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ABSTRACT 

  

The choice of appropriate ventilator settings is crucial especially for patients with 

severely impaired respiratory system to improve the benefit-to-risk ratio of 

mechanical ventilator by providing adequate gas exchange whilst reducing the risk of 

ventilator-induced lung injury. However, known bedside measures to guide the 

clinician in adjusting the ventilator settings are limited in that they tend to give global 

information regarding the performance of the lungs. Electrical impedance tomography 

(EIT) is relatively new technique and has been the subject of intensive research since 

its development in the early 1980s by Barber and Brown. One of the advances in EIT 

is the development of an absolute EIT system (aEIT) that can estimate absolute values 

of lung resistivity and lung volumes. 

 

In this thesis, a series of calibration and improvements on the aEIT system conducted 

by the Sheffield’s Group have shown some promising results that allow the system to 

be the base for the development of a decision support system for guiding respiratory 

therapy hence enhancing the clinician’s expertise with rapid and precise adjustments 

of ventilator settings. In this research, the intelligent EIT-based decision support 

system (IEDSS) is developed to provide advice for optimal changes in ventilator 

settings. The IEDSS is a knowledge-based decision support system which exploits the 

expert knowledge in deriving the rules for optimal ventilator settings based on blood 

gases information and the quantitative parameters of the aEIT system. The 

performance of IEDSS has been validated in a series of simulation scenarios to mimic 

the real patients’ state evolution in the intensive care unit. This simulation has fused 

the information on blood gasses from the extended version of ventilated patient 

mathematical model and information on the regional lung behavior from the aEIT 

related models. The results show that not only the IEDSS can generate good ventilator 

setting advice but also it is able to minimise the risks of lung injuries in all the 

simulated patients.  
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     oxygen carrying capacity of the blood  

    haemoglobin oxygen binding capacity 

aEIT  absolute electrical impedance tomography 

absR  absolute resistivity 

absLV  absolute lung volume 

APT  applied potential tomography 
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BP   blood pressure 
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BTPS   body temperature pressure saturated 

C   lung compliance 

Cor.  correlation 

CaCO2  carbon dioxide content in arterial blood 

CaO2   oxygen content in arterial blood 

CABG  coronary artery bypass grafting  

CT   computerized tomography 

C.O.   cardiac output 

COPD  chronic obstructive pulmonary disease 

CPAP   continuous positive airway pressure 

CPPV   continuous positive pressure ventilation 

CvO2   venous oxygen content 

CxO2   oxygen content of the blood in compartment x 

DO2   diffusion capacity of the lung for oxygen 

DSS  decision support system 

Dept.  department 

eSTD  standard deviation of error 

EELV   end-expiratory lung volume 

EIT   electrical impedance tomography 

ELIC   end-expiratory lung impedance change 



vi 

 

ET  electrical tomography 

ERT  electrical resistance tomography 

ECG  electrocardiography 

EtCO2  end-tidal carbon dioxide 

FiO2   fraction of inspired oxygen 

FIS   fuzzy inference system 

FRC   functional residual capacity 

fEIT  functional electrical impedance tomography 
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GUI  graphical user interface 

Hb   haemoglobin concentration 
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HR   heart rate 
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ICU   intensive care unit 

II  impedance imaging 
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IEDSS  intelligent EIT-based decision support system 

IMRD  mean regional density index 

ILUNG  lung condition index 
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Kd   relative deadspace (deadspace to tidal volume ratio) 
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LLMD left lung middle density 

LLPD  left lung posterior density 

MAD  mean anterior density 

MMD  mean middle density 

MPD  mean posterior density 
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MRI   magnetic resonance imaging 
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MV   minute volume 
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MVT  mean tidal volume 

NHS  national health service 
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PAC   pulmonary artery catheter 

PaCO2  arterial partial pressure of carbon dioxide 

PAO2   alveolar partial pressure of oxygen 

PaO2   arterial partial pressure of oxygen 

PB   atmospheric pressure 

PCV   packed cell volume 

PCO2   partial pressure of carbon dioxide 

PDMS   patient data management system 
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Pmean  mean airway pressure 

PO2   partial pressure of oxygen 

PpCO2  pulmonary partial pressure of carbon dioxide 

PS   pressure support 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Research questions and motivation  

 

1.1.1 Mechanical ventilation: the act of therapy and injury  

 

Mechanical ventilation is synonyms with Intensive Care environment. Patients with 

respiratory failure for example, are not able to breath by themselves due to various 

clinical conditions; for example, heart failure, pneumonia, Acute Respiratory Distress 

Syndrome (ARDS) and Acute Lung Injury (ALI). These conditions may cause the 

patients to experience air hunger and a build-up of excessive carbon dioxide which 

usually lead to blood acidosis and as a result impair the patients’ body. The treatment 

for failure to oxygenate rests with the restoration and the maintenance of lung 

volumes provided by mechanical ventilation with the aim of ensuring that there is 

enough oxygen in the blood to support the metabolism and increase the patients’ 

comfort. The action to ensure that patients receive enough oxygen is a challenging 

task.  
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Although, mechanical ventilation is seen as a life-saving intervention for many 

patients in the intensive care unit (ICU), it has been associated with adverse effects. 

One of which that has been the main concern in the ICU relates to the lung tissue 

damage. Late complications often seen in ARDS patients and directly related to 

mechanical ventilation include barotraumas (repetitive closing and reopening of 

injured alveoli) caused by high airway pressures and/or volutrauma (alveolar over-

distension when the lung units are physically stretched beyond their normal, 

maximum inflation point and/or alveolar disruption) caused by high tidal ventilation.  

In both cases, patients tend to have imbalances in the regional lung ventilation, with 

gravity-dependent collapse and over distension of nondependent zones. These effects 

are better known in intensive care therapy as ventilator-induced lung injury (VILI). 

(Tremblay and Slutsky, 2006; Frank and Matthay, 2003; Moloney and Griffiths, 

2004). 

 

1.1.2 Mechanical ventilation strategies and their 

deficiencies 

 

The essentials in safe ventilatory therapy in patients with severe respiratory failure 

include lung volume maintenance while avoiding alveolar overdistension. Adequate 

lung volume is traditionally maintained by varying the tidal volume (VT), inspiratory 

time (Tinsp) and positive end-expiratory pressure (PEEP) levels. Arterial blood gases 

(arterial partial pressure of oxygen (PaO2), arterial oxygen saturation (SaO2), arterial 

partial pressure of carbon dioxide (PaCO2)) analysis and airway pressure-volume 

graphical waveforms have long been considered to be the gold standard clinical 

practice for assessing the acid-base balance, lung function and as a result guiding the 

titration of mechanical ventilation for critically-ill patients. These are combined with 

measurements derived from pressure, flow and volume, which provide information 

about the mechanical properties of the lungs and chest wall (Lu et al., 2000). 

However, these methods only provide an indication on the overall lung function and 

fail to provide full information about the regional lung behaviour (Harris et al., 2005).  
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Hitherto, lung imaging has relied on bedside X-ray radiography and the gold standard 

Computed Tomography (CT) which provides comprehensive images of the 

morphologic structures of the lungs and displays the ventilation distribution with a 

high spatial resolution. However, during these procedures, the patient is exposed to a 

substantial dose of radiation and in the case of CT, the patient needs to be transported 

to the Radiology Department, which is a high risk process in the unstable critically ill 

(Hinz et al., 2006). At present, CT is considered to be an ‘occasional’ investigation 

which is only repeated every few days at most. It is costly and both time and labour 

intensive. These limitations and problems associates with the Intensive Care 

environment need for an alternative solution which may enhance the quality of current 

management of ventilated patients. 

 

1.1.3 Electrical Impedance Tomography (EIT) as lung 

imaging 

 

The development of Electrical Impedance Tomography (EIT) has given a new 

perspective in Intensive Care environment. Electrical Impedance Tomography (EIT) 

is a non-invasive, radiation-free monitoring technique which aims to reconstruct a 

cross-sectional image of the internal spatial distribution of the electrical 

measurements made by injecting small alternating currents via an array of equally-

spaced electrodes attached to the surface of the thorax at about 4-5 cm above the 

xyphoid process (Denai et al., 2010). 

 

1.1.3.1  Absolute EIT (aEIT) as a potential bedside monitoring tool 

 

In this research, the Sheffield Mk 3.5 absolute EIT (aEIT) system has been used. 

Absolute EIT (aEIT) allows quantification of specific tissue resistivity at a given point 
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in time, when a lung volume can be derived as compared to just having a difference in 

impedance over a period of time. In recent years, the Sheffield’s Research Group has 

carried-out a series of calibrations and improvements to enhance the accuracy and 

consistency of the calculated absolute lung volume and resistivity in the aEIT system. 

Although the aEIT system is not yet established as a routine clinical tool, it has shown 

some promising development which has the potential to contribute to significant 

advances in lung monitoring technique, especially in tracking changes in the lung 

during mechanical ventilation. In this thesis, the mean end expiratory lung volume 

(MEEV), the right lung anterior density (RLAD), the right lung middle density 

(RLMD), the right lung posterior density (RLPD), the left lung anterior density 

(LLAD), the left lung middle density (LLMD) and the left lung posterior density 

(LLPD) are the identified quantitative parameters extracted from the aEIT system that 

have the ability to provide information on the localise patient’s lung behaviour. 

Therefore, a fusion of information from the aEIT system with patient’s blood gases 

parameters is reckoned to be able to assist the clinician to gain a more detailed 

information about a patient’s global and regional lung function information and 

therefore to lead to an overall optimal ventilator management strategy in the Intensive 

Care Unit (ICU). 

 

1.1.4 Physiological modelling of blood gasses for 

mechanically ventilated patients 

 

Simulation and modelling in respiratory physiology offer opportunities for the better 

understanding of the mechanisms of gas exchange and the pathophysiology of 

respiratory disorders. SOPAVent (Simulation of Patient under Artificial Ventilation) 

is a ventilated patient model which was originally developed to validate a fuzzy 

knowledge-based ventilator management decision support system (Goode, 2001). The 

model is designed to provide steady-state blood gasses predictions for totally 

ventilated patients. This early version of SOPAVent has included some disadvantages 

where some of its physiological parameters need invasive monitoring and excessive 
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computational time for delivering ‘optimal’ therapeutic decisions. The model was 

subsequently improved in order to design a model-based decision support system. A 

mean population method was used to derive these parameters non-invasively (Kwok, 

2003). Recently, further improvements have been made to the model with respect to 

parameters estimations which resulted in the emergence of a continuously updated 

ventilated patient model (Wang, 2008). The model has shown that by continuously 

updating the patient’s key parameters based on continuous measurement from ICU, 

the model can represent the patient state accurately and lead to good blood gases 

prediction with the patient state evolution.  

 

1.1.5 Intelligent decision support system for intensive care 

ventilators 

 

A vast amount of data/information that is available in current ICU call for an 

intelligent system that can fuse and interpret them accurately to provide a more 

objective and efficient ventilatory therapy. A significant amount of research has been 

carried-out to develop intelligent decision support systems for ventilator management 

system. In most of current studies, the intelligent decision support systems are 

designed to optimise the ventilator settings based on the patient’s blood gases 

information and measured set of ventilator parameters. In this thesis, the development 

of an intelligent decision support system that integrates the patient’s blood gases 

information from a totally non-invasive and continuously updated blood gas model of 

ventilated patients (SOPAVent), set ventilator parameters and quantitative parameters 

from aEIT system is investigated. The enhanced version of this intelligent decision 

support system is developed with the objectives to provide advice for precise 

adjustment of ventilator settings and minimising the known adverse effects of 

mechanical ventilation. A knowledge-based approach will be investigated for this 

purpose.  
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1.2 Research objectives 

 

The main objectives of this research are to further improve the existing Sheffield Mk 

3.5 aEIT system, to model the relationship between the ventilator settings and aEIT 

quantitative parameters and to develop an intelligent EIT-knowledge-based decision 

support system for optimal ventilator management in the ICU. In order to achieve 

this, several sub-objectives have been identified as follows: 

 

1. To conduct a series of investigations on healthy volunteer subjects to further 

assess the accuracy and consistency of the aEIT system.  

 

2. To further improve the region of interest (ROI) used in the Sheffield Mk 3.5 

aEIT system and validate the improved aEIT system. 

 

3. To implement the improved aEIT system using real ICU patients to reflect the 

ventilator settings-induced changes on the lung absolute volume. 

 

4. To model the relationship between ventilator settings and aEIT quantitative 

parameters and validate them accordingly. 

 

5. To show how to derive ‘optimal’ advice on ventilator settings via a 

combination of the expert knowledge with a fuzzy inference system and to 

evaluate the decision support system via a series of simulated patients’ 

scenarios. 

 

Indeed, the management of mechanically ventilated patients in the ICU is very 

complex and challenging. Therefore, to achieve the above mentioned objectives, the 

work in this thesis has been limited to the management of patients who are fully 

ventilated with no or very little spontaneous ventilation of their own. Only patients 

with pressure-control mode will be considered in all the studies with the ventilator 

settings including the fractional inspired oxygen (FiO2), positive end-expiratory 
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pressure (PEEP), inspiratory pressure (Pinsp), respiratory rate (RR) and peak 

inspiratory presuure (PIP). 

 

1.3 Outline of the thesis 

 

This thesis consists of 8 chapters and they are summarised as follows: 

 

CHAPTER 2: LITERATURE REVIEW 

This Chapter has been divided into two major sections; i) A number of important 

research studies and pioneering works related to the EIT application in pulmonary has 

been reviewed extensively, ii) Major research results and current state-of-the-art 

related to the various design of decision support systems for ventilators in ICUs are 

reviewed. In both sections, the current status, research trends and challenges are also 

discussed at the end of each section. 

 

CHAPTER 3: EIT STUDY ON HEALTHY VOLUNTEERS 

In this Chapter, investigations on aEIT measurements involving a group of healthy 

volunteer subjects are conducted by comparing with results from spirometry and body 

plethysmography (body box). 

 

CHAPTER 4: CALIBRATION AND IMPROVEMENT OF THE SHEFFILED 

MK 3.5 aEIT SYSTEM 

Efforts to improve the Sheffield Mk 3.5 aEIT software via a series of calibrations and 

improvements are reviewed first. The latest work of improvement, on redefining new 
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regions of interest (ROIs) for the lungs and the new sub-ROIs are then presented. 

Results from the improved aEIT system are also presented and discussed. 

 

CHAPTER 5:  EIT CLINICAL TRIALS ON ICU PATIENTS 

In this Chapter, the improved aEIT system with the new ROIs is implemented to 

reflect the PEEP settings-induced changes on the lung absolute volume in the real 

ICU patients. Relationships between the quantitative parameters extracted from EIT 

data, ventilator and blood gas parameters are also studied.  

 

CHAPTER 6: MODELLING OF aEIT QUANTITATIVE PARAMETERS 

USING ANFIS 

In this Chapter, the development of mean end expiratory lung volume (MEEV) and 

mean regional densities (MRD) models using ANFIS are presented. The validation 

results are then analysed and discussed. 

 

CHAPTER 7: INTELLIGENT EIT-BASED DECISION SUPPORT SYSTEM 

FOR CRITICALLY-ILL VENTILATED PATIENTS IN 

INTENSIVE CARE UNITS  

Based on the data/information from the aEIT models and a totally non-invasive and 

continuously updated blood gas model of ventilated patients (SOPAVent) in ICU, an 

intelligent EIT-based decision support system is designed using the expert knowledge 

and fuzzy inference system. The decision support is then evaluated via a series of 

simulated patients’ scenarios. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

This Chapter reviews and summarises the achievements of this project. The 

achievements and limitations are presented with an indication of a future research 

platform. 
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CHAPTER 2 

 

2 ELECTRICA IMPEDANCE 

ELECTRICAL IMPEDANCE TOMOGRAPHY 

AND DECISION SUPPORT SYSTEMS FOR 

INTENSIVE CARE VENTILATED PATIENTS 

– A LITERATURE REVIEW 

 

 

2.1 Electrical Impedance Tomography (EIT) 

 

2.1.1 Introduction 

 

Electrical Impedance Tomography (EIT) is a relatively new version to tomographic 

imaging techniques and it has been the subject of intensive research since its 

development in the early 1980s by Barber and Brown at the Department of Medical 

Physics and Clinical Engineering, Hallamshire Hospital in Sheffield (UK). Since then, 

EIT is seen to have a superior potential especially in the medical application. In 

Section (2.1), a brief history of EIT development will be reviewed. The general 

principle of EIT and different types of the system which exist in the literature will 

then be presented, followed by an overview of Sheffield Mk 3.5 absolute EIT (aEIT) 

system. The existing research on EIT application in healthcare will also be reviewed. 
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This review on research will focus on EIT applications in pulmonary measurement, 

which will establish the rationale behind the research work in this thesis. Finally, the 

trends related to the research in EIT will be discussed.  

 

2.1.2 A brief historical development of EIT 

 

The history of research in the electrical properties of biological tissues dated back in 

the early 1900’s. Human tissues have a specific conductance (conductivity), varying 

from 15.4 mS/cm for cerebrospinal fluid, to 0.06 mS/cm for bone, (Barber, 1995). 

They consist of cells with conducting contents surrounded by insulating membranes 

embedded in a conducting medium. These tissues can act as resistive, conductive and 

also as capacitive. Various tissues have different frequency dependant electrical 

properties. Nevertheless, in all tissues, the conductivity increases while resistivity 

decreases from the low frequency values to the high frequency limits. Table 2.1 

includes typical values of some tissue resistivity obtained at a frequency of 10 kHz 

(Brown, 2003). 

 

Table 2.1: Typical values of tissue resistivity at a frequency of 10 kHz [Brown, 2003]. 

 

Tissue Approximate Resistivity at 10 kHz 

Muscle 2-4 Ω m 

Fat 20 Ω m 

Lungs 7-20 Ω m (varies with respiration) 

Blood 1.6 Ω m 

Bone > 40 Ω m 
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Due to significant differences observed in the resistivity of different tissues, it should 

be possible to produce images showing the resistivity distribution. The first 

publication of an impedance image was that of Henderson and Webster in 1978 

(Henderson and Webster, 1978). They used 100 electrodes arranged in a rectangular 

array on one side of the chest, with a single electrode on the other side, and produced 

an image of the intervening tissue conductivity. In the past literature, several titles 

have been adopted to describe impedance imaging system, which include electrical 

tomography (ET), impedance imaging (II), resistance imaging (RI), electrical 

resistance tomography (ERT), impedance tomography (IT) and applied potential 

tomography (APT). Lately, the term which has been widely used to describe this 

imaging technique becomes the electrical impedance tomography (EIT). According to 

Brown, this term has an advantage in that it may include resistive, capacitive and 

inductive tomographies (Brown, 2003).  

 

The first clinical impedance tomography system was developed in the Department of 

Medical Physics in Sheffield by Barber and Brown in the 1980’s. The Sheffield Mark 

1 Applied Potential Tomography (APT) system became commercially available, and 

was used in many different clinical centres across a range of studies (Brown and 

Barber, 1987). In the early 1980’s, the Sheffield Group originally published 

tomographic images of the arm, showing areas of increased impedance corresponding 

to bone and fat. The first review of potential clinical applications of EIT was 

published in 1985 (Barber and Brown, 1985). The paper includes the original 

tomographic image of an arm, and also the first tomographic images taken of the 

lungs. 

  

2.1.3 General principle of EIT 

 
In general, all proposed impedance imaging shared the same objective: to produce 

cross-sectional images of the distribution of conductivity, or alternatively specific 
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resistance (resistivity) of the internal structure of an object using different current 

injection patterns and voltage measurement sequences. In EIT, current patterns are 

injected into the body via surface electrodes and boundary voltages are measured to 

reconstruct a cross-sectional image of internal distribution of the conductivity or 

resistivity. An illustration of a typical EIT system that uses a set of equally spaced 

electrodes attached to the surface of the chest at about 4-5 cm above the xyphoid 

process is depicted in Figure 2.1. Most EIT equipments use alternating currents (AC) 

with amplitude and frequency varying from 1-10 mA and 1 kHz-1 MHz for medical 

applications.  

 

 

Figure 2.1: A typical EIT system with 16 electrodes for current injection and voltage 

acquisition [Denai et al., 2010]. 

 

There are two basic stages to produce an impedance image; 1) The collection of a set 

of independent transfer impedance and 2) The solution of an inverse problem to 

produce an image from the set of the independent transfer impedances. Currently, 

there are three ways used in different EIT system for the collection of transfer 

impedance; 1) Polar, 2) Dipole/Adjacent and 3) Trigonometeric configuration 

(Korzhenevskii, 1997; Barber, 1984; Gisser, 1988). The most popular data collection 
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strategy is the dipole/adjacent configuration. In a 16-electrode system, where adjacent 

configuration is used, current is applied to an adjacent pair of electrodes and the 

resulting voltages between the remaining 13 pairs of electrodes are measured. For 

example, current is injected through electrode pair (1,2) and the resulting boundary 

voltages differences are measured from electrode pairs (3,4), (4,5), ..., (14,15), (15,16) 

as shown in Figure 2.2.  

 

 

Figure 2.2: Adjacent measurement configuration with 16 equally spaced electrodes 

[Denai et al., 2010]. 

 

This procedure is repeated 16 times with current injected between successive pairs of 

adjacent electrodes until all 16 possible pairs of adjacent electrodes have been used to 

apply the known current. By applying a current trough all the adjacent electrode pairs, 

in turn N(N-3) measurements will be obtained (whereby N is corresponds to number 

of electrodes used). However, according to the reciprocity principle, only N(N-3)/2 

measurements are independent and can be used to reconstruct the resistivity 

distribution. For example, in Figure 2.2 (left), the voltage measured between electrode 

7 and 8 will be the same as that measured between 1 and 2 (if current I is injected 

between 7 and 8) (Geselowitz, 1971; Lehr, 1972). Therefore, in a 16-electrode 

system, (16 x (16-3))/2 = 104 independent transfer impedance measurements can be 

made.  
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The process of recovering the conductivity distribution within the body from the 

applied currents and measured boundary potentials is known as the inverse problem in 

EIT. This is a nonlinear and severely ill-posed problem. There are two approaches for 

solving the image reconstruction problem in EIT. Static reconstruction produces an 

image of the absolute conductivity distribution of the medium based on one set of 

measurements. Dynamic or difference imaging attempts to recover the change in 

resistivity based on measurements made at two different time periods.  

 

2.1.4 Relative, multi-frequency and absolute EIT system 

 

2.1.4.1 Relative/functional EIT 

 

There are three types of impedance measurement systems which have been reported 

in the literature namely the relative, multi-frequency and absolute (Brown et al., 2002; 

Brown, 2003). For most of the recent EIT studies, the focus has been on the changes 

in impedance with time (relative/functional EIT). To produce this ‘relative’ value of 

resistivity, a series of measured surface voltages are collected from the subject over 

time. A single set of the measured surface voltages, from a point in time, are then set 

as a reference point and the rest of the measured series are compared relative to the 

reference set, this is called ‘projecting back’. By comparing two data sets, the 

associated change in resistivity that produces the change in surface voltage 

measurements can be calculated, and the distribution of relative resistivity variation 

can be plotted. Further description about this process is well described by Barber and 

Brown in their paper (Barber et al., 1989). 
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2.1.4.2 Multi-frequency EIT 

 

The multi-frequency EIT as demonstrated by Brown et al. (1994), could be used to 

record the change in tissue resistivity with frequency, as opposed to the relative 

change in resistivity with time.  In multi-frequency EIT the image is reconstructed 

using a slightly modified version of the back projection algorithm, whereby a 

reference data set is generated from a single frequency and the variation in resistivity 

of a single pixel can be measured over a range of frequencies (Brown et al., 1994; 

Brown et al., 1995).  

 

2.1.4.3 Absolute EIT 

 

The new absolute impedance tomography takes this a step further, by not only looking 

at the changes in impedance, but also producing absolute (as opposed to relative) 

values of impedance that can be compared to normal or reference values. The research 

in absolute EIT has hitherto centred on healthcare application or to be specific in the 

application of pulmonary measurement and imaging. In this case, the method of 

determination of lung absolute resistivity (Brown et al., 2002) is based on a 3D finite 

difference model of the thorax developed from computerised tomography (CT) cross 

sections of a normal subject (Zubal et al., 1994) (Figure 2.3) and scaled to take into 

account the geometry of the chest (circumference and ellipse ratio) of a particular 

subject.  

 

The elements in the model were assigned fixed resistivity values in the range 1-80 -

m depending on their anatomical location (fat, muscle, bone, blood or lung) in the CT 

images. The modeled data are then compared with the real measurements over a pre-

determined region of interest for values of the lung resitivities between 3 and 80 -m. 

The value of lung resistivity, which minimises the mean difference between these data 

sets, is returned as the value of the absolute lung resistivity, an EIT image is 
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reconstructed by filtered back projection (Barber and Seagar, 1987). Figure 2.4 

illustrates the process of acquiring the absolute resistivity in the absolute EIT system. 

 

 

Figure 2.3: One plane from the adult finite difference model based on segmented CT 

images provided by George Zubal – Yale (1994). 

 

 

 

Figure 2.4: Flow chart that illustrates the process of acquiring the absolute lung 

resistivity in the absolute EIT system. 
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Another attractive aspect in absolute EIT that has instigated the interest of those 

involved in healthcare domain is its ability to produce or calculate the absolute lung 

volume. As lung resistivity is a function of the frequency of the applied current, at 

high frequency, when the cell membranes (which act as the capacitive reactance) are 

reduced virtually to zero, the lungs can be visualised as two equivalent electrical 

components; air with almost infinite resistivity and lung tissue with an almost 

homogeneous resistivity determined by that of the intra-cellular and extra-cellular 

fluids (Barber and Borsic, 2005). If these resistivities are known, then it will be 

possible to calculate both lung density and air volume using a Cole equation and 

Nopp model (Brown and Mills, 2006).  

  

2.1.5 An overview of the Sheffield Mk 3.5 absolute EIT 

(aEIT) system 

 

The Sheffield group has developed the Mk 3.5 (Wilson et al., 2001), an EIT system 

which uses a multi-frequency system to calculate the absolute resistivity of the lungs; 

this is the latest of a number of systems developed in Sheffield (Table 2.2). The 

previous version of this Mk 3, called the Mk 3, uses 16 interleaved drive and receive 

electrodes (Brown et al., 1994). One major use of the Mk 3 system was in modelling 

adult and neonatal lung tissue with the objective of monitoring both regional lung 

ventilation and thoracic fluid changes (Nopp et al., 1997; Smallwood et al., 1999; 

Noble et al., 2000). Several drawbacks on the system were identified; 1) The use of 

interleaved drive and receive electrodes produce problems in image reconstruction, 2) 

Difficulties happened during placing this 16 electrodes around the thorax of neonates, 

3) Mk 3 system did not use programmable devices, hence any changes to the data 

acquisition protocol required significant changes to the electronic devices which lead 

to version control and support problem (Wilson et al., 2001). Therefore, due to these 

problems, the Mk 3.5 aEIT system was developed. 
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The Mk 3.5 aEIT (Figure 2.5) uses eight AgCl ECG type electrodes to inject small 

alternating currents at 30 frequencies between 2 kHz and 1.6 MHz, collecting data 

and providing real-time imaging at 25 frames per second. The data is measured using 

adjacent drive and receive combinations of electrodes, connected to the data 

acquisition unit via tri-axial cables. A detailed description of the system hardware 

components is described by Wilson et al. (2001). Unlike the Mk 3 system, which used 

analogue demodulation, the Mk 3.5 aEIT system uses digital signal processing for 

both the generation of the current drive frequencies and demodulation of the measured 

signals. The current digital technology employed in Mk 3.5 aEIT system allows the 

system to have a direct digital link with a computer in order to change data acquisition 

protocol through a simple user interface (Wilson et al., 2001). The computer user 

interface to control the Mk 3.5 system is written in MATLAB, and is able to display 

real-time images. Figure 2.6 shows the Mk 3.5 data acquisition graphical user 

interface. 

 

Table 2.2: Table showing details of previous EIT systems developed in Sheffield. 

 

System No. of 

Electrodes 

Drive 

Pattern 

Frequency Technology Date 

Mk 1 16 Adjacent 50 kHz Analogue 1987 

Space/Portable 16 Adjacent 50 kHz Analogue 1989 

Mk 2 16 Adjacent 20 kHz Digital 1990 

Mk 3 16 Interlaced 8: 9.6 kHz – 1.2 MHz Analogue 1993 

Mk 3.5 8 Adjacent 30: 2 kHz – 1.6 MHz Digital 2000 
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Figure 2.5: The Sheffield Mk 3.5 aEIT system. 

 

 

 

  

Figure 2.6: Screen shot taken from the Sheffield Mk 3.5 EIT data acquisition screen. 
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2.1.6 EIT application for pulmonary measurement 

 

Among the clinical applications of EIT being investigated include monitoring internal 

bleeding, studying emptying of stomach, etc., but the monitoring of the pulmonary 

function has always been regarded as the most promising application which can 

benefit the most from the development of EIT. According to Brown, lung tissue has a 

resistivity which is about five times greater than most of other soft tissues in the 

thorax (Brown, 2003). This resistivity of lung changes was due to inspiration and 

expiration activity. During inspiration, alveoli are expected to swell ensuing in a 

longer path for the electric current to travel around them and hence increase the 

resistivity. These changes have made it possible for EIT to monitor the pulmonary 

function. 

 

2.1.6.1 EIT images of pulmonary function 

 
The first images of the pulmonary function used a simple back-projection algorithm to 

reconstruct cross-section images of the thorax. The equipment used 16 electrodes and 

produced an image resolution of 104 pixels. The functional image showed an increase 

in resistivity during spontaneous inspiration of the subject (Brown et al., 1985). In 

1987, Brown and Barber have produced EIT images of the human thorax (Brown and 

Barber, 1987) and from both studies, EIT has shown the ability to measure functional 

changes but with limitation to its image resolution.  

 

It was obvious that the technique would benefit the on-line pulmonary monitoring and 

therefore an initial investigation was performed on EIT as a real-time imaging 

technique. Brown and Barber (Brown ad Barber, 1988) showed that real-time image 

reconstruction is feasible and it offers a better monitoring tool as compared to off-line 

processing of averaged data. Additionally, the limitation of EIT to produce dynamic 

but not static images was also discussed. In 1995, a real-time EIT system and its 
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operation were presented by Smith et al. (1995). The possibility to improve image 

resolution was noted by increasing the number of electrodes but the potential design 

difficulties of increasing the number of electrodes such as data acquisition time, frame 

rate as well as signal to noise ratio performance was also discussed. Griffiths et al. 

(1992) was attempted the complex impedance imaging of the thorax. It was reported 

that changes in the complex impedance measured can be related to true changes in the 

thorax tissues, but the source related to the complex impedance change was not 

identified. 

 

Brown et al. (1994) had investigated the use of multi-frequency EIT for producing 

EIT images. The results showed that it was possible to identify tissues on the basis of 

their impedance spectrum and the spectrum of the changes in impedance during 

breathing. In the following year, Brown and his Group had used the multi-frequency 

EIT system with frequencies between 9.6kHz-1.2MHz to record the images of the 

lungs from 12 normal subjects during various breathing manoeuvres. The impedance 

changes with frequency were modelled based on the Cole equation (Cole and Cole, 

1941). The results demonstrated that identification of the lungs was possible using 

multi-frequency EIT images and parametric modelling based on the Cole equation 

(Brown et al., 1995).    

 

In 2002, Brown et al. had completed a study on 142 normal neonates to determine 

whether the absolute lung resistivity can be determined non-invasively. The results 

have shown that calculations of the absolute impedance of the neonatal lungs could be 

achieved by including simple measurements of body shape and size in multi-

frequency EIT (Brown et al., 2002). The method presented in this study is considered 

to be the first successful attempt at measuring absolute values for lung resistivity in 

vivo. 
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2.1.6.2 EIT for ventilation imaging 

 

In the summary of the possible clinical applications of EIT, Brown et al. had 

previously suggested the use of EIT in lung imaging and ventilation monitoring 

(Brown et al., 1985). Therefore in this Section, various experimental and clinical 

studies done by EIT researches to validate the capability of EIT to correctly determine 

changes in regional air content will be reviewed, in which established medical 

techniques such as computed tomography (CT), single photon emission computed 

tomography (SPECT), ventilation scintigraphy, spirometry and body 

plethysmography have been applied as reference techniques. The performance of EIT 

has been tested under different conditions of spontaneous, different breathing 

manoeuvres and artificial ventilation.  

 

Coulombe et al. (2005) had elicited a parametric model of the relationship between 

EIT and total lung volume with the aim at facilitating inter-individual comparisons of 

EIT images by providing volumetric scale in place of the usual arbitrary units scale. 

The lung volume changes predicted by the model were compared to the volume 

changes measured by Spirometry. The model was able to predict the lung volume 

changes with 9.3% to 12.4% accuracy. These studies confirmed the fact that there 

exists a significant correlation between the variable derived by EIT and lung volume 

changes measured with spirometer and it is possible to model associated relationship. 

Panoutsos et al. (2007) conducted a study on 8 healthy male subjects with the aim to 

initially compare the lung volume estimates from a spirometer and body 

plethysmography (body box) against lung volume derived from the Sheffield Mk 3.5 

absolute EIT (aEIT) system. In this initial investigation, they have found out that the 

absolute resistivity measurements were reasonable but the performance of the 

subsequent lung volume calculations was erratic. The error pattern revealed a 

consistent logarithmic relationship between the measured (spirometer and body box) 

values and the values obtained from the aEIT. Therefore, a full assessment of the 

ability of the aEIT system to perform measurements of the lung function was 



24 

 

conducted. An investigation into the calculations of the Nopp adult lung model 

(Nopp., et al., 1997) used in the aEIT software to estimate the lung resistivity has 

been done. Instead of modifying the Nopp model, a new calibration function was 

introduced to filter the output of the model hence allows the correction of the model. 

The results of the improved aEIT system show an increased accuracy on the absolute 

lung volume estimation and the removal of the logarithmic bias from the 

measurements but the need for a larger study that includes more subjects towards the 

development of multiple region of interests (ROIs) based on anatomical groups was 

also highlighted (Panoutsos et al., 2008). Detail reviews on the results from these 

studies are presented in Section 4.2 of this thesis. 

 

EIT research has not only focused on EIT as a global lung ventilation imaging, but 

also as a potential regional lung ventilation imaging which is foreseen to be an 

interesting monitoring technique for use in the intensive care setting. In 2003, Hinz et 

al. have validated the functional EIT (fEIT) for measuring regional ventilation 

distribution by comparing it with single photon emission computerised tomography 

(SPECT) scanning in 12 anesthetised and mechanically ventilated pigs. They found a 

linear correlation between fEIT and SPECT scanning, whether breathing was 

spontaneous or mechanically delivered did not affect the correlation. A slight 

overestimation of ventilation in well-ventilated areas and a slight underestimation in 

poorly ventilated areas were seen but the difference was <10% of ventilation 

measured by SPECT scanning (Hinz et al., 2003). Victorino et al. (2004) have 

conducted a study on 10 mechanically ventilated patients to validate EIT 

measurements of ventilation distribution, by comparison with dynamic computerised 

tomography (CT) in a heterogeneous population of critically ill patients. EIT images 

from patients under controlled mechanical ventilation were found to be reproducible 

and presented good agreement to dynamic CT scanning. Depending on electrode 

positioning, EIT slightly overestimated ventilation imbalances but can reliably assess 

ventilation distribution during mechanical ventilation. Hahn et al. (2006) had also 

completed some useful work comparing aEIT, fEIT and CT scans on 4 intensive care 

patients. In this study, the absolute resistivity distribution was quantified by a 



25 

 

modified simultaneous iterative reconstruction technique (SIRT) scaled in Ωm. Such 

studies revealed that the fEIT images give reliable information on the relative chages 

in lung resistivity distribution but they require a reference measurement before the 

changes. The aEIT has an advantage in that it can provide information on the 

underlying cause. For example, in the case of an overdistension of lung tissue, a high 

air content will show a high resistivity and a fluid accumulation which also reduce 

ventilation show a low resistivity in aEIT. Tunney et al. (2007) and Pulletz et al. 

(2008) reported that the EIT is able to detect the changes in single lung ventilation of 

the patients, by showing a good separation of ventilated and non-ventilated sides of 

the lung. In 2010, Nebuya et al. compared the regional lung density estimated by 

aEIT with chest X-ray and CT images in 11 patients undergoing mechanical 

ventilation. The patients were grouped into 4 categories: normal lung, pneumonia, 

atelactasis and pleural effusion and the lung densities were estimated for 4 lung 

regions defined as right anterior, left anterior, right posterior and left posterior. The 

overall results show that it is feasible to obtain a quantitative value for regional lung 

density using aEIT with significant differences were found in regional densities 

between the normal lung and diseased lungs (Nebuya et al., 2010). 

 

2.1.6.3 Optimisation of ventilator therapy using EIT 

 

Optimisation of lung recruitment and the maintenance of open airways are very 

important in determining the outcomes of ventilated patients in the Intensive Care, 

while lung over-distension (volutrauma) and pressure damage (barotraumas) must be 

avoided. In most recent researches in the optimisation of ventilator therapy, EIT is 

found to have the potential to qualitatively and quantitatively assess different 

conditions of the lung during mechanical ventilation in critically ill patients and 

experimental animals.  The regional ventilation and aeration distributions can also be 

assessed by EIT consecutively during a sequence of multiple changes in ventilator 

settings, e.g. during an incremental and decremental PEEP trial. Hinz et al. (2003) 

have used an open circuit nitrogen washout technique to measure the end-expiratory 
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lung volume (EELV) and compare with the end-expiratory lung impedance change 

(ELIC) measured by fEIT in 10 mechanically ventilated patients. In order to induce 

changes in the end-expiratory lung volume (EELV), PEEP levels were increased from 

0 mbar to 5 mbar, 10 mbar and 15 mbar. The results showed that by increasing PEEP 

stepwise from 0 mbar to 15 mbar resulted in a linear increase of EELV and ELIC. 

However, the EELV and ELIC only represent the global parameters of the whole lung 

and expected that regional heterogeneity of the pulmonary compliance may cause 

slightly different results depending on the transverse slice monitored by EIT.  

 

Pressure-Volume (PV) graphical waveforms have long represented the gold standard 

clinical practices for assessing the lung function and guiding the titration of 

mechanical ventilation in critically-ill patients. In 2006, Hinz et al. have proved that 

the lower and upper inflection points obtained from conventional global PV curves 

are not representative of all regions of the lungs. They have compared the lower 

inflection point (LIP) and the upper inflection point (UIP) obtained from Spirometry, 

EIT global and EIT regional PV curves respectively in up to 912 regions of interest 

(ROI) from 9 ventilated patients with acute respiratory failure (ARF) (Hinz et al., 

2006). They have found a broad intra-individual heterogeneity of LIP and UIP 

regarding the pressure and numbers of regions in the regional measurements. The 

findings in this study are similar with the study conducted by Kunts et al. who found a 

significant higher LIP in the dorsal part compared with anterior part of the lung 

(Kunts et al., 2000). Another interesting work has been accomplished by Erlandsson 

et al. in the same year. They have evaluated the EIT in optimising PEEP to maintain a 

normal FRC and oxygenation, with minimal pulmonary and circulatory side-effects, 

before and after the abdominal surgery in morbidly obese patients which have an 

increased risk for peri-operative lung complications and develop a decrease in FRC. 

PEEP was titrated according to the baseline of the EIT tracing, where an upward slope 

of the baseline indicates recruitment and a downward slope indicates derecruitment 

and horizontal baseline indicates a stable end-expiratory lung volume. They have 

concluded that EIT enables rapid assessment of lung volume changes in morbidly 

obese patients and optimisation of PEEP. 
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Frerich et al. (2007) have found an excellent reproducibility of regional lung 

ventilation distribution determined by EIT in 10 ventilated supine pigs with repeated 

changed in PEEP settings. The study confirmed that highly significant shifts in 

regional lung ventilation distribution from ventral to dorsal regions in both lungs after 

PEEP increase. However, this study was performed under controlled experimental 

conditions in animals without lung pathology. Therefore the authors suggests that 

further studies on patients under multiple ventilator conditions are needed to support 

that EIT could be applied for bedside monitoring of mechanically ventilated patients 

with respiratory failure in the future. 

 

Meier et al. (2008) have studied about the global, regional lung recruitment and lung 

collapse in experimental acute lung injury (ALI) on 6 anaesthetised and mechanically 

ventilated pigs by comparing results from EIT and CT images during incremental and 

decremental PEEP trial. A significant correlation was found between relative 

impedance and CT gas volume (GV) at the end of inspiration (r=0.75, p<0.01) and 

expiration (r=0.78, p<0.01) in all animals. They also observed that during the 

decremental trial, derecruitment first occurred in dependent lung areas, which 

indicated by lowered regional tidal volumes measured in this area and by a decrease 

of PaO2/FiO2. These observations are possible with EIT, hence they concluded that 

the ability of EIT in assessing the regional changes is considered to be superior to 

global ventilation parameters provided by established method in assessing the 

beginning of alveolar recruitment and lung collapse. 

  

Bikker et al. (2010) discovered that the optimal PEEP should be titrated individually 

and cannot be generalised for a group of patients. In their investigation, a significant 

difference was found in response to a stepwise decrease in PEEP between patients 

with and without lung disorders, indicating a different PEEP dependency between 

these 2 groups. EIT measurements performed clearly visualise improvement and loss 

of ventilation in dependent and non-dependent parts, at the bedside in the individual 

patient. Differences in response to decremental PEEP steps were found not only 



28 

 

between patient groups, but also within groups (Bikker et al., 2010). In the same year, 

Denai et al. have produced a comprehensive physiological model to demonstrate the 

potential usage and ability of EIT to assess regional ventilation distribution in the 

lungs. This combines a model of respiratory mechanics, a model of lung absolute 

resistivity as a function of air content and a 2D-finite element model of the thorax 

with 16 electrodes to simulate EIT current injection and voltage measurements. The 

resulting physiological model can simulate different scenarios of acute respiratory 

distress (ARDS) lungs and reproduce consistent images of lung ventilation 

distribution in response to different PEEP levels. This simulation model illustrated the 

behaviour of EIT when detecting collapse or fluid shifts in damaged lungs and its 

potential to guide the titration of applied pressures during ventilator therapy hence  

allowing the clinicians to achieve the best compromise when adjusting airway 

pressures to reduce over-inflation of non-dependent lung units and to re-inflate 

collapsed airways (Denai et al., 2010).  

 

2.1.7 EIT research trends 

 

A number of important studies and ground-breaking research especially related to EIT 

application in pulmonary measurement have been reviewed extensively in this 

section. Despite the attractions of a safe, relatively inexpensive, non-ionising and non-

invasive technique for measurement and imaging of the lung, EIT is still not widely 

used for routine clinical settings due to problems with electrodes error and reliability 

of measurements that have yet to be resolved. EIT also leads to low image resolutions 

and is unlikely to compete with chest X-ray, CT scans, or MRI scans in production of 

images for anatomical information. Instead, in recent years EIT research emphasise 

has been moving towards trying to obtain information such as the work of local lung 

ventilation, regional tidal volume, functional residual capacity, fluid accumulation and 

redistribution of lung recruitment.  
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Most of the studies on EIT as a lung imaging tool have so far focused on the changes 

in impedance with time (relative/functional EIT), instead of the absolute values. 

Functional imaging avoids the problem of having to take into account the shape of the 

body, but has the disadvantage of only detecting changes of the impedance 

distribution. Instead, the new absolute EIT takes this a step further, by not only 

looking at the changes in impedance during the respiratory cycles, but also producing 

absolute (as opposed to relative) values of impedance that can be compared to normal 

or reference values. Absolute EIT allows quantification of specific tissue resistivity, 

where absolute lung volume can be derived. It is envisaged that the absolute EIT is 

one of the main research areas that will receive the most attention within the next few 

years especially in the application of lung imaging. Although absolute EIT has shown 

some encouraging developments, it still faces some problems relating to the model 

used to produce the absolute resistivity.  In order for the absolute EIT to fulfil its 

ability, hardware and software used to process the data must be continuously assessed 

and improved to minimise the errors and provide good reproducibility. Once this is 

accomplished, the ability to compare values with normal ranges to enable therapies 

where correction towards normal is helpful, such as the application of PEEP during 

mechanical ventilation would be the main advance.  

 

Since EIT imaging offers online and long-term assessment of the lung’s regional 

ventilation distribution in critically-ill patients, decision support systems can therefore 

be evolved to support clinical decision-making for optimising lung ventilation and 

ventilator manoeuvres such as lung recruitment. With this information available at the 

bedside, along with other relevant patient’s physiological parameters routinely 

monitored in ICUs such as blood gases, a complete clinical picture of ventilated 

patients is available to support clinical decision-making and guide ventilator therapy. 

In the next section of this Chapter, recent research advances relating to the three 

major types of clinical decision support systems (knowledge-based, model-based and  

hybrid-knowledge-and model-based) will be reviewed and discussed. 
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2.2 Decision support systems (DSSs) for intensive 

care ventilators 

 

2.2.1 Introduction 

 

Large amounts of information generated by biomedical technologies often lead to 

considerable challenges, especially in intensive care units (ICUs) where many life-

threatening events occurred and entail for immediate attention and implementation of 

corrective action. Mechanical ventilation is one of the crucial ICU tools which 

requires processing a large number of data to become information which then can be 

interpret by the clinician/expert to becomes knowledge for diagnostic and/or 

therapeutic purposes. Over the years, research has focused on helping clinicians in 

this field with their information processing needs and improves the clinical outcomes 

by development of advisory or decision support systems (DSSs).  Various definitions 

have been given to describe these DSSs. Sim et al. (2001) had described the DSSs as 

software that designed to be a direct aid to clinical decision-making, in which the 

characteristics of an individual patient are matched to a computerised clinical 

knowledge base and patient-specific assessments or recommendations are then 

presented to the clinician for a decision. Osheroff et al. (2004) defined DSSs as the 

clinical knowledge and patient-related information, intelligently filtered or presented 

at appropriate times to enhance patient care. Regardless of definitions given to these 

systems, the main goal remaining that they are designed to help the clinicians 

integrate the huge amount of available data and make the best choice for the patients. 

 

In the past few decades, many decision support systems (DSSs) have been developed 

for ventilator management in the ICUs. The systems’ structure described in the 

literature can be classified into knowledge-based, model-based and hybrid-

knowledge-and-model-based. With respect to planning and control, most of the DSSs 

developed are open-loop systems. Open-loop systems do not take direct therapeutic 
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actions; instead series of advices are proposed to the clinicians who are responsible 

for the comfort of patients and it is always up to them whether to execute or disregard 

this advice. An alternative to these systems is to control the ventilator directly and 

automatically by the DSSs, which is called the closed-loop system. Another system 

found in the literature is called the critiquing system, where the computer system does 

not offer treatment advice, instead, it criticises treatment decisions made by the 

clinicians based on its knowledge of the problem domain. Therefore, in this second 

section of the Chapter, recent work relating to these common structures of DSSs for 

intensive care ventilators will be reviewed and the current status and research trends 

in this field will also be discussed.  

 

2.2.2 Knowledge-based systems 

 

A knowledge-based system is the most common structure used in the development of 

DSSs. It is also known as an expert system, which contains clinical knowledge, 

usually about a very specifically defined task and are able to reason with data from 

individual patients to come up with sensible conclusions. Although there are many 

variations, the knowledge within an expert system is dominantly represented in the 

form of a set of rules.  

 

The earlier knowledge-based DSSs for ventilator therapy were developed in 1980s 

where they were open-loop and designed with fixed rules based on clinical guidelines. 

One of the earliest systems developed was the VQ-ATTENDING, which used to 

critique the physician’s settings rather than provide treatment options and suggest 

alternative plans (Miller, 1985). Another rule-based advisory system was introduced 

in 1986 which was designed to treat neonates with respiratory distress syndrome 

(RDS) (Carlo et al., 1986). The system made recommendations on whether to 

increase or decrease FiO2, PEEP, I:E, RR and PIP on the basis of set clinical 

guidelines. COMPAS stands for computerised patient advice system was introduced 
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and evaluated in 1989 by using several patients suffering from acute respiratory 

distress syndrome (ARDS) (Sittig et al., 1989). This system used expert treatment 

protocols in 5 ventilatory modes. It used a blackboard data base structure and a 

computerised clinical information system called HELP, which provided patient data 

to the system; data that was input by respiratory therapists, nurses and other medical 

personnel. The recommendations of this system were provided to obtain and maintain 

acceptable blood gas values for patients. The system’s recommendations are reported 

to have a good agreement with those of clinicians most of the time but encountered 

problems in terms of error propagation caused by incorrect data entry in the system 

which caused a series of inappropriate treatment suggestions by the system.  

 

The VentEx stands for Ventilator Expert (Shahsavar et al., 1994) system is an open-

loop knowledge-based system used in the care of patients with respiratory failure. The 

knowledge is quantitatively and qualitatively represented by both rules and objects 

(hybrid representation) using the Nexpert object knowledge representation scheme. 

VentEx decision-support is in the form of recommendations during different phases in 

therapy including initiation, treatment and weaning phase. In the initiation phase, the 

system recommends initial settings for ventilator mode, minute volume (MV), 

respiratory rate (RR), inspiratory time (Tinsp), PEEP and inspired fraction of oxygen 

(FiO2). During the treatment phase, changes in ventilator settings are recommended. 

The suggested settings for MV, RR, PEEP and FiO2 are quantitatively presented 

together with previous settings. During the weaning phase, indications and 

contraindications for weaning are presented. In the following year, results of the 

system’s validation were presented (Shahsavar et al., 1995). They have validated the 

results for initiation phase by comparing the advice produced by the system with the 

real clinical outcomes and found 78% agreement between the system and real clinical 

outcomes for indications and contraindications for ventilator therapy. For the 

treatment and weaning phase, real data from 12 patients with 6 different diagnoses 

were included. In this validation, VentEx achieved 77.8-95.5% acceptable advice 

which was considered encouraging but not satisfactory. 
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One of the systems that has successfully marked the early demonstration of closed-

loop ventilator management on humans was NeoGanesh (Dojat et al., 1997). The 

system was devoted to closed-loop control of pressure support ventilation (PSV) and 

decision for extubation. In NeoGanesh, the knowledge was acquired from knowledge 

of ventilation management of the clinical staff of the ICU. It has several advantages 

which include a 24-h a day adaptation of respiratory assistance to the needs of the 

patients, reduced need for monitoring, better weaning outcomes and a reduction of the 

duration of mechanical ventilation. The architectural design of NeoGanesh was based 

on three fundamental tasks in medical reasoning: i) Monitoring, ii) Diagnosis and iii) 

Therapy planning. The system was evaluated in two steps. The first step was to 

evaluate the capability of NeoGanesh to maintain the patient in a zone of respiratory 

comfort defined as: 12<RR<28 cycles/min, tidal volume> 300ml and end-tidal CO2 

pressure < 55mmHg. 19 patients were divided into 2 groups according to their results 

from a number of tests. In the second step, 5 patients were ventilated randomly for 24 

h with and without NeoGanesh. Results show that NeoGanesh maintained the patients 

within a comfortable zone of ventilation during 91±8% of the total duration of 

ventilation compared to 71±18% without it and patients spent 4±7% of the total 

duration in severe situations compared to 18±15% without use of the system. This 

preliminary validation shows that patients show less signs of respiratory discomfort 

with automatic control of the ventilation than without it. The diagnosis proposed by 

the system concerning the capability of the patient to breathe without external 

assistance is more efficient than by the usual manual procedure.  

 

Since the early 1990’s, there has been an increasing interest in the use of fuzzy logic 

in biomedicine. It is a method of handling data that allows ambiguity and as a result, it 

is particularly suited to medical applications. Fuzzy logic systems have been found to 

be easy to configure and tune, unlike Artificial Neural Networks (ANN), the logical 

constructs used in these systems are easy to describe and closely approximate the 

thinking processes used in clinical decision making (Hanson et al., 2001). Fuzzy 
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control processes have been used for the administration of anaesthetics in the 

operating room (Mason et al., 1996; Zbinden et al., 1995; Ross et al., 1997) and also 

for control of mechanical ventilation (Schaublin et al., 1996; Nemoto et al., 1999).  

 

Sun et al. (1994) have implemented a fuzzy logic-based controller in a microcomputer 

based system for adjustment of inspired oxygen concentration (FiO2) in ventilated 

newborns. The goal of this control system is to maintain patient oxygenation 

(measured by oxygen saturation using pulse oximetry) at a target level set by the 

physician. In this system, the fuzzy logic controller was utilised based on “rules” 

generated by neonatologists who routinely provide care for ventilated infants. It is an 

open-loop system which did not control the ventilator directly; instead, the system 

operates by displaying suggested FiO2 changes to the physician, who then decides 

whether to execute the recommended change to ensure medical safety until the system 

is fully tested for clinical efficacy. The fuzzy controller showed promise in the 

preliminary trials to control patient oxygen saturation levels and was able to maintain 

target SaO2 better than routine manual control. However, further clinical trials and 

additional patients’ data were emphasised to test the actual clinical efficacy of the 

controller and allow fine tuning of the control parameters.  

 

Nemoto et al. (1999) reported a system which used fuzzy logic for automatic control 

of pressure support mechanical ventilation. The membership functions for this 

controller were designed heuristically. The outputs were based on the fuzzy 

membership levels of the patient’s condition and its trend. The controller was 

evaluated by comparing its output with the actual changes made by the clinicians. 

They have validated the system using retrospective clinical data from 13 COPD 

patients and found that in 72-78% of cases, the agreement between the fuzzy 

controller and the changes actually made clinically was within ±2 cmH2O. 
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In 2003, Kwok et al. presented a work on modelling the clinicians’ advice for 

decision-making. They had derived the rules for changing the inspired oxygen (FiO2) 

using adaptive neuro-fuzzy inference system (ANFIS) instead of acquiring the 

knowledge from the expert which is time consuming. In this development, PaO2 from 

arterial blood-gas measurement was chosen as the control parameter and it was set to 

be 15 kPa. Since PaO2 is not taken regularly; therefore the system developed was an 

event-driven control system. The change of the inspired fraction of oxygen (FiO2) 

advised by 8 clinical experts responding to 71 clinical scenarios was recorded. ANFIS 

and multilayer perceptron (MLP) were then used to model the relationship between 

the inputs (current PaO2 level, current FiO2 and PEEP level) and the output (change 

in FiO2). The controllers were then validated using the simulation results by 

clinicians. Both ANFIS and MLP were found to correlate with the clinicians’ decision 

better (correlation coefficient=0.694 and 0.701 respectively) than the previous fuzzy 

advisor (FAVEM). In this work, the use of ANFIS has shown the ability to facilitate 

the modelling of the clinicians’ knowledge in the development of intelligent advisors 

for intensive care ventilators. Although both ANFIS and MLP were capable of 

modelling the clinicians’ decision-making accurately, but ANFIS is more 

interpretable than MLP.  

 

The latest work on DSSs that uses fuzzy logic was presented by Kilic et al. (2010). 

They have designed a fuzzy logic inference system for decision making in weaning 

from mechanical ventilation and tested and compared its efficiency with those of 

rapid shallow breathing index (RSBI), pressure time index (PTI) and Jabour’s 

weaning index (JWI), in predicting expert opinion over randomly generated clinical 

scenarios. In this fuzzy logic inference system, they have used 9 variables and 5 rule 

blocks within 2 layers which have been designed to evaluate the appropriateness of 

systematic perfusion, ventilation, acid-base balance and mechanical endurance of 

respiratory muscle for weaning. For the system validation, a surgeon involved in  

treatment of critically ill patients and who was unaware of the study objectives has 

been asked to make predictions on 100 computer generated clinical scenarios and the 

efficiency of calculated predictors have been evaluated to predict expert opinion. The 
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validation results had shown that the RSBI has failed to predict expert opinion in 52% 

of scenarios, while the fuzzy logic inference system has shown the best discriminative 

power in predicting expert opinion. 

 

2.2.3 Model-based systems 

 

In contrast with the knowledge-based, model-based systems are available in which the 

treatment methods are optimised by simulating a physiological model of the patient. 

In 2001, Goode had presented a model-based fuzzy logic advisory system for 

intensive care ventilators called the FAVEM (Goode, 2001). The system was based on 

an improved Dickinson’s MacPuf model: the SOPAVent (Simulation of Patient under 

Artificial Ventilation). FAVEM gave advice on five ventilator settings: FiO2, PEEP, 

minute ventilation, tidal volume and inspiratory time. The initial fuzzy rules were 

handcrafted based on an extensive literature survey and consultations with a clinical 

expert. These initial fuzzy rules were then modified heuristically using simulation 

results on the SOPAVent. The system was validated using retrospective clinical data 

from 11 patients. In 23.5% of the cases, the advisor was judged to give poor matching 

to the clinician’s decision. The level of decision matching was therefore considered 

disappointing and the authors emphasised several reasons which includes an inability 

of the system to reject measurement errors, the need for other measurement or 

information to be included and the need for larger range of acceptable blood gas 

levels.  

 

Recently, Rees et al. (2006) have developed a DSS for optimising mechanical 

ventilation in patients residing in the intensive care unit. The system includes 

physiological models and utility functions in a decision theoretic approach to optimise 

ventilation. Physiological models are used to simulate the effects of changes in 

ventilator settings on pressures and volumes in the lung and the oxygenation and acid-

base status of the blood. The DSS includes physiological models of O2 and CO2 
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transport, storage and lung mechanics. The system also includes penalty functions 

describing the goals and side effects of mechanical ventilation. The total penalty is 

obtained as an addition of the individual penalties for insufficient oxygenation, 

acidosis and alkalosis, risk of oxygen toxicity and absorption atelectasis and 

barotraumas. The system can be used to estimate patient specific parameters 

providing a clinical picture of the patient’s state describing all measurements, to 

answer “what if” questions, simulating the effects of different ventilator strategies and 

to find the optimal ventilator strategy; a process which occurs automatically in the 

DSS using repeated simulations to find the ventilator strategy which gives the 

minimum total penalty.  

 

Allerod et al. (2008) had validated the feasibility of the DSS proposed by Rees et al. 

(2006). The system was assessed by estimating patient specific parameter values, 

evaluating the fit of the physiological models and comparing the DSS suggested 

values of tidal volume, respiratory frequency and FiO2 with those selected by the 

clinician. They have used retrospective clinical data from 20 patients following 

uncomplicated coronary artery bypass grafting (CABG) with cardiopulmonary 

bypass. The models fit well to measured data with the exception of some of the 

variables describing oxygenation (SaO2, PaO2 and SvO2). On average, it was 

possible to select ventilator settings which reduced the penalty associated with oxygen 

toxicity, with a substantially smaller increase in penalty associated with oxygenation. 

In general, the penalty functions included in the DSS provides a good balance 

between competing goals in this patient group. Despite these encouraging findings, no 

prospective evaluation of the advice of the DSS was performed. The simulations 

performed by the models were not evaluated and some consideration as to the 

accuracy of these simulations was still required. Values of model parameters are 

assumed to be constant which is clearly invalid for large changes in ventilation which 

may have an effect on both respiratory and circulatory parameters. 
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The latest model-based DSS for ventilated intensive care patients found in the 

literature was developed by Wang et al. (2010).  The design approach used is based 

on a goal-directed multi-objective optimisation strategy to determine the optimal 

ventilator settings that effectively restore gas exchange and promote improved 

patient’s clinical conditions. Previously developed simulation of patient under 

artificial ventilation (SOPAVent) model was used to predict continuously and non-

invasively the patient’s respiratory response for different ventilator settings. Figure 

2.7 depicts the architectural design of this DSS. The DSS provides advice on FiO2, 

Pinsp and Vrate settings only because of the unproven SOPAVent’s performance to 

predict PEEP and Tinsp. The advisor was divided into 2 subsystems; i) FiO2 which 

mainly affects the patient’s oxygenation and ii) Pinsp/Vrate which mainly influence 

the minute volume ventilation of the patient.  

 

 

Figure 2.7: The architectural design of adaptive ventilator management decision 

support system [Wang et al., 2010]. 

 

The main control parameters are PaO2, PaCO2, peak inspiratory pressure (PIP) and 

tidal volume (VT), which the target values were suggested by senior ICU clinicians. 

For Pinsp/Vrate subsystem, the main goals were to maintain the patient’s PaCO2 

within the assigned normal range while avoiding excessive airway pressure (PIP) and 
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tidal volume (VT). The objective function for the Pinsp/Vrate subsystem was 

formulated using the aggregated multi-objective function and the selection of the 

weighting parameters was crucial as it decides on the relative importance of the 

individual goals and whether the optimal compromise among the competing 

therapeutic goals is achievable or not. Genetic algorithm (GA) optimisation technique 

has been used in this study. For the FiO2 subsystem, the main goal was to maintain 

PaO2 within the normal range. The same method developed by Kwok et al. (2004) 

was applied to search for FiO2 that meet the PaO2 target. A closed-loop validation 

was performed to assess the system’s ability to deal with different simulated patients’ 

scenarios designed to produce lung pathophysiological conditions similar to those 

observed in real clinical environment and evaluate whether this DSS can produce 

clinically meaningful advice and consistent performance under various competing 

therapeutic goals. In all simulation scenario, considered, the system was able to 

generate satisfactory ventilator settings under competing therapeutic goals. However, 

the authors did emphasised that the system needs to be evaluated for its relevance, 

performance, efficiency and impact in real clinical settings. One of the main 

limitations of the system is the unavailability of PEEP advice. The current DSS was 

also designed with fixed ventilator targets, which in real clinical settings is not 

realistic, since these often vary depending on the patient’s condition. Hence, more 

flexible target-setting component should be included in future work. 

 

2.2.4 Hybrid-knowledge-and model-based systems 

 

An exclusively knowledge-based approach may have the tendency of biases in the 

expert's knowledge and a purely model-based system is difficult in that a complex yet 

accurate and effective model is barely available. Therefore, researchers in this field 

have investigated an alternative structure that combined the knowledge and model-

based to complement the weaknesses of each system’s structure. In general, rules for 

the knowledge component of the system are based on combination of the patient’s 

physiological model as well as the clinical guidelines. 
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Kwok et al. (2004) developed the Sheffield Intelligent Ventilator Advisor (SIVA) that 

combined knowledge and model-based decision support system for intensive care 

ventilator management that offers more objectivity than conventional knowledge-

based system and eliminates the need for an extensive and complicated mathemathical 

model. The system provides settings for inspired oxygen (FiO2), positive end 

expiratory pressure (PEEP), respiratory rate (RR) and inspiratory pressure (Pinsp) for 

ventilated ICU patients. The system was divided into two main modules: i) The top-

level module is a qualitative (knowledge-based) component to provide advice on 

direction of change of each ventilator setting and set the target for the lower level 

module, ii) The lower-level module is a quantitative (model-based) component which 

designed to define the amount of changes for the relevant ventilator parameters 

(Figure 2.8). 

 

 

Figure 2.8: The architecture of SIVA [Kwok et al., 2004]. 

 

Each module was divided into FiO2/PEEP subunit which controls the oxygenation 

related settings and Pinsp/Ventilatory rate subunit which controls the settings relating 

to the minute ventilation. Each subunit generates advice for 2 ventilator settings and is 
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implemented in 2 fuzzy rule bases, one for each ventilator setting. The primary inputs 

for FiO2/PEEP were PaO2, previous PaO2, FiO2, previous FiO2 and PEEP. While 

primary inputs for Pinsp/Vrate were PaCO2, previous PaCO2, pH, Pinsp and Vrate. 

The advice given by the top-level have been validated against retrospective real 

patient data and compared with intensivists expertise and performance under 

simulation conditions. Since the lower-level generated the quantitative component of 

the advice, it received inputs from the top-level module, which include the target 

blood gas levels and the type and direction of the change required for each ventilator 

setting. Then the amount of change required was calculated in each ventilator setting 

based on mathematical model of the respiratory system (SOPAVent) which predicted 

the blood gases of the simulated patient under artificial ventilation. However, due to 

the limitation of the model, the change in PEEP was not derived using a model-based 

method. Closed-loop simulations were performed to validate the system’s 

performance assuming various clinical scenarios including sudden changes in the 

patients’ parameters such as shunt or deadspace with noise and disturbances. The 

results showed that the advice given by the system was appropriate and the blood 

gases resulting from the closed-loop decision support were acceptable. However, the 

authors did emphasise on more work needed to be carried-out to model the effects of 

PEEP while prospective clinical studies should be undertaken. 

 

FLEX, a new computerised system for mechanical ventilation that can be used both as 

an open-loop advisory tool and also as automatic controller for weaning has been 

developed by Tehrani et al. (2008). Unlike most previous system that only 

concentrate on one mode of ventilation, this system was designed for use in a wide 

range of ventilator mode. It used knowledge-based as well as model-based rules to 

determine optimal settings of the ventilator, however, it did not simulate the oxygen 

and carbon dioxide transport models of the patients. Instead, many of its rules were 

considered adaptive and derived based on physiological models and hypotheses. The 

system utilises the ventilator settings and measured ventilator data which can be 

provided directly from the ventilator. The monitored patient data can be input directly 

to the system or keyed in manually, depending on how the data was obtained. The 
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system can be used in volume control/assist or pressure control/assist modes as well 

as pressure-support (PS) mode for weaning. The open-loop advisory system has been 

tested by comparing the system recommendations with clinical data. The sample 

results demonstrated that FLEX recommendations were in line with clinical 

determinations. In closed-loop mode, one of the potential advantages of FLEX is to 

automate the weaning process and allow for more frequent weaning evaluations. 

FLEX showed much clinical potential, where it was able to predict failure of weaning 

in 2 patients via recommendation not to wean in these patients. However, the authors 

also highlighted that more detailed clinical evaluations of the open-loop as well as the 

closed-loop weaning version of FLEX are needed to fully assess the effectiveness of 

the system in the treatment of mechanically ventilated patients with different 

underlying illness. 

 

2.2.5 Current status and research trends 

 

Over the last forty years, extensive research has been carried-out on decision support 

systems for intensive care ventilators both theoretically and practically. The intensive 

care environment seems to gain the most from decision support systems application 

due to the greatest challenges in the timely management of vast amount of 

data/information from the advanced mechanical ventilators and the opportunities to 

increase efficiency in patient care. There are three categories of decision support 

systems’ structure that have been reviewed; i) Knowledge-based, ii) Model-based and 

iii) Hybrid-knowledge-and-model-based. Although model-based systems can be 

informative to clinicians, parameters which required by the physiological models are 

often uncertain and expect data that are not available in real-time or data whose 

estimation is difficult or imprecise. The major advantage for knowledge-based is that 

the rules embedded in the systems are easy to explain and closely approximate the 

thinking processes used in making clinical decisions. Various types of artificial 

intelligent (AI) tools also have been used in designing the decision support systems 

such as fuzzy logic, neuro-fuzzy inference system (ANFIS), neural networks, genetic 



43 

 

algorithms and so on to process clinical signs, symptoms and laboratory test results in 

relation to the structure used. The availability of these AI tools have been recognised 

as to perform as intelligent assistants to clinicians providing constantly monitoring 

electronic data streams for important trends or adjusting the settings of mechanical 

ventilations.  

 

Despite the increasing trend towards automation, the majority of the up-to-date 

decision support systems are still mainly open-loop systems whose parameters need to 

be adequately set by clinicians. If the systems are to be implemented in a closed-loop 

mode, validation algorithms, data abstraction and smoothing techniques are needed to 

be incorporated into the system to prevent incorrect data entry. Most of the systems 

described in the literature are not in clinical use due to lack of continuous evaluation 

or assessment in the real clinical environment. In most published papers on decision 

support systems, the evaluation of the system have focused on evaluation by 

simulation and very few evaluations focused on the impact of the systems on clinical 

care. One of the reasons for this, as mentioned by East et al. (1995), is that these 

systems are pure engineer-oriented products, not related to common clinical practice 

and it is not mature enough to support the real clinical situation and hence less 

acceptance by the clinicians. However, it is undeniable that real-monitoring and 

control systems are extremely difficult to evaluate due to the fact that it is an 

interdisciplinary field which requires commitments from the clinical medicine, 

computer systems and biomedical engineering personnel.  Therefore, as an 

alternative, these systems were mostly evaluated by comparing the compliances 

between system’s suggestions with actual decisions made by the clinicians on 

recorded patient cases or via simulations of patient’s conditions and used some index 

to represent the success of the ventilator control system. 

 

Future decision support systems are more likely to act as the useful device that can 

help clinicians in managing information from the advanced mechanical ventilation. 

From current trend of decision support systems’ design methodologies, there is a 
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potential for electrical impedance tomography (EIT) to be incorporated as one of the 

system’s input to give extra information about the regional lung functions and hence 

improve patient’s outcome. However, according to Tehrani and Roum (2008) for the 

future decision support to be useful, such systems should be designed to be effective, 

safe and easy to use at the patient’s bedside and these systems are expected to be 

capable of noise removal, artefact detection and effective validation of data.  

 

In this context, a series of investigations on healthy volunteer subjects to access the 

accuracy and consistency of the Sheffield Mk 3.5 aEIT system measurements will be 

presented and the outcome of the investigations will be analysed and discussed in the 

next Chapter. 
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CHAPTER 3 

  

 

3 EIT STUDY ON HEALTHY VOLUNTEER 

SUBJECTS 

 

 

3.1 Introduction 

 

The efforts to investigate the feasibility of Electrical Impedance Tomography (EIT) to 

assess the lung ventilation have been extensively reviewed in Chapter 2. However, the 

review showed that most of the EIT lung ventilation related studies currently focuses 

on relative/functional EIT not absolute EIT. Therefore, in this Chapter, a series of 

investigations on twelve (12) healthy volunteer subjects were conducted with the aim 

to assess the accuracy and consistency of the Sheffield Mk 3.5 aEIT system (software 

of version 1.047) measurements by comparing them with results from spirometry and 

body plethysmography (body box) data. Spirometry is a simple test to measure static 

lung volumes such as vital capacity (VC), tidal volume (VT), forced vital capacity 

(FVC) and forced expiratory volume (FEV) while body box is a more complex 

procedure which is commonly used to measure the residual volume (RV), total lung 

capacity (TLC) and functional residual capacity (FRC) of the lungs (Behr and Furst, 

2008). This Chapter is organised as follows; first, the equipments used together with 

aEIT system, study protocol and data collection methods are reviewed; then, the lung 

volumes calculated from the aEIT system are compared with the one measured from 

spirometry and body box and the results are analysed and discussed; finally, 

conclusions are drawn based on the performance of the aEIT system.  
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3.2 Equipments/tools used with aEIT system 

 

The subjects’ chest circumferences were measured using a disposable tape measure. 

“Mitutoyo Absolute Digmatic” callipers were used to measure the patients’ chest; 

measurements were taken of chest width and depth in order to calculate an ellipse 

ratio (Figure 3.1). 

 

 

Figure 3.1: Chest callipers.  

 

The Skintact Premier ECG electrodes (Figure 3.2) were used with the aEIT data 

collection unit.    
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Figure 3.2: Skin surface electrodes used for aEIT system. 

 

The aEIT data were acquired via the Sheffield Mk3.5 aEIT system which is the latest 

of a number of EIT systems developed in Sheffield (Wilson et al., 2001). Details of 

this aEIT system hardware and previous EIT system developed in Sheffield can be 

found in Chapter 2.  The Sheffield Mk3.5 aEIT software of version 1.047 (written in 

MATLAB) that contains the computer user interface and various models was used to 

control the Mk3.5 system and estimate the absolute lung resistivity and volume. 

 

3.3 Study protocol and data collection methods 

 

The study involved twelve healthy volunteers (8 males and 4 females) with different 

body sizes and thorax shapes. Demographics information of the subject such as 

gender, height and chest circumference was recorded. The chest width and depth were 

also recorded in order to calculate an ellipse ratio. These data are necessary for the 

aEIT system to estimate the absolute lung resistivity and volume. Table 3.1 shows the 

demographic information of all the healthy volunteer subjects.  
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Table 3.1: Demographics information of the healthy volunteer subjects 

 

Subject Gender Height (cm) Chest 

Ellipse ratio Circumference (cm) 

 

 

1 F 163 1.36 82 

2 F 171 1.42 89 

3 F 147 1.50 88 

4 F 150 1.44 86 

5 M 172 1.44 94 

6 M 181 1.37 113 

7 M 175 1.62 94 

8 M 178 1.29 97 

9 M 185 1.39 110 

10 M 

M 

170 1.41 100 

11 M 185 1.35 107 

12 M 170 1.50 91 

 

3.3.1 Spirometry and aEIT measurements 

 

The subjects were connected to the Sheffield Mk3.5 aEIT system via the 8 electrode 

array and simultaneously breathing through the spirometer tube (SensorMedics). 

Ideally, the electrodes should be attached in a horizontal plane 5cm above the xyphoid 

process, and equally spaced around the circumference (Figure 3.3). Data were 

recorded for 60 sec involving quiet breathing at functional residual capacity (FRC); 

one litre breathing and maximum inspiration and expiration manoeuvres in sitting at 

45
0
 (sitting with slightly leaning back) and supine (lying flat) positions respectively. 

According to the clinician, these positions are the most common positions for the 

patients in the intensive care unit (ICU). Therefore, it is essential for the subjects to be 

at these positions when the study commenced so that it can imitate the real situation 

of how the patient’s body were being positioned in the ICU.  
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Figure 3.3: The level of the EIT electrodes array in the frontal plane [Tunney, 2007]. 

 

3.3.2 Body plethysmography (Body box) 

 

In body plethysmography (body box), the subjects were asked to breathe at FRC, 

inhale and exhale to the minimum and maximum volumes respectively and perform 

panting.  

 

3.3.3 MRI scans 

 

These MRI scans were performed to determine the position, shape and size of regions 

of interest which most consistently contain lung tissue, rather than heart or chest wall. 

A more accurate regions of interest i.e. the areas of the thorax on aEIT imaging where 

lung tissue exists in human subjects, will be established. The subjects were asked to 

breathe at FRC for 2 mins and then the MRI scan was started and lasted for say 20 

sec., at which point the subject was asked to take maximal breath in until the lungs are 
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absolutely full, then exhale until the lungs are as empty as possible. Scanning was 

continued for 10 sec after the maneuver has ended. This recording was repeated three 

times. These MRI images are expected to be able to define common areas of lung 

tissue or regions of interest in all subjects. 

 

3.4 Results and discussions 

 

Before the lung volume calculated from aEIT system were analysed, it is essential to 

know how this absolute lung volume was being calculated in the current aEIT system. 

Hence, the relationship between absolute resistivity and lung volume is presented. 

Then, the lung volumes obtained from the 12 healthy volunteers using aEIT, 

spirometry, and body box are analysed and compared. The MRI images were studied 

and analysed later for the work on improvement of regions of interest. The values 

recorded with the body box are taken as the reference values. Poor data due to 

significant electrical interference or poor electrode contact have been excluded (these 

were indicated by ‘-’). The percentage of mean absolute error (MAE%) and standard 

deviation of the errors (eSTD) were used as the performance indices for all the 

analyses.  

 

3.4.1 Absolute resistivity-lung volume relationship in aEIT 

system 

 

In Sheffield Mk 3.5 aEIT system, the model of lung density (     ) as a function of 

absolute lung resistivity (absR) obtained by Nopp et al. (1997) has been employed to 

calculate the absolute lung volume (absLV) as follows: 

 

                                                  (3.1) 
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In this equation, the absR has been calculated using the Zubal model as explained in 

Section 2.1.4.3 in Chapter 2. According to Nopp model (Nopp et al., 1997), if the lung 

weight (Wlung) is known, then the absLV can be calculated as: 

 

      
     

  
 

  
     

    
(3.2) 

 

Where     denotes the density of the lungs condensed matter, which has been fixed to 

1050       (Duck, 1990). In the current aEIT system, the Wlung is estimated by 

models based on information of body height and gender. Details about these models 

can be found in Section 4.2.2 of Chapter 4. 

 

3.4.2 Comparison between spirometry lung volumes and 

the aEIT lung volumes in sitting and supine position 

 

From the results related to quiet breathing, 1 litre breathing and maximum breathing 

recordings of spirometry, tidal volume (VT), 1 litre breaths and vital capacity (VC) 

were extracted and analysed.  While tidal volume (VT), 1 litre braths, functional 

residual capacity (FRC), vital capacity (VC), total lung capacity (TLC) and residual 

volume (RV) were the volumes extracted from the aEIT recordings during quiet, 1 

litre and maximum breathing. The readings from the spirometry are an average taken 

of every breath during the manoeuvres. For quiet breathing and 1 litre breathing, these 

are the mean value of the 16-20 breaths and for the maximal breathing; the VC values 

are a mean of the 6 (2 sets of 3 big breaths) measurements taken. For the aEIT 

readings, the VT during quiet breathing and 1 litre breathing are the mean values of 

all the breaths for the whole 60 seconds of the recording. While the VC, TLC and RV 

during the maximal breathing, these are the mean of the 3 big breaths taken within 60 

seconds of the recording. One typical set of subject results estimated by the aEIT in 

the sitting and supine position is shown in Figures 3.4 and 3.5. 
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For each subject, the mean tidal volume (VT), 1 litre breaths and vital capacity (VC) 

calculated by aEIT were compared with the mean tidal volume (VT), 1 litre breaths 

and vital capacity (VC), measured from the spirometry. Tables 3.2–3.4 summarise the 

results for analysis of these lung volumes in sitting position while Tables 3.6-3.8 

summarise the analysis results in supine position. The performances of the aEIT in 

sitting position are compared and shown in Figure 3.6 and Table 3.5, while Figure 3.7 

and Table 3.9 show the performances of aEIT in the supine position. 

  

 

 

Figure 3.4: aEIT lung volumes during the three manoeuvres in the sitting position. 
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Figure 3.5: aEIT lung volumes during the three manoeuvres in the supine position. 

  

3.4.2.1 Results in sitting position 

Table 3.2: Comparison between VT from aEIT and the VT from spirometry in the 

sitting position (-: data missed due to poor recordings). 

Subject Tidal volume (VT) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.29 0.81 0.52 

2 0.22 0.68 0.46 

3 0.63 0.62 0.01 

4 0.81 1.38 0.58 

M
a
le

s 

5 0.36 0.96 0.60 

6 1.01 0.46 0.55 

7 0.60 0.94 0.34 

8 0.21 0.44 0.23 

9 0.80 0.54 0.26 

10 0.33 - - 

11 1.48 0.76 0.72 

12 0.68 0.51 0.17 
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Table 3.3: Comparison between 1 litre breaths from aEIT with 1 litre breaths from 

spirometry in the sitting position. 

Subject 1 Litre breaths 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.74 1.79 1.05 

2 0.80 1.33 0.53 

3 1.11 0.91 0.20 

4 0.88 1.64 0.76 

M
a
le

s 

5 0.82 1.32 0.50 

6 1.18 0.71 0.47 

7 1.10 1.01 0.09 

8 0.89 1.03 0.14 

9 0.99 0.54 0.45 

10 0.73 1.16 0.43 

11 1.24 0.69 0.55 

12 0.94 1.39 0.45 

 

 

Table 3.4: Comparison between VC from aEIT against the VC from spirometry in the 

sitting position (-: data missed due to poor recordings). 

Subject Vital capacity (VC) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 3.00 4.21 1.21 

2 4.05  - - 

3 2.35 3.00 0.66 

4 2.88 5.69 2.81 

M
a
le

s 

5 3.63 5.31 1.68 

6 5.24 3.36 1.88 

7 4.59 6.73 2.15 

8 4.55 4.60 0.05 

9 5.97 3.72 2.25 

10 2.25 2.73 0.48 

11 5.66 3.16 2.50 

12 3.90 5.38 1.48 
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Figure 3.6: Scatter plot shows the VT, 1 litre breaths and VC calculated by the aEIT 

software against the one measured from the spirometry in the sitting 

position. 

 

 

Table 3.5: Summary of the performance indices for aEIT in comparison with 

spirometry in the sitting position. 

 
Sitting 

Tidal volume (VT) 1 litre breaths Vital capacity (VC) 

MAE (%) 86.71 52.75 39.68 

eSTD 0.28 0.39 1.29 
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3.4.2.2 Results in supine position 

Table 3.6: VT from aEIT against the VT from spirometry in the supine position. 

Subject Tidal volume (VT) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.44 0.97 0.53 

2 0.18 1.07 0.89 

3 0.53 0.78 0.25 

4 0.78 1.05 0.27 

M
a
le

s 

5 0.41 0.72 0.31 

6 1.66 0.75 0.91 

7 0.51 0.80 0.30 

8 0.24 0.81 0.57 

9 1.25 1.00 0.25 

10 0.40 0.64 0.24 

11 1.25 0.80 0.45 

12 1.01 0.90 0.11 

 

 

Table 3.7: 1 litre breaths from aEIT against the 1 litre breaths from spirometry in the 

supine position. 

Subject 1 Litre breaths 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 1.15 1.76 0.61 

2 0.82 1.53 0.71 

3 1.10 1.76 0.66 

4 0.78 1.47 0.69 

M
a
le

s 

5 1.03 1.6 0.57 

6 1.31 0.91 0.40 

7 1.36 1.24 0.12 

8 0.60 0.98 0.38 

9 1.43 0.81 0.62 

10 0.70 1.18 0.48 

11 1.20 0.92 0.28 

12 1.13 1.41 0.28 



57 

 

Table 3.8: VC from aEIT against the VC from spirometry in the supine position. 

Subject Vital capacity (VC) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 2.93 4.43 1.50 

2 4.14 6.15 2.01 

3 2.76 5.35 2.59 

4 3.09 7.81 4.72 

M
a
le

s 

5 3.18 5.76 2.58 

6 5.35 2.91 2.44 

7 4.14 6.89 2.75 

8 4.29 4.6 0.31 

9 5.76 4.33 1.43 

10 1.65 2.46 0.81 

11 5.54 3.64 1.90 

12 3.76 6.13 2.37 

 

 

 

Figure 3.7: Scatter plot shows the VT, 1 litre breaths and VC calculated by the aEIT 

software against the one measured from the spirometry in the supine 

position.  
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Table 3.9: Summary of the performance indices for aEIT in comparison with 

spirometry in the supine position. 

 
Supine 

Tidal volume (VT) 1 litre breaths Vital capacity (VC) 

MAE (%) 77.03 50.35 65.26 

eSTD 0.14 0.34 1.61 

 

The overall results of absolute lung volumes calculated by the aEIT show a large 

deviation from the spirometry measurements in both sitting and supine positions. The 

average accuracy for aEIT is about 40% in the sitting position and 36% in the supine 

position. It is obvious that the absolute lung volumes reading in the supine position 

have contributed to a larger error as compared to the absolute lung volumes in the 

sitting position. It is also observed that most of the lung volumes from the aEIT 

readings are overestimated. It is suspected that the use of one fixed region of interest 

has led to this problem, where this one region of interest is not able to be fix with all 

subjects due to inter-individual differences in the human thorax anatomy and hence 

produce significant errors in absolute lung volume calculation.  

 

3.4.3 Comparison between body box lung volumes and 

aEIT lung volumes 

 

The mean tidal volume (VT), functional residual capacity (FRC), total lung capacity 

(TLC), residual volume (RV) and vital capacity (VC) calculated by aEIT were 

recorded for all subjects and compared with the mean tidal volume (VT), functional 

residual capacity (FRC), total lung capacity (TLC), residual volume (RV) and vital 

capacity (VC), measured from the body box. Table 3.10-3.14 summarise the results 

for analysis of these lung volumes and the performances of the aEIT are compared 

and shown in Figure 3.8 and Table 3.15. The ‘-’ sign indicates that there are no body 

box measurements done and also poor EIT data recordings for that particular subject. 
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Table 3.10: VT from aEIT against the VT from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Tidal volume (VT) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.66 0.81 0.15 

2 0.36 0.68 0.32 

3  - 0.62 - 

4 0.76 1.38 0.62 

M
a
le

s 

5 0.62 0.96 0.34 

6 0.45 0.46 0.01 

7 0.66 0.94 0.28 

8  - 0.44 - 

9 0.96 0.54 0.42 

10 0.68 - - 

11 1.06 0.76 0.30 

12 0.58 0.51 0.07 

 

 

Table 3.11: FRC from aEIT against the FRC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Functional residual capacity (FRC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 2.71 4.00 1.29 

2 3.13 0.16 2.97 

3  - 1.94 - 

4 2.41 2.34 0.07 

M
a
le

s 

5 3.53 3.12 0.41 

6 3.02 3.95 0.93 

7 3.52 4.92 1.40 

8  - 3.49 - 

9 3.66 4.19 0.53 

10 2.29 - - 

11 3.06 2.13 0.93 

12 2.20 4.92 2.72 
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Table 3.12: TLC from aEIT against the TLC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Total lung capacity (TLC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 5.53 6.60 1.07 

2 6.30 - - 

3  - 4.78 - 

4 4.90 7.01 2.11 

M
a
le

s 

5 6.03 6.99 0.96 

6 7.90 6.84 1.06 

7 7.49 9.88 2.39 

8  - 7.91 - 

9 8.07 7.02 1.05 

10 5.58 5.87 0.29 

11 7.62 6.53 1.09 

12 5.93 9.70 3.77 

 

 

Table 3.13: RV from aEIT against the RV from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Residual volume (RV) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 1.81 2.39 0.58 

2 1.72 - - 

3  - 1.78 - 

4 1.68 1.32 0.36 

M
a
le

s 

5 2.10 1.68 0.42 

6 1.72 3.48 1.76 

7 1.77 3.15 1.38 

8  - 3.31 - 

9 2.00 3.30 1.30 

10 1.71 3.14 1.43 

11 1.64 3.37 1.73 

12 1.50 4.32 2.82 
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Table 3.14: VC from aEIT against the VC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Vital capacity (VC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 3.72 4.21 0.49 

2 4.58 - - 

3  - 3.00 - 

4 3.23 5.69 2.46 

M
a
le

s 

5 3.93 5.31 1.38 

6 6.19 3.36 2.83 

7 5.72 6.73 1.01 

8  - 4.60 - 

9 6.06 3.72 2.34 

10 3.87 2.73 1.14 

11 5.98 3.16 2.82 

12 4.43 5.38 0.95 

 

 

 

Figure 3.8: Scatter plot shows the VT, FRC, TLC, RV and VC calculated by the aEIT 

software against the one measured from the body box. 
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Table 3.15: Summary of the performance indices for aEIT in comparison with the the 

body box. 

 Lung volumes 

VT FRC TLC RV VC 

MAE (%) 41.87 44.01 24.42 77.32 36.06 

eSTD 0.28 1.45 1.50 0.92 1.29 

 

From these results, it can be seen that the lung volumes from the aEIT system still 

diverge from the ones measured by the body box with the average accuracy of 55%. 

However, the accuracy of the aEIT system with the body box is better as compared 

with the accuracy of the aEIT system using spirometry. 

 

3.5   Summary  

 

It can be concluded from this comparative study that the aEIT system has shown the 

ability to measure lung volumes with range of errors depending on subject and its 

position. The aEIT measurement system has shown a very large diversion when 

compared with spirometry measurements in both body positions, especially 

measurements in the supine position. As for comparison between the aEIT system and 

the body box, the results are slightly better than the aEIT against spirometry but still 

with a high percentage of deviation. EIT is also seen to produce an over-estimate for 

most of the lung volumes.  These over-estimates and large diversions of the aEIT 

measurements are reckoned to be triggered by the one fixed region of interest used in 

current aEIT system to estimate the absolute lung resistivity and volume. Therefore, 

in the next Chapter, research work on the improvement of the Region of Interest 

(ROI) using the MRI images of the studied healthy volunteer subjects will be 

performed. The results of the improved aEIT system with the new region of interest in 

comparison with spirometry and body box measurements will be presented. 
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CHAPTER 4 

  

 

4 CALIBRATION AND IMPROVEMENTS 

OF THE SHEFFIELD MK 3.5 aEIT 

SYSTEM  

 

 

4.1 Introduction 

 

From the literature, it is known that current EIT systems suffer from some limitations 

that may prevent their adoption for routine medical diagnosis (Brown, 2003). A series 

of calibrations and improvements has been made by our Research Group to enhance 

the accuracy and consistency of the calculated absolute lung volume and resistivity in 

the aEIT system. In Chapter 3, the Sheffield Mk 3.5 aEIT v.1.047 software is used to 

calculate the absolute lung resistivity and volume. However, the results revealed that 

inter-individual differences had caused the absolute aEIT measurements to be very 

inaccurate. One possible source of error in determining absolute lung volume and 

resistivity is the usage of a fixed region of interest (ROI) in the Sheffield Mk 3.5 aEIT 

v.1.047 software for all the subjects considered.  

 

In this Chapter, based on the calibration and improvement carried through by 

Panoutsos et al. (2007), further improvements on the Mk 3.5 aEIT system’s software 

are made, whereby the ROI of the lung in relation to the thoracic shape is further 
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developed and the new sub-ROIs were introduced. This Chapter is organised as 

follows: first, previous attempts made by the Research Group to improve the accuracy 

and consistency of the estimated absolute lung volume and resistivity in the Sheffield 

Mk 3.5 aEIT software are reviewed; second, further developments of the zone of 

interest of the lungs and introduction of the new regions are presented and the 

improvement results are analysed and discussed; finally conclusions are drawn in 

relation to this newly proposed region of interest.  

 

4.2 A review of amendments of the aEIT software  

 

The aEIT software was initially modified to be compatible with the latest version of 

MATLAB. This would allow for easier software debugging in the future and at the 

same time it would allow for the transfer of work between the three research sites 

involved in this project (Dept. of Anaesthesia and Dept. of Medical Physics, The 

Royal Hallamshire Hospital and Dept. of Automatic Control and Systems 

Engineering, The University of Sheffield). Several functions in the software had to be 

updated and in certain cases codes for whole modules had to be re-written.  

 

4.2.1 aEIT lung volume system calibration 

 

The study on healthy subjects (Panoutsos et al., 2007) showed a large deviation 

between the aEIT lung volume estimation and the Spirometry based estimation. The 

error pattern revealed a consistent logarithmic relationship between the measured 

values and the values obtained from the aEIT. This prompted an investigation into the 

calculations of the Nopp adult lung model. The adult lung model described by Nopp 

et al. (1997) predicts a value for lung resistivity as a function of frequency. Instead of 

modifying the Nopp model, the output of the model is filtered using a calibration 

function. This calibration function has allowed not only correction of the model but 
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also absorb resistivity estimation errors created in the previous steps of the algorithm 

(i.e. Cole-Cole equation fit). The proposed calibration equation is given as follows:  

   
            

    
 (4.1) 

 

Where x represents the absolute lung volume before calibration and y represents the 

absolute lung volume after calibration. The calibration equation was estimated by 

fitting the error data between the aEIT and Spirometry as shown in Figure 4.1.  

 

 

    Figure 4.1: aEIT versus Spirometry Lung Volume Estimation. 

 

Due to the importance of this function to the overall lung volume estimation of the 

system, the FRC for each subject was measured using body plethysmography (body 

box) measurements conducted at the Respiratory Unit of the Royal Hallamshire 

Hospital, Sheffield (UK). 
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4.2.2 Lung weight estimation 

 
Part of the lung resistivity to volume calculation includes the estimation of the density 

of the lung tissue. The aEIT system assumes a fixed value of lung weight based on an 

average population mean model. This has lead to big errors in the estimation of lung 

volume in the case where the subject’s physiology deviates from the population mean. 

A model based on reference data to estimate the lung weight had constructed in order 

to overcome this problem. By consulting large-scale post-mortem data on lung weight 

(Spencer, 2003; Grandmaison, 2001) the following model (Equations 4.2 and 4.3) was 

fitted to the data based on height and gender: 

 

                                                                        (4.2)       

     

                                                                       (4.3) 

 

The calibration equation (Equation 4.1) then had to be adjusted to account for the 

changes in the lung weight model. The final calibration function (used in the Mk3.5 

aEIT system’s software of version 1.047) is given by the following equation: 

 

   
           

    
 (4.4) 

 

Where x represents the absolute lung volume before calibration and y represents the 

absolute lung volume after calibration. The calibrated system showed significant 

improvement in performance with good agreement between the spirometry/body box 

measurements and aEIT calculated lung volumes. The calibrated aEIT system and the 

study on healthy subjects are presented in (Panoutsos et al., 2008). This calibrated 

aEIT system (software of version 1.047) also being used in the study on different 
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group of healthy subjects (8 males and 4 females) in sitting and supine positions as 

presented in Chapter 3. However, the analysis show some poor quality results, where 

most of the lung volumes calculated by the aEIT system has a large deviation from 

spirometry and body box measurements. It is hypothesised that the usage of one fixed 

region of interest in this version of aEIT system’s software (v.1.047) has contributes 

to such results. In the next section, the work on creating the new ROI is presented. 

 

4.3 The new region of interest (ROI) 

 

The Sheffield Mk 3.5 aEIT system is able to produce a resistivity map of the human 

thorax. In the current aEIT system’s software (v.1.047), one fixed region of interest 

(ROI) is used to locate the lung region and extract the resistivity of the lungs while 

filter out other organs. Due to inter-individual differences in the human thorax 

anatomy (heart size/location, lung size, body/organs fat content etc.) it is not possible 

to use one ROI that would be suitable for all subjects and in cases where there are 

significant anatomical differences (as compared to the average person) the aEIT 

system can produce significant errors in lung volume calculation as shown in the 

results from Chapter 3. 

 

Therefore, in order to further enhance the accuracy and consistency of the calculated 

lung absolute volume and resistivity in the Sheffield Mk3.5 aEIT system (software of 

version 1.047) and improve the estimation of the lung ventilation distribution in the 

anterior/posterior left and right quadrants, a multiple ROIs were developed in 

relationship with the height and thoracic shape. Several scans of the thorax (Magnetic 

Resonance Imaging- MRI) of the volunteers involved in Chapter 3 were used to 

produce the new ROIs. 
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4.3.1 Step by step process of creating the new region of 

interest 

 

MRI scans from twelve healthy volunteers (8 males and 4 females) were studied. 

Demographic information of all the subjects can be found in Chapter 3. The 

MATLAB-based image processing toolbox was used to extract the original lung 

region and calculate the 16x16 pixels ROI based on the MRI image taken at the level 

of approximately 5cm above the xyphoid process. The step by step process of creating 

the new region of interest is described as follows: 

 

Step 1:  

The exact lung region for each subject is extracted from each original MRI scan and 

the ellipse body shape was approximated (Figure 4.2). 

 

 

(a)                                                                (b) 

Figure 4.2: (a) MR images taken at 5cm above xyphoid. (b) Extracted exact lung 

region  and approximate ellipse body shape.  
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Step 2:  

The current 16 x 16 pixels of EIT ROI is then mapped to each subject’s extracted lung 

region and shape-wrap according to the approximate ellipse (Figure 4.3).  

 

 
 

(a)                                                                   (b) 

Figure 4.3: (a) 16 x 16 pixel of ROI. (b) ROI (red) is shape-wrap to subject’s 

approximate ellipse (blue). 

 

Step 3: 

The best fit new ROI is drawn using MATLAB 7.1 to cover the whole lung region 

(Figure 4.4). 

 

 

(a)                                                                 (b) 

Figure 4.4: (a) Best fit new ROI. (b) New ROI in ellipse shape. 
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Step 4: 

In the final step, the best fit new ROI is remapped back to the original 16 x 16 pixels 

shape (Figure 4.5). 

 

 

Figure 4.5: The new 16 x 16 pixels of EIT ROI. 

 

4.3.2 Multiple regions of interest (ROIs) 

 

To improve the performance of current aEIT system, the employment of multiple 

ROIs were proposed in contrast with the current aEIT system which used only one 

fixed ROI to locate the lung region and extract the resistivity of the lungs. The new 16 

x 16 pixels of EIT ROI from twelve healthy volunteers (8 males and 4 females) were 

studied. Hepper et al. (1996) revealed in his study that among the anthropometric 

information of the subjects (eg: height, weight, body surface area, etc), height is 

correlated best with lung volume. In the light of this finding and upon consulting with 

the clinical expert, three (3) new ROIs are selected to represent the ‘SMALL’, 

‘MEDIUM’ and ‘LARGE’ group of subjects depending on subject’s height and body 

shape. Before the decision on the three (3) ROIs were made, a fit test was carried-out, 

whereby one ROI for each group of subjects was randomly chosen and mapped into 
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the other subject’s approximate ellipse ratio that belongs to the same group. The ROI 

which best fits all other subject’s approximate ellipse ratio was then chosen to 

represent the ROI for that particular group. Figure 4.6 shows the example of selected 

ROI that is mapped to the subjects’ approximate ellipse in the ‘MEDIUM’ group. 

 

 

Figure 4.6: Example of the fit test performed for the ‘MEDIUM’ group. 

 

These three (3) selected ROIs are then used in the aEIT software to calculate for lung 

resistivity and volumes. Figure 4.7 shows the three (3) selected ROIs and Figure 4.8 

shows the flow chart for selection of these ROIs in the aEIT software.     

  

 

Figure 4.7: (a) ROI 1 (Small), (b) ROI 2 (Medium), (c) ROI 3 (Large). 

          Subject 1        Subject 2           Subject 3 

          (a)            (b)            (c) 
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Figure 4.8: Flow chart of the ROI selection. 

 

In the current aEIT software (version 1.047), the estimation of regional lung 

ventilation is based on the four (4) sub-ROIs (left lung anterior, left lung posterior, 

right lung anterior and right lung posterior). In this work, another two (2) sub-ROIs 

are introduced (left middle and right middle). These additional sub-ROIs allow for 

more specific analysis on what happened in the lung regional and has been of the 

most clinical interest. The anterior and the posterior parts of the lung correspond to 

non-dependent and dependent lung respectively, while the middle part corresponds to 

the normal region of the lung. Therefore, the graphical user interface (GUI) has been 

amended to visualise the ROI and the new regional lung ventilation. Index for the 

regional lung ventilation has also been made visible on the graph for the ease of 

clinician’s analysis as opposed to the old GUI. Figure 4.9 shows an example of the 

screenshot of the old and the new GUI showing image of old (4 sub-ROIs) and new (6 

sub-ROIs) together with the regional ventilation graphs.  
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(a) 

 

 

(b) 

Figure 4.9: Example of the screenshots taken from the Sheffield Mk 3.5 aEIT 

software; (a) Old GUI with 4 sub-ROIs. (b) New GUI with 6 sub-ROIs. 
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4.4 Improved results and discussions 

 
The new lung volumes obtained from the 12 healthy volunteers using the improved 

Sheffield Mk3.5 aEIT software (with multiple ROIs) were analysed and compared 

with the spirometry and body box measurements during quiet breathing at functional 

residual capacity (FRC), 1 litre breathing and maximum breathing manoeuvres. The 

method of comparison between aEIT measurement and spirometry measurement are 

the same as previously presented in Chapter 3. The percentage of mean absolute error 

(MAE%) and standard deviation of the errors (eSTD) were used as the performance 

indices for all the analyses. The ‘-’ indicates that there are no data due to the error 

from one of the electrodes. This electrode must have been not adequately attached to 

the subject’s body during the exercise. 

 

4.4.1 Comparison between spirometry lung volumes and 

the aEIT lung volumes in sitting and supine position 

 

The mean tidal volume (VT), 1 litre breaths and vital capacity (VC) calculated by 

aEIT were recorded for each subject, and compared with the mean tidal volume (VT), 

1 litre breaths and vital capacity (VC), measured from the spirometry. Tables 4.2-4.4 

summarise the results for analysis of these lung volumes in the sitting position while 

Tables 4.6-4.8 summarise the analysis results in supine position. The performances of 

the aEIT with the old ROI and the aEIT with new ROIs in the sitting position are 

compared and shown in Figure 4.10 and Table 4.4, while Figure 4.11 and Table 4.8 

show the performances of aEIT with the old and the new ROIs in the supine position. 
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4.4.1.1 Results in sitting position 

Table 4.1: Comparison between VT from aEIT and the VT from spirometry in the 

sitting position (-: data missed due to poor EIT recordings). 

Subject Tidal volume (VT) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.29 0.66 0.37 

2 0.22 0.56 0.34 

3 0.63 0.65 0.02 

4 0.81 1.16 0.36 

M
a
le

s 

5 0.36 0.68 0.32 

6 1.01 0.47 0.54 

7 0.60 0.74 0.14 

8 0.21 0.36 0.15 

9 0.80 0.50 0.30 

10 0.33 - - 

11 1.48 1.07 0.41 

12 0.68 0.50 0.18 

 

Table 4.2: Comparison between 1 litre breaths from aEIT with 1 litre breaths from 

spirometry in the sitting position. 

Subject 1 Litre breaths 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.74 1.50 0.76 

2 0.80 1.05 0.25 

3 1.11 0.98 0.13 

4 0.88 1.58 0.70 

M
a
le

s 

5 0.82 1.03 0.21 

6 1.18 0.66 0.52 

7 1.10 1.17 0.07 

8 0.89 0.98 0.09 

9 0.99 0.54 0.45 

10 0.73 0.93 0.20 

11 1.24 0.79 0.45 

12 0.94 1.04 0.10 
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Table 4.3: Comparison between VC from aEIT against the VC from spirometry in the 

sitting position. 

Subject Vital capacity (VC) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 3.00 3.48 0.48 

2 4.05 4.10 0.05 

3 2.35 2.80 0.46 

4 2.88 4.40 1.52 

M
a
le

s 

5 3.63 3.10 0.53 

6 5.24 3.14 2.10 

7 4.59 5.77 1.19 

8 4.55 4.42 0.13 

9 5.97 3.40 2.57 

10 2.25 2.80 0.55 

11 5.66 3.61 2.05 

12 3.90 4.90 1.00 

 

 

Figure 4.10: Scatter plot shows the VT, 1 litre breaths and VC calculated by the aEIT 

software against the one measured from the spirometry in sitting 

position. The left figure shows the aEIT results with the old ROI while 

the right figure shows the aEIT results with the new ROIs. 
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Table 4.4: Summary of the performance indices comparing the aEIT with old ROI 

and the aEIT with the new ROIs in the sitting position. 

 

Sitting 

Tidal volume (VT) 1 litre breaths Vital capacity (VC) 

Old  New Old New  Old New  

MAE (%) 86.71 59.76 52.75 35.93 39.68 25.15 

eSTD 0.28 0.15 0.39 0.24 1.29 0.84 

 

 

4.4.1.2 Results in supine position 

 

Table 4.5: VT from aEIT against the VT from spirometry in the supine position. 

Subject Tidal volume (VT) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.44 0.80 0.36 

2 0.18 0.51 0.33 

3 0.53 0.54 0.01 

4 0.78 1.33 0.55 

M
a
le

s 

5 0.41 0.65 0.24 

6 1.66 0.77 0.89 

7 0.51 0.56 0.06 

8 0.24 0.33 0.09 

9 1.25 1.32 0.07 

10 0.40 0.52 0.12 

11 1.25 0.94 0.31 

12 1.01 1.09 0.08 

 

 

 

 

 



78 

 

Table 4.6: 1 litre breaths from aEIT against the 1 litre breaths from spirometry in the 

supine position. 

Subject 1 Litre breaths 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 1 1.15 1.37 0.22 

2 0.82 0.83 0.01 

3 1.10 1.20 0.10 

4 0.78 1.53 0.75 

M
a
le

s 

5 1.03 1.64 0.61 

6 1.31 0.74 0.57 

7 1.36 1.38 0.02 

8 0.60 0.84 0.24 

9 1.43 0.94 0.49 

10 0.70 0.78 0.08 

11 1.20 1.00 0.20 

12 1.13 1.10 0.03 

 

 

Table 4.7: VC from aEIT against the VC from spirometry in the supine position. 

Subject Vital capacity (VC) 

Spirometry (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 2.93 3.50 0.57 

2 4.14 5.08 0.94 

3 2.76 3.30 0.54 

4 3.09 6.12 3.03 

M
a
le

s 

5 3.18 4.20 1.02 

6 5.35 2.48 2.87 

7 4.14 4.30 0.16 

8 4.29 4.38 0.09 

9 5.76 4.40 1.36 

10 1.65 1.87 0.22 

11 5.54 4.50 1.04 

12 3.76 4.18 0.42 
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Figure 4.11: Scatter plot shows the VT, 1 litre breaths and VC calculated by the aEIT 

software against the one measured from the spirometry in supine 

position. The left figure shows the aEIT results with the old ROI while 

the right figure shows the aEIT results with the new ROIs. 

 

Table 4.8: Summary of the performance indices comparing the old aEIT and the 

improved aEIT software in the supine position. 

 

Supine 

Tidal volume (VT) 1 litre breaths Vital capacity (VC) 

Old  New Old New  Old New  

MAE (%) 77.03 47.11 50.35 27.90 65.26 26.53 

eSTD 0.14 0.26 0.34 0.26 1.61 0.98 

 

The overall results of absolute lung volumes calculated by the aEIT with the new 

ROIs show an increase in accuracy with the spirometry measurements in both sitting 

and supine positions. The average accuracy for aEIT with the new ROIs is about 60% 

in sitting position and 66% in supine position as compared to 40% and 36% with the 

old ROI in sitting and supine position respectively. 
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4.4.2 Comparison between body box lung volumes and the 

aEIT lung volumes  

 

The mean tidal volume (VT), functional residual capacity (FRC), total lung capacity 

(TLC), residual volume (RV) and vital capacity (VC) calculated by aEIT were 

recorded for all subjects and compared with the mean tidal volume (VT), functional 

residual capacity (FRC), total lung capacity (TLC), residual volume (RV) and vital 

capacity (VC), measured from the body box. Tables 4.10-4.14 summarise the results 

for analysis of these lung volumes. The performances of the aEIT with the old ROI 

and the aEIT with new ROIs are compared and shown in Figure 4.12 and Table 4.14. 

The ‘-’ sign indicates that there are no body box measurements done and also poor 

EIT data recordings for that particular subject. 

 

Table 4.9: VT from aEIT against the VT from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Tidal volume (VT) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 0.66 0.66 0.00 

2 0.36 0.56 0.20 

3  - 0.65 - 

4 0.76 1.16 0.40 

M
a
le

s 

5 0.62 0.68 0.06 

6 0.45 0.47 0.02 

7 0.66 0.74 0.08 

8 -  0.36 - 

9 0.96 0.50 0.46 

10 0.68 -  - 

11 1.06 1.07 0.01 

12 0.58 0.50 0.08 
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Table 4.10: FRC from aEIT against the FRC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Functional residual capacity (FRC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 2.71 3.22 0.51 

2 3.13 1.40 1.73 

3  - 1.78 - 

4 2.41 2.43 0.02 

M
a
le

s 

5 3.53 3.65 0.12 

6 3.02 3.10 0.08 

7 3.52 3.60 0.08 

8  - 2.84  - 

9 3.66 3.25 0.41 

10 2.29 - - 

11 3.06 3.76 0.70 

12 2.20 3.70 1.50 

 

 

Table 4.11: TLC from aEIT against the TLC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Total lung capacity (TLC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 5.53 5.96 0.43 

2 6.30 5.00 1.30 

3  - 4.59 - 

4 4.90 5.20 0.30 

M
a
le

s 

5 6.03 5.70 0.33 

6 7.90 5.85 2.05 

7 7.49 8.00 0.51 

8 -  6.87  - 

9 8.07 6.00 2.07 

10 5.58 5.10 0.48 

11 7.62 5.21 2.41 

12 5.93 7.90 1.97 
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Table 4.12: RV from aEIT against the RV from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Residual volume (RV) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 1.81 2.08 0.27 

2 1.72 1.00 0.72 

3  - 1.60 - 

4 1.68 1.07 0.61 

M
a
le

s 

5 2.10 2.60 0.50 

6 1.72 2.70 0.98 

7 1.77 1.80 0.03 

8  -  2.37  - 

9 2.00 2.68 0.68 

10 1.71 1.70 0.01 

11 1.64 1.60 0.04 

12 1.50 3.00 1.50 

 

 

Table 4.13: VC from aEIT against the VC from the body box (-: data missed due to 

poor EIT recordings and no body box data recorded). 

Subject Vital capacity (VC) 

Body Box (litre) EIT (litre) Absolute Error 

F
em

a
le

s 

1 3.72 3.48 0.24 

2 4.58 4.10 0.48 

3  - 2.80 - 

4 3.23 4.40 1.17 

M
a
le

s 

5 3.93 3.10 0.83 

6 6.19 3.14 3.05 

7 5.72 5.77 0.05 

8  -  4.42 - 

9 6.06 3.40 2.66 

10 3.87 2.80 1.07 

11 5.98 3.61 2.37 

12 4.43 4.90 0.47 
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Figure 4.12: Scatter plot shows the VT, FRC, TLC, RV and VC calculated by the 

aEIT software against the one measured from the body box. The left 

figure shows the aEIT results with the old ROI while the right figure 

shows the aEIT results with the new ROIs. 

 

Table 4.14: Summary of the performance indices comparing the old aEIT and the 

improved aEIT software in the sitting position 

 

Sitting 

VT FRC TLC RV VC 

Old  New Old New Old New Old New  Old New  

MAE 

(%) 

41.87 21.89 44.01 20.61 24.42 17.19 77.32 31.26 36.06 24.62 

eSTD 0.28 0.17 1.45 0.64 1.50 0.86 0.92 0.48 1.29 1.07 
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When comparing the measurements from the improved aEIT software with the new 

ROIs with measurements from the body box, it can be seen that the accuracy of the 

absolute lung volumes also increased. In all the lung volumes calculated by aEIT with 

the new ROIs, the average accuracy is about 77% as compared to 55% with the old 

ROI.   

 

4.5 Summary 

 

In this chapter, investigations to improve the Sheffield Mk 3.5 aEIT software through 

a series of calibrations and improvements to enhance the accuracy and consistency of 

the calculated absolute lung volume were carried-out. In the latest work of 

improvement, a study involving MRI scans was conducted on a population of healthy 

subjects to assess and redefine new regions of interest (ROIs) for the lungs taking into 

account the individual height and thoracic shape. The new sub-ROIs for estimation of 

regional lung ventilations were also introduced. The aEIT software with the new ROIs 

has shown an improved performance in accuracy in both spirometry and body box 

studies as compared to the old ROIs. Although the improved aEIT system is now able 

to provide good estimates of lung volumes, there is still active research in the area of 

validating and improving the accuracy and consistency of the aEIT estimation of lung 

volumes towards characterising the system as suitable for clinical use. In the light of 

all the promising development in the aEIT system, it is believed that such a system 

may be used as a continuous bedside monitoring tool to monitor lung function in 

mechanically ventilated ICU patients, where other means of lung function/condition 

measurement (MRI, CT) fail to provide portability and continuous measurement 

ability. Therefore in the next Chapter, the improved aEIT with the new ROIs will be 

employed to reflect the PEEP settings-induced changes on the lung absolute volume 

and densities in the real ICU patients. 
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CHAPTER 5 

 

 

5 EIT CLINICAL TRIALS ON ICU 

PATIENTS 

 

 

5.1 Introduction 

 

In treating patients with severely impaired respiratory system, the use of positive end 

expiratory pressure (PEEP) and tidal volume have been identified as key ventilation 

parameters (Sundaresan and GeoffreyChase, 2010). PEEP was introduced to maintain 

the open atelectatic areas and thereby reduce the risk of hypoxemia and cyclic 

recruitment/derecruitment. Although the application of PEEP is widely used in 

clinical practice, selecting the most appropriate level of PEEP for the critically-ill 

patient is still a matter for debate. Increasing PEEP further prevents derecruitment in 

the dependent areas but may lead to overdistension in the non-dependent areas as 

well. To find a balance between these two aspects is one goal of setting such as PEEP 

level.  

 

Lung overdistension has been defined in various ways, but usually referred to as a rise 

above normal resting functional residual capacity (FRC) or end-expiratory lung 

volume (EELV) (Ferguson, 2006). As reported in the current literature, the 

information provided by the global parameters of lung function, such as blood gases 
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values and the slope of the static pressure-volume curve (P/V) did not consider the 

inhomogeneity of lung region, and therefore may be at times misleading. As already 

stated in Sections 2.1.6.2 and 2.1.6.3 in Chapter 2, EIT has the potential of 

qualitatatively and quantitatively assessing various conditions of the lung during 

mechanical ventilation in critically-ill patients but most of the reported studies are 

mainly focusing on functional EIT (fEIT) not the absolute value.  

 

Hence, in this Chapter, the ability of the improved Sheffield Mk3.5 aEIT system to 

reflect PEEP settings-induced changes on the aEIT quantitative parameters in ICU 

patients was investigated. The aEIT quantitative parameters were identified as the 

mean end-expiratory lung volume (MEEV), mean tidal volume (MVT), mean arterior 

density (MAD), mean middle density (MMD) and mean posterior density (MPD). The 

relationship between aEIT quantitative parameters and ratio of arterial partial pressure 

of oxygen to fraction of inspired oxygen (PaO2/FiO2) are also studied. This Chapter 

is organised as follows; first, the study protocol and data collection methods are 

presented; second, the results on PEEP settings-induced changes on aEIT quantitative 

parameters are analysed and discussed. The relationship between the aEIT 

quantitative parameters and PaO2/FiO2 ratio in all studied ICU patients is also 

investigated; finally, conclusions are drawn in relation to this overall study. 
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5.2 Study protocol and data collection methods 

 

The study was conducted at the Northern General Hospital, Sheffield (UK). The 

ethical clearance was sought and obtained from the Sheffield Teaching Hospitals 

NHS Trust and approved by the local research office.  

 

5.2.1 Identifying Participants 

 

Any patients fulfilling the inclusion/exclusion criteria (as shown below) and 

ventilated on ICU are included in the study. In patients who are sedated and ventilated 

and unable to provide consent for themselves, their relatives will be approached to 

give consent and when the patient recovers consciousness and is able to understand 

the study, he/she will be asked to give retrospective consent for the data to be 

included within the research. 

 

The principal inclusion criteria: 

i) All: − 18 years or over 

ii) Cases: - Receiving ventilatory support in Critical Care. 

 

 

The principal exclusion criteria: 

i) Pregnant or lactating; 

ii) Unable to understand English; 

iii) Been involved in any other interventional clinical trial within the last 3 

months. 
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5.2.2 Data collection methods 

 

Data from patients with BIPAP (Bilevel Positive Airway Pressure) and CPAP 

(Continuous Positive Airway Pressure) were considered in this study to investigate 

the effect of changing PEEP to the absolute lung volume and lung density of patients 

evaluated via the aEIT system.  

 

The same equipments as shown in Section 3.2 in Chapter 3 were used in this study to 

measure the chest circumferences and chest width and depth. The same Skintact 

Premier ECG electrodes were used with the aEIT system’s data collection unit.   The 

aEIT data were acquired via the 8-electrode Sheffield Mk3.5 aEIT system which is 

the latest of a number of EIT systems developed in Sheffield (Wilson et al., 2001). 

The improved Sheffield Mk3.5 aEIT software of version 1.049 (written in MATLAB) 

was used to run the Mk3.5 system and estimate the absolute lung resistivity and 

volume. 

 

The EIT data were recorded using a total of ten (10) male patients and four (4) female 

patients. However, seven (7) patients (3 males and 4 females) were excluded in the 

study due to; i) errors in all the recorded EIT data and ii) they were being weaned 

from the ventilator. As a result, only seven (7) mechanically ventilated male patients 

were left for the study. Demographic information of the indentified patients such as 

gender (G), height (H), weight (W) and chest circumference (C) were recorded. The 

ellipse ratio (E) was calculated based on the chest width and depth. Ventilation mode 

(Vent. Mode), patient’s position and diagnosis were also recorded as a reference. 

Table 5.1 shows the summary of information for all the studied patients. 
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Table 5.1: Information summary of the studied patients. 

 
Patient G H 

(cm) 

W Chest Vent. Position Diagnosis 

(Kg) E C(cm) 

 

 

Mode   

1 M 170 67 1.36 82 BIPAP Supine Severe 

SEPSIS 

2 M 175 73 1.36 89 BIPAP Prone 
Respiratory 

failure 

3 M 173 70 1.39 88 CPAP/BIPAP Prone Pulmonary 

oedema 

4 M 171 71 1.19 86 CPAP Supine Respiratory 

failure 

5 M 162 68 1.5 94 CPAP Supine Bilateral 

pneumonia 

6 M 170 75 1.18 113 BIPAP Prone Respiratory 

failure 

7 M 160 55 1.52 94 CPAP Supine Pneumocystis 

pneunomia 

 

 

5.2.2.1 Routine changes in pressure and EIT recordings 

 

The patients were connected to the Mk3.5 aEIT system via the 8-electrode array 

placed around the thorax, 5cm above the xyphoid process in different positions (i.e. 

supine or prone) depending on the needs of the patients at that particular time. EIT 

recordings were performed at a frequency of 25 Hz over one minute in identified 

patients, each day prior to physiotherapy in the morning. In the event where a routine 

change in ventilator settings (such as PEEP change) was made, EIT data were 

recorded for one minute prior to a change in pressure setting and then at every 30 

minutes after any subsequent change. The 30-minute interval is to allow the patients 

to be in a stable condition after every change was made. The number of recording 

days depends on the availability of the nurses who were responsible for the data 

recordings and also how long the patients were being ventilated for in the ICU.  
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5.2.2.2 Ventilator parameters and blood gasses measurements 

 

Ventilator parameters such as PEEP and tidal volume (VT) were retrieved at the time 

when the EIT recordings of the patient were executed. In this study, the tidal volume 

(VT) were measured by the ventilator and not set because the patients were ventilated 

in pressure-control ventilation. Blood gasses data i.e. arterial partial pressure of 

oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2) and ratio of 

arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) were 

also extracted from the Patient Data Monitoring System (PDMS). Because these data 

(PaO2, PaCO2) are not measured frequently and regularly, obtaining blood gases data 

at the same time as the EIT measurement is being performed is a difficult task. 

Therefore, the clinician has suggested taking the nearest blood gases data to be used 

in this study. 

 

5.3 Results and discussions 

 

In this section, the effects of changing PEEP to the MEEV, MAD, MMD and MPD in 

all patients were analysed. Relationships between MEEV, MAD, MMD and MPD 

with the PaO2/FiO2 and PaCO2 values were analysed. VT measured by the ventilator 

was also compared with MVT calculated by the aEIT system.  

 

5.3.1 PEEP, MEEV and MVT 

 

PEEP refers to the application of a fixed amount of positive pressure applied during 

the mechanical ventilation cycle (Figure 5.1) (Butcher and Boyle, 1997). The major 

benefit of PEEP is achieved through their ability to increase functional residual 

capacity (FRC) and keep this value above closing capacity. In critically ill patients 

receiving mechanical ventilation, FRC is determined by the level of PEEP and it is 
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therefore normally referred to as end-expiratory lung volume (EELV). The increase in 

EELV is realised by increasing alveolar volume and through the recruitment of alveoli 

that would contribute to gas exchange, hence, increasing oxygenation and lung 

compliance.  

 

 

Figure 5.1: Pressures relating to mechanical ventilation [Butcher and Boyle, 1997]. 

 

In the aEIT system, EELV is represented by the mean of lung volume at the end of 

expiratory and known as the mean end-expiratory lung volume (MEEV).  This value 

is calculated based on the absolute lung volume produced by the aEIT system. The 

steps of producing this absolute lung volume are shown in Section 3.4.1 in Chapter 3. 

Another quantitative parameters calculated by aEIT system from the absolute lung 

volume is the mean tidal volume (MVT). This value is the mean of the difference 

between the absolute lung volume at the end of inspiratory and end of expiratory. An 

example of the MEEV and MVT produced by the aEIT system can be seen in Section 

3.4.2. In the aEIT system, MEEV only gives a general information about the lung 

volume of the measured patients.  
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5.3.2 Mean regional densities  

 

To investigate the regional ventilation distribution of the lung, the aEIT system 

produced regional densities which have the potential to provide information about the 

regional lung abnormalities in the patients. In the current aEIT system, the model of 

lung density (     ), as a function of absolute lung resistivity (absR) obtained by 

Nopp et al. (1997), is used to calculate the overall absolute lung density (refer to 

Equation (3.1 in Chapter 3). To obtain the regional lung density, the pre-determined 

region of interest (ROI) is used and the lung densities are estimated for 6 lung regions 

defined as right lung anterior density (RLAD), right lung middle density (RLMD), 

right lung posterior density (RLPD), left lung anterior density (LLAD), left lung 

middle density (LLMD) and left lung posterior density (LLPD) as shown in Figure 

5.2. 

 

 

Figure 5.2: Definition of regional absolute lung densities.  

 

To simplify the analysis, the densities of the left lung and the right lung were 

combined to become Mean Anterior Density (MAD), Mean Middle Density (MMD) 

and Mean Posterior Density (MPD) (Figure 5.3).  
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Figure 5.3: MAD, MMD and MPD regions of the lung. 

 

 

5.3.3 PEEP induced changes in aEIT quantitative 

parameters 

 

Table 5.2 summarises the results of changing PEEP to MEEV, MAD, MMD and 

MPD values for all the patients with different ventilation modes on different days. 

The tidal volume (VT) measured by the ventilator and MVT derived from the aEIT 

system were also included. The errors in aEIT readings were due to some technical 

problem i.e. electrode problems and electrode disconnected during the measurement. 

The reason for no VT values recorded for patient 5 is because the patient was 

ventilated using the external CPAP. In this particular case, only readings for PEEP 

were available.  
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Table 5.2: Summary of PEEP settings, VT and aEIT quantitative parameters in all 

patients with different ventilation modes on different days. 

Pt. Day Mode 

VENTILATOR 

SETTINGS/ 

MEASUREMENT 

aEIT QUANTITATIVE 

PARAMETERS 

PEEP VT  MEEV MVT MAD MMD MPD 

(cmH2O) (ml) (litre) (ml) (g/l) (g/l) (g/l) 

1 

1 BIPAP 7 340 Error 

2 BIPAP 6 930 2.70 610 335 1213 598 

3 BIPAP 6 850 2.20 680 570 1302 577 

2 

1 
BIPAP 12 640 6.39 650 250 352 198 

BIPAP 12 730 6.30 710 255 361 200 

2 

BIPAP 12 750 6.32 770 334 410 161 

BIPAP 10 660 5.71 600 383 476 187 

BIPAP 10 550 5.78 540 375 469 188 

BIPAP 10 530 5.68 540 370 455 197 

BIPAP 10 560 5.64 600 378 472 200 

3 
BIPAP 10 1190 4.97 1330 550 653 155 

BIPAP 10 390 4.93 480 548 656 155 

4 
BIPAP 10 1210 5.67 950 501 655 165 

BIPAP 10 700 5.46 530 513 683 171 

3 

1 
CPAP 15 600 6.11 660 309 354 242 

CPAP 15 600 5.99 600 304 370 230 

2 
BIPAP 12 410 6.94 500 213 291 146 

BIPAP 12 410 6.93 500 212 291 151 

4  1 CPAP 

5 320 3.05 360 408 779 626 

5 360 3.20 340 381 756 631 

5 360 3.21 420 394 780 615 

5 370 2.95 350 363 671 551 

5 1 CPAP 

5   

NO TIDAL 

VOLUME 

 RECORDED 

  

0.74 1180 1194 1203 477 

5 0.80 1150 1130 1143 482 

0 0.23 100 1379 1432 520 

0 0.51 100 1250 1440 472 

6 1 
BIPAP 8 600 5.80 450 553 400 353 

BIPAP 8 430 5.80 480 561 403 353 

 

 

 

7 

 

 

1 CPAP 8 900 Error 

2 CPAP 10 530 Error 

3 

CPAP 5 520 3.73 400 464 377 683 

CPAP 5 490 5.87 310 127 530 400 

CPAP 5 660 5.72 320 134 543 414 

CPAP 5 534 1.79 670 446 1113 701 
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5.3.3.1 MEEV versus PEEP 

 

Figure 5.4 shows the variation of MEEV as the results of PEEP change in all patients. 

A linear regression analysis was carried-out on the data and the correlation was 0.911 

(P<0.05). It can be seen from the results that the MEEV increases proportionally with 

the increase of PEEP. This result agrees with the findings reported from the human 

study (Hinz et al., 2003; Wang, 2008). 

 

 

Figure 5.4: PEEP induced changes in MEEV in all patients. 

 

Apart from this general observation, the effect of PEEP changes to individual patient 

was also made. In this case, data for PEEP and MEEV from Patients 2 and 3 were 

selected and analysed. Patient 2 was selected because recordings included the changes 

in PEEP in the same day, while Patient 3 recordings included changes in PEEP as 

well as the ventilation mode; both patients included no errors in all the aEIT readings. 

In this analysis, it was assumed that no variations in electrodes placement exist during 

the aEIT measurement in all the days.  
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(a) 

 

(b) 

Figure 5.5: Absolute lung resistivity and lung volume measured by the aEIT system 

at different PEEP settings for (a): Patient 2 in four days and (b): Patient 

3 in two days. 
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It can be seen that variations in PEEP values in both patients does lead to changes in 

MEEV values measured by the aEIT system. It is also discovered that MEEV can also 

increase or decrease without any changes made to the PEEP as depicted in Patient 2 

on Days 3 and 4. On Day 3, MEEV readings for Patient 2 decreased as compared to 

the readings on Day 2. According to the expert clinician, this scenario is deemed 

possible in patients as an indication of insufficient PEEP to keep the lung open. In 

Day 4, the patient’s MEEV was found to increase even with the same PEEP setting as 

Day 3. According to the expert clinician, on Day 3, the patient had gone through a 

surgical procedure called the ‘percutaneous tracheotomy’ to improve the patient’s 

airway access and breathing. Therefore, the result of increasing MEEV in Day 4 was 

found to support the fact that surgery had improved the overall patient’s ventilation.  

 

In Patient 3, reducing PEEP was seen to increase the MEEV. This scenario happened 

because the patient had a change in ventilation mode from CPAP to BIPAP. 

According to the expert clinician, this patient was experiencing collapsed lung during 

the CPAP mode and having realised this, the patient was then turned to the BIPAP 

mode, where they had more support and which increased the MEEV reading, even 

with less PEEP applied.   

 

5.3.3.2 Mean regional densities versus PEEP 

 

Figure 5.6 shows the variation of MAD, MMD and MPD values as a result of PEEP 

changes in all patients. Linear regression analysis was carried-out on the data and the 

results are summarised in Table 5.3. It can be seen from the results that generally, as 

PEEP increased the mean regional densities (MAD, MMD and MPD) decreased 

proportionally.  
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Figure 5.6: PEEP induced changes in MAD, MMD and MPD in all patients 

 

Table 5.3: Linear regression analysis results for the data 

 

 

MAD (g/l) MMD (g/l) MPD (g/l) 

PEEP (cmH2O) -0.846 (P<0.05) -0.856 (P<0.05) -0.776 (P<0.05) 

 

 

5.3.4 Relationship between MEEV, MAD, MMD and MPD 

with blood gasses parameters 

 

Over the years, the ratio of the arterial partial pressure of oxygen to the fraction of 

inspired oxygen (PaO2/FiO2) has been used to assess the level of gas exchange 

abnormalities in the lungs (Karbing et al., 2007), including classification of patients 

with acute lung injury (ALI) and adult respiratory distress syndrome (ARDS) 
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(Bernard et al., 1994; Artigas et al., 1998). In this section, the relationship between 

PaO2/FiO2 ratio and MEEV, MAD, MMD and MPD produced by the aEIT system is 

investigated. Table 5.4 shows all the patients’ data which include MEEV, MAD, 

MMD, MPD and all the blood gasses values. Note that Patients 4 and 5 were excluded 

from this analysis because both patients’ records did not include the blood gasses 

values; data with errors were also excluded.  

 

Table 5.4: Summary of blood gasses values and aEIT quantitative parameters for all 

patients 

 

Figure 5.7 depicts the variations of MEEV, MAD, MMD, MPD, PaO2/FiO2 ratio and 

PaCO2 with days in all studied patients. The green dotted lines appeared on the 

PaO2/FiO2 ratio graph and the PaCO2 graph represents the acceptable range (lower 

and higher limits) of these parameters. These ranges were chosen following 

consultation with the ICU expert clinician. For MEEV, MAD, MMD and MPD, these 

green dotted lines correspond to the normal range (lower and higher limits) of these 

Pt. Day 

BLOOD GASSES 

PARAMETERS 

aEIT QUANTITATIVE  

PARAMETERS 

PaO2/FiO2 

(kPa) 

PaO2 PaCO2 MEEV MAD MMD MPD 

(kPa) (kPa) (litre) (g/l) (g/l) (g/l) 

1 1 54 16.1 5.09 2.70 335 1213 598 

 
2 54 16.1 4.68 2.20 570 1302 577 

2 

1 34 18.6 4.28 6.35 253 357 199 

2 
30 11.9 4.29 6.32 334 410 161 

26 10.3 4.44 5.70 377 468 193 

3 26 13.1 4.87 4.95 549 655 155 

4 23 10.3 3.95 5.57 507 669 168 

3 
1 21 14.7 5.53 6.05 307 362 236 

2 15 9.7 8.57 6.94 213 291 149 

6 1 26 10.3 5.18 5.80 557 402 353 

7 1 29 11.6 4.91 4.28 293 641 550 
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parameters. After discussions with the expert clinician, it has been decided to acquire 

these lower and higher limits based on the data from another study relating to five 

patients that involved measurement of lung ventilation using the aEIT system 

(Tunney et al., 2008). These patients had undergone oesophagogastrectomy for 

oesophageal cancer, were smokers but had no chronic lung disease. The MEEV, 

MAD, MMD and MPD of these patients were calculated based on the improved aEIT 

system software (version 1.049). The MEEV, MAD, MMD and MPD values for these 

five patients are summarised in Table 5.5. 

 

Table 5.5: The MEEV, MAD, MMD and MPD values the five patients undergone 

oesophagogastrectomy for oesophageal cancer 

 

These average values of MEEV, MAD, MMD and MPD were chosen as the normal 

reference values for the patients involved in the current study. The lower and upper 

limits were then derived based on these reference values and the overall data of the 

current studied patients. The lower and upper red dotted lines on the MEEV graphs 

represent the limits for the lung to be collapsed or overinflated. A lower value than 

1.75 litres means that the lung is collapsed, while a greater value than 6.25 litres 

indicates that the lung is overinflated. These limits were also set based on discussions 

with the ICU expert clinician.   

Patient MEEV 

(litre) 

MAD 

(g/l) 

MMD 

(g/l) 

MPD 

(g/l) 

1 
3.78 510 556 329 

3.39 570 624 356 

2 
3.12 576 987 357 

2.93 601 1064 358 

3 
4.61 313 465 315 

5.45 264 403 242 

4 
6.49 224 284 253 

6.75 205 265 246 

5 

4.18 435 588 397 

3.79 471 651 433 

3.67 474 684 454 

Average 4.38 422 597 340 
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(a) 

  

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.7: Variation of: (a) MEEV, (b) PaO2/FiO2, (c) PaCO2, (d) MAD, (e) MMD 

and (f) MPD with days in all studied patients. 
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The relationship between MEEV and PaO2/FiO2 ratios in overall patients’ data was 

analysed. It was hypothesised at the beginning that increasing MEEV should improve 

oxygenation and pulmonary gas exchange. However, from the linear regression 

analysis that was conducted, the correlation was -0.6821 (P<0.05). In general, this 

result shows that MEEV has a significant negative correlation with the PaO2/FiO2 

ratio. Nevertheless, when analysing the individual patients this finding was arguable. 

Results for Patient 2 on Day 2 show that MEEV was reduced from 6.32 litres to 5.70 

litres as the effect of PEEP reduction and the PaO2/FiO2 ratio also seen to be reduced 

from 30kPa to 26kPa. This observation seems to support the previous hypothesis. But 

in Days 3 and 4, when the MEEV increased from 4.95 litres to 5.57 litres, the 

PaO2/FiO2 ratio was seen to decrease from 26 kPa to 23 kPa. The same observation 

was seen in Patient 3, whereby the PaO2/FiO2 ratio was decreased when MEEV 

increased from Day 1 to Day 2. In Patient 1, no change in PaO2/FiO2 ratio was 

observed when MEEV decreased from 2.70 litres to 2.20 litres.  

 

From the previous observations, it was found that the relationship between the MEEV 

and the PaO2/FiO2 ratio does vary with the patient and also between patients because 

of several reasons: as stated by Heinze et al. (2010), an increase in the MEEV value 

may be due to alveolar recruitment, leading to improved oxygenation (PaO2/FiO2 

ratio), or may also relate to overdistension of already open alveoli, leading to no 

PaO2/FiO2 change or even to a decrease. Under the condition of an overdistented 

lung, the blood vessels which surround the airspace were being compressed, causing 

an increase in dead space (wasted ventilation), hence leading to a reduction in 

PaO2/FiO2 ratio.  

 

The results shown in Figure 5.7 also demonstrate the ability of the aEIT system in 

providing information about the ventilation inhomogeneity existing within the lung. 

Considering only the blood gas parameters (PaO2/FiO2 and PaCO2), one may assume 

that the patients were in a stable condition because most of the values were in the 

acceptable limits.  But when investigating the quantitative parameters provided by the 
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aEIT system more closely, it can be seen that the patients were not really ‘stable’ as 

some of the values of these parameters were out of the normal range. For example, the 

MPD values for Patients 2 and 3 in all the studied days were below the normal range, 

which means that the patients’ posterior lungs were having less density and hence a 

high lung volume. This observation is supported by the value shown in the MEEV 

graph, whereby the MEEV values for all these patients were above the normal lung 

volume range, which leads the lung to be in slightly overinflated or overinflated 

condition. According to the expert clinician, for patients with respiratory problem, it 

is acceptable for the patients’ lung to be slightly overinflated but not more than the 

allowable limits in order for the patients to receive sufficient oxygenation and be 

within the acceptable limits of PaO2/FiO2. 

 

When patients were ventilated in the supine position (Figure 5.8 (a)), it is known that 

the alveoli in non-dependent zones (anterior region) are less likely to collapse at end 

expiration as compared with the middle region and the posterior region. This denotes 

that, the anterior region will tend to be less dense compared to the middle and 

posterior region. However, in current studies, Patients 2, 3 and 6 have shown that the 

MMD (middle) and MPD (posterior) regions are less dense compared to the anterior 

and the middle regions. This is because the patients were ventilated in the prone 

position (Figure 5.8 (b)).   

 

 

(a)  

 

 

 

 

 

(b) 

Figure 5.8: Illustration for the two different position of the studied patients: (a) 

Supine, (b): Prone. 
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In patients with acute respiratory problem, the prone position has proven to eliminate 

lung compression by the heart and abdominal contents, thus limiting actelactasis, 

especially in the posterior region and as a result can improve gas exchange (Albert et 

al., 2000; Mentzelopoulus et al., 2003; Mentzelopoulus et al., 2005).  

 

5.3.5 Tidal volume from ventilator versus tidal volume 

from aEIT   

 

Figure 5.9 compares the VT measured by the ventilator and VT calculated from aEIT 

system for all patients. It can be seen that there is a good correlation between the these 

two parameters with R=0.824 and percentage of mean absolute error (MAE%) of 

15.9. This result shows that the aEIT system is able to provide VT readings closely to 

the one measured by the ventilator with 84% accuracy. 

 

 

Figure 5.9: Comparison of the tidal volume (VT) measured by the ventilator and EIT 

for all subjects. 
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5.4 Summary 

 

In conclusion, results from this study have shown that the improved Sheffield Mk3.5 

aEIT system is able to identify PEEP-induced changes in patients under mechanical 

ventilation. Increasing PEEP leads to improved regional lung ventilation which is 

reflected on the values of aEIT quantitative parameters i.e. MEEV, MAD, MMD and 

MPD. The negative correlation between MEEV and PaO2/FiO2 cannot be taken as 

the final conclusion about the relationship since it varies within the patient and 

between patients. The PaO2/FiO2 ratio provides only a global information about 

patients’ ventilation, however, regional densities given by MAD, MMD and MPD do 

have the potential to provide information about the regional lung ventilation 

distribution. Patients’ position is also shown to affect the results of regional 

ventilation distribution which is reflected in the higher values of MPD and MMD as 

compared to MAD in Patients 2, 3 and 6. A good correlation between ventilator 

measured VT and aEIT calculated VT indicates that the current aEIT system is able to 

provide good estimates of VT readings in ventilated patients.  

 

Certainly, this study has demonstrated the potential of the improved aEIT system to 

provide not only information on the overall lung volume but also on the regional lung 

ventilation distribution. These sets of information together with PaO2/FiO2 should 

lead to a better understanding of phenomena surrounding ventilated patients in order 

to support decision-making and guide ventilator therapy. However, more data on ICU 

ventilated patients are needed to confirm the findings in this study and established 

methods such as nitrogen wash-in-wash-out to quantify the patients’ lung volume 

needs to be used to compare with the values of the MEEV provided by the aEIT 

system. In the next Chapter, MEEV and mean regional densities’ models are 

developed to map these parameters from ventilator and blood gas parameter.  
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CHAPTER 6 

 

 

6 MODELLING OF aEIT-BASED 

QUANTITATIVE PARAMETERS USING    

A NEURAL FUZZY SYSTEM 

 

 

6.1 Introduction 

 

The aEIT clinical trials on ICU patients presented in Chapter 5 have shown that the 

system is now able to provide useful information about changes in aEIT quantitative 

parameters such as mean end-expiratory lung volume (MEEV), mean anterior density 

(MAD), mean middle density (MMD) and mean posterior density (MPD) as the 

results of changes in PEEP settings These identified parameters, have the potential to 

represent the overall lung volume and regional lung distribution of the patient and can 

be integrated with the information of the blood gas parameters to achieve the optimal 

ventilator management strategy in the ICU. Modelling the relationship between these 

parameters should indeed represent a step forward to represent the acute-ventilated 

patients with EIT.  

 

In patients with acute phase, there are other ventilator parameters that need to be 

monitored in addition to PEEP, such as peak inspiratory pressure (PIP), inspiratory 
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pressure (Pinsp), fraction of inspired oxygen (FiO2) and respiratory rate (RR). 

Therefore, in this Chapter, the relationship between these identified aEIT quantitative 

parameters with PIP, Pinsp, FiO2 and RR were studied based on data from the acute-

ventilated patients with EIT in the ICU. Four data-driven models were developed and 

these models represent the relationships between ventilator parameters and blood gas 

parameter with the MEEV, MAD, MMD and MPD. The relationships will mimic the 

behaviour of the overall lung volume and ventilation distribution of the patients in 

response to the changes in ventilator parameters as well as blood gas parameter. This 

Chapter is organised as follows: first, the modelling and the data collection methods 

are presented, second; the development of MEEV, MAD, MMD and MPD models is 

reviewed and the modelling results are shown, analysed and discussed. Finally, the 

overall results are summarised and conclusion are drawn based on the results hence 

obtained. 

 

6.2 Modelling method 

 

Neural-Fuzzy modelling falls under the umbrella of Computational Intelligence (CI) 

modelling and can be used as a non-linear method for mapping a certain number of 

inputs to a certain number of outputs. This non-linear mapping can be learned from 

process data using various algorithms. The two most popular types of fuzzy rules 

processing are the Mamdani-type (Mamdani, 1974) and the Sugeno-type (Takagi and 

Sugeno, 1985). Such models include a number of linguistic descriptions of the process 

under investigation (rules). The architecture used in this work is the Adaptive Neural-

Fuzzy Inference System or also known as ANFIS (proposed by Jang (1993)) and 

consists of a set of TSK-type fuzzy IF-THEN rules (proposed by Takagi, Sugeno and 

Kang (Sugeno and Kang, 1988; Takagi and Sugeno, 1985)). A typical fuzzy rule in 

Sugeno fuzzy model has the following form: 
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IF x is A and y is B THEN z = f(x,y) 
(6.1) 

 

Where x and y are the inputs to the system, A and B are linguistic labels such as: low, 

moderate and high, while z = f(x,y) is a crisp function in the consequent. The structure 

of an ANFIS model for a 2-input and 1-output system includes the following layers 

(as shown in Figure 6.1): 

 

 

Figure 6.1: An example of a two input-one output ANFIS with four rules. 

 

 

Layer 1: The membership functions layer. The output of any node in this layer gives 

the membership degree of an input (crisp value). A1, A2, B1 and B2 are the 

fuzzy membership functions. 

Layer 2: The multiplication layer. Every node here multiplies the inputs of 

membership degrees and produces the firing strength of the rule. 
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Layer 3: The normalisation layer. It calculates the ratio of the particular rule-firing 

degree to the sum of all rule degrees. 

Layer 4: This applies the sugeno processing rule and is therefore an output 

calculating layer. 

Layer 5: It consists of only one node which calculates the overall outputs as the sum 

of all incoming signals. 

 

A hybrid learning procedure proposed by Jang (1993) is used. It consists of two 

passes. In the forward pass, the node outputs propagate forward until Layer 4 and the 

consequent parameters are identified using a least-squares method. Then, a backward 

pass is performed with the consequent parameters fixed and the parameters of the 

input membership functions (which are represented by the weights and biases in 

Layer 1) adjusted using a gradient descent method. 

 

6.3 Patient’s data 

 

In this modelling work, only data from patients with BIPAP (Bilevel Positive Airway 

Pressure) and with no or very little spontaneous breathing were considered to ensure 

that they were in the acute phase. Based on data from the clinical trials on ICU 

patients in Chapter 5, four (4) ventilated patients with EIT were identified (Patients 1, 

2, 3 and 6). However, due to the limited size of EIT data relating to Patients 1, 3 and 

6, only data from Patient 2 are considered in this work. MEEV, MAD, MMD and 

MPD were extracted from aEIT measurements and the ventilator parameters (FiO2, 

PEEP, RR, PIP, Pinsp) together with PaO2/FiO2 ratio values which were retrieved 

from the Sheffield Patient Data Monitoring System (PDMS). 
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6.4 Development of MEEV model 

 

The MEEV model is designed to predict the aEIT Mean-End Expiratory Lung 

Volume (MEEV) directly from ventilator and blood gasses data obtained from the 

Sheffield Patient Data Monitoring System (PDMS). 

 

6.4.1 Model’s inputs selection 

 

Prior to modelling, an inputs selection operation for the MEEV model was carried-out 

by consulting the expert clinician and by also performing correlation analyses. From 

Patient 2 data, 55% of the data were randomly chosen as the training data. The 

remaining 45% from the same data set were selected as the testing data. The 

correlation analysis was conducted for the data and the results are shown in Table 6.1. 

 

Table 6.1: The correlation analysis results for MEEV model inputs selection. 

 

  PIP PEEP Pinsp RR FiO2 PaO2/FiO2 

MEEV  0.65 0.81 

 

0.39 

 

0.55 

 

0.07 

 

0.72 

 

 

 

It can be seen from this correlation analysis that PIP, PEEP, Pinsp, RR and 

PaO2/FiO2 ratio are likely to have a significant relationship with MEEV. However, in 

this modelling work, only parameters with a correlation coefficient >0.6 will be 

selected as the input to the model. Therefore, in this case, PIP, PEEP and PaO2/FiO2 

ratio were chosen as the inputs to the MEEV model. The MEEV model structure is 

summarised in Figure 6.2. 
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Figure 6.2: The MEEV model structure.  

 

The MEEV-ANFIS model was trained using MATLAB® v7.1 fuzzy logic toolbox. 

The initial fuzzy system structure was decided upon using subtractive clustering 

method (Chiu, 1994). The membership functions and linear parameters of the output 

were further optimised via the hybrid Levenberg-Marquardt (Hagan and Menhaj, 

1994) and the back-propagation algorithms (Horikawa et al., 1992).  

 

6.4.2 MEEV model training and testing results 

 

The training data distribution is summarised in Table 6.2. The modelling results are 

summarised in Table 6.3 and Figure 6.3. The root mean square error (RMSE), the 

mean absolute error (MAE%), the correlation coefficient (Cor.) and the standard 

deviation of the errors (eSTD) were used as the performance indices for model 

assessment. 
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Table 6.2: Summary of the training data for MEEV model 

 
Mean ± S.D. Minimum Maximum 

PEEP (cmH2O) 11 ± 0.93 10 12 

PaO2/FiO2 27 ± 3.80 23 34 

PIP (cmH2O) 25 ± 5.22 20 36 

MEEV (litre) 5.71 ± 0.49 4.93 6.35 

 

 

Table 6.3: The MEEV model training and testing results 

 Training Testing 

RMSE 0 0.07 

MAE (%) 0 1.04 

Cor. 1 0.99 

eSTD 0 0.07 

 

 

As shown in Figure 6.3, the ANFIS model can predict the MEEV with a good 

accuracy in both training (100%) and testing (99%). The current modelling results 

show that ANFIS is a good modelling method to learn the relationship between the 

MEEV and the ventilator parameters and blood gas parameter. 
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(a) 

 

 

(b) 

Figure 6.3: The MEEV ANFIS model: (a) training results and (b) testing results. 
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6.5 Development of MAD, MMD and MPD models  

 

These models are developed to map mean regional densities (MAD, MMD and MPD) 

of patients’ lung from ventilator parameters and blood gas parameter using ANFIS. 

Data of regional densities for Patient 2 were retrieved from the aEIT system and used 

as the output in these models.  

 

6.5.1 Models’ inputs selection 

 

After consulting the clinicians and conducting the correlation test, PEEP, PaO2/FiO2 

and RR were selected as inputs to the models, which on average, had a good 

correlation with MAD, MMD and MPD. The correlation analysis results are shown in 

Table 6.4 and the MAD, MMD and MPD model structure is shown in Figure 6.4.  

 

Table 6.4: The correlation analysis results for MAD, MMD and MPD models’ inputs 

selection. 

 PIP PEEP Pinsp RR PaO2/FiO2 

MAD  -0.21 -0.74 -0.09 -0.30 -0.81 

MMD  -0.05 -0.71 0.09 -0.13 -0.81 

MPD  0.07 0.23 0.03 -0.30 0.43 

Average  -0.06 -0.41 0.01 -0.24 -0.40 
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Figure 6.4: The model structure for MAD, MMD and MPD. 

 

The initial fuzzy inference system structure has been determined using the subtractive 

clustering method. The hybrid algorithm was used to optimise the membership 

functions and output parameter. 

 

6.5.2 MAD, MMD and MPD models training and testing 

results 

 

The training data distribution for all the models are summarised in Table 6.5. The 

performance of the models are summarised in Table 6.6, Figure 6.5, Figure 6.6 and 

Figure 6.7. The root mean square error (RMSE), the mean absolute error (MAE%), 

the correlation coefficient (Cor.) and the standard deviation of the errors (eSTD) were 

used as the performance indices for model assessment.  
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Table 6.5: Summary of the training data for MAD, MMD and MPD models 

1   2 Mean ± S.D. 3 Minimum 4 Maximum 

PEEP (cmH2O) 11 ± 0.93 10 12 

PaO2/FiO2 27 ± 3.80 23 34 

RR (breath/min) 17 ± 1.81 14 20 

MAD (gram/litre) 405 ± 108 250 550 

MMD (gram/litre) 513 ± 125 352 683 

MPD (gram/litre) 180 ± 18.55 155 200 

 

 

Table 6.6: The MAD, MMD and MPD models training and testing results 

 MAD MMD MPD 

 Training Testing Training Testing Training Testing 

RMSE 0 5.04 0 8.29 0 6.78 

MAE (%) 0 1.31 0 1.63 0 2.42 

Cor. 1 1 1 0.99 1 0.96 

eSTD 0 5.26 0 9.10 0 5.77 
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      (a) 

 

 

    (b) 

Figure 6.5: The MAD ANFIS model: (a) training results and (b) testing results. 
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      (a) 

 

 

  (b) 

Figure 6.6: The MMD ANFIS model: (a) training results and (b) testing results. 
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      (a) 

 

 

    (b) 

Figure 6.7: The MPD ANFIS model: (a) training results and (b) testing results. 
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From the modelling results previously summarised, all models show a good prediction 

of the regional lung density (MAD, MMD and MPD), with average accuracy of 100% 

for training and 98.2% for testing in all models. However, it is expected that more 

data are needed to ensure the consistency of results. In addition of having the global 

information of the lung, these models have the potential to be used in the study of 

regional lung behaviour as a result of changing the ventilator settings.  

 

6.6 Summary 

 

In summary, the MEEV, MAD, MMD and MPD models have been developed based 

on the data from real ventilated patient with EIT using ANFIS. All the modelling 

results show that ANFIS represents a good modelling tool to learn the relationships 

between the aEIT quantitative parameters (MEEV, MAD, MMD and MPD), the 

ventilator and the blood gas parameters. Although the selected model structures have 

proven to be sufficient in predicting the MEEV, MAD, MMD and MPD with a good 

accuracy, these models still need to be improved due to the small amount of training 

and testing data available and further validation of the models still need to be carried-

out in the future. In the next Chapter, these models will be used in combination with a 

totally non-invasive blood gas model of ventilated patients (SOPAVent) to validate 

the fuzzy rules for the decision support system via a series of simulation scenarios to 

mimic the real patients’ state evolution in the intensive care unit (ICU).  
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CHAPTER 7 

 

 

7 AN INTELLIGENT EIT-BASED DECISION 

SUPPORT SYSTEM FOR CRITICALLY-

ILL VENTILATED PATIENTS IN 

INTENSIVE CARE UNIT 

 

 

7.1 Introduction 

 

In Chapter 6, four (4) models of aEIT quantitative parameters were developed and 

validated. These models represent the relationship between ventilator settings (PEEP, 

PIP, RR) and blood gas parameter (PaO2/FiO2 ratio) with the mean end expiratory 

lung volume (MEEV), mean anterior density (MAD), mean middle density (MMD) 

and mean posterior density (MPD) in critically-ill ventilated patients. Despite the 

relatively small size of the data used to elicit such models, the training and testing 

results showed that the models are able to provide a good prediction of the required 

parameters (MEEV, MAD, MMD and MPD). As a result, these models formed the 

basis for both the design and evaluation of decision support system (DSS) for 

critically-ill ventilated patients in ICU.  
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In this Chapter, the work on the development of prospective intelligent EIT-based 

decision support system (IEDSS) that integrates information from a totally non-

invasive blood gas model of ventilated patients (SOPAVent) in ICU with models of 

aEIT quantitative parameters is presented. The SOPAVent (Simulation of Patient 

under Artificial Ventilation) model was initially designed to predict steady-state blood 

gas measurements of patients in stable conditions. The model was then extended to 

allow real-time continuous predictions of the patient’s blood gases and tidal volume. 

This particular Chapter is organised as follows: first, the work on designing the 

intelligent EIT-based decision support system is presented which consists of the 

FiO2/PEEP and Pinsp/RR sub-units and rule-based derivation that incorporates the 

expert knowledge with the fuzzy inference system in the analysis of the physiological 

and aEIT parameters for therapy optimisation. The validation of the IEDSS that 

simulates the hybrid aEIT-SOPAVent models according to designed patient’s 

scenarios is then presented. Finally, conclusions are drawn based on the results hence 

obtained. 

 

7.2 The intelligent EIT-based decision support system 

(IEDSS) design method 

 

Mechanical ventilation is a complex process aimed at providing the adequate balance 

of oxygen levels and carbon dioxide built up in the circulation system. The levels of 

oxygen and carbon dioxide in the blood are reflected in both the arterial partial 

pressure of oxygen (PaO2) and the arterial partial pressure of carbon dioxide (PaCO2) 

which have long been used together with the pressure-volume curves for assessing the 

lung function and guiding the titration of mechanical ventilation for the critically-ill 

patients. The operation that consists of maximising the gas exchange and of 

minimising over-distension is not trivial which is compounded by the fact that there is 

very little information on guiding the clinicians to optimising the ventilator settings, 

especially PEEP, in mechanically ventilated patients (Moloney and Griffiths, 2004).  
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With the EIT system, it is now possible to have the information on the lung volumes 

and regional ventilation distribution at the patient’s bedside, which will aid in 

providing advice on PEEP and other ventilator settings, to improve patient care in 

ICU. Therefore, in the development of the IEDSS, lung condition has been added as 

another therapeutic goal along with the blood gasses parameters, and as a result the 

IEDSS will be able to provide advice on FiO2, PEEP, Pinsp and RR settings. 

According to the expert clinician, it is well-known that FiO2 and PEEP mainly affect 

the patient’s oxygenation while Pinsp and RR mainly influence the PaCO2 level. 

Therefore, it was decided to split the system into two sub-units, i.e. FiO2/PEEP and 

Pinsp/RR. In each sub-unit, suggestions for (advice on) changes in ventilator settings 

are produced by a fuzzy rule-base, thus, in total, four fuzzy rule-bases were 

developed. 

 

7.3 Development of FiO2/PEEP sub-unit 

 

7.3.1 Fuzzy partitions for the inputs and outputs 

 

After discussions with the expert clinician, the main input variables to the FiO2/PEEP 

sub-unit were decided upon these include the PaO2, FiO2, MEEV, right lung anterior 

density (RLAD), right lung middle density (RLMD), right lung posterior density 

(RLPD), left lung anterior density (LLAD), left lung middle density (LLMD) and left 

lung posterior density (LLPD). Three input fuzzy sets were assigned to PaO2 and 

FiO2. While five were introduced to MEEV, RLAD, RLMD, RLPD, LLAD, LLMD 

and LLPD respectively. It is obvious that a relatively large number of rules will be 

produced from these variables. Therefore, in order to reduce this number, the nine 

input variables were grouped to lead only to three input variables which are the lung 

condition, PaO2 and patient condition. The structure of the fuzzy rule-bases in the 

FiO2/PEEP sub-unit is shown in Figure 7.1. 
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Figure 7.1: Structure of the fuzzy rule-base for FiO2/PEEP subunit. 

 

Lung condition is an index (ranges from 0 to 1) that represents the behaviour of 

patient’s lung (lung volumes and density) in response to various ventilator therapies. 

The lung densities were estimated for six lung regions defined as RLAD, RLMD, 

RLPD, LLAD, LLMD and LLPD. The densities of the left lung and the right lung 

calculated by the aEIT system are then combined to become mean anterior density 

(MAD), mean middle density (MMD) and mean posterior density (MPD) which 

become the secondary variables for the regional densities. This is realised by adding 

the mean density for the anterior left and right, middle left and right and posterior left 

and right as shown in Figure 7.1. The tertiary variable for the density is then 

introduced, that is the mean regional density index (IMRD). To produce the IMRD, 

each variable (MAD, MMD, MPD) and IMRD itself were assigned five fuzzy sets: 

VERY LOW (VL), LOW (L), MODERATE (M), HIGH (H) and VERY HIGH (VH) 

and by incorporating the knowledge of the expert clinician, fuzzy rules were 

developed using the MATLAB fuzzy logic toolbox to map the inputs (MAD, MMD 
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and MPD) into the output. In this case, a total of 125 fuzzy rules were generated and a 

sample example of these rules is as follows: 

RULE 1: If (MAD is VL) and (MMD is VL) and (MPD is VL) then (IMRD is VL). 

RULE 26: If (MAD is L) and (MMD is VL) and (MPD is VL) then (IMRD is VL). 

RULE 53: If (MAD is M) and (MMD is VL) and (MPD is M) then (IMRD is M). 

RULE 77: If (MAD is H) and (MMD is VL) and (MPD is L) then (IMRD is L). 

RULE 125: If (MAD is VH) and (MMD is VH) and (MPD is VH) then (IMRD isVH). 

 

By using the same method as realising the IMRD, the index of lung condition (ILUNG) 

is developed by combining the information of IMRD and normalised MEEV. Five 

fuzzy sets were used to represent MEEV: VERY LOW (VL), LOW (L), 

MODERATE (M), HIGH (H) and VERY HIGH (VH). The index of lung condition 

(ILUNG) is represented by five fuzzy sets: COLLAPSED (C), SLIGHTLY 

COLLAPSED (SC), MODERATE (M), SLIGHTLY OVERINFLATED (SO) and 

OVERINFLATED (O). It has been agreed with the clinician that these are the terms 

that best describe the patient’s lung conditions. Therefore, a total of 25 rules were 

generated and a sample example of these rules is given as follows: 

 

RULE 1: If (MEEV is VL) and (IMRD is M) then (LUNG_CONDITION is SC). 

RULE 6: If (MEEV is L) and (IMRD is VH) then (LUNG_CONDITION is C). 

RULE 10: If (MEEV is M) and (IMRD is H) then (LUNG_CONDITION is M). 

RULE 14: If (MEEV is H) and (IMRD is M) then (LUNG_CONDITION is SO). 

RULE 17: If (MEEV is VH) and (IMRD is M) then (LUNG_CONDITION is O).  
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For the PaO2 variable, the same method used by Kwok (2003) is repeated here with 

three fuzzy sets: LOW, NORMAL and HIGH. The hypoxemia index is well-known to 

clinicians as an indication of the level of lung injury. It is represented by the ratio of 

PaO2 (kPa) to fraction of FiO2. From Kwok (2003), the patient’s condition was 

determined by the percentage change in the hypoxemia index and assigned three 

fuzzy sets: DETERIORATING, STATIC and IMPROVING. In this case, both the 

PaO2 and the percentage change in the hypoxemia index values are normalised to the 

range [0 1].  

 

In the consequent layer, there are five fuzzy sets describing the actions that need to be 

performed on the ventilator settings, such as: SLIGHT INCREASE (SI), BIG 

INCREASE (BI), MAINTAIN (M), SLIGHT DECREASE (SD) AND BIG 

DECREASE (BD). The output member with the maximum membership value was 

then chosen as the actual output.  

  

7.3.2 Parameters for fuzzy input membership functions 

 

In this work, the Gaussian membership function was chosen to represent the fuzzy 

sets for MAD, MMD, MPD and MEEV. This membership function is specified by 

two parameters {m,σ}, where m and σ represent the centre and width of the Gaussian 

membership function respectively and has the following form: 

 

          
 

 
 
   

 
 
 

  
(7.1) 

 

Upon discussion with the expert clinician, the centre of Gaussian membership 

function which represents the fuzzy set VERY LOW, LOW, HIGH and VERY HIGH 
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were determined from the ICU patients’ data gathered during the clinical trials of 

aEIT system. The centre for the MODERATE fuzzy set however, was taken from 

another study of five patients who were involved in single lung ventilation using the 

aEIT system (Tunney, 2008). These patients had undergone oesophagogastrectomy 

for oesophageal cancer, were current smokers but with no chronic lung disease. The 

mean values for MAD, MMD, MPD and MEEV were calculated from the patients 

and were used as the moderate value for all the variables respectively. Details on 

patients’ MEEV, MAD, MMD and MPD values can be found in Chapter 5 (Section 

5.3.4). In this work, the width of the Gaussian membership function for all these fuzzy 

sets was determined automatically by the MATLAB fuzzy logic toolbox. Figure 7.2 

shows an example of the normalised membership functions for MAD with Gaussian 

membership functions. 

 

 

            

            Figure 7.2: Fuzzy membership functions for the normalised MAD. 
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The fuzzy membership functions chosen to represent the fuzzy sets for PaO2 were 

based on the work conducted by Kwok (2003), where parameters of the membership 

functions were derived using an observational approach via a simulation study. 

Percentage changes in hypoxemia index were also studied and the parameters of the 

membership functions for this variable were derived based on the statistical 

distribution of the changes during the simulation studies conducted. For the PaO2 

variable, Sigmoidal membership functions were used for LOW and HIGH, whereas 

Bell-shaped membership functions were used for fuzzy sets NORMAL. As for the 

percentage changes in hypoxemia index (patient condition), Gaussion membership 

function was used for STATIC condition, while Sigmoidal membership functions 

were used for DETERIORATING and IMPROVING (Figure 7.3 and Figure 7.4). 

 

 

              

Figure 7.3: Fuzzy membership functions for the normalised PaO2. 
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Figure 7.4: Fuzzy membership functions of patient condition described by the 

normalised percentage change in the hypoxemia index. 

 

7.3.3 FiO2/PEEP fuzzy rule-base derivation 

 

For the FiO2/PEEP sub-unit, the rule bases were provided by the expert clinician 

based on his experience in changing the ventilator settings. At present, this expert 

clinician makes decisions on patient’s ventilation therapy based on blood gasses and 

airway pressure-volume graphical waveforms including often the lung condition when 

further diagnosis of the lung is needed, CT scan is used. For this study, the expert 

clinician was asked to incorporate the information on the lung condition extracted 

from the aEIT system (MEEV and regional lung densities) and the information of 

blood gasses (PaO2 and rate of change of the hypoxemia index) to make decisions on 

changing the ventilator settings for the two main variables presented in this sub-unit 

(FiO2 and PEEP). The clinician was given five settings to choose from: i) SMALL 
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DECREASE (SD), ii) BIG DECREASE (BD), iii) MAINTAIN (M), iv) SMALL 

INCREASE (SI) and v) BIG INCREASE (BI). Following discussions with this expert 

clinician, the membership functions for all the settings were selected based on each 

setting range, as shown in Figure 7.5. The positive and negative signs represent the 

direction of the settings change (i.e. increase or decrease) and the values represent the 

quantitative measures of how much such settings should change by. In this case, it has 

been agreed that the settings change advice for FiO2 and PEEP, should it include 

ranges of -0.6 to 0.6 and -6 to 6 respectively. 

 

 

Figure 7.5: Membership functions for advice on changes in FiO2 and PEEP settings. 

 

The clinician experience and know-how were then exploited to generate the 

consequence of FiO2 and PEEP rules based on the possible combinations of the 

inputs. Table 7.1 and Table 7.2 show the fuzzy rule-bases provided by the expert 

clinician for changing of FiO2 and PEEP respectively, encompassing possible AND 

combinations of the given input fuzzy values. 
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Table 7.1: The fuzzy rule-bases for the settings changes advice for FiO2 (SI: Small 

Increase, BI: Big Increase, M: Maintain, SD: Small Decrease, BD: Big 

Decrease).  

 

 

 



132 

 

Table 7.2: The fuzzy rule-bases for the advice on settings changes for PEEP (SI: 

Small Increase, BI: Big Increase, M: Maintain, SD: Small Decrease, BD: 

Big Decrease). 
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7.3.3.1 Control of FiO2/PEEP 

 

To achieve the ideal level of PEEP which maximises gas exchange and minimises 

over-distension remains a challenge. In the work presented by Wang (2008), the 

proposed advisory system did not provide settings for PEEP because of the unproven 

SOPAVent model prediction performance on PEEP.  In this current work, the rule-

base for the PEEP/FiO2 sub-unit is developed with the aim of maintaining PaO2 

within the acceptable normal range and also of minimising lung over-distension by 

incorporating the information about the regional lung function provided by the aEIT 

system and the information of oxygen level in the blood provided by the blood gasses 

variables.  

 

To further analyse this control feature, the surface of the fuzzy rule-base for setting 

PEEP at various PaO2 levels, patient conditions and lung conditions was generated as 

shown in Figure 7.6. In this case, the PaO2 and patient condition (percentage change 

in hypoxemia index) are at normalised values, while the lung conditions are 

represented by the index ranges from (0 to 1). It can be seen that the action of big 

increase in the PEEP setting will be when the PaO2 is at the low level (0.2 to 0.4), the 

lung is in a collapse condition (0 to 0.1) and the patient condition is deteriorating (-0.2 

to -1). When the lung is in a slightly overinflated region (0.6 to 0.9) and the patient 

condition is at deteriorating, the advisor will recommend to increase the PEEP slightly 

so that it will not further inflate the lung. The advice for the big decrease of the PEEP 

will take place whenever there is an overinflated lung (0.9 to 1), especially when 

PaO2 is at the high level (0.6 to 1) and the patient is improving (0.4 to 1). The above 

mentioned actions of the advisor shows that it was designed to be sensitive to the 

patient’s lung condition, especially when the level of oxygen in the blood is certain to 

be sufficient to the patient and the patient is improving.  
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(a) (b) 

 

(c) 

 

Figure 7.6: The output of the PEEP rule-base: (a) at various PaO2 levels and lung 

conditions, (b) at different patient conditions and PaO2 levels, and (c) at 

different lung conditions and patient conditions. 
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7.4 Development of Pinsp/RR sub-unit 

 

7.4.1 Fuzzy partitions for the inputs and outputs 

 

The main objectives of this sub-unit are to maintain the patient PaCO2 within the 

acceptable normal range and avoid excessive tidal volume (VT). Therefore, PaCO2 

and VT are the two variables that need to be included as the inputs to this sub-unit. 

Apart from these two variables, information about the lung condition similar to the 

one described in the FiO2/PEEP sub-unit is also included. The structure of the fuzzy 

rule-bases in the Pinsp/RR sub-unit is shown in Figure 7.7. The nine (9) primary input 

variables to this subunit include the PaCO2, tidal volume (VT), MEEV, LLAD, 

RLAD, LLMD, RLMD, LLPD and RLPD.  

 

The same fuzzy sets were used to represent IMRD, MEEV and lung condition. As for 

the PaCO2 and VT variables, three (3) fuzzy sets were applied respectively: LOW, 

NORMAL and HIGH. The ranges of LOW, NORMAL and HIGH for both PaCO2 

and VT variables were determined based on the clinician’s expert knowledge and 

shown in Table 7.3. Both PaCO2 and VT were normalised in the range [0 1]. For the 

consequent layer, five (5) sets were assigned which were also similar to the one used 

in FiO2/PEEP subunit: SLIGHT INCREASE (SI), BIG INCREASE (BI), 

MAINTAIN (M), SLIGHT DECREASE (SD) and BIG DECREASE (BD). These 

fuzzy sets correspond to the actions needed to be taken with respect to the Pinsp and 

RR settings. The output member with the maximum membership value was then 

chosen as the final output.  
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Figure 7.7: Structure of the fuzzy rule-base for Pinsp/RR subunit. 

 

 

Table 7.3: Ranges of fuzzy set LOW, NORMAL and HIGH for PaCO2 and VT 

variables. 

 
RANGES 

PaCO2 (kPa) VT (ml/kg) 

LOW <4 <7 

NORMAL [4 8] [7 9] 

HIGH >8 >9 
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7.4.2 Parameters for the fuzzy input membership 

functions 

 

For Pinsp/RR sub-unit, the inputs which differ from the FiO2/PEEP sub-unit are the 

PaCO2 and VT. For these two variables, the fuzzy membership functions were 

derived from the knowledge given by the expert clinician. Sigmoidal membership 

functions were used for LOW and HIGH, whereas Gaussion membership functions 

was used for fuzzy set NORMAL as shown in Figures 7.8 and Figure 7.9. 

 

 

 

            Figure 7.8: Fuzzy membership functions for the normalised PaCO2. 
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Figure 7.9: Fuzzy membership functions for the normalised tidal volume. 

 

7.4.3 Pinsp/RR fuzzy rule-base derivation 

 

The expert clinician’s knowledge and experience in changing the Pinsp and RR are 

also exploited here to derive the fuzzy rule-base for this sub-unit. For this study, the 

expert clinician needs to consider information on the lung condition extracted from 

the aEIT system (MEEV and regional lung densities), the information of blood gas 

(PaCO2) and the tidal volume (VT) to make decisions on changing the Pinsp and RR. 

The expert clinician was given five settings to choose from: i) SMALL DECREASE 

(SD), ii) BIG DECREASE (BD), iii) MAINTAIN (M), iv) SMALL INCREASE (SI) 

and v) BIG INCREASE (BI). Following discussions with the clinician, membership 

functions for all the settings are drawn based on each setting range decided as shown 

in Figure 7.10. 
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Figure 7.10: Membership functions for advice on changes in Pinsp and RR settings. 

 

 

Table 7.4 and Table 7.5 show the fuzzy rule-bases provided by the expert clinician 

for changing of Pinsp and RR respectively, encompassing possible AND 

combinations of the given input fuzzy values. 
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Table 7.4: The fuzzy rule-bases for advice on the settings changes for Pinsp (SI: 

Small Increase, BI: Big Increase, M: Maintain, SD: Small Decrease, BD: 

Big Decrease).  

.  
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Table 7.5: The fuzzy rule-base for the advice on settings changes for RR (SI: Small 

Increase, BI: Big Increase, M: Maintain, SD: Small Decrease, BD: Big 

Decrease).  
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7.4.3.1 Control of Pinsp/RR 

 

In the Pinsp/RR sub-unit, the information of ‘Lung Condition’ seems to be the check 

and balance in arriving at the decision of changing the Pinsp and RR settings. The 

objectives of this sub-unit are to maintain the patient PaCO2 within the acceptable 

normal range and avoiding excessive VT. To further analyse this control feature, 

examples from the 3-D-surface of the fuzzy-rule base for control of Pinsp were 

generated.  Figure 7.11 shows the outputs of the advice for setting Pinsp at various 

PaCO2 levels, VT and lung conditions. In this case, PaCO2 and VT are at normalised 

values, while lung conditions are represented by the index ranges from (0 to 1).  . 

 

It can be seen that when VT is at high level (>0.8), PaCO2 is between low and normal 

[0.2 0.65] and the lung condition is between slightly overinflated and overinflated 

[>0.6], the clinician will either decrease the Pinsp setting slightly or big to ensure that 

the VT is not too large. This is crucial because if the patient is experiencing an 

overinflated lung, a large VT may cause the patient’s lung to have volutrauma 

(Neligan, 2002). Whereas the action of slightly or big increase of the Pinsp setting 

mostly takes place when the PaCO2 is at high level [>0.8], the lung is at a collapsed 

or at a slightly collapsed condition [<0.4] and VT is at a low level [<0.5]. This action 

avoids an excessive amount of CO2 in the patient’s blood.  
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(a) (b) 

 

(c) 

 

Figure 7.11: The outputs of the Pinsp rule-base: (a) at various PaCO2 levels and lung 

conditions, (b) at different PaCO2 levels and VT levels (c) at different 

VT levels and lung conditions. 
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7.5 Closed-loop validation of the decision support 

system via simulations of the hybrid aEIT-

SOPAVent models 

 

The aim of this closed-loop validation is to evaluate the EIT-based decision support 

system’s ability to deal with different patient’s scenarios that may occur in the actual 

clinical environment and to investigate whether the system can produce consistent 

performances on achieving the optimal compromise between the various competing 

goals. In this validation, the previously developed extended version of SOPAVent 

model (Goode, 2001; Wang, 2007) is employed to represent the simulated patient and 

predicts the values of blood gasses. Values for aEIT system variables (MEEV, MAD, 

MMD and MPD) were predicted using various ANFIS models which developed 

beforehand (see Chapter 6) to elicit the relationships between these variables with the 

ventilator parameters (PIP, PEEP, RR) and the blood gases parameter (PaO2/FiO2). 

The structure of the system’s simulation is shown in Figure 7.12. All simulations run 

under the MATLAB environment. 

 
 

 

Figure 7.12: The general structure of the IEDSS. 
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7.5.1 Overview of SOPAVent model 

 

SOPAVent (Simulation of Patients under Artificial Ventilation) was developed 

initially to provide simulated closed-loop validation of a prototype expert system 

(Goode, 2001). The model represents the exchange of O2 and CO2 in the lungs and 

tissues together with their transport through the circulatory system based on 

respiratory physiology and mass balance equations. The model uses a compartmental 

structure (Figure 7.13), where the circulatory system is represented by lumped 

arterial, tissue, venous and pulmonary compartments. The lung is sub-divided into 

three compartments:  

 

a) An ideal alveolus compartment, where all gas exchanges take place with a 

perfusion-diffusion ratio of unity. 

b) A dead space compartment representing lung areas that are ventilated but not 

perfused.   

c) A shunt compartment that is a fraction of cardiac output, representing both 

anatomical shunts and lung areas that are perfused but not ventilated.  

(The details of the model equations are described in the Appendix A of this thesis.) 

 

SOPAVent is designed to provide steady-state blood gases predictions for totally 

ventilated and relatively stable patients. The inputs of the model are the ventilator 

settings (FiO2, PEEP, PIP, RR, Tinsp) and the outputs are the arterial pressures PaO2 

and PaCO2. The dynamic relationship between the inputs and the outputs depends on 

the model parameters and constants. The model parameters are patient-specific and 

the model can therefore be matched to each patient provided the parameters are 

known. These parameters include patient’s age, gender, weight and height, body 

temperature, haemoglobin level (Hb), arterial pH, bicarbonate concentration, 

respiratory quotient, tidal volume, cardiac output (CO), oxygen consumption (VO2), 

carbon dioxide production (VCO2), shunt and relative dead space (Kd). 
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Figure 7.13: Schematic diagram of the SOPAVent model [Goode, 2001]. 

 

In the early development stages of SOPAVent, some of the parameters were readily 

available as part of routine clinical measurements and some parameters were not, 

namely the shunt, dead space, VCO2, VO2 and CO, hence leading to problems during 

model validation. Apart from this, invasive measurements were used to obtain some 

of the parameters such as VCO2, VO2 and CO, which had led to uncertain and 

inaccurate predictions of the blood gases (Goode, 2001). Therefore, in 2003 this 

original version of SOPAVent had been improved and these invasive parameters had 

been derived non-invasively using a mean population method and the shunt and dead 

space were derived by tuning the model. However, the tuning was found to be time-

consuming and sometimes no results would be established due to the non-

convergence of the optimisation algorithm (Kwok, 2003). Recently, significant 
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improvements have been made on the SOPAVent in order to increase the performance 

and use it as the core of an adaptive decision support system for mechanical 

ventilation management (Wang, 2008). New estimation methods for the following 

model parameters:  relative dead space (Kd), Tidal Volume (VT), VCO2 as well as 

shunt have been made available within the model hence rendered the new SOPAVent 

a totally non-invasive model. This new version of SOPAVent is also able to represent 

the patient state accurately and will as a result lead to a good blood gasses prediction 

by continuously updating the five key model parameters (Shunt, Kd, VCO2, VO2 and 

airway resistance (Raw)) based on the continuous measurements from ICU. By 

defining different parameter data changing scenarios, the model can be exploited as a 

patient simulator which can be used for testing any newly designed decision support 

system (Wang et al., 2006; Wang et al., 2007). 

  

7.5.2 Validation method 

 

In the actual clinical environment, the patient’s clinical condition may deteriorate or 

improve over time. Therefore, in this assessment, the performance of the intelligent 

EIT-based decision support system (IEDSS) was evaluated within different clinical 

scenarios under two (2) simulation conditions: 

i) An acute increase in shunt and then returns to the baseline level after 

approximately 2 h. 

ii) An acute increase in Kd and then returns to the baseline level after 

approximately 2 h. 

In this simulation, the IEDSS generates ventilator settings advice for FiO2, PEEP, 

Pinsp and RR every thirty-minute (30 min). The simulated patient parameters were 

changed according to the designed scenario and at every thirty-minute (30 min) 

interval; the simulated patient data (PaO2, PaCO2, VT, ventilator settings) were input 

to the system to update the patient model and the EIT models. The derived ventilator 
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settings were then input to the simulated patient to simulate the patient states in the 

next thirty-minute (30 min). Each simulation lasted about four and a half (4.5) hours 

and started with a thirty-minute (30 min) period of stabilisation where the simulated 

patient’s ventilator settings were maintained at the initial values.  

 

A total of ten (10) ICU patient data sets were used to reproduce the initial patient state 

in the simulated scenario for successive validation of the IEDSS. The demographic 

information of the ten patients is summarised in Table 7.6. 

 

Table 7.6: The demographic information of the ten ICU patients. 

 

Patient Gender Age Weight              

(kg) 

Height        

(cm) 

1 M 66 68 175 

2 M 68 57 173 

3 M 40 71 164 

4 F 28 68 176 

5 M 66 68 175 

6 M 47 66 165 

7 M 42 65 175 

8 M 53 66 172 

9 F 66 56 165 

10 F 66 60 165 
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7.5.3 Validation results and discussions 

 

One patient’s results are shown in Figure 7.14 and Figure 7.15 (further patients’ 

closed-loop simulation results are included in the Appendix B of this thesis). These 

results were obtained from a 66 year old female patient with a weight of 60 kg and a 

height of 165 cm. Figure 7.14 shows the results of the patient’s state and the ventilator 

settings which were changed when the patient shunt is increased from 15% to 21% in 

a thirty (30)-minute period and returned to the baseline after approximately two (2) 

hours. The increase of shunt led to a reduction in PaO2 from 12kPa to 8kPa. 

Thereafter, the IEDSS responded correctly by increasing FiO2 from 0.5 to 0.63 and 

PEEP was increased from 7 cmH2O to 9 cmH2O. This, in turn, led to an increased 

PaO2 back to 11kPa which is within the normal range (10kPa to 14kPa). Increasing 

the shunt also triggered a slight increased in PaCO2 from 6kPa to 7kPa. During this 

condition, the Pinsp/RR sub-unit in the IEDSS responded by increasing the Pinsp 

from 14cmH2O to 15cmH2O and RR from 20breath/min to 22breath/min and as the 

result, PaCO2 was decreased to 6.2kPa after 30-minute.  

 

As the shunt was reduced from 21% to 15% in the 30-minute period one and a half 

hour later, the patient PaO2 was increased from 11kPa to 23kPa and the PaCO2 was 

decreased from 6kPa to 5kPa. In detecting this change, the IEDSS responded correctly 

by reducing FiO2 from 0.63 to 0.47 and PEEP from 9cmH2O to 5cmH2O in order to 

restore PaO2 back to its normal range. To increase the PaCO2, the IEDSS has also 

reduced the Pinsp from 15cmH2O to 13cmH2O and RR from 22breath/min to 

19breath/min.   

 

 

 

 



150 

 

 

Figure 7.14: Simulation of an acute shunt changes. 

 

Figure 7.15 shows the results corresponding to simulations of the patient with an 

acute change in the relative dead-space (Kd). In this simulation, Kd was increased 

from 0.32 to 0.47 in a thirty-minute (30 min) period and returned to the baseline after 

approximately two (2) hours. The increase in Kd has led to a rise in PaCO2 from 

6.05kPa to 7.36kPa. Due to this increase, the IEDSS responded by increasing Pinsp 

from 14cmH2O to 16cmH2O and RR from 20breath/min to 22breath/min. 

Approximately one and a half hour later (1.5h), the Kd was reduced from 0.47 back to 

the baseline in the 30-minute period. The patient’s PaCO2 was seen to drop from 

6.79kPa to 5.45kPa, which was still within the normal range (4kPa to 8kPa). The 

IEDSS responded by reducing both Pinsp and RR gradually. The changes of Pinsp 

and RR made by the IEDSS were enough to keep the PaCO2 value within the normal 

range. 



151 

 

 

Figure 7.15: Simulation of an acute Kd changes. 

 

Apart from the qualitative study to evaluate the system’s performance, a quantitative 

approach has also been implemented to assess the ability of the IEDSS to keep the 

blood gasses within the acceptable limit. The percentage time of the simulated 

patients’ PaO2, PaCO2 and VT that appeared to be out of the normal range during the 

acute change of shunt and Kd was chosen as the performance index. In this analysis, 

the first thirty (30) minutes of the simulation results are excluded because they were 

considered to be within patient stabilisation period. The ten (10) simulated patient 

results are summarises in Table 7.7 and Table 7.8. 
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Table 7.7: Performance index for the ten simulated patients with acute changes in the 

shunt. 

  

Patient 
% Time out of range  

PaO2 PaCO2 VT 

1 14.40 0 0 

2 38.52 0 0 

3 25.19 0 0 

4 28.52 0 0 

5 14.07 0 0 

6 25.93 0 0 

7 12.96 0 0 

8 13.33 0 11.11 

9 26.30 0 0 

10 13.33 0 0 

 

 

Table 7.8: Performance index for the ten simulated patients with acute changes in the 

Kd. 

 

Patient 
% Time out of range  

PaO2 PaCO2 VT 

1 0 0 0 

2 0 14.4 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 19.3 0 

7 0 0 0 

8 0 2.96 11.11 

9 0 0 0 

10 0 0 0 
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It can be seen from the tables that the IEDSS is able to generate satisfactory ventilator 

settings advice to manage the patients with different clinical scenarios with the 

average percentage of PaO2 and PaCO2 being out of range being only about 21% and 

2% respectively. According to the expert clinician, the most important aspect to 

consider in these simulations is the final value of PaO2, PaCO2 and VT (at the end of 

each simulation). These values need to be within their acceptable normal range at the 

end of each simulation as one of the performance indexes to show that the IEDSS is 

able to keep the blood gasses and the VT within the acceptable limit. Table 7.9 shows 

the ranges for normal PaO2, PaCO2 and VT and Table 7.10 and Table 7.11 show the 

values for PaO2, PaCO2 and VT at the end of each simulation in all ten (10) patients. 

 

Table 7.9: Ranges for NORMAL PaO2, PaCO2 and VT variables. 

 

 
Ranges 

PaO2 (kPa) PaCO2 (kPa) VT (ml/kg) 

NORMAL [10 14] [4 8] [7 9] 

 

 

Table 7.10: Values of PaO2, PaCO2 and VT at the end of simulation of an acute 

shunt change. 

 

Patient PaO2 (kPa) PaCO2 (kPa) VT (ml/kg) 

1 10.5 5.91 8.12 

2 10.0 7.23 8.56 

3 10.7 7.81 9.00 

4 10.0 5.85 7.94 

5 11.0 5.92 8.04 

6 10.5 6.12 9.00 

7 12.1 6.15 8.62 

8 13.6 6.11 8.27 

9 10.0 6.33 7.95 

10 10.0 5.97 7.52 

Average 9.84 6.34 8.30 
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Table 7.11: Values of PaO2, PaCO2 and VT at the end of simulation of an acute Kd 

change. 

 

Patient PaO2 (kPa) PaCO2 (kPa) VT (ml/kg) 

1 11.7 5.64 8.13 

2 10.0 7.66 9.0 

3 11.0 6.90 9.0 

4 11.9 6.56 7.90 

5 11.1 5.75 8.12 

6 13.5 7.43 7.26 

7 12.0 5.49 8.54 

8 12.5 5.81 8.27 

9 11.2 6.50 8.61 

10 11.0 5.59 7.70 

Average 10.3 6.33 8.25 

 

From these tables it can be seen that all PaO2, PaCO2 and VT values are within the 

normal range at the end of both simulations, which means that not only the IEDSS can 

generate good advice for the ventilator settings but it is also able to manage the 

patients to be within the desirable conditions. 

 

Another important feature of this IEDSS that makes it different with other decision 

support systems hitherto reported in the literature is its ability to provide information 

about the regional lung functions. MEEV is one of the aEIT extracted parameters that 

is commonly affected by changes of PEEP (Michelete et al., 2005). Figure 7.16 shows 

the results from one of the simulated patients comparing the MEEV prediction which 

are based on the previous developed intelligent model-based decision support system 

(Wang, 2008) advice on the ventilator settings and the current IEDSS during 

simulation of an acute change in shunt.  
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 (a) 

 

         (b) 

Figure 7.16: MEEV changes during an acute change of shunt (a) MEEV from the 

intelligent model-based decision support system (Wang, 2008) (b) 

MEEV from the IEDSS; The red stripes and dotted lines represent the 

overinflated region and the green dotted lines represent the normal 

region. The region between the green dotted and the red dotted lines 

represent the slightly overinflated region. 

 

The ranges highlighted in the Caption of Figure 7.16 were first obtained from the 

study of EIT ventilated patients in the ICU. According to the expert clinician, these 

ranges are believed to be the common ranges found from the EIT ventilated patients. 
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The normal range values for this MEEV however were obtained from patients who 

were involved in a single lung ventilation using the aEIT system as described in detail 

in Chapter 5. Table 7.12 shows the ranges for MEEV represented by five regions: 

collapsed, slightly collapsed, normal, slightly overinflated and overinflated. 

  

 Table 7.12: MEEV ranges. 

Regions MEEV ranges (litres) 

Collapsed ≤1.75 

Slightly collapsed 1.75<MEEV<3.25 

Normal 3.25≤MEEV<4.75 

Slightly overinflated 4.75≤MEEV<6.25 

Overinflated ≥6.25 

 

 

In the clinical scenario, as shunt decreases, MEEV will increase resulting in an 

improvement in patient’s oxygenation (Michelete et al., 2005; El-Khatib and 

Jamaleddine, 2004). However, a very high MEEV is unfavourable in a real clinical 

situation because the lung will be overinflated and hence will increase the risks of 

lung injuries. As one can see from Figure 7.16 (a) and (b), MEEV tends to increase at 

the point when the shunt is decreased but with a different magnitude. Figure 7.16 (a) 

shows a higher MEEV value as compared to Figure 7.16 (b). To further support this 

result, a quantitative analysis has been conducted with the percentage time in the 

overinflated region being chosen as the performance index.  

 

Table 7.13 shows the results of this analysis for the ten (10) simulated patients. It can 

be seen that with IEDSS, MEEV, which represents the lung of the patient, includes a 

profile that has a minimal time in the overinflated region with the average percentage 

time of 6.67%. However, the performance of the model-based advisory system that 
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does not include the knowledge of regional lung function in the decision making 

process, shows a higher percentage time of MEEV in the overinflated region, which is 

approximately 26%. 

 

Table 7.13: The performance index for the ten simulated patients derived from the 

model-based advisory system and IEDSS during an acute change of the 

shunt. 

 

Patient 
% Time that lungs in the overinflated region 

IEDSS Model-based 

1 0 11.11 

2 0 33.33 

3 11.11 33.33 

4 11.11 33.33 

5 0 0 

6 22.22 33.33 

7 11.11 55.55 

8 0 33.33 

9 11.11 11.11 

10 0 11.11 

Average 6.67 25.55 

 

(Further patients’ closed-loop simulation results are included in the Appendix B of 

this thesis.) 
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7.6 Summary 

  

In this Chapter, a clinically significant intelligent EIT-based decision support system 

(IEDSS) which focuses the information of blood gases and regional lung functions 

derived from a respiratory physiology model of SOPAVent and ANFIS-based data-

driven models has been designed to provide advice for ventilator settings, i.e. FiO2, 

PEEP, Pinsp and RR. The IEDSS incorporates expert knowledge with a fuzzy 

inference system in the analysis of physiological parameters and therapy 

determination. Based on the designed virtual patients, the IEDSS is validated via 

simulations of ramped increases and decreases in shunt and Kd.  In all simulated 

scenarios, IEDSS has shown the ability to generate good advice for the ventilator 

settings and also to keep the patients’ blood gases and other controlled parameters 

within the desired limits. Another important feature that makes IEDSS distinct from 

other current decision support systems is its ability to provide information about the 

regional lung functions. With IEDSS, MEEV, which represents the lung of the 

patient, leads to a profile that includes a minimal time in the overinflated region as 

compared to the previously developed model-based advisory system (Wang, 2008). 

All in all, IEDSS has shown that it can adapt to the patient state changes and respond 

correctly to achieve not only an overall optimal ventilatory therapy but to also 

minimise the risks of lung injuries in ICU patients. 
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CHAPTER 8 

 

 

8 CONCLUSIONS AND FUTURE WORK 

 

In the previous Chapters, research work on calibration and improvement of the aEIT 

system as well as development of the aEIT associated models and intelligent EIT-

based decision support system (IEDSS) for critically-ill ventilated patients in ICU 

were presented. The hybrid aEIT-SOPAVent model had also been introduced to 

validate the IEDSS performance. In this Chapter, the achievements of this project will 

be reviewed first, which will be followed by discussions and recommendations of 

future work and directions for the research. Figure 8.1 depicts the overall summary of 

work done throughout the completion of this project. 

 

8.1 Project achievements 

 

8.1.1 Comparative study on healthy volunteers leads to 

calibration and improvement of aEIT system 

 

EIT is a considerably new monitoring technique with the potential to becoming a 

valuable bedside tool for the assessment of lung regional ventilation distribution and 

the continuous guidance towards appropriate settings of mechanical ventilation for 

critical-ill patients in the ICU.  Absolute measurements of lung resistivity and the 

resulting calculations of lung volumes are new developments in EIT research as most 

of the previous work has relied upon the assessment of impedance change relative to a 

baseline measurement.  
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Figure 8.1: The overall structure of the research work. 
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The Sheffield Mk 3.5 absolute EIT system (aEIT) provides the potential to 

continuously monitor ventilation in or close to real-time on medium and long-term 

bases. The current system which uses 8 electrodes is easy to setup and is therefore an 

ideal candidate to gain acceptance in a clinical environment. Prior to its utilisation 

within the decision support system, a series of calibrations and improvements has 

been carried-out to enhance the accuracy and consistency of the estimated absolute 

lung volume and resistivity. In this thesis, a study involving, spirometry, body 

plethysmography (body box) measurements and MRI scans, was conducted on a 

population of healthy subjects to assess and redefine new zones of interest for the 

lungs, taking into account the individual body size, thoracic shape and gender. 

 

The previous aEIT study on healthy volunteers included some limitations in terms of 

the small number of volunteers (only 8 males) involved and the only one position for 

the patients was considered (sitting) (Panoutsos et al., 2007). Therefore, a further 

study on healthy volunteers has been conducted in this thesis by considering more 

subjects (8 males and 4 females) with two different positions (sitting and supine). 

Based on the inputs from the expert clinician, these positions were considered because 

they are deemed to represent the most common positions adopted by patients in the 

ICUs. Results from the comparative study have shown that the previous version of the 

aEIT software (version 1.047) has the ability to measure lung volume of the healthy 

volunteers but with a range of errors especially when the subjects were in the supine 

position. In most of the measured lung volumes, aEIT tended to produce over-

estimated values, which in this case were hypothesised as being triggered by the use 

of one fixed region of interest in the previous version of aEIT software (version 

1.047) to estimate the absolute lung resistivity and volume. It is worth emphasising 

that this study had led to the new findings which demonstrate that the previous aEIT 

software (version 1.047) still needs to be further improved and validated in order for it 

to be used as a routine clinical tool.  
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The multiple region of interests (ROIs) were then developed based on the study of 

MRI scans of healthy subjects. The algorithm to choose a suitable ROI to be used in 

the calculations of absolute lung resistivity and volume was introduced together with 

the new sub-ROIs for estimation of regional lung ventilations. Indeed, the improved 

aEIT software (version 1.049) had shown a better accuracy in both spirometry and 

body box studies as compared to the old version of aEIT software. However, there is 

still room for improvements of the aEIT software, which will lead to new 

opportunities for research in the area of validating and improving the accuracy and 

consistency of the aEIT estimation of lung volume and as a result making the system 

suitable for clinical use.   

 

8.1.2 aEIT clinical trials on critically-ill ventilated patients 

in the ICU  

 

Another significant study performed in this thesis is the study of aEIT clinical trials 

on critically-ill ventilated patients in the ICU. From the current literature it transpired 

that the issue of PEEP settings remains a matter of great debate and there is still active 

research focusing on determining the ‘ideal’ PEEP settings for treatment of critically-

ill ventilated patients. In the clinical trials from this study, the improved aEIT system 

(software version 1.049) was used to reflect the PEEP settings-induced changes on the 

aEIT quantitative parameters identified as being the mean end-expiratory lung volume 

(MEEV), mean tidal volume (MVT), mean arterior density (MAD), mean middle 

density (MMD) and mean posterior density (MPD). Relationship between aEIT 

quantitative parameters and ratio of arterial partial pressure of oxygen to fraction of 

inspired oxygen (PaO2/FiO2) were also studied. In this study, aEIT had shown the 

ability to quantitatively assess different conditions of the lung during mechanical 

ventilation in critically-ill patients induced by changes in PEEP settings. This is 

opposed to functional EIT (fEIT) that relies upon the assessment of impedance change 

relative to a baseline measurement and not the absolute value. Increasing PEEP has 

led to improved regional lung ventilation which was reflected in the values of aEIT 
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quantitative parameters, i.e. MEEV, MAD, MMD and MPD. The PaO2/FiO2 ratio 

however was found to provide only a global information about the patients’ 

ventilation, while the regional densities given by MAD, MMD and MPD did have the 

potential to provide information about the regional lung ventilation distribution. 

Comparisons between tidal volume (VT) provided by the ventilator and VT calculated 

by the improved aEIT system revealed that the improved system is able to provide a 

good estimation of VT readings in ventilated patients. All in all, this study had shown 

that the improved aEIT system is capable of providing not only information on the 

overall lung volume but also on the regional lung ventilation distribution and when 

combined with PaO2/FiO2 ratio, it is foreseen that such information should be able to 

lead to a better understanding of the phenomena surrounding ventilated patients in 

order to assist clinicians in decision-making and consequently guide ventilator 

therapy. 

 

8.1.3 Quantitative models for aEIT 

 

The idea of modelling the aEIT quantitative parameters (i.e MEEV, MAD, MMD and 

MPD) from ventilator and blood gas parameters was introduced in this thesis with the 

intention to successfully replicate the behaviour of ventilated patients with EIT. This 

work is believed to be the first data-driven model developed to describe the behaviour 

of ventilator settings-induced changes in aEIT quantitative parameters for critically-ill 

ventilated patients. Despite using a limited amount of data to elicit such models, they 

were nevertheless able to show a very good agreement between the real data and the 

model predictions. In this work, PEEP, PIP and PaO2/FiO2 ratio were used as the 

inputs for MEEV model, while PEEP, PaO2/FiO2 ratio and RR were chosen as the 

inputs for MAD, MMD and MPD models. All the inputs were chosen based on 

discussions with the expert clinician and the correlation analyses performed.  
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8.1.4 Development and assessment of the intelligent EIT-

based decision support system (IEDSS) 

 

The developed ANFIS-based aEIT quantitative models in combination with a totally 

non-invasive and continuously updated blood gas model of ventilated patients 

(SOPAVent), has provided information on regional lung functions and blood gases 

respectively to form the basis for both design and evaluation of the intelligent EIT-

based decision support system (IEDSS) for critically-ill ventilated patients in ICU. 

The main objectives of this decision support system were to maximise gas exchange 

and minimise over-distension of the lung by optimising the ventilator settings based 

on the patients’ blood gases information, measured or set ventilator parameters and 

information on lung conditions provided by aEIT. In realising this, two sub-units were 

considered: i) PEEP/FiO2 and ii) Pinsp/RR, which affect patients’ oxygenation and 

PaCO2 levels respectively.  The IEDSS had incorporates the expert knowledge 

(clinician) with a fuzzy inference system in the analysis of physiological parameters 

and therapy determination. Based on the designed virtual patients and simulated 

scenarios, IEDSS had shown the ability to generate good advice for the ventilator 

settings and keeping the patients’ blood gases and other controlled parameters within 

the desired clinical limits. From the results, the developed IEDSS had achieved not 

only an overall optimal ventilatory therapy but has the potential to minimise the risks 

of lung injuries in the patient. 

 

8.2 Recommendations for future work 

 

Indeed, the work involved in this project includes some limitations that need to be 

addressed and improve in the near future. In the study of healthy volunteers, the 

population number studied has to be increased, especially for female subjects, in order 

for the aEIT system to cope better with a wider range of subject sizes and shapes. 

Similarly for the study on the ICU ventilated patients, where more data are needed to 

verify the findings that have been outlined previously in this research. It would also 
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be beneficial to include more patients that have the CT scan images in the study so 

that a comparison between the aEIT recorded data (i.e. the regional lung densities) 

and the CT scan images can be carried-out to determine how well the aEIT detects the 

regional lung collapse or over distension. More ventilated patients’ data are also 

required in order to increase the range of the training and testing data and hence 

further validate the ANFIS-based models elicited during the course of this project.  

 

There also exist some issues about the time duration for EIT data recordings during 

the clinical trials on the critically-ill ventilated patients. The durations of EIT data 

recordings were not long enough for it to be able to display more changes in absolute 

lung volume and densities as the result of changing the ventilator settings, especially 

PEEP. In this case, it is foreseen that a better methods in organising the time for EIT 

recordings need to be established. It would also be beneficial to prolong the EIT data 

recordings, especially for patients with a long stay in ICU as more observations can 

be invaluable in supporting the studies. The use of more advance EIT hardware such 

as an electrode belt or wireless electrodes also need to be considered to help increase 

the patients’ comfort and better electrode positioning during the clinical trials.  

 

The MEEV acquired from the aEIT system for ventilated patients in the ICU have not 

yet been verified with any established method due to some ethical issues. Therefore, 

in future it is recommended that established methods such as nitrogen wash-out 

(Wanger et al., 2005) can be included in patients’ study to measure the lung volume 

(in this case FRC values) and compare them with the values of the MEEV provided 

by the aEIT system.  

 

The current aEIT system’s software can also be further improved, particularly in the 

area of lung volume estimation accuracy. An example of such attempt has been 

initiated by the Sheffield Group recently, where the first data-driven model was 
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developed to describe the behaviour of the lung Resistivity-Volume in the aEIT 

system (Mohamad Samuri et al., 2011). This model was developed with the aim to 

bypass the non-linear equations used in the aEIT system’s software to infer absolute 

lung volumes from resistivity data, where most of these equations are 

empirical/theoretical and introduce uncertainties and inaccuracies in the final 

estimations of lung volumes. Research in this area is still ongoing to identify more 

parameters (that are easily measured) to be included in the modelling structure which 

may lead to a truly ‘generic’ model that is able to account for inter and intra-

individual parameter variability.  

 

Although the current decision support system has shown the ability to generate an 

overall optimal ventilatory therapy and minimise the chances of lung injuries in the 

patient, the system should be further tested. This is because, as stated before, the aEIT 

quantitative models used to estimate the MEEV, MAD, MMD and MPD values of the 

simulated patients lack data for adequate training and generalisation, which may cause 

some inaccuracies in the values estimated during the validation process of the 

decision support system. Therefore, it is essential that after further improvement and 

validation being made to these models, the performance of the decision support 

system be re-tested via a series of simulated patients data and followed by validation 

using real clinical data and designed clinical trials in the ICU environment.   
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APPENDIX A 

 

SOPAVENT MODEL PARAMETERS 

 

1) Oxygen transport and exchange equations: 

 

     

  
      

                                                                         

     

  
      

                 
                                                                                

     

  
      

                                                                                                       

     

  
      

                                                                               

     

  
                     

    

    
    

                                

          
       

    

    
                                                                                  

                                                                                                                               

 

       x = A (Alveolar), a (arterial), t (tissue), v (venous), p (pulmonary) are the 

compartmental  volumes in litres. 

    Cardiac output in litres/min. 

X    Fraction of blood shunted passed the lungs. 

    
 Oxygen consumption by tissues in ml of O2/min (BTPS). 

     Alveolar deadspace volume in ml (BTPS). 
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     Ventilatory tidal volume in ml (BTPS). 

RR  Respiratory rate in breath / min. 

CAO2  Alveolar O2 content in ml of O2/ litre of alveolar gas. 

CxO2 x = a (arterial), t (tissue), v (venous), p (pulmonary) : O2 concentration in ml of 

O2 /litre of blood. 

   
 O2 diffusion constant in ml of O2/kPa/litre of  blood. 

       Mean airway pressure (kPa) 

     Inspired fraction of O2 

        Pulmonary partial pressure of O2 in kPa.  

          Inverse of the O2 dissociation function  

 

2) Carbon dioxide transport and exchange equations 

 

      

  
      

                                                                     

      

  
      

                    
                                                                        

      

  
      

                                                                                                 

      

  
      

                                                                        

      

  
                      

     

    
    

                       

            
       

     

    
                                                                       

                                                                                                                             

 

     
      Carbon dioxide consumption by tissues in ml of CO2/min (BTPS). 

CACO2  Alveolar CO2 content in ml of CO2/ litre of alveolar gas. 

CxCO2 x = a (arterial), t (tissue), v (venous), p (pulmonary) : CO2 concentration in 

ml of CO2 /litre of blood. 

    
       CO2 diffusion constant in ml of CO2/kPa/litre of  blood. 
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            Inspired fraction of CO2 

            Pulmonary partial pressure of CO2 in kPa. 

                Inverse of the CO2 dissociation function  

3) Gas Dissociation Functions (GDF) 

Oxygen 

                                                                                                             

Hb Haemoglobin concentration. 

SO2  O2 saturation fraction. 

   Haemoglobin O2 combining capacity. 

    O2 carrying capacity of blood plasma. 

 

Carbon Dioxide 

                                                                                         

       

 pcv       Packed cell volume fraction (or haematocrit). 

 

A pH modelling and an airway modelling component were also developed and 

included into SOPAVent. Hence, the model provided PIP and pH predictions as well. 

The detailed descriptions of the model can be found in Goode, 2001. 
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APPENDIX B 

 

Further patients’ closed-loop simulation results 

PATIENT 1 

 

Simulation of an acute shunt changes. 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 



180 

 

 

Simulation of an acute Kd changes. 

 

PATIENT 2 

 

Simulation of an acute shunt changes. 

 



181 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 

 

 

Simulation of an acute Kd changes. 
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PATIENT 3 

 

Simulation of an acute shunt changes. 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 
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Simulation of an acute Kd changes. 

PATIENT 4 

 

 

Simulation of an acute shunt changes. 
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Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 

 

 

Simulation of an acute Kd changes. 
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PATIENT 5 

 

Simulation of an acute shunt changes. 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 
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Simulation of an acute Kd changes. 

 

PATIENT 6 

 

 

Simulation of an acute shunt changes. 
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Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 

 

 

Simulation of an acute Kd changes. 
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PATIENT 7 

 

Simulation of an acute shunt changes. 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 
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Simulation of an acute Kd changes. 

 

PATIENT 8 

 

Simulation of an acute shunt changes. 
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Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 

 

  

Simulation of an acute Kd changes. 
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PATIENT 9 

 

Simulation of an acute shunt changes. 

 

 

Comparison of MEEV changes produced by the intelligent model-based decision 

support system (Wang, 2008) and MEEV from the IEDSS during an acute change of 

shunt. 
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Simulation of an acute Kd changes. 

 

 


