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Abstract 

Nanoscale properties are becoming increasingly important for the successful 

utilisation of modern materials and devices, where surfaces or interfaces often 

largely define functionality. It is critical to understand surface behaviour and its 

impact on properties for the development of new and existing materials. Current 

surface science and thin-film techniques have been utilised and developed to 

investigate promising functional materials. 

The surface chemistry of Au/Pd surface alloys was examined for the selective 

oxidation (selox) of crotyl alcohol to crotonaldehyde. X-ray Photoelectron 

Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) have been used 

to elucidate the reaction pathway for the alcohol and the main products. Au 

moderates the surface reaction by ‘turning off’ the main decomposition pathway of 

the aldehyde. The amount of surface Au has a critical role in determining the 

selectivity. To mimic ‘true’ selox, the influence of co-adsorbed O over the Au/Pd 

alloys was also investigated. O plays an important role in aiding desorption of the 

aldehyde. The exact nature and role of Au and O in moderating the reaction over 

Pd(111) requires further investigation. 

A key area of technological interest is field of spintronics, whereby the spin and 

charge of electrons are exploited for electronics. Thin-films of Fe3O4, a promising 

spin injector, were grown on a variety of substrates to characterise the 

magnetic/magnetoresistive (MR) properties. The Magnetorefractive Effect (MRE), 

an optical technique, was used for non-contact measurements of the MR. Despite 

no difference in the MR, the MRE shows a thickness dependence, which is partly 

due to the large skin-depth associated with Fe3O4. Modelling the complex dielectric 

function for Fe3O4/MgO allowed simulations to be carried out of the IR and MRE 

spectra. With further work, the model may be used to determine film thickness, 

examine the conductivity mechanisms and their influence on the MR/MRE. 
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Chapter 1  
Introduction 

1.1 Motivation 

1.1.1 Advanced Functional Materials 
The development and improvement of materials brings about huge social change 

and benefits to human society. The 20th century saw rapid technological advances, 

particularly due to the preparation of novel materials with specific functional 

properties. Today, advanced functional materials have numerous applications in a 

wide variety of fields, including the catalytic cracking of crude oil, automotive 

emission treatment, fine chemical synthesis and information storage; to give but a 

few examples. In order to meet the demands and challenges of the future there is an 

ever-expanding need for advanced materials. 

 

1.1.2 Surfaces and Thin-Films 
The surface layer plays a very important role in defining the properties of a 

material. In terms of chemistry, catalysis occurs at the interface between of the 

solid surface of the catalyst and the liquid or gaseous reactants. This surface 

reactivity arises because of the lower surface coordination number relative to the 

bulk. As we shall see, due to the complexity of dispersed solid catalysts, single 

crystals and thin-films are useful ‘model’ systems for the study of heterogeneous 

catalysts. 

Thin-films also display novel behaviour, in that they often have properties that 

greatly differ from those of their bulk counterparts, as a result of their reduced size 

and dimensionality1. This divergence from bulk properties in magnetic materials 

means that thin-film magnetic materials are of great technological importance1-3, 

and as a result many modern electronic devices exploit thin-film architecture. 

Research into thin-film magnetism is therefore critical to meet consumer demands 

in terms of faster devices with increased data storage capacity. 
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1.1.3 Surfaces Science Techniques 
Surface science techniques that operate in ultra-high vacuum (UHV) and/or high 

vacuum (HV) regimes allow us to understand the fundamental properties of 

surfaces and thin-films. This often involves the preparation and characterisation of 

many samples in-situ and can afford unique advantages over classical wet chemical 

methods. As advanced functional materials are complex, the rate-limiting factor in 

their development is often the empirical trial-and-error method of synthesis and ex-

situ characterisation4. 

The preparation and in-situ characterisation of experimental models of different 

compositions within a single set of experiments would therefore help to accelerate 

the development of functional materials. This involves the deposition of material 

by evaporation, or co-sputter deposition of different metals in UHV or HV to form 

thin films on substrates. Surface analytic techniques then allow molecular level 

insight into important surface processes. 

 

1.1.4 Thin-Film Growth 
When preparing and characterising thin-films, we must consider the growth mode 

of the film onto a substrate, which influences the overall properties of the film. For 

metal films, experimental evidence suggests that three distinct growth models exist 

(see Figure  1.1) for coverage beyond a monolayer5. 

Frank-Van Der Merwe (FV) 
“Ideal” situation 

Stranski-Krastanov (SK) 
“Semi-ideal” situation 

Volmer-Weber (VW) 
“Non-ideal” situation 

 
SUBSTRATE SUBSTRATE SUBSTRATE 

Figure  1.1 - A schematic diagram of the three growth models usually observed for 

metal overlayers5. 
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The ideal situation (layer by layer) FV model, is expected when… 

∆τ = τA + τA-S - τS < 0    Equation  1.1 

Where ∆τ is the relative change in surface energy, τA is the surface energy of the 

pure metal adlayer, τS is the surface energy of the pure substrate and τA-S is the 

energy of the interface between the adlayer and the substrate. 

SA

SA
AS 2

τ+τ
τ−τ

=Γ      Equation  1.2 

ΓAS, is known as the surface energy mismatch parameter, and generally less than 

approximately 0.5 for FV systems.  

For the non-ideal VW mode, cluster crystallites form due to low coverage (a 

uniform monolayer cannot form): 

∆τ = τA + τA-S - τS > 0    Equation  1.3 

It is therefore critical to consider these scenarios when preparing thin-films either 

for the study of the magnetic properties or the reaction mechanisms in 

heterogeneous catalysis. 

 

1.2 Heterogeneous catalysis 
Catalytic processes that are heterogeneous in nature are highly desirable from an 

industrial perspective, due to ease of product separation, continuous processing and 

ease of handling. Homogeneous systems by contrast cannot be readily recycled and 

can also lead to large volumes of hazardous waste. However, homogeneous 

catalysts are easily probed by spectroscopy, have distinct oxidation states and exist 

as pure compounds. Heterogeneous catalysts are less well defined, meaning that 

homogeneous systems are typically favoured industrially. 

‘Real’ heterogeneous catalysts employed industrially usually consist of 

nanoparticles composed of a precious metal or metal oxide imbedded on an 

inexpensive support material (e.g. carbon, alumina or silica), as shown in Figure 
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 1.2. This conserves expensive material, whilst also increasing the surface area of 

the active catalyst, which in turn greatly increases the overall efficiency and 

turnover number.  

 

Figure  1.2 - Diagram of a typical supported nanoparticulate catalyst 

Nanoparticles are complex structures containing multiple facets with the chemistry 

of each differing enormously. Figure  1.3 (a), a truncated octahedron, can be taken 

as a simple example of a nanoparticle. As lower coordination sites have high 

potential energy facilitating bond dissociation, corner and edge sites will have a 

higher activity relative to other sites present within a nanoparticle. Since the advent 

of UHV techniques in the 1950 and 1960s, single crystal surfaces have been widely 

employed experimentally as simple models for different nanoparticle facets 

(Figure  1.3 (b)) in order to examine the surface chemistry of a wide variety of 

adsorbates. 
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(a)  

 
 
 
 

(b) 

 

(111)  
face 

(100) 
face 

corner  
atom 

edge  
atom 

(111) surface 

Truncated octahedral 
nanoparticle 

 

Figure  1.3 – (a) A cartoon of a simple nanoparticle (truncated octahedron), 

showing the different crystal faces exposed. (b) The chemistry of single crystal 

surfaces can be used as experimental ‘models’ for the various surface facets within 

nanoparticles. 
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1.3 Selective oxidation of alcohols by heterogeneous catalysts 
The aerobic selective oxidation (selox) of alcohols by heterogeneous catalysts is a 

novel way to synthesise a wide range of important fine chemical and 

pharmaceutical intermediates6, 7. These powerful catalytic technologies have the 

potential to replace stoichiometric inorganic oxidants such as CrVI salts or 

expensive homogeneous complexes (e.g. Mn salens), and their associated process 

disadvantages and safety issues8.  

For example, crotyl alcohol (CrOH, CH3CH=CHCH-OH, 2-buten-1-ol) is an allylic 

alcohol, which is an important agrochemical and precursor to the food preservative 

sorbic acid. The selox of crotyl alcohol (as shown in Figure  1.4) produces 

crotonaldehyde (CrCHO, CH3CH=CHCHO, but-2-enal), a versatile intermediate 

important for organic synthesis. Through the use of an appropriate catalyst, it 

should be possible to perform this chemical transformation using oxygen in the air 

as the oxidant. Ideally, this would produce water as the sole by-product, thereby 

having clear environmental benefits. 

   

Figure  1.4 - The oxidative dehydrogenation of crotyl alcohol to crotonaldehyde. 

Indeed, Pt Group Metal (PGM) particles are particularly promising partial 

oxidation catalysts6, 9, 10, able to activate a range of alcohols and carbohydrates 

under mild conditions employing either neat substrate or green solvents including 

ionic liquids11, 12, supercritical fluids13-17 and even water18.  

An industrially important reaction involving PdAu is the oxidation of ethylene and 

acetic acid to form vinyl acetate monomer (VAM), which is catalysed by both 

supported Pd19 and PdAu alloys20. Alloying the Pd with Au leads to a substantial 

increase in selectivity from ~ 85% for pure Pd to ~ 92% for the alloy21. This 

enhanced selectivity has been extensively studied by both DFT and experimental 

studies (TPDs/IRAS), mainly by Goodman and co-workers19, 20, 22, 23. This work has 

aided the understanding of the nature of the active site by showing that the activity 

of such systems mainly stems from the presence of second neighbor Pd ensemble 

Catalyst 
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pairs on Au(001)24. This example illustrates the importance of surface alloy 

composition for activity and selectivity. 

It has also been recently shown that isolated Pd centres anchored within both 

alumina25 and silica10 frameworks are efficient selox catalysts for alcohols. The 

recent discoveries of Ru26 and promoted Au catalysts27 for such reactions is 

especially noteworthy, as these systems offer high turnover frequencies even 

during scale-up, although some require radical initiators and high air/O2 partial 

pressures28. These reactions are highly regioselective (often > 95 %) towards the 

aldehyde product, even in the presence of diverse functionalities including aryl, 

allylic groups. 

In spite of the high selectivity conferred through the use of PGM catalysts, it is 

important to consider the formation of any by-products. Figure  1.5 shows the main 

reaction products formed in allylic alcohol selox. This work was originally reported 

for the selox of cinnamyl alcohol to cinnamaldehyde over Pd/alumina29. There are 

a large number of by-products for this deceptively simple reaction. This is not only 

undesirable for the selectivity of catalysts, but the chemistry of these by-products 

may also affect the activity and therefore the efficacy of the catalyst over time. 
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-CO -CO 
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+H2 
-H2O 

+H2 
-H2O 

+O +H2 

-H2 
1 

2 

5 

6 

4 
3 

+H2 

 

Figure  1.5 – The reaction scheme for selox of a general allylic alcohol (1), to an 

allylic aldehyde (2), with by-products due to double bond hydrogenation (3), 

hydrogenolysis (4), decarbonylation (5) and over-oxidation to carboxylic acid (6). 

 Modified from references29, 30. 

In order to study the reaction mechanisms involved in alcohol selox, UHV studies 

over single crystal surfaces are utilised as ‘model’ catalysts in order to identify 

reaction and decomposition products.  

 

1.3.1 Allylic alcohols over single crystal surfaces 
There are very few single crystal studies of allylic alcohols available in the 

literature. The surface chemistry is poorly understood due to complex surface 

interactions which dominate the adsorption mode, as it is possible for coordination 

to occur through either the C=C or C-OH bonds. Allyl alcohol has been previously 

studied over Ag(110), where reversible adsorption occurs via the C=C bond, which 

was found to be co-planar with the surface31, 32. Despite this interaction, no 

chemistry occurs over the Ag(110) surface. Over Cu(110), allyl alcohol undergoes 

oxidation to acrolein whilst also hydrogenating to n-propyl alcohol and propanal33. 

+H2 
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For Rh(111), vibrational and desorption work showed that at low temperature an 

allyl alkoxide intermediate was formed34. It is thought that this intermediates binds 

strongly through both the oxygen and alkene functionalities. It is this interaction 

which leads to strong C=C binding, responsible for decarbonylation. 

DFT calculations show that allyl alcohol adsorbs with a di-σ coordination over both 

Pt(111) and Pd(111), an interaction which is also augmented by a much weaker 

interaction through the C-OH functionality35. Binding to the surface through 

multiple functionalities may explain the different reaction mechanisms observed 

experimentally.  

Previous work by the York Surface Chemistry and Catalysis group at the 

ELETTRA synchrotron on the selox of crotyl alcohol to crotonaldehyde over 

Pd(111), identified secondary decarbonylation reactions as the major factor in the 

deactivation of practical monometallic Pd selox catalysts36. This work will be 

discussed in more detail in chapter 3. This thesis will augment this research area 

through the further investigation of the mechanism of alcohol selox over Pd using 

surface science techniques. 

 

1.3.2 Aldehydes over single crystal surfaces 
As with alcohols, there is a general dearth of knowledge regarding the surface 

chemistry of aldehydes over metallic single crystal surfaces. The thermal chemistry 

of formaldehyde has been previously studied over Cu(100)9, Cu(110)37, 38, 

Fe(100)39, Pt(110)40, Pt(111)41, Rh(111)42 and V(100)43. It was discovered that 

formaldehyde spontaneously polymerises to disordered poly(oxymethylene) 

species over Cu and Rh, which either desorb or decompose upon heating. 

Acetaldehyde also polymerises over Pt(111)41, 44, Pd (110) and (111)45, 46, in 

competition with decarbonylation to methane and CO. Propionaldehyde has also 

been studied over Pd(110)/(111)45 and Ni/Pt(111)47 surfaces, which favour 

decarbonylation to ethene.  

Even less is known regarding unsaturated aldehydes, although acrolein has been 

investigated on Au(111)48, Pt(111)49-52, and Ni/Pt(111)53 with decarbonylation or 

reduction to propene, ketene or alcohols prevalent over group 10 surfaces. 



10 
 

Crotonaldehyde has been studied over Cu(111)54, Pt(111)49, 50 and Sn/Pt(111)55, 56 

single crystal surfaces, with decarbonylation to CO and propene the dominant 

reaction pathway 55, 57-59.  

 

1.3.3 Au/Pd systems for selox 
Bimetallic systems frequently display properties which are significantly different 

from their component metals 5, 60. As a result, many of these bimetallic alloys show 

an enhanced catalytic activity, selectivity or stability when compared to their 

monometallic counterparts. In particular, Pd/Au systems have displayed improved 

or even ‘tunable’ properties when compared to pure Pd or Au catalysts61-63. 

Numerous investigations have focussed on the catalysis of many different reactions 

by Pd-Au systems including the oxidation of glycerol64, 65, hydrogen peroxide 

synthesis63, 66, 67, the cyclisation of acetylene to benzene68-70, and the 

hydrodechlorinaion of dichlorofluoromethane71 to name but a few. Recently, 

various computational studies have also been conducted in order to understand the 

composition and reactivity of such systems72, 73. 

In particular, there has been significant interest in Au-Pd systems as catalysts for 

selective oxidation reactions74-76. A major breakthrough occurred when Hutchings 

et al61, discovered that by combining Pd and Au over a titania support 25-fold rate 

enhancements for alcohol oxidation under mild solvent-free conditions were 

possible. The introduction of Au also improves selectivities to aldehydes and 

ketones compared to pure Pd.  

High-resolution STEM chemical mapping of these nanoparticles27 indicates that the 

active nanoparticles possess a Pd-rich shell encapsulating a Au-rich core62, 63, 77, 78 

(as shown in Figure  1.6), and it is likely that surface Au atoms are crucial in 

regulating the electronic structure and thereby promoting selox chemistry over 

surface Pd. The details of the active surface ensemble and role of Au in promoting 

selox were unknown however, making such systems ideal for investigation by 

utilising ‘model’ single crystal studies by in situ XPS using synchrotron radiation. 
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Figure  1.6 - ADF-STEM image of a bimetallic Au/Pd nanoparticle supported on 

TiO2. This composition map image was created using a multivariate statistical 

analysis of processed STEM-XEDS maps of the Au-M2, Pd-Lα, O-Kα, and Ti-Kα 

signals  (Ti, red; Au, blue; and Pd, green).27 

It is likely that surface Au atoms promote selox chemistry over surface Pd by 

regulating the electronic structure. However, the exact details of the active surface 

ensemble and role of Au in promoting selox in such systems are unclear. This 

thesis will contribute to this exciting area by implementing a thin-film/surface 

science approach for elucidating the reaction mechanism of such systems. 

 

1.3.4 Formation of Au/Pd(111) surface alloys 
The growth and surface alloy formation of Au on Pd(111) has been studied by a 

variety of techniques including AES21, 79-81, XPS81, 82, LEED79, 83, LEIS83, 84 and 

STM80. It was found that at room temperature Au grows epitaxial (Frank-Van Der 

Merwe (FV)) overlayers on Pd(111). This is due to the relatively low lattice 

mismatch (~ 4.9 %) between Au and Pd81. When annealed above 600 K, Au and Pd 

intermixing occurs (due to the bulk miscibilities of the metal components81) where 

random substitutional surface alloys form. Due to its lower surface free energy, Au 

would be expected to segregate on the surface of PdAu alloys, prepared under 

thermodynamic equilibrium85-87, although the driving force for segregation is 

relatively small73, 88, 89. As a result, it is possible for entropic driven diffusion of Au 

into the bulk to occur in contrast to the predicted surface segregation of Au. 
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Recent theoretical analyses for Au/Pd(111) alloy surfaces suggests weak repulsion 

between Au and Pd atoms may drive local ordering90. The higher the annealing 

temperature, the more Pd rich the surface alloys become. In this way, in a single set 

of experiments an Au overlayer can be deposited and then annealed to various 

different temperatures in order to produce a range of Au/Pd(111) surface alloys in 

order to study the chemistry of such surfaces. The formation and reactivity of 

Au/Pd(111) surface alloys will be discussed in more detail in chapters 3 and 4. 

 

1.4 Magnetic Thin-Films for Spintronics 
Depending upon how a given material responds to an external magnetic field, it can 

be classified as diamagnetic, paramagnetic, antiferromagnetic or 

ferromagnetic/ferrimagnetic. Most elements in the periodic table are diamagnetic, 

meaning they have a weak, negative susceptibility to magnetic fields. This means 

that such materials are slightly repelled by the external field and magnetic 

properties are not retained when the external field is removed1. Diamagnetic 

properties arise from the realignment of the electron pairs.  

Paramagnetic materials have a very small, positive susceptibility to magnetic 

fields. These materials are slightly attracted by a magnetic field and the material 

does not retain the magnetic properties when the external field is removed. 

Paramagnetic properties are due to the presence of some unpaired electrons, and 

from the realignment of the electron paths caused by the external magnetic field1. 

Paramagnetic materials include magnesium, molybdenum, lithium, and tantalum. 

Ferromagnetic materials have a large, positive susceptibility to an external 

magnetic field. They exhibit a strong attraction to magnetic fields and are able to 

retain their magnetic properties after the external field has been removed. 

Ferromagnetic materials have some unpaired electrons so their atoms have a net 

magnetic moment. They get their strong magnetic properties due to the presence of 

magnetic domains. In these domains, large numbers of atom's moments are aligned 

parallel so that the magnetic force within the domain is strong91. When a 

ferromagnetic material is in the un-magnetised state, the domains are nearly 

randomly organised and the net magnetic field for the part as a whole is zero. 
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When a magnetizing force is applied, the domains become aligned to produce a 

strong magnetic field within the part. Iron, nickel, and cobalt are examples of 

ferromagnetic materials. Components with these materials are commonly inspected 

using the magnetic particle method. 

Antiferromagnetic materials are those in which the neighbouring spins are aligned 

antiparallel to one another, so that their magnetic moments cancel. Therefore an 

antiferromagnet produces no spontaneous magnetisation and shows only feeble 

magnetism. The magnetic susceptibility of such materials is of the same order as 

that of paramagnetic materials91. Antiferromagnets can be therefore thought of as 

being paramagnetic substances with a characteristic temperature at which the 

magnetic susceptibility shows a pronounced maximum92. 

Ferrimagnets behave similarly to ferromagnets, in that they exhibit a spontaneous 

magnetisation below some critical temperature Tc, even in the absence of an 

applied field. In fact, ferrimagnets are also related to antiferromagnets, in that the 

exchange coupling between adjacent magnetic ions leads to antiparallel alignment 

of the localised moments. The overall magnetisation occurs because the 

magnetisation of one sublattice is greater that that of the oppositely orientated 

sublattice1. The fact that ferrimagnets are ionic solids means that they are 

electrically insulating, whereas most ferromagnets are metals. 

Magnetic materials can be found almost everywhere in our every-day modern lives 

and thin-films are of particular technological interest. Research into this field began 

in the 1970’s with the advent of UHV technologies (particularly that of molecular 

beam epitaxy93), which allowed precise crystallographic control over the growth of 

thin-films. The study of thin-film magnetism itself has aided the understanding of 

the fundamental physics of magnetism1-3, 94-98, which, in turn, has had important 

ramifications for magnetic data storage, exemplified by the discovery of Giant 

Magnetoresistance. 

1.4.1 Giant Magnetoresistance 
In the late 1980’s it was discovered that when materials composed of multilayers of 

Fe and a non-magnetic spacing layer (e.g. Cr) were placed in a magnetic field, the 

overall electrical resistance for the material would decrease by as much as 80% 

(see Figure  1.7). Due to the nature of this effect, it was given the name ‘giant 



14 
 

magnetoresistance’ (GMR). This phenomenon was recognised by two independent 

research groups – one in France, headed by Albert Fert99; the other being in 

Germany, lead by Peter Grünberg100. In recognition of this discovery, both 

researchers were awarded the Nobel Prize for physics in 2007101. The GMR effect 

was almost immediately exploited for use in the read heads of modern hard drives, 

which has facilitated an increase in data storage capacity by approximately 3 orders 

of magnitude 102-104. 

 

Figure  1.7 - The results of Fert’s experiments that lead to the discovery of GMR - 

taken from94, 99 

Further experiments by many other research groups lead to the formation of the 

theory behind the mechanism of GMR in these multilayer structures. For special 

cases, in the absence of an applied magnetic field, the direction of magnetization of 

adjacent ferromagnetic layers is anti-parallel. A lower level of resistance is 

experienced in an applied external field when the magnetisations of the adjacent 

layers align100.  It was discovered that spin dependent scattering is the cause of this 

phenomenon105-109. 

Within a ferromagnetic material, a quantum mechanical exchange interaction 

between the electrons results in a spin-split band structure (as shown below in 

Figure  1.8). As we shall see, there are a number of essential factors that lead to 

spin-dependent scattering in metallic ferromagnets, which are derived from this 
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spin-split band structure. Ferromagnets are usually transition metals, which have a 

relatively high resistivity compared with noble metals. This is unusual, as both sets 

of metals have a similar number and density of conduction electrons. The 

difference in resistivity is due to the availability of unoccupied states in partially 

filled d-bands, which are also available for scattering. This reduces the overall 

mean free path of the electrons in ferromagnets relative to noble metals1. 

 

 

Figure  1.8 – The spin split band structure present within ferromagnetic materials 

From Figure  1.8, it can be observed that the spin-split d bands also cause a 

different density of states at the Fermi surface for spin-up and spin-down electrons. 

This leads to a different scattering probability for the spin-up and spin-down 

electrons110. The minority electrons usually have the greatest scattering probability. 

There also has to be little or no spin-flip scattering, which allows the spin-up and 

spin-down conduction electrons to be considered as two independent channels for 

current110, 111. Therefore, spin-dependent scattering effects result in the spin 

filtering of the electron current when it passes through a ferromagnetic material, 

with the minority electrons experiencing more scattering. In other words, the 

material can be thought of as being a ‘valve’ that selectively permits the flow of 

one spin over the other. As a result of such behaviour, these types of magnetic 

E 

EF 

-k    0   +k 
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multilayer are known as ‘spin valves’. GMR materials in the read-heads of hard-

drives are spin valves that have been specifically designed to exploit spin-

dependent scattering105. 

For a trilayer structure (Fe/Cr/Fe, as shown in Figure  1.9), we can consider this 

mechanism using a simple resistor network in which the independent spin-up and 

spin-down electron current channels are represented by two parallel circuits.  The 

resistance of the different layers is represented by resistors, with the size of each 

resistor representing the magnitude of the resistance105. For the case when the 

layers are non-aligned, both spin-up and spin-down channels experience significant 

scattering, and therefore we have a high electrical resistance. The resistance is 

lower when the layers are aligned, as the spin-up channel experiences less spin 

scattering through either of the layers and we have a situation analogous to a short 

circuit. 

 

Figure  1.9 - A diagram illustrating the basic theory behind giant magnetoresistance 

for a simple magnetic trilayer system – adapted from105. 

When adopting this simple model, the overall change in resistance can be 

represented mathematically in Equation 1.4.  
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  Equation  1.4 

where RAP is the overall resistance for the anti-parallel case and RP is the overall 

resistance for the parallel case. R ↑ and R ↓ represent the resistances of the 

individual resistors shown in Figure  1.9. 

The discovery of the GMR effect and its associated mechanism represented a new 

area of physics; a field now known as ‘spintronics’, which will be described in the 

following section. 

 

1.4.2 Spintronics 
Spin transport electronics (spintronics), is an emerging research field in solid-state 

electronics112, 113. As the name suggests, it concerns not only the fundamental 

electronic charge, but also the intrinsic spin of the electron in order to create new 

devices. It emerged from spin dependent electron transfer experiments, including 

the discovery of GMR and the observation of spin-polarized electron injection from 

a ferromagnetic metal to a normal metal114. 

The storage capacity of modern hard disks has been increased by the introduction 

of GMR based spintronic devices, known as spin valves (see Figure  1.10). The 

need for the preparation and characterisation of spintronic materials is essential in 

order to ensure that this increase in storage trend continues102, 115. 
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Figure  1.10 – An example of a spin valve, used as a read head in hard disks. 



18 
 

Magnetic Random Access Memory (MRAM) is a technology, which is also reliant 

on developments in materials for spintronics. In MRAM grids of magnetic 

tunnelling junctions (MTJ’s) are used as magnetic storage elements, permitting the 

storage of information even when no electrical power is supplied115-117. Due to 

greater capacity Dynamic RAM (DRAM) is the current standard used in personal 

computers, however MRAM offers greater speed and lower operating voltage118. 

As a result, research into novel spintronic materials is necessary in order to 

increase the storage capacity of MRAM. 

‘Racetrack’ memory is another emerging technology based on spintronics, which 

has been developed by Stuart Parkin and co-workers at IBM115, 119, 120. The 

‘racetrack’ consists of a ferromagnetic nanowire, with data encoded as a pattern of 

magnetic domains along a portion of the wire (see Figure  1.11). A spin-polarized 

current moves the entire pattern of domain wall (DWs) coherently in either 

direction along the length of the wire past read and write elements. Reading of 

stored data is achieved by measuring the tunnel magnetoresistance of a magnetic 

tunnel junction element connected to the racetrack (as shown in Figure  1.11 C). 

Writing data can be accomplished through utilising the fringing fields of a DW 

moved in a second ferromagnetic nanowire, which is oriented at right angles to the 

storage nanowire.  High storage density can be achieved by creating a series of U 

shaped arrays relative to the substrate (Figure  1.11 A and E). Spin injection in 

order to apply a spin- polarised current is essential for the operation of such 

devices. 
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Figure  1.11 - A simple diagram representing a proposed racetrack memory 

concept. The racetrack consists of ferromagnetic nanowire with data encoded as a 

pattern of magnetic domains along a portion of the wire – obtained from119. 

These examples highlight the fact that there is a huge drive to investigate a wide 

variety of materials, which have spin-dependent properties, which could be used 

for applications in spintronic devices. In order to create novel and successful 

spintronic devices, spin accumulation is a key factor. It represents a huge 

challenge, as it is the process by which non-equilibrium electron spins are 

generated and build up within a material. Spin-injection is the most useful 

technique in order to bring about this spin accumulation in materials. It involves 

transporting an electron of a particular spin from a source (usually ferromagnet) to 

a semiconducting material. In doing so, the spin orientation  (i.e. up or down) of the 
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electron must be conserved121. Therefore, materials that exhibit a high level of spin 

polarisation are essential for this process. 

 

1.4.3 Half metals 
Half metals (also known as Half Metallic Ferromagnets) are ferromagnets whose 

density of states has exclusively one occupied sub-band at the Fermi energy (EF) as 

shown below in Figure  1.12. As a result, they theoretically give rise to 100% spin 

polarisation, as only electrons with the same spin orientation as the partially filled 

band can be transported through the material. It is hoped that these interesting 

properties can be exploited in future magnetoresistive devices112, 113, 115, 122, 123. 

 

 

Figure  1.12 - A simple diagram showing the density of states of a half-metallic 

system.  

Half metals are typically oxide materials, which include CrO2, mixed valence 

manganites (La(1-x)AxMnO3, A = Ca, Ba, Sr), double perovskites124 (A2BB’O6, A = 

Ca, Sr, Ba, B = 3d transition metal (Fe, Co), B’ = 4d transition metal (Mo, Re)) and 

Fe3O4. 

 

EF 

E 

↑N(E)         ↓N(E) 
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1.4.4 Oxide Materials for Spintronics 
Transition metal oxides are receiving a great deal of attention, as they display a 

wide range of fascinating physical properties such as high temperature 

superconductivity, ferro- and antiferromagnetism, ferroelectricity and even 

multiferroicity122. The enormous progress in oxide thin-film technology allows us 

to integrate these materials with semiconducting, normal conducting, dielectric, or 

non-linear optical oxides in complex oxide heterostructures, providing the basis for 

novel multi-functional materials and potentially making them suitable for various 

spintronic applications. 

 

1.4.5 Magnetite (Fe3O4) 
Magnetite (Fe3O4), was discovered in Greece around 2000 BC making it the oldest 

magnetic material known to man125. Magnetite is a half-metallic conducting 

ferrimagnetic oxide material, which is magnetic at room temperature, having a very 

high Curie temperature of approximately 858 K126. Band calculations predict that 

conduction electrons are fully spin polarised127-130, which makes it a very suitable 

candidate for use as a spin injector for magnetic recording/spintronic applications. 

Whilst naturally occurring magnetite has been used for thousands of years, its 

properties, particularly those of thin-films are not fully understood125, 127. Thin 

films of magnetite have properties which deviate from the bulk131, including the 

fact that the magnetisation does not saturate in high fields132, and ultra-thin films (< 

5 nm) are superparamagnetic133, the resistivity is increased relative to the bulk134 

and epitaxial films show magnetoresistance135.  

Fe3O4 is an example of a spinel ferrite, all of which have the general formula of 

MFe2O4. M represents a divalent ion, which in the case of Fe3O4 M is a Fe2+ ion. 

Spinel ferrites have two distinct crystallographic variants, one known as ‘normal’ 

spinel and other being ‘inverse’ spinel136. Fe3O4 is an inverse spinel, having a 

crystal structure with two different Fe sublattices, as shown in Figure  1.13 (a). 
Tetrahedral (A) sites are exclusively occupied by eight Fe3+ ions in the unit cell, 

where as the octahedral sites (B) are occupied by eight Fe2+ and eight Fe3+ ions, as 

represented in Figure  1.13 (b).  
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Due to the close proximity and orbital overlap of surrounding O2- ions, a crystal 

field is established which splits the 3d states of the Fe2+ and Fe3+ ions in the B site 

into two states with eg and t2g symmetry (see Figure  1.13 (c)). The t2g spin-down 

electron can “hop” between the Fe2+ and Fe3+ ions137 (also shown in Figure  1.13 
(c)), which gives rise to the electrical conductivity within Fe3O4. It should be noted 

that, in accordance with Hund’s rule, this 2g B spin is coupled antiparallel to the 

local moment formed by the spin-up electrons. 
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Figure  1.13 (a) – The inverse spinel crystal structure of Fe3O4, showing the 

tetrahedrally coordinated Fe3+ A site and mixed-valent (Fe2+, 3d6 / Fe3+, 3d5) 

octahedrally coordinated B site (adapted from137, 138).  (b) – A simple diagram 

showing the A and B sublattice configuration137. (c) – A crystal field splitting 

diagram of the Fe2+ and Fe3+ 3d states, along with the itinerant (“hopping”) 

electron137. 
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The growth of Fe3O4 is extremely challenging, as there are many different phases 

of iron oxide. The phase diagram of the iron oxygen system is shown below in 

Figure  1.14. Fe3O4 is represented in the phase diagram by the letter M, which 

represents a very small, narrow region on the phase diagram. It is therefore crucial 

to carefully control the various different growth parameters (such as substrate 

temperature, O partial pressure, Fe flux etc.) in order to select growth of the desired 

iron oxide from the phase diagram. In order to calibrate the growth and select 

Fe3O4 it is also necessary to prepare a wide variety of samples whilst varying all 

growth parameters. In doing so, it should be possible to consistently prepare the 

desired phase of iron oxide. It is also critical to use a wide variety of surface 

science techniques to correctly determine the phase of each sample grown. 

 

Figure  1.14 – The phase diagram for the iron oxygen system (modified from 

Darken139 and Voogt140). 

α, γ, δ indicate the various phases of metallic iron (b.c.c., f.c.c and high temperature 

b.c.c. respectively). W, M and H stand for wüstite (FeO), magnetite (Fe3O4) and 

haematite (Fe2O3) respectively. L stands for liquid. Dashed lines show oxygen 

equilibrium pressures. 

Composition (% O by weight) 
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MgO is often used as a substrate for the growth of thin-films of Fe3O4. This is 

because, in the crystal structure of Fe3O4 and MgO, the O atoms form an 

approximate face-centred cubic lattice. As a result, there is only a slight mismatch 

(~ 0.3 %) in d for the O lattices in MgO and Fe3O4, meaning that epitaxial growth 

is favoured. However, the unit cell of Fe3O4 (a0 = 8.397 Å) is twice the size of the 

MgO unit cell (a0 = 4.212 Å)136, resulting in initial island formation. When 

different islands meet during growth, they can be shifted or rotated with respect to 

each other, forming what is known as an antiphase boundary (APB)132-134, 141. A 

simplified diagram of APB formation including the various shift vectors for Fe3O4 

on MgO(100) is shown below in Figure  1.15. 
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(a) Plan view: 

¼[110] 

½[100] 

(iv) (iii) 

(ii) (i) 

a0 MgO 

a0 Fe3O4 

[001] 

[110] 
APB 

Bulk stacking Bulk stacking 
(b) Profile view: 

Fe3+ A (tet) Fe2.5+ B (oct) O2- Mg2+ 
 

Figure  1.15 –  (a) The APB shifts formed according to the different translational 

and rotational symmetry of the initial Fe3O4 monolayer and the MgO(100) surface 

(modified from Eerenstein138). Fe3O4 monolayers are shifted relative to reference 

(i), forming in-plane shifts of (ii) ½[100] (iii) ¼[110]. A rotated monolayer, (iv), 
forms an out-of plane shift. (b) Side profile of an Fe3O4 APB in the 110 direction 

on MgO(100) modified from Arras et al.130 

The magnetic coupling over a large fraction of these boundaries is anti-

ferromagnetic (AF). These AF interfaces hinder spin-polarised electron transport 
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between neighbouring APBs, which is the cause of the increased resistance relative 

to the bulk. However, when a magnetic field is applied, the AF spins align and the 

electron transport across the boundaries increases, resulting in a decrease in 

resistance142. As crystallographic defects, APBs can be imaged by dark field and 

high-resolution transmission electron microscopy. It has been demonstrated that the 

density of APBs is dependent upon the film thickness, as shown the dark field 

electron micrographs in Figure  1.16 (a)-(d)134. The dark lines in these figures show 

the APBs, the density of which is largest for thin-films. 

 

Figure  1.16 – Dark field transmission electron micrographs of APBs from within 

(a) 6 nm, (b) 12 nm, (c) 25 nm and (d) 50 nm thick films of Fe3O4/MgO(100) – 

taken from134 

Experiments have also been carried out to modify the density of the APBs by 

annealing samples143, 144. The density of the APBs decreased dramatically with 

increasing temperature, having a great impact upon the magnetoresistance. The 

density of the APBs determines the magnitude of the magnetoresistance, and 

therefore the greater the number (and density) of APBs, the higher the 

magnetoresistance145, 146. 
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These results all show that the magnetoresistance of magnetite strongly correlates 

to the thickness and structure of the material128, 147, with APB density heavily 

dominating properties131, 132, 145, 148. Despite this relationship, most studies have 

focussed on the MgO(100) surface, with very little work being conducted on the 

MgO(110) and MgO(111) surfaces. This thesis will therefore examine these 

materials using thin-film and surface science methods in order to determine the 

effect of the substrate upon the magnetoresistance. Crucially, magneto-optical non-

contact methods will be employed and developed in order to examine these effects. 

Simulations will also be performed to aid in the interpretation of results. 

 

1.5 Combinatorial methods 
The development of materials typically proceeds via trial and error methodologies, 

where many similar compounds are both prepared and also characterised 

individually. An alternative procedure for the simultaneous preparation and 

characterisation of large numbers of inorganic compounds was first proposed by 

Hanak in 19704. 

An analogous approach has long been adopted for drug discovery in 

pharmaceutical research. This method is known as ‘Combinatorial Chemistry’149, 

150 and is frequently being adapted for the rapid synthesis and in-situ 

characterisation of materials150, 151. This approach is often also referred to as 

parallel synthesis or high-throughput synthesis152, 153. Materials which have been 

investigated using this combinatorial approach154, include, but are not limited to, 

catalysts153, 155-157, optical158, 159,  magnetic152, 160,  and dielectric160, 161 materials,  

hydrogen storage materials162, 163 and structural polymers154. This thesis will add to 

this research area through the development of a combinatorial sputtering rig for the 

rapid preparation of vast arrays of materials for heterogeneous catalysis and 

magnetic materials for spintronics. 

 

1.6 Thesis Aims 
As this introduction has highlighted, the preparation and optimisation of advanced 

functional materials presents a huge challenge for chemists, physicists and 
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materials scientists. Such systems are often very complex and therefore require 

empirical trial-and-error methods involving the synthesis and characterisation of a 

large number of materials with varying compositions. It has also been shown that 

surface science techniques involving model single crystals and/or thin-films allow 

the mechanisms of a wide variety of chemical and physical phenomena to be 

probed with a great deal of precision and accuracy, giving molecular or even 

atomic level insight. 

The aim of this thesis is utilise such surface science techniques in order to prepare 

and characterise model thin-film materials for the mechanistic study of 

heterogeneous catalysis and spintronics. To this end, the reaction pathway for the 

selective oxidation of crotyl alcohol, an important fine chemical, over Au/Pd thin-

films will be determined. This will involve the preparation and catalytic 

characterisation of a large number of Au/Pd alloy compositions. Powerful surface 

science techniques will be employed to elucidate the reaction pathway and examine 

the adsorption and chemistry of all by-products. Once the chemistry of such films 

is known, it would then be possible, through the development of a combinatorial 

sputtering rig, to prepare vast libraries of catalysts through co-sputtering Au and Pd 

onto Si (100) substrates. The catalytic activities of such catalysts could then be 

rapidly screened by means of infrared thermography, enabling the alloy 

composition with optimum activity to be determined. Similarly, magnetic materials 

could also be investigated in the same manner, using well characterised exemplar 

materials to highlight the potential and wide range of applications for combinatorial 

methods. 

Thin-films of magnetite (Fe3O4) will be prepared on various substrates and their 

magnetoresistive properties characterised. Magneto-optical methods will be 

developed, which will allow the non-contact study of both the composition and the 

magnetoresistive properties. By modelling the complex index of refraction, it will 

also be possible to probe the thickness dependent magnetoresistance and eventually 

probe different conductivity mechanisms exhibiting characteristic spectral 

dependences. As a result, this model could also be used determine sample 

thickness. Further work could be carried out in the future in order to adapt such 

simple systems for use for other oxide materials, such as those for spin injection in 

thin-film spintronic devices. 
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Chapter 2  

Experimental 
 

A short introduction to the in-situ and ex-situ techniques used to obtain data for this 

thesis is provided in this chapter. 

 

 

2.1 Ultra High Vacuum (UHV) Equipment 

Ultra High Vacuum (UHV) equipment is crucial not only to preparing thin film 

materials, but also for studying their surface properties. An outline of the UHV 

equipment and techniques used will be detailed in the following section.  

 

2.1.1 UHV Single Crystal Chamber 

A UHV chamber was employed for mechanistic studies of crotyl alcohol selox 

over ultra-thin Au on Pd(111) model surfaces. The design of the chamber was 

based upon a 300 mm (12") spherical stainless steel chamber available 

commercially from Vacuum Generators (VG). A simplified diagram of this 

chamber is shown in Figure  2.1, and a colour photograph in Figure  2.2. The 

chamber typically operated at a base pressure of < 1 × 10-10 Torr. This pressure was 

achieved through the use of a Pfeiffer Turbomolecular pump, backed by an 

Edwards 8 rotary pump. In addition, a three filament titanium sublimation pump (2 

mm titanium filaments at ~ 50 A) was used for short periods overnight to remove 

hydrogen from the chamber and was placed on a side arm to negate the possibly of 

Ti sublimation onto the crystal itself. 
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Figure  2.1 – Diagram of the Ultra High Vacuum Chamber 

A freely (x, y and z) rotatable manipulator was employed to hold a Pd(111) crystal 

in the centre of the chamber. The mounting of this crystal is described in more 

detail later in section  2.1.1.2. The manipulator head was differentially pumped by a 

Leybold Turbovac 151 turbomolecular pump to ensure a closed system. 

 

A VG 300 amu quadrupole mass spectrometer (MS) was employed for observing 

species desorbing from the surface of the crystal during Temperature Desorption 

Spectroscopy (TDS) studies, further details of which will be described later in 

section  2.3. The spectrometer was mounted on a linear drive arm (500 mm travel) 

allowing it to be held approximately 2 mm away from (and perpendicular to) the 

crystal during operation. The quadrupole was housed in a custom stainless steel 

cone, to avoid detection of species from the chamber background. The secondary 

electron multiplier (SEM) was set at 2.8 kV for all TDS experiments. 
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The main chamber was equipped with an Omicron SpectraView 4-grid rear view 

Retarding Field Analyser (RFA) combining Low Energy Electron Diffraction 

(LEED, see section  2.5.1) and Auger Electron Spectroscopy (AES, see section 

 2.2.2).  An incident beam energy of 1.8 keV was used for each AES spectra. It 

featured an internal retraction mechanism, to allow greater space for sample 

movement. 

 
Figure  2.2 – A photograph of the UHV chamber used for mechanistic studies of 

crotyl alcohol selox over model Au/Pd(111) surfaces 

Sample cleaning was achieved by using a VG AGS2 ion gun attached to the 

chamber at 45 degrees to the mass spectrometer and LEED/AES. A 1 – 3 × 10-6 

Torr pressure of background Ar (Air Liquide 99.999%) was accelerated using a 

high voltage (1.6 kV). Crystal currents of approximately 3 – 5 µA were generated 

and monitored via a digital multi-meter. 

 

Surface bound carbon was removed by performing an ‘oxygen roast’, in which the 

crystal was heated to 800 K in 1 × 10-7 Torr of oxygen for approximately 10 mins. 

Carbon and hydrocarbon deposits present on the surface react with O2 forming 

Manipulator 

LEED/AES 

300 amu MS 

Ion Gun 

Ti sub. pump 

Leak valve 
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CO/CO2, which readily desorb. After the 10 minute period, the crystal was then 

cooled to room temperature in the same pressure of O2. A Temperature 

Programmed Desorption (TPD) was then carried out in order to check for CO/CO2 

desorption. As a C-free surface exhibits no CO or CO2 desorption when exposed to 

O2 near room temperature1, 2, the roast and desorption cycle was repeated, until no 

CO or CO2 was observed in the TPD. 

Ultra-thin films of Au were deposited onto the Pd(111) crystal surface at room 

temperature through the use of an EFM3 Omicron/Focus electron bombardment 

evaporation source with integral flux monitor. The growth mode and 

characterization of such films has been described in detail elsewhere3-5. Typical Au 

growth rates were 10 min ML-1, (1 ML is defined as 1.5 × 1015 atoms cm-2). 

 

2.1.1.1 Manifold and adsorbates 

All adsorbates were background dosed into the UHV chamber through high 

pressure leak valves, connected to a dosing manifold by ¼ inch Swagelok. All 

gaseous samples were dosed as received after evacuation of the manifold, either by 

an Edwards 5 rotary pump down to ~ 8 × 10-3 Torr, or alternatively by a Leybold 

Turbovac 151, capable of attaining pressures of ~ 5 × 10-4 Torr. All liquid samples 

were purified by a minimum of three freeze-pump-thaw cycles until mass 

spectrometry showed the resulting vapours to be contaminant free. Quoted 

exposures are given in Langmuirs (1 L = 1 × 10-6 Torr s-1) and are uncorrected for 

ion gauge sensitivity. The purity and origin of adsorbates used in both the 

preparation of clean crystal surfaces as well as the adsorbates investigated in this 

work are summarised in Table  2.1. 

 

Adsorbate Purity / % Supplier 

Argon 99.999 Air Liquide 

Oxygen 99.998 Air Liquide 

Carbon Monoxide 99+ Sigma Aldrich 

Propene 99.99 Air Liquide 

Crotyl Alcohol 99 Sigma Aldrich 

Crotonaldehyde 99 Sigma Aldrich 

Table  2.1 – Gases and adsorbates used in the system 
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2.1.1.2 Pd crystal mounting 

A high purity (99.9999%) Pd single crystal (2 mm × 10 mm) with a polished (111) 

front face was employed for temperature programmed desorption/reaction (TPD/R) 

studies. This was mounted via four 0.25 mm Ta heating wires, threaded through 

holes in the crystal edge, spot-welded onto two 1.5 mm Ta support rods and thus 

onto the previously described X-Y-Z sample manipulator. 

 

A crystal temperature could be measured between 80 and 1000 K using a 0.15 mm 

K-Type Chromel-Alumel (T1/T2) thermocouple, spot-welded to the crystal edge. 

The sample could be resistively heated by applying an electric current of up to 12 

A across the Ta heating wires from external insulating ceramic feed-throughs. 

Sample cooling (to ~ 90 K) was possible by filling the hollow Cu central reservoir 

of the rotatable manipulator with liquid nitrogen. A simplified schematic of the 

crystal mounting is shown in Figure  2.3. 
 Heating wires 

Spot Welded 
Thermocouple 

Ta wires 
Pd (111) 

Ceramic 
Washers 

Ceramic 
Feedthrough 

N2(l) 

Thermocouple
wires 

 
Figure  2.3 – Single crystal sample mounting for TDS experiments 
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For temperature programmed XP experiments (carried out at the ELETTRA 

synchrotron, SuperESCA beam-line, see section  2.4 for more details) the Pd(111) 

single crystal was clamped to the UHV chamber manipulator. For such XP 

experiments, the crystal was cleaned using the exact sample procedure as described 

in section  2.1.1, except that the cleanliness of the crystal was monitored using XPS 

taken of the C 1s (282 – 288 eV) region, thereby observing any residual surface 

carbon. As with TPD studies, sample cooling could be achieved by filling the 

hollow stainless steel central reservoir of the rotatable manipulator with liquid 

nitrogen. Heating was achieved by electron bombardment of the back of the sample 

holder. 

 

2.1.2 Molecular Beam Epitaxy (MBE) 

Molecular Beam Epitaxy (MBE) was utilised to prepare thin films of magnetite 

(Fe3O4) on different orientations of MgO substrates. Two chambers were utilised 

for the preparation of such films. A chamber at Northeastern University in Boston, 

USA was used in order to prepare thin films of Fe3O4 / MgO (111). Subsequent to 

this, a chamber at York was modified in order to prepare magnetite on different 

substrates. 

 

The Northeastern MBE system consisted of two interconnected, custom-built UHV 

chambers: one for analysis and the other for growth (both of which are shown in a 

colour photograph - Figure  2.4). All samples were loaded through a small load 

lock chamber attached directly to the analysis chamber but separated by a UHV-

compatible manual gate valve. The load lock chamber was independently pumped 

by a Leybold Turbovac 50 turbomolecular pump, able to achieve a base pressure of 

~ 5 × 10-7
 Torr. Samples were transferred into the analysis chamber onto a 

manipulation stage (with x, y, z, and θ�movement) by using a magnetic linear 

transfer arm. 

The analysis chamber was pumped by a Varian 500181B ion pump, which 

maintained a background pressure of ~ 2 × 10-9
 Torr, in use to minimise vibrational 

noise during XPS and AES characterization. The analysis chamber was equipped 

with AES, XPS, and an Ar ion gun. The analysis chamber was connected to 

another UHV growth chamber, separated by a UHV manual gate valve. Another 
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magnetic linear transfer arm was used for sample transfer between the growth and 

analysis chambers. 

 

Figure  2.4 - A photograph of the Northeastern MBE system used for the 

preparation of thin films of Fe3O4 on MgO 

The growth chamber maintained a base pressure of ~ 2 × 10-9
 Torr by means of a 

Leybold Turbovac 600C turbomolecular pump and a Leybold Trivac D25B rotary 

vane roughing pump. This chamber was equipped with a Veeco high temperature 

effusion cell which was used for the evaporation of Fe (99.999%, Sigma-Aldrich), 

an Oxford Applied Research HD25 remote oxygen RF-plasma source, and a Staib 

RH15 RHEED system. A custom built Mo ‘puck’ substrate heater could be moved 

in and out (z movement) as well as rotate (θ�rotation). The heater was capable of 

heating the substrate from room temperature up to 1173 K, as measured by a type 

C thermocouple in direct contact to the Mo ‘puck’. A more accurate temperature 

measurement was performed using a two-color optical pyrometer, which typically 

read 50 – 75 K below the thermocouple reading.  
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Thin films of magnetite were prepared on MgO (111), by the following procedure. 

Atomic oxygen was first introduced into the chamber through the use of the RF 

plasma source. A pressure of oxygen was introduced into the chamber (~1 × 10-6 

Torr) and ionised using an RF power of ~ 100 W. An Fe growth rate of 0.07 – 0.08 

Å min-1 was achieved by heating Fe in the effusion cell to 1553 K. 

 

The York MBE system was designed by Balzers. A schematic representation of the 

York MBE chamber is displayed in Figure  2.5, and a colour photograph of the 

system is also shown in Figure  2.6. The chamber base pressure of ~ 8 × 10-10 Torr 

was achieved through the use of a Varian turbomolecular pump, backed by an 

Edwards 8 rotary pump. A cryogenic pump in the form of a nitrogen cold trap was 

also used during experiments to aid in obtaining the optimum base pressure. 

Gases and/or vapours condense on the surface of the cold trap thereby decreasing 

the overall chamber pressure. This trap was constructed out of copper tubing and 

liquid nitrogen forced through the trap by a compressed air line. In addition, a three 

filament titanium sublimation pump (2 mm titanium filaments at ~ 50 A) was used 

for short periods overnight to remove hydrogen and other contaminants from the 

chamber. To avoid deposition on the unwanted surfaces, the Ti filaments were 

placed at the bottom of the chamber. 
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Figure  2.5 – A diagram of the York MBE system 

A modified VSW freely (x, y and z) rotatable manipulator was employed to hold a 

single crystal substrate contained in a modified Omicron sample plate in the centre 

of the chamber. The manipulator head was differentially pumped by an Edwards 8 

rotary pump to ensure a closed system. The loading of sample plates into the main 

chamber was achieved by a sample exchange arm, housed in a separate chamber 

and isolated from the main chamber by a gate valve. The pumping of this exchange 

arm section was carried out by a small Pfeiffer turbomolecular pump and Edwards 

5 rotary pump, achieving a base pressure of ~ 1 × 10-7 Torr. 

 

The York MBE chamber also housed two 0.25 cm (1") water cooled hearth 

evaporation sources at the base of the chamber with an independent shutter. 

Evaporation of source material(s) placed in the hearths was possible by means of 



48 
 

electron bombardment heating. In addition to this in-built hearth source, several 

small UHV custom made evaporation sources could be mounted on 2 ¾" flanges 

on the side of the chamber. 

 

The deposition rate and overall thickness was estimated by means of a Sycon STM-

100 MF quartz crystal microbalance (QCM) rate meter. This device measures the 

mass per unit area by measuring the change in frequency of a quartz 

crystal resonator. The resonance is shifted by the addition or removal of a small 

mass due to oxide growth/decay or film deposition at the surface of the resonator. 

 

The chamber was also equipped with an Omicron Reflectance High Energy 

Electron Diffraction (RHEED) electron gun and phosphorescent screen (see section 

 2.5.2 for more details). It featured an internal screening mechanism, to avoid thin 

film deposition on the phosphor screen. 

 
Figure  2.6 - A photograph of the York MBE system used for the preparation of 

thin films of Fe3O4 on MgO 

The chamber also contained a MANTIS RF atom source for the formation of 

radical oxygen. The RF forward/reflected power could be tuned by means of dual 

Manipulator 

RHEED
screen 

Transfer arm 
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capacitors in order to maintain a stable plasma. As with the source on the 

Northeastern MBE, the plasma was generated within an Al2O3 discharge tube and 

exited the source through an Al2O3 aperture plate. This aperture initially contained 

5 × 0.2 mm diameter holes in order to restrict the flow of oxygen into the chamber. 

The size, quantity, and dispersion of the holes therefore determine the pressure at 

which a stable plasma can be obtained.  Initially the source had a plate which had 

37 holes, which resulted in a pressure range too high for magnetite growth. As a 

result, a new aperture plate was made in order to obtain a plasma at a lower oxygen 

pressure. The source was also equipped with ion filter bias plates that were located 

at the top of the discharge tube. These parallel plates were aligned parallel to the 

flow of oxygen. By supplying a high voltage bias between the two plates, any 

charged oxygen species could be deflected, meaning that only neutral species with 

lower kinetic energy were involved in film growth.  

 

A great deal of work was carried out in order to calibrate the source and obtain the 

correct phase of iron oxide during growth. To this end, a calibration matrix was 

prepared by growing numerous samples at various different growth rates, plasma 

powers and oxygen partial pressures. Samples were analysed using vibrating 

sample magnetometry (see section  2.6.1) four-point probe magnetoresistance (see 

section  2.6.2), infra-red techniques (see section  2.6.3), and transmission electron 

microscopy (see section  2.5.3). In this way, the stoichiometry, structure and 

thickness of the films could be obtained, by which the conditions required to grow 

magnetite could be determined. 

 

The plasma source was typically operated at a pressure of 2 × 10-5 mbar and with a 

plasma power of 200 W. Substrates were first prepared and cleaned by in-situ 

annealing to ~ 1073 K in the presence of atomic oxygen and then held at a 

temperature of ~ 523 K during deposition in order to promote epitaxial growth of 

Fe3O4. Whilst maintaining the same flux of atomic oxygen, Fe was then evaporated 

at a rate of ~ 0.1 Å s-1 allowing thin films of magnetite to be prepared.  

 

2.1.3 Metastable De-excitation Spectroscopy (MDS) 

Metastable De-excitation Spectroscopy (MDS) is a technique that probes the 

surface electronic structure of a material using metastable atoms6 (in the case of 
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this work He 23S). When the orbitals of metastable atoms overlap with those of a 

target atom or molecule; de-excitation of the metastable atom occurs, a process 

dependent on the work function of the target. As the metastable atoms only interact 

with the surface of a material, the technique allows an electron energy spectrum to 

be obtained that is characteristic of the surface electronic structure. For more 

information on this technique, see chapter 5. 

 

2.1.4 Combinatorial sputtering rig 

A custom built high vacuum chamber was designed in order to co-sputter materials 

to prepare thin films with a composition gradient across the substrate. In this 

manner, an infinite library of thin film catalysts could be prepared in a single 

experiment. A simple schematic of this chamber is shown in Figure  2.7. A base 

pressure of ~ 1 × 10-6 Torr was achieved through pumping the chamber by a Varian 

turbomolecular pump and an Edwards 12 rotary pump. 

 

Sputtering 
    guns  
 

Reactive gases 

To Turbo 
pump 

Si substrate 

IR 
transparent  

window 

IR 
camera 

 
Figure  2.7 – A simple diagram of the combinatorial sputtering rig 

The chamber consists of two sections, the main chamber and reaction chamber, 

separated by a gate valve. The main chamber houses four Kurt J. Lesker 25.4 mm 

(1") Torus sputter guns, housing different sputtering targets (e.g. Cu, Au, Ag, Co 

etc), which could all be used simultaneously. By introducing a pressure of He (of 
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the order of tens of mTorr), and applying a high voltage across each gun, a 

magnetically confined plasma could be created in order to sputter the target 

material. The gun angle, gun power and chamber pressure were all altered 

independently, and for each case, several thick (~ 100 nm) films of Cu grown onto 

Si (100). The thickness across the substrate for each of the corresponding films 

could be measured using a Rank Taylor Hobson Talystep 1, and the varying 

chemical composition determined by Horiba Jobin Yvon XGT-7000 micro X-ray 

Fluorescence measurements. In this way, a calibration matrix could be prepared, 

which provided that the relative sputtering rate for each target was known, a 

sample with a desired thickness and composition could be grown. 

 

Bi-metallic thin-film model catalyst libraries could then be prepared with a desired 

composition and thickness by co-sputtering. These libraries could then be 

introduced into the attached reaction chamber via a transfer mechanism. In this 

chamber, reactive gases could be introduced and the catalytic activity of the library 

rapidly screened by means of infrared thermography. An infrared camera could be 

placed directly above the substrate, and the temperature accurately measured across 

the sample during the course of a reaction via an infrared transparent window at the 

top of the chamber. For exothermic reactions, the most active catalyst composition 

could be determined by means of the ‘hottest spot’ on the surface. Conversely for 

endothermic reactions, this would correspond to a ‘cold spot’ on the film surface.   

 

 

2.2 Composition Analysis 

The chemical composition and reactivity of thin-film surfaces were determined 

using a variety of techniques, which are briefly outlined in the following section. 

 

2.2.1 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) also referred to as Electron Spectroscopy 

for Chemical Analysis (ESCA), is a technique which allows surface elemental 

analysis and characterisation of differing chemical environments. This technique 

affords the measurement of chemical composition and characterisation of active 

and decomposed species on the surface of a sample. Monochromatic X-rays are 

fired at the sample; these photons excite and emit core level electrons from atoms 
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in the surface, and the binding energy of these electrons is characteristic of the 

element from which they are emitted7, 8. The binding energy can be calculated by 

measuring the kinetic energy of escape, according to the following relationship: 

 

EB = hν – Ekin – Φ    Equation  2.1  
 

Where EB is the electron binding energy, hν is the photon energy, Ekin is the 

measured kinetic energy of the photoelectron, and Φ is the workfunction. A 

schematic representation of photoionisation is shown in Figure  2.8. 
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Figure  2.8 – Schematic representation of photoionisation 

The Ekin of the emitted photoelectrons from the surface is measured by a 

hemispherical analyser (HSA). Electrostatic fields within the HSA are established 

to only allow electrons of a certain energy to arrive at the detection slits. A simple 

schematic of an XPS setup, showing the energy analyser is shown in Figure  2.9. 
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Figure  2.9 – A simple diagram of a typical XPS experiment of a Pd(111) surface 

Depending on the orbital being probed, the peak may be split by spin orbit coupling 

into a doublet with a separation characteristic of the element. For quantum number 

l > 0 (p, d and f orbitals), the total angular momentum j for each state is the sum of 

the spin angular momentum s, and the orbital momentum l. As the spin of the 

electron can be up or down, s can have a value of ± ½, leading to two j values. The 

ratio of the occupancy of these two states is fixed by the multiplicity of the states 

equal to 2j + 1.  Therefore, for elements containing 3d orbitals, such as Pd, orbitals 

where l = 2, the two j values are therefore 5/2 and 3/2, leading to two peaks with a 

3:2 ratio in area. For elements containing 2p orbitals, such as iron, l = 1, the two j 

values are 3/2 and 1/2 leading to two peaks with a 2:1 ratio in area. The Full Width 

Half Maximum (FWHM) and lineshape are the same for both of the peaks. Probing 

the d-electrons such as in Pd leads to a characteristic asymmetric line broadening 

towards higher binding energy. This is due to ‘shake-up’ of the valence band 

electrons. This is a multielectron process, whereby an atom is left in an excited 

state following photoionisation, with the outgoing electron therefore having a EK 

less than that of the parent photoelectron. 

 

Small variations in binding energy arising from different chemical environments 

can be detected and quantified by peak fitting. These shifts can be up to 3 – 4 eV 

and can be due to either initial or final state effects. Binding energies as well as 

doublet splittings are readily available on the NIST photoelectron spectroscopy 

database9. 
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Initial state effects are due to the charge on the atom being probed. For example, 

electron deficient PdO has a Pd 3d5/2 binding energy about 2 eV higher than its 

metallic counterpart. This effect also scales with orbital energy, meaning that the 

higher the energy of the orbital from which an electron is photoionised, the larger 

the effect upon the binding energy. Therefore it is advantageous to probe the outer 

shells for greatest resolution of different oxidation states. 

 

Final state effects occur after photoemission, and are far more subtle than initial 

state effects. They include any combination of core-hole screening, orbital 

relaxation and polarisation; features already observed in palladium systems10, 11. In 

a bulk solid like Pd metal, a core-hole generated by photoemission is shielded by 

neighbouring atoms. With decreasing cluster size, the probed atom becomes 

increasingly co-ordinately unsaturated. With fewer neighbouring atoms to screen 

the generated core-hole, the energy needed to eject the electron is increased, 

typically by about 1 eV. 

 

Spectral fitting was performed using CasaXPS version 2.3.5, with a common 

lineshape based on a Gaussian/Lorentzian (50:50) mix, as well as asymmetry based 

on a Donaich-Sunjic12 mix of 0.005 with a FWHM of 2.56 eV adopted for all Pd 

components. 

 

2.2.2 Auger Electron Spectroscopy (AES) 

Auger Electron Spectroscopy (AES) is analogous to XPS, in that it is a surface 

sensitive technique for the characterization of surface elemental composition. 

Auger emission occurs in an atom after a core electron is removed, either by an 

incident photon or electron of sufficient energy, resulting in an electron hole in the 

core shell13. An electron from an outer orbital may then drop down in order to fill 

this core shell hole. The energy released by this process is passed onto another less 

tightly bound electron, which may, if the energy is sufficient, be liberated into the 

vacuum14. This process is shown below in Figure  2.10. 
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Figure  2.10 – Auger emission due to ionisation by an incident electron or photon 

 

These electrons may originate from depths of typically a few angstroms, giving 

great surface sensitivity15. The energy of the ejected Auger electron may therefore 

be obtained by the following expression: 

Ekin ~ EK – EL1 – EL2,3    Equation  2.2 

This phenomenon can be exploited to obtain the elemental composition of a 

sample, as the energies of the ejected Auger electrons are characteristic13, 16. 

 

2.2.3 Ultraviolet Photoemission Spectroscopy (UPS) 

Ultraviolet Photoemission Spectroscopy (UPS) is a method of probing the occupied 

density of states (DOS) of the near surface of a material7. UV photons are created 

in a continuous discharge source through the application of a high voltage through 

a portion of helium gas. These UV photons are then targeted onto the sample under 

investigation.  

 

As with XPS (see section  2.2.1), the UV photons liberate electrons into the 

vacuum, due to the photoelectric effect (as depicted in Figure  2.8). The kinetic 

energy of the emitted electrons is detected using a hemispherical analyser (HSA). 

Such photons may penetrate several nanometers into the surface, and as such some 
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bulk states as well as the surface electronic states will be probed. As a result, the 

escape depth of the electron involved is of importance. 

 

For the York UPS system, photons are generated by the He I α transition which 

have an energy of 21.22 eV (λ = 58.43 nm). This is at an energy close to that of the 

23S metastable He state used in MDS (see section  2.1.3), and as a result it is a very 

useful complementary technique to MDS. 

 

2.3 Thermal Desorption Spectroscopy (TDS) 

Thermal Desorption Spectroscopy (TDS) is used to monitor reversibly bound 

reactants as well as reactively formed products desorbing from a crystal surface. By 

monitoring these desorbing species, important information on the strength of lateral 

adatom interactions, the activation enthalpy for desorption and the relative surface 

coverage of an adsorbate can be obtained17. A quadrupole mass spectrometer is 

positioned to within 2 mm of the sample surface under UHV conditions. The 

sample is then rapidly heated from a low temperature (~120 K) and a quadrupole 

mass spectrometer combined with electron multiplier filter detects species which 

desorb from the surface. A heated filament causes ionisation of the desorbed 

molecules, which are then accelerated into the quadrupole detector with a potential 

difference. Through a combined series of variable A.C. and D.C. voltages applied 

to the quadrupole detector, only ions with a specific mass reach the electron 

multiplier, where they are subsequently identified. 

A thermocouple attached to the single crystal records accurate temperatures. A plot 

of the temperature versus the various mass fragments is known as a TPD/R 

spectrum. This provides information about the type of species formed at a surface, 

the nature of the surface intermediates produced from chemical reactions and, 

importantly, fundamental kinetic data regarding their formation and desorption. A 

typical quadrupole mass spectrometer is capable of simultaneously sampling up to 

16 different mass fragments in the range of 0 – 300 atomic mass units at 

sufficiently fast scan rates (< 0.2 s scan-1). TPD/TPR spectra were acquired using 

the system described in section  2.1.1, using a VG 300 amu quadrupole mass 

spectrometer, with a heating rate of ~ 10 K s-1. 
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2.4 Temperature Programmed XP studies 

Temperature programmed XPS involves the sample principles as standard XPS, as 

discussed in section  2.2.1. Ordinarily, synchrotron radiation is not required in order 

to perform XPS14, but it is essential for temperature programmed studies18-21, which 

require fast spectral acquisition (seconds as opposed to minutes). Third-generation 

synchrotrons afford a very high photon flux, along with the use of advanced 

double-pass hemispherical analysers, both of which allow XPS spectra to be 

acquired rapidly. A smaller x-ray line width also affords superior signal to noise as 

well as high spectral resolution. 

Adsorbates are typically dosed onto the crystal surface at low temperature (~ 100 

K) and then monitored by XPS. This gives information regarding the nature of the 

adsorbate binding, and also allows measurement of the adsorbate surface coverage. 

The thermal chemistry of the adsorbates is then monitored by increasing the 

temperature of the metal surface whilst also acquiring ‘fast’ XP spectra. This 

technique therefore allows qualitative identification of the surface intermediates in 

real time, which therefore greatly aids elucidation of the reaction pathway of the 

adsorbate over catalytically relevant metal surfaces22. 

XPS measurements were carried out at the SuperESCA beamline of the ELETTRA 

synchrotron in Trieste, Italy. The Pd(111) crystal was mounted, prepared and 

cleaned by standard procedure (as described in sections  2.1.1 and  2.1.1.2) and 

maintained in UHV (~ 1 × 10-10 Torr). Quoted exposures are given in Langmuirs 

and are uncorrected for ion gauge sensitivity. The crystal was held at ~ 90 K whilst 

dosing. 

C 1s XP spectra were acquired at a photon energy of 400 eV and energy referenced 

to the Fermi level. The limiting spectral resolution was ~ 150 meV. Individual 

spectra were acquired approximately every 30 seconds during Fast XP 

measurements and Shirley background subtracted over the entire elemental region. 

Temperature programmed XP spectra were acquired by application of a linear 

heating rate (~ 0.4 K s-1) to the exposed sample. Spectra were fitted using CasaXPS 

version 2.3.5 using the minimum number of peaks required in order to minimise 

the R factor. A common lineshape derived from graphitic carbon was employed for 

all C 1s components, based on a Gaussia/Lorentzian (70:30) mix, with a common 
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FWHM of 0.58 eV. Coverages are defined in terms of monolayers 

(adsorbates/surface Pd atom) with 1 ML = 1.5 x 1015 atoms. Absolute carbon 

coverages were determined by calibration with CO which has a saturation value of 

0.75 ML on Pd(111) at 100 K23, 24. Temperature programmed reaction spectra were 

also acquired in a separate system (described in section  2.1.1), to examine 

desorbing species, using a VG 300 amu quadrupole mass spectrometer, with a 

heating rate of ~ 10 K s-1, to complement the XP studies and complete the 

elucidation of the reaction pathway. 

 

2.5 Structural Analysis 

The structure of thin-films was characterised using the following techniques, either 

in-situ (in UHV) for Low Energy Electron Diffraction and Reflectance High 

Energy Electron Diffraction, or ex-situ using Transmission Electron Microscopy. 

 

2.5.1 Low Energy Electron Diffraction (LEED) 

LEED is a technique which is used to obtain detailed information of the crystal 

structure of a surface. It was first employed by researchers in 1927, who were 

demonstrating the wave-like nature of electrons25. Low energy electrons do not 

penetrate far into the surface of a material, meaning that they are an ideal surface 

structural probe16. Indeed, it is possible to examine the atomic arrangement of 

atoms making up the first 5 to 20 Å of a metal surface26. Due to the high surface 

sensitivity of the technique, a well-ordered, clean surface is necessary. 

UHV pressures are needed due to the extreme surface sensitivity of LEED to 

changes in the surface structure or long-range order.  The low energy electrons (20 

– 500 eV) employed have a short elastic mean free path of approximately 2 mm at 

atmospheric pressure. These electrons are fired at the crystal surface, where they 

will be diffracted by the crystal structure and a small proportion will be 

backscattered. Such electrons then pass through a series of retarding grids at 

varying potentials which are employed to selectively allow only elastically 

backscattered electrons through and are detected on a phosphor detection screen. 

In terms of the interference pattern obtained, the arrangement of maxima 

corresponds to the reciprocal lattice of the surface. Regularly ordered surfaces or 
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adsorbates produce regular diffraction spots which can be used to deduce the 2D 

structure of the surface, although the interpretation can be very difficult. Due to the 

high surface sensitivity of the technique, slight surface disorder causes diffuse 

patterns, but due to the large analysis area (mm scale) information on the partial 

ordering of surface atoms can still be obtained. 

 

2.5.2 Reflection High Energy Electron Diffraction (RHEED) 

As detailed above, LEED utilises the inherent surface sensitivity associated with 

low energy electrons in order to sample the surface structure of a material. As the 

primary electron energy is increased the surface sensitivity decreases, and the 

forward scattering also becomes much more important. Therefore, in order to 

extract surface structural information from the diffraction of high energy electrons, 

a reflection geometry can be utilised, in which the electron beam is incident at a 

grazing angle; a technique referred to as Reflection High Energy Electron 

Diffraction (RHEED).  

This technique is commonly used to measure the surface crystallography in an 

MBE experiment, as glancing angle geometry has several practical advantages over 

LEED, namely being the ease of access around a sample16.  As RHEED does not 

rely on back-scattered electrons it also has the added advantage that it can be 

conducted through a wide variety of angles, allowing the beam to be aligned along 

specific crystallographic directions on the surface. However, the angle at which the 

electrons intersect the crystal lattice (the azimuthal angle) affects both the geometry 

and intensity of patterns obtained13. 

In terms of the operation of the technique, a high energy electron beam (3 - 100 

keV) is directed at the sample surface at a grazing angle. The electrons are 

diffracted by the crystal structure of the sample and then impinge on a phosphor 

screen mounted opposite to the electron gun. The resulting diffraction pattern 

formed is a series of streaks. The distance between the streaks is an indication of 

the unit cell size of the surface lattice. If a surface is atomically flat, sharp RHEED 

streaks are observed, whereas a rough surface produces diffuse streaks. Using this 

technique, it is possible to monitor the atomic layer-by-atomic layer growth of 
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epitaxial films by monitoring the distances between streaks and the oscillations in 

the intensity of the RHEED pattern.  

 

2.5.3 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) is a versatile tool in the characterisation 

of materials, as it allows the crystal structure, chemical identity and microstructure 

of a sample to be determined. Due to the small de Broglie wavelength of electrons, 

TEM is capable of imaging at a significantly higher resolution than light 

microscopes. A beam of electrons is passed through an ultra-thin specimen (< 50 

nm), allowing an image to be formed from the interaction of the transmitted 

electrons with the material. The electrons are magnetically focused to a small spot 

on the sample, before being directed onto an imaging device (diffraction screen, 

CCD camera etc).  

In combination with ion milling techniques, TEM allows cross sectional images of 

thin films to be obtained. This not only gives information about the interface 

between the substrate and the film, but also allows determination of the 

microstructure and film thickness.   

Depending upon the microscope and the material under study, atomic resolution is 

possible, provided one can correct for the spherical aberration inherent with 

magnetic lenses. At smaller magnifications TEM image contrast is due to 

absorption of electrons in the material, due to the thickness and composition of the 

material. At higher magnifications complex wave interactions modulate the 

intensity of the image, requiring expert analysis of observed images.  

 

2.6 Magnetic Analysis 

The magnetic properties of thin films were characterised by the following ex-situ 

techniques. 

 

2.6.1 Vibrating Sample Magnetometry (VSM) 

Vibrating Sample Magnetometry (VSM) can be used to probe the magnetic 

properties of thin films. In VSM, samples are placed between two magnetic pole 
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pieces and are physically vibrated sinusoidally, through the use of a piezo-electric 

material, as the uniform external magnetic field is varied. The magnetisation of the 

sample under analysis can be determined at a given field, as the sinusoidal motion 

induces a current in pick-up coils located directly on the magnetic pole pieces. A 

schematic of a simple VSM is shown in Figure  2.11. A lock in amplifier is used to 

measure the induced voltage in the pick up coils, using the piezoelectric as a 

reference signal. In this way, the magnetic properties of samples can be probed and 

a hysteresis curve plotted. 
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Figure  2.11 – A schematic of a simple VSM set-up 

In addition to VSM measurements performed in York described above, 

supplementary measurements were also performed at the University of Leeds. 

 

2.6.2 Magnetoresistive (MR) measurements 

The magnetoresistance (MR) of samples at York was measured using a four-point 

probe technique. Four spring loaded Au coated sharp contacts were brought into 

contact with a sample. A Keithley 236 source measure unit was used to supply a 

direct current and measure the resulting voltage. A General Purpose Interface Bus 

(GPIB) integrated within the Keighley allowed external control and acquisition of 

data by a PC. The two outer pins were used to source a current (I), whereas two 
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central pins measured the voltage through the sample. A simple schematic diagram 

of the apparatus is shown in Figure  2.12. The resistance (R) of the sample was then 

calculated according to Ohm’s law (Equation 2.3). 

 

I
VR =    Equation  2.3 

The voltage (V) was monitored as the magnetic field was sweeped to maximum, 

minimum and then zero field. The resistance of the sample could then be plotted 

against the magnetic field strength (as measured by the hall probe). In this way, the 

field dependent MR of the samples could be demonstrated. 
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Figure  2.12 – A diagram of the apparatus used to measure the magnetoresistance 

of samples 

 

2.6.3 Magnetorefractive Effect (MRE) measurements 

The Magnetorefractive Effect (MRE) is a magneto-optical technique which offers 

the ability to probe magnetotransport properties of materials27-29, whilst also 
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allowing the composition of a sample to be determined. The technique is based 

upon Fourier-transform infrared spectroscopy (FTIR). Spectra can be obtained by 

either reflecting light from or transmitting light through a given thin film sample. 

IR reflectivity spectra of a thin film sample are acquired in the absence and 

presence of a magnetic field. The MRE can be defined mathematically as: 

 

100
R

RR(%)MRE
H

H0 ×
−

=    Equation  2.4 

Where R0 is the IR reflectivity in zero field, and RH is the IR reflectivity in an 

applied magnetic field.  

The infrared spectra were produced using a Nicolet Fourier Transform Infrared 

(FTIR) Spectrometer, in which an infrared light source emitted un-polarised light 

of approximately 2.5 – 25 µm (400 – 4000 cm-1). The IR beam entered a perspex 

box, where it was reflected off an aluminium coated mirror, onto the sample 

attached to a goniometer (movable sample holder), between magnetic pole pieces. 

The perspex box contained hygroscopic crystals and was also coupled to a CO2 

scrubber in order to minimise the contribution of water and carbon dioxide to the 

IR spectra. Two photographs of the set-up are shown in Figure  2.13. 
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Figure  2.13 – Colour photographs of the MRE acquisition setup: (a) A view from 

above the entire setup, (b) A close-up shot of the set-up showing the IR beam (red 

line). 

The reflection of IR light from the sample was incident on another convex 

aluminium coated mirror and into a liquid nitrogen cooled mercury cadmium 

telluride (MCT) detector, which was coupled to the FTIR so a reflection spectrum 

could be produced. The FTIR was controlled via the OMNIC computer 

programme, which was also used to produce the spectra. The goniometer, and 

therefore the sample, was positioned between the pole pieces of a magnet, which 

Perspex box 
Magnet 

FTIR 
spectrometer 

MCT 
detector 

Hygroscopic 
crystals 

(a) 

Magnet 
FTIR 

spectrometer 

Mirror 

Sample on 
goniometer 

IR beam 

(b) 



65 
 

produces fields up to 1.25 T. A simple diagram of the set-up is shown in Figure 

 2.14. 

 
Figure  2.14 - Diagram of a simple MRE setup, showing the reflection (R) and 

transmission (T) of the IR beam off and through the sample 

MRE has the advantage of being a non-contact (and therefore non-destructive) 

method, which, not only allows magnetotransport and compositional information to 

be obtained, but also in theory can be applied to in-situ analysis of samples (e.g. 

within a vacuum chamber). Further information on the theory of this technique will 

be supplied in chapter 7. 
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Chapter 3  

Reactivity of crotyl alcohol over Au/Pd(111) 

surface alloys  

3.1 Introduction 

 

In this chapter, new light will be shed into the selective oxidation of crotyl alcohol 

over Au/Pd catalysts; a particularly promising heterogeneous alternative. 

 

3.1.1 Pd selox deactivation 

Previous work by the York Surface Chemistry and Catalysis group at the ELETTRA 

synchrotron on the oxidative dehydrogenation of crotyl alcohol (CrOH, 

CH3CH=CHCH-OH, 2-buten-1-ol) to crotonaldehyde (CrCHO, CH3CH=CHCHO, 

but-2-enal) over Pd(111), identified secondary decarbonylation reactions as the major 

factor in the deactivation of practical monometallic Pd selox catalysts1. These results 

are exemplified by Figure  3.1, a C 1s temperature programmed XP spectra of a 

saturated crotyl alcohol adlayer over Pd(111). A contour plot of peak intensity is also 

displayed as an inset to the figure. 
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Figure 3.1 - Temperature Programmed X-ray Photoelectron spectra, acquired at the 

ELETTRA synchrotron of the C 1s binding energy region for a saturated crotyl 

alcohol adlayer (adsorbed at 100 K) over Pd(111) – modified from source2 

From Figure  3.1, it can be seen that adsorption of the molecule at 100 K results in 

two distinct XPS peaks in a three to one ratio. The peak centred at ~ 284 eV can 

therefore be attributed to the C=C–C carbon backbone of the molecule, with the peak 

at higher binding energy (~ 285.6 eV) corresponding to the C–OH moiety. This peak 

is shifted in binding energy due to the electro-negativity of the oxygen. 

 

Heating the crotyl alcohol adlayer results in various peak shifts, attributed to the 

formation of different reactively formed species on the Pd(111) surface. Upon heating 

to room temperature, a large shift of approximately + 0.6 eV in binding energy of the 

285.6 eV (C–OH moiety) state is observed, which can be attributed to the formation 

of the aldehyde product on the surface. This shift in binding energy is due to increase 

in bond order to the electro-negative oxygen. This assignment has been confirmed by 

>350 K 

Crotonaldehyde 

C(ads) 
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independently dosing crotonaldehyde at low temperature onto Pd(111) and recording 

XP spectra; which results in two peaks centred around 284 eV and 286.2 eV in a three 

to one ratio.  

 

From the figure, a third peak is also observed when the crotyl alcohol adlayer is 

heated to room temperature. This state exists at higher binding energy (~ 287 eV), 

which can be attributed to CO. The formation of this by-product is due to the rapid 

breakdown of the crotonaldehyde by decarbonylation into propene and carbon 

monoxide. This is further evidenced from the increased intensity of the 284 eV state, 

which is due to the formation of propylidyne fragments on the surface. Ultimately it is 

this secondary decarbonylation reaction that poisons the surface and causes rapid 

deactivation. Further heating results in a single C 1s peak being observed due to the 

formation of a large amount of irreversibly bound graphitic carbon. This coking of the 

surface also prevents any subsequent surface reactions. 

 

3.1.2 Au/Pd systems 

Poor selectivity and/or activity of heterogeneous systems when compared to 

homogeneous counterparts are not uncommon, and often necessitate ad hoc 

promotion by non-noble metals to obtain even modest yields3. This reflects the 

uncertainty in the active site responsible for the oxidative dehydrogenation step, 

which is broadly regarded as the rate-limiting step. 

 

However, bimetallic systems frequently display properties which are significantly 

different from their component metals4, 5. As a result, many of these bimetallic alloys 

show an enhanced catalytic activity, selectivity or stability when compared to their 

monometallic counterparts. In particular, Au/Pd nanoparticulate catalysts have 

displayed improved or even ‘tunable’ properties when compared to pure Au or Pd 

catalysts6-8.  

 

As outlined in chapter 1, numerous investigations have focussed on the catalysis of 

many different reactions by Au/Pd systems. These include the oxidation of glycerol9, 

10, hydrogen peroxide synthesis8, 11, 12, the cyclisation of acetylene to benzene13-15, the 

hydrodechlorinaion of dichlorofluoromethane16, and the enantioselective oxidative 
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dehydrogenation of aliphatic alcohols to ketones17, to name but a few. In the case of 

the work on acetylene cyclisation, the genesis of Pd6Au ensembles reduced 

hydrocarbon decomposition and promoted benzene desorption, in agreement with 

analogous studies on ‘real’ dispersed AuPd colloids18. Recently, various 

computational studies have also been conducted in order to understand the 

composition and reactivity of such systems19, 20. 

 

In particular, there has been significant interest in Pd/Au nanoparticle systems as 

catalysts for selective oxidation reactions21-23. A major breakthrough occurred when 

Hutchings et al24, discovered that by combining Pd and Au over a titania support 25-

fold rate enhancements for alcohol oxidation under mild, solvent-free conditions were 

possible. The introduction of Au also improves selectivities to aldehydes and ketones 

compared to pure Pd.  

 

3.2 Results and Discussion 

3.2.1 Growth of Au on Pd(111) 

Au/Pd(111) surface alloys have been previously characterised in vacuo by AES25-28, 

XPS28, 29, LEED25, 30, LEIS30, 31 and STM26. Epitaxially deposited Au overlayers form 

apparently random substitutional surface alloys upon annealing above 600 K, 

reflecting the small lattice mismatch (~ 4.9 %) and bulk miscibilities of the metal 

components28. It should be noted that recent theoretical analyses for Au/Pd(111) alloy 

surfaces suggest weak repulsion between Au and Pd atoms may drive local ordering19. 

  

3.2.1.1 Au/Pd surface preparation 

As described in chapter 2, Au films were grown on Pd(111) at room temperature 

using a water cooled OMICRON/Focus UHV evaporator, with integral flux monitor. 

Whilst the growth mode of Au on Pd(111) and thermal alloying is well described in 

literature17, 25, 27, 28, 30, it was necessary to briefly replicate the results of Tysoe’s 

group28 in order to ensure correct operation of the evaporator and uniform coverage of 

the Pd substrate. The growth of Au on Pd(111) was examined by monitoring the Au 

4f7/2 and Pd 3d5/2 XPS signals. The change in the intensity of these signals during Au 

growth is shown below in Figure 3.2. 
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Figure 3.2 – The variation in intensity of Au 4f7/2 and Pd 3d5/2 XPS signals with 

increasing Au deposition time 

 

Assuming uniform epitaxial growth of a Au overlayer deposited on Pd(111), the 

thickness of such thin-films can be determined by examining the attenuation of the 

intensity of the Pd 3d peak. The relationship between the Pd 3d attenuation and the Au 

film thickness can be expressed as: 
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  Equation 3.1 

where I is Pd AES or XPS peak intensity, I0 is initial Pd AES or XPS intensity, λPd 

is the inelastic mean free path of an electron from Au within a Pd matrix32, 33 (in 

Angstroms), t is the thickness of the resulting Au film (in monolayers), tAu is the 

thickness of one monolayer of Au (in Angstroms) and φ is the angle of the incident 

electrons/X-rays into the detector. 

The impact of annealing a 3.9 ML Au film on Pd(111) was measured by examining 

the ratio of the Au 4f7/2 and Pd 3d5/2 peak intensity ratios. A plot of this data is shown 

in Figure 3.3.  It should be noted that these are the raw data for the outermost several 

Pd
 3

d 5
/2

 in
te

ns
ity

 / 
ar

b.
 u

ni
ts

 
A

u 4f7/2  intensity / arb. units 



 73 

layers – data presented later on in the chapter is corrected (using published LEIS 

data30) to give a composition purely for the surface layer. In any case, Figure 3.3 

clearly shows that as the sample temperature increases, the surface composition 

changes; namely that the amount of Au in the outermost layers decreases, with 

intermixing of the Au thin-film with the Pd(111) substrate. It should be noted that 

mass spectrometry has confirmed that Au does not thermally desorb from Pd(111) 

and therefore that alloying is genuine28. 
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Figure 3.3 – Variation in Au/Pd surface composition as a function of annealing 

temperature for a 3.9 ML Au film deposited on Pd(111) at room temperature. 

 

Therefore, through the successive annealing of an epitaxial Au film on Pd(111), a 

variety of Au/Pd surface ensembles can be prepared. The temperature dependent 

reactivity of each of these ensembles can then be gauged in a single set of temperature 

programmed experiments. This experimental procedure is shown visually as a flow 

diagram in Figure 3.4 below.  

Annealing Temperature / K 

A
u 

4f
 7/

2:P
d 

3d
5/

2 I
nt

en
si

ty
 R

at
io

 
A

u m
ole fraction (X

A
u )  



 74 

 

Deposit Au film  
on Pd(111) surface 

START 

Clean Pd(111) surface 
i) sputter 
ii) anneal 
iii) O2 roast 

Clean 
surface? 

XPS - Check surface 
cleanliness (C 1s, Pd 3d) 

END 

Anneal to desired 
temperature – form 

random surface alloy 

XPS – Determine 
surface composition  

(Au 4f, Pd 3d) 

Cool crystal to 100 K 

Adsorb any desired 
molecules via leak valve 

Temperature 
programmed XPS  

– heat crystal linearly 
and monitor C 1s spectra 

Further 
surface 
alloys 

required? 

Yes 

No 

Yes 

No 

 
Figure 3.4 – A flow chart diagram illustrating the experimental procedure devised for 

monitoring both the formation of surface Au/Pd alloys by XPS and also the 

temperature dependent reactivity of each alloy by temperature programmed XPS. 
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3.2.2 Surface Ensembles in Au/Pd(111) surface alloys 

The effect of Au/Pd alloying on the resulting surface ensembles available for selox 

was studied via CO adsorption as an active chemical titrant. The CO/Pd(111) system 

is of huge importance for automotive emission treatment, and as a result has been the 

subject of numerous surface science investigations34-47. Studies have revealed many 

molecular bonding modes, both attractive and repulsive lateral interactions, and 

associated ordered structures, all of which are highly dependent upon CO coverage.  

 

Various adsorption sites have been proposed for well-defined CO arrays at one third 

{(√3x√3)R30°} and half monolayer {c(4x2)}coverages. A diagram showing the basic 

adsorption sites (atop, bridge and hollow) for Pd(111) is shown in Figure 3.5. At half 

monolayer, preferential occupancy of either bridge or fcc/hcp hollow sites has been 

proposed as a result of respective vibrational45 and photoelectron diffraction work46. 

STM investigations by Salmeron’s group suggests that both models are partially 

correct, with co-existing domains of bridge-bonded and hollow-bound CO at half a 

monolayer47. 

 
Figure 3.5 – A diagram showing atop, bridge and hollow adsorption sites on Pd(111). 

 

3.2.2.1 CO adsorption over Pd(111)  

Coverage dependent adsorption of CO at 100 K was tracked by running time resolved 

C 1s XP spectra over clean Pd(111) in order to fingerprint the chemical shifts 

associated with different CO bonding modes. A common lineshape derived from 

graphitic carbon was adopted for all C 1s components, based on a Duniach Sunjic 

profile convoluted with a Gaussian/Lorentzian (4:1) mix, with a FWHM between 0.35 

and 0.5 eV and asymmetry index = 0.0618. Fitting was performed using CasaXPS 

Version 2.3.15. Figure 3.6 shows the resulting data, from which it is evident that two 

distinct CO environments can be distinguished at 286.9 and 287.2 eV. Examples of 
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the Pd fit can be observed in Figure 3.7. Only the low binding energy (BE) state is 

populated below 0.5 ML CO, and can therefore be confidently assigned to CO bound 

in fcc or hcp hollow sites. At the half monolayer point the hollow site occupancy falls 

at the expense of the higher BE state, with 50:50 population of both states (Figure 3.6 

inset). This is in excellent agreement with STM observations47, which assign this new 

state to bridge bound CO. This site-switching becomes much more pronounced close 

to saturation coverage, with the hollow sites heavily depleted.  
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Figure 3.6 – In situ C 1s XP spectra during adsorption of a CO adlayer over Pd(111) 

at 100 K. Inset shows fitted intensities of CO components as a function of coverage. 

 

Such extreme depopulation of hollow sites is not seen for high coverage ordered CO 

structures on Pd(111), wherein hollow and atop bound CO are proposed. Due to 

surface crowding, slight coverage differences can drive the formation of disordered 

structures (in this case the introduction of relatively few additional molecules), with 

preferential occupancy of less sterically-demanding bridge and atop sites. At high 

coverages a third C 1s component attributable uniquely to atop sites could not be 

distinguished, hence it is reasonable to assume that the 287.2 eV contains 
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contributions from both bridge and atop CO. The energies of these two species is 

consistent with initial state expectations from the Blyholder model of charge donation 

from the CO 2σ orbital into the surface, and back donation from the metal d-orbitals 

into the CO π* orbital; the latter contribution increasing with surface coordination 

number with hollow > bridge > atop. 

 

3.2.2.2 CO adsorption over Au/Pd(111) alloys 

Available surface ensembles for CO adsorption over a range of Au/Pd surface alloys 

(see Figure 3.3) were subsequently investigated. This was achieved by progressively 

annealing a 3.9 ML thin-film Au adlayer, to produce the desired Au/Pd composition. 

This was then subsequently exposed to a saturation CO dose at 100 K, as shown in 

Figure 3.7. In contrast to previous work, there was no CO adsorption over the Au 

thin-film at 100 K28. Anneals above 600 K cause Au dissolution into the Pd(111) 

substrate, which facilitated weak CO chemisorption into two high binding energy 

states at 287.7 and 288.5 eV. Higher temperature anneals drive further Au/Pd 

intermixing, increasing the saturation CO coverage as displayed in the inset of Figure 

3.7. The re-emergence of the two CO adsorption states at 286.9 and 287.2 eV, 

characteristic of clean Pd(111) are also evident for these higher temperature anneals. 
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Figure 3.7 – C 1s XP spectra of saturated CO adlayers over Au/Pd surfaces alloys at 

100 K as a function of annealing temperature. These surfaces were prepared by the 

successive annealing a 3.9 ML Au/Pd(111). The bold lines show the acquired data; 

whereas the thin/dashed lines show the fitted states determined using CasaXPS 

software. Inset shows saturation CO coverage as a function of annealing temperature. 

Pd states are highlighted by blue lines, whereas Pd/Au states are highlighted in red.  

It should be noted that the surface compositions that follow are derived from AES 

measurements of the overall Au mole fraction in the outermost several layers, 

corrected using published LEIS data30 to determine the actual Au coverage in the 

terminal surface layer. This correction is significant for alloys containing less than 

90% Au in the selvedge since strong Au surface segregation occurs in dilute Au/Pd 
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alloys30. It is interesting to note that significant (~ 16 %) surface Au was retained 

even following the highest annealing temperature in this work.  

 

The coverage-dependent integrated intensities (determined using CasaXPS) of the 

four experimentally observed CO surface species from Figure 3.7 are shown in 

Figure 3.8 (a). It should be noted that within this figure the observed trends are 

emphasised using guidelines. Simple Monte–Carlo simulations (performed by Prof. 

A. F. Lee) of Au/Pd alloys were also conducted on a 144 atom 2D lattice assuming 

random substitution of non-interacting atoms at 300 K. These simulations were 

carried out to model the distribution of surface ensembles available as a function of 

Au/Pd composition, and thereby help assign the new high binding energy CO states 

observed on Au-rich surface alloys. In each simulation a random Au/Pd lattice was 

generated, where the different types of environment were identified according to the 

number and type of neighbours surrounding each Pd or Au atom. How the modelled 

site distribution changed as a function of Au content was plotted in order to mimic the 

variation in CO sites. The same procedure was also carried out for pure Pd hollow and 

bridge/atop sites. Both sets of simulations can be found in Figure 3.8 (b). These 

theoretical results are in good agreement with the experimental trends, confirming 

that even small amounts of Au (~ 10 %) inhibits CO binding at three-fold hollow 

sites.  

 

As expected, the occupancy of Pd2(Pd) bridge and Pd(Pd2) atop sites decay more 

slowly, with significant populations present up to ~ 50 % Au. The corresponding 

growth of Pd2(Au) bridge and Pd(Au2) sites quantitatively tracks that of the 

respective 288.5 and 287.7 eV CO states, enabling assignment to Au perturbed bridge 

and isolated Pd ensembles. Cartoons of these ensembles, along with the CO XP 

spectra are displayed above the figure. The chemical shift of both CO alloy adsorption 

states is consistent with charge donation from Pd to Au, as previously reported within 

the Au/Pd(111) system28, 48, and associated reduced metal back donation into the CO 

π* orbital. 
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Figure 3.8 - (a) Integrated C 1s XP intensities of fitted CO components for 

experiments involving saturated CO adlayers adsorbed at 100 K over Au/Pd alloys 

prepared by annealing a 3.9 ML Au/Pd(111) surfaces. (b) The Monte Carlo 

simulation data of Pd ensembles available for CO adsorption as a function of Au/Pd 

surface composition. Surface Au rapidly suppresses CO adsorption over larger Pd 

ensembles. 
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3.2.3 Crotyl alcohol reactivity over Au/Pd(111) surface alloys 

With the identification of the surface ensembles available for selox complete, the 

thermal chemistry of crotyl alcohol over various Au/Pd(111) surface alloys could now 

be explored by temperature programmed XPS studies. As detailed earlier, and 

highlighted in Figure 3.4, the desired surface composition was first prepared either by 

deposition of Au onto the Pd(111) substrate or by annealing the Au pre-covered 

Pd(111). The sample was then cooled to 100 K, before dosing a saturation exposure 

of the alcohol. The thermal chemistry of the alcohol and evolution of reaction 

products could then be tracked by C 1s XP spectra as the sample was slowly heated 

(see chapter 2, section 2.4 for further details). 

 

3.2.3.1 Temperature Programmed XPS (TP XPS) studies 

The adsorption of a crotyl alcohol adlayer over an unannealed 3.9 ML Au thin-film 

was studied. The raw XPS data (as shown in Figure 3.3) shows that there is some 

intermixing of the outermost layers, although when this is corrected to take into 

account only the surface layer (using published LEIS data30), there is no substantial 

alloying of the surface layer below 600 K. This means that the thermal chemistry of 

this adlayer could be explored by temperature-programmed fast XPS without 

complications from changes in the surface metal composition, as Au/Pd alloying of 

the surface layer does not begin below 600 K.  In this way the reactivity of bulk Au 

surfaces towards allylic alcohols could be benchmarked. The results of this 

experiment are shown in Figure 3.9.  

 

As with low temperature adsorption over pure Pd(111), from Figure 3.9, it can be 

seen that two distinct C 1s environments are evident (in this case at 285.2 and 286.8 

eV) in a 3:1 ratio, attributed to -H2-C-OH and propylidene moieties respectively. The 

saturation coverage over the Au thin-film is around two-thirds that over Pd(111) at 

0.1 ML. This lower coverage may be due to disordered packing arrangements due to 

the weaker molecular interaction with Au.  

 

In stark contrast to pure Pd(111), crotyl alcohol does not undergo any chemistry over 

the thin-film of Au, with the molecule simply desorbing above 170 K (Figure 3.9), 

and leaving only trace carbon behind amounting to ~ 3 % of the saturated monolayer. 
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This suggests that the selective alcohol oxidation activity reported for supported49-51 

and stabilised52 Au nanoparticles is not associated with extended Au (111) terraces, 

and therefore must be confined to higher surface energy facets/defects or 

electronically perturbed (111) ensembles decorating clusters only a few nanometres 

across. 
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Figure 3.9 - Temperature-programmed C 1s XP spectra of a saturated crotyl alcohol 

adlayer prepared over an unannealed 3.9 ML Au/Pd(111) film at 100 K. Inset shows 

fitted crotyl alcohol coverage as a function of temperature. 

 

Alloying below ~ 950 K has negligible impact upon either the saturation coverage of 

the alcohol, the degree of subsequent decomposition or carbon lay-down. Surfaces 

containing ≥ 15% Pd in the outermost layer (achieved for anneals above 973 K) are 

sufficient to switch on a new reaction pathway for the alcohol. This is evidenced from 

Figure 3.10, temperature programmed XP spectra for a saturated crotyl alcohol 

adlayer adsorbed on a 973 K annealed surface (XAu = 0.15). 
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Figure 3.10 - Temperature-programmed C 1s XP spectra of a saturated crotyl alcohol 

adlayer over an ultrathin 3.9 ML Au/Pd(111) film annealed to 973 K (XAu = 0.15). 

 

From Figure 3.10, it can be observed that the 286.8 eV component sharpens 

noticeably above ~ 170 K and also shifts by approximately + 0.3 eV. The same is also 

apparent for the low binding energy component, with the associated shift being of a 

similar magnitude but in the opposite direction. The resulting C 1s spectral fingerprint 

between 170 K and 350 K matches that of crotonaldehyde on Pd(111)1, and has been 

confirmed by mass spectrometry. These crotonaldehyde features disappear rapidly 

above ~ 350 K, coincident with the emergence of a broad, low energy carbon state 

reminiscent of alkylidyne fragments on Pt(111)53. These fragments diminish above 

600 K, leaving only trace carbon fragments (CHx). Representative snapshot spectra 

are shown in Figure 3.11, which highlight these steps and also show the sharpening 

of peaks. 
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Figure 3.11 - C 1s snapshot spectra during the temperature programmed reaction of a 

saturated crotyl alcohol adlayer over a 3.9 ML Au/Pd(111) film annealed to 973 K 

(XAu = 0.15). 

 

Fitted surface components for this XAu = 0.15 surface alloy are presented in Figure 

3.12, which clearly show that for this alloy composition the selox of crotyl alcohol to 

surface bound crotonaldehyde occurs at room temperature with 100 % efficiency. 

Although some of the desired crotonaldehyde product decomposes at higher 

temperatures, only 3 % of the initial alcohol is left behind. This is in contrast with un-

promoted Pd(111) where over 70 % of a crotyl alcohol monolayer fully decomposes1. 
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Figure 3.12 - Integrated C 1s XP intensities of fitted crotyl alcohol, crotonaldehyde 

and carbonaceous components for a saturated crotyl alcohol adlayer adsorbed at 100 

K over a 973 K (XAu = 0.15) pre-annealed 3.9 ML Au/Pd(111) surface. 

 

3.2.3.2 Temperature Programmed Desorption (TPD) studies 

XPS has been used to examine surface chemistry of the alcohol over the single crystal 

surface. Whilst this has determined the formation of products on the surface at 

different temperatures, mass spectrometry is required in order to determine which 

products desorb from the catalyst surface (see chapter 2, section 2.3). Experiments 

were conducted using the UHV single crystal chamber described in chapter 2, section 

2.1.1. 

 

Temperature programmed desorption (TPD) spectra were recorded for a range of 

Au/Pd alloy surfaces in order to identify the stable reaction products evolved. The 

parent crotyl alcohol solely desorbs from the un-annealed thin-film Au/Pd(111), 

which gives rise to 153 K multilayer and 183 K monolayer desorption states, as 

shown in Figure 3.13. These temperatures are slightly below those observed over 

Pd(111), in line with the anticipated lower enthalpy of adsorption. The amount of 

reactant desorption is also reduced over Au-rich alloys relative to Pd-rich alloys.   
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Figure 3.13 - Thermal desorption mass spectra of a saturated crotyl alcohol adlayer 

adsorbed at 100 K over 3.9 ML Au/Pd(111) films. A comparative spectrum is shown 

for Pd(111). 

 

The evolution of crotonaldehyde at room temperature was also observed, and is 

shown for a range of Au/Pd alloys are shown in Figure 3.14. The surface chemistry 

of pure Pd(111) is drastically different, with only dehydration (butene and water) and 

decarbonylation (CO and propene) desorption products observed. The desorption 

yield of crotonaldehyde initially rises with increasing surface Pd content, reaching a 

maximum for a AuPd5 surface. This enhanced oxidation performance is accompanied 

by an increase in desorption peak temperature from ~ 270 K to 290 K.  
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Figure 3.14 - Thermal desorption mass spectra of reactively-formed crotonaldehyde 

from a saturated crotyl alcohol adlayer adsorbed at 100 K over 3.9 ML Au/Pd(111) 

films. A comparative spectrum is shown for Pd(111). 

 

Crotonaldehyde is formed on the surface of Au/Pd alloys below ~ 200 K (as seen in 

Figure 3.10), meaning that aldehyde evolution is desorption-rate limited. The strong 

binding of crotonaldehyde to Pd-rich surfaces may reflect differences in adsorption 

mode over different alloy compositions (e.g. flat-lying versus tilted, or π-bonding 

through both C=C and C=O moieties), or a reduced electronic perturbation as Au 

atoms diffuse subsurface. High temperature anneals, where alloy compositions 

approach 90 % Pd, result in limited aldehyde decarbonylation, revealing that small 

amounts of Au are enough to cause desorption of the aldehyde.  

 

Both propene and CO desorb from Au/Pd alloy surfaces, at 300 K and 350 - 400 K 

respectively. The desorption profiles of these by-products are slightly perturbed 

compared to Pd(111), with propene evolving in a single state in the presence of 
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surface Au. This decarbonylation pathway operates as a minor route over Au-rich 

alloys, but accounts for ~ 50 % of the reactively-formed crotonaldehyde for 

compositions above AuPd5. 
 

3.2.3.3 Optimum Au/Pd alloy composition for crotyl alcohol selox 

The influence of Au/Pd surface alloy composition on both the surface chemistry of 

adsorbed crotyl alcohol and desorption of crotonaldehyde is summarised in Figure 

3.15. This figure immediately highlights the limitations of each monometallic system. 

Pure Pd displays conversion of crotyl alcohol to crotonaldehyde at low temperature, 

but unfortunately is also very active towards consequent aldehyde decarbonylation, as 

well as the dehydrogenation of the resultant surface propylidyne fragments. 

Consequently no crotonaldehyde desorbs intact from extended Pd(111) ensembles in 

the absence of additional co-adsorbed oxygen1. This may account for the rapid 

deactivation of monometallic Pd nanoparticles24, 54. At the other extreme, over the 

pure Au thin-film crotyl alcohol chemisorbs into both monolayer and multilayer 

desorption states, but crucially Au cannot initiate the vital C-H/O-H activation steps. 

In a clear example of a strong synergetic interaction, the incorporation of a relatively 

small number of Au atoms, which CO chemisorption suggests is sufficient to disrupt 

Pd hollow sites, considerably suppresses crotonaldehyde decomposition, while 

actually enhancing its formation from the parent alcohol. The optimum surface alloy 

composition for crotyl alcohol selox, with minimal decomposition of the resultant 

crotonaldehyde product, is a surface Au mole fraction of approximately 0.3, which 

corresponds to a surface ensemble composition of Au2Pd3. 
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Figure 3.15 – In situ XPS derived crotyl alcohol conversion to surface-bound 

crotonaldehyde, and net decomposition to residual surface carbon as a function of Au 

alloy composition. The normalised desorption yields (determined by TDS) of 

reactively-formed crotonaldehyde are also shown. 

On the basis of these in-situ X-ray surface science studies, it can be proposed that 

high Pd surface concentrations should provide the optimum selox activity for 

dispersed Au/Pd alloy nanoparticles. This is consistent with recent studies on the 

aerobic oxidation of crotyl alcohol over PVP-stabilised bimetallic Au/Pd 

nanoparticles52. These exhibit maximum turnover frequencies and selectivities to the 

desired aldehydes for bulk Au:Pd ratios of 1:3  (c.f. a bulk ratio of 1:5 in this study), 

and also hydrogenation and isomerisation side products characteristic of pure Pd-like 

surface character. Similar Pd surface segregation and associated excellent selox 

activity has been reported for Al2O3, TiO2 and SiO2 supported Au/Pd nanoparticles, 

wherein STEM and XPS indicate a Au-core, Pd-shell spontaneous partitioning upon 

calcination in air12, 24. The situation is more complex for AuPd/C particles, wherein it 

is postulated that the selective oxidation of glycerol to glyceric acid proceeds over 

Au-rich alloy surfaces decorated with Pd monomers55. However the bimetal 

distribution was very inhomogeneous between individual particles in this latter study, 

and did not utilise a surface sensitive spectroscopic method to model the terminating 

alloy composition.  
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Earlier work on allylic alcohol selox has shown that strong adsorption of a proximate 

C=C bond is essential for subsequent activation of primary alcohols56. This 

observation is supported by NEXAFS measurements on crotyl alcohol over Pd(111)1 

which reveal the C=C bond is bound parallel to the surface in both parent alcohol and 

aldehyde product. For AuPd systems, it seems likely that extended Au ensembles 

within Au-rich surfaces are themselves inactive towards crotyl alcohol, whilst the 

probability of finding two Pd monomers in close proximity, able to tether the allyl 

function while activating the alcohol, is too small for significant oxidation.  

 

In addition, Au chemistry on the nano-scale generally exhibits pronounced particle 

size dependency; hence Au-rich alloy nanoparticles may be more active than would 

be predicted from this model investigation. 

 

3.2.4 Errors 

It is estimated that the error associated in the surface content from the XPS data will 

be approximately 0.2 - 0.5 atomic%. This is an estimated error value, which will vary 

depending upon the element under study, as each element has an associated response 

factor to the XP spectrometer. Therefore, the XPS errors will be depend on the type of 

measurement performed (i.e. determination of alloy compositions, calculation of 

organic adsorbates etc). According to CasaXPS, the processing software used to 

analyse the data presented in this chapter, the response factors for Pd 3d5/2 and Au 

4f7/2 are 9.54 and 9.79 respectively. This means that the associated error in the 

measurement of the alloy ratios / mole fractions will be approximately 3 %. 

 

3.3 Conclusions 

The coverage dependent adsorption of CO was used to examine the surface ensembles 

available for selox by Au/Pd(111) surface alloys. The chemical shifts corresponding 

to different CO bonding modes were tracked by time resolved C 1s XPS. In the case 

of clean Pd(111), below 0.5 ML CO, a single binding energy state at 286.9 eV was 

observed, which can be assigned to CO binding in hollow sites. With increasing CO 

coverage, the hollow site occupancy decays with the population of an additional state 

at 287.2 eV, attributed to bridge and atop bound CO. At saturation coverage, these 
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bridge and atop sites are almost exclusively populated. For the 3.9 ML thin-film of 

Au on Pd(111), no CO adsorption was observed. However, when this film was 

annealed to 600 K (driving Au/Pd intermixing and surface alloy formation), weak 

chemisorption was observed for two high binding energy states at 287.7 and 288.5 

eV. High temperature anneals drive further Au/Pd intermixing and the re-emergence 

of the two Pd(111) CO binding energy states. The integrated intensities of these 

experimentally determined states were compared to Monte Carlo simulations and 

were found to be in good agreement, allowing the surface ensembles to be identified. 

The key finding of this work is that surface Au rapidly suppresses CO adsorption over 

larger Pd ensembles. 

 

Following on from this, it has been shown that thin-films of epitaxial Au prepared 

over a Pd(111) substrate reversibly chemisorb crotyl alcohol, but are unable to drive 

selective oxidation or decomposition. Au-rich surface Au/Pd alloys show moderate 

activity for the oxidative dehydrogenation of crotyl alcohol to crotonaldehyde, which 

in turn desorbs intact at room temperature with minimal side-reactions. The optimum 

surface alloy composition for crotyl alcohol selox, with minimal decomposition of the 

resultant crotonaldehyde product, is Au2Pd3, associated with a bulk alloy composition 

of AuPd5. Pd-rich alloy surfaces convert 100 % of a crotyl alcohol adlayer to 

crotonaldehyde, although as much as half of this aldehyde subsequently 

decarbonylates to produce gas phase CO and propene, and leave small amounts of 

residual carbon (≤ 30 % of a monolayer). In summary, in-situ ‘fast’ XPS has been 

used to show that small amounts of Au can promote the selective oxidation of crotyl 

alcohol while suppressing crotonaldehyde decarbonylation, and that isolated Pd sites 

are not the active site for such catalysis in extended alloys. 

 

In this chapter, the influence of Au upon the formation of reactively formed 

crotonaldehyde by the selox of crotyl alcohol over Pd(111) has been examined. 

However, the chemistry of the aldehyde itself and any reactively formed by-products 

has yet to be explored. As a result, the role of Au on the thermal chemistry of 

crotonaldehyde over Pd(111) surfaces will be examined by temperature programmed 

reaction spectroscopy in the next chapter. In addition, to imitate ‘real’ selox 
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conditions, the role of pre-adsorbed oxygen on clean and Au-promoted Pd(111) 

surfaces will also be determined. 
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Chapter 4  
Reactivity of crotonaldehyde and propene over 
Au/Pd(111) surface alloys 
 

4.1 Introduction 

Previous work using temperature programmed XPS experiments has shown that in 

crotyl alcohol selox, crotonaldehyde decomposition and associated self-poisoning 

prevails over model Pd(111) surfaces1. In the previous chapter, identical 

experiments performed over Au/Pd(111) surface alloys, have shown that the 

formation of reactively formed by-products can be inhibited, depending upon the 

surface alloy composition. By introducing small amounts of Au into the Pd(111) 

surface and performing TPD experiments, it was shown that the desorption of the 

reactively formed aldehyde is promoted.  

Despite this, questions remain regarding the role of alloyed Au, and its possible 

influence upon reactively formed crotonaldehyde. For instance, does it disrupt the 

undesired decarbonylation and/or dehydrogenation pathways operating over pure 

Pd, and if so, how? In chapter 1 (section 1.5.2), it was also shown that there is also 

a general dearth of knowledge regarding the surface chemistry of aldehydes over 

metal surfaces.  

In this chapter, the influence of Au upon the chemistry of crotonaldehyde over 

Pd(111) surfaces will be examined. The chemistry of propene, the principal by-

product expected from crotonaldehyde decomposition, will also be investigated 

over the same Au/Pd(111) surfaces. In addition, in order to better mimic true selox 

conditions, the role of pre-adsorbed oxygen on clean and Au-promoted Pd surfaces 

will also be explored.  
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4.2 Results and Discussion 

4.2.1 Formation of Au/Pd(111) surface alloys 

As detailed in chapter 2 (section 2.1.1) and chapter 3 (section 3.2.1), Au thin-films 

were prepared at room temperature using a Focus/Omicron EFM3 evaporator. For 

the work presented in this chapter, the surface coverage was first mapped out using 

AES after a given deposition time and was found to be uniform across the Pd(111) 

crystal. By annealing a 4 ML Au thin-film on Pd(111) to various temperatures for 1 

minute, a surface XAu was consistently obtained as summarised in Table 4.1 below.  

Annealing temperature / K Surface Au mole fraction (XAu) 

473 0.92 

573 0.90 

673 0.80 

773 0.56 

873 0.30 

973 0.15 

Table  4.1 – The surface Au mole fraction (XAu) resulting from annealing a 4 ML 

thin-film of Au on Pd(111) to various different temperatures. 

For the series of TDS experiments involving Au/Pd(111) surface alloys in this 

chapter, the alloying temperature for the next alloy in the series defined the 

maximum TPD temperature. 
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4.2.2 Crotonaldehyde adsorption studies 

The thermal chemistry of crotonaldehyde (H3C-CH=CH-CH2-CHO, CrCHO) was 

studied over clean Pd(111), a pure Au overlayer, and Au/Pd(111) surface alloys as 

a function of aldehyde exposure. 

4.2.2.1 Adsorption of crotonaldehyde on Pd(111) 

Figure 4.1 shows the resulting TPD spectra for the parent species over Pd(111); 

corresponding integrated peak areas of the reversibly adsorbed aldehyde and all 

major desorption products are presented in the inset. Low aldehyde exposures 

(< 1 L) result in decarbonylation to propene and carbon monoxide (omitted for 

clarity), and dehydrogenation, as previously reported by Medlin and co-

workers.2  

 

Higher exposures give rise to molecular crotonaldehyde  desorption at ~140 K 

and 155 K. The latter state rapidly saturates around 3 L and is attributed to 

desorption from the monolayer, while the low temperature aldehyde feature 

grows continuously and can be assigned to multilayers. The enthalpy of 

desorption from the aldehyde monolayer, estimated from the Redhead equation3  

(assuming first-order kinetics and a pre-exponential factor of ν=1013 s-1), was 

37.4 kJmol-1, very close to the enthalpy of vapourisation4 ndicating a weak 

surface interaction while that for the multilayer was 33.7 kJmol-1. 
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Figure  4.1 - Thermal desorption mass spectra for the adsorption of crotonaldehyde 

at 120 K over a clean Pd(111) surface. Inset shows the fitted intensities of 

crotonaldehyde monolayer, multilayer and reactively formed propene as a function 

of exposure. 

 

4.2.2.2 Adsorption of crotonaldehyde over an unannealed 4 ML Au film 
on Pd(111) 

Figure 4.2 shows thermal desorption spectra for the continuous uptake of 

crotonaldehyde over a relatively thick (4 ML) Au film on Pd(111). Over this un-

annealed Au adlayer, crotonaldehyde simply reversibly chemisorbs, with the 

monolayer saturating by 1 L. The monolayer state desorbs at approximately 180 

K, a higher temperature than that from clean Pd(111). This is surprising, as one 

would expect that from an inert surface the desorption temperature would be 

Monolayer 

Multilayer 
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lower than that of a more reactive surface. The origin of this stronger adsorption 

is unclear, however similar stabilisation is observed for prenal (3-methyl-2-

butenal), a related unsaturated aldehyde, over analogous surfaces of ‘inert’ Sn 

alloyed with noble Pt(111) relative to clean Pt.5  

 
Figure  4.2 - Thermal desorption mass spectra for the adsorption of crotonaldehyde 

at 120 K over a thick (~ 4 ML) Au adlayer on Pd(111). Inset shows the fitted 

intensities of the crotonaldehyde monolayer and multilayer states as a function of 

exposure. 

One possible explaination for this higher temperature could be that the aldehyde 

forms a polymer over the Au surface resulting in a higher desorption 

temperature relative to Pd. Despite no prior studies of crotonaldehyde 

adsorption over pure Au(111), other aldehydes undergo similar polymerisation 

processes on surfaces, such as formaldehyde on Cu(100)6 and (110)7, as well as 

acetaldehyde on Rh(111)8 and Pt(111)9. The enthalpy of desorption was also 

Monolayer 

Multilayer 
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calculated by the Redhead equation3 and was determined to be 43.7 kJmol-1. 

Once the monolayer saturates, physisorption occurs with multilayer desorption 

occurs at 142 K; essentially the same temperature as that for clean Pd(111). No 

reaction products are observed over the un-annealed Au surface. 

 

4.2.2.3 Adsorption of crotonaldehyde on Au/Pd(111) surface alloys 

The thermal chemistry of crotonaldehyde over several Au/Pd(111) surface alloys 

was investigated. Figure 4.3 shows over-layed TPD spectra for a surface alloy with 

a Au mole fraction of 0.56 (determined by AES) and also for a clean Pd(111) 

surface. The same species desorb from both surfaces; propene and CO at similar 

temperatures (~320 K and 455 K respectively). For clean Pd(111), three hydrogen 

states are observed, the first is at 320 K, which  is attributed to background 

hydrogen. A second and third peak desorb at ~ 400 K and 465 K. In the case of 

Pd(111), the same desorption temperatures have been observed in a previous 

study2. Over the un-annealed Au film the hydrogen desorbs at the higher 

temperatures of ~ 415 and 515 K.  
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Figure  4.3 - Thermal desorption mass spectra of 3 L crotonaldehyde adsorbed on 

Pd(111) and an Au/Pd(111) surface alloy (4 ML Au film annealed to 773 K, AES 

Au mole fraction of 0.56) at 120 K. 

For both Au and Pd, the higher temperature desorption of hydrogen is of 

particular interest as such peaks are usually associated with the decomposition 

of hydrocarbons strongly bound to the metal surface. 

 

The key observation is that the level of decomposition to propene and carbon 

monoxide over the XAu 0.56 Au/Pd(111) alloy is much lower relative to clean 

Pd(111). As a result of this discovery, a more detailed study of the effect of Au 

on the decomposition of crotonaldehyde to propene and carbon monoxide over 

Pd(111) was conducted. 
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4.2.2.4 Decomposition of crotonaldehyde to propene on Au/Pd(111) 
surfaces 

The influence of Au on desorption of reactively formed propene (due to the 

decompositon of crotonaldehyde) for various surface Au mole fractions (XAu) 

was studied. Unfortunately, reactively formed carbon monoxide could not be 

measured easily due to a large background contribution. Figure 4.4 shows the 

m/z 41 trace for several of these alloy surfaces along with the mass 

spectrometer intensity as a function of Au mole fraction. All surfaces were 

treated with the same saturation exposure of crotonaldehyde (3 L). For surfaces 

rich in Pd (XAu ≤ 0.56) propene desorbs from the surface, indicative of aldehyde 

decomposition.  

Conversely, propene does not desorb from surface alloys rich in Au (XAu ≥ 

0.80), meaning that such surfaces are essentially unable to drive decomposition 

chemistry. This clearly shows that Au improves the selectivity for the selox of 

crotyl alcohol by inhibiting the decomposition of the aldehyde product. Alloy 

composition is crucial; determining the level of decomposition over such 

surfaces, and therefore the overall aldehyde reaction pathway. 
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Figure  4.4 - Thermal desorption mass spectra for the formation of propene from 

the adsorption of crotonaldehyde (3 L) at 120 K over Au/Pd(111) surface alloys. 

Inset shows the fitted intensities of propene as a function of surface Au mole 

fraction (XAu). 

 

4.2.3 Propene adsorption 

4.2.3.1 Adsorption of propene on Pd(111) 

The thermal chemistry of propene; a product of crotonaldehyde decomposition, 

was studied over Pd(111) in order to benchmark the reactivity. Figure 4.5 shows 

the uptake of propene on the clean Pd(111) surface. From the inset graph we see 

that for low exposures propene dehydrogenates to form hydrogen and surface 

carbon. As stated previously (when describing Figure 4.3), the hydrogen of interest 
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is that formed at high temperature, which results from hydrocarbon decomposition. 

This higher temperature hydrogen state saturates around 1.5 L.  

The amount of hydrogen that desorbs relative to propene is low, and has therefore 

been scaled by a factor of 40. This small hydrogen yield is consistent with Land’s 

work, which showed that propene desorption is favoured over decomposition, as no 

more than 10% of the chemisorbed propene dehydrogenates to produce surface 

bound carbon10. The monolayer state desorbs at ~ 280 K, which shifts to a lower 

temperature of ~ 260 K with increasing exposure, saturating at 2 L. The multilayer 

state desorbs between 180 and 170 K, again depending upon exposure. Both the 

monolayer and multilayer desorption temperatures are consistent with literature10. 

Tysoe’s group carried out a TPD and RAIRS study on the low temperature 

adsorption of propene on Pd(111)11. At low coverages they observed a state centred 

at ~ 210 K, which shifts to 195 K with increasing exposure. They determined that 

this was a result of a ‘V-shaped’ adsorption state that is not favoured at high 

coverage where the methyl group aligns perpendicular to the surface. This 

conclusion was made as a result of a similar trend observed for propene adsorption 

on Pt(111)12. As we are concerned with the chemistry at saturation coverages, we 

do not need to take this state into account.  

For higher coverages, TPD spectra are similar to those reported in this work 

(propene desorbing molecularly at ~ 200 and 280 K). However, they determine that 

propene adsorbs onto several adsorption sites, which contribute to the monolayer 

state. They show that at low temperature, propene binds in a di-σ coordination on 

the clean Pd(111) surface. Upon heating, a small portion of this desorbs at ~ 200 K 

and the remainder is converted to a stronger bound di-σ state with the methyl group 

bound parallel to the surface, which eventually desorbs at ~ 280K.  

Further heating forms an allylic species, of which a small proportion 

rehydrogenates at ~ 340 K, but the majority dehydrogenates at ~ 360 K. A second 

layer is found to desorb at about 190 K, which we will not discuss in this work, as 

we are only concerned with the chemistry of propene on Au/Pd(111) surfaces and 

surface alloys. 
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Figure  4.5 - Thermal desorption spectra for propene over a clean Pd(111) surface. 

Inset shows the fitted intensities for the propene monolayer, multilayer and 

reactively formed hydrogen as a function of exposure. Saturation coverage, θ, (0.25 

ML) is assumed to be identical to that of ethylene over both Pt(111)13 and 

Pd(110)14. 

In this section, we have replicated previous studies of propene adsorption on 

Pd(111). It has been demonstrated that the desorption temperatures and reactivity 

of propene are consistent with previous work. The desorption of propene is 

favoured over decomposition, as very little hydrogen desorbs, even for high 

exposures. With the chemistry of propene over Pd(111) determined, we can now 

focus on the adsorption over a Au film on Pd(111).  

 

 

Monolayer 

Multilayer 
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4.2.3.2 Adsorption of propene on 4 ML Au on Pd(111) 

The uptake of propene over a 4 ML thin-film of Au on Pd(111) is shown in Figure 
4.6, which demonstrates that essentially no decomposition occurs, with propene 

simply desorbing molecularly from the surface. For low exposures, a single 

desorption peak is observed at ~ 135 K. Previous work carried out by Goodman on 

propene adsorption on Au(111)15, indicates that the propene monolayer desorbs 

either at 145 or 150 K, dependant upon exposure. The difference in desorption 

temperature observed in this work is probably due to different heating rates (~ 4 

Ks-1 for Goodman, ~ 10 Ks-1 in this study) and a rougher surface. Although Au 

deposits epitaxially on Pd(111) at room temperature16, such surfaces will have a 

higher proportion of step and kinks relative to the single crystal case, hence the 

slight difference in desorption temperature.  

At high exposure, Goodman determined that the multilayer state was found to 

desorb at ~ 120 K. In this study, propene was dosed at ~ 120 K, which was the 

lowest achievable temperature on the York UHV system. As a result, no multilayer 

state was observed from the un-annealed Au overlayer. In this study, for exposures 

above 2 L, two additional states can be seen, which are thought to arise from 

exposed Pd sites.  A monolayer state desorbs at ~ 280 K, saturating around 2 L. 

Whilst this saturation exposure is very similar to that of the clean Pd(111) surface, 

this shift could be a result of the difference in saturation exposure, as it is known 

that the monolayer peak for the Pd(111) surface shifts in temperature depending 

upon the exposure. A multilayer state is also observed at ~ 175 K. The integrated 

areas for the Pd states are displayed in the inset of Figure 4.6. The Au monolayer 

state has been omitted from the inset for clarity. 
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Figure  4.6 - Thermal desorption mass spectra for the adsorption propene at over a 

4 ML Au adlayer on Pd(111). Inset shows the fitted intensities for the propene 

monolayer and multilayer as a function of exposure. Saturation coverage (0.25 ML) 

is assumed to be identical to that of ethylene over both Pt(111)13 and Pd(110)14. 

We have shown over this Au film that propene simply desorbs molecularly with no 

chemistry occuring. There are a variety of different desorption temperatures to 

consider, which can be attributed to perturbed Au and Pd. With the uptake over the 

Au film complete, we can therefore move onto the chemistry of propene over 

Au/Pd(111) surface alloys.  

 

 

 

Pd monolayer 

Pd multilayer 

Au monolayer 
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4.2.3.3 Adsorption of propene on Au/Pd(111) surface alloys 

The adsorption of ethene has been studied on various Au/Pd(111) alloy surfaces by 

TPD and RAIRS recently by Tysoe17. For alloys with Au coverages greater than 

0.7, they found that ethene adsorbs mostly on Au sites desorbing with an activation 

energy of less than 55 kJ mol-1. For coverages between 0.5 - 0.7 Au they detected 

π-bonded ethene on Pd sites, which desorbs with an activation energy between 57 

and 62 kJ mol-1. Reducing the Au coverage further results in a linear increase in 

activation energy until it reaches 76 kJ mol-1, the value for pure Pd(111). Whilst 

this is a slightly different molecule, it highlights the fact that alkenes bind more 

weakly to Au rich surfaces. 

When the 4 ML Au film (section 4.1.3.2) was annealed to 773 K, a surface alloy 

with a Au mole fraction of 0.56 was created (identical to the surface formed in 

Figure 4.3).  3 L propene was dosed into the chamber, and the desorption products 

were stacked with those observed for clean Pd(111) and are presented in Figure 
4.7. In both cases propene and hydrogen desorb from both surfaces at similar 

temperatures. As previously stated, for Pd the propene monolayer desorbs at a 

temperature of ~ 270 K and the multilayer at ~ 170 K. In the case of the Au/Pd 

alloy there is also an additional propene state at ~ 135 K, which is atttributed to 

propene monolayer desorption from Au sites.  

There is a small apparent shift of these values for the Au alloy, where the 

monolayer desorbs at both ~ 270 and 320 K, however, it is thought these peaks are 

as a result of the desorption of a di-σ bonded state and then a π-bonded state as 

revealed by Tysoe11. It is possible that this apparent shift is due to the greater 

population of π-bonded states as ethene adsorbs onto Au sites exclusively in a π-

bonded state17. There does appear to be a small genuine shift of the monolayer state 

by approximately 10 K. The hydrogen which desorbs from the Pd(111) desorbs in 

two states at ~ 350 and 485 K which as explained earlier has been recorded 

elsewhere10, 11. For the Au alloy, this desorption is shifted by approximately 10 K, 

but are thought to be essentially analogous. 
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Figure  4.7 - Thermal desorption mass spectra of a 3 L exposure of propene 

adsorbed on Pd(111) and an Au/Pd(111) surface alloy (AES Au mole fraction of 

0.56) at 120 K. 

Propene adsorption was carried out over a full range of alloys, and the thermal 

desorption mass spectra for these surfaces is shown in Figure 4.8. The inset shows 

that the amount of hydrogen that desorbs remains constant for Au mole fractions 

less than 0.8. As with crotonaldehyde chemistry (see section 4.1.2.2), this 

demonstrates that Au rich surfaces are unable to drive decomposition chemistry. 

The trend for hydrogen desorption tracks well with the amount of chemisorbed 

propene, which desorbs from the surface. This is consistent with the concentration 

of Au influencing the adsorption of propene, with less propene sticking on Au rich 

surface alloys.  
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For surfaces which have Au mole fractions greater than 0.8, the amount of 

hydrogen which desorbs is significantly lower than that observed for more Pd rich 

surface alloys. Although propene decomposition is minor over Pd alloy surfaces 

because most of the propene desorbs intact, Au/Pd alloys are able to turn off this 

reaction pathway. This is a remarkable result, as Au not only aids desorption of 

reactively formed crotonaldehyde from the selective oxidation of crotyl alcohol18, it 

also inhibits the decomposition of both crotonaldehyde and propene, thereby 

enhancing catalytic selectivity. 

 

Figure  4.8 - TPD series of evolved hydrogen from the adsorption of propene over 

Au/Pd(111) surface alloys. Inset shows the integrated hydrogen area resulting from 

methyl fragments (485 K peak). Also plotted is the propene peak area for 

comparison. 

In this section, we have observed that the level of propene decomposition is related 

to the amount of Au in the surface. The Au moderates this reaction, with surface 
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Au mole fractions greater than 0.8 being sufficient to suppress the reaction 

completely. 

 

4.2.4 The effect of co-adsorbed O 

In an attempt to replicate aerobic selective oxidation over model surfaces in more 

‘realistic’ conditions, adsorbates were dosed after such surfaces were pre-covered 

with O. This was achieved by exposing surfaces to ~ 60 L of O2 whilst cooling to 

120 K. Once this temperature was achieved, the oxygen leak valve was closed off 

and the desired adsorbate dosed the UHV chamber in the normal way. In surface 

alloys, the metal that forms the stronger bonds with a given adsorbate often will 

segregate to the surface. It should be noted that at high temperatures, it is known 

that adsorbing O onto Au/Pd surface alloys can artificially enrich the top layers 

with Pd19, 20. In order to avoid driving Pd into the surface and changing the surface 

alloy composition, O was only released into the UHV chamber when the substrate 

was at room temperature or lower. In order to confirm that the alloy composition 

remained constant, AES measurements were carried out both before and after 

oxygen adsorption.  

 

4.2.4.1 Adsorption of crotonaldehyde on O pre-covered Au/Pd(111) 
surfaces 

Thermal desorption spectra were recorded over a Pd(111) surface and a 

Au/Pd(111) surface alloy (XAu = 0.56), which are both shown in Figure 4.9. The 

spectrum for Pd(111) shows that both CO2 and CO desorb at ~ 390 and 450 K 

respectively, a trend which is not observed on the clean surface and is obviously 

indicative of combustion. In addition, water also desorbs from the surface with a 

peak maxima at ~ 280 K. 

Decomposition still occurs, as a small amount of propene desorbs from the surface 

at the characteristic temperature of ~ 320 K. Over the surface containing Au, no 

decomposition occurs, in direct contrast to the same oxygen free surface. From the 

TPR data, it is possible that a small amount of combustion occurs over the alloy 
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surface, but if so, it can be regarded as minor reaction pathway, as the amount that 

desorbs is close to the limit of detection for the mass spectrometer. Clearly, O co-

adsorption over Au/Pd alloy surfaces inhibits decomposition of the aldehyde to a 

higher degree when compared to O free alloys. 

In order to examine the relationship between the alloy composition and 

decomposition, the level of decomposition was investigated over several O covered 

alloy surfaces, the results of which are shown in Figure 4.10. Propene desorbs 

exclusively from highly Pd rich alloy surfaces (between XAu of 0 and 0.15), for 

surfaces equal to or less than Au mole fractions of 0.3 no propene desorbs. The 

trend for carbon dioxide mirrors that for propene as evidenced from the inset graph. 

Without O(ads), propene desorbs from surfaces with a Au mole fraction greater than 

0.8. In addition to this, the amount of propene that desorbs over O covered alloy 

surfaces is much less when compared to O free alloys. 
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Figure  4.9 - Thermal desorption mass spectrum of 3 L crotonaldehyde adsorbed on 

an O pre-covered (60 L O2) Pd(111) and Au/Pd(111) surface alloy (AES Au mole 

fraction of 0.56) at 120 K. 

When we compare the inset graphs of Figures 4.10 and 4.4, the propene which 

desorbs from the O covered surface is only 15% of the total amount of propene 

which desorbs from the oxygen free Pd(111). The effect is more dramatic when we 

compare surfaces with a Au mole fraction of 0.15. For these alloy surfaces, ~ 10 % 

of the amount of propene desorbs from the O covered alloy when directly 

compared to the O free surface. There are two possible scenarios that explain this 

phenomenon. The propene formed from the adsorption of crotonaldehyde either 

undergoes combustion, or alternatively for Au alloy surfaces pre-saturated with an 

exposure of O2, desorption of crotonaldehyde is favoured, thereby meaning that it 
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is unable to decompose in the first place. However, it is possible that Au suppresses 

both the decomposition and combustion pathway to some extent, with desorption 

being the dominant process.  

 

Figure  4.10 - Series of thermal desorption mass spectra for the formation of 

propene from the adsorption of crotonaldehyde (3 L) at 120 K over oxygen pre-

covered (60 L O2) Au/Pd(111) surface alloys. Inset shows the fitted intensities of 

propene as a function of surface Au mole fraction. 
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4.2.4.2 Adsorption of propene on O pre-covered Au/Pd(111) surface 
alloys 

The effect of O on the chemistry of propene over Au/Pd(111) alloys was examined. 

As for crotonaldehyde and O, surfaces were pre-covered by dosing 60 L O2 whilst 

cooling from room temperature to 120 K prior to propene adsorption. In a series of 

trial experiments, alloy surfaces were examined by AES before and after O 

adsorption in order to ensure that composition the surface alloy remained constant. 

Figure 4.11 shows TPR spectra for pure Pd(111) and an Au/Pd(111) surface alloy 

with a Au mole fraction of 0.56. As with the O free surfaces both hydrogen and 

propene desorb from Pd(111). The hydrogen desorbs at exactly the same 

temperatures as for the clean Pd(111) surface (~ 360 and 500 K), although less 

hydrogen desorbs from the 360 K state, evident from the ratio of the 360 and 500 K 

peaks.  

In the case of Pd, two states are observed for desorption of the propene monolayer 

at ~ 280 and 360 K, which are essentially identical to the desorption temperatures 

recorded over the clean surface. These states are also observed for the Au/Pd alloy, 

although an additional state is also observed at ~ 135 K which is attributed to 

desorption of the propene monolayer from Au sites. However, the 360 K peak is 

more prominent over the O covered surface, which is attributed to the greater 

population of propene bound in the π-bonded adsorption state. The multilayer 

desorbs at ~190 K, which also is very similar over the O free surface. Both the 

same hydrogen and propene states are observed over the Au/Pd(111) alloy surface. 

Unlike the oxygen free surface, combustion occurs over Pd(111), as both CO and 

CO2 are evolved. In the case of Pd(111) CO desorbs in a single state at ~ 460 K, 

which is identical to that which desorbs as a result of crotonaldehyde adsorption 

over clean Pd(111) (Figure 4.3). CO2 desorbs in two states at ~ 300 and 350 K. 

Water also desorbs from Pd(111) at ~ 310 K with a second peak maxima at ~ 360 

K. Madix conducted a TPRS study of both alkene and arene combustion over 

Pd(111) in the late 1990s21, finding for propene adsorption over a 0.25 ML surface 

that the same products desorb as found in this study. Similar peak shapes and the 

evolution of the same number of states were also obtained, although desorption 

temperatures differed by as much as 50 K to those found in this study as well as 
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those for propene adsorption on clean Pd(111) mentioned earlier by Land10 and 

Tysoe11. However, Goodman shows that the desorption temperature of propene can 

vary greatly depending upon the oxygen coverage15. 

 

Figure  4.11 - Thermal desorption mass spectrum of 3 L propene adsorbed on an 

oxygen pre-covered (60 L O2) Pd(111) surface, and an oxygen pre-covered 

Au/Pd(111) surface alloy (AES Au mole fraction of 0.56) at 120 K. 

The same desorption states obtained for Pd(111) are mirrored for the species which 

desorb from the 0.56 XAu alloy surface. However the amount of each product 

which desorbs is significant lower when compared to Pd(111). This indicates that 

both decomposition and combustion processes are hindered by surfaces containing 

Au. It is thought that perhaps a small amount of combustion occurs, due to very 

small CO and CO2 desorption peaks, but it is tenuous as to whether this is genuine, 
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as the amounts are close to the limit of detection for the mass spectrometer. Clearly 

desorption is favoured over decomposition and combustion processes over this 

particular alloy surface.  

The adsorption of propene over a full range of oxygen pre-covered Au/Pd(111) 

alloys was then investigated by TPRS. The spectra for hydrogen evolved over these 

alloys, along with an inset displaying the mass spectrometer intensity for both 

hydrogen and propene, which are shown in Figure 4.12. A major difference is 

observed in terms of the ratio of hydrogen desorption states. For the clean surfaces 

(Figure 4.8), the intensity of the hydrogen desorption at ~360 K is much larger 

than that observed for surfaces pre-covered with O. The state at ~ 485 K remains 

unaffected, as from the inset figure it is clear to see that the same arbitary intensity 

is observed (~4 x 10-6 to 2 x 10-6) in both cases. Au turns off this decomposition 

pathway for Au mole fractions greater than 0.8. This means that the decomposition 

of the propene to hydrogen is unaffected by the pre-adsorption of O, as the same 

general trend is observed. As with the oxygen free alloy surfaces, the hydrogen 

trend tracks well with that for the desorption of the propene monolayer, possibly 

indicating that the concentration of Au influences the adsorption of propene, with 

less propene sticking on Au rich surface alloys. 
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Figure  4.12 - TPD series of evolved hydrogen from the adsorption of propene over 

O pre-covered (60 L O2) Au/Pd(111) surface alloys. Inset shows the integrated 

hydrogen area resulting from methyl fragments (485 K peak). Also plotted is the 

propene peak area for comparison. 

It is known that propene adsorption is weak on Au(111) (literature, 15 ~ 39.3 kJ 

mol-1) compared to Ag(110) (lit, 22 45.1 – 52.7 kJ mol-1 ) and Pd(111) (literature, 10 

~79.4 kJ mol-1).  This difference in the adsorption enthalpy plays a major role in 

desorption of propene, therefore affecting decomposition. Goodman found that 

over oxygen covered Au(111) surfaces combustion is favoured over 

decomposition15, due to propene binding more tightly to O covered Au(111) 
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surfaces compared to the bare surface. Findings presented in this study also show 

the same trend, as the enthalpy of desorption oxygen covered Au/Pd(111) increases 

by ~ 9.4 kJ mol-1 compared to the oxygen free surface. The enthalpy of propene 

desorption over the Pd(111) surface also increases when O is co-adsorbed, 

although the magnitude of this change is ~ 5.1 kJ mol-1. 

 

 

4.2.5 The effect of Au and O2 on crotyl alcohol selox 

The percentage of chemisorbed adsorbate (crotonaldehyde or propene) which 

underwent reaction (i.e. decomposition and/or combustion); essentially a measure 

equivalent to selox selectivity, was calculated by using Equation 4.1. 










+
×

−=
productsdesorptionmonolayer

%100monolayer100adsorbatereacted%  Equation  4.1 

Where ‘% reacted adsorbate’ is the amount of adsorbate which undergoes 

decomposition and/or combustion, ‘monolayer’ is the integrated MS area of the 

adsorbate monolayer (either crotonaldehyde or propene) and ‘desorption products’ 

are the integrated MS areas of all the reactively formed products.  

Values were sensitivity corrected by dosing each species into the background at 

several pressures (1 x 10-9, 1 x 10-8 and 5 x 10-8 Torr) and measuring the mass 

spectrometer intensity at each pressure. This was then divided by the same intensity 

for the adsorbate of interest in order to obtain a correction ratio. Each MS intensity 

used in Equation 4.1 was therefore multiplied by this corresponding correction 

factor in order to correct for the sensitivity of the spectrometer to different masses.  

The percentage of reacted adsorbate was plotted both with and without co-adsorbed 

oxygen for a range of Au/Pd(111) alloy surfaces (Figure 4.13). It is worth restating 

that O was only dosed into the chamber whilst cooling the substrate from room 

temperature to 120 K, prior to dosing the desired adsorbate. In addition to this, 

AES was used to monitor the surface alloy composition to ensure that it did not 

change as a result of introducing oxygen. For crotonaldehyde, the greatest amount 

of decomposition occurs over surfaces rich in Pd, where ~ 25 % of the chemisorbed 

aldehyde decomposes. The amount that decomposes gradually decreases with 
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increasing Au content, sharply dropping off to 0 % for a pure Au surface. The same 

general trend is also observed for crotonaldehyde and co-adsorbed O, except the 

amount of reacted crotonaldehyde decreases by around a third. This indicates that 

Au with O further improves the selectivity for the selox of crotyl alcohol, as both 

aid desorption of the aldehyde.  

For propene on Au/Pd(111) alloys, as the surface Au concentration increases, the 

level of dehydrogenation remains relatively constant, at around 15 - 12 %. A large 

concentration of Au is needed to affect the dehydrogenation pathway (XAu ≥ 0.8). 

In the case of propene and oxygen adsorption, pure Pd is by far the most active 

surface, where ~ 30 % of the adsorbed propene undergoes reaction. A small 

amount of Au has a dramtic effect upon the combustion pathway. For example, 

with the addition of 0.15 Au, the amount of reaction on the surface decreases to ~ 

18 %. As the amount of surface Au increases, the level of reaction remains 

relatively constant until high surface Au concentrations (XAu ≥ 0.92). Therefore, it 

can be concluded that Au has a larger effect upon the combustion rather than the 

dehydrogenation pathway. 
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Figure  4.13 - The variation in the amount of reacted adsorbate for crotonaldehyde 

and propene adsorption with and without co-adsorbed oxygen as a function of the 

surface Au mole fraction. 

Whilst it has been demonstrated that O and Au have a large impact upon the 

surface chemistry of selox over Pd, the origin of this exact influence remains 

unclear. Many questions have arisen as a result of the work presented in this 

chapter. For instance, is the influence of O and Au caused by destabilisation due to 

steric and/or electronic effects in both cases? DFT and or RAIRS would be 

particularly useful in order to estimating degree of surface crowding on 

coadsorbate system. DFT could also be used to run molecular dynamics of the 

alcohol adsorption on the surface of a Au/Pd(111) random surface alloy, both with 

and without O. In any case, future work is warranted using a host of different 

techniques in order to examine this effect in greater detail. 
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4.2.6 Errors 

The systematic error in the MS is approximately 0.01 ML. The other error 

associated with the data presented in this chapter is the human error in subtracting 

any baselines in order to calculate the area of the MS peaks. This will probably be 

~5 - 20 % of the peak area, with the larger errors attributed to weak peaks below 1 

L exposures. Therefore, if 0.15 ML of propene desorbed, the error associated with 

this measurement is likely to be +/- 0.02 ML. 

 

4.3 Conclusions 
TPD/TPRS studies have revealed the influence of Au on important reaction 

intermediates in the selective oxidation of crotyl alcohol over Pd(111). Previous 

work had shown that Au/Pd alloys were highly selective for the oxidation of 

alcohols23 with Au aiding both the formation and desorption of the aldehyde18. 

Thick epitaxial Au over-layers prepared over a Pd(111) substrate are shown to 

reversibly desorb crotonaldehyde, unable to drive decomposition chemistry. Au 

rich surface alloys are able to turn off decomposition of both the aldehyde (for XAu 

≥ 0.3) and its decomposition product propene (for XAu ≥ 0.8). This indicates that 

the decomposition reaction pathway of propene is less sensitive to surface Au when 

compared to crotonaldehyde. Conversely, Pd rich alloy surfaces decompose both 

reaction intermediates, leading to the formation of CO (solely for the aldehyde) and 

surface bound C; species responsible for deactivation. A reaction scheme for crotyl 

alcohol selox over Au/Pd(111) alloys is therefore shown in Scheme 4.1. 

+ O2

CO2

H2O

+ O2

This study:Previous work:

XAu ≥ 0.8

CO +
Au/Pd(111) alloys XAu ≥ 0.4

H2O CHx + H2 +

+ O2

CO2

H2O

+ O2

This study:Previous work:

XAu ≥ 0.8

CO +
Au/Pd(111) alloys XAu ≥ 0.4

H2O CHx + H2 +

 

Scheme 4.1 - Reaction pathway for crotyl alcohol over Au/Pd(111) surface alloys 
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In the case of the aldehyde, pre-adsorption of oxygen on Au surfaces hinders the 

decomposition chemistry further, with a small amount of decomposition also 

occurring. Propene binds more strongly to O pre-covered surfaces, which results in 

a small increase in the amount of propene that reacts. As a result, a larger 

proportion of the propene undergoes combustion when compared to the aldehyde 

over the same surface alloys. 
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Chapter 5  
Metastable De-excitation Spectroscopy of 
crotyl alcohol over Pd(111)  
 

5.1 Introduction 
As has been demonstrated in chapters 1, 3 and 4, our understanding of the selox of 

crotyl alcohol over Pd(111) and the associated deactivation1 has been greatly 

enhanced through the utilisation of temperature programmed X-ray photoelectron 

spectroscopy (TP XPS) combined with near edge X-ray absorption fine structure 

(NEXAFS)2 and Temperature Programmed Reaction Spectroscopy. The XPS has 

shown that product decomposition and associated self-poisoning prevails over 

model Pd(111), while electron deficient (formally PdII) centres confer activity in 

allylic alcohol selox.  At low temperature, the NEXAFS indicates that the C=C 

bonds parallel to the Pd(111) surface, much in the same way as allyl alcohol (2-

propen-1-ol) on Ag(110)3.  

A further technique that is well suited to the study of molecular adsorbates is 

metastable de-excitation spectroscopy (MDS), which utilizes the energy associated 

with the metastable states of rare-gas atoms (usually the 23S level of He) to induce 

electron emission from a surface or molecule14. For adsorbate systems, the de-

excitation of He 23S atoms generally involves a pseudo one-electron transition in a 

process that is similar to photoemission but which has the advantage that, unlike in 

ultraviolet photoemission spectroscopy (UPS), there is no penetration of the probe 

beam into the bulk.  

This renders MDS extremely surface sensitive and enables the adsorbate local 

density of states (LDOS) at energies close to the Fermi level, EF, to be studied in 

isolation. Occupied electronic states appear in this energy region as a result of 

chemisorption bond formation although they are largely masked in UPS due to 

dominant emission from metallic d-band states. As such, MDS has been widely 

employed in a number of previous studies investigating the electronic properties of 
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simple chemical adsorbates on a variety of metal surfaces4. In this chapter, MDS 

and supporting density functional theory (DFT) calculations are utilised to identify 

the states involved in bonding crotyl alcohol to the Pd surface. By using this 

approach, it is possible to evaluate and understand the adsorption mode and 

ultimately the molecular orientation of the alcohol on the Pd surface. 

5.2 Results and Discussion 

5.2.1 MDS of crotyl alcohol on Pd(111) 
Experiments were performed in a stainless-steel UHV system with a base pressure 

of ~1×10-10 Torr. The system comprises a preparation chamber; equipped with low 

energy electron diffraction (LEED), an analysis chamber; equipped with Auger 

electron spectroscopy (AES), and a beam-line for metastable He 23S generation. 

Full details of the experimental setup are described elsewhere5 but will be briefly 

outlined below. The Pd(111) single crystal sample could be heated using a 

pyrolytic boron nitride (PBN) heater to 1000 K and cooled to ~150 K using a gas 

baffle cooled by liquid nitrogen. Preparation of a clean substrate was carried out in 

the preparation chamber and utilized cycles of Ar+ sputtering followed by 

annealing to 1000 K until LEED showed a clean well-ordered surface. Oxygen (Air 

Liquide, 99.998%) was then dosed as received into the chamber background to 

obtain a pressure of 1×10-7 Torr, while the sample was heated to 800 K to remove 

residual carbon. The sample was also cooled in oxygen so as to saturate the 

surface, before flashing to ~930 K to desorb oxygen and any remaining 

contaminants. This procedure was repeated several times, until AES revealed no 

surface impurities. AES is insensitive to the presence of surface carbon on a Pd 

substrate below ~0.25 monolayer; however, the effectiveness of this cleaning 

procedure has previously been confirmed using temperature-programmed 

desorption (TPD) studies where the lack of CO or CO2 desorption in the acquired 

spectra can be taken as evidence for a carbon-free surface.6 

Once prepared, the sample was immediately transferred into an analysis chamber to 

record MDS spectra. Crotyl alcohol (Aldrich, 96%) was purified by repeated 

freeze-pump-thaw cycles prior to background dosing (purity checked by mass 

spectrometry (MS)). Quoted exposures are given in langmuirs (1 langmuir = 1×10-6 

Torr s-1) and are uncorrected for ion gauge sensitivity. Generally, a clean Pd(111) 
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surface was exposed to 3 langmuirs of crotyl alcohol with the substrate at 150 K. 

This dose is known to be large enough to produce a 0.15 monolayer saturation 

coverage of chemisorbed molecules for this system.2 Additional physisorbed 

molecules may also be present on top of this saturation layer depending on the 

substrate temperature. 

The metastable He 23S beam was generated using a liquid nitrogen cooled, copper 

cathode, dc discharge source, the output of which was manipulated using 

techniques of laser cooling to provide an ultrapure and intense He 23S atom beam 

at the sample.5 Electrons ejected as a result of metastable atom de-excitation were 

collected in the normal direction using a hemi-spherical energy analyser (Omicron 

EA125). A He I discharge source (Focus GmbH) was used in UPS experiments 

with normally emitted electrons detected by the same analyzer as for MDS. For 

both spectroscopies, the angle of incidence of the probe beam was 45°. 

The de-excitation of metastable He atoms at clean, transition metal surfaces is well-

characterized and proceeds via the two-stage mechanism of resonance ionization 

(RI) followed by Auger neutralization (AN)4. When approaching a clean Pd(111) 

surface to within a distance of around 5 Å, overlap of the occupied 2s orbital of the 

He atom with an empty surface state above EF allows a tunnelling transition to take 

place (RI). The resulting He+ ion continues to approach the surface until a further 

transition from the surface valence band to the empty ground state He 1s level 

occurs to neutralize the atom.  

The energy liberated in this process results in the emission of a second electron 

from the valence band in an Auger-type process (AN). As the kinetic energy of this 

electron is determined by the binding energies of both initial valence band states 

involved in the de-excitation, the resulting energy spectrum for RI + AN is 

essentially a self-convoluted map of the surface DOS (SDOS) modified by the de-

excitation transition probability (transition matrix elements), leading to broad and 

generally featureless spectra, as seen in Figure  5.1 (a) for the clean Pd(111) 

surface.  

Strong emission is observed in the region several eV below the kinetic energy 

maximum, Ek,max, which occurs when both electrons involved in the de-excitation 

process originate at EF. Occupied Pd(111) surface states with a binding energy of 
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0-2 eV have been shown to have a significant local density at the surface layer and 

at distances of up to 3 Å away from the surface where AN transition rates are 

highest7, and these account for the appearance of the spectrum at high kinetic 

energies. At lower energies, the spectrum is dominated by true secondary electrons. 

In contrast to the dominant role the SDOS plays in the AN process, penetration of 

UV photons into the bulk-like second atomic layer and beyond leads to features in 

the corresponding UPS spectrum arising from the bulk DOS (BDOS), specifically 

d-band electronic states (Figure  5.1 (c)). This assignment is confirmed by DFT 

calculations by ourselves (Figure  5.1 (b)) and others8 which show strong d band 

peaks at energies of several eV below EF, accounting for the peaks at ~1.4 eV and 

~2.4 eV. Figure  5.1 (c) also shows UPS spectra for a clean surface exposed to a 

saturation coverage of crotyl alcohol with the substrate at 150 K and 245 K. The 

metallic d states that feature so prominently in the clean spectrum are still dominant 

although somewhat attenuated by the adsorbate layer.  

A previous UPS study utilizing gas-phase crotyl alcohol as part of a composite 

molecular determination of the spectral features of opiate narcotics revealed many 

distinct molecular orbitals (MOs)9, as did a further UPS study of allyl alcohol10. 

However, for adsorption at both 150 and 245 K, direct emission from these orbitals 

is lacking for a saturation coverage of crotyl alcohol on Pd(111), which is known to 

be 0.15 ML2. The d states dominate the UPS spectra, due to the penetration of UV 

photons below the adsorbate layer. This highlights one of the benefits of using the 

more surface sensitive technique of MDS to study the surface electronic properties 

of adsorbed molecules. 
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Figure  5.1 (a) - MDS spectra from a clean Pd(111) surface where the dominant de-

excitation mechanism is resonance ionization followed by Auger neutralization, 

and from a saturation coverage of crotyl alcohol where significant Auger de-

excitation takes place. (b) - DFT calculation for clean Pd(111) showing metallic d-

band states close to EF. (c) - UPS spectra for clean Pd(111) and for a surface 

exposed to a saturation coverage of crotyl alcohol at 150 K and 245 K. 

At adsorbate-covered surfaces, the empty electronic states of the substrate are 

effectively shielded by the molecule thereby suppressing the RI process so that the 

He 23S atom continues to approach the surface. At a point where a (MO) of the 

adsorbate overlaps with the empty He 1s ground state, a tunnelling transition 

occurs stimulating the simultaneous release of the excited He 2s electron. As a 

quasi-one-electron process, this Auger de-excitation (AD) is reminiscent of 

photoemission and leads to emission spectra with features corresponding to distinct 

molecular electronic states. This is evident in Figure 5.1 (a) which also shows the 

MDS spectrum for a saturation coverage of crotyl alcohol adsorbed onto Pd(111) at 

150 K.  

Emission peaks are superimposed on a background arising from de-excitation via 

RI + AN. The exact balance between the two de-excitation channels is determined 

by their relative transition rates, ΓAD and ΓRI, with the former depending on the 
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coverage, adsorption site and geometry of the molecule. The AD spectrum reflects 

the DOS of the adsorbed species weighted by the overlap with the He 1s 

wavefunction meaning that electron emission from the outermost MOs of the 

adsorbed molecules is strongly favoured. Therefore the features present in the 

spectrum represent the local DOS of the adsorbate in the energy range close to EF 

which may be strongly modified by interaction with the surface. For ΓAD to be 

comparable to ΓRI, the outermost electronic states of the adsorbed crotyl alcohol 

must extend beyond ~3 Å from the substrate surface to efficiently suppress RI. This 

is approximately equal to the van der Waals radius of sp2-hybridized carbon and so 

appreciable AD can be expected at a saturation coverage of crotyl alcohol even for 

a coplanar adsorption geometry. 

 

5.2.2 Density Functional Theory 
DFT calculations were also conducted (by Dr. Chris Eames), in order to aid 

interpretation of the MDS results. All theoretical calculations in this work used the 

CASTEP11 ab initio DFT code. The Perdew-Burke-Ernzerhof12 generalized 

gradient approximation was used to represent exchange and correlation effects. We 

have used ultrasoft pseudopotentials with a cut-off energy of 350 eV and a 

Monkhorst-Pack13 reciprocal space sampling grid with a density of 0.04 Å-1. 

Convergence testing showed that the calculated energies and spectra were not 

affected by any further increase in the cut-off energy or the sampling grid density. 

The supercell comprised three layers of bulk Pd with a vacuum gap of 20 Å. This 

supercell was selected in order to minimise the computational cost of the DFT 

calculations. However, this leads to many limitations, mainly due to the lack of 

interaction with a ‘bulk’, which need to be considered when interpreting the results. 

Despite these limitations, additional Pd layers were shown to have no effect on the 

DOS for the bare Pd surface. Molecules were adsorbed on one face of the slabs and 

to minimize interactions between vertical periodic images we used a large vacuum 

gap, which meant that adjacent surfaces were over 30 Å apart. The molecules were 

arranged in a 3×3 grid, which resulted in a lateral spacing of around 11 Å. The 0.15 

ML saturation coverage for crotyl alcohol on Pd(111) has a 7×7 periodicity, 

although computational resources prevent the use of such a large supercell. The 
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consequent small lateral interactions in the simulated energies and spectra are 

another source of approximation error to be considered when comparing 

experiment and theory. 

The molecules were initially positioned a few Å above the surface in various 

specific orientations (as shown in Figure  5.3), and then relaxed to determine the 

optimum bonding geometry for each case.  The optimisation convergence tolerance 

for the forces was 0.01 (eV Å-1). The adsorption energies were calculated using the 

formula: 

 

E a = E CrOH/ Pd −E CrOH −E Pd    Equation  5.1 

 

Where ECrOH/Pd is the total energy after optimisation of the adsorbed molecule, 

ECrOH is the relaxed energy of the isolated molecule and EPd is the energy of the 

relaxed clean surface. DOS spectra for the optimised molecules were calculated 

using Mulliken population analysis, which determines the contribution from each 

energy band to a given atomic orbital. 

Figure 5.2 shows the calculated Density of States (DOS) for the isolated molecules 

of crotyl alcohol and crotonaldehyde along with the MDS spectrum for the alcohol-

adsorbed Pd(111) surface. The binding energy scale for the latter was calculated 

using the high-kinetic-energy cut-off (~12.5 eV) for Auger de-excitation (see 

Figure 5.6). Features D and E are most probably due to emission from both deeper 

lying molecular orbitals of the adsorbed alcohol and the clean Pd(111) surface. 

Low-energy secondary electrons account for feature F.  Peaks attributed to 

emission from the hydrocarbon skeleton of the alcohol, the O n non-bonding, and 

C=C Ǹ states are labelled as C, B and A respectively. Interestingly, a previous 

UPS comparison of allyl alcohol and acrolein10,  determined that the two lowest 

energy MOs of these molecules effectively switched positions, as indicated in 

Figure  5.2 and discussed further below. 
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Figure  5.2 - DFT calculated spectra for isolated crotyl alcohol and crotonaldehyde 

molecules and, for comparison, the experimentally obtained MDS spectrum of a 

crotyl alcohol saturated Pd surface at 150 K. 

DFT calculations were then performed in order to examine the energetics and 

calculate spectra of five different molecular orientations of the adsorbed alcohol. 

Three calculations were performed with the molecule laid flat on the surface 

(labelled as TOP, BOTTOM, and SIDE) and two additonal calculations with the 

molecule in an end-on configuration (referred to as UP and DOWN). These 

adsorbate geometries used in calculations are shown in Figure 5.3. It should be 

noted that the lateral position above the surface does not appear to greatly affect the 

partial DOS, as the energy differences are below the level of noise and therefore 

not significant. The calculated energies of each molecular orientation are displayed 

in Table 1. From this data, we can observe that energetically, the most favourable 

orientation is that of the molecule adsorbed parallel to the surface, on its side 

(SIDE = -3.27 eV). The energy of the molecule adsorbed flat onto the surface, with 
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the oxygen and carbon backbone in contact with the Pd, is comparable to that of 

the ‘SIDE’ configuration (TOP = -3.22 eV). Interestingly, our work also shows that 

it is also favourable for the molecule to adsorb in an end-on configuration with the 

oxygen pointing up, away from the surface (UP = -3.05 eV). Such a geometry 

would not provide the bonding arrangements necessary for the observed high 

binding energy suggesting that van der Waals interactions may be contributing. A 

future extension of this work could see these explicitly incorporated in a DFT-D 

calculation. 

 

Figure  5.3 – The five different molecular orientations of crotyl alcohol adsorbed on 

the Pd(111) surface used in DFT calculations. 

Surface Molecular Orientation Energy / eV 

UP -3.05 

DOWN -0.77 

SIDE -3.27 

TOP -3.22 

BOTTOM -0.87 

Table  5.1 - The energies of the surface molecular orientations shown in Figure 
5.3. 
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The DOS for each orientation was then calculated, and the results are shown in 

Figure 5.4. For comparison, also shown in the figure is the MDS spectrum of the 

alcohol pre-saturated Pd(111) surface at 150 K. Coloured lines are also shown in 

the figure to aid comparison of the MDS and DFT. As mentioned previously, the 

peaks C, B and A are due to emission exclusively from the adsorbed molecule, and 

as such the following analysis will focus on these states. It should be noted that 

DFT calculations reflect the plane-averaged DOS so that whilst the general trends 

and positions of electronic states may be compared to MDS spectral features, their 

relative intensities may differ due to the surface sensitivity of MDS.  

With that said, from both sets of data, judging by the shape and intensity of the 

peaks and also the calculated adsorption energies, it is clear that the ‘SIDE’ and 

‘TOP’ molecular orientations yield the best agreement between theory and 

experiment although distinguishing between these is not possible based on the 

present data. ‘BOTTOM’ and ‘DOWN’ can be excluded based on their calculated 

energies whilst the ‘UP’ configuration has the poorest agreement with the 

experimental spectrum. It may be possible that a tilted geometry or molecular 

distortion yields an adsorption geometry that is somewhere between ‘SIDE’ and 

‘TOP’. It is clear however that both the C=C and O bonds are somewhat coplanar 

to the substrate allowing access to the metastable He probe and giving rise to the 

features observed. 

These assertions are supported by previous NEXAFS studies of crotyl alcohol on 

Pd(111)2 and allyl alcohol on Ag(110)3 have shown these molecules to adsorb with 

the allyl moiety coplanar to the Pd substrate, a geometry that permits strong 

bonding. Additionally, DFT calculations14 have shown that, over Pd(111), allylic 

alcohols predominantly chemisorb via di-ǻ coordination of the C=C Ǹ bond 

complemented by a weaker interaction between an O lone pair on the –H2C-OH 

functionality and an atop Pd site. 
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Figure  5.4 - Density of states spectra of crotyl alcohol calculated by DFT for the 

molecular adsorption states shown in Figure 5.3. The top spectrum is that of the 

MDS of the alcohol on Pd shown for comparison. 
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5.2.3 Temperature programmed MDS 
With the assignment of all states complete, we can now focus on the temperature 

evolution of the spectra. 

 

Figure  5.5 - Temperature evolution of MDS spectra for crotyl alcohol adsorption 

on clean Pd(111) at 150 K. Temperature regimes where noticeable changes in the 

spectra occur are highlighted with different colours and grouped together into three 

distinct adsorption regimes. Note the non-linear temperature scale above room 

temperature. 

Figure 5.5 shows the evolution of MDS spectra taken after a clean Pd(111) surface 

was exposed to a 3 L dose of crotyl alcohol at 150 K and then allowed to warm to 

room temperature before being heated to 500 K. Detailed analysis of the spectra 

reveal different temperature regimes, highlighted in the figure, with sometimes 

only subtle variations in the spectral features. To emphasise these differences and 

aid a discussion of the adsorption kinetics, representative spectra from each 

temperature regime are shown in Figure 5.6. Temperature-programmed C 1s XPS 

has shown the reaction of crotyl alcohol over Pd(111) to proceed via three distinct 

steps with the in-tact adsorbed molecule first transforming to crotonaldehyde 

beginning at 200 K before decarbonylating at room temperature12. At higher 

annealing temperatures, carbonyl and CO surface species are removed from the 
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surface leaving only graphitic carbon. The MDS spectra presented in Figures 5.5 

and Figure 5.6 broadly support this interpretation as will now be discussed in more 

detail. 

 

Figure  5.6 - MDS spectra obtained at critical temperatures from a Pd(111) 

substrate exposed to 3 L of crotyl alcohol at 150 K, warmed to room temperature 

and then heated. Key features in the spectra are also labelled A,B and C, the 

assignment of which is detailed in section 5.2.3.1. 

 

5.2.3.1 I. < 200 K: Low-temperature crotyl alcohol adsorption 
Low-temperature adsorption of crotyl alcohol at 150 K leads to MDS spectra that 

display distinct features typical of AD at a molecular adsorbate. Particularly, well-

resolved peaks at high kinetic energies are observed (labelled A, B, and C in 

Figure 5.6) which have been assigned to emission from the first few (MOs) of the 

adsorbed alcohol. However, it is probable that a significant proportion of He 23S 

atoms interacting with the surface de-excite via RI accounting for the steadily 

rising background of emission on which the AD peaks are superimposed. To focus 
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on these latter features and gain further insight into evolution of the adsorption 

kinetics and spectral content with temperature, a peak-fit analysis for each 

temperature was performed. This involved approximating the RI emission in the 

energy region of peaks A-C by a straight line and subtracting this from the overall 

spectrum to yield a qualitative picture of the temperature-dependent AD process. 

Figure 5.7 shows representative data from the three identified temperature 

regimes. As we are now only considering the photoemission-like AD channel, the 

energy scales for these data may be converted to binding energy using knowledge 

of the Fermi level which occurs at the high kinetic energy cut-off (indicated in 

Figure 6). 

 

Figure  5.7 - Molecular orbitals and peak analysis of the MDS data shown in 

Figure 5.6 at three distinct temperature regimes. The dotted red lines show the 

fitted individual components. 

As previously mentioned, assignment of the MOs shown in Figure 5.7 has been 

accomplished using both DFT calculations and also relatively early valence-band 

photoemission studies and MO calculations of gas-phase allyl alcohols18,19.  

Emission from both HOMO and HOMO-1 states in the MDS spectra is relatively 

strong as would be expected for a parallel adsorption mode where incoming He 23S 

atoms are able to access these molecular states. A comparison of UPS spectra from 
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allyl alcohol, acrolein, and propene10 also supports this overall assignment. 

Additionally, in a separate UPS study of crotyl alcohol9, the binding energy 

difference between the first three MOs agree to within 0.1 eV with those shown for 

the 200 K spectrum in Figure 5.7. 

As the temperature of the substrate increases within regime I from 150 K toward 

200 K, subtle changes in the appearance of the emission peaks occur. At lower 

temperatures, peaks A and B are closer together and therefore less well-defined 

with peak C also appearing to shift in energy with increasing temperature. In order 

to track these temperature-related changes in greater detail, the peak-fitting 

procedure used to produce Figure 5.7 was applied to the data shown in Figure 5.5 

to obtain the peak positions of the first three MOs. The resulting graph, displayed 

in Figure 5.8, shows that, in heating from 150 K to around 190 K, all three peaks 

undergo a small (<0.2 eV) shift in binding energy, before stabilizing up to 200 K. 

To pre-saturate the Pd(111) surface with crotyl alcohol at low temperature, a 

previous study showed that a minimum dose of 1.5 L is required2, with higher 

exposures leading to a broadening of XPS features due to the formation of 

molecular multilayers. For the 3 L exposure used here, multilayers are also 

expected to form yielding AD spectral features that are closer in form to those of 

gas-phase crotyl alcohol than the chemisorbed molecule. As the substrate warms, 

the physisorbed multilayer molecules desorb revealing the chemisorbed saturation 

coverage and allowing He 23S atoms to access π* states induced around EF as a 

result of the molecule-substrate interaction. The lack of any major MO energy 

difference between the multilayer and chemisorbed phases indicates that the 

molecule is relatively undistorted upon adsorption.  

To emphasize the induced π* states, the data in Figure 5.6 are also replotted with 

the kinetic energy scale multiplied by a factor of 50. As the substrate temperature 

increases and the multilayers desorb, emission at energies close to EF intensifies, 

clearly demonstrating increased de-excitation at the chemisorption states. Electron 

donation/backdonation exchange between metallic d states and molecular π and σ 

states results in rehybridization of the adsorbate-metal system and the filling of 

empty molecular antibonding π* states which redistribute above and below EF in 

the LDOS. In the gas phase and when adsorbed in multilayers, crotyl alcohol 

molecules have a band gap around EF and would not give rise to emission in this 
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region. Similar effects have been observed in MDS studies of many other adsorbate 

systems, for example benzene adsorption on Fe(110)15. However, in the 

corresponding UPS spectra for crotyl alcohol adsorption (Figure 1 (c)), these states 

are masked by emission from the Pd substrate. 

Emission at high kinetic energies is also observed in the magnified MDS spectrum 

for the clean Pd(111) surface, which is unexpected as the de-excitation mechanism 

here is RI + AN. This feature is indicative of slight CO contamination as this 

molecule is known to strongly chemisorb to Pd(111) yielding bonding states that 

arise, according to the Blyholder model, due to mixing between CO 2π* orbitals 

with substrate d orbitals. That these states are visible, despite the surface being 

clean to the standards of LEED, AES and UPS, highlights the extreme sensitivity 

of MDS. 

Changes in the relative intensity of the features assigned to emission from C=C and 

O n states provide further insight into the adsorption dynamics of crotyl alcohol on 

Pd(111). As the substrate temperature increases from 150 K, the peak related to the 

latter states becomes increasingly prominent (see Figure 5.5) reflecting the 

changing coverage of the substrate as molecules desorb upon warming. For the 

adsorption of crotonaldehyde on Pt(111) at low coverage, the C=C and C=O bonds 

are known to both align parallel to the surface2, although as the coverage increases, 

the C=O bond undergoes a significant re-orientation by tilting strongly toward the 

surface. A similar effect may be occurring here with the C-O bond forced closer to 

the surface at high coverages and tilting further away from it as the coverage 

reduces to saturation. This would explain the increasing intensity of emission 

observed for O n states and also for induced π* states as the substrate temperature 

rises to leave a saturation coverage of crotyl alcohol. At low coverages, the C=C 

bond has a smaller separation from the substrate allowing a greater interaction and 

thus yielding more intense π* emission. Whilst this picture of C-O bond behaviour 

provides a qualitative description of the trends observed, it is not possible to state 

the degree of tilt, if any exists. However, a significant tilt would yield a more 

pronounced feature in the MDS spectrum when compared to emission from the 

C=C bond. The presented data can therefore be taken as evidence for an adsorption 

mode in which the C-O bond of the alcohol is aligned somewhat parallel to the 

substrate, in addition to the C=C bond. 
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Figure  5.8 (a) - Peak positions of the first three molecular orbitals (assigned in 

Figure 6) as a function of temperature.  (b) – The resulting schematic of the energy 

level correlation of the O n and C=C π MOs 

 

5.2.3.2 II. 200-250 K: Selox of crotyl alcohol to crotonaldehyde 
Above a substrate temperature of 200 K, distinct changes in the MDS spectra occur 

marking a transition to a second adsorption regime that ends at around 250 K. The 

evolution of spectral features across this temperature range is apparent in Figs. 5.5-
5.7 although is perhaps clearest in Figure 5.8. Initially, peaks A and B shift to a 

higher binding energy by ~ 0.2 eV whilst emission from peak C is reduced 

resulting in its position becoming less well-defined. After 225 K the system is more 

stable with peaks A and B tending toward slightly lower binding energies and peak 

C again becoming more prominent. The selective oxidation of crotyl alcohol to 

surface bound crotonaldehyde over Pd(111) is known to proceed via a reaction 
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pathway that accounts for ~90 % of the adsorbed molecule with the activation of 

this process commencing at 200 K. We therefore interpret the changes in the MDS 

spectra at this intermediate temperature range to originate from the onset and 

continuation of this reaction channel generating emission from the resultant 

aldehyde product. A minor channel for crotyl alcohol reaction to 2-butene and 

water also exists over Pd(111)2 although a clear signature of this is not apparent in 

the MDS spectra possibly swamped by emission from the alternative process. 

For low coverages of crotonaldehyde on Pt(111), the C=O and C=C bonds both 

align parallel to the substrate16 with the π system of the carbonyl functionality not 

utilized in the adsorption14. DFT calculations have shown crotonaldehyde to adopt 

a similar η4 quasi-planar adsorption mode over Pd(111)23. For this in-plane 

adsorption geometry and a hydrocarbon backbone that is structurally unaltered, 

MDS features for the aldehyde may be expected to have the same origin as for the 

alcohol. Whilst this is qualitatively correct, a previous UPS comparison of allyl 

alcohol and acrolein10 determined that the two lowest energy MOs of these 

molecules effectively switched positions with the HOMO of the aldehyde due to 

C=C Ǹ emission and HOMO-1 state due to O n non-bonding states, in direct anti-

correlation to the alcohol. This is in agreement with the DFT results of the isolated 

molecules presented earlier in this study, which show MO shifts that are similar in 

magnitude to those observed experimentally (figures 2 and 8). The energy-level 

realignment for the gas-phase molecules used in that study is schematically 

illustrated in Figure 5.8 (b) and we suggest an equivalent redistribution occurs 

when adsorbed crotyl alcohol oxidizes to crotonaldehyde over Pd(111). 

Additionally, considering the known planar geometry of crotonaldehyde on 

Pd(111), the fact that the relative intensities of peaks A and B are not greatly 

different for the alcohol and aldehyde lends further evidence to the assertion that 

the C-O bond of the alcohol is somewhat aligned parallel to the substrate.  

Low binding-energy MOs are particularly susceptible to modifications to the 

conjugation and inductive interactions within a molecule. The additional 

electronegativity associated with the carbonyl group formed upon crotyl alcohol 

oxidation leads to further inductive delocalisation of electron density towards the O 

atom, thus stabilizing the C=C π orbital and allowing the O n states to acquire more 
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bonding character. Resonance effects may also contribute to the MO binding 

energy determination although, due to the large energy separation of the C=C π and 

O n states and the in-plane geometry of the aldehyde molecule, these are expected 

to be small in comparison to inductive interactions15. With these intramolecular 

changes in mind, for peaks A and B to occupy the same approximate energetic 

positions for both the alcohol and aldehyde would certainly seem unexpected and a 

reversal in the assignment of the first two MOs, albeit coincident in energy, is 

altogether more likely. 

 

5.2.3.3 III. > 250 K: Decarbonylation 
At ~250 K, a further transition in the adsorbate system occurs accompanied by 

more distinct changes in the MDS spectra. Peaks A and C reduce dramatically in 

intensity and eventually disappear at around room temperature whilst peak B shifts 

to a higher binding energy where it remains approximately stable both in position 

and intensity. C 1s XPS has shown that surface bound crotonaldehyde 

decarbonylates to propene and CO at room temperature with the former either 

desorbing or dehydrogenating to graphitic carbon as the temperature increases 

above ~330 K2. With propylidyne being the dominant adsorbate species above 250 

K, peak B in this temperature regime is assigned to the C=C π orbital (HOMO) of 

such molecular fragments. A previous MDS study of CO/Pd(111) by Ertl and co-

workers17 show spectral features at 7.7 and 10.8 eV at 300 K. Unfortunately, these 

specific features cannot be observed in this study, as this region is swamped by 

emission from both low-energy secondary electrons and deeper lying molecular 

orbitals (F, E and D). Unfortunately, further due to the high level of convolution of 

these states, peak fitting and therefore further interpretation is extremely difficult. 

Earlier studies of olefinic adsorption on Pd(111)14, 18 have shown that significant 

hybridization of the C=C π bond with metallic d states results in substituent 

functionalities (the methyl group in the case of propene) tilting away from the 

surface. In the gas-phase, the C=C π orbital of propene is de-stabilized with respect 

to acrolein19 due to a combination of hyperconjugation and inductive interaction 

with the methyl group. This leads to the orbital energetically locating between the 

two outer lying orbitals of acrolein, as illustrated in Figure 5.8 (b). However, when 
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adopting a di-σ-coordination mode in the formation of a chemisorption bond, the 

C=C π orbital is stabilized and shifts to a higher binding energy explaining its 

relative position when compared to the MOs of crotonaldehyde (see Figure 5 (a)). 

A large shift in binding energy of the C=C π orbital upon chemisorption indicates a 

significant electron donation/backdonation interaction between propene and the Pd 

substrate, in similarity to ethylene adsorption on Pd(111)19. Emission from induced 

π* states is also high providing further evidence for a strong chemisorption bond. 

Heating above room temperature results in the loss of clear, identifiable features in 

the MDS spectra suggesting that the RI de-excitation channel is now strongly 

dominant. Propene almost completely desorbs by 500 K and only a small coverage 

of graphitic carbon remains bound to the surface so that the spectra become 

increasingly characteristic of clean Pd(111). 

 

5.3 Conclusions 
A combination of MDS and DFT has been used to study the adsorption of crotyl 

alcohol on Pd(111). At a substrate temperature of 150 K, three distinct molecular 

features are observed, typical of such adsorbates, due to predominant Auger de-

excitation. Early valence band photoemission studies, MO calculations of gas-

phase allyl alcohols, and density functional theory (DFT) calculations have been 

used to interpret the low temperature spectra.  States centred around 6 eV (peak C) 

can be attributed to the hydrocarbon backbone of the molecule. Further states 

appearing at around 4.5 eV (peak B, HOMO-1) and 3.5 eV (peak A, HOMO) have 

been assigned to the C=C Ǹ bond and O lone-pair 2p n bonds respectively.  

DFT calculations for various adsorption geometries of the alcohol reveal that the 

lowest energy state results when the molecule adopts an adsorption geometry that 

is parallel to the surface. This assignment is also supported experimentally, as any 

significant tilt in the position of the oxygen would lead to a more pronounced 

feature in the MDS spectrum when compared to emission from the C=C bond. We 

can therefore conclude from both the experimental and DFT results, that the C-O 

bond of the alcohol is aligned somewhat parallel to the substrate, in addition to the 

C=C bond. Judging by the shape and intensity of the peaks, DOS calculations for 
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such configurations are in excellent agreement with experimentally acquired MDS 

spectra. 

The chemical transformation of the alcohol to the corresponding aldehyde has been 

investigated by temperature programmed MDS. Heating the pre-saturated substrate 

causes dramatic changes to be observed in the spectra. In order to track such 

changes, a peak fitting analysis was performed. Between approximately 200 K and 

250 K, the reaction of crotyl alcohol to crotonaldehyde predominates, generating 

emission from the aldehyde product resulting in a small shift in peaks to higher 

binding energy. As a result of intramolecular changes, a reversal in the assignment 

of the first two MOs occurs, albeit almost coincident in energy. This switchover is 

supported by DFT calculations of the isolated alcohol and aldehyde, which show 

shifts similar in magnitude to that observed experimentally. 

At higher temperatures, peaks A and C dramatically decrease due to 

decarbonylation of the aldehyde, meaning that propylidyne is the dominant 

adsorbate species above 250 K. Peak B (~ 4.75 eV) therefore arises from C=C Ǹ 

orbital (HOMO) of adsorbed propylidyne. Spectral features indicative of CO (7.7 

and 10.8 eV)17 are not observed, due to dominant emission from secondary 

electrons and lower energy orbitals from 7 - 14 eV.  Heating the sample further 

results in the loss of identifiable features in the spectra, indicative of dominant 

resonance ionisation de-excitation. Propene completely desorbs by ~500 K, with 

only a small amount of graphitic carbon remaining on the surface, meaning that 

spectra become increasingly characteristic of Pd(111).  
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Chapter 6  
Magnetorefractive Effect in Fe3O4 thin films 
 

6.1 Introduction 
Jacquet and Valet in 1995 showed theoretically that the change in the optical 

conductivity of magnetic multilayers in an applied magnetic field is also associated 

with a significant change in the refractive index of the material1. This effect was 

termed the magnetorefractive effect (MRE) and was also demonstrated 

experimentally in [Ni80Fe20/Cu/Co/Cu] magnetic multilayers, which showed 

reasonable agreement with the theoretical calculations1. 

 

The development of techniques to probe useful properties of materials is vital in order 

to refine and improve such characteristics. The work of Jacquet and Valet therefore 

represented a new, valuable method to both model and study magneto-transport 

within metallic magnetic materials and has been applied to both granular and layered 

materials2. Research at York in recent years has also shown that the 

magnetoresistance (MR) can be directly related to the MRE by an experimental 

correlation3. As a result, this allows the MR of materials of spintronic materials to be 

determined via non-destructive, non-contact measurements4-8. 

 

Many different oxide materials also show interesting magnetic properties. The study 

of magnetism in pure and diluted oxides is a rapidly growing field9-15, as such 

materials have potential for application in spintronic devices15-17. Magnetite (Fe3O4), 

is one such material, as it has a high Curie temperature (858 K)18-22, theoretical 

calculations predict it to be fully spin polarised at the Fermi level22-30 and thin-films 

display MR20, 31-37. As outlined in chapter 1 (section 1.4.5), these properties are highly 

dependent upon the film microstructure22, 37-39.  

 

In this chapter, it will be shown that thin-films of Fe3O4 grown on MgO display a 

thickness dependent MRE. This is due to the large skin depths associated with the 

material, meaning that the IR light probes both the thin-film and the substrate, a 

complication not observed for metallic multilayers. A new theoretical model for this 
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dependence will be outlined, allowing oxide materials to be modelled and probed by 

MRE. The development of this method not only allows various conductivity 

mechanisms to be probed for oxides, but also allows the composition and thickness of 

such thin-films to be measured. 

 

6.2 Results and Discussion 
6.2.1 Preparation of Fe3O4 thin-films 
The phase diagram of iron oxides is very complex (see chapter 1, section 1.4.5), 

therefore, exact deposition conditions are vital in order to ensure the exclusive growth 

of the desired phase. Experiments were first conducted to determine the molecular 

beam epitaxy (MBE) growth conditions necessary to ensure that Fe3O4 and not other 

phases of iron oxide could be grown repeatedly. Gao et al40 determined the phase 

diagram for MBE growth of Fe3O4 on MgO substrates using O radicals produced by 

an RF plasma source, by preparing a large number of samples grown at different 

conditions. The stoichiometry of samples was controlled by independently controlling 

the growth rate, plasma power and O partial pressure. Depending upon the type of 

plasma source, size and geometry of the MBE chamber used, there will be slight 

variations in the growth conditions required for each vacuum system. As a result, 

Chambers work was used as a starting point in order to prepare Fe3O4 samples.  

 

Two MBE chambers were utilised for the growth of Fe3O4 thin-films on MgO 

substrates. One chamber was located at Northeastern University in Boston, USA, and 

the other was housed at the University of York, UK. Further details regarding these 

MBE chambers can be found in section 2.1.2 of chapter 2. All MgO substrates were 

first cleaned by sonication in acetone and then isopropyl alcohol, to ensure that the 

surface was largely free of any organic contaminants. The substrate was then placed 

into the MBE chamber via a load-lock. For samples grown in the Northeastern MBE, 

prior to growth the substrates were annealed to 973 K in O2 for 4 hours. The samples 

grown in the York MBE were annealed to 973 K in atomic O for 1-2 hours. In both 

cases the substrate was then cooled to the required growth temperature.   

 

Samples of Fe3O4 were then grown by simultaneously evaporating Fe in the presence 

of atomic O prepared by an RF plasma source (details in chapter 2, section 2.1.2). The 

samples grown at Northeastern university were prepared by Dr. Zhuhua Cai. Many 
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different iron oxide samples of various phases were first grown in order to calibrate 

growth parameters for the deposition of thin-films of the desired phase (Fe3O4). For 

both chambers the optimum Fe3O4 growth conditions are summarised in Table  6.1. 

These growth parameters were determined by creating a calibration matrix, where the 

oxygen pressure, plasma power and iron growth rate were independently varied.  

Samples prepared for the calibration matrix were analysed using diffraction, 

microscopy and spectroscopic techniques in order determine the phase of iron oxide 

grown, the result of which will be presented in the following sections of this chapter. 

 

As detailed in chapter 1, section 1.4.5, when Fe3O4 is grown on MgO, structural 

defects, known as antiphase boundaries (APBs) form due to the difference in size of 

the unit cells33, 35, 41. There is a strong antiferromagnetic coupling effect across these 

boundaries, which is thought to be the cause of the MR in these materials. The density 

of the APBs therefore influences the magnitude of the MR effect. A large amount of 

work has already been carried out on growth of Fe3O4 on MgO (100) substrates, yet 

despite the correlation of MR properties to structure, to the author’s knowledge, no 

work has been carried out on the growth of Fe3O4 on MgO (110) or MgO (111) 

substrates. As a result, samples were grown on a variety of different substrates in 

order to determine the effect of the structure of the substrate upon the MR of Fe3O4 

thin-films. 

 

MBE 
Chamber 

Substrate 
Substrate 
Temp. / K 

O 
pressure / 

Torr 

Plasma 
power  

/ W 

Fe 
growth 

rate  
/ Å s-1 

MgO(111) 623 K 1.0 × 10-6 100 0.12 

MgO(111) √3 × √3 623 K 1.0 × 10-6 100 0.12 

MgAl2O4(111) 

 
623 K 1.0 × 10-6 100 0.12 

MgAl2O4(110) 623 K 1.0 × 10-6 100 0.12 

Northeastern 

     

York MgO(100) 523 - 723 K 2.0 × 10-5 200 0.1 

Table  6.1 – Empirical optimum growth conditions determined for thin-film growth of 

Fe3O4 on various substrates for each MBE chamber. 
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As also described in chapter 1, film thickness is also known to be a factor in terms of 

the density of the APBs, and as a result, several film thicknesses were prepared. 

 

Substrate 
Desired nominal Fe3O4 film thicknesses 

 / nm 

MgO(111) 1 × 1 10, 20, 30, 60, 100 

MgO(111) √3 × √3 10, 20, 30, 60, 100 

MgAl2O4(111) 10, 30, 60, 100 

MgAl2O4(110) 30 

MgO(100) 60 

Table  6.2 – A table showing the substrates and desired Fe3O4 film thicknesses used to 

prepare samples. 

 

6.2.2 Reflectance High Energy Electron Diffraction (RHEED) 
Reflectance High Energy Electron Diffraction (RHEED) was used to characterise iron 

oxide thin-films in-situ. RHEED patterns were recorded for the Northeastern samples 

both before and during growth in order to examine the substrate and thin-film surface 

structure respectively. The RHEED patterns of samples produced at Northeastern 

were obtained by Dr. Zhuhua Cai.  Representative RHEED patterns are presented in 

Figures 6.1 to 6.3. Unfortunately, due to the design of the sample holder in the York 

MBE, it was not possible to obtain RHEED patterns. 

 

Figure  6.1 (a) shows the RHEED pattern recorded for an as received MgO(111) 

substrate. In this case, the RHEED streaks are broad and relatively weak, indicating 

that the surface is relatively rough and is not composed of ordered steps or terraces. 

Figure  6.1 (b) shows the RHEED pattern from the same MgO(111) substrate after it 

has been annealed in a furnace to 973 K for four hours. It is evident that the streaks 

are sharper and far more intense, showing that the surface is much smoother and 

indicates possible step formation. Figure  6.1 (c) is the same sample which has been 

subjected to an O plasma for approximately one hour. The streaks appear to be 

sharper and more intense, indicative of terrace formation. We can conclude from these 

patterns, that we have obtained a relatively smooth 1 × 1 MgO(111) surface. 
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Figure  6.1 – RHEED patterns recorded for MgO(111) substrates  

(a) as received (1 × 1) (b) after annealing at 973 K in a furnace for 4 hours (c) after 

exposure to a 100 W O plasma for 1 hour. Samples were run by Dr. Zhuhua Cai.  

 

Figure  6.2 (a) is the RHEED recorded for an as received MgO(111) sample. It is 

comparable to that of Figure  6.1 (a), in that it consists of weak, broad streaks, 

meaning that the surface is relatively rough and will consist of many defects. Figure 
 6.2 (b) are RHEED patterns obtained from the same sample shown in Figure  6.2 (a), 
which has been annealed in a furnace at 1073 K for six hours. The streaks in this case 

are much sharper and intense, showing that the surface is far smoother. In the [11-2] 

direction, it is possible to see additional streaks in between the main lines, which are 

indicative of a √3 × √3 surface reconstruction. These √3 × √3 streaks are more 

apparent in the [11-2] direction of the RHEED pattern in Figure  6.2 (c), which was 

recorded after the substrate was exposed to a 100 W O plasma for one hour. 
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Figure  6.2 – RHEED patterns recorded for MgO(111) substrates  

(a) as received (1 × 1) (b) after annealing at 1073 K in a furnace for 6 hours (c) √3 × 

√3 surface reconstruction after exposure to a 100 W O plasma for 1 hour. Samples 

were run by Dr. Zhuhua Cai. 

 

Figure  6.3 (a) to (d) shows the RHEED patterns recorded during the growth of an 

Fe3O4 thin-film on MgO(111). In Figure  6.3 (a), the additional lines in between the 

MgO streaks are attributed to Fe3O4. This assignment can be made according to the 

fact that the Fe3O4 has a unit cell which is twice that of MgO, so due to the nature of 

reciprocal space, the diffraction pattern corresponding to Fe3O4 will occur halfway 

through the MgO. As expected, as the film becomes thicker (Figure  6.3 (b), (c) and 

(d)), the MgO streaks become weaker in intensity. 

 

The growth of α-Fe2O3 can be eliminated as a possibility, as a radically different 

pattern would be observed. This is because the lattice parameters of α-Fe2O3 are a = 

5.038 Å 42 and c = 13.772 Å 42, meaning that depending upon the orientation of the 

film, the streaks would either appear to be similar in size to the of MgO or would not 

occur halfway through MgO.  
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Figure  6.3 – RHEED patterns recorded for thin-films of Fe3O4 on reconstructed 

MgO(111) √3 × √3 substrates (a) ~ 10 nm Fe3O4 (b) ~ 30 nm Fe3O4 (c) ~ 60 nm Fe3O4  

(d) ~ 100 nm Fe3O4. Samples were run by Dr. Zhuhua Cai. 

 

The patterns shown in Figure  6.3, are assumed to correspond to Fe3O4: as RHEED is 

incapable of differentiating between Fe3O4 and γ-Fe2O3, because their unit cell sizes 

are so similar (8.397 and 8.33 Å respectively)42. To this end, other techniques are 

required to determine the exact phase of iron oxide. 

 

6.2.3 X-ray Photoelectron Spectroscopy (XPS) 
XP spectra were recorded in order to aid in the determination of the phase of the iron 

oxide thin-films. In the case of samples prepared in the Northeastern MBE, XP 

spectra were recorded in-situ. For samples grown in the York MBE, XPS was run at 

the University of Oxford after thin-film growth. Representative spectra of the Fe 2p 

binding energy region for samples grown in the York MBE system are shown below 

in Figure  6.4 (a) to (d).   
 

Figure  6.4 (a) and (b) show the recorded XP spectra for samples attributed to Fe3O4 

and Fe2O3 respectively grown in the York MBE. To accentuate the trends and 

features, background subtracted and peak fitted spectra are shown in Figure  6.4 (c) 
(Fe3O4) and (d) (Fe2O3). The background subtraction and peak fitting procedure was 

performed through the use of the computer programme CasaXPS version 2.3.15. 

 

For both Fe3O4 and Fe2O3, due to spin–orbit coupling, the Fe 2p core levels split into 

2p1/2 and 2p3/2 components, situated at ~ 724 eV and ~ 711 eV, respectively. Fe3O4 
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consists of both Fe2+ and Fe3+ cations, and as a result, the two Fe 2p states are quite 

broad, as they consist of both ions. Conversely, for Fe2O3, the Fe atoms are fully 

oxidised to Fe3+, resulting in slightly sharper Fe 2p peaks. The ratio of these two fitted 

component peaks in the case of Figure  6.4 (c) is approximately 2:1, as would be 

expected for an Fe3O4 thin-film.  

 

In addition, Fe2O3 also features a shake-up satellite peak (due to charge transfer 

screening), which exists between the Fe 2p1/2 and 2p3/2 components21, 43-47. This 

satellite is labeled in Figure  6.4 (b) by “Fe3+ sat”. This feature is accentuated in the 

background subtracted spectrum in Figure  6.4 (d). This satellite is notably absent 

from both Figures 6.4 (a) and (b), which easily allows Fe3O4 to be distinguished from 

Fe2O3. 
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Figure  6.4 – (a) A representative Fe 2p XP spectrum from a Fe3O4 thin-film sample 

grown in the York MBE (b) A Fe 2p XP spectrum recorded from a Fe2O3 thin-film 

sample grown in the York MBE, showing the characteristic Fe3+ satellite (c) 
Background subtracted and fitted intensities from the York Fe3O4 sample  (d) 

Background subtracted and fitted intensities from the York Fe2O3 sample, again 

showing the characteristic Fe3+ satellite. 
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6.2.4 Transmission Electron Microscopy (TEM) 
In order to determine both sample film thickness and the atomic structure through the 

film, cross-sectional transmission electron microscopy (TEM) was employed. 

Samples were first cut using a diamond saw, polished by lapping pads and then glued 

together to allow several interfaces to be probed simultaneously. Once glued, samples 

were thinned further to ~ 200 µm, before the interface was ion milled by Precision Ion 

Polishing (PIPS) to a thickness of around 10 nm, so that they would be sufficiently 

electron transparent in order to be imaged by TEM. The full cross sectional sample 

preparation procedure can be found in the appendix.  

 

Samples were prepared and imaged by Mr. James Sizeland, a MSc student under the 

supervision of the author. Two representative cross-sectional TEM images of a 18 nm 

Fe3O4/MgO(100) sample are shown in Figure  6.5. The images show a sharp interface 

between the two layers, indicating that samples are epitaxial. Also shown in the figure 

is a diffraction pattern (recorded in the [1 -1 0] zone) from the sample. The electron 

beam partially covered both the film and substrate; hence the diffraction pattern is a 

composite of both layers. The brighter and larger diffraction spots originate from the 

MgO, whereas the smaller, lower intensity spots can be attributed to Fe3O4. The unit 

cell of Fe3O4 is approximately twice the size of MgO, hence the Fe3O4 spots occur at 

intervals half-way through the MgO spots due to reciprocal space. These results are 

identical to those obtained by RHEED of the Northeastern samples (see section 7.2.2). 

These results were consistently observed for all MgO samples, and hence Figure  6.5 

is representative of the entire MgO sample series. The TEM measurements were also 

used to determine the exact thickness of thin-films. 
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Figure  6.5 – Cross sectional TEM of Fe3O4/MgO(100) 1 × 1 nominal thickness of 15 

nm. Inset shows the electron diffraction obtained from the sample. 

This sample was prepared and imaged by Mr. James Sizeland. 

 
Figure  6.6 is a high resolution cross sectional TEM image of a 60 nm 

Fe3O4/MgO(100) sample showing the atomic structure through the film. This image 

also shows that the interface between the two layers is relatively sharp. Fast Fourier 

Transform (FFT) was performed on the individual layers and is also displayed in the 

figure. These FFT images are akin to individual diffraction patterns from the two 

layers. From these images, it is clear that the distance between the spots in the iron 

oxide layer is approximately half that of the MgO. This means that in real space, the 

unit cell of the iron oxide phase grown is roughly twice the size of MgO, echoing the 

results obtained by RHEED and electron diffraction studies. This is further evidence 

that the correct phase of iron oxide has been grown on the desired substrate. A full 

analysis of a diffraction pattern in the [2 2 0] direction can be found in the appendix. 
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Figure  6.6 – High resolution cross sectional TEM of an Fe3O4 thin-film on 

MgO(100), with corresponding FFT images from both the Fe3O4 and MgO layers. 
This sample was prepared and imaged by Mr. James Sizeland. 
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In order to confirm that samples contain APBs, a thin-film lift off procedure was 

utilised in order to obtain plan-view dark-field TEM images. Fe3O4 thin-films were 

‘lifted off’ the substrates by immersing samples in concentrated (4 wt%) solution of 

ammonium sulphate. The process was aided by heating the sample and solution to 70 

°C in a water bath for 24 hours35, 39. The thin-film came off the substrate in small (~ 1 

mm) pieces, which could be lifted off the liquid (NH4)2SO4(aq) surface onto a Cu TEM 

grid. The sample on the grid was then washed with a 50:50 mixture of ethanol and 

deionised water, before a final wash with deionised water. The grid was then allowed 

to dry at ambient temperature and then imaged by TEM.  Figure  6.7 is a plan view 

TEM sample of a thin-film of a 60 nm Fe3O4 on MgO(100). This image is 

representative of a wide range of samples prepared and imaged in the same way. The 

dark, angular lines in the image correspond to the defects that have formed as a result 

of Fe3O4 thin-film growth on MgO. Similar images attributed to APB formation are 

widespread in the literature (see chapter 1, section 1.4.5). 

 

20 nm
 

Figure  6.7 – A representative dark field TEM plan view image of an Fe3O4 thin film. 

The film was lifted off the MgO(100) substrate using a concentrated solution of 

(NH4)2SO4. The jagged lines in the figure correspond to the interfaces between the 

APBs in the thin-film. This sample was prepared and imaged by Mr. James Sizeland. 
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6.2.5 Vibrating Sample Magnetometry (VSM) 
Vibrating Sample Magnetometry (VSM) was used to determine the remanence and 

coercivity of thin-film Fe3O4 samples. The VSM data from Fe3O4 samples on 

MgAl2O4(111) is shown below in Figure  6.8. The trends will first be described, before 

possible explanations are outlined at the end of the section. The main figure shows the 

hysteresis loops for a variety of Fe3O4 film thicknesses on MgAl2O4(111) substrates. It 

should be noted that similar hysteresis curves were obtained for all samples, therefore 

Figure  6.8 can be said to be representative of all samples.  The magnetic field scale (x 

axis) has been decreased in order to emphasise the shape of the curves, along with the 

coercivity and remanence. The inset shows the same hysteresis loops at full scale. 

Examining the curves in this figure, there is also no evidence of multiphase behaviour 

from data. 

 

It should be noted that the samples have been mathematically corrected for the 

diamagnetic response of the substrate. This involved dividing the hysteresis loops by 

a gradient, which is assumed to correspond to the diamagnetic response. For 

reference, the magnitude and shape of this correction is also displayed in the figure. 

This correction, coupled with the fact that Fe3O4 thin-films do not magnetically 

saturate in high fields33, 39, means that it is impossible to determine the magnetic 

saturation (Ms) of samples. With that said, as the magnetisation has been normalised 

to the approximate volume of each thin-film, it can be observed that all films have 

approximately the same magnetisation at 15000 Oe and this is in the correct range for 

Fe3O4
48. It is important to consider the fact that the volume of each sample was 

calculated from the area (measured by CCD) and nominal thickness of samples. As a 

result the error associated with this method of correction will be high. 
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Figure  6.8 – Representative VSM hysteresis loops for Fe3O4 thin-film samples. The 

series shown is for various thicknesses of Fe3O4 on MgAl2O4(111). Also shown in the 

figure is the diamagnetic response from the substrate, which was used to correct the 

recorded magnetic response from samples. The inset shows the same hysteresis loops 

over a larger field range. 

 

From each set of hysteresis loops, values of coercivity were obtained for all samples 

and are shown in Figure  6.9. The displayed error bars were estimated from the known 

instrument error and from the noise in the data. It is worth stating that these 

measurements have a low associated error as they are measured at zero magnetisation, 

which is not affected by either the film volume correction or diamagnetic response 

correction. The coercivity (Hc) is the magnetic field required to drive the 

magnetisation of the film to zero. This is essentially a measure of how easily the 

sample can be demagnetised. Materials are known as ‘hard’ magnets if they have high 

coercivities (as they are hard to demagnetise). Conversely, ‘soft’ magnets have low 
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coercive fields. Thus, the coercivity value can also usually be used to identify the 

material, as different substances have different, often characteristic, coercivity values. 

 

For the MgO(111) 1×1 sample series shown in Figure  6.9, the coercivity of the 

sample increases with increasing film thickness, before levelling off at around a film 

thickness of 20 nm. Indeed, this general trend is mirrored by all of the samples. All 

samples have approximately the same coercivity at each nominal film thickness. 

Generally, there appears to be a larger variation in the coercivity for the thicker Fe3O4 

samples. The Fe3O4 thin-films grown MgAl2O4, also have a higher coercivity when 

compared to the thin-films on other substrates, although the reason for this is unclear. 

 
Figure  6.9 – The coercivity values obtained from VSM data obtained for all thin-film 

Fe3O4 samples prepared in the Northeastern and York MBEs. 

 

The coercivity values from the literature for a variety of iron oxide thin-films are 

shown in Table  6.3. It was expected that it would be possible to identify the phase of 

iron oxide from the coercivity obtained by VSM. To a certain extent, this is true, as it 

is facile to discriminate between FeO (wüstite) and other forms of iron oxide, because 

wüstite has a coercivity of zero. However, from the Table  6.3, it is clear to see that 
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there is a huge variation in recorded values even for a single phase. This is because 

the coercivity depends upon a variety of different factors other than the film’s 

chemical composition, including the microstructure of the film, the film thickness and 

any impurities present within the film. We also cannot compare the results to those 

obtained for bulk samples as thin-films deviate from bulk behaviour. 

 

In addition to the fact that there are variations for single phases, the values for Fe3O4, 

α- Fe2O3 and γ-Fe2O3 are very similar. We can therefore only use the coercivity values 

shown in Figure  6.9 to determine that the films do not contain FeO, and the 

coercivity is in the correct range for Fe3O4 thin films. As the coercivity of thin-films 

of Fe are around 5 – 10 Oe, we can also conclude that the samples do not contain 

much (if any) iron. 

 

Material Coercivity (Hc) / Oe References 

FeO 0 49 

Fe + Fe3O4 318 50 

Fe3O4 ~ 158, ~ 236, 271, ~280 49-51 

Fe2O3 ~ 236 49 

γ-Fe2O3 269, 1150 50 

α-Fe2O3 + γ-Fe2O3 273 50 

2.5 at% Co, 3.0 at% Cu  

γ-Fe2O3 
460 – 600 52 

3.0 at% Co, 3.0 at% Cu  

γ-Fe2O3 
520 – 540 52 

Table  6.3 – Coercivity values for various iron oxide thin-films from literature. 

 

From the VSM data, values were obtained for the remanent magnetisation at zero 

field for all samples, and are shown in Figure 6.10. Whilst the error associated with 

the physical measurement of the remanence values will be low, such measurements 

are highly reliant on upon the film volume correction. This film volume correction 

leads to a large overall error, as this correction is subject to estimating both the area 

and film thickness of a given sample. It is therefore important to be aware that whilst 

the overall trend will not be affected appreciably, there could be a large error in the 
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absolute value from this estimation. A similar trend is observed for the remanence as 

was observed for the coercivity, namely that the remanence increases with increasing 

thickness, but levels off at roughly 20 nm. The values obtained for the remanence for 

all samples are what would be expected for Fe3O4
25.  

 
Figure  6.10 – Remanence values obtained from VSM data obtained for all thin-film 

Fe3O4 samples prepared in the Northeastern and York MBEs. 

 

From figures 6.8, 6.9 and 6.10 we can draw some conclusions from the general 

trends. It is clear from the VSM curves, an increasingly square hysteresis loop shape 

results as the film thickness increases. For low film thickness samples, switching is 

less rapid and it the hysteresis has an appearance akin to that of a magnetically hard 

axis loop. This hysteresis shape is probably due to stress in samples with low film 

thicknesses. This stress could be relieved by the formation of APBs, which would 

give rise to pinning sites and therefore result in a wider loop as the film thickness 

increases. It is very difficult to draw too many conclusions with such a small section 

of the M-H loop accessible from such low field measurements. As a result, future 

work could include using a high-field VSM to investigate these samples further.
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6.2.6 Magnetoresistance (MR) measurements 
The magnetoresistance (MR) of Fe3O4 thin-films was determined by four-point probe 

measurements (as detailed in chapter 2, section 2.6.2). Films grown in the York MBE 

system with a composition corresponding to Fe2O3 (as determined by XPS, see Figure 

 6.4 (b) and (d)) did not display any magnetoresistance, meaning that MR could also 

be used as an indirect method to determine the phase of iron oxide grown in MBE 

experiments. 

A representative MR curve is shown in Figure  6.11. From this figure, it can be 

observed that the MR increases with increasing magnetic field, although no saturation 

occurs by ~ 1 T. What is also interesting to note from the figure, is the appearance of 

two ‘humps’ in the MR at low field, which correspond to the coercivity of the sample. 

Table  6.4 also displays the magnitude of the MR recorded at ~ 1 T for all samples. 

All samples display roughly the same MR (~ 1 %) at ~ 1 T. This is surprising, as one 

would expect there to be a thickness dependence in the MR within the same sample 

series, as it is known that the density of the APBs varies with film thickness22, 35. One 

would also expect there to be a large variation in the MR between different sample 

sets, as the density of the APBs also depends upon the substrate surface structure. It is 

thought that the MR values are all approximately 1 % as the samples clearly do not 

saturate in low fields. 
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Figure  6.11 – A representative MR curve from a thin-film of Fe3O4 on MgO. The MR 

shown in the figure is from a 100 nm Fe3O4 thin-film on MgO(111) substrate.  

∆R = 0.8 %
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Table  6.4 – A table to show the nominal thickness and electrical MR of all samples 

prepared in the York and Northeastern MBE systems. 
 

6.2.7 Skin depth measurements 
An important optical quantity, the skin depth, can be determined from the 

conductivity of a material. Skin depth, δ, is defined as the depth to which 

electromagnetic radiation can penetrate a particular conducting surface. In any 

conductive material, electromagnetic radiation will penetrate the surface and will be 

attenuate by 1/e, in a given distance, δ. This quantity is important, as we shall be 

examining the infrared and MRE spectra later on in this chapter. 

 

The skin depth for a given material is dependent upon the electrical conductivity of 

the material and the frequency of incident radiation. The conductivity, σ (in Ωm-1), of 

a given film of thickness, t (in m), is related to resistance, R (in Ω), of the material 

Substrate 
Nominal thickness  

/ nm 
Magnetoresistance  

/ % 

100 0.8 

60 1.0 

30 1.0 

15 0.9 

MgO(111) 

10 0.9 

100 0.9 

60 1.1 

40 0.9 

15 0.9 

MgO(111) 

√3×√3 

10 0.9 

100 1.35 

50 1.0 

30 0.8 
MgAl2O4(111) 

10 1.1 

MgAl2O4(100) 10 1.2 

MgO(100) 60 1.2 
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according to Equation 6.1. This is an equation specific to the geometry of the four-

point-probe method used to measure the magnetoresistance of thin-film samples53. 

 
Equation  6.1 

 

From the conductivity, the skin depth can be calculated as follows: 

 
Equation  6.2 

 
where, ω is the angular frequency (2πf, in s-1) and µ0 is the permittivity of free space 

(Ωsm-1). In this case, the frequency that corresponds to the infrared resonance of 

Fe3O4 was used in order to calculate the skin depth. The skin depth was calculated 

according to the resistance of thin-film Fe3O4 samples recorded at zero field during 

magnetoresistive measurements (see section 7.2.6).  

 

A representative graph of the skin depth of Fe3O4 thin-film samples is shown below in 

Figure  6.12. The general trend is that for very thin-films of Fe3O4, the skin depth 

drops off rapidly as the film thickness increases and then remains relatively constant 

at approximately 3000 nm. For all thin-films the calculated skin depths are large, 

being several thousand nanometres in magnitude. To put this into context, a 100 nm 

thin-film of Au, with a resistivity, ρ, of 2.2 × 10-8 Ωm (and therefore a conductivity 

(σ=1/ρ) of 4.5×105 Ωm-1) at the same infrared frequency would have a skin depth of ~ 

20 nm.  
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Figure  6.12 – The skin depth calculated for thin-film Fe3O4 samples on MgO(111). 

 

These results show that for the Fe3O4 samples, in order for no infrared light to probe 

the substrate, a film thickness of over 3000 nm would be required. As Fe3O4 has such 

a high resistivity (and therefore a low conductivity) for thin-films the IR light will 

always probe the substrate.  

 

6.2.8 Infrared Spectroscopy 
Light in the infrared region of the electromagnetic spectrum is frequently used in 

spectroscopy, as vibrational modes in many atoms and molecules are resonant at such 

wavelengths. MgO, MgAl2O4 and Fe3O4 have many spectral features that are sensitive 

to IR light. Transverse and longitudinal phonon modes are excited which are 

associated with the stretching and bending modes of the Mg-O, Al-O and Fe-O bonds. 

 

As phonon resonances appear at characteristic frequencies for different compounds, 

infrared reflectivity spectra can be used to identify composition. To this end, Table 
 6.5 below shows phonon resonances for pertinent substrates and thin-films involved 

in this study. Historically, spectral features were measured using the units of 

wavenumber (k / cm-1), which is the reciprocal of the wavelength. This practice is 

continued here, as it is the established convention for spectroscopic results. 
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Table  6.5 – Literature values for the various resonant phonon modes for both 

substrates and thin-films. 
 

Infrared spectra of thin-film samples were obtained in reflection using a Nicolet FTIR 

spectrometer coupled to an MCT detector. The setup is housed in a purpose built CO2 

scrubbed perspex chamber containing hygroscopic crystals. The full setup is 

described in chapter 2, section 2.6.3. In order to remove any remaining CO2 and H2O 

peaks from spectra, all IR results were normalised to the spectrum of a sputtered ~ 

100 nm Au film, as Au does not contain any resonances in this IR wavelength range. 

 

Spectra for a range of Fe3O4/MgO(111) samples are below shown in Figure  6.13. 

From data in Table  6.5, we can identify the appearance of an Fe3O4 peak at 

approximately 540 cm-1, which increases in size with increasing film thickness. We 

can confidently assign this as Fe3O4 and not α-Fe2O3 or γ -Fe2O3 due to the absence of 

additional TO resonances at 437 cm-1 (α) or 440 cm-1 (γ). The magnitudes of the MgO 

resonances decrease with increasing Fe3O4 film thickness. It is therefore clear that 

spectra are consistent with an increasing Fe3O4 film thickness on an MgO substrate. 

Phonon resonances 

Material 
Transverse optic 

modes 
kTO / cm-1 

Longitudinal optic 
modes 

kLO / cm-1 

Reference(s) 

Subrates:    

MgO 401, 640 729 54, 55 

MgAl2O4 485, 670 630, 855 56-58 

Thin-films:    

FeO 290 535 59 

α-Fe2O3 299, 437, 526, 524 414, 494, 662 18, 60-62 

γ-Fe2O3 440, 550 453, 572 19, 61, 63 

Fe3O4 330, 540 576 19, 61, 63, 64 
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Figure  6.13 – Infrared spectra recorded for the thin-film Fe3O4/MgO(111) samples 
 

In sections 7.2.2 to 7.2.7 we have shown by several methods that we have formed 

various thin-films of the desired phase of iron oxide (Fe3O4), which all display 

magnetoresistance. As a result, it was possible to perform magneto-optical 

measurements in order to examine the magnetotransport within such materials. 

 

6.2.9 Magnetorefractive Effect (MRE) measurements 
The optical conductivity for magnetoresistive samples changes when a magnetic field 

is applied. This change is also associated with a significant change in the refractive 

index of the material1, known as the magnetorefractive effect. This effect can be 

measured by taking the ratio of the change in reflectivity due to an applied magnetic 

field (∆R) to the reflectivity recorded solely in a magnetic field (RH). This is 

represented mathematically in Equation 6.3: 

 
Equation  6.3 

where R0 is the IR reflectivity in zero field, and RH is the IR reflectivity in an applied 

magnetic field.  

0 nm 
10 nm 
18 nm 
37 nm 
64 nm 
110 nm 

Fe3O4 film 
thickness: 

Fe3O4 

~540 cm-1 

MgO 

~640 & ~729 cm-1 
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MRE spectra were obtained for the same samples shown in the infrared measurements 

in Figure 6.13. As the samples do not display a large magnetoresistance, the 

magnetorefractive effect will also be small in magnitude. As a result, 500 scans at a 

resolution of 4 cm-1 were taken and averaged in order to produce MRE spectra.  It 

should also be noted that due to constraints imposed by the apparatus, spectra were 

recorded with an incident beam angle of approximately 60° to the sample normal, 

which may not be the optimum.  

 

Representative stacked MRE spectra for a variety of Fe3O4 film thicknesses are shown 

below in Figure  6.14. All samples display an MRE, and despite the samples not 

saturating magnetically the magnitude and position varies with film thickness. Also 

shown in the figure is the average spectrum for the 110 nm Fe3O4 film obtained from 

the subtraction of IR spectra recorded at zero field (after sweeping through the 

hysteresis loop). This shows a flat line at 0 %, meaning that all peaks recorded in the 

MRE spectra are genuine and not artefacts. Essentially the same result is found if such 

spectra are acquired in high field (1.2 T) – again highlighting the fact that MRE 

spectra can only be obtained from the difference of IR spectra acquired in field and at 

zero field. 

 

The spectra are complicated by the fact that the skin-depth for Fe3O4 is large (see 

section 7.2.7) and therefore the IR light probes not only the film, but also the 

substrate. In order to understand this film thickness dependence and the MRE spectra 

generally, a theoretical model is required, which will be addressed in the next section 

of this chapter. 
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Figure  6.14 – Stacked MRE spectra recorded for the Fe3O4/MgO(111) samples. 

 

6.2.10 MRE modelling 
The MRE for simple metallic thin-film multilayers varies linearly with film thickness. 

However, as we have observed, MRE spectra for oxide thin-films is complicated by 

the relatively large skin depth in such materials. As a result, MRE spectra greatly vary 

with increasing film thickness. It is therefore important to model and simulate the 

MRE in order to understand not only the thickness variation, but also to examine the 

various conductivity mechanisms present within such materials.  

 

6.2.10.1 The complex dielectric function 
The optical properties of any given material are determined by its complex dielectric 

function, ε(ω). A simple theoretical model of the MRE of a given system can 

therefore be constructed by determining the form of the complex dielectric function65. 
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6.2.10.2 The Drude model 
For a metallic system, the complex dielectric function, ε(ω) varies linearly with the 

frequency-dependent conductivity, σ(ω) according to the Drude (free electron) 

relation66, as shown below. 

 
Equation  6.4 

where ω is the frequency of the incident radiation, ε0 is the permittivity of free space 

(8.85 × 10-12 F m-1) and ε(∞) is the high frequency response (ω = ∞) of the dielectric 

function to optical excitation of frequency ω. ε(∞) is therefore a constant which is 

material specific. 

 

6.2.10.3 Plasma frequency 
The natural frequency of oscillation of electrons in a plasma displaced relative to the 

ion background is known as the plasma frequency, ωp. This frequency determines 

whether or not waves can propagate in the medium. If ω < ωp then waves can not 

propagate and incident waves of lower frequency than the plasma frequency will be 

reflected. 

We can express Equation 6.4 in terms of this plasma frequency67, 68: 

 
Equation  6.5 

where γ is a damping term. 

 

Infrared (IR) light has a frequency lower than the plasma frequency, and is therefore 

reflected. This forms the basis of an MRE experiment; which uses IR light to probe 

the changes in the reflectivity of the sample when an external magnetic field is 

applied. 

 

The plasma frequency is directly related to the number of free carriers (N) and can be 

described according to the following relationship: 

 
Equation  6.6 
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where e is the charge on the free electron (1.60 × 10-19 C), and me is the effective 

mass of the electron (~ 9.11 × 10-31 kg for a free electron). 

 

The number of free carriers in a ‘conventional’ metal is of the order of 1028 per m3. 

However, for Fe3O4, N will obviously be significantly lower than that for a metal, so a 

relatively low plasma frequency will result. 

 

6.2.10.4 Phonon resonances 
IR spectral features reveal resonances in the system, as phonon modes are resonant for 

specific frequencies of the incident light.  Phonon resonances are an integral part of 

the response of a system to an optical stimulus, and as a result they must be included 

into the dielectric function for the material. Both the transverse optic and longitudinal 

optic modes can be incorporated into the complex dielectric by treating the j 

resonances of the system as the sum of a series of simple harmonic oscillators. The 

following resonance term can therefore be added to the overall dielectric function: 

Sj
2

k j
2 − k2 − iγkj=1

n

∑  Equation  6.7 

where kj is the wavenumber (of the jth resonance), k is the wavenumber of the incident 

light, γj is a damping term for the resonance and Sj is the oscillator strength.  

 

This phonon resonance term can be added to the Drude term giving the following 

form for the complex dielectric function: 

ε(ω) = ε(∞)−
ωp

2

ω2 + iγω
+

Sj
2

k j
2 − k2 − iγkj=1

n

∑  Equation  6.8 

 

6.2.10.5 Fresnel equations 
Provided the angle of incidence (φ) is known, the complex dielectric function can be 

used to calculate the reflectivity coefficient according to the Fresnel equations. As 

previously mentioned, due to constraints imposed by the apparatus, spectra were 

recorded with an incident beam angle of approximately 60° to the sample normal, and 

hence this value is used in the modelling. This angle may not be the optimum and this 

should be considered in future modelling. It is important to consider the polarisation 
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of light at this stage, so we must construct two equations (Equation 6.9 and 7.10) for 

the electric field polarised perpendicular and parallel to the plane of incidence. 

r s =
cosϕ− ε(ω)− sin 2 ϕ

cosϕ+ ε(ω)− sin 2 ϕ  
Equation  6.9 

r p =
cosϕε(ω)− ε(ω)− sin 2 ϕ

cosϕε(ω)+ ε(ω)− sin 2 ϕ  
Equation  6.10 

 

rs is the reflectivity coefficient for light where the electric field is polarised 

perpendicular to the plane of incidence. Conversely, rp is the reflectivity coefficient 

for light where the electric field is polarised parallel to the plane of incidence. This 

polarisation is illustrated below in Figure  6.15. 

 

 
Figure  6.15 – A diagram showing the electric field polarisation of light at the Fe3O4 

surface. The two polarisations result from the electric field being perpendicular (s) 

and parallel (p) to the plane of incidence.  
 

A reflectivity spectrum can be determined from the mean of the magnitude of the 

squares of the reflection coefficients for each polarisation. 

Rs,p =
r s 2

+ r p 2

2  
Equation  6.11 
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6.2.10.6 Modelling parameters 
In order to effectively simulate IR reflectivity spectra for thin-films of Fe3O4, several 

parameters needed to be input into the model described above. Values for the high 

frequency response, number of free carriers and relaxation time were obtained from 

literature in order to determine the plasma frequency and hence the Drude term in the 

complex dielectric function. Parameters (kj, γj and Sj) were also gathered from the 

literature in order to simulate the phonon resonances, which also contribute to the 

complex dielectric function. Further parameters were also incorporated which are 

used to determine the Fe3O4 d-to-s transition, manifested as an additional resonance, 

as simulated by Degiorgi et al64. The full list of parameters determined from previous 

studies into the Fe3O4 and MgO systems are detailed in Table  6.6. 

Table  6.6 – The various modelling parameters necessary in order to calculate infrared 

reflectivity spectra for Fe3O4 films and MgO substrates 

MgO parameters were obtained from Ahn, Choi and Noh54, 55. 

Fe3O4 modelling parameters were converted from Degiorgi, Wachter and Ihle64. 

Substrate resonance parameters j = 1 j = 2 

MgO kj / cm-1 396 643 

MgO γj / cm-1 7.60 90 

MgO Sj  6.80 0.043 

Thin-film resonance parameters j = 1 j = 2 

Fe3O4 kj / cm-1 330 540 

Fe3O4 γj / cm-1 40 44 

Fe3O4 Sj 996 821 

Thin-film d-s transition  

Fe3O4 d-s kj / cm-1 4954 

Fe3O4 d-s γj / cm-1 4333 

Fe3O4 d-s Sj 11920 

Other parameters  

MgO ε∞ 3.01 

Fe3O4 ε∞ 4.6 

γ / Hz 1.01 × 1015 

N / m-3 1.86 × 1026 
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The damping term (γ) and number of free carriers (N) were taken from ŠimšaError! 
Hyperlink reference not valid.. 

 

The above modelling parameters were used to calculate infrared reflectivity spectra 

for the bare MgO substrate and a bulk Fe3O4 sample. Figure  6.16 shows the modelled 

reflectivity spectrum for the MgO substrate along with the experimentally determined 

spectrum. It is clear that the simulated MgO data fits the experimental data well. 
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Figure  6.16 – A modelled infrared reflectivity spectrum for the bare MgO substrate 

using the parameters from Table  6.6. For comparison, an experimentally determined 

spectrum is also shown in the figure. 

 

The parameters from Table  6.6 were also used to model the reflectivity spectrum for 

a bulk like Fe3O4 crystal and these data are presented in Figure  6.17. Also shown in 

the figure are data from Gasparov et al., who have experimentally determined the 

reflectivity spectrum for Fe3O4
70. As with the bare substrate, the model and 

experiment are in good agreement. 
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Figure  6.17 – The modelled reflectivity spectrum for a bulk Fe3O4 sample, along with 

experimentally determined spectra from Gasparov70. 
 

Further modelling was required in order to combine the complex dielectric for the 

substrate and bulk crystal in order to obtain reflectivity spectra equivalent to thin-film 

samples. 

 

6.2.10.7 Multiple reflections 
In order to determine the reflectivity spectra for thin-films of Fe3O4 on MgO, a 

multiple reflection model was adopted71-74, where the Fresnel reflectivity coefficients 

for a three-phase system were determined (as shown in Figure  6.18). 

Fe3O4 IR model 

Fe3O4 IR experiment 
(Gasparov) 
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Figure  6.18 – A diagram representing a multiple reflection model for infrared 

reflectivity of thin-films of Fe3O4 on MgO. 
 

The Fresnel reflection coefficient for the interface of two phases is defined as the ratio 

of the complex amplitudes of the electric field vectors of the reflected and incident 

waves72. As we have seen from Equations 7.9 and 7.10, this quantity is dependent 

upon the polarisation of the incident beam and the angle of incidence. Therefore, for 

any phase i, the angular dependent quantity, ξi is defined as: 

ξ i = n i cosϕ = n i
2 −n1

2 sin2 ϕ = ε i −ε1 sin 2 ϕ  Equation  6.12 

where ni is the complex index of refraction of phase i, n1 is the complex index of the 

ambient phase, εi is the complex dielectric of phase i, ε1 is the complex dielectric of 

the ambient phase and φ is the angle of incidence. 

 

The Fresnel reflection coefficient of the interface between phases 1 and 2 in Figure 
6.19 for s- and p-polarisations are shown in Equations 6.13 and 6.14. Ordinarily, 

Equation 6.13 would also contain the permeabilities of each layer when examining 

the reflectivity of thin-films, however, the magnetic permeability can be considered to 

be unity in the optical range72. Hence we can discount these terms, so the only 
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important parameters for the calculation of reflectivity for s and p polarisations are the 

permittivities and angular dependent quantities for each of the phases.  

 

 
Equation  6.13 

 

Equation  6.14 

 

Similarly, the reflection coefficients for the interface between phases 2 and 3 for s- 

and p- polarisations are shown below in Equations 6.15 and 6.16. 

 
Equation  6.15 

 

Equation  6.16 

 

The three-phase system can now be described by independently combining the 

equations for s- (Equations 6.13 and 6.15) and p-polarisations (Equations 6.14 and 
6.16) in the following manner: 

 
Equation  6.17 

 

where β is the change in phase of the beam during one traversal of the thin-film phase 

(of thickness t). This term is given by: 

β =
2 π t ξ 2

λ  
Equation  6.18 

The exponential of the β term in Equation 6.17, accounts for the absorption of 

infrared light by the film. 
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As with the one phase system (Equation 6.11) the overall reflectivity is then 

calculated by taking the mean of the squares of the magnitude of each reflectivity 

coefficient, as shown below in Equation 6.19. 

 
Equation  6.19 

   
 

6.2.10.8 Linear approximation for thin-films 
As the thickness of the films (~ 1 – 100 nm) under study are many orders of 

magnitude smaller than the wavelengths of infrared light (~10000 nm), we can apply 

a thin-film approximation to the spectral simulations72-74. 

 

For this thin-film approximation, we can assume that the phase correction and 

attenuation vary linearly through the film, rather than exponentially as described 

above. 

 Equation  6.20 

 

As a result, the equations for the Fresnel amplitude coefficients (Equation 6.17) can 

therefore be expanded to terms of first order in β (see appendix), to arrive at the 

following simplification: 

 
Equation  6.21 

 

As t « λ, the Fresnel reflection coefficients for three phase systems are related to the 

reflection coefficient for the film free surface (r13
s,p)74. The relationship which 

describes the film free surface in terms of r12
s,p and r23

s,p is as follows: 

 
Equation  6.22 
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From Equations 6.21 and 6.22, it follows that: 

r123
s,p

r13
s,p =

1− 2iβ r23
s,p

r12
s,p + r23

s,p











1− 2iβ r12
s,pr23

s,p

1+ r12
s,pr23

s,p











 Equation  6.23 

 

When we perform a Taylor expansion on the denominator of this Equation 6.23 and 

neglect terms higher than first order in β (see appendix), we obtain the following 

equation: 

 
Equation  6.24 

As the ambient phase (1) is transparent, the dielectric for this medium (ε1) is real. 

Taking this into account and substituting the generalised Fresnel equation (Equation 

6.12) into Equation 6.24, we find that for the s polarisation we obtain: 

r123
s = r13

s 1+ 4πitξ1

λ
ξ2

2 − ξ3
2

ξ1
2 − ξ3

2



















 Equation  6.25 

 

Similarly, for the p polarisation, we obtain: 

r123
p = r13

p 1+ 4πitξ1

λ
ε2

ε1

η2
2 −η3

2

η1
2 −η3

2



















  Equation  6.26 

where: 

 
Equation  6.27 

 

Using the multiple reflection model and linear approximation, we can obtain 

reflectivity spectra for different sample thicknesses simply by varying t in Equation 
6.18. Simulated infrared spectra analogous to those measured experimentally in 

Error! Reference source not found. are shown below in Figure  6.19. As with the 
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results for the one phase system, the experimental and simulated data correlate well, 

with similar trends, shapes and spectral features observed. In both cases, the MgO 

spectral features attenuate and Fe3O4 features increasingly dominate spectra with 

increasing film thickness. 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

400 500 600 700 800 900 1000 1100 1200 

R
ef

le
ct

iv
ity

 

Wavenumber / cm-1 

110 nm 
64 nm 
37 nm 
18 nm 
10 nm 
0 nm 

 
Figure  6.19 – Modelled infrared reflectivity spectra of various film thicknesses of 

Fe3O4 for MgO (analogous to Figure 7.14). 

 

6.2.10.9 Magnetic field dependence 
In order to use the infrared spectra to model the MRE, we must introduce a magnetic 

field dependence to the dielectric function. Adding a term to the Drude part of the 

dielectric function incorporates this field dependence: 

 

ε(ω) = ε(∞)−
ωp

2

ω2 + iγω
(1+ηm2 )+

Sj
2

k j
2 − k2 − iγkj=1

n

∑  Equation  6.28 

 
where m is a magnetic field dependent term (with values 0 < m < 1) which gives a 

measure of the magnetisation of the sample. η is a scaling parameter, which accounts 

for the strength of the magnetisation. m is the fractional magnetisation, and this term 

Fe3O4 film 

thickness: 
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is squared since the MRE is symmetric for both positive and negative applied fields. 

As a result, the field dependence must be an even function of the applied field. 

 

6.2.10.10 Modelling the MRE 
This magnetic dependent complex dielectric can then be input into the multiple 

reflection model in order to calculate IR reflectivity spectra for thin-films in an 

‘applied’ magnetic field. The modelled spectra both in and out of this field can then 

be used to calculate a model MRE spectrum, according to Equation 6.3. The results 

of these calculations are shown below in Figure  6.20.  
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Figure  6.20 – Stacked modelled MRE spectra of various film thicknesses of Fe3O4 for 

MgO (analogous to Figure 7.15). 

The modelled spectra show similar features and trends when compared to the 

experimentally determined MRE (see Figure  6.14). For thin samples, an MRE peak 

Fe3O4 film 
thickness: 
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centred around ~ 825 cm-1 is observed for both the experimental and modelled 

spectra. In the experimentally determined MRE, the peaks are broader and less well 

defined when compared to the modelled spectra. However, for both the experiment 

and model, as the film thickness increases, the magnitude of the MRE does not 

change appreciably, and the position of the MRE shifts to lower wavenumber. This 

work therefore demonstrates that the thickness dependent MRE of oxide samples can 

be successfully determined. With further work, it should be possible to use this 

modelling to determine the various different conductivity mechanisms responsible to 

the MRE and also extend the model to look at other oxide materials. 

 

 

6.3 Conclusions 
Thin films of iron oxide on various substrates were prepared by MBE. Through 

careful calibration of the growth variables (Fe deposition rate, O partial pressure and 

plasma power), it was possible select the desired phase (Fe3O4). Various different 

methods were used to determine the phase of iron oxide grown for all of the 

calibration samples. Diffraction methods showed that certain films had a unit cell 

approximately twice that of MgO42, 75, confirming the growth of Fe3O4.  

 

XPS and other techniques were also employed to provide further evidence of Fe3O4 

formation. For all the XP spectra recorded, the Fe 2p line-shape is complex and broad, 

with the Fe2+ and Fe3+ states hard to resolve as they both have similar binding 

energies. However, the appearance of a shake-up satellite centred around ~ 719 eV 

allowed Fe3O4 / Fe2O3 to be distinguished. TEM measurements were also used to 

confirm the nominal thickness of samples and also showed that the Fe3O4 films grown 

were epitaxial and contained APBs.  

 

VSM measurements allowed the magnetic properties of the thin-films to be probed. 

The shapes of the hysteresis curves imply that samples do not contain multiple phases 

of iron oxide.  All samples also showed similar trends in coercivity and remanence. 

The coercivity values were compared to literature values and showed that no Fe or 

FeO was present within samples. Samples did not saturate by ~ 2 T, an observation 

also seen in the literature for thin-films of Fe3O4
33. 
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MR measurements were performed on all Fe3O4 samples. All samples displayed a 

similar MR value (~ 1 %) at ~ 1 T, thought to arise from the fact that samples require 

high fields in order for saturation to occur. For comparison, other calibration samples 

corresponding to iron oxide phases other than Fe3O4 were measured and displayed no 

MR. IR spectroscopy and MRE was then employed for non-destructive measurement 

of both the composition and the MR of the thin-films. IR confirmed the formation of 

Fe3O4, due to the presence of a peak at ~ 540 cm-1. It was possible to exclude the 

presence of α-Fe2O3 or γ-Fe2O3 in samples due to the absence of resonances at 437 

cm-1 (α) or 440 cm-1 (γ). The MRE was discovered to display a thickness dependence, 

due to the large skin depth of the Fe3O4. 

 

As a result of the thickness dependent nature of the MRE, simulations based on the 

Fresnel equations were carried out in order to model the infrared reflectivity and 

MRE. A multiple reflection model was adopted in order to simulate the reflectivity of 

a three-phase system. As the thickness of the film was much less than the wavelength 

of light, a linear approximation was employed in order to simplify the simulation. The 

resulting infrared spectra showed good agreement with the experimental data. By 

incorporating a magnetic field dependent term into the complex dielectric function, it 

was possible to generate a reflectivity in an ‘applied magnetic field’. From this data, 

MRE spectra were obtained, which show similar features and trends when compared 

to the experimentally determined spectra. Future work in the group will focus on 

using this model to examine the different conductivity mechanisms responsible for the 

MRE in Fe3O4. It should also be possible to extend the model to look at other oxide 

materials. 
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Chapter 7  

Conclusions 
 

7.1 Conclusions 

The main aim of this thesis has been to use and/or develop surface science and thin-

film techniques to assist the optimisation of functional materials. Due to their 

environmental and economical importance, heterogeneous catalysts were identified as 

one possible group of materials that would greatly benefit from such an approach. To 

this end, the selox of crotyl alcohol to crotonaldehyde over Au/Pd(111) surface alloys 

was  studied using ‘Fast’ XPS at the ELETTRA synchrotron. It was found that, 

unsurprisingly, no chemistry occurs over epitaxial Au overlayers, as the alcohol 

simply reversibly chemisorbs. Conversely, Au-rich surface Au/Pd alloys show 

moderate activity crotyl alcohol selox, as crotonaldehyde desorbs intact at room 

temperature with minimal side-reactions. Pd-rich alloy surfaces convert 100 % of a 

crotyl alcohol adlayer to crotonaldehyde, although as much as half of this aldehyde 

subsequently decarbonylates to produce gas phase CO and propene. From these 

experiments, it was determined that the optimum surface alloy composition, is 

Au2Pd3, associated with a bulk alloy composition of AuPd5. These results show that 

even small amounts (XAu 0.2 - 0.3) of Au can promote the selective oxidation of 

crotyl alcohol whilst suppressing product decomposition. 

 

Further work was then carried out in order to examine the chemistry of both the main 

product (crotonaldehyde) and by-product (propene) formed during the selox of crotyl 

alcohol over Au/Pd(111) surface alloys. In doing so, it was hoped that it would be 

possible elucidate the reaction pathway for allylic alcohol selox by Au/Pd(111) 

surface alloys. It was found that Au rich surface alloys are able to inhibit 

decomposition of both the aldehyde (for XAu ≥ 0.3) and propene (for XAu ≥ 0.8). 

Conversely, Pd rich alloy surfaces decompose both reaction intermediates, leading to 

the formation of CO (solely for the aldehyde) and surface bound C; species 

responsible for deactivation. In order to mimic ‘real’ selox conditions, surfaces were 

then pre-saturated with O. For the aldehyde, O on Au/Pd(111) surfaces hinders the 

decomposition chemistry further, with a small amount of decomposition also 
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occurring. However, propene binds more strongly to O pre-covered surfaces, which 

results in an increase in the amount of propene that reacts relative to the O free 

surfaces. A larger proportion of the propene therefore undergoes combustion when 

compared to the aldehyde over the same surface alloys. 

 

Insight into the adsorbate geometry of the alcohol on the Pd(111) surface has been 

provided by MDS work. When the alcohol is adsorbed onto the Pd(111) substrate at 

150 K, three distinct molecular features are observed due to Auger de-excitation. The 

low temperature spectra were interpreted through the use of early valence band 

photoemission studies1, MO calculations of gas-phase allylic alcohols2, and DFT 

calculations. States within the spectra were identified which correspond to emission 

from the carbon backbone of the molecule, C=C π bond and O lone-pair 2p n bonds. 

As the saturated substrate was heated, between ~ 200 K and 250 K, the desired 

reaction pathway predominates, generating emission from the aldehyde product 

resulting in a small shift in peaks to higher binding energy. As a result of 

intramolecular changes, a reversal in the assignment of the first two MOs occurs, 

albeit almost coincident in energy, an observation that is supported by shifts in similar 

magnitude for DFT calculations of the isolated alcohol and aldehyde. Heating the 

sample above 250 K results in a decrease in the emission from both the hydrocarbon 

skeleton and O n states due to decarbonylation of the aldehyde, forming propylidyne. 

Heating above 500 K results in the loss of any identifiable spectral features, consistent 

with propene desorption and residual C formation. The dominant de-excitation 

process at this point is due to resonance ionisation, characteristic of Pd(111). DFT 

calculations have also shown that the lowest energy adsorption state results when the 

alcohol adsorbs parallel to the Pd surface. Experimental work confirms this, as any 

large tilt in the position of the O would lead to a more pronounced feature in the MDS 

spectrum when compared to emission from the C=C bond. By examining the intensity 

and shapes of the MDS peaks, DOS calculations for such geometries are in good 

agreement with experimental data. 

 

In order to investigate novel magnetic materials for spintronic applications, Fe3O4 

thin-films were prepared on various substrates, with the aim of examining the 

relationship between the film micro-structure and properties. The composition, 
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structure and magnetic properties of all such films were characterised. Unfortunately 

as such films only magnetically saturate in high fields3, MR values from all samples 

were identical. Despite this, the MRE results displayed a thickness dependence, as a 

result of the large skin-depths of oxide materials, a phenomena not observed for 

metallic spin-valves. By modelling the complex dielectric function, it was possible to 

effectively simulate the IR and MRE spectra. Both of which were in good agreement 

with experimental data. With further work, it should be possible to use the MRE as an 

accurate means of measuring the thickness of a thin-film. With further theoretical 

work it also should be possible to probe the different conductivity mechanisms 

exhibiting characteristic spectral dependences. This method could therefore be 

adopted to a wide range of oxide materials of interest from a spintronics perspective. 

 

The development and calibration of a combinatorial sputtering rig has allowed 

libraries of heterogeneous catalysts (AuPd) and magnetic materials (CoAg) to be 

prepared. EDX and XRF measurements show that a composition gradient exists 

across both sets of samples, which accesses the bulk of each phase diagram. For 

CoAg, it has been shown that the GMR also varies across the sample in accordance 

with the varying composition. Further work is needed to fully optimise the properties 

of these materials with full spatial resolution, which would include infrared 

thermography and scanning mass spectrometry. In this basic groundwork, it has 

demonstrated that combinatorial methods are potentially useful tools for aiding the 

optimisation of materials. 
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Appendix 2  
Development of a combinatorial sputtering rig  
 

A2.1 Introduction 
In chapters 3 and 4, we increased our understanding of the chemistry of crotyl 

alcohol over a range of AuPd(111) surface alloys through the use of a variety of 

surface science techniques. By performing many complex experiments, the 

optimum surface composition of Au/Pd for this catalytic process was determined. 

This process involved the preparation and characterisation of many ultrathin-films 

with similar surface compositions.  

Indeed, the optimisation and/or discovery of materials largely proceeds 

experimentally by the serial synthesis and characterisation of a wide variety of 

similar samples1. This conventional approach is prohibitively long and expensive 

due to the number of iterative steps required2. This arduous approach is necessary 

due largely to a poor fundamental understanding of systems with several 

components, meaning our ability to predict materials with specific desirable 

properties is limited2, 3.  

The case of AuPd alloys for selective oxidation catalysis is but one of many 

examples of materials optimisation which would greatly benefit from the 

application of simultaneous preparation techniques4. This would involve vast 

arrays of materials being prepared and rapidly screened for a particular property, 

not only accelerating the development of many functional materials, but also 

providing enormous economic benefit from a research and development point of 

view. 

This simultaneous synthetic preparation of large numbers of related compounds is 

known as ‘Combinatorial Chemistry’5, 6, a term used predominantly in the area of 

drug discovery in the pharmaceutical industry. However, this term can be more 

widely applied to any preparative protocol that permits large numbers of related 

compounds to be synthesised and rapidly characterised6, 7. This approach is often 

also referred to as parallel synthesis or high-throughput synthesis8, 9. Indeed, many 
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classes of materials have been investigated using such a combinatorial approach2, 

including catalysts9-12, optical13, 14,  magnetic8, 15,  and dielectric15, 16 materials,  

hydrogen storage materials17, 18 and structural polymers2  to give but a few 

examples.  

A procedure for the preparation and characterisation of solid inorganic materials 

was first outlined by means of RF plasma sputtering by Hanak in 19701. Several 

other deposition methods have also been utilised for this purpose, including (but 

not limited to), combinatorial laser molecular beam epitaxy (CLMBE)3, 4, pulsed 

laser deposition (PLD)15, 18-22, ion beam sputter deposition22, and chemical vapour 

deposition (CVD)4, 13. In this chapter, a specialised high-vacuum chamber 

(combinatorial sputtering rig) was developed (as outlined in chapter 2, section 

2.1.4) which allows the co-deposition of up to four different materials via DC 

magnetron sputter guns, in order to prepare a composition gradient across a 

substrate (as shown below in Figure A2.1). 
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Figure A 2.1 – (a) A simple schematic setup for co-sputtering of a two-component 

film, modified from Hanak1 and (b) the resulting XRF composition profile 

obtained from analysis of such a film. 

The complete phase diagram for an n-component mixture can be deposited on an 

(n-1) dimensional surface1. Therefore, a two-component phase diagram can be 

deposited linearly between two sputter sources, and a three-component phase 

diagram can be prepared on a two-dimensional equilateral triangular surface. 

Control of the sputtering process and experimental geometry, in theory, should 

permit deposition of the entire phase diagram for up to three metallic components. 

Indeed, it should be possible to access any part of such a phase diagram on a flat 

substrate.  

The metal flux generated by plasma sputtering of a metal has a cosine distribution 

about the centre of a sputtering target23. Therefore, metal film sputtered onto a flat 

substrate directly below the centre of the sputter source results in a film of 

symmetrical thickness about the centre of the substrate. If the substrate is placed a 

sufficient distance either side of the centre of the sputter gun, the film thickness 

will be non-uniform. In this scenario, the substrate is said to be within the non-
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uniform deposition zone, with most deposition occurring at a point closest to the 

centre of the sputter source. If the substrate is located on an axis between the 

centres of two sources but beyond the uniform deposition range of each, a non-

uniform composition profile will result across the film, with each constituent metal 

most abundant at the edge of the substrate closest to that sputtering target (Figure 
A 2.1 (b)). 

In this manner, a ‘library’ of materials with varying compositions can be 

synthesised in a single step. By using this method, arrays of materials relevant for 

heterogeneous catalysis (AuPd) and magnetic materials (CoAg) can be prepared on 

Si(100) substrates. It will then be shown that a combination of infrared 

thermography and/or scanning mass spectrometry could be utilised to rapidly 

screen all compositions within a library and thus determine the optimum 

composition for the catalytic activity or giant magnetoresistance in a single 

experiment.  

 

A2.2 Results and Discussion 

2.2.1 Calibration matrix 

In order to prepare multi-component libraries with uniform film thickness and a 

specific composition gradient, it was first necessary to construct a calibration 

matrix. Films of Cu were deposited onto 2 inch Si(100) substrates using different 

sputtering parameters. Each of the relevant variables was successively altered 

(whilst keeping the others constant) and the effect of each parameter upon the Cu 

film thickness was examined. The factors affecting the sputtering thickness and 

composition are: 

• Sputter gun power (in W) 

• Sputtering time (in minutes) 

• Ar pressure (in mTorr) 

• Sputter gun angle (in degrees, °) 

The Cu film thickness was determined using ‘Talystep’ measurements using a 

Rank Taylor Hobson Talystep 1 instrument. This step-profiling instrument consists 



 
 

200 

of a needle on a spring, which when passed over a surface; the mechanical 

deflection of the needle is recorded. In order to obtain step height measurements 

across the film relative to the Si, an Al mask consisting of 11 grooves (as shown 

below in Figure A 2.2 (a)) was placed over each substrate prior to deposition. 

During deposition, the Cu film would only be deposited in the grooves, meaning 

that 11 steps would be created across the surface of the substrate. Each step height 

was measured across the centre of the substrate. This process was repeated three 

times in order to determine the standard error in each measurement. 

An additional mask, as shown in Figure A 2.2 (b), was created for use with a 

Horiba XGT-7000 microscope and custom built scanning mass spectrometer for 

performing XRF and TPD/TPR measurements respectively.  

 

Figure A 2.2 – Al masks constructed (a) for the calibration of the combinatorial 

sputtering rig by talystep (b) for the calibration of the combinatorial sputtering rig 

by XRF and for the growth of samples for infrared thermography/thermal 

desorption spectroscopy measurements. Both diagrams are actual size. 

The deposition rates (relative to Cu) for each material within the combinatorial 

sputter sources were also determined by sputtering the various metals whilst all 

parameters were fixed (see section A2.2.1.5). The thicknesses of each film were 

then measured and benchmarked relative to the Cu film thickness. As the sputtering 

time was known, this enabled a deposition rate to be calculated. In this way, once 

the calibration matrix was complete, any material within the combinatorial system 

could be used to grow films of a specific thickness and composition. 

 

(a) (b) 
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2.2.1.1 Sputter Gun Power 
Figure A 2.3 shows the average Cu deposition rate with increasing sputter gun 

power. The trend suggests that the change in deposition rate is linear with 

increasing sputter gun power. As the gun power increases, so does the energy of 

the Ar ions - resulting in an increase in the overall sputtering rate. 
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Figure A 2.3 – The change in Cu deposition rate with increasing gun power.  

The error bars were calculated based upon the standard deviation and standard error 

between Talystep measurements. 

 

2.2.1.2 Sputtering time 
As with the gun power series, a positive linear relationship is also observed (see 

Figure A 2.4). These results are not surprising, as sputtering for a longer time period 

will obviously result in a thicker film. The sputtering time is therefore a very useful 

factor in growing samples with a desired thickness. 
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Figure A 2.4 - The change in the average height across the sample, with increasing 

sputter deposition time. The error bars were calculated based upon the standard 

deviation and standard error between Talystep measurements. 

 

2.2.1.3 Ar pressure 
Figure A 2.5 shows the effect of argon pressure upon the average deposition rate. 

The trend indicates that as the pressure increases, the overall deposition rate 

decreases. This can be rationalised in terms of the Ar gas pressure, as when this is 

increased, two different effects influence the sputtering rate. In order for sputtering 

to occur, a suitable plasma density threshold needs to be obtained. Therefore an 

increase in the sputtering rate may result in an increase in the plasma density.  

When increasing the pressure, the number of collisions between the sputtered metal 

atoms and gas centres will increase (shorter mean free path). This will have the 

effect of decreasing the sputtering rate, as fewer atoms will be deposited on the 

substrate. The negative trend observed indicates that over the range of pressures 

studied, the number of gas collision centres inhibits the sputtering rate. At lower 

pressures the effect of plasma density is more dominant, thus resulting in an 

optimum Ar pressure for deposition rate. 
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Figure A 2.5 – The average change in deposition rate, with increasing deposition 

pressure. The error bars were calculated based upon the standard deviation and 

standard error between Talystep measurements. 

 

2.2.1.4 Gun angle variation 
Figure A 2.6 shows the change in Cu step height across the substrate for several 

different gun angles. Trends are rather difficult to determine, probably due to a 

change in the distance between the gun and substrate with increasing angle (see 

Figure A 2.7). 
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Figure A 2.6 – A graph to show the change in Cu step height across the substrate 

for different gun angles. Standard error bars are not displayed for clarity. The lines 

shown on the graph are lines of best fit. 

 

 

Figure A 2.7 – A diagram to illustrate that the distance from gun to substrate both 

horizontally and vertically changes with increasing gun angle. 

In order to appreciate the general trend, merely the average step height for each gun 

angle was considered (see Figure A 2.8 below).  
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Figure A 2.8 – The average step height across the substrate, against the gun angle 

employed. 

Figure A 2.8 therefore shows that the average step height increases with increasing 

gun angle, up to an optimum. In order to obtain a basic appreciation of the effect of 

gun angle upon the step height, scale drawings were made for each gun angle. 

Assuming a 45 ° divergence, flux lines were superimposed on these diagrams (see 

section A2.5). The amount of flux deposited on both the substrate and the chamber 

was measured in centimetres from these diagrams. This is represented in Figure 

A 2.9 below.  
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Figure A 2.9 – A diagram illustrating the amount of flux deposited on the substrate 

(A), compared to the chamber (B), for a 0 ° gun angle (assuming 45 ° flux 

divergence from target). 

From these 2D diagrams, the ratio of the flux on the substrate to that lost to the rest 

of the chamber was then calculated for each gun angle. This can be thought of as 

the ‘useful’ flux for each gun angle, based on the 2D diagrams (according to 

Equation A2.1) and is plotted in Figure A 2.10. 

Useful flux =
Flux deposited on substrate (A)
Flux deposited on chamber (B)

 Equation A 2.1 

 

Gun 

Substrate 

Target 

Flux 

B A 
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Figure A 2.10 – The calculated ‘useful’ flux against sputter gun angle 

A similar (but not identical) trend is observed for that of the average step height 

versus gun angle (Figure A 2.8); the film thickness increases with increasing gun 

angle up to a certain point. Beyond this, the film thickness either remains much the 

same (as in the experimental case – Figure A 2.8), or decreases (in the case of basic 

calculation – Figure A 2.10). The simplistic theoretical approach only takes into 

account the deposition in one dimension relative to the substrate, hence why it 

differs from the experimental case. Also, the measurements used to calculate the 

‘useful flux’ were crudely made with a 30 cm ruler, as accurate drawings with 

distances within the chamber were not available. It is therefore important to be 

mindful of the fact that the associated error with such measurements will be large 

and hence only the general trend can only be commented on, rather than anything 

more quantitative. 

 

2.2.1.5 Relative deposition rates 
When literature deposition rates (relative to Cu) are considered, the results obtained 

for Cu grown at 60W correlate well to those of Co and Pd grown at 60W (see Table 
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A 2.1). This indicates that data and trends obtained will be applicable to all metal 

targets within the combi-rig. 

Target 
Deposition rate  
relative to Cu  

Literature* deposition rate 
relative to Cu  

Ag No data 2.24 

Co 0.58 0.62 

Cu 1.00 1.00 

Pd 1.38 1.41 

Table A 2.1 – Deposition rates for the combinatorial sputter gun sources, relative to 

Cu. *Data obtained from Kurt J. Lesker Company. 

Despite this encouraging agreement with literature values, it is necessary to use 

another means of characterisation in order to corroborate the Talystep results. 

AFM, EDX and XRF were employed for this purpose. Unfortunately, attempts to 

acquire AFM images with two separate instruments were largely unsuccessful. It 

was discovered that EDX measurements give similar values to Talystep results; 

however the technique itself is much more laborious and time consuming. As a 

result, XRF was identified as the most efficient technique to substantiate the 

Talystep results. 

 

2.2.1.6 XRF results 
XRF measurements for the calibration matrix were performed on an XGT-7000 

microscope manufactured by Horiba. Dr. Simon Fitzgerald of Horiba Jobin Yvon 

acquired both XRF spot and map measurements of a single Cu sample grown at 70 

W, with a 10 ° gun angle, under 5 mTorr of Ar for 10 minutes. An example of XRF 

mapping is shown in Figure A2.11 below. The XRF results were plotted alongside 

the Talystep data for the same 70W Cu sample (see Figure A 2.12). 
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Figure A 2.11 – A section of an XRF map of the sample is shown on the left. The 

height and was calculated from these maps by means of a line profile. The height 

against distance across the substrate measured from a central line-scan of the XRF 

map is displayed by the graph on the right. Dr. Simon Fitzgerald of Horiba Jobin 

Yvon performed these particular measurements. 
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Figure A 2.12 – A comparison of the average height determined by talystep (black 

diamonds), XRF spot (red squares) and XRF mapping (blue triangles) for a 

calibration matrix sample grown at 70 W, 5 mTorr for 10 mins. 

From Figure A 2.12, it is clear that there is good agreement between XRF and 

Talystep measurements. This suggests that the Talystep results are both reliable 



 
 

210 

and accurate. With the calibration matrix complete, several samples were grown in 

an attempt to optimise the properties of materials. 

 

2.2.2 CoAg combinatorial sample 
Solid precipitates of a magnetic material in a non-magnetic matrix are described as 

being granular. Granular GMR materials are of technological interest as in 

principle they are far easier to prepare than an ordered multilayer structure. 

Magnetic sensors would therefore become much cheaper to produce and would 

have a wide variety of different applications. In practice, granular GMR is only 

observed in matrices of immiscible materials24. Whilst granular materials do not 

produced a high GMR when compared to that found for multilayers, the physics of 

these materials is interesting because the GMR arises from spin-dependent 

scattering within the grains and at the interfaces between the grains and the non-

magnetic matrix25. 

CoAg is one such granular material, which has been widely studied over the past 

10 to 15 years in correlation with structural, magnetic and magneto-optic properties 

both in layered structures and granular alloys26. This is principally because of 

mutual insolubility of Co and Ag, which offers the possibility of heterogeneity27. 

Due to spin-dependent scattering, the MR properties of these materials are highly 

dependent upon the granule size and percolation limit. If the granules in samples 

are large enough, multiple domain formation will occur, resulting in a loss of 

GMR. Likewise, if multilayers rather than granules are produced in the sputtering 

process, the sample will not display any GMR. CoAg is therefore a perfect 

exemplar material for growth within the combinatorial rig, as the properties are 

well known and are composition dependent.  

Using the information obtained from the calibration matrix, it was determined that 

a uniform combinatorial film would be obtained when co-sputtering Ag (gun power 

of 35 W and 10 ° gun angle) and Co (gun power of 40 W and 10 ° gun angle) for a 

deposition time of 5 minutes. The pressure throughout the growth was kept 

constant at 5 mTorr. Energy Dispersive X-ray spectroscopy (EDX) measurements 
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were performed by Mr. Jeremy Mitchell using an FEI Siron S-FEG Field Emission 

Scanning Electron Microscope (SEM).  

Measurements of k-ratios were taken of appropriate standards using a 20 keV 

acceleration voltage. This high voltage was required to obtain both K and L x-ray 

lines necessary for analysis by EDX. To accommodate the sample in the SEM 

chamber, the sample was cut into eight equal sized pieces, representing the distance 

across the substrate. After standards were measured, none of the optics were altered 

and the sample fragments were measured using the same settings. Due to time 

constraints, unfortunately it was not possible to obtain thickness measurements 

from the sample. Measurements of k-ratios were used by an algorithm supplied by 

the apparatus manufacturer to determine the composition gradient across samples, 

as shown below in Figure A 2.13. These results show that whilst a composition 

gradient has been established across the sample, the full phase diagram was not 

accessed when the sample was prepared. 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 1 2 3 4 5 6 7 8 9 

A
to

m
ic

 C
om

po
sit

io
n 

/ %
 

Sample piece 

Co 

Ag 

 

Figure A 2.13 – The variation in Co and Ag composition (in at%) across the 

substrate, determined by EDX analysis (data were acquired by Mr. Jeremy 

Mitchell). 
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MRE measurements were obtained for sample 7 (Co 61 at%, Ag 39 at%) within the 

5 to 15 micron (66.67 to 200 cm-1) wavelength regime. Mr. Jeremy Mitchell also 

performed these measurements. The results of this analysis are shown below in 

Figure A 2.14. Also shown in the figure are the MR results, recorded by Mr. Robert 

Armstrong, for the same sample. A scaling factor of 3.6 was used to correlate the 

MRE to the electrically determined MR. This scaled MR fits the MRE to within the 

experimentally determined error within the measurements. As MRE is proportional 

to the electrical MR, this further confirms that the MR changes across the CoAg 

library. 
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Figure A 2.14 – The MRE and scaled MR for sample piece 7 (Co 61 at.%, Ag 39 

at.%) with increasing magnetic field. The MR was scaled by a factor of 3.6 in order 

to correlate with the MRE. 

Mr. Robert Armstrong also measured the MR of all samples fragments using the 

four-point-probe technique. The results of these measurements for the maximum 

field (~ 1 T) are shown below in Figure A 2.15. These results show that the MR 

varies as the composition across the substrate changes. As the Co composition 

increases, the MR also increases, but eventually plateaus. The maximum MR was 
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recorded from sample piece six, which corresponds to a composition of Co 57 at%, 

Ag 43 at%.  

This can be rationalised in terms of the Co grain size, separation between grains 

and the formation of domains. As the concentration of Co increases, so can the 

granule size. Conversely, as the granule size increases, the separation between the 

grains decreases. The latter tends to improve the GMR, as the distance by which 

the spins have to diffuse will be shorter, meaning that the spin orientation is 

retained, as scattering is less likely. However, as the grain size increases, the 

magnitude of the GMR tends to decrease. Domain formation also leads to a 

reduction in the GMR. There are therefore competing factors which influence the 

magnitude of the GMR, leading to an optimum concentration of Co, where the 

various different factors balance and lead to a maximum GMR value, which 

explains the trend observed in Figure A 2.15. 
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Figure A 2.15 – The variation in MR (at ~ 1 T) across the CoAg substrate  

(measured by Mr. Robert Armstrong). Also shown in the figure is the Co 

composition as determined by EDX (measured by Mr. Jeremy Mitchell). 
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These results show that combinatorial methods can be applied to magnetic 

materials in order to rapidly determine the composition dependent MR. As the 

MRE is non-contact, with a single set of measurements one can determine the 

optimum composition without damaging the sample. 

 

2.2.3 AuPd combinatorial sample 
AuPd combinatorial samples were also prepared and analysed by XRF. In order to 

obtain reliable XRF measurements from consistent areas for a variety of different 

samples, a mask (Figure A 2.2 (b)) was used when preparing the samples. A 50 kV 

energy and a spot size of 10 µm (with no filters) was used for analysis. The XRF 

measurements were used to determine both the sample thickness and the 

composition. The results of these analyses for a representative sample are shown in 

Figure A 2.16, with full data sets available in section A2.6. As with the CoAg 

sample, these results show that the full phase diagram was not accessed during 

growth. However, a large range of reactive Pd alloys has been prepared. Aside 

from two outliers, the thickness is relatively uniform at around 700 Å. 
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Figure A 2.16 – The variation in composition (in at%) and thickness (in Å) across 

the middle of the Au/Pd combinatorial film sample determined by XRF. 

This shows that it is possible to create a range of alloy compositions with a 

relatively uniform film thickness. However, further work is required to obtain the 

full Au/Pd phase diagram within a single substrate, and characterise the reactivity 

of such catalyst libraries. 

 

A2.3 Future Work 

Infrared thermography was first adopted for rapid screening of catalyst libraries in 

1996, when Willson’s group utilised the technique to screen arrays for the catalytic 

oxidation of hydrogen12. The combinatorial rig is equipped with a similar 

thermographic evaluation chamber, as shown in Figure A 2.17. The evaluation 

chamber is fitted with an infrared-transparent ZnSe window designed for service 

from vacuum to 10 bar. An infrared camera (AIM-AEGIS IR, 256 × 256 PtSi array 

detector, spatial resolution 100 µm, thermal resolution 0.05 K and temporal 
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resolution 50 Hz) could be used to record the thermal profile of the catalyst library 

surface under reaction conditions. This technique requires accurate differentiation 

between catalyst library spots of similar reactivity. However, thermal analysis is 

complicated by the varying emissivity from different materials within the library, 

IR emission from hot gases in the reactor and IR reflection.  

Future work would therefore include combining point-by-point emissivity 

correction and signal averaging available with the AIM IR system, with powerful 

image processing software (which would be developed using MATHCAD and/or 

MATLAB software) to facilitate accurate, time-resolved IR thermographic 

analysis. Au/Pd catalyst libraries could then be introduced into the attached 

reaction chamber via the transfer mechanism and screened using this 

thermographic technique for catalytic activity. Through the use of the AIM system, 

the temperature of the sample could be accurately measured during the course of 

the selective oxidation of crotyl alcohol. Once this was complete, the system could 

also be used, in principle, to examine different libraries and/or different chemical 

reactions. For exothermic reactions, the most active catalyst composition could be 

determined by means of the ‘hot spot’ on the surface. Conversely for endothermic 

reactions, this would correspond to a ‘cold spot’ on the film surface. 
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Figure A 2.17 – A simple diagram of the combinatorial sputtering chamber also 

showing the attached evaluation chamber. The diagram shows that main chamber is 

bolted (by means of a gate valve) to a thermographic evaluation chamber, whereby 

catalyst libraries prepared in the main chamber can be transferred for catalytic 

activity analysis by infrared thermography. 

The same principle of infrared thermography could also be used to measure the 

difference in MR across a compositional gradient for a range of magnetic materials 

with a high level of spatial resolution. This technique has already been applied to a 

sample of Co/Cu with a spatial resolution of ~ 30 µm using a CaF2 lens (see Figure 

A 2.18 below).  
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Figure A 2.18 – The spatial GMR calculated from IR emissivity measurements for 

a Co/Cu multilayer structure (sample provided by Seagate Technology (Ireland)). 

The technique involves measuring the emissive, ε (rather than reflective) MRE 

from a heated sample within a magnetic field28. Differences in the resistivity (ρ) 

and therefore conductivity result in changes to the emissivity of a material relative 

to a black body radiator (Equation A2.2). 

ε ≈ 2 2ωε0ρ   Equation A 2.2 

The MR/GMR can then be related to the change in the emissivity according to an 

experimentally determined factor, γ, as shown below in Equation A2.3. This 

technique would allow the optimum MR to be determined for a whole library of 

magnetic materials. 

  Equation A 2.3 

In Figure A 2.2 (b), it was shown that a custom built mask was developed for the 

preparation of catalyst library ‘spots. The selective analysis of product gas mixtures 

from each catalyst composition ‘spot’ within an alloy library could also be 

accomplished by means of scanning mass spectrometry. This technique is the 

critical assay method for determining reaction selectivity for catalyst libraries. For 

this purpose an evacuated reaction cell was constructed with a heated library stage, 

sampling probe feed-through and vacuum connections. It also included a gas 
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manifold and inlet capable of introducing a focused (< 1 mm2) reactant beam. 

Finally, an integrated capillary sampler was developed which could be rastered (~ 2 

s spot-1) across the library surface. Automation of this scanning process was 

achieved by interfacing the mass-spectrometer capillary probe with a motorised X-

Y table driven by LabVIEW software. A simple diagram of this scanning rig is 

shown in  

Figure A 2.19. 

Using the scanning rig, analysis of the residual gas could be achieved through the 

use of an MKS ‘Mini-Lab’ quadrupole mass spectrometer system equipped with 

triple-filters for high signal:noise/sensitivity and heated capillary inlet. 

Unfortunately, despite the development of the scanning rig, due to time constrains 

this instrument but was not used to examine catalyst libraries. Future work would 

therefore involve the sequential probe of individual catalyst spots in order to gauge 

the reactivity of Au/Pd libraries (prepared in section A2.2.3) for the selective 

oxidation of crotyl alcohol. As with the infrared thermography, this apparatus could 

also be adapted for use with other libraries or in order to examine other reactions of 

interest. 
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Figure A 2.19 – A simple diagram of the scanning mass spectrometer apparatus 

developed for screening the selectivity of catalyst alloy libraries. 

 

A2.4 Conclusions 
The calibration of the combinatorial sputtering rig has revealed that there is a linear 

dependence of the film thickness with increasing sputter-gun power and sputtering 

time. The situation is more complicated for the Ar pressure where an optimum 

pressure exists for the sputtering rate. The factor that has the greatest effect upon 

the composition gradient across the substrate is that of the sputter-gun angle. 

Despite the calibration matrix, in order to obtain the maximum gradient across the 

sample, several libraries had to be prepared. The gun angle requires further 

calibration, and possibly a more rigorous mathematical approach. As the relative 

sputtering rates are known for the materials within the combi-rig, the calibration 

matrix can be used to grow any combination of bimetallic materials a uniform film 

thickness with a composition gradient across the substrate. 
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Libraries of magnetic materials and catalysts were prepared based upon data 

recorded for the calibration matrix. EDX and XRF measurements have shown that 

a composition gradient exists across both sets of samples, although the full phase 

diagram for each set of materials has not yet been accessed. In the case of CoAg, it 

has been shown that the GMR and MRE also varies across the sample in 

accordance with the varying composition. Further work is needed to fully optimise 

the properties of these materials with full spatial resolution, which would include 

infrared thermography and scanning mass spectrometry. In this basic groundwork, 

it has demonstrated that combinatorial methods are potentially useful tools for 

aiding the optimisation of materials. 

 

A2.5  Flux Calculations/ Scale drawings of gun angles: 

Useful flux =
Flux deposited on substrate (A)
Flux deposited on chamber (B)

 

0 degrees: 

1.00 cm
21.76 cm

= 0.046 

10 degrees: 

5.20 cm
(0.87 +16.09) cm

= 0.31 

20 degrees: 

5.20 cm
(13.27 +12.81) cm

= 0.20 

30 degrees: 

1 cm
(40.73+ 8.56) cm

= 0.11 
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0 degrees (scaled to 50%): 

 

10 degrees (scaled to 50%): 

 

 

20 degrees (scaled to 40%): 
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30 degrees (scaled to 30%): 

 

 

A2.6 AuPd XRF results: 

 

(b) 

 

Thickness / Å std dev 

  650 750 720 670   45.73 

 740 720 780 710 720 660  39.20 

960 690 770 630 770 610 750 440 116.76 

1010 650 580 700 660 680 730 810 137.94 

420 750 620 620 520 790 510 330 133.02 

 390 430 320 400 480 490  63.06 

  310 330 390 370   36.51 

std 327.16 147.58 162.04 190.09 157.78 145.57 121.74 251.46  

A
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dev 

 average 614.3182 

 

Au composition / % std dev 

  60.43 36.85 11.83 7.4   24.57 

 48.69 54.83 54.84 23.2 10.72 5.96  22.46 

70.29 58.08 48.79 36.04 36.24 14.65 1.29 0.02 24.02 

66.58 46.88 17.32 33.49 40.43 46.32 7.37 1.8 19.79 

0.26 40.49 25.6 22.44 28.29 7.42 0.5 34 15.39 

 0.27 0.23 0.32 1.12 0.04 0.08  0.40 

  0.33 0.33 0.26 0.3   0.03 

39.40 22.48 25.30 20.15 16.19 15.85 3.37 19.12524  

 

Pd composition / % std dev 

  39.57 63.15 88.17 92.6   24.57 

 51.31 45.17 45.16 76.8 89.28 94.04  22.46 

29.71 41.92 51.21 63.96 63.76 85.35 98.71 99.98 24.02 

33.42 53.12 82.68 66.51 59.57 53.68 92.63 98.2 19.79 

99.74 59.51 74.4 77.56 71.71 92.58 99.5 34 15.39 

 99.73 99.77 99.68 98.88 99.96 99.92  0.40 

  99.67 99.67 99.74 99.7   0.03 

39.40 22.48 25.30 20.15 16.19 15.85 3.37 37.59027  
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Appendix 3   
Chapters 3 and 4: 

MS fragment m/z Identification 

72 Crotyl alcohol (H3C-CH=CH2-CHOH) 

70 Crotonaldehyde (H3C-CH=CH2-CHO) 

56 Butene (H3C-CH=CH-CH3) 

44 Carbon dioxide (CO2) 

41 Propene (H3C-CH=CH2) 

32 Oxygen (O2) 

28 Nitrogen (N2) / Carbon Monoxide (CO) 

18 Water (H2O) 

2 Hydrogen (H2) 

The main mass spectrometer fragments obtained during Thermal Desorption 

Spectroscopy (TDS) studies, along with their associated identification 

 
Chapter 6: 

6.1 Cross-section TEM sample preparation: 

A 5 × 5 mm sample is stuck to a glass slide film-side down by using a crystal bond 

wax. A diamond saw is used to cut a 1 × 5 mm strip off the end of the sample. 

Residual wax is dissolved by placing cut the pieces in acetone.  The 1 × 5 mm strip 

is then cut in half using the same procedure. Once complete, the two sample pieces 

are cleaned using gently but thoroughly using a cotton bud soaked in acetone, in 

order to ensure that the film is cleaned of any debris. The closer these two pieces 

can be glued, the better quality the sample will be. Any residual acetone or organic 

impurity is removed from the surface by cleaning with ethanol and then isopropyl 

alcohol. 
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Gatan G1 glue should be mixed to 1 part hardener and 10 parts resin.  Once heated 

this glue cannot be dissolved by acetone.  The two 2.5 × 1 mm strips are given a 

thin but full covering of this resin over the film, before being placed together film 

to film. The sample is then placed in a firm bulldog clip and placed on a hot plate at 

130 °C for 15 mins to allow the glue to set. Two strips of silicon of 5 × 1mm are 

cut, cleaned and glued to the outside of this sandwich to provide structural support 

and to aid thickness measurements. Once again this is placed in a bulldog clip and 

heated to 130 °C for 15 mins. 

 

The sample is then waxed to a glass slide, ensuring that the wax fully surrounds the 

sample for support. The sample is then polished to a shine by hand on one side, 

using diamond lapping paper. In doing so, it is important to ensure that polishing is 

conducted in-line with the interface, so that any scratches introduced are parallel to 

the interface rather than across it. This process is repeated, whilst successively 

scaling down from 15 µm to 9 µm to 3 µm to 1 µm lapping pads until the surface is 

shiny, flat, scratch free, and the interface is neat. 

 

A 3.05 mm diameter copper grid with a 2 × 1 mm slot is glued onto the top of this 

side, heated to loosen the wax and turned over in order to thin the other side. The 

sample is then thinned to ~ 200 µm thickness (including the thickness of the copper 

grid, but not the thickness of the glass slide) using the 15 µm paper, then to ~ 120 

µm using 9 µm paper, ~ 100 µm using 3 µm paper, and then using 1 µm paper. The 

sample is then thinned to ~ 20 µm so that the interface is neat, clean and the silicon 

is transparent on both sides of the sample. Excess silicon is removed from outside 

of the copper grid and the sample is then gently washed with ethanol to remove 

debris. The sample then subjected to PIPS (precision ion polishing system) where 

the interface is thinned from above and below by Argon bombardement, whilst 

varying the angle and power of the plasma beams. 

 

Typically for MgO substrates, this process is started 6 ° above and below with a 

beam of 3.5keV in 20 – 30 min bursts until ‘rainbow fringes’ appear at the 
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interface, indicating that that area is reaching the ~ 200 – 400 nm thickness range. 

At this point the power should be decreased to between 2 – 2.5 keV and 15 min 

bursts applied until a small hole is formed at the interface. The power is then 

reduced further to 1 keV with 3 minute bursts at 7 ° above and below, followed by 

0.5 keV for 3 mins at 7 – 8 ° above and below to clean around the hole. Ideally 

there will be areas of film on both sides which are around 10 nm thick, which are 

ideal for TEM imaging.  

 

6.2 Crystal lattice spacing calculation based on diffraction pattern: 

Calibration of camera length from the microscope (usually 25 cm or 30 cm): 

 d x =
nlhkl

MgO

nlx

=
nl200

MgOd200
MgO

nlx

 

  d 200
MgO = 2.105Å= Actual Distance 

 4(l200
MgO ) ≈18.396 pixels 

 

Example measurement: 

4(l2210
MgO ) ≈ 25.871 pixels 

d 200
MgO ≈

18.396×2.105
25.871

=1.496 Å 

Actual distance = 1.4885, error of 0.5%, so acceptable 

 

Calibration for 25 cm camera length: 

 d x ≈
38.72358

4lx

 Å 
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Confirming the structure of the film done using this calibration: 

Suspected Fe3O4 (2,2,0)  4(l220
Fe3O4 ) ≈13.166 

 d x ≈
38.72358
13.166

= 2.9411 Å 

Real length = 2.9486Å, 0.2% difference, acceptable error. 

 

Diffraction pattern obtained from Fe3O4 on MgO(100) 

 

(2,0,0

) 

(2,-2,0) 

(2,2,0) 

(0,2,0) 

(0,-2,0) 
(-2,0,0) 

(-2,-2,0) 

(-2,2,0) 2*2*MgO(2,2,0)=25.871 

4*MgO(2,0,0)=18.396

(2,2,0) 

(-2,2,0) 

(-2,-2,0) 

(2,-2,0) 

4*Fe3O4(2,2,0)=13.166 px 
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Fe3O4(100) diffraction pattern 

 

MgO(111) Diffraction pattern 
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Fe3O4 (111) diffraction pattern 

 

Fe3O4(111) MgO(111) composite diffraction image 
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6.3  Derivation of linear approximation (Equations 6.21 to 6.22): 

r123 =
r12 + r23 (1−2iβ)
1+ r12r23 (1−2iβ)

  Equation 6.21 

r13 =
r12 + r23

1+ r12r23

    Equation 6.22 

Divide r123 by r13: 

r123

r13

=
[r12 + r23 (1−2iβ)]
[1+ r12r23 (1−2iβ)]

(1+ r12r23 )
(r12 + r23 )

 

Expanding this equation: 

r123

r13

=
r12 + r23 (1−2iβ)+ r12

2r23 + r12r23
2 (1−2iβ)

r12 + r12
2r23 (1−2iβ)+ r23 +1+ r12r23

2 (1−2iβ)
 

 

r123

r13

=
r12 + r23 −2iβr23 + r12

2r23 + r12r23
2 −2iβr12r23

2

r12 + r12
2r23 −2iβr12

2r23 + r23 + r12r23
2 −2iβr12r23

2
 

 

Factorising the numerator: 

r123

r13

(numerator)= r12 + r23 + r12
2r23 + r12r23

2 −2iβ(r23 + r12r23
2 ) 

= (r12 + r23 )+ r12
2r23 (r12 + r23 )−2iβ(r23 + r12r23

2 ) 

= (1+ r12r23 )(r12 + r23 )−2iβ(r23 + r12r23
2 ) 

= (1+ r12r23 )(r12 + r23 )−2iβr23 (1+ r12r23 ) 

= (1+ r12r23 )(r12 + r23 −2iβr23 ) 

Factorising the denominator: 
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r123

r13

(denominator) = r12 + r12
2r23 + r23 + r12r23

2 −2iβ(r12
2r23 + r12r23

2 ) 

= (r12 + r23 )+ r12r23 (r12 + r23 )−2iβ(r12
2r23 + r12r23

2 ) 

= (r12 + r23 )+ r12r23 (r12 + r23 )−2iβr12r23 (r12 + r23 ) 

= (r12 + r23 )+ (1+ r12r23 −2iβr12r23 ) 

Recombining the numerator and the denominator: 

r123

r13

=
(1+ r12r23 )(r12 + r23 −2iβr23 )

(r12 + r23 )+ (1+ r12r23 −2iβr12r23 )
 

 

 

Rearranging: 

r123

r13

=

1
(1+ r12r23 )

1
(r12r23 )

(1+ r12r23 )(r12 + r23 −2iβr23 )
(r12 + r23 )+ (1+ r12r23 −2iβr12r23 )

 

=
(r12 + r23 −2iβr23 )

(r12 + r23 )+ (1+ r12r23 −2iβr12r23 )
1+ (r12r23 )

 

=

1
(r12 + r23 )

(r12 + r23 −2iβr23 )

1
(r12 + r23 )

(r12 + r23 )+ (1+ r12r23 −2iβr12r23 )
(1+ r12r23 )
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=

(r12 + r23 −2iβr23 )
(r12 + r23 )

(1+ r12r23 −2iβr12r23 )
1+ (r12r23 )

 

=
1− 2iβr23

r12 + r23

1− 2iβr12r23

1+ r12r23

 

=

(1−2iβ) r23

r12 + r23

 

 
 

 

 
 

(1−2iβ) r12r23

1+ r12r23

 

 
 






   Equation 6.21 

 

 

 

Now Taylor expand the denominator using (1– x)-1 ≈ 1+x: 

1

(1−2iβ) r12r23

1+ r12r23

 

 
 

 

 
 

≈1+ 2iβ r12r23

1+ r12r23

 

 
 




 

As a result, r123/r13 becomes: 

r123

r13

≈ 1−2iβ r23

r12 + r23

 

 
 

 

 
 

 

 
 

 

 
 1−2iβ r12r23

1+ r12r23

 

 
 

 

 
 

 

 
 




 

≈1+ 2iβ r12r23

1+ r12r23

 

 
 

 

 
 −2iβ r23

r12 + r23

 

 
 




… higher order terms in β 
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≈1+ 2iβ r12r23

1+ r12r23

−
r23

r12 + r23

 

 
 




 

≈1+ 2iβ r12r23 (r12 + r23 )− r23 (1+ r12r23 )
(r12 + r23 )(1+ r12r23 )

 

 
 




 

≈1+ 2iβ r12
2r23 − r23

(r12 + r23 )(1+ r12r23 )
 

 
 




 

≈1+ 2iβ r23 (r12
2 −1)

(r12 + r23 )(1+ r12r23 )
 

 
 




    Equation 6.22 

r123 ≈ r13 1+ 2iβ r23 (r12
2 −1)

(r12 + r23 )(1+ r12r23 )
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List of Acronyms 
 

AES – Auger Electron Spectroscopy 
amu – atomic mass unit 
CrCHO – crotonaldehyde 
CrOH – crotyl alcohol 
DFT – Density Functional Theory 
IR - Infrared 
L – Langmuir 
LEED – Low Energy Electron Diffraction 
ML – monolayer 
MDS – Metastable De-excitation Spectroscopy 
MRE – Magnetorefractive Effect 
MR – Magnetoresistance 
MS – Mass Spectrometry 
O(ads) – Adsorbed oxygen 
RHEED – Reflectance High Energy Electron Diffraction 
Selox – Selective Oxidation 
TDS – Thermal Desorption Spectroscopy 
TPD – Temperature Programmed Desorption 
TPRS – Temperature Programmed Reaction Spectroscopy 
UHV – Ultra-high Vacuum 
UPS – Ultra-violet Photoelectron Spectroscopy 
XPS – X-ray Photoelectron Spectroscopy 


