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Abstract 

Spinal cord injury (SCI) occurs when the spinal cord is physically crushed, impinged, 

severed, or otherwise damaged; resulting in irreversible disruption to the neuronal 

pathways responsible for motor and sensory function. The main obstacles to spinal 

cord repair include neuronal damage, loss of oligodendrocytes (leading to axonal 

demyelination), and scar formation with glial and fibrotic components. Despite the 

prevalence of SCI and its costly impact on society, treatment remains limited. 

Ependymal cells (ECs) lining the central canal show promise as a pool of endogenous 

stem cells within the spinal cord. These cells are found to proliferate, differentiate, and 

migrate in response to injury, however at present, little is known about this neurogenic 

niche and how the local microenvironment influences cellular behaviour. This project 

aims to investigate whether endogenous EC behaviour can be altered by manipulating 

the properties of the surrounding matrix. 

Nestin is a type VI intermediate filament protein and a marker of neural stem and 

progenitor cells in the central nervous system. Characterisation of transgenic mice 

expressing green fluorescent protein (GFP) under the control of nestin was carried out 

within this thesis; identifying these cells as ECs and pericytes in the spinal cord. 

(Nestin) GFP-positive ECs colocalised with a number of stem cell markers including: 

CD24, Sox2, and foxJ1.  

ECs were also shown to express chemokine receptor type 4 (CXCR4), the main 

receptor to stromal cell-derived factor-1 (SDF-1); both of which are involved in the 

directed migration of neural cells through chemotaxis. The results of spinal cord slice 

cultures and intraspinal injections presented in this thesis suggest that EC behaviour 

can be manipulated using hydrogels and SDF-1α; towards repair of SCI.   
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Chapter 1 – General Introduction 

 

1.1 The spinal cord 

The spinal cord is part of the central nervous system (CNS) and spans the length of the 

spine; extending caudally from the medulla oblongata (part of the brain stem), enclosed 

within the foramen magnum and the vertebral column. Three concentric layers of 

membrane, the meninges, envelop the spinal cord and provide further protection. 

These layers include the dura mater, arachnoid mater, and the innermost pia mater. 

The spinal cord is organised along the rostro-caudal axis into four regions: cervical, 

thoracic, lumbar, and sacral (Figure 1.1 A). The spinal cord can be divided further into 

the white and grey matter, with the former being comprised of myelinated and 

unmyelinated axons making up the ascending (sensory) and descending (motor) nerve 

fibres. These are present in the form of tracts, which allow for the processing of 

sensory inputs and initiate movement of the body via afferent and efferent neuronal 

projections. Sensory afferent nerve fibres enter the spinal cord via the dorsal roots 

whereas the motor and preganglionic efferent nerve fibres exit via the ventral roots 

(Figure 1.1 B). 

The grey matter forms the distinct butterfly shaped area, central to the spinal cord and 

this is comprised of dendrites and axons as well as glial cells and neuronal cell bodies 

organised into a series of 10 laminae in the transverse plane (Rexed, 1954). The dorsal 

horn contains laminae I-VI, the intermediate zone contains lamina VII, and the ventral 

horn contains laminae VIII-IX. At the centre of the cord is lamina X and the central 

canal (Figure 1.1 B). This thesis focuses on the central canal, and so the organisation 

of cells in this region will be detailed further below. 
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Figure 1.1 Schematic diagram of the spinal cord organisation 

(A) Spinal cord segment organisation along the rostro-caudal axis including: cervical, 
thoracic, lumbar, and sacral regions. (B) Transverse section of the spinal cord and 
basic anatomical features and laminae (I – X). Drawn using BioRender.   

 

1.1.1 Central canal region cellular organisation 

The central canal region resembles a duct as it is surrounded by a heterogeneous cell 

population, through which the cerebrospinal fluid (CSF) flows. CSF is secreted by 

ependymal cells lining the choroid plexus and flows caudally from the lateral ventricles 

down through the spinal cord central canal. The CSF contains a number of ions (Na+, 

Cl-, HCO3
-, K+, Mg2+, and Ca2+), vitamins (e.g. folate, ascorbic acid), hormones, and 

peptides and proteins actively transferred from the blood (e.g. leptin) or synthesised in 

the choroid plexus (e.g. insulin-like growth factor and brain-derived neurotrophic 

factor). 

The ependymal cells (ECs) are the most abundant cell surrounding the central canal 

and can be grouped into subtypes depending on their morphology. Ultrastructural 
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analysis of these cells using transmission electron microscopy identified three EC 

subtypes: biciliated cuboidal ECs, radial ECs, and tanycytes (Figure 1.2). Typical 

biciliated cuboidal ECs are the most common subtype and these cells possess motile 

cilia responsible for CSF propulsion (Alfaro-Cervello et al., 2012a). Radial ECs are 

found at the ventral and dorsal poles with long basal processes extending along the 

dorsoventral axis (Alfaro-Cervello et al., 2012a). Lastly, tanycytes are characterised by 

their single cilium and a long basal process terminating on blood vessels (Hugnot, 

2011).  

 

Figure 1.2 Central canal cellular organisation 

Schematic of the murine spinal cord central canal, depicting the organisation of: radial 
ependymal cells (EC), biciliated cuboidal ECs, tanycytes, blood vessels, cerebrospinal 
fluid contacting cells (CSFcC), glial fibrillary acidic protein+ve (GFAP+) cells, neuronal 
nuclei+ve (NeuN+) cells, and oligodendrocyte transcription factor+ve (Olig2+) cells. 
Adapted from (Becker et al., 2018). 
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Cerebrospinal fluid contacting cells (CSFcCs) are located in the ependymal and 

subependymal layers within the central canal region and have “bulb-like protrusions” 

that extend into the CSF (Figure 1.2). In the spinal cord of lamprey and zebrafish these 

CSFcCs are sensitive to mechanical stimulation and changes in CSF pH (Jalalvand et 

al., 2016; Orts-Del’Immagine and Wyart, 2017). 

Additional cells within the subependymal layer include: astrocytes (glial fibrillary acidic 

protein - GFAP+ve cells), oligodendrocyte progenitor cells (olig2+ve cells), and 

neurons (NeuN+ve cells). 

 

1.2 Spinal cord injury 

Spinal cord injury (SCI) occurs when the spinal cord is physically damaged due to 

contusion, laceration, or compression and although complete transection of the spinal 

cord is a rare occurrence in humans, axonal destruction is often observed, resulting in 

sensory and motor deficits. Each year in the UK alone, around 2,500 people sustain an 

SCI, leading to a cost of approximately £500 million per annum in immediate treatment 

costs resulting in a great social burden (backuptrust.org.uk, 2019). 

SCI is typically classified according to its neurological level using the International 

Standards for Neurological Classification of Spinal Cord Injury. This tests the motor and 

sensory function of the patient. The level of SCI damage is defined as the most caudal 

level at which function remains intact (Lee and Thumbikat, 2015). Severity of such an 

injury is then graded (A-E) according to the American Spinal Cord Association 

Impairment Scale (NICE, 2016), and grouped according to the cause of damage, with 

patients presenting contusion or cavity injuries accounting for 49% of cases (Kim and 

Lee, 2014; Silva et al., 2014). 

Despite the prevalence of SCI and its costly impact on society, treatment remains 

limited, with current therapies focussing on reducing pain and paralysis rather than 

promotion of spinal cord regeneration (Kim and Lee, 2014). The standard clinical 
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treatment for SCI consists of stabilisation and decompression of the spinal cord, 

followed by a high dose of the anti-inflammatory steroid methylprednisolone along with 

immune modulators (Silva et al., 2014). However, there is considerable debate around 

the efficacy of this pharmacological intervention (reviewed (Silva et al., 2014)) and so 

research into alternative strategies for repair still remains crucial. 

1.2.1.1 SCI pathophysiology 

To effectively design a treatment for SCI, firstly the pathophysiological processes that 

occur following injury must be understood. In all cases of SCI, the pathological 

progression can be subdivided into primary, secondary, and chronic phases. 

The primary injury phase occurs through the initial insult to the spinal cord and can be 

grouped according to the morphological type: impact with persistent compression of the 

cord, impact with transient compression, distraction (separation of adjacent vertebrae), 

and laceration/transection. This initial insult leads to instantaneous cell death and 

damage, primarily affecting the softer central grey matter (Freund et al., 2013). 

Mechanical damage to the spinal cord also leads to haemorrhaging of the vasculature 

which disrupts blood flow, resulting in local infarction and additional damage due to 

ischemia (Dumont et al., 2001). 

Furthermore, progressive post-traumatic damage also results in loss of motor and 

sensory function. Secondary acute (0 - 72 h) events include ionic changes, the 

formation of free radicals, glutamate excitotoxicity, apoptosis, and inflammation brought 

about by resident cells and invading immune cells when the blood-spinal cord-barrier 

(BSCB) is damaged (reviewed in more detail by (Silver and Miller, 2004; Oyinbo, 2011; 

Silva et al., 2014). Damaged cells also release adenosine triphosphate (ATP), thereby 

mediating chemotaxis of microglia towards the injury (Wu et al., 2007) and reactivity of 

astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells via the activation of 

P2 purinergic receptors (James and Butt, 2002). 
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Mechanical shearing of myelinated axons results in the disruption of the myelin sheath 

which in turn leads to the accumulation of myelin inhibitors (Nogo-A, Myelin Associated 

Protein and Oligodendrocyte Myelin Glycoprotein) that hinder axon regeneration via 

binding to Nogo-66 receptor protein (Wang et al., 2006). Additionally, apoptosis of 

resident oligodendrocytes leads to further denudation of intact axons, impairing 

conduction and limiting functional recovery (Grossman et al., 2001; Hulsebosch, 2002). 

In the chronic stage of SCI, a fibrous scar is formed at the damaged site in order to 

prevent further damage and promote repair. The fibrotic component of the scar formed 

following SCI is located at the centre of the lesion site, and this contains EC-derived 

astrocytes, stromal cells derived from Glast+ve cells deemed to be type-A pericytes, 

along with invading meningeal fibroblasts where the BSCB is compromised (Göritz et 

al., 2011).  

The astrocytic response to spinal cord injury is typically referred to as reactive gliosis or 

astrogliosis. This is characterised by cellular hypertrophy, increased proliferation, 

process extension, and the production of intermediate filament proteins: GFAP, nestin, 

and vimentin, in and around the lesion site (Yang et al., 1994). While fibrotic scar 

formation results in a protective barrier around the site of injury; misalignment of 

reactive astrocytes occurs during the formation of the glial component at the injury 

border, followed by deposition of inhibitory chondroitin sulphate proteoglycans 

(CSPGs) and other extracellular matrix (ECM) proteins, thus creating a chemical and 

physical barrier to axonal regeneration and limited repair (Rolls et al., 2009; Yuan and 

He, 2013; Bradbury and Burnside, 2019). 

When confronted with the glial scar, the growth cones of regenerating axons undergo 

dramatic morphological changes and halt elongation (Davies et al., 1999) reportedly via 

binding of sulphated proteoglycans to the LAR (leukocyte common antigen related 

gene) family of transmembrane protein tyrosine phosphatases (PTPσ and PTPδ) (Shen 

et al., 2009; Fisher et al., 2011) and the Nogo receptors: NgR1 and NgR3 
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(Dickendesher et al., 2012). Degradation of CSPGs via cleavage of glycosaminoglycan 

(GAG) chains using the bacterial enzyme chondroitinase ABC (ChABC) has previously 

been investigated to overcome this issue, resulting in the promotion of functional 

recovery in vivo following a bilateral lesion to the dorsal columns (C4 level) in rats 

(Bradbury et al., 2002). In this study ChABC was administered using a silastic tube 

inserted intrathecally, rostral to the lesion and recovery was assessed using 

immunohistochemistry, axon-tract tracing, electrophysiology and behavioural 

assessment. CSPG formation has also been inhibited in vivo using hepatocyte growth 

factor (HGF) from human mesenchymal stem cells (hMSCs) following a C4 “right over 

hemisection” injury in rats (Jeong et al., 2012). Transplantation of HGF-hMSCs resulted 

not only in significantly decreased GAG deposition, but also increased axonal growth 

beyond the glial scar and functional recovery of the forepaw. Glial scar formation has 

also been attenuated following experimental SCI using the natural anti-inflammatory 

agent curcumin, reducing astrogliosis and the presence of inflammatory cells, 

ultimately leading to improved functional repair (Wang et al., 2014; Jin et al., 2014). 

This scar tissue does however, form a protective barrier and these astrocytes reduce 

secondary degeneration and regulate the injury site by scavenging excess ions (Cui et 

al., 2001) and protecting neurons from nitric oxide (Chen et al., 2001). Careful 

consideration must be taken of the scar’s dual and conflicting roles when designing 

repair strategies (reviewed by (Bradbury and Burnside, 2019)). 

 

1.3 Manipulating neurogenesis post SCI 

The production of new neurons as well as astrocytes and oligodendrocytes is typically 

referred to as neurogenesis. In the adult mammalian brain, postnatal neurogenesis 

occurs in two neurogenic niches: the dentate gyrus (DG) of the subgranular zone 

(SGZ) within the hippocampus (Toni et al., 2008), and the subventricular zone (SVZ) 

within the lateral ventricles (Lois and Alvarez-Buylla, 1994; Curtis et al., 2007).  
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Under physiological conditions, neuroblasts/type A cells are generated from radial glia-

like stem cells within the SVZ and these then migrate along the rostral migratory 

stream (RMS) towards the olfactory bulb (OB) where they differentiate into 

interneurons (Lois and Alvarez-Buylla, 1994; Carleton et al., 2003). In the DG of the 

SGZ, radial glia-like stem cells proliferate and generate neuroblasts that migrate along 

the SGZ where they differentiate into neuronal and glial cells in the granular layer of the 

DG. 

ECs in the spinal cord share a number of markers associated with the stem cells of the 

brain, including: sox2, a transcription factor involved in the maintenance of cell 

pluripotency (Zhang, 2014; Feng and Wen, 2015); nestin, an intermediate filament 

protein found in precursor cells of the developing and adult CNS (Hockfield and McKay, 

1985; Gritti et al., 1996); and vimentin, an intermediate filament expressed in the radial 

glia of the developing DG (Sancho‐Tello et al., 1995; Hamilton et al., 2009). 

Nestin+ve cells isolated from the postnatal brain of transgenic mice using fluorescence-

activated cell sorting (FACs) formed neurospheres and differentiated into neurons, 

astrocytes, and oligodendrocytes in vitro (Mignone et al., 2004). In the spinal cord of 

adult mice, nestin is expressed predominantly in dorsal and ventral ECs (Alfaro-

Cervello et al., 2012b). Additionally, vimentin is expressed in the cytoplasm and some 

of the radial processes of ECs at the central canal of adult mice (Alfaro-Cervello et al., 

2012b). CD133 (Prominin-1) is also expressed in human and murine embryonic stem 

cells (Uchida et al., 2000; Kania et al., 2005), and labels ependymal cells in the adult 

mouse SVZ and central canal (Lee et al., 2005; Coskun et al., 2008; Pfenninger et al., 

2011). In vitro, ECs were tracked using tamoxifen-induced recombination in cells 

derived from foxJ1- and nestin-CreER mice; giving rise to inducible and permeant 

genetic labelling using β-galactosidase (β-gal) and GFP expression. These ECs were 

shown to form neurospheres that could be serially passaged (> 8 times), and were 

multipotent; differentiating into astrocytes, oligodendrocytes, and neurons (Meletis et 

al., 2008). 
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1.3.1 Neurogenesis following SCI 

In the intact spinal cord, proliferation of ECs is restricted to self-renewal (Johansson et 

al., 1999; Meletis et al., 2008). However, in lower vertebrates ECs contribute 

significantly to neuronal regeneration and repair, and more recently, stem cell-like 

activity has been observed in mammals in response to injury (Johansson et al., 1999; 

Ogai et al., 2014a). ECs are thought to possess “latent neural stem cell potential”; 

proliferating and undergoing multilineage differentiation following SCI (Namiki and 

Tator, 1999; Takahashi et al., 2003; Lacroix et al., 2014), producing  astrocytes 

responsible for scar formation 4 months post-injury (Barnabé-Heider et al., 2010; 

Stenudd et al., 2015).  

In addition to this, ECs also generate myelinating oligodendrocytes and neurons in vitro 

(Meletis et al., 2008) crucial for the repair of SCI (Qin et al., 2015). 4 weeks following a 

dorsal funiculus incision in transgenic mice, analysis of the cellular fate of EC progeny 

using molecular markers and electron microscopy identified β-gal+ve ECs (recombined 

cells of FoxJ1-CreER mice) expressed Olig2 (oligodendrocyte marker) and these cells 

were scattered throughout the injury site, indicating EC multipotency in vivo (Meletis et 

al., 2008).  

Following compressive injury in the adult rat, ECs proliferate and differentiate at the site 

of the lesion into reactive astrocytes, with differences observed following injuries of 

varying severity (Mothe and Tator, 2005a). Delivery of exogenous injury-reactive ECs 

and oligodendrocyte precursor cells has been investigated in a rat model of severe 

spinal cord contusion injury. Here the transplanted cells migrated to the lesion site and 

this resulted in significant motor function recovery (Moreno-Manzano et al., 2009). 

 

1.3.2 Human postnatal neurogenesis 
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Postnatal human neurogenesis has been widely debated (e.g. (Spalding et al., 2013; 

Sorrells et al., 2018) and conflicting conclusions have raised questions regarding 

methodological factors and study design (reviewed in (Bergmann et al., 2015; 

Kempermann et al., 2018; Snyder, 2019). In a recent study by (Moreno-Jiménez et al., 

2019) the post-mortem delay (time between death and tissue fixation) and method of 

tissue fixation greatly influenced the detection of postnatal neurogenesis in the DG of 

human tissue. In tissue samples with a post-mortem delay of 24 h and minimal tissue 

processing (no freezing or paraffin inclusion), the authors identified neurons at a range 

of maturation stages in the brain as identified by immunofluorescence cell labelling 

(Moreno-Jiménez et al., 2019). Here, colocalisation of doublecortin (DCX)+ve neurons 

was seen with both calretinin and calbindin; thereby identifying these cells as immature 

and more differentiated neurons respectively and indicating the presence of postnatal 

neurogenesis in the DG of neurologically healthy humans.  

Studies have also shown that adult humans have central canal ECs (Mothe et al., 

2011; Cawsey et al., 2015). ECs isolated from the human spinal cord immediately 

following death from stroke or trauma  formed neurospheres expressing sox2 and 

nestin and differentiated into glial cells and neurons in vitro (Dromard et al., 2008; 

Mothe et al., 2011). Additionally, following trauma to the CNS, nestin immunoreactivity 

at the central canal increases (Cawsey et al., 2015). However, adult human spinal cord 

ECs aren’t thought to proliferate in vivo following injury (Cawsey et al., 2015; Paniagua-

Torija et al., 2018) suggesting these cells may need manipulating to promote 

endogenous repair. 

1.3.3 Directing stem cell behaviour 

Previous research has focussed on the use of stem cell transplants as a means of 

replacing the cells lost following spinal cord injury, however these are limited due to the 

safety and ethical issues, as well as the timely nature of stem cell procurement 

(reviewed by (Li et al., 2008; Sahni and Kessler, 2010). Hofstetter et al. found that 
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although transplantation of naïve neural stem cells improved motor function recovery 

within a rat model, allodynia-like hypersensitivity was caused in unaffected forepaws 

(Hofstetter et al., 2005). Additional problems associated with exogenous administration 

of neural progenitors include the risk of teratoma formation (Li et al., 2008) and issues 

related to cell fate when administered without differentiation cues (Panayiotou and 

Malas, 2013). Additional to this, implanted cell viability has been shown to be as low as 

3% for human embryonic stem cell-derived cells in the injured CNS, leading to poor 

functional outcomes (Kawasaki et al., 2000; Li et al., 2008). Following focal ischemia in 

rat cerebral cortex, stem cell graft placement was also shown to be a determinant of 

cell survival, with human CNS-derived neurospheres having a greater survival rate in 

non-ischemic tissue rather than at the lesion site; highlighting the issue of the oxygen 

depleted environment into which these cells would be implanted (Kelly et al., 2004). 

Therefore, a potentially safer and novel approach to spinal cord repair would involve 

the manipulation of neurogenesis by endogenous stem cells in situ. 

In the SVZ neurogenic niche, inflammatory signals and the regulation of Wnt activity 

contribute to adult stem cell quiescence, and therefore regulate the regenerative 

potential of these cells in the aging brain (Kalamakis et al., 2019). These mechanisms 

may therefore hold the key to manipulating adult spinal cord neurogenesis for injury 

repair. Antibody inhibition of the inflammatory cytokine, CXCL10 resulted in the 

activation of quiescent OB NSCs, and a significant increase in the number of newly 

born neuroblasts in vivo in mice (Kalamakis et al., 2019) (Figure 1.3). Whether spinal 

cord ECs are retained in a quiescent state by similar mechanisms is currently 

unknown, however, this study shows the potential for re-activation of stem cells in adult 

tissue. 

The exercise-induced increase in circulating growth factors (Vascular Endothelial 

Growth Factor - VEGF (Leiter et al., 2019) and Insulin-like growth factor-I (IGF-I) (Carro 

et al., 2000; Nieto-Estévez et al., 2016)) positively modulates NPC proliferation and the 

generation of neurons in the DG. Additionally, Activating Transcription Factor 5 (ATF5) 
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downregulation, via Neural Growth Factor (NGF) or Neurotrophin-3 (NT-3) application, 

is required for the differentiation of neuronal progenitor cells to neurons (Angelastro et 

al., 2003) (Figure 1.3). This neurogenic response been enhanced using retinoic acid 

(RA); whereby RA increased the differentiation of NSCs, and significantly increased the 

response of stem cells to NT-3 in order to promote the generation of mature neurons 

(Takahashi et al., 1999). 

IGF-I also promotes the proliferation and differentiation of oligodendrocyte-committed 

progenitor cells (McMorris and Dubois‐Dalcq, 1988) and induces oligodendrogenesis 

from adult NSCs potentially via the blocking of BMP signalling (therefore blocking 

astrocyte generation – see Figure 1.3) (Hsieh et al., 2004). A number of additional 

growth factors also direct differentiation of NSCs into myelinating oligodendrocytes in 

the brain. Experimentally increasing Fibroblast Growth Factor receptor-3 (FGFR) 

activation, via ligand-independent activation of FGFR in transgenic adult mice, resulted 

in increased myelin repair following acute focal demyelination of the corpus callosum 

(induced by lysophosphatidylcholine (LPC) injection) as well as chronic global 

demyelination (induced by cuprizone diet) (Kang et al., 2019). Additionally, activation of 

the Epidermal Growth Factor receptor (EGFR) also directs NSC differentiation for the 

generation of OPCs and myelinating oligodendrocytes in vitro and in vivo.  

In vivo administration of ChABC in combination with EGF, basic Fibroblast Growth 

Factor (bFGF), and Platelet derived growth factor-AA increased the proliferation of 

ependymal cells following SCI, promoted oligodendrogenesis, and reduced the 

differentiation of ECs into astrocytes (Karimi-Abdolrezaee et al., 2012). However, 

whether these oligodendrocytes were generated from ECs is not clear. Laminin also 

regulates oligodendrogenesis by increasing OPC survival in the SVZ indicating that the 

ECM is important in driving beneficial NSC differentiation and survival (Relucio et al., 

2012); reviewed further in (Waly et al., 2014).  
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Figure 1.3 Directing stem cell behaviour 

Simplified schematic depicting examples of the pathways to neuron, oligodendrocyte, 
and astrocyte cell differentiation. Examples of the factors regulating differenatiation and 
migration are detailed. Cell repellants are detailed in red, * indicates a dual action. 
Created using BioRender.com. 
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Differentiation of NSCs down an astrocytic lineage is directed by activation of the Janus 

kinase-signal transducer and activator of transcription (JAK-STAT) pathway. This 

signalling pathway can be stimulated in NSCs by a number of cytokines from the 

interleukin-6 (IL-6) family, including: ciliary neurotrophic factor (CTNF) and 

cardiotrophin-1 (CT-1) (Johe, 1996; Rajan and McKay, 1998). Along with the JAK-

STAT pathway, bone morphogenic proteins (BMP) also promote the preferential 

differentiation of NSCs into astrocytes during the gliogenic phase of development 

(Gomes et al., 2003; Miller and Gauthier, 2007).  

Therefore, targeting growth factor receptors and signalling axes may provide a 

therapeutic mechanism for directing stem cell fate. Whether the cells within the spinal 

cord are controlled in a similar fashion is yet to be determined.  

In order to manipulate endogenous ECs following injury into differentiating into 

preferential lineages, first we must attract these cells to the injury site via implantation 

or injection of molecules that direct cell migration – referred to as chemoattractants.  

Directed migration of neural cells towards or away from endogenous and exogenously 

applied stimuli has been investigated (see examples in Figure 1.3). Interestingly, 

microglia and astrocytes have been implicated in the inflammatory reactions of a 

number of pathologies; releasing cytokines for attracting both immune cells along with 

stem and progenitor cells (Zuena et al., 2019), and these may play a critical role in 

manipulating the behaviour of ECs following SCI.  

Chemokine ligand 2, CCL2, is expressed by microglia and astrocytes following a lesion 

to the brain and during multiple sclerosis (MS). CCL2 expression is thought to induce 

leukocyte migration and infiltration into the CNS (Babcock et al., 2003); thus mediating 

the immune response. CCL2 and Hepatocyte Growth Factor (HGF) also play a role in 

the migration of adult NSCs in an animal model of MS (Widera et al., 2004; Cohen et 

al., 2014). Here, the remyelination required for functional improvement following 

immune-mediated MS (experimental autoimmune encephalomyelitis - EAE model) is 
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initiated via the recruitment of OPCs to the de-myelinated region, followed by 

differentiation of these cells into myelin-forming oligodendrocytes. Chemotactic 

migration of OPCs is triggered via HGF secretion by reactive microglia (Lalive et al., 

2005; Li et al., 2012).  

Most notable across the neural cell types, is the regulation of directed migration via 

Stromal derived factor-1α (SDF-1α ) signalling (Figure 1.3). SDF-1α activates CXCR4 

and CXCR7; two G-protein-coupled receptors expressed in the developing and 

postnatal CNS (Banisadr et al., 2002; Stumm et al., 2003; Tissir et al., 2004; Cui et al., 

2013). Binding of SDF-1α to these receptors is thought to result in the activation of a 

number of signal transduction pathways leading to calcium flux (Princen et al., 2003) 

and phosphorylation of focal adhesion components (Ganju et al., 1998; Kucia et al., 

2004). Interestingly, CXCR4 is expressed by ependymal cells (Stumm et al., 2002) and 

therefore, SDF-1α /CXCR4 signalling could be a potential target for the manipulation of 

endogenous stem cells following spinal cord injury (see Chapter 6 for more detail). 

Hydrogels have been identified as potential candidates for delivering chemokines for 

spinal cord repair. This is due to their physical and mechanical properties closely 

mimicking the spinal cord, along with the ability of their chemical composition to be 

adapted and functionalised. How the cells interact with their environment can influence 

their behaviour dramatically. There is therefore a need to consider EC response to 

hydrogel stiffness and first we will look at the mechanosensing of other neural stem 

cells.  
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1.4 Hydrogels for spinal cord repair 

In order to manipulate endogenous stem cells and provide a growth-permissive 

environment at the site of injury, a tissue engineering approach could be utilised, 

encompassing both neuroprotection and regeneration. Biomaterials used for neural 

tissue engineering should meet a number of requirements in order to efficiently achieve 

this goal. They should be biocompatible, degrade at an appropriate rate in vivo, have a 

suitable mechanical strength, and should be porous in order to permit the flow of 

nutrients and migration of cells. 

Among the various biomaterials available, hydrogels have been identified as promising 

candidates for spinal cord repair. This is due to their physical and mechanical 

properties closely mimicking the spinal cord, along with the ability of their chemical 

composition to be adapted and functionalised. Additionally, a number of hydrogels 

show promise for SCI repair as they can be delivered to the spinal cord via injection, 

due to their shear thinning properties and/or in situ gelation (Guvendiren et al., 2012; 

Yang et al., 2014). Previous research has included the release of growth factors, 

encapsulation of cells, and functionalisation using bioactive motifs to promote specific 

cell behaviour. The use of hydrogels for the repair of CNS injuries has been widely 

investigated, and these studies can be grouped according to hydrogel composition. 

1.4.1 Synthetic hydrogels 

Synthetic hydrogels have the advantage of being relatively simple to manipulate in 

order to adjust chemical and mechanical properties. While these are typically 

biocompatible, additional motifs are often required in order to achieve sufficient cell 

attachment (Table 1.1).  

Polyethylene glycol (PEG) hydrogels have been shown to be biocompatible and 

neuroprotective within the CNS, with chemical modifications allowing for control over 

degradation rates (Mahoney and Anseth, 2006). Incorporation of peptide motifs such 

as arginine-glycine-aspartic acid-serine (RGDS), tyrosine-isoleucine-glycine-serine-
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arginine (YIGSR), and isoleucine-lysine-valine-alanine-valine (IKVAV) has been 

achieved in 3D, with cellular extension being greatest on gels with RGDS (Gunn et al., 

2005). Additional components such as collagen, poly-l-lysine (PLL) and the signalling 

molecules basic fibroblast growth factor (FGF-2) and ciliary neurotrophic factor (CNTF) 

have also been investigated using PEG hydrogels (Mahoney and Anseth, 2006; 

Burdick et al., 2006; Royce Hynes et al., 2007; Freudenberg et al., 2009). Sustained 

Neurotrophin-3 release was achieved using a degradable PEG-PLA (polylactic acid) 

hydrogel for the repair of spinal cord hemisection in rats, resulting in increased 

functional recovery and regeneration of axons (Piantino et al., 2006). 

Poly-hydroxyethylmethacrylate (PHEMA) and poly-hydroxypropylmethacrylate (PHPMA 

NeuroGelTM) hydrogels have recently been investigated for SCI repair. In an 

experimental model of SCI, both hydrogel physical properties and functionalisation 

were found to have a significant impact on axonal and blood vessel ingrowth (Hejčl et 

al., 2013) which has been shown to be important for oligodendrocyte development in 

the brain (Dejana and Betsholtz, 2016). PHPMA implantation into a 3 mm cat spinal 

cord transection resulted in regeneration of the descending supraspinal axons of the 

ventral funiculus as well as the afferent fibres of the dorsal column across the hydrogel 

implanted lesion site as identified by axonal labelling (BDA and WGA-HRP) and 

staining for neurofilaments and myelin basic protein (Woerly et al., 2001).  

The peptide RADA16 developed by (Zhang et al., 1993) has been shown to self-

assemble under physiological conditions into a hydrogel comprised of nanofiber 

networks displaying the laminin epitope IKVAV (Tysseling-mattiace et al., 2009). FGL, 

the neural cell adhesion molecule motif has been recently incorporated into such gels 

and assessed in vitro using a spinal cord-derived neural stem cell (SC-NSC) culture 

(Wang et al., 2015). A significant increase in cellular adhesion and proliferation was 

found for the functionalised gels compared to RADA16 gels alone. Furthermore, 

migration was increased for FGL functionalised gels, indicating a beneficial effect of 

such modification.  
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Table 1.1 Synthetic hydrogels investigated for spinal cord injury repair 

 

Abbreviations: HS: heterophase separation, NSC: neural stem cell, PEG: polyethyleneglycol, PHEMA: polyhydrocyethylmethacrylate[2-
(methacryloyloxy)ethyl] trimethylammonium chloride, PHPMA: poly[N-(2-hydrocypropyl) methacrylamide, SP: solid porogen.   

 

Hydrogel Modification Assessment  Outcomes Reference 

PEG 

PEG-diacrylate, RGDS, 

YIGSR, & IKVAV 
PC12 cell culture 

Extension of cells was greatest on RGDS functionalised 

gels.  

(Gunn et al., 

2005) 

PLA tri-block copolymer 
Postmitotic neuron cell 

culture 

Higher metabolic activity and proliferation with increasing 

percentage of PLA (degradable component - lactic acid) 

without shift toward glial phenotype. 

(Lampe et 

al., 2010) 

PHEMA & 

PHPMA 

(NeuroGelTM) 

HEMA - MOETACL 

(positive surface charge), 

HPMA-SP, PMA-SP-

RGD, HPMA-HS-RGD 

Rat T8 hemisection 

Porous HPMA-SP hydrogels promoted a statistically 

significant greater ingrowth of axons and less connective 

tissue elements into the implant.  

HPMA & RGD promote the ingrowth of blood vessels. 

(Hejčl et al., 

2013) 

 

PHPMA - Cat T6-T7 transection 

Axon re-growth, regeneration of descending supraspinal 

axons of the ventral funiculus and afferent fibres of the 

dorsal column across the reconstructed lesion. 

(Woerly et 

al., 2001) 

Self-

assembling 

peptides 

RADA16-FGL 
Spinal cord derived 

NSC cultures 

PGL promoted NSC proliferation and migration into the 

scaffold. 

(Wang et al., 

2015) 

K2(QL)6K2 (QL6) 
Rat T6-T7 clip 

compression model  

Reduced glial scar formation. 

Promoted axonal preservation/regeneration.  

Significant functional improvement of axons. 

Significant neurobehavioral recovery.  

(Liu et al., 

2013) 
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K2(QL)6K2 (QL6), another self-assembling peptide has also been investigated in vivo 

using a clip compression model of SCI in the spinal cord of rats (Liu et al., 2013). It was 

found that not only did this hydrogel significantly reduce astrogliosis and inflammation 

following injury (as shown by GFAP and Iba1 staining); QL6 injection also resulted in 

promoted axonal preservation (BDA anterograde and Fluorogold retrograde tracing) 

along with significantly enhanced functional improvement of axons as measured by 

electrophysiology. Injection of QL6 resulted in increased conduction velocity, reduced 

refractoriness and increased high-frequency conduction and significant 

behavioural/functional recovery occurred for rats receiving this treatment. 

1.4.2 Natural hydrogels  

A range of hydrogels derived from naturally occurring proteins, peptides, 

polysaccharides and GAGs have been utilised within the area of CNS repair (Table 

1.2). These benefit from their inherent biocompatibility and degradability under 

physiologically relevant conditions as well as their biological activity. 

Agarose is a linear polymer comprised of repeating agarobiose disaccharide subunits 

derived from algae and forms a hydrogel in the temperature range of 17– 40 oC. 

Laminin functionalised agarose hydrogels have been shown to promote dorsal root 

ganglion (DRG) cell migration and orientated neurite extension when cultured in 3D 

(Bellamkonda et al., 1995). Additionally, RGDS peptides (found in fibronectin) have 

been used to create modified channels, leading to orientated axon growth following 

DRG cell culture (Luo and Shoichet, 2004). More recently, a study by Caron et al. used 

an arginine-glycine-aspartic acid (RGD) cell adhesion sequence modified 

agarose/carbomer-based hydrogel for enhanced hMSC attachment, viability, and the 

delivery of paracrine factors in vivo (Caron et al., 2016). hMSCs were grown and these 

cells deposited ECM over 14 days prior to lyophilisation and re-seeding of the scaffolds 

for implantation; ultimately modulating the pro-inflammatory environment in a mouse 

SCI model.  
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Agarose gels can be loaded with lipid microtubules containing the neurotrophin brain-

derived neurotrophic factor (BDNF), encouraging neurite growth into the hydrogels in a 

dorsal over-hemisection model in vivo (Jain et al., 2006).Templated agarose hydrogels 

have also been investigated in a rat model of SCI for the release of syngeneic marrow 

stromal cells expressing either BDNF or green fluorescent protein. (Gao et al., 2013) 

found that these gels organised regenerating axons into fascicles, and BDNF 

significantly enhanced neurite growth in a directional manner.  

Local, sustained release of ChABC (Lee et al., 2010) and Rho GTPases (Cdc42 and 

Rac1) (Jain et al., 2011) has been achieved using agarose based hydrogels and lipid 

microtubes, resulting in a beneficial reduction in the inhibitory CSPGs and GFAP+ 

astrocytes, leading to an improvement in locomotor function when delivered in 

combination with neurotrophin-3 (in the case of ChABC) in vivo. 

Also derived from algae is alginate; a linear polysaccharide formed by repeating units 

of (1–4)-linked β-D-mannuronate and α-L-guluronate. Alginate has a negative charge 

that forms a hydrogel upon ionic crosslinking with divalent counter-ions (D’Ayala et al., 

2008) and can also gel via the stabilisation of a physical network by additional 

intermolecular hydrophobic interactions.  

Alginate has been utilised in vivo for the delivery of glial cell line-derived neurotrophic 

factor (GDNF) using microspheres and normal (free) loading (Ansorena et al., 2013). 

Controlled release was achieved with both methods; however the release kinetics of 

the microsphere loaded GDNF resulted in hindered diffusion and reduced repair of the 

hemisected rats. Free GDNF delivered by this alginate hydrogel resulted in increased 

neurites surrounding the lesion as well as reduced number of astrocytes and improved 

functional recovery compared to the control group. 

Alginate hydrogels have also been modified using microspheres loaded with alginate 

lyases; providing a mechanism to modulate degradation. This degradation profile 



 

21 

 

resulted in a significant increase in the rate of neural progenitor cell (NPC) expansion 

when cultured in vitro compared to the non-degradable control (Ashton et al., 2007). 

Directed axonal regeneration has been achieved in vitro and in vivo using highly 

anisotropic capillary hydrogels composed of alginate (Prang et al., 2006). Using an 

entorhino-hippocapal slice culture model these gels were shown to elicit orientated 

regrowth, resulting in target re-innervation. Following implantation into an acute cervical 

lesion in an adult rat model, regenerating axons grew into the gels in a longitudinal 

manner, with aligned axonal and GFAP+ processes. 

The use of cellulose hydrogels in spinal cord repair has been limited despite the 

promising neuronal differentiation of hMSCs in vitro (Gu et al., 2010). Methylcellulose, 

a compound derived from cellulose has been modified via attachment of laminin, giving 

rise to increased neural stem cell (NSC) survival, neurite outgrowth and differentiation 

into neuronal and oligodendrocyte lineages (Stabenfeldt et al., 2010). 

Chitosan is a biodegradable, cationic polysaccharide produced by deacetylation of 

chitin found within crustaceans and forms a hydrogel via hydrogen bonding and 

hydrophobic interactions. Due to receptor-mediated binding of N-acetylglucosamine, 

chitosan gels stimulate a significant immune response in the brain and so their use is 

limited (Crompton et al., 2006). In order to mitigate the effects of such a response, 

modifications have been made to the chemical structure for use in spinal cord repair.  

Further modifications include pH adjustment and poly-d-lysine (PDL) functionalisation, 

resulting in increased cell viability (up to 0.05 % PDL) in 3D cultures compared to 

unfunctionalised controls (Crompton et al., 2007). 

Fibrin is a fibrous protein involved in the clotting of blood. This has been used in 

conjunction with the glycoprotein fibronectin to create injectable hydrogels for the repair 

of SCI. Following a knife-cut cavity in the rat spinal cord, hydrogels were injected into 

the lesion cavity and it was found that at 4 weeks axonal growth was the greatest for 

fibronectin/fibrin gels (King et al., 2010). Fibronectin gels alone however, result in 
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reduced survival of neurons in the adjacent intact spinal cord, supported by additional 

evidence indicating a slight inhibitory effect of fibronectin on neurite extension (Deister 

et al., 2007). Fibrin gels have been investigated for the release of ChABC in the 

lesioned spinal cord, showing a marked reduction in inhibitory GAGs (reduced by 37 

%) compared to injection alone (Hyatt et al., 2010). 

Hyaluronic acid (HA) is another naturally derived material used within tissue 

engineering. This is a non-sulphated GAG found naturally within neural tissue, 

consisting of repeating D-glucuronic acid and N-acetylglucosamine disaccharide units. 

The majority of HA present in the CNS is produced by astrocytes, and surrounds the 

myelinated axons and neuronal cell bodies found within the white and grey matter of 

the spinal cord (as seen using immunofluorescence in the rat spinal cord) (Bignami et 

al., 1992). 

The biological effects of HA are molecular weight (MW) dependent, with high MW 

forms of HA being beneficial within the inured spinal cord; reducing epidural scar 

formation and maintaining astrocytes in an unreactive state (Akeson et al., 2005). High 

MW HA has also has a suppressive effect on inflammatory cells that may cross the 

compromised BSCB (Schimizzi et al., 2006; Bollyky et al., 2007). High MW HA 

however, is degraded into low molecular weight HA following injury (mediated by a 

family of hyaluronidases), triggering increased proliferation of astrocytes and the 

formation of a glial scar (Struve et al., 2005). 

Both MW variants of HA are capable of binding to the receptor CD44 expressed on the 

surface of astrocytes (amongst other cells) (Underhill, 1992; Haegel et al., 1993).  

HA/CD44 binding stimulates Rac1-PKNƔ kinase activity; upregulating cortactin 

phosphorylation, thus attenuating F-actin crosslinking, cytoskeleton activation and 

astrocyte migration (Bourguignon et al., 2007). RHAMM (receptor for HA-mediated 

migration) dependent motility has also been detected in cultured astrocytes and 
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microglia (Turley et al., 1994) and a number of in vitro studies suggest the involvement 

of RHAMM in neurite outgrowth (Nagy et al., 1995; Nagy et al., 1998). 

Previously, hydrogels created from pure HA were demonstrated to enhance neural 

regeneration and reduce glial scar formation in the CNS following experimental SCI 

(Lin et al., 2009), however, cell attachment remains an issue with such materials. 

Recently a hyaluronic acid-based hydrogel was found to improve neuronal survival in 

spinal cord slice cultures, highlighting the potential benefits for the use of this material 

following SCI (Schizas et al., 2014). 

Modification of HA hydrogels using various ECM components including laminin, RGD, 

IKVAV, PDL and PLL has been achieved. Gels modified with laminin and implanted 

into brain lesions of rats were shown to improve repair of tissue; reducing the number 

of reactive astrocytes around the injured area (Hou et al., 2005). Similarly, RGD, PDL, 

PLL and IKVAV modified HA hydrogels have also been investigated within traumatic 

brain injury models, resulting in increased cell migration (Tian et al., 2005; Cui et al., 

2006; Wei et al., 2007) demonstrating their potential use for the treatment of additional 

CNS injuries. 

HA hydrogels have also been investigated for the release of neurotrophic factors and 

bioactive agents in the CNS. Anti-NgRs (Nogo receptor antibodies) have been released 

from HA gels in a pH dependent manner, in vitro (Hou et al., 2006) and in vivo (Wei et 

al., 2010). These studies show the beneficial effect the slow release of anti-NgRs has 

on neurite outgrowth (chick DRG) and axonal ingrowth within an SCI model. 

Furthermore, sustained release of BDNF has also been achieved using HA based 

hydrogels in a rat model of SCI (Park et al., 2010). Compared to hydrogels alone and 

the direct delivery of BDNF, BDNF-containing hydrogels resulted in the greatest 

improvement of functional recovery as assessed by locomotive testing (Basso-Beattie-

Bresnahan (BBB) score). 
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Table 1.2 Naturally-derived hydrogels investigated for spinal cord injury repair 

Hydrogel Modification Assessment  Outcomes Reference 

Agarose 

Laminin 

oligopeptide-

modified  

DRG (E9 chick) & PC12 

cell culture 

Promotion of neurite extension varied according to 

peptide sequence. 

(Bellamkonda et al., 

1995; Bellamkonda et 

al., 1995) 

GRGDS 

oligopeptide-

modified channels 

DRG cell culture Orientated axonal growth. 
(Luo and Shoichet, 

2004) 

RGDS &  hMSC 

delivery 

Mouse T12 clip 

compression 
Increased M2 macrophage population. (Caron et al., 2016) 

BDNF delivery 
Rat T10 dorsal over-

hemisection 

Increased neurite growth into hydrogel, reduced 

astrocytes and CSPGs 
(Jain et al., 2006) 

BDNF & Rho 

GTPase delivery 

Rat  T8-10 dorsal over-

hemisection 

Higher percentage of axons from the corticospinal tract 

spanning the CSPG-rich regions located proximal to the 

lesion site. 

(Jain et al., 2011) 

ChABC & NT-3 

delivery 

Rat  T10 dorsal over-

hemisection 

Improvement in locomotor function when delivered 

together. 
(Lee et al., 2010) 

Alginate 

GDNF delivery 
Rat T9-10 lateral 

hemisection 

Free GDNF delivery resulted in increased number of 

neurites, reduced number of astrocytes & improved 

functional recovery. 

(Jain et al., 2006) 

Alginate-based 

highly anisotropic 

capillary hydrogels 

Entorhino-hippocampal 

slice culture 
Longitudinal axonal growth. 

(Prang et al., 2006) 

Rat C3 transection 
Axonal profiles grew into gels longitudinally, aligned 

along GFAP+ processes. 

Cellulose - hMSC culture Neural differentiation of hMSCs. (Gu et al., 2010) 
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Abbreviations: BBB: Basso-Beattie-Bresnahan, BDNF: Brain Derived Neurotrophic Factor: ChABC: Chondroitinase ABC enzyme, CSPG: chondroitin 
sulphate proteoglycan, DRG: dorsal root ganglion, GDNF: Glial Cell Line-Derived Neurotrophic Factor, GFAP+: Glial Fibrillary Acidic Protein positive, 
hMSC: human mesenchymal stem cell, hEnSC: Human endometrial-derived stromal cells, NSC: neural stem cell, NSPC: neural stem/progenitor cell, 
PDL: poly-d-lysine, PLL: poly-l-lysine.   

Hydrogel Modification Assessment  Outcomes Reference 

Cellulose 
Methylcellulose 

laminin-1 

NSC neurospheres from 

transgenic mice E14.5 

Reduced apoptosis, increased neurite extension and 

greater neuronal and oligodendrocyte differentiation for 

laminin functionalised gels. 

(Stabenfeldt et al., 

2010) 

Chitosan  PDL  Cortical cell culture Neuron survival improved with PDL. (Crompton et al., 2006) 

Fibrin ChABC delivery Rat C4 incision  
Reduction in sulphated GAGs compared to control and 

injected ChABC groups.  
(Hyatt et al., 2010) 

Fibronectin  

& fibrin 

Fibrin and 

fibronectin gels & 

mix of the two 

Rat T7-9 transection 
Gel mixture integrated with the host tissue and 

supported growth of axons. 
(King et al., 2010) 

Hyaluronic 

acid 

- Spinal cord slice cultures 
Improved neuronal survival and limited microglial 

activation. 

(Schizas et al., 2014) 

 

Anti-NgR release DRG (chick) culture 
Improved neural cell attachment and survival and 

increased neurite outgrowth. 
(Hou et al., 2006) 

Anti-NgR & PLL Rat T8-9 hemisection 

Significant increase in axon extension into gel at 8 

weeks. Increase in cell number and myelinated axons 

compared to control. Supported angiogenesis and 

inhibited glial scar formation. 

(Wei et al., 2010) 

BDNF release (& 

IKVAV) 

Rat T10 clip 

compression 
Improvement in BBB score. (Park et al., 2010) 
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1.4.3 Measuring substrate stiffness 

Stem cells sense the extent to which a substrate or ECM deforms in response to an 

applied traction force; essentially measuring the substrate’s stiffness and responding 

accordingly. The stiffness of a material can be measured using a number of 

methodologies. As hydrogels are viscoelastic, with a combination of solid and fluid 

phases, these properties are typically assessed using rheology. Rheometers allow the 

precise measurement of a material’s response to applied force (stress) or deformation 

(strain). In most cases a dynamic (oscillating) shearing force is applied to the material 

using a frequency or strain sweep (using either a cone or a plate), giving rise to outputs 

such as complex shear modulus (G*), storage modulus (G’) and loss modulus (G’’) 

(described in more detail in Chapter 3.2.3).  

The mechanical properties of hydrogels can also be assessed using compressive 

methods. One popular technique involves compressing the material between parallel 

plates using a continuous stress or strain. The Young’s (compressive elastic) modulus 

(Ey) is then calculated as the gradient of the stress-strain curve in the linear (elastic) 

region and is a direct indication of the material’s stiffness. Additionally, Ey can be 

determined using atomic force microscopy (AFM) by quantifying the deflection of a 

cantilever tip upon indentation at the hydrogel surface, or by using microbead 

displacement calculations. Additional techniques for CNS tissue are reviewed by 

(Budday et al., 2019). 

1.5 Mechanotransduction in the CNS 

Transmembrane proteins, such as integrins, enable cells to bind to the surrounding 

ECM or substrate, mechanically anchoring the cytoskeleton to the ECM and allowing 

the transmission of contractile forces required for movement and “sensing” of 

mechanical stiffness referred to as mechanotransduction (Tsai and Kam, 2009; Moore 

et al., 2010). The traction forces exerted by cells via these cell surface integrins 

influence cytoskeletal tension, leading to changes in cell morphology, signalling 
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cascades, and gene expression; ultimately directing cell fate (Paszek et al., 2005; 

Huebsch et al., 2010; Lee et al., 2013). Additionally, cell-cell junction adhesion via 

cadherin-catenin complexes allows cells to communicate forces between the F-actin 

cytoskeletons of neighbouring cells, further amplifying cellular responses (Figure 1.4) 

(Buckley et al., 2014). The activity of the ion channel, Piezo1, directs neural stem cell 

differentiation. Piezo1 opens in response to cell tension mediated by external 

mechanical stimuli (tensile/shear forces) and changes in traction forces a cell transmits 

due to ECM stiffness (Pathak et al., 2014).  

 

 

Figure 1.4 Stem cell mechanosensitivity 

Stem cells apply traction forces to their surroundings via cell-ECM adhesion ligand 
(blue matrix) binding to integrin receptors on cells (green). They can also transfer these 
forces to neighbouring cells via cell-cell junctions, e.g. cadherins (yellow). These 
internal forces are shown as red arrows. Additionally, cells can sense the external 
forces applied to them (compression/tension and shear – shown as black arrows), 
using mechanically-gated ion-channels (blue) and changes to the cell’s cytoskeleton. 
Adapted from (Vining and Mooney, 2017). Created using BioRender.com. 
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1.5.1 Neural tissue biomechanics 

The mechanical properties of biological samples are inherently difficult to characterise 

and compare due to the heterogeneous nature of tissue, variations in tissue origin 

between studies, and the differing testing methods employed. CNS tissue has a high 

water content and is thought to exhibit nonlinear viscoelastic properties, and as such 

the tissue is strain-stiffening and measurements are influenced by length and time 

scales of loading (reviewed in detail in (Budday et al., 2019)). Due to the experimental 

variations and testing inaccuracies, the reported elastic modulus of CNS tissue varies 

widely, with values ranging from 40 Pa to 20 kPa for the brain (Franze et al., 2013) and 

a recent study giving a shear modulus of 0.4–1.4 kPa for the human brain (Budday et 

al., 2017). Despite these limitations, it is widely accepted that CNS tissue is “ultrasoft” 

and therefore highly susceptible to damage. 

Interestingly, in contrast to scars formed elsewhere in the body, the glial scar formed 

following SCI is significantly softer than uninjured tissue (Franze et al., 2013; 

Moeendarbary et al., 2017). In a study by (Moeendarbary et al., 2017), the stiffness of 

uninjured cortical tissue ranged from 50 to 500 Pa, and following a unilateral stab injury 

to the neocortex of the brain, the tissue either side of the injury was ~15% softer than 

the contralateral tissue control 9 days post-injury (PI). Uninjured rat spinal cord tissue 

stiffness was determined to be 420 Pa for grey matter and 177 Pa for white matter. 

Following a spinal cord crush injury, the stiffness of the lesion site tissue reduced 

significantly, with the greatest reduction seen in the grey matter (~ 40% reduction in 

elastic modulus at 3 weeks PI to around 200 Pa). This phenomenon is thought to be 

due to extensive production of highly hydrated CSPGs at the injury site. Additionally, in 

contrast to other scar tissue, crosslinked collagen I is absent from the glial scar (Stichel 

and Müller, 1998) and instead, collagen IV, vimentin, and GFAP are upregulated 

following injury; potentially contributing to this change in stiffness (Moeendarbary et al., 

2017).  
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1.5.2 Manipulating neural stem cell behaviour using substrate 

stiffness 

A number of studies have demonstrated the sensitivity of neural stem cells to substrate 

elasticity, with soft matrices comparable to native CNS tissue increasing cell 

proliferation (Saha et al., 2008a; Banerjee et al., 2009a; Leipzig and Shoichet, 2009a) 

and inducing neurogenesis (Engler et al., 2006; Seidlits et al., 2010) reviewed by (Lin 

et al., 2016; Vining and Mooney, 2017).  

1.5.2.1 Proliferation and migration 

The stiffness of the surrounding substrate also influences stem cell proliferation and 

migration (Pelham and Wang, 1997). Cell movement requires the generation and 

transmission of protrusive and contractile forces for lamellipodial extension and 

uropodal retraction respectively (Thomas and DiMilla, 2000). This occurs via dynamic 

adhesion and detachment of specific, reversible transmembrane glycoproteins with 

ECM proteins in the surrounding scaffold.  

Human glioblastoma cell migration extent and speed decreases with increasing matrix 

compliance (Thomas and DiMilla, 2000) and adult rat SEZ NSPCs only migrated from 

neurospheres when cultured on soft hydrogels with a stiffness of 0.8 kPa (Hynes et al., 

2009; Leipzig and Shoichet, 2009b). Additionally, increased NSC/NSPC proliferation 

occurs on soft hydrogels (< 800 Pa) (Banerjee et al., 2009b)(Leipzig and Shoichet, 

2009b). (Saha et al., 2008b) did however, show that adult NSC spreading, self-

renewal, and differentiation is inhibited when cultured on hydrogels with a stiffness of 

10 Pa, indicating these cells also have a lower stiffness threshold. 

1.5.2.2 Differentiation 

Neural stem and progenitor cells from embryonic and adult rats and mice have been 

investigated for their response to substrate modulus. Greatest neuronal differentiation 

(as indicated by expression of the neuronal marker β-tubulin III) was observed in most 
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cases to occur on soft gels with moduli under 3 kPa. Glial differentiation was varied 

across different substrates (Table 1.3).  

NSCs from the hippocampus of adult rats differentiated preferentially into neurons 

when cultured on poly acrylamide (PA) hydrogels with moduli of 100-500 Pa, whereas 

on stiff gels with moduli of 1-10 kPa, glial differentiation was enhanced (Saha et al., 

2008b) (Table 1.3). Neuronal differentiation was greatest when cultured on soft 

chitosan hydrogels (<1 kPa), and differentiation into astrocytes occurred on hydrogels 

with stiffnesses ranging from 0.8-3.5 kPa. (Leipzig and Shoichet, 2009b). Here they 

cultured NSPCs from the sub ependymal zone of adult rats and found that they 

differentiated mainly into oligodendrocytes, which was increased on hydrogels with an 

elastic modulus of 7 kPa. Little to no differentiation into neurons or astrocytes was 

observed when cultured on hydrogels with a stiffness of 7 kPa.  

NSCs from embryonic rat (E15.5) cerebral cortices showed an increase in astrocytic 

differentiation with decreasing stiffness of PDMS hydrogel (Teixeira et al., 2009). 

Additionally, on all hydrogels, there was a greater number of neurons compared to 

culture plate controls, (elastic modulus of ~109 Pa (Teixeira et al., 2009)), however 

differentiation into neurons and oligodendrocytes was found to be independent of 

PDMS stiffness.  

Additional studies have investigated the behaviour of stem cells cultured within 3D 

hydrogels, more reminiscent of the in vivo environment. (Banerjee et al., 2009b) found 

that the greatest enhancement in neuronal differentiation of adult NSCs from the 

hippocampus of rats was observed when cells were cultured within soft alginate 

hydrogels with an elastic modulus comparable to that of CNS tissue (180 Pa – Table 

1.3). NPCs from the ventral midbrain of embryonic mice (E13.5) differentiated into 

neurons when co-cultured within soft HA gels, and increased glial differentiation was 

seen as the substrate modulus increased (Seidlits et al., 2010).  
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Increased glial differentiation of NPCs from the brain of embryonic rats (E15) was also 

seen when cultured on PEG/HA hydrogels with increasing stiffness (up to ~15 kPa) 

(Aurand et al., 2014). However, neuronal differentiation was only observed when these 

cells were cultured within hydrogels with compressive moduli of ~5 kPa. In the same 

study, the fate of adult NPCs was investigated. Neuronal differentiation was observed 

in hydrogels with a stiffness of up to ~20 kPa, and once again, increased differentiation 

into neurons was seen for cells cultured within soft hydrogels (~5 kPa) (Aurand et al., 

2014). Differentiation of adult NPCs into astrocytes was only observed when cultured 

within hydrogels with compressive moduli of ~5 kPa, opposite to the trend seen for 

embryonic NPCs (Table 1.3). 
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Table 1.3 Studies investigating the effect of increasing hydrogel stiffness on the fate of neural stem cells 

Hydrogel Stiffness (Pa) Tuning of 
stiffness Porosity Cell type, source, 

location 2D/3D Neuron Astrocyte Olig. Reference 

  
Chitosan 

800 – 20,000 
(Ey) 

Concentration of 
photoinitiator Decreased NSPCs, adult rat, SEZ of 

the lateral ventricles 2D 
  

    (Leipzig and 
Shoichet, 2009b) 

PA 13.5 – 9,580 (G’) 
Concentration of 
acrylamide and 
bis-acrylamide 

N/A NSCs, adult rat, 
hippocampus 2D   

        - (Saha et al., 
2008b) 

PDMS 12 - 750 kPa 
(Ey*) 

Crosslinker 
concentration N/A NSC, rat embryo E15.5, 

cerebral cortices 2D   
      (Teixeira et al., 

2009) 

Alginate 180 – 20,000 
(G’) 

Alginate & CaCl2 

concentrations 
(crosslinking 

density) 
N/A NSCs, adult rat, 

hippocampus 3D   - - (Banerjee et al., 
2009b) 

HA 
3,000 – 5,100 
(compressive 
bulk modulus) 

Crosslinker 
concentration N/A 

NPCs, embryonic mouse 
E13.5, ventral midbrain  
& primary spinal cord 

astrocytes 
3D   

    - (Seidlits et al., 
2010) 

PEG 120 – 31,300 
(Ey) PEG/HA ratio N/A 

NPCs, embryonic rat 
E15, brain  

NPCs, adult rat, 
hippocampus & SVZ 

3D 
  
  
  

  
- 
  
 - 

(Aurand et al., 
2015) 

Key:     = decrease,       = significant decrease,    = increase,        = significant increase,        = no change  - = not assessed 

Abbreviations: Ey: Young’s modulus, Ey*: bead displacement method, G’: storage modulus, G*: complex modulus, HA: hyaluronic acid, kPa: kilo 
Pascal, NSC: neural stem cell, NPC: neural progenitor cell, NSPC: neural stem/progenitor cell, Pa: Pascal, PA: polyacrylamide, PEG: polyethylene 
glycol, PDMS: polydimethylsiloxane, SVZ: sub-ventricular zone, SEZ: sub-ependymal zone.
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These studies do however present a number of methodological limitations. As can be 

seen in the examples presented in Table 1.3, numerous methods have been used to 

tune and characterise the stiffness of the hydrogels and a variety of cell sources have 

been used; therefore limiting comparison. Additionally, the porosity is rarely 

characterised (see Table 1.3), and could contribute to the change in cell behaviour 

observed. Use of 2D culture techniques may also impact on the cellular response to 

hydrogel stiffness due to the artificial polarity created between the surfaces of the cell 

investigated (Cukierman et al., 2001). In addition to this, in most cases the impact of 

stiffness modulation (i.e. crosslinking density) on the physical properties of the resulting 

hydrogel (porosity, fibre diameter etc.) has not been addressed and so causal 

relationships cannot be established conclusively. Similarly, CNS tissue stiffness has 

also been characterised using various techniques, thus adding further confusion when 

attempting to accurately match hydrogel properties to native tissue due to a lack of 

standardisation (Aurand et al., 2012). 

From the overall trends seen in the literature, it could be theorised that ependymal cells 

may exhibit increased proliferation and differentiate preferentially into neurons when 

cultured on soft hydrogels with a stiffness similar to that of native spinal cord tissue.  

 

 

 

 

 

 

 

 



 

34 

 

1.6 Hypothesis  

It is hypothesised that the mechanical properties of hydrogels can be modulated 

independently of porosity, and that these can be used to deliver SDF-1α to the spinal 

cord in order to alter the proliferation, differentiation, and migration of spinal cord 

ependymal cells. 

1.6.1 Aims 

This project aimed to determine the potential of manipulating endogenous ependymal 

cells using hydrogels, towards repair for SCI. This included: determining the feasibility 

of producing a library of collagen hydrogels with varied mechanical properties and 

constant porosity; characterising a transgenic line for the labelling of spinal cord 

ependymal cells; developing organotypic spinal cord slice cultures for the assessment 

of biomaterials; and an investigation into the effects of hydrogels and a chemokine on 

ependymal cell behaviour in vitro and in vivo (see Figure 1.5). 

1.6.2 Objectives 

1. To investigate the potential of synthesising hydrogels with tuneable stiffness within 

the range of native central nervous system tissue, whilst maintaining porosity 

2. To characterise the expression of (nestin) GFP in transgenic mice  

3. To optimise a protocol for the detection of EdU incorporated into the dividing cells 

of fluorescently labelled cells and spinal cord slice culture methods 

4. To investigate the effects of hydrogel composition on ependymal cell proliferation 

and distribution 

5. To determine if ependymal cell migration can be manipulated using SDF-1α in vitro 

and in vivo 
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Figure 1.5 Overview of the objectives of this thesis 

The development work carried out in chapters 3 to 5 enabled the interrogation of the 
hypothesis in chapter 6. 
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Chapter 2 - General Methods 

 

2.1 Materials 

The following materials were used throughout this thesis. The chemicals and drugs are 

detailed in Table 2.1, consumables and glassware are detailed in Table 2.2, and the 

equipment used are detailed in Table 2.3. 

 

Table 2.1 Chemicals and drugs used within this thesis 

Chemical/Drug (abbreviation)  Cat. number Supplier 

1-(3-Dimethylaminopropyl)-3-

ethylecarbodiimide hydrochloride 

(EDC) 

A10807 Alfa Aesar. Heysham, UK 

2,4,6-Trinitrobenzene Sulfonic Acid 

(TNBS) 

P2297 Sigma-Aldrich. Poole, UK 

5-ethynyl-2’-deoxyuridine (EdU) N/A Carbosynth, Compton, UK 

Acetic Acid  537020 Sigma-Aldrich. Missouri, 

USA 

Agar  A7002 Sigma-Aldrich. Poole, UK 

Alexa Fluor secondary antibodies See chapter 4,  

Table 4.4 

Invitrogen or Life 

Technologies 

AMD3100  ab120718 Abcam, Cambridge, UK 

Atipamezole hydrochloride N/A Antisedan, Vetoquinol & 

Orion pharma. 

Northamptonshire, UK 

B27 supplement 17504044 Gibco. NY, USA. 

Biotin azide E3730 Lumiprobe 

Biotin picolyl azide 92186 Biotium 

Biotin-conjugated secondary 

antibodies 

See chapter 4, 

Table 4.4 

Jackson Immunoresearch 
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Chemical/Drug (abbreviation)  Cat. number Supplier 

Buprenorphine hydrochloride N/A Vetergesic, Ceva animal 

health Ltd. 

Buckinghamshire, UK. 

β-mercaptoethanol (βME) M6250 Sigma-Aldrich. Poole, UK 

Calibration solutions pH4: 2626-DA 

pH7: 2627-DA 

Scientific laboratory 

supplies Ltd 

Crosslinkers: 

p-Phenylenediacetic Acid (4Ph) 

 

1,3-Phenylenediacetic Acid (13Ph) 

 

Adipic Acid (Ad) 20115.365  

 

P23407 

 

A11429 

 

20115.365 

 

Sigma-Aldrich. Poole, 

UK 

Alfa Aesar 

 

VWR International. 

Leicestershire, UK 

Dimethyl Sulfoxide (DMSO) D5879 Sigma-Aldrich 

Disodium Hydrogen Phosphate 

(Na2HPO4) 

S374-500 Thermofisher.  

Leicestershire, UK. 

Dulbecco’s modified eagle’s medium 

(DMEM) 

D6546 Sigma-Aldrich. Poole, 

UK 

Ethanol  16368  Sigma-Aldrich. Poole, UK 

Fluoroshield F6182 Sigma-Aldrich. Poole, 

UK 

Fluoroshield with DAPI F6057 Sigma-Aldrich. Poole, 

UK 

Foetal bovine serum (FBS) A3912 Sigma-Aldrich. Poole, 

UK 

Gelatin, porcine skin 04055-500G Sigma-Aldrich. Poole, 

UK 

Glutaraldehyde 36218 Gurr 

Hydroxystilbamidine (FG - 

FluoroGold) 

ab138870 Abcam, Cambridge, UK. 

Hystem™ 

Hystem™C 

HYS020 

HYSC020 

Sigma-Aldrich. Poole, 

UK 

Incuwater-Clean A5219,0100 PanReac AppliChem, ITW 

Reagents 
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Chemical/Drug (abbreviation)  Cat. number Supplier 

Ketamine  N/A Ketavet, Zoetis UK Ltd. 

London, UK 

L-Glutamine  G7513 Sigma-Aldrich. Poole, 

UK 

Magnesium sulphate heptahydrate 

(MgSO4.7H2O) 

M/1050/53 Fisher Chem. Leics., UK 

Medetomidine hydrochloride N/A Domitor, Vetoquinol & 

Orion pharma., UK 

Monosodium phosphate monobasic 

monohydrate (NaH2PO4.H2O) 

095388 Fluorochem Ltd. Hadfield, 

UK 

Mouse on Mouse Kit BMK 2202 Vector laboratories, UK 

Neurobasal-A medium 10888022 Gilbco, ThermoFisher 

Scientific,  

N-Hydroxysuccinimide (NHS) 804518 Merck. Schuchardt. 

Hohenbrunn, Germany 

Paraformaldehyde (PFA) 15812-7 Sigma-Aldrich. Poole, 

UK 

Penicillin/streptomycin P44580 Sigma-Aldrich. Poole, 

UK 

Phosphate buffer (PB) sterile D8537-500 Sigma-Aldrich. Poole, 

UK 

Phosphate-buffered saline (PBS) 

tablets 

BR0014G Oxoid Ltd., Hampshire, 

UK 

Potassium chloride (KCl)  31248 Sigma-Aldrich. Poole, 

UK 

Recombinant Murine SDF-1α 

(CXCL12) 

250-20A Peprotech, NJ, USA 

Sodium Bicarbonate (NaHCO3) S6014 Honeywell, Fluka. USA 

Sodium Chloride (NaCl,) S/3120/66 Fisher Chem. Leics., UK 

Sodium pentobarbital N/A Euthatal, Merial Pentoject, 

Animalcare, UK 

Streptavidin Alexa Fluor488 S32354 Life Technologies 

Streptavidin Alexa Fluor555 S32355 

 

Life Technologies 

Sucrose  S/8560/60 Fisher Chem. Leics., UK 
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Chemical/Drug (abbreviation)  Cat. number Supplier 

Triton X-100  X100 Sigma-Aldrich. Poole, 

UK 

Trizma base  T1503 Sigma-Aldrich. Poole, 

UK 

Trizma hydrochloride  T3253 Sigma-Aldrich. Poole, 

UK 

Tween20  P9416  Sigma-Aldrich. Poole, 

UK 

Virkon (Rely+On) 148-0201 Day Impex, VWR, UK  

Vitrogel®3D TWG001 TheWell Bioscience, NJ, 

USA 

 

Table 2.2 Consumables and glassware used within this thesis 

Consumable Cat. Number Supplier 

Absorbable sutures W9015 Ethicon, New Jersey, USA. 

Culture inserts PICM0RG50  Millicell, Merck Millipore, 

Germany. 

Curved needle 16mm, W2502 Ethicon, New Jersey, USA. 

6 & 48 well plates  140675 & 150687 Thermo Fisher Scientific 

Eye lubricant Lacri-Lube Allergan, Dublin, Ireland 

Non-dissolvable sutures W2502 Ethicon, New Jersey, USA. 

Blades (sterile) #10 Swann Morton. Sheffield, UK 

Blades (non-sterile) INS4610 VWR, UK. 

Blades (vibratome) 752/1/SS/50 Campden instruments, Leics., 

UK. 

Blades (vibratome, 

ceramic) 

7550-1-C Campden instruments, Leics., 

UK. 

Coverslips (various) 43210.KJ VWR, UK. 

Microscope slides N/A143 Academy Science Ltd., UK.  

Eppendorf tubes Various Thermo Fisher Scientific UK. 

Leics., UK 

Falcon tubes (15mL, 

50mL) 

339650, 339652 Thermo Fisher Scientific UK. 

Leics., UK 

Filter pipette tips Various StarLab. Milton Keynes, UK 
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Consumable Cat. Number Supplier 

Serological pipettes 

(sterile) 

ARLAPS10 Sigma-Aldrich. Poole, UK. 

Pasteur pipettes  Various SLS, UK. 

Separating funnel 527-1222 VWR, UK. 

 

Table 2.3 Equipment used within this thesis 

Equipment Model  Make 

Blunt forceps & spring 

scissors 

654558 World Precision 

Instruments 

CD spectrometer J-715 spectropolarimeter Jasco 

Class II Safety Cabinet Herasafe, Heraseus. Germany. 

Confocal microscope LSM880 Zeiss 

Culture incubator N/A Labtech inc., 

Massachusetts, USA 

Dissection microscope SMZ-2B Nikon 

Electrode puller P-97 Flaming/Brown Sutter Instrument Co. CA, 

USA 

Fine forceps Dumont tweezers, #55 World Precision 

Instruments 

Fluorescence microscope E600  Nikon 

Fluorescence microscope M7000 EVOS 

Freeze drier Alpha 2-4 LD plus SciQuip, UK. 

Laminar flow hood N/A Astec Microflow. 

Hampshire, UK 

Platinum Sputter Coater 208HR Cressington 

Rheometer Kinexus Pro Malvern Instruments. 

Worcestershire, UK. 

Scanning Electron 

Microscope (SEM) 

 Quanta FEG 

Stereotactic frame 51730U Stoelting Co., Illinois, USA 

Syringe pump CMA 4004 Harvard apparatus. MA, 

USA 

Vibrating microtome 

(culture) 

Integraslice 7550 PSDS Campden Instruments Ltd. 

Leics., UK 
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Equipment Model  Make 

Vibratome VT1000S Leica. Germany. 

 

2.1.1 Common buffers, solutions, and culture medium 

The composition, diluent, and pH (where appropriate) of each buffer, solution, drug, 

and culture medium used throughout this thesis are detailed in Tables 2-4 to 2-7. The 

pH meter was calibrated before each use at 20°C using pH 4 and 7 calibration 

solutions. 

Table 2.4 General buffers used within this thesis 

   Composition Diluent 

Phosphate-buffered 

saline 

PBS pH 7.4 10 mM Na2HPO4, 1.8 mM 

KH2PO4, 137 mM NaCl, 

4 mM KCl 

diH2O 

Phosphate buffer PB 0.1 M NaH2PO4.2H2O, Na2HPO4 diH2O 

Hydroxymethyl 

aminomethane (Tris) 

buffered saline 

TBS 0.1 M 

pH 7.6 

Trizma base, Trizma 

hydrochloride  

diH2O 

PBS Triton X-100 PBST 0.1% & 0.2% 

(v/v) 

0.1% & 0.2% (v/v) Triton 

X-100 

PBS 

PBS Tween20 T20 0.1% (v/v) 0.1% (v/v) Tween 20 PBS 

Sodium phosphate 

buffer 

SPB 0.1 M, pH 7.4 NaH2PO4.H2O & Na2HPO4 H2O 

 

Table 2.5 General solutions used within this thesis 

 Abbreviation Composition Diluent 

Acetic acid N/A 17.4 mM, pH 7.4 diH2O 

Agar N/A 3% (w/v) – heated to near 

boiling, bubbles poured off, 

then left to cool 

diH2O 



 

42 

 

 Abbreviation Composition Diluent 

Artificial cerebrospinal 

fluid 

aCSF Sodium chloride 124 mM, 

NaHCO3 26 mM, KCl 3 mM, 

MgSO4.7H2O 2 mM, NaH2PO4 

2.5 mM, Glucose 10 mM, 

CaCl2 2 mM 

diH2O 

Ethanol N/A 70% (v/v) diH2O 

Gelatin N/A 10% (w/v) – heated to near 

boiling, bubbles poured off, 

then left to cool  

diH2O 

Glutamine N/A 2.5 w/v  PB 

NaHCO3 N/A 4 wt.%, pH 8.5 diH2O 

Osmium tetroxide N/A 1 % w/v PB 

Paraformaldehyde  PFA 4% (w/v) 0.1 M PB 

PFA with glutaraldehyde  N/A 0.25% (w/v) 4% PFA 

Sucrose artificial 

cerebrospinal fluid 

SaCSF Sucrose 217 mM, NaHCO3 26 

mM, KCl 3 mM, MgSO4.7H2O 

2 mM, NaH2PO4 2.5 mM, 

Glucose 10 mM, CaCl2 1 mM 

diH2O 

2,4,6-

trinitrobenzenesulfonic 

acid 

TNBS 0.5 wt.%  diH2O 

Virkon N/A 1% (w/v) diH2O 

 

Table 2.6 Drug solutions used within this thesis 

 Abbreviation Concentration  Diluent 

Administered I.P – given as: mass of drug/mass of animal 

Atipamezole  N/A 1 mg/kg final Sterile saline 

Buprenorphine  N/A 0.1 mg/kg final Sterile saline 
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 Abbreviation Concentration  Diluent 

Hydroxystilbamidine 

(Fluorogold)  

FG 1% (w/v) 50 mg/kg final Sterile saline 

Ketamine N/A 75 mg/kg final Sterile saline 

Medetomidine  N/A 1.0 mg/kg final Sterile saline 

Sodium pentobarbital  N/A 60 mg/kg final diH2O 

 

Table 2.7 Culture media solutions 

Medium name Composition 

Dissection medium Dulbecco’s modified eagles medium (DMEM), 1% 

(v/v) penicillin/streptomycin. 

Serum-containing medium Neurobasal A medium; 1% (v/v) L-Glutamine, 1% 

(v/v) penicillin/streptomycin, and 10% (v/v) fetal 

bovine serum. 

Serum-free medium Neurobasal A medium; 1% (v/v) L-Glutamine, 1% 

(v/v) penicillin/streptomycin, and 2% (v/v) B27 

supplement. 

 

2.2 Data analysis 

Data were collated in Microsoft Excel and analysed using IBM SPSS statistics 21. 

Average values were calculated and presented as mean ±SE (unless stated 

otherwise). Shapiro-Wilk and Levine’s tests were applied for distribution and equality of 

variance analysis respectively. A decision tree was used to determine the appropriate 

statistical test (Figure 2.1).  
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Figure 2.1 Decision tree used to determine the appropriate statistical test depending on the homogeneity of distribution and variance. 

Adapted from (Clarkson, 2018).
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Chapter 3 – Investigating the potential manipulation of hydrogel 

mechanical properties 

 

3.1  Introduction  

Despite the pressing clinical need for improved spinal cord injury repair, clinical 

treatment options remain limited. Tissue engineering advancements in the past decade 

have resulted in a vast library of biomaterials; however, the physical and mechanical 

factors affecting ependymal cells (ECs) within the spinal cord have not been 

investigated. 

Collagen is the primary component of extracellular matrices and type I collagen has 

been found to support the growth and differentiation of neurons when used as a 

hydrogel scaffold in vitro (see Table 3.1) (O’Connor et al., 2001; Ma et al., 2004; Huang 

et al., 2013). Soluble collagen I inhibits glial proliferation in the peripheral nervous 

system (Eccleston et al., 1989)(as measured by [3H]thymidine incorporation) and so 

may decrease scarring following SCI (Klapka and Müller, 2006; Macaya and Spector, 

2012). Additionally, collagen IV promotes neurite outgrowth in sympathetic neurons of 

the peripheral nervous system following short term culture (24 hours) as compared to 

poly-lysine coated coverslips (Lein et al., 1991). In this study collagen IV selectively 

enhanced only axonal growth whereas dendritic growth was not affected. Furthermore, 

this activity was found to be associated with the non-collagenous (NC1) domain on 

collagen, mediated primarily by the transmembrane α1β1 integrin found on these cells.  

Collagen hydrogels have been functionalised with hyaluronic acid (HA) and laminin and 

investigated in vitro. Neural stem/progenitor cells (NSPCs) cultured on HA-

functionalised hydrogels exhibited greater neuronal differentiation compared to 2D 

controls (Brännvall et al., 2007). Patterning of collagen I hydrogels using micro-contact 
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printing of various ECM proteins (aggrecan, fibrinogen, fibronectin, and laminin) 

resulted in the alignment of astrocyte layers according to protein patterning, ultimately 

leading to reduced CSPG expression compared to un-patterned gel controls (Hsiao et 

al., 2015). 

 

Table 3.1 Selection of studies investigating collagen hydrogels for CNS repair 

Hydrogel  Culture Outcomes Reference 

Collagen 3D culture, NSPCs, 

cerebral cortex or 

subcortical region, E13 

rat 

Cells expanded, differentiated 

into neurons, and formed 

synapses. 

(Ma et al., 

2004) 

Collagen 3D culture, cortical 

neurons, E18 rat 

Cells exhibited normal 

neuronal polarity with long 

neurites (> 500 μm), >50% 

survival compared to 0% for 

agarose gel. 

(O’Connor 

et al., 2001) 

Collagen 3D culture, NSCs, 

cerebral cortex, E14 rat 

Significant increase in 

process outgrowth from 

NSCs cultured in gels 

compared to control. 

Differentiation into neurons, 

astrocytes, and 

oligodendrocytes. 

(Huang et 

al., 2013) 

Collagen & 

HA 

3D culture, NSPCs, 

cerebral cortex, 

embryonic; SVZ, P6 & 

adult mice 

Increased neuronal 

differentiation of embryonic 

progenitors compared to 2D 

culture 

Postnatal progenitors 

produced mainly mature 

neurons 

(Brännvall 

et al., 2007) 

Collagen & 

ECM 

protein 

patterning 

2D culture, astrocytes, 

cerebral cortex, P2 rats 

Alignment of astrocytes with 

protein pattern.  

Reduced CSPG expression 

for collagen gels 

functionalised with 

fibronectin. 

(Hsiao et 

al., 2015) 

E= embryonic age, P=postnatal age (days) 

Although some of the collagen scaffolds detailed above have been investigated as 

substrates for the promotion of CNS repair, little is known about the response of ECs to 

such materials. It is hypothesised that by selectively designing and modifying collagen 
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hydrogels; the migration, proliferation, and differentiation of endogenous ECs could be 

manipulated, ultimately helping repair damaged spinal cord tissue. 

In order to investigate the behaviour of ependymal cells in response to hydrogel 

mechanical properties, I first aimed to develop and characterise a number of collagen 

hydrogels, to then use in chapter 6 to investigate the effects of hydrogel composition on 

ependymal cell behaviour (see Figure 3.1). 

 

3.1.1 Aims and Objectives 

This chapter aimed to investigate the feasibility of manipulating the elastic modulus of 

collagen hydrogels, without changing the hydrogel physical properties. This was 

achieved by investigating the following objectives: 

1. To determine the effect of changing the collagen concentration, crosslinker 

concentration, and the crosslinker structure (see Table 3.2 for rationale) on the 

following hydrogel properties: 

 Mechanical  

-  Rheology to determine the elastic modulus (stiffness) 

 Physical   

- TNBS assay to infer the degree of crosslinking/functionalisation 

- Pore spacing assessment using SEM imaging & NMR  

2. Determine the effects of post-processing hydrogels (i.e. ethanol disinfectant washes) 

and whether the methods used for culturing hydrogels (incubation in culture medium at 

37 oC) would alter the hydrogel mechanical properties. 
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Figure 3.1 Schematic depicting the aim of chapter 3 in relation to the rest of this 
thesis. 

 

 

Table 3.2 Conditions trialled in this chapter for manipulating the properties of 
collagen hydrogels 

Variable Rationale 

Collagen 

concentration 

Increasing the collagen concentration should increase the hydrogel 

stiffness due to the additional collagen fibrils present. This should 

also reduce the porosity of the hydrogel. Crosslinking should remain 

constant (Head et al., 2016).  

Crosslinker 

molar ratio 

Increasing the crosslinker molar ratio (compared to collagen lysine 

groups) should increase the degree of functionalisation and increase 

the hydrogel stiffness due to the additional crosslinks formed. It may 

also result in a reduction in pore size (Her et al., 2013; Head et al., 

2016) 

Crosslinker 

structure 

Changing the crosslinker structure may result in a change to the 

hydrogel mechanical properties due to a change in the crosslinking 

bond lengths. It is unknown whether the porosity or the degree of 

crosslinking will change (Head et al., 2016).  
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3.2 Methods  

3.2.1 Isolation of type I collagen 

Type I collagen was isolated via acidic treatment of rat tail tendons according to a 

method used previously (Tronci et al., 2013). Frozen rat tails (obtained from Central 

Biomedical Services, University of Leeds) were thawed in 70% ethanol (v/v) for 30 

minutes to disinfect the skin and transferred into a class II safety cabinet. The skin was 

removed using a scalpel and locking clamp forceps and tails were then dried for 1 hour 

at RT. Individual tendons were removed from the tendon sheath, placed in acetic acid 

(17.4 mM) and stirred for 4 days at 4°C to dissolve (50 mL per tail). The mixture was 

then centrifuged (38,400 RCF, 4°C) for 40 minutes and the tissue pellets were 

discarded. The remaining mixture was transferred to a round bottomed flask, frozen 

overnight at -80°C and then freeze-dried for 7 days to obtain dry collagen. 

3.2.1.1 Circular dichroism spectroscopy 

Circular dichroism (CD) spectroscopy measures the difference between the absorption 

of left and right circularly polarised light over a range of wavelengths and is used to 

study the secondary structure of polypeptides and proteins. CD was carried out on the 

acid-extracted products to confirm the dichroic properties and assess whether there 

was any conformational change following extraction.  

Extracted collagen and a gelatin (negative) control were dissolved in acetic acid (17.4 

mM) at a concentration of 0.002 g/mL. Sample solutions were collected in quartz cells 

of 10.0 mm path length and CD spectra were obtained with a 2.5 nm bandwidth. 

Gelatin was used as a control as this is denatured collagen and so should not show 

any typical peaks associated with triple helices. Acetic acid (17.4 mM) was used as a 

reference and this solvent spectrum was subtracted from each sample spectrum along 

with a blank base spectrum of only air.  
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Ellipticity, θ (millidegrees (mdeg)), was converted into mean residue ellipticity [θ]MRW 

(deg.cm2.dmol-1) using equation 1(147). 

[𝜃]𝑀𝑅𝑊 = (𝑀𝑅𝑊 ×  𝜃)/(10 × 𝑑 × 𝑐) Equation 1 

Where MRW is the mean residue weight for the peptide bond (94.5 Da for collagen  

and 91 Da for gelatin (Lopes et al., 2014)), c is the concentration of the sample (g/mL) 

and d is the path length (1 cm).  

3.2.2 Hydrogel synthesis 

Collagen hydrogels were created according to the method published by (Tronci et al., 

2013; Head et al., 2016), whereby the collagen lysine groups (lys) were directly 

functionalised using a number of bi-functional monomers and thus, crosslinked. These 

crosslinkers include: 4-phenylenediacetic acid (4Ph), 1,3-phenylenediacetic acid 

(13Ph), and adipic acid (Ad) (Figure 3.22). 

 

 

4-Phenylenediacetic acid  (4Ph) 1,3-Phenylenediacetic acid (13Ph) 

 

Adipic acid (Ad) 

Figure 3.2 Crosslinker molecular structures used for collagen gelation 

Chemical structures of the di-acid crosslinkers used in this chapter: 4-
phenylenediacetic acid (4Ph), 1,3-phenylenediacetic acid (13Ph), and adipic acid (Ad).  
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Carboxylic acid groups (COOH) of 4Ph, 13Ph, or Ad (1 Figure 3.3) were activated 

using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (2) (EDC, 1:6 

molar ratio carboxylic acid:EDC) and N-hydroxysuccinimide (4) (NHS, 1:1 molar ratio 

carboxylic acid:NHS) at 0°C for 1 hour in sodium phosphate buffer (SPB) (Figure 3.3).  

The o-acylisourea active ester intermediate (3) formed initially is rapidly hydrolysed in 

aqueous solutions to form a carboxylate and a urea derivative (8 & 9 – side reactions), 

and readily undergoes electron displacement giving rise to an unreactive N-acylurea 

(10).  NHS is added to stabilise the reactive intermediate via conversion to an amine-

reactive ester (5). This therefore increases the reaction efficiency as this ester is 

reactive towards amine groups and more stable against hydrolysis (Grabarek and 

Gergely, 1990).  

Following activation any remaining unreacted EDC was quenched using 2-

mercaptoethanol (βME) for 10 minutes to stop any unwanted side reactions. The NHS-

activated crosslinker was then added to a collagen solution (in acetic acid, 17.4 mM), 

cast into well plates, and allowed to crosslink overnight at room temperature (RT) 

(Figure 3.3, iii). Hydrogels were then washed in 0.1 M PB (3 times) to remove any 

unreacted chemicals or side products. 
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Figure 3.3 Synthetic route adapted for the creation of chemically crosslinked 
collagen 

Collagen hydrogel synthesis involved (i) initial activation of bifunctional carboxylic acid 
groups of the crosslinker (1) using EDC (2) - forming o-acylisourea active ester 
intermediate (3). (ii) Reaction with NHS (4) – forming the stable amine-reactive NHS 
ester (5), followed by (iii) addition of the collagen solution and nucleophilic 
addition/elimination reaction of collagen lysine amines (6) to the activated diacid. R1 = 
bifunctional crosslinker backbone (two reactions per mole of crosslinker), R2 = collagen 
backbone. 

Side reactions of the o-acylisourea active ester intermediate (iv) Hydrolysis of o-
acylisourea active ester (3), yielding a carboxylate and urea derivative (8 & 9) and (v) 
rearrangement producing N-acylurea (10).  

 

 

Side reactions of (3) 

 

Crosslinking collagen lysines 

 

iv 

v 
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Manipulating hydrogel mechanical and physical properties 

A number of crosslinking variables were investigated, including: collagen concentration, 

crosslinker COOH: collagen lys molar ratio, and the crosslinker structure (Table 3.3).  

For hydrogels formed with final collagen concentrations of 0.4, 0.6, and 0.8 wt. % the 

crosslinker 4Ph was used and the crosslinker carboxylic acid to collagen lysine molar 

ratio was maintained at 1:1 (Table 3.3, row 1). For hydrogels where the crosslinker 

COOH:collagen lys molar ratio was varied from 0:5, 1:1 and 1.5:1 the final 

concentration of collagen was maintained at 0.8 wt.% and the crosslinker used was 

4Ph (Table 3.3, row 2). Finally, hydrogels were formed using 4Ph, 13Ph, and Ad 

crosslinkers. Here, the final collagen concentration was maintained at 0.8 wt. % and 

the crosslinker COOH:collagen Lys molar ratio was maintained at 1:1 (Table 3.3, 

experiment 3).  

Table 3.3 Conditions trialled in this thesis 

Experiment 

Collagen 

concentration /wt.% 

Crosslinker COOH: 

collagen Lys molar ratio 

Crosslinker 

structure 

1 0.4, 0.6, & 0.8 1:1 4Ph 

2 0.8 0.5:1, 1:1, & 1.5:1 4Ph 

3 0.8 1:1 4Ph, 13Ph, & Ad 

Conditions trialled in bold, and control variables. Collagen concentration was varied in 
experiment 1, crosslinker carboxylic acid: collagen lysine group molar ratio was varied 
in experiment 2, and the crosslinker structure was varied in experiment 3.  

 

Effect of the culture process on hydrogel stiffness 

Hydrogels were first washed in PB (3 x 10 minutes) to remove any unreacted 

chemicals, then disinfected using an ethanol concentration gradient with 15 minute 

washes in 10, 20, 30, 50, and 70% ethanol solutions. To determine whether the culture 

process has an impact on hydrogel mechanical properties, rheological characterisation 

using rheometry was then carried out immediately or hydrogels were stored at 4 °C for 

21 days prior to testing. These hydrogels were compared to control samples, where 

washes were carried out using PB. Additionally, the effect of hydrating hydrogels in 
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culture medium and incubating them at 37 °C was investigated. Here, hydrogels were 

washed in PB and disinfected (as described previously) then washed in culture medium 

with no serum (3 x 10 minutes) and either tested immediately (medium d0), or 

incubated at 37 °C in a 5% CO2 enriched environment for 7 days prior to testing 

(medium d7). 

3.2.3 Assessment of mechanical properties using rheology 

Hydrogel mechanical properties were assessed using a rheometer. All rheological 

measurements were performed using a Kinexus Pro rheometer with a parallel plate 

system. A 20 mm plate with a gap of 3.5 mm were used for all tests. Hydrogels were 

formed in 24 well plates and cut to size using a 20 mm cylindrical punch. All 

experiments were performed at 25 oC unless stated otherwise. Strain amplitude 

sweeps were carried out at a frequency of 1 Hz from 0.1% to 1000% strain. The linear 

viscoelastic region (LVER) was identified for each gel as 0.5% strain, where the 

storage modulus (G’) and loss modulus (G”) are independent of strain amplitude. G’ 

and G’’ are each measures of the solid (elastic) and fluid (viscous) phases of the 

material respectively. For a self-supporting hydrogel, G’ is usually an order of 

magnitude greater than G’’ and so G’ is typically quoted alone as an indication of 

material stiffness (greater G’ = increased stiffness) (Borzacchiello and Ambrosio, 

2009). Frequency sweeps were then performed on fresh hydrogel samples within this 

LVER from 0.5 Hz to 5 Hz at 0.5% strain. Storage modulus, G’ is quoted at 1 Hz. 

3.2.4 Assessment of physical properties 

Degree of functionalisation - TNBS assay  

A 2,4,6-trinitrobenzenesulfonic acid (TNBS) colorimetric assay was used to determine 

the number of free primary amino groups following reaction with NHS-activated di-

acids, and the consequent degree of collagen functionalisation (grafting) or 

crosslinking. Trinitrophenyl-L-lysine is a UV chromophore and enables the 
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quantification of free (unreacted) amino groups at 346 nm via the formation of an 

orange coloured derivative (Figure 3.4).  

Dehydrated hydrogels (0.011 g) were added to a solution of 1 mL sodium hydrogen 

carbonate (NaHCO3; 4 wt.%, pH 8.5) and 1 mL TNBS solution (0.5 wt.%), covered in 

foil and reacted at 40 °C under mild agitation for 4 hours. 3 mL hydrochloric acid (HCl, 

6 M) was added and heated to 60 °C for 1 hour to hydrolyse and dissolve additional 

insoluble components. 

 

Figure 3.4 Colourimetric 2,4,6-trinitrobenzenesulfonic acid assay schematic 

Reaction of trinitrobenzenesulphonic acid (TNBS) with an amine, producing an orange 
derivative and a sulphite ion. R = collagen backbone. 

 

Solutions were cooled to RT, diluted with 5 mL diH2O and extracted three times using a 

separating funnel with 20 mL anhydrous diethylether in order to remove any unreacted 

TNBS. An aliquot of the aqueous phase (5 mL) was heated at 40 °C to remove excess 

ether and diluted further using 15 mL diH2O. Solutions were read against a blank 

(control) sample, whereby HCl was added prior to the addition of TNBS in order to 

prevent any protein reaction occurring. 

The number of moles of free amino groups per gram of collagen in crosslinked samples 

was calculated using Equation 2: 

R-NH2 
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𝑚𝑜𝑙𝑒𝑠(𝐿𝑦𝑠)𝐶𝑟𝑜𝑠𝑠𝑙𝑖𝑛𝑘𝑒𝑑 =
𝑚𝑜𝑙𝑒𝑠(𝐿𝑦𝑠)

𝑔(𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛)
=  

2 × 𝐴𝑏𝑠(346 𝑛𝑚) × 𝑉

𝜀 × 𝑙 × 𝑥
 Equation 2 

Where: Abs(346 nm) is the absorbance value of the sample at 346 nm, V is the volume 

of sample solution (0.02 L), ε is the molar absorption coefficient for 2,4,6-trinitrophenyl 

lysine (1.46 x 104 L mol-1 cm-1), l is the cell path length (1 cm), x is the sample mass 

(0.011 g).  

From this, the degree of functionalisation/crosslinking (% functionalisation) was 

calculated as in Equation 3: 

% 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = (1 −  
𝑚𝑜𝑙𝑒𝑠(𝐿𝑦𝑠)𝐶𝑟𝑜𝑠𝑠𝑙𝑖𝑛𝑘𝑒𝑑

𝑚𝑜𝑙𝑒𝑠(𝐿𝑦𝑠)𝑁𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛

) × 100 Equation 3 

Moles(Lys)Collagen denotes the lysine molar content in native collagen. For rat tail 

collagen this is 3.24 x 10−4 mol/g (Tronci et al., 2013). 

Scanning Electron Microscopy (SEM) imaging  

Analysis of pore size and internal architecture was carried out using scanning electron 

microscopy (SEM) following critical point drying (CPD) by Martin Fuller (School of 

Molecular and Cellular Biology, University of Leeds). Firstly the hydrated hydrogels 

were fixed in glutaraldehyde (2.5% w/v in PB) overnight, followed by two PB washes 

and fixed further using osmium tetroxide (1% w/v in PB). Hydrogels were then 

dehydrated in increasing concentrations of acetone and critically point dried, replacing 

the solvent with liquid CO2. This method is typically used for biological specimens as it 

allows the structural integrity to be maintained (Cohen, 1979). Acetone is used as an 

intermediate fluid prior to CO2 phase conversion as this is miscible with CO2 and also 

reduces the damage caused by drying due to the reduced surface tension of the 

solvent with air compared to water. Samples were then sputter coated with platinum at 

5 nm thickness and imaged at 50000, 5000, and 1000x magnification. 
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3 SEM images (5000x magnification) per hydrogel condition were analysed using the 

BoneJ plugin developed by (Doube et al., 2010) for ImageJ (see Figure 3.5), whereby 

firstly the scale was set and the scale bars were then removed from the original image 

(Figure 3.5 A). The images were then smoothed to reduce background noise and 

converted to binary (Figure 3.5 B). The BoneJ thickness tool was used to generate the 

fibril thickness (Figure 3.5 C) and the spacing between collagen fibrils (pore spacing) 

(Figure 3.5 D) (validated for use on hydrogels by (Clarkson, 2018)).  

 

Figure 3.5 SEM image analysis using the BoneJ plugin for ImageJ 

(A) The original SEM image used for analysis, scale bar = 20 µm, and (B) the binary 
conversion. The BoneJ plugin was used to generate: (C) matrix thickness and (D) pore 
spacing. 

 

Porosity analysis via Carr-Purcell-Meiboom-Gill sequence (CPMG) 

SEM pore spacing data were also compared to NMR porosity measurements. Carr-

Purcell-Meiboom-Gill sequence (CPMG) experiments allow the measurement of spin-
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spin T2 relaxation times of any nucleus within a sample. This gives accurate 

quantification of the porosity of samples in a non-destructive manner, using nuclear 

magnetic resonance (NMR). Here, T2 is proportional to pore size, and therefore larger 

T2 values correspond to larger pore volumes (Coates et al., 1999). CPMG was carried 

out by Carlos Grattoni (School of Earth and Environment, University of Leeds) at 2 

MHz with a field strength of 0.047 Tesla. The software used to get the T2 distributions 

was WinDXP (Oxford Instruments). 

 

3.3 Results 

3.3.1 Collagen extraction 

CD spectroscopy confirmed the preservation of the triple helix structure of collagen in 

acid-extracted products, as indicated by the positive maximum absorption band at 210-

230 nm (Figure 3.6). A minimum absorption band was also observed around 190 nm, 

indicating the single polyproline-II helix conformation.  

 

Figure 3.6  Preservation of the collagen triple helix following acid extraction 

CD spectra of collagen (black) and gelatin (red) control mean residue ellipticity, 
indicating the preservation of the collagen triple helix (210-230 nm) and polyproline-II 
helix conformation (190 nm). 
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3.3.2 NMR porosity method development 

As this method is typically used for porous rocks, the effect of hydrogel solvent was first 

assessed in order to inform future measurement conditions. Hydrogels were either 

washed in PBS or H2O (3 x 10 minutes) prior to NMR porosity measurements. Solvent 

samples were used as a control and tested using the same method. From the NMR 

porosity plots, the mean T2 values were calculated for each hydrogel. These are 

proportional to the porosity of the hydrogel, with greater T2 values corresponding to 

increased pore volumes. 

There was no significant difference in mean T2 values, and therefore hydrogel porosity, 

between solvents used (n=3, P=0.733). The mean T2 value ±SD was 1393.7 ±57.12 

ms for 0.8 wt.% collagen hydrogel in PBS and 1442.0 ±64.51 ms for 0.8 wt.% collagen 

hydrogel in H2O. Therefore, future measurements were made using PBS-hydrated 

hydrogels (Figure 3.7). 

 

Figure 3.7 NMR porosity measurement using different hydrogel solvents 

(A) NMR porosity plot showing normalised signal against T2, and (B) the resulting 
mean T2 measurements taken from this graph. n=3. 

 
 

3.3.3 Formation of hydrogels 

Collagen hydrogels were formed and the mechanical properties were assessed using 

rheology. Initial strain sweeps determined 0.5% strain to be within the LVER for each 
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hydrogel variant (Figure 3.8 A), and so this value was used for the subsequent 

frequency sweeps (Figure 3.8 B). Additionally, as expected, the storage modulus (G’ - 

Figure 3.8 blue) was around 1 order of magnitude greater than the loss modulus (G’’ – 

Figure 3.8 red); confirming the formation of self-supporting hydrogels (see 

Supplementary data Table 8.1 for the frequency sweep data for each hydrogel repeat).  

 

 

Figure 3.8 Example of rheology data used to characterise hydrogel mechanical 
properties 

The storage moduli (G’ blue) and loss moduli (G’’ red) measured using: (A) Shear 
strain amplitude sweep at 10 rad/s from 0.1% to 1000% strain to determine the linear 
viscoelastic region (LVER). (B) Frequency sweep carried at 0.5% strain. Data taken 
from 4Ph-crosslinked hydrogel 0.8 wt.% collagen, 1:1 COOH:Lys ratio. Data presented 
as mean ±SD, n=3. 
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3.3.4 Manipulating the properties of collagen hydrogels 

Collagen concentration, crosslinker molar ratio, and the structure of the crosslinker 

were investigated as potential routes for forming hydrogels with different mechanical 

properties, whilst maintaining constant porosity and degree of crosslinking. 

3.3.4.1 Effect of collagen concentration 

Three collagen concentrations: 0.4, 0.6, and 0.8 wt.% (final concentration) were 

investigated in order to determine if this variable caused a change in the properties of 

the resulting hydrogels. For all of these conditions the collagen lys:crosslinker COOH 

molar ratio was maintained at 1:1. 

The collagen concentration did not significantly impact the degree of functionalisation 

(determined by TNBS assay, Figure 3.9 A). This was expected as the molar ratio of 

crosslinker to collagen lysine groups was scaled accordingly, and thus remained 

consistent between groups.  

There was a significant difference between the storage modulus of hydrogels created 

using different collagen concentrations (P= 0.0083 to 0.0002; Figure 3.9 B), with 

hydrogels formed using 0.8 wt.% collagen exhibiting the greatest storage modulus 

(mean storage modulus ±SD (Pa): 0.4: 81.45 ±3.119, 0.6: 211.8 ±29.51, 0.8: 351.7 

±51.41).  

The spacing between collagen fibrils (as determined using the BoneJ plugin analysis of 

SEM images) was not significantly different between the collagen concentrations 

investigated (Figure 3.8 C and D; mean spacing ±SD (µm): 0.4: 0.661 ±0.111, 0.691 

±0.125, 0.741 ±0.112). However, NMR porosity measurements (Figure 3.9 E & F) 

showed a significant decrease in mean T2 values, and therefore reduced porosity, for 

0.8 wt.% collagen hydrogels, indicating these hydrogels had smaller pores (mean T2 

±SD (ms): 0.4: 1771.67 ±101.25, 0.8: 1393.67 ±57.12; n=3, P= 0.0023).  
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Figure 3.9 Effect of collagen concentration on the physical properties of 
hydrogels 
(A)TNBS assay % functionalisation, (B) storage modulus determined by rheology 
frequency sweeps, quoted at 10 rad/s (C) pore spacing determined using BoneJ plugin 
from SEM images (D) representative SEM images, (E) normalised NMR signals, and 
(F) mean T2 values taken from these plots. Scale bars = 30 µm, inset = 5 µm. 1:1 4Ph 
crosslinker COOH:collagen lys. Data presented as mean ±SD. n=3, ** P ≤ 0.01, *** P ≤ 
0.001. 
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3.3.4.2 Effect of crosslinker molar ratio 

Interestingly, the molar ratio of the carboxylic acid groups of the 4Ph crosslinker used 

(as compared to collagen lys groups), did not significantly affect the degree of collagen 

functionalisation (Figure 3.10 A). The storage modulus of gels created using varying 

crosslinker molar ratios were not significantly different (Figure 3.10 B; n=3, P = 0.3039 

to 0.8793). Additionally, there was no significant difference in the mean pore spacing 

between collagen fibrils (Figure 3.10 C & D). 

 

 

Figure 3.10 Effect of 4Ph crosslinker molar ratio  

0.8 wt.% collagen crosslinked using: 0.5, 1, and 1.5 4Ph crosslinker COOH:collagen lys 
molar ratio. (A)TNBS assay % functionalisation, (B) storage modulus determined by 
rheology frequency sweeps, quoted at 10 rad/s, (C) mean pore spacing determined 
using BoneJ plugin from SEM images (D) representative SEM images. Scale bars = 30 
µm, inset = 5 µm. Data presented as mean ±SD. n=3, ns P > 0.05. 
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3.3.4.3 Effect of crosslinker chemical structure on hydrogel properties 

The degree of functionalisation remained similar for hydrogels crosslinked using 4Ph, 

13Ph, and Ad (Figure 3.11 A) with no significant differences detected. Rheological 

characterisation showed that hydrogels crosslinked using 4Ph, 13Ph, and Ad had 

storage moduli (Pa) of 351.7 ±51.42, 395.6 ±80.87, and 332.0 ±37.39 respectively and 

these were not significantly different. Furthermore, porosity analysis using SEM and 

NMR measurements also showed that these hydrogels had similar pore spacing and 

pore volume (Figure 3.11 C – F), once again with no statistically significant differences 

between the crosslinker variants (SEM pore spacing ±SD (µm): 4Ph: 0.741 ±0.112; 

13Ph: 0.774 ±0.101; Ad: 0.650 ±0.031; NMR porosity T2 ±SD (ms): 4Ph: 1416.7 

±107.6; 13Ph: 1418.4 ±55.49; Ad: 1479.6 ±16.35).  

3.3.4.4 Effect of culture conditions on hydrogel mechanical properties 

To determine the effect of the culture process on hydrogel mechanical properties, 

hydrogels were washed in PB, disinfected using an ethanol concentration gradient, and 

tested (using rheology) immediately or following storage at 4 °C for 21 days.  

As expected, the process of disinfecting hydrogels in ethanol was shown to increase 

the storage modulus of the gels significantly when tested immediately (d0: PB: 468.2 

±13.35 Pa; Ethanol: 512.0 ±0.814 Pa; n=3, P = 0.0240) and following 21 days 

incubation (Figure 3.12) (d21: PB: 420.3 ±19.69 Pa; Ethanol: 549.7 ±16.13 Pa; n=3, P 

≤ 0.0001). 

Additionally, it was found that storing hydrogels in either solution for 21 days resulted in 

a significant difference in the hydrogel storage moduli. For PB-hydrated hydrogels, 

these exhibited a decrease in stiffness over time whereas ethanol storage lead to an 

increase in stiffness (Figure 3.12). As such, hydrogels were always used/tested 

immediately and were not stored for prolonged periods (over 2 hours) in ethanol. 
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Figure 3.11 Effect of crosslinker structure on hydrogel properties 

Characterisation of hydrogels crosslinked using 4-Phenylenediacetic acid (4Ph), 1,3-
Phenylenediacetic acid (13Ph) or Adipic acid (Ad). (A)TNBS assay % functionalisation, 
(B) storage modulus determined by rheology frequency sweeps, quoted at 10 rad/s (C) 
mean pore spacing determined using BoneJ plugin from SEM images (D) 
representative SEM images. Scale bars = 30 µm, inset = 5 µm. (E) normalised NMR 
signals, and (F) mean T2 values. Mean storage moduli determined by rheology 
frequency sweeps. 4Ph quoted at 10 rad/s. Data presented as mean ±SD. n=3, ns P > 
0.05. 
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Figure 3.12 Effect of ethanol disinfection on hydrogel storage modulus. 

Storage modulus determined by rheology frequency sweeps, quoted at 10 rad/s for 
hydrogels washed with PB or ethanol and tested immediately (d0) or following 21 days 
incubation (d21). Data presented as mean ±SD. n=3, * P ≤0.05. 

 

To further assess whether hydrogel mechanical properties change when culturing, the 

effect of hydrating in culture medium and incubating at 37°C was investigated. 

Hydrogels were either tested immediately following ethanol disinfection and hydration 

in medium (medium d0), or heated at 37 °C for 7 days prior to testing (medium d7). The 

storage modulus of the hydrogels processed this way were compared to hydrogels 

from the same batch that were washed in PB following ethanol washes and tested 

immediately (PB). Two crosslinkers: 4Ph and Ad were used to investigate if they 

differed in response to culture conditions.  

There was no significant difference between hydrogel storage modulus for all 

conditions. There was however, a trend towards reduced storage modulus for 4Ph 

crosslinked hydrogels maintained in culture. (Figure 3.13; 4Ph PB: 649.7 ±57.01 Pa, 

medium d0: 556.2 ±40.67, medium d7: 491.6 ±134.9 Pa). 

There was a significant difference between the control PB-hydrated hydrogel 

crosslinked using different crosslinkers (4Ph PB: 649.7 ±57.01 Pa; Ad PB: 434.03 

±13.18 Pa; n=3, P= 0.0178). This trend was not seen previously when assessing the 
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mechanical properties of hydrogels formed using different crosslinkers, indicating that 

there could be batch to batch variations. 

 

Figure 3.13 Effect of hydrating in culture medium and heating at 37 °C for 7 days 
on the rheological properties of collagen hydrogels. 

Storage modulus of collagen hydrogels crosslinked with 4Ph or Ad and hydrated in 
phosphate buffer (PB) compared to hydrogels washed in culture medium with no serum 
and either tested immediately (medium d0), or heated at 37 °C for 7 days prior to 
testing (medium d7). Storage modulus determined by rheology frequency sweeps, 
quoted at 10 rad/s. Data presented as mean ±SD. n=3 * P ≤ 0.05. 

 
 
 

3.3.5 Batch reproducibility 

It was evident when repeating rheology measurements that the mechanical properties 

of hydrogels varied between batches (see supplementary Figure 8.1). It wasn’t clear 

however, whether this was due to the collagen or the crosslinker solution batches and 

so this was investigated.  

The batch of crosslinker solution didn’t impact the resulting storage modulus of the 

hydrogels formed (Figure 3.14 A). There was however, a significant difference between 

the storage modulus of hydrogels created using different batches of collagen solution 

(same batch of extracted collagen, Figure 3.14 B, ** P < 0.01). Interestingly, there was 

only a significant difference between collagen solution batch 1 and the other hydrogels 
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formed using collagen solution batch 2 and 3. Collagen solution batch number 1 was a 

larger volume, indicating that the dissolution of collagen may not be scalable.  

 

 

 

Figure 3.14 Effect of collagen and crosslinker solution batch on hydrogel storage 
modulus. 

Storage modulus determined by rheology frequency sweeps, quoted at 10 rad/s for 
hydrogels formed from different batches (denoted as 1, 2, and 3) of collagen and 4Ph 
crosslinker solutions. Data presented as mean ±SD. n=3, ** P ≤ 0.01.  
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3.3.5.1 Hydrogel synthesis conditions 

To investigate the factors influencing the resulting hydrogel mechanical properties, the 

starting concentrations of the collagen and activated crosslinker solutions were varied 

(see Figure 3.15 A). Final concentrations (of the combined collagen and crosslinker 

mixture) remained constant in all three hydrogel conditions, with a molar ratio of 2:1 

collagen: crosslinker.   

Firstly, a control hydrogel was created using a 1.2 wt.% initial collagen solution 

crosslinked with 4Ph at a molar ratio of 1:2 (referred to as Col 1.2 4Ph; Figure 3.15 A). 

The effect of a diluted initial collagen solution was then investigated. Here, the same 

1.2 wt.% initial collagen solution was diluted to 0.96 wt.%, prior to crosslinking with 4Ph 

to form a hydrogel (referred to as Col 0.96 4Ph x2; Figure 3.15). To maintain the same 

final molar ratio of the two solutions (1 4Ph: 2 Col lys), a concentrated crosslinker 

solution was used (referred to as 4Ph x2).  

There was a significant difference between the storage modulus of hydrogels created 

using different initial collagen solution concentrations. When the initial collagen 

concentration was diluted to 0.96 wt.% (from the same batch of collagen solution) prior 

to mixing with the concentrated 4Ph crosslinker (Col 0.96 4Ph x2; Figure 3.15 A), the 

storage modulus reduced from 521.6 ±9.473 Pa to 200.0 ±6.600 Pa.  

To confirm whether this effect was due to the concentration of the collagen solution or 

the activated crosslinker solution, the concentrated activated 4Ph solution was diluted 

prior to crosslinking with same 1.2 wt.% initial collagen solution (referred to as Col 1.2 

4Ph x2 diluted). The storage modulus was found to be similar to that of the control 

hydrogel when 4Ph x2 was diluted prior to mixing (525.6 ±21.21 Pa, Figure 3.15 B), 

thereby confirming this change in stiffness was not due to the concentration of the 

initial activated crosslinker solution. 
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These data indicate that the initial collagen concentration in the starting solution, 

potentially due to the solution viscosity, influences the final storage modulus of 

hydrogels.  

 

 

 

Figure 3.15 Effect of initial collagen concentration on hydrogel rheological 
properties 

(A) Schematic depicting dilution method generating Col 1.2 4Ph (control); Col 0.96 4Ph 
x2 – created using diluted initial collagen solution mixed with concentrated 4Ph 
solution; and Col 1.2 4Ph x2 (diluted) – created by diluting the concentrated 4Ph x2 
solution prior to mixing with collagen. (B) Storage modulus determined by rheology 
frequency sweeps, quoted at 10 rad/s. n=3, **** P ≤ 0.0001. 
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3.4 Discussion 

In this chapter, the potential manipulation of hydrogel mechanical properties was 

investigated by varying the collagen concentration, the crosslinker molar ratio, and the 

structure of the crosslinker used.  

Hydrogel manipulations  

The method of varying the collagen concentration was found to significantly affect the 

storage modulus of the resulting hydrogels, however, this method is not suitable for the 

manipulation of hydrogel mechanical properties as it also leads to physical changes. 

NMR porosity measurements indicated that increasing the collagen concentration in 

hydrogels significantly reduces the pore volume within hydrogels; thereby rendering it 

an unsuitable method for independent modulation of mechanical stiffness. Additionally, 

altering collagen concentration leads to a change in the number of cell-attachment 

sites, which could potentially impact cell behaviour further. Furthermore, despite the 

degree of functionalisation remaining constant, it is not clear whether crosslinking 

occurs in the same fashion in each of these conditions. As the collagen concentration 

is increased, it is possible that increased grafting (reaction of only one carboxyl group) 

starts to take place, due to the increased competition between lysine residues.  

A previous study aimed to investigate the response of neural stem cells (from the brain 

of adult rats) to hydrogels of varying stiffnesses, created by altering the concentration 

of alginate. Here the porosity was not assessed, and as such, it is likely that the 

change in stem cell behaviour was confounded by the structural changes caused as a 

result of the change in alginate concentration (Banerjee et al., 2009a).  

Varying the crosslinker molar ratio was also investigated. Here it was found that no 

significant changes were made to the mechanical and physical properties of the 

resulting hydrogels. As one mole of crosslinker reacts with two moles of collagen lysine 

groups, an equimolar ratio of crosslinker carboxylic acid groups to collagen lysine 
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groups should theoretically lead to 100% crosslinking, however, in reality only 65.2% 

functionalisation was achieved.  

The potential manipulation of collagen hydrogel mechanical properties using 

crosslinkers with structural differences was also investigated in this chapter. The 

hydrogels formed using 4Ph, 13Ph, and Ad all had storage moduli in the region of 300-

400 Pa. These hydrogels also had similar degrees of functionalisation and porosity as 

measured by SEM imaging and NMR CPMG experiments.  

The repeated measurements made in the course of this chapter highlighted the 

inconsistencies in the hydrogel properties between batches. It was identified that the 

issues with repeatability are likely to be due to collagen batch variability, with the 

starting collagen concentration (and the resulting solution viscosity) significantly 

impacting hydrogel storage modulus. It is also likely that as collagen was extracted in-

house from a natural source, the purity and quality may not have been consistent, 

therefore impacting on hydrogel repeatability. Future studies would therefore benefit 

from a commercial source of collagen to ensure consistent quality and purity of starting 

materials.  

Impact of culture conditions on hydrogel stiffness 

This chapter also aimed to determine if the culture conditions affect the mechanical 

properties of collagen hydrogels. As expected, ethanol disinfectant washes were 

shown to lead to a significant increase in hydrogel storage modulus, however this 

remained in the range of 400 to 600 Pa (Gopinath et al., 2014). Additionally, hydrogels 

mechanical properties were not shown to significantly change upon hydrating in culture 

medium and incubating at standard culture conditions (37 oC and 5% CO2 enriched 

environment), therefore indicating that these hydrogels will be suitable culture 

substrates.  
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3.5  Conclusions 

In this chapter, characterisation of collagen hydrogels developed in-house indicated 

that the hydrogel stiffness can’t be reliably manipulated, independent of physical 

properties.  

Changing the collagen concentration lead to: 

 No significant change in the % functionalisation 

 A significant change to the storage modulus of hydrogels 

 No detectable pore spacing change when assessed using SEM measurements 

 A significant change in porosity when assessed using NMR measurements 

Changing the crosslinker molar ratio lead to: 

 No significant change in the % functionalisation 

 No significant change to the storage modulus of hydrogels 

 No significant change to the pore spacing - assessed using SEM measurements 

Changing the crosslinker structure lead to: 

 No significant change in the % functionalisation 

 No significant change to the storage modulus of hydrogels 

 No significant change to the porosity - assessed using SEM & NMR measurements 

Additionally, it was found that disinfecting collagen hydrogels using ethanol washes 

leads to a significant increase in hydrogel storage modulus, however, culturing these 

hydrogels for 7 days does not cause a change to the mechanical properties. 

Overall, this chapter highlights the issues surrounding creating a tuneable collagen 

hydrogel for the assessment of mechanical properties independent of physical 

properties. 
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Chapter 4 – Characterisation of GFP Expression in the Spinal 

Cord of (Nestin) GFP Transgenic Mice 

 

4.1 Introduction 

4.1.1 Transgenic reporter lines used for studying neurogenesis 

Transgenic mouse lines in which the neural stem cells of the embryonic and adult 

central nervous system express a reporter molecule, such as a fluorescent protein, are 

useful tools for studying neurogenesis in vitro and in vivo (Mignone et al., 2004; 

Encinas et al., 2011; Park et al., 2013). The reporter genes in such transgenic lines can 

either be expressed constitutively (consistently) or can be induced using an external 

trigger. 

4.1.1.1 Inducible transgenic reporter lines 

Spatial and temporal control over transgene expression can be achieved using 

inducible transgenic reporter lines. These are routinely used to study the molecular and 

cellular mechanisms involved in stem cell development and behaviour. Tetracycline-

controlled transactivator (tTA or Tet-Off) systems (Gossen and Bujard, 1992) are 

widely used for inducible gene expression, both in vitro and in vivo. In these systems 

tTA or reverse tTA (rtTA or Tet-On) is placed downstream from the tetracycline 

operator (tetO), and tetracycline (or the analogue doxycycline) is used to either block 

(in the case of tTA) or induce gene expression (in the case rtTA).  

4-hydroxytamoxifen (4HT)-regulated expression models are commonly used with Cre 

recombinase (an enzyme that targets LoxP) for the expression of promotor genes 

flanked by LoxP DNA sequences. In these systems, a mutated ligand binding domain 
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of the estrogen receptor is fused with Cre recombinase (CreERT), and this binds to 

heat shock protein 90 (HSP) in the cytoplasm, rendering it tamoxifen-inducible. As a 

result, the addition of 4HT or tamoxifen triggers the CreERT-HSP complex to separate, 

translocation of CreERT into the nucleus, followed by recombination. Overall, this 

results in either inactivation (and creation of knockout alleles) or activation of gene 

expression in these animals. A number of Cre/loxP lines have been utilised for studying 

the lineage of stem cells in the brain. Promoters (DNA sequences that define where 

transcription of a particular gene by RNA polymerase begins) have included: Nestin 

(Meletis et al., 2008; Burns et al., 2009; Dhaliwal and Lagace, 2011; Imayoshi et al., 

2011; Liang et al., 2012; Sun et al., 2014), Glast1 (Mori et al., 2006), Gli1 (Ahn and 

Joyner, 2005), FoxJ1 (Meletis et al., 2008; Barnabé-Heider et al., 2010), and Sox2 

(Favaro et al., 2009). 

More recently, viral gene delivery systems have been developed for the delivery of Cre 

recombinase using adeno-associated viral-, lentiviral-, and retroviral-based vectors. 

Using these methods, recombination can be controlled to target specific cell 

populations using viruses expressing Cre under the promoter of particular genes (e.g. 

the FoxJ1 gene for targeted recombination in ependymal cells (Carlén et al., 2009)).  

4.1.1.2 Constitutive transgenic reporter lines 

A number of constitutive transgenic reporter lines have also been developed using a 

range of constructs and reporters, resulting in varied gene expression (nestin 

transgenic reporter lines summarised in Table 4.1 and reviewed elsewhere (Walker et 

al., 2010; Dhaliwal and Lagace, 2011)). The animals used in this chapter were 

originally created by G. Enikolopov’s laboratory. In these mice the regulatory elements 

of the second intron of the nestin gene were used to create a reporter line expressing 

green fluorescent protein (GFP) (referred to as (nestin) GFP) (Mignone et al., 2004). 

Nestin is a type VI intermediate filament protein and a marker of neural stem and 

progenitor cells in developing and adult animals (Lendahl et al., 1990). In this 
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transgenic line, (nestin) GFP is selectively expressed in progenitor cells and pericytes 

(Birbrair et al., 2013; Licht et al., 2016), and diminishes in differentiated cells; allowing 

for the identification and isolation of neural stem cells (NSCs) (Mignone et al., 2004).  

While these GFP-expressing (GFP+ve) cells have been characterised in the brain, the 

identity of (nestin) GFP+ve cells has not been confirmed elsewhere within the CNS. In 

this chapter, known markers of ECs and a retrograde tracer for pericyte identification 

were used to investigate (nestin) GFP expression in the spinal cord.  

Since one aim of chapter 6 of this thesis is to use (nestin) GFP mice to track spinal 

cord ECs and assess their behaviour in response to hydrogels, characterising the 

fluorescently labelled cells is of great importance. Additionally, identification of cell 

markers and proteins in (nestin) GFP+ve cells may help inform tissue engineering 

strategies aimed at manipulating ependymal cell migration and differentiation. 

GAD67-GFP transgenic mice were also used in this chapter in order to assess the 

selectivity of the antibodies used. The enzyme glutamic acid decarboxylase (GAD) is 

responsible for catalysing decarboxylation of glutamate into ᵞ-aminobutyric acid 

(GABA) and is present in two isoforms: GAD65 and GAD67 (Tamamaki et al., 2003; 

Gotts et al., 2016). GAD67-GFP has been shown to label CSFcCs, which are also 

located at the central canal region in the spinal cord of mice (Corns et al., 2015; Gotts 

et al., 2016). Where possible, immunofluorescence (IF) results were also validated 

against published RNAseq data (Rosenberg et al., 2018) and Allen Brain Atlas data 

(Allen Institute for Brain Science, n.d.).
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Table 4.1 – Nestin reporter mice used to study neurogenesis 

Name Construct Reporter EC labelling  Ref. 

(Nestin) GFP 5.8‐kb promoter and the 1.8‐kb second intron of nestin gene eGFP Brain 
(Mignone et al., 

2004) 

pNestin‐GFP 2.5 kb nestin promoter, 1.8 kb nestin enhancer 2nd–3rd intron eGFP Brain  
(Yamaguchi et al., 

2000) 

E/nestin:eGFP 
637-bp (1162–1798) of 2nd intron from nestin, hsp68 min 

promoter 
eGFP 

Brain and spinal 

cord 

(Kawaguchi et al., 

2001) 

NesPlacZ/3 Rat nestin gene; 5-kb upstream and 3 introns LacZ 
Brain and spinal 

cord 

(Johansson et al., 

2002) 

Nes714tk/lacZ 
714-bp of 2nd intron from human nestin, 107-bp of thymidine 

kinase promoter 
LacZ No  

(Johansson et al., 

2002) 

Nestin‐tTA × TetOp‐

mCREB 

5.8-kb upstream to 5.4-kb downstream of nestin gene. 

Nestin-tTA mouse crossed with TetOp‐mCREB‐FLAG mice. 

CREB 

 
Potentially, brain 

(Beech et al., 

2004) 

Nestin‐rtTA‐eGFP 5-kb‐nestin promoter, 700-bp of 2nd intron of nestin gene eGFP Dorsal neural tube (Yu et al., 2005)  

Nestin‐CFPnuc 
5.8‐kb nestin promoter, 1.8‐kb nestin enhancer 2nd–3rd 

intron 
CFP Brain 

(Encinas et al., 

2006) 

Nestin‐eGFP 2nd Intron, thymidine kinase promoter EGFPmut4 Brain 
(Walker et al., 

2010) 

Table adapted from (Dhaliwal and Lagace, 2011)(Walker et al., 2010). (Nestin) GFP transgenic line used in this chapter highlighted in bold.
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4.2 Hypothesis and Aims 

It is hypothesised that GFP in (nestin) GFP transgenic mice can be used to selectively 

identify ependymal cells (ECs) in the spinal cord. 

This chapter uses immunofluorescence on perfusion-fixed spinal cord slices to: 

1. Examine the presence of specific cell markers and proteins in (nestin) GFP labelled 

cells in the spinal cord of transgenic mice 

2. Determine if there are appropriate antibodies to discriminate between ECs and 

CSFcCs at the central canal 

3. Identify if ECs express proteins with potential use for targeting in modulating 

proliferation and/or migration 

The development work carried out in this chapter will enable the hypotheses in 

chapters 5 and 6 to be interrogated, as shown in Figure 4.1. 

 

Figure 4.1 Schematic depicting the overall aim of chapter 4 in relation to the rest 
of this thesis. 
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4.3 Methods 

4.3.1  Animals used 

All experiments were carried out under UK Home Office Licence (P1D7A177), in 

accordance with the UK Animals (Scientific Procedures) Act 1986 and the ethical 

standards set out by the University of Leeds Ethical Review Committee. Every effort 

was made to minimise the number of animals used and their suffering.  

(Nestin) GFP and GAD67-GFP transgenic mice were bred in-house as heterozygotes, 

housed in standard conditions with a 12 hour light-dark cycle, and given ad libitum 

access to food and water. 

4.3.2 Hydroxystilbamidine Labelling of Pericytes 

Mice received an intraperitoneal (I.P.) injection of 0.05 mL hydroxystilbamidine 

(Fluorogold, FG) (50 mg/kg) 48 h prior to being perfused to fluorescently label pericytes 

by retrograde tracing from the periphery (Edwards et al., 2013). FG is directly visible 

using fluorescence microscopy. 

4.3.3 Perfusion fixation and tissue processing 

Mice were terminally anaesthetised with sodium pentobarbital (60 mg/kg) I.P. and 

perfused transcardially with 0.1 M PB to remove blood, then with 4% PFA for tissue 

fixation. The spinal cord and brain were removed and post fixed overnight at 4 °C in 4% 

PFA, before being stored in 0.1 M PB at 4 °C.  

The pia mater was removed using fine forceps and a dissection microscope, and tissue 

was sectioned at 40 μm (spinal cord) or 50 μm (brain) on a vibrating microtome. 

Sections of spinal cord or brain ~1 cm in length were cut using a flat blade, and glued 

to the vibratome chuck. The chuck was then screwed into place in the water bath 

containing 0.1 M PB and the blade was attached to the vibratome arm. Sections were 
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then cut at an amplitude of 0.4 mm/s and vibrating frequency of 80 Hz and tissue 

sections were transferred into a well plate containing PBS using a paintbrush. 

4.3.4 Immunofluorescence 

Immunofluorescence (IF) optimisation was carried out to determine the 

permeabilisation solution and antibody (primary and secondary) concentrations for 

each antibody used. IF was performed on tissue sections as described in Figure 4.2. 

Briefly, cell membranes were permeabilised via slice incubation in either 0.1% (v/v) 

Tween 20 (T20) or 0.1% (v/v) Triton X-100 (PBST) for 30 minutes at RT prior to 

antibody incubation. All primary antibody incubations were performed for at least 48 h 

at 4 °C in either 0.1% PBST (Table 4.3) or PBS (for T20 treated sections, Table 4.2). 

Sections were then washed three times with PBS (10 minutes). Antibodies were 

detected by incubating sections in the appropriate Alexa Fluor conjugated secondary 

antibody (1:1000 in PBS) or biotin-conjugated secondary antibody (1:250 in PBS) at RT 

for 2 h (Table 4.4). In the case of biotinylated secondary antibodies, sections were 

washed three times with PBS (10 minutes) then incubated with streptavidin Alexa Fluor 

for 2 h at RT. Finally, sections were washed twice in PBS, followed by a wash in 0.1M 

PB, and were then mounted on microscope slides, air dried, and covered in 

Fluoroshield with DAPI (cell nuclei counter-stain) before being coverslipped. 

4.3.5 Image capture  

Sections (n>3 sections per animal of lumbar and thoracic cord, N=3 animals, Table 4.5) 

were imaged using a Zeiss LSM880 laser scanning confocal microscope equipped with 

argon (λex = 488 nm) and He‐Ne (λex = 543 nm) lasers. Images were acquired using 

Carl Zeiss ZEN software (Zeiss Microscopy) and CorelDRAW 2017 was used for image 

processing - brightness/contrast/intensity and creating figures. DAPI nuclear staining 

was used to identify each cell and only whole cells were counted. Manual cell counts of 

the number of (nestin) GFP cells, antibody-labelled cells, and co-localised cells at the 

central canal were made using the confocal images. 
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Figure 4.2 Immunofluorescence protocol used for fixed tissue slices 

Flow chart detailing the immunofluorescence method used to label proteins within 
perfusion-fixed tissue slices. Permeabilisation was initially carried out using either 
Tween20 or Triton-X100, followed by antibody incubation and subsequent antibody 
detection steps using either a directly conjugated secondary antibody or a biotinylated 
secondary antibody and streptavidin Alexa Fluor. Slices were then washed and 
mounted on microscope slides for visualisation 

 

4.3.6 Data Analysis  

Cell counts were collated in Microsoft Excel and analysed using IBM SPSS statistics 

21.  Data presented as mean % colocalisation ± standard error of the mean (SE) where 

appropriate.  
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Table 4.2 Antibodies used – permeabilised using Tween20 

Target Raised in Dilution Antigen Evidence  
Source &  

Cat. No 

Cluster of 

differentiation 24 

(CD24)* 

Mouse 1:100 M1/69 unknown epitope specificity ECs: adult mice (Pruszak et al., 

2009; Pfenninger et al., 2011) 

Miltenyi 

Biotec 

130-110-686 

Cluster of 

differentiation 

31 (CD31)* 

Rat 1:500 129/Sv mouse-derived endothelioma cell 

line tEnd.1 

Endothelial cells (Day et al., 2007) BD 

Biosciences 

550274 

Galectin-3 (Gal-3)* Goat 1:1000 

 

E. coli-derived recombinant mouse Gal-3, 

Ala2-Ile264, Accession # NP_034835 

ECs: adult rat brain (Comte et al., 

2011; Yoo et al., 2017) 

R&D 

systems 

AF1197 

Na+K+ATPase-α1 

(NKA-α1) 

Rabbit 1:500 Synthetic non-phosphopeptide derived from 

human NKA-α1 around the phosphorylation 

site of serine16 (A-V-SP-E-H) 

ECs: adult mice  (Edwards et al., 

2013; Corns et al., 2015) 

AbD Serotec 

ab58475 

Vimentin Chicken 1:500 Recombinant vimentin ECs: adult mice (Alfaro-Cervello et 

al., 2012b) & rats (Schnitzer et al., 

1981; Mladinic et al., 2014) 

Millipore 

AB5733 

Antibodies marked with an asterisk were detected using biotin-conjugated secondary antibodies followed by streptavidin Alexa Fluor555. Specificity as 
described by manufacturer.  
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Table 4.3 Antibodies used – permeabilised using PBST 

Target Raised in Dilution Antigen Evidence  Source  

Calbindin-D28k Rabbit 1:500 Calbindin D-28k 
ECs: rat & mouse, not human 
(Zhang et al., 2016) 

Epitomics, 
ab108404 

Cluster of 
differentiation 63 
(CD63)* 

Rat 1:1000 
HEK293 human embryonic kidney cell 
line transfected with mouse CD63, 
Met1Met238, Accession # P41731 

ECs: adult & juvenile mouse 
spinal cord (Allen Institute for 
Brain Science, n.d.) 

R&D systems  
MAB5417 

Chemokine receptor 
type 4 (CXCR4)* 

Rabbit 1:8000 
Non-phosphorylated C-terminus of 
CXCR4 (residues 341-352) 

ECs: (Tysseling et al., 2011; 
Hugnot, 2011) 

RabMab 
ab124824 

Forkhead box 
protein J1 (FoxJ1)* 

Mouse 1:1000 Not detailed 

ECs: embryonic, juvenile & 
adult mouse (Meletis et al., 
2008; Alfaro-Cervello et al., 
2012a; Li et al., 2018; 
Franklin et al., 2018) 

eBioscience 
14-9965-80 

Glial fibrillary acidic 
protein (GFAP) 

Mouse 1:100 
Synthetic peptide amino acids 411-422 
(KTVEMRDGEVIK) of human GFAP 

Astrocytes (Gomes et al., 
1999) & radial glia (Mamber 
et al., 2012) 

Neuromab 
75-240 clone 
N206/8 

Polycystic kidney 
disease 2-like 1 
protein  (PKD2L1) 

Rabbit 1:250 
Synthetic peptide corresponding to N-
terminal residues of mouse PDK2L1 

CSFcCs (Huang et al., 2006; 
Orts-Del’Immagine et al., 
2012; Orts-Del’Immagine et 
al., 2014; Djenoune et al., 
2014) 

Abcam 
ab56003 

Sex determining 
region Y-box 2 
(Sox2) 

Goat 1:500 
Epitope mapping near the C-terminus 
of Sox-2 of human origin 

ECs: embryonic & adult rat 
(Graham et al., 2003; 
Mladinic et al., 2014) 

Santa Cruz 
SC-17320 (Y-17) 

Antibodies marked with an asterisk were detected using biotin-conjugated secondary antibodies followed by streptavidin Alexa Fluor555. Specificity as 
described by manufacturer.  



 
 

85 

 

Table 4.4 Secondary antibodies used on tissue sections 

The antibody marked with an asterisk is part of the Mouse on Mouse immunodetection 
kit. 

Antibody Raised in Antigen 

Cat. 

number Dilution Source 

Alexa 

Fluor555 

Donkey Mouse A31570 

1:1000 Invitrogen 

Donkey Rabbit A32794 

Goat Chicken A21437 

Goat Rat A21437 

Biotinylated 

Donkey Goat A16003 

1:250 

Novex 
Donkey Rabbit A16039 

Horse Mouse* BMK2202 Vector Laboratories 

Donkey Rat 712-065-

153 

Jackson 

ImmunoResearch 

Streptavidin Alexa Fluor555 N/A 532355 1:1000 Invitrogen 
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Table 4.5 Animals used in this chapter  

N.B. Tissue was taken from the same 3 (nestin) GFP animals in sections 4.5.3 and 4.4.4. n numbers represent the total number of slices 
counted/imaged from each spinal cord region, from all animals. * FG-injected.  ** Total slices per antibody (CD24, Gal-3, NKA-α1, Sox2, & Vimentin).

Chapter ref. Strain  
Number of 

animals (N) 
Antibody 

Sections per condition (n) Brain (OB, 

SVZ & SGZ) 
Age (weeks)  

Thoracic Lumbar 

4.5.3.1 

(Nestin) GFP 

 
3 

CD24 17 18 - 6-8  

4.5.3.2 Gal-3 14 16 - 6-8 

4.5.3.3 NKA-α1 17 14 - 6-8 

4.5.3.4 Sox2 14 15 - 6-8 

4.5.3.5 Vimentin 14 18 - 6-8 

4.5.4.1 CD63 9 - 6-8 

4.5.4.2 CXCR4 9 - 6-8 

4.5.4.3 FoxJ1 9 - 6-8 

4.5.4.4 Calbindin-D28k 9 - 6-8 

4.5.4.5 GFAP 9 - 6-8 

4.5.5 PKD2L1 9 - 6-8 

4.5.1 (Nestin) GFP* 2 CD31 6 12 6  

4.5.5 
GAD67-GFP 2 

PKD2L1 6 - 6-8 

4.5.3.1- 4.5.3.5 CD24- Vimentin 6** - 6-8 



 
 

87 

 

4.4 Results  

4.4.1 (Nestin) GFP colocalises with markers of pericytes in the 

spinal cord and brain 

(Nestin) GFP expression was present throughout the spinal cord in the white and grey 

matter, intensifying at the central canal (Figure 4.3 A & B). FG labelling colocalised with 

(nestin) GFP in the white and grey matter of the spinal cord (Figure 4.3 B) and brain 

(Figure 4.4) identifying these cells as pericytes (Edwards et al., 2013). As expected, 

these (nestin) GFP pericytes were also found in close apposition to CD31+ve 

endothelial cells (Figure 4.3 Ai). (Nestin) GFP+ve cells were located within the 

hippocampal dentate gyrus (DG) (Figure 4.4 A), as well as the subventricular zone (not 

shown) and glomerular layer (GL) and subependymal layer (SEL) of the olfactory bulb 

(Figure 4.4 B), reflecting nestin expression patterns seen elsewhere (Mignone et al., 

2004; Encinas et al., 2011).  

FG labelling was largely absent from the subgranular zone (SGZ) of the DG, and here 

(nestin) GFP was expressed mainly in neural stem cells (Figure 4.3 A, white dashed 

region). A sub-population of (nestin) GFP+ve cells, located at the central canal of the 

spinal cord, were also CD31-ve and FG-ve (Figure 4.4 A & B, white dashed ovals).  
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Figure 4.3 (Nestin) GFP labels pericytes and ependymal cells in the spinal cord.  

Representative confocal images of (A) CD31 staining (red) and (B) FG-labelled cells 
(yellow) in the spinal cord of (nestin) GFP mice (green). Scale bars A & B = 200 µm, i = 
20 µm.  
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Figure 4.4 (Nestin) GFP labels pericytes and neural stem cells in the brain. 

Representative confocal images of (A) FG-labelled cells (yellow) in the subgranular 
zone (SGZ, dashed region) of the dentate gyrus (DG) of (nestin) GFP mice (green). (B) 
(nestin) GFP expression in the olfactory bulb (rotated, coronal plane). White arrows 
denoting the glomerular layer (GL) and subependymal layer (SEL). Scale bars A = 100 
µm, B = 200 µm.  

 

4.4.2 (Nestin) GFP colocalises with antibodies labelling ECs in the 

spinal cord  

(Nestin) GFP+ve cells at the central canal of the spinal cord were not labelled by FG or 

CD31, and various antibodies were used to confirm the identity of these cells as ECs. 
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Antibodies used to label ECs include: CD24, galectin-3 (gal-3), NKA-α1, sox2, and 

vimentin. (Nestin) GFP expressing cells at the central canal were immunoreactive 

against all EC markers, confirming their identity as ECs. GAD67-GFP transgenic tissue 

was used to assess whether some of the antibodies labelled ECs and/or CSFcCs at 

the central canal region of the spinal cord. 

4.4.2.1 CD24 

CD24 has been identified as a neural stem cell surface marker (Pruszak et al., 2009; 

Yuan et al., 2011) and has been shown to label ependymal cells in the spinal cord 

(Pfenninger et al., 2011; Alfaro-Cervello et al., 2012b) as well as neuroblasts in the 

subependymal zone of the adult murine brain (Calaora et al., 1996; Belvindrah et al., 

2002). CD24 labelled cells lining the central canal throughout the length of the spinal 

cord (Figure 4.5 & Figure 4.6 A).  

 

Figure 4.5 CD24 labels ependymal cells along the length of the central canal.  

Representative confocal images of saggital central canal CD24 staining (red) and 
(nestin) GFP (green) colocalisation. Scale bar =10 µm. 

 
 

 

On average, cells expressing (nestin) GFP colocalised with over 95% of CD24 labelled 

cells at the central canal (thoracic= 96.6% ±3.92, lumbar= 95.1% ±1.20; N=3 , n=35) 

(Figure 4.6 B & D, white arrows with asterisk indicate non-colocalised CD24+ cell). 

Interestingly, despite being used as an EC marker, CD24 was identified in some 

GAD67-GFP CSFcCs (Figure 4.6 C, white arrows).  

(Nestin) GFP 
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Figure 4.6 CD24 colocalises with (nestin) GFP ECs and some GAD67-GFP CSFcCs at the central canal.  

Representative confocal images of CD24 labelling (red) in (A) half a spinal cord slice (central canal in dashed box), central canal of (B) (nestin) GFP 
and (C) GAD67-GFP tissue (green). (D) Graph showing the percentage of CD24+ve cells colocalised with (nestin) GFP (data presented as mean 
±SEM). Arrows indicate co-labelled cells, arrows with asterisk indicate non co-localised cells. Scale bar A = 100 µm, B & C = 20 µm. 
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4.4.2.2 Galectin-3 

In the brain, galectin-3 is expressed in activated microglia (Lalancette-Hébert et al., 

2012), neurons (Yoo et al., 2017), and ependymal cells (Comte et al., 2011).  

In all spinal cord sections, 100% of (nestin) GFP+ve cells at the central canal 

colocalised with gal-3 labelling (N=3, n=30) (Figure 4.7 A, B & D). No colocalisation 

was found between gal-3 and GAD67-GFP+ve CSFcCs, indicating that at the central 

canal, this Gal-3 antibody is selective for ependymal cells (Figure 4.7 C). Gal-3 also 

labelled GFP-negative sympathetic preganglionic neurons (SPNs) in the spinal cord 

(not shown). 

 

4.4.2.3 NKA-α1 

Na+/K+ATPase (NKA) is a transmembrane protein present in excitable cells (Edwards 

et al., 2013; Corns et al., 2015). The catalytic α subunits of NKA (isoforms: α1-4) 

maintain ionic gradients via the exchange of Na+ and K+ ions and in the spinal cord of 

mice the α1 subunit (NKA-α1) is expressed in α-motoneurons, sympathetic 

preganglionic neurons – SPNs, and ECs (Edwards et al., 2013; Corns et al., 2015).  

NKA-α1 staining colocalised with (nestin) GFP+ve cells at the central canal and also 

labelled GFP-negative terminals in the intermediolateral nucleus (IML, Figure 4.8 A & 

Ai). Over 90% of NKA-α1 labelled cells colocalised with (nestin) GFP at the central 

canal (Figure 4.8 B & D) (thoracic= 90.30 ±1.427, lumbar= 94.10 ±1.246; N=3, n=31). A 

few NKA-α1 labelled cells were GFP-negative or had faint GFP fluorescence and so 

were not counted as colocalised (Figure 4.7 B, white arrows).  

A sub-population of CSFcCs were also immunoreactive for NKA-α1 (not shown), 

however, this was not seen for all CSFcCs (Figure 4.8 C). 
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Figure 4.7 Galectin-3 colocalises with (nestin) GFP ECs and but not GAD67-GFP CSFcCs at the central canal.  

Representative confocal images of Galectin-3 labelling (red) in (A) half a spinal cord slice (central canal in dashed box), central canal of (B) (nestin) 
GFP and (C) GAD67-GFP tissue (green). (D) Graph showing the percentage of Galectin-3+ve cells colocalised with (nestin) GFP (data presented as 
mean ±SEM). Scale bar A = 100 µm, B & C = 20 µm. 
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Figure 4.8 NKA-α1 colocalises with (nestin) GFP ECs and some GAD67-GFP CSFcCs at the central canal.  

Representative confocal images of NKA-α1 labelling (red) in (A) half a spinal cord slice (central canal in dashed box), central canal of (B) (nestin) 
GFP and (C) GAD67-GFP tissue (green), (Ai) NKA-α1 labelling of terminal in the IML, (D) Graph showing the percentage of NKA-α1+ve cells 
colocalised with (nestin) GFP (data presented as mean ±SEM). Arrows with asterisk indicate non co-localised cells. Scale bar A = 100 µm, Ai & B = 
20 µm.
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4.4.2.4 Sox2 

Sox2 (sex determining region Y-box2) is a transcriptional regulator present in 

pluripotent stem cells (Zhang, 2014; Ogai et al., 2014b). 

Sox2 labelled cells at the central canal and throughout the white and grey matter in the 

spinal cord (Figure 4.9 A). (Nestin) GFP+ve cells at the central canal colocalised with 

over 90% of sox2+ve cells. In thoracic sections, colocalisation rose to 100% (thoracic= 

100.0 ±0.00, lumbar= 91.60 ±1.514; N=3, n=29). 

Additional sox2+ve cells that were GFP-negative were found close to the ependymal 

cell layer in lumbar sections (Figure 4.9 B & D, white arrows). These were identified as 

CSFcCs, with sox2+ve cells colocalising with GAD67-GFP+ve cells (Figure 4.9 C, 

white arrows).  

 

4.4.2.5 Vimentin  

Vimentin is a class III intermediate filament protein found in fibroblasts and blood 

vessel cells, as well as ependymal cells and astrocytes in the adult murine brain 

(Schnitzer et al., 1981).  

Approximately 100% of vimentin labelling colocalised with (nestin) GFP+ve cells at the 

central canal of the spinal cord (thoracic= 99.80± 0.1984, lumbar= 100.3 ± 0.1987; 

N=3, n=32) (Figure 4.10 A, B & D). No colocalisation was found between vimentin and 

GAD67-GFP, indicating vimentin labelling is selective to ependymal cells at the central 

canal of the spinal cord (Figure 4.10 C). 
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Figure 4.9 Sox2 colocalises with (nestin) GFP ECs and GAD67-GFP CSFcCs at the central canal.   

Representative confocal images of Sox2 labelling (red) in (A) half a spinal cord slice (central canal in dashed box), central canal of (B) (nestin) GFP 
and (C) GAD67-GFP tissue (green). (D) Graph showing the percentage of Sox2+ve cells colocalised with (nestin) GFP (data presented as mean 
±SEM). Arrows indicate co-labelled cells, arrows with asterisk indicate non co-localised cells. Scale bar A = 100 µm, B & C = 20 µm. 
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Figure 4.10 Vimentin colocalises with (nestin) GFP ECs but not GAD67-GFP CSFcCs at the central canal  

Representative confocal images of vimentin labelling (red) in (A) half a spinal cord slice (central canal in dashed box), central canal of (B) (nestin) 
GFP and (C) GAD67-GFP tissue (green). (D) Graph showing the percentage of vimentin+ve cells colocalised with (nestin) GFP (data presented as 
mean ±SEM). Scale bar A = 100 µm, B & C = 20 µm. 
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4.4.3 Other markers of interest 

Other cell markers investigated include: CD63, CXCR4, FoxJ1, Calbindin-D28k, and 

GFAP. CXC chemokine receptor type 4, also known as CXCR4, is expressed in ECs 

(Tysseling et al., 2011; Hugnot and Franzen, 2011) and is the main signalling receptor 

to the chemokine stromal cell-derived factor-1 (SDF-1). Additionally, forkhead box 

protein J1 (foxJ1) is a transcription factor transiently expressed in progenitor cells 

within the spinal cord, and is widely used to label ependymal cells in the spinal cord of 

mice (Jacquet et al., 2009; Li et al., 2016). (Nestin) GFP+ve cells colocalised with 

CXCR4 and foxJ1 labelling at the central canal (Figure 4.11 B and C).  

Additionally, CD63, a marker of exosomes (Kong et al., 2017), appeared to label the 

cell membrane of (nestin) GFP+ve ECs in contact with CSF (Figure 4.11 A). 

CalbindinD-28k also appeared to label ependymal (nestin) GFP+ve cells (Figure 4.12 

D) and fluorescence was most prominent in the cell membrane in dorsal ependymal 

cells. Calbindin-D28k is a calcium binding protein present in the ependymal cells of 

rodents and overexpression of this protein has been shown to promote neuronal 

differentiation and neurite outgrowth in embryonic and adult hippocampal progenitor 

cells in vitro (Kim et al., 2006). 
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Figure 4.11 (Nestin) GFP colocalises with other antibodies at the central canal. 

Representative confocal images of (A) CD63, (B) CXCR4, (C) and FoxJ1 staining (red) 
at the central canal of (nestin) GFP (green) spinal cord tissue. Scale bar = 20 µm. 
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Figure 4.12 (Nestin) GFP colocalises with other antibodies at the central canal.  

Representative confocal images of (D) calbindin-D28k and (E) GFAP staining at the 
central canal of (nestin) GFP (green) spinal cord tissue. Scale bar = 20 µm. 
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Anti-GFAP was used to identify reactive glial cells around the central canal. Glial 

fibrillary acidic protein (GFAP) is an intermediate filament found in astrocytes and other 

glial cells within the CNS (Hol and Pekny, 2015). GFAP labelled processes extended 

from/around the central canal, however, it wasn’t clear whether this staining colocalised 

with (nestin) GFP+ve cells. (Figure 4.12 E). These results are similar to those seen 

elsewhere, whereby astrocytic processes are found within the lamina-X and make 

contact with the ependymal layer (Alfaro-Cervello et al., 2012b). However, as GFAP 

does not label the cell body, it was difficult to confidently identify which cells these 

GFAP+ve processes originated from. Ependymal cells are thought to derive from radial 

glia (Doetsch and Alvarez-Buylla, 1996; Filippov et al., 2003), and published RNA seq. 

data shows expression of GFAP in ependymal cells (see Table 4.6). 

 

 

4.4.4 (Nestin) GFP does not label CSFcCs 

Anti-PKD2L1 was used as a marker of cerebrospinal fluid contacting cells (CSFcCs) 

found in the sub-ependymal layer or in close apposition with ECs. No colocalisation of 

PKD2L1 with (nestin) GFP+ve cells was observed, confirming the identity of (nestin) 

GFP+ve cells as ECs at the central canal (Figure 4.13 A). As expected, there was 

colocalisation of PKD2L1+ve cells with GAD67-GFP+ve CSFcCs (Figure 4.13 B). 

Interestingly, published RNA seq. data unexpectedly shows GAD-67 is expressed in 

ECs as well as CSFcCs (Rosenberg et al., 2018) (EC: 29.8, CSFcC: 378.7 transcripts 

per million). 
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Figure 4.13 (Nestin) GFP does not label CSFcCs at the central canal 

Representative confocal images of PKD2L1 staining (red) at the central canal of (A) 
(nestin) GFP and (B) GAD67-GFP spinal cord tissue. Scale bar = 20 µm. 
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4.4.5 Allen Brain Atlas and RNA sequencing data 

The Allen Brain Atlas (ABA) is a database of gene expression (using RNA in situ 

hybridization localisation) in spinal cord and brain tissue of juvenile and adult mice 

(Allen Institute for Brain Science, n.d.). Table 4.6 presents data from the ABA for each 

gene investigated (where possible), RNA sequencing data from Rosenberg, 2018 

(Rosenberg et al., 2018) (presented as transcripts per million), along with the IF 

presented in this chapter for comparison. It can be seen that ABA and RNA seq. data 

support our IF results in most cases. There are however, a number of contradicting 

results in the case of Calbindin-28 and CXCR4 expression in ECs, and CD24 

expression in CSFcCs.
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Table 4.6 Distinguishing between ECs and CSFcCs at the central canal 

Antibody/gene 
Ependymal cells Cerebrospinal fluid contacting cells 

Immuno. Allen Brain Atlas RNA seq. Immuno. Allen Brain Atlas RNA seq. 

Calbindin-28k/ CALB1 Yes Some, adult 1 N.D Unclear 36.3 

CD24 Yes Juvenile and adult 37.6 Yes Unclear 1 

CD63 Yes Juvenile and adult 22.7 N.D Unclear 1 

CXCR4  Yes N.D 1 No N.D 1 

FoxJ1 Yes N.D 52.9 No N.D 1 

Galectin-3/ LGALS3 Yes Faint 23.1 No Unclear 1 

GFAP Unclear Unclear 120.5 Unclear Unclear 1 

NKA-α1/Atp1a1 Yes Adult 207.7 Some Unclear 132.2 

PKD2L1 No No 1 Yes Juvenile and adult 2424.2 

Sox2 Yes Juvenile and adult 202.1 Yes Unclear 50.0 

Vimentin Yes N.D 97.2 No N.D 1 

Immunofluorescence conclusions from this chapter: yes = antibody colocalisation with (nestin) GFP+ve ECs or GAD67-GFP+ve CSFcCs in 
transgenic tissue. No = no colocalisation. RNA seq data from Rosenberg, 2018 (Rosenberg et al., 2018) values presented as transcripts per million. 
Allen brain atlas data taken from mRNA localisation pseudo coloured to match expression intensity/in situ hybridization (Allen Institute for Brain 
Science, n.d.).
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4.5 Discussion 

The results presented in this chapter demonstrate that (nestin) GFP expression within 

the SC of these transgenic mice is limited to ECs and pericytes. 

(Nestin) GFP expression in this transgenic line has been shown to be present from 

embryonic day 7, and persist in the progenitor cells of adult mice (Mignone et al., 

2004). Nestin immunoreactivity is typically observed in the cytoplasm of a sub-

population of ECs at the central canal, with nestin-labelled cellular processes extending 

dorsally (and in some cases ventrally) along the midline (Hamilton et al., 2009). In this 

transgenic mouse line, (nestin) GFP is expressed in the cell nucleus as well as the 

cytoplasm. Additionally, due to the half-life of GFP, fluorescence may be detected after 

nestin expression is terminated. This difference in nestin labelling could account for the 

variability in literature with regards to colocalisation of anti-nestin and other stem cell 

markers.  

In this chapter we show labelling of (nestin) GFP+ve ECs with a number of stem cell 

markers. Sox2 labelling in particular indicates the stemness of ECs as this is a critical 

factor for directing neural differentiation and stem cell maintenance (Ogai et al., 

2014c)(Zhang, 2014). FoxJ1 has been shown to be essential for EC development and 

transgenic mice under the regulation of the foxJ1 promoter are routinely used to label 

and track ECs (Jacquet et al., 2009; Li et al., 2016; Muthusamy et al., 2018). FoxJ1 has 

also been implicated in stem cell potential maintenance and cell fate determination (Li 

et al., 2018), further supporting the notion that ECs are stem cells.  

Additionally, CD24 is a glycosylphosphatidylinositol-anchored membrane glycoprotein 

expressed in cells of the developing mouse brain as well as in zones of secondary 

neurogenesis in adult mice (Calaora et al., 1996). CD24 has also been shown to 

regulate cell proliferation and differentiation in regions of adult neurogenesis in vitro 

and in vivo (Nieoullon et al., 2005) and a percentage of CD24+ve ECs have been 
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shown to generate primary neurospheres, although these cells didn’t yield secondary 

spheres (Coskun et al., 2008).  

NKA-α1 aids in the maintenance of cell resting potential, and so could play a role in the 

hyperpolarisation of ECs associated with cell division (Corns et al., 2013). ECs are 

depolarised by GABA (Corns et al., 2013) and acetylcholine (Corns et al., 2015) and 

research has shown potentiation of EC proliferation by the α7 containing nicotinic 

acetylcholine receptor modulator PNU-120596 (Corns et al., 2015) indicating a 

potential route for manipulating EC behaviour. 

In addition to these stem cell markers, we show that ECs possess proteins involved in 

the regulation of the neurogenic niche more broadly. CD24 is thought to be involved in 

cell-cell and cell-matrix interactions (via P-selectin (Aigner et al., 1997; Nieoullon et al., 

2005) and L1CAM (Kleene et al., 2001) binding), and act as a neurite growth inhibitor 

(Shewan et al., 1996) and vimentin is also implicated in neurite formation and is 

expressed in neurons during axonal regeneration (Cochard and Paulin, 1984; Shea et 

al., 1993). Together, this indicates ECs may play a role in the regulation of neurite 

outgrowth, and the manipulation of ECs following injury could help regulate functional 

repair. 

4.5.1 Do ECs sense their environment? 

How ependymal cells exert their impact on the neurogenic niche is currently unknown. 

One potential avenue is via the release of molecules following an injury stimulus. For 

example, we have shown that ECs may release exosomes (due to the presence of the 

exosomal marker CD63) and exosomes from the CSF of rats following spinal cord 

injury have previously been linked to neuron proliferation (Kong et al., 2017). It is 

therefore possible that ECs “sense” changes in the spinal cord and CSF, and react by 

releasing cytokines or other molecules via exosomes to manipulate cell behaviour post 

injury. (Rosenberg et al., 2018) showed that ECs express the membrane protein 
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aquaporin-4, which is involved in trans-ependymal CSF flow and reabsorption, 

supporting this hypothesis (Halsey et al., 2018).  

In addition to the role CD63 plays in membrane protein trafficking, it is also implicated 

in the regulation of leukocyte recruitment (Doyle et al., 2011), cell adhesion and 

migration (Koyama et al., 1998), and the activation of cellular signalling cascades 

(Tugues et al., 2013).  

Additionally, foxJ1 has been shown to regulate ciliogenesis during development 

(Aamar and Dawid, 2008); these cilia are involved in sonic hedgehog (Shh) signalling 

and postnatal neurogenesis in the hippocampus (Breunig et al., 2008; Spassky et al., 

2008; Han et al., 2008). Elsewhere in the body, cilia are thought to have a 

mechanosensory role (Nauli et al., 2013), however, it is unclear whether this is the 

case for neuronal and ependymal cilia within the CNS (Fuchs and Schwark, 2004). 

4.5.2 Potential targets for the manipulation of ECs 

CXCR4/SDF-1 is thought to direct the migration of ECs in the spinal cord and brain 

following injury (Itoh et al., 2009; Jaerve et al., 2011; Tysseling et al., 2011). Therefore, 

this regulatory mechanism could hold the key to successful EC manipulation following 

injury (discussed further in chapter 5). 

Gal-3 is implicated in cell migration from the SVZ to the OB (Comte et al., 2011) and it 

is thought that Gal-3 regulates neuroblast migration via cell-ECM adhesion, the 

formation of astrocytic glial tubes, and CSF-flow (as a result of ependymal cell cilia 

beating) (Sawamoto et al., 2006). In gal-3-depleted mice, EC cilia and SVZ astrocytic 

glial tubes were disrupted, and as a result, fewer newly born neurons were detected 

migrating from the SVZ to the OB (Comte et al., 2011). Interestingly, following spinal 

cord injury, gal-3-depleted mice showed improved functional recovery, tissue 

preservation, and an increase in the number of neutrophils compared to control WT 

mice (Mostacada et al., 2015). The presence of gal-3 immunoreactivity suggests the 
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potential manipulation of ECs using laminin-functionalised tissue engineering strategies 

for injury repair. 

4.5.3 Distinguishing between ECs, CSFcCs, and pericytes 

This chapter has also shown that at the central canal, (nestin) GFP is specific to ECs 

and does not label CSFcCs. Some antibodies (CD24, NKA-α1, and sox2) labelled both 

ECs and CSFcCs at the central canal, whereas gal-3 and vimentin labelled only ECs.  

Interestingly, some GAD67-GFP CSFcCs were immunoreactive against CD24. It is 

possible this change in staining is due to the use of T20 for cell permeabilisation as 

opposed to PBST and antigen retrieval used previously (Corns 2015); highlighting the 

need to consider fixation and permeabilisation protocols in IF for cell characterisation. 

RNA seq. data (Table 4.6) did not show CD24 expression in CSFcCs and so perhaps 

only a subset are CD24+ve, with further clarification required. 

NKA-α1 also colocalised with a subpopulation of CSFcCs and this observation was 

supported by RNA seq. data (Table 4.6). Previously, CD24 and NKA-α1 have been 

used as EC markers, implying proliferation of ECs due to colocalisation with EdU 

(Corns et al., 2015). However, this may not be the case and these cells may actually 

have been CSFcCs, emphasising the importance of this transgenic line for the 

assessment of EC behaviour, as (nestin) GFP only labels ependymal cells at the 

central canal.  

This chapter also demonstrated sox2 labelling of some CSFcCs. Typically sox2 is 

downregulated upon differentiation (Bylund et al., 2003), however colocalisation of 

sox2 and PKD2L1 has been seen previously (Petracca et al., 2016) and sox2 

expression in CSFcCs was demonstrated by (Rosenberg et al., 2018). If CSFcCs retain 

plasticity as indicated by sox2 labelling, they too could be a potential target for 

manipulation. 
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Increasing evidence has shown that pericytes are also multipotent (Dore-Duffy et al., 

2006). Following stroke, isolated pericytes have been shown to express nestin and 

sox2 (amongst other markers) and generate neural and vascular cells in vitro 

(Nakagomi et al., 2015). This chapter has demonstrated the potential of using this 

(nestin) GFP transgenic line in combination with FG for the identification of pericytes. 

Flow cytometry using (nestin) GFP with FG and/or a pericyte-specific antibody (e.g. 

PDGF-β) could be used for the isolation and exclusion of pericytes, thereby allowing 

EC isolation. This would be useful for EC implantation as it would remove the 

requirement of EC antibody labelling (and the blocking of critical cell proteins) prior to 

implantation or the assessment of EC behaviour. 

 

4.6  Conclusions  

The experiments carried out in this chapter show: 

1. (Nestin) GFP labels ECs and pericytes throughout the spinal cord and brain. 

 At the central canal, (nestin) GFP is specific to ECs and does not label CSFcCs. 

 Some antibodies (CD24, NKA-α1, and sox2) label both ECs and CSFcCs at the 

central canal. 

 Galectin-3 and vimentin label only ependymal cells at the central canal. 

2. ECs express CXCR4 and galectin-3 which could be used for the manipulation of 

endogenous cells. 

Together, these data suggest that this transgenic line is suitable for studying the 

response of ECs to biomaterials. This transgenic line will therefore be used in chapter 5 

for culture method optimisation and together with the hydrogels developed in chapter 3, 

will be used to assess the impact of hydrogels on ECs in chapter 6.
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Chapter 5 -  Optimising Organotypic Spinal Cord Slice Cultures  

 

5.1 Introduction 

Organotypic slice culture models provide the opportunity to study cellular behaviour in 

a context more representative of the in vivo environment compared to approaches such 

as dissociated cell culture. Stoppini et al., 1991 first introduced the membrane-interface 

culture method whereby the tissue slices are maintained at the interface between 

culture medium and air. The retention of the native tissue cytoarchitecture ex vivo also 

enables cell-cell and cell-matrix interactions to be studied in response to experimental 

manipulation over several days or weeks. 

A number of organotypic spinal cord slice culture (OSCSC) models have been 

developed to study cellular response to mechanical insult. Spinal cord 

contusion/compression has been recapitulated using a weight-drop injury model 

(Krassioukov et al., 2002; Pandamooz et al., 2019). Stab and transection injury models 

have also been utilised within OSCSCs (Patar et al., 2019). 

OSCSCs enable multiple conditions to be tested from the same animal, therefore 

limiting the number of animals required for screening different hydrogels. Parameters 

investigated in response to hydrogels include: motorneuron survival, astrocyte 

morphology, microglial activation, and axonal growth (Bonnici and Kapfhammer, 2008; 

Schizas, Rojas, Kootala, Andersson, Pettersson, Hilborn and Nils P. Hailer, 2014). In 

particular, manipulation of OSCSC EC proliferation and migration using hydrogels 

and/or chemokines could provide insight into potential regeneration strategies, prior to 

carrying out in vivo experiments.  
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5.1.1 Identifying proliferating cells 

A number of methods can be used to detect DNA synthesis and cell proliferation. 

Measuring the metabolic activity of cells using tetrazolium salts (e.g. 2-(4,5-Dimethyl-2-

thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), 2,3-Bis-(2-Methoxy-4-Nitro-5-

Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT), and water-soluble tetrazolium 

salt-1 (WST-1)) can give an indication of the number of viable cells. Respiring cells 

convert these salts into dyes that can be quantified using a spectrophotometer, 

however, these metabolic assays may not accurately represent changes in cell 

proliferation. Immunohistochemical detection of antigens expressed in proliferating 

cells (e.g. proliferating cell nuclear antigen (PCNA), Ki67, and minichromosome 

maintenance (MCM) proteins) can also be used to study cell proliferation. Whilst these 

proliferation markers are commonly used as an indication of cell proliferation and 

therefore as diagnostic and prognostic factors for breast carcinoma, the scoring of the 

results is highly subjective and time consuming (Juríková et al., 2016).  

DNA synthesis can be monitored by incorporation and subsequent detection of a 

thymidine analogue in dividing cells. Two synthetic analogues used for this purpose 

include: bromodeoxyuridine (BrdU) and 5-ethynyl-2’deoxyuridine (EdU). These are 

incorporated into dividing cells during G1, S, and G2/M-phases (Buck et al., 2008) 

(Figure 5.1 A). BrdU detection requires DNA denaturation via hydrolysis using 

hydrochloric acid or heating (which can destroy antigens, hindering co-staining) (Zeng 

et al., 2010), whereas EdU can be detected using a click reaction without the need for 

such harsh staining conditions. Therefore, EdU incorporation was chosen for the 

detection of proliferating cells in experiments throughout this thesis. 

In the case of EdU detection, Cu(II) is first reduced to Cu(I) by ascorbic acid (Figure 5.1 

C) and Cu(I) then catalyses the azide-alkyne cycloaddition (CuAAC) of the biotinylated 

azide and the alkyne present on the EdU moiety (Figure 5.1 B). A streptavidin-

conjugated fluorophore (e.g. Alexa Fluor555 Streptavidin) can then bind to biotin and 
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render the cell nucleus fluorescent (Figure 5.1 D). Fluorophores can also be directly 

conjugated to the azide (not shown). 

As Cu(II) is used for the catalysis of EdU detection, any fluorescence present in the 

tissue is quenched and requires detecting with antibodies against the fluorophore 

(Bálint et al., 2013). In the case of GFP-transgenic tissue, this quenching mechanism is 

thought to be a result of Förster resonance energy transfer (FRET) from GFP to Cu(II) 

(Hötzer et al., 2011). The fluorescence decay time (τ fl) of GFP is Cu(II)-concentration 

dependent, exhibiting “titration behaviour” and therefore by lowering the Cu(II) 

concentration, quenching should be reduced, enabling GFP fluorescence retention.  

Although the fluorophore can be re-detected using an antibody following EdU 

detection, this requires additional incubation washes and therefore increases the 

background fluorescence and tissue fragility. Furthermore, this also limits other 

antibody labelling and the order of tissue staining. As GFP expressing animal and cell 

lines are such a critical tool in the study of stem cells within the spinal cord, the 

experiments presented in this chapter sought to overcome this challenge.  

 

 

 

 

 

 

 

 

 

 

 

 



 

113 

 

 

 

Figure 5.1 EdU detection method schematic.  

The thymidine analogue, 5-Ethynyl-2´-deoxyuridine (EdU) is administered to animals via  I.P. injection or into culture medium, and this is 
incorporated into the DNA of cells undergoing division (at the S-phase) (A). EdU is then detected using a copper catalysed azide-alkyne 
cycloaddition (CuAAC) (B). Cu(II) is reduced to Cu(I) by ascorbic acid (side reaction, C), and this is able to catalyse the cycloaddition of 
the biotinylated azide with the alkyne present on the EdU moiety. Streptavidin (SA)-conjugated Alexa Fluor is used to bind to biotin (black 
star) and render the cell nucleus fluorescent (red star) (D). This all occurs at room temperature, in the dark. 
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5.1.2 Aims  

The experiments in this chapter build on the characterisation work carried out in 

chapter 4; using the nestin transgenic line to optimise and develop methods for use in 

chapter 6 (Figure 5.2).  

 

Figure 5.2 Schematic depicting the aims of chapter 5 in relation to the rest of this 
thesis.  

In particular this chapter uses the transgenic line characterised in chapter 4 in order to 
optimise methods for use in chapter 6. 
 

 

1. To develop a method for detecting EdU-labelled cells in (nestin) GFP 

fluorescent tissue. 

Copper-chelating azides (e.g. picolyl azide) raise the effective concentration of Cu(I) by 

forming an active complex with/without a water-soluble ligand (THPTA) (Figure 5.3), 
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resulting in enhanced reaction kinetics of azide-alkyne cycloadditions (Uttamapinant et 

al., 2012). Therefore, this chapter aimed to use picolyl azide to develop an optimised 

method for the detection of EdU incorporated into cells, whilst maintaining GFP 

fluorescence in transgenic tissue. 

 

Figure 5.3 Chelation-assisted copper catalysed azide-alkyne cycloaddition for 
the improved detection of EdU.  

The reaction of biotin picolyl azide and the alkyne presented on EdU proceeds via an 
active complex around Cu(I) [A]. The chelating picolyl azide raises the effective 
concentration of the Cu(I) catalyst at the reaction site. In turn this allows for a reduction 
in the Cu(I) concentration. R1 = rest of the biotin picolyl azide structure. R2 = rest of the 
EdU incorporated into the DNA of dividing cells. L = optional water-soluble ligand 
(THPTA). 
 
 
2. To determine optimal culture conditions. 

We plan to use the organotypic spinal cord slice culture model to assess the impact of 

hydrogels and SDF-1α delivery on EC behaviour. In order to do so, and to compare to 

a reliable control, the conditions for culture required optimising. This chapter aimed to 

determine the optimal EdU concentration and length of time in culture for monitoring 

the proliferation of ependymal cells. 

 

 

Cell nucleus 

R1 
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5.2 Methods 

5.2.1 Animals used 

All experiments were carried out under a UK Home Office Licence (P1D7A177), in 

accordance with the UK Animals (Scientific Procedures) Act 1986 and the ethical 

standards set out by the University of Leeds Ethical Review Committee. Every effort 

was made to minimise the number of animals used and their suffering.  

(Nestin) GFP transgenic mice were bred in-house as heterozygotes, housed in 

standard conditions with a 12 hour light-dark cycle, and given ad libitum access to food 

and water. Wild-type (WT) C56BL/6 animals were purchased from Central Biomedical 

Services (University of Leeds). 

5.2.2 Organotypic spinal cord slice culture 

The laminar flow hood, incubator, and surrounding surfaces were disinfected using 1% 

(w/v) Virkon followed by 70% (v/v) ethanol prior to use. All tools for in vitro and in vivo 

work were cleaned with boiling water, 70% (v/v) ethanol, then autoclaved at 121 °C for 

20 minutes under 103 kPa for sterilisation. Where possible, sterile, single use 

consumables were used and disinfected with 1% Virkon following their use, prior to 

disposal.  

5.2.2.1 Anaesthesia, perfusion, and dissection 

Animals were anaesthetised by intraperitoneal (I.P.) injection of sodium pentobarbital 

(60 mg/kg, See general methods, Table 2.6). Sufficient anaesthesia was identified with 

the abolishment of pedal and corneal reflexes. A transverse laparotomy was created 

using spring scissors, the diaphragm was perforated, and the ventral ribcage was 

removed.  The left atrium was cut and the animal was perfused transcardially through 

the left ventricle using 20 mL ice cold oxygenated (95% O2, 5% CO2) sucrose artificial 

cerebrospinal fluid (SaCSF, See general methods, Table 2.5). Death was confirmed via 

decapitation using scissors. Following dorsal skin and soft tissue removal to expose the 
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vertebrae, fine spring scissors were used to remove the dorsal lamina. The spinal cord 

was then carefully removed and placed in a petri dish containing oxygenated ice cold 

SaCSF. The meninges were then removed using fine forceps with the aid of a 

dissection microscope. Thoracic and lumbar spinal sections were used for sectioning.  

5.2.2.2 Slice preparation  

Tissue was embedded in 3% agar and glued to the chuck with an additional agar block 

behind for support. The chuck was secured in place in the water bath containing ice 

cold oxygenated SaCSF and tissue was sectioned at 300 μm in the transverse plane 

using a vibratome with a ceramic blade. A vibration frequency of 108 Hz was used with 

0.8 mm amplitude and 0.5 mm/s speed. Slices were transferred into ice cold dissection 

medium, Dulbecco’s modified eagles medium (DMEM, See general methods, Table 

2.7), using a spatula and paint brush. 

5.2.2.3 Maintenance of tissue slices 

All further work was carried out aseptically in a laminar flow hood. Culture medium was 

equilibrated at 37°C prior to slice addition. 1 mL culture medium containing serum was 

added below the insert. Slices within the dissection medium were transferred carefully 

into a sterile petri dish and 3 to 6 slices were transferred onto each filter insert or gel 

(placed on top of filter insert) using a P1000 Gilson pipette with the tip cut off to 

minimise damage to the slice. Excess medium was removed around each slice using a 

sterile P100 pipette. Plates were cultured in an incubator at 37 °C in a 5% CO2 

enriched environment. Following 1 day in vitro (DIV), the medium was exchanged for 

serum free medium (See general methods, Table 2.7) (Figure 5.4). Medium was then 

refreshed every 48 h (0.5 mL removed and 0.5 mL fresh added per well). 
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5.2.2.4 EdU addition 

Following 2 DIV (unless specified otherwise, Figure 5.4), EdU was added to the culture 

medium at a final concentration of 1 μM (unless specified otherwise) allowing for the 

visualisation of cells that have undergone proliferation with EdU present. 

 

Figure 5.4 Organotypic spinal cord slice culture method.  

(A) 300 µm transverse sections cut from agar-embedded spinal cord and (B) 
transferred onto hydrogels on porous culture inserts, or directly onto the inserts. (C) 
Culture medium with serum added below the insert and incubated at 37 °C for 24 h. (D) 
Schematic diagram depicting culture timeline: medium was changed to serum free 
following 1 day in vitro (DIV), and EdU was added to the medium after 2 DIV (*unless 
stated otherwise) prior to fixation and EdU detection.  

 

5.2.2.5 Fixation 

Spinal cord slices were fixed in situ on tissue culture inserts using 4% 

paraformaldehyde (PFA, See general methods, Table 2.7) for 1-2 hours at RT. 

Following fixation, slices were removed using a paint brush, and transferred into wells 

containing PBS. 

 

EdU detection 
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5.2.3 EdU detection  

EdU detection reactions and incubation steps (control method detailed in Figure 5.5) 

were carried out at RT in the dark (See general methods, Table 2.4 for buffer solution 

compositions). Permeabilisation was carried out with either PBST or T20 depending on 

the requirements of any antibodies to be used (see antibody table). 

 

Figure 5.5 EdU detection protocol for fixed tissue slices & cultured slices 

*Slices were incubated in the click reaction mixture for 30 minutes unless stated 
otherwise. 

* 
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5.2.3.1 Perfusion-fixed tissue 

In order to optimise the EdU detection method in perfusion-fixed tissue, firstly, three 

(nestin) GFP transgenic animals were given EdU in their drinking water at a final 

concentration of 0.793 mM (0.2 mg/mL), and their water bottle was protected from light 

using black tape. EdU was administered via the drinking water in order to minimise the 

distress caused to the animals by repeated injections. Drinking water (with EdU) was 

refreshed daily for three days prior to perfusion-fixation of the animal. As we couldn’t 

control or guarantee equal water consumption between each animal, slices from each 

animal were used for all reaction conditions detailed below. 

5.2.3.2 Fixation and tissue processing 

Mice were terminally anaesthetised with sodium pentobarbital (60 mg/kg) I.P. and 

perfused transcardially with 0.1 M PB to remove blood, then 4% PFA for fixation. The 

spinal cord and brain were removed and post fixed overnight at 4 °C in 4% PFA, before 

being stored in 0.1 M PB at 4 °C. The pia mater was removed using fine forceps and a 

dissection microscope. Sections of spinal cord were glued to the chuck and this was 

then screwed into place in the water bath containing 0.1 M PB and the blade was 

attached to the vibratome arm. The tissue was then sectioned serially at 40 µm in the 

transverse plane at an amplitude of 0.4 mm/s and vibrating frequency of 80 Hz. 

Sections were placed into wells containing PBS for EdU labelling. 

5.2.4 Optimising EdU detection reaction conditions  

5.2.4.1 Perfusion-fixed tissue 

A number of reaction conditions (Table 5.1) were trialled using picolyl azide in order to 

determine the optimal conditions for detecting EdU in tissue with fluorescence. The 

Cu(II)SO4 concentration was reduced from 1 to 0.01 mM (final concentration) and 

different reaction lengths were investigated. The original method using a non-

conjugating azide was used as a control. 
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Table 5.1 Conditions used to optimise EdU detection method in fixed tissue 

  Time /minutes 

 [Cu(II)SO4] 

/mM 
5 10 30 60 90 120 

Biotin azide 1 x x x x x x 

 

 

Biotin picolyl 
azide 

1 x x x    

0.5  x x x  x 

0.25  x x x  x 

0.1   x x x x 

0.01   x x x x 

x denotes conditions trialled. n=18 slices per condition, N=3. 

 

 

5.2.4.2 Cultured tissue 

Spinal cord slices were cultured for 2 DIV with EdU added for the final 24 h prior to 

fixation. Sections were then randomised, and EdU detection performed (Table 5.2). 

Table 5.2 Conditions used to optimise EdU detection method in fixed, cultured 
slices 

                 Time /minutes 

 [Cu(II)SO4] 

/mM 
5 10 20 30 45 

Biotin azide 1    x  

 

Biotin picolyl 
azide 

1 x   x  

0.5 x x x x  

0.1    x x 

x denotes conditions trialled. n=6 slices per condition, N=3. 

 

5.2.5 Immunofluorescence 

Immunofluorescence was carried out on fixed cultured slices using the method 

previously described (Chapter 4.3.4). Antibodies used to characterise (nestin) GFP 

cellular processes include: CD24, Gal-3, and neural/glial antigen2 (NG2 –also called 

chondroitin sulphate proteoglycan 4). CD24 and Gal-3 were used to confirm these 
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processes included ependymal cells originating from the central canal and NG2 was 

used to identify pericytes (Table 5.3). 

 

Table 5.3 Antibodies used for the labelling of cultured spinal cord slices 

Target Raised in Dilution Labels  
Source  

& Cat. No 

CD24* Mouse 1:100 ECs (Pruszak et al., 2009; 

Pfenninger et al., 2011) 

Miltenyi Biotec 

130-110-686 

Gal-3* Goat 1:1000 

 

ECs (Comte et al., 2011; Yoo 

et al., 2017) 

R&D systems 

AF1197 

NG2 Rabbit 1:500 Pericytes (Ozerdem et al., 

2001) 

Millipore 

AB5320 

*detected using biotinylated secondary antibody and Streptavidin AlexaFluor555. 

 

5.2.6 Image capture and analysis 

Manual cell counts of EdU-labelled (EdU+ve) cells at the central canal were performed 

using a Nikon E600 microscope. Images of whole slices were taken using an EVOS 

fluorescent microscope at x4, x10, and x20 magnification for further quantification.  

5.2.6.1 EdU labelled cell quantification 

Using ImageJ, images were converted to binary 16 bit and cropped to remove scale 

bars where applicable. Background fluorescence was removed using the “remove 

background” tool, and a threshold was applied. The “watershed” tool was applied in 

order to split any overlapping cells that had been incorrectly identified as a single 

particle. The “analyse particles” tool was then used to create a total count of all 

EdU+ve cells (Figure 5.6). 

For analysis using quadrants, a line was drawn through the thresholded image along 

the mid-line, centring the line at the central canal. Five concentric circles were then 

drawn (centred at the central canal) and each was split into four quadrants using a 

macro written by Olivier Burri (Burri, 2016). The percentage area (% area of pixels 

highlighted using threshold limits) for each region of interest (ROI) was then calculated. 

An average % area was then calculated using the four quadrants, to give a mean % 
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area as a function of radial distance from the central canal (1= central canal region, 5 = 

periphery of slice, Figure 5.6).  

5.2.7 Data analysis 

Data were collated in Microsoft Excel and analysed using IBM SPSS statistics 21. 

Average EdU+ve cell counts were calculated and presented as mean ±SE unless 

stated otherwise. Shapiro-Wilk and Levine’s tests were applied for distribution and 

equality of variance analysis respectively. A decision tree was used to determine the 

appropriate statistical test (See general methods, Figure 2.6). 
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Figure 5.6 Image analysis using ImageJ.   

(A) Representative EVOS image of whole cultured spinal cord slice with EdU labelling. 
(B) Fluorescent images were converted to 16-bit binary, the background was 
subtracted, the fluorescence was thresholded, and a macro was run to create 
quadrants and concentric circles, centred at the central canal. % area was calculated 
for each quadrant and averaged for regions 1 to 5. (C) EdU+ve cells were then counted 
using the “analyse particles” function on the thresholded images. Scale bar = 500 µm  
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Table 5.4 Animals used in this chapter for method optimisation  

Chapter  Experiment Strain  Number of animals (N) 
Sections per 

condition (n) 
Age  

5.3.1 EdU detection optimisation (Nestin) GFP** 3 18 6-8 weeks 

5.3.2 EdU detection optimisation (Nestin) GFP 3 6 14 ±2 days 

5.3.3 Nestin-GFP expression (Nestin) GFP 9 >3 14 ±4 days 

5.3.4 Proliferation over time (Nestin) GFP 2 >3 12 days 

5.5.5 EdU availability - length of time in culture  
                          - uptake 

(Nestin) GFP 1 >3 18 days 

5.5.6 EdU concentration and length of time (Nestin) GFP 3 >3 15 days 

5.5.7 Delayed EdU addition (Nestin) GFP 1 >2 14 days 

5.5.8 Injury model - following 2 DIV, EdU 6 hours (Nestin) GFP 2 >3 14 days 

5.5.8 Injury model - 5 DIV, EdU 18 hours (Nestin) GFP 2 >3 14 days 

5.5.8 Injury model - 3 DIV, EdU 48 hours (Nestin) GFP 1 >2 13 days 

** EdU given in drinking water 
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5.3 Results  

5.3.1 EdU can be detected in perfusion-fixed spinal cord tissue 

whilst maintaining GFP fluorescence  

Out of the 25 combinations of conditions trialled, an optimal reaction length and Cu(II) 

concentration was found when using biotin picolyl azide. Using 1 mM CuSO4 and 

reducing the reaction time to 5 minutes resulted in GFP retention and EdU detection 

comparable with control staining (1 mM, 30 mins) (Table 5.5, Figure 5.7). This protocol 

was therefore used for EdU detection in perfusion-fixed tissue. 

 

Table 5.5 Optimised EdU detection in fixed tissue 

  Time /mins 

 
[Cu(II)SO4] 

/mM 
5 10 30 60 90 120 

Biotin azide 1 1 1 1 1 0 3 0 3 0 3 0 0 

Biotin picolyl 

azide 

1 2 3 1 3 0 3       

0.5   0 2 0 3 0 3   0 3 

0.25   2 0 1 1 0 3   0  

0.1     1 0 1 1 0 0 0 1 

0.01     3 1 3 1 2 0 2 0 

Staining code: 0 = none, 1 = faint, 2 = good, 3 = best (comparable to control). Green = 
GFP, EdU = red. Blank cells = not tested. 
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Figure 5.7 EdU detection in nestin-GFP perfusion-fixed tissue using picolyl azide.  

Representative confocal images showing EdU detected cells (red), nestin-GFP+ve 
cells (green), and a merged image with DAPI as a cell nuclei counter stain (blue). (A) 5 
minutes click reaction with 1 mM Cu(II) results in good EdU staining and GFP retention 
allowing for colocalisation counts to be made (white arrows). (B) 30 minutes reaction 
with 1 mM Cu(II) gives good EdU staining, however GFP fluorescence is quenched and 
appears faint (white arrows). (C) Control nestin-GFP (no EdU detection) for reference. 
Scale bars = 20 µm.  
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5.3.2 EdU can be detected in cultured spinal cord slices whilst 

maintaining (nestin) GFP fluorescence  

Out of the 9 combinations of conditions trialled in cultured tissue, an optimal reaction 

length and Cu(II) concentration was found. Using a reduced copper concentration (0.5 

mM), and reducing the reaction time to 20 minutes resulted in (nestin) GFP retention, 

and EdU detection comparable with control staining (Table 5.6, image not shown). This 

protocol was used for subsequent EdU detection in cultured tissue slices. 

 

Table 5.6 Results of optimised EdU detection in fixed, cultured slices 

  
Time /mins 

 
[Cu(II)SO4] /mM 

5 10 20 30 45 

Biotin azide 1       0 3   

 

Biotin picolyl 

azide 

1 2 3*     1 3*   

0.5 2 3 2 2 3 3 2 3   

0.1       2 2 1 2 

Staining code: 0 = none, 1 = faint, 2 = good, 3 = best (comparable to control). Green = 
GFP, EdU = red. Blank cells = not tested. *very varied between sections. 
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5.3.3 (Nestin) GFP fluorescence expression and distribution ex-vivo 

(Nestin) GFP expression in the white and grey matter of cultured spinal cord slices 

reduced over 3 days in culture (Figure 5.8, radial segments 2 to 4). Whereas, central 

canal (nestin) GFP fluorescence remained clearly visible over this time-period, 

indicating viability of ependymal cells ex vivo (Figure 5.8 B).  

 

Figure 5.8 (Nestin) GFP expression in cultured spinal cord slices from 0 to 3 days 
in vitro. 

(A) (Nestin) GFP mean area % coverage as a function of radial distance from the 
central canal. Data presented as mean ±SE. N=9, n>3. (B) Representative EVOS 
images of half a cultured spinal cord slice at day 0 to day 3. Scale bar = 100 µm. 

 

  

Radial segment from central canal 

A 

B 
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5.3.4 Cell proliferation over time in OSCSCs 

1 µM EdU was added to the culture medium on either the day of plating (day 0) or day 

1 to day 4 and slices were left for 24 h (from EdU addition) prior to fixation and EdU 

detection (see Figure 5.9 A). 

A peak in the number of EdU+ve cells was observed at d4 for the central canal (11.12 

±1.197) and d3 for the total slice (2360 ±292.0), followed by a decline on day 5 (CC= 

3.333 ±1.856, total= 1625 ±289.3; Figure 5.9 B & C).  No significant differences were 

found between EdU+ve cell counts at the central canal, however, there were 

significantly fewer total EdU+ve cells in slices in which EdU had been added on day 0 

and fixed on day 1, compared to all other time points (d1= 318.3 ±41.53; P = 0.003 to 

0.047). The distribution of EdU+ve cells across the spinal cord slice remained similar 

for slices fixed on days 2 to 5, with the majority of EdU+ve cells in the white matter 

(WM) (Figure 5.9 D radial segment 4). Additionally, there were a number of slices with 

no EdU+ve cells at the CC when fixed on days 1-3 (Figure 5.9 B).   
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Figure 5.9 EdU+ve cell counts over time and EdU+ve cell distribution throughout 
the slice.  

(A) Schematic diagram depicting EdU addition. (B) Central canal and (C) total EdU+ve 
cell count per 300 µm slice. (D) EdU mean area % coverage as a function of radial 
distance from the central canal. Data presented as mean ±SE. N=2, n>3. ** P ≤ 0.01. 
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5.3.5 EdU incorporation and availability in OSCSCs 

To further investigate EdU uptake by dividing cells, and to assess the availability (and 

remaining concentration) of EdU in the culture medium over time, EdU (1 µM) was 

added following 2 DIV (on day 2) and slices were fixed on days 3, 4, and 5 (Figure 5.10 

A). From the previous trend in EdU cell counts, we should expect a doubling of the 

number of EdU+ve cells for every 24 h in culture until day 5. No significant difference 

was found between the mean number of EdU+ve cells in slices cultured for 24 h (1053 

±155.0), 48 h (1166 ±98.51), or 72 h (1445 ±226.3) in the presence of EdU (Figure 

5.10 B), however there was a trend towards an increased number of EdU+ve cells over 

time.  

 

 

 

 

Figure 5.10 Effect of length of time EdU is in culture on EdU+ve cell count 

(A) Schematic diagram depicting EdU addition. (B) Total EdU+ve cell count after 24, 
48, and 72 hours in vivo in the presence of EdU. Data presented as mean total EdU+ve 
cell count ±SE, N=1, n>3.  
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Subsequent experiments sought to determine if EdU remained intact in culture medium 

after 24 and 48 h. Culture medium (and any remaining EdU in solution) from the 24 and 

48 h conditions was then transferred to wells containing slices from the same animal 

(that had not yet had any EdU added), and cultured for a further 24 hours (“1 µM 

transferred”). This was to see if any EdU was present in the medium after these time 

points, and if so, how many cells incorporated this EdU compared to slices that had 

fresh 1 µM EdU added at the same time point (“1 µM control”) (Figure 5.10 C).  

The mean total number of EdU+ve cells in the 1 µM control and 1 µM transferred 

conditions were not significantly different when EdU was transferred/added on day 3 

(following 24 h in donor well) (Figure 5.11 A, control= 1656 ±219.3, transferred= 1469 

±190.3) indicating the concentration of EdU in culture medium was in excess (more 

EdU in culture medium than the number of dividing cells) and that EdU remained intact 

in culture conditions. 

As EdU was found to be in excess, the number of EdU+ve cells detected after 48 hours 

in vitro should equal the sum of the number of EdU+ve cells detected after the first 24 

hours in the donor condition, plus the number of EdU+ve cells in the transferred 

condition (when transferred on day 3) or the number of EdU+ve cells in the control 24 h 

condition. However, we found that the sum of these cell counts (1053 EdU+ve cells + 

1469 EdU+ve cells) was more than double the value found after 48 h (1166 EdU+ve 

cells). These data suggest that some of the cells that incorporated EdU in the first 24 

hours of incubation with EdU died or stopped proliferating further in the following 24 

hours before detection at 48 h.  

Following 48 h in a donor well, the mean total number of EdU+ve cells in the 1 µM 

transferred condition was significantly lower than in the control condition (Figure 5.11 

B, 1 µM control = 1805 ±217.7, 1 µM transferred= 599.4 ±122.5, P = 0.007). An 

additional control well of slices was cultured in the presence of 0.5 µM EdU (“0.5 µM 

control”) in order to roughly assess how much EdU was available (and incorporated 
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into cells) in the transferred medium. The number of EdU+ve cells in the transferred 

condition was not significantly different to the 0.5 µM control, suggesting that the 

available concentration of EdU had indeed decreased after 48 h in culture (0.5 µM 

control= 1385 ±316.8, P = 0.06).  

These data indicate there is a significant reduction in the availability (concentration) of 

EdU following 48 hours in vitro, and suggests that death of proliferating cells or 

cessation of proliferation in cells that have incorporated EdU occurs. 

 

 

Figure 5.11 Uptake of EdU in cultured spinal cord slices.  

Amount of EdU in culture medium, as measured by total EdU+ve cell count following 
transferral into new well on (A) d3 – 24 h in donor well or (B) d4 – 48 h in donor well. 
Data presented as mean total EdU+ve cell count ±SE (N=1, n>4). ** P ≤ 0.01. (C) 
Schematic diagrams depicting EdU addition. Dashed bar corresponds to EdU being in 
the “donor” well. Solid bar corresponds to EdU being in the experimental well.  
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5.3.6 Effect of EdU concentration and length in culture 

Spinal cord slices were cultured in the presence of 0.1, 0.5, or 1 µM EdU for 24 or 48 

hours in order to determine optimal culture conditions and investigate the behaviour of 

proliferating cells further (Figure 5.12 A). Reduced EdU concentrations were used to 

determine if the potential toxicity of EdU was causing cell death over this time period. 

No significant differences were found between the mean EdU+ve cell counts at the two 

time points when counted at the central canal or total slice, for any of the EdU 

concentrations investigated (Figure 5.12 B). However, the average number of EdU+ve 

cells detected in slices cultured in the presence of 1 µM EdU for 24 or 48 hours was 

significantly greater than in the 0.1 µM condition (24 h: 0.1 µM= 179 ±38.41, 1 µM= 

407.1 ±48.09, P = 0.0140; 48 h: 0.1 µM= 181.7 ±31.04, 1 µM= 412.1 ±55.34, P = 

0.0261), indicating EdU concentration is an important and limiting factor.  

This finding supports the previous data, indicating death of proliferating cells over this 

time period as the number of detected proliferating cells remained constant over 24 

and 48 hours as previously seen. Additionally, there was no change in the number of 

EdU+ve cells detected when using 0.5 µM compared to 1 µM control, and so the 

concentration of EdU over this time period isn’t thought to be toxic. Therefore, 1 µM 

EdU was chosen for experiments assessing the impact of hydrogels on proliferation. 

The distribution of proliferating cells also appeared similar over these time points 

(Figure 5.12 D). In all conditions, proliferating cells were detected at the central canal 

and within the white matter, whereas the grey matter was seen to be largely devoid of 

EdU+ve cells. This distribution pattern was more pronounced at greater EdU 

concentrations. EdU+ve cell chains were also found to extend radially into the grey 

matter at 24 h (not shown) and 48 h post EdU addition in slices with 0.5 and 1 µM EdU 

added (Figure 5.12 Ei). 
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Figure 5.12 Effect of EdU concentration and length in culture on total and central 
canal EdU+ cell count and EdU distribution.  

(A) Schematic diagram depicting EdU addition. (B) Central canal and (C) total EdU+ 
cell count per 300 µm slice. (D) EdU mean area % coverage as a function of radial 
distance from the central canal. Data presented as mean ±SE. N=3 n>3, * P ≤ 0.05. (E) 
Representative EVOS image of spinal cord slice with EdU-labelled cells following 48 h 
incubation with 1 µM EdU and (Ei) enlarged image of central canal EdU+ve cell chains. 
Scale bar = 100 µm. 
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5.3.7 Effect of delaying EdU addition 

To investigate the potential benefits of delaying EdU addition until after the initial peak 

in proliferation (injury response, day 3 to 4), slices were cultured in the presence of 

EdU over a number of time periods following addition on day 2 (control) or day 4 

(delayed) (Figure 5.13 A). 

No statistically significant differences were found between any of the conditions 

investigated, however a trend towards reduced EdU+ve cell counts for increased 

lengths of time in culture was observed for both control and delayed conditions.  There 

was also a trend towards reduced central canal EdU+ve cell counts in slices where 

EdU addition was delayed, compared to control (Figure 5.13 B).  

The distribution of EdU+ve cells appeared similar in delayed conditions over the three 

time points investigated (Figure 5.13, blue), whereas the distribution of EdU+ve cells 

for the control condition appeared to alter over time (Figure 5.13, green). 24 h post-

EdU addition, a greater mean area percent of EdU+ve cells was detected in the white 

and grey matter of the control slices (radial segments 3 and 4). At 120 h post-EdU 

addition, the central canal region (radial segment 1) exhibited an increased mean area 

percentage of fluorescence. 
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Figure 5.13 Effect of delaying EdU addition on mean total EdU+ cell count and 
distribution.  

(A) Schematic diagram depicting EdU addition. (B) Central canal and (C) total EdU+ve 
cell count per 300 µm slice for control (green) and delayed (blue) conditions. (D) EdU 
mean area % coverage as a function of radial distance from the central canal. Data 
presented as mean ±SE. N=1 n>2.    
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5.3.8 Creating an injury model in OSCSCs 

In an attempt to create an injury model in OSCSCs, slices were cultured for 2, 3, or 5 

days in vitro (DIV) then scratched using a sterile needle. The scratch was made to the 

grey and white matter, with care taken to not damage the insert. EdU was added to the 

culture medium immediately following injury, at a final concentration of 0.1, 0.5, or 1 

µM, and cultured slices were fixed following 6, 18, or 48 hours in culture in the 

presence of EdU.  

 

Injury following 2 DIV, EdU in culture for 6 hours 

There was no significant difference between the control and injured EdU+ve cell counts 

of the central canal or total slice when injured following 2 DIV (Figure 5.14 B & C). The 

distribution of EdU+ve cells throughout the slice was also similar for both conditions 

(Figure 5.14 D). The areas with the greatest percentage of fluorescence were shown to 

be the central canal (radial segment 1) and in the white matter, towards the slice 

periphery (radial segments 4 and 5, Figure 5.14 D).  
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Figure 5.14 Development of a scratch injury model in OSCSCs: Injury following 2 
DIV, EdU in culture for 6 hours  

(A) Schematic diagram depicting EdU addition following 2 days in vitro for 6 hours. (B) 
Central canal and (C) total EdU+ve cell count per 300 µm for control (blue) and 
scratched (green) slices. (D) EdU mean area % coverage as a function of radial 
distance from the central canal. Data presented as mean ±SE. N=2 n>3.   
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Injury following 5 DIV, EdU in culture for 18 hours 

There was also no significant difference between the control and injured EdU+ve cell 

counts at the central canal or total slice when injured following 5 DIV (Figure 5.15 B & 

C). The distribution of EdU+ve cells throughout the slice also appeared similar for the 

control and injured conditions (Figure 5.15 D). 

   

Figure 5.15 Development of a scratch injury model in OSCSCs: Injury following 5 
DIV, EdU in culture for 18 hours 

(A) Schematic diagram depicting EdU addition following 5 DIV for 18 hours. (B) Central 
canal and (C) total EdU+ve cell count per 300 µm for control (blue) and scratched 
(green) slices. (C) EdU mean area % coverage as a function of radial distance from the 
central canal.  Data presented as mean ±SE. N=2 n>3.   
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Injury following 3 DIV, EdU in culture for 48 hours 

When slices were injured following 3 DIV and incubated in the presence of EdU for 48 

hours, there were significantly more EdU+ve cells at the injured slice central canal 

compared to control when detected using 1 µM EdU (Figure 5.16 B; 1 µM control: 

11.17 ±2.372, scratch: 29.00 ±2.449,  P = 0.001). These data suggest that by creating 

an injury to the spinal cord, we can trigger an increase in central canal cell proliferation 

(and survival) over 48 hours compared to control.  

Whilst there was also a trend towards increased EdU+ve cell counts at the central 

canal of scratched slices when detected using lower concentrations of EdU, this 

change in cell proliferation was not statistically significant. 
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Figure 5.16 Development of a scratch injury model in OSCSCs: Injury following 3 
DIV, EdU in culture for 48 hours 

(A) Schematic diagram depicting EdU addition following 3 DIV for 48 hours. (B) Central 
canal and (C) total EdU+ cell count per 300 µm for control (blue) and scratched (green) 
slices. (C) EdU mean area % coverage as a function of radial distance from the central 
canal. Data presented as mean ±SE. N=1 n>2, *** P ≤ 0.001.  
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5.3.9 Characterisation of Cultured Central Canal GFP Projections 

(Nestin) GFP processes extending radially away from the central canal were observed 

in a number of cultured transgenic spinal cord slices (Figure 5.17). These were found 

to express: CD24 (A), galectin-3 (B), and NG2 (C), and had EdU+ve cells along them 

(D). 

 

 

 

Figure 5.17 Characterisation of (nestin) GFP processes 

Representative confocal images of the central canal of cultured (nestin) GFP spinal 
cord slices stained with antibodies against (A) CD24, (B) Galectin-3, and (C) NG2. 
Proliferating cells detected using (D) EdU. White arrows indicate a number of 
colocalised projections/cells. Scale bars= 100 µm  
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5.4 Discussion 

In this chapter a number of culture variables were investigated including: EdU 

concentration, length in culture, delaying EdU addition, and creating an injury.  

Important findings: 

1. EdU can be detected in perfusion-fixed and cultured spinal cord tissue whilst 

maintaining GFP fluorescence. By using a copper chelating azide (picolyl azide) 

and reducing the reaction time and copper concentration for cultured slices, EdU 

was successfully detected without quenching the GFP fluorescence needed for 

identifying ECs. 

2. (Nestin) GFP expression in the central canal remains clearly visible over 3 DIV – 

indicating survival of ECs. 

3. (Nestin) GFP expression in the white and grey matter reduces over 3 DIV – 

indicating death or differentiation of pericytes. 

4. There is a peak in the number of proliferating cells on the third/fourth DIV. 

5. There is no significant difference in the number of proliferating cells when detected 

over 24 to 72 hours in vitro. 

6. The concentration of EdU in culture medium reduces significantly (from 1 µM) 

following 48 hours in vitro. 

7. 1 µM EdU is the optimal concentration for our culture experiments. 

8. Delaying EdU addition until after the initial peak in proliferation reduces the number 

of proliferating cells detected at the central canal (but not significantly). 

9. Creating an injury to the white and grey matter only results in significantly more 

proliferating central canal cells when scratched on d3 and monitored over 48 hours, 

and 1 µM EdU is required to detect this change. 

10. Proliferating (Nestin) GFP cells extend radially from the central canal, express 

CD24 and galectin-3, and colocalise with NG2. 

  



 

146 

 

5.4.1 EdU detection in fluorescent tissue 

This chapter reveals how to localise EdU in GFP tissue. Considering how widespread 

GFP use is in studies employing transgenic animals, this is an extremely valuable 

protocol. High copper concentrations have been shown to inactivate enzymes and 

quench the fluorescence of GFP and other fluorescent proteins (DsRed, (Rahimi et al., 

2008)), and so the findings from this chapter could also be applied to transgenic tissue 

with other fluorophores. Whilst there are commercial EdU detection kits available 

(Click-iT Plus kit, Invitrogen) these are costly and still require method optimisation for 

use in different tissues. This also highlights the importance of the order in which 

immunofluorescence and EdU labelling is carried out as the fluorophores on secondary 

antibodies are also quenched using the original EdU protocol.  

5.4.2 Nestin GFP expression and distribution ex vivo 

(Nestin) GFP expression in pericytes in the white and grey matter of spinal cord slices 

reduced over 3 days in culture, whereas the central canal (nestin) GFP fluorescence 

remained bright over this time-period. This indicates viability of ependymal cells and 

maintenance of GFP expression in these cells over time. 

It isn’t clear however, whether pericyte death, or the loss of pericyte (nestin) GFP 

expression due to cell differentiation, gives rise to the reduced (nestin) GFP 

fluorescence over time. Pericyte death could be occurring due to the damage caused 

to vasculature and lack of blood flow ex vivo (Mayo and Bearden, 2015) however, 

blood vessels have been detected (using the endothelial cell marker RECA-1) in slice 

cultures of the rat brain (10 days old) up to 14 DIV, indicating the survival of 

vasculature ex vivo (Schmidt-Kastner and Humpel, 2002). Pericytes have also been 

shown to behave as stem cells (reviewed in (Andreotti et al., 2019)) and could 

therefore be differentiating and losing GFP expression.  

To investigate this further, FG could be administered to animals prior to culturing slices 

to label the pericytes. However, FG labelling of pericytes in adult animals (6-8 weeks 
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old) has been shown to diminish at 48 h post I.P. injection, indicating methodological 

challenges to this approach (Edwards et al., 2013). Additionally, labelling of neurons 

typically occurs 3 days post FG I.P. injection and so it is unclear what conditions would 

be required for the optimal and selective visualisation of pericytes in pre-weaner mice 

(~14 days) and whether the tracer fluorescence would be retained when cultured in 

vitro. An alternative to this could be the use of a transgenic mouse line in which 

pericytes display DSRed, even following pericyte differentiation.  

5.4.3 EdU availability  

To accurately quantify the number of proliferating cells in vitro, it was firstly assessed 

whether the EdU concentration and length in culture was appropriate for our spinal 

cord slice culture model. When 1 µM EdU was added, the amount of EdU was found to 

be in excess for the first 24 hours. The concentration of EdU in culture medium then 

reduced significantly (from 1 µM) following 48 hours in vitro. This could be due to the 

uptake of EdU by cells during this time, leading to a significant reduction in the 

concentration of EdU remaining in the culture medium. Alternatively, this could be due 

to the degradation of EdU under these conditions. An ELISA assay or mass 

spectrometry (for EdU concentration quantification) could be used in order to determine 

which scenario is occurring. In either case, studies investigating the long-term 

proliferation of cells will require re-addition of EdU to replenish the EdU taken up or 

degraded.  

5.4.4 Proliferation in spinal cord slice cultures 

In pre-weaner mice (under 21 days old), the injury response caused by the sectioning 

of the spinal cord was found to elicit an increase in the proliferation of cells, peaking at 

3/4 days after sectioning, followed by a decline in the number of EdU+ve cells. Other 

groups (Mothe and Tator, 2005b; Lacroix et al., 2014) also found a peak in EC 

proliferation at 3 days post injury in vivo in adult rodents, followed by a decline in 

BrdU/Ki67-labelling (markers of proliferation) when detected at 7 days post injury.  
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We also found a reduced variance in central canal EdU+ve counts for cultures where 

EdU addition was delayed, suggesting that detecting proliferation a later time point 

when the injury response has subsided could produce more repeatable data.  

5.4.5 Cell death vs cell birth  

There was no observed cumulative increase in the total number of dividing cells over 

the time period investigated, therefore indicating that the proliferating cells were dying 

before detection. EC proliferation within the intact adult spinal cord has been shown to 

be limited to self-renewal for the maintenance of cell populations (Meletis et al., 2008). 

Even following an increase in proliferation induced by an injury, EC turnover eventually 

reduces to baseline levels, indicating that ECs are no longer required for SCI repair 

and so these cells die as they are surplus to requirement (Lacroix et al., 2014). 

Additionally, EdU incorporation into dividing ECs may also impact their survival. 

Sensitivity to thymidine analogues, including EdU, has been shown to be cell type 

specific and dependent on concentration and incubation time. In a number of cell types, 

EdU addition results in reduced cell viability caused by DNA damage and disruption to 

cell cycle progression via G2/M cell cycle arrest, ultimately leading to cell death 

(Diermeier-Daucher et al., 2009; Ross et al., 2011; Kohlmeier et al., 2013).  

Alternatively, this EdU toxicity could be halting further cell division of daughter cells, 

thereby reducing the number of EdU+ve cells detected over time rather than causing 

cell death. This could be investigated using BrdU to label subsequent proliferation. EdU 

could be administered for the first 24 hours, followed by BrdU for the second 24 hours; 

double labelled cells would therefore show that cells are capable of proliferating 

following EdU incorporation.  

5.4.6 Cell migration from the central canal 

Cell chains extending from the central canal were observed in a number of spinal cord 

slices. These newly divided, EdU+ve cells expressed (nestin) GFP and were immuno-
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reactive against CD24 and galectin-3; thus identifying them as ependymal cells. In the 

absence of a pericyte-specific antibody (NG2 also labels oligodendrocyte progenitor 

cells), NG2 was used to determine if these cells were migrating along vascular 

structures. We found that NG2 labelling colocalised with (nestin) GFP+ve cells, 

suggesting a potential guidance mechanism.  

Could the EC processes be guided by basement membranes?  

Vasculature has been shown to play an important role in the maintenance and 

regulation of the neurogenic niches within the brain. Within the adult SGZ and SVZ, 

neurogenesis and the vasculature are interconnected, with clusters of proliferating cells 

typically found in close proximity to growing capillaries and blood vessels (Palmer et 

al., 2000; Shen et al., 2008). Neuroblasts have also been shown to migrate along blood 

vessels in a chain formation; suggesting the vasculature plays a role in the guidance of 

cell migration (Shen et al., 2008). 

In the CNS, two basement membrane (BM) structures have been identified: vascular 

BMs that ensheath blood vessels, and fractones comprising of bulbs and stems. These 

BMs are specialised cell-adherent ECMs comprising of laminins, collagen subunits, 

heparin sulphate proteoglycans (HSPGs), and nidogens (amongst others) and these 

cell adhesion molecules are critical elements of the neurogenic niches in which they’re 

found (Mercier et al., 2002; Kerever et al., 2007) .  

BM HSPGs are thought to play a role in controlling neurogenesis and NPC proliferation 

via the binding of Bone morphogenic protein-4 and -7 (Douet et al., 2012; Mercier and 

Douet, 2014), and the neurogenic growth factor FGF-2 (Kerever et al., 2014). 

Additionally, fractones within the SVZ are enriched in laminin-α5, and have been 

shown to maintain embryonic stem cells in a non-differentiated state and regulate cell 

proliferation (Nascimento et al., 2018). Interestingly, ependymal cells adjacent to the 

SVZ produce the BMP antagonist Noggin, thereby blocking endogenous BMP 

signalling and promoting neuronal differentiation (Lim et al., 2000).  
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In addition to the concentration and activation of numerous trophic/growth factors, BMs 

also provide structural guidance for migrating cells via cell-ECM binding. NSCs adhere 

to the laminin subtypes (α3/α5) found on BMs via integrin binding; further directing the 

movement and behaviour of stem cells within the niche (Jacques et al., 1998; Sato et 

al., 2019).  

In the rostral migratory stream (RMS) of the brain, migrating neuroblasts also form 

chains to migrate through “glial tubes” formed by specialised astrocytes (Sun et al., 

2010). Aligned blood vessels provide additional physical guidance as well as molecular 

signals (PSA-NCAM, etc.) to aid migration along the RMS towards the OB (Whitman 

and Greer, 2009; Snapyan et al., 2009). Therefore it is reasonable to presume a similar 

phenomenon could be occurring within the spinal cord; with ependymal cell migration 

occurring along vascular structures and pericytes.  

In a focal photothrombotic cortical stroke model, ECs of the adult mouse forebrain 

exhibited elongated processes projecting towards the stroke site, however this wasn’t 

seen in mice with a cortical stab injury (Muthusamy et al., 2018). Further studies are 

required in order to unpick the mechanisms controlling and directing EC process 

extension, and investigate whether cell migration could be manipulated for 

regeneration following injury. As part of this, the vasculature and influence of BMs 

requires careful consideration.   

5.4.7 Creating an injury model 

A number of in vitro models have been developed to investigate and replicate the 

cellular response to spinal cord injury (Pandamooz et al., 2019). In this chapter a 

scratch injury was used as a simple method of damaging the white and grey matter. A 

significant increase in the number of proliferating central canal cells was found when 

the slice was injured on day 3, measured over 48 h post injury, and this was detectable 

when 1 µM EdU was used.  
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It is unclear whether this enhanced proliferation was due to the injury itself, or because 

the scratch increased the retention and survival of cells proliferating due to the initial 

injury response (e.g. by giving them a purpose), or a combination of the two. 

Elsewhere in this chapter a peak in central canal cell proliferation was shown to occur 

at day 3 to 4 (Figure 5.9). It is therefore hypothesised that by creating an injury when 

central canal cell division is at its greatest, an enhanced injury response can be 

triggered. Scratching the slice before or after this critical peak in central canal cell 

proliferation was shown not to elicit an injury response. No significant differences were 

found between the injured and control cell counts when the slice was scratched on day 

2 and measured over 6 hours or when the slice was scratched on day 5 and 

proliferation was measured over 18 hours. At these time points in un-injured controls, 

there is minimal central canal proliferation (see Figure 5.9), and therefore, when the 

white and grey matter were scratched, this caused no increase in central canal 

proliferation. 

Future studies investigating the response of cells to hydrogels in an injury model will 

benefit from the insight gained in this chapter. In particular this optimised injury protocol 

(scratching on day 3 and measuring proliferation over 48 hours) will provide a simple 

method by which to assess the impact of hydrogels on ependymal cell behaviour in 

vitro. These data also support the rationale for using 1 µM EdU in future studies, for the 

detection of any changes in proliferation.  

 
 
 
 
 
 
 
 
 
 
 



 

152 

 

5.5 Conclusions 

The experiments in this chapter built on the characterisation work developed in chapter 

4 in order to develop and optimise methods for use in chapter 6, for the investigation 

into the potential manipulation of ependymal cells. 

In this chapter it was concluded that: 

1. Picolyl azide raises the effective concentration of Cu(II) in the EdU reaction and 

therefore enables the detection of EdU incorporated into cellular DNA, whilst 

retaining fluorescence in transgenic tissue. 

2. Cell proliferation in OSCSCs was found to peak at day 3 to 4 at the central canal, 

and day 2 to 3 when the whole slice was counted. 

3. Optimal cell culture conditions were determined: 

 1 µM EdU allows the detection of proliferating cells within spinal cord slices for up 

to 48 hours in vitro. 

 After 48 hours in vitro the concentration of EdU requires replacing for long-term 

proliferation detection. 

 1 µM EdU was determined to be optimal for these experiments – enabling changes 

in central canal proliferation levels to be detected following a scratch injury in vitro. 

4. An optimised injury model protocol was identified: 

 Scratching the white/grey matter on day 3 results in a significant increase in central 

canal cell proliferation when measured over 48 hours. 

5. Ependymal cells may migrate radially from the central canal in OSCSCs, potentially 

guided by vascular structures. 

 Proliferating (Nestin) GFP cells extend radially from the central canal, express 

CD24 and galectin-3, and colocalise with NG2. 

Overall, this chapter identifies the conditions required for organotypic spinal cord slices 

to be used to study EC behaviour in chapter 6. In addition, results suggest that ECs do 

migrate and may be manipulated for spinal cord injury repair. 
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Chapter 6 -  Manipulating Ependymal Cells in Organotypic 

Spinal Cord Slice Cultures and In Vivo 

 

6.1 Introduction 

SDF-1α/CXCR4 – directing migration and proliferation 

The chemokine CXCL12, also known as stromal cell-derived factor-1 (SDF-1), and its 

signalling receptor C-X-C chemokine receptor type 4 (CXCR4) are reported to have 

multiple roles within the CNS. CXCR4 is a G protein-coupled receptor, and binding of 

SDF-1 is thought to lead to downstream effects via modulation of G nucleotide-binding 

proteins (Wescott et al., 2016). CXCR4 has been implicated in neuronal migration and 

morphogenesis during development (Lu et al., 2002; Stumm et al., 2003) and adult 

neurogenesis (Tran et al., 2007). SDF-1/CXCR4 signalling is also thought to function 

as an axon guidance cue for mammalian motor neurons, dorsal root ganglion (DRG) 

sensory and sympathetic axons, and retinal ganglion cells of the zebrafish (Chalasani 

et al., 2003; Lieberam et al., 2005; Chalasani et al., 2007). 

Following focal cerebral ischemia in adult rodents, an increase in endogenous neural 

progenitor cell (NPC) proliferation in the SVZ is seen, followed by SDF-1/CXCR4 

mediated neuroblast migration (Robin et al., 2006; Ohab et al., 2006; Wang et al., 

2012). Directed migration of new neurons was also shown to be regulated by SDF-

1/CXCR4 up to 4 months following stroke-induced neurogenesis in rats (Thored et al., 

2006). 

Migration of oligodendrocyte progenitor cells (OPCs) is also thought to occur via 

CXCR4-mediated signalling, with neurospheres formed from CXCR4-defective mice 

showing reduced outgrowth and cell migration in vitro compared to WT mice 
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(Dziembowska et al., 2005). Cell migration within a viral-induced immune-mediated 

demyelination model of multiple sclerosis was investigated by (Carbajal et al., 2010; 

Carbajal et al., 2011). In these animals, NSCs (expressing CXCR4 and CXCR7) were 

injected into the spinal cord and these were found to migrate to the demyelinated white 

matter tracts, proliferate extensively, and differentiate into mature oligodendrocytes 

(~7%) and oligodendrocyte progenitor cells (~29%); ultimately aiding remyelination of 

axons. SDF-1 immunoreactivity was found in the white matter tracts and astrocytes of 

infected mice, and blocking studies (using the antagonists: AMD3100 and CCX771) 

indicated that CXCR4 signalling, rather than CXCR7, was important for NSC migration 

and proliferation.  

In the uninjured spinal cord, SDF-1 is expressed within the meninges and dorsal 

corticospinal tract, and CXCR4 is expressed in ependymal cells at the central canal 

(Tysseling et al., 2011). Following a compression injury in adult mice, CXCR4+ve cells 

appeared to migrate towards the periphery of the spinal cord, towards SDF-1-

expressing meningeal cells and the SDF-1-containing dorsal corticospinal tract rostral 

to the lesion. Fewer CXCR4+ve ependymal cells were found to reside in the central 

canal following injury, however it was unclear whether the migrating CXCR4+ve cells 

were ECs or macrophages (Tysseling et al., 2011). 

Delivery of SDF-1α using a number of scaffolds has been achieved for various tissue-

repair applications (reviewed in (Zhao et al., 2017)). In the brain, the retention of 

transplanted neural stem/progenitor cells (NSPCs) was significantly increased when 

cells were incorporated into a hyaluronic acid (HA)-laminin hydrogel compared to bolus 

delivery. Migration of these cells towards SDF-1α (injected close to the transplantation 

site) was also significantly increased compared to bolus controls (Addington et al., 

2017). This chapter aims to determine whether delivering SDF-1α in a hydrogel 

promotes endogenous ependymal cell proliferation and/or migration within the spinal 

cord for potential repair following injury. 
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6.1.1 Hypothesis 

Previous studies have shown that stem cells can be manipulated using tissue 

engineering strategies involving chemokines and materials with modified mechanical 

properties. The hypothesis here is that hydrogels and/or SDF-1α can be used for the 

modulation of ependymal cells within the spinal cord. 

The experiments in this chapter build on the work carried out in chapters 3 to 5 and use 

the methods and transgenic line optimised earlier in this thesis (Figure 6.1). 

6.1.2 Aims  

1. To investigate the impact of culturing spinal cord slices on hydrogels with regards 

to cell proliferation and distribution. 

2. To assess the effect of SDF-1α on ependymal cell proliferation and migration in 

vitro and in vivo. 

 

Figure 6.1 Schematic depicting the aims of chapter 6 in reference to the rest of 
this thesis 

The work carried out within this chapter builds-on the methods developed in chapters 3 
and 5, and uses the transgenic line characterised in chapter 4. 
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6.2 Methods 

6.2.1 Animals used 

All experiments were carried out under a UK Home Office Licence (P1D7A177), in 

accordance with the UK Animals (Scientific Procedures) Act 1986 and the ethical 

standards set out by the University of Leeds Ethical Review Committee. Every effort 

was made to minimise the number of animals used and their suffering.  

(Nestin) GFP transgenic mice (characterised in chapter 4) were bred in-house as 

heterozygotes, housed in standard conditions with a 12 hour light-dark cycle, and given 

ad libitum access to food and water.  

6.2.2 Sterilisation and disinfection 

The laminar flow hood, incubator, and surrounding surfaces were disinfected using 1% 

Virkon followed by 70% ethanol prior to use. All tools for in vitro and in vivo work were 

cleaned with boiling water, 70% ethanol, and then autoclaved at 121 °C for 20 minutes 

under 103 kPa for sterilisation. Where possible, sterile, single use consumables were 

used and disinfected with 1% Virkon following their use, prior to disposal. Collagen 

hydrogels were disinfected using 70% ethanol washes, all other hydrogels were 

created aseptically in a laminar flow hood.  

6.2.3 Hydrogel synthesis 

As we were unable to reliably manipulate the stiffness of collagen hydrogels developed 

in-house, we compared 4Ph-crosslinked collagen hydrogels to two commercial 

hydrogels (Table 6.1).  

6.2.3.1 Collagen  

4Ph crosslinked collagen hydrogels were synthesised as previously described (Chapter 

3.3.2). Briefly, rat tail collagen (extracted in-house, 1.2 wt.% in acetic acid) was 

crosslinked using activated 4Ph at a molar ratio of 1:1 (crosslinker carboxylic acid 
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groups: collagen lysine groups) to form hydrogels. Prior to tissue culture, collagen 

hydrogels were washed in diH2O and 70% ethanol to remove any unreacted species 

and disinfect the gels. 

6.2.3.2 Commercial hydrogels: 

VitroGel 

According to the manufacturer (TheWell BioScience), VitroGel is “an animal origin-free 

hydrogel system mimicking the natural ECM” and is “unmodified polysaccharide-

based”. This hydrogel is shear-thinning and recoverable, and therefore injectable. 

VitroGel hydrogels were created by mixing VitroGel with sterile VitroGel dilution 

solution (ratio of 1:1 VitroGel: dilution solution) and culture medium (no serum) was 

then added (ratio of 4:1 VitroGel: medium), mixed, and immediately transferred to 

sterile culture inserts to initiate gelation in situ.  

HyStem  

HyStem hydrogels comprise of a thiol modified HA (Glycosil) and a thiol reactive 

crosslinker (Extralink), with or without thiol-modified denatured collagen fibrils (Gelin-S) 

for cellular attachment sites (referred to as HyStemC). HyStem hydrogels were formed 

according to the manufacturer’s protocol. Each gel component (Glycosil, Extralink, and 

Gelin-S) was reconstituted under aseptic conditions using degassed sterile water. 

Glycosil and Gelin-S bottles were placed onto a plate shaker for 1 hr at RT to fully 

dissolve. Extralink did not require shaking and was prepared immediately prior to 

hydrogel formation. Extralink and HyStem solutions were mixed at a ratio of 1:4 

(Extralink: HyStem) to initiate gelation. For HyStemC hydrogels, HyStem was first 

mixed with Gelin-S at a ratio of 1:1. Extralink was then added at a ratio of 1:4 

(Extralink: HyStem mixture) to initiate gelation.  
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Table 6.1 Hydrogels used in this chapter and their composition and mechanical 
properties 

Hydrogel Composition G’ (Pa) Testing method Reference 

Collagen  
4Ph crosslinked 

rat tail collagen  

~ 100 to 

650* 

Rheology (Kinexus Pro, 

frequency sweep) 
Chapter 3  

VitroGel 

Unmodified 

polysaccharide-

based  

~ 1000** 

Rheology (single 

frequency test, created 

using DMEM) 

(TheWell 

Bioscience 

Inc, n.d.)  

HyStem 

Polyethylene 

glycol diacrylate-

crosslinked 

hyaluronic acid 

~ 110 

Contactless rheology 

(Elastosens, laser, non-

shear) 
(Advanced 

BioMatrix, 

n.d.) 

HyStemC 

HyStem modified 

with porcine 

gelatin 

~ 159 

Contactless rheology 

(Elastosens, laser, non-

shear) 

*taken from all rheology data, **Incubated at 37°C for 24 hrs before the rheological test 

 

6.2.4 Organotypic spinal cord slice culture 

Hydrogels were washed twice (30 minutes) with culture medium, incubated in culture 

medium containing serum (Chapter 2, Table 2.7) and equilibrated to 37 °C for 2 hours 

prior to spinal cord slice addition and organotypic spinal cord slice cultures (OSCSCs) 

were carried out as described in Chapter 5.2.2.  Following 1 day in vitro (DIV), the 

medium was exchanged for serum free medium (Chapter 2, Table 2.7) (see Chapter 5, 

Figure 5.4). EdU was added to the culture medium following 3 DIV at a final 

concentration of 1 μM, allowing for the visualisation of cells that have undergone 

proliferation with EdU present. 

6.2.4.1 SDF-1α and AMD3100 addition 

In this chapter the response of cells to SDF-1α was investigated. Here, collagen 

hydrogels were used to deliver SDF-1α or AMD3100 in order to determine if cell 

migration towards a chemokine (through the hydrogel) could be triggered.   
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For uniform SDF-1α concentration, hydrogels were pre-saturated in SDF-1α (referred 

to as collagen & SDF; 1 µL of SDF-1α added to the medium used to hydrate the 

hydrogels; 7.9 kDa, 126.6 nM,) 24 hours prior to culturing. To create a gradient, SDF-

1α was also added to the culture medium in the well (referred to as collagen & SDF x2; 

2 µL of SDF-1α, 253.2 nM) thereby creating a concentration gradient through the 

hydrogel due to SDF-1α diffusion (see Addington et al., 2015) (see table 6.2 for more 

details).  

To investigate whether CXCR4 was involved in SDF signalling, the CXCR4 antagonist 

AMD3100 was used. In this condition, hydrogels were pre-saturated in medium 

containing 1 µL of AMD3100 (referred to as AMD3100; 794.48 g/mol, 1.259 nM) 24 

hours prior to culturing.  These experimental conditions were compared to slices from 

control wells where slices were cultured directly onto the tissue culture insert (no 

hydrogel) with/without SDF referred to as control and SDF respectively) and those 

cultured on hydrogels in the absence of exogenous SDF-1α (referred to as collagen: 

Table 6.2).  

Table 6.2 Conditions investigated in this chapter 

Condition Hydrogel SDF in gel 
SDF in 

medium (1 µM) 
SDF in 

medium (2 µM) 
AMD3100 

Control ✗ ✗ ✗ ✗ ✗ 

SDF ✗ ✗ ✓ ✗ ✗ 

Collagen ✓ ✗ ✗ ✗ ✗ 

Collagen & SDF ✓ ✓ ✗ ✗ ✗ 

Collagen & SDF x2 ✓ ✓ ✗ ✓ ✗ 

AMD3100 ✓ ✗ ✗ ✓ ✓ 

See Supplementary Figure 8.2 for more detail regarding the culture set up. 

6.2.4.2 Fixation 

Spinal cord slices were fixed in situ on tissue culture inserts using 4% 

paraformaldehyde (PFA, Chapter 2, Table 2.5) for 1-2 hours at RT. Following fixation, 

slices were removed using a paint brush, and transferred into wells containing PBS. 
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6.2.5 In vivo methods 

Glass electrodes were used for the delivery of hydrogels to the spinal cord and were 

pulled using a Sutter P27 micropipette puller. VitroGel was used as it is sterile, shear-

thinning and recoverable, and therefore suitable for injecting in vivo. Hydrogels were 

prepared by mixing VitroGel with sterile PBS (±SDF, 12.66 µM) and left to stabilise in a 

sterile syringe for 18 h at 4 °C prior to injection. Adult (Nestin) GFP mice (6-8 weeks) of 

either sex were used for in vivo experiments. Mice were weighed prior to surgery and 

anaesthetised with an I.P. injection of ketamine (75 mg/kg, Chapter 2, Table 2.6) and 

medetomidine (1.0 mg/kg, Chapter 2, Table 2.6) to maintain anaesthesia for 

approximately 1 hour. Absence of pedal reflexes determined adequate anaesthesia. 

Fur around the surgery site was removed using electric clippers and ethanol wipes 

were used to clean the skin. A lubricant was applied to the eyes to prevent drying 

during surgery and the animal was kept on a heated table at 37 °C.  

6.2.5.1 Intraspinal injection 

Using a surgical microscope and a sterile blade, a small incision was made through the 

dorsal skin and muscle, rostral to the rib cage. Blunt forceps were used to resect 

muscle caudal to the spinal column and retractors were used to hold the site open. The 

dura and pia mater were then removed using fine forceps. 

A stereotactic frame was used to secure the animal in place, and 5 µL hydrogel 

(VitroGel ± SDF-1α) was drawn up the electrode in preparation using a syringe pump. 

The electrode was then moved in place above the spinal cord and the frame height 

was zeroed. The electrode was then lowered to a depth of 300 µm and a syringe pump 

was used to deliver 1 µL of hydrogel (Figure 6.2). Following surgery the muscle was 

sutured using absorbable sutures, the skin was closed using non-dissolvable sutures 

and antibacterial wound powder was applied to the skin. 
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Figure 6.2 Injection of a hydrogel ± SDF-1α into the grey matter of lumbar spinal 
cord.  

A glass electrode was lowered through the intervertebral space into the spinal cord, 
and a syringe pump was used to deliver 1 µl of hydrogel ± SDF-1α at a depth of 300 
µm. 

 

6.2.5.2 Postoperative care and EdU injections 

Atipamezole (1 mg/kg, Chapter 2, Table 2.6) was administered I.P. to reverse the 

effects of medetomidine. Buprenorphine (0.1 mg/kg, Chapter 2, Table 2.6) was given 

subcutaneously to alleviate post-operative pain, and the animal was transferred to a 

cage on a heated pad for recovery. Soaked diet was made available and each animal 

was observed and weighed daily to monitor recovery. 24 hours post-surgery 0.5 mL 

sterile saline was given I.P. in order to ensure animals were not dehydrated and 

buprenorphine (0.1 mg/kg, Chapter 2, Table 2.6) was given subcutaneously to ensure 

pain prevention. EdU (10 mM, 0.1 mL in sterile saline) was delivered via I.P. injection at 

24 and 48 h post-surgery (day 1 and 2) to enable detection of proliferating cells. 

6.2.5.3 Perfusion-fixation and tissue processing 

Mice were terminally anaesthetised 62 h post-surgery with sodium pentobarbital (60 

mg/kg) I.P. and perfused transcardially with 0.1 M PB to remove blood, then 4% PFA 

for fixation. The spinal cord and brain were removed and post fixed overnight at 4 °C in 

4% PFA, before being stored in 0.1 M PB at 4 °C. The pia mater was removed using 
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fine forceps and a dissection microscope, and the injection site and the spinal cord 

tissue rostral and caudal to it were embedded in gelatin. 

6.2.5.4 Gelatin-embedding of tissue and vibratome sectioning 

A 1cm block of tissue was cut using a flat blade, and a solution of 10% gelatin (Chapter 

2, Table 2.5) was prepared and left to cool slightly. The tissue section was then 

orientated on the bottom of a glass petri dish placed onto a frozen metal block. The 

cooled gelatin solution was then carefully pipetted around the tissue until the gelatin 

was ~1 inch above the tissue section. The block and petri dish containing the 

embedded section were then transferred into a fridge to set for 2 h. The gelatin was 

then cut leaving ~2 cm around the tissue section and this was placed into 4% PFA with 

0.25% glutaraldehyde overnight at 4 °C. Embedded sections were then washed twice 

in 0.1 M PB (10 minutes). 

Sections of embedded spinal cord were glued to the chuck with the exposed end of 

tissue facing up. The chuck was then screwed into place in the water bath containing 

0.1 M PB and the blade was attached to the vibratome arm. The tissue was then 

sectioned serially at 40 µm in the transverse plane at an amplitude of 0.4 mm/s and 

vibrating frequency of 80 Hz. Serial sections were placed into wells containing PBS for 

EdU labelling. 

6.2.6 EdU detection  

EdU detection reactions and incubation steps were carried out at RT in the dark as in 

the optimised method detailed in Chapter 5.2.3, Figure 5.4. Briefly, spinal cord slices 

were permeabilised using 0.2% PBST, washed twice in 0.1 M Tris buffer (10 minutes 

each), then incubated in the optimised click reaction mixture (with picolyl azide) for 20 

minutes (0.5 mM Cu(II)SO4 for cultured slices) or 5 minutes (1 mM Cu(II)SO4 for in vivo 

slices). Slices were then washed twice in 0.1 M Tris buffer (10 minutes each), followed 

by 10 minutes in PBS, then incubated in Streptavadin Alexa Fluor555 for 2 hours. 

Finally, slices were washed twice in PBS (10 minutes), washed in PB (10 minutes), 
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mounted on microscope slides, air-dried, covered in Fluoroshield with DAPI and 

coverslipped.  

6.2.7 Image capture and analysis 

6.2.7.1 OSCSC EdU-labelled cell counts 

Manual cell counts of EdU-labelled (EdU+ve) cells at the central canal were performed 

using a Nikon E600 microscope. Images of whole slices were taken using an EVOS 

fluorescence microscope at x4, x10, and x20 magnification for further quantification. As 

previously described in Chapter 5.2.6, EdU labelled cells were then quantified using 

ImageJ to get total counts of all EdU+ve cells, and their radial distribution throughout 

the slice (see Figure 5.6).  

6.2.7.2 (Nestin) GFP process quantification 

ImageJ Simple Neurite Tracer was used to create a skeleton of the processes 

extending from the central canal (Figure 6.3). Processes were manually traced using 

the plugin, with paths starting from the edge of the central canal region. Branches were 

mapped and logged (Longair et al., 2011). Outputs included: number and length of 

projections, and number and length of branches. This was done for five images per 

condition. 

 

 

Figure 6.3 ImageJ skeleton creation for analysis of (Nestin) GFP processes.  

Representative EVOS image of (Nestin) GFP central canal processes. (B) Manual 
skeleton application using ImageJ and (C) overlay of the two images. Scale bar = 300 
µm 

 



 

164 

 

6.2.7.3 In vivo EdU-labelled cell counts 

Manual cell counts were performed using a Nikon E600 microscope. EdU labelled cells 

were counted at the central canal, white, and grey matter regions to allow for 

comparison between experimental groups. Representative images were taken using a 

Zeiss LSM880 laser scanning confocal microscope equipped with argon (λex = 488 nm) 

and He‐Ne (λex = 543 nm) lasers. Images were acquired using Carl Zeiss SEN 

software (Zeiss Microscopy) and CorelDRAW 2017 was used for image processing. 

6.2.8 Data analysis 

Data were collated in Microsoft Excel and analysed using IBM SPSS statistics 21. 

Average EdU-positive (EdU+ve) cell counts were calculated and presented as mean ± 

standard error of the mean (SE) unless stated otherwise. Shapiro-Wilk and Levine’s 

tests were applied for distribution and equality of variance analysis respectively. A 

decision tree was used to determine the appropriate statistical test (Chapter 2, Figure 

2.6). 

 

Table 6.3 Animals used in this chapter to investigate the response of ECs to 
hydrogels and the chemokine SDF-1α 

 
  

Chapter  Experiment Strain  
Number of 
animals (N) 

Sections per 
condition (n) 

Age  

6.3.1 Hydrogel assessment  
(Nestin) 
GFP 

3 

2 

>9 

>6 

14 ±2 
days 

6.3.2 SDF-1α  – proliferation  
(Nestin) 
GFP 

1 >3 
15 
days 

6.3.2 
SDF-1α  – (Nestin) 
GFP CC projections 

(Nestin) 
GFP 

1 5 
14 
days 

6.3.2 
SDF-1α  – (Nestin) 
GFP distribution 

(Nestin) 
GFP 

1 >3 
16 
days 

6.3.3 
In vivo injection of 
hydrogel ±SDF-1α 

(Nestin) 
GFP 

4 12 (per level) 
6-8 
weeks 
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6.3 Results  

6.3.1 Effect of Hydrogels on the Proliferation of Cells  

Spinal cord slices were cultured on hydrogels in the presence of EdU for 6 hours on d3 

(Figure 6.4 A) in order to determine if these materials affected the proliferation of cells. 

The number of EdU+ve cells was lower in hydrogel conditions compared to control 

when the central canal or whole slice was counted (Figure 6.4 B & C). There was a 

statistically significant reduction in the number of EdU+ve cells at the central canal of 

slices cultured on HyStemC hydrogels compared to control (mean rank difference:        

-22.33; p=0.0027). The number of EdU+ve cells in the whole slice for those cultured on 

HyStem and HyStemC hydrogels was also significantly less than control (mean 

difference ±SE of difference: HyStem= -602.5 ± 162.2, P= 0.0018; HyStemC= -538.6 

±204.1, P = 0.0321). 

There were no statistically significant differences between the central canal EdU+ve 

cell counts of each hydrogel condition, however there were significantly fewer EdU+ve 

cells when the whole slice was counted, in slices cultured on HyStem gels compared to 

collagen gels (mean difference ±SE of difference= -494.0 ±146.9; P = 0.0198).  

The distribution of EdU+ve cells appeared similar in the control and collagen 

conditions, with fluorescence throughout the slice and a peak in the area % in the white 

matter (Figure 6.4 D, radial segment 4 & E). Similarly in the HyStem conditions, the 

fluorescence was distributed throughout the slice, with a total reduction in area percent 

coverage corresponding to the lower EdU+ve cell counts. 
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Figure 6.4 Effect of hydrogels on the number and distribution of EdU labelled 
cells.  

Schematic diagram depicting EdU addition following 3 DIV for 6 hours. EdU count as a 
% of control slices for (B) central canal area and (C) total slices. (D) EdU mean area % 
coverage as a function of radial distance from the central canal. Data presented as 
mean ±SE. Individual data points represent mean values from each repeat. N=3, n>3, * 
P≤0.05, **P≤ 0.01. (E) Representative EVOS images of half a cultured spinal cord slice 
for each condition, central canal highlighted with dashed circle. Scale bars = 500 µm. 
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Spinal cord slices were then cultured on hydrogels in the presence of EdU for 18 hours, 

this time with an additional commercial hydrogel: VitroGel (Figure 6.5 A). Whilst not 

statistically significant, the number of EdU+ve cells detected at the central canal of 

slices cultured on VitroGel hydrogels was 37% greater than that of the control. This 

was however, significantly greater than the corresponding value found for slices 

cultured on collagen hydrogels (Figure 6.5 B, mean difference ±SE of difference: 12.75 

±4.384; P = 0.0434). 

As previously found, there was a reduced number of EdU+ve cells for all slices cultured 

on collagen and HyStem hydrogels compared to control, with significantly fewer total 

EdU+ve cell counts compared to control (Figure 6.5 C, mean difference ±SE of 

difference: collagen= -1158 ±318.5, p= 0.0043; HyStem= -1074 ±296.5; P = 0.0045). 

The mean total number of EdU+ve cells in slices cultured on VitroGel hydrogels was 

similar to that of control and as found previously, the distribution of EdU+ve cells 

remained similar in control and hydrogel conditions (Figure 6.5 D and E).  

 

6.3.2 Effect of SDF-1α on spinal cord slice cultures 

6.3.2.1 SDF-1α does not affect the number or distribution of EdU-labelled 

cells in vitro 

Slices were cultured on collagen hydrogels ±SDF-1α for 4 DIV and EdU was added to 

the culture medium for the final 18 hours to detect proliferating cells (Figure 6.6 A). 

Collagen was selected as this previously resulted in the greatest change to proliferating 

cell numbers (Figure 6.5). SDF-1α did not affect the number of EdU+ve cells or their 

distribution within the cultured slice compared to collagen hydrogels alone (Figure 6.6 

B-E). There was a trend towards reduced EdU+ve cell counts at the central canal and 

in the total slice compared to control slices for collagen hydrogels with/without SDF-1α 

as seen previously (Figure 6.6). 
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Figure 6.5 Effect of hydrogels on OSCSC EdU labelled cells. 

(A) Schematic diagram depicting EdU addition following 3 DIV for 18 hours. EdU count 
as a % of control slices for (B) central canal area and (C) total slices. (D) EdU mean 
area % coverage as a function of radial distance from the central canal. Data presented 
as mean ±SE. Individual data points represent mean values from each repeat. N=2, 
n>3, * P ≤ 0.05, ** P ≤ 0.01. (E) Representative images of half a cultured spinal cord 
slice for each condition, central canal highlighted with dashed circle. Scale bars = 500 
µm  
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Figure 6.6 Effect of SDF-1α on EdU labelled cell distribution in OSCSCs.  

Schematic diagram depicting EdU addition following 3 DIV for 18 hours. EdU count as 
a % of control slices for (B) central canal area and (C) total slices. (D) EdU mean area 
% coverage as a function of radial distance from the central canal. Data presented as 
mean ±SE. N=1, n>3. (E) Representative images of half a cultured spinal cord slice for 
each condition, central canal highlighted with dashed circle. Scale bars = 500 µm.  
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6.3.2.2 SDF-1α does not affect the GFP projections from central canal 

Following the addition of SDF-1α into the culture medium for either 1 or 2 days in vitro, 

the central canal (nestin) GFP projections were assessed by measuring the number of 

primary projections, the number of branches, the branch length, and the number of 

secondary branches compared to control slices (Figure 6.7).  

 

 

Figure 6.7 Effect of SDF-1α on cultured spinal cord slice central canal (Nestin) 
GFP projections and branching characteristics.  

EVOS images of the central canal region for (A) control and (B & C) SDF treated slices. 
(D) Mean number of primary projections, (E) branches, (F) length of branches, and (ɢ) 
number of secondary branches. Data presented as mean ±SE. N=1, n=5. Scale bars = 
275 µm. Slices were cultured for 4 days in vitro with 1 µM SDF-1α added into the 
culture medium for either 1 or 2 days prior to fixation and imaging.  
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Whilst not statistically significant, the number of primary projections, branch length, and 

the number of secondary branches appeared to increase with increasing SDF addition 

(Figure 6.7 D, F, and G) indicating SDF may influence (nestin) GFP processes at the 

central canal. An increased number of repeats would be required in order to investigate 

this trend further.   

 

6.3.2.3 SDF-1α does not affect the radial distribution of (Nestin) GFP+ve 

cells in vitro, but may influence cell migration 

The effect of a concentration gradient of SDF-1α was then investigated using a method 

developed by (Addington et al., 2015). The radial distribution of (nestin) GFP remained 

similar for slices cultured on collagen hydrogels with SDF-1α and/or AMD3100 (CXCR4 

antagonist), compared to control slices, with the majority of GFP % fluorescence 

remaining at the central canal (Figure 6.8 A). Interestingly, in slices with a gradient of 

SDF-1α (SDF x2), there was an increase in (Nestin) GFP fluorescence in the grey 

matter (Figure 6.8 A, radial segments 2 and 3), however it isn’t clear whether this is 

due to cell migration. When cultured with SDF-1α, GFP+ve cells were also found to 

migrate through the collagen hydrogels (towards the higher SDF-1α concentration in 

the culture medium) and attach to the culture insert, similar to when the slice was 

cultured directly onto the insert (Figure 6.8 B). This was not seen for slices cultured on 

collagen gels without SDF-1α, or with AMD3100. 
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Figure 6.8 Effect of SDF-1α and AMD3100 on (nestin) GFP distribution and 
migration  

(Nestin) GFP mean area % coverage as a function of radial distance from the central 
canal for slices cultured on collagen hydrogels either (i) alone, (ii) with uniform SDF 
(blue) or an SDF gradient (SDF x2 - red), or (iii) with SDF & AMD3100. Data presented 
as mean ±SE. (B) EVOS images of (Nestin) GFP+ve cells on culture inserts (DAPI co-
stain) where control= no hydrogel or SDF, and SDF= no hydrogel. N=1, n>3. Scale 
bars = 20 µm.  

 

6.3.3 Effect of Injecting SDF-1α Intra-Spinally Within a Hydrogel in 

Vivo 

The effect of SDF-1α was then assessed in vivo. VitroGel was used as it is sterile, 

shear-thinning and recoverable, and therefore suitable for injecting in vivo. VitroGel 

was injected ±SDF-1α intra-spinally and proliferating cells were labelled via EdU 

injection at 24 and 48 h post-surgery. A number of EdU+ve cells were detected at the 

central canal (Figure 6.9 a i) and grey matter surrounding the injection site (Figure 6.9 

a ii), presumably due to the injury caused by the needle. (Nestin) GFP+ve cells were 

also found throughout the spinal cord, with extended GFP processes projecting 
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dorsoventrally from the central canal (Figure 6.9 b i). (Nestin) GFP+ve cells were also 

found surrounding the injection sites (Figure 6.9 bii). 

The number of proliferating cells was then quantified. When the whole slice was 

counted, there were significantly more EdU+ve cells at the level of injection (Figure 

6.10 A, level 0) in animals injected with hydrogels with SDF-1α (N=2, n=6; 715.83 

±116.7) compared to those injected with hydrogel alone (N=2, n=8, 347.50 ±56.88; P = 

0.024). At levels rostral to the injection site (levels -2 to -4), the number of EdU+ve cells 

in the entire slice was significantly lower in the tissue from the SDF-1α loaded 

hydrogels, compared to the hydrogel control (P = 0.012 to <0.0001) indicating potential 

migration of proliferating cells to the injury site.  

The same trend in EdU+ve counts was seen in the white and grey matter (WM and GM 

respectively), when counted separately. There were significantly more EdU+ve cells in 

the WM at the level of injection (Figure 6.10 B, level 0) in animals injected with 

hydrogel with SDF-1α (n=8, 191.50 ±13.43) compared to those injected with hydrogel 

alone (n=6, 82.63 ±4.953; P = 0.0002). Whilst there were more EdU+ve cells at the 

level of injection in the grey matter of animals injected with hydrogels with SDF-1α 

compared to the hydrogel control, this was not significantly different (Figure 6.10 C, 

level 0; P = 0.08). 

At the central canal, there was no significant difference in EdU+ve cell counts at the 

level of injection (Figure 6.10 D, level 0). At levels rostral to the injection site (levels -4 

to -2), the number of central canal EdU+ve cells was slightly lower in the hydrogel with 

SDF-1α condition compared to hydrogel alone, although this was not statistically 

significant.  
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Figure 6.9 Effect of delivering SDF-1α intra-spinally within a hydrogel in vivo. 

Representative confocal images taken at the level of injection showing EdU labelled 
cells (red) and DAPI labelled cell nuclei (blue) (b) and (nestin)GFP (green) and DAPI 
labelled cell nuclei (blue) (c) at the central canal region (i) and injection site (ii). Scale 
bars: a, b & bi = 100 µm, ai & bi/ii = 20 µm 

 

 

Injection site Injection site 

Central canal 
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Figure 6.10 Effect of delivering SDF-1α intra-spinally within a hydrogel in vivo on 
EdU counts. 

Mean count of EdU+ve cells at the site of injection (0) and levels rostral (negative) and 
caudal (positive) for control hydrogel-injected animals (blue) and hydrogel & SDF-1α-
injected animals (green). Total (A), white matter (WM), grey matter (GM), and central 
canal (CC) counts. Each level incorporates data from N=2 per condition, n<6 sections, 
covering a length of ~480 µm spinal cord (a). Data presented as mean ±SE. * P ≤ 0.05, 
*** P ≤ 0.001. 
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6.4 Discussion 

This chapter aimed to investigate manipulating ependymal cells using hydrogels and 

the chemokine, SDF-1α. The response of spinal cord cells varied depending on the 

hydrogel. 

Important findings: 

 Culturing spinal cord slices on collagen hydrogels leads to a ~50% reduction in 

central canal cell proliferation compared to control 

 Culturing spinal cord slices on collagen hydrogels also leads to an overall reduction 

of cell proliferation throughout the spinal cord slice, compared to control 

 Spinal cord slices cultured on Hystem hydrogels had slightly less proliferation at the 

central canal and a significant reduction in the proliferation in the whole slice 

 Slices cultured on VitroGel hydrogels had significantly more central canal 

proliferation compared to collagen hydrogels 

 The total cell proliferation throughout the spinal cord slice was similar in slices 

cultured on VitroGel hydrogels and control slices  

In OSCSCs, SDF-1α didn’t appear to impact: 

- Proliferation levels 

- EdU+ve cell distribution 

- (Nestin) GFP central canal radial processes 

- (Nestin) GFP cell distribution 

 However, an SDF-1α concentration gradient may influence ependymal cell 

migration as (nestin) GFP cells migrated through hydrogels along the concentration 

gradient 

 Injecting SDF-1α within a hydrogel intra-spinally results in significantly more 

EdU+ve cells at the level of injection in: (a) the whole slice, (b) the white matter (c) 

the grey matter, compared to control animals. 
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6.4.1 Effect of hydrogels on ependymal cell behaviour 

There was a reduced number of proliferating cells when slices were cultured on 

hydrogels (with the exception of VitroGel). It is unclear whether this was due to the 

migration of proliferating cells into the hydrogel that were subsequently not detected; 

due to a reduction in proliferating cell survival (or overall cell viability); or indeed a true 

reduction in proliferation, potentially as a result of minimised or alleviated injury 

response.  

We attempted to unpick this trend by labelling and imaging cells within the hydrogels to 

determine if any migration had occurred, however had minimal success. This was due 

to the auto fluorescence of collagen fibrils hindering imaging of cells within some 

hydrogels, along with the processing and re-sectioning of hydrogels and tissue slices 

leading to tissue fragility and loss. Alternatively, DAB (3,3′-diaminobenzidine) could be 

used to visualise (using light microscopy) horseradish peroxidase-conjugated 

secondary antibodies; potentially allowing for the quantification of cells within 

hydrogels.  

In addition to these methodological challenges, it is also unclear what a “good” 

proliferative response would be. As previously discussed, we observed what we 

believe to be an injury response in control cultures (see Chapter 5). As such, a 

reduction in the proliferation of cells when cultured on softer hydrogels may be 

indicative of the hydrogel having a protective effect on the cells, thus reducing their 

response to injury. Changes in inflammatory cytokine release (using RNase protection 

assay and/or enzyme-linked immunosorbent assay) would help confirm this hypothesis. 

Additionally, immunofluorescence to determine the reactivity state of astrocytes and the 

cell lineage of differentiated ECs would further determine the protective nature of 

hydrogels on OSCSCs. 

A significant increase in cell proliferation at the central canal of slices cultured on 

VitroGel hydrogels was observed compared to collagen hydrogels. VitroGel has a 
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reported elastic modulus of around 1000 Pa (when diluted at 1:1 with VitroGel dilution 

solution, created using DMEM, and incubated at 37 °C for 24 hours prior to testing), 

and is therefore the stiffest hydrogel trialled (compared to: collagen ~100-650 Pa, 

HyStem ~110 Pa, HyStemC ~159 Pa). This difference in hydrogel stiffness could be 

causing the change in cell proliferation at the central canal, and leading to a total cell 

proliferation count similar to control slices cultured directly on culture inserts. However, 

discrepancies between the hydrogel composition reported in literature and that used in 

this thesis could mean the stiffness reported may not be truly representative of the 

VitroGel hydrogel used in this experiment. Furthermore, the rheological testing 

methodologies used to characterise the VitroGel and HyStem hydrogels were not the 

same as that used to characterise the collagen hydrogels developed in-house (see 

Table 6.0), and therefore these values may not be directly comparable. Further 

experiments are required in order to determine a relationship between cell proliferation 

trends and the mechanical properties of the hydrogel substrate. 

6.4.2 Effect of SDF-1α on ependymal cell behaviour 

The results in this chapter show the delivery of SDF-1α had no measurable effect on 

the central canal (nestin) GFP processes extending radially in vitro, however, these 

were difficult to characterise and varied highly between cultured slices. Migration to a 

chemotactic gradient of SDF-1α is thought to be concentration-dependent. In this 

chapter a concentration of 1000 ng/mL (126.6 nM) SDF-1α was selected for in vitro 

studies, as this concentration has been shown to result in increased proliferation and 

migration of human neural stem cells in vitro (Imitola et al., 2004), however, this 

concentration may not be optimal for directing EC migration and proliferation and 

further optimisation may be required. Interestingly, a gradient of SDF-1α resulted in an 

increase in a mean area % for the (nestin) GFP fluorescence within the white and grey 

matter of cultured slices compared to slices with uniform SDF-1α delivery. Additional 
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chemotaxis experiments are required to confirm this observation (e.g. Boyden chamber 

assay).  

We also show potential cell migration in vivo from the area rostral to the injection site, 

towards SDF-1α. These preliminary data indicate the injection of SDF-1α within a 

hydrogel could be a potential method for recruiting endogenous ECs to the site of 

injury. Research in our lab has shown that EC proliferation can be increased in vivo 

using the nicotinic acetylcholine receptor modulator PNU-120596 (Corns et al., 2015). 

Therefore a combinatorial approach, delivering SDF-1α and PNU, post-injury may give 

rise to increased migration and proliferation of ECs for spinal cord repair.  

Future experiments utilising immunofluorescence for fate mapping would determine if 

ECs can also be manipulated in vitro and in vivo into forming oligodendrocytes and/or 

neurons. Additional in vivo experiments are required in order to investigate the potential 

benefits of directed migration following injury. This could be achieved by creating an 

injury to the spinal cord followed by delayed injection of a hydrogel with SDF-1α. This 

study may recreate the injury response seen in human patients and determine if 

directed migration occurs in an inflamed spinal cord. 

The complex balance between stem cell retention and chemotaxis via SDF-1/CXCR4 

binding may further complicate regenerative strategies. Functional repair wasn’t 

improved in rats when treated with SDF-1 following spinal cord injury (Pakulska et al., 

2017). The CXCR4 antagonist AMD3100 has been shown to mobilise progenitor cells 

from the bone marrow (Dar et al., 2011) and a similar approach may be required within 

the CNS for endogenous stem cell recruitment and tissue repair. Whether manipulating 

ECs in vivo using SDF-1α leads to an improvement in the physiological recovery 

following spinal cord injury is unclear. 
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6.5 Conclusions 

1. The proliferation of cells within the spinal cord can be manipulated using a number 

of hydrogels 

2. Delivering a concentration gradient of SDF-1α in vitro may trigger ependymal cell 

migration 

3. Delivering SDF-1α in vivo within a hydrogel leads to an increase in the number of 

proliferating cells at the level of injection – potentially via recruitment of dividing 

cells rostral to the injection site 

Overall, this results in this suggest that cell proliferation within the spinal cord can be 

manipulated using hydrogels; and delivering a gradient of the chemoattractant SDF-1α 

may trigger the directed migration of ependymal cells.
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Chapter 7 – General Discussion 

 

7.1 Summary 

This study has highlighted the complex nature of spinal cord repair. Injuries to the CNS 

cause a myriad of cell behaviour changes; all influenced by a number of intrinsic and 

extrinsic processes and cellular cascades. 

Novel developments made include: 

 Characterisation of (nestin)GFP expression in the spinal cord of transgenic mice 

 Development protocols for the detection of proliferating cells in vitro and in vivo, 

reducing the detrimental effect of Cu(II) on GFP fluorescence  

 Investigation into the behaviour of ependymal cells in organotypic spinal cord slice 

culture 

 Optimisation of culture conditions for the detection of proliferative changes at the 

central canal following injury 

 Potential manipulation of ependymal cells using hydrogels and SDF-1α 

 

7.1.1 Investigating the potential manipulation of hydrogel 

mechanical properties 

A number of collagen hydrogel variants were synthesised with the aim of manipulating 

mechanical properties independently of the physical structure of the resulting gel 

matrix. Altering the collagen concentration was shown not only to impact the 

mechanical properties of the hydrogel, but also the porosity. Additionally, modulating 

the crosslinker molar ratio was investigated, however this wasn’t shown to impact the 

mechanical or physical properties of the hydrogels formed. Finally, the crosslinker was 

varied to see if changes in the chemical structure resulted in changes to the hydrogel 
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mechanical properties as a result. In contrast to previous research (Head et al., 2016), 

the storage modulus of hydrogels was not shown to reliably change as a result of 

crosslinker structural changes. As a result, I was not able to determine the effect of 

collagen hydrogel stiffness on ependymal cell behaviour as initially planned.  

7.1.2 Characterisation of (nestin) GFP expression  

Characterisation of (nestin) GFP expression in transgenic mice was carried out within 

this thesis; identifying the spinal cord ependymal cells as GFP+ve and expressing a 

number of stem cell markers. ECs were colocalised with antibodies against: CD24, 

Galectin-3, NKA-α1, Sox2, vimentin, CD63, CXCR4, foxJ1, and calbindin-D28k. I also 

demonstrate that (nestin) GFP expression within the SC of these transgenic mice is 

limited to ECs and pericytes, and at the central canal, (nestin) GFP is specific to ECs 

and does not label CSFcCs. Additionally, I have shown that ECs express the exosomal 

marker CD63 and therefore may sense changes in the CSF following injury and 

modulate the neurogenic niche via released exosomes. Immunofluorescence labelling 

also highlighted that ECs express CXCR4 and galectin-3, targeting of which may prove 

useful for the manipulation of endogenous cells.  

7.1.3 Optimised culture methods 

Experiments within chapter 5 enabled the detection of proliferating cells within 

fluorescent transgenic tissue. Picolyl azide was used to raise the effective 

concentration of the Cu(II) catalyst for the detection of EdU incorporated within the 

DNA of dividing cells. Additionally, spinal cord slice culture conditions were investigated 

and optimised; enabling the detection of injury-induced proliferation changes in pre-

weaner mice. 

Pre-weaner mice were used in this chapter as our group previously determined optimal 

cell survival in cultured slices from animals of this age, compared to older animals 

(unpublished observation). Pre-weaner animals were also used in order to minimise the 

injury response as a result of slicing, however, for a traumatic injury model adult 
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animals may have been more appropriate (Pandamooz et al., 2019). Organotypic 

spinal cord slice cultures, as with other in vitro methods, are a simplified system lacking 

blood supply and therefore exclude the inflammatory response and any blood-borne 

substances that may be critical in manipulating EC behaviour in vivo. However, they do 

present a method by which cell-cell and cell-ECM interactions may be investigated, and 

so offer an insight into tissue engineering opportunities. 

 

7.1.4 Manipulation of ependymal cells using hydrogels and the 

chemokine SDF-1α 

The response of cells within spinal cord slices was shown to vary depending on the 

hydrogel substrate used. Collagen hydrogels were shown to reduce the central canal 

cell proliferation by around 50%, and an overall reduction in cell proliferation compared 

to control culture inserts. Additionally, culturing spinal cord slices on VitroGel hydrogels 

resulted in significantly more cells proliferating at the central canal compared to control. 

The trends observed using commercial hydrogels and those developed in-house show 

promise with regards to cell manipulation. The collagen and HyStem hydrogels used in 

this thesis have elastic moduli of ~100 to 650 Pa whereas VitroGel hydrogels are 

reported to have a gel strength of around 1000 Pa. The reduction in cell proliferation 

when cultured on softer hydrogels (collagen and HyStem) could be due to the 

mechanical properties of the substrate, however further research is required in order to 

determine the factors directing this response (e.g. matrix material, porosity, stiffness). 

Interestingly, uniform delivery of SDF-1α in vitro wasn’t shown to significantly affect the 

number or distribution of proliferating cells within the spinal cord. A concentration 

gradient of SDF-1α however, was shown to influence ependymal cell migration and 

injecting SDF-1α (within a hydrogel) into the spinal cord of adult mice resulted in the 

detection of significantly more proliferating cells at the level of injection in both the 

whole slice as well as the white matter and grey matter when analysed separately. This 
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preliminary data therefore shows the promise of ependymal cell migration towards the 

chemokine SDF-1α.  

 

7.2 Applicability of these results to humans  

It was long believed that the postnatal central nervous system of mammals was devoid 

of newly born neurons. However, following advances in the labelling of proliferating 

cells; autoradiographic and histological data provided evidence to the contrary (Altman 

and Das, 1965). The evidence of adult hippocampal neurogenesis in rats propelled 

postnatal neurogenesis into the forefront of neuroscience research and since then, 

numerous investigations have also debated the existence of neurogenesis within the 

spinal cord.  

Recent work has shown that the cells around the central canal are capable of 

proliferating and differentiation into multiple lineages in response to injury (Takahashi et 

al., 2003; Hugnot, 2011). As such, manipulating the behaviour of the endogenous 

ependymal cells of the central canal presents an alternative to stem cell therapies for 

spinal cord repair following injury or disease (Barreiro-Iglesias, 2010). 

Proliferation of ependymal cells in response to other neurodegenerative diseases has 

been investigated. Ependymal cells isolated from symptomatic G93A-SOD1 mice 

presenting motoneuron degeneration as a model of amyotrophic lateral sclerosis (ALS) 

showed increased proliferation and migration compared to asymptomatic and wild type 

(WT) mice (Guan et al., 2007). Additionally, neurosphere-forming ECs from these mice 

preferentially differentiated into neurons over astrocytes; opposite to the trend seen in 

WT controls where astrocyte differentiation prevailed.  

Ependymal cells are not thought to proliferate in response to demyelination induced by  

experimental models of multiple sclerosis (MS) (Lacroix et al., 2014); indicating 
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regenerative strategies aimed at the manipulation of these cells for increased 

remyelination are required. 

Whether humans have ependymal cells that respond in a similar way to animal models 

is greatly debated (Garcia-Ovejero et al., 2015; Paniagua-Torija et al., 2018). Similar to 

the spinal cord stem cell niche of mice, some of the ependymal cells of the human 

central canal express the stem cell markers: nestin, sox2, and CD15 (a marker of SVZ 

neural stem cells) (Dromard et al., 2008). Recent RNA profiling of ependymal cells also 

indicated a number of transcription factors and genes are conserved between adult 

humans and rodents (Ghazale et al., 2019). In vitro studies have also evidenced the 

multipotent nature of human stem cells; with nestin and sox2 expression seen in 

neurospheres formed when cultured in growth factor (EGF and FGF) supplemented 

medium (Mothe et al., 2011). 

 

7.3 Future experiments  

The experiments in this thesis have set the foundations for future elucidation of the 

factors influencing ependymal cell behaviour. The data presented indicate that 

ependymal cells may be manipulated using biomaterials and chemokines however, the 

fate of such cells is yet to be determined and a number of questions remain: 

 What is the origin and ultimate fate of the proliferating cells detected in vitro and in 

vivo? 

Future studies using transgenic fate mapping in combination with immunofluorescence 

would further determine the regenerative potential of ependymal cells following SCI 

and address this question. Additionally, inducible transgenic reporter lines (e.g. under 

the control of the foxJ1 reporter) whereby ependymal cell progeny are labelled would 

allow for the assessment of hydrogels and chemokines over longer time frames. This 
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would also enable further distinction between migratory proliferating ependymal cells 

and other cells proliferating in the white and grey matter of the spinal cord.  

 Which cell response would be desirable following injury (i.e. would an increase or 

decrease in proliferation be beneficial for repair), and do these cell responses 

correlate with functional repair and physiological recovery? 

Whether manipulating ECs in vivo following injury leads to an improvement in the 

physiological recovery following spinal cord injury is unclear and so behavioural studies 

in rats would be critical.  

Additional studies investigating the response of ependymal cells in vitro and in vivo are 

required in order to increase sample sizes, and thus the statistical power of our 

conclusions. Furthermore, assessment of the hydrogel properties directing ependymal 

cell behaviour would enable regenerative strategies to be designed according to the 

cell-response desired. Therefore, the correlation of functional repair with cell behaviour 

in organotypic slice models would enable the screening of a library of regenerative 

strategies and minimise the use of animals in future experiments 

 What delivery paradigm/injury model would best recapitulate the spinal cord injuries 

experienced by humans (i.e. when should SDF-1α be delivered following injury)? 

Additional factors to consider when translating research to human spinal cord injury 

regeneration strategies include the delivery paradigm for patients, and how this may 

impact the potential manipulation of endogenous repair. Patients presenting to A&E 

with traumatic spinal cord injury often also have life-threatening comorbidities requiring 

immediate stabilisation and treatment. Referral of these patients to a specialised SCI 

centre once fit-for-transfer typically occurs within the first 24 hours in the UK, however 

spinal surgery may not be available immediately; further limiting standardised SCI 

treatment and restricting the opportunity for delivering regenerative interventions 

(National Spinal Cord Injury Strategy Board, 2012). 
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Additionally, non-traumatic spinal cord injury, including spinal cord tumours and 

prolapsed intervertebral disks impact the spinal cord over longer periods of time; 

leading to further challenges with regards to repair. Further work is required to 

establish the optimal time point at which SCI repair strategies should be delivered, in 

addition to determining the effects deviating from this would cause. 

7.4 Conclusions 

The studies carried out in this thesis have provided evidence that the ependymal cells 

of the murine spinal cord possess stem cell markers and can be manipulated using 

hydrogels and chemokines. Promising preliminary data showed ependymal cell 

migration may be directed via the delivery of exogenous SDF-1α; indicating the 

potential for targeting this pool of quiescent stem cells for injury repair. These results 

also provide an insight into ependymal cell behaviour within organotypic spinal cord 

slice cultures and the methods developed will be crucial for the assessment of 

regenerative strategies. As a result, this thesis has provided a platform from which 

future experiments will be able to assess cell mechanosensory behaviour in response 

to biomaterial substrate stiffness.
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Chapter 8 Supplementary data 

Table 8.1 Rheology frequency sweep data for each hydrogel repeat.  

0.5, 1, and 1.5 denote the molar ratio of crosslinker: collagen lys groups. 0.6 and 0.4 
refer to the collagen concentration (wt.%). Average G’ values are quoted at 0.9976 Hz 
in this thesis. 

4Ph 0.5 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 353.00 39.20 378.00 40.41 433.70 47.48 388.23 42.36 

0.6295 358.80 39.51 383.60 40.55 438.60 46.76 393.67 42.27 

0.7924 364.20 38.04 388.70 40.08 443.80 46.66 398.90 41.59 

0.9976 370.50 38.32 395.80 39.19 447.80 47.52 404.70 41.68 

1.2560 376.60 37.38 401.70 39.25 455.40 47.49 411.23 41.37 

1.5810 385.40 32.48 402.80 38.69 465.60 49.62 417.93 40.26 

1.9910 385.50 37.64 415.20 40.05 467.70 46.63 422.80 41.44 

2.5060 392.20 36.54 421.30 39.58 470.70 47.74 428.07 41.29 

3.1550 405.80 42.44 433.70 41.16 481.50 52.49 440.33 45.36 

3.9720 415.60 41.07 445.30 40.21 496.40 52.25 452.43 44.51 

5.0000 429.30 50.93 460.30 42.07 508.90 54.43 466.17 49.14 

         

4Ph 1 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 309.30 42.86 392.70 46.53 305.30 36.04 335.77 41.81 

0.6295 312.70 42.83 399.30 44.46 310.50 35.58 340.83 40.96 

0.7924 317.50 41.71 404.70 44.72 316.50 35.78 346.23 40.74 

0.9976 321.60 42.82 411.10 44.93 322.50 33.89 351.73 40.55 

1.2560 325.80 43.26 417.40 44.68 327.30 34.60 356.83 40.85 

1.5810 335.90 46.43 423.30 50.41 335.00 32.08 364.73 42.97 

1.9910 332.60 43.66 431.00 44.95 336.80 35.02 366.80 41.21 

2.5060 339.30 43.80 436.80 44.67 343.50 35.55 373.20 41.34 

3.1550 347.30 46.22 447.60 45.95 358.20 33.19 384.37 41.79 

3.9720 357.70 46.45 462.70 50.25 366.00 36.69 395.47 44.46 

5.0000 372.40 52.60 476.20 52.71 382.10 43.49 410.23 49.60 
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4Ph 1.5 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 375.80 46.45 393.00 46.79 350.00 41.39 372.93 44.88 

0.6295 382.90 44.89 399.00 46.17 356.10 39.89 379.33 43.65 

0.7924 388.90 44.94 404.80 45.48 361.00 38.16 384.90 42.86 

0.9976 395.20 44.67 410.20 45.06 367.70 40.52 391.03 43.42 

1.2560 401.50 44.49 417.80 45.73 372.90 40.39 397.40 43.54 

1.5810 413.60 44.97 419.40 46.83 387.40 39.62 406.80 43.81 

1.9910 415.30 43.95 430.30 45.07 383.90 40.22 409.83 43.08 

2.5060 422.10 44.26 435.30 46.20 388.10 41.19 415.17 43.88 

3.1550 434.70 43.39 445.30 45.22 399.90 44.50 426.63 44.37 

3.9720 447.00 49.84 459.90 46.75 413.40 44.21 440.10 46.93 

5.0000 462.60 51.28 477.20 48.98 430.90 50.60 456.90 50.29 

         

4Ph 0.4 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 80.65 10.01 70.42 8.09 85.90 10.40 78.99 9.50 

0.6295 81.18 9.81 72.72 8.36 87.40 9.17 80.43 9.11 

0.7924 82.25 10.52 74.72 8.18 86.63 9.02 81.20 9.24 

0.9976 83.63 9.15 77.88 7.63 82.85 8.99 81.45 8.59 

1.2560 86.20 9.13 79.10 8.35 81.07 11.34 82.12 9.61 

1.5810 92.25 10.32 76.49 8.43 76.59 4.75 81.78 7.83 

1.9910 90.35 8.72 83.16 7.78 83.95 10.06 85.82 8.85 

2.5060 96.16 10.35 88.78 10.28 92.62 9.94 92.52 10.19 

3.1550 104.50 12.00 97.52 11.32 104.20 7.57 102.07 10.30 

3.9720 109.40 11.90 102.60 10.88 108.00 12.23 106.67 11.67 

5.0000 120.10 14.95 114.90 15.01 118.60 9.55 117.87 13.17 

         

4Ph 0.6 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 196.90 23.82 232.30 25.89 177.00 20.44 202.07 23.38 

0.6295 200.70 25.41 236.40 24.91 180.10 20.47 205.73 23.60 

0.7924 204.40 22.87 238.90 25.76 183.30 20.28 208.87 22.97 

0.9976 206.50 23.38 243.60 25.72 185.30 19.62 211.80 22.91 

1.2560 211.80 21.98 246.60 23.84 187.20 19.76 215.20 21.86 

1.5810 207.40 23.29 242.40 24.61 182.30 22.55 210.70 23.48 

1.9910 214.50 22.58 247.30 24.24 190.60 18.53 217.47 21.78 

2.5060 222.80 22.91 254.90 25.31 198.80 20.26 225.50 22.83 

3.1550 232.80 25.48 260.30 25.25 204.60 18.30 232.57 23.01 

3.9720 241.80 26.09 275.40 29.79 216.30 21.46 244.50 25.78 

5.0000 253.20 30.53 288.30 33.46 230.00 26.67 257.17 30.22 
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13Ph 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 296.60 38.09 451.50 48.48 382.20 44.42 376.77 43.66 

0.6295 302.00 36.88 459.80 49.01 388.00 43.63 383.27 43.17 

0.7924 307.10 36.57 467.00 48.16 393.30 42.90 389.13 42.54 

0.9976 312.90 36.08 474.50 47.91 399.50 42.30 395.63 42.10 

1.2560 317.40 36.20 482.30 47.76 406.20 43.59 401.97 42.52 

1.5810 323.50 29.69 485.90 48.50 417.30 39.76 408.90 39.32 

1.9910 326.90 35.10 499.50 46.02 418.90 42.11 415.10 41.08 

2.5060 333.60 36.48 507.10 46.99 423.70 43.10 421.47 42.19 

3.1550 346.00 35.15 518.50 52.17 439.30 44.84 434.60 44.05 

3.9720 355.90 39.64 532.80 52.75 448.10 46.60 445.60 46.33 

5.0000 368.40 42.97 550.30 56.41 462.00 56.41 460.23 51.93 

         

Ad 1 2 3 Average 

Frequency 
(Hz) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) G' (Pa) 

G'' 
(Pa) 

0.5000 274.90 35.21 320.30 38.32 346.10 41.40 313.77 38.31 

0.6295 280.20 35.47 326.60 37.83 351.90 40.70 319.57 38.00 

0.7924 285.50 34.62 333.20 36.92 358.00 40.54 325.57 37.36 

0.9976 291.40 34.67 339.70 36.29 365.00 40.26 332.03 37.07 

1.2560 296.90 34.06 346.10 37.10 371.70 39.99 338.23 37.05 

1.5810 300.50 39.09 347.20 41.75 382.90 40.41 343.53 40.42 

1.9910 310.40 34.10 355.80 38.19 383.50 40.15 349.90 37.48 

2.5060 317.50 33.26 362.90 38.70 389.00 39.39 356.47 37.12 

3.1550 325.00 35.21 374.60 41.50 400.60 36.32 366.73 37.68 

3.9720 338.50 38.43 387.60 44.62 413.70 43.47 379.93 42.17 

5.0000 352.60 39.61 402.60 45.92 428.80 46.75 394.67 44.09 
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Figure 8.1 Mean storage moduli of hydrogels varies between repeats 

Storage modulus determined by rheology frequency sweeps, quoted at 1 Hz. Dashed 
lines denote separate experiments (i.e. different batches of collagen solution, 
crosslinker solution batches, and testing dates). Data presented as mean +SD. N=3 for 
each data point apart from 4Ph, experiments 2 and 6 where N=2. * P ≤ 0.05, ** P ≤ 
0.01. 

 

 

Figure 8.2  Schematic depicting the organotypic spinal cord slice culture set up 
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