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Abstract

A cohesive framework is developed and presented for the mathematical

modelling and computational simulation of the evolution of the human

tear film: the thin layer of viscous fluid that coats the corneal surface

of the eye between the eyelids. The evolution of the free surface of the

tear film is governed by a nonlinear spatio-temporal evolution equation

wherein gravitational, evaporative, capillary and Navier-slip effects are

incorporated.

A thorough review of the boundary conditions enforced in related oph-

thalmic literature reveals that the ubiquitously used “pinning” (Dirich-

let) condition at the eyelids contradicts not only physical intuition but

also in vivo observations. Accordingly, the analysis and formulation

herein departs from all prior ophthalmic modelling via the introduction

of the novel-to-the-area Cox-Voinov condition, which allows for evolution

of the tear film at the boundary in response to the evolving contact angle

of the tear film. Since the contact-angle evolution can be independently

constructed from in vivo data, a novel boundary-condition calibration is

conducted herein.

Additionally, a novel approach to non-dimensionalisation and scaling

is conducted that leads to a tear-film evolution equation in which all

dominant balances are proven to be consistent when quantified by real

fluid properties and ophthalmic parameters.

Since no numerical framework for solving the mathematically intractable

ophthalmic problem is provided in related literature, a full numerical

modus operandi is derived, implemented and validated herein. Specifi-

cally, a Chebyshev-differentiation-matrix method is used to approximate,

to spectral accuracy, the spatial component of the evolution equations.

In particular, a bespoke extension of a relatively recently introduced

rectangular-collocation method is developed to facilitate enforcement of



the nonlinear spatio-temporally-dependent Cox-Voinov condition. Both

novel and existing accuracy-enhancement techniques are analysed and

implemented on all spatial-discretisation tools to ensure that numeri-

cally approximated derivatives are computed with an error of the order of

machine precision. Notably, the Chebyshev matrices constructed herein

are evidenced to perform numerical differentiation with greater accuracy

than Matlab’s intrinsic routines.

Application of the bespoke numerical methods to the tear-film-evolution

equation reveals novel tear-film dynamics for a range of physically mean-

ingful initial conditions. Numerical simulations predict behaviour that

agrees with not only related literature but also in vivo observations.

Moreover, a comparison between the Cox-Voinov and pinning condition

reveals that the latter, despite its ubiquitous enforcement in related lit-

erature, predicts dynamics that contradict in vivo observations. A novel

analysis quantifying the effects of gravitational influence, corneal slip

and contact-angle specification on tear-film rupture is given, and future

extensions to the present work are discussed.
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Chapter 1

Introduction

1.1 Motivation

Providing the capacity to observe the world around us, our eyes and ocular system

comprise a vital part of the human body. Forming a fundamental part of this system

is the precorneal tear film, the thin layer of viscous fluid covering the cornea of the

eye between the eyelids. This film not only acts as a guard between the cornea and

external debris, but also lubricates the corneal surface during a smooth blink (Holly

& Lemp, 1977). As such, the precorneal tear film contemporaneously allows for

accurate vision and maintains the health of our eyes. As a consequence of its impor-

tance in one of our main critical senses, it has invited considerable research interest

from both ophthalmologists and mathematicians in terms of, respectively, clinical

practice and modelling, in which there is concomitantly a substantial literature.

The understanding of the diagnosis, onset and development of ocular disease

forms the main focus of work by ophthalmologists. Ophthalmological studies of

the tear film can be separated into three primary categories: tear-film structure

and composition (Bron et al., 2004; Foulks, 2007; Holly & Lemp, 1977; Nagyová &

Tiffany, 1999; Pandit et al., 1999; Rolando & Zierhut, 2001; Tiffany, 1991; Wolff,

1946); tear-film measurement (Creech et al., 1998; Doughty et al., 2001a,b; King-

Smith et al., 2004; Mainstone et al., 1996; Prydal et al., 1992; Yokoi et al., 2004), and;

tear-film evolution (Bron, 2001; Holly, 1973; Johnson & Murphy, 2006; Mathers,

2004; Mishima & Maurice, 1961; Rolando & Regojo, 1983; Tsubota & Nakamoria,

1995; Wong et al., 2018). In all cases, technological advancements such as high-

speed video recording (Miller et al., 2002) have increased the accuracy, repeatability

and availability of in vivo observations: techniques that were initially restricted to
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the measurement of animal tear films (Mishima & Maurice, 1961) are now widely

performed in the study of human tear films (Mathers et al., 1993). Despite such

technological advancements, tear-film disease is not fully understood: King-Smith

et al. (2018) initiate their review by stating that components of ocular disease are

an “important but poorly understood aspect of the tear film.” Thus, from a biological

and medical viewpoint, much more is still to be understood concerning the evolution

of the tear film with regard to ocular disease.

Most mathematical studies of the tear film have been published in the last 15–20

years and have primarily considered interblink (i.e. in the period between blinks)

tear-film evolution (Braun & Fitt, 2003; Li & Braun, 2012; Li et al., 2014, 2018; Maki

et al., 2008, 2010a,b; Miller et al., 2002; Peng et al., 2014; Siddique & Braun, 2015;

Stapf & King-Smith, 2017; Usha et al., 2013; Winter et al., 2010); however, blink

dynamics are also studied (Aydemir et al., 2011; Braun & King-Smith, 2007; Driscoll

et al., 2018; Heryudono et al., 2007; Jones et al., 2005; Wong et al., 1996), albeit

to a lesser extent. Advancements in tear-flow models have been made at unequal

rates, with some areas remaining effectively unchanged from their inception. For

example, though models now include heat transfer from the eye (Li & Braun, 2012)

or the effect of a variable wind speed on tear-film evolution (Peng et al., 2014), the

behaviour and evolution of the tear film at the eyelid boundary effectively remains

entirely unquestioned and unchanged from the initial assumption — that the tear

film is pinned to the eyelids — of Wong et al. (1996).

The global and ongoing adherence to such a simplistic “pinning condition” merits

attention, not least because it contradicts long-reported in vivo observations (du Toit

et al., 2003; Johnson & Murphy, 2006; Shen et al., 2008) that unequivocally establish

movement of the tear-film surface along the eyelid. Additionally, it apparently omits

the notion of contact-line dynamics that have been an integral and burgeoning part

of thin-film modelling during the last four decades (see Shikhmurzaev (2008) for

a thorough and eminently readable review). Accordingly, an aim of the present

work is to bring together within a uniform framework ophthalmic modelling, in vivo

measurements and the contact-line dynamics studied in the wider fluid dynamics

literature.

In addition to the above, external contributions to tear-film flow such as gravity

and evaporation1 are often neglected ab initio (Braun et al., 2012; Zhang et al., 2003;

1See §2.3 for a detailed discussion on this.

2



1.2 Anatomy of the Eye

Zubkov et al., 2012, 2013) which is inconsistent with analysis of both in vivo mea-

surements (Johnson & Murphy, 2006, p. 520) and gravity-retaining mathematical

models (Aydemir et al., 2011; Braun & Fitt, 2003). Detailed consideration of related

literature similarly uncovers many unfounded assumptions or anomalies in: initial-

condition specification (q.v. §2.2.5 and §5.3); boundary-condition enforcement (q.v.

§2.2 and §5.5.1) and; non-dimensional scalings (q.v. §2.3). It is not simply that

these anomalies have been uncovered: they have gone unquestioned and/or have

been repeatedly used in subsequent related literature. As a result, the present work

has been unable to build confidently upon prior art: instead, and by necessity, it

has had to revisit tear-film modelling ab initio with the objective of providing a firm

foundation for future related studies.

Mathematical modelling of tear-film flow demands determination of the free sur-

face of the film; since this lies (in general) beyond analytical techniques due to the

governing nonlinear evolution equation, appropriate numerical methods require de-

velopment (q.v. §3) and implementation (q.v. §4–§5) in order to progress. Yet,

despite numerical methods constituting such a critical component of tear-film mod-

elling, little-to-no details of the numerical tools implemented in the literature are

given1, so that published methodology is all but non-transferable and hence inde-

pendent researchers must effectively develop their own numerical tools in order to

verify results through repeatable, corroborative computations. Moreover, the error

incurred in the numerical scheme is rarely discussed and never quantified, so that

the reader is often unaware of the accuracy of the presented solutions. Due to this,

an appropriate numerical framework cannot be inherited from previous related liter-

ature and hence, as per the modelling component of the present work, its numerical

methodology is also redeveloped, transparently and from scratch, in order to offer

future readers computational repeatability and reliability. Additionally, a new con-

sideration of numerical errors quantifies the accuracy to which the theory has been

validated (q.v. §5.7).

1.2 Anatomy of the Eye

The understanding of the tear film as a tri-layer system was first provided by Wolff

(1946). Whilst this view is still broadly accepted, there remains uncertainty as to

1See, e.g. the brevity of the paragraphs dedicated to numerical methods in both Braun & Fitt
(2003, p. 12) or Aydemir et al. (2011, p. 1183).
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how these layers interact. In particular, although some studies suggest that it may

be a bi-layer system (Rolando & Zierhut, 2001), this view is not yet fully accepted

in the wider ophthalmic literature. Thus, the longstanding tri-layer tear film is

assumed herein, a simplified schematic of which is given in Figure 1.1. Whilst the

height of the fluid at the centre of the ocular surface is considered to be 5–10 µm

thick (James et al., 2003), a large range of measured values have been recorded in

vivo. Such a range of measured values can be attributed to both temporal changes in

the tear film (du Toit et al., 2003; Shen et al., 2008) and person-to-person variations

(Johnson & Murphy, 2005).
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Figure 1.1: Diagram of the tri-layer model of the corneal tear film, which comprises
a superficial lipid layer, an aqueous layer and a mucus layer. In the alternative bi-
layer model, the aqueous and mucus layers are combined. Approximate dimensions
are given for each layer.

The superficial layer of the tear film is the lipid layer containing oily and fatty

lipids that form a barrier between the tear film and the external environment. The

main function of the lipid layer — which is around 0.1 µm in thickness (Nichols et al.,

1985; Wong et al., 1996) and is formed from secretions of the meibomian gland —

is to limit the effects of evaporation, thus maintaining the volume of the film and

thereby maintaining its capacity to function as both a lubricant and a biological

barrier. The lipid layer also decreases the surface tension of the film (Bron et al.,

2004). Both of these effects stabilise the film against rupture (Braun, 2012).
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The central aqueous layer contains the majority of the volume of the tear film,

approximately 98% of which is water Braun (2012). Over the centre of the cornea, a

relatively large range of measured thickness appears in the literature, for example: 3

µm (King-Smith et al., 2000); 2.5–5 µm (Braun, 2012); 5–7 µm (Rolando & Regojo,

1983), and; 4–10 µm (Sharma, 1998). A value of 5–7 µm therefore appears to be

reasonably representative for the thickness of the aqueous layer.

At the base of the tear film is the mucus layer, which contains mucins that prevent

the interaction of foreign debris and the corneal surface, and aid tear-film spreading,

adherence and wetting (Gipson, 2004; Rolando & Zierhut, 2001). Despite initial in-

vestigations of the aqueous layer of the tear film finding little mucin (Nagyová &

Tiffany, 1999), subsequent studies have found a decreasing gradient of mucins away

from the mucus layer into the aqueous layer (Rolando & Zierhut, 2001), thereby

suggesting that the long-standing tri-layer model of Wolff (1946) may be replaced

by a bi-layer model with a mixed mucus-aqueous layer. Originally thought to be

very thin, approximately 0.05 µm (Holly & Lemp, 1977; Rolando & Regojo, 1983),

its thickness is now considered to be as large as 0.5 µm (Braun, 2012; Nichols et al.,

1985). The increase in thickness in recent measurements may be attributed to a

potential measurement of the aforementioned mucus-aqueous gradient. A relatively

large value of 40 µm for the tear-film thickness as a whole was given by Prydal et al.

(1992), who argued that the majority of the thickness was attributed to the mucus

layer; however, no other studies have substantiated this claim. Further measure-

ments of the precorneal tear film may be found in the mini-review of King-Smith

et al. (2004).

Regions of increased thickness and volume on the corneal surface closest to

the eyelid are called the tear menisci, and are shown in the schematic of a two-

dimensional section of a tear film in Figure 1.2. The tear-meniscus height is the

length of the meniscus along the corneal surface, whilst the tear-meniscus width

is the length of the meniscus along the eyelid: both values are known to change

according to tear volume (Yokoi et al., 2004). The tear-meniscus height is measured

in vivo as 250–400 µm (Johnson & Murphy, 2005; Wang et al., 2006); a larger range

of values are found for the tear-meniscus width, i.e. from 60 µm (Golding et al.,

1997) to 270 µm (Gaffney et al., 2010).
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Figure 1.2: Schematic diagram of a 2D vertical section of a tear film in the vicinity
of the lower eyelid, featuring the central tear film (as shown in Figure 1.1) and lower
tear meniscus: the upper half (not shown) of the geometry is a reflection of the lower
half in the indicated line of symmetry. The meniscus height describes the length that
the meniscus occupies along the corneal surface, and the meniscus width describes
the thickness of the fluid at the eyelid. The term “describes” is used because, as the
figure shows, the matching “point” (at the dotted vertical line) between the central
uniform film and the menisci is to an extent arbitrary: this aspect is revisited in
later chapters, and it occurs when the fluid surface is asymmetric relative to the
corneal centre. Gravity here acts horizontally, from left to right.

1.2.1 Dry-Eye Syndrome and Tear-Film Breakup

To reiterate, the precorneal tear film is vital in maintaining both the health of our

eyes and the accuracy of our vision. If the ocular surface or tear film becomes dam-

aged, this can negatively impact upon the eyes’ functionality. Dry-eye syndrome

(DES) relates to an ophthalmic condition wherein the tear film or ocular surface is

adversely affected due to a deficiency in tear volume (Lemp, 1995). Whilst there

is a lack of agreed criteria in its diagnosis (Johnson & Murphy, 2004), a proposed

formal definition of DES is given in Brewitt & Sistani (2001) as: “Dry eye [syn-

drome] is a disease of the ocular surface attributable to different disturbances of the

natural function and protective mechanism of the external eye, leading to an unsta-

ble tear film during the open eye state”. Although symptoms of DES — such as

tear-film instability, discomfort, deterioration of vision and redness— are found in

6



1.2 Anatomy of the Eye

just over 50% of the population (Chia et al., 2003); moderate-to-severe symptoms

of DES occur in 15% of the population (Mathers, 2004). An accurate diagnosis of

what constitutes “severe” is difficult to quantify as a result of the aforementioned

lack of agreed criteria. The attributing factors to the development of DES can be

characterised in two distinct classes: an aqueous, tear-deficient dry eye, in which

DES occurs due to a reduced tear volume present in the eye, and; evaporative dry

eye, in which heightened evaporative effects reduce the fluid volume, typically due

to lipid-layer deficiencies (Bron, 2001; Mathers, 2004; Tomlinson & Khanal, 2005).

Understanding the way in which the tear-film volume can be measured and

modelled is thus a key focus of the present work, as indeed it is for ophthalmologists

in trying to quantify tear-deficient DES. By multiplying the area of the tear film

over the cornea by the height of the film, Mishima et al. (1966) found a tear volume

of 1.1 µl over the centre of the cornea. It is worth noting that this calculation used

a value of 6.5 µm for the height of the tear film, and consequently depends upon

a value for which there is a large inherent uncertainty. The menisci volumes were

then obtained using a fluorescein solution, for which in vivo measurements for the

combined menisci volumes of 2.9 µl were recorded, yielding a total 4 µl of fluid over

the cornea. This 1-to-3 ratio of fluid volume in the central to menisci regions is

corroborated by Mainstone et al. (1996). As the tear-meniscus height and width

are known to change with tear volume (Yokoi et al., 2004), measurements of these

quantities are often performed in an attempt to diagnose tear-deficient DES.

Measured evaporation rates for humans both with and without DES have been

recorded from in vivo measurements using goggle-based techniques (see Mathers

(2004), Tomlinson & Khanal (2005) and the references therein). Sample evaporation

rates for normal eyes are typically published between 4 and 30 × 10−6 kg m−2 s−1

and can be found in Mathers (2004, Table 1) or Tomlinson & Khanal (2005, Table

2). For dry eyes, the evaporation rate increases; Mathers (1993) publishes rates

of 15 × 10−6 kg m−2 s−1 for normal eyes, which should be contrasted with 60 ×
10−6 kg m−2 s−1 for dry eyes, the latter value chosen in the mathematical modelling

of Braun & Fitt (2003) and subsequently re-used in Winter et al. (2010). Further

to this, evaporation rates can depend on contact-lens use, with larger evaporation

rates in subjects wearing old (>1 day’s wear) contact lenses; though such rates

subsequently decrease when contact lenses are either removed or replaced by fresh

ones (Mathers, 2004). Evaporation would be expected to eliminate the tear volume

in 5–10 minutes (Holly, 1973), so that its effect over an interblink time of between
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5–8 seconds (Berger & Corrsin, 1974) is expected to be limited during the interblink

evolution of the film.

As the precorneal tear film thins across the central and meniscus regions spanning

the cornea, it is known to rupture (Holly & Lemp, 1977; Rengstorff, 1974). Breakup

times (BUTs) are defined as the time interval between the end of a blink and the

appearance of dry spots on the eye (Golding et al., 1997; Rengstorff, 1974). BUTs

depend on the size of the menisci (Golding et al., 1997), so that larger volumes of

fluid in the menisci decrease the rate of thinning. Though recorded breakup times

range from as little as 5 seconds to over a minute (Golding et al., 1997), Rengstorff

(1974) found BUTs of over a minute in only 15% of their subjects. In subjects with

an unstable tear film caused by DES, Bron (2001) suggests that BUTs of 10 seconds

or less can occur, which is consistent with the aforementioned proposed formal

definition of DES by Brewitt & Sistani (2001): an unstable tear film in an open-

eye state for which tear-film rupture occurs in a 5–8 second interblink period. In

modelling the evolution of the tear film, analysing tear-film rupture is an important

component of ophthalmic mathematics. As briefly commented on in Jones et al.

(2005), it is noted that there is a difference between the clinical BUTs found by

taking in vivo measurements and the mathematically-computed BUTs obtained in

the literature cited below. Specifically, mathematical BUTs are expected to be

shorter due to termination — by violation of a priori modelling assumptions — of

the model once the tear film reaches a given (more accurately, implicitly assumed)

minimal thickness. Mathematical BUTs may vary widely, there being an explicit

dependence upon a combination of the initial profile, the boundary conditions and

the modelling assumptions made. For example, mathematical BUTs are reported as

the relatively disparate values: O(1)–73 seconds Miller et al. (2002); 12–500 seconds

(Braun & Fitt, 2003), and; 5.3–12.2 seconds Jones et al. (2005). Moreover, BUTs

can become unrealistically large in the absence of gravitational effects (Braun &

Fitt, 2003, Fig. 4).

Tear-film breakup occurs after the formation of so-called “black lines” (Bron,

2011; Holly & Lemp, 1977; Miller et al., 2002) which are locations of increased

thinning adjacent to the menisci (cf. Figure 5.3 and the vertical dotted line in Figure

1.2). Their name arises from the physically-observable black lines that appear when

fluorescein dye is added to the tear film during in vivo measurements. The black-

line regions are then these locations where the tear film is thinnest; the study of

such locations is a main focus of §5. Black lines have been found to form almost
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immediately in subjects. By video recording the eyes of subjects after a blink,

Miller et al. (2002) found that black lines had formed in the first frame of their

video, concluding that they are present within 0.03 seconds of fully opening the eye.

1.3 A Review of Tear-Film Models

Tear-film models are primarily concerned with the deposition of the tear film, oc-

curring during a blink, and the thinning of the deposited tear film over the following

open-eye phase. Thus, models typically consider one of three scenarios: the opening

of the eye, the open-eye interblink phase, or the full blink cycle. Models of tear-

film flow have since been extended to include the effects of gravity (Miller et al.,

2002), evaporation (Braun & Fitt, 2003), corneal slip (Zhang et al., 2003) and lipids

and surfactants (Jones et al., 2006). The majority of models are Cartesian and 2D,

wherein a cross section of the tear film from the upper to the lower lid is modelled.

The following literature is assumed to be of this form unless explicitly otherwise

stated.

The formation, or deposition, of the tear film was initially considered by Wong

et al. (1996), who modelled tear-film deposition in the presence of a moving upper

lid, in a set-up analogous to that of a coating model. The deposited film thickness

was found to be proportional to the velocity of the upper lid, having a thickness

of 5–8 µm and agreeing well with measured data. The deposition of the film was

extended by Jones et al. (2005). By considering an initially-contracted domain that

thereafter expands, thereby emulating the opening of a closed eye, a profile for the

tear film immediately at the end of a blink was obtained numerically. Notably, black

lines were present by the end of the deposition phase, which agreed with the near-

immediate appearance of black lines in the aforementioned observations of Miller

et al. (2002). Aydemir et al. (2011) considered the role of lipids on the formation

of the tear film, by modelling the lipid layer’s effect on surface tension. Modelling

the same opening-eye process as Jones et al. (2005), the resulting profile at the

end of the blink contained the same characteristic properties of Jones et al. (2005)

and corroborated the in vivo observations of Miller et al. (2002). In particular, the

speed at which the eyelid opened could cause the tear film to be thicker at the upper

meniscus, thicker at the lower meniscus, or relatively symmetric. By the authors’

admission in Aydemir et al. (2011, p. 1181), quantities corresponding to parameter

values of the lipids are not fully understood, so that this model, and all models
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including lipid-related quantities, necessarily introduce a degree of speculation on a

chemical level, i.e. over and above the underlying fluid dynamics.

Upon completion of the opening of the eye, the thinning of the deposited film is

modelled in the interblink phase. Since such a phase constitutes about 95% of the

blinking process, the open-eye phase has attracted more attention and has concomi-

tantly spawned a larger literature. In addition to their work on deposition, Wong

et al. (1996) considered the rate of thinning thereafter. Despite the simplifications

deployed in modelling the problem, the model mathematically captured the black-

line regions and predicted a BUT of 40 seconds, agreeing well with aforementioned in

vivo observations. Notably, the film thinned at the locations where the tear menis-

cus attaches to the central film tangentially. Not only does this location agree with

the physical location of the black lines, but also such a location of thinning has since

been a recurrent theme in ophthalmic studies. The first attempt to include external

effects on the dynamics of the tear film was made by Miller et al. (2002), who include

gravitational effects in their model. They concluded that gravitational effects do not

affect the evolution of black lines; however, subsequent literature wherein gravita-

tional effects are included do not share this conclusion (Aydemir et al., 2011; Braun

& Fitt, 2003). Gravitational effects were further considered by Braun & Fitt (2003),

who also introduce evaporative effects into the model. The inclusion of both gravity

and evaporation decreases the BUTs, though on a typical interblink timescale of

5–8 seconds evaporation has little influence on tear-film evolution. Evaporation was

introduced as an effectively constant term1. Interestingly, despite evaporative effects

thinning the film globally on a physical basis, current mathematical modelling of

evaporative effects induces thinning in only the interior of the tear film, as a di-

rect result of the ubiquitously specified boundary conditions that enforce a constant

boundary thickness at the eyelids. The validity of such an unchallenged boundary

condition is further questioned on simple grounds: since gravitational effects would

be expected to transfer fluid from the upper lid towards the lower lid, it cannot

be the case that the film thicknesses remain equal and fixed at both eyelids. A

fuller consideration of the physicality of the boundary conditions employed in the

ophthalmic literature is deferred to §2.2, wherein a thorough review is undertaken.

1The evaporative term in Braun & Fitt (2003) does depend on the tear film thickness, thus is
spatially-dependent. The dependence accounts for just a 0.4% difference in the rate of evaporation
between the thickest and thinnest points of the film, such that it is effectively constant and hence
it is sometimes referred to as a constant-evaporation-rate (CER) model in subsequent literature
(e.g. Winter et al. (2010)).
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Braun & Fitt (2003) conclude that both gravitational and evaporative effects

play a small role on a typical interblink timescale, but both effects significantly

contribute to the rupture of the film once the film thickness has reduced in the

black-line regions; a more detailed, mathematical, explanation for this is quantified

in §2.3. Indeed, excluding such effects, Braun & Fitt (2003, Table 2) do not observe

tear-film breakup until > 5 minutes; a timescale nearly two decades larger than a

typical interblink time and a decade larger than observed in vivo breakup times

(Golding et al., 1997).

Winter et al. (2010) extended the evaporative model of Braun & Fitt (2003) to

include an additional pressure term that prevents dewetting of the corneal surface, in

such a way that the model can still advance temporally for long timescales beyond

those at which rupture would have otherwise occurred. This allowed the entire

central region of the tear film (i.e. the section between the two menisci) to completely

evaporate in 4 minutes, which is slightly under the previous 5–8-minute estimate

of Holly (1973), though this could be attributed to the fact that Winter et al.

(2010) consider thinning of only the central region; very little thinning occurs in

the menisci regions due to the specification of, again, a pinned thickness at the

boundary. Different evaporation models are presented in Li & Braun (2012) and

Li et al. (2014), who include thermal contributions from within the eye, and Stapf

& King-Smith (2017), who model lipid-layer deficiencies as a contributing factor to

evaporation rate in a bi-layer system.

The contribution of evaporation is not always included in the modelling of tear-

film drainage (Aydemir et al., 2011; Braun & King-Smith, 2007; Heryudono et al.,

2007); in such cases it is not considered a leading-order effect of tear-film evolution.

In particular, it is considered that the influence of evaporation on tear-film evolution

is negligible unless lipid-layer deficiencies are present (Nichols et al., 2005). Thus,

it should be considered that tear-film rupture induced by evaporation should poten-

tially occur only in a system wherein the lipid layer is explicitly modelled, rather

than simply via an evaporative term in isolation of other factors.

Modelling of the full blink cycle was first considered by Heryudono et al. (2007).

By specifying a time-dependent spatial domain, the movement of the upper eyelid

is modelled by a domain that initially expands before retracting, thereby emulating

the opening and closing of the eye. Thus, the model includes both deposition and

drainage phases. The deposition phase agrees with the observations found by Jones

et al. (2005), and the film thereafter evolves with dynamics featuring in all open-eye
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1. INTRODUCTION

phase models, in that rupture occurs in the black-line regions. The rate at which

the eye opens and closes was computed according to in vivo data obtained by Berke

& Mueller (1998).

An extension of the blink-cycle theme is made in Braun & King-Smith (2007)

who consider multiple blink cycles. Their results corroborate the findings of Jones

et al. (2005) in that a non-zero flux is required during the blinking phase in order

to deposit a film of sufficient depth to match in vivo data in agreement with the

opening of the eye in Jones et al. (2005). They further find that the film thickness

gradually decreases, over multiple blink cycles, until rupture occurs. This differs

from the in vivo measurements of du Toit et al. (2003), who observe a relatively-

constant central film thickness over an 8-hour period. This discrepancy in the film

thickness may be attributed to so called “reflex tearing”1, wherein additional fluid

is supplied upon the onset of irritation of the cornea due to the thinning of the tear

film (King-Smith et al., 2000): this effect, initiated by the lacrimal glands, is not

included in the model of Braun & King-Smith (2007). Reflex tearing is, however,

included in the modelling of Maki et al. (2008), wherein an additional volume of

fluid is delivered via a flux boundary condition whilst the eye remains open. This

additional fluid causes an increase in film thickness that both prolongs the health

of the tear film and contributes to longer BUTs.

3D tear-film models have been studied in Driscoll et al. (2018); Li et al. (2014);

Maki et al. (2010a,b), wherein a 2D eye-shaped domain is considered. In all cases,

tear-film thinning and breakup occurs most strongly towards the eyelids. Such

regions are the black-line regions that are captured in 2D tear-film models. Driscoll

et al. (2018) present a 2D eye-shaped domain with a moving upper boundary that

simulates a blink: whilst this is the most advanced ophthalmic modelling in terms of

the geometrical domain, their modelling considers only the blink process and not the

thinning thereafter; however, they flag as future work the extension to full tear-film

evolution using lubrication theory.

The contribution of the lipid layer on evaporation rates is, on occasion, considered

on a uniformly flat film (Peng et al., 2014; Siddique & Braun, 2015; Stapf & King-

Smith, 2017). In such modelling, the explored effects of thinning are treated in

isolation of the meniscus-induced thinning from which the black-line regions form,

i.e. the initial profiles are assumed to be entirely flat, despite the relatively large

1NB rhyming with fearing, not bearing.

12



1.4 Thesis Outline

change in film thickness towards the boundary (Figure 1.1). Evaporation rates were

modelled to be heightened in regions of a reduced lipid-layer thickness, from which

local regions of tear-film thinning form. Such thinning is found to cause rupture in

20–60-second timescales, thereby agreeing with in vivo observation.

1.4 Thesis Outline

The aim of this thesis is to model and to understand the dynamics of the precorneal

human tear film. Particular focus is given to the behaviour and evolution of the

tear-film thickness at the eyelid boundary, and the rate of thinning in the black-

line regions, as quantified by computation of the breakup time. Accordingly, the

remainder of this thesis is structured as follows.

In §2.1, a lubrication-approximation of the Navier-Stokes equations is made in

order to derive a fourth-order, nonlinear spatio-temporal evolution equation for the

tear-film thickness during the open-eye phase of a blink. The model includes the full

effects of gravity, orientation of the eye, evaporation at the free surface, Navier-slip

on the corneal surface, surface tension and pressure. The derivation of the governing

equation of motion in the present work differs from previous ophthalmic literature

in the following ways. The full curvature of the film is retained in the normal-stress

balance due to the introduction of (entirely novel to the area) physically realistic

contact angles. Corneal slip is modelled to be inversely proportional to the tear-film

thickness, in agreement with the analysis of Braun & Fitt (2003). Gravitational

effects are retained and parameterised by the orientation (relative to the vertical)

of the eye to allow for a more flexible and expanded comparison against in vivo

observations.

Thereafter, in §2.2 a thorough review is undertaken on the choice of boundary

conditions employed in the ophthalmic literature. Ubiquitous in the ophthalmic

literature is the specification of a Dirichlet boundary condition that pins the fluid

thickness at the eyelid at a pre-specified height. A discussion of the physical validity

of this condition is made in §2.2.1 at much greater length than in all previous liter-

ature, wherein it is revealed that in vivo measurements actually contradict pinning.

In addition, discussions are presented in §2.2.2–§2.2.3 regarding the implementa-

tion of previously-used periodic and/or pressure boundary conditions, as a result of

which they are eschewed in the present work. In this respect, the modelling herein
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1. INTRODUCTION

of the tear film constitutes a departure from all prior literature due to its implemen-

tation of a novel-to-the-area1 contact-angle-based boundary condition. Specifically,

a Cox-Voinov boundary condition (Cox, 1986; Shikhmurzaev, 2008; Voinov, 1976)

is introduced in §2.2.7 to induce a contact-angle evolution that can be calibrated

against in vivo measurements (Johnson & Murphy, 2006), as discussed and intro-

duced in §2.2.6. This results in a dynamic boundary thickness that replaces the

non-physical pinning condition. The specification of such a boundary condition re-

veals novel dynamics in §5 whose very existence is precluded by enforcement of the

pinning condition. Consequently, for the first time in the ophthalmic literature, all

enforced boundary conditions transpire to be in agreement with in vivo observations.

§2.3 contains a formal derivation of a non-dimensional set of scalings that may

be automatically adapted (e.g. using an algebraic manipulator such as Maple)

to quantify the relative magnitudes of dominant balances of capillary, inertial and

gravitational effects. This is necessitated as the great majority of current literature

invariably quotes and/or inherits — with neither derivation nor reference — those

scalings used in the pioneering 2D and 3D models.

Since the solution of the governing evolution equation for the film thickness de-

rived in §2.1 lies beyond analytical spatio-temporal integration techniques, appropri-

ate numerical integration methods are introduced in §3. Given the wide variation

(over a short spatial scale) in film thickness anticipated during the onset of the

formation of the aforementioned black lines, a key challenge on this front is the

employment of a high-order-accuracy computational methodology. To this end, a

spectrally-accurate Chebyshev-differentiation-matrix method (Bayliss et al., 1994;

Trefethen, 2000) is derived ab initio in §3.1.1, whereafter accuracy-enhancement

techniques are applied in §3.2 in order to alleviate the introduction and propagation

of rounding errors (Baltensperger & Trummer, 2003; Costa & Don, 2000; Don &

Solomonoff, 1995). Such a meticulous presentation of methodology is demanded

by the lack of any details regarding the numerics presented in related literature.

Methods for spectrally-accurate spatial integration are introduced in §3.3 in order

to compute the mass of the evolving tear film (Trefethen, 2000). A discussion of

the challenges of implementing the nonlinear, newly derived, dynamic-slip boundary

conditions is made in §3.5, which leads to the implementation in both §3.6 and §5.2

of a bespoke and novel-to-this-work adaptation of a relatively recent rectangular-

1Albeit, integrated into other thin-film fluid mechanics for the last four decades.
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collocation technique (Driscoll & Hale, 2016) that simultaneously spatially discre-

tises not only the governing evolution equation but also the boundary conditions,

and at the same order of accuracy. It is this adaptation that offers the key to solving

the tear-film evolution problem in such a way that the presented results, and only

these, agree with those of in vivo experiments. The accuracy-enhancement tech-

niques applied to the Chebyshev differentiation matrices (CDMs) are extended in

§3.6.1 to include novel analogous techniques for the rectangular matrices.

A thorough validation of the numerical methods introduced is undertaken in §4,

by application of the computational framework on test problems comprising suit-

ably differentiable functions and differential equations. The accuracy-enhancement

techniques (some new) are all validated and verified before being applied in a novel

formulation in the search for the most-accurate spectral differentiation possible in

finite-digit arithmetic. With the spatio-temporal evolution equation for the thin-film

flow in mind, the accuracy of differentiation matrices of orders 1 to 4 is considered

in §4.1, wherein the aforementioned novel formulation of CDMs is compared against

well-documented, established CDM routines intrinsic to Matlab (Driscoll et al.,

2014). Since temporal integration is performed using the variable-step, variable-

order ode15s in Matlab (previously used in the ophthalmic literature by Braun

et al. (2012, 2018); Li & Braun (2012); Winter et al. (2010)), a test initial-boundary-

value problem is solved in §4.3 wherein the error in the numerical solutions is cali-

brated against the user-specified error tolerances in ode15s. All numerical methods

introduced in §3 are observed and documented to retain spectral accuracy. The

motivation for such a thorough consideration and investigation of numerical tools

is the scant level of numerical detail in the ophthalmic literature, particularly in

the cases of the earliest studies. That is, numerical methods have been necessarily

constructed ab initio, rather than adapted or extended from previous ophthalmic

literature, thereby adding to the challenge in conducting the present work.

The bespoke numerical methods are applied in §5 to the evolution equation de-

rived in §2.1. Full discretisation of both the governing equation and boundary condi-

tions is presented in §5.2. To initiate the temporal integration, a novel methodology

for the construction of initial profiles based on in vivo measurements is presented in

§5.3. Such a presentation is necessitated by the frequent use in related literature of

initial profiles that either fail to satisfy boundary conditions or that include discon-

tinuities in the higher-order derivatives implicit in the tear-film-evolution equation.

This aspect elicits no mention at all in the literature but was identified early on in
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this project as a confusing source of problems, because it is effectively an error that

is self-imposed in related studies.

The evolution of the tear film is analysed in §5.4–§5.6 under the effects of grav-

ity, corneal slip, contact-angle evolution and initial-condition variation. Specifically,

initial conditions comprising profiles that: are uniformly thick in the central region;

are asymmetric relative to the corneal centre-line, and; have varying meniscus sizes.

In all cases, the contact-angle-evolution is calibrated against in vivo data. Particular

focus is made with regard to the rupture-prone black-line regions. A comparison is

made in §5.5.1 between the specification of the novel dynamic-contact-angle bound-

ary condition and the ubiquitous pinned Dirichlet condition, wherein it is revealed

that the pinning condition yields results that diametrically contradict in vivo ob-

servations. In §5.6 is presented a novel analysis for quantifying tear-film breakup in

terms of gravitational influence, corneal slip and contact-angles. Error-measurement

techniques such as mass and symmetry conservation are are applied to the computed

tear-film profiles in §4; they reveal that a spectral level of accuracy is observed in

the numerical solutions obtained herein.

A summary of the findings and developments of the present work is given in §6.1.

In addition to this, areas of future work are discussed in §6.2 with regard to corneal

geometry and lipid layers.
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Chapter 2

Ophthalmic Modelling

The aim of this chapter is to model the flow of a two-dimensional section of an

incompressible, viscous tear film on a flat, impermeable surface between two eyelids

modelled as static boundaries. The tear film is subject to the effects of evaporation

on its free surface, Navier-slip on the impermeable corneal surface, and gravity

relative to the orientation of the eye. To achieve this aim, the chapter is split into

three main components.

The first section of this chapter is dedicated to the derivation of the governing

equations for the bulk of the tear film. A lubrication approximation of the Navier-

Stokes equations is conducted via non-dimensionalisation of variables according to

scalings suggested by in vivo observations. A governing biparabolic nonlinear spatio-

temporal equation for the evolution of the free surface of the flow is thereby obtained,

from which the thickness of the tear film can be found using the techniques in

Chapter 3.

As one of the aims of this thesis is to model tear-film flow subject to physically

realistic boundary conditions, a thorough review is first conducted of the boundary

conditions found in the ophthalmic literature. Thus, the second component of the

chapter comprises an investigation into the validity of such boundary conditions

when compared against in vivo observations. It transpires that, with the general

exception of zero-flux enforcement at the eyelids, boundary conditions used in the

ophthalmic literature are typically introduced with little-to-no motivation or formal

(even physical) justification, despite widespread developments regarding this aspect

in the wider context of general thin-film fluid dynamics (see, e.g. Shikhmurzaev

(2008) for readable résumé of dynamic contact lines). This apparent bypass of

contact-line dynamics motivates herein a fresh discussion of the validity and physi-
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2. OPHTHALMIC MODELLING

cality of the boundary conditions commonly enforced in the ophthalmic literature; as

a result the boundary conditions enforced herein are physically justifiable. Emerg-

ing from this discussion is the introduction of a boundary condition that is not only

novel to the ophthalmic literature but is also calibrated via in vivo measurements;

using this approach, new tear-film dynamics have been discovered.

Initially, the non-dimensional scalings used to derive the evolution equation are

those used previously in related studies (e.g. Braun & Fitt (2003); Li et al. (2014)).

However, such scalings are invariably quoted as a fait accompli in the (2D and 3D)

ophthalmic literature, without derivation in consideration of the physical parame-

ters and properties involved. Therefore, this chapter concludes with a derivation of

a consistent set of scalings for non-dimensionalisation that is formally based upon

the relative magnitudes of dimensionless parameters associated with inertial, grav-

itational and capillary effects. Though in this case it transpires that the equations

of motion derived from this novel set of scalings agree at leading order with those

previously obtained, the generality of the new approach invites application beyond

the area of ophthalmic fluid-dynamical modelling.

2.1 Thin-Film Equations

Before any modelling is performed, a brief discussion is undertaken of the assump-

tions and considerations used in order to justify the choice of a 2D Cartesian model

of a full 3D fluid flow. 3D modelling of tear-film flow has been performed by Li et al.

(2014); Maki et al. (2010a,b): an artefact of employing it is the increased complexity

in not only the governing equations of motion but also the enforced boundary condi-

tions; in particular, the difficulty in the specification of physically realistic boundary

conditions on eyelids possessing curvilinear geometry. To navigate the challenging

boundary-condition enforcement, Li et al. (2014) opt to pin the thickness along the

eyelid using a constant (Dirichlet) boundary condition. Because of the ubiquitous

use in the ophthalmic literature of this Dirichlet condition, it is discussed in some

detail in §2.2.1 since one of the main aims of this thesis is to avoid application of

this so-called pinning condition, which apparently has no basis in true ophthalmic

observations.

In what follows, a 2D cross-section of the tear film is considered because this

is sufficient to admit and to demonstrate the introduction of novel boundary con-

ditions based on in vivo observations at the eyelids from which new dynamics can
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2.1 Thin-Film Equations

be discovered. Additionally, 2D results obtained herein may be compared with the

ophthalmic literature in which the majority of modelling is performed on a 2D carte-

sian domain. It is noted that the results of the 3D modelling of both Li et al. (2014,

Figs. 5, 7) and Maki et al. (2010b, Fig. 11) reveal that the areas in which the tear

film is thinnest are those areas that would be captured by a 2D cross-section of the

tear film, thus it is expected that tear-film breakup is to be adequately captured in

a 2D model. A schematic 2D cross-section of the tear-film flow over the cornea is

accordingly given in Figure 2.1.

Upper
eyelid

Lower
eyelid

Tear
film

Corneal
surface

Free
surface

y', v'

x', u'Gravity, g

φ

Upper eyelid

y' = h(x', t')

(0,0)

x' = - L

x' = L Lower eyelid

Corneal
surface

Figure 2.1: Schematic 2D cross-section of the eye depicting a tear film on a corneal
surface bounded by upper and lower eyelids. Dimensions not to scale.

For 2D models, a Cartesian geometry is commonly employed. In considering

tear-film flow over a prolate spheroid, Braun et al. (2012, p. 132) conclude that

“the effect of the cornea’s prolate spheroidal shape is not important.”1 This is in

agreement with the longstanding view that the corneal surface can be assumed to

be flat (Berger & Corrsin, 1974), due to the relative thickness of the tear film (order

O(10−6 m)) to the eyeball radius (order O(10−2 m)) (Braun, 2012). Thus, whilst

1Although recent computations (M. Kelmanson, 2019, private communication) indicate that
geometrically plausible perturbations from a prolate spheroid induce variations in curvature that
would seed precisely the kind of breakup observed in the literature and the present work.
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2. OPHTHALMIC MODELLING

it is acknowledged that a 2D Cartesian model for tear-film flow is a simplification,

it is expected that it sufficiently models both the corneal surface and the thinning

thereon. A 2D Cartesian model of the tear-film cross-section is presented in Figure

2.2, on which the modelling presented in this thesis is based, and in which some of

the notation is introduced.

(0,0)

x' = - L

x' = L

Upper eyelid

Lower eyelid

y', v'

x', u'Gravity, g

φ

Corneal
surface y' = h'(x', t')

Figure 2.2: A 2D Cartesian model of a tear film with thickness y′ = h′(x′, t′) bound
by both upper (x′ = −L) and lower eyelids (x′ = L) and the corneal surface (y′ = 0),
influenced by gravitational effects. Dimensions are again not to scale; for realistic
film profiles the boundary thickness y′ = h′(±L, t′) is ≈ 30 times the thickness of
the bulk of the cornea y′ = h′(0, t′).

Gravitational force is parameterised by the orientation φ of the tear film with re-

spect to the direction of gravity: hence 0 ≤ φ ≤ 2π. Thus, for example, φ = 0 yields

gravity acting in the positive x′ direction, corresponding to looking forwards, and

φ = π
2

yields gravity acting in the negative y′ direction, corresponds to looking di-

rectly upwards. Previous ophthalmic literature has exclusively considered the cases

where: gravity acts in only the positive x′ direction (e.g. Braun & Fitt (2003); Maki
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et al. (2008)) or; gravitational effects are ignored (e.g. Braun & King-Smith (2007);

Heryudono et al. (2007); Zubkov et al. (2013)). The retention of gravity parame-

terised by the angle φ admits not only the quantification of tear-film breakup due

to gravitational influence, but also allows for comparison against in vivo observa-

tion; i.e. solutions obtained herein can be compared against observations obtained

for subjects whose heads are randomly oriented. The need to retain gravity in

the modelling of a tear film is further discussed and demonstrated in both §5.4.2

and §5.6.2, in which the modelling of the Bond number, quantifying the ratio of

gravitational to capillary effects, is quantified using the physical properties of real

ophthalmic fluids.

It is noted that there is a ubiquitous and undiscussed assumption in ophthalmic

modelling that the eyelids extend perpendicularly outwards from the corneal surface.

Wang et al. (2006, Figures 1, 2) obtain imagery of the tear film via optical coherence

tomography (OCT), where the upper and lower eyelids appear to curve as they

extend anteriorly. Accordingly, the eyelids are herein assumed to extend in the

normal direction to the corneal surface in order to simplify the boundary geometry.

Such an assumption is not expected to influence the rate of tear-film breakup since

the location x′ of breakup is not the eyelid itself, but, rather, at a point slight

removed from the potentially curved boundary (see, e.g. Figures 5.3 and 5.7 in

§5.4).

2.1.1 Equations of Motion

In Figure 2.2 above, and throughout this section, a prime denotes a dimensional

variable. Additionally, an independent variable bearing a subscript denotes differ-

entiation of that variable with respect to its subscript, whereas integers appearing

as subscripts on variables denote indices in a power-series expansion. Units of di-

mensional symbolic variables are contained within square brackets.

The evolution of an incompressible newtonian fluid is described by the Navier-

Stokes equations (Acheson, 1990), which in 2D Cartesian form are

ρ
(
u′t′ + (u′ · ∇′)u′

)
= µ∇′2u′ −∇′p′ + ρg, (2.1.1)

wherein u′ [m s−1], p′ [kg m−1 s−2] and g = (g cosφ,−g sinφ) [m s−2] respectively
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denote the fluid velocity field, pressure1 and gravitational force in the 2D plane

z=constant. ∇′ denotes the dimensional cartesian gradient operator. Further, the

fluid density ρ [kg m−3] and dynamic viscosity µ [kg m−1 s−1] are both assumed to

be constant, in agreement with all ophthalmic literature. With constant density,

the incompressible continuity equation is

∇′ · u′ = 0. (2.1.2)

The 2D velocity field is u′ = (u′, v′), whereby the directional components of the

Navier-Stokes equations (2.1.1) are

ρ(u′t′ + u′u′x′ + v′u′y′) = µu′x′x′ + µu′y′y′ − p′x′ + ρg cosφ,

ρ(v′t′ + u′v′x′ + v′v′y′) = µv′x′x′ + µv′y′y′ − p′y′ − ρg sinφ.
(2.1.3)

The Navier-Stokes (2.1.1) and continuity (2.1.2) equations require augmentation

by boundary conditions applied at both y′ = 0 and y′ = h′(x′, t′), corresponding

respectively to the corneal surface and free surface of the tear film. At the corneal

surface the first condition specified is the Navier-slip condition (Greenspan, 1978;

Huh & Scriven, 1971)

u′ = k′(h′)u′y′ on y′ = 0, (2.1.4)

wherein k′(h′) [m] is the slip-coefficient function. The Navier-slip condition (2.1.4)

features in the ophthalmic literature in, for example, Heryudono et al. (2007) and

Maki et al. (2008); however, the majority of the literature considers instead the

no-slip condition u′ = 0, for which k′(h) ≡ 0. The first modelling of slip in an

ophthalmic context is in Braun & Fitt (2003), who concluded that slip accounts for a

1% change in the tear-film height. The formula in which this claim originated (Braun

& Fitt, 2003, equation (59)) has clear dependence on the tear-film height, which they

denote as ha: notably the importance of slip increases as the tear film thins. As a

consequence of this it is noted that taking k′(h′) ∼ h
′−n with n > 0 (Buckingham

et al., 2003) is compatible with the dynamics that Braun & Fitt (2003) conclude;

that the importance of slip increases as the tear film thins. Despite this, the form of

k′(h′) in (2.1.4) has exclusively been taken as a constant in the ophthalmic literature

thus far.

1More precisely, the pressure excess relative to the ambient atmospheric pressure.
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2.1 Thin-Film Equations

The second condition at the corneal surface is the impermeability condition

v′ = 0 on y′ = 0, (2.1.5)

which, to the author’s knowledge, is another ubiquitous feature in the ophthalmic

literature. Boundary conditions (2.1.4) and (2.1.5) mean that the tear fluid is allowed

to travel along but not into the corneal surface.

At the free surface y′ = h′(x′, t′), additional boundary conditions are required to

close the system. Such boundary conditions are obtained upon consideration of force

balances normal and tangential to the free surface. On the free surface h′(x′, t′), the

unit outward-pointing normal is

n̂ =
∇′(y′ − h′(x′, t′))
|∇′(y′ − h′(x′, t′))|

=
(−h′x′ , 1)

(1 + h
′2
x′)

1/2
(2.1.6)

and the unit tangential vector is

t̂ =
(1, h′x′)

(1 + h
′2
x′)

1/2
. (2.1.7)

The first boundary condition on the free surface results from balancing the normal

stress of the fluid with surface tension, such that

n̂T ·T′ · n̂ = −σκ′ on y′ = h′(x′, t′), (2.1.8)

wherein the surface tension σ [N m−1] is assumed to be constant, the free-surface

curvature κ′ [m−1] is given by

κ′ = ∇′ · n̂ =
−h′x′x′

(1 + h
′2
x′)

3/2
(2.1.9)

and T′ is the Newtonian Stress tensor (Acheson, 1990, p. 207) defined by

T′ = −p′I + µ(∇′u′ +∇′u′T ) =

[
−p′ + 2µu′x′ µ(u′y′ + v′x′)

µ(v′x′ + u′y′) −p′ + 2µv′y′

]
. (2.1.10)

With the unit normal n̂ defined in (2.1.6), the left-hand side of normal-stress balance
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(2.1.8) is given explicitly by

n̂T ·T′ · n̂ =
1

(1 + h
′2
x′)

(
−h′x′ 1

)[−p′ + 2µu′x′ µ(u′y′ + v′x′)

µ(v′x′ + u′y′) −p′ + 2µv′y′

](
−h′x′

1

)
= −p′ + 2µ

1 + h
′2
x′

(
u′x′h

′2
x′ − h′x′u′y′ − h′x′v′x′ + v′y′

)
, (2.1.11)

such that substitution of (2.1.9) and (2.1.11) into (2.1.8) yields

− p′ + 2µ

1 + h
′2
x′

(
u′x′h

′2
x′ − h′x′u′y′ − h′x′v′x′ + v′y′

)
= σ

h′x′x′

(1 + h
′2
x′)

3/2
. (2.1.12)

It is noted that in the specification of the normal-stress condition Braun & Fitt

(2003, equation (19)) give the power in the denominator of (2.1.12) as 1/2 rather

than 3/2; however, via the mechanics of their subsequent asymptotic analysis, this

error is not propagated and hence has no adverse effect.

Tangential immobility is the second boundary condition specified at the free

surface, which states

u′ · t̂ =
u′ + h′x′v

′

(1 + h
′2
x′)

1/2
= 0 on y′ = h′(x′, t′). (2.1.13)

The presence of a thin, insoluble superficial lipid layer (see Figure 1.1) is modelled

in (2.1.13) by restricting the movement of the free surface tangentially. Tangential

immobility (2.1.13) is a commonly-enforced condition on the free surface in the

absence of a modelled lipid layer (e.g. Braun & Fitt (2003), Maki et al. (2010a) or

Winter et al. (2010)); however, when the lipid and aqueous layers are modelled as a

bi-layer system (Jones et al. (2005), Aydemir et al. (2011)) (2.1.13) is replaced by

balancing tangential stresses with Marangoni stress. Note that Marangoni effects

resulting from surface-tension gradients are ignored herein due to the assumed-

constant surface tension: were they to be included, a second equation would be

required for the evolution of the lipid-surfactant concentration. Further discussion

of this is deferred to §2.4.

The evolution of the free surface is governed by mass transfer via the kinematic

boundary condition, which states that the normal components of the fluid velocity

and the boundary velocity must be equal at the free surface. With the boundary

velocity defined by u′B = (0, h′t′), the kinematic boundary condition at the free
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2.1 Thin-Film Equations

surface (Burelbach et al. (1988)) yields

J ′ = ρ(u′ − u′B) · n̂ =
ρ(−u′h′x′ + v′ − h′t′)

(1 + h
′2
x′)

1/2
on y′ = h′(x′, t′), (2.1.14)

where J ′ [kg m−2 s−1] is the evaporative mass flux.

2.1.2 Non-Dimensionalisation and Rescaling

The equations governing the motion in the bulk of the fluid (2.1.1)–(2.1.2), aug-

mented by the conditions at the corneal surface (2.1.4)–(2.1.5) and at the free surface

(2.1.8)–(2.1.13) cannot be solved in their current form: in order to make progress

with determining their solution, a thin-film lubrication approximation must now be

made. In addition to a lubrication approximation being commonplace in tear-film

modelling, it is further justified by being known to be able to accurately capture the

evolution of the thinnest regions of the film: the black-line regions (recall §1.2.1).

Zubkov et al. (2013) computes tear-film flow using both 2D Navier-Stokes equa-

tions and lubrication equations. They find good agreement between the two models

regarding black-line evolution, and comment that lubrication theory is not only “ap-

propriate” but also “highly preferable” to the full Navier-Stokes simulation due to

its simplicity (Zubkov et al., 2013, p. 1540).

As outlined in §1.2, the central tear-film thickness is roughly 5µm = 5 · 10−6 m.

In contrast, the region that the tear film covers is relatively very large; the distance

between the upper and lower eyelids, known as the palpebral fissure, is 1 cm = 10−2

m. Thus, consideration of the ratio of the thickness of the tear film to the length-

scale of the tear-film coverage yields a naturally-occurring small parameter ε, using

which a lubrication approximation can be made. For such an approximation, the

dimensional parameters and variables are made non-dimensional under the following

scalings, which were first used in Braun & Fitt (2003):

x′ = `x, y′ = dy, h′ = dh, u′ = U0u, v′ = εU0v,

t′ =
`

U0

t, p′ =
µU0

`ε2
p, ε =

d

`
.

(2.1.15)

Although these scalings will be adopted for the purpose of comparison of new results

against those in the literature, they are invariably presented as a fait accompli based

on physical arguments that transpire to be circular. Thus, in §2.3 non-dimensional
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2. OPHTHALMIC MODELLING

scalings are introduced via a more formal approach in which appropriate scalings

are derived based on only mathematical arguments. The dimensional parameters

introduced in (2.1.15) vary in value in the ophthalmic literature. Consequently,

a discussion and justification of the values used herein is immediately undertaken

before they are substituted into the equations of motion given above.

The long lengthscale, `, is typically chosen as one of two measurements. Earlier

ophthalmic studies choose the meniscus length, as ` = 3.6 · 10−4 m (Braun & Fitt,

2003; Jones et al., 2005, 2006; Winter et al., 2010), whereas, typically, the more

recent literature takes a value of ` = 5 · 10−3 m as the half-length of the palpebral

fissure (Braun & King-Smith, 2007; Heryudono et al., 2007; Li & Braun, 2012). The

latter choice of lengthscale results in the (non-dimensional) x in (2.1.15) being de-

fined on the canonical interval x ∈ [−1, 1], on which spectral numerical methods are

directly applicable (q.v. §3.1.1). Thus, ` = 5 · 10−3 m is the chosen long lengthscale

necessitated by the numerical methods introduced in §3.

The short lengthscale, d, is taken as the central tear-film thickness. As mentioned

in §1.2, measurements of this value in vivo have commonly found values ranging from

2µm to 10µm (see King-Smith et al. (2004, Table 1)). Values of d are typically either

10µm (Aydemir et al., 2011; Braun & Fitt, 2003; Winter et al., 2010) or 5µm (Braun

& King-Smith, 2007; Braun et al., 2012; Heryudono et al., 2007; Li & Braun, 2012).

As the more recent in vivo measurements of central tear-film thickness are towards

the lower end of the aforementioned range, a value of d = 5µm is chosen herein.

The velocity scale U0 varies depending on the modelling undertaken. For models

that include blink cycles, U0 is chosen according to blink speeds. Such models

take U0 = 1 · 10−2 m s−1 (Heryudono et al., 2007), U0 = 3.8 · 10−2 m s−1 (Jones

et al., 2006) and U0 = 4.4 · 10−2 m s−1 (Aydemir et al., 2011). Braun & King-

Smith (2007, p. 469) comment that they would vary from U0 = 1 · 10−1 m s−1

to 3 · 10−1 m s−1, but that they “will not be able to achieve this parameter range

with our current numerical method”; instead they leave their value of U0 unspecified

and vary the non-dimensional quantity ε3σ/(µU0) (q.v. S in §2.1.4) that features

in their governing equation. Retrospective decomposition of this term reveals that

they use U0 = 5 · 10−3 m s−1 in most of their numerical calculations. This is not the

only occurrence of such an ‘a posteriori ’ quasi-determination of the velocity scaling:

Jones et al. (2005) choose U0 such that gravity remains at order unity. For models
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2.1 Thin-Film Equations

that do not include a blink, a velocity U0 is attributed to the drainage rate of the

tear film. By assuming that the film drains 1cm in 10s, Braun & Fitt (2003) predict

a drainage rate of 10−3 m s−1 from which they thereafter specify1 U0 = 7.5 · 10−4 m

s−1; this value of U0 has subsequently been used by Winter et al. (2010). Modelling

on a curved substrate, Braun et al. (2012) let U0 = σε3/η0 = 1.3 · 10−4 m s−1,

wherein η0 is the zero-shear rate of the tear fluid. As the modelling herein is for an

open-eye phase of a blink cycle, the velocity U0 is presently specified as the drainage

rate of the tear film; that is, U0 = 10−3 m s−1 is used.

As the aqueous layer comprises approximately 98% water (Braun, 2012), the

density ρ = 103 kg m−3 and dynamic viscosity µ = 10−3 kg m−1 s−1 are taken to

match those of water (Maki et al., 2008). The surface tension is taken as σ = 0.045 N

m−1 (Pandit et al., 1999). The evaporative mass flux J ′ in the kinematic boundary

condition (2.1.14) is taken as the value attributed to healthy eyes, namely J ′ =

1.5 · 10−5 kg m−2 s−1 Mathers (1993). The value for healthy eyes is chosen since the

rate associated with dry-eye syndrome may be due to lipid-layer deficiencies (as in

evaporative dry-eye discussed in §1.2.1), and consequently modelling the evaporation

of a dry eye would be better suited to models wherein the lipid layer is explicitly

included. The slip-coefficient function k′(h′) [m] in (2.1.4) is non-dimensionalised

using λ = 5.5 · 10−8 m, which is obtained mathematically using Braun & Fitt (2003,

equation (59)) with a film thickness of 5µm (cf. value of d) and a mucus-layer

thickness of 0.5µm (q.v. §1.2). The nature of this approximation is not a concern;

the resulting non-dimensional slip parameter is to be varied in subsequent sections in

a novel assessment of whether the inclusion of a Navier-slip condition (2.1.4) affects

tear-film breakup.

A summary of all dimensional scaling and parameter values used in this thesis

is presented in Table 2.1.

2.1.3 Non-Dimensional Equations

The scalings (2.1.15) are now substituted into the components of the Navier-Stokes

equations (2.1.3) and the boundary conditions at the free and corneal surfaces.

1More clearly, Braun & Fitt (2003) predict a velocity U0, from which they evaluate an order
O(1) Stokes number (to be defined in (2.1.18)). Thereafter, defining the Stokes number to equal 1,
they re-arrange the Stokes number to compute a different velocity scaling U0. This is an example
of what is herein termed as a “circular” scaling argument.
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Symbol Value Comments
d 5 · 10−6 [m] Central-film thickness (§1.2)
` 5 · 10−3 [m] Half palpebral fissure length (Braun, 2012)
ε 10−3 ε = d/` (2.1.15)
U0 10−3 [m s−1] Tear drainage rate (Braun & Fitt, 2003)
ρ 103 [kg m−3] Density of water (Maki et al., 2008)
µ 10−3 [kg m−1 s−1] Dynamic viscosity of water (Maki et al., 2008)
g 9.81 [m s−2] Gravitational Acceleration
σ 0.045 [N m−1] Tear-film surface tension (Pandit et al., 1999)
J ′ 1.5 · 10−5 [kg m−2 s−1] Evaporative mass flux (Mathers, 1993)
λ 5.5 · 10−8 [m] Slip-length scaling Braun & Fitt (2003)

Table 2.1: Dimensional parameter values used herein in the modelling of the human
tear film.

The Navier-Stokes equations (2.1.3) become

ρ
(U2

0

`
ut +

U2
0

`
uux + ε

U2
0

d
vuy

)
=
U0µ

`
uxx +

U0µ

d2
uyy −

U0µ

`2ε2
px + ρg cosφ

=⇒ ε2Re(ut + uux + vuy) = ε2uxx + uyy − px +G cosφ, (2.1.16)

and

ρ
(
ε
U2

0

`
vt + ε

U2
0

`
uvx + ε

U2
0

`
vvy

)
=
εU0µ

`2
vxx +

U0µ

ε`2
vyy −

U0µ

ε3`2
py − ρg sinφ

=⇒ ε4Re(vt + uvx + vvy) = ε4vxx + ε2vyy − py − εG sinφ, (2.1.17)

wherein

Re ≡ ρU0

`µ
and G ≡ d2ρg

U0µ
(2.1.18)

are respectively the non-dimensional Reynolds number and non-dimensional Stokes

number, which measures the importance of gravitational effects. The continuity

equation (2.1.2) becomes

U0

`
ux + ε

U0

d
vy = 0 =⇒ ux + vy = 0. (2.1.19)

At the corneal surface, the slip-coefficient function (k′(h′) in (2.1.4)) is non-

dimensionalised by λ. The form of k(h) is taken to be k(h) = h−n, n ≥ 0 (Buck-

ingham et al., 2003) in order to capture the dynamics arrived at by Braun & Fitt
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(2003). Thus, the Navier-slip condition (2.1.4) is non-dimensionalised as

U0u =
λ

hn
U0

d
uy =⇒ u =

β

hn
uy on y = 0, (2.1.20)

where the non-dimensional slip parameter is β ≡ λ/d. The impermeability of the

corneal surface (2.1.5) trivially yields

v = 0 on y = 0. (2.1.21)

At the free surface, the kinematic boundary condition (2.1.14) becomes

ρ
(
εU0v −

d

`
U0ht −

d

`
U0hx

)
= J ′(1 + ε2h2

x)
1/2

=⇒ v − ht − uhx = E(1 + ε2h2
x)

1/2 on y = h(x, t), (2.1.22)

wherein

E ≡ J ′

(ερU0)
(2.1.23)

quantifies the effect of evaporation. Tangential immobility becomes

u+ ε2vhx = 0 on y = h(x, t). (2.1.24)

The normal-stress balance becomes

−µU0

`ε2
p+

2µ

1 + ε2h2
x

(U0ε
2

`
uxh

2
x −

U0

`
hxuy −

ε2U0

`
vxhx +

U0

`
vy

)
=

εσhxx
`(1 + ε2h2

x)
3/2

=⇒ −p+
2ε2

1 + ε2h2
x

(
vy − uyhx + ε2(uxh

2
x − vxhx)

)
=

ε3

Ca

hxx
(1 + ε2h2

x)
3/2

on y = h(x, t), (2.1.25)

wherein

Ca ≡ U0µ

σ
. (2.1.26)

Two non-dimensional quantities are introduced at the free surface: E (2.1.23) and

the capillary number Ca (2.1.26), the latter of which quantifies the ratio of viscous

forces to surface tension.
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2.1.4 Scaling of Non-Dimensional Terms

Upon substitution of the scalings (2.1.15) into the equations of motion, multiple non-

dimensional terms arise: the components of the Navier-Stokes equations (2.1.16)–

(2.1.17) feature gravity via the Stokes numberG and inertia via the Reynolds number

Re; the Navier-slip condition (2.1.20) features the slip coefficient β; the normal-stress

balance (2.1.25) includes surface-tension effects via the capillary number Ca; and,

the kinematic boundary condition (2.1.22) contains an evaporation parameter E.

The size of these terms and the importance of their corresponding physical effects

are now considered. The values of these five constants are evaluated using the di-

mensional parameters presented in Table 2.1, and these evaluations are additionally

represented as corresponding powers of the small parameter ε (2.1.15) in Table 2.2.

Term Value Value as a power of ε
ε 10−3 —

Re 5 ≈ ε−0.233

G 0.245 ≈ ε0.203

E 0.015 ≈ ε0.608

β 0.011 ≈ ε0.653

Ca 2.22 · 10−5 ≈ ε1.551

Table 2.2: Non-dimensional parameter values, arising in the modelling of a tear film,
as computed using the dimensional parameters of Table 2.1.

Based upon the information in Table 2.2, the following scalings are taken. Both

Re and G (2.1.18) in the Navier-Stokes equations (2.1.16)–(2.1.17) are revealed to be

order O(1) terms1. Evaporative effects multiplied by E in the kinematic boundary

condition (2.1.22) are order O(ε). This is consistent with what is known about the

rate of evaporation, in that it would take around 10 minutes to eliminate the tear

film due to evaporation alone (Holly & Lemp, 1977), thus its role in an inter-blink

period of 5–8 seconds is expected to be small. In addition, tear-film modelling

wherein evaporative effects are retained reveals evaporation to have a small effect in

an interblink period (Braun & Fitt, 2003; Hurst, 2014; Maki et al., 2008).

The slip parameter β is also of order O(ε) for the specific value of β = 0.011.

1Note that Re is multiplied by positive powers of ε in the Navier-Stokes equations (2.1.16) and
(2.1.17) such that inertial terms can still be omitted. Despite gravity being computed as an order
O(1) effect, gravitational effects are excluded in the related studies of Braun & King-Smith (2007);
Braun et al. (2012); Heryudono et al. (2007); Please et al. (2011); Zhang et al. (2003); Zubkov
et al. (2012, 2013).
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However, as the value of β is merely an approximation, its value is to be varied herein

in order to quantify the effect of corneal slip on the evolution of tear-film thickness.

Thus, β will be varied to as large as β = 0.05 (as justified by the discussion of

Braun & King-Smith (2007, p. 470)), for which value β ≈ ε0.434 becomes an order

O(1) effect. In addition, the inclusion of a factor h−n in the Navier-slip condition

(2.1.20) would increase the importance of slip as the film thins, i.e. as h→ 0+. For

example, when modelled with β = 0.01 and n = 1, if the central tear-film thins to a

tenth of its original thickness (i.e. such that h = 0.1), the influence of slip is given

by βh−1 = 0.1 ≈ ε0.333, which is evidently of order O(1).

Upon consideration of the capillary number, the normal-stress balance (2.1.25)

reveals that the capillary number must be of order O(ε3) in order to specify a pressure

driven by curvature, whilst the scalings in Table 2.2 suggest the capillary number

is only of order O(ε2). In order to seemingly navigate this inconsistency, different

scalings have been used in prior ophthalmic literature. The choice of long lengthscale

` was herein taken as ` = 5 · 10−3 m, corresponding to half the distance between the

eyelids. As mentioned in §2.1.2, ` has alternatively been selected as the meniscus

length1 ˆ̀ = 3.6 · 10−4 m. Using this value of ˆ̀, the corresponding small parameter

and capillary number are obtained as ε̂ = 1/72 and Ca = 2.22 · 10−5 ≈ ε̂2.505 =

O(ε̂3). Whilst it is not explicitly stated, it is inferred that the authors who use the

lengthscale ˆ̀ do so purely in order to retain the curvature term in the normal-stress

balance (2.1.25). For the remainder of the literature, the ratio

S ≡ ε3σ

U0µ
=

ε3

Ca
(2.1.27)

is introduced (e.g. Aydemir et al. (2011); Braun (2012); Braun & King-Smith (2007);

Heryudono et al. (2007); Li & Braun (2012); Li et al. (2014); Maki et al. (2008,

2010a,b); Zubkov et al. (2012)) and the right-hand side of the normal-stress balance

(2.1.25) is simply retained upon multiplication by S, in which guise it has the ap-

pearance of a parameter independent of ε. However, this becomes a fundamental

issue when subsequent series expansions in powers of ε are taken in (2.1.29).

The value of S differs with choice of scalings, though its value is smallest in

Zubkov et al. (2013) (who instead define S in (2.1.27) as C) where S = 1.86 · 10−8.

Very little is mentioned of the introduction of S. Of the cited literature, Aydemir

1Braun & Fitt (2003); Jones et al. (2005, 2006); Winter et al. (2010); Zhang et al. (2003) all
use this scaling.

31



2. OPHTHALMIC MODELLING

et al. (2011, p. 1182) states that retention of S and the term that it multiplies term

may appear “dubious” but that due to “large changes in curvature ... we expect

this term to have significant influence on the film’s evolution”. Similarly Maki et al.

(2008, p. 193) states that S is retained to “approximate the meniscus region of the

film” and concede that “we are not aware of how to achieve this level of modelling for

this problem without retaining this surface tension term.” The central issue, that of

determining a uniformly valid scaling a priori, is subsequently addressed, apparently

for the first time in the ophthalmic literature, in §2.3. Such an approach not only

determines ab initio the scalings appropriate to a fluid with pre-ordained properties,

but also precludes the need to invoke a posteriori parameter re-scalings that are, by

their very proponents, accepted as being “dubious”.

Whilst there is little comment on this subject made elsewhere in the ophthalmic

literature, a comparison can be made. In studying the role of the lipid layer on

evaporation, Peng et al. (2014) considered a flat tear film with no menisci. Notably,

as their initial profiles were rectilinear, meniscus-induced thinning was not present;

that is to say, the regions where the tear film is observed to rupture in vivo do not

significantly thin in their model1. Thus, it may be argued that to observe regions

of thinning that agree with in vivo observation, the meniscus regions — and their

associated curvatures — must be included. This appears to justify the claims of

Maki et al. (2008) and Aydemir et al. (2011): the retention of the meniscus curvature

terms are required to observe the same qualitative thinning that is observed in vivo.

Consequently, it is concluded that the curvature of the meniscus must be retained

in order to accurately model tear-film thinning. That is, presently and in the cited

literature, the capillary number, in reality of order O(ε2), is considered in practice

to be of order O(ε3) for the purposes of retaining the curvature in the normal-stress

balance (2.1.25).

Based on these discussions, the following re-scalings of non-dimensional param-

eters are introduced. The order O(1) terms Re, G and β remain unchanged. The

order O(ε) evaporation E and order O(ε3) capillary number are redefined as, respec-

tively,

E = εE0, Ca = ε3S−1, (2.1.28)

wherein E0 = O(1) and S = 4.5 · 10−5 mean that the latter of these is of order O(ε)

by definition in keeping with the literature. This illustrates an explicit example of

1Such regions are the so-called “black-line” regions introduced in §1.2.1.
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re-scaling parameters subsequent to their original definition: in §2.3 a novel set of

consistent scalings constructed on only formal arguments is derived.

It is noted that the lengthscale used herein could have been taken to be the

meniscus length ˆ̀. However, in doing so, the resulting non-dimensionalised governing

equations would not be on the canonical interval x ∈ [−1, 1] and so the spectral

numerical methods introduced in §3 would not be immediately applicable. Thus,

the resulting governing equations would require further scaling. For example, in the

tear-film evolution equation of Winter et al. (2010, equation (14)), the lengthscale ˆ̀

results in a spatial interval of x ∈ [−14, 14]. Thus, to scale their governing equation

onto the canonical interval [−1, 1], a factor of 14−4 ≈ 2.6 · 10−5 would multiply

the highest-order derivative hxxxx in their evolution equation; such a factor would

implicitly be the value of S defined in (2.1.27).

2.1.5 Leading–Order Equations

Velocities u and v, in addition to the pressure p, are now expanded in terms of

the small parameter ε in order to obtain leading-order solutions of the governing

equations (2.1.16)–(2.1.19) subject to boundary conditions (2.1.20)–(2.1.25). Power-

series expansions of the form

u(x, y, t) = u0(x, y, t) + εu1(x, y, t) + O(ε2)

v(x, y, t) = v0(x, y, t) + εv1(x, y, t) + O(ε2) (2.1.29)

p(x, y, t) = p0(x, y, t) + εp1(x, y, t) + O(ε2)

are now introduced in which, by construction, all integer-subscripted variables are

of order O(1). Upon substitution of series (2.1.29), the Navier-Stokes equations

(2.1.16)–(2.1.17) and continuity equation (2.1.19) respectively become

ε2Re(u0,t + u0u0,x + v0u0,y) = ε2u0,xx + u0,yy + εu1,yy − p0,x − εp1,x +G cosφ+ O(ε2),

(2.1.30)

ε4Re(v0,t+u0v0,x+v0v0,y) = ε4v0,xx+ ε2v0,yy−p0,y− εp1,y− εG sinφ+O(ε2) (2.1.31)

and

u0,x + εu1,x + v0,y + εv1,y + O(ε2) = 0. (2.1.32)
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Note that (2.1.30) and (2.1.31) are written in preference to the asymptotically equiv-

alent

u0,yy +G cosφ− p0,x + ε(u1,yy − p1,x) = O(ε2, ε2Re),

p0,y + ε(p1,y +G sinφ) = O(ε2, ε4Re)

in order to demonstrate the full structure of all terms yet to be omitted: the resulting

leading-order components of all equations governing the bulk fluid motion will later

be stated explicitly.

At the corneal surface, the Navier-slip (2.1.20) and impermeability (2.1.5) con-

ditions become

u0 + εu1 =
β

hn
(u0,y + εu1,y) + O(ε2) on y = 0, (2.1.33)

and

v0 + εv1 + O(ε2) = 0 on y = 0. (2.1.34)

At the free surface, the kinematic (2.1.22), tangential-immobility (2.1.24) and normal-

stress (2.1.25) conditions respectively become

v0 + εv1 − ht − (u0 + εu1)hx = εE0(1 + ε2h2
x)

1/2 + O(ε2) on y = h(x, t), (2.1.35)

u0 + εu1 + ε2v0 + O(ε2) = 0 on y = h(x, t) (2.1.36)

and

−p0 − εp1 +
2ε2

1 + ε2h2
x

(
v0,y − u0,yhx + ε2(u0,xh

2
x − v0,xhx)

)
=

Shxx
(1 + ε2h2

x)
3/2

+ O(ε2) on y = h(x, t), (2.1.37)

wherein the non-dimensional scalings S and E0 in (2.1.28) have been substituted.

The leading-order O(1) components of (2.1.30)–(2.1.37) are now sought before the

spatio-temporal equation governing the thickness h(x, t) of the tear film is obtained.

The leading-order components of the Navier-Stokes equations and continuity equa-

tions (2.1.30)–(2.1.32) are

u0,yy − p0,x +G cosφ = 0, (2.1.38)
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p0,y = 0 (2.1.39)

and

u0,x + v0,y = 0. (2.1.40)

At the corneal surface the Navier-slip (2.1.33) and impermeability (2.1.34) con-

ditions are at leading-order respectively

u0 =
β

hn
u0,y on y = 0 (2.1.41)

and

v0 = 0 on y = 0. (2.1.42)

At the free surface, the leading-order components of the kinematic (2.1.35),

tangential-immobility (2.1.36) and normal-stress balance (2.1.37) conditions are re-

spectively

v0 − h0,t − u0hx = 0 on y = h(x, t), (2.1.43)

u0 = 0 on y = h(x, t) (2.1.44)

and

− p0 = S
hxx

(1 + ε2h2
x)

3/2
on y = h(x, t). (2.1.45)

The full curvature is retained in (2.1.45) in order to capture, by a single equation,

behaviour in both the flatter central region and the steeper menisci regions: this

is sometimes referred to as a composite approach (Chang et al., 1999; Ratulowski

& Chang, 1989). Despite the full curvature being retained in other thin-film-flow

settings (e.g. in coating flow (Wilson, 1982) or the passage of a bubble in a tube

(Chang et al., 1999; Jalaal & Balmforth, 2016)), in related ophthalmic literature the

full form of (2.1.45) is present in only Miller et al. (2002); elsewhere the denomina-

tor is simplified to unity and no analysis of this simplification is performed. In even

these cited examples of retention of full curvature, a(n ongoing) deeper consideration

of the asymptotics involved (Hall & Kelmanson, 2020a) reveals that perturbations

of equivalent order are neglected elsewhere in the boundary conditions. In particu-

lar, it is considered that, in order to model physically realistic tear-film properties,

retention of the full curvature in (2.1.45) is required since this will affect the evolu-

tion of the tear-film thickness due to the increased gradients in the proximity of the

thinnest regions of the film. This is considered and analysed in detail in §5.4.1.

35



2. OPHTHALMIC MODELLING

2.1.6 Solution of the Leading–Order Equations

The leading-order equations (2.1.38)–(2.1.45) can now be solved systematically in

order to obtain a spatio-temporal equation governing the evolution of the tear-

film thickness h(x, t). As all components of velocities u and v and pressure p are

those with subscripts 0, i.e. the leading-order terms in the expansions (2.1.29), the

subscripts are henceforth dropped.

With py = 0 (2.1.39), integration of (2.1.38) twice with respect to y yields the

leading-order velocity u as

u =
y2

2
(px −G cosφ) + A0y + A1, (2.1.46)

wherein A0 and A1 are functions of x determined using the Navier-slip (2.1.41) and

tangential immobility (2.1.24) conditions. Substitution of u (2.1.46) in the Navier-

slip condition (2.1.41) yields

y2

2
(px −G cosφ) + A0y + A1 =

β

hn
(y(px −G cosφ) + A0) (2.1.47)

which, upon evaluation on the corneal surface at y = 0 gives A1 = βh−nA0. Specifi-

cation of free-surface tangential immobility (2.1.44), i.e. u = 0 at y = h yields

u|y=h =
h2

2
(px −G cosφ) + A0h+

β

hn
A0 = 0, (2.1.48)

from which A0 can be found. This fully determines the leading-order velocity as

u =
px −G cosφ

2

[
y2 − h2 (yhn + β)

(hn+1 + β)

]
, (2.1.49)

from which it follows that

ux =
pxx
2

[
y2 − h2 (yhn + β)

(hn+1 + β)

]
+
px −G cosφ

2

[
− nyhn+1hx
hn+1 + β

+
(1 + n)hn+2hx(yh

n + β)

(hn+1 + β)2
− 2hhx(yh

n + β)

hn+1 + β

]
. (2.1.50)

Using the continuity equation (2.1.40) together with ux (2.1.50), integrating vy with
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respect to y now yields

v = −
∫
pxx
2

[
y2 − h2 (yhn + β)

(hn+1 + β)

]
+
px −G cosφ

2

[
− nyhn+1hx
hn+1 + β

+
(1 + n)hn+2hx(yh

n + β)

(hn+1 + β)2
− 2hhx(yh

n + β)

hn+1 + β)

]
dy

= −pxx
2

[
y3/3− h2 (y2hn/2 + βy)

(hn+1 + β)

]
− px −G cosφ

2

[
−−ny

2hn+1hx/2

hn+1 + β

+
(1 + n)hn+2hx(y

2hn/2 + βy)

(hn+1 + β)2
− 2hhx(y

2hn/2 + βy)

hn+1 + β

]
+ A2 (2.1.51)

wherein the constant of integration is A2 = 0 via the corneal-impermeability con-

dition (2.1.42). At the free surface y = h(x, t), v (2.1.51) can now be found: after

some simplification, there results

v|y=h = −pxx
2

[
h3/3− h2 (hn+2/2 + β)

(hn+1 + β)

]
− px −G cosφ

2

[
(1 + n)hn+2hx(h

n+2/2 + β)

(hn+1 + β)2

− nhn+3hx/2

hn+1 + β
− 2hhx(h

n+2/2 + βh)

hn+1 + β

]

= −pxx
2

[
− h2(hn+2 + 4βh)

6(hn+1 + β)

]

− px −G cosφ

2

[
− hx(4h

n+3β + 4h2β2 − nβhn+3 + h2n+4)

2(hn+1 + β)2

]
, (2.1.52)

in which the right-hand side is, by direct calculation, an exact derivative: specifically,

v|y=h can be simplified as

v|y=h =
∂

∂x

[(
− px −G cosφ

2

)(
− h2(hn+2 + 4βh)

6(hn+1 + β)

)]

=
∂

∂x

[
h3

12

(hn+1 + 4β)

(hn+1 + β)
(px −G cosφ)

]
. (2.1.53)

Substitution of v|y=h (2.1.53) and the tangential-immobility condition (2.1.44) into
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the kinematic boundary condition (2.1.43) then yields

ht +
∂

∂x

[
h3

12

(hn+1 + 4β)

(hn+1 + β)
(G cosφ− px)

]
= 0. (2.1.54)

Finally, the normal-stress condition (2.1.45) is used to eliminate px in (2.1.54) to

yield a novel governing evolution equation for the tear-film thickness h(x, t) as

ht +
∂

∂x

[
h3

12

(hn+1 + 4β)

(hn+1 + β)

(
G cosφ+ S

∂

∂x

(
hxx

(1 + ε2h2
x)

3/2

))]
= 0, (2.1.55)

in which it is noted that the non-standard inclusion of the parameter ε in (2.1.55)

is to safeguard against omission of the potentially-order-O(1) term εhx in the antic-

ipation of steep gradients arising near to the boundary. Note that equation (2.1.55)

accommodates the fact that, as the film thins (h→ 0+), the gravitational and cap-

illary influence increases fourfold through the newly included ‘slippage’ factor; this

aligns with physical intuition.

The spatio-temporal evolution equation (2.1.55) describes the evolving thickness

h(x, t) of a tear film, subject to slip on the corneal surface and gravitational effects

relative to the orientation of the tear film. As the evolution equation is fourth-order

in space, four boundary conditions are required to augment it. As it constitutes such

a critical component of tear-film flow1, an independent and self-contained study of

boundary conditions is now presented, in which many novel components of this work

appear.

2.2 Boundary Conditions

Boundary conditions employed in the ophthalmic literature are now discussed, with

particular emphasis on their physical meaning and validity. It is noted that con-

ditions cited hereafter are present in 2D, 3D, open-eye and full-blink cycle models,

and a distinction will be made between such models where necessary.

Let h(x, t) denote the tear-film thickness at time t on the canonical interval

x ∈ [−1, 1]. The film height satisfies a spatio-temporal evolution equation of the

1And, indeed, any non-periodic spatio-temporal BVP on a finite spatial domain.
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form

ht + [Q(h)]x = E, (2.2.1)

e.g. (2.1.55), for a given flux Q(h) and evaporative effects E = E(h). Despite

evaporative effects not featuring at leading-order in the derivation of (2.1.55), they

are retained symbolically in (2.2.1) for the benefit of the ensuing discussion. In

addition to satisfying (2.2.1), h(x, t) is subject to a pair of conditions at each of

x = ±1. The boundary conditions implemented in the ophthalmic literature are

now discussed.

2.2.1 Dirichlet Conditions

Effectively ubiquitous in ophthalmic literature is the fixing of the thickness of the

tear film on the boundary1. Tantamount to pinning the tear film at a fixed location

along the eyelid, this results in a Dirichlet condition of the form

h(±1, t) = H (2.2.2)

for an a priori prescribed contact height H = h(±1, 0). Boundary condition (2.2.2)

initially appears in Wong et al. (1996), the first formal mathematical analysis of the

tear film, and in which, as a pioneering paper, simplifications and assumptions are

of course made. However, (2.2.2) appears repeatedly in related literature thereafter

(for example, Miller et al. (2002); Braun & Fitt (2003); Heryudono et al. (2007);

Winter et al. (2010); Maki et al. (2010a); Maki et al. (2010b); and Aydemir et al.

(2011)). The majority of the cited literature presumably2 follow without question,

as little-to-nothing is added in the form of justification; never is the physical validity

of (2.2.2) fully or partially questioned. Both Braun & Fitt (2003) and Maki et al.

(2010a) offer that, along the eyelid, there is a transition between wettable tissue and

unwettable tissue, known as the “grey line” (Fatt & Weissman, 1992), and that the

tear film cannot advance along the less-wettable tissue. However, whilst this might

restrict the tear film from advancing far along the eyelid anterior, it does not mean

that a receding contact line cannot occur. In addition to this, present on the eyelid

is the meibomian gland, the secretions of which contribute to the superficial lipid

1To the author’s knowledge, the only exceptions to this are discussed in §2.2.2.
2Indeed, in the case of Heryudono et al. (2007) the boundary condition (2.2.2) is implemented

without motivation, justification or even reference.
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layer. This physical gland may also act as an ‘upper bound’ on how far along the

eyelid the tear film may advance, but it does not mean that the thickness cannot

decrease along the boundary. Indeed, physical influences such as gravitational and

evaporative effects may suggest a receding contact line. Viewed in the light of this

discussion, a more reasonable (though vague) replacement of (2.2.2) might be

h(±1, t) ≤ H. (2.2.3)

In Braun & Fitt (2003), the inclusion of gravitational effects causes fluid to

migrate slowly towards the lower lid, causing the film to thin at the upper lid and

to bulge at the lower lid (cf. Braun & Fitt (2003, Figures 7 and 9)). Despite fluid

travelling from the upper to lower lid, the film thickness at both eyelid boundaries is

maintained at a fixed (and equal) value. This is further brought into question when

evaporative effects are included; the film is demonstrated to thin at all points in the

interior of the domain, whereas the boundary is not similarly — indeed, consistently

— subject to the effects due to the pinned boundary conditions. These two effects

contradicting the notion of pinning are a recurring theme in subsequent related

literature. Whilst neither gravity (Holly, 1985) nor evaporation (Holly, 1973) are

expected to dominate the dynamics of the tear film, their effects on the film thickness

at the boundary should at least be questioned. Further, in the cases of modelling

full blink cycles, i.e. inclusion of both the blink and the open-eye phase thereafter,

pinned boundary conditions are still used. Despite both the physical geometry of

the eye and the location of the tear fluid thereon rapidly changing during a full

blink cycle, a pinned constant thickness at the boundary is still enforced (Braun &

King-Smith (2007, Fig. 4), Jones et al. (2005, Fig. 10)).

Whilst the locations of both the aforementioned ‘grey line’ and meibomian gland

are to date the only modelling justification for the pinning boundary condition, an

argument can actually be made that they do not enforce pinning at all. It is well

known that the tear film experiences diurnal changes (see, for example, du Toit et al.

(2003), who measure hourly changes in the central film over the cornea, or Shen et al.

(2008) who measure menisci variations; see also the references therein). Indeed, this

is heavily commented on amongst in vivo observations: Johnson & Murphy (2005,

p. 1036) explain that large variations in meniscus measurements are due to typical

day-to-day variations in the tear film, rather than measurement error, stating that

“it seems reasonable to surmise that low [method] repeatability primarily reflects a
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large day-to-day variability in TMH 1”; and Shen et al. (2008, p. 801) comment that

they find “Significant diurnal variations ... of all measured variables”. Additionally,

recent private correspondence of this specific aspect with a practising optometrist has

revealed that their personal clinical observations have similar temporal variations:

they further state that they “cannot imagine” a constant boundary thickness as it

would require a “perfect balance” at the eyelid2. Consequently, if measurements in

the tear film change diurnally, yet the tear film is apparently pinned to the grey-line

region, then one would (indeed, should) infer that the grey-line location should also

change. Further, the meibomian gland would concomitantly have to move. Thus, it

cannot be inferred that the tear film has a pinned thickness due to such phenomena

as the grey line or the location of the meibomian gland. Whilst it is accepted that

this novel argument does not imply that the tear film would change over a typical

single interblink period, it does imply that pinning as a boundary condition is based

on no physical grounds, and that its ubiquity is almost certainly based solely on its

ease of implementation as an explicit Dirichlet BC. As demonstrated in §2.2.6 and

§2.2.7, the present work obviates the need to adopt this oversimplified condition by

replacing it with a dynamic-contact-line condition that is herein calibrated using in

vivo data.

2.2.2 Neumann Conditions

Specification of the first-order derivative of h(x, t) on the boundary results in a

Neumann condition; specifically

|hx(±1, t)| = cot(θ±), (2.2.4)

where θ± are constant contact angles3. Thus (2.2.4) effectively models fixed con-

stant contact angles at both eyelids. Specification of the contact angle as constant

is commonplace in fluid dynamics (see Shikhmurzaev (2008, §3.4.1.2) and the ref-

erences therein). Such a condition is seen in Braun et al. (2012) and Hurst (2014),

where it replaces the pinning condition (2.2.2). Both studies set θ± to a (constant)

1The tear-meniscus height (TMH) is the length that the meniscus occupies from the eyelid
along the cornea, illustrated in Figure 1.2.

2G. King, April 2019, private communications.
3Note that θ± are not the actual physical contact angles at the eyelids, because of the scaling

of x′ onto x ∈ [−1, 1].
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value that effectively enforces 90o contact angles that are unrealistically large for

the tear film; realistic contact angle values based on the in vivo measurements of

Johnson & Murphy (2006) are approximately 60o (q.v. Figure 2.6). The enforce-

ment of (2.2.4) by Braun et al. (2012) is done not as an attempt to model novel

dynamics by introduction of a moving contact line, but rather, it is an implementa-

tional constraint on their method, which forces them to apply what is tantamount to

(physically unrealistic) spatially periodic BCs. Neither clarification nor discussion

of this departure from reality is made therein. Upon specification of (2.2.4) in Hurst

(2014), the menisci regions are effectively eliminated as they recede into the bulk of

the fluid, causing an increased film thickness wherein black lines do not form. Both

effects neither qualitatively nor quantitatively agree with in vivo observations. Note

that the implementation of (2.2.4) thus far in the ophthalmic literature involves

exclusively the specification of non-physical (i.e. too large) constant contact angles.

Additionally, the boundary condition (2.2.4) features in Peng et al. (2014),

wherein modelling of only the central region of the tear film is performed. To

achieve this, an initial condition of h(x, 0) = 1 is prescribed and the zero bound-

ary gradient featuring in h(x, 0) is maintained via (2.2.4); i.e. again a 90o contact

angle is enforced. However, as their modelling does not include the menisci (in con-

trast with the present work) as they are considering only the central region of the

tear film, such a boundary condition has some meaning in their context. It should

be noted, however, that the choice of a meniscus-free initial profile is arguably a

fundamental flaw in modelling tear-film breakup as the effect of meniscus-induced

thinning is not captured because there is not a mechanism to seed it. Despite this,

neither justification nor explanation is given as to why a flat initial profile is taken.

2.2.3 Pressure Boundary Conditions

Specification of the second-order derivative of h(x, t) yields a boundary condition of

the form

hxx(±1, t) = P±(t) (2.2.5)

for a priori defined functions P±(t). This is equivalent to specification of the curva-

ture, and hence, via the normal-stress condition (2.1.45), the pressure on the eyelid.

The aforementioned model of Braun & Fitt (2003) is extended by Winter et al.

(2010) who implement the same boundary and initial conditions as Braun & Fitt

(2003). In these two papers, P±(t) are constants given by P±(t) = hxx(1, 0), whence
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it follows that the pressure of the evolving film is specified entirely via the initial

profile, which is constructed purely geometrically in order to appear visually as a

tear film. That is to say, h(x, 0) is constructed without consideration of the pressure

field it thereafter induces.

Considering a 2D ocular domain, Maki et al. (2010a) implement their 2D anal-

ogy to (2.2.5), where the pressure on the boundary is proportional to the second-

derivative of the film thickness h on the boundary Ω, in the specific form

p|∂Ω = −S∇2h|∂Ω, (2.2.6)

in which the left hand side is again assumed to be fixed at the value dictated by the

initial profile.

The three aforementioned examples of second-order boundary conditions can

all be used to compute the enforced pressure on the boundary. Using both Table

1 and equation 12 from Braun & Fitt (2003), the pressure is revealed to range

from −6.9Pa to −55.2Pa, dependent on the initial profile used. Similar calculations

reveal that Maki et al. (2010a) specify a pressure of −12.8Pa on the eyelid. There

is no motivation, discussion or in vivo confirmation of these disparate values in the

literature. More importantly, there is neither a physical nor biological mechanism

in existence through which (2.2.5) and (2.2.6) can be implemented in practice, and

they too have been forced by the specific nature of the methodology that employs

them.

2.2.4 Flux Boundary Conditions

Third-order boundary conditions on h(x, t) vary according to the form of the flux

Q(h) in (2.2.1). No-flux conditions amount to specification of hxxx(±1, t) such that

Q(h) = 0 at x = ±1. For example, Braun & Fitt (2003, equations (42) and (49))

dictate that

hxxx(±1, t) = −G, because the flux is Q(h) =
h3

12
(hxxx +G), (2.2.7)

where the Stokes number G (2.1.18) parameterises gravity, whereas Li & Braun

(2012, equation (19)) specify a no-flux condition explicitly as Q(±1, t) = 0. In the

absence of evaporation, no-flux conditions (should) conserve the mass of the fluid,

whence it follows that mass conservation can in this case be used to calculate the
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accuracy of numerical-solution methods (q.v. §5.7). For the governing equation

(2.1.55) derived herein, specification of a no-flux condition Q(±1, t) = 0 is tanta-

mount to enforcing

G cosφ+ S
∂

∂x

(
hxx

(1 + ε2h2
x)

3/2

)
= 0. (2.2.8)

The flux boundary condition can additionally model lacrimal inflow or outflow,

the rate of which is necessarily quantified by experimental data. Both Jones et al.

(2005, equation (2.15)) and Heryudono et al. (2007, equation (2.14)) consider a net

flux proportional to the blink speed1. A consequence of this is that the lower eyelid,

which remains stationary during a blink, has no-flux conditions enforced for all t,

and, during the interblink period, no-flux conditions are also enforced on the upper

lid. This is considered to be a simplified model of the draining cycle proposed by

Doane (1981). Note that the no-flux condition is thus consistent for the open-eye

interblink model considered herein, in which eyelid motion is absent. Heryudono

et al. (2007) extend the boundary conditions of Jones et al. (2005) to more closely

match the model of Doane (1981) (cf. Figures 3 and Figures 4 of Heryudono et al.

(2007), noting the unfortunate label-colour switch). However, no-flux conditions are

still specified during the majority of the open-eye phase and, when a flux is specified,

it is relative to the volume of tear fluid. The idea of imposing no-flux conditions

on the lower lid with a flux proportional to eyelid velocity was again considered by

Aydemir et al. (2011).

It is noted that, physically, a flux at the eyelid occurs due to glands containing

additional tear volume. The locations of such glands do not, however, necessarily

correspond to the locations at which the flux conditions are enforced, i.e. where

the free-surface and eyelids meet. The modelling of flux conditions is thus generally

simplified and, whilst this point has been raised only once (Heryudono et al., 2007,

p. 353), no further discussion or consideration appears in subsequent literature

whenever a non-zero flux is specified.

1The ‘flux proportional to lid motion’ boundary condition is often abbreviated to FPLM in
such literature.
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2.2.5 Further Issues with Boundary and/or Initial Condi-

tions

A common occurrence in the ophthalmic literature is that the initial profile often

fails to satisfy the second- and third-order boundary conditions that are thereafter

applied to the temporally-integrated solutions of the spatio-temporal evolution equa-

tions. For example, the piecewise-quadratic initial profile of Braun & Fitt (2003,

equation (45)) yields a zero third-derivative at the boundary, whereas their no-flux

condition is explicitly given in (2.2.7) as hxxx(±1, t) = −G. As a consequence,

the initial profile satisfies the no-flux condition only when the effects of gravity are

excluded; i.e. when G = 0. Thus, when G 6= 0 and gravity is retained, there is

an initial numerical ‘jump’ in the third-derivative at the boundary which may seed

numerical instability1. Indeed, Heryudono et al. (2007, equation (2.24)) use a poly-

nomial initial profile of the form h(x, 0) = h0 + (H − h0)xm for a contact height

H at the boundary and thickness h0 over the cornea. The parameter m is varied

to dictate the volume of fluid in the film. They vary m between 2 and 16, though

typically take m = 4. By taking different values of m, the third-order derivatives are

thus altered and so too are the fluxes prescribed by the initial condition. However,

the fluxes enforced on the initial conditions are zero irrespective of m, and hence

there is a discrepancy between the flux that is initially present and the flux to be

immediately enforced at the first time step. It is then commented (Heryudono et al.,

2007, p. 357) that enforcement of the fluxes via manipulation of the film thickness

h(x, t) “leads to instability and unreasonably small time steps”. Whilst no further

information is given regarding this instability, the disagreement between the initial

flux of the system and the enforced flux is almost certainly a factor, and one that

has been overlooked by the authors of that and subsequent papers.

It is also considered here that instability may be due to the large number of

nodes (N = 380) used in the application of their Chebyshev spectral method, which

is not only by philosophy used primarily on the basis of obtaining high accuracy

for small values of N but also susceptible to significant rounding errors for large N .

The introduction, propagation and alleviation of such numerical rounding errors is

discussed and analysed in detail in both §3.2 and §4.1.

A final comment regarding the mathematical validity of the pinned Dirichlet con-

dition (2.2.2) follows from a consideration of the velocity profiles. Though velocity

1It does, as verified by personally conducted numerical experiments.
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profiles of Braun & Fitt (2003) are considered for simplicity, the following analysis

can be performed on the velocity profiles obtained herein (2.1.53) and this is further

commented upon at the end of this section.

At the junction between the free surface and the eyelid boundary the velocity

component v is given by Braun & Fitt (2003, equation (38)) as

v = −h
2

4
hxx(hxxx +G)− h3

12
hxxxx on x = ±1. (2.2.9)

When no-flux conditions are enforced, this amounts to requiring that hxxx +G = 0,

whence the velocity profile (2.2.9) along the eyelid becomes

v = −h
3

12
hxxxx on x = ±1. (2.2.10)

Pinning the film thickness at the boundary enforces v(±1, h, t) = 0. However, by

(2.2.10) this is true only when hxxxx = 0, which is the case at t = 0 due to the

quadratic initial profile specified therein, but it is not true for t > 0. Thus, the

inclusion of pinning is mathematically contradicted by the velocity profiles describing

the motion on the boundary for all times t > 0. Note that, for more general initial

profiles where hxxxx > 0, (2.2.10) yields v < 0, which suggests a receding contact

line (q.v. §2.2.7).

As mentioned above, this analysis can also be performed on the “new” velocity

profile v obtained herein. Under specification of a no-flux condition (2.2.8), at the

junction between the eyelid boundary and the free surface, v (2.1.51) reduces to

v(±1, h, t) =
pxx
2

[
h2(hn+2 + 4βh)

6(hn+1 + β)

]
. (2.2.11)

By noting that h > β > 0, the quantity in the square brackets is always positive,

say α; after substitution of the pressure (2.1.45), (2.2.11) can be simplified as

v(±1, h, t) = −αS
2

∂2

∂x2

[
hxx

(1 + ε2h2
x)

3/2

]
(2.2.12)

Due to the retention of the full curvature, this quantity is less straightforward to

evaluate; however, computation of the boundary velocity can be readily performed

in the computer-algebra package Maple. Even without its explicit computation,
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it is still manifestly clear that (2.2.12) is not expected to be 0. In particular, for

ε 6= 0, functions satisfying hxx = hxxxx = 0 yields v = 0 upon calculation of the

second-order derivative in (2.2.12). However, hxx = hxxxx = 0 is not expected to be

true for a realistic tear film. Note that, under the choice ε = 0, such that the full

curvature is not retained, the sign of v in (2.2.12) depends only on the sign of hxxxx

as in (2.2.10); whence again a receding contact line would be expected.

2.2.6 In Vivo Measurements

The summary in §2.2.1–§2.2.4 outlines the current approaches adopted in the en-

forcement of boundary conditions in the ophthalmic literature. With temporally

changing menisci parameters (Johnson & Murphy (2005); Shen et al. (2008)), the

case of pinning the thickness along the eyelid (2.2.2) is herein considered, apparently

for the first time, to be demonstrably non-physical. Specification of a second-order

derivative (2.2.5), equivalent to assigning the value of the pressure, implies speci-

fication of a quantity that cannot possibly be physically known a priori, and less

still enforced; it effectively amounts to an arbitrary convenient and explicit closure

of the methodology that uses it.

Using experimentally measured data, the justification of flux conditions (2.2.7)

based on drainage models of Doane (1981) suggests the application of a no-flux

condition to be representative of the physical dynamics present in the open-eye

phase of the blink cycle. It is clarified that models that enforce a non-zero flux at

the upper lid (e.g. Heryudono et al. (2007) and Jones et al. (2005)) do so during the

blinking phase, which is not a factor of the open-eye model considered here. Thus,

enforcement of the no-flux condition

Q(h(±1, t)) = 0 (2.2.13)

yields two boundary conditions consistent with in vivo observations.

The remaining two boundary conditions must therefore be either an adapted

Dirichlet (2.2.2) or Neumann (2.2.4) condition. As contact angles can be inferred

from measured data of the tear film (Johnson & Murphy, 2006), a deeper look

into Neumann conditions derived from in vivo contact-angle measurements is now

conducted.
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θ

TMH

TMW
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Figure 2.3: The relationship between tear-meniscus height (TMH), tear-meniscus
width (TMW) and tear-meniscus radius (TMR) under the assumption of a circular
meniscus (Johnson & Murphy, 2006; Mainstone et al., 1996). The angle θ appearing
in (2.2.14) is depicted. Dimensions not to scale.

Figure 2.3 demonstrates the relationship between tear-meniscus height (TMH),

tear-meniscus width (TMW) and tear-meniscus radius (TMR)1. The menisci are

considered to be initially circular arcs (Johnson & Murphy, 2006), and, following

the commonly employed assumption that they remain circular, measurements of

the ‘radius’ are taken (Golding et al., 1997; Mainstone et al., 1996; Yokoi et al.,

2004). Under this assumption of meniscus circularity, geometric arguments yield

the contact angle θ between the tear film and the eyelid. Denoting m′r(t
′) as the

dimensional meniscus radius [mm] and m′h(t
′) as the dimensional meniscus height

[mm], as functions of dimensional time t′ [s], geometrical arguments based on these

quantities yields

θ(t′) = cot−1
( m′h(t

′)√
m′r′2(t′)−m′2

h (t′)

)
= cos−1

(m′h(t′)
m′r(t

′)

)
(2.2.14)

1Occasionally the TMR is referred as tear-meniscus curvature in the ophthalmic literature.
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where t′ is explicitly included to highlight that parameters and measurements in

(2.2.14) are dynamic during an interblink phase. Thus, if in vivo data m′h(t
′) and

m′r(t
′) are known, the eyelid contact angle can be obtained, from which a bound-

ary condition can be constructed. The values of m′h(t
′) and m′r(t

′) are known only

at discrete time intervals; post-blink measurements at 1-second intervals are pub-

lished by Johnson & Murphy (2006), which, to the author’s knowledge, is the only

reportage of measurements of such post-blink data. Notably, and useful for the

present study, values for the meniscus height are given for both the inferior and

superior menisci. However, radii measurements are presented for only the inferior

meniscus. The measurements obtained by Johnson & Murphy (2006) are published

only graphically, rather than tabulated, and augmented by accompanying curves of

‘best fit’; it is noted that the methodology underlying the implied optimisation is

not presented. As explicit formulae for the curves of best fit are not presented by

Johnson & Murphy (2006), the discrete data has, for the purpose of the present

study, been computationally extracted from their graphics, by high-resolution pixel

counting and interpolation, whereafter curves of best fit have been evaluated in the

form

C1 +
C2

(t′ + 1)C3
, (2.2.15)

which admits construction of the continuous functions m′r(t
′) and m′h(t

′). A least-

squares algorithm programmed in the algebraic-manipulator Maple determines the

constants Cj, j = 1(1)3 in (2.2.15) based on the newly extracted discrete data. It is

noted that an exponential-decay profile of the form

C1 − C2 exp(−C3 t
′) (2.2.16)

was also considered, though it transpired that (2.2.15) is a better fit of the data

sets, in the sense that the least-square residuals were smaller for (2.2.15) than for

(2.2.16). Upon evaluation of Cj, j = 1(1)3 in (2.2.15) for the data presented by

Johnson & Murphy (2006), the best-fit curves are obtained as, to 4 decimal places:

m′r,+(t′) = 0.4991− 0.1662
(1+t′)1.2578

m′h,−(t′) = 0.2477− 0.0385
(1+t′)0.5333

m′h,+(t′) = 0.2872− 0.0363
(1+t′)0.8429

 (2.2.17)
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Further subscripts + and − respectively denote measurements made at the inferior

(x = 1) and superior (x = −1) eyelids. The best-fit curves (2.2.17) are compared in

Figures 2.4 and 2.5 with the original (post-processed) data.
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Figure 2.4: Circles denote measured data (Johnson & Murphy, 2006) for the inferior
meniscus radius [mm], post-blink, at 1-second intervals. The solid line denotes the
least-squares best-fit curve m′r,+(t′) in (2.2.17).

Figures 2.4 and 2.5 manifestly oppose the notion of pinning the thickness along

the eyelid; temporal variations in menisci parameters are clearly evident in these in

vivo measurements. Such variations thus change the contact angle θ(t′) in (2.2.14),

which can now be obtained at both discrete time intervals and as a continuous curve

using the novel calibration and optimisation. Whilst the radius m′r,+(t′) is known at

only the inferior lid, this value has been used to calculate both inferior and superior

contact angles, as both m′h,+(t′) and m′h,−(t′) are known, thus it is understood that

the superior contact angle constructed will contain a degree of error; however, it is

expected that the contact angle will still evolve in the same qualitative way.

Evident in Figure 2.6 is a dynamic contact angle, which opposes the notion

of fixed-contact-angle boundary conditions discussed in §2.2.2. Whilst θ(t′) does

plateau at both lids after ≈ 4 seconds, and thus an argument may be suggested

that the static contact angle is sufficient, the 4 seconds in which the contact angle

is dynamic would comprise over half of a typical 5–8 second interblink time. Thus,

for the majority of an interblink time, the contact angle is dynamic. The forms of

the best-fit curves for the contact angle are explicitly obtained upon substitution of
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Figure 2.5: Circles denote measured data (Johnson & Murphy, 2006) for both the
superior (top) and inferior (bottom) menisci heights [mm], post-blink, at 1-second
intervals. Solid lines denote the best-fit curves m′h,−(t′) and m′h,+(t′) in (2.2.17).

(2.2.17) into (2.2.14) as

θ−(t′) = cos−1

(
0.2477− 0.0385

(1+t′)0.5333

0.4991− 0.1662
(1+t′)1.2578

)
,

θ+(t′) = cos−1

(
0.2872− 0.0363

(1+t′)0.8429

0.4991− 0.1662
(1+t′)1.2578

)
.

(2.2.18)

It is noted that the functional forms (2.2.18) are presented for completeness so

that the data can be readily reproduced by the reader. The forms (2.2.18) are not

explicitly used herein; rather, the evolution of the contact angle of the simulated

tear film h(x, t) is calibrated and compared against the data presented in Figure 2.6.
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Figure 2.6: Temporal evolution of the contact angle θ(t′) (2.2.14) during the first 10
seconds after a blink using least-squares best-fit curves (2.2.15) at both the superior
lid (black) and inferior lid (red). Such curves are constructed from the discrete data
captured in vivo by Johnson & Murphy (2006) (circles, diamonds).

A discussion is warranted of the approach by which Johnson & Murphy (2006)

obtain their meniscus-radius measurements in order to justify the dynamic contact

angles (2.2.18) constructed therefrom. In particular, Johnson & Murphy (2006)

present 3 different approximations to the same meniscus measurement, thus the

most accurate approximation of these 3 values has to be found. Such a discussion

is facilitated by consideration of Figure 2.7.

Upon opening the eye, the meniscus height m′h(t
′) is measured, and the meniscus

is split into equally-spaced quadrants of width 0.25mh(t
′). Five equally-spaced

nodes zj, j = 0(1)4 are thus constructed as per Figure 2.7, such that the distance

|z0−z4| = m′h(t
′). The thickness of the tear film hj, j = 0(1)4 at these nodes is then

measured. Nodal data {zj, hj}, j = 0(1)4 are then known at five locations. From

this set of data, Johnson & Murphy (2006) construct three circles using different

data points:

• method (a): the first 3 points, {zj,mj}, j = 0(1)2;

• method (b): the last 3 points, {zj,mj}, j = 2(1)4;

• method (c): a least-squares construction using all 5 data points,

{zj,mj}, j = 0(1)4.
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Figure 2.7: Graphical representation of the nodal data measured by Johnson &
Murphy (2006) which thereafter are used to construct the meniscus radius. The
meniscus is defined on the region [z0, z4]

The radii of the three circles so constructed are found. The process is then repeated

for the next second-interval’s nodal data. The radii of these circles comprise the

results presented by Johnson & Murphy (2006); unfortunately, none of the origi-

nal nodal data yielding these radii are presented, hence the need for the presently

invoked laborious reconstruction.

The accurate construction of θ±(t′) (2.2.18) relies on the meniscus-radius mea-

surements of Johnson & Murphy (2006) being accurate. Thus, applying the above

three methods to meniscus-like functions reveals that only the results from the most

accurate method of (a)–(c) are used in the construction of θ± (2.2.18). To represent

a test meniscus for the purpose of illustrating the optimisation process, the function

f(x) = 0.03 + xm, x ∈ [0, 1], m ∈ {2, 4}. (2.2.19)

is introduced. Such a function models a meniscus that has equal width and height

(see §1.2 for in vivo measurements of such quantities), but with varying curvature
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parametrised by m. The least-squares solver LSSolve in Maple was used to com-

pute a circle optimally fitted to all 5 points.

Figure 2.8 reveals a hitherto unreported flaw in the methodology of Johnson &

Murphy (2006) in that the circles constructed by their approaches do not necessarily

accurately reconstruct the original menisci. Using only the first and last triplets (red

and blue, respectively) clearly yields circles that are unrepresentative of the original

surface. Evident by contrasting both values of m, the (green) circles produced via

the least-squares algorithm of method (c) yield the most accurate representation of

the original function, from which it is inferred this method represents the original

menisci more accurately. Consequently the values published by Johnson & Murphy

(2006) obtained using method (c) are considered to be the most reliable.

From the results summarised in Figure 2.8, the least-squares radii (referred to as

the ‘average’ radii by Johnson & Murphy (2006)) are inferred to give most accurate

values of the evolving meniscus radius. Hence these values were used to compute

m′r(t
′) in (2.2.17) and (2.2.18). However, it is noted and accepted that there is still

a degree of uncertainty in the data thus obtained. Had the original data points

{zj, hj} been tabulated explicitly, rather than just the post-processed data, differ-

ent boundary conditions could have been formulated from the data. For example,

if just the boundary thickness values (h4) were published, a time-dependent ver-

sion of Dirichlet condition (2.2.2) could have been implemented. Additionally, had

the complete set of data points been published, a more accurate prediction of the

contact-angle evolution could have been made. It is therefore unfortunate that only

the radii and menisci heights in Johnson & Murphy (2006) are given, as this reduces

the utility of the data because it cannot be ‘reformed’ into data that can be reused

for more detailed validation or calibration. Despite this, it can be used to study

temporal variations for contact-angle measurements in the tear film. Not only is this

a novel development in itself, but it additionally forms the basis of a novel method

for implementing a physically meaningful boundary condition in the modelling of

ophthalmic-flow problems. To this, attention now turns.

54



2.2 Boundary Conditions

Figure 2.8: Construction of the curvature of meniscus-like functions (2.2.19) as in
Johnson & Murphy (2006). Circles are constructed using (top row) the first 3 (red,
method (a)), (middle row) last 3 (blue, method (b)) and (bottom row) all 5 (green,
method (c)). Data points (black rings) are generated using (2.2.19) with m = 2
(left) and m = 4 (right).

55



2. OPHTHALMIC MODELLING

2.2.7 The Cox-Voinov Law

When a fluid is in contact with a solid surface, a contact angle forms. This is based

on the balance of surface-tension forces at the fluid-solid-gas triple point, and was

first formulated by Young (1805). Specifically, Young’s Law gives the contact angle

θ implicitly as

σ cos θ + σ1 − σ2 = 0, (2.2.20)

wherein σ1 is the surface tension between the eyelid surface and the fluid, σ2 is the

surface tension between the eyelid surface and the gas, and σ is the surface tension

of the gas-fluid interface (Shikhmurzaev, 2008). A graphical representation of the

triple points at both eyelids is given in Figure 2.9.
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Figure 2.9: Left: the triple point (circle) of the fluid-solid-gas interface at the supe-
rior eyelid. Right: the effect of an evolving (increasing) contact angle on the tear
film.

In the evolution phase of the tear film, the contact angle is dynamic; however,

it plateaus towards an equilibrium value (see Figure 2.6). With θ representing the

dynamic contact angle, Θ is introduced to denote the static contact angle to which
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θ plateaus1. Figure 2.6 can be used to infer the values Θ+ ≈ 55o and Θ− ≈ 61o; a

further discussion of these values is presented in §5.4.

The velocity v of the fluid along the solid surface is given by (Cox, 1986; Voinov,

1976)

v′ ∝ (θ3 −Θ3), (2.2.21)

where θ and Θ are as defined above. At the free surface y′ = h′(x′, t′), the velocity

v′ specifies the change in thickness of the free surface h′, such that the so-called

Cox-Voinov law (2.2.21) is
∂h′

∂t′
= K ′(θ3 −Θ3) (2.2.22)

where K ′ ≥ 0 [m s−1] is a ‘calibration constant’ that can be determined through

comparison of numerical simulations and experimental results. As (2.2.22) specifies

movement in the y′ direction, K ′ is non-dimensionalised by the same velocity scaling

as used for v′, i.e. K ′ = εU0K. Substitution of the remaining scalings (2.1.15) into

(2.2.22) yields

d
l
U0

∂h

∂t
= K

dU0

l
(θ3 −Θ3) =⇒ ∂h

∂t
= K(θ3 −Θ3). (2.2.23)

The dynamic contact angle θ can be evaluated from the derivative of the film thick-

ness (2.2.4), and transforms (2.2.23) to the computationally implementable bound-

ary conditions

∂h

∂t
(±1, t) = K±[θ±(t)3 −Θ3

±] = K±[cot−1(ε|hx(±1, t)|)3 −Θ3
±], (2.2.24)

wherein K± are constants that will subsequently be calibrated by comparing nu-

merical solutions of the evolution equation (2.1.55) against the aforementioned in

vivo data of Johnson & Murphy (2006). Specifically, K± are to be chosen such that

the numerical contact-angle evolution closely matches the dynamic contact angle in

Figure 2.6. It should be noted that Figure 2.6 reveals that, at both eyelids, the

initial contact angles θ±(0) are smaller than the static contact angles Θ±. Consider-

ation of this detail in (2.2.21) revealed that v is proportional to a negative quantity,

and (2.2.24) concomitantly yielded ht < 0. Thus, specification of the Cox-Voinov

1The more common notation of θd and θs to respectively denote dynamic and static contact
angles is not used herein due to the presence of additional subscripts + and − to denote inferior
and superior eyelid values.
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law (2.2.24) predicts a film thickness that recedes along the eyelids (see Figure 2.9).

Not only does this contradict the ubiquitous (and non-physical) pinning condition,

but also the negative boundary velocity is consistent with both the analysis of the

velocity v in §2.2.5 and the postulated boundary condition (2.2.3). That is to say,

the Cox-Voinov law enforces boundary evolution consistent with the velocity profiles

from which the temporal-evolution equation (2.1.55) is derived.

The value of the constant K in (2.2.23) merits some discussion with reference to

physical properties. The simplest form of Cox-Voinov relationship (2.2.22) between

the dynamic (θ) and static (Θ) contact angles and the dimensional contact-line

velocity U ′ is given by, e.g., Blake (2006, equation (2)) as

θ3 −Θ3 =
9µU ′

σ
L, (2.2.25)

in which L ≡ ln(LM/Lm) is a problem-dependent parameter computed from macro-

scopic and microscopic length scales LM and Lm respectively: for the present prob-

lem, taking d ≤ LM ≤ H i.e. 5 · 10−6m ≤ LM ≤ 2.5 · 10−4m and Lm ≈ 1nm (Dupas,

2012, p. 6) gives 8.5 ≤ L ≤ 12.5, which is consistent with the value L ≈ 9 used

in experimental comparisons in Blake (2006, Figs. 4 and 5). Note that, although

the left-hand side of (2.2.25) is a leading-order truncation of the full form given in,

e.g., Sedev & Petrov (1992, equation (5) et seq.), it offers a maximum of 1% relative

error of the exact value for 0 ≤ θ,Θ ≤ 140o, which range comfortably includes the

static and dynamic contact angles (≈ 60o) under present consideration. Although

this error can be dramatically reduced using, e.g., Padé approximants, the element

of ambiguity in the prescription of LM , and hence the computation of L, renders

such an exercise as academic.

Rearranging (2.2.25) and noting that in the present context U ′ is the dimensional

contact-line velocity h′t′ yields

h′t′ =
σ

9µL
(θ3 −Θ3), (2.2.26)

and hence, via (2.1.15), the non-dimensional contact-line velocity is

ht =
σ

9εU0µL
(θ3 −Θ3), (2.2.27)

from which, using the computed bounds on L and the data in Table 2.1, there follows
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4 · 105(θ3 − Θ3) ≤ ht ≤ 6 · 105(θ3 − Θ3), which in practice translates to excessive

contact-line speeds of the order of O(10)m s−1. If, however, the moving-contact

line velocity is instead non-dimensionalised using a typical experimentally obtained

velocity Û0, rather than the theoretical εU0 in (2.1.15), more realistic values of K±

can be found. Using such a scaling now gives

ht =
σ

9Û0µL
(θ3 −Θ3), (2.2.28)

in which, taking the experimental value Û0 = 10−2m s−1 (Heryudono et al., 2007,

p. 350) now yields 40(θ3 − Θ3) ≤ ht ≤ 60(θ3 − Θ3) which, bearing in mind the

number of significant figures given in Û0, is in excellent agreement with the value

of ht ≈ 37(θ3 − Θ3) determined from the subsequent calibration (q.v. §5.4) of the

independent in vivo data of Johnson & Murphy (2006).

A natural inference from these basic considerations is that scalings (2.1.15), first

proposed in Braun & Fitt (2003) and subsequently re-used in related studies, are not

consistent with experimental data, and hence a more general, physics-based scaling

is heralded: this is in part the motivation behind the novel asymptotic approach

whose nascent form is presented in §2.3.

Note also that, in the context of the Cox-Voinov condition (or more accurate

variations thereof), pinning fixes ht(±1, t) = 0 and hence requires θ(±1, t) = Θ± in

either (2.2.26) or (2.2.27), thereby implicitly fixing h′(±1, t) as constant1. But, in

related literature, pinning is typically augmented with flux conditions at x = ±1 and

then h′(±1, t) evolves with time (cf. Braun & Fitt (2003, Figs. 4 and 9), follow-on

papers, and several papers considering the blink cycle), which is incompatible with

dynamic-slip theory. This aspect is pursued further in Hall & Kelmanson (2020a).

Equations (2.2.24) thus describe a novel evolution of the height of tear film

along the eyelids in terms of the evolution of the dynamic contact angle. Whilst

the application and study of the Cox-Voinov law is present in other areas of fluid

dynamics (Doumenc & Guerrier, 2013; Mahady et al., 2015; Shikhmurzaev, 2008;

van der Sman, 2013), its introduction into the ophthalmic literature is entirely novel.

It is noted that the functional form of θ±(t′) (2.2.18) could be substituted into the

1It is acknowledged that if the surface contains a sharp asperity then a Cox-Voinov-like rela-
tionship may not hold. Although the wettable component of the eyelid is understood to be smooth,
the location of the meibomian gland along the eyelid may pose as such an asperity if the tear film
were to advance too far anteriorly (q.v. §2.2.1).
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Neumann boundary condition (2.2.4) so that a temporally-evolving contact angle is

specified explicitly. However, whilst this would be a boundary condition constructed

from in vivo observation, the flexibility of the general Cox-Voinov condition is prefer-

able. In particular, the freedom of choice of Θ± admits quantification of tear-film

breakup in terms of the static contact angle.

It is recalled that the boundary condition (2.2.24) was not introduced without

assumptions being made. The flaws and assumptions in the construction of such a

boundary condition have been presented, so that future meniscus measurements may

improve upon the accuracy implicit in the condition (2.2.24). Thus, the dynamic

contact angles presented in Figure 2.6, and the boundary conditions (2.2.24) pre-

scribed therefrom are known to contain error. However, the introduction of (2.2.24)

— and its implementation in §5 — can be seen as a genuine attempt to introduce

novel, physically valid dynamics into tear-film flow augmented by a boundary con-

dition constructed according to in vivo data. In addition, it should be noted that

the Cox-Voinov condition has another unique quality when compared to all other

previously enforced boundary conditions in ophthalmic modelling: (2.2.24) is the

only boundary condition whereby external effects such as gravity and evaporation

influence the boundary evolution (q.v. §5.4.2). Specifically, with the Cox-Voinov

condition enforced, the boundary thickness h(±1, t) evolves differently between so-

lutions computed with and without gravitational (or evaporative) effects present.

This manifestly cannot occur when the pinning condition (2.2.2) is enforced.

2.3 A Derivation of Non-Dimensional Scalings

The contents of this section are of a more explicit technically collaborative nature

than the rest of the thesis, and they form the core of reviewing the cartesian problem

in Hall & Kelmanson (2020a) and the extension to curvilinear coordinates in Hall

& Kelmanson (2020b).

With reference to the above discussed comments regarding “dubious” formula-

tions (see Aydemir et al. (2011, p. 118) and §2.1.4), the scalings (2.1.15) are revisited

on the assumption that capillary effects are present at leading order. Therefore, in

rescaling the problem, the non-dimensional equations will not feature Re, G and

Ca as per §2.1, but rather the Suratman number Su ≡ σρ`/µ2 and Bond number

Bo ≡ gρ`2/σ, which are respectively the ratios Re/Ca and G/Ca. The Suratman
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and Bond numbers are thus defined and fixed by the properties of the fluid; that

is, Bo and Su may themselves require re-scaling as and when necessary in order for

inertial and gravitational effects to balance capillary effects.

The scalings (2.1.15) that were applied in §2.1 are those that are present in the

ophthalmic literature (e.g. Aydemir et al. (2011); Braun & Fitt (2003); Heryudono

et al. (2007)). However, as mentioned, such scalings are introduced without formal

derivation or reference. Despite this, they allow for derivation of a governing equa-

tion of tear-film flow to which solutions can be compared and contrasted to those in

ophthalmic literature. However, in order to compensate for the lack of formality on

this matter in related literature, a set of novel scalings for ophthalmic flow modelling

are formally derived herein. As per the notation of §2.1, primes are employed to

denote that a variable is dimensional. In the absence of a justifiably natural velocity

scale, generalised non-dimensional scalings are introduced as

x′ = εX`x, y′ = εY `y, h′ = εY `h, u′ =
σ

µ
εUu, v′ =

σ

µ
εV v,

t′ =
`µ

σ
εT t, p′ =

σ

`
εPp, J ′ =

σρ

µ
Ẽ, k′ = `εBk,

(2.3.1)

where the small parameter ε is again the ratio of tear-film thickness to `, the half-

length between the upper and lower eyelids and σ, ρ and µ are as previously de-

fined in Table 2.1. The same equations of motion given in §2.1.1 are to be non-

dimensionalised by the scalings (2.3.1); thereafter, appropriate dominant balances

are sought to obtain the values of the powers of ε in (2.3.1). That is, the powers of

ε will be derived on the basis of physical consistency.

Governing the bulk flow in the fluid are the Navier-Stokes (2.1.1) and continuity

(2.1.2) equations, which respectively scale under the transformations of (2.3.1) as

Su(εU−Tut + ε2U−Xuux + εU+V−Y vuy)

− Bo cosφ+ εP−Xpx − εU−2Xuxx − εU−2Y uyy = 0, (2.3.2)

Su(εV−Tvt + ε2V−Y vvy + εU+V−Xuvx)

+ Bo sinφ+ εP−Y py − εV−2Xvxx − εV−2Y vyy = 0 (2.3.3)

and

εU−Xux − εV−Y vy = 0. (2.3.4)
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At the corneal surface, substitution of the transformations (2.3.1) into the imper-

meability (2.1.5) and Navier-slip (2.1.4) equations yield

εV v = 0 on y = 0 (2.3.5)

and

εUu− εB+U−Y k(h)uy = 0 on y = 0. (2.3.6)

At the free surface the kinematic condition (2.1.14), tangential immobility (2.1.13)

and normal-stress balance (2.1.8) respectively become

εU+Y−Xuhx − εV v + εY−Tht + Ẽ
√

1 + ε2Y−2Xh2
x = 0 on y = h(x, t), (2.3.7)

εUu+ εY+V−Xvhx = 0 on y = h(x, t) (2.3.8)

and

2

1 + ε2Y−2Xh2
x

(ε2Y−3X+Uh2
xux − εU−Xhxuy − εY−2X+V hxvx + εV−Y vy)

− εPp− εY−2Xhxx
(1 + ε2Y−2Xh2

x)
3/2

= 0 on y = h(x, t). (2.3.9)

The values of X, Y , U , V , T , P , and B are now determined by a systematic

procedure that considers leading-order balances of equations (2.3.2)–(2.3.9). The

requirements that the scalings must satisfy are the following. Both terms in the

continuity equation (2.3.4) must balance. The evolution of the free surface (2.3.7) is

balanced by the velocities of the film, as evaporation is expected to play a small role

on film evolution (Holly, 1973); however, evaporation may still be present at leading

order, depending on the film thickness. In the normal-stress condition (2.3.9), the

pressure must balance the free-surface curvature in order to obtain the meniscus-

induced thinning that is observed in vivo1. In keeping with lubrication theory, the

pressure component py in (2.3.3) must equal 0, such that p = p(x, t), in order for

the dual integration of v to be tractable in deriving the evolution equation for h.

Thereafter, the pressure must balance at least uyy in (2.3.2) in order to utilise the

boundary conditions on the corneal and free surfaces. For the non-degeneration of

1See the discussions regarding: dry-eye syndrome in §1.2.1, and; the lack of agreement between
the solutions of Peng et al. (2014) and in vivo observations, wherein meniscus-induced thinning is
not included, in §2.1.4.
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2.3 A Derivation of Non-Dimensional Scalings

the Navier-slip condition (2.3.6), both terms should balance. Consideration of all

the above balances yields, after mechanical computations and manipulations,

U −X = V − Y
V = Y − T
P = Y − 2X

P −X = U − 2Y

B − Y = 0


=⇒

V = 4U
3

T = X − U
P = U

3
−X

Y = U
3

+X

B = U
3

+X


, (2.3.10)

from which specification of U and X determines all appropriate scalings. Substitu-

tion of the balances (2.3.10) into the equations of motion (2.3.2)–(2.3.9) respectively

yields, upon simplification of powers of ε:

ε5U/3+XSu(ut + uux + vuy)− ε2X−U/3Bo cosφ− ε2U/3uxx + px − uyy = 0, (2.3.11)

ε7U/3+XSu(vt + uvx + vvy) + ε2XBo sinφ− ε4U/3vxx − ε2U/3vyy + py = 0, (2.3.12)

ux + vy = 0, (2.3.13)

v = 0 on y = 0, (2.3.14)

u− k(h)uy = 0 on y = 0, (2.3.15)

uhx − v + ht + ε−4U/3Ẽ
√

1 + ε2U/3h2
x = 0 on y = h(x, t), (2.3.16)

u+ ε2U/3vhx = 0 on y = h(x, t), (2.3.17)

and

2(ε4U/3(h2
xux − hxvx) + ε2U/3(vy − hxuy))

1 + ε2U/3h2
x

− p− hxx
(1 + ε2U/3h2

x)
3/2

= 0 on y = h(x, t). (2.3.18)

Equations (2.3.11)–(2.3.18) are now specified in terms of the unknown scalings

U and X. A final balance can be obtained by considering the retention of gravity in

the Navier-Stokes equation (2.3.11). As the Bond number Bo may not necessarily

be order O(1), the Bond number is defined in a more general sense as

Bo = εmbo (2.3.19)

where bo is the strictly-order-O(1) reduced Bond number. In this way the effect of
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2. OPHTHALMIC MODELLING

gravity may be retained in a formal asymptotic framework for any given physically

prespecified Bo: that is, gravitational effects may be retained and investigated even

in studies (ophthalmic and otherwise) where they are considered to be small (Braun

& King-Smith, 2007; Jensen, 1997). The value of m is obtained upon evaluation of

Bo; it is prescribed by the properties of the fluid and the thickness of the tear film.

Evaluation of the Bond number reveals that, in the present study, it is itself order

O(1) and hence m = 0 and Bo = bo; in what follows (2.3.19) is nonetheless included

for the more general situation wherein this is not the case. It is noted that the same

ideas can be applied to the Suratman number Su; however, as the inertial terms

multiplied by Su are by construction intended to vanish, the issue is redundant and

so Su is left in its current form regardless of its size. To retain gravitational effects

at leading order in (2.3.11) requires that 2X −U/3 +m = 0, from which it is found

that either

U(m,X) = 6X + 3m, or X(m,U) =
U

6
− m

2
. (2.3.20)

Physical interpretation of the scalings (2.3.1) are now undertaken in order to obtain

the final relationship needed to resolve (2.3.20). A pair of physically realistic velocity

scales u′ and v′ in (2.3.1) are required. With u and v assumed to be order O(1), and

with σ and µ as defined in Table 2.1, it transpires that σ/µ = 45 m s−1 and thus

u′ ∼ 45εU m s−1, and v′ ∼ 45ε4U/3 m s−1. (2.3.21)

With ε ∼ 10−3, the specific value U = 2 yields dimensional velocities u′ and v′ in

(2.3.21) as u′ ∼ 10−4 m s−1 and v′ ∼ 10−6 m s−1 = 1µm s−1. The latter of these two

values suggests tear-film breakup in an order O(10)-second time, which is consistent

with in vivo observation (Bron, 2001; Rengstorff, 1974). Thus, U = 2 is chosen on

the physical basis of matching observed tear-film velocities. Substitution of U = 2

in the balances (2.3.10) yields, for m = 0, the indices X = 1/3, Y = 1, V = 8/3,

P = 1/3, B = 1, and T = −5/3, thereby transforming (2.3.11)–(2.3.18) to:

ε11/3Su(ut + uux + vuy)− bo cosφ− ε4/3uxx + px − uyy = 0, (2.3.22)

ε15/3Su(vt + uvx + vvy) + ε2/3bo sinφ− ε8/3vxx − ε4/3vyy + py = 0, (2.3.23)
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2.3 A Derivation of Non-Dimensional Scalings

ux + vy = 0, (2.3.24)

v = 0 on y = 0, (2.3.25)

u− k(h)uy = 0 on y = 0, (2.3.26)

uhx − v + ht + ε−8/3Ẽ
√

1 + ε4/3h2
x = 0 on y = h(x, t), (2.3.27)

u+ ε4/3vhx = 0 on y = h(x, t), (2.3.28)

and

2(ε8/3(h2
xux − hxvx) + ε4/3(vy − hxuy))

1 + ε4/3h2
x

− p− hxx
(1 + ε4/3h2

x)
3/2

= 0 on y = h(x, t). (2.3.29)

Despite the large value of Su ∼ 105, inertial terms may be neglected at leading order

because ε15/3Su� ε11/3Su ∼ ε� 1.

The last term requiring consideration is the evaporative term in the kinematic

condition (2.3.27). Upon rearranging the scaling for J ′ in (2.3.1) in terms of Ẽ,

evaporation is governed by the dimensionless quantity

Ê ≡ ε−8/3Ẽ = ε−8/3J
′µ

σρ
. (2.3.30)

Evaluation of Ê (2.3.30) can be performed using values presented in Table 2.1,

whereby Ê = O(0.01) and evaporative effects would be neglected. Despite this, it is

noted that the value of Ê depends not only on the measured evaporative mass flux

J ′, but also the thickness of the tear film, implicitly specified via ε. In particular, if

the quantity ε−8/3Ẽ was of order O(1), then

Ẽ ≈ ε8/3 =⇒ ε ≈ Ẽ3/8 =
(J ′µ
σρ

)3/8

≈ 2.8 · 10−4 (2.3.31)

which suggests that evaporative effects would be a leading-order contribution to

thinning for films with ε ≤ 2.8 · 10−4. That is, in accordance with intuition smaller

ε corresponds to a thinner film upon which evaporative effects would be expected

to have a larger relative effect on the fluid and its evolution. Note that (2.3.31)

suggests that evaporative effects must play a part in the black-line region; and thus

consideration of an evaporation-driven model is considered as a subject of future
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work (see §6.2). Such analysis, which notably depends on the strength of gravity

via the value m, ensures that effects such as evaporation cannot be excluded a priori,

unless the magnitude of ε is taken into consideration in (2.3.30).

The governing equations (2.3.22)–(2.3.29) agree at leading order with those ob-

tained in §2.1.5 and so, consequently, their solution is not sought again. Rather,

a consistent set of scalings (2.3.1) have been derived based on a formal systematic

approach; one that can be readily adapted in the presence of changing physical

parameters. That is, this approach demonstrates that there is not necessarily a

‘one-size-fits-all’ evolution equation for ophthalmic-film flows.

2.4 Summary and Discussion

A spatio-temporal evolution equation for the tear-film thickness h(x, t) (2.1.55) has

been derived using a lubrication approximation of the Navier-Stokes equations based

on non-dimensionalisation according to in vivo ophthalmic measurements.

Navier-slip on the corneal surface has, for the first time, been modelled to respond

dynamically to the film thickness in such a way that it becomes increasingly impor-

tant as the film thins. The inclusion of gravity with respect to the orientation of the

eye has allowed for tear-film evolution to feature different gravitational strengths via

variation of the alignment angle φ. The full curvature in the normal-stress condition

has been retained in order to analyse the effect that employing physically realistic

contact angles has on the evolution of the flow. The result of all these considera-

tions has been the derivation of an improved nonlinear spatio-temporal evolution

equation that will later be solved in §5 using the numerical methods introduced in

§3, wherein tear-film breakup will be quantified in terms of the effects of gravity,

corneal slip and initial tear distribution.

The cornea herein has been assumed to be flat; the extension to a curved cornea

via the application of a polar geometry is expected to have a minimal change on the

rate of thinning (Braun et al., 2012) despite the potentially greatly increased mod-

elling complexity. However, under certain conditions, the corneal surface may be

required to be modelled differently. A medical condition known as keratoconus (Ra-

binowitz, 1998) whereby the eyeball becomes conic in the palpebral fissure (pictured

in Krachmer et al. (1984, p. 298, 302)) could significantly influence the tear-film

flow. The specification of a corneal surface representing a keratoconus-like shape
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thus comprises a natural extension (Hall & Kelmanson, 2020b) of the modelling

performed herein.

As evaporative effects were concluded to be an order O(ε) effect and not re-

tained at leading order, the volume of tear fluid is expected to remain constant as

long as boundary conditions appropriately specify a zero flux at the eyelids. The

consequence of this is a numerical-error check that is subsequently deployed on the

numerical solutions obtained in §5.

A thorough discussion of the boundary conditions enforced in the ophthalmic

literature has revealed the non-physicality of the essentially ubiquitous ‘pinning’

condition. In addition, the common application of a boundary condition wherein

the pressure is specified has been shown to have neither physical interpretation nor

meaning. In vivo observations wherein meniscus parameters experienced temporal

variations (e.g. du Toit et al. (2003); Johnson & Murphy (2005); Shen et al. (2008))

necessitated the development and incorporation of a novel boundary condition that

not only admits a moving contact line along the eyelid, but does so in good agree-

ment, upon comparison, with in vivo data. The introduction of the Cox-Voinov

condition, novel to the ophthalmic literature, has allowed the boundary thickness to

change according to the dynamic contact angle of the tear film, an angle that has

been calibrated to evolve in agreement with in vivo data. Coupling the Cox-Voinov

condition with a no-flux condition offers a complete set of boundary conditions that

are, for the first time in ophthalmic modelling, consistent with in vivo observation.

The presence of the superficial lipid layer has been modelled in its most basic

form via specification of tangential immobility (2.1.13), rather than through the

inclusion of a secondary evolution equation for the surfactant concentration of the

lipid layer (e.g. Aydemir et al. (2011); Jones et al. (2005)). The effect of the lipid

layer on tear-film health due to evaporative effects is well known: Foulks (2007,

p. 373) concludes their major review with the statement “decades of research has

shown a strong correlation between dry eye symptoms and the state of the tear film

lipid layer”. However, there is still ambiguity on parameter choices with regard to

its modelling. Aydemir et al. (2011, p. 1181) states “we do not have data on [surfac-

tant concentration]” and that “the surface diffusivity for ocular lipids is unknown”.

That is, the inclusion of a lipid layer would by default be based on speculation and

estimates. In particular, boundary and initial conditions for the surfactant concen-

tration are, at best, informed guesses. Thus, rather than include an aspect that

adds uncertainty and speculation into the evolution of the tear film, a framework
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has been built herein to which additional effects can be added.

The non-dimensional scalings from which the evolution equation (2.1.55) was

derived were taken from the ophthalmic literature without derivation. Accordingly,

this chapter concluded with a formal derivation of a set of consistent scalings derived

from dominant balances founded on physical data. Though the resulting set of

leading-order equations were consistent with those obtained the in derivation of the

governing equation (2.1.55), the methodology introduced herein can be extended to

the wider consideration of thin-film modelling in a way that does not require what

might-be termed as ‘intra-derivation rescalings’.
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Chapter 3

Numerical Methods

The spatio-temporal partial differential equation (2.1.55) governing the evolution

of the tear film is nonlinear and its solution manifestly lies beyond the reach of

analytical techniques. The use of approximation methods is further demanded by

not only the generality of initial profiles but also the complexity of the no-flux

(2.2.13) and Cox-Voinov (2.2.24) boundary conditions that augment (2.1.55).

Because it applies to a model of an ocular geometry, evolution equation (2.1.55)

is solved on a finite domain, thereby inviting the application of Cardinal-function

representations of the free surface through interpolation at nodes gleaned from or-

thogonal polynomials. Requiring relatively low numbers of nodes (compared to

finite-difference techniques), highly efficient spectral differentiation and Gaussian

quadrature will be employed; a survey of such methods can be found in the appen-

dices of Boyd (2001) and Hesthaven et al. (2007), the former of which offers discrete-

differentiation rules based on polynomial interpolation using, inter alia, Chebyshev,

Legendre, Laguerre and Hermite polynomials.

Orthogonal-polynomial-based methods yield numerical solutions having levels

of accuracy beyond the reach of finite-difference techniques; typically they employ

order O(27) nodes. By contrast, finite-difference techniques employed hitherto in

the ophthalmic literature use order O(212) (Braun & Fitt, 2003) to order O(214)

nodes (Miller et al., 2002), and hence the improved accuracy obtained herein is also

obtained with increased computational efficiency.

In this thesis, only Chebyshev-node distributions are used for three reasons.

First, as the node locations can be determined exactly in terms of elementary

functions, so too in general can the constructs of differentiation and integration

techniques. That is, these constructs too have explicit form. This in itself has
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implications with regards to optimisation and accuracy, important aspects that are

addressed in detail in §3.2. Second, there is a sufficient body of specialised literature

on Chebyshev polynomials to which cross-reference can be made to ensure that im-

plementation is correct and accurate. Existing computer packages such as Chebfun

(Driscoll et al., 2014) can additionally be used to validate the implementation of

the tools developed herein. Finally, the Chebyshev-node distribution is increasingly

clustered towards the boundary of the domain. As the human tear film is relatively

flat over the center of the cornea, but with gradients increasing towards the bound-

ary in the menisci regions (Figure 1.2), such a clustering is beneficial when resolving

behaviour in the “active” regions of interest.

Despite the reasonable expectation that implementation details of numerical

methods should be a critical component of any scientific discourse, a striking feature

of the vast majority of the ophthalmic literature is that it offers little-to-no informa-

tion with regards to the implementation of the numerics deployed. This arguably

hinders the natural pursuits of validation and replication when trying to recompute

the published results of others. To redress this, a key element of the current work

is to present, in Chapters 3, 4 and 5, explicit and transparent methodology and

implementation details so that the work offers a solid platform for others working

in the field.

The remainder of this chapter is constructed as follows. First-order Chebyshev

differentiation matrices are derived ab initio in §3.1.1, whence explicit entries of the

second-, third- and fourth-order differentiation matrices used in the discretisation of

(2.1.55) are computed and presented; here, all explicit formulae are obtained in the

Maple algebraic-manipulator environment. Techniques for optimising the errors

in these matrices are introduced in §3.2 and discussed in order to ensure that their

most accurate numerical forms are implemented when evaluated in finite-precision

arithmetic. This is essential due to the subsequent need to interpret results, some

of whose magnitudes are, when spectral numerical techniques are not used, of the

same order as the numerical error itself. In §3.3 are introduced numerical techniques

for spectral integration, since these are required for computation of the mass history

of the inter-blink tear film; such techniques also offer a spectrally-accurate mass-loss

check in the case that evaporative effects are absent. The bespoke differentiation

and integration techniques developed herein are validated by comparison with anal-

ogous intrinsic techniques in Matlab. The spectrally-accurate discretisation and

enforcement of the pair of boundary conditions (2.2.13) and (2.2.24) is discussed and
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implemented in §3.6 upon extension of the relatively recent resampling technique of

Driscoll & Hale (2016), wherein a novel formulation reduces the impact of rounding

error.

3.1 Chebyshev Spectral Methods

Spectral methods are a class of numerical techniques primarily used in computing, to

a high order of accuracy, approximations to derivatives of discrete data on a finite set

of nodes by effectively differentiating the interpolating polynomial through the nodal

data (Boyd, 2001; Canuto et al., 1988; Trefethen, 2000). Since their inception in the

1980s they have featured prominently in a plethora of areas of applied mathematics

and engineering (e.g. in finance (Piche & Kanniainen, 2009), fluid flow (Heryudono

et al., 2007; Makinde, 2009) and quantum mechanics (Dehghan & Taleei, 2011)).

Their popularity stems from their high level of accuracy, particularly in the repeated

differentiation of discrete data interpolated by high-order polynomials. Their defin-

ing spectral accuracy refers to the exponential decrease in error as the number of

nodal data increases, which is in stark contrast to the (mere) algebraic decrease as-

sociated with finite-difference schemes. Specifically, for a spectral method using N

nodes, the computational error in differentiation converges to zero as order O(e−cN
α
)

for some c, α > 0. Consequently, spectral methods offer the potential for markedly

reducing the errors present within a number of papers in the ophthalmic literature

that rely on the use of finite-difference schemes; for example, inter alia, Aydemir

et al. (2011); Braun & Fitt (2003); Braun & King-Smith (2007); Jones et al. (2005);

Maki et al. (2010a); Winter et al. (2010). Spectral methods are, however, present in

some ophthalmic literature. Heryudono et al. (2007) present both finite-difference

and Chebyshev-spectral methods as spatial-discretisation methods; however, they

comment that the enforcement of a flux condition proved challenging when applied

as a third-order boundary condition on the film height h(x, t). The methodology

introduced herein will be demonstrated to enforce such conditions not only straight

forwardly but also to spectral levels of accuracy.

All spectral methods considered and used in this work are based on the Cheby-

shev differentiation matrix (CDM), using which the kth-order CDM is used to com-

pute the numerical approximation of the kth derivative of the interpolating poly-

nomial passing through discrete data. Having derived CDMs in §3.1.1, techniques

for optimising the accuracy of their computational construction are discussed and
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implemented in §3.2 in order to ensure that the CDMs yield the most accurate

numerical derivatives in the spatial discretisation of the original tear-film equation

(2.1.55). Since the tear film is well known to have steep gradients in the proximity

of the eyelids (see Figure 1.2), and since it is well known that the efficacy of spec-

tral methods is eroded in the presence of such gradients (Bayliss & Turkel, 1992,

p. 350), the novel consideration of such optimisation techniques is an important

step in maintaining high-order accuracy throughout the domain, particularly with

respect to the discretisation of boundary conditions in §3.6.

3.1.1 Chebyshev Differentiation Matrices

Consider an infinitely-differentiable function u(X) defined on a finite interval X ∈
[a, b]. In the ensuing analysis, the transformation

X =
b− a

2
x+

b+ a

2
(3.1.1)

maps the domain of u(X) on to that of u(X(x)) = u(x), x ∈ [−1, 1], on the canonical

interval. A currently-undefined set of nodes {xj}Nj=0 is located on this domain.

The function values at the nodes u(xj) = uj, together with the nodes themselves,

yield nodal data {xj, uj}Nj=0 that may be interpolated. The N th-order interpolating

polynomial uN(x) for such nodal data is

uN(x) =
N∑
j=0

Cj(x)uj, (3.1.2)

where Cj(x) is known as a Cardinal function. Clearly, the definition of an interpo-

lating polynomial requires that uN(xj) = u(xj) = uj, j = 0(1)N , which by (3.1.2)

requires

Cj(xi) = δij i, j = 0(1)N, (3.1.3)

where δij is the Kronecker-Delta. The Cardinal function is constructed as follows.

First, define a new function ψ(x) for which ψ(xj) = 0, j = 0(1)N . The expansion of

ψ(x) around x = xj yields

ψ(x) = ψ(xj) + (x− xj)ψ′(xj) +O((x− xj)2)

= (x− xj)ψ′(xj) +O((x− xj)2), (3.1.4)
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since ψ(xj) = 0. Re-arranging (3.1.4) and defining Cj(x) as

Cj(x) ≡ ψ(x)

ψ′(xj)(x− xj)
(3.1.5)

means that the Cj(x) so constructed indeed satisfy (3.1.3).

It remains to obtain the function ψ(x) in (3.1.4) that is zero for all xj, for which

purpose the nodes are introduced as the Chebyshev extrema, defined as

xj = cos
(jπ
N

)
, j = 0(1)N. (3.1.6)

The Chebyshev extrema are so named as they maximise the Chebyshev polynomials

of the first kind TN(x) ≡ cos(N arccosx) (Boyd, 2001), i.e. |TN(xj)| = 1, j = 0(1)N .

Given that xj maximise the Chebyshev polynomials, it follows that, for the interior

nodes, T ′N(xj) = 0 for j = 1(1)N−1, and so ψ(x) ≡ (1−x2)T ′N(x) satisfies ψ(xj) = 0

for j = 0(1)N . Substitution of ψ(x) and its derivative into (3.1.5) yields the cardinal

function

Cj(x) =
(−1)j+1(1− x2)T ′N(x)

(1 + δj0 + δjN)N2(x− xj)
, j = 0(1)N, (3.1.7)

wherein the scaling factor (1 + δj0 + δjN)−1 ensures that Cj(xi) = δij, even at the

endpoints at which T ′N(±1) 6= 0.

Differentiation of the exact u(x) is approximated to spectral accuracy by differ-

entiation of (3.1.2) to give

u′(x) ≈ u′N(x) =
N∑
j=0

C ′j(x)uj, (3.1.8)

with higher-order derivatives being approximated analogously. As the approxima-

tion of the derivative in (3.1.8) depends linearly on the nodal data uj, the process

can be represented as a matrix-vector multiplication. Setting x = xi for i = 0(1)N

in (3.1.8) yields its discrete analogy as

u′ ≈ u′N = D(1)u. (3.1.9)

In both (3.1.9) and what follows, u(k) is a vector of dimension N + 1 with ith entry

given by u(k)(xi), whereas u
(k)
N is a vector of the same dimension with ith entry given

by u
(k)
N (xi) (3.1.2); i.e. u

(k)
N approximates u(k). The matrix D(1) is the first-order
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Chebyshev differentiation matrix (CDM) (Bayliss et al. (1994); Gottlieb et al. (1984);

Trefethen (2000)), with entries given by D
(1)
i,j = C ′j(xi): note that, when i = j, the

use of L’Hôpital’s Rule is required when differentiating (3.1.7). The entries of the

(N+1)×(N+1) first-order Chebyshev differentiation matrix are well-known (see, e.g.

Breuer & Everson (1992); Don & Solomonoff (1995); Trefethen (2000)) and readily

obtainable upon differentiation of (3.1.7); they are presented here for completeness

as

D
(1)
i,j =



1 + 2N2

6
i = j = 0

−1 + 2N2

6
i = j = N

− xj
2(1− x2

j)
i = j = 1(1)N − 1

(1 + δi0 + δiN)

(1 + δj0 + δjN)

(−1)i+j

(xi − xj)
i 6= j, i, j = 0(1)N

. (3.1.10)

Thus constructed, the matrix D(1) admits, by (3.1.9), spectrally accurate numerical

differentiation of a continuous function u(x) in terms of only the N + 1 vector u of

data u(xj) evaluated at the Chebyshev nodes xj (3.1.6).

3.1.2 Higher-Order Differentiation

By formulating numerical differentiation at nodal points as matrix-vector multipli-

cation, higher-order derivatives can be approximated via repeated multiplication by

the matrix D(1) of the vector u, such that

u(k) ≈ u
(k)
N = [D(1)](k)u, (3.1.11)

which is the discrete analogy of u(k)(x) = (d/dx)ku(x). The entries of the kth-order

CDM are thus given by (3.1.11), to be

D
(k)
i,j =

(
[D(1) ] k

)
i,j
. (3.1.12)

Additionally, (3.1.9) admits an alternative formulation of constructing higher-order

matrices D(k), since repeated differentiation of (3.1.8) gives

u
(k)
N (x) =

N∑
j=0

C
(k)
j (x)uj, =⇒ D

(k)
i,j = C

(k)
j (xi). (3.1.13)
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It is noted that (3.1.11) does not hold generally. For differentiation matrices con-

structed on periodic domains, (3.1.11) holds only when N is even; for N odd (3.1.13)

must be used. This is a result of parity and spectral aliasing (Baltensperger & Berrut

(1999); Welfert (1997)).

With k = 2 in (3.1.13), the entries of D(2) can be found explicitly as

D
(2)
i,j =



N4 − 1

15
i = j = 0, i = j = N

(N2 − 1)x2
j −N2 − 2

3(1− x2
j)

2
i = j, i = 1(1)N − 1

2(−1)j

1 + δjN

(
2N2 + 1

3(1− xj)
− 2

(1− xj)2

)
i 6= j, i = 0

2(−1)j+N

1 + δj0

(
2N2 + 1

3(1 + xj)
− 2

(1 + xj)2

)
i 6= j, i = N

(−1)i+j+1

1 + δj0 + δjN

(
xi

(1− x2
i )(xi − xj)

+
2

(xi − xj)2

)
i 6= j, i = 1(1)N − 1.

(3.1.14)

Higher-order CDMs can be constructed ad nauseam, using either (3.1.12) or (3.1.13).

Since the governing PDE (2.1.55) for the tear-film evolution is fourth-order spatially,

the process is continued herein for k = 3 and k = 4. With repeated applications of

L’Hôpital’s Rule required for the evaluation of C
(3)
j (xi) and C

(4)
j (xi), the process is

facilitated by the use of the algebraic manipulator Maple: entries of D(3) and D(4)

are cumbersome and hence they are deferred to Appendix A.1.

These explicit constructions of D(k) for k > 1 can be compared against repeated

multiplication by the matrix D(1) when higher-order derivatives are to be calcu-

lated. Though both formulations yield matrices that are algebraically equivalent, it

is important to note that they differ numerically. Upon converting both matrices

D(k) to finite-digit decimal representations, a small but non-zero difference between

them manifests, at the order of accumulated machine precision: this difference ac-

cumulates even further as N increases. Motivated by the aim of obtaining the most

accurate numerical approximations of derivatives, important in not only the spatial

discretisation of the PDEs arising in ophthalmic flows, but also their boundary con-

ditions involving derivatives, these two formulations of D(k) are now considered and

compared. In addition, techniques for improving the accuracy of D(k) are analysed

and validated. The consideration of such techniques has been motivated by the
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near-total absence of implementation details in the current ophthalmic literature.

3.2 Optimisation of the Accuracy of D(k)

Any errors in evaluating the matrices D(k), however small, will propagate through

repeated matrix operations that accumulate in the computation of both higher-order

derivatives and temporal integration. Minimising any such errors is therefore pivotal

to optimising the accuracy of numerical approximations of derivatives using CDMs.

When CDMs are constructed using explicit formulae, evaluation of their entries

becomes more susceptible to rounding errors as k increases, as can be expected by

comparing the complexity of entries in D(2) (3.1.14) against those in D(1) (3.1.10).

When higher-order matrices D(k) are computed using [D(1)]k, rounding errors accrue

both in the evaluation of D(1) itself, and the subsequent evaluation of matrix powers.

These errors become increasingly problematic in finite arithmetic as k andN increase

(Breuer & Everson (1992)), due to the disparate orders of magnitude in the entries

of D(k), the largest of which grows as order O(N2k). Consequently, analysing and

mitigating against this undesirable feature of CDMs is a necessary and novel focus

of this work, in order to ensure that the most accurate spatial discretisations of both

the ophthalmic PDEs and their boundary conditions are computed. To demonstrate

the growth with k of the entries in CDMs, logarithmic plots of the values log10 |D
(k)
i,j |

against (i, j) are shown for k = 1(1)4 and N = 50 in Figure 3.1.

Techniques for alleviating the aforementioned rounding errors are now discussed,

before being tested and validated in §4.1. Such techniques, in addition to others

that are not presented here, can be found in many summary papers on spectral

differentiation, examples of which include Baltensperger & Trummer (2003); Costa

& Don (2000); Don & Solomonoff (1995, 1997); Elbarbary & El-Sayad (2005).

3.2.1 Trigonometric Identities

As a consequence of the nodes (3.1.6) being evaluated in terms of cosines, the matrix

entries for D(1) in (3.1.10) can be re-written using trigonometric identities. For ex-

ample, following a strategy employed by Canuto et al. (1988) and Don & Solomonoff
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3.2 Optimisation of the Accuracy of D(k)

Figure 3.1: Logarithmic plot of the magnitudes of entries D
(k)
i,j for k = 1 → 4 in

subplots (a) → (d), for N = 50. The growth of matrix entries with k is clearly
evident from the different vertical scales.

(1995), the components of the entries in (3.1.10) invite the identities

xi − xj = 2 sin
( π

2N
(i+ j)

)
sin
( π

2N
(j − i)

)
,

1− x2
j = sin2

( π
N
j
)
,

1 + xj = 2 cos2
( π

2N
j
)
,

1− xj = 2 sin2
( π

2N
j
)
.

(3.2.1)

The advantage of rewriting these quantities in terms of trigonometric functions

requires some explanation. When the first term xi − xj in (3.2.1) is evaluated

directly for nodes that are close together (e.g. if i = j + 1), this amounts to finding
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the difference between two similar quantities, which introduces rounding error that

is then magnified when (xi− xj)−1 is computed for calculation of the matrix entries

in (3.1.10). As N increases and the nodes become closer together, this problem

becomes more severe; the minimum spacing between the nodes (3.1.6) is O(N−2)

(Don & Solomonoff, 1995, 1997). The three other re-evaluations in (3.2.1) share the

same advantage, and can be thought of as cases when i = 0. Under the equivalences

(3.2.1), and the identity ω ≡ π/2N , the entries of D(1) (3.1.10) become

D
(1)
i,j =



1 + 2N2

6
i = j = 0

−1 + 2N2

6
i = j = N

− xj
2 sin2(2jω)

i = j = 1(1)N − 1

(1 + δi0 + δiN)

(1 + δj0 + δjN)

(−1)i+j

2 sin((i+ j)ω) sin((j − i)ω)
i 6= j, i, j = 0(1)N

(3.2.2)

Higher-order matrices are evaluated using these trigonometric substitutions in the

same way. Matrices constructed using (3.1.10) and (3.2.2) are algebraically equiv-

alent but evaluated differently numerically, the latter being evaluated with greater

accuracy; indeed, Don & Solomonoff (1997) present only the trigonometric form

(3.2.2), and omit (3.1.10) on this basis. The matrix forms of D(k), k = 1(1)4, are

presented in Appendix A.2 upon re-evaluation by (3.2.1).

The matrix (3.2.2), and its application to numerical differentiation, will be com-

pared against (3.1.10) in §4.1. Presently, the effect of the identities (3.2.1) can be

shown. Evaluation of the theoretically-equivalent terms

1

1− xj
and

1

2 sin2
(
π

2N
j
) , (3.2.3)

can be performed to demonstrate the improvement in accuracy when using trigono-

metric identities in the matrices (see, e.g. i 6= j, i = 0 in (3.2.2)). For this illustration

the Chebyshev nodes (3.1.6) with N = 1001 are used. Whilst such a large value

of N is unrealistically large to be used in practice, it demonstrates the effect and

improvement of the technique with greater clarity than at the more realistic value

of, say, N = 100. With a subscript dp denoting a term evaluated to double precision,
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the absolute error∣∣∣ 1

1− xj
− 1

1− xj dp

∣∣∣ and
∣∣∣ 1

2 sin2
(
π

2N
j
) − 1

1− xj dp

∣∣∣, (3.2.4)

and relative errors∣∣∣∣∣(1− xj)−1 − (1− xj)−1
dp

(1− xj)−1
dp

∣∣∣∣∣ and

∣∣∣∣∣(2 sin2
(
π

2N
j
)
)−1 − (1− xj)−1

dp

(1− xj)−1
dp

∣∣∣∣∣, (3.2.5)

are evaluated. In Figure 3.2 are presented computations of (3.2.4) and (3.2.5) using

N = 1001 nodes in the interval x ∈ [0.9, 1], wherein rounding error is most severe.
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Figure 3.2: Absolute (3.2.4) (top) and relative (3.2.5) (bottom) errors in the com-
putation of (1 − xj)

−1 with and without the use of trigonometric identities. As
x → 1−, the rounding error is demonstrated to increase by orders of magnitude
when trigonometric identities are not used.
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Clearly evident is the effect of employing the use of trigonometric identities

(3.2.1) in the construction of D(k). Whilst the errors are comparable for nodes away

from x = 1, for the nodes close to it, computational error introduced from rounding

error is reduced by a factor of 2 decades; i.e. 100. Notably, this reduction occurs

within the matrix entries with the largest values (cf. the “corners” with i = j = 0

in Figure 3.1).

3.2.2 Matrix Flipping

First proposed by Don & Solomonoff (1995), another technique for improving the

accuracy of evaluation of the entries D
(k)
i,j involves computing only the top half of the

matrix and using symmetry properties to evaluate the bottom half. This process of

flipping follows from the antisymmetry property

D
(k)
i,j = (−1)kD

(k)
N−i,N−j, i, j = 0(1)N (3.2.6)

evident in D(1) (3.1.10) and its higher-order forms. As explained in Don & Solomonoff

(1995), the terms sin(π − δ) and sin(δ) are equivalent; however, when 0 < δ � 1 is

small, the latter can be evaluated with greater accuracy for a fixed machine preci-

sion1. For an entry near the top-left corner of the matrix, e.g. when i = 1, j = 2,

(3.2.1) yields

x1 − x2 = 2 sin
( 3π

2N

)
sin
( π

2N

)
(3.2.7)

wherein both sines have a small argument when N � 1. However, their antisym-

metric counterpart in the bottom-right half of the matrix, i = N − 1, j = N − 2,

is

xN−1 − xN−2 = −2 sin
(
π − 3π

2N

)
sin
( π

2N

)
(3.2.8)

which contains a sine term with an argument approximately equal to π. Conse-

quently, the term (3.2.7) will be evaluated more accurately than term (3.2.8) in

finite-digit arithmetic. To alleviate this problem, the symmetry (3.2.6) can be im-

plemented so that only the upper half of the matrix, containing terms of the form

(3.2.7), is evaluated; the remainder of the matrix is populated via symmetry. The

1Moreover, truncation of the term π as a finite decimal, whence further rounding error is
introduced, need not be performed upon calculating sin(δ). In particular, according to Matlab,
sin(π) evaluates to 1.2246 · 10−16 which manifestly contains error.
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fact that sin(δ) can be computed more accurately than sin(π− δ) for small δ is now

demonstrated. With a subscript dp again denoting evaluation with double-precision,

the absolute errors

| sin(xj)− sin(xj)dp|, | sin(π − xj)− sin(xj)dp|, (3.2.9)

and relative errors∣∣∣sin(xj)− sin(xj)dp

sin(xj)dp

∣∣∣, ∣∣∣sin(π − xj)− sin(xj)dp

sin(xj)dp

∣∣∣, (3.2.10)

are evaluated and displayed in Figure 3.3 for the same parameters as in Figure 3.2.

Both absolute and relative errors in the 16-digit computation of (3.2.9) and (3.2.10)

are presented.
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Figure 3.3: Absolute and Relative error in the computation of sin(x) and sin(π−x).
Despite both terms being equivalent algebraically, finite-digit computation intro-
duces an error that is demonstrated to be more prominent, by up to 2 decades, in
the evaluation of sin(π − x).
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Collecting the above findings, it is clear that, when computing the differentiation

matrix D(k), an order of magnitude of accuracy is lost when sin(π− δ) is computed

rather than sin(δ). This additional rounding error would not only pollute the dif-

ferentiation matrix but also propagate in the subsequent matrix multiplications.

It is noted that flipping was first inadvertently implemented via the odd-even

decomposition method (Solomonoff, 1992). As the symmetry property (3.2.6) means

that only half of the matrix D(k) needs constructing and storing, Solomonoff (1992)

initially introduced the technique as a means of reducing data storage and increasing

computational speed. The accuracy improvement it provided — as only the most

accurate half of the matrix was stored by chance — was thereafter considered and

explained by Don & Solomonoff (1995). As the odd-even decomposition method

offers no further practical advantage beyond flipping, it is not considered herein.

3.2.3 Negative-Sum Trick

A well-known technique (see, for example, Baltensperger & Berrut (1999); Bal-

tensperger & Trummer (2003); Bayliss et al. (1994); Costa & Don (2000); Trefethen

(2000)) to improve the accuracy of numerical differentiation involves calculating the

diagonal elements of the matrix not directly, but via an alternative formula. By

noting that a CDM of any order k ≥ 1 should differentiate a constant vector to the

zero vector it follows that, if v is an (N + 1) vector with vi = 1 for i = 0(1)N , then

D(k)v = 0 =⇒
N∑
j=0

D
(k)
i,j = 0 i = 0(1)N. (3.2.11)

That is, the sum of the elements in each row of D(k) should equal 0. Due to rounding

errors, (3.2.11) is not obtained in practice; instead, in computation, one finds

D(k)v = e =⇒
N∑
j=0

D
(k)
i,j = ei i = 0(1)N, (3.2.12)

wherein e is a vector formed from accumulation of machine-precision errors. From

(3.2.11) it therefore follows that the diagonal entries can be obtained as

D
(k)
i,i = −

N∑
j=0
j 6=i

D
(k)
i,j i = 0(1)N, (3.2.13)
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whence the name negative-sum trick (NST) is coined. The CDM so constructed

then satisfies (3.2.11). In comparison with (3.2.12), this amounts to re-defining the

entry D
(k)
i,i to (D

(k)
i,i − ei). It is noted that there is no restriction on which entry

is chosen to be computed via (3.2.13): it need not be the diagonal one. However,

there is no increased benefit from choosing other entries (Bayliss et al., 1994). It is

noted (Baltensperger & Trummer, 2003, p. 1470) that, in order to retain greatest

accuracy in the summation (3.2.13), the terms should be added in order of increasing

magnitudes, beginning with the smallest. This suggestion will be considered when

the NST is implemented; however, it will also be shown to be ineffective for the

purposes of solving PDEs.

Summarising the three techniques considered above, both the use of trigonomet-

ric identities (3.2.1) and flipping (3.2.6) improve the accuracy of all entries D
(k)
i,j ,

and consequently the matrix D(k) itself. In contrast, the NST does not necessar-

ily improve the accuracy of the diagonal terms; by modifying the diagonal entries,

the diagonal entries themselves are made potentially less accurate; that is, at the

expense of a less accurate D(k), one aims to obtain a more accurate u
(k)
N .

These accuracy optimisations will be tested, verified and compared in §4.1 ap-

proximating spatial derivatives in model problems.

3.3 Spectral Integration

Considered now is an integration technique whose accuracy matches that of the

spectral differentiation employed. This is an essential tool in the evaluation of

mass-conservation of the evolving thin film satisfying the evolution equation of §2.1.

Using the notation u(x, t) to represent the film thickness at time t in the canonical

interval x ∈ [−1, 1], the non-dimensional mass M(t) of the film is

M(t) =

∫ 1

−1

u(x, t) dx. (3.3.1)

Following Trefethen (2000, p. 125), the integral

I =

∫ 1

−1

f(x) dx (3.3.2)
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can be recast as the first-order ODE

u′(x) = f(x), u(−1) = 0, x ∈ [−1, 1], (3.3.3)

with solution u(x) =

∫ x

−1

f(t) dt, (3.3.4)

from which it follows that I = u(1) = u0. CDMs can now be used to solve ODE

(3.3.3): by first discretising (3.3.3) at the N+1 nodes (3.1.6), the exact solution u(x)

is approximated by its spectrally-accurate interpolant uN(x) (3.1.2). The first-order

CDM is then employed to approximate the derivative, so that

D(1)uN = f, (3.3.5)

where f has entries fj = f(xj) for j = 0(1)N . The system (3.3.5) cannot be inverted

in its current form because the matrix D(k), for all k ≥ 1, is singular1. However,

as u(−1) = uN = 0, this boundary condition can be used to remove the (N + 1)st

equation in (3.3.5), thereby stripping the last row and column of D(1), to leave a

reduced invertible matrix D̃(1). Reduced forms ũN and f̃ similarly ensue, yielding

the N ×N system

D̃(1) ũN = f̃ =⇒ ũN = [D̃(1)]−1f̃ , (3.3.6)

in which the boundary condition has been enforced. By recalling that the original

value to be calculated was I = u0, it follows that

I =

∫ 1

−1

f(x) dx ≈
N−1∑
j=0

[(D̃(1))−1]0,j fj, (3.3.7)

to spectral accuracy. The definite integral I in (3.3.7) is thus the scalar product of

the first row of [D̃(1)]−1 and f̃ . It is noted that the tilde has been dropped on the

terms fj, as f̃j = fj for j = 0(1)(N−1). This process guarantees that the mass

M(t) (3.3.1) of the fluid film is computed to machine precision, thereby offering a

test metric for evolving flows in the absence of evaporation.

1Thus in discrete form, there is no analogy to first finding the general solution and then
enforcing the boundary condition(s).
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3.4 Matlab and Chebfun

In almost all ophthalmic literature, programs such as Matlab or Fortran have

been used in the numerical solution of the evolution equations. Temporal integrators

such as DASPK (Braun & Fitt (2003), and Braun & King-Smith (2007)), DASSL (Maki

et al., 2010a) and in-built Matlab routines (Braun et al. (2012), Li & Braun (2012)

and Winter et al. (2010)) feature. Though such routines have advantages of being

efficient, accurate and quick to implement, one major disadvantage is that they are

effectively ‘black-box’ functions. Because their inner workings are opaque, gaining

an understanding of the scale of errors incurred is not possible. Hence, in the absence

of exact solutions to the governing equation (2.1.55), the approaches adopted above

have gone some way to gaining such an understanding.

For temporal integration Matlab’s tried-and-trusted ode15s is to be employed.

The temporal integrator features two user-specified parameters, AbsTol and RelTol,

which implicitly act as error tolerances. During temporal integration, approxima-

tions of the absolute and relative errors in the numerical solution are required to

be smaller in magnitude than respectively AbsTol and RelTol. If these tolerances

are not met, a smaller step size is automatically chosen internally. When ode15s is

employed in §4.3, the effect that varying these two parameters has on the accuracy

of the computed solutions will be demonstrated and calibrated.

In addition to Matlab’s temporal-integration solvers, other Matlab routines

and packages are useful in solving the ophthalmic evolution equation (2.1.55). One

such package is Chebfun (Driscoll et al., 2014), containing a myriad of tools based

on the application of Chebyshev polynomials to interpolation, differentiation and

integration. Two such tools are considered in this thesis.

First, the Chebfun function diffmat(N + 1,k) returns the (N + 1) × (N + 1)

kth-order Chebyshev differentiation matrix. Evaluating the matrix using accuracy-

optimising techniques such as those presented in §3.2, it is possible for diffmat

to construct CDMs of all orders to near-machine precision. After the accuracy-

optimising techniques outlined in §3.2 are tested and validated, the resulting con-

struction of D(k) is compared against the matrix generated via diffmat in §4.1.3.

Second, integration carried out via (3.3.7) is compared against a spectrally accu-

rate integration tool in Matlab. If f in (3.3.5) is a vector of nodal data evaluated

at the Chebyshev extrema, the Matlab code sum(chebfun(f)) performs spectral
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integration1 to approximate (3.3.2). By first interpolating the data via the command

chebfun(f), the resulting interpolant is integrated via the function sum. Analogous

testing to diffmat will be undertaken for sum; numerical integration using both sum

and (3.3.7) will be performed to ensure numerical integration is performed spectrally

accurately, as close to machine precision as possible.

3.5 Spatial Discretisation of Boundary Conditions

Accuracy-optimised differentiation matrices D(k) were constructed in §3.2, in which

their use in approximating spatial derivatives was outlined in some detail. Their

application to the discretisation of the spatial components of evolution equation

(2.1.55) and boundary conditions (2.2.13) and (2.2.24) is now considered. Techniques

for the enforcement of spectrally-accurate boundary conditions are also discussed.

The complexity of the Cox-Voinov condition (2.2.24) (relative to, say, the trivial-

to-implement Dirichlet pinning condition (2.2.2)) demands a detailed discussion of

the techniques used for implementing BCs, not least because the nonlinear dynamics

of the boundary condition (2.2.24) must be captured to spectral accuracy. The

ideas introduced will for the purposes of illustration initially be applied to a general

second-order differential equation, and subsequently extended to a time-dependent

fourth-order spatio-temporal PDE, as per the evolution equation (2.1.55). In order

to motivate boundary-condition enforcement, consider first the two-point Dirichlet

boundary-value problem (BVP)

r(x)u′′(x) + s(x)u(x) = f(x), u(−1) = A, u(1) = B, x ∈ [−1, 1], (3.5.1)

for some continuous functions u(x), r(x), s(x) and f(x), and constants A and B.

The differential equation (3.5.1) is initially discretised at the N+1 Chebyshev nodes

(3.1.6), to yield the discrete system

r(xj)u
′′
N(xj) + s(xj)uN(xj) = f(xj), j = 0(1)N, (3.5.2)

1The Chebfun package additionally offers the function cumsummat, which generates the Cheby-
shev integration matrix, allowing for matrix-vector multiplication to evaluate integrals as per
(3.3.7). The matrix is constructed under the assumption that the result is zero at x = −1 as in
(3.3.4). This method yields results as accurate as those presented, computed by using the sum

command, but are not presented here.
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or, in vector form,

Ru′′N + SuN = f, (3.5.3)

where f has entries fi = f(xi), and R and S are diagonal matrices with entries Ri,j =

δijr(xi) and Si,j = δijs(xi), all with i, j = 0(1)N . Upon approximating the derivative

in (3.5.3) using the second-order CDM via (3.1.11), the spatial discretisation (3.5.3)

becomes

MuN ≡
[
RD(2) + S

]
uN = f. (3.5.4)

Enforcement of the boundary conditions in even this simple example can be

dealt with in different ways. The standard technique for enforcing a single pair

of boundary conditions is row replacement (Trefethen, 2000), occasionally referred

to as “boundary bordering” (Boyd, 2001, p. 111). With a single subscript i on a

matrix denoting the ith row, the boundary conditions (3.5.1) are discretised via the

(N + 1) × (N + 1) identity matrix I, so that u(−1) = u(xN) = INuN = A and

u(1) = u(x0) = I0uN = B. Then, replacing the first and last rows of system (3.5.4)

with this boundary discretisation yields
1 0 . . .

M1,0 . . . M1,N

. . . Mi,j . . .

MN−1,0 . . . MN−1,N

. . . 0 1





u0

...

ui
...

uN


=


B

f(x1)

f(xi)

f(xN−1)

A

 (3.5.5)

which, as a linear set of N+1 equations for N+1 unknowns, can be solved to obtain

uN .

An alternative approach for discretisation of the boundary conditions uses the

known values of u0 = B and uN = A in the solution vector uN . With the two

boundary values known, it follows that the system (3.5.4) is equivalently

M0,0 . . . M0,j . . . M0,N

. . .
...

...

Mi,0 . . . Mi,j . . . Mi,N

...
...

. . .

MN,0 . . . MN,i . . . MN,N





B
...

ui
...

A


=



f(x0)
...

f(xj)
...

f(xN)


. (3.5.6)
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With u0 and uN known, the first and last rows of (3.5.6) are redundant, and hence

so are the first and last columns: such columns multiply known values B and A and

so can be absorbed into the right hand side. Thus the (N + 1) × (N + 1) system

can be reduced to the (N − 1)× (N − 1) system M1,1 . . . M1,N−1

. . . Mi,j . . .

MN−1,1 . . . MN−1,N−1


 u1

ui

uN−1

 =

 f(x1)−M1,0B −M1,N A

f(xi)−Mi,0B −Mi,N A

f(xN−1)−MN,0B −MN,N A

 . (3.5.7)

The reduced system (3.5.7) can be solved to obtain (only) the interior components

ûN say, which, when augmented by the known values u0 and uN , gives the full

solution uN .

Another common procedure in the treatment of boundary conditions is to ho-

mogenise the conditions (e.g. Boyd (2001, p. 12 & p. 112) and Trefethen (2000, p.

135)) by the introduction of a new variable. This modifies the differential equation

itself, rather than the resulting discrete system as in (3.5.5), to which homogeneous-

boundary-condition techniques are applied. In the case of (3.5.1), let the function

b(x) satisfy the boundary conditions exactly; i.e. b(−1) = A and b(1) = B. The

function b(x) is typically constructed using the lowest-order polynomial possible. For

the conditions of (3.5.1), b(x) is trivially found as b(x) = (x+ 1)B/2− (x− 1)A/2.

Defining the new function w(x) by w(x) = u(x)− b(x), the BVP (3.5.1) transforms

to the homogeneous 2-point BVP for w(x),

r(x)w′′(x) + s(x)w(x) = g(x), w(−1) = w(1) = 0, (3.5.8)

where g(x) ≡ f(x) − r(x)b′′(x) − s(x)b(x). BVP (3.5.8) now discretises (using the

above approach) to

M0,0 . . . M0,j . . . M0,N

. . .
...

...

Mi,0 . . . Mi,j . . . Mi,N

...
...

. . .

MN,0 . . . MN,i . . . MN,N





0
...

wi
...

0


=



g(x0)
...

g(xj)
...

g(xN−1)


(3.5.9)

which can again be reduced, as per the reduction of (3.5.6) to (3.5.7), to yield the
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(N − 1)× (N − 1) system M1,1 . . . M1,N−1

. . . Mi,j . . .

MN−1,1 . . . MN−1,N−1


 w1

wi

wN−1

 =

g(x1)

g(xi)

g(xN)

 , (3.5.10)

which can be solved to obtain the vector wN , from which the elements of uN are

obtained using ui = wi + b(xi), i = 0(1)N , noting w0 = wN = 0.

The above analysis demonstrates how a simple differential equation as per (3.5.1)

can be spatially discretised, along with the boundary conditions, under the unifying

notion of “row replacement”. Systems (3.5.5), (3.5.7) and (3.5.10) all yield spec-

trally accurate approximations to solutions of BVP (3.5.1). The three approaches

are introduced to highlight a near-global issue with the ophthalmic literature: the

near-absence of any details of implementation of solution processes used to solve the

governing PDEs. By contrast, in this work, numerical approaches will be explic-

itly presented and the errors they incur will be compared. Only in this way can a

particular approach be justified on a quantifiable basis. To this end, all three ap-

proaches have been implemented for a specific test problem for completeness: with

r(x) = 2, s(x) = − exp(−x), f(x) = 2 exp(x) − 1 and u(x) = exp(x) in (3.5.1).

The associated 2-norm errors (defined in (4.1.1)) of numerical solutions for u(x) are

3.3 · 10−14 for discretisation (3.5.5), 4.0 · 10−15 for discretisation (3.5.7) and 1.3 · 10−15

for discretisation (3.5.10). These results were obtained with (only) N = 20 nodes,

in the Matlab environment. Whilst all three approaches yield spectrally accu-

rate solutions, the third solution is the most accurate. This can be attributed to

the homogenisation of the boundary which effectively removes the contribution of

the outermost entries of the CDMs. As the outermost rows and columns of D(k)

contain the entries with the largest magnitudes (see Figure 3.1) and thus largest

absolute errors, removal of these rows consequently yields a system (3.5.10) that is

less affected by rounding error than either (3.5.5) or (3.5.7). Whilst the governing

equation (2.1.55) and boundary conditions (2.2.13) and (2.2.24) does not necessarily

admit row-replacement techniques, advantage can still be taken of this observation

(q.v. (5.2.4) et seq.) in ophthalmic modelling.

For spatio-temporal PDEs with fourth-ordered spatial derivatives (and, generally

problems with spatial order greater than second), row-replacement techniques can

still be implemented; however, the decision of which rows to replace is less clear, even
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ambiguous. As two conditions are to be enforced at each boundary, the first and

last rows of the system can accommodate only two of the four conditions. Whilst

other rows (such as i = 1 and i = N − 1) could be replaced, other techniques are

typically applied. Indeed, on the topic of row replacement, Driscoll & Hale (2016,

p. 109) comments “it quickly becomes clear that the row replacement strategy is an

ad hoc one outside of the familiar two-point, second-order problem”. Thus, whilst

row-replacement techniques may be used for ophthalmic models, the act of row re-

placement may not be extendable to future studies employing more general boundary

conditions, and consequently alternative techniques may be preferable. Such tech-

niques, for the enforcement of boundary conditions for fourth-order problems, are

now briefly discussed, whereafter a modus operandi is established for enforcing the

non-trivial boundary conditions arising in the context of thin-film ophthalmic flows.

3.5.1 Spectrally-Accurate Enforcement of Four Boundary

Conditions

Multiple techniques are available for the enforcement of four boundary conditions;

two at each of two locations. Before describing the technique implemented for the

Cox-Voinov condition (2.2.24), similar methods are briefly reviewed, noting difficul-

ties that are faced unless all BCs are linear.

Spectral penalty methods (Hesthaven, 2000) enforce boundary conditions via

the inclusion of a penalty term in the differential equation. For the second-order

problem1 (3.5.1), the ODE becomes

r(x)u′′(x) + s(x)u(x)− f(x)− τ+Q+(x)(u(1)−B) + τ−Q−(x)(u(−1)− A) = 0,

(3.5.11)

wherein the coefficients τ± parameterise the enforcement of the boundary condi-

tions and Q±(x) are polynomials satisfying Q+(x0) = Q−(xN) = 1 and Q+(xj) =

Q−(xj) = 0 for all other j. Thus, it can be seen that the penalty term is tanta-

mount to a weighted residual of the boundary conditions being enforced throughout

the entire solution domain. Due to the functional forms of Q±(x), this forces the

boundary penalty term to feature in only the appropriate boundary row of the spa-

1Of course, the technique is applicable in the fourth-order case; however, for simplicity the
previous second-order case is considered as the method is not to be implemented fully within this
thesis.
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tial discretisation of (3.5.11). The values of τ± are computed to ensure stability

in the context of minimising an error norm; full details are presented in Hesthaven

(2000). Evaluation of parameters τ± required for numerical stability is not trivial

for nonlinear boundary conditions and differential equations, e.g. as in the present

ophthalmic case (2.1.55) with boundary conditions (2.2.24). In particular, the time

dependent Cox-Voinov condition may require τ± to be updated at each time step;

i.e. τ± = τ±(t). Thus, whilst the method may be applicable and adequately en-

force simple boundary conditions, it is not considered adequate for the evolving

ophthalmic Cox-Voinov condition.

An alternative approach in solving fourth-order BVPs is to apply two of the

boundary conditions in their natural locations, at Chebyshev nodes x0 = 1 and

xN = −1, and to sacrifice two internal locations, say x1 and xN−1, at which to

use the boundary conditions to eliminate unknowns u1 and uN−1 respectively. For

example, a boundary condition of the form u′(1) = A for some constant A can be

used to eliminate u1, as

u′(1) =
N∑
j=0

D
(1)
0,juj = A =⇒ u1 =

1

D
(1)
0,1

(
A−D

(1)
0,0u0 −

N∑
j=2

D
(1)
0,juj

)
. (3.5.12)

Note that, if Dirichlet conditions are additionally specified, they can be substituted

explicitly as u0 and uN in (3.5.12). This technique was first considered in Merryfield

& Shizgal (1993) and has since been generalised for any i = 1(1)(N − 1) (Fornberg,

2006, equation 2.5). The nonlinear nature of the Cox-Voinov condition (2.2.24)

manifestly does not admit for such a rearrangement, and consequently the technique

cannot be considered herein.

The immediate drawback of row replacement for higher-order ODEs is that data

from internal rows of the discretised ODE are lost in the replacement process rather

than just the boundary rows. To address this shortcoming Fornberg (2006) intro-

duced a fictitious-point method, in which new nodal points are introduced. These

so-called fictitious points, denoted xFP, increase the dimension of the system. Re-

arrangement of the boundary conditions, conducted as per (3.5.12), can be used

to eliminate the value of u(xFP) at these new nodal points. Then, the increased

dimension accommodates the enforcement of the boundary condition(s), whilst the

original dimension of the system admits only the spatial discretisation of the dif-

ferential equation. The disadvantage of this approach is that, due to the intro-
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duction new nodal data, the construction of a new differentiation matrix is neces-

sitated. Such a matrix would not necessarily allow for the implementation of the

accuracy-enhancement techniques introduced in §3.2. Moreover, it is not clear how

the fictitious-point method would be able to accommodate the nonlinear boundary

conditions such as the Cox-Voinox or no-flux conditions. Thus, the fictitious-point

method is not obviously suited to the fourth-order BVPs arising in ophthalmic mod-

elling. However, there is a more effective node-augmentation technique, a relatively

new one, that is applicable, and to which attention now turns.

3.6 Rectangular Spectral Collocation

Rectangular spectral collocation (Driscoll & Hale, 2016; Xu & Hale, 2016) is a rel-

atively recently published (and not yet widely used) numerical technique aimed at

facilitating the spectrally-accurate implementation of boundary conditions. The nu-

merical method is applicable to BVPs of diverse spatial order, and is an extension

of previously introduced Chebyshev-differentiation methods. Rectangular colloca-

tion relies on a process referred to as resampling, wherein nodal data of a function

u(x) evaluated at one set of nodes, {xj}Nj=0, is interpolated onto a different nodal

set, {yj}Ñj=0. With Ñ = N −M , where M is the number of boundary conditions,

resampling amounts to interpolating the N + 1 nodal data u(xj) onto Ñ + 1 nodal

data u(yj). By construction, the smaller system effectively has M “free locations”

for the simultaneous and uniform enforcement of all M boundary conditions1.

The mapping under which resampling is performed is obtained using a barycen-

tric interpolation formula (Berrut & Trefethen, 2004) that interpolates a set of nodal

data {xj, uj}Nj=0 via the rational function

p(x) =

∑N
j=0(wj/(x− xj))uj∑N
k=0wk/(x− xk)

, (3.6.1)

wherein the weights {wk}Nk=0 depend on the locations of the nodes {xj}Nj=0. Sub-

stituting x = yj into (3.6.1) then yields an approximation of the value u(yj). By

noting that this relationship is linear in the original function values u(xj), this can

1Thus, in some sense, rectangular collocation shares the same overall approach as the fictitious-
point method in that “space is made” by changing the dimension of the system. However, for
rectangular collocation, this is achieved after spatial discretisation of the governing equation, so
that the original forms of D(k) derived herein are still applicable.
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be written for the nodal data as

u(y) = Pu(x), (3.6.2)

where P is the so-called barycentric resampling matrix. The elements of P (3.6.1)

are given by

Pi,j =


wj

yi − xj

( N∑
k=0

wk
yi − xk

)−1

yi 6= xj,

1 yi = xj.

. (3.6.3)

It remains to define the sets of nodes to be used. The original set of nodes {xj}Nj=0

are taken to be the Chebyshev extrema (3.1.6): with this nodal distribution, the

weights wj in (3.6.1) and (3.6.3) can be obtained explicitly as (Berrut & Trefethen,

2004)

wj =
( N∏
k 6=j

(xj − xk)
)−1

j = 0(1)N. (3.6.4)

Inspection of the matrix entries in (3.6.3) demonstrates that any multiplicative factor

applied to the weights wj cancels in the matrix entries. That is, if wj = αŵj, for all

j = 0(1)N and some constant α, the matrix entries for yi 6= xk in (3.6.3) are

wj
yi − xj

( N∑
k=0

wk
yi − xk

)−1

=
αŵj
yi − xj

( N∑
k=0

αŵk
yi − xk

)−1

=
αŵj
yi − xj

1

α

( N∑
k=0

ŵk
yi − xk

)−1

,

(3.6.5)

wherein the multiplicative constant cancels. Thus, rather than computing the

weights via (3.6.4), for which wj will become increasingly large and increasingly

dominated by rounding error as N increases, the standard (Berrut & Trefethen,

2004; Driscoll & Hale, 2016) rounding-error-free values of

wj =
(−1)j

1 + δj0 + δjN
, j = 0(1)N (3.6.6)

are instead used. It is noted that (3.6.4) is applicable to a general set of nodes,

whereas the explicit form of weights (3.6.6) applies to only the Chebyshev extrema

(3.1.6). Following Driscoll & Hale (2016), the set of nodes onto which the Chebyshev
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extrema xj are resampled are the Chebyshev roots, given by

yk = cos

(
(2k + 1)π

2Ñ + 2

)
, k = 0(1)Ñ , (3.6.7)

for Ñ < N . The set of nodes is chosen so that they exclude the boundary points,

i.e. |yk| < 1 for all k = 0(1)N ; the reason for this will follow in due course.

It is worth commenting on the implementation details of constructing P. In

Figure 1 of Driscoll & Hale (2016) a four-line Matlab code for the evaluation of

P is given: notably, this contains a “normalisation” step, which otherwise does not

appear as a suggestion or requirement in the remainder of their study. The normali-

sation step scales the matrix entries according to the row sum, which mathematically

amounts to re-defining the entries Pi,j according to

Pi,j =
Pi,j∑N
k=0 Pi,k

i, j = 0(1)N. (3.6.8)

The rescaling of (3.6.8) can be seen as the rectangular-matrix analogy to the ideas

underpinning the negative-sum trick (3.2.11); the rectangular matrix P should re-

sample a constant vector to itself, analogously to how a differentiation matrix D(k)

should differentiate a constant vector to 0. The technique is also similar to the

construction of the barycentric interpolation formula (Berrut & Trefethen, 2004,

equation 4.1), wherein the interpolation formula is divided by a term equalling 1.

However, when the nodal values are chosen such that yi = xj for some i and j,

whence the entry Pi,j = 1 in (3.6.3), it is vital to the accurate construction of P

that Pi,j = 1 is set prior to the normalisation step (3.6.8). This contradicts the

ordering of the code for generating P given in Driscoll & Hale (2016), wherein the

normalisation step occurs first. In their formulation, due to the code used to gen-

erate P, the ordering is not important; however, for matrices P constructed using

software other than Matlab, or without Matlab’s bsxfun code, replication of

the code presented by Driscoll & Hale (2016) will not evaluate an accurate matrix

P. This comment is highlighted here in order to facilitate replication of this tech-

nique outside of Matlab or the bsxfun code, as it has neither been recognised nor

addressed elsewhere.

The implementation of rectangular collocation for the enforcement of bound-

ary conditions is now detailed. Consider a fourth-order two-point boundary-value

94



3.6 Rectangular Spectral Collocation

problem of the form

r(x)u′′′′(x) + s(x)u(x) = f(x), x ∈ [−1, 1]

u(1) = a1, u(−1) = a2, u
′(1) = a3, u

′(−1) = a4,
(3.6.9)

for continuous functions r(x), s(x) and f(x), and constants aj, j = 1(1)4. The

spatial discretisation of (3.6.9) follows analogously to (3.5.3) and is

MuN ≡ [RD(4) + S]uN = f, (3.6.10)

where again f has entries fi = f(xi), and R and S are diagonal matrices with

entries Ri,j = δijr(xi) and Si,j = δijs(xi), i, j = 0(1)N . With single subscripts on

matrices again enumerating their constituent rows, the boundary conditions (3.6.9)

are discretised via

u(1) = I0uN = a1, u(−1) = INuN = a2,

u′(1) = D
(1)
0 uN = a3, u′(−1) = D

(1)
N uN = a4.

(3.6.11)

The spatial discretisation (3.6.10) is essentially an (N + 1) vector of nodal data

evaluated at the Chebyshev extrema (3.1.6). Thus, as per (3.6.2), the nodal data

can be resampled onto the Chebyshev roots (3.6.7). Because 4 boundary conditions

must be accommodated, the values of N and Ñ are related by Ñ = N − 4. The

resampling matrix P is constructed from (3.6.3), and pre-multiplication of (3.6.10)

by P yields

(PM)uN = Pf. (3.6.12)

Recall that (3.6.10) represents N + 1 equations in as many unknowns, whereas

(3.6.12) represents now only Ñ + 1 = N − 3 equations in the original quantity

of unknowns. Thus, the dimension of the new system is smaller than the original

system, by 4 equations; the number of boundary conditions requiring enforcement.

Consequently, if the resampled system is augmented by the 4 discretised boundary
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conditions (3.6.11), the following (N + 1)-square system is recovered;
I0

IN

D
(1)
0

D
(1)
N

(PM)

uN =


a1

a2

a3

a4

Pf

 , (3.6.13)

which can be inverted to obtain a nodal solution uN . The application of rectangular

collocation has thus admitted direct enforcement of multiple boundary conditions,

bypassing in a general manner the ambiguity inherent in row-replacement tech-

niques. In the case of (3.6.9), the 4 boundary conditions have been enforced to

spectral accuracy. The choice of the Chebyshev roots (3.6.7), which notably do not

contain the boundary values, ensures that the system (3.6.13) does not enforce both

boundary conditions and spatial discretisations at the same set of points. This is

of particular importance when the technique is extended to time-dependent par-

tial differential equations. Such considerations are made and discussed further in

§4.3, where rectangular collocation is employed on a test problem for the purpose

of validation and error calibration.

3.6.1 Optimisation of Accuracy

The choice of the original (3.1.6) and resampled (3.6.7) nodes suggests a novel im-

provement in accuracy for the construction of P analogous to the trigonometric

identities introduced in §3.2.1 for the construction of D(k). In constructing the

matrix P, the sum

S1,i ≡
N∑
k=0

wk
yi − xk

(3.6.14)

contains terms whose denominator may be small for some i and k values (despite the

sets of nodes used being different). This invites the use of a trigonometric identity

to re-write the difference of the nodes as

yi − xk = cos
((2i+ 1)π

2Ñ + 2

)
− cos

(kπ
N

)
= 2 sin

((2Ni+N + 2Ñk + 2k)π

4N(Ñ + 1)

)
sin
((−2Ni−N + 2Ñk + 2k)π

4N(Ñ + 1)

)
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= 2 sin(Ωi,k) sin(Ω−i−1,k), Ωi,k ≡
(2Ni+N + 2Ñk + 2k)π

4N(Ñ + 1)
. (3.6.15)

Substitution of (3.6.15) in S1,i yields S2,i given by

S2,i ≡
N∑
k=0

wk
2 sin(Ωi,k) sin(Ω−i−1,k)

. (3.6.16)

Thus both S1,i and S2,i should be equivalent for all i = 0(1)Ñ . The introduction of

the trigonometric identity (3.6.15) is now readily shown to be beneficial in evaluating

the sum (3.6.14). Absolute and relative errors in the evaluation of the sums for S1,i

(3.6.14) and S2,i (3.6.16) are computed for wk given by (3.6.6), i = 0(1)Ñ = 0(1)47

and N = 51 in Figure 3.4. Absolute and relative errors are computed analogously

to the previous absolute and relative error computations of (3.2.9) and (3.2.10). As

the reciprocal of the summation is evaluated in Pi,j (3.6.3), the errors in S−1
1,i and

S−1
2,i are also presented.

As evidenced by Figure 3.4, the error in evaluating the summation (3.6.14) is

reduced by an order of magnitude, and consequently the matrix P itself is con-

structed with a reduced accumulation of rounding error. This is of greater impor-

tance when the full spatial discretisation (3.6.13) is concerned. The matrix M in

(3.6.13) contains both accuracy-optimised matrices D(k) and the resampling matrix

P. Any accuracy-enhancement techniques applied to the matrices D(k) are of re-

stricted value if other matrices within the system, such as P, do not share the same

level of accuracy. Despite this fact, and the wealth of accuracy-enhancement tech-

niques available in the literature for D(k) (see the references in §3.2), the approach

of optimising the construction of the matrix P is, whilst seemingly obvious, novel

to the present work. Consequently, the matrix P will in all applications herein be

evaluated using (3.6.15) and (3.6.16) and not the standard form (3.6.14). Full details

of this accuracy-enhancement are given in Appendix A.3.

3.7 Summary and Discussion

Numerical techniques have been considered for the spectrally accurate differentiation

of nodal data; specifically, the methods are based on Chebyshev nodes. The discrete

differentiation has been extended to higher orders with a view to application to
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Figure 3.4: Differences in the absolute (top) and relative (bottom) errors in the
theoretically equivalent sums of S1,i (3.6.14) (blue) and S2,i (3.6.16) (red). As the
inverse of the sums are computed in (3.6.1), corresponding errors in inverses are
also presented. At least an order of magnitude reduction in error is observed upon
application of the identity (3.6.15). Relative error norms are equivalent for both Sn,i
and S−1

n,i , so that only half the data is presented.

fourth-order spatial differentiation occurring in the equations of ophthalmic flows.

Differentiation matrices of orders 3 and 4 have been derived using computer-algebra

techniques, as a novel extension of the well-known matrices of orders 1 and 2 in the

literature.

Several approaches have been considered for the optimisation of rounding er-

rors in not only the matrices D(k) but also the matrix-vector multiplication behind

all discrete differentiation and integration. The majority of techniques have been

demonstrated to reduce the impact and accumulation of rounding errors, as evi-

denced in, for example, Figures 3.2 and 3.3. A full comparison of accuracy tech-
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niques and constructions of D(k) is deferred to §4, wherein all numerical techniques

are validated and compared against in-built Matlab functions, whose temporal

integrator ode15s was introduced to advance initial profiles in time using adaptive-

error-control techniques.

The exact implementation of Chebyshev differentiation matrices for the numer-

ical solution of partial differential equations is dependent on the type of boundary

conditions requiring enforcement. The review of the boundary conditions used in the

literature on the modelling of the tear film in §2.2 necessitated novel boundary condi-

tions featuring nonlinearity, time- and space-derivatives. Thus, the implementation

of CDMs has itself demanded implementation of a recently published rectangular-

matrix resampling technique (Driscoll & Hale, 2016), as well as a novel method for

improving its accuracy through trigonometric substitutions. A bespoke extension

of this methodology will be presented and applied in §5.2 wherein the ophthalmic

evolution equations are discretised.

Another notable technique used in Chebyshev spectral discretisation, though not

implemented here, is the nodal-scaling modification of Kosloff & Tal-Ezer (1993)1.

The Chebyshev nodes (3.1.6) are known to cluster at the boundary, with an order

O(N−2) minimal grid spacing, and whilst this is advantageous for the ophthalmic

model (as explained in the opening of this chapter), it causes a restriction on tempo-

ral integration and stability. To navigate this restriction, Kosloff & Tal-Ezer (1993)

introduce a rescaling on the nodal set (3.1.6), via an inverse-sine-function transform,

such that the minimum nodal spacing becomes order O(N−1), and the restriction on

temporal integration is reduced. Evidenced by the calculations of Don & Solomonoff

(1997, Table 3), this can have a beneficial effect on rounding error, as the differ-

entiation matrices D(k) are constructed differently to account for this scaling. The

technique is mentioned because it has been implemented (only) once in the oph-

thalmic literature, in the work of Heryudono et al. (2007). Whilst such a scaling of

the Chebyshev nodes may be of benefit to the numerical solutions obtained herein,

it has not been implemented in this thesis. This is due to the application of rect-

angular collocation. Both the rectangular collocation technique and the mapping of

Kosloff & Tal-Ezer (1993) aim to transform derivative data from one nodal set to

another, meaning that the application of both techniques would induce two distinct

mappings, which would add algebraic complexity to the system. More importantly,

1This was implemented in order to check performance but, since it was not used to compute
results hereafter, no further details are presented.
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the order O(N−1) grid spacing offered by Kosloff & Tal-Ezer (1993) would be lost

once the data is effectively resampled back onto the order O(N−2) minimum nodal

spacing of (3.6.7).
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Chapter 4

Validation of Numerical Tools

Before numerical solutions of the governing equations (2.1.55) can be obtained, the

numerical techniques needed to solve them require thorough validation to ensure

the solutions so obtained are accurate. That is, the range of accuracy-improvement

techniques for the construction of first-order Chebyshev differentiation matrices

(CDMs) outlined in §3.2 must now be implemented and validated before higher-

ordered CDMs can be considered. Then, higher-ordered numerical differentiation

of discrete data is compared in §4.1.1 using both powers of the first-order matrix

D(1) (3.1.11) and direct construction using explicit formulae (3.1.14). A thorough

analysis ensures that fourth-order differentiation is performed to machine accuracy

in finite-digit arithmetic when the governing equations (2.1.55) are spatially discre-

tised.

Validation will comprise application of the numerical methods to test problems

involving both differentiable functions (§4.1.3) and differential equations (§4.3). As

the exact solutions to such test problems are known, the numerical error is cali-

brated in terms of parameter variations (e.g. the number of nodes or temporal error

tolerances).

In addition to this, methods are discussed in §4.4 for approximating the error

in the numerical solutions of the tear-flow model, even though exact solutions are

therein unknown. Such methods, in addition to the validation of spectral differentia-

tion, will optimise the accuracy of the tear-film solutions computed in the subsequent

chapter.
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4. VALIDATION OF NUMERICAL TOOLS

4.1 Spectral Differentiation

Validation of numerical tools requires an understanding and quantification of the

errors involved, in addition to how such errors behave and depend on parameters

such as N or temporal error tolerances. To facilitate comparisons of such parameter

variations, computing errors in terms of scalars is preferable. Thus, to quantify the

errors in both matrices and vectors, norms are introduced. For a vector v with real

or complex entries vi, i = 0(1)N , the infinity-norm and 2-norm are respectively

‖v‖∞ = max
i
|vi| and ‖v‖2 =

√√√√ N∑
i=0

|vi|2. (4.1.1)

For an N ×M real or complex matrix A, the Frobenius norm is given by

‖A‖ =

√√√√ N∑
i=1

M∑
j=1

|Ai,j|2. (4.1.2)

Both (4.1.1) and (4.1.2) admit quantification of errors in respectively vector and

matrix quantities; i.e. the errors in u
(k)
N and D(k).

The aims of this section are threefold. Firstly, to validate that the accuracy-

enhancement techniques are beneficial to the construction of the matrices D(k).

Whilst more accurate differentiation matrices are of course desirable, accuracy is

sought in not only in the differentiation matrix D(k) itself, but also the numerical

derivative u
(k)
N it evaluates. Thus, secondly, to demonstrate the effect that the dif-

ferent ways in which matrices can be computed (e.g. powers or explicit formulae)

affects the accuracy of the matrix-vector product D(k)uN . Finally, once the most

accurate formulation of D(k) is understood within the context of spectral differen-

tiation, a comparison is to be made between the novel matrix formulations herein

and widely used intrinsic Matlab functions.

Before higher-order differentiation can be undertaken, validation of the accuracy-

enhancement techniques of the first-order CDMs is required. To achieve this, D(1)

is constructed both with and without the accuracy-enhancement techniques of §3.2.

Explicitly, the matrices D(1) are constructed for N = 20(1)100, for both standard

formulae (3.1.10) and with the inclusion of the accuracy-enhancement techniques

of §3.2. As the negative-sum trick (NST) (3.2.13) is implemented with the aim of
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Figure 4.1: Relative error (4.1.3) in the matrix D(1) using standard formulae (blue)
(3.1.10) and application of trigonometric identities (red) (3.2.2) and flipping (3.2.6).
The relative error in the standard construction of D(1) is demonstrated to increase
approximately linearly with N , whereas application of accuracy-enhancement tech-
niques yields a more consistent error with increasing N . This is a welcome discovery.

increasing the accuracy of the numerical derivatives u
(k)
N , rather than the matrix

D(k) itself, the technique is not included in this test. The relative error in D(1) is

computed using the Frobenius norm (4.1.2), as

‖D(k) −D
(k)
dp ‖

‖D(k)
dp ‖

(4.1.3)

for k = 1, wherein the subscript dp denotes evaluation to double precision. Relative

errors (4.1.3) are presented in Figure 4.1, in which it is evident that the trigonometric

identities (3.2.2), in addition to the flipping technique, offers a marked improvement

on the accuracy of the matrix D(1). This is particularly noticeable for increasing N ;

such an observation is in agreement with calculations presented previously in §3.2

(cf. Figures 3.2 and 3.3).

The remaining accuracy-enhancement technique to validate is the NST. As out-

lined in §3.2.3, Baltensperger & Trummer (2003) assert that magnitude-ordered

summation is required to uphold the greatest level of accuracy when the NST is

employed. Such a claim will be briefly explored as part of the present validation. To

analyse this assertion, the differentiation of a constant vector is considered in four

distinct ways. In all cases, v is a constant vector of dimension N + 1 with value 1
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4. VALIDATION OF NUMERICAL TOOLS

in each entry1. Numerical errors are computed via the 2-norm (4.1.1) whence, as v

theoretically differentiates to zero, the numerical error is ‖D(1)v‖2. The four distinct

ways of constructing D(1) are as follows:

• Method 1: by the formula (3.1.10);

• Method 2: using trigonometric identities (3.2.2), flipping and the NST; magnitude-

ordered summation is not used;

• Method 3: using trigonometric identities, flipping and the NST; magnitude-

ordered summation is employed when the NST is performed;

• Method 4: as per method 3, with magnitude-ordered summation additionally

employed when D(1)v is calculated.

The above tests are designed to show whether there is any advantage to using

magnitude-ordered summation when the NST is implemented. Results are presented

in Figure 4.2 for N = 20(1)50. To facilitate the implementation of magnitude-

ordered summation, this set of calculations were performed in Maple, in which the

ordering process could be algebraically performed.

The error norms accruing from method 1 further justify the reason for employ-

ing accuracy-enhancing techniques in evaluation of D(k); an error reduction of order

O(1000) is observed in methods 2–4 relative to method 1. Methods 2–4 reveal an

interesting result with regards to the recommendation of magnitude-ordered sum-

mation when the NST is employed. By comparison of method 2 and 3, magnitude-

ordered summation yields no benefit when it is used in the NST unless, as per

method 4, subsequent calculation also uses magnitude-ordered summation. That

is to say, any improvement in accuracy that magnitude-ordered summation may

yield on computing D(k) is subsequently lost unless future calculations involving

D(k) also adhere to the same ordering policy. This consideration is neither men-

tioned nor treated in Baltensperger & Trummer (2003) and its inclusion offers the

present calculations more stable errors for larger values of N . Whilst it may be the

case that, for certain differential equations, the enforcement of magnitude-ordered

summation is implementable, for time-dependent problems wherein time-stepping

1As the NST is implemented under the assumption that the differentiation matrix should
differentiate a constant vector to the zero vector, it is only natural that such a test should include
the constant vector.
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4.1 Spectral Differentiation

Figure 4.2: Logarithmic plot of errors incurred in the differentiation of a constant
vector. Average errors transpire to be 7.03×10−12, 3.19 × 10−14, 3.78 × 10−14, and
8.56× 10−15 for methods 1 to 4 respectively.

techniques are required, such a restriction on matrix-vector multiplication is not

viable. In particular, the scale of programming necessitated to develop bespoke

temporal integrators for the (small) additional error reduction is not feasible. Such

a consideration, motivated by the comparison of both method 3 and method 4, has

previously not been identified in the literature; although it is acknowledged that

magnitude-ordered summation is rarely mentioned therein as little more than a side

comment. Based on this analysis, the application of the NST is to be employed

exclusively without magnitude-ordered summation, as the negligible improvement

in accuracy does not justify the scale of additional programming, neither within this

thesis nor any other body of work.

The improvement in accuracy associated with the evaluation of matrix entries

in their trigonometric form is evident in the tests performed thus far. Hence, unless

otherwise stated, the trigonometric form of the matrix D(1) (3.2.2) is subsequently

used.

4.1.1 Higher-Order CDMs

The construction of higher-ordered CDMs is now considered. The extension of the

results in Figure 4.1 to second-, third- and fourth-order CDMs is first explored.
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4. VALIDATION OF NUMERICAL TOOLS

Matrices are computed using both explicit formulae (Appendix A.2) and taking

the appropriate power of the first-order matrix. The relative errors (4.1.3) in the

construction of D(k), k = 2(1)4, are summarised in Figure 4.3.

Figure 4.3 details the relative error in the computed matrices D(k), k = 2(1)4,

using both explicit formulae (Appendix A.2) and computing powers of D(1) (3.1.11).

As the moduli of largest entries of D(k) grow as order O(N2k), it is expected that

numerical-error growth occurs as both k and N increase. For k = 2, the errors

in D(2) are comparable for both explicit formulae and power format [D(1)]2. As k

increases, however, and of particular clarity in k = 4, the evaluation by explicit

formulae contains larger errors that become more pronounced as N increases. This

is perhaps surprising; indeed Trefethen (2000, p. 61 and p. 153) states that “for

simplicity, we just square D(1)” and that “this is not the most stable method, nor

the most efficient”1. A novel explanation for this is as follows. When powers of the

first-order matrix are taken, numerical errors originate in the evaluation of the entries

in D(1), which then propagate and grow when [D(1)]k is computed. Application of

accuracy-enhancement techniques such as the trigonometric identities (3.2.2) and

symmetry arguments (3.2.6) suppress this initial error, and consequently there is

less initial error to propagate the system. By contrast, when higher-order matrices

are computed from explicit formulae, the small terms that contribute the most

to the introduction of errors feature not only with increased frequency, but also

at higher powers. This is clearly evident upon inspection of the sine and cosine

terms in the denominators of the matrix entries for D(4) (A.1.4) when compared

with, say, D(2) (A.1.2). The results depicted in Figure 4.3 demonstrate that the

construction of D(k) using the matrix-power approach is thus preferable. That is

to say, higher-order matrices are to be constructed according to D(k) = [D(1)]k,

contrary to recommendations in the literature (e.g. in Trefethen (2000, p. 153) and

Costa & Don (2000, p. 156)).

4.1.2 Spatial Differentiation

The application of accuracy-enhancement techniques such as flipping has demon-

strated a reduction of rounding error in evaluating the matrices D(k). The effect of

1The notion of efficiency refers to the order of operations required to evaluate D(k), for which
recurrence formulae (e.g. Welfert (1997)) are order O(N) quicker. As the matrices need to be con-
structed only once in order to discretise the spatial components, such formulae are not considered
within this thesis, as the fractional saving in time is not tangible.
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Figure 4.3: Relative errors in the construction of D(k) for k = 2, 3, 4 (top, cen-
tre, bottom) and N = 20(1)100. As k increases, the numerical errors incurred by
obtaining D(k) directly grow more quickly than those arising by taking powers of
D(1).
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these techniques on the approximation of spatial derivatives is now considered. For

first-order differentiation the multiple constructions of D(1) are clear; the matrix can

be constructed either with or without flipping and with or without the NST. How-

ever, for higher-ordered differentiation, where D(k) = [D(1)]k, the quantity of distinct

constructions is more abundant. The NST and flipping could, theoretically, be ap-

plied both on the matrix D(1) and also on the resulting matrix D(k), once the kth

power of D(1) is taken. Thus, greater consideration of these accuracy-enhancement

techniques is required for evaluating higher-order matrices D(k), k > 1. To this end,

multiple constructions of D(2) are considered in order to approximate second-order

derivatives of the two functions

u1(x) = 1 + 9x10 and u2(x) = sin(2x), (4.1.4)

which are chosen since the former approximates a general initial profile of a 2D tear

film — a flat central region with increased gradients towards the boundary — whilst

the latter is a typical order O(1) function representative of those that appear as test-

functions in the numerical literature (e.g. Don & Solomonoff (1997) and Bayliss et al.

(1994)). Five distinct constructions of D(2) are presented1, constructed as follows:

• Method (a): D(1) is squared;

• Method (b): both flipping and the NST are applied to D(1), which is then

squared;

• Method (c): D(1) is squared, and then the NST is applied;

• Method (d): the NST is applied to both D(1) and [D(1)]2;

• Method (e): both flipping and the NST are applied to both D(1) and [D(1)]2.

The above constructions aim to demonstrate whether the accuracy-enhancement

techniques are applicable to higher-order matrices. In order to facilitate comparison

and error growth, rather than presenting numerical errors of the form

EN =
‖D(2)uN − u′′‖2

‖u′′‖2

, (4.1.5)

1A greater quantity of constructions and tests have been performed than the 5 outlined below;
however, for clarity of comparison only a sample, including the worst- and best-case constructions,
are presented here.
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4.1 Spectral Differentiation

wherein u′′ has (analytically-evaluated) entries u′′(xj) for j = 0(1)N , a moving-

average value

ẼN =
1

9

4∑
j=−4

EN+j (4.1.6)

is presented to “smooth” the data. The effect of applying the moving-average compu-

tation on sample data is shown in Figure 4.4, wherein it is revealed that it effectively

performs Savitzky-Golay filtering (Savitzky & Golay, 1964) (cf. Figure 4.4 and Luo

et al. (2005, Fig. 4)).
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Figure 4.4: Sampled numerical data for both the original error EN (4.1.5) and the

moving-average error ẼN (4.1.6) against N . The “spikey” features of the original
error data, attributed to the accumulation of rounding error for increasing N , are
smoothed out using the moving average, thereby admitting easier comparison of
methods (a)–(e) in Figure 4.5. Data presented are those of the relative error in
application of method (a) to the differentiation of u2(x).

Figure 4.5 presents moving-average relative errors (4.1.6) of the spectral differ-

entiation of functions u1(x) and u2(x) (4.1.4) using methods (a)–(e). Revealed in

Figure 4.5 is that the use of methods (d) and (e) yield a significant order O(1000)

improvement in accuracy over method (a) when computing the second-order deriva-

tive of both u1(x) and u2(x). The improvement is attributed to the application

of the NST to compute the diagonal entries of the differentiation matrices. Com-

parison of methods (b) and (c) reveal that, if the NST is to be performed only

once, the technique is marginally preferable if performed on D(2) rather than just

D(1). However, subsequent comparison against methods (d) and (e) reveals that
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Figure 4.5: Relative moving-average errors (4.1.6) of methods (a)–(e) in approxi-
mating the second-order derivative of u1(x) (top) and u2(x) (bottom). The error
growth with increasing N is appreciably reduced when the NST (methods (b)–(e))
is applied to the matrices. Note that the errors incurred by methods (d) and (e)
are usually indistinguishable, on even this logarithmic scale, for all values of N
considered.
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the smallest errors appear when the NST is applied to both D(1) and the resulting

matrix D(2) = [D(1)]2. This is an interesting result: when the NST is suggested

in the literature, e.g. Bayliss et al. (1994) or Baltensperger & Trummer (2003)1,

its application to higher-order CDMs is neither explicitly stated nor even implied.

Moreover, the construction of both methods (d) and (e), which utilise application of

the NST on both D(1) and the second-order matrix D(2) = [D(1)]2 is, to the author’s

knowledge, a novel construction of D(2), yet, as evidenced by Figure 4.5, yields more

accurate derivatives than any other construction technique. The near equivalence

of errors resulting from methods (d) and (e) demonstrates that, in the computation

of D(2)uN , the improvement in accuracy afforded by flipping is negligible when the

NST is applied. Despite this, and as previously evidenced in Figures 4.1 and 4.3,

the application of flipping still contributes to the improved accuracy of the matrix

D(k), k = 1(1)4.

The order O(1000) improvement in accuracy of methods (d) and (e) over method

(a) raises an interesting question: how accurate, in finite-precision arithmetic, can

spectral differentiation be? Considered by Don & Solomonoff (1995, p. 1258), an

estimate of the growth of rounding error in spectral differentiation is given by

ε
[ N∑
j=0

(D(k)D(k)T )j,j

] 1
2
, (4.1.7)

where ε is a parameter representing machine precision2. The derivation assumes that

the error in the computation D(k)uN comes entirely from order-machine-precision

rounding errors present in uN ; i.e. that D(k) is free from the very rounding error that

accuracy-enhancement techniques aim to reduce. Full details of the derivation are

presented in Don & Solomonoff (1995). It is noted that (4.1.7) does not qualitatively

depend on the construction of the matrix D(k) used to evaluate it. The computed

errors in Figure 4.5 are compared against the estimate (4.1.7) in Figure 4.6. For

simplicity, only the worst- (method (a)) and best-case (method (e)) are presented,

in addition to the bound (4.1.7), wherein k = 2. Figure 4.6 reveals that the error in

method (e) increases at the predicted growth of (4.1.7). The error in differentiation,

via method (e), of u1(x) is larger than this predicted growth, whereas for u2(x)

1Who devote numerous sections to the NST.
2In Matlab, simply executing the code eps reveals ε = 2.2204 × 10−16. The symbol ε here is

not to be confused with the small parameter defined as a ratio of length scales in §2.
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Figure 4.6: Comparison of growth with N of worst-case (method (a)) and best-case
(method (e)) moving-average errors of Figure 4.5 with the predicted error growth of
Don & Solomonoff (1995) (4.1.7) for both u1(x) (top) and u2(x) (bottom). Note that
errors here are presented as absolute, due to the formulation of prediction (4.1.7);
however, this changes only the scale of the vertical axis.
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4.1 Spectral Differentiation

the analogous data are smaller than the predicted growth. This discrepancy in

the magnitude of the errors can be attributed to the magnitude of the functions

u1(x) and u2(x); rounding errors present in the matrix D(k) multiply order O(1)

terms when differentiating u2(x), whereas they multiply order O(10) terms when

differentiating u1(x). The fact that the error in approximating the second derivative

of functions lies close to, and even below this predicted error growth, supports the

application of the accuracy-enhancement techniques present in method (e). That is

to say, both flipping and the NST should be applied to both D(1) and the resulting

matrix D(2) = [D(1)]2 in order to obtain the most accurate computation of second-

order derivatives.

As the highest-order derivative in the governing equations (2.1.55) is of order 4,

the above analysis should be extended to D(4). Indeed, an even greater quantity

of distinctly partitioned constructions of D(4) can be made. Similar tests as those

presented in methods (a)–(e) have been performed for third- and fourth-order dif-

ferentiation and compared against the error-growth approximation of (4.1.7) with

k = 3 and k = 4 respectively. The results of third- and fourth-order differenti-

ation are in qualitative agreement with those presented in detail for second-order

differentiation. Consequently, in the spirit of precluding repetition, the details are

not presented here. Instead, the following conclusion is made. The most accurate

numerical kth derivatives are obtained when both flipping and the NST is applied

to both D(1) and the matrix D(k) = [D(1)]k. Despite no intermediate details of this

claim being presented in this work for k = 3 and k = 4, a comparison and vali-

dation of this construction of D(k) for k = 1(1)4 is made against well-established

approaches in §4.1.3.

4.1.3 Error Comparison Against Matlab and Chebfun

As outlined in §3.4, the package Chebfun (Driscoll et al., 2014) intrinsic to the Mat-

lab environment contains a large variety of routines and functions for numerical in-

tegration, differentiation and interpolation. One such function is diffmat(N+1,k),

which constructs the kth-order (N+1)×(N+1) CDM1, applying accuracy-enhancement

techniques including those presented in §3.2. Thus, due to the simplicity of imple-

1The function can in fact compute differentiation matrices of more general forms; for example,
on Chebyshev or Legendre nodes, of square or rectangular dimension, or including prescribed row
replacement to enforce specified boundary conditions. The full workings of diffmat can be found
in Chebfun files and documentation (Driscoll et al., 2014).
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mentation of functions and algorithms such as diffmat, Chebfun is frequently used

to facilitate the numerical solution of differential equations. Consider, for example,

the 1000+ Chebfun citations and papers directly employing the diffmat routine

(and variations thereof), including Larsson et al. (2013, p.A2102), Driscoll & Hale

(2016, p.124), Aurentz & Trefethen (2017, p.427) and Gheorghiu (2018, p.82). The

CDMs constructed via diffmat are to be briefly compared against those constructed

via the novel method (e).

Numerical computation of 1st-to-4th-order derivatives of functions u1(x) and

u2(x) (4.1.4) is now performed using CDMs constructed using both the novel ap-

proach of method (e) and the diffmat routine; as above, moving-average-errors

(4.1.6) are used to facilitate the comparison. Denote by Ẽk
N the moving-average

error in kth-order differentiation via CDMs constructed using method (e) and by

Ẽk
N,d the analogous errors associated with CDMs constructed using diffmat. Then,

the ratio

RN =
Ẽk
N

Ẽk
N,d

(4.1.8)

compares the error in approximating kth-order derivatives using both constructions

of CDMs. Expressed simply, when RN < 1, the error in approximating derivatives

is smaller when using the novel construction of D(k) than the established Chebfun

function diffmat. The ratio RN (4.1.8) is presented in Figure 4.7 for k = 1(1)4 and

N = 40(1)140 in the experimental context of differentiating both u1(x) and u2(x)

in (4.1.4).

It is clear from Figure 4.7 that the new method (e) is predominantly more ac-

curate than diffmat for test function u1(x) and globally so for u2(x); in the latter

case the error reduction is approximately 50%. For differentiation of u1(x), the vast

majority of N and k values do yield RN < 1. Notably, the ratio RN is largest when

k = 1. This is not surprising; the novelty of method (e) was to apply flipping and

the NST on both D(1) and D(k) = [D(1)]k. Thus, when k = 1, there is no “second

application” of flipping and the NST, and so the construction of D(1) more closely

matches the construction evaluated by diffmat. Figure 4.7 additionally validates

the present construction of D(k) for k = 3 and k = 4 in light of the unpresented

intermediate results. From these results it is concluded that, in order to minimise

the error incurred by spectral differentiation, matrices D(k) should be constructed

in the following way. D(1) must first be evaluated via the trigonometric identities

(3.2.2). Flipping (3.2.6) should be applied to evaluate entries in the lower half of
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Figure 4.7: Error ratios RN (4.1.8) for kth-order differentiation of u1(x) (blue) and
u2(x) (red), plotted against N . When the ratio is smaller than 1 (dashes), the
construction of D(k), k = 1(1)4 (top to bottom), via method (e) yields more accurate
differentiation than Matlab offers via the Chebfun package.
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the matrix. The NST (3.2.13) must then be applied to re-evaluate the diagonal

entries. The appropriate kth-power must then be taken, so that D(k) = [D(1)]k.

Flipping and the NST must then be reapplied to this new matrix. The result is

a matrix D(k) that yields differentiation errors smaller than those obtained in the

widely-used and highly-cited Chebfun package, as evidenced by Figure 4.7. It is

noted that the application of such accuracy-enhancement techniques requires only

an additional order O(0.1s) computational cost, using a 2 GHz desktop computer,

as the CDMs are computed only once in fluids applications due to the dependence

on fixed nodal locations; i.e. N remains constant.

4.2 Spectral Spatial Integration

As highlighted in §3.3, spectral integration allows for the computation of the mass

history of the tear film. In the absence of evaporation, and in the presence of no-

flux boundary conditions, the mass of the tear film should remain constant. Thus,

under these conditions, the computation of mass history offers a measure of the

error incurred in computing the evolving numerical solutions. Of course, if the mass

history cannot be computed accurately, such a measure is meaningless; it is thus

vital that spectral integration is verified to perform with an accuracy that matches

that of the differentiation process hitherto developed.

In order to achieve this goal, and as per spectral differentiation, test functions

are introduced as trial integrands, whose integrals are readily evaluated over the

canonical interval x ∈ [−1, 1]. The integrands are

f1(x) = 1 + 9x10, f2(x) = sin(2x) and f3(x) = cos(2x). (4.2.1)

Functions f1(x) and f2(x) are those considered previously (4.1.4); the inclusion of

f3(x) requires explanation. As
∫ 1

−1
f2(x) dx = 0, the function f3(x) is introduced as

being similar to f2(x) but with a nonzero integral. In spectral differentiaton, func-

tions u(x) that satisfy u(±1) = 0, i.e. u0 = uN = 0, are typically differentiated with

greater accuracy (see, for example, Don & Solomonoff (1995, §3) or the discussion

of this aspect when boundary conditions are homogenised in §3.5). In the derivation

of the spectral integration formula (3.3.7), the system D(1)uN = f (3.3.5) is consid-

ered; wherein by construction uN =
∫ −1

−1
f(x) dx = 0 and u0 =

∫ 1

−1
f(x) dx = I is

the value of the integral. Then, for integrands with I = 0, such as f2(x), it is the
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4.2 Spectral Spatial Integration

case that u0 = uN = 0. Thus, direct comparison of errors in spectral integration

of f2(x) and f3(x) will demonstrate if the benefit of having homogeneous boundary

data u0 = uN = 0 in spectral differentiation is also evident when performing spectral

integration1.

The trial functions (4.2.1) are integrated using two techniques; the inverse-matrix

approach of (3.3.7) and tools in the Chebfun package in Matlab. For the latter,

if f is a vector with entries fi = f(xi), i = 0(1)N , where xi are the Chebyshev

nodes (3.1.6), the code sum(chebfun(f)) returns a spectrally-accurate approxi-

mation to
∫ 1

−1
f(x) dx. Absolute integration errors for the three functions (4.2.1),

using both matrix- and Chebfun-based approaches, are presented in Figure 4.8 for

N = 40(1)140. As the error in the two methods can be immediately compared,

moving-average errors need not be computed.

Evident in Figure 4.8 is that both methods yield spectrally-accurate results.

Despite yielding errors only a single order of magnitude larger than machine pre-

cision, the matrix-based approach of (3.3.7) approximates the integrals of the test

functions (4.2.1) with consistently larger errors than the Chebfun code. The ac-

curacy of the latter method, and its stability with increasing N , makes it clearly

the superior option for computing the mass history of the tear film. The improved

accuracy may be attributed to the way in which the integral is computed; specif-

ically, chebfun(f) obtains a polynomial interpolant of the data f (analogous to

the interpolation (3.1.2) which underpins the theory of spectral differentiation and

integration). This interpolant is then integrated exactly, via sum, as the coefficients

of the interpolating polynomial are known. Thus error is introduced only in ap-

proximating the data via the interpolant. In the matrix-based approach, however,

rounding errors are present, and grow with N , in the construction and evaluation

of D(1). These errors further propagate throughout the calculation of the matrix

inverse and the subsequent matrix-vector calculation in (3.3.7), accumulating in

modulus. Thus, in computing the mass history of the tear film, the Chebfun code

sum(chebfun(f)) will be used. Despite this, introduction and derivation of (3.3.7)

is not a wasted exercise; it has demonstrated that numerical integration can be per-

formed to spectral accuracy using CDMs, and this approach would be the method

of choice outside of the Matlab environment. It is noted that methods and ideas

analogous to the accuracy-enhancement techniques for the case of spectral differen-

1Of course, when spectral integration is applied to compute the mass of the tear film, the
integral will never equal 0; however, the comparison can still be made out of interest.
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Figure 4.8: Absolute errors in the numerical integration on x ∈ [−1, 1] of f1(x) (top),
f2(x) (middle) and f3(x) (bottom) (4.2.1) using both the matrix-based approach
of (3.3.7) and the Chebfun code sum(chebfun(f)). Immediately evident is the
superiority in evaluation of the integrals via Chebfun, which effectively returns an
error of machine precision for all N in each test case. Despite this, it should be
noted that errors in the matrix-based approach (3.3.7) are still spectrally-accurate,
as evidenced by the vertical scale in all three plots.
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4.3 Rectangular Spectral Collocation and Temporal Integration

tiation may be applicable, or derivable, for the case of spectral integration. Upon

application of such techniques, the accuracy of spectral integration via CDMs may

surpass the accuracy obtained via use of Matlab’s sum command. However, due to

the limited application of spectral integration in this thesis, this idea is not pursued

hereafter.

It is finally noted that there is no quantitative difference in the magnitude of

errors between functions f2(x) and f3(x) for either integration method. Thus, it is

concluded that spectral integration does not exhibit an increase in accuracy when

both u0 = 0 and uN = 0, unlike in spectral differentiation.

4.3 Rectangular Spectral Collocation and Tem-

poral Integration

As outlined in §3.4, Matlab’s in-built routine ode15s is to be used for temporal

integration. In the ophthalmic literature, ode15s features in the numerical meth-

ods employed by both Heryudono et al. (2007) and Li & Braun (2012). Addition-

ally, it is the integrator of choice for Driscoll & Hale (2016) in their rectangular

spectral collocation study. A similar temporal-integration package, ode23s, is em-

ployed in the ophthalmic literature by Winter et al. (2010); however, it is noted (e.g.

Shampine & Reichelt (1997) and in readily available online Matlab documenta-

tion) that ode23s performs more efficiently than ode15s for crude error tolerances;

i.e. when larger temporal-integration errors are permitted. With the view of per-

forming the most accurate-possible temporal integration, ode15s is thus preferable.

The numerical-differentiation formulae on which ode15s is based are developed in

Shampine & Reichelt (1997), who explain that ode15s uses a quasi-constant time

step over backward-difference formulae. The time step is controlled via two addi-

tional user-specified parameters, AbsTol and RelTol, respectively prescribing abso-

lute and relative error tolerances. When the numerical solutions are updated at each

time step, an approximation of the error in the solution is compared against these

tolerances. If the approximated numerical error is smaller than these tolerances, the

temporal-integrator advances to the next time step. However, if the approximated

numerical error is larger than the tolerances, the current time step is repeated with

a smaller step size. Thus, the step size used by ode15s is implicitly controlled by the

value of these parameters. Despite the information provided in the aforementioned
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sources, ode15s effectively acts as a ‘black-box’ function and, consequently, despite

its frequent application in the solution of partial differential equations, validation

is presently undertaken. To this end, a test initial-boundary-value problem (IBVP)

is introduced in order to calibrate the relationship between the parameters AbsTol,

RelTol, N and the resulting error in the numerical solutions.

Numerical tests are performed on the following IBVP:

u̇ = − 1

π4
(u′′′′ +

1

π2
u′′ + u) x ∈ [−1, 1], (4.3.1a)

u(±1, t) = u′′(±1, t) = 0, u(x, 0) = sin(πx), (4.3.1b)

with exact solution given by u(x, t) = exp(−t) sin(πx). The justification for a simple

test problem is two-fold. First, the linearity of IBVP (4.3.1a) offers the possibility of

determining a relationship between observed numerical errors in the computed solu-

tion and the aforementioned specified tolerance parameters. Second, upon numerical

solution of the governing equations (2.1.55), error measures (e.g. computation of

mass history) will be performed in order to quantify the error in the tear-film profiles:

it will be demonstrated that a spectral level of accuracy is obtained therein.

Denoting by u̇N a vector of nodal temporal derivatives, i.e. such that the com-

ponents (u̇N)i = u̇(xi, t), i = 0(1)N , the spatial component of (4.3.1a) is readily

discretised as

u̇N = MuN = − 1

π4

(
D(4) +

1

π2
D(2) + I

)
uN . (4.3.2)

The boundary conditions (4.3.1b) are discretised analogously to (3.6.11);

BuN =


D

(2)
0

D
(2)
N

I0

IN

uN =


0

0

0

0

 = 0 (4.3.3)

wherein single matrix subscripts denote enumeration of matrix rows. In the presence

of four boundary conditions, the resampling matrix P (3.6.3) must sample the N+1

equations (4.3.2) onto N − 3 equations. Thus, multiplication of (4.3.3) by the

(N − 3)× (N + 1) matrix P yields the (N − 3)× (N + 1) system

Pu̇N = (PM)uN . (4.3.4)
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4.3 Rectangular Spectral Collocation and Temporal Integration

In order to adjoin the boundary conditions (4.3.3) to the resampled system (4.3.4),

the 4×1 vector of zeros, 0 in (4.3.3), is computed via 0u̇N = 0, where 0 is a 4×(N+1)

matrix of zeros. Then, combination of the discretised boundary conditions and the

resampled system yields the (N + 1)× (N + 1) square system[
0

P

]
u̇N =

[
B

PM

]
uN , (4.3.5)

wherein the upper four rows enforce the boundary conditions, and the remaining

N − 3 rows discretise the PDE. In order to facilitate clarity of system (4.3.5),

its component-wise dimensions (on either left- or right-hand side) are presented

schematically in partitioned form as[
4× (N + 1)

(N − 3)× (N + 1)

] [
(N + 1)× 1

]
. (4.3.6)

It is noted that the application of rectangular collocation to PDEs results in a

mass matrix which, due to the homogeneous nature of the boundary conditions,

is singular. Whilst this does not present a significant problem, it does limit the

range of temporal integration methods available. The temporal integrator ode15s

specifically caters to a system with a singular mass matrix, which is an additional

reason why ode15s was chosen from the selection of possible Matlab integrators.

System (4.3.5) is now advanced in time until t = 0.5 for various error toler-

ance values. Let the notation {a, b} denote error tolerances of RelTol= 10−a and

AbsTol= 10−b used in temporal integration1. Then, numerical solutions are obtained

for different N and {a, b} values, in order to calibrate the relationship between the

temporal-integration error and parameters N , RelTol, and AbsTol. The errors are

computed in three ways. First, the error in the numerical solution to IBVP (4.3.1a)

is computed as

‖u− uN‖2, (4.3.7)

wherein u is the exact solution u(x, 0.5) evaluated at the Chebyshev nodes (3.1.6).

Second, it is computed as the error in the enforced boundary condition

max(D
(2)
0 · uN ,D

(2)
N · uN), (4.3.8)

1For reference, if the parameters are unspecified by the user, default values of RelTol= 10−3

and AbsTol= 10−6 are used, i.e. {3, 6} in the notation introduced.
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wherein both derivatives are theoretically zero by (4.3.1b). Finally, the error in the

‘mass’ integral of the numerical solution uN(x, 0.5) is computed using sum(chebfun(u)).

As the integral should equal zero, the value returned by sum(chebfun(u)) is itself

the absolute error. The three computed error measures are presented in Figures 4.9–

4.12.
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Figure 4.9: Numerical error (4.3.7) in the solution of (4.3.1a) at t = 0.5, plotted
against N with fixed error tolerances. Lines of best fit are presented.
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Figure 4.10: Numerical error (4.3.7) in the solution of (4.3.1a) at t = 0.5, as a
function of RelTol, for different values of N . Lines of best fit are presented. In all
calculations, the value of AbsTol is given by AbsTol= 0.01·RelTol.
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Figure 4.9 shows a small increase in error as N increases; due to the usual

gradual increase and propagation of rounding errors for increasing N , often denoted

the ‘rounding plateau’. The effect of changing the error tolerances is demonstrated

to be more heavily influential on the errors in the solution of u(x, 0.5); when the

error tolerances are reduced by a factor of 10, the error reduces by a comparable

factor. This is further evidenced in Figure 4.10. For the 3 chosen values of N , the

lines of best fit pass through ordinates of order O(N · RelTol). Thus, even if large

values of N were necessary, this exercise has quantified how the propagation of the

rounding errors attributed to increased N can be controlled by taking stricter error

tolerances1.

Boundary-condition errors (4.3.8) are next presented for three different values

of N , against the parameter RelTol, in Figure 4.11. Again, due to the presence

of rounding errors with increasing N , the error is smallest for N = 50. However,

the errors for all N values are demonstrated to reduce as the error tolerances are

tightened; order O(10−9) accuracy is observed in the enforced boundary condition

provided RelTol=O(10−9).

In order to further quantify the error in the spatial-integration technique pro-

vided by the code sum(chebfun(u)), the numerical solution u(x, 0.5) is integrated.

Numerical errors are presented in Figure 4.12 for varying error tolerances and dif-

ferent values of N .

The integration errors computed via the code sum(chebfun(u)) are again evi-

denced to be spectrally accurate. The decrease in accuracy compared to previous

results of spatial integration (cf. Figure 4.8) is attributed to the fact that the data

being integrated itself contains errors: the integral can only be as accurate as the

integrand. This test, although seemingly repeating the tests of Figure 4.8, is still

important. For the strictest error tolerances, comparison of the lines of best fit in

Figures 4.10 and 4.12 reveal that the errors in the solution u(x, 0.5) and its integral∫ 1

−1
u(x, 0.5) dx are of roughly the same order of magnitude. Whilst this is not sur-

prising as spatial integration was shown to be accurate to near-machine precision,

it is a beneficial observation, as it reveals that the integration error is itself a good

approximation to the error in the integrand.

1The value of AbsTol and RelTol cannot, obviously, be made arbitrarily small. The smaller
the tolerances, the smaller the average time step, and consequently the longer the computational
time. All solutions presented in Figures 4.9 and 4.10 were obtained using a network version of
Matlab on a 2 GHz desktop computer in individually ≈1–2 seconds of computational time.
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Figure 4.11: Numerical error in the enforced boundary condition (4.3.8) against
varying error tolerances RelTol for three values of N . As per Figure 4.10, the value
of AbsTol is given by AbsTol= 0.01·AbsTol for all solutions. Note that the increased
‘noise’ in the errors presented, compared to Figure 4.9, is due to multiplication of
the numerical solution by rows of D(2) in (4.3.8). As the entries of D(2) have varying
orders of magnitude (see Figure 3.1), the accumulation (and, equally, cancellation)
of rounding errors is of greater scale in (4.3.8) than (4.3.7).
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Figure 4.12: Absolute error in approximating
∫ 1

−1
u(x, 0.5) dx as the solution to

(4.3.1a), against error tolerance RelTol and different N . Lines of best fit are pre-
sented. As before, AbsTol= 0.01 RelTol. The increased ‘noise’ in the presented
errors is again due to the additional calculations performed on numerical solutions
within which there is already an inherent error.
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4.4 Summary and Discussion

Three conclusions accrue from the results of solving the IBVP (4.3.1a) and Fig-

ures 4.9–4.12. First, application of spectral rectangular collocation (4.3.5) to enforce

multiple boundary conditions is highly effective, as demonstrated by the spectral ac-

curacy present in both the numerical solution and the adjoined boundary conditions.

Second, despite its black-box nature employing ode15s as a temporal integrator of-

fers effective and flexible control over accuracy in the form of parameters AbsTol

and RelTol. The specification of these parameters, evidenced by Figures 4.10 and

4.11, detail how order O(10−8) accuracy is readily obtainable for the presented values

of RelTol: if stricter values are taken, even greater temporal-accuracy is obtained.

Third, the results and discussion following Figure 4.12 allows for consideration of

numerical errors even when exact solutions are not known, such as when spectral

methods are applied to the governing equations (2.1.55). As previously mentioned,

when solutions in the context of ophthalmic flows are expected to conserve mass (i.e.

in the absence of evaporation and with no-flux boundary conditions), the discrep-

ancy in mass history can be a measure of the accuracy of the computed solutions

themselves. Figure 4.12 advances this thought by directly correlating the relation-

ship between integration error and solution error. As a consequence, and based on

comparison of Figures 4.10 and 4.12, if the mass-history conservation error was, say,

of order O(10−8), then the error in the solutions themselves would be of the same

order.

4.4 Summary and Discussion

The numerical methods introduced in §3 have been demonstrated to be spectrally

accurate in the context of numerical differentiation and spatial discretisation. The

use of accuracy-enhancement techniques has been evidenced to improve the accu-

racy of not only the matrices D(k) but, more importantly, the approximated deriva-

tives D(k)uN . By exploring the effect of repeated applications of such techniques

on D(k) for k > 1, numerical differentiation matrices have been constructed via

a novel modus operandi. Notably, such an exploration has revealed an optimally-

accurate construction that uses only powers of the first-order matrix. Whilst this

is something that is not recommended in the literature (Trefethen, 2000), it has

been evidenced herein to be beneficial in conjunction with the aforementioned re-

peated accuracy-enhancement application. This new approach has yielded matrices
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that offer a thousand-fold error reduction (Figure 4.5) by comparison with standard

‘näıve’ implementations. In particular, this improvement is notable since, for some

functions, the error in approximating derivatives surpasses the proposed minimum

error-growth of Don & Solomonoff (1995), as shown in Figure 4.6. With the newly-

constructed and highly-accurate matrices D(k), a final comparison was made against

the numerical differentiation of Matlab’s Chebfun. As shown in Figure 4.7, the

widely-used and highly-cited Chebfun code diffmat offers less-accurate numerical

differentiation than the enhanced methods developed herein.

The extension of spatial discretisation to the solution of PDEs was then con-

sidered in the form of a test problem. By application of rectangular collocation,

multiple boundary conditions were enforced without the need to resort to ad hoc

row-replacement techniques1. Variation of the parameters AbsTol and RelTol in

the temporal integrator ode15s has demonstrated that numerical solutions can be

obtained to optimised levels of spectral accuracy; here, order O(10−9) accuracy in

the solutions themselves (Figure 4.10) and order O(10−11) accuracy in the enforced

boundary conditions (Figure 4.11) was achieved. Using the numerical solutions of

this test problem, spatial integration was performed: whilst both the CDM for-

mulation and Matlab implementation yielded clear spectral accuracy, the latter

method was demonstrated to lead to smaller errors that, importantly, did not grow

with increasing system size.

The spectral-integration technique analysed in this chapter will be applicable

to the tear-film solutions considered subsequently; thereby admitting a qualitative

understanding of the errors incurred. In particular, comparison of Figures 4.10 and

4.12 details that the numerical-integral error is a good approximation to the error

in the integrand itself. In addition to this, the error in the tear-film solutions can

be quantified in a different way: in the absence of gravitational effects, the rates of

thinning over the tear film are expected to be equal for both the upper and lower

eyelid, assuming an initially-symmetric initial profile is specified. Thus, if the min-

imum value of the tear-film thickness h(x, t) can be computed in both the upper

and lower half of the domain, the difference between the two values qualitatively de-

scribes the error in the solution h(x, t). Both this idea and the computation of mass

history, in addition to the work, results and comparisons presented in this section,

aim to thoroughly and systematically validate the numerical methods used for, and

1That have been considered (Heryudono et al., 2007, p. 357) to invite instability.
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the solutions obtained from, the governing spatio-temporal equation (2.1.55).

This chapter concludes with the observation that, despite the burgeoning use of

spectral methods in related literature, the marked absence therein of both consider-

ation of computational error and detail of implementation is not only striking, but

also precludes the reader from performing repeat, corroborative computations. That

is, the results therein must be fully accepted without any scope for interrogation:

by stark contrast the diametric opposite applies here.
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Chapter 5

Tear-Film Dynamics

5.1 Introduction

The dynamics and evolution of the tear film are explored in this chapter. A variety of

initial conditions representative of tear-film profiles are advanced in time according

to the spatio-temporal evolution equation (2.1.55) augmented by no-flux (2.2.13)

and Cox-Voinov (2.2.24) boundary conditions. So-far-unknown parameters K± in

the Cox-Voinov condition (2.2.24) are now calibrated by determining values thereof

that yield numerical solutions in both qualitative and quantitative agreement with

the in vivo data of Johnson & Murphy (2006).

The aforementioned equations are discretised using Chebyshev differentiation

matrices upon which the accuracy-enhancement techniques of §3.2 have been ap-

plied. The boundary conditions are adjoined to the discrete system using the rect-

angular collocation technique (Driscoll & Hale, 2016) introduced in §3.6. Physically

realistic parameter choices are used to construct initial conditions that are advanced

in time via Matlab’s ode15s temporal integrator.

Parameters in the governing equation (2.1.55) are varied in order to explore the

effects of gravity and corneal slip. The influence that these parameters have on the

tear-film evolution is studied with particular regard to the evolution of the boundary

thickness, minimum thickness and breakup times. Notably, and for the first time in

the ophthalmic literature, the breakup time of the tear film is quantified in terms

of the gravitational and slip effects. In addition, the retention of the full curvature

in the normal stress balance (2.1.8) is validated upon comparison between solutions

computed with ε ∈ {0, 10−3}. The numerical solutions are further validated via

error-assessment techniques wherein the error in the film thickness h(x, t) can be
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quantified in the (realistic) absence of an exact solution.

In the remainder of this chapter, all angles are calculated in physical space;

i.e. upon dimensionalisation of h(x, t) and x. In addition, all solutions presented

involving timescales are dimensionalised in seconds. Both of these considerations

are made to facilitate comparison with measured data and related literature. Values

Θ− and Θ+ specify static contact angles computed from the in vivo measurements of

Johnson & Murphy (2006), wherein subscripts − and + respectively denote values

at superior (x = −1) and inferior (x = 1) eyelids. The notation θ± is used to denote

the dynamic contact angle of the evolving tear-film thickness at h(±1, t).

A main area of focus in what follows is the breakup time (BUT) of the film (see,

for example, Sharma et al. (1999); Wong et al. (1996), or the review by Braun (2012)

and the references therein). This is the time in which the film reaches the thickness

at which rupture may occur, of which different values appear in the ophthalmic

literature. For example, Sharma & Ruckenstein (1986) consider this to be typically

less than, or of the order of, 1000 Å= 0.1µm; Braun & Fitt (2003) consider breakup

at 0.75µm, 0.5µm and h(x, t) = 0; and, Wong et al. (1996) considers breakup at

800 Å=0.08µm. Unless otherwise stated, breakup time herein is taken as the time

at which the film reaches a thickness of less than 0.08µm, which corresponds to

the time t for which the non-dimensional representation is min
x
h(x, t) < 0.016. It

is noted that for (physically realistic) solutions in which gravitational effects and

corneal slip are both present, the times at which h(x, t) < 0.016 and h(x, t) = 0 are

comparable, differing by 1–2 seconds. Thus, it is not expected that the choice of

tear-film breakup thickness greatly affects the results presented in any qualitative

way.

As all solutions presented in this section are implicitly understood to be obtained

numerically, the previous subscript notation of hN is not adopted to denote the

approximate solution at theN+1 Chebyshev nodes (3.1.6); instead, simply h denotes

such a solution. All numerical solutions are computed using N = 150 unless stated

otherwise, whilst temporal integration tolerances are taken to be RelTol= 10−9

and AbsTol= 10−11. Based on these choices of parameters and the analysis of §4.3,

an order O(10−7) error in the presented solutions is predicted a priori. A more

considered error analysis of the presented solutions is given in §5.7.
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5.2 Discretisation of the tear-film equation

5.2 Discretisation of the tear-film equation

In order to obtain numerical solutions of the governing equations (2.1.55) subject

to no-flux (2.2.13) and Cox-Voinov (2.2.24) boundary conditions, all spatially dif-

ferentiated components must first be discretised. To facilitate this discretisation,

the spatio-temporal evolution equation governing a tear film with thickness h(x, t)

(2.1.55) is recalled to be

ht = − ∂

∂x

[
h3

12

(h1+n + 4β)

(h1+n + β)

(
G cosφ+ S

∂

∂x

(
hxx

(1 + ε2h2
x)

3/2

))]
, (5.2.1)

wherein: G = 0.2452 (Table 2.2) incorporates gravitational effects; the angle φ

accounts for the orientation of the eye relative to the direction of gravity; ε = 10−3

retains the full curvature in the normal stress-balance (2.1.8); both β ≥ 0 and

n ≥ 0 specify the Navier-slip model (2.1.4) applied on the corneal surface; and,

S = 4.5 × 10−5 (2.1.27) is proportional to the ratio of surface tension to viscous

forces. For the form of the flux (the operand of ∂
∂x

) present in (5.2.1), specification

of no-flux at the eyelid requires that the quantity defined as

Q̃ ≡ G cosφ+ S
∂

∂x

(
hxx

(1 + ε2h2
x)

3/2

)
(5.2.2)

is zero at x = ±1. Further, the film thickness at the boundary is governed by the

Cox-Voinov law (2.2.24), which is recalled as

∂h

∂t
(±1, t) = K±[cot−1(ε|hx(±1, t)|)3 −Θ3

±], (5.2.3)

wherein aforementioned subscripts − and + respectively denote quantities at the

superior and inferior eyelid, K± are to-be-determined constants and Θ± are the

physical static contact angles at each eyelid.

In keeping with the methodology of Driscoll & Hale (2016), and in order to

reduce the impact of rounding errors (Don & Solomonoff, 1995, §3) in the spatial

derivatives in (5.2.1), the film thickness h(x, t) is written as

h(x, t) = w(x, t) + b(x), (5.2.4)
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where b(x) effectively absorbs the inhomogeneous boundary values b(1) = h(1, 0)

and b(−1) = h(−1, 0) so that w(x, 0) is homogeneous at the eyelids: w(±1, 0) = 0.

Note that all of the initial conditions considered herein satisfy h(1, 0) = h(−1, 0),

whence b(x) reduces to a constant and thus all derivatives of b(x) vanish. When

h(1, 0) 6= h(−1, 0), b(x) is linear in x: the details shed no new light on what follows,

and so the constant case is pursued for notational simplicity. Substitution of (5.2.4)

into (5.2.1), (5.2.2) and (5.2.3) respectively give

wt = − ∂

∂x

[
(w + b)3

12

((w + b)1+n + 4β)

((w + b)1+n + β)
Q̃

]
, (5.2.5)

Q̃(x, t) ≡ G cosφ+ S
∂

∂x

(
wxx

(1 + ε2w2
x)

3/2

)
= 0, with Q̃(±1, t) = 0 (5.2.6)

and
∂w

∂t
(±1, t) = K±[cot−1(ε|wx(±1, t)|)3 −Θ3

±]. (5.2.7)

Discretisation of the quantity Q̃ (5.2.6) for the no-flux condition follows as

Q̃i = G cosφ+ S
N∑
k=0

D
(1)
i,k

(
(D(2)w)k

(1 + ε2((D(1)w)k)2 )3/2

)
, i = 0(1)N. (5.2.8)

Thus, specification of no-flux at the boundary as in (5.2.6) requires that the first and

last elements of the vector Q̃ defined by (5.2.8) satisfy Q̃0 = Q̃N = 0. Discretisation

of the Cox-Voinov condition follows as

(wt)0 = K+[cot−1(εD
(1)
0 · w)3 −Θ3

+]

(wt)N = K−[cot−1(−εD(1)
N · w)3 −Θ3

−]
(5.2.9)

wherein wt is a vector of nodal time derivatives, as previously denoted in the discre-

tised IBVP (4.3.2), and single matrix subscripts on D(1) denote enumeration of its

corresponding rows. Discretisation of (5.2.5), using Q̃i (5.2.8) to simplify notation,

follows as

(wt)j = − 1

12

N∑
i=0

D
(1)
j,i

(
(wi + bi)

3 (wi + bi)
(1+n) + 4β

(wi + bi)(1+n) + β
Q̃i

)
, j = 0(1)N, (5.2.10)

whence (5.2.10) reveals that the flux Q(h) is discretised as the vector Q via the
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components

Qi =
1

12
(wi + bi)

3 (wi + bi)
(1+n) + 4β

(wi + bi)(1+n) + β
Q̃i, i = 0(1)N, (5.2.11)

so that (5.2.10) can be written as

wt = −D(1)Q. (5.2.12)

Note that, in this form, the matrix D(4) is not explicitly required. Fourth-order

differentiation is achieved in (5.2.12) upon calculating the first-order derivative of

Q; a vector of nodal data within which a third-order derivative is contained (5.2.8).

Not only does this formulation facilitate easier numerical implementation, but also

the rounding errors attributed to the fourth-order differentiation matrix, which are

larger in magnitude than rounding errors in the first- and third-order matrices (q.v.

Figure 4.3), do not appear in spatial discretisations.

Since the evolution equation is fourth order and there are two boundary condi-

tions at each of x = ±1, the (N+1) vector (5.2.12) requires resampling to reduce its

dimension by four, i.e. Ñ = N − 4 in (3.6.7), in order to yield an (N + 1)× (N + 1)

system with a unique inversion. Thus, evaluation of the (N−3)×(N+1) resampling

matrix P (3.6.3) is required. Multiplication of (5.2.12) by P yields the (N−3) scalar

equations

Pwt = −(PD(1))Q (5.2.13)

wherein the matrix product PD(1) has dimension (N − 3)× (N + 1).

As per the boundary conditions enforced on the test IBVP (4.3.5), the homoge-

neous no-flux conditions Q̃0 = Q̃N = 0 can be adjoined to the system (5.2.13) via

the representation [
0

0

]
· wt =

[
Q̃0

Q̃N

]
(5.2.14)

where 0 is a 1×(N+1) vector of zeros. Inclusion of the Cox-Voinov condition (5.2.9)

follows differently. Due to its inherent time-dependence and temporal-derivative, it

cannot be made homogeneous. However, a simple and novel modification of the idea

in (5.2.14) can be implemented. Rather than use multiplication of wt by the vector
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of zeros 0, rows of the (N + 1) identity matrix I are used so that[
I0

IN

]
· wt =

[
K+[cot−1(εD

(1)
0 · w)3 −Θ3

+]

K−[cot−1(−εD(1)
N · w)3 −Θ3

−]

]
. (5.2.15)

To the author’s knowledge, application of the resampling matrix method to incorpo-

rate boundary conditions including both temporal and spatial derivatives is, despite

its explicit nature, a novel and powerful extension of the work of Driscoll & Hale

(2016). Adjoining (5.2.14) and (5.2.15) to (5.2.13) yields the fully spatially dis-

cretised system that links the spatio-temporal evolution equation to all boundary

conditions as 
0

0

I0

IN

P

wt =


Q̃0

Q̃N

K+[cot−1(εD
(1)
0 · w)3 −Θ3

+]

K−[cot−1(−εD(1)
N · w)3 −Θ3

−]

−(PD(1))Q

 , (5.2.16)

with Q as constructed as in (5.2.11).

System (5.2.16) requires an initial condition before it can be advanced in time

using Matlab’s ode15s. Since the solution obtained will be in the variable w(x, t),

the tear-film height h(x, t) is trivially recovered from (5.2.4).

5.3 Initial Profiles

All initial profiles used in the ophthalmic literature share similar characteristics; a

relatively flat film over the center of the cornea, and having an increasing thickness

towards the eyelid boundaries representing the tear menisci1. The construction of

such profiles is often performed using piecewise functions (e.g. Braun & Fitt (2003);

Winter et al. (2010); Wong et al. (1996)), so that the flat central region and steeper

menisci regions can be specified separately and matched, at prespecified locations,

to required orders of differentiability. For example, the initial condition used by

1The only exception to this is Peng et al. (2014) who specify an entirely flat meniscus-free film
without explanation.

134



5.3 Initial Profiles

both Braun & Fitt (2003) and Winter et al. (2010) is

h(x, 0) =

{
h0, |x| < L−∆x

h0 + ∆hm(|x| − (L−∆x))2, |x| ≥ L−∆x
x ∈ [−L,L].

(5.3.1)

The parameters h0, ∆x and ∆hm are chosen to prescribe respectively the central

tear-film thickness, meniscus height, and meniscus width. Thus, one immediate

advantage of an initial profile such as (5.3.1) is that it is expressed explicitly in terms

of parameters describing measured values. However, there are hitherto-undiscussed

problems associated with using the initial profile (5.3.1). The piecewise construction

invites a discontinuity in the second derivative of h(x, 0) at the matching points |x| =
L −∆x. Further to this, at those points, the third-derivative, which features both

in the governing equations and the boundary conditions, is infinite. Moreover, as

previously mentioned in §2.2.5, the value of hxxx(±1, 0) enforces the no-flux condition

only when G = 0; that is to say, in the presence of gravity, the initial profile fails

to satisfy the boundary condition which is immediately enforced on it during the

first time step of temporal integration. Whilst such problems are simply presumably

passively overlooked in the ophthalmic literature, they are remedied here.

Construction of a new initial profile begins in the same way; a piecewise function

describes separately the central and menisci regions as, using obvious nomenclature,

h(x, 0) ≡

{
hc(x), |x| < X

hm(x), |x| ≥ X
x ∈ [−1, 1]. (5.3.2)

Replacing ∆x in (5.3.1), the matching point X controls the specification of the

meniscus height. In order to eliminate discontinuities, the values of these functions

and their derivatives at the matching point x = X must agree up to the order of

the governing equations, so that

hc(±X) = hm(±X), and h(k)
c (±X) = h(k)

m (±X), k = 1(1)4. (5.3.3)

In addition to requiring continuity between hc(x) and hm(x) at x = ±X, spec-

ification of hm(x) and its derivatives at the boundary x = ±1 is also required.

Specification of hm(±1) = H ensures a meniscus width representative of real human

eyes, whilst specification of h
(1)
m (±1) and h

(3)
m (±1) ensure that the initial profile is

constructed according to, respectively, a physically realistic initial contact angle, and
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satisfies a no-flux condition. In order for hm(x) to satisfy all 16 resulting conditions,

it is constructed as the polynomial

hm(x) =
15∑
j=0

αjx
j+c̃ (5.3.4)

wherein coefficients αj, j = 0(1)15, are determined after specification of the central

function hc(x), and c̃ is a constant. Typically, a polynomial such as (5.3.4) would

have c̃ = 0, so that hm(x) included a constant. However, it has been found that

initial conditions constructed using this approach can include smaller initial contact

angles in the presence of larger c̃ values. Thus, c̃ = 5 is presently taken to allow for

a greater variation in specification of h
(1)
m (±1).

The clear disadvantage of constructing an initial profile using these ideas is that

an explicit form is not presentable as simply as (5.3.1). Solution of the continuity

and boundary equations for the unknowns αj, j = 0(1)15, is straightforward using

an algebraic manipulator such as Maple; however, their explicit forms are both

cumbersome and unenlightening. Thus, whilst the methodology and formulation

behind constructing the initial profiles used in this thesis is presented, the explicit

form of the initial profiles themselves are not. Of course, the advantages of such a

construction is not only the increased mathematical rigour, but greater flexibility in

the specification of parameters. In particular, hc(x) is entirely specifiable, and the

methodology above ensures continuity up to the necessary degree of differentiability.

As tear-deposition models predict a non-uniform central thickness due to the varying

eyelid speed during a blink1, hc(x) can (and will) be specified to capture this.

A similar approach to initial-condition construction is implemented in Hurst

(2014); however, therein the central region is effectively constrained to be enforced

as constant2. The freedom in the present methodology to allow explicit specification

of hc(x) is thus preferable.

In order to circumvent the lack of presentable explicit forms of the functions

generated by the above methodology, presented example functions are distinguished

1A comparison between the initial profile of Braun & Fitt (2003) (5.3.1) against an initial
profile computed from a deposition model is presented in Jones et al. (2006, Figure 8).

2The initial condition therein emulates the function h(x, 0) = 1 + x8. Thus, whilst the central
region does have a gradient, it is effectively flat about x = 0 and does not capture the (potentially)
varying central-region thickness that can be enforced in the present work (q.v. Figures 5.16 and
5.18).
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by sets of parameter values in order to validate the approach. Two such functions

are constructed. With θ±(0) specifying the initial contact angle of the tear film, and

H, c̃ and X as aforementioned, two physically realistic sets of parameter choices

are introduced as SD = {H = 30, c̃ = 5, X = 0.8, θ±(0) = 50o, hc(x) = 1} and

SH = {H = 50, c̃ = 5, X = 0.75, θ±(0) = 45o, hc(x) = 1}, used to construct hD(x, 0)

and hH(x, 0) respectively; both functions are presented in Figure 5.1. Both profiles

correspond to physically realistic tear profiles; a central thickness of 5µm (King-

Smith et al., 2004, Table 1), menisci heights of 500µm – 750µm (Golding et al.,

1997, Figure 4) and menisci widths of 150µm – 250µm (Gaffney et al., 2010, Table

1)1. The difference between the two profiles is the presence of thicker menisci in the

profile for hH(x, 0), yielding a ‘healthier’ initial condition than the corresponding

‘drier’ profile hD(x, 0), hence the use of subscripts H and D. Both functions hH(x, 0)

and hD(x, 0) are presented in Figure 5.1.

It is noted that, due to the introduction of the variable w(x, t) in (5.2.4), the ini-

tial condition used by ode15s is w(x, 0) = h(x, 0)−b(x). Despite this, for simplicity,

all initial conditions are hereafter specified in terms of the variable h(x, t).
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Figure 5.1: Example initial profiles hD(x, 0) and hH(x, 0) respectively constructed
using parameter sets SD and SH . The increased value of H and reduced value of
X in S2 correspond respectively to a larger meniscus width and height, specifying
‘healthier’ menisci in hH(x, 0).

1Referred to therein as meniscus depth.
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5.4 Tear-Film Evolution

Numerical solutions of the spatio-temporal evolution equation (5.2.1) are now ob-

tained by advancing system (5.2.16) in time from a given initial condition, which is

taken to be hD(x, 0) from Figure 5.1. Choices of K± and Θ± now require selection

by comparison with in vivo data.

Despite the measured in vivo contact angles being different at each lid (Figure

2.6), the static contact angles are initially taken to be equal1 and given the value

Θ± = 61.14o, obtained upon taking t = 10 in Θ− (2.2.18); the reason for this is

as follows. As previously mentioned, the value of Θ− is calculated using the radius

measurements at the inferior meniscus, so that this value is currently used as an

approximation. In addition to this, the values presented by Johnson & Murphy

(2006) contain both post-processing and measurement errors (see the discussion

in §2.2.6) that have irretrievably lost crucial data needed to reconstruct the exact

meniscus profiles. Thus, it is acknowledged that the values of Θ± cannot be entirely

accurate. Despite this, the choice of Θ± = 61.14o still allows the dynamic contact

angles to evolve in the same qualitative way as in a human eye. Specifically, it

is expected that the behaviour observed will be representative of the evolution of

a real tear film, but it is accepted that the initial and static contact angles are

approximations. It is additionally noted that, if more accurate in vivo measurements

are obtained, the methodology herein is trivially adaptable. Simply put, if new

measurements suggest different choices for static contact angles, the only changes

required in the modelling and solution of the evolution equation (5.2.1) are in the

user-specified values of K± and Θ±.

With Θ± so determined, the values of K± are now selected. In order to optimise

the level of agreement between the dynamic contact angle observed in the numerical

tear film and the measured contact angle of a real human tear film (Figure 2.6),

values of K± require careful selection. It is noted that, when Θ− = Θ+ and θ−(0) =

θ+(0), the evolution of the contact angles at both eyelids are equal, whence only

a single value K = K± requires determination. Specification of the two values

K− and K+ individually is considered in §5.5.2. In order to find the value of K

the following approach is used. An initial trial value is chosen, say K = 15, and

numerical solutions are obtained for this value of K. The evolving contact angles

θ±(t) are compared against the measured in vivo data of Johnson & Murphy (2006).

1In §5.5.2 the case Θ− 6= Θ+ will be considered.
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If the contact-angle evolution towards Θ± does not occur at a quick enough rate,

by comparison against the evolution in the aforementioned in vivo data, the value

of K is increased. Similarly, if the evolving contact angle approaches the static

angle too quickly, the value of K is reduced. This process is continued until the

dynamic contact angle of the numerically-obtained tear-film profile qualitatively

matches that of the human-tear-film in vivo observations of Johnson & Murphy

(2006). This calibrates the model.

In order to demonstrate such a process, a simple case of tear-film flow is consid-

ered. Parameter values are taken such that slip (β = n = 0) and gravity (φ = π
2
)

do not influence the flow, though the full curvature is retained in the pressure term

(ε = 10−3). Using these parameters the initial condition hD(x, 0) is advanced in

time according to (5.2.16) for 3 choices of K. The dynamic contact angles in these

solutions are presented as functions of time in Figure 5.2.
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Figure 5.2: Contact-angle evolution θ±(t) as a function of time (seconds) in the
numerically computed tear film for K = 100 (blue curve), K = 37 (red curve) and
K = 15 (yellow curve), compared with measured in vivo data (circles).

Evident in Figure 5.2 is the dependence upon K of the dynamic contact angle

in the numerical solutions. For K = 100 (too large) the dynamic contact angle

approaches the static angle at a rate significantly quicker than that observed in

vivo, thus there is a good agreement against measured data only after ≈ 5 seconds.

For K = 15, this agreement does not occur until after 10 seconds. For a typical

blink cycle of 5–8 seconds, both choices of K would not yield accurate solutions.

The choice of K = 37 more accurately matches the measured evolution for all t.
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5. TEAR-FILM DYNAMICS

This determines K pragmatically, albeit heuristically. It is possible to refine this

approach using a more systematic optimisation process, but it is not merited due to

the inherent measurement error (see §2.2.6) in the in vivo data.

For all numerical solutions, two regions are of main interest: the thin-film region

covering the cornea (corresponding to 0 ≤ h(x, t) ≤ 1) and the evolving bound-

ary thickness (corresponding to x = ±1). Due to the difficulty of simultaneously

observing both regions on a common vertical scale (see Figure 5.1), they are now

considered and presented separately.
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Figure 5.3: Snapshot tear-film profiles for the evolution of initial condition hD(x, 0)
(blue curve) over the range 0 ≤ h(x, t) ≤ 1.2.

Proceeding with the above-calibrated parameter K = 37, snapshots of computed

tear-film profiles h(x, t) are presented for varying values of t in Figure 5.3, mani-

festly clear in which is the emergence of so-called ‘black lines’ (Bron, 2001; Holly &

Lemp, 1977): those regions of decreased thickness near the tear menisci (q.v. §1.2.1).

The location and presence of these regions are in good agreement with both in vivo

observations (e.g. Holly & Lemp (1977, p. 73)) and previous numerical solutions

(e.g. Miller et al. (2002, Fig. 4) and Li & Braun (2012, Fig. 4)). An interesting

consequence of such thinning is that the tear fluid is essentially segregated into sep-

arate regions, each of which experiences its own dynamics. Note that, in Figure

5.3, on the “central side” of the black-line region a small wave-like increase in thick-

ness manifests itself due to fluid displacement. Such behaviour is not only present

in general thin-film, free-surface-flow problems—e.g., droplet coalescence (Jones &
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5.4 Tear-Film Evolution

Wilson, 1978, Fig. 4), rimming flow (Noakes et al., 2011, Fig. 6a) and coating flow

(Hinch et al., 2004, Fig. 6)—but is also found in ophthalmic models (Li & Braun

(2012, Fig. 10) and Winter et al. (2010, Fig. 1)). Note that, in some related lit-

erature, e.g. Braun & Fitt (2003, Fig. 2), this increase appears to be suppressed.

However, fresh computation of these results using the present methodology reveals

that such an increase, whose location and magnitude depends on the initial and

boundary conditions specified, is indeed present though on occasion masked by the

scale on which the results are presented. This is exemplified in Heryudono et al.

(2007, Fig. 5).

The rate of thinning can be observed by considering the minimum value of

h(x, t) against time. Note that, due to the relatively sparse density of the N = 150

Chebyshev nodes (when compared to the 10,000+ nodes employed in related finite-

difference schemes), the minimum value is computed on the interpolated solution

(i.e. the curves presented in Figure 5.3) rather than on the discrete vector of nodal

data. Such minima are computed and presented in Figure 5.4.
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Figure 5.4: Minimum film thickness minh(x, t) in the black-line region for K = 100
(blue curve), K = 37 (red curve) and K = 15 (yellow curve). The initial discrepancy
between minima for the 3 values of K is indiscernible on this scale after 10 seconds,
corresponding to the time by which the 3 profiles achieve the same contact angle
(cf. Figure 5.2).

Interestingly, the choice of K has an impact on the rate of thinning. When K

is chosen too small (K = 15), the film thins at a slightly increased rate. This is

due to the fact that the tear film experiences smaller contact angles over a longer
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time frame. Numerical experiments reveal that thinning rates are influenced by the

contact angles (or gradients) at the boundary. In particular, a larger contact angle

reduces the rate of thinning, whilst a smaller contact angle increases it. Thus, for

K = 100, where θ±(t) reaches Θ± most rapidly, the tear film thins more slowly

(since θ±(0) < Θ±). Of course, the discrepancy between the three rates of thinning

becomes less significant once all three profiles reach Θ±, which is why the precise

choice of K is considered to be important but not critical, as discussed above.

Due to the absence of gravitational influence in these tests, the symmetric initial

condition should retain its symmetry about x = 0 upon temporal integration. Thus,

the rates of thinning in the two black-line regions should be equal. This allows for a

measure of the error present in the numerical solutions, which is discussed in greater

detail in §5.7.

The effect of employing the Cox-Voinov condition (5.2.3) at the boundary can

now be observed via consideration of the evolving boundary thickness. For sim-

plicity, only the evolving boundary thickness for the optimal (experimental) value

of K = 37 is shown in Figure 5.5. It provides the first representation in the oph-

thalmic literature of not only a realistic dynamic contact line in tear-film flow,

but also one that is based on physically realistic boundary conditions. The dy-

namics incurred by employing the Cox-Voinov condition are those of a reducing

tear-film thickness, driven by θ±(0) < Θ±, followed by a quasi-constant thickness

once θ±(t) ≈ Θ±. Whilst the change in contact thickness from initial to near-static

state at the boundary is relatively small (≈ 9%), this change is dependent on the

values of both Θ± and θ±(0). Note that the “small” descriptor is not attributed

negatively; rather, this can be considered positive as the menisci still remain, unlike

in the related study of Hurst (2014) wherein they are effectively eliminated.

Note that, for all solutions subsequently presented, the values of K± have been

chosen using the ideas previously explained. In the absence of presenting contact-

angle evolution, it should be understood that the values of K± have been appropri-

ately chosen so that the agreement between θ±(t) and in vivo measurements is as

per Figure 5.2.

5.4.1 Retention of Full Curvature

In the normal-stress balance (2.1.45), the full curvature was retained, so that the

factor (1 + ε2h2
x)
− 3

2 is present in the flux (5.2.1). Of the ophthalmic literature, only
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Figure 5.5: Tear-film thickness h(1, t), at the eyelid boundary x = 1, as a function
of time (seconds). With no gravitational influence the thicknesses at both eyelids
are equal, so that h(−1, t) = h(1, t) as presented.

Miller et al. (2002) retains this full curvature. Despite this, no analysis by Miller

et al. (2002) or any subsequent literature has attempted to quantify the effect of

its retention (or lack thereof) on the rate of tear-film breakup. Thus, the influence

of this term is now considered by obtaining solutions with ε = 0, for comparison

against those presented previously with ε = 10−3. The effect on the thinning rate

of the tear film of retaining this factor is demonstrated in Figure 5.6.
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Figure 5.6: Minimum film thickness min
x
h(x, t), for both ε = 10−3 (blue curve) and

ε = 0 (red curve), as a function of time. The effect of retaining the full curvature
has a significant impact on the breakup time of the tear film.
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It is revealed that, when the curvature is retained, breakup occurs at a slower

rate; approximately double the time. The increased breakup time is attributed to

the fact that the regions of the tear film where |hxx| is large enough to influence

the flow (i.e. in the meniscus and black-line regions) are also the regions where |hx|
is largest. Thus, the magnitude of hxx (and thus the increase in thinning rate) is

reduced upon division by (1+ ε2h2
x)

3/2 when the full curvature is retained. For these

reasons, ε = 10−3 is maintained throughout.

Whilst it could be argued that Figure 5.6 casts doubt on some prior ophthalmic

modelling, it is not presently thought that this is the case. The gradient of the

tear film at the boundary is herein controlled by the specified static contact angle.

Thus, the importance of the curvature is also controlled. When the contact angle is

made larger, the gradients relax and thus the inclusion of the full curvature would

be expected to have a reduced impact as |hx(±1, t)| would be smaller. Whilst

there is no ophthalmic work in which contact angles are considered, they are still

implicitly specified by the initial conditions used; however, of course, their evolution

is unknown. For example, Braun & Fitt (2003) and Li & Braun (2012) use initial

conditions with contact angles of respectively 77o and 69o. Thus, it is possible

that, due to the larger (and arguably non-physical) contact angles implicitly used,

retention of the full curvature would be less impactful on their results.

5.4.2 Gravitational Effects

Gravitational effects are now incorporated into the model by considering an eye at

normal incidence (i.e. a forward-facing eye), so that φ = 0 and gravitational forces

act in the positive x direction (recall Figure 2.2). Tear-film profiles are presented in

Figure 5.7 for different times t, whilst the effect that gravity has on the meniscus

thickness at the boundary1 is presented in Figure 5.8.

The inclusion of gravitational effects causes different dynamics in the bulk of

the fluid. Whilst the black-line regions still effectively separate the fluid into three

regions, each region experiences new dynamics. At the upper lid, the black-line

region thins at an increased rate due to additional fluid leaving the region via gravi-

1Recall from §2.2.2 that this is static in almost all related ophthalmic literature despite the in
vivo data of du Toit et al. (2003), Johnson & Murphy (2006) and Shen et al. (2008). The exceptions
to this are Braun et al. (2012); Hurst (2014); Peng et al. (2014) who use the non-realistic contact
angle of θ±(t) = 90o: Braun et al. (2012); Peng et al. (2014) specifying such a condition to enforce
periodic boundary conditions.
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Figure 5.7: Snapshot tear-film profiles obtained under the influence of gravitational
effects. The inclusion of gravity causes fluid to migrate from the upper to lower
regions, so that the symmetry observed in Figure 5.3 is lost. Gravitationally-induced
thickening at the lower lid is evident in x > 0: the formation of the inferior black
line is clearly delayed.
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Figure 5.8: Tear-film profiles at the boundary, demonstrating the changing film
thickness, and contact angle, at |x| = 1. The initial symmetry of the t = 0 (blue
curve) profile is immediately lost. Comparison of the curves t = 0s (blue curve) and
t = 30s (purple curve) at the inferior lid (right) manifestly reveal the observable
change in contact angle at the boundary.

145



5. TEAR-FILM DYNAMICS

tational draining. At the lower lid, the additional fluid entering the region — akin to

“welling” — counteracts the thinning in the inferior black line. Consequently, an in-

creased thinning rate is observed at the superior black line, whilst the inferior black

line remains at a relatively constant thickness as capillary-thinning effects are offset

by gravitationally-driven fluid flow. The rates of thinning can be further explored

by considering separately the minimum film thicknesses in the inferior and superior

regions of the eye. Figure 5.9 shows the minimum film thickness, at the inferior and

superior black-line region, computed respectively as min
x>0

h(x, t) and min
x<0

h(x, t).
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Figure 5.9: Temporal history (in seconds) of the minimum film thickness at the
inferior (blue curve) and superior (red curve) black-line regions, compared to the
gravity-free case (yellow, dashed). Entirely different behaviour is observed under the
influence of gravity: the film maintains a relatively stable thickness at the lower lid,
whereas rupture, as evidenced by the monotonically decreasing red line, is demon-
strated to occur at a quicker rate in the superior black-line region.

The inferior black-line region experiences an initial thinning over the first few

seconds, thereafter staying approximately constant due to fluid entering the lower

part of the eye. Meanwhile, the additional fluid leaving the superior black-line region

causes a reduced BUT of ≈ 35 seconds, which is in good agreement with breakup

times measured in vivo (Golding et al., 1997, Figure 3).

The inclusion of gravitational effects not only affect the rate of thinning in the

black-line regions: it also has an interesting influence on the boundary thickness

h(±1, t). Intuitively, such effects cause fluid not only to move away from the upper

lid, but also to cause additional fluid to enter the lower meniscus. The changing

values of h(±1, t) are shown against t in Figure 5.10.
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Figure 5.10: Boundary-thickness evolution h(±1, t) at the inferior (blue curve) and
superior (red curve) eyelids, compared to the gravity-free case (yellow, dashed)
against time (seconds). The influx of fluid entering the lower-lid region causes
an increase in thickness after the evolving contact angle has approached the static
angle.

At the superior lid, the film thickness h(−1, t) undergoes similar dynamics both

with and without gravitational effects; though, a marginally thinner boundary thick-

ness is observed due to gravitational effects causing fluid to leave the upper region.

The thickness at the inferior lid, h(1, t), undergoes very different behaviour. As

gravity pulls fluid into the lower region of the eye, the initially-decreasing tear-film

thickness begins to first stabilise, and then to increase. At t ≈ 5s, corresponding to

the time by which the evolving contact angle of the tear film is approximately the

static angle, i.e. θ+(t) ≈ Θ+, the change in thickness attributed to the implementa-

tion of the Cox-Voinov condition (5.2.3) becomes minor, and thus any change in the

boundary thickness is driven entirely by gravity. An important implication of this

is that, despite neither explicit mention nor inclusion of gravitational effects in the

boundary condition (5.2.3), such factors still influence the behaviour and dynamics

on the boundary. This is a feature whose exploration, demonstration and discovery

are precluded by the ubiquitous enforcement of the pinning boundary condition.

Indeed, the pinning condition is not influenced at all by any external effects; the

exact same condition is used regardless of the presence or removal of gravitational

or evaporative effects, irrespective of the non-physical consequences. The results of

Figures 5.7–5.10 have demonstrated beyond doubt the non-negligible influence of

gravity on both the evolution and breakup of the tear film. Notably, gravitational
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5. TEAR-FILM DYNAMICS

effects are absent in the works of Braun & King-Smith (2007); Braun et al. (2012);

Heryudono et al. (2007); Please et al. (2011); Zhang et al. (2003); Zubkov et al.

(2012, 2013).

5.4.3 Corneal Slip

Attention now turns to consideration of the effects of including the Navier-slip con-

dition on the corneal surface. To observe the effect of slip, two parameters are

varied; the slip parameter β and the power n in the slip condition. The range of

0.001 < β < 0.05 is chosen to capture the values used in previous ophthalmic litera-

ture (e.g. Braun & King-Smith (2007); Heryudono et al. (2007); Maki et al. (2008));

the value of β = 0, corresponding to no slip, has been used thus far. Recalling from

§2.1.1 that the idea behind the Navier-slip condition is that it should predominate

in only the smallest film thicknesses, the importance of slip in (2.1.41) is measured

by the ratio β/hn. When β is increased, the effects of slip are uniformly larger along

the entire corneal surface. However, upon inclusion of the factor h−n, n ≥ 0, the

influence of slip can be increased in only the vicinity of small h; i.e. in the black-

line regions where h < 1. The spatio-temporal evolution equation (5.2.1) suggests

introduction of the quantity Ψ ≡ β/hn+1, whence (5.2.1) becomes

ht = − ∂

∂x

[
h3

12

(1 + 4Ψ)

(1 + Ψ)

(
G cosφ+ S

∂

∂x

(
hxx

(1 + ε2h2
x)

3/2

))]
, (5.4.1)

and hence the inclusion of slip introduces the h-dependent factor

1 + 4Ψ

1 + Ψ
. (5.4.2)

Thus, when the effects of slip are small (β � 1) or the tear-film thickness is large

(e.g. h(x, t) > 1 towards the eyelid boundary) Ψ� 1 and the factor (5.4.2) incurred

by the retention of slip is
1 + 4Ψ

1 + Ψ
≈ 1. (5.4.3)

However, as the film thins in the black-line regions (h → 0+), Ψ � 1 and so the

factor (5.4.2) becomes
1 + 4Ψ

1 + Ψ
≈ 4 (5.4.4)
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and hence can significantly influence the flow of the tear film. It is noted that the

first ‘consideration’ of slip in ophthalmic modelling was to neglect it; “including slip

... is likely to affect the results by only about one per cent.” (Braun & Fitt, 2003,

p. 28). Thus, one aim of this section is to validate or to contradict this claim.

A relative measure of the effect of slip on the solutions h(x, t; β) can be obtained

from the ratio

R(x, t) =
h(x, t; 0)− h(x, t; β)

h(x, t; 0)
. (5.4.5)

Tear-film thicknesses h(x, t; β) are obtained for both β = 0.01, n = 0 and β = n = 0,

from which substitution in (5.4.5) allows for numerical computation of R(x, t). This

relative effect of slip R(x, t) is presented in Figure 5.11 at times t = 4s, t = 8s

and t = 20s, which correspond respectively to a short interblink time, a typical

interblink time and a time just prior to tear-film breakup. For a typical blink

time of 5–8 seconds, the inclusion of slip has a small impact on the majority of

the corneal surface. However, in those locations where the effect is important, i.e.

the black-line regions, up to a 10% difference is present in a typical interblink time.

This percentage change becomes increasingly significant as t approaches the breakup

time. This agrees with what is understood about the Navier-slip condition: that it

increasingly influences the dynamics when the free- and corneal surfaces approach

each other. Thus, its impact is expected to be limited to the black-line regions.

A closer inspection of the results presented in Figure 5.11 reveals that, in a

typical 8s interblink, ≈ 90% of the domain is affected 1% or less, and ≈ 60% by

0.1% or less, by the inclusion of slip. Although these data appear to corroborate

the claim by Braun & Fitt (2003), the behaviour of the majority of the tear film

is neither interesting nor requires detailed study. Arguably, the film thickness over

the centre of the cornea is not of great importance in general; it is understood, and

verified by the ophthalmic literature, that breakup occurs initially in the black-line

regions1. Thus, it is in the vicinity of such regions where the effects of slip are

required to be calibrated. In order to further quantify this, the thinning rate in the

black-line region at the superior lid, where breakup first occurs due to gravitational

effects, is observed for different values of β. The minimum superior lid thickness,

min
x<0

h(x, t), is plotted against t in Figure 5.12 for a range of β and n values.

1The only exception to this is in subjects with corneal dry-spots which are not necessarily
located in the black-line regions. In such cases, numerical modelling would be required ab initio
to factor these additional regions of thinning and de-wetting.
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Figure 5.11: Relative effect (5.4.5) of including Navier-slip with β = 0.01 and n = 0
on the tear film height h(x, t; β) for varying values of t. The inclusion of slip affects
the solutions most in the areas where the film is thinnest; i.e. in the black-line
regions, notably with greater than a 1% relative influence; the factor is here closer
to 20% in the black-line region at t = 20s.
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Figure 5.12: Minimum-film-thickness in the superior black-line region for numerical
solutions computed using varying slip parameters. An increased rate of thinning is
observed in all solutions in which corneal slip is included.

The inclusion of slip is seen to decrease the breakup time of the tear film from

≈ 35s (β = n = 0) to ≈ 25s (β = 0.05, n = 0). For even the smaller value of

β = 0.01, the breakup time of the tear film drops by nearly 5s. The effect of including
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a slip model wherein n 6= 0 can also be explored. The purple curve in Figure 5.12

corresponding to β = 0.005 and n = 1 has an accelerated rate of thinning once the

tear film starts to thin and the ratio β/h(x, t) concomitantly increases. The breakup

times for cases β = 0.005, n = 1 and β = 0.05, n = 0 differ by tenths of a second,

despite a significant difference in the minimum thickness at around t = 5s.

Based on the results of Figures 5.11 and 5.12, it is concluded that slip has a

negligible impact on the flow of the majority of the tear film; however, its influence

in the black-line regions is manifestly clear and apparently not ignorable. Both

figures thus contradict the aforementioned claim by Braun & Fitt (2003). It is

concluded that the assertion by Braun & Fitt (2003) that slip is negligible requires

amendment as follows: the effect of slip is negligible only outside the black-line

regions, and hence it should be included in all subsequent modelling in order to

accurately quantify the rate of tear-film breakup.

Conservative values of β = 0.01 and n = 0 are used henceforth, so that the

effect of slip is still included, but results are not overly influenced by a potentially

excessive (Braun & King-Smith, 2007) value of β such as β = 0.05.

5.5 Variations in the Initial Condition

Thus far, parameter choices for φ, ε, β and n have been explored in order to re-

spectively determine the importance of gravitational effects, the retention of full

curvature and corneal slip. Recall that, unless stated otherwise, parameter choices

are henceforth specified as φ = 0, ε = 10−3, β = 0.01 and n = 0. Numerical solutions

are now obtained to compare different initial tear distributions. Recall that in Fig-

ure 5.1 two initial profiles with the same characteristics were presented. However,

the latter profile hH(x, 0), which has thus far not been used, contains larger menisci

widths and heights, in addition to a greater initial tear volume, than the initial

profile hD(x, 0) used above. The effect on increasing these meniscus parameters on

the evolution of the tear film is now considered. In particular, it is observed in vivo

that the meniscus height is “the most powerful predictor of tear film insufficiency”

(Mainstone et al., 1996, p. 653), thus it is predicted that larger breakup times will

be observed when numerical solutions corresponding to hH(x, 0) are obtained. A

comparison between solutions obtained at the end of an 8-second interblink for both

hH(x, t) and hD(x, t) is made in Figure 5.13.
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Figure 5.13: Numerical solutions at t = 0 (solid) and t = 8s (dashed) for a drier
initial profile hD(x, 0) (blue curve) and healthier initial profile hH(x, 0) (red curve).
The tear film experiences a similar evolution for both profiles.

The overall dynamics of the two profiles are similar. Both solutions experience a

similar change in thickness in the black-line regions; however, two differences merit

note. As the black-line regions lie adjacent to the meniscus, increasing the meniscus

height causes the location of thinning to be closer to the centre of the cornea. That

is, hH(x, t) experiences its minimum at smaller values of |x|. Also noticeable is that

the minimum film thickness is thinner in hD(x, t) than hH(x, t) by around 30% after

a typical interblink time. Quantification of this difference is now demonstrated. To

do this, the case of pinning is first visited.

5.5.1 A Formal Contradiction of Ubiquitous Pinning

As explained in §2.2, the most common boundary condition employed in the oph-

thalmic literature is the Dirichlet pinning condition (2.2.2), h(±1, t) = h(±1, 0) for

all t. Such a condition is based on speculative assertion, and is now shown to give

results that contradict measurements observed in vivo. Rather than enforcing the

condition that h(x, t) = h(x, 0) directly1, the pinning condition can presently be en-

forced simply by using a degenerate case of the Cox-Voinov law (5.2.3) with K± = 0.

Four numerical solutions are to be obtained: using initial conditions hH(x, 0) and

hD(x, 0), and with both a dynamic boundary (K± > 0) and pinning (K± = 0).

1A Dirichlet condition has already been implemented in this way in (4.3.3).
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Figure 5.14: Minimum film thickness min
x
h(x, t) against t (seconds) for hH(x, 0)

(blue curve) and hD(x, 0) (red curve) using the Cox-Voinov condition (dashes) and
pinning condition (solid).

The minimum thickness of all four solutions, in the superior black-line region,

is presented in Figure 5.14, in which it is clear that the choice of boundary and

initial conditions greatly affects the rate of thinning. When the Cox-Voinov con-

dition is employed, the breakup time is 25 seconds for initial condition hD(x, 0),

which increases to 29 seconds for the initial condition hH(x, 0). However, when

the pinning condition is used, the breakup time is observed to significantly reduce

when the healthier profile is used: breakup times are 8 seconds for initial condi-

tion hH(x, 0) and 12 seconds for initial condition hD(x, 0). These results imply that

tear film breakup occurs more quickly in a healthy eye than in a dry one, which,

notwithstanding its counter-intuitive nature, agrees with neither the observations of

Mainstone et al. (1996) nor in vivo measurements of Golding et al. (1997, Fig. 4).

The explanation behind this contradiction is as follows. When the film thins with a

pinned boundary, the gradients present in the menisci actually increase as the film

evolves (e.g. Braun & Fitt (2003, Fig. 2) and Winter et al. (2010, Fig. 1 and Fig. 2)).

With such gradients increasing over extended times, quicker rates of thinning occur.

In contrast, when the Cox-Voinov condition is employed, the evolving boundary

thickness allows for the menisci gradients to relax, and the cumulative effects of the

reducing gradients and migrating boundary fluid reduces the thinning rate. Notably,

the increasing ‘pinning’ gradients, and reducing ‘Cox-Voinov’ gradients, both have

their effects heightened when the initial profile is changed from hD(x, 0) to hH(x, 0),

153



5. TEAR-FILM DYNAMICS

hence the quicker breakup in healthier profiles when pinning is employed.

Whilst no such prior ophthalmic work has included the Cox-Voinov condition,

this contradiction has previously been observed; however, interestingly, it has not

elicited comment. For example, in Braun & Fitt (2003, Table 2), all presented re-

sults observe that the breakup time is inversely proportional to ∆hm (cf. the initial

condition (5.3.1)), a value which implicitly specifies meniscus size. As they increase

∆hm, which increases the boundary thickness (and thus volume), the associated

breakup time consistently decreases. Whilst they comment on the influence of grav-

ity and evaporation on the breakup of the tear film, the contradiction between tear

volume increase and breakup-time decrease is ignored.

The pinning condition has thus been demonstrated to be based on unphysical

assumptions (§2.2.1); it is possible that1 it was simply inherited from the related, but

non-ophthalmic, set-up in Braun et al. (1999), but that, in the ophthalmic literature,

it yields results that contradict in vivo observations. Accordingly, it is hoped that

the present study will invite a fresh re-consideration of the extensive portfolio of

hitherto supposedly-complete related studies.

5.5.2 Non-symmetric Initial Profiles

Numerical solutions computed thus far have been obtained from initial profiles in

which the central region is entirely flat, i.e. for which hc(x) = 1 in (5.3.2). Whilst

such initial conditions are commonplace in the ophthalmic literature, deposition

models predict a non-uniform central thickness. Both Jones et al. (2005, Fig. 8)

and Heryudono et al. (2007, Fig. 18) compute tear-film deposition by modelling

an opening eye. Whilst the menisci remain relatively unchanged throughout their

computations, the central region can vary considerably between different models.

Full blinks, partial blinks and combinations thereof can yield initial profiles that may

be thicker towards either the superior or inferior lid. Thus, in this section, initial

profiles wherein hc(x) 6= 1 are considered. Two new initial profiles are constructed

using the methodology of §5.3. Parameter sets specifying non-symmetric profiles:

S1 = {H = 30, c̃ = 5, X = 0.82, θ−(0) = 50o, θ+(0) = 45o, hc(x) = 1 − x/3} and

S2 = {H = 30, c̃ = 5, X = 0.77, θ−(0) = 50o, θ+(0) = 45o, hc(x) = 1 + x3}, are

used to respectively obtain initial conditions h1(x, 0) and h2(x, 0). Initial profile

h1(x, 0) is prescribed with a thicker film towards the superior meniscus, whereas

1In additional to its specification in Wong et al. (1996).
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h2(x, 0) has a thicker film towards the inferior meniscus. Note that, due to the way

in which h2(x, 0) is constructed and its higher-order derivatives matched, black-line-

like regions are present ab initio (q.v. t = 0 in Figure 5.18). This is not deemed

to be a problem; both Heryudono et al. (2007) and Jones et al. (2006) predict the

presence of black lines during film deposition.

Note that both initial conditions h1(x, 0) and h2(x, 0) have θ+(0) 6= θ−(0); i.e. the

opposing eyelids have distinct initial contact angles. This is to allow contact-angle

evolution to be independent at each eyelid; i.e. K+ 6= K−. Consequently, static

contact angles are now taken to be Θ− = 61.14o and Θ+ = 54.89o, more closely

matching the in vivo data of Johnson & Murphy (2006). With separate values of

both the initial and static contact angles at the two eyelids, contact-angle evolution

is first validated at both eyelids in Figure 5.15 for the initial profile h1(x, 0).
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Figure 5.15: Numerically obtained contact-angle evolution against time (seconds) for
both the superior (blue curve) and inferior (red curve) contact angles, compared with
in vivo measurements (circles). The construction of the initial condition h1(x, 0)
includes specification of different initial contact angles to better match the data of
Johnson & Murphy (2006).

As shown in Figure 5.15, the evolution of the contact angles is now specified

differently at the opposing eyelids, i.e. θ−(0) 6= θ+(0), K− 6= K+ and Θ− 6= Θ+.

The evolution of both angles is in good agreement with the measurements of Johnson

& Murphy (2006), with the exception of θ+(0): θ+(0) is specified as 45o whereas the

in vivo data predicts an initial angle of 41o. The disagreement between these two
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values is to allow the contact-angle evolution to be accurate for t > 0. Values of

K+ > 100 were required to obtain the large relative change in θ+(t) between t = 0s

and t = 1s. Such values of K+ consequently yield θ+(t) ≈ Θ+ by t ≈ 1.5s, an

unrealistically quick time, and so affect the accuracy of contact-angle evolution for

subsequent values of t. Thus, by prescribing a slightly larger angle θ+(0), a smaller

value of K+ < 100 is taken to yield more consistent contact-angle evolution for t > 0.

Despite this, enforcement of the Cox-Voinov condition with eyelid-specific boundary

data has been shown to be implementable. Tear-film profiles for increasing t are now

presented in Figure 5.16.
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Figure 5.16: Computed tear-film evolution for h1(x, 0) over the period of a long but
realistic interblink. Due to the initially thinner film towards the inferior meniscus,
breakup can now occur at the inferior black-line region. The central region of the
initial tear film is specified as hc(x) = 1− x/3 in (5.3.2).

The initial thinning causing the formation of the black lines has an interesting

consequence when the initial profile is thinner towards the inferior meniscus. As

evidenced in previous solutions, the rate of thinning at the lower lid is approximately

equal to that of the superior lid for the first 2 seconds, until the effects of gravity

begin to stabilise the flow (see, e.g. Figure 5.9). However, with the film now initially

thinner at the lower meniscus, the initial thinning is almost enough to cause rupture.

This is further evidenced in Figure 5.17, wherein the minimum film thickness in both

the inferior and superior black-line regions is presented.
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Figure 5.17: Computed minimum film thicknesses at the inferior (blue curve) and
superior (red curve) black-line regions for initial condition h1(x, 0). The initially-
thinner inferior region thins at an increased rate before being offset by an influx
of fluid due to gravity. Whilst the minimum film thickness at the inferior lid al-
ways remains positive, h(x, t) is temporarily less than the breakup threshold (black,
dashes) described in §5.1, so that rupture may occur towards the lower lid.

At around t = 12s, the film achieves its thinnest at the inferior black-line region

with a dimensional thickness of 0.02µm, thus, whether or not breakup occurs at the

lower lid depends on the definition of breakup used. The effective breakup at the

lower lid is not only attributed to the initially thinner film, but also the reduced

contact angle Θ+. It is noted that the evolution of the tear-film thickness at the

boundary h(±1, t) is in qualitative agreement with boundary evolution of previous

results (e.g. Figure 5.10), thus it is not presented.

A final choice of initial condition is now made. Using parameter set S2 to con-

struct h2(x, 0), an initial condition is created wherein the film is thinner towards

the superior meniscus. The expected consequence of this is that breakup will occur

more quickly near the superior lid due to the initial reduced thickness. Figure 5.18

presents tear-film profiles for increasing t for this choice of initial condition.

Despite a very different initial profile from the case with a flat central region

(cf. Figure 5.7), the resulting dynamics are similar; however, the difference is the

speed at which they occur. With a thinner initial thickness towards the upper lid,

the contributing effects of thinning and gravity cause tear-film breakup at a reduced
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Figure 5.18: Tear-film evolution for h2(x, 0) computed using parameter set S2. The
inclusion of black lines in the initial condition is specified as per the deposition
models of Jones et al. (2005) and Heryudono et al. (2007).

time. Breakup occurs at t = 12s, compared to the 25–30s breakup in previous results

(Figure 5.14). Thus, the breakup time is evidently highly dependent on the initial

condition specified, for which more advanced mathematical deposition models, or

more precise in vivo measurements, are required to better emulate realistic initial

profiles. The breakup time of the tear film is now quantified in terms of other

parameter variations.

5.6 Quantification of Breakup Time

The analysis thus far has evidently revealed a relationship between the breakup

time (BUT) of the tear film and the inclusion of both gravity and slip, in addition

to the choice of the static contact angle. Previous ophthalmic literature typically

quantifies the effect of such parameter variations on tear-film breakup via the pre-

sentation of tabulated data (e.g. Braun & Fitt (2003, Table 2) or Jones et al. (2005,

Table 3)). Such tabulated data are often unhelpful due to their limited quantity; no

knowledge may be gained of the functional relationship between the BUT and pa-

rameter variations. Thus, BUTs are now presented as functions of slip, gravity and

the static contact angle, in order to fully understand the influence of, respectively,

the parameters β, φ and Θ± on tear-film breakup.
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Figure 5.19: Breakup time (seconds) of the tear film as a function of corneal slip β.
The inclusion of slip is demonstrated to have a significant effect on the BUT only
once β ≥ 10−3. This relationship has hitherto gone undiscovered.

The methodology deployed to compute such a relationship is as follows. The

initial condition hD(x, 0) is advanced in time according to the spatio-temporal evo-

lution equation (5.2.1), subject to parameter choices φ, β, n and Θ±. The BUT is

defined as the first time T at which min
x
h(x, T ) < 0.016. As discussed in §5.1, this

corresponds to a dimensional thickness of h′(x′, t′) = 800 Å= 0.08µm, when rupture

may start to occur. A single parameter, say β, is then modified, whilst φ, n and Θ±

are held fixed. Temporal integration for this new parameter set is then performed,

from which a second BUT can be computed. Upon repetition of this process for a

number of values of β, the BUT is then plotted numerically against β.

5.6.1 Corneal Slip

As demonstrated in §5.4.3, the inclusion of corneal slip had a clear influence on

the rate of thinning of the tear film, in contrast with the claim of Braun & Fitt

(2003). The effect of slip on the BUT of the tear film is now further validated for

the parameter variation of 0 ≤ β ≤ 0.1. For these calculations, fixed values of n = 0,

φ = 0 and Θ± = 61.14o are used. The BUTs are plotted against β in Figure 5.19.

The largest values of β yield a BUT that is 50% less than those where β = 0;

however, as previously mentioned, values of β ≈ 0.1 are potentially too large for the
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tear film (Braun & King-Smith, 2007). The more realistic choice of β = 0.01 impacts

the BUT with a 20% reduction, which is still a significant decrease in the health

of the tear film. Despite computation of the tear-film evolution for β as small as

β = 10−11, the influence of corneal slip does not affect the BUT with any significance

until reaching the value β = 10−4. Notably, BUTs corresponding to β = 10−4 and

β = 0 differ by less than 0.1 s, and the choice of β = 10−3 decreases the BUT by

just 0.7 s compared to the no-slip case. Thus, in the results of Figure 5.19, it could

be argued that no-slip could be enforced for simplicity if the slip parameter β was

expected to satisfy β < 10−3. This is consistent with the non-dimensionalisation of

the Navier-slip equation (2.1.20) in §2.1.4; such a small value of β < 10−3 would

constitute an order O(ε) parameter such that Navier-slip would not be a competing

effect at leading order, and slip would naturally reduce to no-slip. Hopefully this

observation can feed into future asymptotic ordering of terms in the series expansions

of the governing equations.

5.6.2 Eye Orientation

Gravitational effects are modelled by the constant G (2.1.18) whose value is specified

via the non-dimensional rescaling of the Navier-Stokes equations (2.1.16)-(2.1.17).

Thus, whilst the value of G dictated entirely by the fluid properties cannot be

modified per se, the strength of gravity can be implicitly controlled via the factor

cosφ corresponding to the orientation of the eye relative to the direction of gravity.

Recall that increasing φ from φ = 0 to φ = π/2 corresponds to an eye moving

from forward- to upward-facing, and that increasing φ corresponds to decreasing

gravitational strength. The influence that gravity has on the BUT is thus quantified

upon plotting the BUT against G cosφ over the range 0 ≤ φ ≤ π/2, see Figure 5.20.

It is noted that plotting BUT against the parameter φ yields the same conclusions,

and so it is omitted. For these calculations, n = 0, β = 0.01 and Θ± = 61.14o are

held fixed.

Revealed in Figure 5.20 is a nonlinear dependence of the strength of the gravi-

tational term on the BUT of the tear film. The influence of gravitational effects on

an eye at normal incidence (G cosφ = 0.245) reduces the BUT by 50% compared

to that of an upward-facing eye (G cosφ = 0). Such a relationship is hopefully of

practical utility when considering the orientation of a subject’s eye during in vivo

measurements. For example, specification that experiments were performed at nor-
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Figure 5.20: Breakup time (seconds) as a function of gravitational strength G cosφ.
By varying the orientation of the eye, the effect of gravity on the flow of the film is
modified, corresponding to a significant increase in tear-film longevity in an upwards-
facing eye.

mal incidence by King-Smith et al. (2000, p. 3348) admits for direct comparison

against numerical solutions with φ = 0.

For completeness, tear-film profiles are presented and compared for the cases

φ = 0o(30)90o. Whilst a prior comparison had been made on the inclusion of

gravity (§5.4.2), the solutions presented therein were obtained not only before the

inclusion of corneal slip in the modelling but also for only φ = 0o and φ = 90o, so

that this additional comparison is informative. Tear-film profiles are presented in

Figure 5.21 for both a typical 8-second interblink period and at tear-film breakup

for different values of φ: these reveal the effect that the orientation of the eye has on

both tear-film flow and rupture. Note that the novel retention of the cosφ factors

allows for such a hitherto-unseen comparison.

As gravitational strength is varied by changing φ, intuitively reasonable dy-

namics occur in the flow of the tear film. Towards the superior lid, increasing φ,

whereby gravitational effects are weakened, causes an increase in thickness both in

and adjacent to the superior black-line region after a typical 8-second interblink.

The inverse of these effects are, as expected, observed at the lower lid; increasing φ

causes a reduced thickness due to less tear fluid entering the inferior region. At tear-

film breakup, the displacement of fluid due to the orientation of the eye is manifestly

visible. This is most notable at the inferior black-line region where the thickness is

significantly increased for an eye at an angle 0o ≤ φ ≤ 60o. Very little difference in
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Figure 5.21: Tear-film profiles h(x, t) for eyes at different incidence φ corresponding
to different strengths of gravity. The strength of gravity effectively decreases with
increasing φ. Solutions obtained with φ = 0o (blue curve), φ = 30o (red curve),
φ = 60o (yellow curve), φ = 90o (purple curve) are presented after a typical 8s
interblink period (top) and at tear film breakup (bottom); breakup occurs at times
T = 30s, T = 32s, T = 35s and T = 52s respectively for the four angles φ.

dynamics is observed for small inclination variations of 0o ≤ φ ≤ 30o. Despite this,

the difference between solutions computed with φ = 0o and φ = 90o suggests that

gravitational effects must be retained in tear-flow modelling in order to compare

numerical solutions against the in vivo measurements observed at normal incidence;

it is recalled that gravitational effects are excluded in the related studies of Braun

& King-Smith (2007); Braun et al. (2012); Heryudono et al. (2007); Please et al.

(2011); Zhang et al. (2003); Zubkov et al. (2012, 2013).
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5.6.3 Static Contact Angles

Whilst the values of Θ± are chosen based on the in vivo measurements of Johnson

& Murphy (2006), the value of Θ± is now varied. As previously mentioned, despite

little-to-nothing being mentioned in the ophthalmic literature regarding contact an-

gles, the initial conditions used in ophthalmic modelling implicitly specify a contact

angle: for example 77o in Braun & Fitt (2003) and 69o in Li & Braun (2012). Whilst

these angles correspond to θ±(0), rather than Θ±, and the contact-angle evolution

is thereafter unknown, the fact that such angles are significantly larger than those

observed in vivo raises doubt on the corresponding BUTs obtained. By increasing

Θ± to such values, a dependence of the BUT of the film can be revealed. It is noted

that as the values of Θ± will no longer match in vivo data, values K± in (5.2.3) are

chosen so that the evolving contact angle θ±(t) agrees to 2 decimal places with Θ±

by a typical blink time of t = 10s. This level of agreement is not expected to affect

the results at the level of precision presented but is consistent with the timescale

over which genuine contact-angle evolution occurs in vivo (see Figure 2.6). In ad-

dition to the assumption of values of K±, a modified breakup rule is considered.

Figure 5.22 shows the modified breakup time (MBUT) as a function of Θ±, where

the modified BUT is defined as the first time T at which min
x
h(x, T ) < 0.1. The

choice of this new breakup thickness, six-times larger than that used in Figures 5.19

and 5.20, is due to the significant increase in BUTs that are observed for larger

values of Θ±. As evidenced in Figure 5.22, increasing Θ± from 60o to 70o doubles

the MBUT; increasing Θ± thereafter to Θ± = 77o increases the MBUT tenfold. For

such large values of Θ± — values implicitly specified in some related literature —

the significant decrease in thinning rate necessitated the calculation of the MBUT

rather than the BUT1. Of course, it is accepted that a contributing factor to the

increase in BUT is due to the redistribution of fluid along the boundary from the

Cox-Voinov condition (5.2.3). However, similar observations still manifest them-

selves upon specification of the pinning condition (2.2.4) (e.g. the excessive 5-16

minute BUTs of Braun & Fitt (2003, Table 2) wherein initial angles are specified

as 77o-84o). Thus, the results of Figure 5.22 hereafter demand the specification of

physically realistic contact angles when modelling tear-film flow. Notably, varia-

tions in the specification of the boundary contact angle are more influential on the

1For Θ± = 77o the BUT is computed as ≈ 500s, in which case comparison of the BUT instead
of the MBUT in Figure 5.22 would require a logarithmic vertical axis.
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Figure 5.22: Modified breakup times (seconds) wherein the film thins to a tenth
of its initial thickness, plotted against the static contact angle Θ±. Specification
of (unrealistic) static angles Θ±, similar to values that implicitly appear in the
ophthalmic literature, yield tear-film breakup times far beyond any measurements
observed in vivo.

breakup of the tear film than the inclusion of gravitational or corneal slip effects.

Thus, comparison of the results of Figure 5.22 with those in Figures 5.19 and 5.20

justifies the novel inclusion of the Cox-Voinov condition for specifying a boundary

condition (partially) constructed from in vivo data.

5.7 Validation of Numerical Solutions

Despite the thorough testing and validation performed in §4, further numerical tests

can be performed on the numerical solutions obtained from the spatio-temporal evo-

lution equation (5.2.1). Such tests validate the numerical solutions presented herein,

for which there are no exact counterparts. Two measures of the numerical error are

performed: minimum-thickness symmetry error and mass-conservation error.

5.7.1 Symmetry Error

The minimum thickness of the tear film can quantify the order of error present in

the numerical solution. When gravitational effects do not affect the flow (φ = π/2),

and symmetry is present in both the initial condition and the boundary conditions
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(i.e. Θ− = Θ+ and K− = K+), the evolution of the tear film should by construction

remain symmetric about x = 0, i.e. the minimum thickness of the film should be

equal in the upper and lower halves of the eye. Any difference between the two

values will therefore be due to temporal-integration error. Thus, the value of a

so-called antisymmetry error

E(t) ≡ min
x>0

h(x, t)−min
x<0

h(x, t) (5.7.1)

yields a quantifiable indicator of the (absolute) minimum-thickness error. Two sets

of solutions are used to evaluate the antisymmetry error (5.7.1). First, the no-

slip solutions presented in Figure 5.3 are considered (β = 0, n = 0, ε = 10−3,

Θ± = 61.14o, h(x, 0) = hD(x, 0)). In addition, new solutions including slip are

generated by modifying the given parameter choices with β = 0.005 and n = 1. The

additional solution is computed in order to assess whether the increased nonlinearity

of the governing equation (5.2.1) in the presence of Navier-slip causes an increase in

error.

Computed antisymmetry errors (5.7.1) for both sets of solutions are presented in

Figure 5.23, in which it is evident that an error in the minimum thickness of order

O(10−9) can be attributed to temporal integration. Dimensionally, a 10−9 error in

h(x, t) corresponds to an error in a real tear-film thickness of ≈ 5 femtometres. It

is noted that an analogous test can be performed on the boundary thickness; the

values of h(1, t) and h(−1, t) should again be equal without gravitational effects

and with equivalent contact-angle evolution. Whilst the details are not presented,

such a calculation reveals that the boundary error h(1, t) − h(−1, t) = O(10−10)

over the entire 30-second integration period, further validating the accuracy of the

implemented Cox-Voinov condition and the solutions obtained therefrom. Such a

check — absent in related literature — validates the implementation of the present

methodology.

5.7.2 Mass Conservation

In addition to the antisymmetry error, computation of the mass history of the fluid

admits a further error indicator. The mass history is computed as previously out-

lined in §3.4 and §4.2, for the previous slip-solution with (β = 0.005, n = 1, ε = 10−3,

Θ± = 61.14o, h(x, 0) = hD(x, 0)). In addition to this, a second solution is obtained
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Figure 5.23: Antisymmetry error E(t) (5.7.1) obtained by comparing minimum
values in both halves of the corneal domain. The introduction of slip (red curve)
with β = 0.005 and n = 1 increases the nonlinearity of the governing equation
(5.2.1), yet no significant deterioration of accuracy in the solutions is introduced as
seen by comparison with the no-slip case (blue curve).

for a larger number of nodes; N = 380. The (relatively large) value of N is here

chosen to reflect the value used by Heryudono et al. (2007), who comment that (for

them) it leads to “instability and unreasonably small time steps”. With the mass of

the tear film given by

M(t) =

∫ 1

−1

h(x, t) dx, (5.7.2)

numerical evaluation of M(t) is performed via Matlab’s sum command, as outlined

in §3.4. The relative error in mass conservation is then given by

M(t)−M(0)

M(0)
. (5.7.3)

The corneal-slip solutions of Figure 5.23 are now computed using both N = 150

and N = 380. The corresponding relative mass-conservation errors (5.7.3) for both

values of N are presented in Figure 5.24, which demonstrates that mass is conserved

to at least order O(10−8) for both values of N . Via the analysis of §4.3, it was

shown that the error in the evaluation of a mass integral is of the same order of the

error in the mass integrand. Thus, from the mass-history profiles in Figure 5.24,
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Figure 5.24: Relative error in the conservation of mass (5.7.3) for solutions obtained
using N = 150 (blue curve) and N = 380 (red curve) for spatial discretisation.
The order O(10−9) accuracy present in mass conservation when N = 380 yields
a significant improvement of accuracy over the order-O(10−4)-accurate results of
Heryudono et al. (2007). The positive gradient on N = 150 is, whilst undesirable,
mitigated by the fact that the relative mass change is order O(10−7) by the BUT.

it follows that there is an expected order O(10−8) error in the numerical solutions.

This is in relatively good agreement with the values obtained for the minimum-

thickness error. Direct calculation reveals that the change in mass over a 0.1 second

interval is O(10−11). These results can be compared with Heryudono et al. (2007),

who obtain numerical solutions which conserve mass to an order O(10−4) accuracy,

approximately 105 larger than via the present methodology1. It is noted that the

mass-conservation errors for N = 150 in Figure 5.24 will eventually accumulate,

but not significantly during realistic BUTs. It is considered that the reason for this

accumulation is due to the presence of the initial mass M(0), which is computed

from a piecewise initial condition, in the relative error (5.7.3). As spectral integration

techniques suffer a slight deterioration in accuracy and require larger values of N

when applied to piecewise functions (Gelb, 2001), the accuracy of M(0) may account

for the apparent accumulation in Figure 5.24. This further explains why the errors

for N = 380 are smaller than those of N = 150.

1In addition, both sets of calculations take around 3 seconds of computational time, so that
the “unreasonably small time steps” that occur in the temporal integration of Heryudono et al.
(2007) do not occur in the present numerical methodology.
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5.8 Summary and Discussion

The spatio-temporal evolution equation (5.2.1) has been discretised to spectral ac-

curacy using a Chebyshev-differentiation-matrix approach. The resulting system

has been implemented using a bespoke extension of rectangular-collocation resam-

pling (Driscoll & Hale, 2016) that explicitly incorporates the no-flux (5.2.2) and

Cox-Voinov (5.2.3) conditions enforced at the boundary. Using a novel modification

of the resampling technique, both time- and space-derivatives in the Cox-Voinov

condition have been augmented into the resampled rectangular system to yield a

square system (5.2.16).

By addressing problems with initial conditions present in the ophthalmic litera-

ture, methodology has been introduced that is able to construct initial profiles that

include a tear-film-like appearance yet which have been constructed with appropri-

ate orders of continuity. This was motivated by noting that related literature fea-

tures consistent disagreements between initial conditions and subsequently enforced

boundary conditions, as well as the use of piecewise functions whose higher-order

derivatives are discontinuous at the piecewise matching points. As a result, a novel

approach has been developed for creating initial profiles that not only satisfy both

initial and boundary conditions, but are constructed according to agree with in

vivo measurements of meniscus size (dictated by X and H in §5.3). The flexibility

of the approach admits a central tear-film thickness that can be varied (hc(x) in

(5.3.2)); using this, numerical solutions have been computed for flat (Figure 5.3),

constant-gradient (Figure 5.16) and varying-gradient (Figure 5.18) film thicknesses.

Specification of the Cox-Voinov condition (5.2.3) has admitted an entirely novel

dynamic evolution of the boundary tear-film thickness. Moreover, through parame-

ters K± in (5.2.3), the boundary evolution can be controlled by calibration against

in vivo measurements of Johnson & Murphy (2006) (Figure 5.2). The inclusion of

moving contact lines based on in vivo measurements is a novel and widely applicable

development over and above the existing ophthalmic literature. In addition to being

a more physically realistic representation of the dynamics at the boundary (§2.2),

the inclusion of the Cox-Voinov condition has allowed for the discovery and obser-

vation of hitherto-unrealised tear-film behaviour that results from the stress-release

admitted by fluid motion along and near to the eyelid.

The competing effects of tear-film thinning have been studied and their impact

observed. As expected, for an eye at normal incidence gravity shifts fluid from the
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upper to the lower lid, causing a quicker breakup time in the superior black-line

region; it also effectively allows the inferior black-line region to enter equilibrium

as the meniscus-induced thinning is balanced by gravitationally-driven film thick-

ening. Augmented by gravitational effects, the Cox-Voinov condition has induced

a reduction in boundary thickness at the superior lid, and a corresponding increase

at the inferior lid (Figure 5.10). This observation is incompatible with the pin-

ning Dirichlet condition (2.2.2) deployed ubiquitously in the literature. Inclusion of

Navier-slip (2.1.4) on the corneal surface has led to a reduction in the breakup time

of the tear film, the effect being most significant in the regions where the film is

thinnest (Figure 5.11). Variation of parameters β and n, the latter of which controls

the importance of slip in the thinner regions of the film, have revealed that corneal

slip can reduce breakup times by as much as 30%. The choice of ε = 10−3 in the

curvature retained in the normal-stress balance (2.1.8) has been shown to affect the

numerical solutions appreciably: the importance of retaining such a term is due to

the gradients experienced when physically realistic contact angles are implemented.

Notably, whilst the ophthalmic literature does not retain such a term, the choice

of unrealistic contact angles therein means that less-severe gradients are included.

However, in the presence of a pinning condition, such initially-shallow gradients only

increase, whereas the diametric opposite is true upon specification of the Cox-Voinov

condition.

Variation of initial conditions have revealed similar qualitative film evolution

and dynamics, all cases resulting in the appearance of black lines, adjacent to the

menisci, causing tear-film breakup. Consideration of an initial profile with a thicker

tear film has been demonstrated to increase the breakup time (Figure 5.14). This

is consistent with in vivo observation (e.g. Golding et al. (1997, Fig. 4)) wherein

the larger menisci increase the health and breakup time of the tear film. However,

when the boundary conditions are altered to pin the boundary thickness (K± = 0),

the increased meniscus parameter yields a significantly quicker breakup time. This

contradiction caused by pinning correlates with the lack of physicality it shares with

a real human tear film. Further variations of the initial condition have revealed that,

under different blinking patterns, in which the tear film is thicker over the upper half

of the cornea, tear-film breakup may occur at the lower lid first. This is consistent

with the numerical solutions of Jones et al. (2005, Table 3) who also observe rupture

at the lower lid when non-symmetric initial conditions are enforced.
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The breakup time of the tear film has been quantified in terms of gravitational

effects, corneal slip and the static contact angle. A novel inclusion of the orientation

of the eye has allowed for tear-film evolution to be modelled under what is effec-

tively a controllable and variable gravity, for which a nonlinear dependence between

gravitational strength and tear-film breakup has been observed for the first time.

Variations of both φ and β have revealed an increase in tear-film breakup time by

up to 50%. Both effects are thus considered to be highly significant in the mod-

elling of the tear film. Variations of the static contact angle in Figure 5.22 have, for

the first time, revealed the importance of accurately modelling the contact angle to

capture realistic tear-film breakup times. Upon unrealistic choices of Θ± — values

that implicitly appear in the initial conditions of related ophthalmic literature —

the lifespan of the tear film was shown to increase tenfold by comparison with val-

ues observed in in vivo experiments. This result alone necessitates the inclusion of

accurate contact-angle modelling in future ophthalmic studies.

Errors in the solutions computed herein have been quantified via two bespoke,

novel error-measurement techniques. Under parameter choices of φ = π/2, Θ− = Θ+

and K− = K+ the symmetry present in a symmetric initial condition should persist.

Thus, evolution of the minimum film thickness in the upper and lower half of the

film should be symmetric about x = 0. Computation of the difference of these

minima (5.7.1) as a measure on the error in h(x, t) was revealed to be of order

O(10−9). Increasing the nonlinearity of the governing equation (5.2.1) by specifying

a Navier-slip condition with n > 0 does not significantly decrease this spectral level

of accuracy. In the presence of a no-flux condition, conservation of mass should

follow. By spatially integrating the solutions to spectral accuracy, the error in the

conservation of mass has been computed and revealed to be of order O(10−8), from

which it follows that (see §4.4) the assumed error in the solution h(x, t) is of the same

order; this is in good comparative additional agreement with the antisymmetry-

error measure. Notably, conservation of mass was even more accurate when N was

increased. The order O(10−9) accuracy eclipses that of Heryudono et al. (2007) who

obtain order O(10−4) accuracy for the same value of N , at which their approach

additionally invites a numerical instability that is entirely precluded via the present

methodology.

Finally, it should be noted that the present study differs from the prior literature

in one major and fundamental respect. To the author’s knowledge, it is the only

treatise in which clear, explicit and complete details have been given of the com-
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putational methodology deployed. In this sense all related literature has precluded

subsequent work such as this being able to validate its numerics and/or to emulate

its findings independently because, predominantly, scant details have been hitherto

presented. As such, it is hoped that this thesis will allow others to remodel and/or

to emulate its methodology in line with its overarching philosophy of transparency

and repeatability, thereby offering a firm foundation and consistent framework for

future related studies.
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Chapter 6

Conclusions, Discussion and

Future Work

Since self-contained, focussed summaries have concluded all previous sections, only

the novel approaches and key features of the present work are here reiterated with

regard to gathering together the aims, objectives and outcomes of this thesis. Con-

siderations regarding future work are also discussed.

6.1 Overarching Summary of Thesis

In §2.1, a novel spatio-temporal evolution equation was derived for the thickness

of a tear film, which equation included new formulations of both corneal slip and

gravitational influence. Specifically, a more general form of Navier-slip was included

wherein its influence increases in the thinner regions of the film, as motivated by

the analysis of Braun & Fitt (2003). The modelling of gravitational influence was

extended by including the orientation of the eye as a variable parameter: though a

seemingly obvious addition, it transpires that this simple variability directly affects

some of the scaling arguments in §2.3.

One of the main goals of this thesis was to enforce physically realistic boundary

conditions on the evolution of the tear film in response to the ubiquitous acceptance

in the ophthalmic literature of boundary conditions that are neither validated by

in vivo observations nor based on physical arguments. Specifically, the ubiquitous

application of a pinning condition, wherein the boundary thickness is held fixed, is

demonstrably non-physical in the presence of external effects such as gravity and/or
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evaporation. Thus, §2.2 presented a thorough discussion of the validity and phys-

icality of boundary conditions that currently feature in the ophthalmic literature.

Novel arguments were made in §2.2.1 on the basis of in vivo measurements (du Toit

et al., 2003; Johnson & Murphy, 2005; Shen et al., 2008) that demonstrate beyond

doubt that temporal variations in the tear-film thickness oppose the notion of pin-

ning. With the aim of enforcing a boundary condition that not only allows for the

boundary thickness to change, but does so in agreement with in vivo measurements,

a dynamic Cox-Voinov boundary condition (Cox, 1986; Voinov, 1976) was intro-

duced in §2.2.7. The Cox-Voinov condition relates the changing boundary thickness

with the dynamic contact angle of the tear film: a quantity that had previously been

evaluated in §2.2.6 from in vivo data (Johnson & Murphy, 2006). Notably, specifi-

cation of the Cox-Voinov condition allowed the boundary thickness to be influenced

by external effects such as gravity and evaporation; a feature that had not hitherto

been observed in any related literature. The Cox-Voinov condition was successfully

implemented in §5, wherein it was calibrated against in vivo data (Johnson & Mur-

phy, 2006); this implementation admitted the computation and analysis of novel

dynamics in tear-film flow.

As non-dimensional scalings applied in the ophthalmic literature are without ex-

ception presented as a fait accompli, a novel set of non-dimensional scalings were

derived in §2.3 via a systematic argument based on dominant balances. This was

further motivated by comments1 made in the ophthalmic literature (Aydemir et al.,

2011; Maki et al., 2008) regarding the retention of capillary effects. Thus, by assum-

ing that capillary effects are present at leading order, the Navier-Stokes equations

were non-dimensionalised in terms of the Suratman and Bond numbers rather than

the Reynolds, Stokes and Capillary numbers. Although the appropriate dominant

balances led in this case to a set of non-dimensional scalings that, upon their sub-

stitution into the equations of motion, yielded equivalent leading-order formulae to

those obtained in §2.1.5, the value of the new systematic approach is twofold. First,

it is readily adapted to include other competing physical effects a priori. Second,

it reveals that the effects of evaporation cannot be neglected per se, and it offers a

novel means of quantifying the thickness of the film below which evaporative effects

start to play a leading-order role.

Another main aim of this thesis was to construct, implement and present ab

1And, in some cases, apparent inconsistencies and/or a posteriori rescalings (Braun & King-
Smith, 2007; Jones et al., 2005).
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initio a numerical framework for the solution of the spatio-temporal evolution equa-

tion derived in §2.1. This was motivated due to the dearth of detail in the oph-

thalmic literature regarding the implementation details of numerical methods em-

ployed therein. As such, replication or extension of published results invariably

required a fresh numerical implementation. Of particular interest is that boundary

condition enforcement, a key detail in the numerical solution of differential equa-

tions, is rarely discussed at all in prior work. This makes it almost impossible to

compare newly computed results against those of related literature. By contrast,

a fully replicable numerical methodology is presented in §3, in which a spectral

Chebyshev-differentiation-matrix method (Breuer & Everson, 1992; Trefethen, 2000)

is constructed in §3.1 to approximate derivatives of orders 1–4. Thereafter, accuracy-

enhancement techniques (Baltensperger & Trummer, 2003; Don & Solomonoff, 1997)

are implemented in §3.2 in order to ensure that the differentiation matrices are con-

structed to machine precision. A novel repeated application of the negative-sum trick

yielded matrices that were evidenced in §4.1.3 to approximate derivatives to greater

accuracy than the differentiation matrices provided by (even) Matlab’s chebfun

package (Driscoll et al., 2014).

Spectrally-accurate enforcement of boundary conditions required careful consid-

eration due to their nonlinear, computationally-challenging nature. A method was

sought that could be replicated for boundary-condition enforcement in related stud-

ies. Accordingly, in §3.6, rectangular spectral collocation (Driscoll & Hale, 2016) was

introduced in order to facilitate boundary-condition enforcement. In addition, new

accuracy-enhancement techniques were introduced, implemented and validated for

the rectangular resampling matrix, to ensure that boundary-condition enforcement

was to the same spectral-level as the previous spatial discretisations. An extension

to rectangular spectral collocation presented in §5.2 allowed for the discretisation

and enforcement of a spatial- and temporal-derivative dependent Cox-Voinov con-

dition. All of the numerical tools introduced in §3 were implemented and carefully

validated in §4, wherein a spectral level of accuracy emerged in all presented results.

A full numerical discretisation of the governing evolution equation was given in

§5.2 in order to present full and clear details of the numerical methodology. A novel

methodology for the construction of tear-film-like initial profiles was introduced in

§5.3, wherein a wide range of parameter choices were investigated: central tear-film

shape, meniscus height, meniscus width and the boundary contact angle. The evolu-

tion of the tear film was then analysed in §5.4–§5.6 with particular focus on two key
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regions: the black-line regions, where the film was thinnest; and, the newly-evolving

boundary thickness due to specification of the novel-to-the-area Cox-Voinov condi-

tion. The retention of the full curvature was revealed in §5.4.1 to be required due

to the presence of larger gradients attributed to realistic contact angles: despite

this, its full retention is not considered in related studies. Initial profiles featuring

a non-uniform central thickness, used in §5.5, revealed that tear-film breakup may

occur at the lower lid, which is consistent with the simulation of half-blinks in Jones

et al. (2005). A comparison between the Cox-Voinov and pinning boundary condi-

tions was made in §5.5.1 wherein it was revealed that enforcement of the pinning

condition yielded results that directly contradict in vivo observation. Specifically,

the breakup time of the tear film is known to increase in the presence of an in-

creased fluid volume (Golding et al., 1997). However, when the pinning condition

was enforced, the breakup time of the tear film decreased with an increased initial

volume. Notably, the numerical results obtained upon application of the Cox-Voinov

condition corroborated the same in vivo data: an increase in breakup time was ob-

served for an increased tear-film volume. In §5.6 novel relationships were obtained

between the breakup time of the tear film and each of eye orientation, corneal slip

and contact-angle evolution. Two important observations arose as a result of this

novel analysis. First, in §5.6.2 it was shown that, for the superior black-line region,

an upwards-facing eye experiences tear-film breakup in roughly double the time of

a forwards-facing eye. As an upwards-facing eye is consistent with a model wherein

gravitational effects are ignored, and the majority of in vivo observations are per-

formed on an eye at normal incidence, comparisons between in vivo measurements

and models that exclude gravitational effects may not be valid. Second, it was re-

vealed in §5.6.3 that the specification of non-physical (i.e. too large) contact angles

— angles that implicitly feature in the ophthalmic literature — yield breakup times

that are an order of magnitude larger than those measured in vivo.

6.2 Future Work

A natural extension of the present work is the inclusion of evaporation, which was not

retained at leading order in §2.1. However, the novel analysis in §2.3 demonstrated

that evaporative effects may contribute to thinning in the black-line regions during

a typical blink timescale. Two distinct approaches regarding evaporative effects

are currently adopted in the ophthalmic literature. The first is the inclusion of an

176



6.2 Future Work

additional term in the spatio-temporal evolution equation specifying evaporation as

a function of film thickness and/or pressure (Li et al., 2014; Winter et al., 2010). The

second is the modelling of the lipid layer of the tear film, resulting in a coupled pair

of evolution equations (Aydemir et al., 2011; Jones et al., 2006). Both approaches

have their advantages. The former is a simple extension of the model derived herein

upon retaining evaporation at leading order in §2.1.5. The latter is preferable when

modelling the significantly larger evaporation rates that may arise from lipid-layer

deficiencies: the measured evaporation rate for the tear film can increase by up to

a factor of 20 when its lipid layer is partially or wholly washed away (Nichols et al.,

2005). Thus, to model evaporation-driven breakup, a coupled lipid-aqueous system

would be required, wherein lipid-layer deficiencies could be captured. However, a

disadvantage of this approach is that no meaningful construction of boundary or

initial conditions for the lipid-concentration evolution equation can realistically be

made, since all parameters and quantities corresponding to the lipid layer are at

best entirely speculative (Aydemir et al., 2011).

It should be noted that the extension to include evaporation is quite natural

in the presence of the Cox-Voinov condition. For example, in the tear-film model

of Winter et al. (2010), a conjoining pressure term is introduced to balance the

effects of evaporation once the film has sufficiently thinned; i.e. the film reduces

to a thinner equilibrium thickness. This allows for prolonged temporal integration

during which evaporation effectively eliminates the central tear film. However, the

presence of pinning conditions forces meniscus regions to survive (unrealistically)

unaffected, thereby forming increasingly steep gradients (Winter et al., 2010, Figure

2). In the presence of a Cox-Voinov condition, the boundary thickness recedes and

the film thickness concomitantly thins across the entirety of the domain. Analysis

of such a model, wherein the Cox-Voinov condition is specified, would thus be able

to validate or to contradict the 5–8 minute estimate of tear-film depletion of Holly

(1973) with greater accuracy than the model of Winter et al. (2010), in whose pinned

model about about one-third of the tear fluid remains in the fixed menisci.

As outlined in the opening of §2.3, the formal derivation of the non-dimensional

scalings for ophthalmic modelling forms the basis of two papers currently in prepa-

ration. Hall & Kelmanson (2020a) introduces and extends the non-dimensional

scalings derived in §2.3 to obtain a formally-derived evolution equation for tear-film

flow, augmented by Cox-Voinov boundary conditions, on which the numerical meth-

ods of §3 are applied. Hall & Kelmanson (2020b) introduces an extension of these
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ideas to a non-Cartesian geometry. For a “normal” corneal surface, the 2D Cartesian

model accurately simplifies the corneal geometry (Braun et al., 2012). However, as

outlined in §2.4, in the presence of, e.g., the medical condition keratoconus (Krach-

mer et al., 1984; Rabinowitz, 1998) the “normal” cornea instead becomes conic and

bulges outwards. Thus, Hall & Kelmanson (2020b) considers the extension to mod-

elling the influence of keratoconus on the dry-eye phenomenon via specification of

an arbitrary1 corneal surface.

1In related literature, the corneal surface is a constant-coordinate line in, e.g., prolate spheroid
orthogonal coordinates (Braun et al., 2012), which does not agree with experimental observations.
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Appendix A

Chebyshev Differentiation Matrix

Entries

A.1 Higher-Order Explicit Formulae

Explicit formulae for the matrix entries of D(k), k = 1(1)4, are presented.

D
(1)
i,j =



1 + 2N2

6
i = j = 0,

−1 + 2N2

6
i = j = N,

− xj
2(1− x2

j)
i = j = 1(1)N − 1,

(1 + δi0 + δiN)

(1 + δj0 + δjN)

(−1)i+j

(xi − xj)
i 6= j, i, j = 0(1)N.

(A.1.1)
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D
(2)
i,j =



N4 − 1

15
i = j = 1, i = j = N,

(N2 − 1)x2
j −N2 − 2

3(1− x2
j)

2
i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
2N2 + 1

3(1− xj)
− 2

(1− xj)2

)
i 6= j, i = 0,

2(−1)j+N

1 + δj0

(
2N2 + 1

3(1 + xj)
− 2

(1 + xj)2

)
i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
xi

(1− x2
i )(xi − xj)

+
2

(xi − xj)2

)
i 6= j, i = 1(1)N − 1.

(A.1.2)
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D
(3)
i,j =



2N6 − 7N4 − 7N2 + 12

210
i = j = 0,

−2N6 − 7N4 − 7N2 + 12

210
i = j = N,

xj(2x
2
j(N

2 − 1)− 2N2 − 13)

4(1− x2
j)

3
i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
N4 − 1

5(1− xj)
− 2N2 + 1

(1− xj)2
+

6

1− xj)3

)
i 6= j, i = 0,

2(−1)N+j+1

1 + δj0

(
N4 − 1

5(1 + xj)
− 2N2 + 1

(1 + xj)2
+

6

1xj)3

)
i 6= j, i = N,

(−1)i+j

1 + δj0 + δjN

(
x2
i (N

2 − 1)−N2 − 2

(1− x2
i )

2(xi − xj)

+
3xi

(1− x2
i )(xi − xj)2

+
6

(xi − xj)3

)
i 6= j, i = 1(1)N − 1.

(A.1.3)
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D
(4)
i,j =
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4(−1)j+N

1 + δj0

(
2N6 − 7N4 − 7N2 + 12

105(1 + xj)
− 2(N4 − 1)

5(1 + xj)2

+
4N2 + 2

1 + xj)3
− 12

1 + xj)4

)
i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
24

(xi − xj)4
+

12xi
(1− x2

i )(xi − xj)3

+
4xi(N

2 − 1)− 4N2 − 8

(1− x2
i )

2(xi − xj)2

−
xi
(
2x2

i (N
2 − 1)− 2N2 − 13

)
(1− x2

i )
3(xi − xj)

)
i 6= j, i = 1(1)N − 1.
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A.2 Trigonometric Forms of Higher-Order Matri-

ces

Trigonometric forms of D(k), k = 1(1)4, wherein entries are evaluated using identities

(3.2.1), are now given, wherein ω ≡ π/2N .

D
(1)
i,j =



1 + 2N2

6
i = j = 0,

−1 + 2N2

6
i = j = N,

− xj
2 sin2(2jω)

i = j = 1(1)N − 1,

(1 + δi0 + δiN)

(1 + δj0 + δjN)

(−1)i+j

2 sin((i+ j)ω) sin((j − i)ω)
i 6= j, i, j = 0(1)N.

(A.2.1)

D
(2)
i,j =



N4 − 1

15
i = j = 1, i = j = N,

(N2 − 1)x2
j −N2 − 2

3 sin4(2jω)
i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
2N2 + 1

6 sin2(jω)
− 1

2 sin4(jω)

)
i 6= j, i = 0,

2(−1)j+N

1 + δj0

(
2N2 + 1

6 cos2(jω)
− 1

2 cos4(jω)

)
i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
xi

2 sin2(2iω) sin((i+ j)ω) sin((j − i)ω)

+
1

2 sin2((i+ j)ω) sin2((j − i)ω)

)
i 6= j, i = 1(1)N − 1.
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D
(3)
i,j =



2N6 − 7N4 − 7N2 + 12

210
i = j = 0,

−2N6 − 7N4 − 7N2 + 12

210
i = j = N,

xj(2x
2
j(N

2 − 1)− 2N2 − 13)

4 sin6(2jω)
i = j, i = 1(1)N − 1,

2(−1)j

1 + δjN

(
N4 − 1

10 sin2(jω)
− 2N2 + 1

4 sin4(jω)
+

3

4 sin6(jω)

)
i 6= j, i = 0,

2(−1)N+j+1

1 + δj0

(
N4 − 1

10 cos2(jω)
− 2N2 + 1

4 cos4(jω)
+

3

4 cos6(jω)

)
i 6= j, i = N,

(−1)i+j

1 + δj0 + δjN

(
x2
i (N

2 − 1)−N2 − 2

2 sin4(2iω) sin((i+ j)ω) sin((j − i)ω)

+
3xi

4 sin2(2iω) sin2((i+ j)ω) sin2((j − i)ω)

+
3

4 sin3((i+ j)ω) sin3((j − i)ω)

)
i 6= j, i = 1(1)N − 1.
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D
(4)
i,j =



N8 − 12N6 + 21N4 + 62N2 − 72

945
i = j = 0, i = j = N,

N4 sin4(2jω)− 5N2x2
j sin2(2jω)− (6x4

j + 83x2
j + 16)

5 sin8(2jω)
i = j, i = 1(1)N − 1,

4(−1)j

1 + δjN

(
2N6 − 7N4 − 7N2 + 12

210 sin2(jω)
− N4 − 1

10 sin4(jω)

+
2N2 + 1

4 sin6(jω)
− 3

4 sin8(jω)

)
i 6= j, i = 0,

4(−1)j+N

1 + δj0

(
2N6 − 7N4 − 7N2 + 12

210 cos2(jω)
− N4 − 1

10 cos4(jω)

+
2N2 + 1

4 cos6(jω)
− 3

4 cos8(jω)

)
i 6= j, i = N,

(−1)i+j+1

1 + δj0 + δjN

(
24

2 sin4((i+ j)ω) sin4((j − i)ω)

+
3xi

2 sin2(2iω) sin3((i+ j)ω) sin3((j − i)ω)

+
xi(N

2 − 1)−N2 − 2

sin4(2iω) sin2((i+ j)ω) sin2((j − i)ω)

−
xi
(
2x2

i (N
2 − 1)− 2N2 − 13

)
2 sin6(2iω) sin((i+ j)ω) sin((j − i)ω)

)
i 6= j, i = 1(1)N − 1.
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A.3 Resampling Matrix P

The trigonometric formulation of the rectangular-collocation matrix P, resampling

the nodes (3.1.6) onto (3.6.7), is presented. Under the identity

Ωi,k ≡
(2Ni+N + 2Ñk + 2k)π

4N(Ñ + 1)
(A.3.1)

the matrix P is constructed as

Pi,j =
P̂i,j∑N
j=0 P̂i,j

. (A.3.2)

where P̂ is given by

P̂i,j =


wj

2 sin(Ωi,j) sin(Ω−i−1,j)

( N∑
k=0

wk
2 sin(Ωi,k) sin(Ω−i−1,k)

)−1

yi 6= xj

1 yi = xj

(A.3.3)

for the weights

wj =
(−1)j

1 + δj0 + δjN
, j = 0(1)N. (A.3.4)
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