P:er:;ntiﬁ fo'z’g 1230 ARM Cortex—A8 1 32 bit 1 GHz 1GB . Air Quadcopter WiFi Mu?:igRlzbm > 2 22 276  Cs
r\iilow Gy BT 2x Intel i7 Xeon 4 64bit 3.4GHz 4x 24GB  2x 500GB  Automation }E’Ifla};a;f | E“l‘;llet‘(;::ﬁﬁ Single > 2 ii:g 338 O,
F(?:;i\(i)llier e Intel Atom 4 32bit  1.91GHz 4GB 10 GB Ground I_;Z Zf;lz? . Et;;';fgmpi Single >2 190'2 00 O
ﬁ?&?gﬁin T T ARM Cortex-M3 1 32bit 72 MHz 16 MB 10 MB Ground \gah:;i: E%‘veiget Single > 2 ;g 2.1 Cs
[\;‘;];yf(r:; wTpos 3x Tegra3 ARM A9 4 64bit 1.6 GHz 2GB - Ground Humanoid Et\};get Single >2 19d87 31 Oy
g’i‘; :EL e Intel Atom D) 32bit  1.66 GHz 2GB 32 GB Ground AX::;Z?)H E:‘Veiget Mu?:;gRl:bm > 2 g:; 292 Oy
gzgaiijgmemammem o0l MIPS R7000 I 64bit 576MHz 64 MB 4MB Ground Quigt_;f;al - Single > 2 ;2 253 O
ﬁ\f\ii e ATMega 168 1 8 bit 8 MHz 1kB 16 kB Ground V‘g‘;:ied Infra-Red Swarm 0 2:8 168 O
[Cgllg”lll‘r) PPN TITE PIC32MZ 1 32bit 200 MHz 512kB | MB Ground Educ. Bluetooth Mu?:i‘nglzbm > 2 g; 23 O
e — MRl 1w mm @ EE o T w0 3 G
[Cc;?ezrilgk?e(: T STM32F405RG 1 32bit 168 MHz 196 kB 1 MB Air Quatcopter Bluetooth Mu?::nglzbot > 2 Zz 217 Oy
})Fr;’r‘r’iii SO Xmegal 28A3U 1 8bit  32MHz 8 kB 128 kB Ground 1?.:. :‘::‘Zﬂ Infra-Red Multi-Robot 1 ;2 189
fﬁzﬁga — dsPic30 1 16bit 7 MHz 8 kB 144 kB Ground Wheeled ﬂ;’r:“l’{‘:g Swarm 1 zg 77
Féi::;f:l‘hz(’;"; o] ATmega328p 1 8 bit 8 MHz 2kB 32 kB Ground Hexapedal Infra-Red Multi-Robot 0 zg 177 Ci
FEvfc:l(;a S G PIC24 1 16bit 16 MHz 8 kB 128 kB Floating Reconf. (\ggeNd) Multi-Robot 1 32 183 O

Continued on the next page
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Table 2.2: Continued

4!

Robot MPU/MCU Cores rch. Application Network Group
Environment Size

GRITSBot Atmega 328 1 8 bit 8 MHz 2kB 32kB ANT . 3.5 .
{Pickem et al. 2015 Atmega 168 1 8bit 20 MHz | kB 16 kB Ground Wheeled Infra-Red Swarm 0 74 B4 O
GoPiGo . . Educ. Single 9.0 .
{Pierson et al. 2017 Rasberry Pi 3 4 64 bit 1.2 GHz 1 GB 8 GB Ground Wheeled - Multi-Robot > 2 98 28.5 Co
HyMod . Modular Wired . 4.8 .
{Parrott et al. 016] ARM Cortex M4 1 32 bit 72 MHz 64 kB 256 kB Ground Wheeled (CAN) Multi-Robot 2 3.0 20.7 C4
I-Swarm® X X 33 .
[Seyfried ot al. 20051 Synopsys 8051 1 8 bit 12 MHz 2 kB 8 kB Ground Wheeled Wired Swarm 0 71 17.5 C1
Jasmine' ATMegal 68 1 8 bit 20 MHz 1kB 16 kB Ground Wheeled Infra-Red Swarm 0 ;2 17.8 C
Khepera IV . WiFi . 8.7 .
{Soares et al. 2016] ARM Cortex-A8 1 32 bit 800 MHz 512 MB 4GB Ground Wheeled Bluetooth Multi-Robot > 2 92 27.1 Cs
Kilobot ATMega328 1 8 bit 8 MHz 2kB 32 kB Ground Mobile Infra-Red Swarm 0 3B 9 ¢
[Rubenstein et al. 2012 5 - 6.9 : &
Kobot . . 7.5 ,

. PXA255 1 32 bit 200 MHz 32 MB 32 MB Ground Mobile Infra-Red Swarm >2 24.1 Cs
[Turgut et al. 2008 8.3
Lego Mindstorms NXT ATMEL AT91 1 32 bit 48 MHz 64 kB 256 kB Bduc Bluetooth Sinele 2 4.8 203 C
|Grega and Pilat 2008] ATMega48 8 bit 8 MHz 512 B 4 kB : (USB) & 7.7 : !
M-Block STM32F051 . Reconf. ANT . 39
[Romanishin et al. 2015] ARM Cortex-MO 32 bit 48 MHz 8 kB 64 kB Ground Jumping Bluetooth Multi-Robot 7.6 193
marXbot . . WiFi . 8.1 .
{Bonani et al. 2010} i.MX31 (ARM 11) 1 32 bit 533 MHz 128 MB - Ground Wheeled Bluetooth Multi-Robot > 2 33 25.8 Co
MHP . ) 48 )

1 ARM Cortex M4 1 32 bit 72 MHz 64 kB 256 kB Underwater Modular Infra-Red Multi-Robot 2 20.7 C1
[Doyle et al.|[2016] 8.0
MicroMVP__ ATMega328 1 8 bit 8 MHz 2kB 32kB Ground Wheeled Infra-Red Multi-Robot 0 33 12 o
[Yu et al.[2017] 6.9
Micro Quadrotor . . . 7.2
[Kushleyev et al pOT3] ARM Cortex-M3 1 32 bit 72 MHz 16 MB 32 MB Air Quadcopter ZigBee Swarm > 2 3.0 23.1 (&5
Mona ATMega328 1 8 bit 8 MH. 2kB 32kB Ground Wheeled Radio Multi-Robot 0 33 12 ¢
{Arvin et al. 2018} 3= ! g B ! it 69 : A
Monsun II Bluetooth 7.5 §
{Osterloh et al 2012] Blackfin BF537 1 16 bit 500 MHz 32 MB 40 MB Underwater UAV (Wired) Multi-Rrobot > 2 8.7 249 Ca
mROBerTO . . Wheeled Bluetooth . 4.5 .
{Kim et al. 2016 Nordic nRF51422 4 32 bit 16 MHz 32kB 256 MB Ground Educ. ANT Multi-Robot 2 78 20.1 C4
Pheeno ARM Cortex-A7 4 32 bit 900 MHz 1 GHz - Wheeled WiFi . 9.0 .
[Wilson et al.|2016] ATmega328p 1 8 bit 8 MHz 2kB 32kB Ground Educ. Bluetooth Multi-Robot > 2 o5 281 (2
r-one . . . - . Multi-Robot 4.8 ,
McLurkin et al. 0131 TI LM3S8962 1 32 bit 50 MHz 64 kB 256 kB Ground Wheeled ZigBee Swarm 2 3.0 20.8 Ch
s-bot . - 7.8 .
{Mondada ct al. 2004 Intel XScale 1 32 bit 400 MHz 64 MB 32 MB Ground wheeled WiFi Swarm > 2 8.9 25.6 Co

Continued on the next page
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Table 2.2: Continued

MPU/MCU Cores rch. req. Q Group Network GSII‘;;P Cr  Class
151\(/)&51?:;“; Zigg i ATMega 644 1 8bit 20 MHz 4kB 64 kB Underwater RC;Z‘;:C}‘ ZigBee Single 0 ;(3’ 182 O
[T]?if;‘ioe?al‘ T PIC24 1 16bit  8MHz 16 kB 128 kB Ground Wheeled ¢ él;]?; . Swarm 1 2:5 180 Oy
meaimms menm ¢ wmomm om L o, M ., a2 2w o
&Zﬁziﬁmﬂollan o Gumstix SBC ARM7 1 32bit 40 MHz 2GB - Air Helicopter ~ Radio-based ~ Multi-Robot > 2 3;2 244 O
e Blucecmin CMBFsSL 2 lobi  aoomis  otwm  swp 0wl R e MRt >2 0 360 O
[V]\;‘:;f:gser = o ARM Cortex-A8 1 32 bit 1 GHz 512 MB 4GB Ground V‘g’jjfd Z\izi};eie Multi-Robot > 2 2:(7) 267 O
e e f RN doem  oem e Ar Quacper WU swm >0 7 %69 O
[Cff; zlilt_ygglhgcmmbm - 0 : 0Hz 0B 0B Floating MM":;'f ; ; <0 g:g 00 €0

? A selection of common non-miniature robots has been taken from canonical robotic challenges of RoboCup and DARPA.

® This selection of miniature robots have been obtained from various sources — including [Siciliano and Khatib[2016{|Hamann[2018] Wikimedia Foundation 2019a{ Moubarak and Ben-Tzvi
2012]. A robot has been added if it is miniature and details of its computational capabilities could be obtained from publications, datasheets, manuals, or project websites. If the robot has
not been used in publication within the last 10 years (e.g., Alice) or technical specification is not available (e.g., Anki Vector, Cubelets, Dash, Root, and Sphero), the robot has not been

included.

¢ Only one nanorobot has been added as nanorobots solely reacts on environmental changes through physical or chemical mechanisms and lacks a computational component that can be

programmed; hence, any of these robots provides the same amount of computational resources (none).
4The class of constrained devices proposed in [Bormann et al.[2014] is abbreviated with CCD.
¢ All details were taken from the I-Swarm project homepage (http:/www.i-swarm.org/MainPage/Robots/R_Description1.htm).
' All details were taken from |the Jasmine project homepage (http://www.swarmrobot.org/GeneralDesign.html).
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2.1.1 Computational Index

As any computer system can be described by processing power (i.e., instructions per second)
and memory (i.e., number and length of elements that can be accessed), two indexes are pro-
posed — a memory index, M7, and a processing index, Pr:

My =log(1+m), 2.1

Pr=log | 1+ Z n; fiei |, 2.2)
i IPS per MPU

where m is the available primary memor in bytes and n;, f;, and e are the number
of cores, the operation frequency, and the average amount of instructions per clock cycle of
an MPU . Note that both M; and P; are chosen logarithmically to linearise the exponential
growth of computational resources over time (Moore’s Law) and to better describe the mag-
nitudes of power difference between high-end microprocessors and low-end microcontrollers.

While a single index quantifies the magnitude of either processing power or memory, it
often is not sufficient to classify a system for two reasons. First, single resources can be in-
creased without increasing the system’s capabilities. For instance, e-pucks do not have enough
memory to store a single image of its on-board camera and increasing processing power does
not enable a robot to load and process that frame. Second, processing power and memory are
not independent as implementations of an algorithm can prioritise memory consumption or ex-
ecution time while performing the same action. As a result, the relation between processing
power and memory needs to be found.

In cryptoanalysis, the relation between processing time and memory is proposed by [Hell-
man|/1980] in form of a time-memory trade-off. It is used to calculate a general one-way func-
tio inverter. Hellman| [[1980] describes that a function can be sped-up by pre-calculating
lookup tables (increasing memory consumption) or its memory can be reduced by recalculating
values. Due to the complexity of the inverters, this method applies to functions with complexity
of NP or less — even outside of cryptoanalysis. The trade-off is formulated by

mt? =k = const., (2.3)

where m and t are the respective memory and processing time for a given implementation
of a given algorithm. The algorithm-specific constant, k, is a simplification as it depends on
multiple parameters (see [Hellman||1980]] for more details).

Assuming an algorithm is implemented to use all of the available memory, m = Mmy,q4, the
processing time is a minimum, ¢ = ¢,,;,. When the processing power, p/, is changed to p, (2.3))
becomes

2
Mimaz (t;nin)2 = Mmazx (tmin ;:,) = k/, 2.4)
N2 ]{I/
Mmaz p2 = % = const., (2.5
tmin

2LNote that m is the size of the primary memory (i.e., RAM) as the processor has direct random access as
described by a random-access machine. As data from the secondary (e.g., FLASH, hard drives) and tertiary memory
(e.g., SD Cards, cloud storage) is first transferred to the primary memory before it can be accessed, the primary
memory is the defining factor and, therefore, is used.

2 Note that e; is not available or documented for every platform. This value can vary from high-end micro-
processors providing larger values (e.g., Intel i7 7500: e; = 9.1, AMD Ryzen 7 1800x: e; = 10.6) to low-end
microcontrollers approaching 1 (e.g., ATmegal28: e; = 1.1, DSPic30F: e; = 1.05). In case e; is not available, it
is set to 1 (worst-case).

2LV A one-way function and its inversion are functions with a maximum of polynomial (P) and a minimum of
nondeterministic polynomial (NP) complexity, respectively.
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Figure 2.1: Histogram of the computational index values of 5264 devices including robots
from Table @ (black) as well as sensor network nodes (green), microcontrollers (red), and
embedded computer systems (blue) from Appendix Q

where the available memory and the square of the processing power are constant for the given
algorithm and processing time, ¢,,i,. In other words, any system satisfying (2.3]) can process
an algorithm satisfying (2.3) within ¢,,;,; therefore, the systems are equally computationally
powerful. By combining (2.1)), (Z.2), and the logarithm of (2.3), this work proposes the com-
putational index,

C]:M[—I-QP[, (2.6)

which is applied to Table[2.2]

2.1.2 Computational Classification

When applying (2.6) to a wide range of other computer system it can be seen in Figure
that the values of C7 populate two regions. The lower region (C; < 23) is mostly populated
by microcontroller unit (MCU)-driven devices and the higher region (C7 > 23) is mostly
populated by embedded computer systems. As shown in Figure 2.T] (black), the robots of
Table 2.2 populate both regions separated by a gap at C7 = 23.

Due to the existence of these two regions, robots are grouped into two sets referred to as
severely-constrained (C; < 23) and weakly-constrained robots (C; > 23). The threshold of
23 is estimated based on the data set of Figure [2.1] indicating the middle of the gap between
both sets. Robots that do not compute (e.g., [Fusco et al.[|2014; |Garcia-Lopez et al.[|2017; [Lee
et al.|2018]]) are referred to as non-computational robots. When robots accessing external infra-
structure and the combined computational resources exceed the capabilities of any individual
computer system by magnitudes (e.g., [Terrissa et al.[2015; [Wan et al.|[2016]), the system is
referred to as minimally-constrained robot. To simplify the referencing, let class Cy, C1, Cs,
and C refer to non-computational, severely-constrained, weakly-constrained, and minimally-
constrained robots, respectively. Note that this classification is shown in Table 2.2]

2.1.3 Discussion

The presented computational indices quantify computational resources and enable them to be
compared. They can also be used to classify the entire spectrum of robots reaching from non-
computational to minimally-constrained robots.

21V total, 5227 devices are used including sensor network nodes, microcontrollers, and embedded systems,
which are listed in Appendix [C}
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Figure 2.2: Memory (M) and processing indices (Pr) of 5273 devices including robots of
Table [2.2] (black) as well as sensor network nodes (green), microcontrollers (red), and embed-
ded computer systems (blue) from Appendix [C] On the top and the right are histograms of
Pr and M7, respectively. Note that two horizontal lines indicate the border between classes
proposed by [Bormann et al.[2014]]. Stars indicate non-miniature robots of Table @

The scatter plot of Figure [2.2]shows two distinct sets of devices. While the two sets are less
distinguishable when considering the processing power [see Figure [2.2] (top)], the distribution
of available memory shows a clearly distinguishable gap between both sets [see Figure [2.2]
(right)]. This can be explained by the fact that integrated memory on a processor die (i.e.,
MCU) is technologically constrained regarding size and circuit complexity. On the other hand,
different components for memory and processor allow the use of cheap and large memory with
high operation frequency; hence, the gap. While separate memory and processor components
are beneficial regarding computational power, integrated systems commonly use less power,
are smaller, and cheaper.

When investigating the computational resources of robots, Figure [2.2] (black) reveals that
miniature robots (dots) tend to provide less resources than non-miniature robots (stars). While
miniature robots can be within C or Cb, the majority (61 %) are severely-constrained. Inter-
estingly, C robots are almost exclusively deployed in research environments. This potentially
stems from technical hurdles, such as few computational resources. Recent work, such as
[Jones et al.|2018]], supports this argument as it extends the computational resources of mini-
ature robots to overcome specifically the reality gap.

It could be argued that computational resources of future systems would increase in line
with Moore’s law, which would shift robots into Cs. While this might shift the threshold
between C' and Cs, it can be expected that the gap between single-chip (i.e., MCU-based) sys-
tems and systems with discrete components remains due to the technological differences stated
before. Furthermore, robots — such as [Wood et al.[|2013]] — rely on further miniaturisation,
which itself favours MCUs due to their size, weight, and power consumption.

When comparing the proposed classification with [Bormann et al.|[2014]], both classifica-
tions are compatible as any class of [Bormann et al.|2014] is classified as C';. Consequently,
Bormann et al| [2014] can be seen as a sub-classification. However, Bormann et al.| [2014]
use ambiguou ranges, which makes the classification difficult to apply. When applying

21Vt §s not clear in which class, for instance, a PIC18F67K40 with 3.5 kB off RAM and 128 kB of ROM falls.
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the Bormann’s classification to 5273 devices (particularly C'; devices) as shown in Figure [2.2]
the benefits of the classification is questionable as the devices are distributed across all classes
without showing any denser areas or gaps between them. Furthermore, it is based solely on
memory, which is not always sufficient as described previously. In comparison, the proposed
classification’s ranges are based on empirical data.

2.2 Robotic System Software

After investigating what and how many computational resources are provided by robots, let us
examine which software is deployed on robots. Fundamentally, software can be divided into
two categories — application software and system software. Application software is software
that performs a user-defined behaviour or solves a given task. System software, on the other
hand, is any software that controls and manages the system without implementing a specific
behaviour or application. As a result, system software provides a platform to implement applic-
ations while reducing complexity as well as increasing deployability and resuability. Examples
are firmware, device drivers, operating systems, and domain-specific language compiler/inter-
preter.

In this section, a series of robotic system software is discussed and its key-aspects identi-
fied. Finally, the computational requirements of system software are analysed.

2.2.1 Cloud-Enabled System Software

One solution to compensate for computational constraints is to outsource the required resources
to an external infrastructure — a cloud. A cloud (or cloud computing environment) is an in-
frastructure composed of a pool of computer resources that provide services to other systems.
A could typically contains computational resources magnitudes higher than an individual com-
puter system. Currently, there are two approaches to combine cloud computing and robotics —
Robots-as-a-Service (RaaS) [Chen et al.|2010; Terrissa et al.|2015]] and cloud robotics [|Gold-
berg and Kehoe[2013; [Kehoe et al.[2015]].

RaaS describes cloud applications that use robots, where a robot is a single resource (unit)
based on a service-oriented architectur [Chen et al.|2010f]. For instance, in the Robot Cloud
Center (RCC) [Du et al.|2011] — a RaaS implementation —, tasks are selected by a user and
the software transparently selects a robot and accesses its capabilities remotely.

While RaaS solutions focus on applications utilising robots, in cloud robotics, robots utilise
the cloud to store data or perform demanding computations [Wan et al|2016]. Cloud robotic
systems can be divided into systems that provide information (e.g., RoboEarth) and that pro-
cess information (e.g., Rapyuta). RoboEarth is a repository where networked robots store/share
information and collaborate [Waibel et al.[2011]]. It can be seen as a knowledge database for
different platforms. In contrast, Rapyuta remotely processes tasks in one or more environ-
ments of high-performance clusters [Mohanarajah et al.|2015]]. Furthermore, it allows access
to RoboEarth, ROS packages as well as other robotic middleware (see Section [2.2.2).

Fundamentally, both approaches are a special case of robotics where additional infrastruc-
ture is needed (i.e., clouds). As the system software on both a robot and on the cloud needs
to be considered as robotic system software, determining the computational requirements for
a single robot would be insufficient. Therefore, the computational classification of the entire
system is a minimally-constrained robotic system (i.e., C,) as it exceeds multifold the com-
putational resources of an individual computer system.

While the robots can be designed more cost-efficiently thanks to their reduced computa-
tional requirements, continuous access to the cloud is paramount. Therefore, the system’s per-

22Igervice-oriented architecture is a design paradigm in which resources are available as services [Erl|[2012].
Similar to a client-server architecture, the resource can be operated by components or applications.
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formance depends on the quality of service of the network, which is a significant restriction.
In swarm robotics, such a reliable network connection is often not feasible for two reasons.
Firstly, swarm robots are often equipped with simplistic communication methods that cause
long latencies, low throughput, and relatively weak error-correcting capabilities (see Chapter ]
for more details). This limits the transmittable data and the quality of the data. Secondly, these
systems are designed for a single or small groups of robots. It is not clear if these systems can
scale to large swarms, in particular when considering the network to the cloud. High-density
swarms would face complications as hundreds or thousands of robots would need a reliable
communication within a small space at the same time.

2.2.2 Robotic Middleware

When reliable communication to the external infrastructure is not available, local processing
is often a more practical approach. On the majority of modern computer systems, operating
systems are used to improve the development and execution of software. These systems provide
limited interaction options with other devices (except communication) or their environment. As
one of the main purposes of robotics is to interact with its environment, robotic middleware can
be used to facilitate these robotic aspects.

A middleware is any system software that is executed between applications and an oper-
ating systems. It provides features to measure, act, and execute behavioural algorithms on a
generic operating system. In this section, common robotic middlewar — Miro, ORo-
CoS, Player, ROS — are discussed and their computational requirements analysed. Note these
systems were selected as they are widely used for RoboCup, in real-time & safety-critical en-
vironments, for research, and in industry, respectively.

2.2.2.1 Miro

Miris an open-source middleware aiming to improve the software development process
of mobile robots [|Utz et al.[2002]]. Miro provides three layers:
* Miro Device Layer provides an abstraction for any platform-specific hardware (e.g.,
sensors and actuators),
* Miro Service Layer allows access to actuators and sensors through Common Object Re-
quest Broker Architecture (CORBAP>7"] and
* Miro Class Framework provides common features and functions (e.g., localisation or
path planning routines).
This layered structure and its object-oriented design make Miro adaptable and extendable
[Kruger et al. 2006]. Furthermore, with the use of CORBA, distributed control is possible
through its cross-platform and inter-process interoperability. However, Miro does not provide
real-time properties.

2.2.2.2 ORoCoS

The Open Robot Control Softwar (ORoCoS) is an open-source, object-oriented, real-
time control software for industrial robots and machines [Bruyninckx et al.|2003]. ORoCoS
provides four elements:

* Real-Time Toolkit provides real-time functions and features,

* Kinematics and Dynamic Library allows the calculation of kinematic chains,

2200 A comprehensive list of robotic middlewares can be found in [Namoshe et al. 2008; Mohamed et al. 2008;/2009;
Elkady and Sobh[2012].

“#!"For further details: |https://sourceforge.net/projects/miro-middleware.berlios/ (Miro).

22V CORBA is an interface description language designed for seamless communication in heterogeneous systems.
This allows the usage of the interface in different programming languages and across different platforms.

22V For further details: |http://www.orocos.org/ (ORoCoS).
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* Bayesian Filtering Library implements efficiently filtering methods (e.g., Kalman Filters
[[Grewal and Andrews|2014] and Particle Filters [Ristic/2015]), and

* ORoCoS Component Library provides common features (similar to Miro Class Frame-
work).

Target platforms of ORoCoS are stationary industrial robots. They focus on fixed sequences
of high-precision steps. However, in many mobile robot applications, dealing with unknown
environments, overcoming their limitation, and mobility takes priority over high-precision ac-
tions.

2.2.2.3 Player

Playe is a middleware that has widely been used in academia [[Collett et al.|2005]. The
open-source software runs on POSI operating systems. Player uses a client-server ar-
chitecturd®> "] to link a server executed on the robot (server) to the control software executed
on a computer (client). Each part of the server (e.g., each sensor or actuator) is controlled by a
thread, which is executed by the operating system.

A reason for Player’s popularity in academia is its integration with Stage (a simulation
tool), which allows swift simulation results. However, the need for remote control of robots is
a significant drawback outside academia.

2.2.24 ROS

The Robot Operating Syste (ROS) is an open-source, distributed framework with the
largest community in research and industry [[Quigley et al.|[2009]]. Despite its name, ROS is
not an operating system, as defined in [Tanenbaum|2009; Stallings||2014], as it is executed on
top of an operating system.

ROS is a collection of tools and function components, called nodes, connected through
a publish-subscribe architectur A single node commonly provides a single function —
such as control software, hardware abstraction, or complex algorithms (e.g., SLAM). When a
message (in this case, an XML-based RP is published, any subscribed node receives the
data — even when executed distributively. This enforces clear interfaces, which improves the
reusability and modularity of the code.

Despite its distributed design, ROS uses a central control component, called ROS Master, to
coordinate messages and subscriptions. Research has shown that single nodes can be executed
on severely-constrained devices [Bouchier|2013]]. However, ROS requires an active ROS Mas-
ter, which requires an Ubuntu Linux, to perform. The drawback of requiring a central unit (i.e.,
a single point of failure) motivated the development of ROS The ROS Master func-
tionality is replaced by a distributed middleware, Data Distribution Service (DDS), bypassing
the need for a central unit. However, this has increased the computational and communication
overhead considerably.

22VIEor further details: http://playerstage.sourceforge.net/ (Player).
22VlIThe Portable Operating System Interface (POSIX) is a standardised interface between applications and some
operating systems — commonly UNIX-based platforms.
22VIT A client-sever architecture describes a system where commonly a single server provides access to resources to
multiple clients which are connected via a network.
22IXEor further details: |http://ros.org/| (ROS).
22X A publish-subscribe architecture describes a system that allows any components to subscribe (i.e., allow re-
ceiving of data) and publish (i.e., transmitting of data) to a common data channel.
22X A remote procedure call (RPC) is a message that, when received, causes the execution of a function.
22XII'ROS 2 is in the early stages of development and has been first released in 2018 at https://github.com/ros2/ros2.
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Table 2.3: Computational requirements for common generic operating sys-
tems.

Operating System -

| 26.5
| 28.6
Window ‘ 25.6

“The requirements for Linux are based on the embedded version, Ubuntu Mate 18.04, as
the current version of ROS (Melodic Morenia) requires it.

®The requirements for Apple’s macOS are based on macOS Mojave 10.14.

“The requirements for Microsoft Windows are based on the embedded version, Windows
10 IoT.

2.2.2.5 Discussion

A robotic middleware uses the computational capabilities of an operating system and extends
them to access the robot’s capabilities. A middleware aims to decrease developmental efforts
while increasing portability and maintainability of the software.

While each robotic middleware provides different merits, they share specific properties.

* Each middleware provides a layer (Miro and ORoCoS), a thread (Player), or units/nodes
(ROS) to abstract robotic hardware — including actuators, communication, and sensors.
This allows software to interact with the robot’s environment transparently.

* Each system provides functions for modular software development. This improves the
reuseability (i.e., one module can be used in multiple applications) and maintainability
(i.e., malfunctions can be located at their respected self-contained module). Further-
more, Miro, OroCoS, and ROS provide a clear interface between modules — CORBA
(Miro and ORoCoS) or RPC (ROS). This improves adaptability (i.e., modules can be
exchanged easier) and allows the development with various programming languages.

* Each system provides a large set of commonly used algorithms and features to reduce
development efforts.

As a result, it can be concluded that successful robotic middleware should provide hardware
abstraction, modular software development, interface definitions, and a set of common features.

From a computational point of view, robots must be capable of executing both the operating
system and the middleware. As current middlewares do not provide minimal computational
requirements, the operating system’s minimum requirements are considered the middleware’s
lower bound. The minimal requirements for common generic operating systems are shown in
Table[2.3] Due to these high requirements, many miniature robots cannot utilise such system
software.

2.2.3 Robotic Languages & Virtual Machines

Recently, an increasing number of research investigates a different form of system software —
Domain Specific Languages (DSL) and their virtual machines (VMs) [Kosar et al.[2008]. A
DSL combines commonly needed functions of a specific domain (in this case, robotics) into a
language that often improves development time and reduces efforts. The code is written in the
respected language, compiled, and executed or directly interpreted on a robot’s VM.

In this section, the DSLs — URBI, Buzz, ASEBA, and supervisory control — and their
VMs are discussed as they have been deployed and used on miniature robots.
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2.23.1 URBI

The Universal Robotic Body Interface (URBIis an software attempting to provide a pro-
gramming standard to program or control robots [Baillie[2004]. Similar to Player, URBI uses a
client-server architecture, where the robot executes a URBI’s server (i.e., VM). The client soft-
ware (i.e., behaviour) can be executed remotely or locally, which increases the computational
overhead. While the memory footprint is not publicly available, URBI is currently designed
to run on APERIO that is designed for the Aibo robot; therefore, the memory footprint
must be below 64 MB of RAM and 4 MB of ROM. As URBI is executed on top of APERIOS,
it is also considered a robotic middleware.

The behaviour is implemented via an event-oriented script language that is interpreted by
the URBI VM. The interpretation requires a parsing and lexical analysis during runtime, which
causes a considerable computational overhead. As a result, the developers recommend imple-
menting computational-intensive or platform-specific algorithms in other languages (e.g., C++)
to improve performance [Baillie|[2004].

2.2.3.2 Buzz

Buz#4>?*"]is a DSL executed on an VM [Pinciroli et al|2015]. It is designed to enable the
modelling of both a single robot and an entire heterogeneous group of robots. Buzz uses a
stack-based VM that executes bytecod (i.e., compiled script). The Buzz VM has a small
memory footprint and has been implemented on the Khepera IV (i.e., a weakly-constrained
robot). A limited version BittyBuzz [Beltrame and Dentinger|2019]] has been implemented on
a severely constrained robot (Kilobot) consuming 2 kB of RAM and 32 kB of ROM.

The language is designed as an extension language to widen the functionality of systems,
such as ROS or ORoCoS. The script is compiled to a bytecode, which reduces the program
size and the execution time on its VM. When executed, the VM iteratively obtains sensor/com-
munication data, processes the bytecode, and finally applies data to actuators/communication
devices. This sequentialisation ensures data and value integrity; however, it can also increase
response times and delays.

2.2.3.3 ASEBA

ASEBis aDSL executed on an VM designed for robots with multiple MCUs connected
via a fieldbus (e.g., [Bonani et al[2010]) [Magnenat et al.[2011]. Each MCU executes an
ASEBA VM and processes data locally reducing the load of the fieldbus. As a result, the
volume of data and the latency between perception and action is reduced. Similar to Buzz,
ASEBA uses also a stack-based VM executing bytecode. It is implemented on Thymio and
e-puck, where the VM consumes 4 kB of RAM and 10 kB of ROM on the e-puck.

ASEBA uses an event-based script language that is compiled to a bytecode and uploaded
to the robot. Similar to Buzz, the ASEBA VM sequentially senses, executes the script and
actuates, which can increase latency and delays.

2.2.3.4 Supervisory Control

In contrast to the previous DSLs, supervisory control is a framework attempting to produce
verifiable and testable behaviours [Lopes et al.[2016]. Based on the supervisory control the-
ory [Ramadge and Wonhaml[1987]], the automata are created and tested to guarantee properties

22Xl Eor fyrther details: |http://sourceforge.net/projects/urbi/ (URBI).

22XIV APERIOS is a proprietary real-time operating system developed by Sony for the Aibo robot [Fujita and
Enteretainment|2000].
##%VPor further details: http://the.swarming.buzz/| (Buzz).

22XVI A bytecode is a compact instruction set for a software interpreter — in most cases, a virtual machine.

22XVl Eor further details: https://aseba.wikidot.com/ (ASEBA).
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such as deadloc freedom. Automata are then compiled and processed on a robot’s VM.
This VM has been implemented on the e-puck and Kilobot and has a memory footprint of at
minimum 13 kB of ROM (Kilobot).

Fundamentally, a behaviour is defined through automata composed of states connected
by events (i.e., formal language). The automata is compiled to a finite-state machine (i.e.,
supervisor) that can be executed robot’s VM. The behaviour is then achieved by a sequence of
events that advance the state machine.

2.2.3.5 Discussion

A domain-specific language aims to ease the development efforts by providing a set of com-
monly used functions and notation for a specific domain of application. Commonly, a DSL
introduces a high degree of abstraction, which allows behaviours to be implemented in a few
lines of code, short time, and improved quality [Prechelt|2000; [Kosar et al.|[2008; MacCon-
nell|[1993]]. However, a higher-level of abstraction is often traded for less-optimised run-time
performance [Van Deursen et al.|[2000].

The latter systems operate interpreters of source code (URBI), bytecodes (ASEBA and
Buzz), or state information (supervisory control). In comparison to source code, interpret-
ing bytecode reduces considerably the overhead, which allows a smaller memory footprint and
faster execution. However, interpreted code — except the calling of directly-implemente
functions — is executed often with lower execution eﬁicienc as shown in [Romer et al.
1996; |Prechelt 2000; [Ertl and Gregg|2003[]. For example, ASEBA provides an execution effi-
ciency of % (averaged) as reported in [Magnenat et al.|2011]].

While a language provides frequently-used features of its domain, it cannot be assumed
that the DSL provides all required features for any possible scenario. Therefore, each language
supports generic programming capabilities — such as branching, arithmetic, and logical oper-
ations — despite being often the least execution-efficient [Romer et al.|[1996; Ertl and Gregg
2003]]. Consequently, computationally-intensive tasks are often required to be implemented
directly on the target platform and linked to the remaining code of the DSL. In other words, a
DSL can be used with high-execution efficiency, if it is used to link direct implementations at
a high level. In the light of the complexity of real-world tasks, it can be expected that behav-
iour needs to be implemented in multiple languages — the computational-intensive parts in a
compiled language and the overall algorithm in the DSL. To avoid this, further research could
be conducted to move from VMs to compilers allowing the generation of hardware-optimised
code while providing a high level of abstraction.

When considering the computational requirements, the VMs of ASEBA, BittyBuzz, and
supervisory control can be deployed on severely-constrained robots with 17.7, 17.2, and 17.2
(i.e., C1 robots), respectively. In comparison, URBI have only been implemented on robots
with an operating system and computational index of 25.3 (i.e., C robots).

2.2.4 Comparison

When comparing the different robotic system software, the shared properties are:
1. abstraction of hardware (i.e., actuators, sensors, and communication) allowing fast high-
level development, and
2. modular design capabilities allowing better adaptability and maintainability.
Many systems across all categories provide interfaces between modules — in particular, CORBA
(Miro, ORoCoS), RPC (ROS), events (ASEBA, Urbi, supervisory control). This allows better

22XVITA deadlock is a situation where different components of a system indefinitely block each other from executing.
22XIXIn this work, direct implementation describes code that is compiled to hardware instructions.
22XXIn this work, execution efficiency describes how many operations are needed to execute a single DSL instruc-
tion. Note that this does not apply to supervisory control.
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Table 2.4: Common robotic system software and their class of guaranteed deployability (CGD).

Task CGD
(I) Cloud-enabled System Software

Robot Cloud Center [Du et al.|2011]] Cw
Rapyuta [Mohanarajah et al.|2015] Coo
RoboEarth [[Waibel et al.|[2011]] Cw
(1) Robotic Middleware
Miro [[Utz et al.[[2002] Cy
ORoCoS [Bruyninckx et al.|2003]] Cy
Player [Collett et al.[2005] Cy
ROS [Quigley et al.[2009] Cy
(I1I) Robotic Languages & Virtual Machines
ASEBA [Magnenat et al.|2011]] C1
Buzz [Pinciroli et al.[2015] 4
Urbi [Baillie|2004]] Cy

Supervisory Control [Lopes et al.|[2016] Cy

reusability and sometimes distribution across a network.

To compare the computational requirements of robotic system software, this work intro-
duces a Class of Guaranteed Deployability (CGD). The CGD is determined as follows: First,
an extensive literature search for each system software was conducted. Then, all platforms
on which the software could be deployed were identified and their C} calculated. Finally, the
CGD is the class of the platform with the smallest C';. Consequently, the CGD indicates that
the software can be performed by any robot of that class. Note that it is possible that the re-
spected software could be performed by a system with lower Cr; however, no evidence was
found that would support such a claim.

When comparing the CGD of robotic system software as shown in Table [2.4] it can be
seen that each type of system software focuses on a different group of robots. Interestingly,
robotic system software for more computational powerful robots — robotic middleware and
cloud-enabled systems — provide a large set of features and libraries that are used by their
community. In particular, RoboEarth is designed as a large repository for models, libraries, and
features. In contrast, system software for severely-constrained robots often does not provide a
comprehensive set of features. This could stem from multiple reasons:

* Weakly-constrained robots are more frequent, and system software for those robots tend

to have larger communities (e.g., ROS).

* Weakly-constrained robots provide magnitudes higher computational power than severely-
constrained robots. Therefore, tools and libraries can be implemented more generically
and less hardware-optimised without significantly effecting the robot’s behaviour.

» System software of severely-constrained robots often use large segments of platform-
optimised code for more efficient execution and smaller memory footprint. As a result,
this code is not portable to other platform without considerable reimplementation efforts.

Finally, the majority of system software can only be deployed on weakly-constrained ro-
bots, and only three systems were deployed on severely-constrained devices (ASEBA, Bitty-
Buzz and supervisory control). This is likely to originate from the additional challenges, such
as finding an appropriate trade-off between abstraction and performance. For instance, ASEBA
provides a high degree of abstraction but poor execution efficiency in comparison to the presen-
ted supervisory control framework which has shown to be executed with high execution effi-
ciency (see [Lopes et al|[[2016]]) but is modelled on a lower level of abstraction and is more
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difficult to implement. While the author believes that performance should be prioritised, in
particular on severely-constrained robots, abstraction simplifies the development, reduces the
lines of code and, therefore, increases the software robustness.

As the majority of behaviours are still implemented directly (i.e., no abstraction), addi-
tional engineering and research efforts are required to improve software engineering methods
on severely-constrained robots. As an alternative to the existing systems, this work presents
another type of robotic system software — embedded operating systems (see Chapter [3] for
more details).

2.3 Robotic Tasks

Robotics has many potential applications. Most notable are autonomous cars, industrial applic-
ations, warehouse automation, and search & rescue. Organisations such as the RoboCu
Foundation and DARP promote robotics research under real-world conditions. They
provide real-world challenges that are commonly designed for individual robots or small groups
of robots. Most robots used in those challenges are non-miniature and provide large amounts
of computational resources (i.e., C5).

To investigate the impact of computational constrains of miniature robots, the tasks in
which such robots are used need exploring. Many miniature robots are deployed in recon-
figurable robotics and swarm robotics. While most tasks in reconfigurable robotics investigate
how to create and operate assembled robots of specific shapes, swarm robotics offers a larger
variety of tasks aiming to solve problems in potential future applications. Consequently, this
work focuses on swarm robotics tasks.

Overall, swarm robotics research often solve rudimentary tasks as they can be challen-
ging due to: control of a large number of robots, lack of central control, and no access to
global state information. These tasks are grouped into single-task and multi-task behaviours.
A single-task behaviour describes cases that solve a single basic behaviour — containing (I)
spatially-organising behaviours, (II) navigation behaviours, (IIT) collective decision making,
and (IV) miscellaneous collective behaviours — and (V) multi-task behaviours combining mul-
tiple single-tasks [Sahin[2005; Navarro and Matial2012; [Brambilla et al.|2013} [Bayindir|2016j
Hamann/[2018]].

Table [2.5] shows that a single-task behaviour, (I)-(VI), can be performed by severely-
constrained robots. The only exception is collective exploration/mapping. No evidence has
been found where C; < 25.6 robots were utilised; therefore, it is likely that collective explora-
tion/mapping is difficult to implement or not feasible on severely-constrained robots. Similarly,
when the complexity of a task increases (i.e., multi-task behaviours), these tasks are mostly
performed by more powerful (i.e., weakly-constrained) robots suggesting that these tasks are
difficult to implement or not feasible on severely-constrained robots.

Foraging, for example, is a class of tasks that can combine exploration/mapping/local-
isation, path-planning, task-allocation, and decision-making [Winfield |2009; Hoft III 2011;
Sakthivelmurugan et al.|2018]]. Note that there exists a version of foraging that uses C; ro-
bots [Mayet et al.[2010; [Reina et al.[[2017]. In these cases, the robots use the environment
(pheromone tracks) to implicitly path-plan/navigate. This is a severe limitation as it requires an
environment and the capabilities to allow the deployment/detection of pheromones. Research
not limited in such ways consistently uses C' robots.

Similar to foraging, surveillance, as well as search and rescue, are used in swarm robotics
[Schwager et al.|2011}; |Couceiro|2016]. However, both cases are exclusively performed by C5
robots. In most cases, these tasks require SLAM, which by itself has only been deployed on
C5 robots (C; > 23.2 [Steux and Hamzaoui|2010]).

23IFor more details see |https://www.robocup.org/ (RobotCup).
23 Eor more details see |https://www.darpa.mil/program/darpa-robotics-challenge| (DARPA Challenge).
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Table 2.5: Common research tasks® in swarm robotics and their class of guaranteed deploy-
ability (CGD). The selection of tasks is based on [Bayindir|[2016[]. Larger selection of tasks
and their detailed description can be found in [Brambilla et al.|2013; |Bayindir|2016; |Hamann
2018]]. Note that the CGD is based on publications in their respected area.

Task CR
() Spatially-Organising Behaviours
Aggregation® [Gauci et al.[2014b] Ch
Pattern Formation® [Rubenstein et al.|[2014] (&
Object Clusteringd [Gauci et al.[2014a]] C4

(IT) Navigation Behaviours
Collective Exploration/MappingDucatelle et al.[20114]] Co

Collective Movement! [Shirazi and Jin[2017] C1

Collective Transport® [Chen et al.[2015] C4
(III) Collective-Decision Making

Consensus Achievement” [Trianni et al.|[2016] C4

Task Allocation' [Li et al.[2017] 4
(IV) Miscellaneous Collective Behaviours

Collective Fault Detection) [Tarapore et al.|2017] 1

Human-Swarm Interaction® [Kapellmann-Zafral[2017]] C1
(V) Complex Multi-Task Behaviours

Foraging' [Reina et al. 2017]] C1/Cy

Search and Rescue™ [[Couceiro|2016]| Cy

Surveillance™ [[Schwager et al.|[2011]] Cy

* A comprehensive list of swarm robotics tasks can be found in [Hamann/|2018]].

In aggregation, a group of robots should move to one location.

In pattern formation, a group of robots should position themselves in a defined pattern.

In object clustering, a group of robots moves objects to one location.

In collective exploration/mapping, a group of robots searches for an object/area or maps an environment.

In collective movement, a group of robots follows a trajectory without changing their relative spatial formation.
In collective transport, a group of robots transports a single or multiple objects to a target location.

In consensus achievement, a group of robots chooses an option over alternatives.

In task allocation, a group of robots decides which robot performs a specific task.

In collective fault detection, a group of robots tries to detect wrongly behaving or faulty robots.

In human-swarm interaction, one or more humans try to operate or cooperate with a group of robots.

In foraging, a group of robots explores an environment, finds one or more sources, collects units from sources,
and delivers them to a nest.

In search and rescue, a group of robots explores an environment, finds one or more victims, and either reports
their location or attempts to transport it to a designated area.

In surveillance, a group of robots explores an environment, finds/follows a point or object of interest, collects
and reports the data.

0 o a o o
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In summary, it has been demonstrated that severely-constrained robots can perform rudi-
mentary tasks. However, due to the lack of severely-constrained robots performing multi-task
behaviours unless in specialised/simplified environments, it is likely that the increased com-
plexity presents a significant hurdle or might even be not feasible on these robots. As a result,
computational constrains are a considerable hurdle.

2.4 Discussion

This chapter examined an often-overlooked aspect of robots: the computational resources of
robots and requirements of software. It demonstrated how the proposed computational indices
can quantify and classify individual resources or a system as a whole. The computational
index, C7, enables the systematic comparison of any computer systems as a whole based on
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their resources. By calculating the indices of 46 state-of-the-art robots and 5227 computer
systems, a classification was introduced grouping the entire spectrum of robotics into non-
computational, severely-constrained, weakly-constrained, and minimally-constrained systems.

Based on the presented data, it was shown that the majority of miniature robots are severely-
constrained and that the miniaturisation tends to decrease the amount of available computa-
tional resources. As a large proportion of severely-constrained robots only performs single-task
behaviours, many of these systems are unlikely to be deployed in the real world. Consequently,
more research efforts are required to enable such robots to perform more complex tasks in a
more complex environment. Note that early research efforts have been undertaken to design
low-computation control — for instance, computation—fre control [Gauci et al.||20145].
However, in this research, the low-computation control is possible because the complexity of
the detection and classification of objects was considerably reduced through a simplified en-
vironment and setup. Even though this is a first step towards low-computation approaches,
many technical challenges are yet to be overcome to deploy such a system in a real-world
environment.

Alternative solutions to overcoming computational limitations could include (I) outsourcing
computation to external infrastructures (i.e., clouds), (II) reducing computation by designing
additional hardware/physical mechanisms, or (III) distributing computation efforts across mul-
tiple robots.

(I) As described in Section@ outsourcing is only suitable for a small number of robots
and is not feasible for larger swarm robotics systems unless further research on commu-
nication systems for severely-constrained robots is conducted. In particular, scalability,
throughput, and reliability are a concern in these systems.

(II) Alternatively, outsourcing computation to physical or electrical mechanisms (e.g., sim-
ilar to the Braitenberg vehicle) can be efficient and in many cases miniaturised (e.g.,
[Richards|2016]). However, each design is specific to the environment and tasks; there-
fore, when the environment or task changes, it is likely that it would need to be re-
designed. Overall, it lacks the flexibility of software.

(IIT) Finally, the distributing and sharing of resources between robots is a more flexible and
general approach that can be replicated in a multitude of problems. However, it presents
multiple challenges — management of local resources; reliable and scalable communic-
ation; and new design methods of behaviours.

In summary, this chapter investigated how simple are “relatively-simple” robots with regard
to computational resources. It showed that many swarm robots are often severely-constrained
and likely limited in terms of what system software or behavioural software they can use. As
a result, there are two recommendations this chapter has to offer. Firstly, more research is
required on system software with a focus on execution efficiency, as the author believes that
severely-constrained robots should not be further constrained. Secondly, further research on
how to overcome computational resources is required to enable systems as described in (III).

24INote that Gauci et al.|[2014b] uses computation-free synonymously to “without arithmetic operations” as the
controller is a fully-connected Mearly automata, hence, computing.
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Before the computational resources of multiple robots can be combined, each robot must
be capable of managing its local resources. As described in the previous section, this should
be conducted with a high execution-efficiency due to the severe constraints on many swarm ro-
bots (i.e., swarm robotics platforms). The most execution-efficient way to implement software
is to do so directly on the desired target platform. However, each robot, even a simple one,
contains circuits with at least hundreds of components and designing software would require
an in-depth understanding of them. Furthermore, the operation of peripheml differs con-
siderably across manufacturers and architectures, and each of the peripherals requires manual
configuration. As a result, this makes the development of behavioural software complex and
error-prone [Kemererj|1995].

To reduce complexity, system software can be used. It provides reusable often-required
features and functions. However, as shown in the previous chapter, robotic system software
often uses additional layers (e.g., VMs) that execute software. Each additional layer tends
to increase the computational overhea In contrast, system software called operating
systems can execute software directly on the hardware.

An operating system controls the execution of software and access to resources (e.g., exe-
cution time, memory, and access to I/OF- ™| devices) [Tanenbaum|[2009; [Stallings|2014]. The

30Iperipherals are parts of a system that are connected to a computer via a bus or to input/output ports of its
processing unit.

30The computational overhead of software is the additional code that is executed, increasing memory consump-
tion or processing time.
#0pput and output (I/0) devices are parts of an integrated circuit or peripheral circuit that allow microcontroller
units to interact with other devices or the environment. Common I/O devices are sensors, actuators, and commu-

27
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two fundamental functions of any operating are defined in this work as:

* Hardware abstraction provides functionality while hiding transparently the details of
the implementation.

* Resource management controls access to the resources, prevents data corruptio
and ensure use of resources. If access is restricted, it should prevent deadlocks
or livelocks %V}

This chapter first presents existing operating systems and discusses their benefits and limita-
tions. Then, the design, implementation, and study of OpenSwarm, an operating system for
severely-constrained robots, is presented and discussed. The implementation of OpenSwarm
is tested regarding memory as well as processing overhead and is compared to other system
software. Finally, the impact on a swarm robotic task when using OpenSwarm is investigated
and compared to other robotic system software.

3.1 Existing Operating Systems

Depending on the field of application, an operating system’s requirement can vary in function
and operation. The most relevant systems for this work are (I) generic operating systems as
they are feature-rich, (I) smart-card operating systems as they are the smallest, and (III) sensor
network operating systems as they are similarly-constrained as swarm robots.

3.1.1 Generic Operating Systems

The most common operating systems are generic operating systems — also referred to as
general-purpose operating systems. These systems are designed for personal computers with
often tens of gigabytes of primary memory and terabytes of secondary memory. With these
amounts of resources, generic operating systems are function- and features-rich.

Generic operating systems are commonly used on robots that execute robotic middleware
such as ROS (for more details, see Section [2.2.2)). Current versions of generic operating sys-
tems require computational resources of C; = 26.5 (Linux), 28.6 (macOS), and 27.0 (Win-
dows). As a result, they are not suitable for severely-constrained robots (C; < 23).

It is worth noting that versions of Linux and Windows with reduced size exist, and are
usually referred to as embedded versions. Windows Embedded IoT and Debian Linux, for in-
stance, can be deployed on systems with a computational index of 25.9 (Windows) and 24.4
(Debian Linux) [Microsoft|[2017; Mauerer|2017]. However, these systems are still unsuitable
for severely-constrained robots (C; < 23). Furthermore, these embedded adaptations of gen-
eric operating systems are often less predictable and less efficient and, therefore, less favourable
in robotics than the alternatives presented below [Stallings|2014]].

3.1.2 Smart-Card Operating Systems

On the other side of the spectrum of computational requirements, smart-card operating sys-
tems are operating systems for the most computationally-constrained devices — smart cards.

nication.

30V Data corruption is a situation where the value of data is undefined due to malfunction or race conditions (i.e.,
the outcome or correctness of data depends on the timing and sequence of software).

30V Fairness ensures that a resource is used by multiple components or software equally often.

30T A livelock and deadlock are situations in which one or multiple programs cannot progress. In a deadlock, these
programs are blocked and wait for a non-occurring state. In a livelock, they continue to execute but cannot proceed
as the same sequences are executed repeatedly.
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Smart cards are So containing 8 to 32-bit MCUs with cryptographic Coprocessor
mounted inside plastic credit-card-sized cards. The systems contain between 256 B and 16 kB
of RAM as well as 4 kB and 400 kB ROM. It can be used to communicate wirelessly (i.e.
RFIF or directly via connections on the card [Rankl and Effing [2004{]. When
in contact with a reading device, the smart card is powered and initiates the execution of its
function. Their main applications are security, encryption, and authentication.

Smart card operating systems, such as JavaCard and MULTOS, provides a set of fast
cryptographic functions while being executed on severely-constrained hardware [Deville et al.
2003]). JavaCard [Chenl/2000] provides a reduced JVM that enables the execution of small ap-
plications, called applets. While it can hold multiple applets, only one is executed at a time and,
therefore, it does not provide concurrenc MULTOS [Deville et al.[2003] is an open high-
security multiprogrammin operating system which enables dynamic loading, updating,
and deleting of programs.

Overall, smart-card operating systems can be executed on severely-constrained robots due
to their small design. However, they have several drawbacks. As the execution is only started
when the card is powered, the system often executes a single function. As the smart-cards
operating systems perform exclusively cryptographic algorithms and data access, they lack any
hardware abstraction except its primary communication ports. In contrast, robots often need
to execute multiple tasks (i.e., sensing, control, and communication) at the same time with
frequent I/O interactions.

3.1.3 Sensor Network Operating System

Another area that deploys severely-constrained devices is sensor networks — in particular,
wireless sensor networks. Sensor networks are widely used in automobile and aviation in-
dustry, where a base-station obtains measurements from a large number of sensor devices,
called nodes. Nodes are commonly severely-constrained devices, as shown in Appendix
Due to their computational constraints and their frequent use of sensors, these systems have
many similarities to swarm robotics.

Sensor networks have a wide range of application (e.g., maintaining function of aircrafts
or monitoring the movement of glaciers) [Akyildiz et al.|2002; Chong and Kumar2003]]. This
results in a large variety of operating systems [Farooq and Kunz2011]], where the most common

are TinyOS® /"] Contiki’"- "] Mantis O Nano—R Nutt and LiteOS> /-]

In Table [3.1] these systems are compared based on memory consumption, used program-

311 A System-on-a-chip (SoC) is a device that contains processing units, memory, and all peripheral circuit integ-

rated in one chip.
3LIA cryptographic coprocessor is an integrated circuit that provides fast and low-power instructions to perform
cryptographic procedures.

3LR adio-Frequency IDentification (RFID) is a method that uses short-range radio communication to power and
communicates with an integrated circuit to identify the device.

31V Near-Field Communication (NFC) is a high-frequency communication method. It is used for close-range
communication on, for instance, phones and contactless debit cards.
31V A gystem is concurrent when its components can be executed parallelly or sequentially in any order without
affecting the outcome.
%1Vl contrast to uniprogramming, multiprogramming allows concurrent execution of multiple programs, which
has been shown to increase the computational throughput [Stallings|2014].

31V Ror further details see http://www.tinyos.net (TinyOS)

31VIlTEor further details see |http://www.contiki-os.org/ (Contiki)
31X Eor further details see http://mantisos.org/ (Mantis OS)
31XEor further details see http://www.nanork.org/ (Nano-RK)
31X Eor further details see https:/nuttx.org/| (NuttX)

31X Eor further details see http://lanterns.eecs.utk.edu/software/liteos/ (LiteOS)
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Table 3.1: Sensor network operating systems. Values? are taken from [Gay et al. 2005}
Dunkels et al.[2004; Bhatti et al.[2005; [Eswaran et al.[2005}; (Cao et al.|[2008; |[Nutt[2016].

Name ROM Language Events Threads
Contiki [Dunkels et al.|2004] 2KB 32kB C yes one
LiteOS [Cao et al.|[2008]] 1 KB 6 kB LiteC++ no yes
Mantis OS| [Bhatti et al.|2005] 500 B® 14 kB C no yes
Nano-RK| [Eswaran et al.|[2005] 2KB 16kB C no yes
NuttX| [Nutt|2016] 2 KB 18 kB C no yes
TinyOS|[Levis et al.[2005] 500 B> 32kB nesC yes yes©

# Note that these values can vary depending on the hardware architecture (e.g., 8-bit architectures provide
smaller footprints than 64-bit architecture).

® The memory requirements are based solely on the core element of the system. A deployed system
would require additional functions increasing its memory requirements.

¢ Threads are executed in a thread-library and is not part of TinyOS’ design. The consequences of this
are discussed in Section [3.2.2]

ming language, and if the system provides event—base or multi-threading®/*’"|mechan-
isms. These operating systems can be divided into two groups. Contiki and TinyOS build one
group where the system uses event-driven execution. LiteOS, Mantis OS, Nano-RK, and NuttX
build the other group where software is executed as one or more threads similar to Linux. Note
that a more detailed analysis of these systems (e.g., architecture, execution model, memory
management, etc.) are conducted later in their respected sections.

Overall, each system is designed to fit into computationally severely-constrained devices.
The operating systems are designed for two purposes — infrequent measuring and commu-
nicating without any actuation. Consequently, these systems maintain long idle/sleeping times
between the measurements. As resources — such as execution time and memory — are, in
most cases, sufficiently available, software is sequentially executed to completion. In con-
trast, multiple sensors and actuators are used frequently and continuously in robotics. Run-
to-completion could increase reaction times as it delays other functions and might impact the
robot’s behaviour.

3.1.4 Discussion

Fundamentally, there are three related operating system types: generic, smart-card, and sensor-
network operation systems. Generic operating systems provide many features but are unsuit-
able for severely-constrained robots. In contrast, smart-card operating systems are suitable;
however, they lack ways to interact with their environment (i.e., through I/O devices) which is
paramount in robotics. Sensor-network operating systems, on the other hand, allow the inter-
action with their environment while being deployed on devices constrained similarly to swarm
robots. However, they are designed for long idle times and short sequences of measuring and
communicating. The lack of actuation abstraction and device utilisation makes these systems
difficult to apply to many robotic applications.

Based on the latter overview, it can be concluded that an operating system for severely-
constrained robots would need similar memory requirements as smart-card or sensor network
operating systems. The system should allow short response times (i.e., for timely execution)
and enable the execution of multiple tasks. It should provide environments for algorithms with
long (similar to generic operating systems) or short runtime. Furthermore, it should provide

3LXM AR event is a signal that a state of the system or a component has changed (e.g., a new camera frame was
obtained). See Section

3LXIV\ylti-threading is a form of multiprogramming where smaller parts of a software (i.e., thread) can be executed
concurrently. See Section[3.2.2.2]
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transparent interfaces to sensors and actuators to simplify their use. An in-depth discussion of
the properties above and their design is presented in the following section.

3.2 OpenSwarm

This section proposes an embedded operating system for severely-constrained robots, called
OpenSwarm. The system has been designed to combine the aspects of robotic system-software
and operating systems. Its key design properties are
» small memory footprint to allow OpenSwarm to be deployed on severely-constrained
robots,
* high execution efficiency to weaken the limitation of computational constraints and to
allow more complex behaviours,
* concurrency to allow the execution of multiple pieces of software and to further facilit-
ate complex behaviours,
* hardware abstraction to allow a high-level and transparent use of the robots’ capabilit-
ies,
* modular design capabilities to allow good adaptability and maintainability, and
* clear interfaces between modules to further improve adaptability and maintainability.
In the following section, the kernel of OpenSwarm is designed to provide the given prop-
erties.

3.2.1 Architecture

The architecture of an operating system defines the structure of the kerne its memory
requirements, and how software is executed. There are different architecture types:

* monolithic kernels combine all core functions into a single program [Stallings|[2014].
This architecture is compact and provides high performance®>/| As a result, it is of-
ten used on embedded operating systems — for instance, JavaCard, MULTOS, Contiki,
Nano-RK, TinyOS. However, this architecture is commonly difficult to maintain and
extend, and single faults in any subroutine could cause a crash of the entire system.

* layered kernels are structured into layers, where a lower layer provides functions (e.g.,
proces allocation and switching) to a higher layer. This aims to improve maintain-
ability. It is used in systems such as Mantis OS. However, many functions can be highly
entangled, which prevents distinct layers. In addition, the additional interfaces between
the layers render the system slower and larger than a monolithic system.

* modular kernels are similar to the layered architectures. However, instead of layers, the
functionality is encapsulated into modules and loaded during runtime. This modularising
creates a computational and memory overhead but also improves maintainability and
extendability. This architecture is used on LiteOS, Nuttx, and Linux.

OpenSwarm uses a modularised monolithic kernel, as illustrated in Figure [3.1} to provide
high performance and small memory footprint [Stallings|2014]]. To counteract the drawback of
a monolithic design (i.e., reduced maintainability and extendability), each functionality of the
system is a self-contained module. The kernel is modularised in four elements:

* the event module controls the information flow within the system,

* the process module creates, organises, schedules, and terminates executed programs (i.e.,

processes),

e the memory module dynamically allocates, organises, and deallocates memory, and

321 A kernel is the central component of an operating system providing its core functionality.

321Tf not stated otherwise, the performance of a software is a measure of how efficiently it is executed. In other
words, if the software consumes less memory or is processed within shorter time, the performance is higher.
32 A process is an executed instance of a program (i.e., a set of instruction on data that can be executed).
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Figure 3.1: OpenSwarm’s architecture. Blue boxes are the three core modules of the kernel.
Green boxes symbolise threads and dark grey boxes indicate hardware.

* the hardware abstraction layer (HAL) interfaces the hardware with the rest of the system.
Overall, user processes (green boxes) are executed on top of the kernel, which also interfaces
the hardware (dark grey boxes) with the system. Note that the event and process module both
execute code and build together a processing model that is presented in the next section.

3.2.2 Execution Model

The execution model defines how behaviour can be implemented and executed. A robot might
execute short behaviours (e.g., obstacle avoidance) or long computational-intensive algorithms
(e.g., path planning). Ideally, a robotic operating system should offer both fast response times
and efficienf2"] execution.

In robotic system software (e.g., ROS, Miro, and ASEBA), event-based development is
common as well as in systems such as Contiki and TinyOS. Overall, the execution with events
has a small computational overhead (i.e., fast response times) to execute short sequences of
code. However, when longer sequences of code are executed or multiple events occur, mech-
anisms need to be found to either interrupt and resume or to queue their execution, which delays
response times.

As an alternative to events, process-based execution offers long periods of efficiency. Gen-
eric operating systems (e.g., Linux and Windows) and embedded operating system based on
Unix or Linux architectures (e.g., LiteOS and NuttX) use this as the primary execution model.
As loading and deleting processes takes considerate time and memory, it is inefficient for short
processes (i.e., many responsive behaviours).

Both methods — events and processes — can be useful in scenarios such as avoiding

32IVExecution efficiency is a measure that compares the execution time and memory consumption. In short, higher
efficiency results in lower computational requirements while performing the same action. In other words, it is better
performing.
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obstacles while simultaneously mapping an environment. Consequently, OpenSwarm provides
a dual-execution model where both events and processes are used to execute code. For each
type of execution, a corresponding module exists.

3.2.2.1 Event Module

The event module controls the occurrence and processing of events, where an event indicates
a significant state change within the system or its components. An event can be triggered by
hardware (e.g., a new camera frame was obtained) or by software (e.g., a camera frame was
processed).

Existing Event Mechanisms

When considering system software for severely-constrained devices (i.e., Contiki and TinyOS),
events are created exclusively by hardware interrupts. The respected interrupt routines trigger
processing of an assigned function preempting the current execution. After completion, it con-
tinues with the previous execution. In contrast to robotics, events are assumed to be infrequent
and, therefore, event execution is sequential and cannot be nested.

On systems similar to ROS and Miro, events are created and managed by software. It
regulates the access and can prevent race condition In many cases, it is designed as a
publish/subscribe mechanism which enables, for example in ROS, execution of software locally
and distributively (i.e., across multiple devices). In contrast to hardware interrupts, software
events can trigger the execution of multiple pieces of software — even in parallel. However,
software events tend to increase the computational overhead.

OpenSwarm’s Event Mechanisms

OpenSwarm is designed to fit into severely-constrained robots, and low computational over-
head is paramount. However, to enable the combining of computational resources across mul-
tiple devices, software (i.e., computational overhead) must be introduced to enable this distri-
bution. As a result, OpenSwarm provides software events that can be distributed. Furthermore,
OpenSwarm can process events asynchronously and synchronously. This allows high-priority
events to be executed swiftly and efficiently, while lower-priority events are processed in idle
time. OpenSwarm enables the optimisation of the robot’s behaviour and prevents potential
delays introduced by sequential execution, as can occur on Contiki.

Asynchronous events are buffered and sequentially processed in an isolated context to pre-
vent race conditions. However, the buffering and the delayed processing creates a computa-
tional overhead. Synchronous events, on the other hand, are processed immediately within
the context of the emitting function, which should be preferred if fast response times are re-
quired. However, this increases the execution time of the emitting functions, and, therefore,
asynchronous events should be preferred.

Discussion

In robotics, it is often crucial to react within a defined response time. Events offer a low compu-
tational overhead, and relatively fast response times as the data is processed at its occurrence.

In OpenSwarm, events are used to signal the occurrence of a hardware or software con-
dition (e.g., “a new camera fame is ready”) and to transfer information (e.g., “this is the new
frame”). Events are conveyed based on a publisher/subscriber architecture, which decouples
sender (i.e., publisher) and receivers (i.e., subscriber) of events (i.e., messages). This facilitates
modular design, which increases, in principle, maintainability, readability, portability and reus-
ability of the code [Helmer et al.|2011} [Miihl/[2006]]. Figure @] shows how events can transfer
information in OpenSwarm.

#2VRace conditions describe situations in which the outcome of the execution depends on the execution order of
its components or other software.
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Figure 3.2: Information/event flow in OpenSwarm. When a module (blue rectangle) or a pro-
cess (green rectangle) intends to emit an event, it executes a system call indicated by the blue
dashed arrow. The event is then emitted by the system and executed as indicated by the green
dotted line. Note that the red arrows are interactions between OpenSwarm and hardware.

Event-driven development is used in sensor network operating systems (Contiki and TinyOS)
and robotic system software (ASEBA, and Urbi). OpenSwarm differs from these systems in
the following ways:

* Contiki and TinyOS generate an event at the occurrence of an interrupt (both) or software
function call (TinyOS only). An event is buffered (Contiki only) and executed by a
single function that was assigned to it (both). The function cannot be paused and runs to
completion. In contrast, OpenSwarm generates events at the occurrence of both interrupt
and software function call. Each event can be executed synchronously (i.e., immediate
execution as in TinyOS) and asynchronously (i.e., buffered and postponed execution as
in Contiki). In OpenSwarm, the execution of events can be optimised on the basis of the
importance of the event — e.g., time-critical events can be executed immediately and
non-time-critical with short delays. Furthermore, events can be interrupted by higher-
priority as some actions in robotics can take precedence over others (e.g., for safety).
The two most significant differences to these operating systems are that OpenSwarm can
subscribe multiple receivers to one event, and that each receiver could be executed on
differenf2"7] devices/robots.

* ASEBA and Urbi use a script language that uses event-based syntax. Both systems pro-
cess events iteratively. First, measurements and communication data are obtained. Then,
the script is executed, and finally, new actuation and communication data is applied. In
other words, data and events are processed once for every iteration. Long scripts can
cause undefined behaviour as long scripts could be truncated or cause slower sampling
rates (i.e., iteration rates). This directly impacts the performance of the system. In con-
trast, OpenSwarm events are generated and executed at any time. This allows faster
response times and an interaction behaviour independent of the currently executed code.

32VIThe details and consequences of the distribution of events are discussed in Chapter
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3.2.2.2 Process Module

In this work, a process is an instance of a program, where a program is a collection of instruc-
tions and data that can be executed by a computational device. This instance contains a copy
of the program, runtime memory, a call stack, and operating-system-specific data. A process
can contain one or more threads, where a thread is a concurrent part with a separate call stack.
All threads within a process share the same memory and, therefore, switching between threads
generally causes less overhead than switching between processes. On the other hand, each
process is contained within its own memory region that is not accessible to other processes.

Process Management

Process-based execution is common on any generic operating system (i.e., Linux, macOS, and
Windows). Usually, programs are expected to run for long periods (e.g., minutes, hours, or
continuously), and, therefore, initial computational overhead and changes between processes
are negligible in comparison to the runtime. Furthermore, as these operating systems were
designed for personal computers and commercial servers, they interact infrequently with I/O
except communication devices. As a result, processes are paused when waiting for I/O device
responses. When data from an I/O device is ready, the system performs the following steps.
(I) The data is buffered, (II) the corresponding process is unblocked, and after the process
is scheduled, (III) the data is processed. This introduces a significant time delay. As many
weakly-constrained devices provide more computational resources than required, the latter
delays are often small enough not to impact the behaviour. However, this is not the case for
more constrained (in particular, severely-constrained) devices.

LiteOS, Mantis OS, Nano-RK, and NuttX are designed to be similar to Unix. In contrast
to Unix and due to the lack of an MM a process is not contained in an isolated memory
region and, therefore, share the same memory space. As a result, a process has the properties
of a thread as defined in [Stallings|[2014].

Contiki and TinyOS are primarily event-driven systems but, in later versions, adopted
thread-like processes to be executed in idle times. Contiki, however, executes cooperatively-
scheduled non-concurrent functions, which can only be preempted by interrupts, in idle times.
Other than promoted, Contiki does not provide processes, nor are they preemptive scheduled
as defined in operating system research [Stallings|2014f]. TinyOS, on the other hand, provides
a single process that manages any additional process. At any event occurrence, the system
changes to the control process, which then changes to the next process. As a result, fair
scheduling is not guaranteed as processes could be starved of processing time. Furthermore,
any process has a lower priority than that of events; therefore, this also can starve processes.

In OpenSwarm, the process module controls the creation, management, and deletion of
thread-like processes. The process implementation follows similar concepts as used LiteOS,
Mantis OS, Nano-RK, and NuttX. A process is defined by a process control block containing
all process-related data, including a call stack. In contrast to Contiki, processes are concurrent
and preempted by a periodic scheduler. In contrast to TinyOS, each process has assigned time
slots that allow fair use of processing time. The differences to LiteOS, Mantis OS, Nano-RK,
and NuttX are discussed next.

Process Execution
Depending on the design of the operating system, a process can be executed and can interact
with the operating system in one of three ways, as shown in Figure [3.3]
* Split execution as used in Unix, LiteOS, and older generic operating systems — such as
DOS — separates the execution of processes from operating system (see Figure [3.3a).

32Vl A memory management unit (MMU) is a part of an integrated circuit that allows concepts such as virtual
memory. Virtual memory is an abstraction of physical memory. For more details see Section[3.2.3]
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Figure 3.3: Process execution. (a) The split execution executes system calls in the context of
the operating system. (b) The functional execution model executes system calls (fog) in the
context of the user process. (c) The process-based execution model executes system call in the
context of dedicated operating system processes (O;). (d) The OpenSwarm’s dual-execution
model combines (b) and (c).

Whenever a process wants to execute a system cal first, the process is paused,
and the control is handed over to the operating system which then executes the requested
system call. Afterwards, the process continues. This protects the integrity of the ker-
nel. Due to the invoked context switche this method causes significant processing
overheads and delays, which is a significant drawback on severely-constrained devices.

* Functional execution describes the execution of operating system functions within the
context of a process (see Figure [3.3b). The operating system takes control of the system
in situations of faults, or to switch to other processes. This model reduces the number
of context switches and, therefore, delays. However, the design and structure of the
systems can be chaotic as the circumstances under which system calls are executed is
uncontrolled and non-deterministic. Due to the minimal requirements of execution time
and memory, functional execution is used in Nano-RK.

* Process-based execution describes a system where isolated functions are implemented
in their processes on the same execution level as user processes (see Figure [3.3c). The
kernel only provides minimal functions, for instance, detection and processing faults.
Any other functions are performed by processes. As a result, each non-critical compon-
ent is only scheduled if needed, and the operating system can be deployed on multi-core
processors without design changes. However, the usage of operating system functions re-
quires immediate or delayed context switches or process synchronisation methods. Sim-
ilar to split execution, this causes significant delays. Despite these disadvantages, Mantis
OS, NuttX, and Windows execute operating system functions with processes.

In comparison, OpenSwarm provides dual-execution model, as shown in Figure On
the one hand, processes use functional execution to avoid computational overhead, and on
the other hand, low-priority and non-time-critical functions are executed as an individual pro-
cess. As performance is a priority, the majority of functions are directly executed within the
context of the calling process similar Nano-RK. However, non-time-critical functions — such
as garbage collectio — are executed as a process similar to Mantis OS. This execution
method provides a trade-off to: (I) avoid delays for frequently used function (e.g., motor con-
trol), and (II) provide modular and interchangeable processes for non-critical functions.

Process States & Scheduling

Independently of how processes are executed, a process has a life-cycle, which defines the
states of a process from creation to deletion. OpenSwarm uses a 5-state model, as shown in
Figure This model prevents processes from being rescheduled and, consequently, prevents
unnecessary delays. This model is common for many operating systems, including LiteOS,
Nano-RK, and NuttX. In comparison, most generic operating systems use a 7-state model,

32VHI A gystem call is a function that requests a core function of the operating system (e.g., requesting file access).
Unlike user libraries, system calls are integrated into the operating system.
321X A context switch is a procedure of unloading the current process and the loading of another.
32X Garbage Collection is a procedure in which no-longer-needed memory is freed.
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Figure 3.4: Process state model in OpenSwarm. When a program is created, it is in the state
new (initial state). A process that is ready to be executed is ready. The currently executed
process is running. Processes that wait for events to occur are blocked. Once that event has
occurred, the process returns to be ready. When a process finished execution or crashed, it is
terminated which is indicated by the state zombie (final state).

where the ready and blocked states are duplicated. Each duplicated state is a suspended state
(i.e., the process is copied to secondary memory to free the primary memory making it possible
to execute more processes). On severely-constrained robots, secondary memory is often not
available in large volumes, which makes suspending processes difficult or not feasible.

The method that decides which process is executed next (i.e. changes from ready to run-
ning) is called the scheduler. Common operating systems — in this case, Mantis OS, LiteOS,
Nuttx, Linux, Windows and macOS — use a priority-based round-robin schedule The
only exception is Nano-RK, which uses rate-harmonised schedulin for power-consumption-
aware real-timd > X" scheduling.

In OpenSwarm, the scheduler is defined as a callback function, and each process control
block holds generic scheduler-specific data allowing the implementation of any scheduler. Per
default, an (equal-priority) round-robin algorithm is implemented to ensure starvation-free and
fair scheduling. OpenSwarm also allows the removal of the scheduler stopping the execution
of processes. This would cause OpenSwarm to behave similarly to TinyOS or Contiki.

3.2.2.3 Discussion

In OpenSwarm, behaviours can be implemented in two ways — via thread-based or events-
based programming. Fundamentally, both paradigms can express the same behaviours; how-
ever, each provides benefits and disadvantages that particularly impact robots with severely-
constrained resources.

As process-based execution is common on a wide range of operating systems — e.g.,
Linux, Windows and macOS —, it is well-understood among programmers. It is not surprising
that Nano-RK, Nuttx, LiteOS, and Mantis OS aim to provide these established (i.e., Linux-like
or POSIX) environments, and, therefore, replicate this execution paradigm. Generally, pro-
cesses are designed for long periods of uninterrupted execution, and, when executed, have a
small computational overhead. However, the creation and switching between processes takes
relatively long, which can create significant overhead for short repeatedly-executed software.

32XIRound-robin is an algorithm that assigns equal shares of a resource, here processing time, to every process
[Stallings|[2014]]. This algorithm is simple and starvation-free. A priority-based round-robin algorithm assigns
equal shares to all processes with the same priority. However, it schedules a higher-priority process more often,
which can lead to starvation.
32XIIR ate-harmonised scheduling is a real-time algorithm that includes energy management. For more details see
[Rowe et al.[2010].
3ZXReal-time systems guarantee to respond to input within (hard real time) or mostly within (soft real time) a
defined timeframe.
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To avoid repeated overhead, event-based execution provides faster reaction times with
lower memory usage. As short sequences of execution are common in sensor networks, the two
of the most popular sensor network operating systems — TinyOS and Contiki — are primarily
event-based. Multiple events run sequentially to completion. This makes these systems often
not suitable to execute long-lasting algorithms as they would starve other parts of the system
of processing time.

In robotics, robots are expected to react swiftly (e.g., for obstacle avoidance) and be able
to process long algorithms (e.g., for path planning). As a result, one of OpenSwarm’s novelties
is the dual-execution model and its hybrid kernel that provides both event- and process-based
execution. As described in Section [3.2.2.1] and [3.2.2.2] OpenSwarm differs from the presen-
ted systems in that it allows both types of execution. Furthermore, it is distinct from other
systems in how events, as well as processes, are executed. Overall, OpenSwarm is suitable for
short-code execution for fast response times (events) and long-lasting execution without mono-
polising the processor unit (processes). Furthermore, the hybrid kernel also enables distributed
storage or processing, as explored in Chapter 5]

3.2.3 Memory Module

As the processing of code requires memory, organising this memory is part of the memory
management. Similar to the sensor network operating systems, OpenSwarm was designed for
MMU-less devices. As a result, the memory is flat, and any function has access to the entire
memory.

3.2.3.1 Virtual Memory

Virtual memory abstracts physical memory, which enables contiguous access to fragmented
memory. As the virtual addresses are translated by the MMU to physical addresses, it is pos-
sible to reposition memory segments during run time and to detect access violations. In partic-
ular, this can reduce fragmentatio and a more efficient use of the available memory.

Since many devices lack MMUSs, software implementations of virtual memory have been
attempted [[Choudhuri and Givargis||2005; Bai et al.[2009]]. In these works, a presented tool
replaces every memory-access instruction with a function call that, first, translates the address
and, then, loads/stores the value. Because memory access is one of the most frequent oper-
ations, this creates a significant overhead that is only acceptable if the execution is not time-
critical. Due to the high-costs of a software virtual memory, it is not used in OpenSwarm. Even
though virtual memory is a standard feature in any generic operating system since the 1990s,
none of the presented operating systems for severely-constrained devices uses software virtual
memory.

3.2.3.2 Memory Allocation

Memory can be allocated statically during compilation or dynamically during run time. Dy-
namic memory allocation provides flexibility to allocate memory when needed. This can be
useful when the amount of needed memory is not known in advance. However, it can cause
unpredictable delays (i.e., allocation time) and behaviour (i.e., unsuccessful allocation). As a
consequence, hard real-time systems avoid this for better predictability as does Nano-RK. How-
ever, many sensor nodes have a low computational load; therefore, dynamic memory often can
be deallocated before the next execution cycle. Consequently, dynamic memory allocation has
a small impact on the node’s behaviour and is used on Contiki, Nuttx, LiteOS, Mantis OS, and
TinyOS.

32XV Memory fragmentation reduces the capacity or performance of the system due to unusable gaps between used
memory. While a small degree of fragmentation is common, extreme cases cause reduced performance. However,
the exact effects of fragmentation depend on the design of the system.
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While some areas of robotics are safety-critical and require hard-real-time properties, swarm
robots, in their current form, are mostly deployed in academic and non-safety-critical environ-
ments. As aresult of this and due to the resource constraints, one can assume that the flexibility
of dynamic allocation and its ability to use all available memory takes priority. That being the
case, OpenSwarm provides dynamic memory allocation.

3.2.3.3 Discussion

OpenSwarm’s memory module provides a dynamic memory allocation enabling the system to
make use of all its primary memory. One of the limitations of OpenSwarm is that it provides a
flat memory space allowing processes to access any data within the memory. While this does
not create nor cause errors, it enables processes to introduce malfunction in other processes.
For instance, a buffer overflow in one process could override data of another. As Contiki, Nuttx,
LiteOS, Mantis OS, Nano-RK, and TinyOS also provide flat memory, OpenSwarm is no way
inferior to them regarding memory management.

3.2.4 Hardware Abstraction Layer

Since the purpose of a robot is to interact with its environment, the ability to sense, actuate, and
communicate is a crucial part of any robotic system. In OpenSwarm, the hardware abstraction
layer (HAL) manages Input/Output (I/O) device and controls their access.

The large variety of I/O devices can be divided into three categories: input, output, and
communication devices. Input devices are circuits measuring physical entities (e.g., voltages,
temperature, or light intensity) digitally or analog. Output devices are circuits controlling ac-
tions (i.e., actuators such as motors) and indicators (e.g., displays or LEDs). Communication
devices are circuits that transmit data to and receives it from other communication devices.

3.2.4.1 1/0 Access

Due to the wide variety of I/0 devices, the access to their functionality varies considerably.
Commonly, on-chip I/O devices are accessed by dedicated registers and memory. While output
devices can be controlled by setting values in registers at any point, input and communication
devices need to notify the system of new data. In some cases, the software is required to check
the respected registers (i.e., polling) and, in other cases, interrupts occur triggering the execu-
tion. Polling causes a periodical processing overhead and can cause delays while interrupts
preempt current execution and can cause race conditions.

3.2.4.2 1/O Design

As shown in Figure [3.5] the Hardware Abstraction Layer (HAL) enables interaction with I/O
devices, where each device is managed by a single I/O module. To simplify the hardware ac-
cess, I/0 modules provide a two-layered design. The lower layer, also called device-specific
handler, provides transparency to hardware functions simplifying their use. The top layer of the
module, called processo provides value abstraction by transforming hardware-specific to
hardware-independent values and vice versa. For instance, a robot’s speed could be 64 mms~!,
while the underlying hardware-dependent value would be 547. Based on the abstraction of ac-
cess and value, this layer is the interface between the hardware-independent part (i.e. processes

and events) and the robot’s hardware.

32X Depending on the direction of the data flow, the processor is called pre-processor to convert from hardware-
specific to hardware-independent data and post-processor to convert vice versa. Rx- and Tx-processor manage and
buffer received or outgoing communication data, respectively.
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Figure 3.5: OpenSwarm’s hardware abstraction layer (HAL). OpenSwarm processes data to/-
from input, output, and communication devices with modules. Dashed blue arrows represent
events. Hardware-specific data flow is indicated by thin red arrows. Data that is exchanged
to/from hardware is indicated by thick red arrows.

3.2.4.3 Discussion

The delays when interacting with I/O devices can create a bottleneck to the system. As a
result, inefficient use of these devices degrades the performance of the entire system. Robots
are expected to interact with I/O frequently; therefore, the design of the I/O management is
paramount in robotics.

OpenSwarm’s design of I/O device interactions allows the use of hardware-independent
data and hardware transparently. This is achieved by the module’s two-layered design. A be-
nefit of this design is that safety measures could be implemented as a top layer (i.e., processor)
thereby preventing faults by limiting the actuation. Furthermore, virtual sensors/actuators can
be implemented, functions of which are based on or derived from other available sensors/ac-
tuators. This allows the execution of a behaviour implementation that has been designed for
different sensors and actuators. As shown in Chapter [5 this feature can be used to provide a
virtual or augmented environment for a robot.

In contrast to OpenSwarm, Contiki and TinyOS mostly focus on measurements and com-
munication. While they commonly provide transparent use of communication methods, there
is no value abstraction. In addition, only one function can be linked to an input device, and
multiple functions are only executed sequentially. This can result in significant delays. Open-
Swarm, on the other hand, allows the preemption of code and I/O requests by I/O interrupts of
higher priority. This provides faster response times for more important I/O devices.

Nano-RK, Nuttx, LiteOS, and Mantis OS are Linux-like (i.e., POSIX) operating systems,
and so, they use charactem device drivers to access I/0 devices. While this creates a con-
sistent everything-is-a-file resource representation, it also creates significant delays and compu-
tational overhead. First, an incoming signal is processed within the operating system context.

32XVICharacter device drivers allow the system to interact with a device by reading or writing characters into it. In
other words, it behaves like a file.
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Table 3.2: Embedded operating systems in comparison to OpenSwarm. The memory footprint?
values for most systems are taken from the literature [|Gay et al.|2005; [Dunkels et al.[[2004;
Bhatti et al.|2005}; [Eswaran et al.|2005}; |Cao et al.|2008}; Nutt|2016].

0 tine Svst Architect Execution Process Dynamic Memory Usage
perating System rchitecture
perating =3 Events Processes Synch. Memory RAM ROM

Contiki ) ] b ]
[Dunkels et al)[2004] modular yes 0o - yes 2kB 60 kB
LiteOS
[Cao et alJ2008] eculey e yes mutex yes <4kB < 128kB
Mantis OS ) ] ' ] .
[Bhatti et al)[2005] layered no yes semaphores yes 500 B 14 kB
Nano-RK . mutex &
[Eswaran et al. 2005] ToTeltiint 1o yes semaphores no 2kB 18 kB
NuttX ) ) 4 ' .
[Nutd2016 modular no yes POSIX yes 2kB 32kB
TinyOS . & .

 [Levis et al]2003) monolithic — yes no no  5I2B¢  I5kB
OpenSwarm monolithic yes yes event-based & yes 2kB 10 kB

semaphores

? The listed memory footprints are taken from literature and vary due to different hardware architectures (e.g.
8-bit MCU require smaller footprints than 64-bit architecture). Note that the memory footprint of Open-
Swarm is based on the implementation presented in the next section.

® Only hardware interrupts can preempt the current execution. However, this is not a preemptive execution as
defined in [Tanenbaum|2009; Stallings|2014]).

¢ The reported memory usage contains only the core element of the system, and a deployed system is expected
to have a significantly higher value. For instance, OpenSwarm could be reduced to 336 B of RAM; however,
the fully deployed system consumes 1.9 kB.

4 The POSIX standard provides interprocess communication methods, such as semaphores, shared memory, or
message queues.

¢ NuttX requires 32 kB in its smallest configuration [Nutt2016]]. The memory footprint of a deployed system
is not documented.

Then, the system unblocks the corresponding process. After the process has been scheduled,
it processes the new data. Furthermore, these device drivers provide functionality abstraction,
but no value abstraction.

3.2.5 Implementation

OpenSwarm’s open-source implementation is freely-available at [Trenkwalder| 20205 under
an adapted FreeBSD licencm Documentation, tutorials and further details can be found
at[www.openswarm.orgl

Since C compilers exist for most platforms, OpenSwarm is implemented in C. In version
v0.17.09.25, the kernel contains 489 of 2783 = 17.6 % of hardware-specific lines of code
without considering I/O modules. When deploying to other platforms, only 17.6 % require re-
implementation. In other words, the remaining code can be ported unchanged. A list of system
calls and implementation details, as well as examples of usage, can be found in Appendix [B}
Overall, the presented implementation, which supports the le-puck| (see Appendix [A]), consumes
2 kB of RAM and 10 kB ROM.

3.2.6 Discussion

OpenSwarm is an embedded operating system designed for severely-constrained robots. As
presented at the beginning of this chapter, OpenSwarm is designed with the following key
properties:
* OpenSwarm uses a monolithic architecture. This results in a relatively small memory
footprint which is lower or equal to other operating systems, as shown in Table

32XVl The full licence is available at https://openswarm.org/license/.
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www.openswarm.org
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* Not to reduce the available computational resources further, OpenSwarm ensures high
execution efficiency by executing software directly on the hardware without additional
software layers (e.g., VMs or interpreters). It only takes control to manage I/O resources
and to ensure fair use of any resources. The hybrid kernel enables a concurrent ex-
ecution with events and processes. It can be used for fast-responsive and long-lasting
execution, respectively. OpenSwarm’s computational overhead is measured and com-
pared in Section

* OpenSwarm provides a two-layered hardware abstraction allowing a transparent use of
hardware. Furthermore, OpenSwarm provides value abstraction, which provides further
context for applications and reduces, in principle, platform-dependencies.

* OpenSwarm facilitates modularisation and events that are used as an interface between
modules and processes.

3.2.6.1 Novelties of OpenSwarm

The novelties of OpenSwarm are:

* The dual-execution model that offers both process-based and event-based execution.
While event- and process-based execution have been used on other robotic system soft-
ware and operating systems individually, the combination of both features means that
the code can be adapted to the needs of the user. In robotics, this is particularly benefi-
cial in situations where robots must maintain operations (e.g., obstacle avoidance) while
performing other tasks (e.g., path-planning). Furthermore, a related key aspect of Open-
Swarm 1is its capability to distribute events through a network thus enabling distributed
processing and storage, which is explored in Chapter [5]

* The structure of the hardware abstraction layer provides both functionality abstraction to
allow the use of the devices transparently and value abstraction to reduce the platform
dependency. Value abstraction provides context for measured entities, which separates
their value from the underlying hardware. By combining both, OpenSwarm facilitates
a transparent hardware-independent use of the robot’s capabilities on a high level. Fur-
thermore, this abstraction enables the implementation of virtual sensors/actuators. They
can be used to simulate other sensors/actuators or to deploy the robot in a virtual or
augmented environment, which is also explored in Chapter[5

3.2.6.2 OpenSwarm Limitations

Due to the design choices of OpenSwarm, it faces certain limitations.

As it is designed to be a C AP behaviour implementations can require more lines
of code than other system software. In particular, domain-specific languages, such as ASEBA
or Buzz, tend to use robotics-specific functions, reducing the number of lines.

Furthermore, due to the flat memory space, programs can access and manipulate data of
other processes. This increases the likelihood of errors and could impact security. Having said
that, measures to restrict such access (e.g., virtual memory) would significantly increase the
computational overhead. Due to this overhead, providing flat memory is common practice for
system software with severely-constrained devices.

3.3 Evaluation

This section investigates how OpenSwarm compares to other system software that has been
deployed on severely-constrained robots. First, the memory and, then, the processing overhead
of OpenSwarm and each of its modules is investigated. Thereafter, OpenSwarm is compared to

32XVH Apn AP is an application programming interface, which enables the use of functions while developing software.
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Table 3.3: Static and dynamic memory consumption of OpenSwarm and its components in
bytes. The dynamic memory consumption depends on the number of running processes (p),
registered events (e, ), buffered events (ep), subscribers to the event (eg), devices that require
polling (d), subscribers to an ADC channel (a), and buffered messages (m). Furthermore,
E\(s) symbolises the transmission of an event that contains data of the size, s. As a result,
E,(s) increases the dynamic memory by s and increases e, by one.

RAM

Component .

dynamic
Process Module 1128 14 278 p
Memory Module 363 22 0
Event Module 662 14 | e, (6ep+ 10ey)
HAL 336 8 4d
Motors 520 18 0
Camera 4867 | 1368 E4(2)
Remote Control 195 10 E4(2)
Bluetooth 570 12 -
Selector 124 4 E4(2)
ADC 219 42 20 <64
Proximity 442 108 p E4(2)
SwarmCom 387 67 10m

ASEBA regarding execution efficiency. Finally, the performance of different implementations
is compared with that of OpenSwarm.

3.3.1 Memory Overhead

The presented implementation, which is deployed on the e-puck, consumes in total 2 kB of
RAM and 10 kB ROM. However, when not every module is used, memory consumption can
be further decreased. Table shows the static and dynamic memory requirement for each
module. Note that this data was obtained using the Microchip’s MPLAB X compiler and
emulator for the e-puck’s microcontroller.

To measure the memory consumption, an empty project is emulated first and its memory
consumptions — ROM and RAM — recorded. The memory consumption is then measured for
every added module. Note that modules might not be independent of each other. As a result,
the modules without dependencies are added first, followed by the ones with dependencies.

As evident from Table [3.3] OpenSwarm can be configured to consume as little as 336 B
of RAM and 2489 B of ROM. With all modules, OpenSwarm consumes 1981 B of RAM and
9813 B of ROM which represents 24.6 % and 6.8 % of the respected memory. Note that the
camera module of the e-puck robot requires most of the memory due to the allocated buffers.
Removing only the camera module results in 613 B of RAM and 4946 B of ROM (i.e., 7.6 %
and 3 %).

OpenSwarm’s smallest configuration (i.e., the kernel without any processes and I/O mod-
ules) is smaller than TinyOS (512 B) and Mantis OS (500 B), as shown in Table[3.2] Even when
adding all additional modules except for the camera module, OpenSwarm consumes approx-
imately 20% more than TinyOS and Mantis OS in their smallest configuration. When adding
the camera module, the memory consumption is equal to or lower than that of the other oper-
ating systems. The conclusion is that OpenSwarm is small considering memory consumption
of other state-of-the-art operating systems.
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Listing 3.1 The hardware-near implementation to periodically toggle an LED.

1 #include "p30F6014A.h"

3 //e-puck specific values

4 #define OUTPUT O

s #define LED _TLATCI

6 #define DIRECTION_LED _TRISCI

8 #define THRESHOLD OXFFFF

10 int main (void) {

1 unsigned int value = 0;
12 DIRECTION_LED = OUTPUT;
13 LED = 0; // turn off LED
14

15 while (true) {

16 value = value + 1;

17 if (value == THRESHOLD) {
18 LED = ~LED;

19 value = 0;

20 }

21 }

2 return O;

23 }

3.3.2 Processing Overhead

Let the processing overhead be any additional instructions that increase the execution time,
t, of an algorithm to (1 4+ p)¢. As a result, p is a measure for the processing overhead. To
measure it, one algorithm is implemented using different system software, which is deployed
on the e-puck. Afterwards, their execution times are compared.

The used algorithm toggles an LED after incrementing a counter a specified number of
times. Thereafter, the counter is reset, and the previous step repeated. As a result, the LED
toggles periodically, and the periodicity is a measure of the execution time. The periodicity
itself is measured with an oscilloscope at the LED’s anode.

3.3.2.1 Implementation

First, the algorithm is implemented hardware-near (i.e., without any system software) as shown

in Listing This provides a reference point as any system software would execute additional

operations increasing the execution time. Then, the same algorithm is implemented using

OpenSwarm (see Listing [3.2)), where several configurations are tested (see Table [3.4] for a

detailed list). Finally, the algorithm is implemented using ASEBA (see Listing [3.3).

Based on the measured period, ¢;, the computational overhead, p;, can be calculated by
pi= 3.1)
to
where t( is the measured period of the hardware-near implementation. Note that all imple-
mentations are deployed on the same robot to avoid a bias from hardware variations.
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Listing 3.2 The OpenSwarm implementation to periodically toggle an LED. Lines 5-7 and 12
are only added when the processing overhead of multiple processes is investigated. Note that
modules are en-/disabled with the corresponding macros within os/system.h.

1  #include "os/system.h"

3 #fdefine THRESHOLD OXFFFF

s wvoid busyThread(){ // only added when multiple threads
— are tested

6 while (true);

9 int main (void) {

11 Sys_Kernel_ Init ();

12 Sys_Start_Process (busyThread, 0); // only added when
—~ multiple threads are tested

13 Sys_Kernel_Start ();

14

15 while (true) {

16 value = value + 1;

17 if (value == THRESHOLD) {
18 FRONT_LED = ~FRONT_LED;
19 value = 0;

20 }

21 }

2 return 0;

23 }

Listing 3.3 The ASEBA implementation to periodically toggle an LED.

1 var bool =1

> var value = 0

3

4 while bool == 1 do

5 value = value + 1

6

7 if value == OxFFFF then
8 LED]1 = ~LED1

9 value = 0

10 end

1 end
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Table 3.4: Computational overhead of a hardware-near, OpenSwarm, and ASEBA implement-
ation. Note that, if possible, only one module of OpenSwarm is tested at a time.

Configuration Period / ms
Hardware-near 62.22 0
OpenSwarm (initialised) 62.21 0
Event Module 62.21 0
Memory Module 62.22 0
Process Module 62.28 9.6410~%
+ one thread 128.4 1.06 10°
+ two threads 190.7 2.0710°
1/0 Module 62.40 2.891073
+ Bluetooth Module 62.47 4.021073
+ Remote Control Module 62.33 1.771073
+ Motor Module (idle)
idle 62.58 5791073
operating with 128 mm s~! 62.90 1.091072
+ Selector Module 62.24 3.21107%
+ Communication Module?
(Proximity Module)?
for 310 bps 82.4 3.24107!
for 850 bps 117.2 8.831071
for 1800 bps 178.4 1.8710°
+ Camera Module 3852° 2.8710°
+ all modules 4509 3.5310°
OpenSwarm (all w/o camera) 184.8 1.9710°
ASEBA 15400 2.4710?

* The proximity module is configured to sampling rates that allow the imple-
mentation of a communication system — SwarmCom — with 310, 850,
and 1800 bps (see Chapter 4] for more details).

b As the camera records a few frames per second, the threshold needed to
be changed from 65535 to 1048575. Otherwise, the LED would toggle
irregularly.

3.3.2.2 Results & Discussion

The measured execution times and processing-overhead values, p;, are shown in Table [3.4
It is evident that initialising OpenSwarm (i.e., providing its features but not using it) does not
increase the processing overhead. As n, € {0, 1,2} processes are fairly executed alongside the
system thread, each process is executed for np1+1 of the time. As their execution time increases
by (n,+ 1), the processing overhead is p; ~ n,. This aligns with the observations in Table

Overall, it can be seen that all I/O modules have a relatively small overhead (in the range of
0.01-1 %) with two exceptions — the proximity and the camera module. Both modules have
an overhead of an additional 32.4-186.7 % and 286.9 %, respectively. When operating both
proximity sensors and camera, the combined overhead is 3.5 < (1.87 + 2.87), suggesting that
either data is lost or corrupted as one of the modules is not being fully executed. Note that
this is a result of the design of the robot and can be expected on other system software that is
deployed on the e-puck.

In comparison to OpenSwarm, ASEBA has a two magnitudes of power larger processing
overhead. In other words, for a single instruction in the hardware-near setup, ASEBA executed
an additional 247 in comparison to 3.53 (OpenSwarm) instructions. As a consequence, the
limited resources of severely-constrained robots are further reduced, which in return limits the
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complexity of deployed algorithms.

Note that the supervisory control framework as used in [Kaszubowski Lopes|[2016] has
been deployed on the e-puck. However, the used algorithm would require automata with more
than 65535 states (for counting up to the threshold). Such automata would exceed the memory
of the robot. Ergo, this system software could not be tested and compared.

3.3.3 Swarm Robotics Case Study

To investigate the impact of computational overhead on a swarm robotics task, an algorithm is
implemented in four ways — hardware-near, with OpenSwarm, with the supervisory control
framework (SCF) of [Kaszubowski Lopes|2016]], and with ASEBA. Experiments are conducted
and the performances of the system softwares compared.

In this section, object clustering [[Gauci et al[[2014a] is used to show that the choice of
system software can impact algorithms that perform with minimal computational resources.
Object clustering is a task where several dispersed objects are pushed together to a cluster.
Gauci et al| use a line-of-sight sensor to detect other robots, objects, or nothing (i.e. a wall
as the environment is bounded) in front of the robot. The detection is performed through their
colour — a robot (green), an object (red), or the environment (white). Each colour is then
mapped to predefined wheel velocities.

3.3.3.1 Implementation

Based on [Gauct et al.||20144]], the line-of-sight sensor is a virtual sensor realised with the
e-puck’s onboard 640 x 480 pixel CMOS RGB camera. The camera is configured with an
8x digital zoom providing a frame with 80 x 60 pixels. To avoid misalignments, a 20 x 20
sub-frame is used to detect the dominant colour. The hardware-near, OpenSwarm, and SCF
implementation use the described method to avoid a bias resulting from camera calibration.
Note that ASEBA provides only a row of 80 pixels, and, as a result, the inner 20 pixels are used
to determine the dominant colour.

To execute the algorithm with OpenSwarm, the camera’s pre-processor performs the im-
age processing as described above. It also emits an SYS_TO_1PXSENSOR event contain-
ing the dominant colour. As shown in Listing [3.4] this event is then handled by object_
clustering , which then performs the algorithm described by [Gauci et al.|[20144]]. Note
that the presented algorithm is implemented in OpenSwarm version 0.15.09.15 as used in
[Trenkwalder et al.|2016]).

Listing [3.5] shows the implementation in ASEBA. First, the virtual line-of-sight sensor
value is calculated from the central 20 pixels. Then, based on the dominant colour, the corres-
ponding velocities are set.

Finally, the SCF implementation is taken from [Kaszubowski Lopes|[2016]]. The listing for
the hardware-near implementation is omitted due to its length.

3.3.3.2 Experiment Setup

For each implementation, ten trials are performed. Each trial deploys five robots to push 20
dispersed objects to a cluster, as shown in Figure [3.6] Each object has a diameter of 10 cm
and a height of 10 cm. Both robots and objects are fitted with green and red paper jackets,
respectively.

The used arena is 4 x 3 m, surrounded by 50 cm tall white walls. On the light-grey floor,
165 equally spaced pencil marks are arranged in a 15 x 11 grid. 25 marks are randomly selected
to place first objects and then robots. The starting orientation of each robot is randomly chosen

from {O, T %r} to avoid bias. For each implementation, the same ten placements and
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Listing 3.4 The object clustering algorithm implemented with OpenSwarm. OpenSwarm en-
sures that, on every occurrence of the camera event, SYS_TO_1PXSENSOR, the algorithm of
[Gauci et al.|20144] is executed.

1  #include "os/system.h"
2 bool object_clustering(uintl6 PID, uintl6 EventID,
— sys_event_data =data);

4 int main (void) {
5 Sys_Init_Kernel();//initialise OS

7 Sys_Subscribe_to_Event (SYS_IO_1PXSENSOR, O,
— object_clustering, NULL);

9 Sys_Start_Kernel(); //start OS

10 Sys_Run_SystemThread(); //run system thread

3 bool object_clustering(uintl6 PID, uintl6 EventID,
— sys_event_data =xdata) {

14 sys_colour rx_color = x((sys_colour =) data->value);
15

16 switch (rx_color) {//what colour did the robot see?
17 case GREEN://robot

18 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED, 114);

19 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED, 68) ;

20 break;

21 case RED://object

2 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED, 125);

23 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED, 64);

24 break;

25 case WHITE://nothing or wall

26 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED, 70);

27 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED, 127);

28 break;

29 default: //anything else

30 break; //do not change behaviour

31 }
Y} return true;

33 }
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Listing 3.5 The object clustering algorithm implemented with ASEBA. On every occurrence
of the camera event, the inner 20 of 80 pixels are used to determine the dominant colour and
then to execute algorithm of [Gauci et al.|[20144]. Note that the colour thresholds were obtained
through calibration on the used robot.

1  var redness

2 var greenness
3 var whiteness
4 var 1

6 onevent camera

7  redness = 0
8 greenness = 0
9 whiteness = 0

o for i in 30:49 do
11 if cam.red[i] >= 25 and cam.green[i] >= 20 then
12 whiteness++

13 elseif cam.red[i] >= 25 and cam.green[i] < 20 then
14 redness++

15 elseif cam.red[i] < 25 and cam.green[i] >= 20 then
16 greenness++

17 end

15 end

19 if whiteness > redness then

20 if whiteness > greenness then
21 speed.left = 70

2 speed.right = 127

23 else

24 speed.left = 114

25 speed.right = 68

26 end

27 else

28 if redness > greenness then
29 speed.left = 125

30 speed.right = 64

31 else

32 speed.left = 114

33 speed.right = 68

34 end

35 end
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\

(b)

Figure 3.6: Snapshots of the object clustering experiment: (a) initial distribution of robots and
objects; (b) distribution after 10 min. (reprinted from []Trenkwalder et a1.||2016|])

orientations are used. Each trial is recorded with an overhead camereFi?l and lasts approxim-
ately 15 minutes. Overall, all experiments followed the same protocol as described in

et al 20144

3.3.3.3 Performance Metrics

Each trial is statically analysed by applying two performance metrics — dispersion and cluster
metric. The dispersion metric, is based on the second moment of dispersed disks as presented
in [[Graham and Sloane|1990]. Gauci et al.| [20144] adapted this metric to

1 _
u=——> lpi-pl (32)

object

where dgpject and p; are the diameter and position of an object. p represents the centroid of all
20 objects (i.e., p = 0.05 ) . p;). As the distances between objects can be arbitrarily long, the
second moment, u, is unbound above. However, u has a lower bound of approximately 41.5
when considering || p; — pj ||> dopject for all i # j, based on [Graham and Sloane|1990)].

While this metric shows how compact a cluster is, a small number of outliers can degrade
the results disproportionally. To compensate for this drawback, the second metric, the cluster
metric, counts the number of objects within the biggest cluster. As does only
provide a verbal description, let this metric be defined in this work as follows.

Let a graph, G = (V, E), contain objects as vertices (in V'), where an edge between two
objects, i and 7, is (i, j,w) € E. The weight of an edge, w, is defined as the distance between
two objects — w =|| p; — p; ||=|| pj — pi ||. Clusters can be defined as a connected graph
Cr = (Vk, Ex) € G, where any object can only be in one cluster (i.e., Vi, NV, = () for all
k # 1) and every object belongs to a cluster (i.e., [, Vi = V). A single cluster is defined as

Vk:{iajevl(i#j)[wSQdobject]}y (33)
Ep={(,j,w)| (Vie Vi) (37 € Vi) w < 2dopject] } (3.4)

with an object diameter dopjet. In other words, a cluster is a set of objects where any object
is not further away than 2 dp ..+ to at least one other object of that cluster. With the indicator
function, Iy (i), that 7 belongs to a cluster Cy, the cluster metric is

1
c= mgx{%z:]k(i)}. (3.5)

i

331 Al recorded experiments are available online |]Trenkwalder"2020d]]
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Figure 3.7: Dispersion metric applied to experimental data obtained in a 4 X 3 m arena. (a)
shows the trials (thin lines) and the average (bold) for each implementation. (b) compares the
averages over all trials. The colours of the averages correspond in both plots.

The cluster metric illustrates if all objects are pushed together. However, it does not take
into account the spatial distribution of the cluster. For instance, a cluster reaching the maximum
value can be compact or, in the worst case, a straight line. As a result, both metrics are used to
describe the performance of the presented implementations, where better-performing systems
converge faster to the final value.

3.3.3.4 Results for an 4 x 3 m Arena

After conducting and recording each trial, a static analysis of the video is conducted. Both
metrics are applied to each video frame. The results are shown in Figure [3.7]and [3.8]

In Figure the dispersion metric shows each of the ten trials represented as a coloured
thin line and their average values as a bold line. When comparing the averages, as shown in
Figure one sees that the performance of both the hardware-near and OpenSwarm imple-
mentation follow the same trend; hence, perform similarly. The SCF implementation follows
the trend above; however, an offset can be seen. In contrast, the ASEBA implementation res-
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Figure 3.8: Cluster metric applied to experimental data obtained in an 4 X 3 m arena. (a) shows
the trials (thin lines) and the median (bold) for each implementation. (b) compares the median
over all trials. The colours of the medians correspond in both plots.

ults do not follow the same trend. On average, objects remained dispersed. This results from
only a subset of trials being successful while others create multiple clusters apart, which even
increases the dispersion value.

These findings are also supported by Figure[3.8] where the hardware-near and OpenSwarm
implementation increase the cluster size similarly swiftly. Furthermore, there is also a small
offset to the SCF implementation, while ASEBA converges to cluster sizes that lie below the
other systems.

The different trends for ASEBA can stem from multiple factors. The ASEBA implementa-
tion uses a different camera implementation than the other systems. Even though the detection
of colour was calibrated to the used robot, this implementation missed objects that are relat-
ively far away more frequently than other implementations. This can stem, for instance, from
a lower frame rate (i.e., less angular sampling) or how pixels are extracted. In comparison,
as the SCF, OpenSwarm, and hardware-near implementation use the same code to operate the
camera, the offset to the latter must result from a computation overhead (i.e., a longer response
time).
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Figure 3.9: Dispersion metric applied to experimental data obtained in an 3 X 3 m arena. (a)
shows the trials (thin lines) and the average (bold) for each implementation. (b) compares the
averages over all trials. The colours of the averages correspond for both plots.

3.3.3.5 Results for an 3 x 3 m Arena

As the large distances caused ASEBA to underperform, the experiments were repeated within
an arena with reduced size (from 4 x 3 to 3 x 3 m). After conducting an additional 10 trials
for each implementation, both metrics are applied as in the previous section. The results are
shown in Figure [3.9]and 3.10}

The hardware-near, OpenSwarm, and SCF implementation perform similarly with SCF,
which has a notable offset, being the only exception. Furthermore, it can be seen that a reduced
arena size improves the performance of the ASEBA implementation resulting in larger clusters;
though, it still underperforms. Similarly, Figure [3.10|shows a wide range of outcomes for each
trial for ASEBA. Overall, ASEBA performs worst, followed by SCF and then OpenSwarm.
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Figure 3.10: Cluster metric applied to experimental data obtained in an 3 X 3 m arena. (a)
shows the trials (thin lines) and the median (bold) for each implementation. (b) compares the
medians over all trials. The colours of the medians correspond in both plots.

3.4 Discussion

OpenSwarm is the first operating system designed for severely-constrained robotic systems.
It provides a novel dual-execution model and hybrid kernel that offers both process-based and
event-based execution. While separately each execution model has been available on other sys-
tem software, the combination of both features allows the development of both fast-responding
and time-consuming code. Event-driven programming, being a more rule-based approach,
often allows a more intuitive programming (e.g., if this event occurs, execute that function).
In addition, it also provides a smaller overhead when called. Process-oriented programming,
on the other hand, allows the execution of long-lasting algorithms, such as image processing.
It is widely established and well understood. By enabling both programming paradigms in
OpenSwarm’s hybrid kernel, the user can optimise the resource consumption. In addition,
OpenSwarm provides a two-layer hardware abstraction that allows the transparent use of hard-
ware and provides additional context (e.g., the use of 128 mm s~! instead of a unit-less 1000)
when interacting with the robot’s environment. Moreover, this allows, in principle, the creation
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of more hardware-independent, general, and readable code, which potentially reduces errors
[MacConnell|[1993]]. Additionally, the provided abstraction enables the use of virtual sensor-
s/actuators and, therefore, virtual or augmented reality environments, which broadens the scope
of how robots can be used. Furthermore, virtual sensor/actuators reduce dependency on spe-
cific hardware owing to the fact that not-available hardware can be simulated. Both properties
are explored in Chapter 3]

In this chapter, OpenSwarm has been compared to other systems software. A detailed
analysis of the memory consumption and processing overhead has shown that OpenSwarm has
a small memory footprint and processing overhead. With the computational overhead being
small, more resources are available to implement and execute robotic behaviours.

While a computational overhead does not necessarily have an impact on a robotic behav-
iour, additional experiments were conducted to measure whether a different system software
does. It was shown that OpenSwarm closely matches the performance of the hardware-near
implementation while SCF and ASEBA implementation have a small and notable performance
reduction, respectively. The ASEBA implementation, in particular, had the worst performance
and was, in many cases, not able to cluster all objects.

In general, it has been shown that the choice of system software can bias the outcome of
even simple algorithms. When this bias is not known, any research results/findings could be
rendered less reproducible or even void.

Finally, the computational overhead experiments revealed a general flaw of the e-puck plat-
form. It was shown that the camera and proximity sensors interfere with each other’s function.
This can lead to missing or corrupt data. As a result, the e-puck is resource inadequate as
defined in [Kopetz|2011]], and both sensors should not be used together.

Overall, this chapter discusses the different variants of code execution when comparing
OpenSwarm with other operating systems as well as robotic system software. While code of
severely-constrained robots is often executed on a virtual machine, OpenSwarm presents execu-
tion directly on hardware, which has shown to be more execution efficient. It was demonstrated
that the choice of system software does affect behaviours even computationally minimalistic
ones.
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Distributed systems — in this case, swarms of robots sharing and combining resources —
depend largely on managing local resources, communicating between robots, and managing of
shared and combined resources. As the previous chapter is concerned with the management of
local resources, this chapter addresses the communication between robots.

Communication is an essential aspect of robotics and has been proven to benefit cooperat-
ive multi-robot systems [Balch and Arkin/[1994]. While robotics divides communication into
implici and explicit communication, this work focuses on explicit communication, which
allows the exchange of arbitrary data, and also enables a wide range of behaviours, such as
[Hauert et al.|2010; Schmickl et al.[2011;|[Rubenstein et al.[2014}|Garatton1 and Birattar1[2018]].

In general, any communication system can be characterised by

* network reliability, which defines the probability that a message is transmitted and re-

ceived correctly, and

* network throughput, which defines how much data can be sent within a period.

In robotics, in particular, both characteristics are paramount as distributed systems often require
the exchange of correct data within a set time. In swarm robotics, it is often assumed that the

“Cmplicit communication describes the obtaining of information based on observations of other robots or the
environment [Wang and Schwager|2016].

57
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communication system works reliably. This results in limited research on communication,
which may affect the validity and reproducibility of the deployed system.

Due to its large number of robots [Hamann|[2018]], its computational constraints [Trenk-
walder|[2019], and distributed behaviour [Barca and Sekercioglu|2013]], a communication sys-
tem for swarm robotics requires

 simplicity in design to be deployable on severely-constrained robots,

* decentralisation to allow large numbers of robots,

* scalability to allow close interaction between large numbers of robots, and

* tolerance towards frequent topology changes to allow mobility.

As the requirements are often conflicting, each system design is based on a trade-off benefiting
the domain of use, resulting in a large variety of different systems.

4.1 Existing Communication Systems

Communication systems are utilised in many aspects of robotics and form a separate branch
of robotics called networked robotics [Siciliano and Khatib| 2016, Chapter 44]. It focuses on
architectures, hardware, interfaces, and programs that enable behaviours requiring networking
and is an intersection between telecommunication and robotics. It has three main subcategories
— cloud robotics, telerobotics [[Siciliano and Khatib|2016, Chapter 43] and networked multi-
robot systems [[Yan et al.[2013]].

4.1.1 Cloud Robotics

As cloud robotics utilises the external infrastructures, robots require reliable and high band-
width connection [Terrissa et al.|2015; [Kehoe et al.|[[2015; [Wan et al.|2016]]. As described in
Section[2.2.1] these systems often utilise well-established technologies such as Ethernet, IEEE
802.3, or Wifi, IEEE 802.11 [IEEE|2017]. However, these technologies are often unsuited for
many swarm robots as they (I) have relatively high power consumption, (II) are not scalable
to large numbers of robots [Ghazisaidi et al.[2009]. Furthermore, cloud robotics is designed
for an individual robot and uses a centralised structure, which would be a bottleneck for large
numbers of robots. In addition, [Hamann| [2018]|] categorises such systems as the more-generic
multi-robot rather than swarm robotics systems due to individual operation of robots and their
lack of scalability.

4.1.2 Telerobotics

Telerobotics focuses on robots that are operated remotely by a human (e.g., surgical robots
[Munawar and Fischer|2016[]). These systems also require a reliable and high-bandwidth con-
nection with deterministic response times as they are often used in safety-critical environments.
In contrast to the other areas networked robotics, these systems are often stationary and use
wired connections allowing a high quality-of-servic Due to (I) the stationary character,
(I) its wired connection, and (III) the use of one operator per robot, telerobotics is less relevant
to swarm robotics and, therefore, not discussed further.

4.1.3 Multi-Robot Systems

Multi-robot systems, in particular swarm robotics systems, are composed of a group of robots
working cooperatively towards a common goal. They often involve synchronised actions or

“LIn digital communication, the quality of service (QoS) is a description of the overall performance, which
includes packet loss, bit error, bit rate, and transmission delay.
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collective decision making [Yan et al.|2013]. Overall, there are three categories of multi-
robot systems in which communication plays a crucial role — modular/reconfigurable robotics,
underwater robotics, and swarm robotics.

4.1.3.1 Modular and Reconfigurable Robotics

Modular and reconfigurable robots are devices that physically connect, resulting in larger ro-
bots [Chennareddy et al|2017; Moubarak and Ben-Tzvi|2012]]. While each module (i.e., an
individual robot) is mobile, connected robots are often position-locked, which facilitates the use
of wired connections. As a result, many of these systems use wired connections for inter-robot
communication (e.g., [Kernbach et al.[2008]]). Note there are platforms that use wireless com-
munication (e.g., [Pacheco et al.|2014; [2015]]); however, wired communication offers better
a quality of service and calls for less complex hardware (i.e., easier miniaturisation). Com-
mon technologies are (wired) CAN, I?C, UART, and Ethernet as well as (wireless) Wifi, ANT,
Bluetooth, and Zigbee.

In contrast, swarm robotics uses mobile robots, which hinders the use of wired communic-
ation. Furthermore, many of the used wireless technologies are designed for smaller numbers
of robots (e.g., Bluetooth can connect up to 7 slaves at a time) and are centralised, contradicting
key aspects of swarm robotics.

4.1.3.2 Underwater Robotics

Another form of networked mobile multi-robot systems are underwater robotic platforms [ Yuh
2000; |Antonelli|2006]. Due to the limited range of optical and radio transmission, these robotic
platforms are often connected through acoustic networks similar to underwater sensor networks
[Chandrasekhar et al.|2006; [Tuna and Gungor]. Acoustic waves can propagate far (between
100 m to several km) in dense media such as water. However, it requires low-frequency carrier
waves, which results in small throughputs (up to 30 [kbps)) [Climent et al.|[2014]]. Furthermore,
its slow propagation speed makes media access con and the corrections of signal dis-
tortion challenging. In other words, when the number of robots is large (i.e., swarms), robots
interfere in each other communication. These characteristics make acoustic communication
less suitable for swarm robotics than other technologies.

4.1.3.3 Swarm Robotics

As swarms are formed by mobile robots, they use wireless communication, such as Bluetooth,
Wifi, and Zigbee, [Hauert et al.|2010; [Schmickl et al.[[2011}; Rubenstein et al.|[ 2014} |Garattoni
and Birattari|2018]]. While many of these technologies are centralised and limited in the num-
ber of connections, swarm robotics tends to uses these technologies with low numbers of robots
(e.g., [Pickem et al|2017]) or with small densities (e.g., [Hauert et al.|2010]). In swarm robot-
ics, a communication system is often decentralised to enable distributed control. Decentralised
communication is often achieved by networks, in which robots are connected, lacking a central
managing hub. One such network type is MANET.

Mobile ad-hoc networks (MANETS) are decentralised and distributed networks. They
wirelessly connect mobile devices — called nodes —, and work without additional infrastruc-
ture as each node can be the origin, end-point, or relay of a transmission. Until now, a wide
range of MANETSs have been investigated [Macker and Corson/|{1998}; |Chlamtac et al.[2003j
Conti and Giordano|2014]]. In swarm robotics, the merits of MANETSs have been increas-
ingly recognised, resulting in many radio-based [Li et al.|[2009; [Tutuko and Nurmaini|2014]

#LI'Media access control is a method in which multiple devices regulate access to the communication channel to
avoid interference and collisions.
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and optical [D1 Caro et al.[[2009} |Gutiérrez et al.|[2009a; Rubenstein et al.|2012] MANETs.
Fundamentally, both technologies are relevant to this work.

Each technology has a set of benefits that can aid swarm robotics:

* Generally, radio-based systems are widely used, which results in accessible and inex-
pensive components. Due to its standardisation, many systems are compatible directly
off the shelves. This allows robots to be produced cheaply and in larger numbers. In
comparison, optical communication systems are still at early development stages. They
lack standardisation and often require repeated implementation efforts. However, optical
communication is increasingly used as an alternative to radio-based systems. Research in
free-space optical communication shows that a bit can be transmitted faster and with less
energy [Anees and Bhatnagar|2015} Malik and Singh|2015; Khan|2017]. In particular in
swarm robotics, low energy consumption is paramount as it allows longer operation of
robots, and more throughput can enable more complex behaviours.

* Radio-based systems can penetrate many objects, which increases communication range

and the number of robots that can be reached even in cluttered environments. However,
the network devices are limited in regards the number of connections they can establish.
For example, a single Bluetooth master can connect to up to 7 nodes within a 3 to 10 m
radius. If the number of robots is large, they can interfere with each other and worsen
communication quality. While many radio-based systems are designed for environments
with relatively low densities of nodes (e.g., office), swarm robotics is likely to reach large
densitie of robots; hence, they would exceed the capabilities of many state-of-the-
art networks (e.g., Wifi, Bluetooth, Zigbee).
Optical signals, on the other hand, are line-of-sight transmissions which can be obstruc-
ted by objects, reducing the range and the number of possible channels. As shown later
in this chapter, this enables scalability and makes the communication system applicable
to high-density scenarios.

* Radio-based signals are emitted and received by antennas, and its size depends on the
carrier’s wavelength (e.g., 6 cm for a 5 GHz signal used in Wifi {EEE 802.11n)). This
makes miniaturisation challenging. On the other hand, optical systems use LEDs to emit
and photodetectors to receive signals. Both have good potential to be miniaturised and
integrated, as shown by [Hirschman et al.|[1996]] or CMOS camera chips.

Due to their benefits, optical-based communication systems are increasingly used on the

miniature robots [Seyfried et al.[2005};|Caprari and Siegwart|2005}; |(Gutiérrez et al.[2008; |Arvin
et al.[[2009; Rubenstein et al.|2014; McLurkin et al.|2014]].

4.1.4 Discussion

Robotics deploys a wide range of communication systems commonly based on acoustic, radio,
or optical signal transmissions. Because of the technical challenges that arise with acoustic
carrier signals, it is, in many cases, only deployed in environments that hinder the use of op-
tical and radio transmissions. In contrast, communication systems based on radio signals are
most common, not only in robotics. Radio waves can penetrate objects and reach a large num-
ber of nodes over relatively large distances, which is useful in many situations (e.g., search
and rescue). However, the limited capability to miniaturise and to scale to a large number
of robots makes this technology less suitable for areas such as swarm robotics. In contrast,
miniaturisation and the use of large densitie of robots are facilitated when using optical
communication systems. The drawback of optical systems is that they are often unique and
not compatible with other systems. As these unique systems are often not analysed regard-
ing quality of service, the communication characteristics are often not well understood, and the

41 Eor instance, up to 662 robots [Mondada et al.|2009|] or 29980 robots [Rubenstein et al.|2014] within a 3 m
radius.
“LIVNote that the scalability of optical systems is shown in a later section of this chapter.
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Figure 4.1: The SwarmCom communication network. The network (right) consists of links
between robots (orange), where each robot transmits signals from emitters (red) to detector
(blue).

system is assumed to operate correctly. This can lead to less reproducible research or undefined
behaviour.

This chapter provides a framework to facilitate systematic studies of the communication
channels of robotic swarms and the design of reproducible behaviour. First, a channel model
is presented that describes the infra-red signal characteristics of a widely used swarm robot-
ics platform, the e-puck. The proposed model is the first such model for any swarm robot.
It shows in-detail how signals are received or transmitted, understanding of which is crucial
to formally describe the communication channel. In the second part, SwarmCom, an optical
(infra-red) MANET for severely-constrained robots, is proposed. It contains a dynamic de-
tector that adapts to the environment and other robots. Finally, SwarmCom is compared to
another state-of-the-art infra-red communication software for e-pucks — libIrcom [|Gutiérrez
et al.|20095]]. In addition to these contributions, this chapter answers two fundamental ques-
tions: "What is the impact of different communication ranges, mobility, and bit rates on the
optical communication?" and "Can optical communication systems scale with the number of
robots?". This allows a better understanding of such systems.

4.2 Swarm Robotics Network

To model and design a robotic network, the physical arrangements of the robots must be spe-
cified first. Let a group of identical robots operate on an unbounded plane. It is assumed that
a robot is not further than 50 cm from at least one other robot if they cooperate. Overall, the
robots form a partially connected mesh network, as shown in Figure d.1]

4.3 Channel Model

The channel model describes how data is conveyed between two robots. It is composed of
models that describe:

* how signals are transmitted between an emitter and a detector (emitter-to-detector model),

* how two robots transmit data with multiple emitters and detectors (robot-to-robot model),
and

* how the signals are represented and understood by the robot (measurement model).
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Figure 4.2: Signal propagation between an emitter (red) and a detector (blue).

4.3.1 Emitter-to-Detector Model

Let an emitter and a detector be located at p., pg € R? with orientation 6.,6; € (—x,7],
respectively. As shown in Figure #.2] a signal propagates in a direct line from emitter to
detector with an emission and inclination angle, « € (—m, 7| and 5 € (—m, 7|, over the
Euclidean distance d € R:

a= 0. — L(pq— Pe), 4.1)
B = Z(pe — pa) — b4, 4.2)
d=| pa — Pe |2, 4.3)

where /(v) is the angle between the vectors v and [10]%.

Optical communication systems commonly use on—off—modulatio to transmit one of
two symbols, sg and s, for a symbol period T'. Therefore, the normalised transmitted wave-
form is s(¢t) : R — [0, 1], which is pseudo—stati for T'. The normalised signal intensity,
y(t), arrives at the detector as

y(t) = hes(t) +n(t) with 0<t<T, (4.4)

where h, is the channel attenuation (or shadowing) coefficient, and n(t) is additive white Gaus-
sian noise (AWGN). These are common assumptions for optical systems (e.g., [[Carruthers and
Kahn|[1997]).

The channel attenuation is defined by

he = he(a,d, B) = he(a) hy(d) ha(B), 4.5)

where h., h,,, and hg are attenuation coefficients for the emitter, medium, and detector, re-
spectively.

The emitter coefficient, h., models the attenuation caused by the signal’s direction and
the emitter’s orientation (i.e., directionality). Consequently, h. can be expressed as he(«a) :
(—m,m] — [0,1], where « is the emission angle. The maximum normalised attenuation is
he(0) = 1 and, due to self-occlusion, h.(a) = 0 for all a ¢ [—7, §]. Similarly, hq(5) :
(—m, 7] — [0,1] denotes the detector attenuation, which depends on the inclination angle /3
with h4(0) = 1 and hg(B) = O forall 3 ¢ [-F, 5.

The medium attenuation, h,,,, describes effects on the signal when propagating through the
medium. When the distance between emitter and detector tends to zero, the medium attenuation
should not have an effect, resulting in limg_, h,, (d) = 1. Similarly, if the distance is infinitely
long, the signal intensity is infinitely small, resulting in limg_,~ hp,(d) = 0.

Note that the exact coefficients obtained through experiments are presented in Section[4.3.4]
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Figure 4.3: Setup of the robot-to-robot model, where eight emitters send a signal to eight
detectors.

4.3.2 Robot-to-Robot Model

Let a transmitting and a receiving robot be at p;, p,, € R? with orientation 6;, 6, € (—, 7], as
shown in Figure Based on the relative positions of each emitter ¢ € {1,2,...8} and de-
tector j € {1,2,...8} (see Appendix E]for more details), the absolute positions are calculated
by

~[cos(fy) —sin(0)| joe

pe,z - [sin(&t) COS(Qt) peﬂ' + DPt, (46)
_[cos(0r) —sin(0:)| o

Da,j = [sin(@r) COS(0r> pd,j + Pr. (47)

With these coordinates, the superpositione signal intensity, y;(¢) of a detector j is

aij=0; — Z(Pdj — Pei)s (4.8)
dij = dji = [|Pa,j — Pe,illy » (4.9)
Bji = £(Pei — Pa,j) — 05, (4.10)
hc’j = min {Z he(am) hm(di,j) hd(ﬂjﬂ'), 1} > (4.11)
Yj(t) = hej s(t) +n;(t), (4.12)

where n(t) is AWGN. It is worth noting that a detector can saturate limiting . ; to 1. This
makes y;(t) the signal intensity at the detector j for a transmitted symbol, s(t).

4.3.3 Measurement Model

When y;(t) reaches the detector, the measuring circuit transforms it into an electrical signal.
This signal (i.e., voltage) is then sampled by an analog-to-digital-converter (ADC) of the MCU
and makes the digital value available to any software.

As illustrated in Appendix y;j(t) generates a proportional collector curren
Ic(t), at the phototransistor of the detector j. This current causes a voltage drop from the
supply voltage, V.., at the resistor R, which results in the collector-emitter voltage

Vep(t) = Vee — RIc(t). (4.13)

“310n-Off Keying (OOK), also on-off modulation, is a modulation technique where one of two symbols is as-
signed to the presence and the other to the absence of the carrier.
#31'The signal can be seen pseudo-static because transient processes are negligible.
#31The signal intensity is the sum of emitted signals of every emitter.
#31VNote that all equation in this section apply to the detector j. For simplicity, the index j is dropped.
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In other words, an increased signal intensity causes a decreased voltage at the ADC.

Due to the saturation of the phototransistor, I (¢) has an upper limi Ico. When
considering the ambient light that is superpositioned on the signal, the collector current is
denoted to

Io(t) = min{lo,s(t) + Ico(t), Ioeo} (4.14)

where Ic s and I are current components proportional to the signal and ambient light
intensity, respectively. Due to the ambient light current, /¢, the voltage Vog max(t) =
Vee — R Ico(t) represents the upper bound. Similarly, Vog min = Vee — R Ic o is the lower
bound.

The ADC performs a linear time- and value-discretisation of Vog(t) € [VoE min, VoE max (t))-
Let My : [0, V.e] — M be a measure that maps Vog(t) to the measurement set M =
{0,1,...,meup} C N, where mg,,, = 2"AP¢ —1 is determined by the ADC width (n 4 pc bits).
Considering the boundaries Vg max and Vog min(t), the upper and lower limit of measure-
ments are

Tmax [k] - MV(VCE,max (t))u (4.15)
Mmin = MV(VCE,min)- (4.16)
t

Note that [-] indicates time-discrete values based on k = [EJ and the sampling period, ¢.

Due to y;(t) o Ic(t), My can be adopted to M : [0,1] — M measuring the signal
intensity as

Mmax[k] = Misup —mo = M (0) (4.17)
Mmin = M (1), (4.18)
m;lk] = M (y;(1)), (4.19)
= | (Mmax[k] — Mmin) (1 —y;(t)) + Mmin | + 1 [K], (4.20)

where n,,[k] is a discretised zero-mean AWGN as defined in [Roy|2003]].
By combining the robot-to-robot model and the measurement model, it is possible to fully
describe the signals between two robots.

4.3.4 Parameter Identification

Before the model can be used, the structure of h., h,,, and hy as well as the value of My,
and mmayx need to be defined. Three experiments were conducted identifying n,, [k] as well as
Mmax> ha(B) as well as muyin, and h,, (d) as well as he ().

4.3.4.1 Experiments with a Single Robot in Ambient Light

First, the environmental impact on the robots is measured. As it cannot be determined gener-
ally, the following experiments determine the magnitude of n,,[k] and mp,x as well as their
values for later experiments within the same environment.

In total, six experiments are conducted to characterise the magnitude of ambient light meas-
urement, mpax. In the experiments, robots are placed at the centre of the robot aren in
2 different corners of the arena (one with shade and the other with partial shade), on the desk
close to the arena, inside a closed box, and on a desk close to a window (during the day).

#3YThe saturation current of the phototransistor is specific to that circuit; hence, it is considered time-invariant.
#3VINote it is the same arena as described in Chapter In addition, let the area be illuminated by six 1 m long
fluorescent tubes. Two rows of three tubes are mounted in approximately 3 m high in parallel to the 4 m long walls.
There are three windows around 2 m away from the arena’s boundary.
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Figure 4.4: Histograms of the measurements taken from each detector within different envir-
onments.
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Figure 4.5: Sample (a) mean and (b) variance of more than 1500 environment measurements
for each detector in six different configurations.

Be

Figure 4.6: Setup of the experiments with a light source, where the light (pink).

For each experiment, more than 1500 measurements were taken by each detector — il-
lustrated in Figure Each measurement, m/[k], detects ambient light as mmax[k] + nm[k].
As the sample mean is an unbiased estimator of the true mean, it estimates 1M,y [k] for each
detector in each setup. Similarly, the sample variance is a sufficient estimator for o2 of n,,[k],
for any o > 1 [Roy|2003] and, hence, used.

Based on the measurements, the sample variance and mean were calculated for each de-
tector and shown in Figures.5] In Figure[d.54] it can be seen that mm,y varies from 4095 (i.e.,
maximum measurable value, m,,, indicating that no light was detected) from within a closed
box to values around 4075 that were obtained in front of an open window. Overall, mpax can
be approximated to 4080 (i.e., the ambient light offset, mg = Mmgyup — Mmax is 15) within the
arena; hence, my is set to 15 in further experiments. Based on Figure it can be seen that
the variances do not exceed 2.5. Hence, the noise n,,[k] is modelled as (worst-case) discrete
Gaussian process with the variance of 2.5, which is also used in the subsequent experiments.

4.3.4.2 Experiments with a Single Robot and a Single Light Source

The next step is to characterise the saturation value, mpi,, and the directionality of a detector,
hq(B). This is achieved by performing experiments with one robot and a light source (10 W
LED floodlight). The floodlight is placed at the height of the robot’s detector and projects light
parallel to the surface. The light’s width is larger than the robot’s diameter; hence, the light is
assumed to be homogeneous and planar. In other words, the light reaches the robot’s detectors
from the same angle, as shown in Figure

The saturation is measured by placing the robot 2 cm in front of the light source. Eight
orientations are examined in which each detector is once oriented towards the light source. As
the detector that is oriented towards the light saturates, mmpin + 1y, [k] is measured. In each
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Figure 4.7: Histogram of the measured saturation values from the detectors closest to the light
source.

Table 4.1: Sample mean (i.e., the saturation value, mpi,) and variances obtained from meas-
urements with a light source.

M min

1563.94 0.0608

152.52 1.0158
151.32 0.4140
153.88 0.2003
159.68 0.3858
146.37 0.3746
141.83 0.1604
141.11 0.1072

0 O\ L B~ W N — RN

case, more than 2000 measurements per detector were collected and plotted in Figure The
sample mean (i.e., mmy;n) and variance (i.e., 02) were calculated and are displayed in Table
Over all sensors, muyi, can be approximated to 149.80 (i.e., 150 on the robot).

The signal attenuation based on the inclination angle, (3, is measured by placing the robot
10 cm from the light source. The robot is oriented with 6, € {0, T, m, 37“} towards the light
source. Based on 6 and the planar light, each detector has a different inclination angle similar
to Figure 4.6 The inclination angle for a detector, j, is

Bk = 05 — O, (4.21)

in each setup k.

At each orientation 6, more than 2000 measurements were taken for each detector and are
shown in Figure[4.8] Similar to before, the true measurement is estimated by the sample mean,
m; k, and transformed into the estimated signal intensity y; = M1 (mj). The detector
attenuation, hg, is the relation between f3; ; and y; x. It is approximated by

ha(B) = | cos (B)?], (4.22)

as shown in Figure 4.9

4.3.4.3 Experiments with Two Robots

The emitter, h., and medium attenuation, h,,, are identified in a final experiment, where two
robots are placed in the centre of the arena. Both robots are oriented in such a way that Emitter
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Figure 4.8: Histograms of the sensor values obtained when the robot was located 10 cm away
from with orientation, 0y, relative to the light source.
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Figure 4.9: Detector attenuation, h4(c). The mean values of the obtained signal intensity
are plotted in relation to the inclination angle 5 (dots). These values are approximated by
ha(B) = cos®(B) (line). Note that inclinations angles || > 7 did not produce data points due
to self-occlusion.
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Figure 4.10: Setup of the experiment with two robots. Note that only one emitter is transmitting
the signal, while all detectors of the other robot are measuring.
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Figure 4.11: Signal intensities obtained for Detector 1 in relation to distance. The blue line
indicates an approximation with o, (deg)*™.

1 and Detector 1 of each robot faces the other (i.e., «; = 1 = 0), as shown in Figure[4.10] Ini-
tially, the robots are placed next to each othe While the emitting robot sends a constant
signal with Emitter 1, the receiving robot detects it with all detectors. In total, the receiving
robot takes 450 measurements and, after that, increases its distance to the emitting robot. This
procedure is repeated 28 times and measurements are taken at the inter-robot distances of {7,
75, 8,8.5,9,10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 32, 37, 42, 47, 57, 67, 71, 87,
97, 107} cm.

The medium attenuation, h,,(d), is estimated for measurements of Detector 1. Due to
the alignment, ov; = (1 = 0, the change in signal intensity can only result from the inter
robot distance d. Similar to before, the true intensity is estimated by the transformed sample
mean y; , = M1 (m;,k). When plotting the signal strength against the distance, as shown in
Figure d.T1] it can be seen that the medium attenuation can be approximated by

B (d) = 0, (d)*m (4.23)
{1 lim Ay (d') > 1
B (d) = { d'—d , (4.24)
hm(d) otherwise

with k,,, = —1.54557 and o,,, = 1.12202 (blue line).

After estimating the detector and medium attenuation, the emitter attenuation, h.(«) can
be estimated by using measurements of the other detectors (i.e., j # 1). As the emitter sends
a normalised signal equal to 1, the emitter attenuation for each detector, j, in each setup, k, is

43VilNote that the inter-robot distance is measured from and to a robot’s centre. This results in a minimum of 7 cm
(diameter of the robot).
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Figure 4.12: Signal intensity in relation to the emitting angle «.. The trend is approximated by
he() = cos(a)7 (blue line). Note that data points diverging from the trend are often values
on the boundaries of h,,(d) and hy(3) (e.g., in the range of 3 ~ £7).

Table 4.2: Model parameters

Parameter Value Description
NADC ‘ 12 Bit length for conversion
km ‘ —1.54557 Medium attenuation decay
Om ‘ 1.12202  Medium attenuation offset
Mmax ‘ 4080 Ambient light offset
Mmin ‘ 140 Saturation measurement
obtained by
Yk = MTHM5k) = he(ayr) hn(dj k) ha(Bix) - 1, (4.25)
M~ (mjig)
he(ovjg) = L : (4.26)
(@) hun(dj k) ha(Bj k)

For each distance, the emission angle and (4.26) were calculated and plotted in Figure As
shown in Figure 4.12] (blue line), the emitter attenuation function is approximated by

he(a) = | cos(a)7]. (4.27)

4.3.5 Channel Model

By combining the previous sections, the full channel model is
y;(t) = min {Z |cos(vi ;)7 min{op, (d; ;) 1} cos(B:;)?], 1} s(t) (4.28)
m; (k] = [ (Mmax[k] = mumin) (1 = y5(t)) + Mumin| + 1m[K], (4.29)

where y;(t) is the noise-free intensity based on a sent symbol, s(¢) € {0, 1}. Its parameters are
listed in Table[4.2] Furthermore, the emitter and detector directionality are shown in a radiation
pattern plot illustrated in Figure 4.13]

4.3.6 Model Evaluation

Finally, the accuracy of the model is evaluated by performing an additional experiment. Two
e-pucks were placed next to and oriented towards each other, where the inter-robot distance, d,
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Figure 4.13: Radiation pattern of an emitter (red) and a detector (blue).

Figure 4.14: Setup of the experiments to evaluate the communication channel model. The
transmitting robot (left) sends a signal with all emitters to all detectors of the receiving robot
(right).

is chosen from {7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 22} cm. At each location, one robot
transmits a signal with all emitters, and the other receives it with all detectors (see Figure[4.14).
The receiving robot sends all measurements to a computer via Bluetooth. After obtaining 250
measurements, the receiving robot is then moved to the next location.

In Figure the model predictions are compared to the measurements from two e-puck
robots. Similar to previous experiments, the sample mean estimates the true value for each
distance. It can be seen that the predictions closely match the observed values.

4.3.7 Discussion

The presented model shows how optical signals are emitted and received first between a pair of
infra-red components and, after that, between e-puck robots. As the emitter-to-detector-model
is specific to the used components (i.e., TCRT1000), it could be used for devices using that
component. Furthermore, the robot-to-robot model is designed for the e-puck; however, it can
also be applied to the e-puck (release 2018), which uses the same components, circuits
and sensor placements as the e-puck.

#3.Vipformation was obtained through mail exchange with GCtronic (http://www.gctronic.com/); schematics of the
e-puck 2 have not been released at the time of writing this work.
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Overall, it was shown that the predictions closely match the measurements. As a result,
this model and the presented parameters are used in the subsequent sections.

4.4 SwarmCom: A MANET for Severely-Constrained Robots

After describing how signals behave, this section discusses the design of SwarmCom, a MA-
NET for severely-constrained robots. With SwarmCom, a group of robots establishes a peer-
to-peer mesh network dynamically. To create S warmCom, multiple methods need defining:

¢ how data is transmitted (i.e., modulation),

¢ how data is received (i.e., demodulation),

¢ what data is transmitted to detect/remove transmission errors (i.e., channel coding), and

¢ how devices can access the network (i.e., medium access control).

4.4.1 Modulation

The method that defines how information is applied to the channel is called modulation. Many
MANET technologies (e.g., Ethernet, Wifi, and Bluetooth) use sophisticated methods such
as phase-/frequency-shift-keying or quadrature amplitude modulation [IEEE 2017]]. However,
these methods rely on matching and filtering waveforms, which is challenging in optical sys-
tems due to their high frequency.

In contrast, optical systems commonly measure signal intensities and not waveforms; hence,
the modulation is limited amplitude-shift keying — in particular, on-off-keying (OOK). In
OOK, information is represented as a sequence of two logical symbols, s; and sg. Each sym-
bol is modulated as emission with full intensity and the absence of any emission, respectively.
As a result, this modulation method is susceptible to noise and ambient light changes, which
increases the difficulty of correct demodulation/detection.

4.4.2 Demodulation

Demodulation is a method of detecting the sequence of symbols that have been transmitted
while minimising the detection error To detect a symbol within the sequence, the max-
imum likelihood decision rule, Y (m) : M — {sg, s1}, is used. It is defined as

om) = {30, if P(S=so|M=m) 2P(S:sl|M:m)7 430)

s1, otherwise
where P(S = s|M = m) denotes the likelihood of having received symbol s € {sp,s1}

given measurement m. As this is an optimal decision rule, its accuracy solely depends on
P(S = s|M = m). As aresult, this section investigates how this decision rule can be derived.

4.4.2.1 Assumptions

To calculate P(S = s|M = m), assumptions about transmitted information, location, and
orientations are required.

Symbol Probability

First, it is assumed that any sequence of symbols is equally likely. As a result, the a-priori
probability of transmitting any symbol is

P(S = S(]) = P(S = 81) = —. (4.31)

#4I A detection error occurs if a symbol (e.g., so) is detected even though a different symbol has been sent (e.g.,
81).
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Figure 4.16: Probability density function of the inter-robot distance D. As objects cannot
overlap, the minimal distance is the diameter of one robot.

In other words, the transmitted information contains no redundancy (i.e., maximum entropy)
[Lapidoth|2009].

Location and Orientation Probability

Let the environment be unbound, and the transmitting robot be located at the origin of the
coordinate system oriented towards the x-axis. As the relative location of the receiving robot
is not known, it is represented as a random variable, L. = (D, ©), in polar coordinates. The
distance random variable, D, is chosen from a gamma distribution [Forbes et al.[2010]],

D ~ G(k, ), (4.32)

with shape parameter, k = 0.045, and scale parameter, ¢ = 2.5, as shown in Figure [4.16]

The polar angle © is chosen from a uniform distribution with a probability density function
p(0) = 5= forall @ € (—m,x]. Similarly, the receiver robot’s orientation, O, is chosen from a
uniform distribution with probability density function, p(o) = 5= forall 0 € (—m, 7.

4.4.2.2 Signal Probability

During a transmission, the probability, P (M = m|S = s), at the receiver defines the likeli-
hood of obtaining the measurement m, when a symbol s has been sent. For sg, P (M = m|S = sq)
follows the distribution of n,,[k]. In contrast, P (M = m/|S = s;) depends on multiple factors
(e.g., inter-robot distance or orientation).

To obtain P (M = m|S = s1), a Monte Carlo-lik approach was applied, where all
permutations of each 1000-quantile of D, 720-quantile of ©, and 720-quantile of O are ap-
plied to the channel model of Section This resulted in 5.184 - 10% observations for each
sensor. Considering the statistical law of large numbers, the relative frequencies are used to
approximate the theoretical probability of a noiseless channel. Then, it is convolved with the
distribution of n,,[k| to integrate noise. This results in the probability density function of
P (M =m|S = s1), as shown in Figure[4.17]

When comparing the signal and the noise distribution (see Figure .17), it can be seen that
the majority of measurements are similarly distributed (i.e., around mm,x — 4080). As a result,
errors during detection would be likely. One way to minimise these errors is to further limit the
communication range, creating higher intensities. Alternatively, min{-} can be applied to use
all information available to the detectors. Taking the maximum signal for the decision making
improves the signal distribution, as shown in Figure While min{-} reduces the number of
potentially parallel communication channels, it does not reduce the communication range and
has a small computational overhead. Hence, it is used in this work.

441 A large number of data points are used to approximate the probability by applying the law of large numbers.
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Figure 4.18: Detection threshold, m;, and detection error probability.

4.4.2.3 Decision Rule

When applying the signal probability to (4.30)), computationally expensive probability calcu-
lations would be conducted for each decision. To avoid this, a threshold can be used to decide
which symbol is more likely. It reduces the computational requirements to compare values, as
shown by

T(m) = so ifm > my 4.33)
s1 otherwise ’ '

where my is the decision threshold. 1t is calculated by

mg = max {m | P(S=s1|M<m) < P(S=so|M>m)}. (4.34)
me

As P(S=sg|M=m) is not know, the Bayes’ theorem is applied to (4.31)) and (@.34) creating

my = max {m| P(M<m|S=s1) < P(M>m|S=sp)}. (4.35)
me

When applying (4.35) to the data of Figure |4.17| the decision threshold is calculated as m; =
4075, as shown in Figure d.T§]

4.4.2.4 Evaluation

To validate the described detection (i.e., decision rule), two e-pucks, one transmitting and one
receiving, are placed on a line. While the transmitting robot is oriented towards the receiving
robot, the latter operates in four modes:
(I) static receiver robot with no LEDs illuminated,
(II) rotating receiver robot with no LEDs illuminated,
(IIT) static receiver robot with illuminated LEDs, and
(IV) rotating receiver robot with illuminated LEDs.
This makes it possible determine the influence of the motors and illuminated LEDs on the
detection process. Note that the receiving robot is oriented towards the other when it is not
rotating. The inter-robot distance is chosen from d € {7,12,17,22,27,32,37,42,47,52,57}.
In each configuration, one symbol — s or s; — is transmitted continuously until 2.5 - 10°
decisions are performed. After that, the other symbol is transmitted. Because sg is the absence
of an emitted signal, the detection error probabilities for sy are independent of the inter-robot
distance and are shown in Table [£.3]
Figure [@] shows the rate of misdetection of s; in relation to the inter-robot distance,
d. The detection error probability tends to be negligible for communication distances < 32
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Table 4.3: Average detection error probabilities for sg at each configuration.

Configuration | Error Probability

1)) - 5.80151077
(ID) - 3.2963107*
(IIT) - 3.8040107*
Iv) . 6.8205107*

cm. While a static robot not using its LEDs provide a low error probability up to 40 cm, the
use of motors and LEDs increases the error probability significantly. This potentially stems
from additional noise and reduction in the supply voltage, V... The model estimates higher
error probabilities than measured due to larger assumed noise with variance of 2.5 instead of
(measured) 0.6657.

4.4.2.5 Discussion

In this section, a detection method was derived from the signal distribution between two robots.
With the presented method, it is possible to decide between the two transmitted symbols — sg
and s; — while requiring a small computational overhead. While data can be detected with
a low error probability (i.e., most are even error-free), the error probability increases with
distance — in particularly above 37 cm. Furthermore, the data has shown that using the robot’s
motor and LEDs has a negative impact on the detection. As a result, errors should be expected
in experiments with mobile robots.

4.4.3 Channel Coding

As data is often transmitted in blocks, errors during the detection can change transmitted data,
which could cause unpredictable or malicious behaviour. To prevent this, channel coding —
a method to detect and correct errors — can be applied to improve the likelihood of receiving
correct data. To ensure communication on severely-constrained robots, such as the e-puck, the
encoding and decoding must be done in a small number of steps with a small memory footprint.

A fast encoding method based on vector-matrix arithmetic are binary-BCH codes [Yin et al.
2013]]. A BCH codeword, ¢ € S™, is a vector of n symbols of S = {sg, s1}. The codeword is
constructed by

c=dG, (4.36)

where d € S* and G € S**" are the transmitted data and the generator matrix, respectively.
Note that, in this work, c is systematic, where the codeword ¢ = (d, p) is composed of the
data, d, and a parity vector, p. This allows a fast generation of codewords as only p needs to
be calculated. When c is sent, errors can occur, and the received codeword is

r=cde, (4.37)

where e € S" is the error vector, and ®(-,-) is a symbol-wise modulo-2 addition. After
obtaining r, the data is extracted with the decoder.

Due to the severe computational constraints, methods which have high computational costs
(e.g., [Lapidoth|[2009; |Orhan et al.|2014; Arafa et al.|[2017]]) are often not practical. In this
work, syndrome decoding is used as it is based on bitwise vector-matrix multiplication.



78 CHAPTER 4. COMMUNICATION ON SEVERELY-CONSTRAINED ROBOTS
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Figure 4.19: Misdetection probability for s; in relation to the inter-robot distance.

To decode d from r, first, the parity matri H, is used to detect errors as

0=He, (4.38)
s=Hr=Hc®He=He, (4.39)

where the syndrom s # 0 if an error occurred (i.e., e # 0). Based on H e, a translation table
is created to link s to a specific e. Finally, the error-free codeword is calculated by

c=rde. (4.40)

In this work, three channel codes are used — to correct up to 7 errors (i.e., repetition code,
[1, 15]), to correct up to 1 error (i.e., [11, 15]), and not to correct any errors for best throughput
(i.e., no encoding, [15, 15]). Each [n, k] code indicates that n bits of data are transmitted as
k bits blocks (i.e., n < k). The codeword length, k, is chosen based on the architecture of the
robot (i.e., 16 bit for an e-puck robot). This allows fast processing as a single row of G and H
can be computed in one operation. For any data that is longer than n bits, the data is split into
n bit blocks and, after encoding, sequentially transmitted.

The [1, 15] code can be generated by repeating a single bit 15 times and decoded by ma-
jority decision. The [11, 15] code uses the generator polynomial, g(z) = 1 + = + x*, to obtain

441l The parity matrix, H, can be derived from G as described in [Lapidoth|2009].
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the generator and parity matrix

[100000000001100]]
010000000000110
001000000000011
000030000001070
G=100000100000010T1 |, (4.41)
000000100001110
000000010000111
000000001001111
000000000101011
[ 000000000011001
SR AT T It
H=517010111100010/> (4.42)
001101011110001
as described in [Glover and Grant|2010|]. The syndrome translation table corresponds to
Syndromes, s Error Vector, e
— = -
0000 000000000000000
0001 000000000000001
0010 000000000000010
0011 001000000000000
0100 000000000000100
0101 000001000000000
0111 000000010006000
1000 7 |000000000001000 (4.43)
1001 000000000010000
1010 000010000000000
1011 000000000100000
1100 100000000000000
1101 000100000000000
1110 000000100000000
[ 1111 | [000000001000000 |

Overall, all three channel codes are available by default. As can be expected, not correcting
any errors has the smallest computational overhead followed by correcting up to 7 errors and,
then, correcting up to 1 error. In contrast, the throughput is most reduced by the repetition code
followed by the [11, 15]-code to a % and a % of the [15, 15] code, respectively. However, the
impact of used channel code on the communication system is explored in Section 4.5}

The limitation of the chosen decoding method is the rapid growth of the syndrome table
with increased codeword length. Consequently, codewords need to be short to allow efficient
decoding. Considering that robots are mobile and can frequently change topology, short code-
words benefit the system as they are more likely to transmit data fully.

4.4.4 Medium Access Control

Before data can be transmitted, the moment when the medium is accessed, and data is sent
is defined by medium access control [Guerroumi et al.|2014; Hussain et al.|[2017]. As mul-
tiple robots can transmit at the same time, medium access control prevents the interference of
messages and improves throughput.
In MANETS, two forms of medium access control are common [Sesay et al.|[2004]—
controlled and random access.
* Controlled access divides the medium based on its physical properties (e.g., frequency
or time) [Hadded et al.|2015; |Glisic and Leppanen|2013]]. As every transmission has a
dedicated time or frequency slot, this method allows fair and efficient access, in particu-
lar, for high network loads like streaming. However, with the large numbers of robots in
swarms, dividing the medium into equal slots is often not feasible. Furthermore, when
sequentially used, a large numbers of slots can also cause long delays. Moreover, allow-
ing robots to join/leave requires the adding/removing of slots, which is often performed
by a central managing unit. However, central infrastructures oppose design principles of
many swarms [Hamann/2018].
* Random medium access allows the competing for access. This competition is performed
through local information; hence, it is decentralised and can be used independently of the
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Table 4.4: Robotic infra-red communication systems.

Modulation Error Access
Detection Correction  Control
Colias OOK (38 kHz)? X X X
libIrcom® (e-puck) OOK*¢ CRC¢ X CSMA
Kilobot OOK IBM-CRC-16 x CSMA
r-one OOK (38 kHz)* CRC-16-CCITT X X
SwarmCom (e-puck) OOK BCH® v° CSMA

a

Colias and r-one modulate the amplitude (OOK) of a 38 kHz carrier signal. This technology is
common on infra-red remote controls for devices such as TVs.

Liblrcom is a communication system designed for the e-puck robot. While being designed by the
same group that designed the e-puck, it is an additional library and separately maintained.

While libIrcom documentation describes the modulation through frequency modulation, it is an OOK
method that uses two 32-bit codewords to encode a single bit.

4 LibIrcom uses a self-defined 2-bit long CRC checksum.

SwarmCom has three configurations in which it uses repetition code to correct up to 7 errors, a
[11,15] BCH code to correct up to 1 error, and uncoded transmission to maximise throughput.

number of robots. However, high network loads can reduce performance as the number
of collisions increases.

Due to infrequent communication within many swarm robotics systems, SwarmCom util-
ises random medium access called carrier sense multiple access (CSMA) [Shi et al.|2013;Wang
et al.[[2017]]. In short, a robot only transmits a pending message, if no other robot is transmit-
ting or waits until the transmission has ended. Consequently, CSMA is distributed as the robot
uses only local information and is scalable as the detection solely depends on the network load
and not on the number of robots listening. Overall, these properties match the requirements of
swarm robotics and make CSMA suitable for SwarmCom.

4.4.5 Implementation

SwarmCom has been implemented in C on e-pucks running OpenSwarm. The source code is
available under an open-source license.

For detection, SwarmCom uses time-multiplexed on-chip ADCs to sample the detector
voltages. Each sample is used for the detection of a bit. Also, the detector determines the
ambient light value, my,.x, during the start-up of the robot, and considers ambient light changes
during run-time, as detailed in the following sections.

4.4.6 Discussion

In addition to SwarmCom, there are other infra-red communication systems used in swarm
robotics — Colias [Arvin et al.2014], e-puck [Gutiérrez et al.[2009b], I-Swarm [Seyfried et al.
2005, Khepera [Mondada et al.[1999]], Kilobot [Rubenstein et al.[2012]], r-one [McLurkin et al.
2014]), and s-bot [Mondada et al.[2005]]. Unfortunately, many of these communication systems
are poorly documented and details are not published; this applies in particular to I-Swarm,
Khepera, and s-bot and, therefore, they cannot be discussed here.

SwarmCom is compared to liblrcom (e-puck) as well as the communication systems of
the Colias, r-one, and Kilobot in Table Overall, each system uses OOK as a modulation
method. However, Colias and r-one both use a single frequency carrier signal, which allows
the use of signal filters (i.e., hardware) to improve detection. On the other hand, it requires
hardware support and cannot be deployed on other platforms. LibIlrcom advertises the use of
frequency modulation, however, its software implementation shows the use of OOK and with
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two 32-bit long codewords to encode a single bit reducing throughput to a é—th while not fully
utilising channel coding (i.e., detection errors remain high).

While only the Colias robot does not utilise error detection or correction mechanisms, Kilo-
bot and r-one provide 16-bit cyclic redundancy check (CRC) values that allow error detection.
LibIrcom uses 2 bit CRC values for each byte of data. SwarmCom, on the other hand, uses the
previously described BCH codes that allow the detection of errors through syndromes and the
correction of 0, 1, or 7 errors depending on its configuration. This can reduce the likelihood of
retransmissions and, consequently, reduce overhead.

While CSMA is used by liblIrcom, Kilobot, and SwarmCom, the documentation on Colias
and r-one do not report any access control methods. This increases the risk of message colli-
sions and, subsequent, corrupt data. It is worth noting that r-one uses an ALOHA protocol for
data transmission, which requires the acknowledgement of successfully received data. When a
message is received, and an error detected, the message is not acknowledged and, subsequently,
resent. However, noisy/busy channels or frequent topology changes can cause retransmissions,
reducing the throughput.

Overall, SwarmCom is designed for systems with simple communication circuitry that
lacks advanced signal processing hardware. It provides error detection and, in contrast to
all other systems, error correction methods, where throughput can be reduced in favour of
increasing reliability. Finally, it provides media access control that reduces the likelihood of
retransmissions while maintaining its throughput. Insights on the performance of SwarmCom
are presented as follows.

4.5 Evaluation

To allow a systematic verification of SwarmCom’s performance and quality of service, a series
of experiments are conducted. First, experiments are conducted with static robots to determine
the quality of service based on the inter-robot distance d. Then, experiments with mobile
robots are conducted to verify SwarmCom in more realistic environments. Finally, SwarmCom
is compared to libIrcom to determine its performance against a widely used swarm robotics
communication system.

4.5.1 Static-Robot Evaluation

To determine the communication quality of SwarmCom, a pair of static robots are used — a
transmitting (R;) and a receiving robot (R,.). Both robots use all of their emitters and detectors,
as shown in the robot-to-robot model. Note that, unless otherwise stated, no channel coding is
used to determine the true parameters (e.g., bit error rate).

4.5.1.1 Experimental Setup & Process

The experiments are conducted within a 4 X 3 m arena, as described in Section [3.3] The win-
dows are shut to prevent light from entering. The experiments are automated with a computer.
This computer is connected to each robot via Bluetoot and controls the process (i.e., ro-
bot’s behaviour) remotely.

Initially, both robots are placed in the middle of the arena, oriented towards each other (i.e.,
inter-robot distance is 7 cm). Then the experiment follows:

1. The computer uniformly randomly generates between 1 to 5 messages. Each message is

15 bit long, and each bit within a message is uniformly randomly chosen.

“3ITo avoid a bias by the Bluetooth connection, each message to or from the computer is transmitted with a
checksum and acknowledged to guarantee successful transmissions. In case of an error, the respected message is
retransmitted.
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2. The computer transmits the message to R; via Bluetooth. When the message has been
received, the checksum is calculated and compared. If the checksum does not match, the
message is not acknowledged. If no acknowledgement is received within 500 ms, the
computer retransmits the last message without affecting the result.

3. Once a correct message has been received by Ry, it starts the infra-red transmission to
R,. At the same time, R; echoes the message back to the computer signalling the start
of the transmission.

4. As soon as R, receives 15 bit of data, it transmits it to the computer via Bluetooth.

5. The computer marks a message as lost if ; acknowledged, but no message was received
from R, within 1 s.

After repeating the process until 100 successful messages have been obtained, R, moves 1 cm
away from R; and the process is repeated. The experiment ends, when R, has moved 100 cm
or if ten consecutive messages have been marked as lost. In the latter case, the end of the
communication range is assumed.
Based on the data, the computer calculates the following parameters:
* the communication range, which is the furthest inter-robot distance in which 100 suc-
cessful messages were recorded,
¢ the transmission time, which is the difference between the times when data is received
from R; and R,,
* the bit rate or throughput, which is the number of bits divided by the transmission time,
* the bit error probability or bit error rate, P, which is calculated by the Hamming dis-
tanc of the data from R; and R, divided by the length of the data,
e the probability of error-free transmission, Py, which is

[

Pi(c) =) (?) Pl (1—P)", (4.44)

1=0

where c is the maximum number of correctable errors of an n-bit message. In other
words, P is the probability that at maximum c bit-errors occur. As up to c errors can be
corrected, the transmission is considered error-free.

* the probability of message loss, P;, which is

(4.45)

where N; and N are the number of lost messages and the number of successful and lost
messages, respectively.

4.5.1.2 Fixed Threshold Experiments

This section investigates how different configuration of SwarmCom can influence the quality
of communication. As the user can set bit rate and decision threshold, robots are configured
to transmit with 310, 650, or 1160 bps (bit per second) and detect with relative thresholds of
me,r € {5, 10, 25, 50, 100, 250, 500, 750, 1000, 2000}. The relative decision threshold is
calculated by

Mt = Mmax — Mt - (4.46)

Figure 4.20] shows the experimental results for each configuration. All trials show that
a higher threshold reduces the communication range. While it is expected that closer robots
produce lower bit-error probabilities, it can be seen that, in many cases, the decrease of inter-
robot distance increases the bit error probability. As a result, an interim-region of low bit-error

#31'The Hamming distance is the number of different bits between two vectors (e.g., the Hamming distance is 2
for 0101 and 0011).
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Figure 4.20: Bit error probability, I, and the probability of error-free transmission, Py, based
on the inter-robot distance, d, of two static robots using different relative thresholds, m; ,, and
bit rates.
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probability can be observed. Interestingly, when increasing the bit rate, the bit errors increase
and the region of low bit-error probability is less distinct, which suggests that the increased bit
errors at short ranges result from dynamic effects.

A possible reason for these observations is a low-pass characteristic (i.e., capacitive ele-
ment) within the measuring circuit. As short distances result in high signal intensities (i.e.,
charging capacitive elements), the charges cannot be transported fast enough, resulting in inter-
symbol interference. For higher bit rates, less time is available to move these charges; hence,
the bit-error is larger. As lower thresholds are more sensitive to inter-symbol-interference, the
bit-error would be larger for lower thresholds, as it was observed. As the circuit cannot be
changed, a software solution needs to be found.

4.5.1.3 Dynamic Threshold Experiments

As a fixed threshold is either reducing the communication range or is sensitive to inter-symbol
interference, a new method is proposed that decreases the impact of inter-symbol interference
while maintaining larger communication ranges. The detection threshold is adapted dynamic-
ally based on the signal intensity.

If no signal has been detected, the detection threshold is m; = mmax — My, as calculated
in Section [4.4.2.3|to maintain high sensitivity, and, ergo, a large communication range. When
a signal with amplitude A is detected, the dynamic decision threshold, m gy, is calculated by

‘mt + A‘ ’mmax — My + A|
mt,dyn = T = 2 .

4.47)

Note that is based on m; instead of 17max to ensure 1y g, < my. This dynamic threshold
is used for the detection of each subsequent bit. When the transmission ends, the detection
threshold is reset again to m;.

Dynamic Threshold Evaluation

With the dynamic threshold, new sets of trials were conducted following the protocol, setup,
and configurations as described in the previous section. The results are illustrated in Fig-
ure 4.21] Figure [4.2Ta]shows that the bit-error probability is reduced by magnitudes of power
in comparison to the previous experiment. Figure illustrates that the communication
range decreases with increased bit rates similar to Figure [4.20] The increased bit rates also in-
crease inter-symbol interferences, which can lead to a region of increased bit-error probability.
To avoid this region, m;, can be selected to limit the communication range to low bit error
probabilities.

Bit Error Limits

Additional experiments were performed to determine configurations which ensure P, < 0.01.
In these experiments, the set thresholds are matched with the bit rates in such a way that,

max {d |1 — (1 = P.p(d)) - (1 — Poy(d)) < 0.01}, (4.48)

applies, where P, j(d) and P, ;(d) are the error probabilities of the selected bit rate and the
selected threshold at an inter-robot distance, d, respectively. When the obtained data is applied
to (@.48), Figure shows an area of configurations in which P. < 0.01. In other words,
it shows that m; , and bit rate cannot be chosen independently without impacting the bit-error
probability. Note that the limit of P, < 0.01 is arbitrarily chosen and can be adapted to the
need of the user.

Channel Coding

SwarmCom uses no channel coding per default to maximise throughput. However, it can be
configured to correct up to 1 or up to 7 errors within a 15-bit message. To investigate the
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Figure 4.21: Bit error probability, P, and the probability of error-free transmission, Py, based
on the inter-robot distance, d, of two static robots using dynamic threshold detection with a set
of initial relative thresholds m; , and bit rates.
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Figure 4.22: SwarmCom configuration space to ensure P, < 0.01. (a) The blue area shows
configurations in which P, < 0.01. (b) The communication range resulting from each config-
uration.
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Figure 4.23: Applied channel coding to correct ¢ € {0, 1, 7} errors within 15 bit. Shown is the
probability of transmission with errors, 1 — Py, at 310 bps and 1800 bps.

impact of channel coding on the systems, the three channel codes are compared. Based on
the data presented in Figure d.21] channel coding is applied to transmissions with 310 bps and
1800 bps. The results are compared in Figure [4.23]

As illustrated, the probability of transmissions with errors, 1 — Py, decreases by several
orders of magnitude when correcting 1 or 7 errors. This enables transmissions to be virtually
error-free (i.e., 1 — Py < 1075) over a range of up to 60 cm. However, when considering
transmissions with 310 bps, even without channel coding, they are, to a large proportion, error-
free. On the downside, channel coding reduces the throughput to approximately 120 and 21 bps
for bit rates of 1800 bps and 310 bps.

When comparing transmissions with 1800 and 310 bps, repetition-coded 1800 bps trans-
missions are less error-prone for d < 10 cm (i.e., < 4 cm gap between robots), than an uncoded
310 bps transmission. When the distance between robots is likely to be larger than a few centi-
metres, choosing uncoded 310 bps provides a four times larger communication range with 2.5
times higher throughput while transmitting with fewer errors.

Generally, choosing the right channel code depends on the application and its robustness
against communication errors. Overall, in situations where throughput is paramount, no chan-
nel coding is recommended; that being the case, this is SwarmCom’s default.



4.5. EVALUATION 87

Bit Rate: 220 = 310 = 460 = 600 = 850 = 1080 — 1670 = 1800 Systems: = libIrcom -* SwarmCom

0.100
AS 0.010
0.001
20 40 60
Distance d / cm
(a)
0.600 1
< 0.400+
2.000+
0.000 e .
20 40 60
Distance d / cm
(b)

Figure 4.24: Comparison of liblrcom (red) with SwarmCom (other colours): (a) bit error prob-
ability, P., and (b) probability of message loss, P;.

Comparison with libIrcom

To fairly compare SwarmCom to an existing communication system, both systems are imple-
mented with OpenSwarm and deployed on the same e-puck robot. This state-of-the-art com-
munication software is libIrcom, which is often used with e-puck robots (e.g., [Murray et al.
2013; |Prieto et al.[2010]]). The implementation of libIrcom uses the identical functions to con-
trol the robot and exchange messages via Bluetooth as the SwarmCom implementation. The
experiment was conducted following the same procedure and within the same environment as
in Section 4.3 1.1

Figure [4.24] shows the comparison between SwarmCom and libIrcom concerning the bit-
error probability, P., and the probability of message loss, F;, over the inter-robot distance.
Based on the measurements, the bit rate of liblrcom is 220 bps (i.e., 12.2-71.0% of Swarm-
Com). At bit rates up to 850 bps, SwarmCom consistently outperforms liblrcom regarding
range (i.e., increase of +116-221%), throughput (i.e., increase of +386-40.9%), and the prob-
ability of message loss by orders of magnitudes.

As libIrcom differs from SwarmCom in many aspects, it is difficult to attribute these im-
provements to a single factor. On the one hand, SwarmCom utilises the underlying channel
model to maximise communication range and an adaptive threshold to reduce errors. Further-
more, each transmitted symbol carries data, maximizing throughput. On the other hand, by
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Algorithm 1 Random Walk

Require: ¢,,, the forward moving interval
1: procedure MOVE

loop

3 Choose a random rotation angle, § € (—, 7]

4 Rotate by

5 Choose a random velocity, v € [—128,128]

6: repeat

7

8

9

N

mm
S

Move forward with v
until time, ¢,,, has elapsed

end loop

attempting the digital recreation of frequency modulation, libIrcom ends up with 32-bit code-
words for a single symbol, considerably reducing throughput. While these codewords reduce
the bit-error probability, the potential of channel coding is not fully used for two reasons: (I) the
two used codewords have a high overlap (i.e., Hamming distance) reducing the effectiveness
of the code and (II) only two combinations of a 32-bit long sequence are used further limiting
the amount of information that can be sent.

4.5.2 Mobile-Robot evaluation

For a more realistic evaluation, additional experiments with a larger number of robots are con-
ducted, where robots communicate while performing a random movement. First, the mobility
is investigated, as it directly impacts the inter-robot distance and the quality of transmission.
Then, the performances of two different modes of communication are compared. After that,
the impact of changing the moving velocities, the communication range, the bit rate, or the
density of robots are investigated. Finally, SwarmCom is compared to liblrcom within this
more realistic environment.

4.5.2.1 Experimental Setup & Process

The experiments described in this section are conducted in a 72 X 72 cm arena. The arena
has a grey floor and is surrounded by 30 cm tall white walls. It is illuminated, as described in
Section 4.5.1.21

Within the arena, 2 to 7 robots are placed in random locations and with random orient-

ations. Each robot is connected to a computer via Bluetooth and performs a random walk
continuously following Algorithm [1| with a motion time of ¢,, = 2 s. During this time, the
computer automatically performs the following steps.

1. The computer connects to a random robot within the set.

2. Then, the computer randomly generates one-to-five 15-bit-long random messages sim-
ilar to Section .5.1.1] and transmits these to the selected robot. If the robot does not
acknowledge the message within 500 ms, the message is retransmitted without affecting
the results.

3. While the data is echoed back to the computer, the messages are transmitted to other
robots.

4. Any robot that receives data also transmits it to the computer. Note that robots utilise the
dynamic threshold detection, as described in the previous section.

5. The computer waits for 2 s to receive messages and then records:

¢ number of robots,
* bit rate,
* bit-error probability for each robot,
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e probability of error-free transmission, and
* how many robots received a message.
The computer repeats this process 1000 times for every configuration.
Note that the experiments are conducted with two ways of communication:
local broadcast, where a message is sent by only one robot and received by its neighbours. In
this form, robots can only communicate in direct line of sight and within their commu-
nication range.

flooding, where any received message is also transmitted at its first occurrence. This allows
robots to communicate with robots outside of their communication range as other robots
relay that message.

Each experiment is recorded by a camera mounted on top of the arena. A progran@] is
used to calculate the robots’ positions, potential occlusions, and inter-robot distances. This is
subsequently used to estimate the probability of message loss, B, in a static analysis.

The probability P is estimated by first detecting the transmitting robot (illuminated LEDs).
Then, every other robot in direct line of sight is considered and its distance to the transmitting
robot calculated. Based on the inter-robot distance, the probability of message loss is estimated
by interpolating the data shown in Figure [4.21] If the transmission was a local broadcast, this
value is recorded. If the transmission was flooded, Pl is calculated for every robot. First, all
non-cyclic paths from the transmitting robot to any other robot are taken. For each candidate
path, p, ]%’p is calculated by

Pp=]]0 - Pya), (4.49)

%

where ]314,71' is the probability of message loss for each hop 7 within p. The probability of
message loss from the transmitting to a receiving robot is, then,

B = 1—111;1}{{1—]5171,}. (4.50)

In other words, the probability of message loss is defined by the largest probability of successful
transmission, 1 — Pl,p.

To compare the outcome of two experiments (e.g., the distributions of F,), a two-sample
Kolmogorov-Smirnov test (KS test) is used as defined in [Young|1977]. It is a non-parametric
statistical test that compares two empirical cumulative distribution functions (CDFj@ Fi,
and F3 ,,,. They are statistically significantly different when the maximum difference between
both CDFs is

D) = sup |Fy () = Fjm()] (4.51)
X
D [ > [=21 (f) 452
MmN m4n T 2 2 (4.52)
—_—
AG)

where A7) is referred to as KS value and where n and m are the sample sizes of experiment
i and j, respectively. For an significance level of a = 0.01, simplifies to

AGI) > 1,628, (4.53)

45MThe used program is written in Qt 5.10 and OpenCV (version 3.4).
#>IV An empirical cumulative distribution function, F; x, of an experiment  is based on a sample of k£ measurements.



90 CHAPTER 4. COMMUNICATION ON SEVERELY-CONSTRAINED ROBOTS

901

301

5 5 1 ; ; 7
Number of robots

Figure 4.25: The distribution of inter-robot distance, d, between two moving robots within line
of sight for experiments with 2, 3, ..., 7 robots.

Note that, in this work, signed KS tests [Press et al.|2007]] are used to decide if an experiment
¢ produces statistically smaller values than another, j, when

L3) = max (Fyn(x) = Fjn(2)), (4.54)
L) [ S 6os, (4.55)
’ m-+n

If not stated otherwise, statistical equality is tested with Dﬁfﬂn)

In this work, a mobile-robot experiment consists of 6 trials. While the experiment setup
and robot configurations remain the same, the number of deployed robots is different in each
trial (i.e., two to seven robots). To compare two experiments, the distributions of the trials need
comparing. In order to do that, this work introduces KS vectors and matrices. A KS vector
contains six KS values, A7) comparing the trials with the same number of robots. A KS
matrix consists of 36 KS values, where each combination of trials is compared.

In this work, KS vectors are used to compare two experiments with different configurations.
KS matrices, on the other hand, are used to investigate changes (i.e., based on the number of
robots) across the trials of an experiment.

4.5.2.2 Inter-Robot Distance Experiments

As the robots are moving across the arena, the distances between robots and, thus, their com-
munication properties are changing continuously. As Section {.5.1.2] showed, the distance
between robots, d, directly relates to the quality of service. Therefore, first, the distribution of
d is determined to indicating its expected shape during an experiment. As transmissions always
occur in a line of sight, the distribution of d is determined by analysing the video recordings,
and each pair of robots is considered.

Figure shows the distribution of inter-robot distances for different numbers of robots
as violin plots. The peak at 7 cm indicates that two robots have collided and have a high
probability of restricted movement for a period of time. Another peak can be seen at around
70-80 cm, where two robots’ movement is restricted by opposing walls. However, two robots
restricting each other movement is more prominent.

Even though the distance distributions appear similar across the trials, a KS matrix is cal-
culated to test their equality (i.e., the null hypothesis is that the distributions of d are equal).
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The resulting KS matrix,

0 16.941 16.973 7.310 13.336 18.702
16.941 0 4.281 16.420 12.791 5.135
16.973 4.281 0 16.249 10.632 2.883
7.310 16.420 16.249 0 11.587 21.165 |’
13.336 12.791 10.632 11.587 0 11.831
18.702 5.135 2.883 21.165 11.831 0

(4.56)

shows that all elements exceed the threshold 1.628 (highlighted in red). As a result, the null
hypothesis is rejected for any trial pairing. In other words, the number of robots significantly
changes the distribution of d. However, when considering the signed KS matrix,

0 0.272 0.024 0.045 0.247 0.084
16.941 0 4.281 16.420 12.791 5.135
16.973 3.244 0 16.249 8.337 2.883
7.310 14.984 0.412 0 3.806 1.261 |~
13.336 11.947 10.632 11.587 0 3.861
18.702  2.514 0983 21.165 11.831 0

4.57)

it can be seen that only trials with 2 robots tend to maintain larger inter-robot distances than
trials with more robots. Trials with more robots are significantly different, but robots are not
statistically closer or further away than in the other trials.

4.5.2.3 Modes of communication

As swarms of robots can operate in large numbers and nearby, it must be expected that some
robots are occluded by other robots, resulting in missed transmissions. Consequently, flooding
can be used to convey data across the swarm. As there are two types of communication, the
impact of choosing local broadcast or flooding is investigated.

For each type, an experiment is conducted with 2—7 robots. Each robot transmits with 310
bps and uses m,.; = 10 (i.e., up to 45 cm of communication range).

When investigating the probability of message loss, P}, as shown in Figure [4.26b] it is
clear that increasing the number of robots has different effects on flooded and local broadcast
messages. As expected, increasing the number of robots leads to a decrease in messages losses
when messages are flooded. As more robots are present, it is more likely that at least one
path to a robot exists (even occluded ones). On the other hand, when transmitting only locally,
increasing the number of robots also increases the likelihood of robots being occluded, resulting
in a higher P;.

Figure shows that P, follows the trend of the observed P, with an offset. This is
likely to stem from the computer vision analysis as it only identifies the robots’ connectivity
for a single video frame. This static analysis makes binary decisions on robots being occluded.
Consequently, robots that obtain partial transmissions (i.e., entering or leaving robots during a
transmission) are not captured.

Figure illustrates the distribution of the measured bit error probability, P,, for both
types of communication. To compare both distributions, the calculated KS vector,

[0.466,0.336,1.361,0.603,1.452,1.131] , (4.58)

indicates no significant impact on P, between the communication type. However, when invest-
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Figure 4.26: Comparison of two communication types: local broadcast (blue) and flooding
(red). The distribution of the bit-error probability, P, and the average probability of message
loss, P, are shown in (a) and (b) respectively. In (b), solid circles indicate average values and
empty circles indicate the estimates of B.

igating the effects of having different numbers of robots on P, the KS matrices,
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show two trends. Firstly, the number of robots has a small impact on the bit-error probability.
One exception is the trial with two robots when transmitting locally, which shows significantly
higher numbers of errors than trials with more robots. This is likely to result from signific-
antly larger distances between robots, as shown in (@.57). Secondly, when flooded, increased
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Figure 4.27: Experiment results for robots moving with v; = 43mms~! (red disk), vy =
85mms ! (green triangle) and vs = 128 mm s~! (blue square). (a) and (b) show the average
bit error probability, P., and the probability of message loss, ;. Solid and hollow shapes
indicate the average of measured F; and calculated ]51

numbers of robots result in higher P, as any repeated message increases the error probability
tol —(1— Pe)h, where h is the number of hobs (i.e., repeats). Generally, it can be seen that
increasing the number of robots increases the level of significance, and it can be expected that
this trend continues.

When looking at the shape of the distribution of P, as shown in Figure two peaks
can be seen across all experiments. The dominant peak is at P, ~ 0, where 68—75% of a trial’s
messages are error-free. The less pronounced peak is at P, ~ 0.4. It is likely to stem from
burst error resulting from robots obtaining only partial transmissions. Therefore, it would
be a result of the robots’ mobility.

4.5.2.4 Variation of the Velocities

This section examines the impact of different moving velocities (i.e., mobility) on communica-
tion. In the conducted experiments, Algorithm|I]is changed to limit the linear velocities to 43,
85, and 128 mm s~!. Note that robots are configured to flood messages.

Figure [4.27)illustrates the average values of (a) P, and (b) F;. Both probabilities appear to

43V A burst error creates a sequence of successive faulty bits.
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reduce with decreased velocity. To test this, three null hypotheses — that P, of a trial is equal
or larger for the respective trial with smaller velocity — are used, and a corresponding signed
KS vectors calculated,

[1.631,2.530, 1.902, 2.606, 3.192, 1.325], 4.61)
[1.746,1.721,2.534, 1.704,2.306, 1.501], and (4.62)
[1.715,1.780,0.677,1.970,1.108,0.219], (4.63)

for trials with vy against vo, v against vs, and vy against vs.

Based on the KS vectors, the null hypotheses can be rejected (with o« = 0.01) for trials
with few robots. In other words, when increasing the velocity, the error probability increases
for small numbers of robots. This is likely a result of robots more frequent entering or leaving
the communication range, even during transmission. However, for increased numbers of ro-
bots, effects on P, are less prominent as the likelihood of more possible communication paths
increases.

Figure shows that robots with the velocity v; tend to have fewer message losses.
Interestingly, when comparing P, with B, it can be seen that P, predict P, better for lower
velocities. This supports the claim that the prediction error results from robots passing through
lines of transmissions or entering/leaving the communication range during transmission.

4.5.2.5 Variation of the Communication Range

As a sufficient communication range is paramount to connectivity in a network, this section
investigates how different communication ranges change the communication quality. Three
experiments were conducted in which the communication range is limited to 21 cm (m,.; =
75), 33 cm (m,; = 25), and 45 cm (m,.; = 10), respectively. Note that the robots continue to
transmit with 310 bps.

Figure illustrates the averages of bit-error probability, P,, for three communications
ranges. Similar to the previous section, the impact on P, is tested by creating three null hypo-
theses — that P, for the respective smaller communication range is less or equal to P, of the
respective larger range. When calculating the signed KS vector,

(0.607,1.027,0.521,1.075,1.772, 1.799], (4.64)
[1.570, 2.266, 2.646, 3.151, 3.610, 4.300], and (4.65)
[1.108, 1.440, 1.765, 2.494, 4.271, 4.246], (4.66)

for testing the communication ranges 21 against 33, 21 against 45, and 33 against 45 cm, re-
spectively. The vectors show that the null hypotheses are rejected in many cases, in particular
for increased number of robots. In other words, smaller communication ranges tend to pro-
duce significantly more errors. This potentially results from robots entering/leaving or being
obstructed during transmissions (i.e., causing burst errors).

In Figure the probability of message loss, P} increases with shorter communication
ranges. This is likely caused by reduced coverage and connectivity with shorter ranges.

4.5.2.6 Variation of Bit Rate

SwarmCom can be configured to use different bit rates. To investigate the effects of changing
the bit rate, three experiments with bit rates of 310, 1080, and 1670 bps were conducted. As
shown in Section [4.5.1.2] a higher throughput is often traded for a shorter communication
range. For a fair comparison, all robots are configured to communicate within 21 cm.

Figure [4.294] shows the average values of P, for each bit rate, and it appears that lower
bit rates are less error-prone. To test this observation, three null hypotheses — that P, for the



4.5. EVALUATION 95

0.100+ e A
A
A
D:) 0.0751 A A
0.050+
0.0251
2 3 4 5 6 7
Number of robots
(@)
1.001
0.751 4 A
A A A | A
A : A a
& 0.50
0.251
0.00
2 3 4 5 6 7
Number of robots
(b)

Figure 4.28: Experiment results for robots communicating within a restricted communication
range: (a) and (b) showing the average bit error probability, P,, and the probability of message
loss, P, for communication ranges of 21 (red, circle), 33 (green, triangle), and 45 cm (blue,
square). Note that solid and hollow shapes indicate the average of the measured F; and the
calculated ]5l

respective larger bit rate is less or equal than the respective smaller bit rate. For three pairs of
bit rates, the signed KS vectors are

0.609,0.842,1.411,1.057, 1.352, 1.779], 4.67)
0.432,0.999, 1.013, 1.502, 1.876,2.371], and (4.68)
0.432,0.613,0.746,0.898, 0.705, 1.115], (4.69)

when testing 310 against 1080, 310 against 1670, and 1080 against 1670 bps, respectively.
Even though the significance values of the vectors increase with the number of robots, it can be
seen that the null hypotheses cannot be rejected unless the number of robots is relatively large.
Interestingly, the results suggest that the error probabilities are less influenced by the bit rate
than by the communication range.

Finally, Figure 4.29b] indicates that a change in bit rate has only a moderate impact on F.

4.5.2.7 Scalability

After investigating the impact of different configurations of SwarmCom, an additional prop-
erty is investigated: scalability. Two studies were conducted — a computer simulation and
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Figure 4.29: Experiment results for robots transmitting with different bit rates — 1670 bps (red,
circle), 1080 bps (green, triangle), and 310 bps (blue, square). (a) and (b) show the average bit
error probability, P, and the average probability of message loss, P;. Solid shapes indicate the
averages of measured values and hollow shapes indicate the predictions.

experiments with real robots to evaluate the simulation. The simulation itself examines how
the density of robots impacts the network connectivity.

In the simulation, a transmitting robot creates a circular communication area of 61 cm
radius. This arena is then populated by additional n randomly placed robots, where n &€
{1,2,...,N}. The placing algorithm could place up to N = 272 robots, which is close to
the theoretical limit of 285 robot This results in a robot density, pr € [1,234] “’rg—g“.
For every density, the number of establishable channels, n¢, to the central robot is determined
for 10000 different robot placements. A channel is considered to be established if a robot can
distinguish between sg and s; based on the robot-to-robot model of Section

Figure [4.30]shows the number of established channels, n¢, based on the robot density, pg.
It can be seen that n¢ is bound by a relatively small constant (= 15). In other words, while
hundreds of robots may be within range, the transmitting robot is only required to communicate
with < 15 robots. Other robots are occluded. As the number of connections (i.e., load) is
bound by a constant, the network is scalable. Furthermore, due to this relatively low upper
bound, severely-constrained robots can participate in that network. Interestingly, if the network

#1285 is the number of robots with 7 cm diameter that can fit within a circle of 61 cm radius according to
http://hydra.nat.uni-magdeburg.de/packing/cci/cci285.html.
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Figure 4.30: The (a) simulation and (b) real-robot experiment results showing the number
of establishable channels, nc depending on the number of robots. The data is based on a
communication area of (a) a circle with 62 cm radius and (b) a 72 x 72 cm square.
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(d)

Figure 4.31: Snapshots with (a) 10, (b) 20, and (c) 30 e-pucks within a 72 X 72 cm envir-
onment. The central static robot (green cap) continuously transmits the signal, and the other
randomly-moving robots illuminate their LEDs when receiving the signal. Note that the num-
ber of channels, n¢, are (a) 4, (b) 6, and (c) 9.

works with high densities of robots, which is common in many academic experiments (e.g.,
[Rubenstein et al.|2014]), the number of connections converges to ng = 6 (i.e., corresponding
to a hexagonal arrangement).

The experiments with real robots (i.e., e-pucks) investigate how the robot density relates to
the connectivity in practice. In total, 10, 20, and 30 e-pucks are used within a 72 X 72 cm arena,
resulting in the robot densities, pr € {19.3, 38.6, 57.9}“’::1—‘2"5, as shown in Figure In each
of three experiments, one static robot is placed in the centre, while the other robots perform a
random walk following Algorithm [T} While the central robot transmits a signal continuously,
all other robots detect. When a robot receives the signal, it illuminates its LEDs. By emitting
a continuous signal, a bias by bit-rates, velocities, or transmission errors can be avoided. The
number of established channels, n¢, is determined by taking a snapshot every 30 seconds and
counting the illuminated. In total, 90 trials are performed in three experiments (i.e., 30 per
experiment).

Figure {4.30b] shows the experiment results as box plots in comparison to simulation. To
allow a fair comparison, the simulation was repeated with the only difference being that robots
were randomly placed in a 72 x 72 cm arena. Overall, the observed data is in good agreement
with the simulation results. These results suggest that the resource allocation and utilisation of
SwarmCom are scalable and, in principle, could be applied to any number of robots.

4.5.2.8 Comparison with libIrcom

Finally, the overall performance of SwarmCom and liblrcom is compared in more realistic
conditions than Section#.5.1] To allow a fair comparison, SwarmCom is configured to use the
same communication range (i.e., 21 cm) and a similar bit rat as libIrcom.

Figure #.32a and 4.32b] compare the distributions and average values of bit-error probabil-
ity, P.. Overall, libIrcom transmits only 14-20% of the messages error-free, which is a % to %
of the error-free transmission with SwarmCom (68-75%). When comparing the averages of P,
(see Figure[d.32b), it appears that libIrcom produces significantly more errors than SwarmCom.
To test this relation, the signed KS vector,

[4.207,6.397,7.630,9.030, 10.316, 12.382] , (4.70)

is calculated. It shows that libIrcom indeed produces significantly more errors than Swarm-
Com. Furthermore, comparing @.64)—-@.69) to (@.70) shows that changing from SwarmCom

#3VlINote that 310 bps is the slowest possible bit rate in SwarmCom and, hence, is used to compare to liblrcom with
its 220 bps.
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Figure 4.32: Experiments with groups of mobile robots comparing SwarmCom (red, circles)
and libIrcom (blue, triangles). (a) Distribution of P,; (b) mean of P, (solid) and P; (hollow).
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to libIrcom has a significantly larger impact on the bit-error probability than changing the bit
rate or communication range.

Figure shows the probability of message loss, P, for both systems. Similar to Sec-
tion[4.5.2.5] both systems have comparable values of P, further suggesting P, is mainly a result
of the communication range.

4.5.3 Discussion

In this section, a new dynamic-threshold detector was proposed to reduce the occurring inter-
symbol interference. It has a low computational overhead of calculating one mean value per
transmission. The proposed detector reduces the detection error by magnitudes of power, res-
ulting in regions that can be considered error-free.

This section has demonstrated that SwarmCom is scalable towards the number of connec-
tions and the access of the medium. This allows the system to be deployed in situations with
high densities of robots.

In general, SwarmCom was evaluated in two configurations — with static and mobile ro-
bots. Fundamentally, static robots provide significantly better quality of service with mag-
nitudes of power lower error probability. In particular, results suggest that mobile robots in-
creasingly obtain partial transmissions, which considerably increases the bit errors. As a result,
it is recommended to exchange data when robots do not move.

The quality of communication between mobile robots is affected by the choice of move-
ment, range, and bit rate. Experiments have shown that the quality of communication is most
affected by the robots’ velocities, then their communication range, and least influenced by the
choice of bit rate. Note that the choice of one parameter can limit others (e.g., a higher bit rate
reduces the maximum configurable communication range).

Overall, the biggest change in communication quality is caused when changing from Swarm-
Com to libIrcom with both static and mobile robots. It was shown that SwarmCom outperforms
libIrcom regarding range, bit rate, error probability, and the probability of message loss.

4.6 Discussion

This chapter proposed the first model describing the infra-red signal characteristics of a widely-
used swarm robot — the e-puck. Experiments showed that the model predictions closely match
measurements of the real robots. This model can be applied not only to the e-puck but also
to the e-puck 2 as it uses the same proximity sensors and measuring circuit as the original
Versior@ While this model is used to describe the exchange of information between robots,
it potentially can be used to improve the proximity measurements due to the use of the same
signal.

The second part of this chapter proposed SwarmCom, an optical MANET for severely-
constrained robots. Its key property is the dynamic detector that adapts to the ambient light
during runtime and, more importantly, adapts its decision threshold to the incoming signal.
This enables SwarmCom to reduce the bit-error probability by orders of magnitudes (i.e., more
reliable communication). In addition, SwarmCom is configurable regarding bit rates, commu-
nication ranges, and channel coding (i.e., further improving communication quality). Experi-
ments have shown that SwarmCom can communicate reliably within up to 61 cm at 310 bps
and up to 14 cm at 1800 bps. Furthermore, transmissions up to 50 cm can be configured to be
virtually error-free (i.e., a probability of error-free transmission is 1 — 10716).

During the evaluation experiments, SwarmCom was tested in a more realistic environment
where up to seven mobile robots communicated. It was shown that flooding can dramatic-

#6Information obtained through mail exchange with GCtronic (http://www.gctronic.com/); schematics of the e-
puck 2 have not been released at the time of writing this thesis.
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ally improve the connectivity of the network. It allows robots to reach other robots that are
occluded or too-distant to be reached otherwise without notability affecting the bit error prob-
ability. Furthermore, while a change of bit rate has no significant impact on the transmission
errors, experiments showed that reducing the communication range increases transmission er-
rors as well as reduces the connectivity of the network. Similarly, the robots speed impacts
the transmission errors considerably as fast robots are likely to change connectivity during
transmissions.

Based on the latter observation, the key insight of this chapter is that mobility significantly
impacts the communication quality. This occurs for any system with relatively small com-
munication range (i.e., cm to dm-scale), low bit rates (i.e., bps to kbps), and relatively high
mobility. As these properties apply to a large set of communication systems in swarm robotics
(e.g., Colias, e-puck, i-Swarm, Kilobot, and r-one), these findings highly suggest that any of
these systems can suffer from this type of error. This should be considered during the design
of swarming algorithms. For instance, where throughput is not the primary criterion, channel
coding is recommended. If it is the primary criterion, it is recommended to cease motion dur-
ing transmissions. In case robots cannot cease motion, the algorithm must be robust against
communication errors.

Another key insight of this chapter is its investigation on scalability. Evaluations with up
to 30 mobile e-pucks and computer simulations showed that the numbers of connections per
robot have an upper bound of 15. This upper limit applies for any number of robots within
communication range. Note that this is a property that can be applied to any network, where
signals can be occluded, even though the exact value of the upper bound might vary based on
a robot’s size and shape. As a network’s medium access and utilisation operate independently
of the total number of robots, it is scalable.

In contrast, radio-based signals would reach any device within its communication range,
resulting in potentially hundreds or thousands of robots. However, in practice, this exceeds the
capability of many radio-based devices. Overall, swarm robotics benefits more from optical
communication as it allows the use of severely-constrained robots, enables communication
within a reasonable range, and copes well with any density of robots.

A possible extension for SwarmCom could include situated communication, where in addi-
tion to conveying messages, the receiving robot would detect the direction or relative position
of the transmitting robot. This has been utilised in swarm robotics as it can prove useful, for
example, to remain connected to a local neighbourhood. However, as there has been extens-
ive work on this subject (e.g., [Stay| 2001 (Gutiérrez et al.|20094])), investigating such features
would not provide additional insights.

Finally, SwarmCom is compared to libIrcom, the only other infra-red communication lib-
rary for the e-puck. It was shown that SwarmCom transmits without error 3—5x more often
than libIrcom. In summary, SwarmCom provides 0.8-3 times wider range, 1.4-8 times higher
bit rates, and 50%—63% lower bit error rates than libIrcom, without using channel coding. For
instance, the user can prioritise 3 times larger communication range and 63% lower bit error
rates while providing 1.4 times of the bit-rate.

A current limitation of SwarmCom is the use of flooding (i.e., a rudimentary routing
method) to convey messages across the swarm. Due to many limitations (i.e., low through-
put, large numbers of devices, and high mobility), the most modern routing algorithm cannot
be deployed as obtaining the required topological information is, in practice, not feasible. As
flooding does not require any topology information, it remains a valid option. However, if
robots engage in frequent communication, the flooding protocol can consume most of the net-
work’s throughput as it is not scalable.

When considering existing optical systems of other disciplines [Malik and Singhl2015;
Mallick 2016; [Khan|2017; [Zhang et al.|2018]], it can be seen that they (hard- and software)
are more reliable and offer a higher throughput. If similar developments can be achieved in
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swarm robotics, topological information could be collected faster, enabling more sophisticated
routing protocols and networking in general. It should be noted that dedicated communication
hardware, such as [Gutiérrez et al.|2008; 2009a; |[Millard et al.|20175]], can outperform Swarm-
Com, at least in bit rate and communication range. However, these systems significantly alter
the robot’s hardware adding additional costs, weight, and energy demand.

Lastly, this chapter has shown that a rigorous communication model, in combination with a
well-designed communication system, can have significant effects on swarm communication.
When this communication is not adequately investigated as is common practice, it could bias
the outcome of robotic behaviour. Further research in swarm communication could help swarm
robotics to transition into real-world environments.
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After investigating how robots can compute locally in Chapter 3|and how they can commu-
nicate in Chapter [] this chapter explores how these two components can be united to enable
distributed computation. It would enable access to and processing of memory across multiple
robots. While it is common in swarm robotics that a large number of relatively simple robots
need to work together physically to perform a given task, distributed computation on robotic
swarms would enable robots to work together computationally and enable the processing of
algorithms that a single robot is too computationally constrained to perform.

Systems in which a group of independent devices processes and acts on local information
to solve a task are distributed systems [[lanenbaum and Van Steen|2007]. These systems are
commonly based on a large number of connected servers (i.e., clusters) providing services,
such as distributed computation and distributed storage. In this field, the most prominent sys-
tems are Hadoop [Lam/[2010], Kafka [Garg|[2013]], and Spark [Zaharia et al.[2016]. While
research within this field is well understood, the latter systems mostly use high-performance
infrastructures and networks, where computational or networking overhead can be tolerated.
In swarm robotics, however, similar infrastructures and networks are often not available. As a
result, many insights are not transferable to severely-constrained robots, such as e-pucks.

Distributed systems that are more similar to swarm robotics can be found in cyber-physical
systems, where a large number of sensors and actuator are distributed over space (e.g., smart
grid or smart cities) [Shi et al.[2011[]. One of the largest infrastructures in this area is Ter-
raSwarm [Lee et al.[2012]. It is designed to process data from thousands of mostly static
sensors distributed over large spaces (e.g., a city). While the number of sensors and actuators
is high (similar to swarm robotics), the relative low deployment densities allow the use of mod-
ern state-of-the-art technologies — in particular, 5G [Lien et al.|2019; |Al-Turjman|2019] —
and infrastructure similar to the previously discussed distributed systems. As mentioned earlier,

103



104 CHAPTER 5. DIST. PROCESSING ON SEVERELY-CONSTRAINED ROBOTS

many swarms cannot adopt this research/technology due to the high deployment densities as
well as the networking and computational constraints.

In robotics, systems similar to cyber-physical systems have been attempted with success —
for instance, RCC, RaaS, cloud robotics and RobotEarth. In each of these systems, computa-
tional infrastructure either provides resources to the robot (i.e., RobotEarth and cloud robotics)
or utilises the robot remotely (i.e., RCC and RaaS). However, these typically non-constrained
systems commonly utilise weakly-constrained robots communicating via high-speed networks.
Similarly to the last two types of systems, many swarms cannot adopt these solutions.

One work, in particular, is relevant for this chapter as it presents a similar approach com-
ing from a cyber-physical perspective [Gratf|2017]]. \Graff| presents a system where a group of
weakly-constrained robots is connected wirelessly to weakly-constrained devices. While the
concept of only using robots has been presented in [Graff et al.|2014], it has never been real-
ised. Overall, system-wide behaviour is implemented in a centralised manner, where robots
and system have complete system knowledge. However, a common assumption in swarm ro-
botics is that system-wide behaviour is achieved by controllers with limited system knowledge.
While |Graff| [2017]] acknowledges that the presented system requires full system knowledge,
he discusses the decentralisation as a potential future work.

This chapter fills this gap, whereby the computational resources of robots are combined.
However, unlike before, this system is fully decentralised. In addition, the presented work is
based on severely-constrained robots with constrained network capabilities, which ordinarily
limits the system functions. The presented work is a novel attempt to lift the often overlooked
severe computational constraints of many swarm robots.

5.1 Distributed Extension of OpenSwarm

To create a system for distributed computation on top of loosely coupled systems, such as
swarms of robots, each robot needs to manage its local resources and needs to provide access
to memory via a network. In this work, OpenSwarm manages local resources (see Chapter [3))
and SwarmCom manages the network access and usage (see Chapter [d)). In order to create a
system for distributed computation, OpenSwarm is extended to perform remote procedure calls
(RPCs) [Bershad et al.[1990]], to synchronise the behaviour of a group of robots and to achieve
consensus [Correia et al.|2011].

5.1.1 Remote Procedure Call

An RPC is a mechanism whereby a function (i.e., procedure) is called and executed on a dif-
ferent device. In comparison to local procedure calls, which invoke the allocation of call stack
elements and execution of instructions on the same device, RPCs invoke the generation of a
message that is passed to another device and interpreted (i.e., translated into a local procedure
call).

Through the hybrid kernel of OpenSwarm, events can be used to implements behaviours.
At the occurring of an event, the data of it is passed to a locally executed function. As Open-
Swarm has been designed with distribution in mind, the function of an event resembles the
function of an RPC with the difference being that RPCs transmit the data via a network.

To implement RPCs in OpenSwarm, additional system calls have been added, which trans-
mit the event identifier (i.e., enventID) and the corresponding data as one message via the
network. At arrival, the event is then treated as a local event. In particular, system calls were
added that give the user the control to send an event locally (existing) or globally (new). When
used, the global sending of an event also emits the event locally. In addition, other added sys-
tem calls can register an event as global, which means that a local emitting of an event is always
performed locally and globally. For more details, see the usage examples in Appendix [B] In
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this way, any function or data access can be implemented through event handlers as described
in Chapter 3]

A special case of RPCs is remote memory access. It is a way to manipulate addressable
memory on a remote device. While this can be implemented as an event, a specific system call
has been added. This system call writes given values to a specified location in memory locally
and globally. As the memory location is specified within the RPC, this function should only be
applied on statically allocated memory as it can produce undefined behaviour on dynamically
allocated memory.

5.1.2 Consensus

A key aspect of a distributed system is the decision making or the control of the overall be-
haviour. In many systems, this is performed by a centralised unit or infrastructure. However,
systems in swarm robotics often avoid centralisation as they provide a single point of failure
and poor scalability to large numbers. Consequently, the robots need to achieve a consensus if
decisions need to be made or behaviour controlled.

For consensus, each robot transmits its data. At arrival, each data is stored separately and,
when comparing these values, the consensus is found by selecting the most frequent values.
Note that this approach to achieve consensus can be considered minimalistic. However, it
is sufficient for the presented proof-of-concept (see Section as the communication is con-
figured in such a way that the probability of error-free transmission is approximately 1 —10~16;
hence, failures are unlikely during the experiments. If this system is deployed elsewhere, the
author recommends to use an established algorithm, such as PBFT [Castro and Liskov|[2002],
or to consult the large body of existing work in this field [Ren et al.[2005; |Correia et al.[2011]].

5.1.3 Synchronisation

In practice, it might be necessary for robots to synchronise their behaviour. There are multiple
ways to achieve this. Firstly, by performing the consensus algorithm, the robots synchron-
ise their behaviour as each robot waits for the arrival of all values. The second option is to
use remote memory access, where for instance, each robot sets globally a dedicated memory
location. If all locations have been set, the robots are synchronised and can perform the next
task.

5.1.4 Discussion

By sharing events across multiple robots, it is possible to store and process data remotely.
However, this has multiple implications for the operated swarm.

* The system is restricted to the same build of OpenSwarm to prevent inconsistent data
access or execution across robots. In practice, this limitation has a small impact as using
the same build is often required to guarantee consistent behaviours.

* Due to the use of a mobile and wireless network, the execution and delays of RPCs are

unpredictable; hence, the system is always a soft real-time system [Kopetz/[2011]. As
current swarm robotics systems are applied mostly within academic environments, this
limitation does not have a significant impact. In future applications, however, hard real-
time properties might be desirable. This can only be achieved with further advancements
of digital communication for swarm robots.
In addition, for the conducted experiments, the uncertainty of communication is min-
imised by robots only communicating when stationary. Moreover, as discussed in Sec-
tion SwarmCom’s configuration and the distance between robots is selected in such
a way that it only operates in a region of high probability of error-free transmission of
1 — 1076, which is based on findings from Chapter
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Figure 5.1: Six experiment environments (i.e., a grid of 30 x 30 cells) filled with inhomogen-
eously distributed radiation (red). Four robots start at the start cells (green) and need to move
to the goal cells (blue), while being minimally exposed to the radiation.

Besides these limitations, the distribution of events offers additional advances for swarm ro-
bots. Other than distributed storage and processing, it allows robots to be used in augmented
environments as sensors/actuators can be virtualised. While this itself might be useful to im-
prove development times by facilitating testing directly on robots, it could also help swarm
robotics to further bridge the reality gap by providing more data (e.g., from external sensors)
or functions (e.g., from external infrastructure) to robots.

5.2 Evaluation

In this section, multiple properties of the extended operating system are investigated. This is
being done by proposing a task that is inspired by search and rescue. In this task, robots need
to (I) map the environment, (II) compute a path to the goal, and then (III) follow a path as
illustrated in Figure [5.1] The specific challenge of this evaluation lies in the fact that a single
robot is computationally too constrained to perform mapping and path planning individually.
As a result, the solution discussed below serves as a proof-of-concept that overcoming severe
constraints is feasible.

5.2.1 Environment

The area to be searched is a grid of W x H cells with height, H € N, and width, W € N.
There can be a maximum of one robot at a time in each cell. From any location, a robot can
move horizontally or vertically to other adjacent cells within the grid.

At the beginning of the experiment, nr robots are placed in neighbouring cells, hereafter
referred to as start cells, which are aligned in a rectangle or a square with a width of {\/@1 and

M

positio within the grid. The target that needs to be found is a group of nr neighbouring

a height of | —£& -‘ , as shown in Figure The start cells as a group are located at a random

32Ty select a random position for the start cells, a single location is randomly chosen from
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cells, hereafter referred to as goal cells. They are aligned similarly to the start cells and are
positioned at a random location without overlapping any start cells.

Each cell has a radiationf >7Lvalue, ) : N2 — N. The radiation, 93(z, y), is defined at a
location through its discrete frequency components

R(z,y) = Z Z A Aj oiki z¢i) +ilk; y+65) 5.1
i

where A; e!(Fi #+¢1) and A; ik v+25) are orthogonal wavenumber components across the width
and height, respectively. Note that A; as well as A; and k; as well as k; are amplitudes and
spatial wavenumbers. Due to the Petersen-Middleton theorem [Petersen and Middleton||1962],
k; € R and k; € R is bound by [0, 7). Note that the ranges of the coefficients of are
described in Section[3.2.4]

When a robot moves from one cell, ¢, to an adjacent cell, j, the exposure to radiation is
calculated by

R(zj, y;) + Rl@i, yi)

Tj,i = 9 . (52)

When moving along a path, the path exposure is calculated by accumulating the individual cell
exposures.

Finally, let z bytes be the memory that is required to store the radiation and exposure
value for a cell. For this evaluation, let the available memory of a single robot, M, be smaller
than the memory that is required for mapping and path planning (i.e., all measurements and
accumulative exposure for each cell) results,

M<HW 2. (5.3)

5.2.2 Solution

Due to the computational constraints of robots, the grid is split into ny segments (i.e., one
per robot). Each segment is a vertical slice of the grid, which is stored and processed by the
respected robot. To distributively process the segment, each segment shares the first and last
column with the neighbouring segments resulting in [W ”1_«311 + 1 columns per segment. In
other words, having more robots increases the memory overhead as more redundant cells are
stored (i.e., np — 1 redundant columns). As a result, the number of columns is at minimum
two for ngp = W robots.

The proposed behaviour is divided into 3 stages: mapping (i.e., filling the segment with
measurements), path planning (i.e., processing the segment), and path following (i.e., extract-
ing the path from segments and following it). Figure [5.2]illustrates the proposed behaviour as
a flow chart. At the beginning when all robots are at their start cells, the robots need to agree
which segment is mapped by whom as illustrated in Listing [5.1] Thereafter, the mapping of
the assigned segment is performed, which ends with returning to the corresponding start cell.
When all robots have arrived at their start cells, as shown in Listing [5.2] the distributed path
planning is performed. When finished, the path (i.e., the sequence of adjacent cells) to the goal
is shared with the robots and subsequently followed by every robot. As soon as all robots have
arrived at their goal cell, the task is completed. For more details on the mapping, path planning,
and the path following, see the sections below.

{(m,y) |z €[0,W —T[{/nr])Ay € {0, H - M n:}ﬂ —‘ >} as root of the rectangle containing all start cells.

Note the same procedure applies to the goal cells
321Note that radiation can be seen as a generic cost for a robot.
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Figure 5.2: The behaviour illustrated as a flow chart. The gears indicate that the respective
robot is performing one of three stages of the proposed behaviour. Yellow boxes indicate that
the all robots’ behaviours are synchronous at that point.

1 static volatile char segments[] = {ROBOT_1, ROBOT_2,
— ROBOT_3, ROBOT_4};

s /7 ...

4 if (Sys_AgreeOn (segments, 4)){// has been agreed on?
5 for(int i = 0; i < 4; i++){//which segment?

6 if (segment[i] == THIS_ROBOT) {

7 startMapping(i);// initialise mapping

8 break;

9 b}

w //

Listing 5.1: A code segment showing how a consensus is achieved based on a data vector
segments. It is achieved by following the description in Section [5.1.2] After agreeing on
the vector, the vector is searched to identify the current robot’s segment number. The segment
number is afterwards used to initialise and start the mapping process (i.e., a state change to
m_state = doing_mapping) with startMapping. This code is a code snippet from
the implementation of Figure[5.2] Note that ROBOT_1, ROBOT_2, ROBOT_3, ROBOT_4, and
THIS_ROBOT are preprocessor variables containing the ID for each robot and the ID of the
current robot.

1 volatile bool atHome[] = {false, false, false, false};

3 void areAllAtHome () {

4 if (atGoal ()) {//reached home locally

5 Sys_GlobalSet (&atHome [THIS_ROBOT], true);
6 }

7

8 for(uint i = 0; i < 4; ++1i){

9 if (!atHome[i]) {

10 return;
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1 H}

13 startProcessing();// initialises & starts processing

Listing 5.2: A code snippet showing how robots can synchronise with remote memory access,
Sys_GlobalSet. In this code, all robots need to move to their start cell (already set as
goal). When all robots have arrived, the segment processing is initialised and started with
startProcessing. This code is a code snippet from the implementation of Figure [5.2]
Note that THIS_ROROT is a preprocessor variable containing the ID of the current robot,
which is between 0 and 3.

5.2.2.1 Mapping

After the segments have been assigned, the mapping is initialised in which the system calculates
the segment boundaries, starts moving towards the first cell within the segment, and then starts
the mapping by changing the mapping state. The first cell within a segment is the cell with the
smallest column and row index. At the arrival at that cell, the robot measures the radiatio
as shown in Listing Thereafter, the robot moves vertically (next row) to the next cell.
This process is repeated until the robot has measured all cells within a column. After moving
horizontally to the next column, the previous steps are repeated until all cells in all columns are

visited and measured. After measuring the last cell, the robot moves to its start cell.

1 extern int height; //of segment

» extern volatile Position goal;//to move to
3 extern volatile Position mapping_end;

4+ extern volatile mapping_state m_state;

¢ wvoid mapping () {

7 if (m_state != doing_mapping) return;
8

9 if (atGoal ()) {

10 measure () ;

1 goal = nextCell();//robot moves to goal

15 static int delta_ y = 1;
16 Position nextCell () {

17 uint x = goal.x;

18 uint y = goal.y;

19

20 y += delta_y;//move vertically

21

2 if(y >= (uint)height) {//move horizontally
23 x += 1;

24 y = goal.y;

>2MThe radiation is assumed to be homogeneous within the cell.
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25 delta_y = —-delta_y;

26 }

27 Position p = {x,V};

28

2 if (x > mapping_end.x) {//done?
30 p = home;

31 m_state = idle;

32 }

33 return p;

34 }

Listing 5.3: The implemented mapping algorithm. This code is executed whenever new loc-
alisation data is available as it has been implemented through events. Note that setting goal
makes the robot move to the new goal location unless it has already reached it. m_state is
the state of the mapping behaviour; it can be idle or doing_mapping. mapping_endis
a struct containing the limits of the segment.

5.2.2.2 Path Planning

After the mapping has taken place, the distributed path planning starts. To reduce computa-
tional overhead, the path planning algorithm calculates a path having minimum cumulative
exposure from goal to start (i.e., the exposure of the goal is set to zero).

The used algorithm is a variation of the Floyd—Warshall algorithm [Sedgewick and Wayne
2015], in which the minimal cumulative exposure to the goal cell is calculated for every cell
within the grid. As each robot contains a different part (i.e., segment) of the grid, each seg-
ment is independently calculated as shown in Listing Once the local processing has been
completed, the shared columns are then exchanged with neighbouring robots.

While there are several different and well-established approaches to path finding, namely
Dijkstra and A*, the choice of using the Floyd—Warshall algorithm was based on the following
reasons:

* In this task, a robot cannot store enough data to map and compute the path by itself.

As a result, memory consumption is the most critical resource in this case. While Dijk-
stra and A* have an improved processing time enabled by storing sorted queues, the
Floyd—Warshall algorithm requires more processing time; however, does not require to
additional lists of cells (i.e., queues).

* When considering the processing and communication time, it can be seen that the trans-

mission of 30 cells consumes as much time as approximately 8.5 10° instruction cycles.
In other words, the transmission of one shared column takes as much time as applying
approximately 18000, 37000, and 75000 instructions on each cell when using 2, 4, and
6 robots, respectively. As can be seen, communication time is a more critical resource.
As a distributed version of A* would require consensus on “which cell to compute next”
after computing a single cell, this algorithm would create a communication overhead.
While Dijkstra would also need to achieve the same consensus to keep their queues sor-
ted across the swarm, the Floyd—Warshall algorithm can compute the entire segment
before it needs to exchange shared columns.

The Floyd—Warshall algorithm has been chosen to reduce memory consumption and commu-

nication time.

In detail, the used variation of the Floyd—Warshall algorithm works as shown in Listing[5.4]
When a segment is processed, the algorithm sequentially calculates the cumulative exposure
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for each cell, based on (]32[), for each neighbour. The new value of the cell is the minimum
of the calculated values and the curren@ value, as shown with calculate. To reduce
the memory consumption (i.e., avoiding to store which elements still need calculating), the
entire segment is processed whenever a cell has changed during the previous processing (i.e.,
iteration) of the segment. Note that the algorithm first goes through cells by increasing the row
and column indexes, which benefits the propagation of exposure values towards higher row and
column indexes. To reduce the number of required iterations, the next processing iteration goes
through cells by decreasing their indexes, which benefits the propagation of exposures towards
lower row and column indexes. If a processing iteration of a segment resulted in no changes,
no further processing iteration is performed. If the value within a shared column has changed
since the processing has started, then this shared column is transmitted to neighbouring robots.
Once a column has been received, it is compared to the local cells, and if the exposure of a
cell is smaller than that of the corresponding local one, the value is saved while triggering the
processing of the local segment.

As soon as every robot has processed their segment at least once, every robot has finished
any processing, and no columns are currently transmitted, the path planning is completed. Note
that the calculated exposure values at the start cells represent the minimal cumulative exposure
to the goal cells.

1 extern int width; // segment width

» extern int height;// = 30

3 extern int size; //= width*height;

4+ extern unsigned long *radiationMap; //see Mapping

s extern unsigned long *segment; //calculated exposure

7 wvoid planning() {

8 bool leftColumnChanged = false;

9 bool rightColumnChanged = false;

10

1 int e = 0; //segment element index

12 int de = 1; //element selection direction
13

14 bool has_changed = false;

15 do{

16 has_changed = false;

17

18 for(; e >= 0 && e < size; e += de){

19 unsigned long original = segment[e];
20 unsigned long new_value = calculate (e);
21

2 if (new_value < original) {

23 has_changed = true;

24 segment [e] = new_value;

25

26 if((e % width) == 0 ) {

27 leftColumnChanged = true;

28 lelse if( (e % width) == width-1 ) {
29 rightColumnChanged = true;

30 }

32V Note that the current value is taken into consideration to avoid overwriting the initial processing condition (i.e.,
goal cells have an exposure of zero).
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31 }
32 }

33

34 de x= -1;//turn around processing direction
35 }while (has_changed) ;

36

37 if (leftColumnChanged) transmitLColumn () ;

38 if (rightColumnChanged) transmitRColumn () ;

39 }
40
41 unsigned long calculate (const int e) {

) unsigned long out = segment[e];

43 unsigned long local_rad = radiationMaplel;
44

45 const int neighbours[] = {-width, 1, width, -1};
46

4 int neighbour = e-width; //top neighbour

48 if (neighbour >= 0)

49 out = min (exposure (e, neighbour), out);
50

51 if((e % width)-1 >= 0)//left neighbour

52 out = min (exposure(e, e—-1), out);

53

54 neighbour = e+width; //bottom neighbour

55 if (neighbour < size)

56 out = min (exposure (e, neighbour), out);
57

58 if((e % width)+1 < width) //right neighbour
59 out = min (exposure (e, e+l), out);

60

61 return out;

62 }
63
¢« unsigned long exposure (const int p, const int n) {

65 if (segment [n] != OXFFFFFFFF ) {//has it been calculated
— already?
66 return (radiationMap|[p] + radiationMap[n])/2 +

— segment [n];
67 }
68 return segment [p];

69 }

Listing 5.4: The implementation of the used variation of the Floyd—Warshall algorithm. Note
that the algorithm, implemented in planning, is executed within a thread as it is expected
to have a long run time. calculate shows how the current cell’s exposure value is calcu-
lated and exposure demonstrates how the cumulative exposure value is calculated between
two points. Note that the exposure value for cells that have not been calculated is set to
OxFFFFFFEFF. transmitLColumn and transmitRColumn are functions that transmit
the shared columns on the left (i.e., lower column index) and on the right (i.e., higher column
index).
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Figure 5.3: Experiment Setup.

5.2.2.3 Path Following

To extract the path from the segments, the robot containing the start cells in its segment trans-
mits the start cell with minimal exposure. The next cell within the path is the cell adjacent to
the current cell with the smallest accumulated exposure value. Every cell is transmitted until
the goal cells have been reached or if adjacent cells have higher values (i.e., a shared column
has been reached). In the latter case, the robot which shares that column would then continue
to transmit the next cells. In the former case, the robots start following the path.

During the path following, the robots move from cell to cell and record their exposure.
When all robots reach their goal cell, the recorded accumulative exposure is logged.

5.2.3 Implementation

The described behaviour is implemented on OpenSwarm (v0.19.09.07) with SwarmCom (as
presented in Chapter ). SwarmCom is configured to transmit 850 bps within 25 cm. This
enables the fastest data throughput while maintaining a sufficient communication range (see
Section #.5.1.3). Due to the cell size of 10 cm width and height, the inter-robot distance for
two robots is between 7 and 20 cm. As the behaviour ensures that the robots remain static
during transmissions (i.e., remain on their start cells), SwarmCom operates within a region of
high probability of error-free transmission of 1—10716, which is based on findings in Chapter

5.2.4 Experiment Setup

The experiment is conducted in a 3 X 3 m arena with light grey floor bound by 50 cm tall
white walls. The arena is illuminated, as described in Chapter[d] The radiation patterns within
the arena are calculated by (5.I) with ¢ € {1,2,...,n;} and j € {1,2,...,n;}, where the
parameters are uniformly randomly chosen from n;,n; € {1,2,...,5}, k; € [%, 77), k; €
[, 7). and ¢;, ¢; € [0, 27).

As a robot needs to measure location and radiation within the arena, the environment is
augmented with the help of a computer system, as shown in Figure[5.3] To detect the robot’s
location, a 3264 x 2448 camer@ captures frames from a bird’s eye view. With OpenCV 4.1,
the two-coloured markern of each robot are detected, and their location and orientation
calculated. Based on the previously recorded location, the closest markers are assigned to the
respected robot, which allows the tracking of robots. Finally, the location and orientation are
sent to the robots via Bluetooth. On the robots, the messages are converted to events, which
is used to simulate a virtual localisation sensor (such as GPS). The virtual radiation sensor is

>2VThe camera is a Svpro SV-USB8MP02G-SFV.
>2VIEach marker is mounted on top of the robot facing upwards to be detectable by the overhead camera.
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calculated from the generated radiation patterns and the calculated location. With every newly
calculated location, the new radiation value is also transmitted to the respected robot. The use
of the computer system is a necessary tool to provide virtual sensor data. However, it does not
influence the decentralised character of swarm robotics as it only acts as a sensor and has no
other influence over the behaviour or its execution.

5.2.5 Experiment Procedure

The experiment consists of 18 trials in which 2, 4, and 6 robots perform the previously de-
scribed solution. First, the robots are placed at random locations in the arena, and, after the
computer system has been conﬁgure the experiment is started. At the start, the com-
puter system generates a random radiation map (e.g., see Figure [5.3) and, then, instructs the
robots to move to their start cells. When all robots have reached their start cells, the robots
start their behaviour as described in Section [5.2.2] Finally, the software detects if all robots
have reached a goal cell (i.e., termination condition). The computer system then records the
experiment results and starts a new experiment automatically.

Overall, there is no limit to how long a trial can last. However, in case a robot restarts,
switches off, or loses its connection to the computer system, the trial is aborted and restarted.
Note that this has not been experienced during all 18 trials.

In addition to the performed experiments, the experiment is repeated with a single robot
remotely controlled by the computer system. The system initiates the mapping, performs the
path planning, and guides the robot along the path. This is performed to provide a reference
point to which the distributed approach can be compared.

5.2.6 Results

The outcomes of the recorded experiments are illustrated and discussed below.

5.2.6.1 Mapping

As the robot speed and the measuring is not affected by other robots, the overall mapping time,
tm, was recorded. Figure [32[] shows t,,, and that an increased number of robots reduces the
mapping time, as expected. However, ¢,, has a lower bound based on the time a robot requires
to move to and from the segment. Moreover, additional robots also increase the number of
redundantly mapped cells (i.e., shared cells).

5.2.6.2 Path Planning

After the mapping, the arrival of all robots at their starting cells triggers the execution of the
path planning. The path planning time, ¢, is the time from triggering the execution to the time
when all robots agree that they finished processing their segments and no further shared cells
are exchanged. Based on the number of transmitted shared columns per trial, n., the minimal
communication time is calculated by

ne H ze

-
C b b

54
where H = 30 cells, z. = 32 bits per cell, and b = 850 bps are the grid height, memory
consumption for the exposure value of a cell, and the transmission bitrate. Note that this is the
minimal communication time as it does not contain collisions, retransmissions, or any other
delays that could have occurred.

32V configure the computer software, first, the camera distortion matrix is loaded and, then, the arena corners
are set. Finally, the connection between robots and computer system is established.
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Figure 5.4: The recorded mapping times, t,,, for 1, 2, 4, and 6 robots.

Figure @] shows the path planning time, ¢,,, and its increase with additional robots. While
it could have been expected that the time decreases through parallelisation of the segment
processing, Figure [5.5a shows that the majority of the time is spent on communication (i.e.,
t.), which serialises the processing time. As the difference between ¢, and .. includes potential
retransmissions and communication delays as well as the decision making to agree on the end
of the planning, ¢,,—%. cannot be denoted to the processing time. When looking at the number of
cells that have been processed by any robot, n p, Figure[5.5b|shows that np does not follow the
trend of ¢,,; hence, it can be expected that the overall processing time does not follow the trend
of t,, too. As a result, the dominantly contributing component is likely to be communication.
Note that segments can be processed while transmissions are conducted.

Finally, in each trial, the computer system performed the Dijkstra algorithm in parallel
to the robots and compared the resulting exposure values of robots and computer system. In
100 % of the cases, the calculated exposure values were equal, which verifies that the deployed
algorithm is correct and that communication errors do not occur or do not impact the results.

5.2.6.3 Path Following

After agreeing that every robot has finished their path planning, the robots share the path and,
thereafter, follow it to the goal cells. At arrival, the robots transmit the measured exposure to
the computer system, which then compares it to the calculated values. On example is shown in
Figure which shows snapshots of 4 robots following the path illustrated in Figure

Figure 5.6 shows the deviation from the calculated exposure. While the majority of meas-
ured exposure values are equal to the calculated values, for a larger number of robots, the
measured values differ up to 7.8 %. This can be explained by the fact that more robots are
more likely to block or influence each other movements by collisions. One such collision is
shown in Figure [5.7c|and[5.7¢] This most frequently occurred at the beginning when all robots
moved to the first cell of the path.

5.2.7 Discussion

This section focuses on experiments that demonstrated that data could be stored and processed
distributively by multiple severely-constrained robots. Each trial was conducted with 2, 4, and
6 robots. As the robot’s virtual sensors require Bluetooth, trials with larger numbers of robots
could not be investigated; it would cause unpredictable latencies and unreliable connections
due to the limitations of Bluetooth.

Each trial was split into three steps: mapping, path planning, and path following. The ex-
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Figure 5.5: Box plots for (a) the path planning time, ¢,, (a) the calculated communication time,
tc, and (b) the number of processed cells, np, for different numbers of robots.
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Figure 5.6: Histogram of the differences between calculated and measured exposure values.
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Figure 5.7: Snapshots of four robots following the calculated path. (a)-(e) Snapshots at differ-
ent times. (f) shows the calculated path that should be followed. Not that, at 24 s, one robot
collided with another causing it to be pushed away from the path.
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periments have shown that the mapping is the most time-consuming activity. However, when
using more robots, the time decreases to approximately 150 s (for 6 robots), which still is
approximately 10 times larger than the time required to perform path planning. It was demon-
strated that the run time of the path planning algorithm is to a large extent caused by the
communication of the data. In other words, advancing communication systems on severely-
constrained robots is likely to reduce the run times considerably.

While the calculated exposures had been verified to be correct, it was observed that robots
often obstruct or divert each other’s movement, which is the likely cause of the deviation of
up to 7.8 % from the calculated exposures. Moreover, the experiment showed that a group of
severely-constrained robots succeeded in solving a task that, in terms of memory requirements,
was too difficult for any single robot.

5.3 Discussion

This chapter shows an approach whereby computation constraints of individual robots can be
overcome by the distribution of data and processing. While the procedure to distribute solu-
tions and algorithms is task-specific and cannot be generalised, the conducted proof-of-concept
experiment has shown a viable method of overcoming computational constraints whereby a
large set of data is split among a number of robots, locally computed, and shared data are ex-
changed. While this requires an algorithm that can be split and concurrently processed, the
author believes that this result is meaningful within a broader context, and paves the way for
more distributed computation and computational cooperation on severely-constrained robots.
Furthermore, on a more general note, the following key properties have been identified.

* It has been demonstrated that remote procedure calls, in particular remote memory ac-
cess, and consensus can be used to synchronise a robot’s behaviour and make decisions.
This prevents the use of centralised control infrastructure and facilitates the distributed
nature of swarm robotics.

* The use of virtual positioning and radiation sensor demonstrated the benefits of simulated
sensors and augmented environments. To the robot and the developer, the use of virtual
sensors is transparent as they behave as if they were physical sensors. Overall, this
expands the possibilities of how robots are used and how complex the environment can
be.

* Finally, it was demonstrated that heterogeneous systems could be integrated. On the
one hand, when the robot was performing the experiment, it was aided by the computer
system with virtual sensors data. On the other hand, when the computer system was
performing the experiment, it was utilising (i.e., remote controlling) one robot to extend
its reach. Consequently, it enables the building of both system types, such as RaaS [Chen
et al.[|2010] or cloud robotics [Wan et al.|[2016].

While the described properties open the possibility of novel uses of swarms and their com-
putational resources, the distribution of OpenSwarm comes with side effects. For instance, the
design of software and algorithm becomes more difficult as they are distributed as discussed
in [Selic/2000]. Moreover, it was shown that the choice of algorithm depends not only on
computational resources but also on the amount of data that is exchanged — resulting in a
trade-off between computational resources and communication. Furthermore, additional the-
ories and established problems within distributed systems research require consideration. The
CAP theorem is one such problem, which states that the system (in this case, a swarm) can only
have two attributes out of three (i.e., consistencyP>1} availabilinf>"}, and partitioning toler-
an. Therefore, further research with regard to network and computational constraints

33I'When data is stored on multiple devices, the data is consistent if all copies of that data are equal.
33 Data is available if it can be accessed.
>3 partition tolerance is when a system maintains function even when a device within the system malfunctions.
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could benefit swarm robotics.

In addition, the experiments showed that the majority of the processing time is spent on
communicating data between robots. This communication bottleneck can be lifted in two ways.
First, by increasing the computational power, which would result in weakly-constrained robots,
the communication demand can be reduced, going towards the extreme of a robot performing
the task individually. However, this would not benefit the large set of severely-constrained
robots, which is the focus of this work. Alternatively, further research on short-range optical
communication, as used on swarm robots, could increase throughput allowing more data to be
exchanged more swiftly.

Overall, the presented implementation constitutes the first step to combine resources on
severely-constrained robots with constrained networking. Further research on networking,
specifically with regard to the requirements in swarm robotics, could significantly improve
the performance of such a system and enable the use of more advanced and already estab-
lished concepts from other areas, such as distributed systems. The usage of data and process
redundancy, for instance, could make the computation on swarms more robust.
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Swarm robotics is a new and promising discipline with many potential applications. However,
it has not been able to transition from the academic environments to the real world. In an
attempt to narrow this gap, this work investigates a potential cause of this imbalance between
the conceptual and the practical — computational constraints.

This thesis explores how computationally-constrained robots can collectively solve prob-
lems that are computationally too demanding for individual robots. A presented case study
has shown that individual computational constraints can be overcome by distributed computa-
tion, which combines local computation and the communication of data between robots. While
this study is not a universal solution to all the complex challenges within swarm robotics, the
presented approach, whereby large data is distributively collected, stored, and processed, is a
step closer towards the solution. The author believes that the results are meaningful within
a broader context as they open an intersection between research on distributed systems and
swarm robotics, and pave the way for further work that would bridge the gap between aca-
demia and the real world.

To enable research on distributed computation, first, this thesis investigated the computa-
tional constraints of individual swarm robots. To quantify computational resources, a com-
putational index is proposed. A quantitative study based on 5264 devices revealed different
computational classes of these devices. This makes the comparison of robots easier and can
be used in future work to show trends with respect to a robot’s resources. In particular, this
thesis analysed a large number of swarm robots showing that the majority of them are severely-
constrained, which means they provide the fewest resources of all robots. When considering
that inefficient use of resources affects the most robots with few resources, the execution and
the programming of software become a crucial aspect of how complex the behaviours are.

Furthermore, to the author’s knowledge, this thesis presents the design, implementation,
and study of the first operating system designed for and deployed on severely-constrained ro-
bots, OpenSwarm. It provides a novel dual-execution model, which results in the reduction of
the computational overhead depending on run-time requirements. In addition, it was shown
that OpenSwarm has a comparably small memory footprint and, when compared to two other
systems (i.e., ASEBA and SCF), it outperforms them. On the other hand, implementing be-
haviours can be more complicated and require more code in OpenSwarm than in other system
software, such as ASEBA or Buzz. This stems from additional layers of abstraction that these
languages provide. In general, this shows that, at least, for the compared systems, there is a
trade-off between the level of abstraction and the execution-efficiency. In other words, systems
with fewer resources might benefit more from execution efficiency; while less-constrained sys-
tems can afford the additional layers of abstraction making the development of behaviours
easier. In a broader context, this has shown that the choice of system software can affect ex-
ecuted behaviours, even when a computationally minimalistic approach is used.

OpenSwarm can be used to implement event-driven behaviour. While other robotic system
software (e.g., ASEBA or URBI) also provide local events, OpenSwarm’s events are based on
a message-passing mechanism. As a result, events can be transmitted to other robots enabling
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the distributed access to data and processes. Furthermore, this work demonstrated that this cap-
ability of distribution is a key to overcoming of the computational constraints of an individual
robot.

As demonstrated in this work by combining distributed events with the provided hardware
abstraction, external data can be used to situate the robot within an augmented/virtualised en-
vironment. While that requires a sufficient network throughput, it can be beneficial for the
development process as sensors and actuators can be emulated transparently. However, a much
greater benefit lies in the capability to integrate external resources with the robot. The author
believes this to be of significance within a broader context; robots could receive preprocessed or
simplified data, which could facilitate the performing of decision making and behaviours with
fewer internal resources. Potential future work could look into the aspects of such a merger,
for instance, whereby swarm robotics is integrated with and acts on information provided by
IoT or cyber-physical systems. This would link the research of this thesis with other research,
such as TerraSwarm.

Another aspect that requires consideration when performing distributed computation is the
network between robots as it defines computation time and error as well as the uncertainty of
execution. Therefore, this thesis presents the modelling, design, implementation, and study of
a free-space infra-red MANET, SwarmCom. Its key property is the dynamic detector that ad-
apts to the ambient light and the incoming signal strength, improving the quality of service by
orders of magnitude (i.e., it offers a more reliable communication). It was demonstrated that
SwarmCom is competitive with regard to throughput and communication range and outper-
forms libIrcom in most of its configurations. While there are systems that outperform Swarm-
Com, they often require hardware alterations adding to the robot’s complexity, costs and power
consumption.

While those technical properties enabled the transmission of events and subsequently the
proof-of-concept experiment, this work also investigated fundamental properties of free-space
optical communication systems, such as SwarmCom and libIrcom. One such property is the
mode of communication. It was shown that flooding significantly improves the connectiv-
ity of the network. While flooding is fundamentally not scalable and state-of-the-art routing
protocols either have a significant communication overhead or cannot cope with frequent to-
pology changes, there is currently no alternative to flooding. This opens the possibility of
further research on routing protocols that should provide minimal overhead while being adapt-
ive to frequent topology changes. Both qualities would be required as swarm robotics networks
provide relatively low throughput while robots move swiftly in comparison to the communica-
tion range.

This work has shown that mobility has a negative effect on the quality of service. As this
results from geometric properties and occlusion, these findings are relevant to many swarm
robots, such as Colias, e-puck, i-Swarm, Kilobot, and r-one. Because the probability of error
increases by orders of magnitude, it is recommended for any of these systems to cease motion
during transmissions or to create software that is robust against communication errors.

In contrast, it was demonstrated that the network’s scalability benefits from occlusion and
the short communication range. Experiments showed that the number of robots within com-
munication range is bound enabling robots to communication even in high-density situations.
In comparison, radio-based signals would reach any device nearby, resulting in potentially
hundreds or thousands of robots exceeding the capability of any radio-based devices.

On a broader scale, the author is convinced that research on communication systems suit-
able for swarm robotics is the most overlooked aspect of the discipline. While this thesis
introduced insights into fundamental properties of swarm robotics communication, there is
significant room for further research. While there are many aspects in which further research
would contribute to the field, from the author’s perspective, there is a particular need for (I)
technological advancements, as shown in [Khan|[2017; Zhang et al.|[2018], (II) the aforemen-
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tioned routing protocols, and (III) more suitable approaches based on information theory. In
comparison to existing communication systems which use large transmissions (e.g. 1500 bytes
for Ethernet) that allow the use of sophisticated theory and practices, swarm robotics com-
munication commonly uses short transmission (e.g. one or two bytes) where these practices
are no longer efficient. In summary, further research on any of those aspects would not only
reduce the in-this-work-identified communication bottleneck when distributing resources; it
could improve cooperation of swarm robots in general.

Overall, this thesis demonstrated that the majority of robots have few computational re-
sources and that the choice of system software has an impact on their performance. The com-
munication on swarm robots is limited, yet the limitations can be overcome by distributively
utilising the computational resources of swarm robots. While the experiments had been per-
formed in an often simplified environment, the author believes that shining the light on com-
putational resources, communication, and distributed computation paves the way for further
research on these often-overlooked subjects. Looking forward, the author hopes that his con-
tribution will, in the long run, enable swarm robotics to make the transition into the real world
and result in more practical applications.
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Appendix

“Almost everything you do will seem insignificant, but it
is important that you do it.”
— Mahatma Gandhi
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One of the most used platforms in swarm robotics is the open-hardware miniature robot
called e—puc [Mondada et al.2009]. It was designed at the Ecole Polytechnique Fédérale
de Lausanne (Switzerland) as a successor of the Khepera robot [Mondada et al.[1999]. E-pucks
have been used in various areas of swarm robotics — for instance, to illustrate evolutionary
algorithms [Pugh and Martinolil[2007} [Li et al.|2016]], fuzzy control [Mohammad et al.[|2013]],
and collective transport [Chen et al.|2013]]. This makes an e-puck an excellent candidate for
this work.

A.1 Properties

Each e-puck is a cylindrical shaped robot with a diameter of 7cm and a height of 5cm as
shown in Figure It can move on flat surfaces with its differential wheels. It provides a
range of sensors and actuators listed in Table [A.T]

A.1.1 Computational Properties

An e-puck is equipped with a Microchip dsPIC30F6014 as MCU. The MCU operates a
16 bit modified Harvard architecture that processes 14.75 It provides 8 kB of and
144 kB of With this processing unit, the robot has a computational index of C; = 17.7
and is classified as a severely-constrained robot (C) as described in Section @

A.1.2 Physical Properties

In this work, three actuators/sensors are frequently used: the stepper motors, the proximity
sensors, and the camera.

40T For more details visit: www.e-puck.org| (e-puck).
A-LTRor further information see [Microchip Technology Inc.[2018].
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(c) top (d) perspective

5 4

(e) proximity sensors

(f) camera

Figure A.1: e-puck robot. (a)—(d) show an e-puck from different perspectives. (e) shows a
schematic e-puck highlighting all 8 proximity sensors and their sensing directions as well as
the orientation of the transmitter (red) and receiver (blue). (f) illustrates the relative position
and orientation of the on-bard camera (orange).
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Table A.1: e-puck’s sensors and actuators.

Number Feature

Indicator red forward-facing
Indicator 1 green downward-facing
Indicator 8 red ring

Indicator 1 speaker

Propulsion 2 stepper motors

Sensor 3 microphones

Sensor 8 infra-red proximity sensors
Sensor 1 3-axis accelerometer

Sensor 1 infra-red remote control receiver
Sensor 1 640 x 480 RGB CMOS Camera
Sensor 1 4-bit rotary encoder switch
Communication 1 Bluetooth

A.1.2.1 Stepper Motors

Two independently operated stepper motors are connected to four GPI ports of the MCU.
To move from one configuration to another (i.e., performing a step), the MCU changes the
signals on these ports, which causes a periodically computational overhead. The robot can
perform up to 1000 steps (i.e., 1 revolution) per second and, with a wheel diameter of 41 mm,

the maximum velocity is approximately 128 mm s,

A.1.2.2 Proximity Sensors

R

VCC
“ ] -0
) X
GPIO X Ve
j7 \

(b) Emission (c) Detection
(a) TCRT1000 Circuit Circuit

Figure A.2: e-puck proximity sensor. (a) shows the physical shape of the sensor (in milli-
metres). (b) shows the e-puck’s emission circuit for the LED (red). (c) shows the e-puck’s
detection circuit for the phototransistor (blue). Note that circles indicate a connection to the
MCU, R indicates a 10° ) resistor, and Ry indicates a 18 € resistor.

The proximity sensors are positioned and oriented as shown in Figure and Table[A.2]
Each sensor is a Reflective Optical Sensor (TCRT1000) from Vishay Electronics that is com-
posed of an infra-red (red) and a phototransistor (blue) as shown in Figure[A.2] The

AL A general-purpose 1/0 port is a digital I/O port on an MCU that can be configured as output or input port and
operated as such.
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Table A.2: e-puck’s proximity sensor locations in polar coordinates (r, #) relative to the robot’s
centre. Note that the sensor orientation is equal to 6.

¢ | r/mm 6/rad
0 325 0.308
1 34.5 0.860
2 325 1.570
3 325 2.618
4 32.5 —2.618
5 325 —1.570
6 | 345 —0.860
7 325 —0.308

are connected to ports and are illuminated by software. The transistor is connected to
a time-multiplexed 12-bit ADC, which can sample with up to 100 kHz for a single channel or
6.3 kHz when all channels are sampled. The analog-to-digital conversion is conducted by an
independent part of the MCU, which does not require processing time.

Based on the emission circuit of Figure [A.2b] the emitted signal intensity is proportional
to the voltage applied to the GPIO port. In other words, if the GDIP port outputs voltage, the
LED emits the maximum signal intensity (i.e., which is limited by the circuit). Similarly, based
on the detection circuit of Figure the received light intensity, y(t), is proportional to the
phototransistor’s collector-emitter current, Icg. As a result, the measured collector-emitter
voltage,

Veg = Vee — RlcE, (A.1)

is indirectly proportional to the incoming signal intensity (V. and R are the supply voltage and
a resistor, respectively).

A.1.2.3 Camera

The e-puck is equipped with a 640 x 480 RGB pixel camer In addition to eight GPIO
ports to transmit colour values, three additional connections trigger a new pixel, line, or frame
interrupt. Handling these interrupts and storing the pixels is conducted by software and, there-
fore, the capturing itself causes significant computational overhead.

Due to the hardware design, the usage of the camera is impaired with significant draw-
backs. Firstly, pixels arrive every eight instructions, which forces the MCU]to collect an entire
row of pixels without interruption. This monopolises the processing time and, if there is an
interruption, is likely. Furthermore, an entire frame of 640 x 480 grey-scale
pixels would consume 307.2 kB of memory. Considering the available 8 kB or 144kB
the robot is incapable of storing or processing a single frame. As a consequence, the
e-puck is resource inadequate — as defined in [Kopetz2011].

A.1.3 Communication Properties

The e-puck provides two wireless communication methods — Communication via Bluetooth
and via a proprietary infrared system called libIrcom.

AL Depending on the model of the e-puck, the camera is a PixelPlus PO3030, PO6030, or PO8030.
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A.1.3.1 Bluetooth

The Bluetooth component, LMX9820A [Semiconductor]|2019]] can send data byte-wise to and
from the e-puck’s microcontroller via UARTI These bytes are then sent/received trans-
parently by the Bluetooth component to another connected Bluetooth device.

In general, Bluetooth is a master-slave protoco based on the IEEE 802.15.1 standard
[IEEE|2017]). Theoretically, it can send 0.732-2.2 Mbps within a communication range of 10—
3 m. However, on the e-puck, a throughput of 0.018 Mbps was reported [Ecole polytechnique
federale de Lausanne 2014].

On the e-puck, Bluetooth is used to program the robot or to connect from a computer.
However, it has several disadvantages with respect to swarm robotics. (I) The master-slave
character requires the networks to be hierarchical, which acts against the peer-to-peer character
of swarm robotics. (II) Bluetooth allows having up-to 255 devices and only 7 active slaves
within one piconet. This hinders robots to form large networks. (III) Each piconet has a unique
frequency channel (one of 39) which limits its scalability. This limits the number of robots that
can be connected. However, the frequency overlap between Wifi and Bluetooth reduces the
number of available channels considerably. Furthermore, frequency-hopping’'""| can reduce
the performance considerably.

A.1.3.2 libIrcom

libIrcom is designed as a peer-to-peer network that uses infrared signals emitted and received
by the proximity sensors [Gutiérrez et al.|2009b]]. Two e-pucks can communicate within line-

of-sight of up-to 19 c radius with a measured 200 bp

For signal detection, 32 measurements are taken to detect 4 or 8 pulses representing the
symbols 0 and 1, respectively. Even though this procedure is described as frequency modula-
tion, the system performs channel coding that uses two codewords — 1100110011001100 and
1010101010101010 — to represent 0 and 1, respectively. This encoding provides a Hamming
distance™! ™| of 8 increases its robustness against noise. However, a Hamming distance of 8 is
relatively lo considering that only two of 2.15-10? possible codewords are used. Further-
more, each byte is transmitted with 2 CR bits to allow error detection. No further error
correction has been implemented. To avoid package callision each robot uses CSMA.

ALV A Universal Asynchronous Receiver Transmitter (UART) is an circuit realising a serial communication to other
electronic components on a PCB.
ALY A master-slave protocol describes communication systems, where a singe node establishes and controls the
connections to slave nodes. The master also controls the information flow to and from nodes.
ALVIErequency-hopping describes situations where channels are changed from one frequency to another due to
faults or to access different piconets. When performed often, this method reduces the performance of the channel
significantly.

A1-ViNote that |Gutiérrez et al.| [20095] reports 25 cm of communication range. However, this value could not be
reproduced.

ALV Note that Gutiérrez et al.| [20095] reports 30 bytes per seconds (i.e., 240 bps). However, this value could not be
reproduced.
ALIXThe Hamming distance is a value calculated from two codewords and indicates in how many symbols it differs
from another code.
A1-XFor two codewords only, a Hamming distance should be close to 32, which would allow the optimal robustness
against errors.
ALXIA cyclic redundancy check (CRC) is a method to detect errors where a vector of parity bits is extracted by a
polynomial of the transmitted data. If the received parity bits and the calculated bits do not match, an error must
have occurred.

ALXITA package collision describes a case where at least two transmitter send at the same time. As a result, the
received data is unspecified.
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A.2 Extensions

The e-puck’s hardware provides several restrictions on computation, communication, and vis-
ion. Therefore, many extensions have been built to loosen these restrictions. Note that two sets
of extensions are relevant for this work — computational and communication extensions.

The Linux, Gumstix, Pi-puck, and Xpuck extension boards are additional hardware increas-
ing the robot’s computational resources [Liu and Winfield 2011; Millard et al.[|2017a; Jones
et al|[2018]]. Each board increases the computational index of the e-puck from C; = 17.7
to 24.5, 26.5, 26.7, and 29.5, respectively. However, these extensions consume between
280-665 mA, which is an approximate increase of 50-100 % in comparison to the entire robot.

As the communication on the e-puck (with liblrcom) is capable of 220 bps, the Zigbee
and Range & Bearing extension boards are additional hardware used to enhance the e-puck’s
communication capabilities. Each board increases throughput and range to 250 kbps and 5 m as
well as 5 kbps and 0.80 m, respectively. Both boards are equipped with additional processors
and increase the computational index to C; = 18.98 as well as 20.06, and they consume
23.9mA (+4 %) as well as 48 mA (48 %), respectively.

A full list of available extensions can be found at [Mondada and Bonani/2018]].

A.3 e-Puck 2

The e-puck 2 is a commercial upgrade released in the second half of 2018. The mechanical
properties (i.e., size, wheels, and motors) are the same as the original. However, the processor
was upgraded to a 32 bit STM32F407 (ARM Cortex M4) with 210 DMIPS instead of 15 MIPS.
It also provides 192 kB of RAM and 1024 kB of ROM. This increases the computational index
from C7 = 17.7 to 21.93 (i.e., close to the edge of severely-constrained robots). In addition, it
provides a series of additional features — for instance, micro SD card slot, magnetometer, and
USB connection.

42INote that the Xpuck extension provides additional battery (+-200 %) but also consumes approx. 1191 mA
(4+200 %).
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This chapter extends Chapter and provides additional details on implementation and
usage. The presented implementation is deployed on the e-puck which operates a Microchip
dsPIC30F6014A|with 8 kB RAM, and 144 kB ROM. The MCU is driven by a quartz crystal
oscillating at 7.3728 MHz and it processes 14.7456 MIPS{@ To improve the convenience for
experienced e-puck programmers, names and labels of hardware have been taken from the e-
puck library from e_epuck_ports.h,e_init_port.h,and e_init_port.c [Ecole
polytechnique federale de Lausanne|2014]]. Finally, the source code is compiled by Microchip’s
MPLAB XC16 Compiler v1.31 (released 20.02.2017 for Linux 64-bit).

OpenSwarm provides an application programming interface (API) for C and does not alter
the programming language in any way. However, it provides multiple layers of abstraction and
additional features that are intended to facilitate the development of swarm robots. OpenSwarm
features are provided by system calls, which are described below.

B.1 System Calls

System calls are functions that access and provide features of the kernel of OpenSwarm. They
can be used to execute, manage, communicate with, and synchronise processes and events. A
selection of the system calls are presented in Table

801147456 MIPS result in 67.8 ns per instruction.
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Table B.1: A selection of available system calls in OpenSwarm. A complete list (including arguments and return values) can be found in [Trenkwalder|2020c].

Note that system calls in green are functions which require communication; in this work, they use SwarmCom.

Group

System Call

Description

initialises OpenSwarm

Initialise
& Start

Sys_Init_Kernel
Sys_Start_Kernel
Sys_Run_SystemThread

starts all functions of OpenSwarm

executes the System Thread indefinitely

Task Management

Sys_Create_Process
Sys_Kill_Process
Sys_Yield

creates a process based on an arbitrary function
terminates a process forcefully

cooperatively yields the current process to execute another

Event Management

Sys_Register_Event
Sys_Unregister_ Event
Sys_IsEventRegistered

Sys_Subscribe_to_FEvent
Sys_Unsubscribe_from_ Event

tells OpenSwarm that an event with a unique ID can occur
removes a registered event from the system

checks if an event has been registered

subscribes an event handler to a specific event

removes the event handler

Sys_Send_Event

emits an event (default is synchronous emission)

Interprocess Sys_Send_SyncEvent emits an event synchronously
Communication Sys_Send_AsyncEvent emits an event asynchronously
Sys_Wait_for_Event blocks a process until the specified event occurs
Execution

vel

STHVLAAd NOLLVINAWH IdNI WIVMSNHdO "8 XIANAddY



Group

creates and initialises a semaphore with a starting value

Interprocess
Synchronisation

Table B.1: System calls of OpenSwarm. (continued)

System Call
Sys_Init_Semaphore

Sys_Acquire_Semaphore
Sys_Release_Semaphore

Sys_Start_CriticalSection
Sys_End_CriticalSection
Sys_Start_AtomicSection

Sys_End_AtomicSection

Description

decreases the semaphore counter and might block process

increases the semaphore counter and might release other pro-
cesses
prevents the scheduler from being executed

returns to a normal scheduling behaviour
prevents any interrupt from occurring

returns to a normal scheduling behaviour

Distributed Extension

Sys_Register_GlobalEvent
Sys_Send_GlobalEvent
Sys_GlobalSet
Sys_AgreeOn

registers a global event
emits a global event
stores a value to a memory across a network

tries to achieve consensus on data across a network

STIVO WALSAS 'I'd
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B.1.1 Initialise and Start

Before OpenSwarm can be used, it requires initialisation by calling Sys_Init_Kernel.
This performs the following tasks:

* establishing names and definitions of hardware pins and ports of the

* creation of the default process, called System Thread

* configuration of the System Timer, which is used to preempt processes,

* configuration of the I/O Timer, that is needed for polling on certain I/O devices,

« initialisation of all available I/O devices and modules, and

* registration of all OpenSwarm events.

After initialising OpenSwarm, additional processes and events can be created and registered.
It is worth noting that processes and events are not executed or emitted before the system has
started.

When the system is ready, Sys_Start_Kernel starts all the initialised and configured
elements of OpenSwarm. All interrupts are enabled, events can be emitted and processes are
executed.

Sys_Init_Kernel and Sys_Start_Kernel were separated to provide the user with
more flexibility when it comes to preparing the system. For instance, processes can be created
before OpenSwarm was started. In this situation, the concurrent execution of all processes
starts at the same time. This can be important to measure performances (e.g., throughput).
Similarly, events can be registered before the execution of any process. This prevents the loss
of events before the event handler is subscribed.

After starting all functions, it must be guaranteed that the System Thread continuously per-
forms its action. If the System Thread would terminate, the performs a reboot, which
would disrupt the robots behaviour. Therefore, Sys_Run_SystemThread executes indef-
initely.

B.1.2 Process Management

To add a new process, Sys_Create_Process allocates the process image (i.e.,
and event register). The process image is created in such a way that a function that should
be executed as a process is called when the process is executed for the first time. During
the creation, a unique identifier, processID, is assigned to the process, which serves as a
reference across OpenSwarm. Once the process is due, the function that was passed as a
parameter is executed. When this function ends or the process should be terminated, Sys
_Kill_Process referencing processlD is called.

It is worth noting, that without any user processes, the System Thread is processed without
preemtption. In case multiple processes are available (i.e., ready), each process is executed
for a defined period (i.e., 50 ms as default). However, if a process needs to be prematurely
scheduled, it yields with Sys_Yield. For instance, the System Thread yields after every
iteration of its functions. This improves the throughput by avoiding necessary iterations of
sporadically needed functions.

B.1.3 Event Management

Before an event can be used, first, it must be registered by using Sys_Register_Event.
This functions allocates an event registration struct (i.e., a[linked Iislelement) that is appended
to a[linked Tist of registered events. Similarly, Sys_Unregister_Event is used to delete
the associated struct and to remove an event from the system. Also, the user can check if an
event has been registered with Sys_IsEventRegistered.

If users want to obtain events, they can either subscribe a handler function (i.e., call-
back function) to that event with Sys_Subscribe_to_Event or can block a process with
Sys_Wait_For_Event until that event arrives. Both functions provide the possibility to
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define a second callback function, called condition, that can preselect events. As a result, un-
wanted processing of events can be avoided increasing the system’s efficiency. For instance,
when considering an obstacle avoidance algorithm, a condition can be formulated that executes
an obstacle avoidance algorithm only when obstacles are closer than a certain threshold.

To avoid execution of an event handler, it can be removed with Sys_Unsubscribe
_from_Event. Note that one event handler can only be subscribed once to a specific event.

B.1.4 Interprocess Communication

To communicate with other processes or to perform cooperative execution, data can be send
with the non-blocking functions, Sys_Send_AsyncEvent for asynchronous and Sys_
Send_SyncEvent for synchronous sending. When using asynchronous events, data is buf-
fered by OpenSwarm and executed asynchronously between the scheduling of two processes.
This prevents the consumption of execution time of the running processes. However, this
causes an unpredictable time-delay (i.e., itter). For example, the worst case delay happens
when the event is emitted immediately after a process has been scheduled (i.e., the delay is the
full scheduling period). These delays are particularly problematic for time-critical execution.

For time-critical execution, the unbuffered synchronous event execution is preferable, be-
cause the event handler is directly executed after emission of the event. Therefore, the response
time is minimal. However, the event is processed within the context of the current process or
Interrupt Service Routine (ISR), which consumes processing time or extends the execution time
of the ISR. Per default, the generic Sys_Send_Event uses the synchronous Sys_Send_
SyncEvent to transmit data.

When sent, events can then be obtained by an subscribed event handler or blocking func-
tion that has been waiting for the event (see above). It is worth noting that Sys_Wait_for
_Event not only unblocks when the event occurs, it also returns a pointer to the obtained data.
Thereafter, the process continues its execution when rescheduled.

B.1.5 Interprocess Synchronisation

Running processes might contain sections that manipulate shared data or changes values of
hardware registers. When these sections are interrupted, they can lead to malfunction and/or
To avoid these interruptions, processes or handler functions can declare such
sections as atomic (i.e., uninterruptible) with Sys_Start_AtomicSectionand Sys_End
_AtomicSection. Within these two commands, any interruptions are prevented and if an
interrupt occurs, its is postponed to the end of the atomic section.

While protecting sections from malfunctions or time-critical might
not be able to execute their code in time, which can lead to malfunction or as
well. Hence, it is good practice to protect only short sequences of code, if possible.

To minimise the impact of atomic sections, Sys_Start_CriticalSectionand Sys
_End_CriticalSection provide a weaker form — called critical sections. This section
only prevents the rescheduling of processes (i.e., System Timer interrupt). Both atomic and
critical sections influence the execution indirectly by starving other pieces of code of execution
time. As a result, these sections can monopolise the processing unit, if used excessively.

In OpenSwarm, direct interprocess synchronisation can be done by semaphores. Once
created with Sys_Init_Semaphore, a semaphore contains a valu and a queue of pro-
cesses waiting to be executed. This structure is stored in ajdoubly linked listland can be removed
from the system by Sys_Delete_Semaphore.

When a process wants to access a resource protected by a semaphore, it tries to acquire a
semaphore by calling Sys_Aquire_Semaphore. If it is successful, the process continues
its execution. Otherwise, the process is blocked until enough processes released the semaphore

BLIThe initial value of the semaphore defines how many processes can be used in parallel.
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with Sys_Release_Semaphore. For further information how semaphores can be used,
see [Downey|20035].

B.2 System Events

OpenSwarm provides a series of predefined platform-independent and platform-dependent
events (see Table . Each event has a unique event identifier, eventl D, and can be used to
distribute (source) or obtain (sink) data of a specific type and within a certain range. Platform-
independent events are available on any deployed OpenSwarm, while platform-dependent events
are only available if OpenSwarm incorporates specific modules.

Two platform-independent events are present in OpenSwarm— SYS_EVENT_REBOOT
and SYS_EVENT_10ms_CLOCK. SYS_EVENT_REBOOT is a data-free event that initiates a
reboot of the entire system. It is worth noting that rebooting takes several milliseconds and
should only be used in exceptional circumstances. SYS_EVENT_10ms_CLOCK is an event
that occurs periodically every 10 ms. It also contains the value of the current system time in
milliseconds.

In OpenSwarm, platform-dependent events are used by I/O modules to provide a function
(e.g., distribute sensor values or perform an actuation). As a result, these event are closely
related to the module’s function and are discussed together with their I/O modules in the next
section.

B.3 1/0 Modules

In OpenSwarm, each I/O device is operated by the [MCU| which requires OpenSwarm to
manage it through I/O module The accelerometer, microphones, and proximity sensors
provide analogue values and, hence, are converted by the on-chip[ADC]

B.3.1 ADC Module

The e-puck’s MCU] provides 16 convertible analog pins, where each analog signal on one of
the pins is converted by the successive approximation register ADC| Each input channel (i.e.,
signal on a specific pin) is sequentially converted. After converting all input channels, an[ADC|
interrupt signals that the buffer has been filled. The hardware-specific function obtains
these values and executes pre-processors sequentially. The pre-processor that is executed for a
channel has been registered to it by other I/O modules.

B.3.2 Bluetooth Module

The Texas Instruments LMX9820/LMX9838 (i.e., Bluetooth device) is connected to the[UART] 1
on the e-puck’s As a result, the Bluetooth module manages the 1 device with its
device-specific handler.

This module manages the interrupt-driven hardware that reads and writes via the UART
interface. When a byte is obtained, the reading executes the RX processor, which
analyses the obtained byte or sequence of bytes. Subsequently, the results are emitted as an
event SYS_EVENT_TIO_FROM_BLUETOOTH. As soon as data should be transmitted, a pro-
cess emits SYS_EVENT_IO_TO_BLUETOOTH. This data is then copied onto a writing buffer
(ie., containing any-sized data). The buffer is emptied when the [UART] 1 device
is ready to receive more data. This transfers the data to the component that does the radio
transmissions.

B3It is worth noting that OpenSwarm v0.17.09.25 does not currently manage the accelerometer, speaker and
microphones.



Table B.2: OpenSwarm’s available events. A complete list can be found in [[Trenkwalder|2020c].

Module Event Label eventl D Data Type Value Range

| SYS_EVENT_REBOOT 0x01 sink d —
— SYS_EVENT_10ms_CLOCK 0x02 source unsigned long | 0-4294967295ms
Motors SYS_EVENT_IO_MOTOR_LEFT 0x03 sink unsigned char -128 — 128 mm s~ !
Motors SYS_EVENT_IO_MOTOR_RIGHT 0x04 sink unsigned char -128 - 128 mm s~ !
Camera SYS EVENT_ IO _CAMERA 0x05 source syscolou —
Remote Control SYS_EVENT_IO_REMOTECONTROL 0x06 source unsigned char command
Bluetooth SYS _EVENT_IO_TO_ _BLUETOOTH 0x07 sink char data
Bluetooth SYS_EVENT_IO_FROM_BLUETOOTH 0x14 source unsigned char data
Selector SYS EVENT_IO_SELECTOR_CHANGE 0x08 source unsigned char 0-15
Proximity SYS_EVENT_IO_PROX_0 0x0A source unsigned short 0 - 100 mm
Proximity SYS_EVENT_IO_ PROX_ 1 0x0B source unsigned short 0-100mm
Proximity e e source | unsigned short 0-100mm
Proximity SYS_EVENT_IO_PROX_ 7 Ox11 source unsigned short 0-100mm
Proximity SYS_EVENT_IO_PROX_ALL 0x09 source —E| —
Infra-red Communication SYS_EVENT_COM_RX_MSG 0x12 source unsigned long data
Infra-red Communication SYS EVENT_ COM_TX_ MSG 0x13 sink unsigned long data

“This is an platform-independent event.

’Sys_EVENT_REBOOT does not transmit data. Its occurrence signals OpenSwarm to initiate a reboot.

“SYS_EVENT_IO_CAMERA provides in its current setup a single color information. Its value is one of red, green, blue, white, or black.
43YS_EVENT_IO_PROX_ALL does not send any data. It signals that all proximity events have been emitted.

SHINAOW O/1 ‘¢ d
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B.3.3 Camera Module

The Pixelplus PO80305>7] (i.e., camera device with up-to 640 x 480 pixels) is connected to
three external timer interrupt ports (Timer 0, 4, and 5) to indicate new pixels, rows, or frames.
Eight General-Purpose 1/0 (GPIO pins transfer pixel information from camera to the
device. It is worth noting that the e-puck’s MCU does not provide enough memory to store a
single frame. As a result, the camera must be configured in such a way that the obtained data
can be stored and processed by the robot.

When using the camera, an external interrupt signals the arrival of a new pixel. When this
interrupt occurs, the pixel can be taken from the digital input port and stored in memory for.
However, the hardware design prevents the use of it as starting the ISR takes longer than the
pixel is available. As a result, the row interrupt is used to collect all pixel consecutively.
Note that this is a time-critical execution and any delay or interruption can cause data corrup-
tion. To decrease the MCU load, the frame timer interrupt, which indicates rows that belong to
a frame, is used to en/disable the row

The data is collected by the hardware-specific handler. When a frame has been filled, a pre-
processor is called to extract the information from it. This information is then emitted as SYS
_EVENT_TIO_CAMERA event. In the current version, the pre-processor extracts a single colour
value (i.e., blue, red, green, black, or white) from the centre of view (used in Section @]}

Note that the hardware design of the e-puck prevents an efficient use of the camera due to
the lack of memory, the time-critical and long-lasting collection of pixels, and the high CPU
load when using it. Hence, features of OpenSwarm and other processes cannot be executed
while the camera fetches a frame. This reduces the responsiveness of the system and might
limit the number of usable modules.

B.3.4 Selector Module

The selector (i.e., rotary incremental encoder) is connected to four [GPIO|pins. These pins can
be read at any time and does not provide interrupts. Therefore, the selector is periodically
checked by its device-specific hander. When the measured value has changed, a SYS_EVENT
_TO_SELECTOR_CHANGE event with its value is emitted.

B.3.5 Remote Control Module

The Vishay Semiconductors TSOP36230 (i.e., Infra-red Remote Control Receiver Module)
is connected to a single digital external interrupt pin. When a remote control command is
being received, it causes an interrupt, which enables the periodic measurement of the input
pin. To obtain the sequence of bits, the device-specific handler is called by the I/O Timer.
As soon as all bits are obtained, the pre-processor emits the value as an SYS_EVENT_TIO
_REMOTECONTROL event.

B.3.6 Motors Module

As the only actuating module on the e-puck, the motor module manages the two stepper motors.
The left and right motor are connected to 8 pins (i.e., four pins per motor). Due to the
hardware design, software switches from one configuration to the next (i.e., performing a step).
This means the module’s device specific handler is called periodically by the I/O Timer. To
achieve a desired velocity, the module must ensure that the correct durations between steps as
calculated and applied.

B3 O]der versions of the e-puck robot contain a Pixelplus PO3030 or PO6030.

B3 A GPIO is a digital /O port on an MCU which can be set/unset and read by the running program. It can be
configured as output and as an input port.

B3IV A row can be up to 640 pixels.
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When a process aims to change the velocity of a wheel, it emits SYS_EVENT_TIO_MOTOR
_RIGHT or SYS_EVENT_IO_MOTOR_LEFT with the forward velocity as data. The trans-
mitted data (mms~') is then converted by the post-processor into time duration per ste
The periodically called hardware-specific handler measures how much time has passed and, if
appropriate, applies the next step.

It is worth noting that this module provides a power saving function. It applies a voltage
only for the duration required to move the motor into the correct position. Thereafter, all output
values are retuned to zero to avoid additional power consumption. This was required due to
the hardware design of the e-puck, which makes it possible to draw a higher current than the
battery would provide. This would result in restarts or incapacitated robots. To avoid this, the
power saving functions were applied.

B.3.7 Proximity Module

Each of the eight Vishay Semiconductors TCRT1000 (i.e., proximity sensor) is connected to
an analog input pin. The module periodically samples all sensor inputs and executes the
specified proximity pre-processor on the eight[ADC]|channels.

The used processor linearises the sensor reading and transforms it into millimetres. The
result is then stored in an single buffer to enable fast access. In addition the processor emits
the value as SYS_EVENT_TIO_PROX_x event, where x indicates which sensor provides the
value. When all sensor readings have been sent, SYS_EVENT_IO_PROX_ALL is emitted.

B.3.8 Infra-red Communication Module: SwamCom

Instead of using the eight Vishay Semiconductors TCRT1000 for proximity measurements,
they can be used to emit and receive infra-red signals. The raw signal values are obtained by
the similarly to before. However, the rx-processor decides which information (i.e., bit)
has been obtained. Thereafter, the bits are collected to messages, decoded, and send as an SYS
_EVENT_COM_RX_ MSG event.

When a process transmits data, it emits a SYS_EVENT_COM_TX_MSG event, which is pro-
cessed by the tx-processor. When configured, the tx-processor encodes the data into messages
and applies all symbols sequentially to the digital output pins to emit the infra-red signals.

The modelling and design of this communication channel is presented in Chapter @]

B.4 Case Studies

This section discusses how to use modules to design a behaviour. To do so, a set of didactic
examples is presented to highlight certain aspects of OpenSwarm.

B.4.1 How to use OpenSwarm

To illustrate how to use OpenSwarm, this section presents an obstacle avoidance algorithm. Let
a robot move indefinitely forward on an empty plane. When it detects an obstacle, the robot
drives away from it as illustrated in Figure

This behaviour can be achieved in four steps: acquiring sensor readings, calculating the
vector pointing towards the object, calculating the desired motion, and applying the calculated
speed values to the motors. As described before, sensor readings are obtained by events from
the proximity module. Therefore, event handlers are used to store data into an array.

Let an obtained value be expressed as a vector, s;, with the length that is indirectly pro-
portional to the measured distance and oriented in alignment with the sensor’s orientation. As

B3-VThe maximum velocity is #2128 mm s~ *. This is achieved by 1 ms/step.
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Figure B.1: Desired Obstacle avoidance behaviour. The robot (grey) moves forward unless
an object (black) blocks its way. Depending on the approaching trajectory, the robot alters its
direction (arrows). Note that the dashed line indicates the minimum radius between robot and
object.

multiple objects could occur, all vectors are superpositioned according to

Oy . ]
o= [ or } = %:sz, (B.1)

creating a vector that points to the direction were most objects are expected. With o, the motion
algorithm is composed of two parts: the rotation velocity, r, and forward velocity, f. First, the
robot should always rotate away from a detected object with the rotation speeds

S { Tleft ] _ [ — sin (arg (0)) Vmaz } . (B.2)

Tright sin (arg (0)) Umax

Second, the robot should move forward with full speed unless it detects an object and,
subsequently, reduce the speed until it stops in front of the object to avoid collisions. When,
the object is on the back side of the robot, it moves away from it. This can be achieved with
the following forward velocities

f [ ]fléft ] , (B.3)
right
lloll2 :

Umaz, 1f 0z >0
fleft = fright = { 100 mmas ’ . (B4)

Umaz otherwise

The resulting wheel velocities are defined as

v=r+f. (B.5)

To achieve this behaviour on the real robot, it can be implemented as follows. Listing [B.T]
shows the implementation of the main function. At the top, OpenSwarm’s main header file,
system.h, is included, which declares all functions and features of OpenSwarm. Then the
array to store the proximity values, proxValues, is declared. Furthermore, a boolean vari-
able i sEmpty is created to indicate if the process processed all values in proxValues.

In main, OpenSwarm is initialised by SYS_Init_Kernel (). Then, the event handler,
proxHandler, is subscribed to all proximity sensor events with a condition function, condition,
and user data (i.e., a pointer to the element in the array where the sensor value should be stored).
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Following this, a process, process, is created that implements the robot’s behaviour. Finally,
OpenSwarm is started with Sys_Start_Kernel () and Sys_Run_SystemThread ()
guarantees the further execution of OpenSwarm.

1 #include "os/system.h"
> #define PROXIMITIES 8 // How many sSensors?

4 int proxValues[PROXIMITIES]; //buffers the proximity values
s bool isEmpty = true;//has proxValues been emptied

7  void main (void)

s {

9 //Initialise OpenSwarm

10 Sys_Init_Kernel () ;

11

12 //get data from sensors & store them into proxValues

13 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX0, proxHandler,
—~ condition, &proxValues[0]);

14 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX1l, proxHandler,
< condition, é&proxValues([1]);

15 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX2, proxHandler,
— condition, é&proxValues([2]);

16 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX3, proxHandler,
— condition, é&proxValues[3]);

17 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX4, proxHandler,
— condition, é&proxValues([4]);

18 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX5, proxHandler,
—~ condition, é&proxValues[5]);

19 Sys_Subscribe_to_FEvent (SYS_EVENT_TO_PROX6, proxHandler,
—~ condition, é&proxValues[6]);

20 Sys_Subscribe_to_Event (SYS_EVENT_TIO_PROX7, proxHandler,
—~ condition, é&proxValues[7]);

21 Sys_Subscribe_to_FEvent (SYS_EVENT_IO_PROX_ALL,

— proxFinish, condition, 0);

22

23 //Create process that implements the robotic behaviour
24 Sys_Create_Process (behaviour) ;

25

26 //Start OpenSwarm and all of its modules

27 Sys_Start_Kernel () ;

28

29 //Keep OpenSwarm running

30 Sys_Run_SystemThread () ;

31 }

Listing B.1: OpenSwarm implementation of the obstacle avoidance algorithm. This code
shows how OpenSwarm is initialised and started as well as how event handlers are subscribed
and how processes are started.

Listing [B.2] shows how sensor values are collected and buffered with event handlers. When
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the proximity modules emit an event (e.g., SYS_EVENT_TIO_PROX0), OpenSwarm decides
if the event handler should be called or not by executing condition. If proxHandler is
executed, the data is extracted from the event and, if an object was detected within 100 mm, it
is stored at the location in the buffer. Note that a weighted value indirectly proportional to the
sensor value is buffered. After all events have been emitted, the SYS_EVENT_IO_PROX_ALL
event is emitted to signal that all proximity events have been sent out. This triggers the execu-
tion of proxFinish that sets the flag to false to avoid overwriting unprocessed data

1 bool condition (uint eventID, sys_event_data xdata, wvoid
— *user_data) {
2 return isEmpty; //only buffer new elements if the old
— ones have been processed

s bool proxReader (uint eventID, sys_event_data xdata, wvoid
— *user_data) {
6 unsigned int distance = x ((unsigned int x) data->value);
< //get data from event and store it in the correct
—~ element of the array

7 if (distance > 100){//mm // is value out of range

8 Sys_Start_AtomicSection();

9 ruser_data = 0; //store s; in proxValues

10 Sys_End_AtomicSection () ;

11 lelse{//create a weight towards closest object

12 Sys_Start_AtomicSection();

13 xuser_data = 100-distance; //store weighting in
— proxValues

14 Sys_End_AtomicSection () ;

15 }

16

17 return true;

20 bool proxFinish (uint eventID, sys_event_data xdata, wvoid
— *user_data) {

21 Sys_Start_AtomicSection();
2 isEmpty = false;

23 Sys_End_AtomicSection () ;

24 return true;

25 }

Listing B.2: Event handling for the obstacle avoidance implementation. This shows how sensor
values are obtained and stored.

When SYS_EVENT_IO_PROX_ALL has been sent out, it continues the execution of pro
cess asillustrated in Listing[B.3] behaviour first calculates o, which is stored in pOb ject,
with a precision of 1%. Following this, the motor velocity is calculated by calculateMotor
Speed, which implements (B.2)) to (B.3). The velocities are then emitted to the motors mod-
ules with the events SYS_EVENT_TO_MOTOR_LEFT and SYS_EVENT_TIO_MOTOR_RIGHT.
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typedef struct vector_s{
int x;
int y;
long length;

} vector;

typedef struct motor_s/{
int left;
int right;

} motor_speeds;

void behaviour () {
//a priori calculated components for each sensor

const int transform x[] = {96, 70, 0, —-88, -—-88,
- 70, 96}; // divide by 100
const int transform_y[] = {30, 72, 100, 48, -48,

—~ =72, -30}; // divide by 100

motor_speeds robot_speed = {0};
vector pObject = {0};

long prox_x = 0;
long prox_y = 0;
int i;

while (true) {
Sys_Wait_For_Event (SYS_EVENT_IO_PROX_ALL) ;

prox_x = 0;
Prox_y 0;

Sys_Start_AtomicSection();
//calculate the overall vector, O
for(i = 0; 1 < PROXIMITIES; i++) {
prox_x += ((long) proxValues[i] * (long)

0,

=100,

< transform x[1i])/100; //calculate the X component

prox_y += ((long) proxValues[i] * (long)

< transform_y[i])/100; //calculate the Y component

}
Sys_End_AtomicSection () ;

pObject—>x = (int) prox_x;
pObject->y = (int) prox_y;

pObject—->length = sqgrt (prox_x*prox_xX + Prox_y*Prox_yVy);

calculateMotorSpeed (&pObject, &robot_speed);
< //calculate the motor speed

//apply motor speeds
Sys_Send_IntEvent (SYS_EVENT_TO_MOTOR_LEFT,
— robot_speed.left);
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46 Sys_Send_IntEvent (SYS_EVENT_IO_MOTOR_RIGHT,
— robot_speed.right);

48 Sys_Start_AtomicSection();
49 isEmpty = true;
50 Sys_End_AtomicSection();

51 }

52 }

53

s« void calculateMotorSpeed (vector %o, motor_speeds xspeeds) {

BS)

56 if(o == 0 || o->length == 0){//if there is no vector
57 speeds—>left = 0;

58 speeds—->right = 0;

59 return;

60 }

61

62 if (object->length < 10){//if you do not see anything
63 speeds—>1left = MAX_SPEED;

64 speeds—->right = MAX_SPEED;

65 return;

66 }

67

68 //calculate sin(arg(o)) - Vmagz

69 signed int sinMax = (((o->y * 100)/o->length) =

— MAX_SPEED) /100;

70

71 //rotation if object is on the side

72 speeds->1left = -sinMaxk;

73 speeds—>right = sinMax;

74

75 //add forward speed

76 if (vec—>x >= 0){//is the target in front
77 if (vec—>x < 100){//if the object gets close
78 //get slower when getting closer

79 speeds—->left += (o->x)/100+«MAX_SPEED;
80 speeds—>right += (0o—>x)/100+«MAX_ SPEED;
81 }else{

82 speeds—->1left += MAX_SPEED;

83 speeds—>right += MAX_SPEED;

84 }

85 lelse{//if the object is behind you

86 speeds—>left += MAX_SPEED;

87 speeds—>right += MAX_SPEED;

88 }

89 }

Listing B.3: Process-based behaviour implementation of obstacle avoidance.

With this, the robot can achieve the desired behaviour. It is worth noting that this imple-
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Listing B.4 A didactic code illustration of data sharing across event handlers. Both event
handlers — handlerl and handler2 — use the same global variable. Depending on how

they are executed (synchronously or asynchronously), frace conditions|can occur.

1 #include "os/system.h"

3 int variable = 0;
4
5 bool handlerl (unsigned 11  bool handler2 (unsigned
— int, sys_event_data —~ int, sys_event_data
- x, wvoid ) { - *, void ) {
6 // Note "variable++;" 12 // Note "variable——;"
— would do the same — would do the same
— as = 4as
7 int temp = variable; 13 int temp = variable;
8 temp++; 14 temp——;
9 variable = temp; 15 variable = temp;

mentation is a didactic example to illustrate important features of OpenSwarm. Consequently,
this behaviour could have been implemented in various different ways (e.g., only with pro-
cesses or only with event handlers). Each variant provides different benefits or disadvantages.
In general, it is recommended to implement the calculation of o as pre-processor of the prox-
imity module as the calculation could be performed faster by avoiding multiple event handlers
and additional buffering.

B.4.2 Data Sharing: Synchronous vs. Asynchronous Events

When writing software, it is often inevitable to share data within a system and OpenSwarm is
no exception to it. In OpenSwarm, processes and event handlers are executed in a[flat memory]
which means data can be shared anywhere in the working memory (i.e., global variables). In
this section, data sharing for cooperative execution and process-based execution is discussed.

While cooperative execution already provides a sequential execution, data sharing can
provide challenges because race conditions can occur when interrupt nesting is enabled (i.e.,
interrupts with higher priorities can interrupt other [[SR). In this example, two event hand-
lers — handlerl and handler2 — are available and manipulating a global variable —
variable (see Listing . handlerl loads a global variable, increases its value, and
saves the value back. handler?2 loads a global variable, decreases its value, and saves the
value back. If both handlers are called equally often, the value of variable should remain
around zero.

Asynchronously executed handler functions are sequentially executed, so if handlerl
and handler?2 are triggered by asynchronous events, race conditions cannot occur. However,
the disadvantage of asynchronous execution is the unpredictable time delay.

When using synchronous events, the event handlers are executed within the context of
their event’s emission (i.e., a process or . If the event handler is executed within a low
interrupt-priority context, it can be interrupted by any higher-priority ISR. As a result,
can occur. For instance, handlerl is executed and loaded the shared variable.
Then, stopped at line 8 by an interrupt that executes handler2. Consequently, handler?2
uses the current value, decreases it, and stores it back in the shared variable. When returning to
the paused handlerl, it increases the loaded value, and stores it back. As a result, it seems
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like handler?2 has not been executed. If this occurs regularly due to unfortunate timing, it
would seem like handler?2 has never been executed.

With a synchronous event handler, race conditions can only be avoided when sections that
manipulate shared data cannot be interrupted. This can be achieved by creating an atomic
section with Sys_Start_AtomicSection and Sys_Stop_AtomicSection around
the used shared data. This code is then able to prevent race conditions. It is worth noting that
excessive use of atomic sections can result in priority inversion; a situation in which a lower
priority function is executed while a higher priority function is waiting for execution. This can
lead to unpredictable behaviour as well as errors or faults.

B.4.3 Preemptive vs. Cooperative Behaviour Design

To illustrate the design and implementation process, this section describes the control of the
wheels with the measured proximity value of a sensor on the front. In this example, a robot is
placed on a plane with an obstacle in front of it. Depending on the distance to the obstacle, the
robot moves away from the object (faster when closer).

In Listing a cooperative program is shown. With every occurrence of SYS_EVENT__
IO_PROXO0, handler is executed. First it extracts the measurement from the event. Then,
the new wheel speed is calculated. Finally the speeds are sent to the motors module with the
events SYS_EVENT_TO_MOTOR_LEFT and SYS_EVENT_TO_MOTOR_RIGHT

1 #include "os/system.h"

3 bool handler (unsigned int eventID, sys_event_data =xdata,
— wvoid *user data) {

4 unsigned int value = x ((unsigned int «) data->value);
-~ //get data from event

5 if (value == -1){ //Is there no obstacle in range

6 value = 0;

7 lelse{//there is an obstacle detected

8 value = MAX WHEEL_SPEED_MM S/ (value+l);

9 }

10 Sys_Send_IntEvent (SYS_EVENT_ TO_MOTOR_LEFT, wvalue);

11 Sys_Send_IntEvent (SYS_EVENT_TO_MOTOR_RIGHT, wvalue);
12 return true;

15 int main (void) {

16 Sys_Init_Kernel (); //initialise OpenSwarm

17 Sys_Subscribe_to_Event (SYS_EVENT_IO_PROX0, handler, O,
- 0);

18 Sys_Create_Kernel (); //starts OpenSwarm

19 Sys_Run_SystemThread () ;

Listing B.5: A didactic code illustration to show event-based programming in OpenSwarm. De-
pending on the measured distance (SYS_EVENT_TIO_PROXO0), the robot moves faster back-
wards when the distance is smaller.

In Listing [B.6] a preemptive process is implemented. With the start of OpenSwarm, pro-
cess is executed and, shortly after its first execution, the process is blocked while waiting for
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a SYS_EVENT_TIO_PROXO event. As soon as SYS_EVENT_TIO_PROXO0 occurs, the process
continues by extracting the value from the event. After calculating the new wheel speeds, they
are sent to the motors module with SYS_EVENT_IO_MOTOR_LEFT and SYS_EVENT_IO_
MOTOR_RIGHT as before. Then, the process waits for the next event to occur.

1  #include "os/system.h"

3  wvoid process () {

4 while (true) {

5 sys_event_data xdata =
— Sys_Wait_For_Event (SYS_EVENT_TIO_PROXO0) ;

6 unsigned int value = x ((unsigned int «) data->value);
— //get data from event

7 if (value == -1){ //Is there no obstacle in range

8 value = 0;

9 lelse{//there is a obstacle detected

10 value = MAX WHEEL_SPEED MM_S/ (value+l);

1 }

12 Sys_Send_IntEvent (SYS_EVENT_TIO_MOTOR_LEFT, wvalue);

13 Sys_Send_IntEvent (SYS_EVENT_TIO_MOTOR_RIGHT, value);

14 Sys_Free(data); // free event data

18 int main (void) {

19 Sys_Init_Kernel(); //initialise OpenSwarm
20 Sys_Create_Process (process) ;

21 Sys_Start_Kernel(); //starts OpenSwarm

2 Sys_Run_SystemThread () ;

23 }

Listing B.6: A didactic code illustration to show process-based programming in OpenSwarm.

When comparing Listing [B.5]and [B.6] it can be seen that programs can be designed either
event-driven or process-driven. Both programming paradigms can be used to achieve the sim-
ilar behaviour. In both cases, the System Thread executes the majority of the time. When
SYS_EVENT_IO_PROXO occurs, the event handler is synchronously executed (Listing [B.5)
or process is placed to be executed. It is worth noting that the time from emitting the event
to processing it is less predictable in the process-based solution because the delay is dependent
on the relative occurrence of that event within the system. For instance, when the event occurs
at the beginning of the System Thread’s execution cycle, then the delay is bigger than it would
be towards its end.

Besides the different response time, the program reacts differently if the periodicity of
SYS_EVENT_IO_PROXO0 becomes faster. In the case the times between events, t., is bigger
than both the execution time, t and the time between scheduling, ¢, (i.e., t;, < ts < tc)
the program behaves as described above, where both solutions behave similarly despite the
response time

When ¢, < t. < ts, the process-based solution can no longer guarantee that every event
is processed because the scheduling delay can cause the missing of events. To improve this,

B4y this example, it is assumed that the execution time of event and process is ..
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OpenSwarm has been adapted to provide process with a list of events that occurred while
waiting. Consequently, process can process all events listed before blocking (shown in

Listing[B.7). This can increase the performance and of the system. It is worth

noting that events occurring during this execution are lost. In both cases, the event-based

implementation provides a faster and more reliable solutio

1 #include "os/system.h"

3  wvoid process () {
4 while (true) {
5 sys_event_data xdata =
— Sys_Wait_For_ Event (SYS_EVENT_TIO_PROXO0) ;

7 while (data != 0){//go through each event that occurred
3 unsigned int value = x((unsigned int «)
— data->value); //get data from event
9 if (value == -1){ //Is there no obstacle in range
10 value = 0;
1 lelse{//there is a obstacle detected
12 value = MAX WHEEL_SPEED_MM_S/ (value+l);
13 }
14 Sys_Send_IntEvent (SYS_EVENT_IO_MOTOR_LEFT, value);
15 Sys_Send_IntEvent (SYS_EVENT_TO_MOTOR_RIGHT, wvalue);
16
17 sys_event_data xtemp = data;
18 data = data->next; //next occurred event
19 Sys_Free (temp); // free event data

20 }
21 }

2 }

23

24 int main (void) {

25 Sys_Init_Kernel(); //initialise OpenSwarm
26 Sys_Create_Process (process) ;

27 Sys_Start_Kernel (); //starts OpenSwarm

28 Sys_Run_SystemThread () ;

29 }

Listing B.7: A didactic code illustration to show process-based programming in OpenSwarm.

However, if t. < t, < t,, then both event-based and process-based solutions require
more time to process than the event requires to occur. The event-based solution would execute
one event handler after the other, which monopolises the @l Furthermore, the increasing
amount of buffered events would inevitably cause faults (e.g., memory/stack overflow). On the
other hand, the process-based solution executes one event, misses events that occur during its
execution, and then waits for the next events to occur. While waiting, the System Thread is
executed for one iteration and then process continues. As a result, the system is stable but
does not process all occurring events.

B4IThis is the reason why embedded operating systems, such as Contiki, provide this form of execution model.
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This section provides an overview of current computer systems and analyses how many
resources are available and how do they compare to the other systems. In particular, three
groups of devices are investigated: microcontroller-based, sensor-network node, and embedded
computer systems. The data for each subsection can be found at [Trenkwalder]|2020a].

C.1 Microcontroller

Microcontroller, also referred to as microcontroller units (MCUSs), are integrated circuits that
provides processor, RAM, ROM, and I/O devices on a single chip. They are designed to operate
devices and are popular on mobile or low-power devices. Many robots, such as Kilobot or e-
puck, are solely powered by a single MCU and, hence, this group of devices is relevant in
robotics.

Figure [C.1] shows a histogram 2768 state-of-the-art MCUs produced by Infineon, Micro-
chip, STMicroelectronics, and Texas Instruments. As shown, the majority (98.1 %) of micro-
controllers are severely-constrained.

C.2 Sensor Network Nodes

In the area of sensor networks, a large number of elements, referred to as a sensor node or
mote, are used to measure physical entities, such as temperature or pressure, covering large
areas. Each sensor node transmits its measurements wirelessly or via a tether to a basis station.

Commonly, a sensor node is designed to periodically measure and transmit data. Many
devices are designed to be used in large numbers (i.e., they need to be cost-effective) and
for long times (i.e., they need to consume low power). As a result, the nodes provide small
computational resources, similar to many severely-constrained robots.
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Figure C.1: Computational resources of 2768 MCUs from [Trenkwalder 2020a]. (a) shows a
scatter plot of computational indices. (b), (c), and (d) show the histograms of the computational
index (C), the memory index (M), and the processing index (Fr), respectively.
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Figure C.2: Computational resources of 133 sensor nodes from [Trenkwalder|[2020a]. (a)
shows a scatter plot of computational indices. (b), (c), and (d) show the histograms of the
computational index (C7), the memory index (M), and the processing index (Pr), respectively.
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Figure[C.2|shows the computational resources of 133 sensor nodes. It is evident that 97.7 %
of the presented sensor nodes are severely-constrained devices.

C.3 Embedded Computer Systems

While the definition varies across resources [Dean|[2017]], embedded computer systems are a
large subset of computer systems, which are designed for a specific purposes in contrast to
general purpose computers — such as personal computers. These systems are commonly em-
bedded in an greater system; hence, its name. These systems are deployed in many areas of
modern life — for instance, networking (e.g., routers), home assistants (e.g., Amazon Alexa
Echo or Google Home), single board computers (e.g., Raspberry Pi), and robotics (see Sec-
tion [2).

Figure [C.3] shows 2326 embedded computer systems taken from [Wikimedia Foundation
2019b]. 1t is evident that 99.4 % of the presented devices are weakly-constrained devices.

C.4 Discussion

When comparing the types of systems as shown in Figure [C.4] it can be seen that sensor net-
work nodes tend to have the fewest resources some of the current nodes use legacy MCUs
and others operate modern MCUs with lower frequency (see Figure[C.4d) to reduce the power
consumption. However, as sensor nodes are often MCU-based devices, it is not surprising that
both MCUs and sensor nodes populate the same region for any of their computational indices
(see Figure [C.4bHC.4d).

While the populations of all types have an overlap when considering P, it can be seen
that the C7 and, specifically, M shows two distinct populating regions. Figure [C.4a| reveals
that each set has a small number of devices across the threshold. However, the majority of
MCUs and sensor network are and severely-constrained and embedded computer systems are
weakly-constrained devices. In particular, the scatter plot shows a gap between both sets of
devices. As described in Chapter [2] this stems from transitioning from from integrated to
discrete components. Furthermore, it is interesting to see that the threshold (i.e., the relation
between memory and processing power) in Figure [C.4a] connects the upper and lower end of
each population suggesting that the processing-time—-memory trade-off is a valid assumption to
represent computational power.

Note that the classification introduced by [Bormann et al.|2014] does not have an impact
or does not show any benefit for severely-constrained devices as they are uniformly distributed
around the thresholds.
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Figure C.3: Computational resources of 2326 embedded computer systems from [Trenkwalder
2020d]. (a) shows a scatter plot of computational indices. (b), (c), and (d) show the histograms

of the computational index (C7), the memory index (M7j), and the processing index (Pr), re-
spectively.
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Note (a) also shows the classification of Bormann et al.| [2014].
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