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ABSTRACT

This thesis is concerned primarily with the investigation, both analytically and numer­

ically, of instabilities in reverse- and forward-roll and slot coating flows. Consideration 

is restricted to Newtonian, incompressible fluids in the absence of inertial forces.

The onset of the ribbing instability in inlet flooded, reverse roll coating is examined 

first by applying linear stability theory to a base flow formulated using lubrication the­

ory. Regions of instability are established and found to be in accord with experimental 

observation. These results are then compared with predictions from a stability hypoth­

esis based on a two-dimensional force balance argument. This simple criterion shows 

that the effect of various parameters on the stability of the downstream free surface 

can be ascertained by examining their influence on the pressure gradient and meniscus 

location. The stability hypothesis is shown to underpredict the critical capillary number 

and so is only sufficient for predicting stability. Results are also compared to ones ob­
tained numerically by applying linear stability theory to finite element solutions for the 

entire flow field, the principal difference being that the analytical approach overpredicts 

the critical capillary number for the onset of instability.

A variation of inlet flooded, reverse roll coating is then studied in which the nip is 

fed from above by a large reservoir of fluid (i.e. a hydrostatic head). The influence of 
this head on the base flow (obtained using lubrication theory) and its stability is then 

investigated.

An improved model of the dynamic contact line, developed by Shikhmurzaev [1993a] 

is described in which the dynamic contact angle is no longer kept constant, but is a 

function of various fluid and geometrical parameters. The limit of this theory for small 

capillary number is incorporated into the analytical model from which its effect on the 

base flow and stability is examined.

Instabilities in forward roll coating are then investigated. The inlet flooded case is stud­

ied using linear stability analysis, a stability hypothesis and the finite element method. 

As in reverse roll coating, the stability hypothesis at the downstream free surface is 

sufficient for predicting stability only. The finite element method, on the other hand, 

leads to solutions that are in close agreement with linear stability theory, unlike the 
reverse roll case.



Inlet starved forward roll coating is examined next and, as with the inlet flooded case, 

the ribbing instability can still manifest at the downstream free surface. The presence of 

an instability known as bead break, noted experimentally by Malone [1992] and Gaskell 

et al [1998], is verified analytically using linear stability theory. It is then shown that a 

stability hypothesis applied at the upstream free surface gives an accurate description 

o f stability (unlike at the downstream free surface).

Finally, the slot coating geometry is explored. A geometrically flexible finite element 

code is described for which it is possible to use various lip shapes and a roll of variable 

radius and location (with respect to the slot). Initially, as has always been the case in 

previous work reported in the literature, the numerical mesh incorporates a downstream 

wetting line pinned at the lip edge and the effect of the various fluid and geometrical 

parameters on the resultant pressure profile and upstream meniscus location is exam­

ined. These numerical results are seen to compare favourably with predictions obtained 

analytically using a model based on lubrication theory.

However, Sartor [1990] showed that the downstream wetting line does not always remain 

pinned, but can climb up the die shoulder or regress into the coating gap. This has been 

confirmed experimentally by Kapur [1998] who also notes that ribs only appear when 

operating in the unpinned regime. Hence, the case in which the downstream, static con­

tact line has retreated from the lip edge towards the inlet is studied. Pressure profiles 

and meniscus locations are compared with those for the case of a pinned downstream 

wetting line and the numerical linear stability analysis used to determine the effect of 

the fluid and geometrical parameters on the stability of the downstream free surface.
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NOMENCLATURE

Most of the symbols used in this thesis have different meanings in different chapters and 

so are not listed here, but introduced and defined later. Below are listed those symbols 

which have a general meaning, although their specific definitions depend on the context.

Ca Capillary number
Camax Critical Ca below which no ribs occur (for any S )

C a* Critical capillary number marking the onset o f instability

n Wavenumber
N  Dimensionless wavenumber

p Liquid pressure
P  Dimensionless liquid pressure

Re Reynolds number

S Speed ratio
Smin Critical S above which no ribs occur (for any Ca)

St Stokes number

u, v, w Velocity components
U, V , W  Dimensionless velocity components

x, y , z Cartesian components
X , Y , Z  Dimensionless cartesian components

p, Dynamic viscosity

u Kinematic viscosity

p Density

a Eigenvalue
S Dimensionless eigenvalue

xv
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1.1 Coating processes

Coating is a process by which a continuous, thin film of liquid is deposited onto a moving 
substrate. A gas (usually air) is replaced by a liquid prior to drying or solidification. 

Such processes are considered successful if the liquid film produced is of uniform thick­

ness and free from any imperfections. Coating flows are important in a wide range of 

industries, for example in the manufacture of food packaging, adhesive tapes and pho­

tographic film. All the industries are subject to economic driving forces which demand 

high operating speeds.

Coating devices can be categorised into two classes: self-metering and pre-metering. 

Self-metered coaters are those in which the amount of fluid applied to the substrate 

depends on the properties of the fluid and the geometry and operating conditions of the 

coater. Examples of common self-metered coaters are forward, reverse and dip coating 

(see figure 1.1). Alternatively, pre-metered coaters are those in which the amount of 

fluid applied to the substrate is controlled directly by the operator; all fluid entering the 

system is deposited on the substrate allowing the coated film thickness to be controlled 

to within precise limits. These coaters also have the capability to produce multi-layer 

films by the simultaneous deposition of more than one liquid. Examples of common 

pre-metered coaters are slot, slide and curtain coaters (see figure 1.2).

1.2 Com m on features of coating processes

All coating flows share common features, two of which being a liquid-gas interface 

(commonly referred to as a free surface or meniscus) and a contact line. Both these 

features are discussed below.

1.2.1 Free surfaces

Interfaces are very thin layers across which the density varies rapidly from that of the 

bulk liquid to that o f the bulk gas. These steep density gradients, which are effectively 

discontinuities, give rise to the property known as surface tension, which produces an 

isotropic capillary stress within the meniscus. However, since the interfacial layers are 

negligibly thin (compared to macroscopic length scales) they are conveniently approxi­

mated as mathematical surfaces with zero-thickness.

The presence of one or more free surfaces greatly complicates the theoretical analysis
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(a) Forward roll coater

(b) R everse roll coater

(c) Dip coater

Figure 1.1: Examples o f self-metered coating processes
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(b) Slide coater

(c) Curtain coater

Figure 1.2: Examples of pre-metered coating processes.
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of coating flows as their location and thus the extent of the fluid domain are unknown 

a priori. Further, the curvature of a free surface is important and can substantially 
change as the operating parameters are varied. Such difficulties can be overcome by 

the use of computational methods (see chapter 2) or alternatively by approximating the 

meniscus by a simple shape, such as the arc of a circle (see chapters 3, 4 and 5).

1.2.2 Contact lines

Since the aim of all coating processes is to replace the gas at a solid surface by a layer 
of liquid, at some stage of the process the three phases must meet. This contact line 

can be of two types:

1. a static contact line, which is stationary relative to the solid surface, or

2. a dynamic contact, or wetting line, which moves relative to the solid surface

Despite their practical importance, much is still unknown about the physics of contact 

lines, though recent advances have been made by Shikhmurzaev [1993a,1993b,1994,1996].

On the scale of macroscopic flows, the liquid-gas interface appears to intersect the 

solid surface at a well defined angle, 6C, measured through the liquid and termed the 

apparent contact angle. The advancing contact line (i.e. the motion by which a liquid 

displaces a gas from a solid surface) has attracted considerable attention from both the­

oreticians and experimentalists, who have noted a number of features associated with 

this phenomenon:

• The nature of the spreading of liquids over the surface is rolling (see Dussan and 

Davis [1974]) i.e. in a finite time, material points which are initially located on 

the meniscus arrive at the solid surface. Note, however, recent work by Savelski 

et al [1995] suggests that this is not always the case (see chapter 3).

• The apparent dynamic contact angle grows from the static value, 9C, to some 

limiting value, 0max, as the speed of the solid surface increases (Schwartz and 

Tejada [1972], Burley and Kennedy [1976], Gutoff and Kendrick [1982]). The 

value of 6max depends on the contacting media (Schwartz and Tejada [1972]) and 

although for most systems it is 180° (Burley and Kennedy [1976]), for some it is 

considerably less (Elliot and Riddifold [1967]).

• At very low contact line speeds, less than U = Uc say, the motion of the contact 

line is unsteady and spasmodic, often referred to as slip stick. At contact line
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speeds greater than Uc, the contact line speed is very smooth (Dussan and Davis 

[1974]).

• At a certain line speed, which depends on the materials of the system, an instability 
of the contact line motion occurs. The contact line takes on a sawtooth form 

and bubbles begin to entrain in the fluid, clearly an undesirable effect which can 

seriously impair the quality of the final coated layer (Burley and Kennedy [1976], 

Blake and Ruschak [1979], Gutoff and Kendrick [1982], Burley and Jolley [1984]).

Local analysis in the neighbourhood of a static contact line reveals a stress singular­

ity which is inversely proportional to the square root of the distance from the fine 

(Richardson [1970]). This singularity is integrable i.e. the total shear force on the solid 

boundary remains bounded. Further, Silliman and Scriven [1980] showed, by means of 

a finite element method, that the usual no-slip condition on velocity at the solid surface 

was adequate for flows near static contact lines. On the other hand, for flows which 

include a dynamic contact line, the classical formulation of the problem (Moffatt [1964], 

Huh and Scriven [1971]) gives rise to a non-integrable shear stress singularity i.e. to 

an infinite force exerted by the fluid on the solid. Such singularities are a result of the 

velocity at the wetting line being multi-valued i.e. dependent on the direction from 

which one approaches the wetting line.

To incorporate a dynamic wetting line into a mathematical model, the usual approach 

is to allow slip in the region close to it. This removes the singularity, but has several

drawbacks, including:

• the actual rolling type motion for the liquid is replaced by a sliding motion such 

that the contact line always consists of the same material points, thereby changing 

the qualitative nature of the fluid flow (see, for example, Shikhmurzaev [1993a]).

.  the dependence of the dynamic contact angle on the hydrodynamic and geomet­

rical parameters cannot be determined from this approach and, as in the classical 

approach (Moffatt [1964]), must be specified. Clearly this method cannot incor­

porate the features associated with the contact angle which were found experi­

mentally (see above).

• an unknown slip length must be introduced measuring the distance from the con­

tact line over which slip occurs. Dussan [1976] investigated the effects of using 

different slip models and concluded that while the flow fields on the slip length 

scale are quite different, the global flow field is unchanged.
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A more rigorous treatment of the flow near a wetting line requires a knowledge of the 

‘fundamental physics’ at hand. Recent work by Shikhmurzaev [1993a,1993b,1994,1996] 

sheds new light on the mathematical modelling of wetting lines by introducing the con­
cept of surface tension gradients near the contact line, which the flow itself gives rise to. 

Unfortunately, his analysis introduces several physical parameters which are difficult to 

measure experimentally, but has the significant advantage of being able to determine 

the contact angle and slip length as part of the solution. This model has yet to be 

incorporated into any numerical code, perhaps due to its complexity, although it is 

possible to use the asymptotic theory for small capillary number (see Shikhmurzaev 

[1993a, 1994,1996], Summers, Gaskell, Thompson and Savage [1998] and chapter 3).

In sections, 1.3-1.5, three specific coating processes are examined m detail, namely 

forward, reverse and slot coating.

1.3 Forward Roll coating

Figure 1.3 shows the three possible coating regimes in forward roll coating (see Malone

[1992]) which are identified below.

1. The inlet flooded regime refers to conditions where the fluid extends far upstream 

of the nip, the flow rate through which is controlled only by the physical properties 

of the coater and the fluid. There is a rolling bank of fluid far upstream of the 

nip, where excess liquid runs back over the incoming film (Schneider [1962]).

2. As the inlet flux is reduced, the rolling bank diminishes and disappears as the 

upstream free surface advances into the nip. This is commonly referred to as the 

moderately starved regime and the thickness of the inlet film is of the order of the 

minimum gap between the cylinders.

3. By reducing the inlet flux further still, the meniscus or ultra starved regime is 

entered where the thickness of the inlet film is much less than the roll separation. 

The upstream free surface is now located close to the nip.

1.3.1 T he inlet flooded regime

Sometimes termed the fully-flooded case, this regime has been thoroughly investigated 

using experimental, analytical and computational techniques. Taylor [1963] suggested 

that the flow divides into two regions, one being a 2-dimensional region of recirculat­

ing fluid in the immediate vicinity of the downstream meniscus and the other an area



(a) Fully flooded

(c) Starved

of almost rectilinear flow further upstream, see figure 1.4. These observations have 

been confirmed experimentally by Schneider [1962] and Malone [1992]. Upstream of the 

minimum gap, the geometry is convergent causing a large positive pressure, whereas 

downstream, the diverging gap results in a sub-ambient pressure which then relaxes 

through the recirculation region to capillary pressure at the meniscus.

Since the gap between the rolls is small and slowly varying and the flow in the middle of 

the domain is approximately unidirectional, mathematical models have been developed
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Figure 1.4: (a) Flow field identified by Taylor [1963]; (b) corresponding pressure profile.

based on the Reynolds lubrication equation,

d_ 
dx

h3(x )
dp
dx

12 yJJ
,dh 
dx ’

( 1 .1)

where p is the pressure, h(x) the gap between the rolls, the viscosity of the hquid 

and U =  \(U\ +  U2) the average roll speed (see Savage [1984]). Equation (1.1) is solved 
for the pressure distribution by specifying conditions on pressure or its gradient at the 

boundaries. In an inlet-flooded roll coater, the upstream meniscus lies far upstream of 

the nip and so one boundary condition is that the pressure tends to its ambient value, 

pa, there i.e.

p ( -o o )  = pa- ( 1.2)

A second pressure condition is supplied by the balance of ambient, surface tension and 

liquid pressures at the meniscus (see Batchelor [1967]),

p(x = d) --------------b Pa,
Td

(1.3)

where x =  d and r& are the location and radius of curvature of the downstream meniscus 

respectively and T  is the surface tension of the liquid. Note that conditions (1.2) and 

( 1.3) can be simplified by arbitrarily defining pa — 0.

Since the location of the meniscus is unknown, another boundary condition is required. 

One such condition comes from Reynolds [1886] assumption that the pressure and its 

gradient vanish at the meniscus, i.e.

p(s =  d) =  l l =  0.
:—d

(1.4)

This is also referred to as the Swift-Steiber conditions following the independent work 

by Swift [1931] and Steiber [1933]. However, this condition is unable to predict the sub­

ambient pressure loop. Hopkins [1957] suggested that since the domain of applicability
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of ( 1.1) terminates at the first stagnation point, the boundary conditions should be 

imposed there. He proposed that for equal roll speeds, velocity and shear stress are zero 

at this point i.e.

=  (1-5)
oy

This separation condition is usually applied in conjunction with the additional assump­

tion that the fluid pressure is constant throughout the reverse flow region and predicts 

the sub-ambient pressure loop seen experimentally. Birkoff and Hays [1963] referred to 

(1.5) as the Prandtl-Hopkins condition in recognition of Prandtl s similar work in the 

field of boundary layer separation.

Coyne and Elrod [1970,1971] considered the case of a film separating away from a 

stationary flat plate and being drawn by a nearby parallel moving plate. By assuming a 

quadratic velocity profile normal to the free surface and plug flow in the outflow bound­

ary, they derived the following expression for the pressure gradient at the free surface 

by matching the inlet and outlet fluxes,

dp 6/j,U
dx h?,■d

(1.6)

where hd is the height of the gap at the wetting fine and hM is the film thickness at 

the outflow boundary. They then used this condition to solve Reynolds equation for 

the pressure in the two roll problem and obtained good agreement with experimental 

observations for the location of the meniscus.

Experimental, computational and analytical predictions for the film split ratio, hx/h2 

(where hx and h2 are the final film thicknesses on the upper and lower rolls respectively), 

have been obtained by several authors. Benkreira, Edwards and Wilkinson [1981] found 

with their sets of rollers that h1 /h2 is largely independent of the roll radii ratio but 

strongly dependent on the speed ratio, S = Ui/U2, and summarised their results in the 

form

—  = 0.87S0'65 0.03 < S < 14.9. (1.7)
h2

In general agreement, Coyle [1984] and Coyle et al [1986] found that their computational 

results, which neglect gravity, could be fitted by

hl-  = S°'6s 0.1 < S < 10.0. (1-8)
h2
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Ruschak [1985] modelled the roll surfaces as flat plates (i.e. h0/R <  1) and, by usinG 

viscous lifting theory, derived the expression

h i = s i  C1-9)
h2

which he showed to be valid as Ca -  0, where Ca =  »U/T  is the eapfflary number. For 

higher values of C o he showed that the expression could be written in the approximate

form

hi = s h ( 1-10) 
h2

which is identical to the form predicted by Savage [1982], who used a separation model. 
The discrepancy between the above power law indices led Savage [1992] and Gaskell, 

Savage and Thompson [1998] to question the applicability of these conditions when 

5 ^  0 or 1. They calculated the 2-dimensional velocity field to O{h0/R.)* and the 

condition U =  V  =  0 was used to locate the downstream stagnation point, resulting m

the algebraic expression

hi S(S  +  3) ( L11) 
h2 1 +  35

which is in close agreement with experimental results for 1 < S < 10.

Note that the analytical models based on lubrication theory assume unidirectional flow 

and so cannot predict the 2-dimensional flow near the downstream meniscus. This has 

led to the introduction of powerful numerical techniques in order to obtain a more ac­

curate representation of the flow field (see chapter 2).

Using the finite element method, Coyle et al [1986] showed that for S *  1, some fluid 

is transferred from the slower to faster moving roll by means of a weak asymmetric 

jet. The existence of such a jet was confirmed experimentally by Lodge [1994] and then 

analytically by Gaskell et al [1996] (using 2-dimensional flow analysis).

Experiments performed by Rees [1993] show that under certain operating conditions, a 

weak asymmetric jet can transfer fluid from the upper to lower roll, even when S =  1. 

The existence of such a jet was attributed to gravity and was later verified numeri­

cally by Walker [1995]. Walker [1995] also found that with the rolls vertically aligned, 

gravity can have a significant effect on the film split ratio at low 5 , in agreement with 

Benkreira et al [1981], Deere et al [1995] and Gaskell, Lodge and Savage [1996]. Walker 

also investigated the behaviour of flows with unequal roll radii.
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1.3 .2  T he moderately starved regime

Reducing the supply of liquid to the nip such that the rolling bank of fluid disappears 

results in the moderately starved regime. The first experimental study of this regime 
was performed by Malone [1992]. Gaskell, Summers, Savage and Thompson [1995] used 

the finite element method to show that this regime is characterised by two regions of 
recirculating flow near the free surfaces, separated by a region of quasi-unidirectional 

flow, see figure 1.5.

1.3.3 The meniscus regime

Although this regime has been operated in by industry for many years (see Gaskell 

et al [1995]), it was not investigated until recently. Malone [1992] examined the flow 
experimentally and noted that the flow structure is vastly different from that of the inlet 

flooded and moderately starved cases. Indeed, he found that the flow domain consists of 

a small bead of liquid which contains two recirculations. Thompson [1992] formulated 

a boundary value problem to model this flow by neglecting the flux through the bead, 
which was modelled as a rectangular domain by approximating the rolls as horizontal 

planes and the menisci as vertical stress-free planes. The streamlines obtained using 

this zero flux model were similar to those seen by Malone [1992].

Gaskell et al [1995] solved the full problem both numerically, using the finite element 

method, and analytically, using lubrication theory in conjunction with viscous lifting 
theory and arc of circle approximations for the menisci. Predictions for the pressure 

profile and film split ratio obtained using the lubrication model were seen to have good 

agreement with numerical solutions. The model was also able to predict critical flow 

rates at which the flow structure changed. Their numerical solutions revealed that when 

using starved inlets, liquid could be transferred from the lower to upper roll by means of
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a primary and/or secondary transfer jet, as shown in figure 1.6. However, the flux could 

be reduced to an ultra starved regime such that only a primary transfer jet existed. Note 
that above a critical value of flux only the secondary transfer jet is present (see figure 

1.5).

(a)

primary 
transfer-jet

secondary primary 
transfer-jet transfer-jet

Figure 1.6: Schematic illustration of the flow field in (a) ultra-starved and (b) starved 

forward meniscus roll coating (Gaskell et al [1995]).

1.4 Reverse roll coating

Reverse roll coating, involving the flow in the narrow gap between two co-rotating 

cylinders, has not received quite the same attention as the forward case. Experiments 

by Gaskell, Innes and Savage [1996] showed that a moderately starved regime does not
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exist in reverse roll coating. Thus, the only two modes of operation are the inlet hooded 

and meniscus regimes (see figure 1.7).

(a) Inlet flooded

(b) Inlet starved

Figure 1.7: Different operating regimes of reverse roll coating.

1.4.1 The inlet flooded regime

Several mathematical studies have been made using lubrication theory to describe inlet 

flooded reverse roll coating (see Cheng and Savage [1978], Ho and Holland [1978] and 
Greener and Middleman [1981]) - all these models predict a simple linear relationship 

between the dimensionless downstream film thickness, H 2 , and speed ratio, S ,

#2 =  7^ — K (1  -  S), (1.12)
h 0

where 0.615 < K  <  0.665, depending on the boundary conditions chosen to solve (1.1). 

Note that this relationship predicts negative film thicknesses if S > 1 and so such mod­

els are only valid if 5  < 1 .
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Ho and Holland [1978] assumed that the downstream film is carried off by a horizontal 

web which meets the lower roll tangentially at the nip, at which point the pressure is 

zero. This led to the coefficient K  — 2 /3 , which is identical to the case when the rolls 

are fully submerged. Using the Reynolds condition (1.4) gives K  =  0.613 (see Coyle 

[1984], Greener and Middleman [1981]) although, as with the forward case, this model 

is unable to predict a sub-ambient pressure loop. Alternatively, applying the Prandtl- 

Hopkins conditions, equation (1.5), yields K  =  0.652 and a sub-ambient pressure loop

is then predicted.

Experimental data by Coyle [1984] demonstrated that models based on lubrication the­

ory only predict H 2 accurately at low values of speed ratio. He also showed that H 2 is 

highly dependent on Ca, a relationship not seen via (1.12), although agreement with 

lubrication models improves as Ca decreases - this is because as Ca decreases the menis­

cus moves away from the nip, thus increasing the range of values of S over which the 

lubrication models may be applied.

Fukazawa, Benjamin and Scriven [1992] realised that, by extending the lubrication model 

to incorporate more realistic boundary conditions at the downstream meniscus, the film 

thickness prediction could be improved and so they modelled the downstream meniscus 

using an arc of circle approximation and applied the Landau-Levich [1942] expression 

(see chapter 3) at the downstream outlet. However, their analytical results are only 

valid for small Ca.

Coyle [1984], Coyle, Macosko and Scriven [1990a], Fukazawa et al [1992] and Richardson 

[1996] all obtained numerical solutions, using the finite element method, which are in 

broad agreement with experiment. Grald, Chakrabarti and Subbiah [1994] examined 

the flow using a spectral element approach and their results are in accord with those of 

Coyle et al [1990a], which show that as S increases from zero, H2 decreases in precisely 

the manner predicted by (1.12). However, at some higher value of S, H2 reaches a 

minimum beyond which it increases sharply. Coyle’s results show that the minimum 

film thickness, H™in, corresponds to the point at which the wetting line passes through 

the nip and the sharp upturn in H 2 follows once the wetting line moves upstream of the 

nip. In addition, he showed that decreasing Ca has little effect on H2 at low values of 

S, but shifts the H ^ in to a higher value of 5.
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1.4.2  T he meniscus regime

Using a finite element approach, two free surface, reverse roll coating was first investi­

gated numerically by Coyle [1984]. He studied the region of parameter space where the 

inlet film thickness was greater than the minimum gap and, for this case, showed that 

the solution downstream of the nip is almost identical to that produced via the inlet 

flooded finite element model. It was thus concluded that the contact line is of primary 

importance in the formation of the downstream film. Grald et al [1994] solved the prob­

lem using the spectral element method and their results, produced via the commercial 

package ‘Nekton’ , are in good agreement with Coyle [1984].

Fukazawa et al [1992] extended their viscocapillary model to incorporate the upstream 

free surface by modelling it with the arc of a circle. However, their model lacked an 

upstream boundary condition and was therefore unable to determine H2 as part of the 

solution. Richardson [1996] refined and developed this viscocapillary model which did 

predict H 2.

Malone [1992] and Gaskell, Innes and Savage [1998] showed that, as with forward roll 

coating, the flow structures in starved and flooded inlets are quite different. Richard­

son [1996] used his viscocapillary model to predict the critical flow rates at which the 

flow structure changed and then used the finite element method to examine the various 

structures. He reported two mechanisms by which liquid can be transferred from the 

inlet to upper outlet film. In deference to Gaskell et al [1995], these were termed the 

primary and secondary transfer jets, see figure 1.8.

1.5 Slot coating

The slot coater is a pre-metered device which allows the thickness of the coated layer 

to be controlled within precise limits. It also allows several coatings to be applied si­

multaneously (see figure 1.9) and, for these reasons, is very commonly used in industry 

(see O ’Brien [1984], Cameron, Alfred and Hills [1986], Sartor [1990] and Cohen [1993]).

The process consists of a web moving with velocity U , under a die of varying height 

h(x). Liquid is fed through the narrow feed slot(s) between the upstream and down­

stream lips, and separates from the downstream lip to form a uniform film of thickness 

h00. The region of liquid confined between the upstream and downstream menisci is 

known as the coating bead.
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(a)

transfer-jet

(b)

secondary primary 
transfer-jet transfer-jet

Figure 1.8: Schematic illustration of the flow field in (a) ultra starved and (b) starved 

reverse meniscus roll coating (Richardson [1996]).

Coyne and Elrod [1969], analysing only the flow in the downstream region, derived 

the asymptotic behaviour o f the liquid layer thickness as a; > oo. Later, by assuming a 

quadratic velocity distribution tangential to the meniscus, they solved for the flow along 

the free surface and determined the meniscus shape, which they showed to depend only 

on Ca  for a given contact angle (see Coyne and Elrod [1970]). Their analysis showed 

that under certain conditions, a stagnation point is located on the free surface at a film 

height of 3/ioc and also determined the dimensionless radius of curvature of the meniscus 

as a function o f Ca.
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(a) Single layer slot coating

— ►
U

(b) Multilayer slot coating

Figure 1.9: Schematic of single and multilayer slot coating.

Ruschak [1976] analysed the parameter bounds for which the slot coater is able to 

produce films of uniform thickness, although he neglected viscous effects, thus assuming 

that the upstream and downstream lip lengths are negligible so that the capillary pres­

sure alone sets the bounds on coating bead operability. His model was also only valid 

for low flow rate and web speeds and assumed that the downstream static contact line 

is pinned at the edge of the downstream lip. Higgins and Scriven [1980] extended this 

work to include viscous effects.

If the pressure outside the downstream meniscus is atmospheric, Higgins and Scriven s 

[1980] analysis also explains why a vacuum pressure must often be applied at the up­

stream meniscus, as suggested by Beguin [1954]. Having such a back pressure moves 
the upstream free surface away from the inlet and is in fact necessary when the gap 

clearance is greater than twice the wet film thickness. This pressure difference, which 

can reach values of 3000-Pa, can be achieved with the help of a vacuum box (see W ood­
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worth, Winkler and Jackson [1982]). The coating bead can be similarly stabilised by 

electrostatic or magnetic assist, the latter evidently being of use only with magnetic 

liquids.

Silliman and Scriven [1980], Saito and Scriven [1981], Carter [1985] and Thompson

[1992] simulated the downstream end of the problem using the finite element method 

(see chapter 2) and they produced velocity and pressure profiles over a wide range of op­

erating parameters. The full, two free surface problem (see chapter 5) was investigated 

numerically by Sartor [1990], Durst and Wagner [1997] (using a finite element analysis) 

and Grald, Chakrabarti and Subbiah [1994] (using a spectral element method). Sartor 

[1990] also conducted an experimental study of the flow field which compared well with 

his numerical predictions.

The main geometric features which can be altered are the die lengths, angles and their 

separation from the web. The purpose of making these changes is to modify the flow 

and related pressure field to enlarge the operating window of the process. Sartor [ 1990j 

investigated numerically, experimentally and analytically (using Higgins and Scriven s 

[1980] 2-dimensional analysis) the effect of various possible geometries on the lower vac­

uum limit and maximum speed of coating.

Note that in the literature, authors have generally assumed that the downstream static 

contact line is pinned at the edge of the slot. Sartor [1990] showed that this is not 

necessarily the case and found that the meniscus can detach from the edge and either 

wet past it and climb along the shoulder of the slot wall or regress into the coating gap 

along the downstream lip. The climbing effect was verified experimentally by Lodge

[1993] and then examined computationally by Richardson and Storey [1993] and Kapur 

[1998]. Kapur [1998] also demonstrated experimentally the regression of the contact 

line under certain operating conditions. If the downstream contact line is unpinned, 

this will clearly affect the operability diagram predicted by Higgins and Scriven [1980] 

as the coating gap would then be narrower or wider than the assumed one.

1.6 Stability of coating flows

A major problem in the coating industry is the appearance, under certain operating 

conditions, of instabilities which give rise to coating defects, and hence it is necessary to 

determine the critical conditions (i.e. flow parameters) at which they arise. An example



20

of such an instability is ribbing, which appears in all the coating flows described above. 

In inlet flooded, reverse roll coating there is an additional instability known as cascade 

which occurs at large speed ratios, whereas in both the forward and reverse inlet starved 

roll coaters, bead break may arise.

1.6.1 The ribbing instability

The ribbing instability is a steady, spatially periodic, 3-dimensional disturbance of a 

free surface which is observed as lines of crests and troughs in the direction of the mov­

ing web, see figure 1.10. Avoidance of ribbing tends to require lower roll speeds, less

Figure 1.10: Photograph of the ribbing instability (Dowson and Taylor [1979]).

viscous fluids and thicker wet coatings. These requirements are in direct opposition to 

the economic driving forces for high production rates and low solvent usage.

Accurate predictions for the onset of ribbing require a theoretical analysis of both the 

base flow and its response to 3-dimensional disturbances of small amplitude. The base 
flow between pairs of rigid rolls has been extensively studied. When ho/R is small, 

the flow in the gap region is almost rectilinear and the Navier-Stokes equations are 

well approximated by lubrication theory. Downstream of the nip the liquid splits into 

film(s) which attach to the roll(s). Close to this film split meniscus, the flow field is

2-dimensional and an accurate description of it would involve solving the Navier-Stokes
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equations. Nevertheless, a common and effective approach has been to proceed with 

the lubrication approximation and adopt suitable boundary conditions at the film split 

meniscus. Pearson [1960] first introduced a linearised stability analysis, yet his model 

was restricted by an absence of appropriate boundary conditions to determine the loca­

tion of the downstream meniscus. Savage [1977] and Fall [1978] used Coyne and Elrod’s 

[1970] model of the flow near the meniscus and a steady-state linear stability analy­
sis to investigate the cylinder-plane and wide angled spreader geometries respectively. 

Again following Pearson, Savage [1984] analysed the stability of the base flow in the 
equal speed, forward roll coater. Subsequently, Carter and Savage [1987] examined the 

unequal speed case. Fall [1982] went on to consider the stability of the 2-dimensional 

flow between a roll and a flat plate in which he included the time dependent response 

so as to obtain growth rate as a function of wavenumber.

An alternative approach to ascertain stability was developed by Bixler [1982], who 

applied ideas from linear stability theory to extend the finite element method in order 
to determine the stability of a free surface coating flow. The finite element method (as 

summarized by Kistler and Scriven [1983]) was found to be a powerful tool and made 

it computationally possible to solve complicated fluid flows with considerable accuracy 

whilst also making it no longer necessary to use the lubrication approximation near 

a meniscus. Neglecting gravity and inertia, this approach was used by Coyle [1984] 

(followed by Coyle et al [1990]) to solve for the stability of the half problem of equal 

speed, inlet flooded forward roll coating, the results of which showed areas of parameter 

space where the system was stable. Christodoulou [1989] included the inertia terms and 

investigated the stability of slide coating as various geometrical parameters were varied.

An approximate way to determine the stability of an interface was independently de­

rived by Pitts and Greiller [1961] and Savage [1977]. By considering a force balance at 

the downstream interface, it was shown that this free surface would remain stable to 

small disturbances provided

where r represents the radius of curvature of the meniscus and jp the pressure. The 

accuracy of this stability hypothesis, in comparison to the Unear stability analysis, will 

be investigated in chapters 3 and 4.

< 0, (1.13)
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1 .6 .2  T h e  ca sca d e  in s ta b ility

In reverse roll coating, at speed ratio values above a critical value, an instability known 

as cascade appears. Its effect is to leave a periodic cross-web disturbance in the direc­

tion of the moving web, the frequency of which increases with decreasing gap width 

(between the rolls). Large bubbles are simultaneously entrained on the upper roll, often 

being larger in size than the minimum gap. Whereas transition to ribbing as parameters 

vary is gradual, the transition to cascade is quite sharp. In addition, whereas ribs of 

small amplitude are often acceptable, the cascade instability produces a coating which 

is completely unacceptable.

The onset of cascade was first investigated by Booth [1970], who identified regions 

of instability in the Ca -  S plane. Coyle [1984] produced similar operability diagrams, 

although over a much larger region of parameter space. It is difficult to determine the 

nature o f this instability experimentally because the dynamic contact line is situated 

close to the nip and so not easily observable. However, Coyle [1984] suggested the fol­

lowing mechanism, which can explain the observed oscillations in film thickness and the 

entrainment of large bubbles on the upper roll (see figure 1.11): As the speed ratio is 

increased, the wetting line moves towards the nip and the film thickness decreases. At 

a critical speed ratio, S*, the wetting line is located at the nip and the film thickness 

is at a minimum. For S > S*, the wetting line is positioned upstream of the nip so 

the gap height at the contact line, and hence the film thickness, increase. At another 

critical speed ratio (beyond S =  5*), SL, the film thickness is equal to the minimum 
gap between the rolls and so the film reattaches to the upper roll, leading to a reduction 

in the film thickness. A large pocket of air is formed on the upper roll which then moves 

upstream from the minimum gap position. This value of S is too great for the wetting 

line to remain at the nip, i.e. SL > S*, and so it moves back to its original upstream 

position. Again, the film reattaches to the upper roll and the cycle repeats.

Note that at values of S near the onset of cascade, there is a very small clearance 

between the upper roll and film. The air boundary layer brought in on the upper roll 

has to turn around near the wetting line and flow back out of the gap, thus creating a 

high speed, high shear air flow which could generate waves on the liquid film and in itself 

cause instability. Hence a 3-dimensional, time dependent solution of the Navier-Stokes 

equation, including the effect of air flow, would be required in order to predict the flow 

that arises close to and during the cascade instability.
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Low Speed Ratio

Increase Speed Ratio

As speed ratio increases, a thinner film 
is produced because the gap height at 
the wetting line gradually diminishes

Increase Speed Ratio

•

Increase Speed Ratio

At S=S, the wetting line is located at 
the nip and the film thickness is at its 
minimum value because the gap height 
at the wetting line is at its minimum 
value

*
For S>S, the wetting line is located 
upstream of the nip. The film 
thickness begins to increase because 
the gap height at the contact line 
increases

At 5=5,Shefilm thickness is equal to the 
minimum gap height and so 
reattaches itself to the upper roll at 
the nip. A pocket o f air is entrained 
by the upper roll. The film thickness 
decreases because the gap height at 
the wetting line has decreased.
However, this value o f speed 
ratio is too great for the wetting 
line to remain at the nip and it therefore 
returns to its original position, i.e.X=L. 
Hence, the process is repeated.

Figure 1.11: Schematic representation of the mechanism of the cascade instability (Coyle 

[1984]).
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The experiments by Coyle [1984] also show that the onset o f cascade shifts to a higher 

value of S as Ca is decreased, but is relatively insensitive to the minimum gap width.

1.6.3 The bead break instability

Whilst operating in the reverse meniscus regime, experiments performed by Malone 

[1992] suggested that the cascade instability does not occur since the final film thick­

ness is then also dependent on the amount of fluid arriving at the nip. However, Malone 

[1992], Gaskell, Kapur and Savage [1998] and Kapur [1998] showed that, for rolls op­

erating in both the reverse and forward mode, another instability known as bead break 

can then appear. They showed, for the forward case, that increasing Ca or 5  moved 

the upstream meniscus to the same side of the nip as the downstream meniscus. A 

further increase in Ca or S led to the acceleration of the upstream meniscus towards 

the downstream meniscus, at which point the entire bead collapsed, thus the term bead 

break. This instability is described further in chapter 4.

In the reverse case, Kapur [1998] observed a similar phenomenon, in which increasing

5 caused the downstream meniscus to accelerate towards the upstream again causing 

the bead to collapse.

1.7 Outline of this thesis

The general aim of this thesis is to investigate, both analytically and numerically, in­

stabilities in reverse, forward and slot coating flows. Consideration is restricted to 

Newtonian, incompressible fluids in the absence of inertial forces. The Galerkin finite 

element method, which is used to obtain numerical solutions for the flow domain for all 

three o f these processes, is outlined in chapter 2. A numerical technique for analysing 

the stability of these flows, based on linear stability theory, is then described.

In chapter 3, the inlet flooded regime of reverse roll coating is investigated for which, as 

has already been shown in section 1.6, two prominent instabilities may appear - ribbing 

at low S and cascade at high S. These instabilities are separated by a stable window 

of operation in which a uniform film can be produced. The size of the stable window 

can vary as parameters, such as the gap width, vary. In this chapter, only the ribbing 

instability is examined as the cascade instability forms a separate topic of interest in 

its own right and, as previously stated, would require a time dependent solution of the 

Navier-Stokes equation. By considering a 3-dimensional disturbance to a 2-dimensional
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base flow calculated using lubrication theory, regions of instability in the C a -  S control 

space are established. Results obtained using this linear stability analysis are then com­

pared with predictions from the stability hypothesis (1.13) and results acquired using 

the numerical methods outlined in chapter 2.

A variation of inlet flooded, reverse roll coating is then examined in which the nip 

is fed from above by a large reservoir of fluid i.e. a hydrostatic head. The effect of this 

head on the base flow and stability is investigated, again by applying linear stability 

analysis to lubrication theory.

Finally, an improved model of the dynamic contact line, developed by Shikhmurzaev 

[1993a], is described in which the dynamic contact angle is no longer kept constant, but 

is a function of various fluid and geometrical parameters. The limit of this theory for 

small capillary number is then incorporated into the analytical model from which its 

effect on the base flow and its stability is examined.

The first aim of chapter 4 is to investigate the ribbing instability in inlet flooded, for­

ward roll coating in the absence of gravity. As in the reverse case, by considering a

3-dimensional perturbation to a 2-dimensional base flow, regions of instability in the 

Ca - S plane are established and compared to those predicted by (1.13) and the numer­

ical finite element stability approach.

Instabilities in the inlet starved case, where the inlet is fed by an incoming film of pre­
scribed thickness, are then examined. An examination of the bead break phenomenon is 

performed and the effect of the upstream free surface on downstream ribbing examined. 

This is achieved analytically using 3-dimensional linear stability theory, the results from 

which are compared to predictions obtained using a stability hypothesis on both the 

upstream and downstream free surfaces. Note that the stability of the upstream free 

surface has already been investigated by Gaskell et al [1998] who studied the bead break 

instability by considering only 2-dimensional perturbations to the base flow. In addi­

tion, they did not consider the effect of the incoming film thickness which is included 

in the model presented here.

Experiments by Kapur [1998] show that ribbing on the downstream meniscus of a slot 

coater only occurs when the downstream static wetting line is not pinned, but free to 

move along the downstream die Up. These experiments have prompted the investigation
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in chapter 5 of the ribbing instability on the downstream free surface of a slot coater. 

Firstly, a finite element base flow for the case of a pinned downstream is found and the 

effect of various fluid and geometrical parameters considered. The resulting pressure 

profiles and upstream meniscus locations are compared to those predicted via a model 

based on lubrication theory. A finite element base flow with an unpinned downstream 

is then found, and the resulting pressure profiles and meniscus locations are compared 

with those from the pinned case. Finally, linear stability theory is applied to this un­

pinned case and the effect of various fluid and geometrical parameters on the stability 

of the flow are examined. Note that instabilities on the upstream free surface are not 

examined since a comprehensively different finite element mesh would be required.

Chapter 6 summarises the main results obtained in this thesis and provides sugges­

tions for future work.
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2.1 Galerkin finite element method

2 .1 .1  I n t r o d u c t io n

In the previous chapter, it was described how roll coating flows can be modelled analyti­

cally using lubrication theory. Such models reduce the problem to a one-dimensional sys­

tem subject to simple boundary conditions on velocity and pressure, with the Reynolds 

number set to zero. Further, it is often necessary to assume a small Ca to obtain suit­

able boundary conditions at an outlet, e.g. the Landau-Levich [1942] or Ruschak [1981] 

expressions can be used to relate the final film thickness to the radius of curvature. The 

meniscus can then be approximated by the arc of a circle.

However, for many flows the above assumptions do not hold and one must resort to 

using a numerical method. Such methods require the continuum equations governing 

the flow to be written in an approximate, discrete form, resulting in a system of algebraic 

equations whose solution yields the physical quantities of interest, e.g. fluid velocity and 

pressure, streamfunction, vorticity, at points (or nodes) within the flow domain. There 

are five such methods available - namely (i) finite difference (FD ), (ii) finite volume 

(FV), (in) boundary element (BE), (iv) finite element (FE) and (v) spectral element

(SE).

In the FV method the associated control volumes are designed to conserve fluid flux lo­

cally and globally and as such it has found favour with those interested in high Reynolds 

number flows. The FD method, however, is usually used to study medium and low 

Reynolds number flows. Both methods are well suited to problems involving regular, 

fixed domains (i.e. no free surfaces), and advances have been made in applying them to 

irregular and moving domains through using boundary-fitted coordinates (Ryskin and 

Leal [1984], Glaister [1995], Wang and Domoto [1994]) or a Volume-of-Fluid technique 

(Hirt and Nichols [1981], Hirt and Chen [1996]).

The BE method has been applied successfully to free surface flows (see Kelmanson

[1983]). This method is very efficient as it requires only information on the boundary to 

be evaluated. Its major drawback is that it is not easily applied to non-linear problems 

(i.e. Re ±  0), though progress is being made in this area, for example by Liao and 

Chwang [1996].

The FE method can be applied relatively easily to solve non-linear problems with ir­
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regularly shaped domains. The fluid domain is divided into sub-regions called elements 

inside which an approximate, local solution for the governing equations is found. The 

solutions from all the individual elements are then assembled to generate an overall ap­

proximate solution. Although this method is generally more computationally expensive 

than the FD, FV and BE methods, it is topologically very flexible and well-suited to 

the solution of nonlinear free surface flow problems.

FE solutions of free surface problems were first presented by Nickell, Tanner and Caswell 

[1974] and Tanner, Nickell and Bilger [1975], although they were limited by the large 

amount of data storage required. The development of a frontal method by Irons [1970] 

and Hood [1976] dramatically reduced the storage requirements, but early work still suf­

fered from slow convergence since the free surface locations were determined by succes­

sive approximations (see Silliman and Scriven [1980]). Improvements in the representa­

tion of the free surfaces were made by Ruschak [1980] who devised the boundary support 

method which evolved into the spine method. This method, together with the introduc­

tion of a Newton-Raphson iterative scheme (Saito and Scriven [1981]) then made it 

possible to solve for the free surface location and flow field conveniently and simulta­

neously. Since Kistler and Scriven’s [1983] review of the method, the FE approach has 

been successfully applied to many coating geometries e.g. forward roll coating (Coyle

[1984], Gaskell et al [1995]), reverse roll coating (Coyle et al [1990a], Richardson [1996]) 

and slide coating (Christodoulou [1990], Walker [1995]) to name but a few.

The SE method, developed by Patera [1984], has also proved to be highly successful 

for solving free surface flows. The method is similar to that of the FEM in that the 

domain is represented by a number of elements and locating free surfaces can be com­

putationally intensive (see Grald et al [1994]). However, unlike the FEM, very few 

elements are required to tessellate the domain because the order of interpolation used 

is much higher (4th to 14th order Legendre polynomials). The SE method has been 

applied to numerous coating problems (see Grald et al [1994]) and results agree well 

with those obtained with the FEM.

In this study, a FEM is chosen. The following sections, 2.1.2-2.1.10, briefly describe 

the FE formulation for solving steady, two-dimensional flows which include free surfaces 

with attendant dynamic or static contact lines.
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2.1 .2  Governing differential equations

The steady isothermal flow of a Newtonian, incompressible fluid o f constant density, p, 

and kinematic viscosity, v, is governed by the equations,

p(K-V)U_ =  -W P  +  fiS/2U +  pg, (2.1)

V.J7 =  0, (2 -2)

expressing the conservation of momentum (the Navier-Stokes equations) and fluid mass 

(the ‘continuity’ condition) respectively. Here, £ is the acceleration due to gravity. The 

dimensionless form of the equations is

R e(u .V )u  =  W g + S tg ,  (2.3)

V .u =  0, (2.4)

where lengths have been scaled by an appropriate length scale, D , velocities by a charac­

teristic velocity, U, and pressure and viscous stresses by vU/D . The Reynolds number 

and Stokes number are then given by Pie =  pU D / and St — PqD / p,U and indicate the 

relative importance of inertial to viscous and gravitational to viscous forces respectively. 

Here u =  (u ,v ) is the dimensionless fluid velocity, g is the unit vector in the direction 

in which gravity acts and a is the dimensionless stress tensor which, for a Newtonian 

fluid, is given by

£  =  - 2> !+ [V u  +  (V;u)t ], (2.5)

where I  is the unit tensor and p the dimensionless fluid pressure.

The domain of interest is discretised by dividing it into a finite number of elements, 

see figure 2.1, each containing a number of nodal points at which the pressure and/or 

the velocity is either known or to be determined. These nodes determine the level 

of interpolation to be used in order to approximate the unknown flow variables, u, v 

and p over an element. It is now generally recognised that in the primitive variable, 

FEM formulation of the Navier-Stokes equations, ‘mixed interpolation’ should be used

i.e. pressure should be interpolated at least one order of magnitude lower than that of 

velocities so as to satisfy the Ladyzenskaya Babuska Brezzi or LBB stability condition 

(see, for example, Babuska and Aziz [1972] or Lee, Gresho and Sani [1979]). Failure 

to adopt this approach may lead to an ill-conditioned or even singular global matrix 

resulting in an oscillating pressure solution or no solution at all.
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node
element

Figure 2.1: A fluid domain, 0 , with boundary dCl, as tessellated by finite elements. 

The FE representations of velocity and pressure are defined as

where uk =  (uk,v k) is the velocity at the fcth velocity node, pi is the pressure at node I, 

and Nk and ipi are the interpolating functions satisfying

Although there are many different types of elements, in this study triangular V 6/P3 

ones are employed since they allow easier refinement into corners (see Thompson [1992]). 
Such elements have two velocity freedoms at each node and a pressure freedom at 

each corner node (see figure 2.2), giving fifteen unknowns. Thus the Nk are 6-node 

biquadratic functions and the ipi are 3-node bilinear functions.

2.1 .3  Galerkin FE  formulation

Galerkin’s method is adopted in which values of (uk,v k) are sought which satisfy a 

weak form of the governing equations, generated by weighting (2.3) and (2.4) with the 

velocity and pressure interpolating functions, Nk and respectively, integrating ovei 

the domain and setting them to zero. The momentum residuals are then

K  L
u (x ,y )  =  ^ u kNk(a;,y); p (x ,y ) = p lM x > v) >

lc-1 1=1
(2 .6)

0 at all other nodes

1 at node k

R ^ =  f (ReN k(u.W)u -  NkV -g ~  NkStg)dCl =  0 (2 .8)
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□  Velocity and pressure node 

O Velocity only node

(2.9)

Figure 2.2: The V 6/P3 element, satisfying the LBB stability condition, 

and the continuity residuals are

r1= /  inv.udn = o,
Ju

giving rise to 2K  +  L, non-linear, algebraic equations for the 2K  +  L unknowns uk, vk 

and pi. Using the identity

NkV .g  =  V .(N kg ) - V N k.g

and the divergence theorem, the momentum residuals then become

(2 .10)

R ^ =  [ (ReNk(u.\/)u +  VNk-g -  NkStg)dCl -  Nkg.hds, 
J Cl

(2 .11)

and are now seen to consist of contributions from the domain, fi, and its boundary, 

dtt. At free surfaces, the boundary contribution will be non-zero and must therefore be 

evaluated. At fixed boundaries, the fluid is assumed to adhere to the surface and the 

‘no-slip’ boundary condition is imposed such that the velocity is known at each of the 

relevant boundary nodes; thus the boundary contributions can be discarded there and

need not be assembled.
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2.1 .4  Free surfaces

The presence of free surfaces introduces complications into the solution procedure since 

the shapes of these boundaries are unknown a priori and must be determined as part 

of the solution. The following non-linear boundary conditions are to be applied across

each free surface:

(1 ) the normal velocity must vanish;

( 2 ) the tangential (shear) stress must be continuous and is generally considered to be

zero since air has a viscosity which is negligible compared to that of most fluids,

( 3 ) the normal stresses and surface tension stresses must balance;

Condition (1), otherwise known as the kinematic condition, written as

u.n — 0, (2-12)

expresses the fact that no fluid may cross a steady interface. Following Kistler and 

Scriven [1983], conditions (2) and (3) may be expressed mathematically via the vector

relation

Kn - (2.13)
n.g_ =  — --------Pall— La

where pa is the ambient air pressure and k the dimensionless curvature of the tree 

surface. A  more convenient form is given by (Ruschak [1980])

1 dt-  (2.14)R-2- — 77~ ~J~ ’— Ca as

where t is the unit tangent pointing in the direction of increasing arc length, s, along a 

free surface and pressures have been measured relative to the ambient pressure, pa. In­

serting (2.14) into (2.11) enables the boundary contributions of the momentum residual, 

(#m )an/s , to be rewritten as

I f  dt  , 

= C - a L , N kf s d5'

=  1 f _  ,vt £0], (2.15)
Ca Jd£ifs ds Ca

where t_x and t0 are the unit tangents to the beginning and end of the free surface re­

spectively.
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In this study, the position of a free surface is represented in terms of a set of con­

veniently placed spines, as defined by Kistler and Scriven [1983]. The spines, which are 

not necessarily independent, are typically straight lines; the spine ‘height’ , hi, is defined 

as the distance along a spine between its base node, x%, and a node which lies on the 

free surface.

Unlike the boundary support method (Ruschak [1980]), the representation of a fiee 

surface is independent of any reference surface, which requires the coordinates of base 

nodes and orientation of spines to be additional unknowns; they can be adjusted adap­

tively and automatically to the features of the flow during the iterative procedure. The

m m V ////////Z
Solid

Figure 2.3: Parametrization of a free surface by the spine method.

coordinates of node k on the ith spine are given by the relation

x k -  +  wkhiii, (2 -16)

where wk is a prescribed proportion of the spine height, /i,, and is a unit direction 

vector parallel to the spine.

To determine the magnitude of each spine height, hi, the kinematic condition (2.12) 

is weighted with the shape functions associated with the free surface nodes. Since only
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the shape functions defined on the free surface will be non-zero there, this leads to ex­

actly as many equations as there are unknown spine heights. These additional equations

are given by

R lK  =  f N iU .nds =  0. (2-17)
J f s

Note that the task of choosing a mesh generation algorithm is often complicated due 

to large variations in free surface shape as parameters vary. Similarly, it is important 

to avoid undue element distortion as this can have a serious detrimental effect on the 

accuracy of numerical solutions. It is thus often necessary to introduce what is known 

as an i n t e r -dependent  spine, where a spine contains nodes which are the base nodes 

for other spines. The coordinates of a free surface node, in a region containing inter­

dependent spines, is given by , where

x * 3 =  x ) +  h jij

— x0 -(■ h^ejWj ~\~ hjSj, ( - 18 )

where x0, hd and ^  are the location of the base node, height and direction vector of 
the inter-dependent spine respectively (see figure 2.4). The variable w: represents the 

weight along the inter-dependent spine to the base node being described. Note that in 

figure 2.4 , both x\ and e, (i = 1, ..,3) are now dependent on hd.

2.1.5  D ynam ic contact angles

As discussed in Chapter 1, all practical coating processes contain at least one dynamic 

contact line. As the coating liquid displaces the air from the moving solid surface, both 

the liquid and the gas must move relative to the solid surface, and thus the no-slip 

boundary condition is violated (see Huh and Scriven [1971]). Applying conventional 

fluid dynamical theory along with the no-slip condition leads to an unbounded stress 

which has a non-integrable singularity. To eliminate this stress singularity, Dussan 

[1976] suggested the use of a small slip length over which slip occurs between the liquid 

and the solid surface, in the immediate vicinity of the wetting fine. There are several 

alternative slip boundary conditions but Dussan [1976] showed that they have no effect 

on the global solution and so the choice of slip condition only matters close to the dy­

namic wetting line.

Here the slip length is defined over one element, where the velocity of the fluid is 

zero at the dynamic contact line, half the web velocity at the mid-side node located on
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Figure 2.4: Parametrization of a free surface using inter-dependent spines, 

the web, and equal to the web velocity at the final node.

As the location of the dynamic contact line is not known a priori, an additional bound­

ary condition is required to find its position. A suitable condition is

tfs-twe b =  COŜ ’ (2 '19^

where tfs is the tangent to the free surface and tweb is the tangent to the web. Equa­

tion (2.19) is imposed in residual form by weighting with the shape function, Nk (see 

Kistler and Scriven [1983]). The dynamic contact angle, 6d, is then imposed although 

it is recognised that a more rigorous treatment of the contact line is required. Recent 

advances have been made in this area by Shikhmurazev [1993,1994,1996], although, due 

to complexity of the theory, his analysis has yet to be incorporated fully into numerical 

algorithms for coating flows. Once the ‘teething problems’ are overcome, the concepts 

of Shikhmurazev may well become a powerful tool for dealing with the wetting line.
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Work in this area is currently being carried out by Summers et al [1998].

2.1.6 Isoparametric mapping

By mapping a standard element defined in a local coordinate (£ ,77) space into each of the 

deformed elements in the flow domain, the calculation of the shape functions, Nk, may 
be simplified - they become too complicated when expressed in cartesian coordinates. 

The standard triangular element in local coordinate space, A0, is shown in figure 2.5. 

The interpolating functions can then be expressed in a general form m terms of local

Figure 2.5: (a) A triangular element in global space, (b) The standard triangle, A0, 

showing the local node numbering scheme and local coordinate system.

coordinates, L\, L2 and L3, defined by

r A-i T T — —  (2 201
£ i = T '  L 2 = ~A' 3 "  A ’ 1 '

where A  is the area of a triangular element and A i, A 2 and A 3 are the areas of its

2

3 3

subtriangles, as shown in figure 2.6. Since Ai +  A 2 + A3 -  A

L\ +  L2 + £3 =  1- (2.21)

Carter [1985] showed that in the local triangle, A0,

£ 1 =  I ( l  +  2 0 ,  L 2 = U l - Z  +  ' f i v ) ,  £3 =  ^(1 -  £ -  V37?), (2.22) 
3 ^

and it follows that

Ni =  L\(2L\ — 1), N2 =  L2(2L 2 -  1), N 3 =  L3(2L 3 - 1 ) ,  

iV4 =  AL\L2, N 5 — 4L2L3, N 6 — AL-yL3, (2.23)

LEED S  UNIVERSITY LIBRARY
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1

Figure 2.6: Subtriangles used to define the area coordinates, Li, of an interior point P.

where Nk denotes the interpolating function associated with local node number k. The 

ipi interpolating functions associated with the Zth corner node are

Ipl — L\, 1p2 - L 2, Tp3=L3- (2-24)

Note that at any point in the element, the interpolating functions sum to unity, i.e.

=  =  (2-25) 
k-l 1=1

An element is said to be isoparametric if the global coordinates of any point in its 

interior can be found from the global coordinates of the element’s nodes using the same 

interpolating functions as used for the dependent variables, i.e.

x ^ ' t x k M t i V ) ,  (2 ‘26)
k-l

where x k are the global coordinates of the kth local node.

The residual equations require derivatives of the shape functions, Nk and tpi, with re­

spect to the global coordinates. However, Nk and ^  are only defined in local coordinates

and so the relation
8 \ (  dx_ dy. \ JL
dt \ _  I si I
8 I 1 9x dy I I d_

drj / \ drj dri / \ dy

=  J
d_

dx
d_
dy

is required, where the entries of the Jacobian, <7, are found using

dx

K  fc=i

dx ^  dNk dx ^  dNk
'-k dr) 'di

(2.27)

(2.28)
fc=i
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Therefore, the residual integrals can be evaluated on an element-by-element basis where 

the integral over each element is determined by mapping the element to the standard 

triangle, A 0, and integrating over local space, i.e.

I  f ( * , 2 ) d * d y =  £  { /  m t , v ) , P ) \ m d r i } ,  ( 2 -2 9 )
elements ^ 0

where /  is the relevant integrand and /3 =  (uT,v T,pT) is the vector of unknowns.

Free surface contributions to residuals are best evaluated in terms of local coordinates 

and since all free surface nodes he along at least one side of an element, one of the three 

area coordinates must vanish. Without loss of generality, the global node numbering 

scheme can be chosen such that local nodes 1, 3, and 6 he along the free surface, see 

figure 2.7. Then along this side L2 = {N 2 = N4 =  N5) =  0 and the remaining non-zero

\
\

Figure 2.7: Local node numbering of elements which have one side lying on a fiee 

surface.

area coordinates satisfy

i i  +  h  =  i ,  < 2 - 3 0 >

which allows the remaining interpolating functions to be written in terms of a single, 

independent variable:

N 1 =  L1{2L1 - 1 ) ,  N3 =  1 - 3 1 , !  + 2£2, jV6 =  4 I '1(1 — L\). (2.31)
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Note that for convenience Li has been used since it increases from 0 to 1 along the ele­

ment side in the direction of integration (if the direction of integration is anti-clockwise). 

If x 1} S 3 and x 6 are the global coordinates of local nodes 1, 3 and 6 respectively, the

isoparametric map gives

x — x.i A 'i(L i) +  ^ - ^ ( X i )  +  S.6Ne(L\), (2 .3 2 )

from which the unit tangent and normal,

*=(&+&)/(£)• *=(-£J+£ M £ )-  ( 2 - 3 3 )

can be found, where

ds i f  dx \ 2 , (  dy N 2
j r r - n w j + { % ) -  (2 34)

In order to calculate dNk/ds in (2.15) the identity (Kistler and Scriven [1983]),

^  = i.VJVi = (2-35)
ds -  dL 1 ds

is used, and now the boundary contributions can be expressed as

(Rk W  = W  11 + -  ^ [ ^  -  Ndol (2-36)
(__m )3 n /s 2_y j JL o ds/dLi dLi J C a

sides v

where summation is over all element sides lying along the free surface.

2.1 .7  Numerical Integration

The element-level integrals discussed above are evaluated numerically by a Gauss quadra­

ture scheme which replaces each integral by a sum of weighted values of the integrand 

at n specific points, i.e.
n

/  (2-37) 
J A q  i —1

where wl are the weights corresponding to the n Gauss points, (&,7?i)- Boundary inte­

grals can be determined from

[ L'"< ,( l)p ( = ±  !((><. <2'38> J L\ =0 ^  ,=1

where & and w% are the n respective Gauss points and weights for a one-dimensional

integral.

The Gaussian quadrature formulae are derived by approximating the integrand by a
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polynomial, whose order dictates the number of Gauss points required for exactness. 

Thompson [1992] investigated the effect of using different numbers of Gauss points and 

concluded that a 4-point scheme was sufficient for the area integrals arising here. Figure

2.8 shows the positions of the quadrature points and the associated weights, together 

with the 3-point scheme used for the boundary integrals.

% ■n (0
a 1 0 a/3/1 6
b -1/2 V3/2 V3/16
c -1/2 W3/2 V3/16
d 0 0 9̂ 3/16

L i  co 

a 0.1127 5/18 
b 0.5 4/9 
c 0.8873 5/18

Figure 2.8: Gauss points and corresponding weights in (a) a 4-point quadrature scheme 

for domain integrals, and (b) a 3-point scheme for boundary (line) integrals.

2 .1 .8  Iterative technique

Even if Re — 0, the presence of a free surface makes the system of equations highly non­

linear and an iterative method is necessary for their solution. In this study a Newton 

iteration scheme, first used by Saito and Scriven [1981], is employed due to its rapid 

convergence rate as the solution is approached. The system to be solved can be written

as

R (a) -  0 (2-39)

O----- • --------- •---------•------ °a b c
(b)
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where
E>1

Dl 
11 my

D/C 
1 ̂ mx
-nk

my

R = R\

R c
R\

R sk

and

U\ 

V\

Uk 

Vk

a =  pi

PL

hi

hs

(2.40)

are the vectors of residuals and unknowns respectively, and S represents the total num­

ber of spines throughout the domain. The iterative scheme is obtained from a Taylor 

expansion of (2.39) which gives, to first order,

r d m
E(°Ln+1) ~  SlQLn) + da

A a n =  0, (2.41)

where a n represents the vector of unknowns after n iterations and A a n =  a n+l -  an. 

Hence at each iteration the matrix equation

IdR]
J Aa*. =

da
A a n — S(^n)> (2.42)

must be solved for the increments A a n. Construction of the Jacobian matrix, Z, re­

quires the evaluation of the derivative of each residual with respect to each of the FE 

coefficients, and the element-level Jacobian takes the form

J =

( 9R\n,
duj dvj

8R\r,v
8u: dv-j
8R[ dR[
dxij
dRK

dy,
dp}K

\ duj 8v:

9R*
dpk

8Rm y

dpk
0

0

dR'rrr,
dhk

dR'mv
dhk
8R[
dhk
8RlK
dhk

\

(2.43)

where i , j  =  1, ..,6 and k ,l =  1, ..,3- Once again the isoparametric mapping is used to 

simplify calculations.

It can be shown that the Newton iteration method gives quadratic convergence as the 

solution is approached (see, for example, Isaacson and Keller [1966]). This provides a 

useful check on the accuracy of the solution, for quadratic convergence would not be
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achieved if there was a ‘problem ’ (such as an incorrectly calculated Jacobian or ex­

cessive grid distortion). The process is stopped when the maximum increment is less 

than l ( r 10. Solutions obtained must also be tested for accuracy by comparing solutions 

obtained on progressively finer grids. W hen there is a negligible difference between the 

solution on two grids, the coarser o f the two can be viewed as guaranteeing grid inde­

pendent solutions.

Note that the iterative method needs a starting point i.e. an initial estimate for a, 

say Oq. This Oq is o f crucial importance since convergence will not be achieved if it is 

not within a certain range o f the converged solution. For viscous free surface flows the 

domain o f convergence depends more on the free surface shape and position than it does 

on the velocity and pressure values (see Kistler and Scriven [1983]). A good estimate 

for this information can be obtained from experimental data or numerical results from 

previous authors. The domain of convergence can also be moderately improved by the 

use o f relaxation factors (see Thompson [1992]), whereby only fractions o f the updated 

changes called for by (2.42) are applied. Once a solution has been obtained, it can 

used as an initial guess to generate another, corresponding to a set o f parameters m the 

neighbourhood of the first. This method, termed Zeroth Order Continuation, may be 

used to proceed through parameter space.

2.1.9 The frontal solution method

For problems with a large number of unknowns, the storage requirements for the matrix 

J  can becom e excessive, even if advantage is taken of any banded structure. W hen this 

is the case, a frontal m ethod is employed.

The technique, developed by Irons [1970] and Hood [1976], is an adaptation of Gaussian 

elimination ideally suited to many finite element problems. The principle of the method 

is as follows: Each element level matrix is sequentially added into a larger ‘global’ matrix 

until that matrix is full. A pivotal search is made to determine the largest entry from 

those rows and columns to which there will be no further contribution from subsequent 

element assembly. Gaussian elimination is then used (with the pivotal row) to eliminate 

all the coefficients in the pivotal column. The pivotal row is then stored in an external 

file. The elimination process is repeated until enough space has been created foi the 

assembly o f further element-level matrices. W hen all elements have been assembled and 

the remaining coefficients eliminated, the increments A a n can be determined by back 

substitution into the stored matrix rows.
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The minimum size of the global matrix is dictated by the critical frontwidth, corre­

sponding to the minimum number o f elements which must be assembled to ensure that 

the matrix contains enough fully summed rows for the elimination-and-assembly process 

to continue. The numbering scheme for the elements is therefore crucial in determining 

the critical frontwidth. Generally, minimizing the range o f element numbers surround­

ing each node will keep storage requirements to a minimum. The implementation of 

the frontal method used in this study was developed by Gaskell [1990] and subsequently 

refined by Thompson [1992].

Typical execution tim e:

For all the Unite element base flows described in this thesis, the iteration time is appiox- 

imately 35 c.p.u. seconds using a Silicon Graphics Indy workstation with a 150MHz,

MIPS R5000 processor.

2 .1 .1 0  P o st-p ro cessin g  

Determ ining the streamfunction:

Coyle [1984] showed how the streamfunction, -0, can be found by solving the Poisson 

equation

ay ox

over the domain Q. The Galerkin weighted residual approach is again used, giving,

' du dv 
, dy dx

N k
/Q

V 2</> dtt =  0, (2.45)

which, after applying the vector identity

jVfcV.(VV>) =  V .(J \ W )-V J V fc .V t f  (2-46)
*•

and the divergence theorem, becomes

dipJ  NkV2H V  = - J ^ N k.V^)dtt + JdQNkQ̂ ds. (2.47)

W ith tp specified as an essential condition at all boundaries, the boundary integral term 

need not be evaluated and the equation can be written in the linear form,

kir f i  =  f i , (2 '48)
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where ip is expanded in terms o f the biquadratic shape functions, Ni, and

k .. _  [  ( < W i d N i  +  d N ^ d N A (2.49) 
Jo \  dx dx dy dy J

=  _  [  ( ^  ^  dSl. (2-50)
in  \<9t/ 5a :/

Calculations for the streamfunction were calculated using an algorithm written by

Walker [1992],

Locating stagnation points:

Stagnation points in viscous flow structures are key features since any separation of 

the flow involves one or more of these. The initial step in locating them is to use Un­

ear interpolation o f the velocity field to determine which elements contain a stagnation 

point; the FE representation for u can then be used to search for its position. The type 

o f stagnation point can be inferred from the sign of

' d2ip

dx2
d2ip

dxdy

2

(2.51)

where x 0 is the position o f the stagnation point. If expresssion (2.51) is negative m 

sign then the stagnation point is of hyperboUc type i.e. a saddle point. Otherwise, if 

(2.51) is positive is sign, the saddle point is o f elUptic type i.e. a centre. The location 

and classification of stagnation points was determined using an algorithm written by

Summers [1995].
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2.2 Linear stability analysis based on the FEM

2.2.1 Introduction

For a specified flow domain, the finite element method produces a unique, steady so­

lution. However, an important question concerning such solutions is whether or not 

the flow state predicted is stable to small disturbances, which are ever present in real

systems.

Stability with respect to disturbances small enough to be regarded as infinitesimal is 

the subject o f classical linear stability analysis, which proceeds as follows: a given so­

lution to the governing equations and boundary conditions is subjected to a basis set 

o f disturbance modes o f infinitesimal amplitude from which any such disturbance could 

be composed. If all disturbances in the basis set decay in time, the steady state is, by 

definition, asymptotically stable; that is, once the source o f the disturbance is removed 

the system eventually restores itself to the original flow state. If one or more of the ba­

sic disturbances grows in time, the steady state is unstable. The condition that divides 

these two classes o f behaviour, where the disturbance neither grows nor decays in time, 

is termed neutral stability.

This section describes a rigorous way o f analyzing stability by a combination o f linear 

stability theory and the Galerkin finite element technique. This type o f three dimen­

sional stability analysis was first applied to  coating flows by Bixler [1982] and Ruschak

[1983], where a base flow was perturbed with an infinitesimal disturbance, represented 

by a series of Fourier modes in the transverse direction. Subsequently, Coyle [1984] and 

Coyle et al [1990] investigated the onset o f ribbing in a symmetric, fully flooded, forward 

roll coater. They solved the steady 2-dimensional base flow, ignoring inertia and gravity, 

by the finite element method using a similar scheme to that presented m section 2.1. 

The stability was then tested for varying values o f wave and capillary number and these 

results showed areas of parameter space where the system was stable. Chnstodoulou 

[1989] included the inertia terms (i.e. the Re ±  0 case) and investigated the stability of 

slide coating as various geometrical parameters were varied.

2.2.2 Formulation of the equations

The first step in linear stability analysis is to perturb the steady state flow with an 

infinitesimal disturbance represented by a set o f normal modes in the transverse (z)
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direction, so this step is written as

u{ x , y , z , t ) =  u°(x,y) +  eu(x,y)I±(Nz)e

p( x , y , z , t) = p°(x,y) +  ep (x,y)cos(Nz)e

hi(z,t) = h° + eh'.cosiN z)eC7t,

at 

a t

(2.52)

(2.53)

(2.54)

where
/

R ( N z )  =

\
(2.55)

\ /

cos(N  z)  0 0

0 cos(N  z) 0 

0 0 s in (N z )

N  being the transverse wavenumber and a is the growth rate o f the perturbation. As 

e 0, ( u ,v ,w ,p ,h )  - »  (u°, v°, 0 ,p°, h°) i.e. we reobtain the steady, 2-dimensional flow

field.

The next step is to require that the 3-dimensional unsteady flow field satisfy the equa­

tions o f m otion throughout the domain, being the Navier-Stokes equation, the continuity 

condition and the kinematic condition (for free surfaces) i.e.

R e —  =  -R e (u .S 7 )u +  V P +  mV 2u +  S t / ,  
dt

n.

0 =  V .u ,
dx 
dt

(2.56)

(2.57)

(2.58)

Note that, as before, the stress condition (equation (2.14)) is incorporated naturally 

into the momentum residuals on the free surface. After forming the Galerkin weighted 

residuals, using N ,( x , y ) R ( N z )  (the basis functions) as the weighting functions, the 

equations are then linearised with respect to 6 and the flow field expanded in finite 

element basis functions i.e.

„o _ Y,y$Ni(x,y),  

p° =  Y,p°Tpi{x,y), 

h° =  T,h°Ni(x,y),

u =  'Eui Ni(x ,y ) ,  

p  =  S p '^ (a ;,y )) 

h' =  T,h'iNi(x ,y ) .

(2.59)

Differentiating both sides o f the weighted residual equations with respect to the finite 

element coefficients o f the perturbations (u , p ' , h ')  allows the equation set to be written 

as a generalized unsymmetric eigenproblem

I x  =  a l x ,  (2-60)

where x  is the column vector [u ' ,v ' ,w \ p  ,h']T , K  is the mass matrix (arising from 

the time dependence) and I  is the Jacobian matrix. Here the Jacobian is the same as
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that derived for the Newton iteration method calculation o f the steady flow, with some 

additional terms stemming from the fact that the stability analysis is 3-dimensional. 

The construction o f the Jacobian and mass matrices is shown below:

2.2.3 Derivation of the Jacobian matrix

The three basic parts o f  the Jacobian arise from  the right-hand-sides o f  the —  
equation (2 .56) ,  continuity condition (2.57) and kinematic condit.on (2 .58), the structure

of which is

J -

dR'mx
du^ dv'j

dR^ny S H U
du'j dv'-

du'j 3v’
dR[ dRlc
du' dv'_

dR?K dR K
dv!j dv'j

dR-mx d R ^ x dR'mx \
dw'j dv'k dhk

dRlny 9R'rny dRlny
dw'3

dR\nz
dpk K

9R'mr, dR'mz
dw.
dR[

dvk a h!k

0
8R lc

dw'_ dh’k
J

0 0
dR>K

K /

(2.61)

where i , j  =  1, b  ana k, t j.,

lows The expressions for the Sow field, (2.59), are inserted into the Jacobian we,ghted 

residua!, The resultant expression is linearised with respect to e and the result is d.ffer- 

entiated with respect to  the primed finite element coefficients. The only ,-dependence 

remains in factors o f  cos2 (N z )  or sin2 {H z ) ,  either o f which integrates analytically to 

produce a com m on factor o f x / » .  There is also a com m on factor o f e»* - it too  cau be 

cancelled across all o f the equations.

Thus, the terms from the Jacobian become:

Kinematic equation:

d R
du-

K  _

d R K  -
dv'■

ORK  _

dhj

J  - y ( N lNJd£,

J  -x^NiNjdt; 

/ ( - $ * ■ f ) «

(2.62)

(2.63)

(2.64)

Continuity equation

dR'^  =  [  tpiNjiX\J\d^dr]
du, J

(2.65)
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dR l [  J..KT. I Tl/7£/Yr> (2.66)
dvJ

=  N l A N M W d v  <2 -67)
<9Wj J

f f  - ( 2 ' 6 8 )

x-momemtum equation:

dRm* -  f  f  [2N ip N ^  + Ni,yNhV + N 2NiNj
du '

+  R eN i(u xN j +  u N jtX +  v N j<y) ] \J\d£dr) (2 .69) 

dRm x _  J  j [ N ityNjiX + R e u yNiNj]\J\dtdri (2 .70)
3u'-

dPj

y-momemtum equation

-  - N  [  I  NiNjtX\J\d£dri (2-71)
dw' J J

= - / / at, < * ! « * /  (2J2>

dR ™y =  f  f [N i<xN hy +  J2cvxiVt ĵ]|J|d^d?7 (2-73)
du- J J

22 =  J  J  [NltXNhX +  2 ^ ,vJV3,v +

duj 
dRyny

dv,

+  E e J V i K ^  +  uJV ^ +  ^ . ^ H J l ^  (2-74)

^ 2 2 -  =  - N  I  I  NiNj>y\J\d£dr) (2-75)
J J

d R ly  _  [  [ at ohA.T\dfdr> (2'76)
dv)

z-momemtum equation:

-  J  J  N j M J \d£dV

dR ™* =  - N  [  [  NitXNj\J\d£dri (2-77)
9u-
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dRl
dvj

9RlnZ
dw-

- N  J  J  Ni,yNj\J\dtdri 

J  J  {N>,xNj<x +  NiiyNj>y +  2 N'NiNj

dR.
dp

+  ReNi(uNjiX +  vNjiV)] \J\d^dV 

nz =  - N  J  J  Nii)j\J\dtdr]

Momentum equations - free surface derivatives.

dRlmg 
dh',

+  (%  + v*)
dNZiy\J\

dhj

dTx x ,r 9TXy
+  2iVliX- ^  +  Ni,y----- 1dhj

(  dyv dyz 
+  ReNiU \ui w - u ^

dXr dx£
dhj

dR:m y

dh-

+  StN,

“ / /

d\A
dh;

dx
N z u x -KV-  +  u.

dh; dhj J
d£dr]

('uy +  vx )
M , X\J\ , 2v ) d M I \  

v») ~  +  { p +  ZVy> dh

+  NitX^ + 2 Ni
dh. i,y

dhj

dTyy 
dhj

( dyv dŷ  \

( dxn dx£ 
+  ReNiV +  vv dh .

-  N < \ v x ^ -  +  vy—  N M

dRl
dh'-

=  N / /

dx  , dy,--------\- v..
' dhj

dhj

dt'd'q

d. 
dhj

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)
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( d x  dy 
+  Nl’x [ Uxdh~ v dh,

( d x  dy 
+  Ni»  [ Vxd h ' +  VydhJ

| J\d£dri (2.83)

where,

0Txt
dh.

dhj

dTxy
dhj

yy _

dU dr]x
H dh ,• + U v dh, \J\

3 - '" 3 /
drjy . d£x eh]* 

I h ,  +  u' s h , +  V( d h , +  ' a h jf |J|

Momentum boundary integral over free surface.

dR l
dh = £ / /

dy,-
x t * T + y t N,

-
2 Vi

dK:■my

dh ' = r J J

dyz d x z \
r75vl£ «fcj_ w 8fcjj ’ 

1 %
g^ d h j NtA g3/2 dhj

vt dx^ dy^
<9/lo

g W r ' d h j  dhj

dR l
d K

+  *  ^175

II
Ni dt

N_
CCL.

I dxt dyt \

/  d z 2 <9yz 
+  l I « 9 S -  +  w % .

JV,*■£

where g is defined by

g =  x j  +  y l

(2.84)

(2.85)

(2.86)

These free surface derivatives are computed by the chain rule and the isoparametric 

mapping e.g.

1*̂ 1 ”



52

and so

dNhX\J 1 
dhj 

dNj,y\J I 
dhj

dyr,
dhi

-  N,
dyi

dx-n , T

z,vdh: ' 
dx£

i

2.2.4 Derivation of the mass matrix

The mass matrix arises from the time dependent terms in the governing equations. 

Those terms arising from the momentum equations that are proportional to Re  are 

detailed by Bixler [1982], They are not shown here because they are neglected, an 

approximation that is discussed in section 2.2.6. Thus, the mass matrix takes the form

M  =

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0

0

0

0

0
tK

(2.87)

y 0 0 0 0 j

the only remaining time derivatives, M ^ , arising from the kinematic boundary condition 

(i.e. the elements directly on the free surface). Assuming no inter-dependent spines are

present this is simply

M - (2 .88)

- A -
(i, j  =  1 ,.., 3) as reported by Coyle [1984].

Effect o f inter-dependent spines:

The presence o f inter-dependent spines only has an effect on the time-dependent portion 

o f  the kinematic boundaiy condition. The Galerkin weighted residnal o f  this eqnation

is

d xfs JV;COS^V ZJUS -
Jfs dt Jfs
[  n  [— N i C o s ( N z ) d s  =  [  n.uNlc o s (N z ) d s .  

J fs ~  dt Jfs
(2.89)

Because n  and u are o f order e in the ^-direction and dot products are being

formed, the z-dimension enters first at 0 ( e 2). Thus only two-dimensional forms need to

be considered.
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Thus, after substituting (2.54) into (2.18) and differentiating with respect to time, the 

following equation is obtained:

?= L . =  eaeath'dcos (N z )£dWj 
dt

+  eaeath'jCos(N z)£j

Inserting this into the left hand side o f equation (2.89) and cancelling the common factor 

o f e^ir/N  gives, to  order e,

LHS = J  {n.e.j)h'jNjNid£

+ J  (n.&4)h'dvijNjNid{

+  /  ( » . § |  (2 9 1 ) 

The ij-com ponent o f the mass matrix is , and so

M %  =  J  [ n . e ^ N jN d i

+ 6n J (n-&d)wjNjNidt

+  6„  J (2.92)

The first term on the right hand side o f equation (2.92) is identical to equation (2.88) 

i.e. the case where no inter-spine dependencies are present. The second and third terms 

are due to the inter-spine dependency and are only non-zero when the free surface node 

is dependent on the extra (4th) spine. Because any element can now depend on four 

spines, the local matrix is now o f size (3 X 4) (as opposed to (3 X 3) with no extra spine

dependencies).

2.2.5 Inclusion of a dynamic contact line

W hen a dynamic contact line is present in the geometry, an extra equation is necessary 

to solve for its location (see section 2.1.5); this equation forms an extra residual in 

the finite element analysis. On inclusion into the finite element stability analysis, the z- 

dimension enters first at 0 (e 2) and so only two-dimensional forms need to be considered.
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The structure of the Jacobian is thus,

(

J =

d R ]
du'j

dRlt*
du'j

SRlny

dR le
dv-

d Rmx

du.
dR'

\

dUj
dR [
du.
dRK
du[

dVj
dR'rny
dv'j

dRlnz
dv'2
dR [
9i/

dR'
dv-

dR],
dw'j

d K mx
dw'j

9R\ny
dw}

dKmz
dw'_
d R I
dui'-

dR]
dvk

dR™
dp'k

dR'my a I-  dpk

a S p

0

0

d R ]
dh!k

d^nx.
K

dR'my
^ r
dR'mz

dhk
dR [

K
3R'k
dh[

(2.93)

where i , j  =  1, --6 and k ,l  — 1 , 3 .

2.2.6 M ethod of solution

Once the Jacobian and mass matrix are both evaluated, the generalised unsymmetric 

eigenproblem, (2.60), should ideally be solved for all the eigenvalues (and associated 

eigenvectors). If all the eigenvalues are negative the disturbances decay m time and 

the system would be 3-dimensionally stable. If at least one eigenvalue is positive the 

disturbance grows in time and the system is unstable. If the largest eigenvalue is zero 

then the system is neutrally stable, the disturbance neither growing nor decaying. How­

ever, because the continuity condition contains no time derivatives, M  is singular and 

so (2.60) has fewer eigenvalues than its dimension (see Stewart [1973], Golub and Van 

Loan [1983]). It is common to refer to the missing eigenvalues as “ infinite eigenvalues” 

because if K  is perturbed slightly so that it is no longer singular, very large eigenvalues 

appear that grow unboundedly as the perturbation is reduced to zero. Before any at­

tempt to solve (2.60) (to  compute the eigenvalues/eigenvectors), the infinite eigenvalues 

have to be eliminated - otherwise they will be calculated before any o f the ones that 

govern the stability o f the flow. This can be achieved by means o f the “ shift and invert” 

transformation in which (2.60) is rewritten as

[ ( I  -  AM] -  {<? -  A) M k  =  °> ( 2-94)

where A is termed the shift, allowing it to be transformed into the simple eigenproblem

^ X  =  /AX,

4  =  [ I - A M ] - 1 M , ( 2 -95)
1

/x =  ------- 7-a  — A

Using (2.94), the infinite eigenvalues o f (2.60) become zero eigenvalues o f (2.95). As 

Bixler [1982] and Christodoulou [1989] noted though, since the rank o f M. is tyP
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ically of the order 1000-2000, standard algorithms which compute all the eigenval­

ues/eigenvectors cannot be used for they would be too  computationally expensive. 

However, the stability o f the flow is dictated by the eigenvalues with the largest real 

parts, termed the “leading eigenvalues” and so it is then necessary only to calculate 

the eigenvalues that are, or are candidates to becom e, the leading ones. Unfortunately, 

the Arnoldi method, which can then be used to solve (2.95), favours the eigenvalues 

closest to the shift, A, whereas the eigenvalues with algebraically largest real parts are 

wanted. Hence, another transformation which amplifies the leading part of the spec­

trum o f (2.60) is required (see Christodoulou and Scriven [1990]).

Carvalho [1995], using this method, later analyzed the stability o f flow in forward roll 

coating with one of the rolls covered by a layer o f elastomer. He showed that for free 

surface flows the perturbations o f nodes in the interior o f the domain are not relevant to 

the stability o f the flow. Hence, by not including the perturbation o f  the finite element 

interior nodes, the size o f the eigenproblem and thereby the computational cost can be 

substantially reduced.

An alternative way to solve (2.60), and the one adopted in this thesis, is to follow 

the approach o f Ruschak [1983], Coyle [1984] and Coyle et al [1990]. They considered 

the case when the Reynolds number was equal to zero for which the problem is greatly 

simplified - the only time dependent contributions to the equation set come from the 

kinematic boundary condition which is associated with the number o f free surface nodes, 

F.  Hence there are now only F  eigenvalues that need to be evaluated. The remain­

ing entries in the Jacobian and mass matrix can be eliminated using the frontal solver 

leaving a much smaller problem to be solved. The problem is now o f a size that can be 

tackled by traditional methods and in this form the mass matrix is not singular. We 

can now rewrite (2.60) in a more conventional eigenvalue form as

=  <rlA, (2 -96)

where I  is the identity matrix and £  and Ml are the modified Jacobian and mass 

matrices respectively. Matrix inversion and multiplication are performed using NAG 

routines F07AD F, F07AJF and F01CKF. AH the eigenvalues o f (2.96) are then cal­

culated using NAG routine F02AFF, from which the largest is taken to ascertain the

stability.
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3.1 Introduction

The origins o f reverse roll coating date back over 65 years (Munch [1932]), since when 

it has becom e an important coating method due to its versatility, speed and precision. 

Indeed, it is capable o f producing uniform films o f thickness less than 25/xm at speeds 

o f 0.5-9m/s, using liquids ranging in viscosity from 0.001 to 50 Pas. Consequently, it 

has becom e a widely used technique for the manufacture o f products such as magnetic 

and adhesive tapes, films, foils and paper (see Booth [1974], Higgins [1965] and Satas

[1984]). The main drawbacks o f using such a device are that it is unable to simultane­

ously coat multi-layer films while the final film thickness is dependent on the minimum 

gap separation (see Coyle [1984]). The method is also highly susceptible to instabilities 

such as ribbing (where lines o f crests and troughs are observed in the direction o f the 

moving web) and cascade (where the flow becomes time-dependent). It is thus clear 

that a fuH theoretical description o f the process would be o f great value to industry m 

order to determine parameter ranges where these instabilities are encountered and the 

desired steady 2-dimensional flow is achieved.

Reverse roll coating, in which fluid flows in the narrow gap between two co-rotating 

cylinders (see figure 3.1), has not received quite the same attention as the forward case. 

Broughton, Egan and Sturken [1950] established experimentally an empirical, linear 

relationship between the final film thickness and both speed ratio, S, and minimum 

gap separation (where 5  =  Ui/U2 is the ratio o f the upper roll speed to the lower roll 

speed). They also noted the importance o f U2 as an additional control parameter. Ho 

and Holland [1978], Benkreira et al [1981] and Greener and Middleman [1981] presented 

lubrication type models which predicted that the coating thickness reduced as 5  is in­

creased, although the results are only valid over a limited, but useful range o f parameter

space.

Coyle [1984] and then later Fukazawa et al [1992] solved the full steady state Navier- 

Stokes equations by a finite element method for the reverse roll, half problem consisting 

of a domain that extends from the downstream meniscus to a plane, close to the nip, on 

which lubrication conditions are imposed. Their results show that as 5  increases from 

zero, the dimensionless final film thickness, H 2, decreases initially and then, at some 

higher value o f S', H 2 reaches a minimum beyond which it increases sharply. Coyle s 

results, later confirmed by Kang and Liu [1991] show that the minimum film thickness, 

corresponds to the point at which the wetting line penetrates the minimum gap 

and the sharp upturn in film thickness follows once the wetting line moves upstream of
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Figure 3.1: Schematic o f an inlet flooded reverse roll coater.

the nip. In addition, Coyle showed that decreasing Ca  (where C a =  [iU2/T) has little 

effect on H 2 at low values o f 5 . However, H f n was shifted to a higher value o f 5  and 

thus thinner coatings can be produced at lower C a  since a higher 5  can be achieved 

before the sharp upturn in film thickness occurs.

Fukazawa [1992] realised that by extending the lubrication model to incorporate more 

realistic boundary conditions at the downstream meniscus, the film thickness prediction 

could be improved. By modelling the meniscus using the arc o f a circle and applying the 

Landau-Levich [1942] expression at the downstream outlet, the final film thickness, H 2, 

was predicted allowing for capillary and viscous effects at the downstream free surface. 

However, their analytical results are only valid for very small Ca, C a  <  10 .

Coyle [1984] considered the two free surface problem and found that for a dimensionless
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inlet film thickness H, >  1 the solution downstream o f the nip is virtually identical to 

that obtained via the inlet Hooded m odel Richardson [1996] investigated the reverse 

roll coating process under different degrees o f inlet starvation (including i f ,  < 1) for 

which various flow structures were established and their evolution followed as param­

eters varied. He determined the velocity and pressure fields, and the downstream film 

thickness and found that, contrary to the assertion made by Coyle et al [1990b], lubri­

cation theory predictions are in close accord with those obtained numerically provided 

the wetting line is located downstream of the nip. For larger values o f S, when the 

wetting line passes through the nip, his FEM results showed that thinner films could be 

obtained by either reducing h0/ R  (the ratio o f  minimum gap width between the rolls 

to the average radius o f the rolls) or Ca, results which are in accord with Coyle [1984,.

The stability o f the 2-dimensional flow in reverse roll coating was considered expert- 

mentally by Greener and Middleman [1981] who noted that it is more robust and less 

prone to the ribbing instability than forward roll coating. At sufficiently low values of 

C a  Coyle [1984] showed experimentally that the Sow o f a Newtonian fluid is stable for 

all 'values o f  speed ratio, S. For higher values o f C a  instabilities may occur, but Booth 

[1970[ identified a stable window of operation i.e. a range o f S for which the flow is 

stable and a defect free film is produced - see figure 3.2. Ribbing arises when S is below 

this range and an instability known as Cascade (see Coyle [1984], Coyle et al [1990a]) 

arises when S lies above this range. Coyle [1984] showed that the stable operating region 

can be enlarged, shifted or even eliminated when the gap ratio, h„/R  is varied. Further, 

it was shown that for particular values o f  S there are two ranges o f C a  in which the base 

How is stable (separated by an unstable range), see figure 3.2. For each C a  there is also 

a speed ratio beyond which no ribs occur (and a particular value o f  S, S "  , such that 

no ribbing occurs if S > S ~ " for any Ca). This is unlike forward roll coating where 

the speed ratio has no such stabilising effect. This was also confirmed experimentally 

by Adachi et al [1988] who concluded that controlling the dynamic contact angle is the 

key to  the control o f this instability and this could be achieved easily by altering the 

various operating parameters.

In the case of inlet starved, reverse roll coating, the downstream free surface region 

will clearly exhibit the same type of instabilities as for a flooded inlet (ribbing, cas­

cade etc). However, unlike the inlet flooded case, experiments show that the cascade 

instability causes the entire coating bead to oscillate at the same frequency as the cross 

web bars on the downtream film (Coyle [1984]). Recent experiments by Kapur [1998]
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Figure 3.2: Typical C a -  S operability diagram for a given value o f h0/R  showing a 

stable window o f operation.

have also shown that a two dimensional instability known as bead break (see chapter 4) 

may also manifest itself - the downstream free surface becomes unstable under certain 

operating conditions and the entire coating bead collapses.

3.1.1 Outline of this chapter

The aim o f this chapter is to analyse the ribbing instability in inlet flooded, reverse 

roll coating. This is first investigated in section 3.2 by considering a 3-dimensional 

perturbation to a 2-dimensional base flow in the absence o f gravity, from which regions of 

instability in the C a - S  control space are established which are in qualitative agreement
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with experimental observations. Results from this Unear stability analysis are then 

compared with predictions obtained using a stability hypothesis; Pitts and Greiller 

[1960] and Savage [1977] independently formulated such a hypothesis for the onset of 

ribbing and derived a stability criterion by considering a force balance at the fluid-air 

interface. It was shown that the downstream interface would remain stable to small

disturbances provided

- ^ ( p  +  T / r ) <  0,

where r represents the radius o f curvature o f the meniscus and p  the pressure.

In section 3.3, results from the linear stability analysis carried out in section 3.2 are 

compared with those obtained numerically by applying linear stability theory to the 

finite element m ethod (see chapter 2).

The effect o f gravity on the ribbing instability has, to date, not been discussed m the 

literature and is investigated in section 3.4. This is a problem o f practical interest (see 

Gaskell, Kapur, Thom pson, Savage and A bbott [1998]) where the nip is fed from above 

by a large reservoir o f fluid (i.e. a hydrostatic head). Hence an inlet flooded model is 

considered which introduces two extra operating parameters namely the Stokes number 

and non-dimensional height o f the head, both of which are seen to have an influence on 

the base flow and stability.

For convenience, a constant dynamic contact angle, 0d) is im posed in sections 3.2-3.4. 

However, in section 3.5 a more accurate representation o f the wetting line, recently de­

veloped by Shikhmurzaev [1993,1994,1996], is incorporated where 6d is related to several 

geometrical and hydrodynamic parameters.
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3.2 Analysis based on lubrication theory

3.2.1 Mathematical model

An analytical model, based on lubrication theory, is presented from  which the effects of 

Ca, S and h0/R on the velocity and pressure field, together with the meniscus location, 

are determined. After applying linear stability theory to this base flow, the the onset 

of the ribbing instability is then investigated by obtaining critical curves m the Ca -  S

control space.

3 .2 .1 .1  Base flow

Neglecting body forces, transient and inertia terms, the Navier-Stokes equations reduce 

to

0 =  - V p  +  iiS/2u. (3-1)

Assuming unidirectional flow through the nip and that velocity gradients across the 

bead are negligible i.e. du/dx «  du/dy then (3.1) becomes

S ?  =  (3.2)
dx dy2

and

=  0. (3-3)
dy

Hence p =  p (x )  and therefore integrating (3.2) twice and imposing the no slip boundary 

conditions on the rolls i.e.

u -  Z72 a.t 7/ =  0 ( 3 -4)

u -  - U i  at y — h(x)

gives

u =  h ) - ( U 1 +  U2) l  +  U2, (3-5)
2fj, dx

where h (x )  is the gap width between the two rolls. This is estimated by a parabolic 

approximation for the gap thickness,

h (x ) ~  ho +  — ,

where R  is an average roll radius given by

1  =  — +  — , (3-7)
R Ri R 2
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R 1 and R 2 being the radii o f the upper and lower roll respectively. The flux Q is given

by

(3-8) 
Jo

which, using (3 .5), becomes

«  =  +  (3 '9) 

In equilibrium, the flux past any station x  is constant and equal to the flux m the 

uniform film of thickness h2 attached to the lower roll,

Q =  h2U2. ( 3 '10)

Therefore,

&  _  12fl ( ( U2 ~ ^i) I3-11)
dx h2 \ 2 h

Boundary conditions on pressure are i) the flooded inlet condition - that the pressure 

far upstream of the nip is atmospheric i.e.

p ( - o o )  =  0, (3.12)

and ii) a balance o f fluid pressure and surface tension pressure at the meniscus,

pM  -  <3'13>

where r d is the radius o f curvature of the meniscus. The meniscus is approximated by 

a circular arc which meets the film tangentially and intersects the upper roll surface at 

an angle ffd, corresponding to the dynamic contact angle. Hence, at the downstream 

meniscus, x =  x d, the width of the gap can be approximated by (Fukazawa [1992])

hd =  r d( l  + c o s (d d)) +  h2. ( 3 -14)

Although the contact angle is dependent on several hydrodynamic parameters (see chap­

ter 1), it is, for convenience, given a constant value o f 90° in the first instance. Sub­

sequently, a model developed by Shikhmurzaev [1993a] which relates the variation of 

contact angle to several geometrical and hydrodynamic parameters is incorporated, see 

section 3.5. Since x d is unknown a third boundary condition is required which, for 

C a  < 0.01, is provided by the Landau-Levich [1942] relationship for the ratio o f the 

asym ptotic film thickness, h2, to the radius o f curvature, r d,

h  =  1.34 C a 2' 3. (3-15)
Td
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For higher values o f Ca, i.e. 0.01 < C a <  0.1, Ruschak [1981] proposed a relationship 

o f the form

h  =  0 .56C aV 2. 
I'd

(3.16)

Using (3.14), together with 9d =  90°, the following expressions are obtained:

o.seca*/.2 1 0 "2 <  Ca  <  10'
\+0.S&Ca>l2 ~  ~

h 2
a d = TT =ft'cL

i - i

1 3 iCX2m  C a <  10—2,„ 1+1.34C a2/

(3.17)

rd

1 +  0 .bQCa1/2 10-2  <  Ca <  10

l  +  1.34C'a2/ 3 C a <  10“

- l

(3.18)

Introducing non-dimensional variables defined by

h
H

H 2

X

s

p

h0 ' 
h2 

h0 ’ 
x

\j Rho

Ei
u2'
hQ / h0

nU2 \l R

and writing X  =  tan (7) (so 1̂(7 ) =  h0 sec2 ~f), then Reynolds equation, (3.11), becomes

—  =  6(1 -  5 ) cos2 7  — 1 2 F 2 cos4 7 . (3.19)
d i

If (3.19) is integrated between the limits - t t /2  and 7 , where 7  marks the position of 

the meniscus ( X D =  tan (7 )) and 7 -  - t t /2  a s l - - 00, then, using (3.12),

"sin 27
P (  7 ) =  3 ( 1 - 5 )

x
2 + J ? + 2

3 i f2
^  +  2sin27  +  3 7 + v4 ^

Also, from (3.13),

r d )  =

(3.20)

(3.21)
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This, using (3.14) and (3.18), gives

p(7) =  ~

which when non-dimensionalised becomes

^ (7 )  =

PdP-Ui
C ah 0 sec2 7 ’

fid /  ̂ 0

(3.22)

(3.23)
Ca  sec2 7 \j R

Equating (3.20) and (3.23) yields the following equation for 7 which is then solved once 

h0/R, S and Ca  are specified:

'ho fid
R C a  sec2 7

3 ( 1 - 5 )
sin 27 _ , 7T
- T ~ + 7 + 2

3a^ 2 ------ sec 7
2

s m 4 j  n . o -  1 ^— -—  +  2 sin 27 +  37 +  —
4 ^

(3.24)

The pressure distribution is then obtained by integrating (3.19) between the limits - t t /2  

and 7 , giving

P (7 ) =  3 ( 1 - 5 )
sin 27 , 7r
---- - + 7 H—2 2

3^ 2 ^  +  2 s m 27 +  3T + ^
4 ^

(3.25)

where H 2 =  «<£ sec2 7 .

Figure 3.3 shows pressure profiles for C a  =  0.1 and V *  =  0-01 for four values of 

5 . The pressure distributions for 5  -  0.5 and 5 =  0.7 each exhibit two turning points 

(one a maximum, the other a minimum). As 5 increases, the magnitude of the maxi­

mum pressure decreases and the sub-ambient loop disappears (e.g. pressure curves for 

S — 0.9 and 5  =  1.0). Also, as 5  is increased the dynamic wetting fine moves further

towards the nip (as expected).

Figure 3.4 shows pressure profiles for 5 =  0.5 and h0/R =  0.01 for four values o f 

Ca. As C a  increases, the height o f the maximum increases slightly whereas the magni­

tude o f the minimum pressure decreases sharply. The position of the meniscus moves 

inwards a little and in each case the subambient loop remains.

Figure 3.5 shows pressure plots for C a =  0.1 and 5 =  0.5 for three values o f h0/R-
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As ho/R is decreased, again the height o f the maximum increases shghtly whereas e 

magnitude o f the minimum pressure decreases more sharply and the subamb.ent loop 

remains. It is thus evident that decreasing ho/R and increasing C a  have a simi ar 

ou fluid pressures downstream o f  the nip, namely to  reduce the magmtude o f the ne a- 

tive fluid pressure. Note that this could have been predicted using the express,on for the 

pressure at the downstream free surface, equation (3.23). The figures a l s o  suggest that 

L  presence o f a sub-ambien, loop in the pressure d,stribution depends on the value o f S.

There is a limiting value o f S (where S =  S “ ” ) for winch the wetting hue is situated 

at the nip. In this case 7 =  0 and (3.24) yields

+  1. (3-26)

Figure 3 ,  is a plot o ffllm  thrckness drstribution ( * )  for varying S ( i . .  for 0 <  5 < 

SUm) for two values o f Ca, C a  =  0.03 and C a  = 0.1, w „h  gap rat.o ho/R -  0.01. F

C a -  0 1 the carve is effectively hnear over the interval 0 < F < 0.8, beyond which
!_• 1 u  n IS at 5 =  Slim =  1-02. The curve for 

it reaches a minimum film thickness, H 2 -  0.15,
, • i. t n /  c  /  i (1 after which it reaches a

Ca  =  0.03 is effectively Hnear over the interval 0 <  5 < . ,
ij _  n nss at S -  Shm =  1-64. It can be seen (via (3.2bJJ minimum film thickness, H 2 -  0.088, at i

■ii „ v,«t TVii<; suffeests that thinner films can
that SHm is greater for a lower capillary numb . oS

i. w w  value o f S can be used before
be produced at a lower capillary numbers since a g

the wetting line passes through the nip.

3 .2 .1 .2  Perturbed flow

M o w in g  Pearson [I960], the base flow is perturbed such that the new location o f the 

meniscus, x'd, is given by
x 'd =  Xd +  eevts in {2 r n z ) t (3.27)

and the pressure by

p '(x ,z , t )  = p(x )  + <G{x)e°‘ sin(2*nz), (3-28)

where n is a wavenumber, z measures distance along the roll axis, « a small amplitude, 

G (x ) is an unknown function o f * and <r is a growth rate. For stab,M y, thts perturba ton 

must tend to zero (with time) i.e. a < 0. Substituting (3.28) into the 2-d.mens.onaA

Reynolds equation,

1  ( h^ \  +  ^ - ( h ? dA  =  (3.29)
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Figure 3.3: Pressure profiles for Ca =  0.1, h0/R =  0.01 and various speed ratios.

Angular Position

Figure 3.4: Pressure profiles for 5 =  0.5, h0/R =  0.01 and various capillary numbers.

Figure 3.5: Pressure profiles for 5 =  0.5, Ca =  0.1 and various h0/R.
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Speed Ratio, S

Figure 3.6: Film thickness predictions (H 2) against Speed ratio (5 )  for ho/R -  0.01 

with C a  =  0.03, 0.1. Note that both curves terminate at S Um i.e. when the wetting

line reaches the nip.
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yields a second order equation for the unknown function G (x j ,

f G  +  3 d h d G _  47r2n2G =  0_ (3.30)
dx2 h dx dx

The balance o f surface tension forces and fluid pressure at the interface gives

p'(x'd) -  W  +  4%2n 2Teeatsin(2Trnz), (3.31)
h(x d)

the additional surface tension term arising from curvature of the interface in the x -  z 

plane. A  continuity o f flow argument (see figure 3.7) states that the flux past station

(i.e. Q{x'd)) must equal that at the outlet i.e.

<?M) = ^ ( ^ - § ) - (3.32)

However, the flux past station can be related to the flux past station x d by the 

equation

dx' (3.33)

and so

<3-34>

Expressions (3.31) and (3.34) are linearised (by expanding about x d and using (3.11),

Figure 3.7: Schematic o f the perturbed outflow region o f an inlet flooded reverse roll 

coater.

(3.27), (3 .28)) to give boundary conditions for ( ^ ) ci and G(xd).  These, together with
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the condition G ( - o o )  =  0 (perturbation pressure tends to zero far upstream o f the nip), 

give the following o(e) problem for G (x ) :

drG_ +  ^ d h d G _ Â n 2G =  Q  ̂ (3 .35)
dx2 h dx dx

fd G \  =  ~ l ^ U 2a d dh (3.36)
\ d x  J d h\ dx hd

G ( - o o )  =  0. (3-38)

By introducing the following non-dimensional variables

x

x  =  v K ’
N  =  n\J Rh0,

E =

the boundary value problem for g (x )  becomes

^  + = °' <339) 

^  (340) 

( s ) c = ^ +E(QJ- 1)’ (341)

g( —00) =  0. (3.42)

3.2.2 M ethod of solution

Before solving equations (3.39)-(3.42) numerically, an approximate analytical solution 

is obtained which is later used to give insight into the effect o f the various parameters.
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3.2 .2 .1  Analytical solution (approxim ate)

If the term (in (3 .39)) is replaced by its local value at the film split location where

the disturbance arises then (3.39) has the form

+  ,_gj L  j g .  _  4 ^ N 2g ( X )  =  0. (3.43)
d X 2 1 +  '

The justification for this is that experimentally perturbations to the downstream menis­

cus decay rapidly over a distance y/RHq such that at the position o f minimum gap 

thickness (X  =  0), there is virtually no trace o f the perturbed flow (see Savage [1977], 

Carvalho and Scriven [1995]). Mathematically, equation (3.43) has an analytical solu­

tion satisfying (3.42) given by

g ( X )  =  g { D ) e ^ X ~D\ (3-44)

where

w =  —k +  \/k2 +  47r2iV2, (3.45)

* = T W  ( 3 ' 4 6 )

Therefore,

(z§)D = WS{D)- (347)

Substituting (3.40) and (3.41) into (3.47) yields the following equation for the non- 

dimensional growth rate, S  (as a function o f iV, given C a , S and h0/R):

2adD_ [ho _  ( l z D .  +  wad+  (3.48)
1 +  D 2 6C a \ R  2S(iV) =

-  1

3 Ca R

Hence, once h0/R, C a  and 5 are specified and D  is calculated from the base flow, graphs 

o f S (iV ) can be plotted using equation (3.48).

3.2.2.2 Numerical solution

The accuracy o f the approximate analytical solution can be assessed by means of a 

numerical solution o f the boundary value problem (3.39)-(3 .42). This is achieved by 

using the NAG routine D02NBF (used generally to integrate an initial value problem 

for a stiff system of explicit O D E ’s). The boundary value problem is first converted to 

an initial value problem and then Newton iteration is carried out until the 3rd boundaiy 

condition is satisfied i.e. for each N , £  is guessed and Newton iteration is carried out 

until (3.42) is satisfied. There is a maximum difference o f 3% between the analytical 

and numerical solutions (for £ (iV )).



72

3.2.3 Discussion of Results

Since there are three independent parameters, one way of displaying results is to fix two 

(h0/R and S ) and plot E against N  for various values of the third (C a).

F ix e d  ho/R

This section discusses results for a fixed gap ratio, h0/R -  10-4 , and 4 fixed values 

o f speed ratio, S =  0.500, 0.595, 0.597 and 0.610.

• S =  0.50

Figure 3.8 shows plots o f E (N )  for 5  =  0.5 and various Ca. It can be observed that for 

both Ca =  0.01 and C a  =  0.02, E < 0 for all JV and so the disturbance decays and the 

base flow is stable. A  critical capillary number, Ca*, exists (Ca*  =  0.0342) for which 

dE =  s  _  o for a particular value o f N  (and E < 0 for all other N ).  The base flow is 

therefore ‘neutrally stable’ and all flows for which Ca  >  Ca*  are unstable. C a  =  0.05 

is an example o f an unstable base flow since E >  0 for N  in the range 0.38 < N  <  1.09. 

The base flow is stable to disturbances with wavenumber N  <  0.38 and N  >  1.09 (as 

E < 0 for all such values o i  N ).

• S =  0.595

Figure 3.9 shows plots o f 2 (N )  for S — 0.595 and various Ca. For this speed ratio there 

are now two critical capillary numbers, Ca* =  0.064 and Ca* — 0.086, for which the flow 

is neutrally stable. For C a <  0.064 and C a >  0.086, E < 0 for all N  and the flows are 

stable. The base flow is unstable for capillary numbers in the range 0.064 < C a <  0.086.

• S =  0.597

As S is gradually increased, the two critical capillary numbers approach one another 

and coincide when 5  =  0.597. In this case, there is only one critical capillary number, 

Ca* =  0.073. Figure 3.10 shows plots o f E(JV) for 5  =  0.597 and various Ca. For 

Ca =  0.073 the base flow is neutrally stable and for all other capillary numbers the flow 

is stable.
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For S >  0.597 (e.g. S =  0.61 - see figure (3 .11)), all the curves he below £ (N )  =  0. 

There are no longer any critical capillary numbers present and therefore all flows are 

stable.

Figure 3.12 shows, for ho/R  =  10~4, a plot o f critical capillary number, C a*, against 

S. Above the curve, ribs occur whereas below and to the right o f the curve the base 

flow is stable. Corresponding to each Ca, there is clearly a minimum S beyond which 

no ribbing occurs. M oreover, there is an overall minimum value o f  speed ratio, S mm 

(corresponding to the vertical dotted fine in figure 3.12) above which no ribs occur for 

any Ca. Smin is dependent on gap ratio, h0/R, and for h0/R =  10~4, 5 min =  0.597 

(see figure 3.10). There is also an overall maximum value o f capillary number, C a m- X 

(corresponding to the horizontal dotted line in figure 3.12) below which no ribs occur - 

for ho/R =  10-4  this value is Camax — 0.0178 and corresponds to the Ca*  at S =  0.

In section 3.2.4 an explanation will be given for the curve in figure 3.12 ‘ turning back 

to the left’ near S =  0.6.

V a r ia b le  ho/R

The effect o f varying the gap ratio, h0/R, is illustrated in figure 3.13 by means o f critical 

curves in the Ca  — S plane for the onset o f instability. It is observed that the region of 

stability increases as ho/R increases such that for any S the critical capiUary number 

increases with ho/R. Further, for any h0/R, a rough guide (underestimate) to the extent 

o f the stability region can be gained by identifying, as in figure 3.12, a maximum capil­

lary number C a max (and a minimum speed ratio 5 mtn) below which (above which) the 

flow is always stable. For a given ho/R, C amax is that value o f critical capillar} number 

corresponding to S =  0 and the graph o f C amax against ho/R is shown in figure 3.14. 

C a max increases as ho/R increases and for ho/R >  2 X 10 4 the curve is effectively linear.

For a given h0/R, Smin can be found numerically by solving the following set o f si­

multaneous equations

/ ( C o ,  5 ,7 ) =  0 , (3.49)

S (C o , S, 7 , N ) =  0 , (3.50)

• S =  0.61
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Figure 3.8: Growth rate (E ) against 

wavenumber ( N )  for various C a  with 

ho/R =  10-4  and S — 0.5.

Figure 3.9: Growth rate (E ) against 

wavenumber ( N ) for various Ca  with 

ho/R =  10-4  and S — 0.595.

Figure 3.10: Growth rate (E ) against 

wavenumber ( N ) for various Ca  with 

ho/R =  10~4 and 5  =  0.597.

Figure 3.11: Growth rate (S )  against 

wavenumber (AT) for various C a  with 

ho/R =  10" 4 and S =  0.61.
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d S 
dN

dE a s  ^7
<9Ca ^7 dCa

where (3.49) represents the base flow equation (3.24) for 7 in terms of Ca, S and h0/R. 

Equations (3.50) and (3.51) determine, for a given h0/R and any S, the critical capillary 

numbers for neutral stability and (3.52) is a condition to then select the minimum speed 

ratio, Smin (illustrated in figure 3.10), such that no critical capillary numbers exist for 

S > Smin. Note that equations (3.50), (3.51) and (3.52) could be more simply expressed 

together by =  0 (see figure 3.12). The above equations were solved using NAG

routine C05NBF (a modification o f the Powell hybrid m ethod) and the graph of Smin 

against ho/R is shown in figure 3.15, where it is seen to decrease as ho/R is increased.

0 ,

0,

(3.51)

(3.52)

V a riou s  9d

The effect o f varying the dynamic contact angle, 0d, is illustrated in figure 3.16 by 

means o f critical curves in the Ca — S plane for the onset o f instability. It is observed 

that decreasing (increasing) 9d increases (decreases) C a max and S7
?min

3.2.4  Comparison with the Stability Hypothesis (S .H .)

The stability hypothesis provides a simple criterion for predicting the stability of a 

meniscus o f radius r when its location is perturbed from x d to x d -\-€ (see Savage [1977]). 

The net force acting on a unit area of the downstream interface (in the x-direction) is 

given by

F = * Xi + £) + (M 3 )  

and so using (3.13) and linearising, (3.53) becomes

F  =  . (3.54)
Kdx r 2 d x j x=d

If the meniscus is stable, it will return to its original position and so, assuming 6 > 0, 

F  < 0 which yields the following condition for stability:

> ( t )  • (3-55)h\ \dx J d \ d x j d 

Note that at an upstream free surface this inequality is reversed (see chapter 4).

Hence we see (via the S.H.) that surface tension has a stabilising influence, whereas
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Speed Ratio, S

Figure 3.12: Operability diagram in the C a  -  S plane for ho/R — 10 4.

Speed Ratio, S

Figure 3.13: Operability diagrams in the Ca — S plane with varying ho/R.
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Figure 3.14: Graph o f C amax against h0/R, where stability is ensured if Ca < Ca

Figure 3.15: Graph o f Smm against h0/R, where stabihty is ensured for S > S
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Speed Ratio, S

Figure 3.16: Operability diagram in the Ca -  S plane for h0/R  =  10 and various 9d 

values.

the pressure gradient (at x d) has a destabilising effect.

If figure 3.3 is now re-examined, it is seen that as the speed ratio (5 )  is increased, 

the pressure gradient (at x d) decreases. In fact, for 5  =  0.5 the pressure gradient at 

x d is positive and as S increases to S -  1.0 it becomes negative. It can therefore be 

concluded (using (3 .55)) that increasing S has a stabilising effect. Hence the presence 

o f an Smin, as in figure 3 .12, is to be expected.

Clearly the stability criterion is a very useful guide for understanding stability mecha­

nisms and predicting instability. The question is how accurate is i t . .

Once (3.55) is non-dimensionalised, it is equivalent to

g { D ,N  =  0) > 0, (3.56)



79

where g ( D , N ) is given by equation (3.49). Figure 3.17 shows a plot o f g ( D , N  0) 

against C a  for 5  =  0.5 and ho/R =  1 (T 4. For C a  <  0.0193, g ( D , N  =  0) > 0 and the 

base flow is stable whereas for C a  >  0.0193, g ( D , N  =  0) <  0 and the base flow is un­

stable. Hence the critical capillary predicted is Ca*  =  0.0193 which is an underestimate 

o f the critical value Ca*  =  0.034 as given by linear stability analysis.

Figure 3.17: Graph o f g (D ,  N  =  0) against C a  for ho/R =  10 4 and S -  0.500. Stability 

is ensured (via the S.H.) if g ( D ,N  — 0) >  0.

Figure 3.18 shows, for h0/R =  10"4, a plot of critical capillary number, Ca*, against 

S for both  the S.H. (the full line) and Unear stabiUty analysis (the dotted Une). It can 

be seen that the two curves are quaUtatively similar and that the approximate stabiUty 

hypothesis gives a ‘ strong condition’ which consistently underpredicts the critical capil­

lary number for any 5 . This suggests that the S.H. is sufficient for predicting stabiUty 

(but not for instabiUty), a result which wiU now be proved for any h0/R:
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Proof:

It has already been shown, via figure 3.18, that the S.H. is not sufficient fo r  predict­

ing instability. It therefore only remains to be proved that the S.H. is sufficient for  

predicting stability. More precisely, when C a  <  C a * * ,  where C a *  * is the critical 

capillary number predicted via the S.H., it must be proved that the base flow is stable 

(via the linear stability analysis) i.e. that S (N )  is always negative:

For Ca < C a *  *, g ( D , N  =  0) >  0. Therefore, because g ( D , N ) is a monotonically 

increasing function (with N ) ,  g { D , N )  >  0 (see equation (3 4 0 ) ) .  However, g (D , N )  

and (JV) must have the same sign (see appendix A )  and so [ j x ) d (N )  >  0.

Therefore, using (3-41),

y  < —2adD____ (3 57)
( l  +  D * ) ( l - a dy

Hence, since 0 <  a d <  1,

S  <  0. (3.58)

□

Figure 3.19 shows further operability diagrams (in the Ca S plane) for four different 

values o f h0/R. As with the linear stability analysis, it is clear that as h0/R is increased, 

the minimum speed ratio for stability decreases and the maximum capillary number for 

stability increases. It is also clear that as ho/R is decreased, the agreement between the 

linear stability analysis and S.H. improves.

Finally, the ‘ turning back to the left’ o f the critical curve in figure 3.12 is considered 

(i.e. for each ho/R, there is a small range o f S values near Smin for which there are two 

ranges o f C a  in which the base flow is stable, separated by an unstable range). Because 

the stability hypothesis gives a qualitatively similar curve (see figure 3.18), this effect 

is clearly 2-dimensional and can be explained by examining equation (3.56), where

s i D , N  =  0) =  (»■ »>6 C a \ R  V 2

The first term in (3.59) represents the surface tension term and the second term rep­

resents the pressure gradient term. However one component o f this pressure gradient 

term (a^) has a stabilising influence i.e. as a d increases, so does g ( D , N  =  0). Hence if 

a value o f S is now considered where stability exists for both low and high C a  values,
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it is evident that for low C a  the surface tension term dominates (as expected), but for 

high C a  the stabilising component of the pressure gradient dominates to ensure stability.

Note that in developing the above stability hypothesis the curvature o f the meniscus in 

the x -  z plane was neglected. The effect of including this extra contribution to the 

surface tension is examined in Appendix A , although it is seen to be no more accurate 

than the 2-dimensional stability hypothesis for determining the onset o f instability.
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Linear stability analysis 

S.H.

Speed Ratio, S

Figure 3.18: Operability diagram in the Ca  -  S plane for ho/R =  10 4 for both the 

S.H. and ribbing analysis.

Linear stability analysis

Speed Ratio, S

Figure 3.19: Operability diagram in the Ca -  S plane with varying h0/R for both the 

S.H. and ribbing analysis.
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3.3 A  computational approach

In the previous section, inlet flooded reverse roll coating was analysed using the lubri­

cation approximation to model the flow with suitable boundary conditions applied far 

upstream and at the downstream meniscus. The model predicted the pressure profile 

and final film thickness as a function o f three operating parameters, namely S, Ca  and 

h0/R. The ribbing instability was then examined by applying linear stability theory 

to  this base flow. However, lubrication models are only valid when the contact line 

is located downstream of the nip and even then only span a small region o f parameter 

space (small Ca).  Furthermore, it is necessary to model the downstream meniscus using 

the arc o f a circle approximation.

The FE m ethod does not suffer these drawbacks and so the aim o f this section is to 

apply the linear stability theory (described in chapter 2) to FE solutions o f an inlet 

flooded reverse roll coater in order to examine the accuracy o f the previously obtained 

analytical results and to enable the stability o f the flow to be examined over a much 

larger region o f parameter space. The steady, two-dimensional FE code used in this 

study was written by Richardson [1996] and is described in section 3.3.1, the stability 

o f which is examined computationally in section 3.3.2.

3.3.1 Numerical solution of the base flow 

Boundary conditions:

The boundary conditions, summarised in figure 3.20, are as follows:

1. At the downstream free surface, the usual kinematic and stress boundary condi­

tions are imposed (see chapter 2).

2. A  zero traction condition is imposed at the downstream outlet.

3. At the dynamic wetting line, the apparent contact angle, 9d, is specified. Further, 

as discussed in chapters 1 and 2 , slip is applied over the element next to the 

wetting line (on the roll surface) to avoid the stress singularity.

4 . At the inflow boundary (OC in figure 3.20), the lubrication approximation pro­

vides an accurate description o f the flow. In order to contend with the wetting 

line passing through the nip, this boundary condition must be applied sufficiently 

far upstream o f the nip. This requires expressions for the two-dimensional veloc­

ity field correct to 0 { h o/R ) 1/2, as derived by Savage [1992] and Gaskell, Savage
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and Thom pson [1998] for counter-rotating rolls. A  zero inlet pressure condition 

(corresponding to p( — oo) =  0) is also applied.

5 . No-slip conditions are applied on the roll surfaces.

Figure 3.20: Computational boundary conditions for the inlet flooded reverse roll coater. 

C o m p u ta t io n a l m esh :

A  schematic o f the computational grid used is shown in figure 3.21 although for clarity 

o f presentation, the mid-spines have been omitted and the y-axis has been scaled. As 

described by Richardson [1996], all nodes (except those that he at the inflow plane) are 

parametrised by an unknown variable, X M d  (Coyle [1984], Thom pson [1992]), whose 

z-coordinate is given by x dm . This allows the entire grid to move with the free surface. 

To avoid element distortion, nodes in region 1 undergo a concertina type m otion as the 

value o f xfn changes, and the cc-coordinates o f nodes in this region are

where n d is the number o f vertical spines in the region.

In region 2 the nodal positions are parametrised by the base line x ^  and a series o f i 

free surface spines o f height hf. The free surface region is tesselated by a combination of 

three polar origins, as shown in figure 3.21. Each spine which has a base point located 

on X M d and lies between y  =  0 and y =  h (x ) ,  has a direction vector which passes 

through the polar origin, 0 2, whose position is a fixed (specified) distance from X M d
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Figure 3.21: Schematic o f the grid used to tesselate the downstream region. Note that 

for clarity o f presentation, the y-axis has been scaled and the mid-spines have been 

omitted.
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and lies on the line, y =  0. The remaining spines which have base points located on 

X M j.  have direction vectors which pass through the polar origin, 0 3, which again lies 

on the line y =  0 and is a fixed (specified) distance from X M d. Note that 0 3 is located 

further downstream than 0 2.

The next set o f spines have base points located on the lower roll surface and have 

direction vectors which also pass through O 3 . Furthermore, the ^-coordinates of all 

base points located on the roll surfaces are fixed increments o f the current value of 

x dm, and are specified as part o f the algorithm. The remaining spines with base points 

situated along the lower roll surface have direction vectors which are perpendicular to 

the roll. The spines in the neighbourhood o f the dynamic wetting fine have base nodes 

evenly distributed along the spine S S , and are classified as inter-dependent spines (see 

chapter 2). Their direction vectors pass through the polar origin Ox, which is situ­

ated a fixed distance along the tangent to the upper roll at the dynamic wetting line. 

Consequently, refinement o f the wetting fine region is relatively simple and avoids the 

unnecessary costs inherent in techniques employing elliptic mesh generation (see, for 

example Christodoulou and Scriven [1992]).

The downstream variable x ^  is calculated using the contact angle equation, as summa­

rized in chapter 2 (and the freedom o f a spine height is removed).

The com putational mesh used in this study contains 447 elements, 994 nodes and 2094 

degrees o f  freedom which Richardson [1996] showed was suitable for producing grid 

independent solutions. A  typical solution, together with corresponding streamlines is 

shown in figure 3.22.

In figure 3.23, predictions for H 2 from the lubrication model are compared with nu­

merical results for C a  — 0.06, R/ho =  85 and varying S. Note that, unlike the FE 

m ethod, lubrication theory can only model the flow if the wetting line is located down­

stream o f  the nip and so predictions are only plotted in the range 0 <  5 <  Slirn, where 

glim _  -̂  20 is the value o f S for which the wetting line is situated at the nip and H 2 

reaches its minimum value, H 2 — 0.121. The lubrication theory predictions are in good 

agreement with the finite element results at low S but, as expected, at higher values of

S the predictions become inaccurate because the wetting fine approaches the nip and so 

the assumptions which lubrication theory are based on are no longer appropriate. The 

finite element solutions reach a minimum film thickness, H 2 -  0.146, again when the



Figure 3.22: Typical finite element solution showing (a) the grid with (b ) corresponding 

streamlines.

wetting line is situated at the nip i.e at S =  1.35. For S >  1.35, the wetting line moves 

upstream of the nip and H 2 increases.

3.3.2 Stability of the FE base flow

The finite element stability analysis described in chapter 2 is now applied to this inlet 

flooded, reverse roll coating problem. Using the grid described above there are now 

2955 degrees o f freedom (as opposed to 2094 freedoms with the 2-dimensional base 

flow). For a given wavenumber, N , (and set o f base flow fluid and geometry parame­

ters) an eigenvalue, £ ,  is produced to indicate the stability —  using a Silicon Graphics 

Indy workstation with a 150MHz, MIPS R5000 processor each such calculation takes 25 

c.p.u. seconds. If, for a given base flow, the eigenvalue is negative for each wavenumber 

the base flow is stable. If one or more o f the eigenvalues is positive then the base flow 

is unstable and ribbing appears.

For S =  0.10 and ho/R =  10~3 this numerical approach produced a critical capil­

lary number o f Ca* — 0.070, in comparison to C a* =  0.083 via the analytical approach. 

In fact, the analytical approach consistently overpredicts the critical capillary number 

(for all S and ho/R). It is the author’s opinion that this discrepancy is due to the lack 

o f a slip region at the dynamic wetting line in the analytical approach, a matter which 

will be discussed in chapter 4.
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Speed ratio, S

Figure 3.23: A  comparison of film thickness predictions (H 2) against speed ratio (5 )  

obtained via the finite element method and lubrication theory for Ca =  0.06 and R/ho — 

85.
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3.4 The effect of a hydrostatic head

In the past, the effects o f gravity in forward and reverse roll coating have generally been 

assumed to be negligible (see, for example, Pitts and Greiller [1961], Greener and M id­

dleman [1981], Coyle [1984] and Thompson [1992]). Its influence was first investigated 

by Ho and Holland [1978] who developed a mathematical model based on lubrication 

theory which included a term due to gravity for rolls positioned side by side, operating 

in the reverse m ode with the web moving vertically upwards. However, they found 

experimentally that the gravity term was negligible and so ignored it in their analysis. 

Coyle et al [1990b] used experimental and numerical techniques to examine the flow in 

the special case o f two half-submerged rolls (with the rolls again positioned side by side). 

They showed that gravity effects can become significant at low values o f speed ratio and 

tended to  increase the flow down through the gap. Coyle attributed the lack o f effect 

o f gravity in Ho and Holland’s experiments to their use o f large rolls and a small gap 

setting, thus giving a small Stokes number (the Stokes number being the ratio of gravity 

to viscous forces, a term which will be defined later). The excessively large flow rates 

measured by Greener et al [1981] were also, in part, attributed to gravity effects. This is 

because they used small rolls and a large gap setting, thus giving a much larger Stokes 

number. Due to a lack o f appropriate boundary conditions at the free surface, Coyle 

et al [1990b] also found that lubrication theory did not accurately describe the base flow.

More recently, Walker [1995] investigated the effect o f gravity on the flow structure, 

film split ratio and free surface location in various configurations o f a fully flooded for­

ward roll coater. For rolls positioned side by side, he developed an analytical model 

to predict the amount o f flux passing through the nip and the location o f the free sur­

face. This model was also shown to have good agreement with computational results 

and experiment. For rolls located one above the other, experiments performed by Rees 

[1995] show that under certain operating conditions, a weak asymmetric jet can develop 

close to the downstream meniscus, transferring fluid from the upper to  lower roll, even 

when 5  =  1. The existence of such a jet was attributed to gravity and was verified 

numerically by Walker [1995]. Walker hence showed that, with the rolls operating in 

this m ode, gravity can have a significant effect on the film split ratio at low speeds. The 

behaviour o f flows with unequal roll radii was also examined.

This section is concerned with investigating the reverse roll coating process in which the 

nip is fed from above by a large reservoir o f fluid (i.e. a hydrostatic head), as shown in 

figure 3.24. An analytical, inlet flooded model based on lubrication theory, is presented
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a

Figure 3.24: Schematic o f a reverse roll coater fed by a hydrostatic head.

from which the effect o f the hydrostatic head on the meniscus location and pressure 

profile is examined. After applying linear stability theory to the base flow, the influence 

of gravity on the ribbing instability is then determined by means o f critical curves in 

the C a  — S control space.

3.4.1 Mathematical model

3 .4 .1 .1  Base flow

In this section the aim is to develop a model based on the lubrication approximation so as 

to determine the velocity and pressure fields, together with the location o f the meniscus.
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Neglecting transient and inertia terms, the Navier-Stokes equations reduce to

0 =  - V p  +  ^ V 2u +  pg- (3.61)

Assuming unidirectional flow through the nip and that velocity gradients across the 

bead are negligible i.e. du/dx << du/dy  then (3.61) becomes

I  = (362)

and

dP =  o. (3-63)
dy

Therefore p =  p (x )  and so, using the no slip boundary conditions, (3.62) can be inte­

grated twice to give

u =  -  pĝ j y(y -  h) -  (Ui +  +  U2. (3.64)

Using (3.8), equation (3.64) can be integrated to obtain the flux,

i3 +  -  U\)~, (3.65)

which, after equating to the flux in the downstream film (equation 3.10), gives the 

following expression for the pressure gradient:

dp =  12;. q U i - J U l - V ^ + p g .  (3.66)
dx h2 V 2 h J

However, the pressure field may be expressed as the sum of its hydrostatic, p u s ,  and 

hydrodynamic, p h d ,  components i.e.

p =  P H S + P H D ,  (3.6/ )

so the hydrostatic and hydrodynamic components o f the pressure gradient are given by

dpHS =  pg, (3.68)
dx

and

dpHP _  f {U2 Ui) ir hA  (3.69)
dx h? \ 2 h )

respectively.
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Introducing non-dimensional variables defined by

*  =  £■
H  2 =  T >flQ

X h s

X h d

h-2

o
XHS

R  ’
XHD 

y/Rho ’ 
Vi

S ~  U2 *

ho ho

and writing X h d  =  tan(7 ) (so ^ (7 ) =  /i0 sec27 ), then equations (3.68) and (3.69) 

become

7 ^ -  =  (3 -70)

dPHD — 6(1 — 5 )  cos2 7 — 12i l 2 cos4 7 , (3-71)
d l

respectively, where S i =  pgh^/ 11U2 is the Stokes number. Note that the hydrodynamic 

and hydrostatic lengthscales are different - this is due to the fact that the height o f the 

head is o f the same lengthscale as the radius of the rollers as opposed to the minimum 

gap width.

Boundary conditions:

The boundary condition on the hydrostatic pressure is that

P H S  -> 0  as X H S  - *  -Xhead, (3.72)

where Xh,ead is the dimensional height o f the hydrostatic head. Upon non-dimensionalisation, 

this becomes

Ph s  0 as x Hs -Xhead, (3.73)

where Xhead. =  Xhead/R is the non-dimensional height o f the head. Boundary conditions 

on the hydrodynamic pressure are identical to those where gravity is neglected i.e.

PH D  - » 0  as x h d  - ° ° - (3.74)
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Note that, because the lubrication approximation has been used to calculate the hydro- 

dynamic pressure, this infinity is but a few typical lengths \JRho upstream of the nip. 

The fluid pressure at the downstream meniscus is again given by

p { l )  =  (3-75)
T'd

and the meniscus is, as before, approximated by a circular arc such that

hd =  r d( l  +  cos(6d)) +  h2. (3.76)

Since x d is unknown a third boundary condition is required which, for C a <  0.01, is 

provided by the Bretherton [1962] expression which relates the ratio o f the asymptotic 

film thickness, /i2, to the radius o f curvature, r d, by

^  -  l M C a 2l * { l  +  2-B o r ^ ,  (3.77)

where B o  =  St C a  is the Bond number which is constant for any given fluid. However, 

B o  <C 1 for the purpose o f most practical situations and so is assumed to be negligi­

ble. Hence, the Bretherton expression is now equivalent to the Landau-Levich [1942] 

expression which was previously used for this range o f Ca. For higher values o f  Ca, i.e. 

0.01 < C a  < 0.1, Ruschak’s [1981] suggested relationship,

—  =  0 M C a }/ 2, (3.78)
rd

is again used - note that equation (3.78) does not explicitly involve a gravity term. 

Equation (3.75) then becomes

? (7 ) =  ( 3-79)Caho secJ 7

where fid — hd/rd, as used in the previous case where gravity was neglected. Upon 

non-dimensionalisation this becomes

( 3  8 0 )

Solution:

Now that suitable boundary conditions have been specified, equations (3.70) and (3.71) 

can be integrated to solve for the hydrostatic and hydrodynam ic pressures which are 

required in order to determine the downstream meniscus location and film thickness. 

Using (3 .73), equation (3.70) is thus integrated to determine the hydrostatic pressure,

Ph s { X h s ) =  S t J ^ ( X HS +  X  w ) .  (3.81)
V fto
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The hydrodynamic pressure, Ph d , is ascertained by integrating (3.71) between the 

limits —7t /2  and 7 , where 7 marks the position o f the meniscus ( X d  =  tan(7 )) and 

7 —> — 7r/2  as X h d  —» -0 0  (i-e. using (3 .74)). Therefore,

'sin 27 _ . 7r
Ph d (i ) =  3(1 -  5) +  7 +

3tf2 sinAy „  . 3x
—- —  +  2 sin 27 +  37 +  —

The total pressure at the meniscus is thus given by,

P(7) =  3 ( 1 - 5 )
sin 27 7T
--------- +  7 +  -2 ' 2

(3.82)

3o!(i 2 -  —  sec 7
3Z7l47 „ . 37T
—------ b 2 sm 27 + 37 + —

+ tan(7 ) +  X h  e (3.83)

Equations (3.80) and (3.83) can together be solved for the location o f the meniscus, 

7 , after which (3.70) and (3.71) can be integrated to find the pressure profile. ^ ( 7 ). 

Note that the pressure profiles obtained are only plotted on the hydrodynamic length 

scale and so do not extend to the top o f the hydrostatic head (where the pressure is zero).

Figure 3.25 shows pressure profiles for Xhead =  0.50, C a  — 0.03, 5  =  0.50 and 

h0/R =  10-4  for four values o f Stokes number, St (including the dotted line repre­

senting St =  0 i.e. the case without gravity). As St increases the magnitude of the 

maximum pressure increases while the pressure gradient at the outlet increases only 

marginally.

Pressure profiles for St =  0.02, Ca — 0.03, 5  =  0.50 and ho/R  =  10 4 for four values 

o f Xhead. are shown in figure 3.26. As Xhead increases, the magnitude o f the maximum 

pressure increases and the pressure gradient at the outlet increases only marginally.

A  plot o f the location o f the dynamic wetting line against Xhead is shown in figure 3.27 

for C a — 0.03, 5  =  0.50, ho/R =  10-4  and four values o f St. As expected, if St — 0.00 

the height o f the hydrostatic head has no influence on the wetting line position. How­

ever, as either St or Xhead increase the wetting line location moves further downstream.
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Angular position

Figure 3.25: Pressure profiles for Xhead — 0.50, Ca =  0.03, S =  0.50, Hq/R =  10 4 and 

various Stokes numbers.

Angular position

Figure 3.26: Pressure profiles for St =  0.02, C a  =  0.03, S =  0.50, ho/R =  10 4 and 

various hydrostatic head heights.
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Figure 3.28 is a plot o f film thickness distribution (H 2) against Xhead. for C a =  0.03,

5  =  0.50 and h0/R  =  10~4 for four values o f St. Again, as expected, if St =  0 then 

Xhead has no effect on H 2. If St ^  0, then H 2 increases with both Xhead and St i.e. as 

expected, the hydrostatic head causes the flux through the nip to increase.

3.4.1.2 Perturbed flow

The base flow is perturbed in an identical way to the previous case where gravity 

was neglected (following Pearson [I960]), which results in the following boundary value 

problem for g ( X )

For each base flow solution, equations (3.84)-(3 .87) can then be solved numerically 

(using the NAG routine D02NBF) for the growth rate (£ )  as a function o f wavenumber

3.4.2 Discussion of results

Once E is obtained (given C a, S, h0/R, St and X head), the critical conditions to pro-

the left o f)  each curve ribs occur whereas below (and to the right o f)  each curve the 

base flow is stable.

Figure 3.29 shows such an operability diagram for Xhead =  0.50 and ho/R =  0.0005 

for four values o f Stokes number. As St increases from 0.00 to 0.06, the region of 

instability increases (i.e. C a max decreases and Smm increases). It is thus clear that 

increasing St has a destabilising effect.

d X 2 l  +  X ? d X
d2g 6X  dg

- 4 t x2N 2g ( X )  =  0, (3.84)

(3.86)

(3.87)

( 1V).

duce neutral stability can be ascertained, from which operability diagrams in the C a -  S 

plane can be drawn to illustrate regions o f stability. As in section 3.1, above (and to
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Dimensionless height of head

Figure 3.27: Angular position of the wetting line, 7 , against X^ead for C a =  0.03, 

S =  0.50 and ho/R — 10-4  for four values o f St.

Dimensionless height of head

Figure 3.28: Film thickness predictions (H 2) against Xh.ead f ° r C a =  0.03, S =  0.50 and 

h0/R =  10-4  for four values o f St.
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The effect o f the non-dimensional height o f the head is not so straightforward and

3.32. Figure 3.30 shows an operability diagram for St — 0.02 and ho/R — 0.0005 for 

four values o f Xhead■ As Xhead increases, the region o f instability decreases (i.e. C amax 

increases and 5 mm decreases). However, for St =  0.04 and ho/R =  0.0005 (as in figure 

3.31) increasing Xhead decreases Camax (prom oting instability) but also decreases Smm

then as Xhead increases, the region o f instability now increases (i.e. C a max decreases 

and 5 mm increases), the opposite effect to that at St =  0.02. Consequently, at small

term, arising from  the pressure gradient at the outlet, is destabilising. Now, as seen 

from figure 3.27, increasing either St or Xhead moves the meniscus further away from 

the nip, increasing D  and so increasing the surface tension term. However, increasing

the overall effect on the stability comes from a balance o f these two effects. Hence, as 

St increases (see figure 3.29), the increase in the pressure gradient term overrides the 

increase in the surface tension term to give an overall destabilising effect. At low St 

(e.g. St — 0.02 - see figure 3.30), increasing Xhead has a stabilising effect because the 

increase in the surface tension term dominates. Conversely, at high St (e.g. St =  0.06

- see figure 3.32), increasing Xhead has a destabilising effect because the increase in the 

pressure gradient term dominates.

is in fact dependent on the magnitude o f the Stokes number, as shown by figures 3.30-

(prom oting stability). If St is increased still further to St =  0.06 (as in figure 3.32)

values o f Stokes number increasing Xhead has a stabilising effect, whereas at larger val­

ues, increasing Xhead has a destabilising effect.

The above results can be explained via the S.H. for which it was previously noted 

that for 2-dimensional stability, g (D , N  — 0) >  0, where

(3.88)

The first term in (3.88), arising from the surface tension, is stabilising whereas the second

St or Xhead also increases the pressure gradient (at the outlet) and so it is clear that
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Speed ratio, S

Figure 3.29: Operability diagram in the Ca  -  S plane showing the effect o f increasing 

St for Xhead. =  0.50 and h0/R =  0.0005.

Speed ratio, S

Figure 3.30: Operability diagram in the Ca -  S plane showing the effect o f varying 

Xhead for St =  0.02 and h0/R =  0.0005.
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Speed ratio, S

Figure 3.31: Operability diagram in the C a -  S plane showing the effect o f varying 

Xhead for St =  0.04 and ho/R =  0.0005.

Speed ratio, S

Figure 3.32: Operability diagram in the C a  -  5  plane showing the effect o f varying 

X head for St =  0.06 and ho/R =  0.0005.
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3.5 An improved model of the contact line region

In the the previous model for the flow in a reverse roll coater the dynamic contact 

angle, 9d, needed to be prescribed; it was chosen that 6 d — constant. However, as 

experiments have shown (see Zhou and Sheng [1990] and Shikhmurzaev [1993a]), such 

models are insufficient and it would be greatly more beneficial for the mathematical 

model to produce 6 d once all the hydrodynamic parameters have been prescribed. The 

aim of this section is to apply such a model, recently proposed by Shikhmurzaev [1993a], 

to the inlet flooded reverse roll coater and examine its effect on the base flow and 

prediction for the onset of ribbing (in the form of operability diagrams). The main idea 

of the model is as follows: since in the advancing contact Hne motion material elements 

come from the gas-liquid interface to the solid-liquid interface, their properties change 

asymptoting to the equilibrium properties of the elements of the liquid-solid interface. 

Hence, the flow causes a surface tension gradient along the liquid-solid interface which 

influences the dynamic contact angle and the force between the liquid and the solid m 

the vicinity of the contact line.

3.5.1 A  general model for the dynamic contact line region

The model uses the concept of two surface phases, labelled 1 and 2 for the liquid-gas and 

liquid-solid interfaces respectively. Each of these surfaces have their own equilibrium 

surface density, p{e and ps2e, and unknown average dimensional interfacial velocities, V / 

and V2 , and pressures, P{ and P2 .

To solve for the unknown surface velocities and pressure a set of boundary conditions 

are derived (Shikhmurzaev [1993a,1994]) based on balancing the forces across the two 

interfaces, continuity of surface mass and properties of the interface. The first boundary 

condition eliminates the shear stress singularity inherent in the classical formulation and 

is similar to that which has been documented as the Navier condition, but for the inclu­

sion of the extra term which introduces a surface tension gradient. The full boundary 

condition is thus written as,

Tnt + ^ V a  =  P ( U - U i i ) ,  (3-89)

where Tnt is the dimensional tangential shear stress component of the stress tensor, T,

I is the positive oriented tangent to the roller, /3 is the coefficient of sliding friction and 

U is the bulk fluid velocity. Note that the first term on the left-hand-side of (3.89) only 

becomes important in the immediate vicinity of the contact line, while in the major part 

of the slip region, slip is determined by the surface tension gradient (see Shikhmurzaev
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[1993a]). The equations which describe the surface parameters along the liquid-solid 

interface are,

where r  represents the relaxation time of the liquid (see Kochurova et al [1974]), U_ and 

Uit are the velocities of the liquid and the solid on opposite sides of the interface, p 

is the surface density, ps0 is the surface density corresponding to zero surface pressure, 
and 7 and a are phenomenological coefficients. The right-hand-side of the continu­

ity condition, equation (3.90), represents the relaxation of the surface density due to 

mass exchange between the liquid-solid interface and bulk fluid and is neglected m the 

boundary conditions for the bulk velocity. The equation for the velocity of the interface,

(3.91), is derived thermodynamically (see Shikhmurzaev [1993a],[1994]), although it can 

be thought of as an average of the bulk and roll velocities. Equation (3.92) represents 

the kinematic condition and (3.93) is the equation of state for the liquid-solid interfacial

The dimensional boundary conditions on the free surface are derived in the same way 

(Shikhmurzaev [1993a,1994]) and are given as

In the equation for the normal stress balance (3.94), Pg is the dimensional pressure of 

the gas (assumed to be zero for the remainder of this study) and k is the curvature of 
the liquid-gas interface. Equation (3.95) represents the non-zero tangential shear stress 

condition due to the non-zero surface tension gradient.

(3.90)
r

Z s = 

(U_ -  Uit).n — 0,

^{U  +  UxD +  a V a , (3.91)

(3.92)

(3.93)a

layer.

Tnn ~  CTK+ Pg 

Tin +  Vu

(1 +  4 a/3)Vcr

a

0 c f  T . n - a - f  +  Psn =  0 
— as

4 0 ( V ‘  -  £ ) ,  

7 (r i  -  P’ )■

T

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

To resolve the dynamic contact angle and slip region, matching conditions are required 

at the contact line to relate the liquid-solid properties to the liquid-gas properties,
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namely the surface mass balance equation (which guarantees that the liquid motion is 

rolling) and Young equation (see Young [1805]), being

(PiSLi)-e =  (P & D -i  (3-99)

and

<7i cos 6 d =  — ai-, (3.100)

respectively. Here e is the tangent to the free surface at the wetting line.

Incorporating such a complex model into the full finite element formulation forms a 

subject in its own right and is beyond the scope of this research. In fact, to the authors 
knowledge, the model has yet to be incorporated into any numerical code although, it 

is possible to use the asymptotic theory for small Ca  (Shikhmurzaev [1993a,1994,1996]) 

which is the topic of the following section.

3.5.2 Small capillary number asymptotics for the contact line

Shikhmurzaev [1993a,1994] applied the technique of matched asymptotic expansions for 

small U ir/ho  and Ca  in order to more simply obtain the dynamic contact angle. The 
assumption that the free surface is planar in the vicinity of the contact line enables one 

to identify three asymptotic regions (see figure 3.33):

Dynamic 
contact

Figure 3.33: Schematic of the region of flow near the contact line.
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1. The outer region is associated with length scale h0 and is located far from the 

contact hne. The classical solution of the Stokes equation with the no-slip bound­

ary condition on the solid surface and zero tangential stress on the free surface 

is valid here and so the radial and transverse components of velocity and the 

streamfunction are given by (see Moffatt [1964])

Ur =

Ug =

1 dip 
r 8 6  ’

W  (3.101)
dr ’

W, =  ----------- ------------ [(0 -  9d) sin# -  6  cos 6 g sin (9 -  dj.)} ■
sin 6 d cos 6 d — 6 d

2. The intermediate region has a characteristic non-dimensional length of order k  =  

U\T/ Hq and is where properties of surface phases can considerably change and 

surface tension gradients along the liquid-solid interface appear. The gradient 

induces apparent slip between the liquid and the solid.

3. The inner ox viscous region with dimensions of the order l2 =  l\Ca, where C a « l ,  
includes the three-phase interaction zone (contact hne). In this region viscous 

stress become comparable with the surface tension gradients and as Ca —> 0 this 

inner region may be neglected.

Following Shikhmurzaev [1993a] the dimensionless contact line speed is related to the 

capillary number by,

v =  S C a Yu,  (3-102)

where Y u  is the yet unknown parameter, but is related to the properties of the bulk 

fluid. Here, it is broken down into the form

Y u w  (,t ) ( r a >  ( 3 ' 1 0 3 )

which is fixed for a particular fluid. The term is used to determine the length of 

the intermediate region, l\, so that it is a function of Ca,

h =  SCa n M -  (3.104)
\[iho J

To determine the dynamic contact angle, 8 d, the velocity of the fluid in the liquid-gas 

interface needs to be calculated which, from (3.101), is given by

V , ( h )  = (3-105)
sm 9d cos 6>d -  Vd.
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Applying the technique of matched asymptotic expansions to (3.90) and (3.91) as (1 

p* ) —► 0 (i.e. for fluids of low compressibility) and using the static Young equation,

P2e — 1 +  ( 1  — P i e )  COS( ^ s ) ’ (3.106)

together with (3.99) and (3.100) then leads to the following equation for 9d which 

can be solved once the fluid properties, 9S, Ca  and S are specified (see Shikhmurzaev 

[1993a,1994,1996]):

1 4- p{eUr(9d)
(cos 9S — cos i 1 + y V 2 +  1 — 

2 v
+  cos 9S. (3.107)

For the rest of this section, the physical parameters have been set to, 

r  =  1.0 X 10~4, o — 4.0 X 10-2 , /ofe = 0.98,

H -  2.0 X 10-2 , /3 =  1.0 x l O 4, a  =  1.0 x 10 4, (3.108)

giving Y u  =  0.632. The above theory enables the contact angle to be calculated before

Figure 3.34: Dependence of the dynamic contact angle, 9d, with the capillary number 

based on the upper roll speed, SC a  for 9S =  10°, 50°, 90°.

the 2-dimensional flow field is calculated. This, in effect, means that the dynamic con­

tact angle is only a function of Ca and S . A plot of 9d against log(SCa) for three values
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of es is shown in figure 3.34. The three curves are qualitatively similar with 9d - »  6 S as 

SCa  -> 0. Further, 9d increases with SCa  (as predicted by experiment) and, for the set 

of parameters chosen (see (3.108)), 9d asymptotes to 180 .

Shikhmurzaev [1993a] found that analytical predictions for 9d compared well with re­

sults obtained experimentally by Hoffman [1975] and Strom et al [1990]. The numerical 

coupling of the asymptotics to the 2-dimensional flow field is currently being investi­

gated by Summers et al [1998] for inlet starved forward roll coating using the FE method.

Note that recent experimental evidence by Savelski et al [1995] suggests that the rolling 

motion assumed in Shikhmurzaev’s [1993a] model is not always present but, for small 

6 d and certain viscosity ratios (between the displaced and displacing liquids), a splitting 

streamline is present.

3.5.3 Effect of Shikhmurzaev’s asymptotic theory on the base flow

Figure 3.35 shows pressure profiles for Ca — 0.05, S =  0.50 and h o /R  = 0.01 for three 

values of 0S. As 6 S increases, the dynamic wetting line moves further towards the nip 

and the magnitude of the minimum pressure decreases.

Again, there is a limiting value of 5 (where 5 =  Shm) for which the wetting line is 

situated at the nip (i.e. so 7 =  0). Figure 3.36 is a plot of film thickness, H 2, foi 

varying 5 (i.e. for 0 < 5 < S lim) for Ca  =  0.03, h0/ R  =  0.01 and three values of 

9S (the full lines). Recall that using Shikhmurzaev’s asymptotic theory, 9d varies with 

9S, S and Ca  and is calculated using equation (3.107). For comparison, the graph also 

shows (via the dotted line) the variation of H 2 with S using the previous model where 

9 d =  90° =  constant. It can be seen that increasing 6 S reduces S hm. This suggests that 

thinner films can be produced by using fluids which have smaller static contact angles 

because a higher value of S can be used before the wetting line passes through the nip.

3.5.4 Effect of Shikhmurzaev’s asymptotic theory on the onset of rib­

bing

Figure 3.37 shows, for h o /R  =  10“ 4, a plot of Ca*  against S for three different values 

of 9S (the full lines) with comparison to the previous model where 9d =  90° =  constant 

(the dotted line). Increasing 9S has two effects, the first o f which is to reduce Smin 

thus increasing the prospect of stability. However, this is countered by the second
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Angular position

Figure 3.35: Pressure profiles for Ca  =  0.05, S =  0.50, h0/ R  =  0.01 and various static 

contact angles.

Speed ratio, S

Figure 3.36: Film thickness predictions (H 2) against speed ratio (5 ) for Ca  =  0.03, 

h0/ R  =  0.01 with three values of 6 S (the full lines); A comparison is shown with the 

previous model, 6 d =  90° =  constant (the dotted fine). Note that all the curves termi­

nate at S lim i.e. when the wetting fine reaches the nip.
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effect which promotes the possibility of instability by reducing Camax. An operator of 

a reverse roll coater therefore needs to know in which part of the operability diagram 

he/she is operating, in order to determine whether increasing 0 S reduces the possibility 
of ribbing or not.

Capillary number, Ca

Figure 3.37: Operability diagram in the C a - S  plane for h o /R  =  10-4  and three values of 
6 S (the full lines). A comparison is shown with the previous model, =  90° =  constant 

(the dotted hne).

Note that the critical curves in the operability diagram can also be ‘shifted’ by altering 

other properties of the liquid used (apart from 9 S) i.e. by changing the parameters in 

(3.108).
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3.6 Conclusions

In this chapter, the ribbing instability has been investigated in inlet flooded, reverse 

roll coating. By considering a 3-dimensional perturbation to a 2-dimensional base flow 

(based on lubrication theory), regions of instability in the Ca — S control space were 

established which were in accordance with experimental observations. These diagrams 

have four key results:

• For each h0 /R ,  there is a Camax such that no ribbing occurs if Ca <  Cama-~.

• For each C a , there is a speed ratio beyond which no ribs occur (and a particular 

value of S, Smin, such that no ribbing occurs if S >  Smtn for any Ca).

• Near Smin, there is a small range of 5  values for which there are two ranges of Ca  

in which the base flow is stable (separated by an unstable range).

• As h o /R  is increased, the region of stability increases (i.e. Smm decreases and 

Camax increases).

Results obtained using this linear stability analysis were then compared to predictions 

from a stability hypothesis, being a simple force argument to determine the stability of 

the flow which only take account of perturbations to the meniscus and pressure in the 

direction of the moving web. Using this criterion, it was shown that the effect of the 

various parameters on the stability of the downstream free surface can be ascertained 

by determining their effect on the pressure gradient and meniscus location. The S.H. 

was also shown to be sufficient for predicting stability (but not for instability), the 

agreement between the two theories improving as h0/ R  is decreased.

Results from the linear stability analysis were also compared to those using a numerical 

approach based on the FE method, from which it was seen that the analytical approach 

overpredicts the critical capillary number for the onset of instability. This was attributed 

to the different contact line models in the two theories.

A variation o f the inlet flooded model was then considered in which the nip was fed 

from above by a large reservoir of fluid (i.e. a hydrostatic head). It was seen that 

increasing both the height of the head and Stokes number moved the meniscus further 

downstream and enlarged the final film thickness. Increasing St also destabilises the 

flow (for all head heights). However, at low St, increasing the height of the head has a 

stabilising influence, whereas at high St it has the opposite effect.
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Finally, an improved model of the dynamic contact line (developed by Shikhmurzaev 

[1993a]) was described in which the dynamic contact angle was no longer set to 90° but 

given a (constant) value related to various fluid and geometrical parameters. The limit 
of this theory for small Ca  was then incorporated into the model and its effect on the 

base flow and its stability was examined.
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4.1 Introduction

As described in chapter 1, there are three coating regimes in forward roll coating (see 

Malone [1992]), namely the inlet flooded, moderately starved and meniscus regimes.

The inlet flooded case has been thoroughly investigated using analytical, experimental 

and computational approaches. This includes measurement and prediction of the flux 

and final film thickness (see Pitts and Greiller [1961], Benkreira, Edwards and Wilkinson

[1981], Coyle [1984], Ruschak [1985], Savage [1982] and Gaskell, Savage, Summers and 

Thompson [1995]). In this regime, not all the arriving liquid can pass through the nip 

and there is a ‘rolling bank’ of fluid far upstream where excess liquid runs back over the 

incoming film (Schneider [1962]). Therefore, mathematical models ignore the presence 

of the upstream free surface and consider the liquid to extend to “infinity” upstream of 

the nip.

In the moderately starved and meniscus regimes, the upstream free surface lies closer 

to the nip and therefore has an effect on the flow and must be included in the mathe­

matical modelling. These two regimes are similar in that all the arriving liquid passes 

through the nip and so they will be referred to collectively as the inlet starved regime. 

Although used in industry for many years, this regime has not received quite the same 
attention as the inlet flooded case. Malone [1992] (see also Gaskell, Innes and Savage 

[1998]) demonstrated the differences between the regimes experimentally and subse­

quently Gaskell et al [1995], using lubrication theory, obtained predictions for the film 

split ratio, meniscus location and pressure profile and showed them to be in good agree­

ment with results obtained numerically using the FE method.

The stability of forward roll coating has been the subject of much investigation for 

many years, particularly with regard to the ribbing instability in the inlet flooded case 

which has received considerable attention from both experimentalists and theoreticians. 

Pitts and Greiller [1961] presented experimental data for the case o f equal speed, contra- 

rotating rolls of equal radii. To mark the onset of ribbing they correlated the critical 

capillary number, Ca* — / /U /T  (where U is the speed o f the rollers, /z the viscosity of 

the fluid and T its surface tension), and geometry parameter, h0/ R  (the ratio of the 

minimum gap between the rolls to the radius of the rolls), by the linear relationship
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Mill and South [1967] and Greener et al [1980] (with rollers o f equal size and speed) 

obtained further data which they correlated by

C a * = 10.3 0 0 3/4 and Ca* =  7500 Q 0

respectively. Cheng [1981] gave an explanation for these different functional relation­

ships. He suggested that the form of the neutral stability curve may vary throughout 

parameter space so that each relationship approximates the curve over a particular 

range of h0/ R  values.

Following Pearson [1960], Savage [1984] used a linearised stability analysis in order 

to determine the stability of the base flow in the equal speed, inlet flooded, forward roll 

coater. Subsequently, Carter and Savage [1987] examined the unequal speed case. Fall

[1982] went on to consider the stability of the 2-dimensional flow between a roll and a 

flat plate in which he included the time dependent response so as to obtain growth rate 

as a function of wavenumber. Coyle [1984] and Coyle et al [1990] applied ideas from 

linear stability theory to the finite element method and this approach, first developed 

by Bixler [1982], enabled them to determine critical capillary numbers (for each h0 /R )  

above which ribbing occurs for the 5 = 1  case.

By comparison, the stability of the inlet starved case has received considerably less 

attention in the literature. A similar problem which has been studied involves flow in 

the partially filled, narrow gap between two rotating cylinders, placed eccentrically one 

inside the other. This has been investigated experimentally by Rabaud, Michalland and 

Couder [1990], Rabaud and Hakim [1991], Michalland [1992] and Pan and De Bruyn 

[1994]. For the relatively large volume of fluid used, they saw ribbing on the meniscus 

situated on the diverging side of the nip. Reinelt [1995] then theoretically analysed this 

problem using linear stability theory and showed that there are actually two possible 

instabilities for this geometry, which he described as follows:

• The primary instability occurs when the volume of fluid is large so that the up­

stream interface remains on the converging side of the nip. The downstream 
meniscus (on the diverging side of the nip) becomes unstable at a critical capil­

lary number and ribbing occurs.

• The inverse instability occurs when the volume of fluid is small enough such that 

the upstream meniscus passes through the nip and becomes unstable.

Michalland, Rabaud and Couder [1996] then examined experimentally the stability of 

the upstream meniscus for different volumes of fluid and obtained qualitative agree-
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ment with Remelt’s analytical predictions. They observed two types of instability: first 

a propagating wave then a steady state pattern of fingers separated by air columns.

In meniscus roll coating, Malone [1992] showed experimentally that, for the forward 

case, increasing the upper roll speed caused the upstream meniscus to move to the di­

verging side of the nip. At a critical speed ratio, the meniscus becomes unstable and 

the coating bead collapses due to an instability termed bead break. Gaskell et al [1998] 

later illustrated the manifestation of this instabihty with the aid of figures 4.1 and 4.2. 

Figure 4.1 shows a series of images taken at increasing S with Hi, Ca and h o /R  ah 

constant. No manipulation of the image has been performed on the flow field itself, 

although dotted lines have been added to indicate the edge of the rolls and arrows used 

to indicate roll direction. The x-position of minimum gap between the rolls, x0) has 

also been added in order to mark the positions of the menisci. As S is increased from 

S = 0.0 to S =  1.05 the downstream (upstream) meniscus moves further upstream 

(downstream). Further, for 5 > 0.8, the upstream meniscus hes on the same side of the 

nip as the downstream.

Figure 4.2 shows a series of images taken at 0.5s intervals once speed ratio is stepped 

from 5  =  1.05 to 5  =  1.08 at t = 0. The images show that as time elapses, the down­

stream meniscus remains stationary whilst the upstream meniscus accelerates rapidly 

and touches the downstream interface before the bead breaks (at t — 2.5s). Bead break 

thus represents the limit of operability for a meniscus roll coater. Note that when this 

instabihty occurs, the transmission of hght along the bead is broken and so the entire 

bead is observed to go dark.

For large S and a small gap between the rolls, air entrainment can also arise which 

can manifest by an upstream travelling wave or bubble generation (see Malone [1992]).

4.1.1 Outline of this chapter

The first aim of this chapter is to analyse the ribbing instabihty in inlet flooded forward 

roll coating in the absence of gravity, see figure 4.3. As in the reverse case (in chapter 

3), by considering a 3-dimensional perturbation to a 2-dimensional base flow, regions 

of instability in the Ca — S plane will be established and compared to those obtained 

using a stabihty hypothesis (as described in chapter 3) and a numerical finite element 

stability approach (described in chapter 2).
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S =0.00

S = 0.40

S =0.60

S = 0.80

S = 1.00

S = 1.05

Figure 4.1: Pictures of the steady state bead in forward meniscus coating, obtained by 

Gaskell et al [1998].
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t = 0.0s

t = 0.5s

t = 1 .Os

t = 1 .5s

t =2.0s

t - 2 .5 s

Figure 4.2: Bead break in forward meniscus coating, where S has been stepped from 

S =  1.05 to S =  1.08 at t = 0.0s; Gaskell et al [1998].
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Figure 4.3: Schematic of an inlet flooded forward roll coater.

Instabilities in the two free surface case are then investigated, where the inlet is fed by an 

incoming film of prescribed thickness, see figure 4.4. An examination of the bead break 

phenomenon is performed and the effect of the upstream free surface on downstieam 

ribbing examined. This is achieved again by considering a 3-dimensional perturbation 

to a 2-dimensional base flow, from which regions of instability in the Ca -  Hi plane are 

established (for each 5 , h0 /R ) .  This linear stability theory is also compared to predic­

tions obtained using a stability hypothesis on both the upstream and downstream free 
surfaces. Note that the upstream stability hypothesis and 2-dimensional stability anal­

ysis has already been examined by Gaskell et al [1998], although they did not consider 

the effect of the incoming film thickness which is included in the present model.
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Figure 4.4: Schematic of an inlet starved forward roll coater.
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4.2 Inlet flooded case

4.2.1 M athematical model

4.2.1.1 Base flow

In this section, the aim is to determine the velocity and pressure fields together with 
the location of the meniscus (given h o /R , S and and Ca) which are required in order 

to carry out the linear stability analysis.

Neglecting body forces, transient and inertia terms, the Navier-Stokes equations reduce 

to

0 =  — Vp +  /iV 2u. (4-1)

Assuming unidirectional flow through the nip and that velocity gradients across the 

bead are negligible i.e. du/dx <<  du/dy then (4.1) becomes

I  = 4 ? '  ( 4 '2 )

and

^  =  0. (4-3)
dy

Hence p =  p(x) and therefore integrating (4.2) twice and imposing the no slip boundary 

conditions on the rolls i.e.

u =  U2 at y =  0 (4.4)

u =  Ui at y =  h(x)

gives

u = - - - j - - y { y  — h) +  ( U i - U 2 )^- +  U2 i (4-5)
2/i dx n

where h(x) is the gap width between the two rolls. This is approximated by a parabola,

h(x) ~  ho +  — , (4-6)

where R  is an average roll radius given by

-  =  —  +  —  (4-7)
R Ri R 2 ’

Ri and R 2 being the radii o f the upper and lower roll respectively. The flux, Q , is given

by
rh(x)

Q =  udy (4.8)
Jo
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which, using (4.5), becomes

Q =  '>3 +  ( ^  +  f / i ) ( 4 '9)

In equihbrium, the flux past any station x is constant and equal to the sum of the 

fluxes in the uniform films attached to the top and bottom rolls of thickness hx and h2

respectively,

Q =  h1Ui +  h2 U2. (4-10)

Therefore,

dp =  12fi g u 2 +  U i ) _  hlUl _  h2 U2)  ■ (4.11)
dx h2 \ 2 /

Boundary conditions on pressure are i) a flooded inlet, so the pressure far upstream is 

zero i.e.

p (  — o o )  =  0, (4-12)

and ii) a balance of fluid and surface tension pressure at the meniscus,

p M  =  ^  <4 1 3 >Td

where rd is the radius of curvature of the meniscus. The meniscus is approximated by 

a circular arc which meets the two films tangentially and so

hd =  2 Td +  h i  +  h 2 , (4-14)

where hd is the width of the gap at x =  x d. Since xd is unknown, another boundary 

condition is required which, for Ca <  0.01 (where Ca =  fiU2 / T ) ,  is provided by the 

Landau-Levich relationship for the ratios of the asymptotic film thicknesses, hx and h2, 

to the radius of curvature, rd,

—  =  1.34 (S C a )2' 3, (4 -15) 
rd

^  =  1.34Ca2/ 3.
Td

For higher values of C a , i.e. 0.01 < Ca <  0.1, Ruschak [1981] suggested a relationship 

of the form

—  =  0.56(SCa)1/2, (4-16) 
Td
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^  =  0 ,56Ca1' 2.
rd

Using (4.14), the following expressions are obtained: 

hi

0-56 (S C i)1/2 . 1 q - 2  <  C a  <  IQ 
2+0.56(l +  S)C a1/ 2 —

-1

OLdl
hd _ 1 .3 4 (S C a )2/» C a < 1 0 - 2 , 

2+ 1 .34(l+S )C a2/ 3

^2 _  . 
&d2 =  T~ -  < 

hd

o.seca1/ 2 1 0 - 2  <  C a  <  10
2+ 0 .56(l+S )C a1/ 2 —

-----Ca < 10~2,
2+1.34(l+S)Ca2/ 3

-1

(4.17)

(4.18)

' 2 +  0.56(S C a)1/ 2 +  0.56CO1/ 2 10~2 < Ca < 10 1

A* =  —  =
rd ' 2 +  1.34(SCa)2/3 4- 1.34Ca2/ 3 Ca < 10* 

Introducing non-dimensional variables defined by

H

H 2

X

s

p

h_

ho'

h i  
h0 ’ 

x

y/Rho

E i
u2’
ho I ho

(4.19)

(4.20)

and writing X  =  tan(7 ) (so fc(7 ) =  M e c 27 ), Reynolds equation, (4.11), becomes

—  =  6(1 +  5 ) cos2 7 -  12(JT2 +  SH\) cos4 7 . (4.21)
d-y

If (4.21) is integrated between the limits - 7t/2  (as p ( - 7r/2 ) = 0) and 7 (where 7 marks 

the position of the film split - X d  — tan(7 )) then

P(7) = 3(1 + 5)

3(g2 + Sgi) 
2

f ^ l  +  25m 27 +  37 +  ^4 2
(4.22)
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Also, from (4.13),

r(1) =

This, using (4.14) and (4.19), gives

Caho sec2 7

which when non-dimensionalised becomes

P( 7 ) =  -

PdpU2

Pd ho

(4.23)

(4.24)

(4.25)
Ca  sec2 7 v R

Equating (4.22) and (4.25) gives the following equation for 7 which is solved once ho/R ,  

5 and Ca  are specified:

ho fid
R Ca  sec2 7

=  3(1 + 5)
sin 27 _ 7r 
~ 1 -  + 1 + 2

+ S a n )  sec2 

2
= i l  +  2 Sin 2 T + 3 i  + ^

4 ^
. (4.26)

Once 7 has been calculated, the pressure distribution can be obtained by integrating 

(4.21) between the limits —7r/2  and 7 , giving

'sin 27
P (7 ) =  3(1 +  5 )

3 (ff2 +  5.fli) 
2

7T
+  7 + o

^  +  2sin27 +  3 7 + ^
4 ^

(4.27)

where i?2 =  ad2 sec2 7 and Hi — ctdi sec 7 -

Figure 4.5 shows resulting pressure profiles for 5 =  1.00 and h o /R  =  0.001 for three 

values of Ca. As Ca  is increased, the location of the film split moves further towards 

the nip and the magnitude of the minimum pressure decreases. The pressure gradient 

at the film split location also decreases very slightly.

Pressure profiles for Ca =  0.05, h0/ R  =  0.001 and three values of 5 are shown in 

figure 4.6. As 5 is increased, the magnitudes of the minimum and maximum pressures 

increase. The location of the film split changes only marginally.

Figure 4.7 shows pressure profiles for Ca  = 0.05 and 5  =  1.00 for three values of 

ho/R. As the gap ratio is increased the magnitude of the minimum pressure decreases, 

but the location of the film split remains the same.
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Figure 4.5: Pressure profiles for 5  =  1.00 and h o /R  =  0.001 and various capillary 

numbers.

Figure 4.6: Pressure profiles for Ca =  0.05 and h o /R  =  0.001 and various speed ratios.

Figure 4.7: Pressure profiles for S =  1.00 and Ca — 0.05 and various ho/R.
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4 .2 .1 .2  Perturbed flow

Following Pearson [1960], the base flow is perturbed such that the new location of the 

meniscus, x'd, is given by

=  Xd +  eeatsin(2nnz), (4.28)x n

and the pressure is given by

p \ x ,z , t )  =  p(a;) +  eG(a;)eat5m (2xnz), (4.29)

where n represents the number of waves per unit width, e a small amplitude, G {x)  is 
an unknown function of x and a is a growth rate. For stabiUty, this perturbation must 

tend to zero (with time) i.e. a < 0. Substituting (4.29) into the 2-dimensional Reynolds

equation,

dx \ dx J dz V d z )  dx

yields a second order equation for the unknown function G(x),

d*G +  3 d h d G  _  47r2n2G _  0 (4.31)
dx 2 h dx dx

The balance of surface tension forces and fluid pressure at the interface gives

v'(x ' )  =  -  -PdT-  +  4x2n2T eeat sin(2 rnnz), (4.32)
h{x'i)

the additional surface tension term arising from curvature of the interface m the x -  z 

plane. A continuity of flow argument (see figure 4.8) states that the flux past station 

x "  (i e . Q(x'd)) must equal the amount of fluid flowing into the thin films i.e.

AMD -  (4 33)dt

However, the flux past station x"d can be related to the flux past station x'd by the 

equation

<?(*2) =  < ? « , ) - M * i > ^  <4 -34)

and so

, , , s U2 +  U\ h3 (x 'd) fd p  \ hiv i \ ^ A  — h.[ ( U, -
K * i ) — 2-------------d> *  v 1 it
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Ui

Figure 4.8: Schematic of the perturbed downstream meniscus region of the inlet flooded 

forward roll coater.

Equations (4.32) and (4.35) are then hnearised (by expanding about x d and using (4.11), 

(4.28) and (4.29)) to give boundary conditions for ( ^ ) d  and G(xd). These, together 
with the condition G ( -o o )  =  0 (which states that the perturbation pressure tends to 

far upstream of the nip), give the following o(e) problem for G ( x ).zero

d?G Zdh dG  
dx 2 h dx dx

4 w2 n2G  =  0,

dG\ - 1 2 fiU2 ,d h , , , „  N , 1 2 ^
a ) „ = + Sail) + + J1 “

( — f -  -  -  Sh' ) + 4 ,v r - 

G (-o o )  =  0.

By introducing the following non-dimensional variables

x

X  =  y / m ^ ’

N  = n\J Rho,
^ \J Rh0 

~  U a’

9 {X )  =
_3_ G (x),

(4.36)

(4.37)

(4.38)

(4.39)
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the boundary value problem for g(x) becomes

f s _ ,  g(X ) =  0,
d X 2 +  l +  X 2 dX

(4.40)

9(D) -  / —  +  — —  ( —  ̂ (1 + D 2 ) 2
~  QCa\ R ZCa \ R J

1 + 5
+  ad2  +  Sadi, (4-41)

-2Ddg\
dx J £  1 + D 2

(ctdi + Saji )  + S(a<i2 + &di ~  1)>

g ( - o o )  =  0.

(4.42)

(4.43)

4.2.2 M ethod of solution

Before solving equations (4.40)-(4.43) numerically, an approximate analytical solution 

for S is first obtained, as in the reverse case.

Analytical solution (approximate):

The term 6'y 2' is again replaced by its local value at the film split location where 
1+A

the disturbance arises i.e. by so equation (4.40) becomes

d2g , 6 D dg 2 2
+ - 4 t r2 N 2 g {X )  = 0.

d x 2 ' 1 +  D 2 d X  

Equation (4.44) then has a solution satisfying

g ( X )  =  g { D ) ^ x - ° \

where

w =  - k  + \J k2 +  47r2iV2, 

k = 3D

Therefore,

1 +  D 2 ’

—  ̂ = wg(D).  
d X ) D

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

Substituting (4.41) and (4.42) into (4.48) yields the following equation for the non- 

dimensional growth rate, S (as a function of N ,  given Ca, S and h0 /R ) :

S(iV) (a dl +  a d2 -  1)

2adD w[3dD  h0
— 2 {S a i 1  +  Cd2) +  - ^ - W  ^

1 +

+  ^  (1 +  D 2 ) 2 -  ^  +- * I  +  w (S a d! +  a d2) (4.49)
3 C  a \ R )  &



127

Hence, once h o / R ,  C a  and S  are specified, then D  is calculated from the base flow 

model and graphs of £ (N )  can be plotted using equation (4.49).

N u m erica l solution :

A numerical solution to the first order problem is obtained by solving (4.40), (4.41), 

(4.42) and (4.43) directly. This is achieved using the NAG routine D02NBF (used gen­

erally to integrate an initial value problem for a stiff system of exphcit ODE s. As this 

problem is a boundary value problem, it is converted to an initial value problem and 

then Newton iteration is carried out until the 3rd boundary condition is satisfied i.e. 

for each N ,  £  is guessed and Newton iteration is carried out until (4.43) is satisfied). 

There is a maximum difference of 3% between the analytical and numerical solutions

(for E (N )) .

4.2.3  Discussion of results

Since there are three independent parameters, one way of displaying results is to fix two 

( h o / R  and 5 ) and plot £  against N  for various values of the third ( C a ) .  The critical 

Ca  can then be determined and the effects of varying h 0 / R  and S seen by plotting the 

critical capillary number against speed ratio for various h o / R -

4.2 .3 .1  F ixed  h 0/ R

In this section, results for a fixed and then variable speed ratio are discussed using a 

fixed gap ratio, h o / R  — 10-3 .

F ixed  5

Figure 4.9 shows plots of £(iV ) for 5 =  1.00, h o / R  =  0.001 and various Ca. It can 

be observed that for both Ca  =  0.03 and Ca =  0.05, £  < 0 for ah N  and so the 

disturbance decays and the base flow is stable. A critical capillary number, Ca*, exists 

(Ca* =  0.0626) for which $  =  £  =  0 for a particular value of N  (and £ < 0 for all 

other N ).  The base flow is termed ‘neutrally stable’ and all flows for which Ca  > Ca* 

are unstable. Ca  =  0.08 is an example of an unstable base flow since £  > 0 for N  in 

the range 0.11 < N  <  0.32. The base flow is stable to disturbances with wavenumber 

N  < 0.11 and N  > 0.32 (as £  < 0 for all such values of N ).
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Figure 4.9: Growth rate (S ) against wavenumber (N )  for various Ca  with S -  1.00 and 

h o /R  =  0.001.
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V ariable S

With ho/R = 0.001 remaining fixed, the critical capillary number, C a *, is determined 

for various values of speed ratio, S and a a plot of C a * against 5 is drawn - see figure 

4.10. Above the curve ribs occur, whereas below it the base flow is stable. Corre­

sponding to each Ca (S )  there is clearly a minimum value of speed ratio, 5*, (capillary 
number, Ca*) above which ribs occur. Hence it is clear that increasing either Ca  or 5 

has a destabilising effect unlike inlet flooded reverse roll coating, where 5 was found to

have a stabihsing effect.

4.2.3.2 Variable ho/R

The effect of varying the gap ratio, h0/R is illustrated in figure 4.11 by means of critical 

curves in the Ca -  S plane for the onset of instability. It is observed that the region 

of stabiUty increases as ho/R increases such that for any S (Ca) the critical capillary 

number (speed ratio) increases with h0/R-

4.2.4 Comparison with the Stability Hypothesis (S .H .)

Recan that a stabiUty hypothesis is an approximate means of determining the stability 

of an interface (see section 3.2.4). Applying a similar perturbation to the downstream 

of the current problem (see figure 4.12) results in the following condition for stabiUty:

PdT (d h \  (d p \  _ (4.50)
h?d \dx )  d \ d x j d

Hence we see (via the S.H.) that at the downstream meniscus, surface tension has a 

stabihsing influence, whereas the pressure gradient (at a:*) has a destabilising influence 

(as in the reverse case).

After non-dimensionahsing (4.50) it can be seen that for stabiUty (via the S.H.),

g ( D ,N  =  0) > 0, (4-51)

where g ( D ,N )  is given by equation (4.41). Using condition (4.51), a plot of Ca*  against 

S can be drawn (for this particular value of ho/R i.e. ho/R =  10“ 3) - see figure 4.13. 

A comparison of the S.H. (the fuU Une) is shown with the linear stabiUty analysis (the 

dotted Une). It can be seen that the two curves are quaUtatively similar yet the ap­

proximate stability hypothesis consistently underpredicts the critical capiUary number 

for any S. This impUes that that the S.H. is sufficient for predicting stabiUty only, the 

proof of which is identical to that for the inlet flooded, reverse roU coating case.
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Speed ratio, S

Figure 4.10: Operability diagram in the Ca -  S plane for h0/ R  =  10-3 .

Speed ratio, S

Figure 4.11: Operability diagrams in the Ca -  S plane with varying h0 /R .
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Figure 4.12: Schematic of the downstream meniscus region of an inlet flooded forward 

roll coater showing both the disturbed meniscus at x =  x d +  e, and the original uniform 

meniscus at x =  x d.

Figure 4.14 shows further operabihty diagrams (in the Ca -  S plane) for three different 

values of h0 /R .  It is clear that the agreement between the linear stability analysis and

S.H. improves as h o /R  is reduced.

4.2.5 Comparison with the computational approach

In the previous section, inlet flooded forward roll coating was analysed using lubrication 

theory to model the flow from far upstream to the downstream meniscus region. The 
model predicted the pressure profiles and final film thicknesses as functions of three 

operating parameters, namely S, Ca  and h0 /R .  As with the reverse case, the ribbing 

instabihty was then examined by applying hnear stabihty theory to the base flow. How­

ever, analytical models are only vahd over a limited region of parameter space (small 

Ca  for 5 ^ 1 )  and it is necessary to model the downstream meniscus by the arc of a

circle.

The FE method does not suffer these drawbacks and so it is therefore the aim of this 

section to apply the hnear stabihty theory (detailed in chapter 2) to FE solutions of 

an inlet flooded, forward roll coater in order to examine the accuracy of the previously 

obtained analytical results and to enable the stabihty of the flow to be examined over a 

much larger region of parameter space. The steady 2-dimensional FE code used in this 

study is based on the work of Thompson [1992], the boundary conditions and compu­

tational mesh associated with which are described below.
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Linear stability analysis 

S.H.

Speed ratio, S

Figure 4.13: Operability diagram in the Ca  — S plane for h o /R  =  10 for both the 

S.H. and hnear stabihty analysis.

Linear stability analysis 

S.H.

Speed ratio, S

Figure 4.14: Operability diagram in the Ca  -  S plane with varying h0/ R  for both the 

S.H. and linear stabihty analysis.
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Boundary conditions:

The boundary conditions, shown in figure 4.15, are as follows:

1. At the downstream free surface, the usual kinematic and stress boundary condi­

tions are imposed (see chapter 2).

2. Zero traction conditions are imposed at both downstream outlets.

3. At the inflow boundary, situated at the nip, the lubrication approximation pro­

vides an accurate description of the flow. A zero inlet pressure condition (corre­

sponding to p( — oo) =  0) is also applied.

4. At the roll surfaces the no slip condition is applied.

Lubrication 
boundary - 
conditions

u.n = 0

Figure 4.15: Computational boundary conditions for the downstream region o f an inlet 

flooded forward roll coater.

Com putational mesh:

The location of the free surface is highly sensitive to the values of Ca, S and h0/ R  

being considered (see Thompson [1992], Coyle et al [1986]) e.g. as Ca  is reduced, the 

free surface moves further away from the nip. To accommodate this, the FE grid must 

be designed to cope with large variations in free surface location. Such an approach was 

initially developed by Coyle et al [1986] who split the grid into two regions, see 4.16.
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Figure 4.16: Schematic of the finite element grid used to tessellate the downstream 

region of an inlet flooded forward roll coater.
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Region 1, the nip region, terminates at the variable 2-location x — xm and nodes inside 

it undergo a concertina type motion as xm varies. The nodes in the free surface region, 

region 2, are located on spines whose direction vectors either pass through a polar origin

0 , or are perpendicular to the roll surfaces. The base nodes of all the spines in this 

region either lie on one of the rolls or on the line x — xm.

Since x m is allowed to vary, another unknown is introduced into the problem and so the 

length of the central spine in the free surface region is fixed i.e. the kinematic boundary 

condition that would have been used to evaluate this height is instead used to calculate 

xm. Since the position of every node in the grid now depends on xm , the element-level 

Jacobian must now also include derivatives with respect to it.

Figure 4.17 shows the finite element grid used to calculate the base flow in this study. 

The grid contains 2016 elements, 4243 nodes and 9128 degrees of freedom. The figure 

also shows streamlines for a typical solution.

In figure 4.18, predictions for H i / H 2 from the lubrication model are compared with 

numerical results for Ca — 0.06, h o /R  and varying 5. As expected, the lubrication 

theory predictions are in good agreement with the finite element results, especially near

5 =  1 (see Gaskell, Savage and Thompson [1998]).

Stability  o f  the FE base flow :

The finite element stability analysis described in chapter 2 is now applied to the above 

problem, and for the associated computational grid there are now 13066 degrees of free­

dom (as opposed to 9128 freedoms with the 2-dimensional base flow). As in the reverse 

case, for each wavenumber, JV, (and set of base flow fluid and geometry parameters) 

an eigenvalue, S, is produced to indicate the stability. If, for a given base flow, the 

eigenvalue is negative for each wavenumber the base flow is stable. If one or more of the 

eigenvalues are positive then the base flow is unstable to the disturbance and ribbing 

appears.

It was found that this numerical approach is in good agreement with the analysis pre­

viously performed in this chapter. Indeed, there is a maximum difference of less than 

1% for the Ca*  in the two methods. This ratifies the assumptions made in the anal­

ysis (e.g. the approximation of the free surface by the arc of a circle) and shows how
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a) Finite element grid

Figure 4.17: Finite element grid used to form a numerical description of the base flow, 

together with typical streamhnes.

lubrication theory can be used to accurately determine stability for this range of Ca. 

The critical Ca  (for each ho/R )  are also in agreement with Coyle s [1989] numerical re­

sults obtained for S — 1 - this is to be expected as the same methodology has been used.

Note that it can now be postulated that the discrepancy between the critical capil­

lary number for the reverse case (in chapter 3) is due to the modelling of the contact 

hne. In particular, the main difference between the analytical and numerical modelling 

of the base flow is that it is necessary to impose a slip condition in the latter to avoid a
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Speed ratio, S

Figure 4.18: A comparison of film thickness ratio ( H i / H 2) against speed ratio (5 ) 

obtained via the finite element method and lubrication theory for Ca  — 0.06 and h o /R  — 

0.004.

stress singularity whereas the analytical approach does not include effects local to the 

wetting Une, and so is less accurate.
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4.3 Inlet starved case

In the above analysis of forward roll coating, the upstream inlet was assumed to be 

fully flooded in the sense that the fluid extends to ‘infinity upstream of the nip. If the 

supply of fluid upstream of the nip is reduced, the inlet becomes starved and a fluid 

bead appears which is finite in width and bounded by two free surfaces (see figure 4.4). 

The aim here is to formulate a 2-dimensional model for this flow, based on lubrication 

theory (see section 4.3.1.1), and use hnear stabihty theory to determine its stabihty (see 

section 4.3.1.2). As before, a comparison is made with the stabihty hypothesis (on both 

the upstream and downstream free surfaces), see sections 4.3.3-4.3.5.

4.3.1 M athem atical M odel

4.3.1.1 Base flow

In this section the aim is, again, to determine the velocity and pressure fields together 

with the location of the upstream and downstream menisci (given h0 /R ,  Ca, S and Hi) 

which are required in order to carry out the hnear stability analysis.

A conservation of flow argument leads to the constraint that the flux m the incom­

ing film (o f thickness hi) is equal to the sum of the fluxes in the two exiting films (of 

thickness h\ and h2),

When non-dimensionahsed with respect to the variables defined in equation (4.20), 

together with

The downstream meniscus can be modelled as in the flooded case to give equations 

(4.17)-(4.19). Using (4.17) and (4.18), equation (4.54) becomes

hiU2 — h\U\ + h2 U2. (4.52)

(4.53)

this gives

Ht =  SHi +  H2. (4.54)

Hi = Hd(Sadi + a-tf), (4.55)

giving

2 _  Sisec 7 =  — ---------------r,
(Sadi +  ad2)

(4.56)
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where X  =  tan (7 ) and 7 marks the position of the downstream film split. Hence it is 

clear that after specifying Ca, S and H t, 7 can be determined by solving (4.56).

To ascertain the dimensionless location of the upstream free surface, X u  — tan 7 , the 

lubrication theory developed for the inlet flooded case can be used, although not with 

the same pressure boundary conditions. Hence, the dimensionless pressure gradient is

again

dP
d-y

= 6(1 +  S) cos2 7 — 12( f 2̂ +  SH i)  cos4 7 . (4.57)

If (4-57) is integrated between the hmits of 7 and 7 then

'sin 27
P (7 ) -  P (7 ) =  3(1 +  5 )

+
3 (tf2 +  SHi)

+  7

sin 47 -(- 2 sin 27 +  37 (4.58)

The pressure boundary condition at the downstream meniscus is the same as m the 

flooded case,
- T

p{xd) =
I'd

(4.59)

which, after non-dimensionalisation and using (4.19), becomes

^ (7 ) =  -■
Pd________ _ . (4.60)

Ca  sec2 7 V R

For the inlet flooded case, the fluid domain extended far upstream and so it was assumed 

that the pressure far upstream of the nip was zero. However, for the inlet starved 

case, the fluid domain no longer necessarily extends far upstream and so this upstream 

pressure boundary condition must be replaced by a balance of fluid and surface tension 

pressure at the upstream meniscus,

p M  -  (4 '61')‘ u

where is the radius of curvature of the upstream meniscus which is approximated 

by a circular arc meeting the film tangentially and intersecting the upper roll surface 

at an angle 9U, corresponding to the dynamic contact angle. Hence, at the upstream

meniscus,

hu = ru( l  +  cos(0u)) +  hi, (4.62)
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and. so

(4.63)hu hi

Tu l  +  cos(0u) ’

giving
K  _  l  +  cos(flu) (4.64)

~  ru 1 -  H i  cos2 7

Equation (4.61), on non-dimensionalisation, becomes

m l  = ____ (4 '65)
Ca  sec2 7 y R

Hence, once Ca,  S, Hi  and h o /R  have been specified and 7 found (using (4.56)), the 

location of the upstream free surface can be obtained by solving (4.58) together with 

(4.60) and (4.65). The pressure distribution is then obtained by integrating (4.57)

between the limits of 7 and 7> giving
. sin 27

P(7) = p { i )  +  3(1 + s ) +  7

+ KH2±SJh) f ^ l  +  2 sin27 +  37 • (4-66)
2 L 4 J7

The thickness of the inlet film has a pronounced effect on the pressure distribution, as 

shown in figure 4.19 where pressure profiles corresponding to various Hl are plotted 

with h0/ R  =  0.001, Ca =  0.10 and 5 =  1.00. The dotted line indicates the pressure 

profile for the flooded case and corresponds to H z a  1.33. As the inlet film thickness 

is decreased, both the upstream and downstream menisci move towards the nip. In 

fact, for Hi =  0.84, the upstream meniscus lies on the same side of the nip as the 

downstream one. It can also be seen that as Hz is reduced, the turning points m the 

pressure gradient disappear and the pressure becomes entirely sub-ambient. The limit 

H x _» 0.84 corresponds to the meniscus coating regime where the pressure gradient is 

positive and almost constant. Note that solutions to equation (4.58) could not be ob­

tained for Hi <  0.84.

Figure 4.20 shows pressure profiles for h o /R  =  0.001, S =  1.00, H l -  1.20 and four 

values of Ca. The downstream, as in the flooded case, and upstream menisci move to­

wards the nip as Ca  increases. The pressure gradient at the upstream meniscus remains 

the same and the maximum and minimum pressures across the nip increase. Further, 

as Ca  is increased, a point is reached where solutions of (4.58) no longer exist.
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Pressure profiles for h0/ R  =  0.001, Ca =  0.10, H, =  1.20 and five values of S are 
shown in figure 4.21. As 5  is increased, the downstream (as in the Hooded case) and 

upstream menisci move towards the nip. Again, as S is increased, there is a point at 

which solutions of (4.58) no longer exist.

Figure 4.22 shows pressure profiles for Ca = 0.10, S -  1.00, H l -  1.20 and 

values of ho/R . As h o /R  is increased the location o f the downstream film split, along 

with its associated pressure gradient, remain the same (as in the flooded case). However, 
the upstream meniscus moves away from the nip, the pressure gradient there remaining

about the same.

4 .3 .1 .2  P ertu rb ed  flow

With the addition of the upstream free surface, the objective is to determine the stabil­

ity characteristics of this free surface and also how its presence affects the stabihty of 

the downstream free surface.

The base flow is perturbed, following Pearson [1960] and Reinelt [1995], such that the 

new location of the downstream and upstream menisci, x'd and x'u respectively, are given

by

x'd =  x d +  edeatsin(2-Knz), (4 -67)

x'u =  xu +  eueatsin{2*nz), (4-68)

and the pressure is given by

p’ (x, y, t) = p(x) + [edG d(x) + euG u(x ) ]e ^ Szn(2nnz), (4.69)

where n represents the number of waves per unit width, ed and eu are small ampli­

tudes, G d(x) and G u{x) are unknown functions of i  and a is a growth rate. Note that 

equations (4.67) and (4.68) have identical growth rates and wavenumbers but different 

amplitudes. This is due to the fact that disturbances may arise on the downstream and 

affect the upstream or visa versa.

For each n, not only is a required to determine the stabihty of the geometry, but if 

a > 0, eu/ e d is also required in order to identify which of the two free surfaces is

unstable:

— > 1 upstream unstable if a > 0 (4-70)
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Angular position

Figure 4.19: Pressure profiles for 

ho/R =  0.001, Ca =  0.10, S =  1.00 and 

various H i.

Angular position

Figure 4.21: Pressure profiles for 

ho/R =  0.001, Ca =  0.10, Hi =  1.20 

and various S.

Angular position

Figure 4.20: Pressure profiles for 

h0/ R  =  0.001, S =  1.00, Hi =  1.20 and 

various Ca.

Angular position

Figure 4.22: Pressure profiles for Ca  = 

0.10, S = 1.00, Hi =  1.20 and various 

h o /R■
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< 1 downstream unstable if a > 0 (4-71)

Substituting (4.69) into the 2-dimensional Reynolds equation, (4.30), and assuming 

that G d(x) and G u(x) are two linearly independent functions, yields two second order 

ordinary differential equations for the unknowns G d(x) and G u(x),

^  +  ^ ^ _ 4t V G ^ 0 ,  (4.72)
dx2 h dx dx

f G u + 3 M ^ _ ^ 2 n2Gu =  0  (4.73)
dx2 h dx dx

For convenience and without loss of generality, the linearly independent solutions are 

chosen to satisfy

Gd(xu) ~  0, (4-74)

Gu{xd) =  0. (4.75)

The balance of surface tension pressure and fluid pressure at the downstream and up­

stream interfaces gives

p'(x'd) =  — 7 ~f~T\ +  47r2n2T edeatsin(2'Knz), (4.76)
h(xd)

and

Vix'u) =  — ~rr~T\ ~  4?r2 n 2 Teueatsin(2'Knz), (4-77)
V h{x'u)

respectively. The additional surface tension terms arise from curvature of the interfaces 

in the x — z plane. Note the change in sign of the wavenumber term, which is due to the 

curvature of the upstream and downstream menisci (with respect to the liquid) being 

opposite in sign for each value of z, see figure 4.23.

The continuity of flow constraint at the downstream interface is identical to that in the 

flooded case, and so

* ( > ■ - ¥ )  <*-” > 
A similar constraint argument can be formulated at the upstream interface (see figure 

4.24), whereby the flux past station x ” (i.e. Q « ) )  must equal that at the inlet i.e.

Q K )  =  U2 hi. (4.79)
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Upstream
interface

Downstream
interface

Figure 4.23: Schematic of the forces acting on the perturbed upstream and downstream 

menisci in the x — z plane.

The flux past station x" can be related to the flux past station x'u via the equation

< ? « )  =  <4'80>

and so

= * ( * - £ ] •  <«■«>

Equations (4.76), (4.77), (4.78) and (4.81) are then linearised by expanding about xd, 

xu and using (4.11), (4.67), (4.68) and (4.69). With equations (4.74) and (4.75), this 

gives the following o(e) boundary value problems for G d(x) and G u(x):

dx

dx2 ^  h dx dx

d2 G v 3 dh dGu

dx2 h dx dx

W
td V

dGu\

dx J  d =

-  4tt2 n 2 G d =  0, (4.82)

_  47r2 n2 G u =  0, (4.83)

+  Ui a il )

47i2n2euei:Jtsin

1 2 ^ ,  ,
4- , 2 ~ \ a d 2  ~ J’ 

"■d
(4.84)
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Ui

& A  + i i ( d- 2 i )  =  & - * . ) ,
dx )  u eu \ d x ) u K

(4.85)

Gd(xd) -  ( i E l ± E l l h l  _  h2 u 2 -  h ^ )  +  4t t V T ,  (4.86)
"  /t2 1 9 “ '

Q (x ) — & ? ( — ) -  ^  +  h v  _  h U . \  _  47r2n 2T , (4.87)
U'uV'CuJ — l 5 l j „ i u ^3 \ 9 /hi dx u hi \ 2

Gd{xu) =  Oi

Gu(z<i) =  0.

By introducing the foUowing non-dimensional variables

x

X  =  j W o

N  =  n\/R h0, 
y /  Rho

s  -  —  
h2

d G d(x),9d(X) =
12/xC/2

/i3
®"( x )  -  u M G u{x)'

(4.88)

(4.89)

(4.90)
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the boundary value problems for gd(x) and gu(x) become

+  =  °' (491)

= ° ’ (4 '92) 

d g A  + ^ ( ^ A  =  +  S a dl) +  S (a d2 +  a dl -  1), (4.93)
dx J D ed \ dx J D H d

l i A  + e- i ( ^ )  =  ^ | s  ( H i - H u ) ,  (4.94)
dx J u eu \ dx J u H jj

f3dD bi0 1 U l  +  S )H D 
gdD)  -  6CaW E Hd 2 H 2 -  SHi

+
7T2 N 2 H 2n (ho

ZCa R
(4.95)

gu(U) =

( h 0 

R3 Ca

<w(£0

(1 + 5 )f fg  
2

-  S H i

0,

(4.96)

(4.97)

Su(£) = 0. (4-98)

To obtain eu/e d(N )  and S(iV), the derivatives in equations (4.93) and (4.94) are first 

sought via solving the two boundary value problems for gd ((4.91), (4.95) and (4.97)) 

and gu ((4.92), (4.96) and (4.98)). Once gd and gu are known, their derivatives can be 

calculated numerically and equations (4.93) and (4.94) then reduce to a quadratic for 

one of the unknowns, eu/ e d{ N ) or E(iV). For each N , this quadratic will have two roots, 

of which the root with the largest growth rate is considered.
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4.3.2 Discussion of results

From the flooded geometry, it was found that increasing 5 and Ca  and decreasing the 

gap ratio, ho/R,  had a destabihsing influence on the downstream interface and caused 

ribbing. These effects, as well as those of Hi, are now examined on both the downstream

and upstream interfaces.

I n s t a b i l i t ie s  on the downstream free surfacei

Figure 4.25 shows a plot of £  against N  for Ca  =  0.05, S =  l . 00, ho / R -  0.001

and six values of Hi. For Hi > 0.84, E < 0 for all JV and the base flow is stable. For

TT -  0 84 £  =  —  =  0 for iV =  0.185 and E < 0 for all other N  - the base flow is now n.l — u.o*±, dN .
neutrally stable. For Hi < 0.84, E > 0 for some N  and so the base flow is unstable. 

Hence it is clear that increasing the inlet film thickness has a stabilising influence. An 
explanation for this will be shown later when the stabihty hypothesis is considered.

The corresponding plots of eu/e d against N  are shown in figures 4.26 and 4.27. Figure 

4.26 identifies the near inlet flooded regime, which has been shown to be stable (ior the 

parameters used). Note that it is unnecessary to examine the eu/ e d{N )  curve in this case 

because neither free surface becomes unstable, but it is included here for completeness. 

The cusp in the E(iV) curve, which is only present for large values of H it corresponds 
to a positive maximum in the e J e d(N )  curve. Within a small region of N  up to this 
maximum, E(iV) and eu/e d{N )  are imaginary whereas elsewhere they are always real. 

As N  is further increased, eu/e d rapidly reduces to zero. Thus if the growth rate was 

positive in the inlet flooded regime, then \eu/e d\ <  1 and so the upstream interface is 

stable and the downstream is unstable. Figure 4.27 shows a similar plot for smaller 

values of Hz. At values of N  for which the growth rate is positive (e.g. for H x = 0.75, 

E(JV) > 0 for 0.14 <  N  <  0.28), \eu/ e d\ < 1 and so the downstream interface is unstable.

The effect of increasing Ca  or 5 is the same as with the inlet flooded case and is 

shown later in the form of control space diagrams.

Instabilities on the upstream  free surface:

Figures 4.28 and 4.29 show the effect of decreasing H x on the upstream free surface 

for Ca  =  0.01, 5 =  1.00 and h0/ R  =  0.001 in the form of E (N )  and ^(JV) curves. It 

is clear that for each H u S (N )  is a monotonically decreasing function and so the onset
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Figure 4.25: Growth rate (E ) against wavenumber (N )  for various Hi with h0/ R  -  10 3, 

Ca  = 0.05 and S — 1.00.
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Wavenumber, N

Figure 4.26: eu/e d against wavenumber (N ) for various Hi with ho /R  =  10 3, Ca  =  0.05 

and S =  1.00.

*10 2

Wavenumber, N

Figure 4.27: eu/e d against wavenumber (N )  for further, various values of Hi with h0/ R  =  

10“ 3, Ca  =  0.05 and S =  1.00.
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of instability is given by that value of Hi for which £ (JV =  0) =  0, Ht*. However, 
this point in parameter space could not be reached because a solution to the base flow 

equation, (4.58), could not be obtained. In fact, solutions could not be obtained for 

Hi <  0.193 and so the author has assumed that the onset of instabihty occurs at the 
same critical conditions for which a solution to the base flow equation no longer exists. 

The justification for this is that the rate of change of £(JV =  0) with Hi becomes very 
large as Hi approaches this critical value. Figure 4.29 verifies that this instabihty will 

occur on the upstream free surface since for Hi =  0.193, \eu/^d\ > 1-

Note that increasing Ca  or 5 was found to have a similar effect to that of decreas­

ing Hi on the stabihty of the upstream free surface. This is shown later m the form of

operability diagrams.

It is observed that the conditions for which £ (JV =  0) =  0 are the critical conditions 

for the onset of instabihty at the upstream free surface. This implies that instabilities 

arising at this upstream free surface are 2-dimensional, a result which can be proved.

P roo f:

By examining equations (4.9l)-(4-98) and assuming that the upstream perturbation is 

dominant (i.e. eu »  ed), equations (4-9l)-(4-98) reduce to

_ 47r2iy 2 (X ) =  0
d X 2 +  1 +  X 2 dX

(4.99)

dg S(H i -  i f e ) ,
ax J u n u

(4.100)

ho H  _  E d
gu(u ) -  QCa\] R H y  H i

(1 +  S)Hu _ R  S H  
2

7T2 N 2 H 2d

3 Ca

gu{D ) =  0.

For a positive radius of curvature at the upstream meniscus, (4.63) gives

Hr <  Hu-

(4.101)

(4.102)

(4.103)
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Wavenumber, N

Figure 4.28: Growth rate (S ) against wavenumber (N )  for various Hi with h o /R  =  

Ca =  0.01 and 5 =  1.00.

Wavenumber, N

Figure 4.29: eu/ed against wavenumber (N )  for various Hi with h0/ R  =  10-3 , Ca  

and S =  1.00.

IQ"3,

=  0.01
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For instability, £  > 0, and so, using (4-100), g'JJJ) < 0. However, gu(U) and g ' j U ) 

must be opposite m  sign in order that the disturbance should decay monotomcally to 

zero (following an argument similar to that at the downstream interface where gd(D) 

and g'd( D ) must have the same sign - see appendix A ) and so gu{ U ) > 0. Similarly, 

if S < 0 then gu{U) <  0 and so £  and gu(U ) must have the same sign. Therefore, to 

determine the stability of the upstream free surface, it is sufficient to determine the sign 

of gu(U). However, because gu{U) is a monotonically decreasing function with N  (see 

equation (4-101)), only the sign of gu(U ,N  =  0) is required and so instabilities which 

arise from the upstream free surface must be 2 -dimensional.

□

This proof has two important consequences, namely

1. ribbing, being a 3-dimensional instability, can only occur at the downstream free 

surface, and

2. a simple 2-dimensional force balance argument (i.e. a stability hypothesis, see 

section 4.3.4) will give an accurate description of the stability at the upstream 

free surface.

Note that the above proof confirms the assertion by Gaskell et al [1998] that bead break 

is a 2-dimensional instability to the base flow.

4.3.3 Stability Hypothesis: downstream interface

The S.H. for the downstream interface follows the same argument as for the flooded 

case, i.e. the base flow is stable if

gd{ D , N  =  0) > 0, (4.104)

where gd( D , N  =  0) is given by equation (4.95). Again, the S.H. only provides a suffi­

cient condition for predicting stability and, as with the flooded case, increasing h o /R  and 

decreasing Ca  and S all cause gd(D , N  — 0) to increase and so have a stabilising effect 

on the downstream free surface. Thus, the remainder of this section only considers the 

effect of Hi on the stability of the downstream free surface via its effect on gd(D , N  =  0).

Figure 4.30 shows a plot of gd( D , N  =  0) against Hi for h o /R  =  0.001, Ca =  0.05 

and S =  1.00. It is clear that increasing Hi causes gd( D , N  =  0) to increase and there­

fore has a stabilising influence on the downstream interface (an effect already seen via 

the linear stability analysis). An explanation for this is given in the context of splitting
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Inlet film thickness, Hi

Figure 4.30: Graph of gd{D, N  =  0) against Hz (with its surface tension (A ) and pressure 

gradient (B) components) for h o /R  =  10 3, Ca  =  0.05 and S =  1.00.

gd(D, N  =  0) into its two components, namely its surface tension and pressure gradient 

components (curves A  and B  respectively in figure 4.30). As Hi is increased, the down­

stream meniscus moves further away from the nip (see figure 4.19) causing the surface 

tension term to increase, thus having a stabihsing effect. However, Hx does not affect 

the pressure gradient at the downstream free surface (represented by curve B ) and so 

does not affect the destabilising term. Therefore, it is clear that increasing Hi has an 

overall stabihsing influence on the downstream interface.

4.3 .4  Stability Hypothesis: upstream interface

The simple force balance apphed above to the downstream meniscus was considered 

in order to gain insight into the mechanism causing instability and develop a simple, 

approximate means of predicting stability there. On the upstream meniscus, however, 

a similar force balance argument gives more than just an approximate predition of sta­
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bility. Indeed it was shown in section 4.3.2 that a 2-dimensional stabihty hypothesis 

will provide an accurate description of the stabihty there. Such an argument is now 
formulated in order to determine the stabihty of the upstream meniscus and explore the 

mechanism causing it to become unstable.

When the location of a meniscus of radius r is perturbed from an x-location xu to 
xu -f- e the net force acting on a unit area of the interface (in the negative x-direction) 

is given by

F  =  p(xu +  e ) + —f---- ——r (4.105)
r(xu +  e)

and so using (4.61) and hnearising, (4.105) becomes

F  =  ■ (4-106)
\dx r* dx )  x=u

If the meniscus is stable, it wiU return to its original position, and so, assuming e > 0, 

F  >  0. Therefore, for stabihty,

f3uT  ( dh\ < fd p \  _ (4.107)
h2 \ d x j u \dx

It is thus clear that at the upstream meniscus, surface tension effects have a destabil­

ising influence whereas the pressure gradient (at xu) has a stabihsing influence. These 

influences are opposite to those at the downstream interface. However, because the 
pressure gradient is always positive at the upstream free surface (see figures 4.19-4.22), 

for an unstable upstream interface the surface tension term must also be positive i.e. 
PuT > o. Hence for instabihty ( £ )  > 0 and so the upstream free surface must

he downstream of the nip.

After non-dimensionalising (4.107) it can be seen that for instabihty (via the S.H.),

gu{U ,N  =  0) > 0, (4.108)

where gu(U,N  = 0) is given by equation (4.96). A plot of gu(U,N  =  0) against Hl is 

shown in figure 4.31 for Ca  =  0.01, S =  1.00 and h0/ R  =  0.001. As H% is decreased, 

gu(U, N  =  0) increases and so decreasing Hi has a destabilising effect. However, solu­

tions for the base flow break down before the point when gu(U, N  — 0) — 0, although 

the two events appear to be so close that they can be taken to occur at the same value of 
H{. The graph is in accord with the linear stabihty analysis (as expected) and predicts 

a critical inlet film thickness, Hi =  0.193.
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Plots of gu(U, N  =  0) against Ca  and S are shown in figures 4.32 and 4.33 respectively 

for h o /R  =  0.001 and Hi =  0.35. Increasing both S and Ca  increases gu{U ,N  =  0) and 

therefore has a destabilising effect on the upstream free surface. Again, the conditions 
at which base flow solutions can no longer be obtained (which occur before the point 

when gu(U ,N  =  0) =  0) are taken to be the conditions at which the instability arises. 
Therefore, the graphs show that for 5 =  1.00 (and the above conditions) a critical cap­

illary number, Ca  =  0.0158, exists above which the upstream free surface is unstable, 

and likewise for Ca =  0.01 there is a critical speed ratio, S = 1.686, above which the

upstream free surface is unstable.

4 .3 .5  O p e r a b il ity  d ia g ra m s  in  th e  C a  -  Hi p la n e

For specific S and ho/R  values, operability diagrams in the Ca -  Hi can be mapped 
out, see for example figure 4.35 for S =  1.00 and h0/ R  =  0.001. The shaded region, 

which marks the region of stability, is bounded by three lines:

1. The height of this stable coating window is bounded above (i.e. as Ca  is increased) 

by the onset of instability on the downstream interface (predicted by the S.H.). 
The critical capillary number to mark the onset of this instability increases as Hz

increases (as predicted).

2. The coating window is bounded to the right (i.e. as Hi is increased) by the 
maximum inlet film thickness to give an inlet flooded, forward roll coater. This 

maximum Hl marginally decreases a sC a  increases.

3. The coating window is bounded to the left (i.e. as Hi is decreased) by the onset 

o f instability on the upstream free surface (predicted identically by the S.H. and 
linear stability analysis). As was shown earlier, as Hi is reduced, the critical 

capillary number marking the onset of this instability, more commonly known as

bead break, reduces.

Figures 4.34-4.36 show operability diagrams for the cases S =  0.50, S =  1.00 and 

S =  1.50 with h0/ R  =  0.001. This change in S can influence all three lines which bound

the stable operating window and so has three effects.

1. As 5 is increased the critical capillary number which marks the onset of instabil­

ity on the downstream interface decreases i.e. the height of the coating window 

decreases, as predicted by the analysis carried out for the inlet flooded forward

roll coater.
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Figure 4.31: Graph of gu(U ,N  =  0) against H, for h0/ R  =  10 3, Ca -  0.01 and 

S =  1.00, where stability is ensured (via the S.H.) if gu(U ,N  =  0) < 0.

Capillary number, Ca

Figure 4.32: Graph of gu(U ,N  = 0) against Ca  for h o /R  =  10“ 3, H % =  0.35 and 

5 = 1.00, where stability is ensured (via the S.H.) if gu(U, N  =  0) < 0.

Figure 4.33: Graph of gu(U ,N  =  0) against S for h o /R  =  10 3, Hi =  0.35 and Ca -  

0.01, where stability is ensured (via the S.H.) if gu(U, N  — 0) < 0.
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2. For a fixed H it as 5 is increased bead break occurs for a smaller value of Ca, so 

stable thinner films are more difficult to obtain.

3. For a fixed Ca, the maximum inlet film thickness to give a flooded inlet increases 

as S increases.

The effect of changing the value of ho / R  on the operability diagram is shown by figures 

4.37-4.39 for ho / R =  0.005, h o / R  = 0.001 and ho / R =  0.0002 with 5 =  1.00. This 
change in gap ratio will also influence each line bounding the stable operating window

and so has three effects:

1. Increasing ho / R  increases the critical capillary number marking the onset of insta­

bility on the downstream interface i.e. the height of the coating window increases, 

as predicted by the analysis carried out for the inlet flooded forward roll coater.

2. For fixed Hi, as ho / R  is increased bead break occurs for a larger value of Ca  

making stable thinner films easier to obtain.

3. The effect of h0/ R  has a negligible effect on the maximum inlet film thickness to 

give a flooded inlet.

A comparison of the operability diagrams predicted by the hnear stability analysis 

(L.S.A) and stability hypothesis is shown in figure 4.40 by means of critical curves in 
the C a - H i  plane for 5  =  1.00 and h0/ R  =  0.001. The only difference in the predicted 

stable operating window is for instability at the downstream interface, where the S.H. 

underpredicts the critical capillary number for the onset of instability (as with inlet 

flooded, forward and reverse roll coating). As already shown, the S.H. at the upstream 

free surface accurately predicts the onset of instability (bead break).
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Inlet film thickness, Hi

Figure 4.34: Operability diagram in the Ca -  Hi plane for 5 -  0.50 and h o / R  0.001.
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Figure 4.35: Operabihty diagram in the Ca -  Hi plane for S  -  1.00 and h o / R  0.001.
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Figure 4.36: Operabihty diagram in the Ca -  Hi plane for S  — 1.50 and h o / R  -  0.001.
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Figure 4.37: Operability diagram in the Ca -  Hi plane for 5 =  1.00 and h0/R  -  0.005.
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Figure 4.39: Operability diagram in the C a — Hi plane for 5 — 1.00 and h0/R  — 0.0002.
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Figure 4.40: Operability diagram in the Ca — Hi plane for S =  1.00 and h o /R  — 0.001 

obtained using both a linear stability analysis (L.S.A.) and stability hypothesis (S.H.).
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4.4 Conclusions

In this chapter, instabilities in forward roll coating have been investigated both analyt­

ically and numerically. The flooded case was examined using Hnear stability analysis, a 

stability hypothesis and a numerical technique based on the FE method. It was shown 

that decreasing Ca and S and increasing ho/Rh.&s a stabilising effect. As in the reverse 

case, the S.H. is sufficient for predicting stability only and the agreement with the hnear 

stability analysis improves with decreasing h0 /R .  However, unlike the reverse case, the 

numerical approach has very good agreement with the hnear stability theory. It is the 

author’s opinion that this contrast is due to the absence of a dynamic contact line. In 

particular, the main difference between the analytical and numerical modelling of the 

base flow for the reverse roll coater arises in the need to impose a shp condition in the 

numerics to avoid a stress singularity. The analytical approach does not include effects 

local to the wetting line and so is less accurate.

Inlet starved, forward roll coating was then investigated, in which the coater was fed by 

a film o f dimensionless thickness Hi. By using Hnear stabihty theory and the stability 

hypothesis it was shown that, as with the inlet flooded case, ribbing can appear on the 

downstream free surface and reducing Hi has the effect of destabilising the flow. The 

downstream stabihty hypothesis again underpredicted the critical capillary number for 

the onset of this instability.

Malone [1992] and Gaskell et al [1998] noted from experiment the presence of an in­

stability arising from the upstream free surface which they termed bead break. They 
showed that increasing Ca or 5 moved the upstream meniscus to the same side of the 

nip as the downstream free surface and that a further increase caused it to accelerate 

rapidly towards the downstream meniscus, at which point the coating bead collapsed. 

This instability has been verified analytically in this chapter using 3-dimensional Hnear 

stabihty theory, from which it was also shown that decreasing Hi also gives bead break. 

It was then proved that an upstream stability hypothesis gives an accurate (i.e. identical 

to the Hnear stabihty analysis) description of the stabihty of the upstream free surface 

(unhke the downstream case), confirming the assertion by GaskeU et al that bead break 

is a 2-dimensional instabihty.
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5.1 Introduction

Slot coating, otherwise known as extrusion coating, is an extremely versatile premetered 

process for coating single or multiple layers of liquid onto a moving substrate. With 

a single external design, a very wide range of apphcations can be handled for hquids 

whose viscosity hes in the range from less than 1 m Pas to several thousand Pas. The 

substrate velocity can similarly cover a wide range of values, from less than 0.1ms 1 to 

in excess of 10ms_1. The minimum wet thickness achievable is of the order of 10 fim 

with a realisation of less than ±2.5%. Examples of hquids apphed with a slot coater 
are photosensitive materials e.g. photoresist, magnetic suspensions, wax, inks, hot melt 

adhesives, silicon, rubber and foams (Aurin [1985], Campbell [1980], Lippert [1987]). 

Low viscosity melts of alloys, metals and organic materials can also be apphed using a 

slot arrangement (Carpenter and Steen [1990]).

During the process, hquid is forced through a coating die and fed onto the substrate, see 

figure 5.1. Within this coating die, a distribution system, consisting of a distribution

Figure 5.1: Main features of a slot coater.

chamber and a feed slot, provides a uniform hquid flow rate. Note that the different de­

signs of this distribution system are not discussed here since they form a separate topic 

of interest in their own right (see, for example, Sartor [1990]) and play no role m the
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subsequent investigations. The feed slot separates the downstream and upstream die 

lips. The region between the the die lips and substrate is known as the coating gap and 
is typically from 100 to 500[im across. During operation this space is filled partially or 

wholly by fluid - this liquid, termed the coating bead, is confined by the upstream and 
downstream menisci. The static contact hne at the downstream meniscus can either 

be pinned at the lip edge (see figure 5.2(a)), regress into the coating gap (see figuie 

5.2(b)), or climb along the shoulder of the die (see figure 5.2(c)) - see Sartor [1990]. 

This is dependent on the fluid and geometrical parameters, including the angle 8 , see 

figure 5.2 (see Gibbs [1961], Oliver, Huh and Mason [1977] and Schweizer [1988]). If the

Figure 5.2: Various possible positions of the downstream static wetting hne.

downstream static contact hne is unpinned, it will meet the downstream lip or shoulder 

with a characteristic static contact angle, (f> (see chapter 1). The upstream free surface 

meets the coating bead on the upstream hp at a static contact hne. On the opposite 

side of the coating gap, the free surface meets the substrate at a dynamic contact hne.

In order to maintain the coating bead, a vacuum is often applied behind the upstream 

meniscus (Beguin [1954]). This imposed potential counteracts the pressure drop across 

the bead due to capillary and viscous effects, enabhng thinner films to be applied. The 

greater this back pressure, pb, the further upstream lies the upstream meniscus.



165

A qualitative description of the change in the coating bead due to variations of the 
feed flow rate with the web speed kept constant has been described by Durst and Wag­

ner [1997] and is shown in figure 5.3. If the flow rate is too low, the liquid cannot

( a )  Q j
(b)

S3 rLL

(C)

(d)
\

--------7
(e ) (f)

Figure 5.3: Influence of the flow rate on the shape of the coating bead. The flow rate is 

increasing from (a) to (f) (Durst and Wagner [1997]).

maintain a stable liquid bridge across the coating gap and single drops or rivulets will 

form on the substrate, as shown in figures 5.3(a) and 5.3(b) respectively. In (b), the 

dragging action of the moving substrate on the liquid is stronger than the stabilising 

effects of fluid inertia and capiUary forces. Disturbances, present in any coating process, 

propagating faster than the liquid velocity, lead to a rupture of the liquid bridge and 

so several hquid bridges form in the cross web direction, each being stable, owing to 
a higher flow rate within it. Increasing the flow rate leads to a stable situation, as in 

5.3(c). The hquid partially or completely fills the gap under the downstream lip and 
the upstream meniscus bridges the coating gap at the exit of the feed slot. The viscous 

forces caused by the moving web are balanced by a drop in capillary pressure between 

the free surfaces. Increasing the flow rate further increases the pressure drop within 

the downstream coating gap and so the pressure level at the feed slot increases. The 
fluid is pushed into the upstream region of the coating gap against the the direction 

of the web motion. The wetting meniscus moves into the rear gap and the upstream 

die hp wets as indicated in figures 5.3(d) and 5.3(e). Figure 5.3(f) shows the coating 

bead when the limit of stable coating conditions is reached after a further increase in 

the flow rate. The pressure drop within the downstream coating gap increases and the 

pressure at the feed slot is now so high that it cannot be reduced sufficiently by the 

viscous forces within the upstream region. The capillary forces at the upstream menis­
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cus cannot compensate for the pressure difference between the hquid and the gas and 

so the upstream meniscus swells and fluid wets the upstream die shoulder. The wetting 
meniscus can no longer bridge the gap and the coating fluid spills onto the substrate, a 

phenomenon often termed weeping or tears. If the downstream meniscus does not pm 
at the edge of the downstream lip, the film forming meniscus climbs up the die shoulder.

Within the parameter space of web speed against upstream vacuum pressure a region 

exists for which the coated film is defect free. This region is termed the coating window, 
a typical example of which is shown in figure 5.4. Manufacturers have learnt that the

| Swelling and Weeping 
at Upstream Meniscus Air Entrapment

3
C fl
COCD

E□
03>

Figure 5.4: Coating window and flow instabilities for variable vacuum pressure, web 

speed and film thickness (Sartor [1990]).

breadth of the coating window is related to, amongst other things, the shape of the 

lips of the die and their distance from the substrate. Indeed, numerous patents have 

been granted for various slot geometries directed at enlarging the operating window, 

see figure 5.5. Clearly these geometrical parameters will have a significant effect on the 

meniscus locations as well as the velocity and pressure field within the coating bead.

Ruschak [1976] was the first to analyse the coating window of a slot coater. He ne­

glected viscous effects so that the capillary pressure alone set the bounds on the coating 

bead operability. His model was valid for low flow rate, low web speed and small die

Rivulets
Too Fast:

Air Entrapment 
Low Flow Limit

Ribbing

Too Little Vacuum 
Barring, Air Entrainment 
Ribbing and Rivulets

-----------------------►
Web Speed

 ̂ Too Much Vacuum: 
Swelling and Weeping 
at Upstream Meniscus
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Figure 5.5: Various die designs of the slot coater. Figures (a), (b) and (c) are from 

Kageyama and Yoshida [1986]. Figures (d) and (e) are from 0  Brien [1984] and figure 

(f) is from Aitken [1964].
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lip lengths. Higgins and Scriven [1980] extended this work to include viscous effects, 

which might become important when the bead length and web speed are not exceed­

ingly small. The case of an unpinned downstream meniscus was not examined since this 

was thought to be a rare occurrence. They did however investigate the effects of both 

a pinned and unpinned upstream meniscus. Although more accurate than Ruschak s 

model, their viscocapillary model retained approximations that are only valid when the 

web speed and flow rate are small. The menisci are considered as arcs of circles and 

the radius of curvature (and hence capillary pressure) at the downstream meniscus is 

estimated using the Landau-Levich [1942] boundary condition. In addition, the model 

assumes unidirectional flow, an approximation which breaks down where the flow is 2- 

dimensional, namely at the entrance flow region and the regions close to the free surfaces.

Giavedoni and Saita [1993] compared the predictions from Higgins and Scnven’s [1980] 

viscocapillary model with results from a finite element analysis. They found that at 

high web speeds, the viscocapiUary model overestimated the numerical predictions for 

the differential pressure along the coating bead, the error being largely due to the 2- 

dimensional zone near the upstream meniscus. This error was seen to increase as the 

flow rate increased. At low web speeds, the main source of error was found to be the 

effect of gravity on the downstream meniscus. Thus, they found that the viscocapillary 

model accurately predicted the differential pressure to be sustained by the coating bead 

provided smaU flow rates and low coating speeds were used and gravity effects could be 
neglected. Further, even if the operating conditions are far from those indicated above, 

the viscocapillary model would still be a useful guide because the differential pressuie 

it predicts can be considered as an upper bound of the actual differential pressure to be 

apphed between the ends of the coating device.

The operability diagrams predicted by Higgins and Scriven [1980] do not consider the 

growth o f disturbances with time; only hnear and non-hnear stability analyses, of which 

there are few in the literature, can provide such information. An analysis of the sensi­

tivity of the upstream meniscus to 3-dimensional disturbances was made by Higgins and 

Brown [1984], which confirmed the results of the static analysis previously undertaken 

by Higgins and Scriven [1980]. Instabilities have also been briefly examined experi­

mentally by Sartor [1990] and Durst and Wagner [1997]. However, since the upstream 

vacuum pressure affects the instabilities, the author is o f the opinion that the instability 

originates at the upstream free surface, a postulation that is later confirmed by using a 

hnear stability analysis to investigate the effect of pb on the stability of the downstream
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interface. Experiments by Kapur [1998] show that ribbing on the downstream meniscus 

only occurs when the static wetting hne is not pinned but free to move along the down­
stream die hp (thus providing a plausible explanation for the use of the die designs m 

figures 5.5(b) and (c) - the jagged downstream hp allows the film forming meniscus to 

pin at more than one location). These experiments prompted the present investigation 

of the ribbing instabihty on the downstream free surface in terms of a finite element 
hnear stabihty analysis (described in chapter 2) apphed to the slot coating problem 

with an unpinned downstream wetting hne. Firstly, a finite element base flow for the 
case of a pinned downstream meniscus is obtained and the effect of various fluid and 

geometrical parameters considered (see section 5.2.1). The resulting pressure profiles 

and upstream meniscus locations are compared to those predicted via a model based 

on lubrication theory, see section 5.2.2. In section 5.2.3, the finite element base flow 

is extended to include an unpinned downstream wetting hne - the resulting pressure 
profiles and menisci locations are again compared to those in section 5.2.1 i.e. when a 

pinned downstream contact hne was used. Finally, hnear stabihty theory is apphed to 
the unpinned case and the effect o f various fluid and geometrical parameters on the sta­

bihty of the flow examined (see section 5.3). Note that instabihties on the upstream free 

surface are not examined since a comprehensively different finite element mesh would 

be required - this is a topic for future work.
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5.2 Base flow

A schematic of a slot coater with the downstream pinned at the edge of the downstre 

die hp is shown in figure 5.6. The origin and centre of roller are marked by the positi

Figure 5.6: Schematic of a slot coater with variable geometry.

0  and C  respectively. All distances are non-dimensionalised with respect to h i , 

non-dimensional flux is A =  hoo/hi, Hi =  hi /hi ,  H 2 =  h2/h\, Xd — x<l/hi, X c d  l 

and R =  r /h i .

This problem is solved using the finite element method described in chaptei -  all g 

for maximum flexibility in the associated geometry. The boundary conditions, 

in figure 5.7, are as follows:

1. At the upstream and downstream free surfaces, the usual kinematic and stress 

boundary conditions are imposed (see chapter 2).

2. A zero traction condition is imposed at the downstream outlet.

3. At the dynamic wetting hne, the apparent contact angle, dd, is specified. In 
addition, as discussed in chapters 1 and 2, a hnear slip distribution is specified
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Lubrication
boundary
conditions

Dynam ic wetting line 
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Figure 5.7: Computational boundary conditions for the slot coater.

over the element next to the wetting hne (on the surface of the curved substrate) 

to avoid the stress singularity.

4. At the inflow boundary within the slot, lubrication theory is used to provide the 

velocity profile.

5. No-shp conditions are apphed on the substrate and the upstream and downstream 

die hp surfaces.

The first FE solutions of a slot coater geometry were obtained by Silhman and Scnven 

[1980], who only simulated the downstream end of the problem. They used a mesh 

in which the downstream free surface is represented by a series of vertical spines, see 

figure 5.8. However, their solutions were restricted to a certain region of parametei 

space because decreasing the flux caused the curvature of the free surface to increase. 

This, in practice, results in the meniscus receding into the gap, a feature which verti­

cal spines cannot contend with. Accordingly, in order to achieve greater flexibility, the 

computational grid employed here for the downstream is similar to that used by Saito 

and Scriven [1981], Carter [1985] and Thompson [1992], where the spines which capture 

the free surface position eminate from an origin P outside the flow domain - see figure 5.9.
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Figure 5.8: Schematic of the grid employed by Silliman and Scriven [1980] to tessellate 

the downstream region of a slot coater. Note that, for the sake of clarity, the mid-spines

have been omitted.
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Spines normal 
to roll surface

Figure 5.9: Schematic of the grid used to tessellate the slot coater. Note that for clarity 

the mid-spines have been omitted.
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The full slot coating geometry divides naturally into five regions: In region 1, horizontal 

spines with base nodes on the hne X M U determine the location of the upstream free 
surface. The y-location of each node in this region is obtained by equally spacing the 

nodes between the upstream lip and the curved substrate. The parameter X M u is an 

unknown; varying it allows the entire upstream grid to move in response to the upstream 

free surface. Indeed, as X M U changes, nodes in region 2 undergo a concertina type mo­

tion. Nodes in the inlet region, region 3, remain fixed. The parametrisation of the nodes 

in the downstream region depends on the movement of the downstream wetting hne. 

If stationary (i.e. pinned), the location of the nodes in region 4 remain fixed. Spines 
which describe the position of the downstream free surface in region 5 either have base 

points located on the fixed hne X M d or on the curved substrate. A specified number 

of these spines pass through a polar origin P, which hes at a fixed distance from the 

wetting hne, and all others are perpendicular to the web. If the downstream wetting 

hne is free to move along the hp, then X M d becomes an unknown parameter and nodes 

in region 4 undergo a concertina type motion as it changes. The downstream static 

contact angle, <p, is specified in order to determine X M d.

The computational mesh used in this study consists of 1711 nodes, 776 elements and 

3411 unknowns (3412 unknowns if the downstream contact hne is free to move), see 

figure 5.10. Solutions obtained using this grid were compared to those from a grid

Figure 5.10: Finite element grid containing 1711 nodes and 776 elements.

containing 2147 nodes, 992 elements and 4388 unknowns to test the sensitivity of the 

solutions to grid refinement. It was observed that when using the two grids, the location 

of the upstream free surface changed by less than 0.0001%. This suggests that the grid 

containing 1711 nodes is refined enough to achieve accurate solutions. Tests were also 

made to ensure that inlet height and outlet film length were long enough so that they 

had no effect on the solution. Note that for the remainder of this study, 9S =  60°, 

ed =  120°, P = 0.0 =  7 =  0.0, Hi =  l .o  and a roll with an infinite radius of curvature

(i.e. a flat substrate) is used unless otherwise specified.
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5.2.1 Downstream pinned: computational approach

This case was considered by Sartor [1990], who examined the flow structure for various 

fluid and geometrical parameters, see figure 5.11. Figure 5.11 (1) represents the ideal

Figure 5.11: Possible flow structures in slot coating (Sartor [1990]).

vortexless bead. However, when the film thickness is less than one third of the coating 

gap, an eddy forms under the downstream die Up, as shown in (2). Also, from (1), if 

the downstream wetting fine climbs the shoulder of the lip, then a vortex can form as 

in (3). Similarly, an eddy can form at the upstream static wetting line as in (4). The 

wetting of the shoulder in (3) is caused by too thick a film or too slow a coating speed 

for a particular coating gap. The eddy in (4) is caused by a low vacuum. If the feed slot 

width is larger than five times the final film thickness, a vortex can form at the mouth 

of the feed slot as in (5). Vortices can also combine (e.g. (2) and (5) give (6), (2) and
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(3) give (7) and (6) and (7) give (8)) or coexist if they are too far apart (e.g. (3) and (4)).

Typical streamlines obtained using the grid described above (see figure 5.10) are shown 

in figure 5.12. Note that when the aspect ratio in the upstream region diminishes be­
yond a certain value, it has been found here that it is possible for a recirculation to form 

under the upstream die lip (as in free surface, cavity flows, see Thompson [1992], Gurcan

[1996], Wilson [1997]). Above this critical aspect ratio, there is only turn around flow

in the upstream region.

Figures 5.13-5.15 show pressure profiles obtained using this FE approach. Note that 
the pressure profile is taken from the upstream free surface to X M d along the centre of

the coating bead.

Figure 5.13 shows pressure profiles for a =  0.0, Ca  =  0.05, X M d — 4.50, pb -  50.0, 

H 2  =  1-0 and various A values. Whereas the pressure gradient in the upstream region 

retains the same positive value for each A, the downstream pressure gradient decreases 

as A increases. In fact, for the given conditions, if A < 0.50 then g -  > 0, if A =  O.oO 
then dP _  o and if A > 0.50 then g  < 0. Thus, if A < 0.50 a back pressure is required 

in order to maintain the coating bead, as shown by Beguin [1954], Note that increasing 

A also moves the upstream free surface towards the inlet.

The effect of a on the pressure profiles is shown in figure 5.14 for A =  0.50, Ca = 0.05, 

X M d =  4.50, pb =  -5 0 .0  and H 2 = 1.0. Increasing a increases the pressure gradient m 

the downstream region and, if a  > 0.00 then >  0, if a -  0.00 then dX -  0 and if 

a  < 0.00 then < 0. Increasing a has no effect on the positive, constant, upstream 

pressure gradient although the wetting meniscus moves marginally towards the nip.

Figure 5.15 shows pressure profiles for a -  0.05, A =  0.50, Ca  = 0.05, pb -  50.0, 

H 2 = 1.0 and various X M d. Altering X M d has no effect on the upstream pressure 

gradient, although the upstream meniscus moves towards the inlet as X M d increases 

(for the above conditions). This movement is however significantly dependent on a and 

A and under certain conditions the upstream free surface can move away from the inlet 

with increasing X M d (e.g. for a =  0.00 and A =  0.60). Increasing X M d also increases 

the pressure gradient at the downstream outlet.

The effects of Ca, pb and H 2 on the dynamic wetting hne location are shown in fig-
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(b)

(d)

Figure 5.12: Typical streamlines obtained using an FE grid with 1711 nodes. Flow

conditions: (a) Ca  =  0.05, A =  0.40, pb =  -50 .0 , a =  (3 =  7 =  0-0> H 2 = 1 00 ’ 
X d =  5.00, Hi =  1.00, X c =  0.00 and R  =  108; (b) as (a) with A =  0.25; (c) as (a) with 

Hi =  2.50; (d) as (c) with A =  0.24; (e) as (b) with a  =  0.10, f3 =  -0 .05  and 7 =  0.15; 

(f) as (b) with R =  200.0 and H 2 =  1-50.
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ures 5.16, 5.17 and 5.18 respectively. Note that their effect on the downstream region 

was found to be minimal. As C c increases, the dynamic wetting hne moves furth 

away from the inlet (due to an increase in the capillary pressure at the downstre 

meniscus). However, this effect is only marginal unless Ca  is very small (Ca  < 0.1, 

For the the parameters shown (i.e. a =  0.00, A =  0.50, X M d  =  4.50, pb — 50.0 
and H 2 =  1.0), there is a minimum Ca  below which solutions could not be obtained 

because the upstream free surface moved so close to the inlet that meshing difficulties 

occurred. As the back pressure, pb, is increased in magnitude, the upstream meniscu 
moves further away from the inlet (the pressure gradient remaining the same). For the 

parameters shown, solutions could not be obtained for pb > —14.8, again because 
meshing problems. The effect of increasing H 2  is to move the upstream free surface 

further away from the inlet (and reduce the pressure gradient in the upstream re0ion). 

Meshing difficulties once again become a problem when the upstream free surface is too 

close to the inlet and for the conditions indicated in figure 5.18, solutions could not be 

obtained for H 2 < 0.5.

Note that the effect of increasing (3 on the upstream free surface location is similar 
to that of decreasing H 2 as the upstream coating gap is effectively narrowed. However, 

j3 does have an effect on the upstream pressure gradient, which is no longer constant for 

P ^  0.0. In fact, as wih be shown later using lubrication theory, the pressure gradient 

in the upstream region is inversely proportional to the square of the distance between 
the upstream hp and web. Similarly, the effect of including a more sizeable radius of 

curvature of the roller (and different roll centre positions) is quahtatively similar to 

certain values of H 2, (3 and a, the effects of which have already been noted.

5.2.2 Downstream pinned: analytical approach

Here, the aim is to develop a model for a slot coater (with a pinned downstream) based 

on the lubrication approximation, in order to predict the velocity and pressure field 

together with the location of the upstream meniscus. The predictions obtained will be 

compared to the results obtained using the finite element method in the above section.

Neglecting body forces, transient and inertia terms, the Navier-Stokes equations reduce 

to

0 =  - V p  +  / /V 2u- t5 -1)
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x-location

Figure 5.13: Pressure profiles for a =  0.00, Ca  =  0.05, X M d  — 4.50, pb 

H 2 =  1.0 and various A.

Figure 5.14: Pressure profiles for A =  0.50, Ca  =  0.05, X M d  — 4.50, pb 

H 2 =  1.0 and various a.

-50 .0 ,

=  -50 .0 ,

Figure 5.15: Pressure profiles for a =  0.05, A =  0.50, Ca  — 0.05, pb — 50.0, 

and various X M d ■
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Figure 5.16: Dynamic wetting line x-location against capillary number (Ca) for 

0.00, A =  0.50, X M d =  4.50, pb =  -50 .0  and H 2 =  1.0.

Figure 5.17: Dynamic wetting line x-location against back pressure (pb) for a 

A =  0.50, Ca =  0.05, X M d =  4.50 and H 2 =  1.0.

a —

0.00,

Figure 5.18: Dynamic wetting line x-location against H 2 for a  =  0.00, A -  0.50, Ca -  

0.05, X M d =  4.50 and pb =  -50 .0 .
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Assuming unidirectional flow and that velocity gradients across the bead are n e g l i g i b l e  

i.e. d u /d x  < <  d u /d y  then (5.1) becomes

d?  _  d2u (5-2)
dx ^Q y2

and

£  =  o. <5'3)dy

Hence p =  p(x ) and therefore integrating (5.2) twice and imposing the no slip boundary 

conditions on the upstream and downstream hps (which are assumed to join up at the 
centre of the inlet) and roll i.e.

u =  U at y =  0 (5 '4^

u =  0 at y — h(x)

gives

« =   ̂ (55> 

where h(x) is the gap width between the roll and die hp. The flux Q is given by

Q=r\iy <5-6>
Jo

which, using (5.5), becomes
■J

0  =  (5-7) 
1 2 fi dx 2

At this stage, the flow in the slot coater can be spht up into two regions, separated by 

the centre of the inlet. In the downstream region the flux, Q R, past any station x is 

constant and equal to the flux in the uniform film of thickness h^  attached to the roll,

Qr =  Uh«*,_/ (5-8)

Therefore, the pressure gradient in the downstream region, (d p /d x )R, is

dp \R _  (^ 7  /  _  2^oo\ (5.9)
dx J h2

In the upstream region there is no net flow i.e. so the the flux, Q L, is given by

q l  =  0> (5 .10)

and the pressure gradient in the upstream region, ( dp /dx )L, by

dp\ _  6 ( 5. H)  
dx J h?
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As with finite element case (see figure 5.6), ah distances are non-dimensionalised with 

respect to h\. Hence, by introducing non-dimensional variables defined by

h
hi ’
hoo

~h.i' 
x

hi 
P  =

hi ’ 
hi

H U *’

equations 5.9 and 5.11 become

dp \ R _  _*>_/ ^  1 2  ̂

d X j  ~ H2 \ H j

and

H Y  -  A  (5.13)
d x )  ~ i? 2

respectively i.e. so the pressure gradient in the downstream region depends on the dis­

tance between the lip and roll together with the flux, whereas the pressure gradient m 

the upstream region is only related to the distance between the lip and curved substrate.

Boundary conditions:

At the downstream meniscus, a balance of fluid and surface tension pressure is used 

to describe the pressure, i.e.

p(xd) = ----- > (5-14)
Td

where x d is the x-location of the downstream meniscus and rd is its radius of curvature. 

The Landau-Levich [1942] and Ruschak [1981] conditions,

' Q.WCa} / 2  1 0 -2 <  Ca <  10"1
(5.15)

v 1.34Ca2/ 3 Ca <  1 0 '2,

are then used to determine rd. Hence, the non-dimensional pressure at the downstream 

meniscus is

hoo

<£

P (X i)  =  -  1
CaRd

-0 -56Ca~1/2. 10-2 < Ca <  10_1A

■ 1-34C,a Ca <  10-2 ,
A

(5.16)
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where R d is the non-dimensional rd. The pressure at the upstream free surface is g 

by the surface tension and vacuum pressure i.e.

f \ T  u (5-17^p{xu) -  - — + pb,
T'u

where ru is the radius of curvature of the upstream meniscus which is located
1 .  ̂ rirrle of whichlocation xu. This upstream meniscus can be modeUed by the arc 01 a >

all possible radii (i.e. shapes) are given by the expression

_  ________h(xu) _______ (5.18)
u cos (9S -  (3) +  cos (Od)

Hence the non-dimensional pressure at the upstream meniscus is,

, _  cos(fla - / 3 )  +  cos(gd) , ph (5.19)
[ u) H ( X u)Ca

Solution:

It only remains to specify the upstream and downstream die lip shapes and positions 

together with the roll radius and location. Equation (5.12) can then be integrated and 

the pressure (given by (5.16)) and location of the downstream meniscus used to calculate 

the pressure at the centre of the inlet. Equation (5.13) can then be integrated and solved 

for the upstream pressure and dimensionless meniscus location, X u• Figure 5.19 shows 
a comparison o f the pressure profiles predicted using the above lubrication theory with 

results obtained using the finite element method (for a  =  (3 =  7 =  0-0, Pb — 50.0, 
#2 =  1.0, Xd =  5.00, X M d  =  4.50 and various A). Note that the pressure profiles from 

the lubrication theory extend further than those from the FE method. This is because 
the pressure profiles obtained using the FE method end at X M d whereas those obtained 

using the model based on lubrication theory end at X d i.e. at the downstream contact 
hne. Clearly lubrication theory accurately predicts the upstream and downstream pres 

sure gradients as well as the upstream meniscus location. The main source of erior 

arises from equation (5.16) (i.e. the approximation for the pressure at the downstream 

free surface) which underpredicts (overpredicts) P (Xd) for large (small) A.

Note that it is not possible to formulate a model based on lubrication theory for an 

unpinned downstream. This is because it is necessary to know X d in order to deter 

mine the pressure at the centre of the inlet (which would then be used with (5.13) to 

determine the pressure and location of the upstream free surface). The following sec 

tion therefore examines the slot coater with an unpinned downstream using the finite 

element method only.
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Lubrication theory 
predictions

FE results

Figure 5.19: Comparison of pressure profiles predicted using lubrication theory with 

like results obtained using the FE method.

5.2.3 Downstream unpinned: computational approach

Sartor [1990] recognised that the downstream contact hne did not necessarily pm at 

the edge of the downstream die hp, although he did not study this case. This has 

been experimentally confirmed by Kapur [1998], who also examined the flow numeri­

cally using the finite element method for the case when the wetting hne climbed up the 

downstream die shoulder. Kapur further noted from experiment that ribs could only 

occur when operating in the unpinned regime. It is therefore the aim of this section 

to investigate slot coating with an unpinned, downstream, static wetting hne. Again, 

the effects o f the fluid and geometrical parameters will be considered, with particular 

attention given to the effect on the downstream contact hne location and downstream 

pressure gradient since it has already been shown in chapters 3 and 4 that these are
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crucial for ascertaining the stabihty of the downstream free surface. The same mesh is 

used as for the pinned case, although there are now 3412 unknowns - one more than for 

the pinned case because X M d  is now unknown.

Figure 5.20 shows resulting pressure profiles for the conditions a =  0.0575, Ca  =  0.05,

(f> =  145.0°, pb =  -5 0 .0 , H 2 =  1-0 and various A. As with the downstream pinned case, 
as the flux is increased the upstream meniscus moves away from the inlet (the upstream 

pressure gradient remaining the same). The effect on the downstream region is to re­

duce the pressure gradient (at the outlet) and move the free surface further downstream.

Pressure profiles for the conditions A =  0.60, Ca =  0.05, cf> =  145.0 , pb -  -50 .0 , 

H 2 = 1.0 and various a are shown in figure 5.21. Increasing a moves the downstream 

meniscus further upstream and reduces the pressure gradient at the outlet. The up­

stream pressure gradient remains the same and the meniscus moves marginally towards

the inlet.

Figure 5.22 shows pressure profiles for various Ca  with a =  0.05, A =  0.60, <p -  145.0 , 

pb =  -5 0 .0 , H 2 =  1.00. Note that Ca  has no effect on the pressure gradient in the 

upstream or downstream regions (as already shown using lubrication theory). However, 

decreasing Ca  does move the downstream meniscus away from the inlet which, m turn, 

gives rise to an increased pressure gradient at the outlet. In fact, for Ca  = 2.00 there 
is a negative pressure gradient at the outlet whereas for Ca  =  0.04 the gradient is pos­

itive there. The effect o f reducing Ca  on the upstream region is to move the meniscus 

towards the inlet (due to a reduction in the capillary pressure at the downstream free

surface, as in the pinned case).

The effect of the variation of 4> on the pressure profile is shown m figure 5.23 for 

a  =  0.05, A =  0.60, C a  =  0.05, pb =  -5 0 .0  and H 2 =  1.00. As with the capillary 

number, the downstream static contact angle, <j>, has no effect on the pressure gradient 

in the upstream or downstream regions. However, decreasing <j> causes the downstream 

meniscus to move further downstream (away from the inlet), thus again giving rise to 

an increased pressure gradient at the outlet. This change can be very significant e.g. 

for cf> =  140.0° the pressure gradient at the outlet is positive, whereas for <f> -  160.0 

it is negative. The only effect of decreasing 4> on the upstream region is to move the 

upstream meniscus marginally further towards the inlet. This is again due to a decrease 

in the capillary pressure at the downstream meniscus.
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Q)3

Figure 5.20: Pressure profiles for a — 

0.0575, Ca =  0.05, 4> =  145.0°, pb =  

-5 0 .0 , H 2 =  1-00 and various A.

Figure 5.22: Pressure profiles for a  =  

0.05, A =  0.60, <f> =  145.0°, pb =  -50 .0 , 

#2 =  1-00 and various Ca.

Figure 5.21: Pressure profiles for A = 

0.60, Ca  =  0.05, <f> =  145.0°, pb =  

-50 .0 , H 2  =  1-00 and various a.

Figure 5.23: Pressure profiles for a =  

0.05, A =  0.60, C a =  0.05, pb =  -50 .0 , 

#2 =  1-00 and various <f>.

-60
-15 -10 -5 0 5 10 15 20 25 

x-location

X = 0.60

X = 0.40
a = 0.0575 
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$= 145° 
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H2= 1.0
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5.3 Finite element stability analysis

The finite element hnear stability analysis described in chapter 2 is now applied to the 

slot coating problem with an unpinned downstream meniscus. Using the grid described 

above there are now 4846 degrees of freedom (as opposed to 3412 freedoms with the 

2-dimensional base flow). For each wavenumber, N , (and set of base flow, fluid and 

geometry parameters) an eigenvalue, E, is produced to indicate the stability. If, for a 

given base flow, the eigenvalue is negative for each wavenumber the base flow is sta­

ble. If one or more of the eigenvalues is positive then the base flow is unstable to the 

disturbance and ribbing appears. The following figures, 5.24-5.27, show such plots of 

eigenvalue against wavenumber as parameters vary.

Figure 5.24 shows a plot of the eigenvalue against wavenumber for various A with 

a = 0.0575, Ca =  0.05 <f> =  145°, pb =  -5 0 .0  and H 2  =  1.00. For A =  0.80 the 
eigenvalue is negative for all wavenumbers and so the disturbance decays and the base 

flow is stable. A critical flux, A*, exists (A =  0.60) for which $  =  E =  0 for a particular 
value of JV and E < 0 for all other N . The base flow is therefore ‘neutrally stable and 

all flows for which A < A* are unstable. A =  0.40 is an example of such an unstable 

base flow since E > 0 for N  in the range 0.16 < N  <  0.34. The base flow is stable to 

disturbances with wavenumber N  <  0.16 and N  > 0.34 (as S < 0 for all such values of 

N ).

The effect of the variation of a on the stability of the base flow is shown in figure 

5.25 for A =  0.60, Ca  =  0.05 ^ =  145.0°, pb =  -5 0 .0  and H 2 =  1.00. Increasing the 

downstream lip angle has a stabihsing effect and a critical a , a*, exists such that the 

base flow is stable for a  > a* and unstable for a < a*.

Figure 5.26 shows the a plot of eigenvalue against wavenumber for various downstream 

static contact angles, with A = 0.60, a  =  0.0575, C a  =  0.05, pb = -5 0 .0  and 

H 2 =  1.00. Increasing <t> clearly has a stabihsing effect and a critical <j>, $ * , exists such 

that the base flow is stable if <j> >  <t>* and unstable if <f> <  4>* ■

Plots of eigenvalue against wavenumber for various Ca  are shown in figure 5.27 foi 

A = 0.60, a  =  0.05 (f> =  145.0°, pb =  -5 0 .0  and H 2 =  1-00. Increasing Ca has a stabil­
ising effect and a critical Ca, C a*, exists such that the base flow is stable if Ca  > C a * 

and unstable if Ca <  Ca*. For the above conditions, Ca* =  0.08. This is opposite 

to the effect of increasing Ca  in forward and reverse roll coating where increasing Ca
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destabilises the downstream free surface to ribbing (see chapters 3 and 4).

Note that changing H 2, (3 and pb had no effect on the eigenvalue plots and conse­

quently no effect on the stabihty of the downstream interface.

These results could be quahtatively predicted by using a stabihty hypothesis (S.H.), 
as described in chapters 1, 3 and 4. This theory gives a simple condition to be apphed 

at the downstream interface for its stabihty, namely

where (d p /d x)R is given by equation (5.9), rd is the radius of curvature of the down­
stream meniscus and T  the surface tension of the fluid. If the pressure profiles in figures 

5.20-5.23 are re-examined, it is clear that increasing A, a, C a  and <j> ah reduce the 

pressure gradient at the outlet and so by using (5.20), their effect on the stabihty of 

the flow could be predicted. Once again, this illustrates the significance of the stabihty 

hypothesis in giving insight into the various mechanisms which affect the stabihty of an

(5.20)

interface.
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Figure 5.24: Growth rate (eigenvalue) against wavenumber for various A with a 

0.0575, Ca  =  0.05 <f> -  145°, pb -  -50 .0  and H 2  =  1-00.

Figure 5.25: Growth rate (eigenvalue) against wavenumber for various a  with A 0.60

C a  =  0.05 4> =  145.0°, pb =  -5 0 .0  and H 2 =  1-00.
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Figure 5.26: Growth rate (eigenvalue) against wavenumber for various <f> with A — 0.60, 

a =  0.0575, Ca  =  0.05, pb =  —50.0 and H 2 =  1.00.

Figure 5.27: Growth rate (eigenvalue) against wavenumber for various C a  with A =  0.60,

a =  0.05 <p =  145.0°, pb =  -5 0 .0  and H 2 =  1.00.
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5.4 Conclusions

In this chapter a finite element code has been used to analyse the two free surface, 

slot coating problem with a pinned downstream. The results show how the pressure 

profile and upstream meniscus location are affected by the various fluid and geometrical 

parameters. These numerical results are then compared with predictions obtained ana­

lytically using a model based on lubrication theory and, as with reverse and forward rod 

coating (chapters 3 and 4 respectively), lubrication theory is seen to accurately model 

the flow and accurately predict the upstream meniscus location and pressure profile.

Experiments by Kapur [1998], which show that ribbing cannot occur when the down­

stream wetting hne is pinned, prompted the numerical investigation of the unpinned 

case. The effect of the various fluid and geometrical parameters is considered on the 

pressure profiles, on both the upstream and downstream meniscus locations and on the 

stabihty of the downstream free surface (using the hnear stabihty theory described in 

chapter 2).

In summary, it is found that:

• Changing H 2, (3 and pb have no effect on the stabihty of the downstream interface.

• Increasing the flux (A), the downstream hp angle (ct), the downstream static 

contact angle (<̂>) and the capiUary number (Ca) ah promote the stabihty of the 

interface (for the parameters used).

• These results are in accord with predictions from the stabihty hypothesis.
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6.1 General review

The aim of this chapter is to review the work contained in this thesis and provide sug­

gestions for future work.

In chapter 1, coating flows were introduced and features common to them all, namely 

contact lines and free surfaces, described. A review of the relevant literature was pre­

sented with particular reference to reverse, forward and slot coating flows together with 

the types o f instabilities that occur in practice which limit their use to certain regions 

of parameter space. Various numerical methods capable of solving such free surface 

flows were outlined in chapter 2, including a thorough description of the finite element 

formulation using the method of weighted residuals. The particular form used through­

out this thesis is more commonly known as Galerkin’s method, where the weighting 

functions are the same as the interpolation functions used to approximate the depen­

dent variables. A numerical technique based on linear stability theory for analysing the 

stability of these flows was then described, the case of zero Reynolds number (which is 

relevant to this thesis) being examined in detail.

Chapter 3 concerned an investigation of the ribbing instability in inlet flooded, re­

verse roU coating. By considering a 3-dimensional perturbation to a 2-dimensional base 

flow modelled using lubrication theory, regions of instability in the Ca — S control space 

were established and found to be in accordance with experimental observation. For each 
ho/R,  there is a maximum value of Ca, Camax, below which the flow is stable for all 

values of speed ratio, S. For Ca  > Camax, increasing S has a stabihsing effect and it 

was shown that for particular values of S , there are two ranges of Ca  for which the base 

flow is stable (separated by an unstable range). For each Ca, there was also shown to 

to be a speed ratio beyond which no ribs occur (and a particular value of 5, S min, such 

that no ribbing occurs if 5  > Smin for any Ca). As h o / R  is increased, the region of 

stability increases such that S min decreases and Camax increases.

Results obtained using this hnear stabiUty analysis were then compared with predictions 

from a stabiUty hypothesis, that is a simple, 2-dimensional, force balance argument to 

determine the stabiUty o f the flow. Using this simple theory, it was shown that the effect 

of the various parameters on the stability of the downstream free surface can be ascer­

tained by examining their influence on the pressure gradient there and the meniscus 

location. This stabiUty hypothesis was also shown only to be sufficient for predicting 

stabiUty and the agreement with the hnear stabiUty analysis improved with decreasing



194

ho/R.

Results from the hnear stabihty analysis were also compared to those obtained using 

the numerical methods outhned in chapter 2, from which it was seen that the analytical 

approach overpredicted the critical capillary number for the onset of instabihty.

A variation of inlet flooded, reverse roll coating was then examined in which the nip was 

fed from above by a large reservoir of fluid (i.e. by a hydrostatic head). Initially, using 

a model based on lubrication theory, the effect of the hydrostatic head on the base flow 

was examined from which it was seen that increasing the height of the head or Stokes 

number, St, increased the thickness of the final film and moved the meniscus further 

downstream. After applying hnear stabihty theory to the base flow, the influence of 

gravity on the ribbing instabihty was determined again by means of critical curves in 

the Ca — S control space. It was thus observed that at low St, increasing the height of 

the head had a stabilising influence whereas at high St it had a destabihsing influence. 

The effect of increasing St was to destabihse the base flow.

Finally, an improved model of the dynamic contact hne, developed by Shikhmurzaev 

[1993a], was described in which the dynamic contact angle was no longer kept constant, 

but became a function of various fluid and geometrical parameters. The hmit of this 

theory for small capillary number was incorporated into the analytical model. Increas­
ing the static contact angle, 0 S, was seen to have two effects, the first of which was 

to reduce S rnin thus increasing the prospect of stability. However, increasing 6 S also 

reduces C amax which reduces the range of stabihty.

In chapter 4, instabihties in forward roll coating were investigated. As with the re­

verse roll coater described in chapter 3, the inlet flooded case was examined using hnear 

stabihty analysis, a stabihty hypothesis and the numerical approach based on the finite 

element technique. It was seen that increasing both Ca  and 5  have a destabihsing 

effect whereas increasing h o / R  has a stabihsing effect. This is unhke the reverse case, 

where increasing S has a stabihsing effect. Again the stabihty hypothesis was sufficient 

only for predicting stabihty and the agreement with the hnear stabihty analysis im­

proves with decreasing ho/R.  However, it was seen that the numerical approach gave 

very good agreement with the analytical predictions for the onset of ribbing. This is 

in contrast to the reverse case, where the analytical approach overpredicts the critical 

capillary number, which the author attributes to the the presence o f a dynamic contact



195

line. In particular, the main difference between the analytical and numerical modelling 

of the base flow for the reverse roll coater hes in the need to impose a slip condition in 
the numerics to avoid a stress singularity, whereas the analytical model does not include 

effects local to the wetting hne and so is less accurate.

Inlet starved forward roll coating was then examined, in which the coater is fed by 

a film o f non-dimensional thickness Hi. As with the inlet flooded case, the ribbing 

instability can still manifest on the downstream free surface and reducing Hi was seen 

to destabilise the flow to ribbing, a result obtained using the analytical hnear stabihty 

approach. As with the flooded case, the downstream stabihty hypothesis underpredicts 

the critical capillary number for the onset of this instability.

Malone [1992] and then Gaskell et al [1998] noted from experiments the presence of 

an instability termed bead break in which increasing Ca and S moved the upstream 

menicus to the same side of the nip as the downstream before it accelerated rapidly to 

the downstream free surface, at which point the coating bead collapsed. This instability 

was verified analytically here using 3-dimensional hnear stabihty theory, from which 

it was shown that reducing H x also destabilises the flow to bead break. It was then 

shown that a stabihty hypothesis apphed on the upstream free surface gives an accurate 

description of the stabihty there (unhke at the downstream free surface).

In chapter 5, the slot coating geometry was examined. This coating flow has many 

more geometrical parameters than forward and reverse roll coating and many experi­

mentalists have noted that these parameters affect the size and shape of the coating 

window in which a defect free film can be produced. A geometrically flexible finite 

element code was written in order to describe the flow, for which it was possible to use 

various lip shapes and a roll of variable location and radius. Initially, as had always 

been the case in the past, the numerical mesh incorporated a pinned downstream wet­

ting hne and the effect of the various fluid and geometrical parameters on the pressure 

profiles and upstream meniscus locations were examined. These numerical results were 

seen to compare favourably with predictions obtained analytically using a model based 

on lubrication theory, in which the main source of error was the approximation to the 

pressure at the downstream free surface.

Sartor [1990] showed that the downstream wetting hne did not always pin, but could 

also chmb along the die shoulder or regress into the coating gap. This has been con­
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firmed experimentally by Kapur [1998] who also noted that ribs could only occur when 

operating in the unpinned regime. This provided the motivation for a computational 

study o f the case in which the downstream, static contact hne had retreated from the 

lip edge towards the inlet. The pressure profiles and meniscus locations were compared 

with those in the downstream pinned case, and the numerical hnear stabihty analysis 

(described in chapter 2) was then used to determine the effect of the many fluid and 

geometrical parameters on the stabihty of the downstream free surface. It was seen that 

changing H 2, (3 and pb did not influence the stabihty of the downstream free surface. 

However, increasing the flux, downstream lip angle, downstream static contact angle 

and capillary number all promoted the prospect of stabihty (over the parameter range 

explored). Note that the capillary number effect is opposite to that in forward and 

revere roll coating where increasing Ca  has a destabihsing effect.

To conclude, it was shown that, as with forward and reverse roll coating, many of 

the effects of the fluid and geometrical parameters on the stabihty of the downstream 

free surface could be predicted by examining their effect on the two terms (pressure 

gradient and surface tension/geometry terms) in the stabihty condition derived via a 

stabihty hypothesis.

6.2 Suggestions for future work

All the coating flows investigated in this thesis have been for the case of Newtonian 

fluids. However, many industrial applications involve non-Newtonian fluids and so their 

effects should be examined.

The hnear stabihty theory apphed to the various coating methods examined assumes 

that the effects of inertia can be neglected. For the analytical approach, this is because 

the base flows are modelled using lubrication theory. The numerical approach can be 

used to obtain steady state solutions for non-zero Reynolds number but the hnear sta­

bihty analysis then becomes much more involved, with increased difficulty in solving 

for the leading eigenvalues (which determine the stabihty) because o f the presence of 

singular matrices and infinite eigenvalues (see chapter 2). However, although more com­

putationally expensive, these inertia effects may become important in certain regions of 

parameter space and should be explored.

For the reverse roll coating problem in particular, it still remains to examine the stabil­
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ity o f the two free surface case. This will have an effect on the ribbing instabihty and 

also enable the bead break instabihty to manifest under certain operating conditions.

For the slot coating geometry, there are many possible geometries still to consider as 

weU as the investigation of instabihties on the upstream free surface. This would require 

a new numerical mesh for the cases when the upstream free surface is pinned at the 

downstream edge of the upstream die hp and sweUs at the upstream edge. Also, there 

is considerable interest within the manufacturing community toward the use of two and 

more layer slot coating, the study of which provides the opportunity for several new 

areas of investigation - interfacial mixing, interfacial instabihty etc.

As discussed in chapter 1, ah coating flows must contain a dynamic wetting hne. In prin­

cipal, this region can be modelled more accurately by including Shikhmurzaev s [1993a] 

full model, as opposed to the asymptotic theory (see chapter 3) or models which require 

the dynamic contact angle to be specified (see chapter 1). Including this model would 

make the dynamic contact angle and shp region dependent on aU the hydrodynamic 

and geometrical parameters, a dependence which should be included in the numerical 

codes and examined.

Finally, to obtain a better understanding as to how instabihtes form and develop, nu­

merical, time dependent models should be formulated. This would also enable the 

parameters at which time-dependent instabihties occur to be determined e.g. for inlet 

flooded reverse roU coating, a time dependent instabihty known as cascade occurs at 

large S.



Appendix A

An examination of the force 
balance on a perturbed interface

From the downstream stabihty hypothesis used in chapters 3 and 4 it was determined 

that an approximate way to ascertain if the base flow is stable is to compare the cap­

illary and fluid pressures at the meniscus; if the former dominate the latter then the 

flow is stable. However, it was shown that this force balance, which neglects curvature 

in the third dimension, is only a sufficient condition for predicting stabihty. The aim of 

this section is to investigate how accurately a 3-dimensional pressure balance predicts 

stabihty i.e. one which includes meniscus curvature in the x — z plane which depends on 

each wavenumber, N . It is expected that for stable wavenumbers, i.e. those for which 

£(iV ) < 0, surface tension forces will dominate i.e. g ( D , N )  will be positive.

Note that the following graphs are obtained using the hnear stabihty analysis of in­

let flooded reverse roll coating for S =  0.500 and h0/ R  = 10~4. The curves shown 
identify ah quahtative changes in g ( D , N )  and Yl(N) for all S and h o / R  and are also 

typical of inlet flooded forward roll coating.

Figure A .l (Ca =  0.01 < C a *) shows an example of stabihty as S < 0 for ah N.  

g(D)  >  0 throughout the domain and so surface tension effects are dominating pressure 

gradient effects to give stabihty, as expected. Further, g ( D , N  — 0) > 0 and so the S.H. 

(i.e. the 2-dimensional force balance) also gives an accurate prediction of stabihty.

Figure A.2 (Ca  =  0.0193 < C a*) shows another example of stabihty as again, S < 0 for 

ah N . However, g ( D , N  =  0) =  0 and g(D)  > 0 for all other N.  Hence the 3-dimensional 

force balance gives an unexpected result for N  =  0, predicting neutral stabihty, but is 

as expected for all other N . Since g(D,  N  =  0) =  0, the S.H. predicts that the base flow 

is neutrally stable and so gives an inaccurate description of the stabihty.

198
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For 0.0193 <  Ca <  Ca*  (e.g. Ca =  0.0260 - see figure A .3), again E < 0 for all 
N.  However, g(D)  < 0 in the region AB and so, unexpectedly, stable wavelengths 

are present where pressure gradient forces dominate surface tension forces. Elsewhere, 
g(D)  >  0 and so surface tension forces dominate pressure gradient forces as expected. 

Note that g ( D , N  =  0) < 0 and so the S.H. predicts that the base flow is unstable, an 

inaccurate description of the stabihty.

It can be proved that for Ca * * < Ca  < Ca*, where Ca  * * is the critical capillary 

number predicted by the stabihty hypothesis, there is always one unexpected region of 

stable wavelengths for which pressure gradient effects dominate surface tension effects.

Proof:

For Ca * * <  Ca <  C a*, g(D,  N  =  0) < 0 and E < 0 for all N .  Therefore, as 

g ( D ) is a monotonically increasing function (with N ), there will be a value of N  =  Ni 

for which g(D)  > 0 for all N  > N\.

□

Figure A .4 (Ca — 0.0342 = Ca*)  is an example of neutral stabihty as — S = 0 

for a particular value of N ,  N  — 0.50, and E < 0 for ah other N.  For N  > 0.76, 

g(D)  > 0 (as expected). However, for N  < 0.76 (region AB), g(D)  < 0 - an unexpected 

result as there is now a region of stable wavelengths for which pressure gradient forces 

dominate surface tension forces. Again, g ( D , N  = 0) < 0 and so the S.H. inaccurately 

predicts instabihty.

Figure A .5 (Ca =  0.05 > Ca*)  shows an example of instabihty as E > 0 for some 

N.  For ah the unstable wavelengths (i.e. for 0.38 < N  < 1.09), g ( D ) < 0 and so pres­

sure gradient effects are dominating surface tension effects as expected. For N  > 1.25, 

E < 0 and g(D)  >  0, again as expected. However for N  <  0.38 (region AB) and 

1.09 <  N  <  1.25 (region CE), E < 0 and g(D)  <  0 i.e. so there are now two unexpected 

regions of stable wavelengths for which the pressure gradient forces dominate the sur­

face tension forces. Note that g ( D , N  =  0) < 0 and so the S.H. now gives an accurate 

description of the stabihty.

In fact, it can be proved that there are always two of these unexpected regions of
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stable wavelengths when the base flow is unstable (i.e. when Ca  > Ca*)\

Proof:

It is first proved that g(D)  and g \ D ) always have the same sign (for N  ^  0): If 

g (D ) and g \ D )  did not always have the same sign then the graph of g ( X )  would have 

a turning point (as g( —oo) =  0). Since =  0 at a turning point, (3.39) gives

=  4 ir2 N 2 g( X) .  (A .l)

Supposing g ( X )  > 0 (at the turning point) then, via (A. l) ,  g " ( X )  > 0 (at the turn­

ing point) and so the turning point is a minimum (assuming N  ±  0). However, as 

g( — oo) =  0, a maximum must then also be present (which is not possible for g ( X )  > 0 

as for a maximum, g '\ X ) < 0 thus contradicting (A .l)) . Hence there can be no turning 

points (a similar argument applies if g ( X )  < 0 at the turning point).

Now if the linear stability analysis predicts instability (as in figure A . 5), then g(D,  N  = 

0) < 0. Hence at N  =  0, both S and g (D ) are negative. On increasing N , there is a 

wavenumber at which S =  0 (point B). However, when E = 0, g' (D)  < 0 (see equation 

(3.41)) and so (via the above proof) there is a region A B  for which both E and g(D)  

are negative.

At point C, E =  0, so again g' (D)  < 0 .  As  N  increases, E will become negative 

and so a region CE will exist (again via the above proof) where both E and g (D ) are 

negative.

□

Hence it is clear that the simple idea of determining stabihty via a force balance is 

no more accurate for the 3-dimensional flow field than for the 2-dimensional flow field. 

For an accurate description of the stabihty it is necessary to carry out a hnear stabihty 

analysis, although the 2-dimensional stabihty hypothesis remains a useful, insightful 

guide for determining the onset of instabihty.
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Wavenumber, N

Figure A .l: Solution for the perturbed flow, showing S, g(D)  and g '(D ) against 

wavenumber ( N ) for h o / R  =  10“ 4, Ca =  0.01 and S =  0.5.

Wavenumber, N

Figure A .2: Solution for the perturbed flow, showing S , g( D)  and g' (D)  against 

wavenumber (iV) for h o / R  — 10~4, Ca  =  0.0193 and 5  =  0.5.
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Wavenumber, N

Figure A .3: Solution for the perturbed flow, showing E, g ( D ) and g'(D)  against 

wavenumber ( N)  for h o / R  — 10~4, Ca — 0.0260 and S =  0.5.

Figure A .4: Solution for the perturbed flow, showing E, g(D)  and g ' ( D) against 

wavenumber (N ) for h o / R  — 10“ 4, Ca — 0.00342 and S =  0.5.
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W avenumber, N

Figure A .5: Solution for the perturbed flow, showing E, g ( D ) and g '(D ) against 

wavenumber (JV) for h o / R  =  10—4, Ca  =  0.05 and S = 0.5.
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