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Abstract 
Bone invasion is a common feature of oral squamous cell carcinoma (OSCC) and is 

associated with poor prognosis. In this study, we report a novel role for cancer associated 

fibroblasts (CAF) in OSCC bone invasion, and provide additional evidence that two 

subsets of CAF, myofibroblastic and senescent fibroblasts, can both promote bone 

destruction via a mechanism involving receptor activator of nuclear factor kappa-Β ligand 

(RANKL) and extracellular vesicles (EV).	

Our results show two populations of CAF, alpha smooth muscle actin (aSMA) 

myofibroblastic, and aSMA and p16INK4a positive senescent, are present and show 

increased expression of RANKL in ex vivo OSCC bone resections. To examine the 

mechanism underlying this observation, senescence was experimentally induced in 

normal oral fibroblasts (NOF) by culturing to replicative mitotic exhaustion (S-NOFRep), 

or exposure of proliferating cells to hydrogen peroxide (S-NOFH2O2) or cisplatin (S-

NOFCis).  Elevated expression of the molecular markers of senescence, p16INK4a 

and interleukin-6 (IL6), were seen; the latter is also a key component of the senescence-

associated secretory phenotype (SASP) and mediator of bone absorption. Increased 

expression and secretion of RANKL was also detected in these cell cultures.	

Osteoclastogenesis and pit formation on a synthetic bone substrate were significantly 

increased in response to primary CAF, myofibroblastic and senescent fibroblast-derived 

conditioned media. This mechanism was significantly attenuated by the senolytic drugs 

Alvespimycin (17-DMAG) and Navitoclax (ABT263). Moreover, to understand the 

mechanism by which OSCC and surrounding CAF communicate in the tumour 

microenvironment, EV were isolated from H357 oral cancer cell line, primary CAF from 

fresh OSCC tissue and experimentally induced senescent fibroblasts (S-NOF). EV from 

all cells contained RANKL, and significantly promoted osteoclastogenesis. 

Osteoprotegrin (OPG), a RANKL decoy receptor, antagonist and bone resorption 

regulator reduced osteoclastogenesis, providing further evidence of a role of RANKL in 

CAF-mediated bone destruction. 	

In conclusion, this work provides novel evidence that CAF play a functional role in bone 

invasion. The ability of senolytic drugs to reduce senescent CAF burden and inhibit 

osteoclastogenesis holds promise as a novel therapeutic approach in bone invasive 

OSCC.
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1.1 Introduction 
Cancer is a term used to describe uncontrolled proliferation of anaplastic cells, 

with invasion of proximal tissue and metastasis to regional sites and distant 

organs. Cancer is one of the leading causes of mortality worldwide, with an 

estimate of 8.2 million deaths recorded in 2012 (Cancer Research, UK, 2017). 	

Head and neck cancers are predominantly of epithelial origin. Oral squamous cell 

carcinoma (OSCC), comprises 95% of all neoplasia of the oral cavity, and 

approximately 30% of head and neck malignancies involving pharynx, nasal 

cavity, paranasal sinuses, oral cavity, and lips (Haddad and Shin, 2008). In 

reference to the State of Mouth Cancer UK Report 2018/2019, more than 8,300 

people are diagnosed with oral cancer each year. It is the fourteenth most 

common cancer, in which over 78% are over the age of 55 (dentalhealth.org, 

2019). Unfortunately, oral cancer has been on a rise to up to 33% in the last 

decade (Cancer Research UK, 2019).	

OSCC has diverse risk factors, such as excessive alcohol consumption, tobacco, 

diet and genetics either affecting independently or synergistically. Over the past 

two decades, OSCC incidence has been increasing in young patients and in 

developed countries particularly. This escalation has been partly attributed to 

tonsillar and oropharyngeal cancers related to human papillomavirus (HPV), but 

the particular causes and mechanism of this rapid increase remain rather 

speculative (Warnakulasuriya, 2010; Cleary et. al, 2016; Office of National 

Statistics, 2017).	

Oral cancer remains difficult to treat and one main reason is the lack of specific 

biomarkers and late detection of these lesions at an advanced stage. OSCC can 
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arise from histologically normal epithelium but usually develops within an existing 

potentially malignant lesion clinically presenting as erythroplakia or leukoplakia 

i.e. red or white lesions respectively (Colella et. al, 2008). Lesions can originate 

anywhere in the oral mucosa, but the gingiva, floor of mouth and tongue are 

considered the most frequent sites (Jimi et al., 2011). 	

Advanced OSCC is very aggressive, with a three-year survival rate of 40% often 

due to regional metastasis (National Cancer Intelligence Network (NCIN), 

2013).  As tumour cells proliferate and invade the connective tissue, the lesion 

expands in size and may lead to involvement of locoregional structures including 

the mandible, maxilla or facial bones. In fact, bone invasion is a hallmark of 

OSCC, upgrading the tumour stage and is seen in 12% to 56% of OSCCs (Chen 

et al., 2011). Maxillofacial bones (particularly maxilla and mandible) are closely 

associated with complex anatomical structures such as sinuses, nose, eyes, 

cranial nerves, and brain; therefore, OSCC infiltration can cause critical functional 

complications. Such cancers are difficult to treat and eradicate surgically due to 

the complex maxillofacial anatomy, difficult surgical access and attempt at 

preservation of functionality. The primary treatment modality for OSCC is surgery 

with adjuvant radio or chemotherapy. However, surgery can have associated 

morbidity with aesthetic and psychosocial impact on patients. Bone involvement 

is usually related to a poor prognosis, significantly deteriorating the patient’s 

quality of life and postoperative outcome. Therapy and rehabilitation could be 

challenging, as principal functions such as speech, mastication, and swallowing 

can be adversely influenced. Despite these significant issues related to bone 

invasion in OSCC, its precise mechanism remains under-investigated and poorly 

understood (Quan et al., 2012).	
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Surgical radical resection with a healthy margin is the treatment of choice for 

OSCC patients presenting with bone involvement (Shah and Gil, 2009). The 

American Joint Committee on Cancer Classification (AJCC), recommends 

upgrading OSCC with bone invasion to a clinical (and pathological) primary 

tumour stage T4 (irrespective of any other parameters) with an overall stage (IV); 

the latter associated with a poor prognosis (Frederick et al., 2002). Shah and 

Lydiatt (1999) recorded the 5-year survival rate of patients with stage IV OSCC 

as 39%, compared to 53, 68 and 70% for stages III, II and I respectively, indicating 

its significance as a clinical issue. A retrospective study reviewing cases with 

histopathologically confirmed bone invasion reported that cancellous bone 

invasion (rather than superficial cortical bone resorption) is the prime factor that 

has a prognostic implication on survival. (Ebrahimi et al., 2011).	

It has recently become increasingly evident that the stroma surrounding 

tumour (predominantly fibroblasts, inflammatory cells, and endothelial cells) 

plays a critical role in tumour advancement (De Wever et al., 2008). Marsh et al. 

(2011), amongst others, highlighted the importance of the tumour 

microenvironment in OSCC progression, showing that stromal features such as 

the presence of myofibroblast-like cells are more sensitive predictors of OSCC 

aggression, than other tumour features or TNM staging. Alpha smooth muscle 

actin (αSMA) expressing stromal myofibroblasts (cancer associated fibroblasts, 

peri-tumour fibroblasts or cancer activated fibroblasts) are apparent in numerous 

solid tumour microenvironments (Radisky et al., 2007). Xu et al. (2009) observed 

the transdifferentiation of myofibroblasts through TGFβ and postulated that 

cancer associated fibroblasts (CAF) could differentiate from epithelial cancer 

cells through epithelial mesenchymal transition (EMT). However, Marsh et al. 
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(2011) suggested that myofibroblasts are likely to originate from local 

mesenchymal cells and promote tumour progression by creating a 

microenvironment encouraging cancer growth and spread. 	

Nonetheless, the role of OSCC stroma in bone invasion remains largely 

unexplored. Ishikuro et al. (2008) reported the presence of intervening fibrous 

stroma at the OSCC and bone interface evident in mandibular bone invasion, in 

addition to expression of RANKL in cells surrounding osteoclasts in OSCC bone 

sections. Moreover, they co-cultured human OSCC cell lines with murine 

osteoblasts, reporting an amplification of RANKL and RANK mRNA expression. 

However, the outcome from this study is inconclusive to some extent, as stromal 

activation markers were not examined, nor did they study the effect of human 

osteoblasts co-cultured with CAF.	

Bone invasion in oral cancer may be associated with an elevation in both 

osteoblastic and osteoclastic activity. Totsuka et al. (1991) reported two patterns 

of bone invasion in OSCC. In the expansile pattern, the tumour invades with a 

broad pushing invasive front, surrounded by fibrous stromal tissue. Alternatively, 

the infiltrative pattern of bone invasion is recognised as strands and nests of 

extensive discohesive infiltrating tumour cells (Müller and Slootweg, 1990). 

Cases with intermixed patterns are referred to as showing a mixed pattern of 

infiltration (Jimi et al., 2013). 
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1.2 Bone physiology 
1.2.1 Bone tissue  
Osseous (bone) tissue is a rigid but dynamic structure. It has both organic and 

inorganic constituents. In order to maintain tissue integrity, homeostasis must be 

achieved; hence conserving cellular equilibrium and bone structure. Numerous 

cell types regulate bone deposition, resorption, and architectural integrity. The 

basic unit modulating this mechanism are osteoclasts, which actively resorb 

osseous tissue, while osteogenic or osteoblast lineage cells (bone lining cells, 

pre-osteoblasts, osteoblasts, and osteocytes) are responsible for structural 

preservation (Kular et. al, 2012; Nanci, 2017).	

Osteoblasts are derived from mesenchymal stem cells and are the sole cells 

accountable for bone matrix deposition. Upon stimulation, osteoblasts have the 

ability to differentiate through four different stages, starting as preosteoblasts and 

gradually maturing from osteoblast finally presenting as bone lining cells. Mature 

osteoblasts are mononuclear cuboidal cells that mainly secrete type 1 collagen, 

osteocalcin, and alkaline phosphatase, jointly responsible for bone foundation. 

On maturation, osteoblasts become surrounded by their secreted matrix or 

osteoid, and are referred to as osteocytes (Clarke, 2008).	

Osteocytes are terminally differentiated bone cells embedded within mineralised 

bone. These cells are connected to other cells in bone matrix and surface and 

form signalling networks through their processes (Prideaux et al., 2016). 

Osteocytes predominantly function as mechanical receptors, resulting in initiation 

of bone remodelling by modulating osteoblasts and osteoclasts, however when 

generating osteoclasts in culture, the presence of these cells are not necessary 

(Marino et al., 2014). 	



 Chapter 1 Introduction and Literature Review 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 7 

Osteoclasts are large multinucleated tartrate resistant acid phosphatase (TRAP) 

staining cells, derived from fusion of haematopoietic monocytes, in a process 

termed osteoclastogenesis. Several factors are required to regulate 

osteoclastogenesis. Macrophage colony-stimulating factor (M-CSF), receptor for 

activation of nuclear factor kappa B (NF-κB) ligand (RANKL) expressed both by 

osteoblasts and stromal cells, and its receptor RANK present on osteoclast cell 

membranes, are necessary to promote osteoclast formation (Kular et al., 2012). 

Binding of RANK ligand to its receptor activates a signalling cascade resulting in 

osteoclastic differentiation of progenitor bone cells. However, RANKL can 

actively be antagonised in the presence of osteoprotegerin (OPG), which acts as 

a decoy receptor competing with RANKL binding to RANK, consequently 

inhibiting osteoclastogenesis (Jimi et al., 2013; Nanci, 2017). 	

1.2.2 The dynamic mechanism of bone remodelling 
Remodelling is a complex synchronised process involving the coordinated 

functioning of two main cell types; the osteoblast, responsible for bone matrix 

synthesis as well as remineralisation; and osteoclasts, the principal cells in bone 

mass regulation and resorption. 	

The remodelling cycle initially commences with osteoclast recruitment to the bone 

surface, allowing activation and conservation of demineralisation, and resorption 

of bone matrix through secretion of enzymes, acid phosphatase and cathepsin B 

(Nanci, 2017). Osteoclast stimulation is activated by RANKL binding to its 

designated receptor in the presence of parathyroid hormone related protein 

(PTHrP), interleukin-11 (IL11), sclerostin, and prostaglandin (PG2) (Theill et al., 

2002; Boyle et al., 2003; Wada et al., 2006). Following RANK attachment to its 

ligand, osteoclasts further release fusion proteins Atp6v0d2 (an ATPase) (Lee et 
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al., 2006), FcRy (Fc receptor-related protein Y), and DC-STAMP (dendritic cell-

specific transmembrane protein) (Kukita et al., 2004). Moreover, osteoclast 

proliferation is escalated by osteoblast secretion of M-CSF, further triggering 

RANK activity.	

Following attachment of osteoclasts to the bone surface, lysosomes are released 

to the binding sites, actively disintegrating bone matrix (Sims and Gooi, 2008). 

Throughout bone demineralisation and resorption, osteoclasts may disseminate 

bone forming proteins and growth factors TGFβ (Centrella et al., 1991), BMP 

(Harris et al., 1994), and IGF (Schmid et al., 1992), which upon activation 

stimulates osteoblast recruitment; facilitating bone formation (Mohan and Baylink, 

1991) (Figure 1.1). 

 

Figure 1.1: Bone remodelling.  Bone remodelling is a continuous process that 

maintains the tissue integrity. In this mechanism, bone is resorbed by osteoclasts 

differentiated from haematopoietic cells in the presence of M-CSF and RANKL 

(preosteoclasts). OPG/OCIF released by osteoblasts blocks osteoclast generation and 

bone resorption, allowing osteoblasts to deposit new bone in resorptive areas. 
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(Illustration generated using PowerPoint software). 

A reverse interval of resorption follows, as the active osteoclastic bone 

degradation is halted, and osteoclasts undergo apoptosis, while osteoblast 

lineage cells proliferate and undergo differentiation. This stage is considered a 

transition from predominant osteoclast to osteoblast influence (Kular et al., 2012). 

Bone deposition proceeds primarily through osteoclast-osteoblast 

communication through ephrinB2 and its corresponding receptor EphB4 on 

osteoblasts, thus promoting osteoblast maturation (Zhao et al., 2006). However, 

this interaction could be impeded in the presence of PTH, hence depleting bone 

mineralisation due to an increase in unbound ephrinB2 (Allan et al., 2008). An 

equivalent pathway has been described which blocks both osteoblast and 

osteoclast differentiation in the presence of osteoclast inhibitory factor (OCIF) 

(Zhou et al., 2001).	

In the termination stage, remodelling is halted as osteoblasts reverse differentiate 

into bone lining cells, and either remain on the bone surface or become entrapped 

in mineralised bone matrix as osteocytes. Sutherland et al. (2006), noted that 

osteocyte expression of sclerostin acts as a negative regulator of bone formation 

by diminishing osteoblast proliferation, decreasing matrix mineralisation, and 

promoting osteoblast apoptosis. It has recently been shown that neutralisation of 

sclerostin with a specific antibody elevates bone mass (McClung et al., 2014; 

Recker et al., 2015). Finally, following bone deposition fulfilment, osteoblasts 

migrate back to the bone surface, and matrix mineralisation progresses until a 

sufficient level is attained.	
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1.3 Cellular and molecular mechanisms in bone 
invasion by tumours 
Previous literature has demonstrated the critical role osteoclasts play in bone 

invasion; however, the process by which neoplastic tumour cells and 

corresponding myofibroblastic stromal tissue destroys and penetrates osseous 

tissue still remains obscure. Quan et al. (2012) described three integrated stages 

in OSCC bone invasion.	

Initially, tumour cells secrete proteolytic enzymes, proteases, disintegrating the 

extracellular matrix (ECM), and facilitating tumour cell infiltration. In addition, 

these enzymes trigger the differentiation of progenitor bone cells - osteoclast 

recruitment - further amplifying bone destruction. Collagen, elastin, and 

proteoglycans act as physical barriers in bone matrix. To enhance tumour 

migration and progression, tumour cell expression of zinc metalloenzymes, 

matrix metalloproteinases (MMP) has been shown to disrupt these barriers 

(Krane and Inada, 2008; Kessenbrock et al., 2010). A previous study co-cultured 

OSCC cells with osteoblasts and noticed amplification in MMP-2 expression by 

tumour cells, and increased MMP-9 expression in osteoblasts (Quan et. al, 2012). 

These findings are in agreement with similar research conducted earlier 

identifying the role of these proteolytic enzymes in OSCC invasion and distant 

metastasis (Krane and Inada, 2008).	

Sinevici and O’Sullivan (2016) recently reviewed various oral cancer biomarkers 

and reported that the increase in MMP expression correlates with tumour 

behaviour and prognosis. Collagenase (MMP-1 and MMP-13), stromelysin 

(MMP-3, MMP-10, and MMP-11), and gelatinase (MMP-2 and MMP-9) have been 

shown to contribute to bone invasion. Primarily, gelatinase secretion disrupts 
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epithelial stability by triggering the destruction of the basement membrane and 

activation of growth factors TGF-β1, initiating EMT through SNAIL-regulated 

pathways. During EMT, keratinocytes exhibit morphological changes, and a loss 

in extra- and intracellular adhesions, featuring an increase in N-cadherin and a 

decline in E-cadherin adhesion molecules. Ex vivo expression of stromelysin 

(MMP-3) was detected in tumour boundaries of OSCC biopsies, further linking 

this biomarker to tumour progression, whereas MMP-10 and MMP-11 were 

associated with OSCC differentiation and direct invasion. 	

In the resorptive stage, bone deposition and destruction are regulated by tumour 

necrosis factor (TNF) related proteins, triad nuclear factor kappa B (NK-kB) 

activator receptor RANK binding to its ligand RANKL triggering 

osteoclastogenesis, or its decoy OPG promoting bone preservation. Preliminary 

studies have claimed to examine the role of stroma in bone invasive OSCC. In a 

previous study, RANKL positive fibroblasts were noticed surrounding tumour 

body in close proximity to bone, in addition to mRNA expression of RANKL in co-

cultures of murine osteoblasts with a human OSCC cell line (Ishikuro et al., 2008). 

Unfortunately, this research did not investigate the role of human CAF in bone 

invasive OSCC.	

Several cytokines have been noted to mediate bone destruction, of these 

interleukin-1β (IL1β) (Dewhirst et al., 1985; Cheng et al., 2014), IL6, IL11, and 

IL15 (Walsh et al., 2006; Brailo et al., 2012) being the most prevalent. Glenn 

(2004) noted that neoplastic lesions have the ability to react to growth stimulating 

cytokines, hindering tumour cell apoptosis and promoting invasion and 

metastasis. Another group reported IL6 and IL11 amplification in bone invasive 

OSCC as opposed to non-invasive OSCC (Shibahara et al., 2005). Furthermore, 
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significant amplification of IL6 on a protein and mRNA transcript level in human 

OSCC cell lines was reported to play a role in osteoclast generation (Tang et al., 

2008; Hwang et al., 2012). 	

Bone is a rich reservoir of growth factors and upon OSCC induced destruction 

releases epidermal growth factor (EGF), connective tissue growth factor (CTGF) 

or transforming growth factor (TGF). These growth factors regulate osteoblasts 

and osteoclast recruitment in tumour progression and bone destruction (Matsuo 

and Irie, 2008; Quan et al., 2012). Huang et al. (2002) reported a decline in OSCC 

proliferation and invasion due to the obstruction of anti-EGF receptor (EGFR). 

The role of CTGF in neoplastic keratinocytes and osteoclasts of bone invasive 

OSCC was verified by the genesis of TRAP staining cells stimulated by 

recombinant (rh) CTGF in vitro (Shimo et al., 2008), further clarifying their 

previously published work (Shimo et al., 2004) on CTGF as a diagnostic 

biomarker in osteolytic conditions. However, more research is necessary to 

establish the significance of these growth factors in bone invasive OSCC.	

1.4 Role of tumour microenvironment in cancer 
Rudolph Virchow (1863) first suggested the importance of microenvironment in 

cancer progression. The study identified leukocytes surrounding solid tumour 

mass, and further hypothesised that cancer originated from chronic inflammation. 

However, this study focused on inflammation and didn’t examine other 

components of the tumour microenvironment. Although when Paget (1889) 

suggested the ‘seed and soil’ phenomenon years later all the components were 

considered.  Moreover, in 1982, Bissell et al. reported that tumour 

microenvironment (TME) was as crucial as genetic predisposition in the 



 Chapter 1 Introduction and Literature Review 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 13 

development and progression of cancers. Understanding the TME is essential in 

establishing modern prognostic markers, and new generation therapeutics.	

1.4.1 Components of tumour microenvironment 
The TME in OSCC comprises diverse non-malignant cells integrated in a complex 

extracellular matrix (ECM). Collectively, these cells embedded in a matrix 

comprise the tumour stroma. The cross talk between neoplastic cells and 

surrounding stroma is constantly maintained, enabling tumour cell stimulation of 

the microenvironment, which as a result actively transmits paracrine signals 

increasing tumour cell proliferation and invasion (Figure 1.2).	

 

Figure 1.2: Tumour microenvironment. Tumorigenesis involves the co-existence of 

neoplastic cells, immune, stromal and endothelial cells embedded in an extracellular 

matrix. The tumour niche is a dynamic structure with access to various growth factors, 

and vascular supply. (Illustration generated using Photoshop software). 

 

The main cellular components of the TME are fibroblasts, inflammatory cells, 

mesenchymal stem cells, pericytes, bone marrow derived cells, hematopoietic 
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and vascular endothelial cells, nerves and lipocytes (Joyce and Pollard, 2009). 

Weinberg (2013) estimated that these non-neoplastic cells could make up 90% 

of the tumour mass. Although these cells usually have a protective role in 

confining tumour progression, there is increasing evidence that the cells of the 

TME play an active role in tumour dissemination. Allen and Jones (2011) in a 

recent review, highlighted that tumour cells can initiate stromal activation through 

the expression of cytokines (growth factors and chemokines) and extracellular 

proteases, enhancing angiogenesis, and increasing malignancy progression.	

1.4.1.1 Extracellular matrix	
The cells of the TME are embedded in a complex mesh of proteins termed the 

extracellular matrix. The ECM is a network of proteoglycans, elastin, collagen, 

laminin and fibronectin that provide support for cells to adhere to (Boy, 2002). 

Stromal fibroblasts mainly synthesise and regulate this matrix. The ECM is a 

regulator of cellular morphology, by altering cell cytoskeleton, function and 

signalling (Kim et al., 2011). In addition, the mechanical properties of ECM have 

an impact on modulating tumour cell growth, differentiation and migration. A 

decline in ECM tensile strength has been reported to suppress malignant 

behaviour in breast cancer (Pazek et al., 2005). Lysyl oxidase (LOX), an enzyme 

secreted particularly by fibroblasts, has been shown to modulate tensile strength 

of the ECM by facilitating collagen and elastin cross-linkage, and elevating rigidity 

(Kagan and Li, 2003). This alters tumour behaviour, promoting invasiveness 

(Levental et al., 2009), and giving rise to the hypothesis and subsequent evidence 

that an increase in breast tissue densities, detected by mammography, is related 

to a higher risk of breast cancer (Martin and Boyd, 2008).	
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Significant modulation and remodelling of the ECM occur during tumour 

advancement, which can be regulated by different growth factors, such as PDGF, 

EGF, and TGFβ1 (Matrisian and Hogan, 1990), but is principally regulated by 

stromal fibroblast expression of proteases, particularly MMP (Kessenbrock et al., 

2010). MMP degrade the ECM, contributing to tumourigenesis and metastasis 

through several pathways. Initially, MMP and other proteases trigger ECM 

degradation, facilitating a pathway for cellular dissemination and mobility, by 

releasing growth factors, PDGF, HB-EGF, and TGFβ1 (Joyce and Pollard, 2009). 

Moreover, proteases trigger proteolytic cleavage of dormant growth factors and 

MMP allowing their activation (Kessenbrock et al., 2010). Latent TGFβ1 is 

reportedly activated by MMP expression by stromal fibroblasts, stimulating EMT 

and tumour progression (Biere and Moses, 2006). However, MMP have also 

been reported to act as tumour obstructers rather than promoters (Gutierrez-

Fernandez et al., 2008). By regulating angiogenesis, protease cleavage of 

plasminogen is reported to generate angiostatin, inhibiting angiogenesis, and 

suppressing tumour development (Houghton et al., 2006).	

1.4.1.2 Angiogenesis and hypoxia	
Angiogenesis is an essential factor for tumour genesis and survival (Carmeliet 

and Jain, 2000). Tumour and surrounding microenvironment express endothelial 

growth factors, mainly vascular endothelial growth factor (VEGF), which 

regulates neoangiogenesis (Carmeliet et al., 1996; Fukumura et al., 2001; Lin et 

at., 2017). Similarly, neoplastic tissue requires nutrient supply and waste removal 

more so than normal tissue (Papetti and Herman, 2002; Lin et at., 2017). During 

tumour development, due to the increase in proliferation of malignant cells, areas 

of hypoxia develop because of insufficient vascular supply. Although hypoxia is 
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sometimes considered a restraining factor for tumour development, several 

studies have shown otherwise (Zhu et al., 2017). Hypoxia-inducible family (HIF) 

proteins, expression in hypoxic tumour regions, have been noted to modulate 

cellular metabolism (Chen et al., 2010), proliferation, apoptosis (Carmeliet et al., 

1998) and remodelling (Canning et al., 2001). In addition, Esteban et al. (2006), 

reported an up regulation of EMT, following a decline in epithelial E-cadherin 

expression. 	

1.4.1.3 Inflammation in tumour microenvironment 	
A state of inflammation increases the risk of malignancy. Colotta et al. (2009) 

reported that inflammation associated with cancers influenced genetic instability 

in cancer cells. The inflammatory milieu is composed of numerous immune cells, 

which secrete growth factors, cytokines, and proteolytic enzymes (TNF-alpha, 

TGFB, VEGF, Interleukins, MMP, cyclooxygenase 2 (COX-2), and CXC motif 

ligand 8 (CXCL8), further recruiting inflammatory cells, and altering the stromal 

phenotype (Murdoch et al., 2008). In particular, bone derived macrophages 

assemble in the TME through chemotactic signalling of VEGF, macrophage 

colony stimulating factor-1 (MCSF-1), and monocyte chemotactic protein-1 

(MCP-1) (Bingle et al., 2002). This leads to an increased number of tumour-

associated macrophages (TAM) (Hsu et al., 2010 and Ojalvo et al., 2010), which 

correlates with an unfavourable prognosis in a range of malignancies (Mantovani 

et al., 2017; Tan et al., 2016; Joyce and Pollard, 2009; Bingle et al., 2002).	

TAM exhibit a characteristic phenotype and have been shown to express tumour-

promoting factors VEGF (O’Sullivan et al., 1993), and EGF (Lewis et al., 2000), 

induce neoangiogenesis, while subsequently stimulating invasion and metastasis 

(Lewis and Pollard, 2006; Mantovani et al., 2006).	
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Briefly, macrophages can be classified according to their activity, as classically 

(M1) or alternatively activated (M2) (Kaneda et al., 2004). In conventional 

immunological reactions, M1 macrophages are recruited through T-helper cells 

(Th1), and cytokine, interferon gamma (IFN-γ) and lipopolysaccharide (LPS) in 

response to the presence of pathogens. M1 macrophages are characterised by 

highly expression of IL12, major histocompatibility class II (MHCII) and TNF-α. 

Contrastingly, during tissue wound occurrence, humoral, or in a pro-tumourigenic 

response, M2 differentiation is induced through Th2 cytokines IL4 and IL13, 

promoting angiogenesis by expressing amplified levels of IL10, and distinctive 

low levels of MHCII and IL12 (Mantovani et al., 2004; Mosser and Edwards, 2008; 

Joyce and Pollard, 2009; Laoui et al., 2011).	

1.4.2 Fibroblasts 
Decades ago, Tarin and Croft (1969), first reported fibroblasts as abundant cells 

located in mesenchymal connective tissue embedded in an extracellular matrix 

comprising fibronectin, and collagen type I. Fibroblasts, the predominant cells in 

the TME in most malignancies, contribute to tumour cell proliferation and spread, 

and are associated with ECM desmoplastic attachment, resulting in an increase 

in tensile strength or “stiffening” of the tissue (Cardone et al., 1997).	

Several markers have been utilised to identify fibroblasts including vimentin, 

alpha smooth muscle actin (αSMA), fibroblast specific protein 1 (FSP1) and 

fibroblast activation protein (FAP). Unfortunately, due to the vast genetic diversity 

of fibroblasts, these markers are not considered as strong indicators, since no 

specific marker is exclusive for all fibroblast derivatives or subtypes (Kalluri and 

Zeisberg, 2006). However, αSMA is reliable and most commonly used (Shiga et 

al., 2015). 	
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In addition, fibroblasts regulate matrix deposition, remodelling and progression, 

through expression of heterogeneous proteins, primarily collagen type I, III, IV 

and V (Hinz et al., 2007), fibronectin-1, and MMP (Kalluri and Zeisberg, 2006; 

Dewever er al., 2008; Kessenbrock et al., 2010).  	

1.4.3 Myofibroblasts 
Cancer associated fibroblasts (CAF) share similar phenotypic characteristics to 

myofibroblasts found in granulation tissue during fibrosis, and wound contraction 

during healing (Gabbiani et al., 1994; Kalluri and Zeisberg, 2006; Hinz et al., 

2007). Myofibroblasts are histologically defined as elongated spindled cells with 

elevated expression of alpha smooth muscle actin (αSMA) (Desmouliere et al., 

2004; Hinz et al., 2007) and show increased secretion of MMP2, MMP3 and 

MMP9, enhanced proliferation (Rodemann and Muller, 1991), and amplification 

in cytokine and growth factor production (Bhowmick et al., 2004). However, it is 

important to note that pericytes, endothelial cells, myoepithelium, smooth muscle 

cells and myofibroblasts are also αSMA positive (Gabbiani et al., 1994; 

Desmouliere et al., 2004). Regardless, myofibroblasts are still referred to as 

αSMA positive cells, without conducting further characterisation assays based on 

location and morphology. Additionally, myofibroblasts comprise contractile 

microfilaments, which allow these cells to adhere to each other and the 

surrounding ECM (Hinz et al., 2007). 	

Myofibroblasts have been reported to differentiate from fibrocytes, pericytes, 

smooth muscle cells, mesenchymal cells and epithelial cells through EMT (Hinz 

et al., 2007; McAnulty et al., 2007; Mueller et al., 2007). Myofibroblastic 

differentiation can be triggered as a result of inflammation or neoplasia (Werner 

and Grose, 2003).	
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It has previously been shown that squamous carcinomas may directly enhance 

the myofibroblastic phenotype, through the expression of TGFβ (Lewis et al., 

2004; Rønnov-Jessen and Bissell, 2009). In OSCC, myofibroblastic 

differentiation of normal oral fibroblasts (NOF) is induced through TGFβ 

dependent pathways, which has been shown to be amplified in the presence of 

IL1β (Lygoe et al., 2007; Anderberg and Pietras, 2009). Furthermore, carcinomas 

secrete chemotactic factors; platelet-derived growth factor A (PDGF-A), and 

fibroblast activation factor that are suggested to contribute to the accumulation of 

CAF in stroma (Tejada et al., 2006; Xouri and Christian, 2010). The close 

proximity and spatial arrangement of myofibroblasts in neovascularised areas, 

and tumour invasive fronts, implies the role of these fibroblasts in tumour invasion 

(Thode et al., 2011).	

Santos et al. (2009), claimed that CAF may be a promising target in treating 

cancer due to their genetic stability, and phenotypic similarities of stromal 

fibroblasts across various cancers. Therefore, targeting stromal fibroblasts may 

hinder the progression of cancerous cells. 	

1.4.4 Myofibroblasts in oral cancer 
Several previous studies on oral mucosa have reported that essential factors 

released by both keratinocytes and fibroblasts are paramount in epithelial 

differentiation and morphogenesis (Hill et al., 1984; Mackenzie and Dabelsteen, 

1987). Costea et al. (2006) isolated premalignant human oral keratinocytes from 

dysplastic oral lesions and reported that in vitro invasion was only seen in the 

presence of fibroblasts. Their findings also showed that conditioned media from 

co-cultured fibroblasts and potentially malignant keratinocytes can yield this 

effect as spent media from mono-cultured fibroblasts was unable to produce this 
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outcome indicating a paracrine interrelation between tumour cells and associated 

fibroblasts. Interestingly, Gaggioli et al. (2007), reported a mechanical role of 

tumour associated fibroblasts in invasion. Co-cultures of squamous cell 

carcinoma keratinocytes and fibroblasts grown on collagen matrix showed 

fibroblast-led invasion, followed by tumour cells advancing in the ECM paths 

initially generated from cultured fibroblasts.	

Two definite patterns of myofibroblasts associated with tumour stroma have been 

identified in published literature i.e. the ‘spindle’ and ‘network’ pattern. The former 

is characterised by spindle shaped morphology surrounding the tumour mass, to 

a maximum of three layers, while the latter is abundant throughout the whole 

depth of stroma (Kellermann et al., 2007; Vered et al., 2009).	

Several recent studies have reported the correlation between αSMA positive 

myofibroblasts and cancer progression and invasion in TME (Rodrigues et al., 

2015; Elmusrati et al., 2017; Smitha et al., 2019). Abundance of myofibroblasts 

have been associated with OSCC prognosis in various semi-quantitative 

histological studies (Kellermann et al., 2007; Vered et al., 2010). Kellermann et 

al., (2007) noted the correlation of αSMA positive myofibroblasts with tumour 

invasive front. Furthermore, Vered et al. (2010) reported that weak or negative 

αSMA expression in myofibroblasts was related with a significantly better disease 

free 5-year survival as opposed to OSCC patients with strong αSMA staining. 

The invasive front of OSCC, indicated by the band of tissue located between 

cancerous growth and normal tissue has been suggested to reflect tumour 

aggressiveness (Bryne et al. 1989; Bryne et al. 1991). This has led to the 

hypothesis of tumour-associated myofibroblasts being generated from neoplastic 

keratinocytes through EMT, following numerous studies involving 
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immunohistochemical analysis of antigen surface markers (Kellermann et al., 

2007; Turley et al., 2008; Vered et al., 2010). 	

1.4.5 Origin of cancer associated fibroblasts 
CAF configuration derives from heterogeneous aberrations presumably due to 

their diverse origin, but the process by which CAF arise still remain obscure 

(Kalluri and Zeisberg, 2006; Augsten 2014). Whilst the main source of CAF is 

commonly thought to be the activation of regional stromal fibroblasts (Kalluri and 

Zeisberg, 2006), alternative experimental models have demonstrated the lineage 

of CAF from genetically marked bone marrow originated cells (Direkze et al, 

2006). Radisky and Radisky (2007), also suggested that normal or malignant 

epithelial cells undergoing EMT may be a source of myofibroblasts. However, it 

is still argued that CAF originate from transdifferentiation of fibrocytes, pericytes, 

smooth muscle, and mesenchymal stem cells. 

 
1.4.6 Significance of CAF in tumour microenvironment  
Barth et al. (2004), were amongst the first to report the presence of CAF in OSCC 

stroma, and later studies have further emphasised their significance. The 

presence of CAF in OSCC appears to be strongly correlated with tumour 

progression, invasion, recurrence, and poor patient outcome (Kawashiri et al., 

2009; Vered et al., 2010). It has also been shown that activated fibroblasts are 

more sensitive and accurate predictors of OSCC recurrence and patient mortality 

compared to conventional parameters such as TNM staging (Marsh et al., 2011).	

Most recently, Cirillo et al. (2016) conducted in vitro studies on OSCC by using 

CAF derived from genetically unstable OSCC cells (GU-OSCC), and genetically 

stable OSCC (GS-OSCC). The former was characterised by an abundant loss of 

heterozygosity, p16INK4a and TP53 genes, while the latter expressed wild type 
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p16INK4a and TP53 with minimum loss of heterozygosity. Their findings showed 

a correlation between increased expression of TGFβ1 & TGFβ2 in CAF from GU-

OSCC, but not in CAF from GS-OSCC or normal fibroblasts suggesting that the 

sequential EMT and reduction in expression of cell adhesion molecules E-

cadherin and vimentin results in epithelial dis-cohesion and invasion regulated 

through a TGFβ dependent signalling. Bhowmick et al. (2004) showed that 

mouse models with inactive TGFβ RII receptor inhibit tumour and surrounding 

stroma proliferation in vivo. 	

1.4.7 Senescence in fibroblasts 
Hayflick (1965) reported that human extracted fibroblasts, despite being vital and 

metabolically functional, do not have the ability to proliferate indefinitely, and fail 

to propagate following considerable cell splitting. The irreversible state of growth 

arrest (at G1 phase) is termed senescence, unlike quiescence, which is 

characterised by amplification in p16INK4a (Prime et al., 2016). Senescent 

fibroblasts are also distinctive to myofibroblasts, as they express up-regulated 

levels of p16INK4a and p21.  	

Senescent CAF have been identified in tumour microenvironment (Hassona et 

al., 2013; Kabir et al., 2016), and premalignant lesions (Costea et al., 2013; 

Procopio et al., 2015). Several factors are responsible for fibroblasts undergoing 

senescence including exhaustive mitotic activity, permanent DNA damage 

induced as a result of oxidative stress from mitochondrial malfunction and 

uncontrolled cell division due to amplification of oncogene expression promoting 

genome replication (Di Micco et al., 2006), in addition to chemo and radiotherapy. 

Senescence can be induced in vitro by exposure to radiation, damaging DNA or 
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through treatment with hydrogen peroxide or anticancer therapeutic drugs such 

as cisplatin (Rodier and Campisi, 2011; Kabir et al., 2016).	

In carcinomas, irreversible damage in cell recovery, or over exhausted DNA, 

results in senescence, which acts as an effective tumour suppressor. However, 

in contrast, senescence occurring in tumour-associated fibroblasts is a 

considered a key tumour promoter (Parkinson, 2010). Senescent fibroblasts 

express a vast range of pro-tumourigenic secretory proteins, which are jointly 

termed senescence associated secretory phenotype (SASP) (Kuilman and 

Peeper, 2009; Laberge et al., 2015). The SASP collectively comprises 

chemokines, inflammatory factors, osteopontin, growth factors (VEGF), 

proteases (MMP), extracellular proteins (collagen, laminin and fibronectin), 

reactive oxygen species (ROS), and interleukins (IL6 and IL8) (Coppe et al., 

2008; Pazolli et al., 2009). Senescent cells promote tumours through 

enhancement of neoplastic proliferation, invasion, metastasis and therapeutic 

resistance (Prime et al., 2016; Kabir et al., 2016). During cancer therapy, cisplatin 

promotes apoptosis or induces senescence to suppress tumour growth (te Poele 

et al., 2002; Banito and Lowe, 2013). 	

Kabir et al. (2016) investigated the mechanism underlying SASP development in 

OSCC and reported that microRNA (miR-335) amplified in primary human CAF 

and experimentally induced senescent oral fibroblasts were able to regulate 

SASP expression and further promote OSCC cell migration following co-culture 

experiments. Moreover, on blocking miR-335 with celecoxib (an inhibitor of cyclo-

oxygenase inhibitor 2, COX-2) the secretion of SASP factors decreased, reducing 

pro tumorigenic effects (Kabir et al., 2016). 	
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Interestingly, several recent studies have shown the role of TGFβ as a regulator 

in tumour-senescence fibroblast crosstalk (Hassona et al., 2013; Hassona et al., 

2014; Calon et al., 2014). In conjunction with reactive oxygen species (ROS), 

TGFβ induces fibroblast senescence and activation. Fibroblasts associated with 

genetically unstable OSCC (GU-OSSC) were noted to be senescent, due to the 

detection of amplified levels of ROS, TGFβ1, and TGFβ2, resulting in oxidative 

DNA damage (Hassona et al., 2013). Following senescence, CAF secrete 

increased levels of TGFβ and MMP2, which initiates EMT of neoplastic 

keratinocytes, leading to loss of cellular adhesion and promoting invasion (Prime 

et al., 2016).	

The mechanisms of fibroblast activation and senescence have been suggested 

to be closely related. Hassona et al. (2013) claimed that these may be different 

phases of indistinguishable pathways. This was further verified as fibroblast 

senescence was demonstrated following TGFβ fibroblastic activation. 

Furthermore, both fibroblast phenotypes are SMA positive, and their tumour-

promoting capabilities are mediated through similar pathways (Demehri et al., 

2009; Alspach et al., 2014; Procopio et al., 2015).	

 

1.5 Extracellular vesicles: cellular messengers in 
tumour microenvironment  
Extracellular vesicles (EV) are microscopic plasma membrane-derived 

structures, made up of a lipid bilayer membrane and released extracellularly by 

a vast number of cells (Théry et al., 2002; Raposo and Stoorvogel, 2013; 

Andaloussi et al., 2013). Recently, EV have been gaining interest as a novel 

mode of cellular communication in biomedical research. EV are capable of 
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shuttling bioactive particles comprising nucleic acid as microRNA, mRNA, DNA, 

and proteins or lipids from one cell to another, leading to an interchange of 

genetic material and reprogramming of target cells. There is increasing evidence 

that EV expression is amplified in tumorigenesis, which has an impact on tumour 

progression, metastasis and chemotherapeutic drug resistance (Kahlert and 

Kalluri, 2013; Vader et al., 2014; Minciacchi et al., 2015; Becker et al., 2016). In 

addition, EV transfer their cargo from tumour cells to surrounding tumour 

microenvironment, disseminating growth factors and other mediators to altering 

extracellular milieu contributing to a more aggressive tumour pattern (Webber et 

al., 2010; Kahert and Kalluri, 2013; Becker et al., 2016).	

1.5.1 Classification biogenesis, and contents of EV  
Extracellular vesicle nomenclature has been conflicting and inconsistent over the 

past years. Based on their origin or biological role, the terms cardiosome 

(Waldenström et al., 2012), ectosome (Stein and Luzio, 1991), oncosome 

(Morello et al., 2013), argosome (Greco et al., 2001), and deteriosome (Yao et 

al., 1993) have been used. Currently, EV are widely classified in accordance to 

their mechanism of biogenesis to apoptotic bodies (1-5 μm) released by cells 

undergoing apoptosis, microvesicles/microparticles (100-1000 nm) formed by 

outward budding of the plasma membrane, and exosomes (30-100 nm) produced 

when multivesicular bodies fuse with the plasma membrane, releasing the 

intraluminal vesicles they carry out of the cell (Figure 1.3). However, these 

dimensions overlap making the separation of distinct subgroups challenging.   
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Figure 1.3: Biogenesis of extracellular vesicles. EV are widely classified in 

accordance to their mechanism of biogenesis to apoptotic bodies (1000-5000 nm) 

released by cells undergoing apoptosis, microvesicles (100-1000 nm) formed by outward 

budding of the plasma membrane, and exosomes (30-120 nm) produced when 

multivesicular bodies fuse with the plasma membrane, releasing the intraluminal vesicles 

they carry out of the cell. (Illustration generated using Photoshop software). 

 

The exact mechanism behind the programmed sorting of cargo is still unclear. 

The endosomal sorting complex required for transport (ESCRT)-dependent and 

ESCRT independent messages have been proposed to control the sorting of EV 
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components (Trajkovic et al., 2008; Colombo et al., 2013). In addition, syndecan 

heparan sulfate proteoglycans has been reported to regulate EV biogenesis 

(Baietti et al., 2012; Kowal et al., 2014). EV secretion on the other hand, has been 

described to be regulated by Rab guanosine triphosphates (GTPases) (Hsu et 

al., 2010; Kowal et al., 2014), and by accumulation of calcium ions (Savina et al., 

2003; Emmanouilidou et al., 2010). In cancer, the pH of the TME has been 

described to inversely modulate EV expression; at a low pH EV secretion from 

donor cell and uptake by recipient cell is amplified (Parolini et al., 2009). 

Furthermore, tumour suppressors and oncogenes have been reported to regulate 

EV secretion, influencing tumorigenesis and progression of cancer (Yu et al., 

2005).	

EV act as envelopes that shelter their cargo (RNA, DNA, proteins and lipids) from 

degradation in the ECM (Lässer et al., 2011). They interact with target cells via 

surface receptors, directly merge to cell membrane or are ingested by 

endocytosis, proceeding to the relocation of their contents to the recipient cell 

(Mulcahy et al., 2014). Various techniques for EV isolation have been described. 

Most commonly, ultracentrifugation solely or combined with size exclusion 

chromatography (SEC), and magnetic sorting or immune bead isolation have 

been used. Characterisation of the protein composition of tumour cell-derived EV 

has also been well defined using various proteomic methods. ExoCarta 

(www.exocarta.org) is a well-recognised tool, which identifies the most common 

miRNA, mRNA, and proteins found in EV.	
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1.5.2 Extracellular vesicles in bone 
Bone is in continual dynamic equilibrium of resorption and deposition harmonised 

by a mineral metabolic process. Bone homeostasis involves several cell types 

comprising osteocytes, osteoblasts, osteoclasts and their 

precursors.  Intercellular communication between these cells is mandatory to 

carry information from one cell to another, further regulating this process.	

Primarily, bone forming cells or osteoblast derived EV play essential roles in 

intercellular communication in bone. Deng et al. (2015), reported that osteoblast 

EV expressed RANKL, and can promote RANK-RANKL interaction, initiating 

osteoclastogenesis. In addition, targeting osteoblast derived microvesicles can 

diminish bone loss (Deng et al., 2017). These results suggest that osteoblasts 

can initiate and activate osteoclast generation through secretion of EV without 

immediate cell to cell contact. Furthermore, Ge et al. (2015), revealed the 

proteomic analysis of osteoblast derived EV isolated from mouse MC3T3 

osteoblasts, and reported the expression of an abundant amount of 

osteogenesis-related localised proteins, including eukaryotic initiation factor 2 

(EIF2) signalling, which takes part in BMP induced osteoblast differentiation.	

Secondarily, preosteoclasts and osteoclast derived EV play a key role in 

mineralisation metabolism in bone. Recently, Huynh et al. (2016) described that 

osteoclast EV express surface RANK, targeting osteoblasts through 

RANKL/RANK interaction, consequentially leading to RANKL expressing 

osteoblast EV promoting osteoclast generation in return. In addition, osteoclast 

EV expressing RANK, may impede osteoclastogenesis by binding to RANKL 

expressing osteoblast EV. Interestingly, Huynh et al. (2016) reported RANK in 

osteoclast derived EV but not in preosteoclasts. Preosteoclast EV can promote 
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osteoclast formation, and osteoclasts EV can block osteoclast generation, 

suggesting that preosteoclasts are functionally different and can be responsible 

for stabilisation of bone mineralisation. 	

Sato et al. (2017) found that osteocyte derived EV may transfer miRNA to the 

target cell via blood circulation, suggesting how osteocytes might be regulated 

regionally and systemically. Most recently, Qin et al. (2017) showed that 

osteocyte EV contained miRNA-218 inhibited sclerostin and promoted the 

differentiation of osteoblasts. Sclerostin and RANKL are the main molecules 

expressed by osteocytes, but unfortunately there is no evidence that they are 

found in osteocyte derived EV.	

1.5.3 Roles of extracellular vesicles in cancer and 
microenvironment 
Increasing evidence shows that EV play important roles in cancer. EV transport 

oncogenic nucleic acids and proteins to recipient cells, playing vital roles in 

tumour growth, progression, metastasis and therapeutic resistance. EV derived 

from malignant cells are capable of inducing dysplastic transformation in normal 

cells. Abd Elmageed et al. (2014), found that adipose-derived stem cells had a 

potential oncogenic transformation when exposed to EV isolated from prostate 

cancer. Similar results have also been reported in breast cancer, where miRNA 

containing EV silenced mRNA in non-neoplastic cells, resulting in transcriptome 

reprogramming and malignant transformation (Melo et al., 2014).	

Tumours are composed of a heterogeneous population of neoplastic and non-

neoplastic cells such as mesenchymal, immune cells and acellular ECM. 

Recently, tumour complexity has been further highlighted by the emergence of 

EV in tumour microenvironment. Cancer cell EV have the potential to 
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communicate with the surrounding host stroma, stimulating or restricting tumour 

progression.	

Cancer derived EV have a significant impact on the tumour microenvironment by 

encouraging tumour angiogenesis, immune cell infiltration, and activation of 

resting fibroblasts to CAF, advancing tumour progression. Webber et al. (2010), 

reported that prostate cancer EV expressed TGFβ, and actively triggered 

myofibroblastic differentiation of normal fibroblast in tumour microenvironment, 

which promoted tumour growth. These results are in further agreement with Gu 

et al. (2012), where gastric cancer EV stimulated the differentiation of 

mesenchymal cells to CAF. Moreover, these findings were also observed in 

breast cancer (Cho et al., 2012). Interestingly, CAF communication with cancer 

cells favours tumour progression, affecting radiation and chemotherapy 

resistance. Boelens et al. (2014) demonstrated that EV expressed by CAF 

communicated with breast neoplastic cells initiating the NOTCH3 pathway to 

increase therapy resistance. Stromal derived EV have also been suggested to 

promote invasion and metastasis in breast cancer through Wnt-planar cell 

polarity signalling (Luga et al., 2012). Hence, EV communication between cancer 

and surrounding stromal fibroblasts adds another dimension to the complexity of 

TME, and synergistically mediates tumour growth and progression.	
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1.5.4 EV and cancer biomarkers and potential therapeutics 
EV have been isolated from numerous biological fluids, including saliva, blood, 

tears, bile, urine, cerebrospinal fluid and breast milk. (Lässer et al., 2011; Raposo 

and Stoorvogel, 2013; De Toro et al., 2015). Cancer derived EV have been 

reported to be systemically elevated in circulation and may serve as a potential 

liquid biopsy for diagnostic and prognostic indicators in various malignancies 

(Nilsson et al., 2009; Corcoran et al., 2011; Melo et al., 2015). Therefore, it is 

conceivable that EV transmission in malignancy could be a potential target to 

enhance and monitor therapy response. Pitt et al. (2014) established 

immunotherapeutic anticancer agents using dendritic cell EV (dexosomes), which 

have gone through clinical trials for melanoma, lung and colorectal malignancy 

(Tan et al., 2010).	

A novel strategy for treatment of advanced malignancies, is by the depletion of 

EV (Marleau et al., 2012). Amiloride, a drug used to treat hypertension, has been 

reported to halt EV biogenesis and limit colorectal cancer progression (Chalmin 

et al., 2010). However, advanced investigations are needed to assess the clinical 

safety of EV elimination.	

Due to their various genomic contents along with their extensive distribution and 

biocompatibility, the utilisation of EV as diagnostic biomarkers and therapeutics 

delivering anticancer drugs has been gaining attention (Van den Boorn et al., 

2010; Hu et al., 2012; Pascucci et al., 2014). Improving the current strategies to 

isolate a substantial amount of EV from donor cells, introduction of 

nanotechnologies to pack EV with targeted therapies, will enable the use of EV 

as natural cargo for anti-cancer drugs.	
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1.6 Bone Invasion in OSCC 
Oral cancer involving the lateral tongue, alveolar ridge and floor of mouth, due to 

its anatomical proximity, frequently invades the maxilla or mandible, significantly 

worsening patient outcomes. A few studies have demonstrated the function of 

osteoclasts in bone invasive OSCC but it still remains speculative whether this is 

an osteoclastic or tumour/associated microenvironment driven mechanism. 	

1.6.1 Cytokines  
OSCC secrete cytokines that have been reported to contribute to the process of 

osteoclastogenesis. Bone tissue is considered a reservoir for numerous 

cytokines and growth factors. This allows cell proliferation by maintaining 

malignant cellular division, inhibition of apoptosis, leading to progression of 

tumour growth and invasion of adjacent osseous tissue. Earlier research has 

claimed that osteoclast led bone destruction is the main element in tumour 

progression, invasion and metastasis. 	

Many factors are involved in tumourigenesis and progression. Interleukin-6 (IL6) 

has been shown to significantly intensify ECM degradation by prompting MMP 

expression stimulating bone resorption by enhancing ostoclastogenesis and 

hindering osteocyte and osteoblastic activation (Li et al., 2010). O’Brien et al. 

(1999) demonstrated how osteoblasts expressing RANKL can induce 

osteoclastic bone resorption via IL6. In addition, it has been suggested that 

osteoclasts and not tumour cells predominate in the process of bone invasion in 

mandibular resections of OSCC patients (Shibahara et al., 2005). The findings 

from this study revealed IL6, PTHrP and TNF-α expression in osteoclasts as well 

as tumour keratinocytes and associated tumour fibrous stroma in both bone 
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invasive and non-invasive groups. This study concluded that osteoclasts play an 

important role in OSCC bone invasion.	

Furthermore, Kayamori et al. (2010), validated the expression of PTHrP and IL6 

by conducting immunohistochemistry (IHC) on OSCC patient tissue samples. 

They noticed expression of PTHrP in neoplastic cells in comparison to IL6. 

However, similar IL6 expression was noted in both cancer and stromal cells. They 

further examined RANKL relevance by treating fibroblastic stromal cell lines with 

conditioned media collected from cultured OSCC cells and showed a relation 

between RANKL dependent osteoclast led bone destruction, and up regulation 

of IL6 and PTHrP. Recently, another study group showed both in vitro and in situ, 

that IL6 expression is more pronounced in stromal CAF than in tumour cells 

(Nagasaki et al., 2013). This evidence further validates the significant role of CAF, 

in addition to cancer cells, in bone invasive OSCC.	

1.6.2 Role of TGFβ dependent pathways in cancer progression 
Osseous tissue, precisely the bone matrix, is a reservoir of TGFβ. Pfeilschifter 

and Mundy (1987) showed presence of TGFβ in bone microenvironment, 

following osteoclast mediated bone destruction. In tumourigenesis and 

progression, TGFβ has a fundamental role in modulating cancer cell proliferation, 

differentiation and metastasis (Pickup et al., 2013). Throughout the preliminary 

course of tumour development, TGFβ exhibits tumour suppressive activity 

through growth inhibition, activation of cellular apoptosis (Massagué et al., 2000; 

Siegel and Massagué, 2003), and proteases inhibition (Ito et al., 2004). However, 

during advanced stages, this anti-tumourigenic effect subsides, and is replaced 

by a more aggressive EMT cancer progressive phase, through the stimulation of 

TGFβ expression, ligand activation for tumour growth promotion and pro-
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oncogenic functionality including neoangiogenesis and invasion (Pickup et al., 

2013).	

The recognised TGFβ signalling pathway is involved in a broad superfamily, 

comprising bone morphogenic proteins (BMP), activins, and growth and 

differentiation factors (GDF) which are principal elements in differentiation, 

development, and cellular and humoral homeostasis (Weiss and Attisano, 2013). 

TGFβ1, β2, and β3 are the three main TGFβ ligands, which are encoded by 

distinct genes, but are activated through similar receptor signalling pathways 

(Massagué, 1998). Amongst these, TGFβ1 has been the focus in most 

tumourigenesis studies. 	

The release of TGFβ as a latent protein necessitates the presence of regulatory 

activation mechanisms, including metalloprotease cleavage by MMP9 and MMP2 

(Yu and Stamenkovic, 2000), ECM protein thrombospodin (Schultz-Cherry and 

Murphy-Ullrich, 1993; Crawford et al., 1998), αvβ6 surface integrin (Munger et al., 

1999), or by myofibroblastic contraction (Wipff et al., 2007). In carcinogenesis, 

TGFβ signalling process is mediated through two types of heteromeric cell 

surface transmembrane serine-threonine kinase receptors TGFβ receptor type I 

(TGFβ RI), and receptor type II (TGFβ RII). Following TGFβ1 ligand binding to 

the receptor II complex, TGFβ RII initiates and mediates phosphorylation of TGFβ 

RI, which sequentially phosphorylates Smad2 and Smad3 and co-joins Smad4, 

facilitating nuclear translocation and transcription regulation (Derynck and Feng, 

1997; Piek et al., 1999; Itoh et al., 2000; Massagué et al., 2000; Derynck et al., 

2001)	
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During the process of EMT, cell surface adhesion molecule transition occurs; this 

phenomenon is widely known as “cadherin switching”. In this transition epithelial 

surface antigen E-cadherin expression is replaced with N-cadherin, a 

mesenchymal marker, followed by an acquired tumour cellular expression of 

αSMA and vimentin cytoskeletal proteins (Wan et al., 2013) (Figure 1.4).	

 

 

Figure 1.4: Epithelial-mesenchymal transdifferentiation. On cancer progression, 

several cytokines, and growth factors stimulate keratinocytes to differentiate to a 

mesenchymal phenotype. Promoting loss of cell adhesion, alteration in morphology and 

invasion. (Illustration generated using Photoshop software). 

 

A considerable number of studies have shown the key role of TGFβ in modulating 

EMT, and consequential OSCC bone involvement (Quan et al., 2012; Quan et 

al., 2013; Hwang et al., 2014). A previous study reported morphological changes 

of neoplastic keratinocytes on transfection of V69 (a murine OSCC cell line) with 

TGFβ. This transformation was noted as changing from angular to an extended 
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spindle shape. In vivo transplantation of these cells into the floor of the mouth of 

murine models resulted in highly aggressive tumours (Davies et al., 2000). An in 

vitro study involved transfection of three alternative human head and neck cancer 

cell lines (SCC25, HN5 and TCA8113) with TGFβ1. In contrast to Davis et al. 

(2000), following the predetermined time span of three days, the TGFβ 

dependent amplification of MMP2 and MMP9 was noted to promote bone 

invasion through EMT initiation and sustaining osteoclast activity. Despite these 

findings, no morphological changes were detected in these studies (Qiao et al., 

2010; Quan et al., 2013).	

These opposing findings raise the possibility that morphological transformation 

may not be a prerequisite to obtain EMT features. The precise role of TGFβ on 

osteoclast activity and regulation, therefore, remains to be determined.	

TGFβ has been reported to play a pro-tumourigenic role by inducing 

transdifferentiation of stromal fibroblasts to more stimulated/aggressive αSMA 

expressing myofibroblasts (Pickup et al., 2013). Treatment of normal human 

gingival fibroblasts (NOF) with TGFβ (0.5 to 10ng/ml) leads to αSMA surface 

antigen expression evident through immunofluorescence (Lewis et al., 2004). 

Moreover, when OSCC cell lines CA1, VB6 and 5PT were co-cultured with these 

fibroblasts, a significant up regulation in TGFβ protein expression was detected 

through an ELISA. This data demonstrates the important interaction between 

CAF and TGFβ in cancer progression.	

1.6.3 RANK, RANK ligand and OPG mechanisms. 
As mentioned earlier, the vital factors accountable for bone sustainability and 

structure are RANK, RANKL and its antagonist OPG. Alterations in functional 

equilibrium of these cytokines will either result in osteogenesis (higher OPG 
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expression) or osteolysis (higher RANKL levels). RANK/RANKL signalling 

cascade facilitates differentiation of bone lining cells, osteocytes and osteoblasts 

to osteoclasts, along with macrophage colony-stimulating factor (M-CSF) while 

OPG suppresses these signals.	

OPG acts as a signal for osseous tissue deposition and preservation, alongside  

its bone resorption obstruction functionality (Simonet et al., 1997). OPG belongs 

to the TNK receptor family; it is an actively secreted protein, due to absence of a 

transmembrane element. Experimental studies conducted on murine specimens 

in vivo have shown that OPG administration can arrest tumour growth; prevent 

bone invasion and distant spread of prostate cancer (Armstrong et al., 2008). 

These findings reinforce the role of RANK/RANKL in promoting OSCC bone 

involvement. OSCC cells are known to secrete RANKL. Chuang et al. (2009) 

claimed that there was no significant difference in RANKL expression between 

bone invasive and non-bone invasive OSCC suggesting that oral cancer cells 

may have the capacity to stimulate osteoclastogenesis when in proximity to 

adjacent bone. However, on reviewing this study, noticeable limitations are noted 

as in some of the images the IHC staining does not appear to be specific. OPG 

expression was reported as absent in bone invasive lesions, however this 

expression was also negative in osteoblasts on bone surface, further making the 

data somewhat questionable. In addition, the tumour-bone proximity of the tested 

cohort was not acknowledged.	

It is still uncertain whether all OSCC cells express RANKL or can induce 

osteoclastogenesis on their own. Tada et al. (2005) co-cultured aggressive 

human OSCC (BHY) cell lines derived from the lower alveolus with murine bone 

marrow cells (BMC). In vitro osteoclastic differentiation was weak, although 
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RANKL surface antigen was detected in BHY cells following flow cytometry. 

Following co-culture of BHY cancer cells with primary bone cells and BMC, 

significant numbers of osteoclasts were generated (TRAP stained and counted 

under light microscope). On administration of OPG, this process was significantly, 

but not absolutely inhibited. Inconsistent findings were reported for head and neck 

squamous cell carcinoma HSC-2 cell line. Osteoclastogenesis was profound 

when co-cultured with BMC murine marrow cells, however, these cells lacked 

RANKL expression. This highlights the importance of phenotypic characterisation 

in cancers and the diverse mechanisms involved in the complex milieu of OSCC 

bone invasion. In the former study, the expression of RANKL and failure of 

osteoclastogenesis suggested that the TME ceased to induce RANKL activation, 

while in the second study RANKL expression was suggested to be non-essential 

for bone resorption to occur. Furthermore, IHC analysis of bone invasive OSCC 

revealed lower OPG expression in fibrous stromal cells compared to normal 

mucosa. This raises the possibility that a decline in OSCC OPG expression in the 

presence of osteoblasts, rather than an amplified RANKL expression, may be 

more important in induction of osteoclastogenesis.	

OSCC regulation of osteoclastic differentiation has also been investigated. 

Osteoclasts have relatively brief life spans and are subjected to prompt cellular 

apoptotic death in the absence of RANKL, IL6 and M-CSF. Prolonged osteoclast 

survival has been shown to be related to suppression of Bcl-2 pro apoptotic 

protein (Bim) in BHY cancer cells. These OSCC cells have also been 

demonstrated to induce osteoclastic pit-formation (Tada et al., 2009). Another 

research group injected human OSCC cells (B88) into nude mice and following 

tumour formation OPG treatment was administered. Obvious reductions in 
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tumour growth and osteoclast count were noticed, in addition to increased OSCC 

cell apoptosis. However, the in vitro approach showed no change in proliferation, 

suggesting that tumour and bone microenvironment plays an important role in 

OPG functionality (Shin et al., 2011).	

1.6.4 “Vicious cycle” a cascade regulating bone integrity 
The cascade involved in OSCC bone invasion, is considered a “vicious cycle” 
(Figure 1.5). 

 

Figure 1.5: Vicious cycle of bone invasion. Bone integrity is maintained through TNF 

triad proteins. On binding of RANKL to its receptor RANK, osteoclastogenesis is initiated. 

However, if RANKL binds to its antagonist and decoy receptor OPG osteoclast 

generation is reduced, decreasing bone destruction. (Illustration generated using 

Photoshop software). 

 

The cross talk between tumour and bone through intervening fibrous stroma or 

by direct contact regulates the dynamic advancement of bone destruction. 

Neoplastic keratinocytes secrete humoral factors. Amongst these growth factors, 

cytokines and hormones as PTHrP, which promotes osteoclast differentiation 
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through assembly of RANKL expressed osteoblasts and fibrous stromal cells 

(Chikatsu et al., 2000).	

Both CAF and cancerous tumour cells have been shown to express RANKL (Mao 

et al., 2013) through the joining of the ligand to its receptor RANK located on 

progenitor bone cells, leading to induction of osteoclastogenesis. Consequently, 

the generated osteoclasts resorb osseous tissue. During this process growth 

factors IGF, TGFβ, and BMP are disseminated into the microenvironment, 

promoting further progression of cancer growth. This “vicious cycle” facilitates 

tumour cell proliferation promoting advanced bone invasion. 

1.7 Adjuvant therapeutic implications in cancer 
Cancer associated fibroblasts have been suggested to be good therapeutic 

targets due to their genetic stability and non-proliferative characteristics 

(Johansson et al., 2012; Kinugasa et al., 2014). In reference to OSCC, multiple 

studies support the evidence that CAF secreted hepatocyte growth factor (HGF) 

disrupts EGF expression (Wang et al., 2009; Yamada et al., 2010) conferring 

resistance to an antagonistic EGFR antibody; cetuximab, via CAF induced MMP 

(Johansson et al., 2012). However, normal resting oral fibroblasts were not 

included in this study which would have been useful for comparison with CAF.	

1.7.1 Senotherapeutics 
Senescent cells accumulate with ageing, as well as in pathologies of chronic 

disease. In vitro studies on these ageing cells have shown to impede or prevent 

age related diseases including osteoporosis, pulmonary fibrosis, cardiovascular 

disease, diabetes, and cancer (Zhu et al., 2014; Roos et al., 2016). Zhu et al. 

(2015) first identified senotherapeutics through the contradicting fact that 

senescent cells despite expressing SASP factors that should trigger cell death, 
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are resistant to apoptosis. In addition, proapoptotic pathways are amplified in 

senescence, yet these cells withstand apoptosis (Wang et al., 1995). Therefore, 

senescent cells depend on their pro-survival mechanisms to protect themselves 

from the pro-apoptotic SASP expression. Following this hypothesis, and thorough 

RNA bioinformatics evaluation, senescent cell anti apoptotic pathways (SCAP) 

were proposed (Table 1.1). Through this approach the survival proteins were 

described and targeting of these proteins led to selective apoptosis of senescent 

cells while sparing proliferative non senescent cells.	
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Table 1.1: Senolytic drugs and SCAP (Adapted from James et al., 2017) 

SCAP Senolytic agent Effective In vivo 

BCL-2, BCL-XL family Navitoclax (ABT263) 

 Fisetin 

 A1331852 

 A1155463 

Yes 

P13Kd, AKT, ROS-protective Quercetin 

Fisetin 

Piperlongumine 

Yes 

MDM2, P53, P21, Serpine (PAI-
1&2) 

Quercetin 

Fisetin 

FOX04-related peptide 

Dastinib (FOXO-p53 
interaction) 

Yes 

 

Yes 

Ephrins Dastinib (ephirin receptors) 

Piperlongumine 

Yes 

HIF-1a Quercetin 

Fisetin 

Yes 

HSP-90 17-AAG (tanespimycin) 

Geldanamycin 

17-DMAG (alvespimycin) 

 

 

Yes 

 

The first senolytic drug adapted using this hypothesis were quercetin and 

dasatinib (Zhu et al., 2015), followed by a B-cell lymphoma 2 (BCL-2) family 

inhibitor navitoclax (Chang et al., 2016; Zhu et al., 2016). More recently the use 

of heat shock protein (HSP-90) has also been reported (Fuhrmann-Stroissnigg et 

al., 2017).	
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Targeting a single pro-apoptotic pathway cannot eliminate senescence in all cell 

types. However, combination of different senotherapeutics can have synergistic 

properties, increasing the range of senescent cells that can be eliminated (Zhu et 

al., 2015).	

In age related bone loss, Farr et al. (2017) recently eliminated senescent cells in 

bone by stimulating apoptosis through targeted activation of caspase (INK-ATTC 

transgene), and administration of pharmacological senotherapeutic agents in 

mouse models. They further reported that on exposure to senescent cell 

conditioned media, osteoclast survival was significantly enhanced. Collectively, 

this data can be further used to understand the role of senescence in cancer 

related bone invasion, with potential therapeutic application to limit tumour spread 

and recurrence in bone following radio and chemotherapy. 
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1.8 Summary 
The majority of head and neck cancers are diagnosed as OSCC. Although it is not one 

of the most common cancers, in the United Kingdom, more than 11,900 new cases of 

head and neck cancers were reported in 2016, with an increase in incidence of 

over 33% for new patients diagnosed with oral cancer in the last decade, and 

over 4000 oral cancer-related deaths reported annually (Cancer Research UK, 

2019).  

Bone invasion is a common feature of OSCC and is associated with a poor prognosis. A 

number of previous studies have attempted to explore the mechanism of OSCC 

associated bone invasion, however, the exact molecular mechanism in which OSCC 

invades bone still remains unclear. There is increasing evidence that the tumour 

microenvironment, predominantly composed of CAF, play a key role in tumour 

progression, but the role of CAF in bone invasion remains to be elucidated. 
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1.9 Project hypothesis, aims and objectives 
1.9.1 Hypothesis 
Cancer associated fibroblasts (CAF) play a functional role in OSCC bone 

invasion through a RANKL dependent pathway. 

1.9.2 Aims 
The aim of this study is to investigate whether CAF play a role in bone invasion 

and to identify underlying mechanisms of interactions between CAF and bone 

cells. 

1. Investigate the role of fibroblasts in bone remodelling. 

2. Examine the contribution to different subsets of CAF.  

3. Understand the mechanism by which different subsets of CAF influence 

bone invasion in OSCC. 

4. Assess the possibility of targeting CAF pharmacologically as an 

intervention for bone invasive OSCC. 

1.9.3 Objectives 

1. To investigate the abundance and role of myofibroblastic CAF in bone 

invasion and remodelling in OSCC. 

2. To examine the different subsets of CAF, in particular those with a 

senescent phenotype, in the tumour microenvironment of bone invasive 

OSCC. 

3. To examine whether EV influence bone invasion in oral cancer. 

Data from this project will present novel information concerning the role of CAF 

tumour microenvironment in bone invasive OSCC. 
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2.1 Clinicopathological analysis of OSCC bone 
resections  
The local pathology database was used to identify OSCC cases with bone 

removal. OSCC bone resections diagnosed from 1994 to 2017 (407 cases) were 

identified from the Unit of Oral and Maxillofacial Pathology, School of Clinical 

Dentistry, University of Sheffield archive and the following information retrieved 

from pathology reports: 

• Site (maxilla or mandible) 

• Age 

• Gender 

• Grade of tumour differentiation (well, moderate, and poor) 

• Bone invasion (Superficial cortical resorption or deep cancellous 

invasion) 

• Regional metastasis 

 

2.2 Immunohistochemical (IHC) analysis of OSCC 
incisional biopsies away from bone 
10 OSCC cases that had undergone initial diagnostic incisional biopsies (1996 to 

2016) were selected from the archive detailed in section 2.1.	

Immunohistochemical staining was performed on 4 μm tissue sections to study 

ex vivo expression of a marker of myofibroblastic differentiation (αSMA), bone 

turnover markers (OPG and RANKL), and senescence markers dipeptidyl 
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peptidase-4 (DPP4/CD26) and p16INK4a (ethical approval ref.# 

07/H1309/150).   	

Numerous pilot assays were carried out to optimise primary antibody dilutions to 

detect specific expression and reduce non-specific background staining, 

including determining the optimal antibody concentration, incubation time, 

blocking method and antigen retrieval technique (Table 2.1).	

Table 2.1: Details of primary antibodies used for IHC. 

Primary antibody Dilution Description Details 

αSMA 1:100 Mouse anti-human 
monoclonal antibody 

Catalogue 
number A5228, 
Sigma Aldrich 

RANKL 1:50 Rabbit anti-human 
polyclonal antibody 

Catalogue 
number ab9957, 
Abcam 

OPG 1:100 Rabbit anti-human 
polyclonal antibody 

Catalogue 
number ab73400, 
Abcam 

DPP4 (CD26) 1:100 Rabbit anti-human 
monoclonal antibody 

Catalogue 
number 40134, 
Cell Signalling 

p16INK4a 1:100 Rabbit anti-human 
monoclonal antibody 

Catalogue 
number 
ab108349, 
Abcam 

 

2.2.1 IHC procedure 
OSCC formalin fixed paraffin embedded (FFPE) tissue sections were submerged 

in 100% xylene for 10 min at room temperature (RT) to deparaffinise the tissue 

samples. Sections were dehydrated by immersion in absolute alcohol for a further 

10 min. Incubation in 3% (v/v) hydrogen peroxide in methanol (100%) for 20 min 

was used to block endogenous peroxidase at RT, followed by a wash in PBS, 
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ready for antigen retrieval (Table 2.2). Heat-induced epitope retrieval (HIER) was 

performed by microwaving sections in 0.01 M tri-sodium citrate buffer (pH 6) for 

8 min on high power (Table 2.2). Slides were briefly allowed to cool, prior to 

blocking in serum corresponding to the species in which the primary antibodies 

were raised (100% horse serum for mouse (αSMA) antibody, and goat serum for 

rabbit (RANKL, OPG, DPP4/CD26 & p16INK4a antibody), at RT. After 30 min, 

the blocking serum was removed and 200 μl of primary antibody diluted in 

appropriate 100% serum was applied in a humidified chamber overnight at 4°C 

(Table 2.1). Exclusion of primary antibody served as a negative control.	

	

On the subsequent day, sections were washed twice in PBS for 5 min at RT to 

remove unbound antibody. VECTASTAIN ELITE ABC Kits (Vector Laboratories) 

were utilised in accordance with the manufacturer’s specifications (Table 2.3).	
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Table 2.2: IHC solutions and reagents. 

Chemical reagents Formulation 

3% (v/v) Hydrogen Peroxide 
70 ml Hydrogen Peroxide (H2O2) 

230 ml Absolute Methanol 

0.01 M Sodium Citrate Buffer 11.8 g/ml Sodium Citrate Tribasic 

Phosphate Buffer Saline (PBS) 

425 g/ml Sodium Chloride 

58 g/ml Sodium Phosphate Dibasic 

12.5 g/ml Potassium Phosphate 

5 L Distilled Water 

Secondary Biotinylated Antibody 

Biotinylated Antibody Stock (1 drop) 

Blocking Serum (3 drops) 

10 mL PBS 

VECTASTAIN ELITE ABC 

Reagent A (2 drops) 

Reagent B (2 drops) 

5 ml PBS 

Vector Nova Red Peroxidase 

 

Reagent 1 (1 drop) 

Reagent 2 and 3 (2drops) 

H2O2 (2 drops) 

5 ml distilled water 

DAB Substrate Kit 

Buffer stock solution (2 drops) 

DAB stock solution (4 drops) 

Hydrogen peroxide solution (2 drops) 

5 ml distilled water 
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Table 2.3: Details of secondary antibodies used for IHC. 

Secondary antibody VECTASTAIN ELITE ABC Kit 

Anti-human αSMA monoclonal 
antibody 

Horse anti-Mouse IgG 

Catalogue number PK-6102 

Anti-human RANKL polyclonal 
antibody 

Goat anti-Rabbit IgG 

Catalogue number PK-6101 

Anti-human OPG polyclonal 
antibody 

Goat anti-Rabbit IgG 

Catalogue number PK-6101 

Anti-human DPP4 polyclonal 
antibody 

Goat anti-Rabbit IgG 

Catalogue number PK-6101 

Anti-human p16INK4a polyclonal 
antibody 

Goat anti-Rabbit IgG 

Catalogue number PK-6101 

 

The secondary biotinylated antibody was applied to all sections, 1 drop diluted in 

10 ml PBS, and incubated for 30 min at RT. The ABC solution was prepared at 

the same time and left to stand for 30 min prior to application (Table 2.2). After 

30 min, the slides were washed in PBS and ABC solution was applied for a further 

30 min, followed by two more washes in PBS.	

Colour development was performed using the Nova RedTM Peroxidase 

Substrate Kit (Vector Laboratories) for the antibodies detecting αSMA, RANKL, 

and OPG and the reaction was stopped after 5 min by immersing slides in distilled 

water (Table 2.2). DAB Substrate Kit (Vector Laboratories), a chromogenic 

substrate that oxidises in the presence of peroxidase resulting in a brown colour, 

was used for DPP4 and p16INK4a. Slides were incubated with DAB for 6 min, 

then washed in distilled water for 5 min to stop the colour development. Finally, 

the sections were counterstained using haematoxylin (Thermo Electron, UK), 
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dehydrated in increasing concentrations of alcohol (90% then 100% 

respectively), and immersed in xylene (100%) using a Shandon linear staining 

appliance. Glass coverslips were used to seal the sections using a distyrene 

plasticizer xylene (DPX) mountant.	

2.2.2 IHC evaluation  
The stained slides were scanned using a high definition scanner TissueFAXS 

Slide Loader 120 Histo (Wien, Austria), and HistoQuest analysis software (Tissue 

Gnostics Imaging Solution, Austria) was utilised for IHC quantification. Three 

random regions of interest (ROI) per slide were selected covering an area of 0.5 

mm2 in tumour and stroma at the tumour invasive front and bone interface. The 

percentage positivity and staining intensity were measured and calculated by the 

software based on the recommended settings (Table 2.4 and 2.5).	

Table 2.4: HistoQuest settings for haematoxylin measurement. 

Nuclei size 15 

Remove weakly stained objects 1 

Remove small sized objects 1 

Threshold  13 
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Table 2.5: HistoQuest settings for DAB and NovaRed measurement. 

Ring mask Yes 

Use nuclei mask  No 

Use identification cell mask Outside 

Internal radius -0.28 µM 

External radius +0.28 µM 

Maximum growing steps 2.2 µM 

 

2.2.3 Double IHC analysis of senescence in myofibroblasts 
Matched cases of OSCC bone resections were examined, using double IHC, for 

expression of αSMA (monoclonal anti-actin, α-smooth muscle antibody A5228; 

Sigma-Aldrich, Poole, UK, 1:100) and p16INK4a (monoclonal anti-p16INK4a 

antibody ab108349; Abcam, Cambridge) or RANKL (polyclonal anti-RANKL 

antibody ab9957; Abcam, Cambridge, UK; 1:50) (Table 2.1). Staining was 

conducted using the DoubleStain IHC Kit: mouse and rabbit on human tissue 

(Abcam ab210061, Cambridge, UK). Two distinct antigens expressed in human 

tissue were evaluated using HRP-Polymer anti-mouse IgG (Emerald green 

chromogen), and AP-Polymer anti-rabbit IgG (Permanent red chromogen), which 

also gives the benefit of co-localisation. 

OSCC bone resections were deparaffinized as previously described in section 

(2.2.2). Sections were blocked in peroxidase blocking buffer (3% H2O2) for 10 

min, then rinsed twice in distilled water. Antigen retrieval was conducted by HIER 

in citrate buffer (0.01 M sodium citrate buffer) for 8 min in a microwave at high 

power, and allowed to cool in the hot buffer for another 5 min before washing in 



Chapter 2 Material and Methods  

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 54 

TBS-T wash buffer (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 7.6). 

Slides were incubated in 300 μl of diluted mouse and rabbit primary antibodies 

(anti-αSMA, 1:100, anti-RANKL, 1:50 or anti-p16INK4a, 1:100) in TBS-T. 

Following a 60 min incubation, sections were washed in TBS-T wash buffer (3 

times, 2 min per wash). A fresh mixture of rabbit AP polymer and mouse HRP 

polymer was prepared at a ratio of 1:1 and used promptly. 100 μl of the mixture 

was carefully added to the slides, to cover the sections, and incubated for 30 min 

in a humidifier. Slides were washed in TBS-T (3 times, 2 min per wash). 

Permanent Red staining was performed in accordance to manufacturer’s 

instructions (10 μl Permanent Red Chromogen, 200 μl Permanent Red Activator, 

in 1 ml Permanent Red Substrate).  Permanent red staining solution (100 μl) was 

applied to each slide. After 10 min, the sections were immersed in distilled water 

to stop the reaction. 

Sections were counterstained by briefly dipping slides in haematoxylin for 30 sec, 

rinsed in water (1 min), dipped in PBS (10 sec) for colour development, and rinsed 

in TBS-T before proceeding to the anti-mouse Ig detection using Emerald green 

staining. 100 μl of Emerald chromogen was applied, and sections incubated in a 

humidifier (5 min). Following this, slides were rinsed with distilled water, 

dehydrated in graded ethanol (85%, 95%, 100% absolute ethanol), and xylene 

(20 sec). Sections were mounted using 50 μl limonene mounting medium 

(catalogue ab104141, abcam) supplied and covered with a glass coverslip. 

(catalogue ab104141, abcam) supplied and covered with a glass coverslip. 
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2.3 Cell culture and propagation 
2.3.1 Cell lines and culture conditions 
2.3.1.1 HOB 
Human primary osteoblasts, a gift from Dr Keyvan Moharamzadeh, were isolated 

from bone chips collected following dental implant surgery (Sheffield Research 

Ethics Committee (15/LO/0116, STH Research Department: STH18551), and 

used at passage 2. 

2.3.1.2 NOF 
Primary normal oral fibroblasts were isolated from human gingival tissue, as 

previously described (Hearnden et al., 2009) (Sheffield Research Ethics 

Committee reference number 13/NS/0120, STH17021). NOF 803, 804 and 822 

(from three different donors) were used at passage 3-7 to exclude the possibility 

of senescence (based on previous data obtained in the laboratory). 

2.3.1.3 DENF 316 
Primary normal oral fibroblasts were retrieved from the department archive bio-

repository. These human fibroblasts were isolated from healthy gingival tissue, 

which was collected during molar tooth extraction at Charles Clifford Dental 

Hospital, University of Sheffield (Sheffield Research Ethics Committee reference 

number 04/Q2305/78). Fibroblasts were used between passages 5-7. 

2.3.1.4 CAF 
Primary human cancer associated fibroblasts (CAF 002, 003 and 004- from three 

different donors) were isolated from OSCC resection specimens (Elmusrati et al., 

2017) from Sheffield Teaching Hospitals NHS Foundation Trust (Sheffield 

Research Ethics Committee reference number 13/NS/0120, STH17021) and 

used between passage 3-7. 
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2.3.1.5 H357 
The human OSCC-derived cell line H357 was retrieved from the department bio-

repository. The H357 cell line was originally established from a well-differentiated 

OSCC of the tongue excised from a 74-year-old Caucasian male patient (Prime 

et al., 1990). The primary tumour dimension was 20 mm in diameter with no 

regional lymph node spread or distant metastases.  

2.3.1.6 RAW 264.7 
The murine monocyte cell line RAW 264.6 was acquired from ATCC (ATCC, TIB-

71) and used below passage 5. 

The cells were cultured and propagated in Table 2.6. 

Table 2.6: Media used to propagate the specific cell strains. 

Cell lines Nutrient Media 

HOB 

H357 

RAW 264.7 

Dulbecco’s Modified Eagle’s Medium 
(DMEM) 

10% (v/v) Foetal Bovine Serum (FBS) 

1% (v/v) Penicillin/ Streptomycin 

1% (v/v) Amphotericin B (250 μg/ml) 

1% (v/v) L-Glutamine 

DENF 316 

NOF 803, 804 and 822 

CAF 002, 003 and 004 

DMEM 

10% (v/v) FBS 

1% (v/v) L-Glutamine 
 

Cells were grown in 12 ml of their corresponding culture media in T75 cm2 tissue 

culture treated surface flasks (Greiner Bio-one, Germany). Cells were incubated 

in 99% humidity, 5% carbon dioxide (CO2), at 37°C until confluent and ready for 

use. 
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2.3.2 Cell subculture and propagation 
After reaching near confluence (70-80%), all cells were trypsinised, reseeded, 

and allowed to further propagate. To achieve this, spent media was discarded, 

and attached cells were irrigated twice in 5 ml of sterile modified Dulbecco’s PBS, 

without calcium or magnesium chloride (catalogue number D8537, Sigma-

Aldrich). Following rinsing (2 x), PBS was removed from the culture flask, 3 ml of 

trypsin (catalogue number T3924, Sigma-Aldrich) was applied, and the cells 

allowed to detach in the incubator at 37°C for 5 min. Following trypsin 

neutralisation with 3 ml 10% FBS DMEM nutrient media, cells were re-suspended 

and centrifuged at 1000 xg for 5 min to obtain a cell pellet. The supernatant was 

discarded carefully to avoid dislodgment of pellet. Cells were re-suspended by 

adding 3 ml of nutrient media, gently agitated by pipetting up and down to 

disperse cells throughout fresh media, and 1 ml was added to new T75 cm2 flasks 

containing 11 ml of the respective media. Cells were allowed to grow in humidified 

incubators as mentioned previously. 

2.3.3 Collection of conditioned media from cultured cells 

Cells were grown to 70-80% confluence,  rinsed twice in PBS and incubated in 

2.5 ml serum free media (1% L-glutamine in low-medium glucose DMEM) in T75 

flask for 24 h. Collected media was centrifuged at 1000 xg for 5 min, filter 

sterilized, and stored at -80°C ready for use in functional assays. 

2.3.4 Indirect co-culture of human primary osteoblasts with H357 

or CAF. 

HOB were cultured to 70-80% confluence in T75 flasks. Spent media was 

discarded, and 3 ml of trypsin was added, following a double rinse with PBS. 
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Flasks were returned to a humidified incubator (3-5 min), until cells could be 

dislodged from the attached surface by gentle agitation. Following neutralization 

(3 ml media) and centrifugation, a haemocytometer was used for cell counting, 

and the cell pellet was resuspended at the required density. HOB (300,000-

500,000 cells) were seeded into 6-well plates (catalogue number 657/60, Greiner 

bio one), making sure the final volume was kept consistent (2 ml/well). Plates 

were left in humidified incubator overnight to allow cellular attachment. 

On the next day, nutrient media was dispensed, osteoblasts were irrigated with 

PBS, and serum free media (2 ml/well) was added for 24 h. Allowing cells to 

culture in serum free media brings all cells into an arrest phase (G0 cell cycle) for 

consistency. Simultaneously, confluent OSCC cells (H357) or CAF (002, 003, 

004) were rinsed in PBS and further serum starved in 5 ml media for 24 h. Serum 

free media (5 ml) in a T75 flask, served as a negative control. 

The following day, serum free media from osteoblasts grown in 6 well plates was 

removed and replaced by 1 ml of conditioned filtered serum free media collected 

from OSCC cells and CAF in the bottom wells. In the upper wells, 1 ml/ well serum 

free media was added; these wells acted as negative controls (Figure 2.1). All 

plates (n=3) were incubated in 99% humidity, 5% CO2 incubator at 37°C for 24 h. 



Chapter 2 Material and Methods  

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 59 

 

 

Figure 2.1: Indirect co-culture of human primary osteoblasts (300,000-500,000 HOB 

cells) treated with serum free conditioned media collected from (A) OSCC cells (H357) 

and (B) CAF (002, 003 and 004). Osteoblasts (HOB) treated in serum free media served 

as the negative control. 

 

Finally, conditioned media was discarded, lysis buffer (350 μl, containing 1% β-

mercaptoethanol) (RNeasy Mini Kit, Qiagen, UK) applied directly to wells and 

cells scraped (30 s) with small scrapers (Fisher Scientific, catalogue number 08-

100-241). Following lysis, osteoblasts were collected in 1.5 ml eppendorf tubes, 

and RNA extraction was commenced promptly for optimal RNA yield. 
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2.3.5 Treatment of fibroblasts with TGFβ1 
Normal oral fibroblasts were cultured in T75 flasks to 70-80% confluence. Media 

was discarded, and cells harvested by adding 3 ml of trypsin for 3 min (flasks 

were returned to humidified incubators to facilitate cell dislodgement). Following 

trypsin inactivation with DMEM nutrient media (3 ml), and centrifugation (1000 xg 

for 5 min), cells were quantified using a haemocytometer, and 250,000 cells 

seeded on sterile coverslips (VWR) (2 ml / well) in a 6 well plate for subsequent 

determination of αSMA expression and localisation using immunofluorescence 

(section 2.7).  

For αSMA mRNA expression evaluation (section 2.5.1), DENF 316 and NOF (803, 

804) were seeded at the 250,000 cells/well in 6 well plates. The cells were 

allowed to adhere to the 6 well plates for 24 h. On the following day, spent media 

was aspirated, fibroblasts were washed in PBS, and serum starved in serum free 

media (2 ml/ well) for 24 h. The next day, serum free media was aspirated, and 

three wells of fibroblasts were treated with 5 ng/ml (Bhowmick et al., 2004) 

recombinant human TGFβ1 (Catalogue number 240B, R&D Systems, UK) diluted 

in fresh serum free media (1 ml/ well). Fibroblasts in serum free media served as 

a negative control (Figure 2.2). 
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Figure 2.2: NOF treatment with TGFβ1. NOF 803, 804 and DENF 316 (250,000 cells / 

well) fibroblasts were seeded on coverslips in 6-well cell culture plates and treated with 

recombinant human TGFβ1 (5ng/ml). Fibroblast in serum-free media served as the 

negative control. 

2.3.6 Induction of senescence in NOF   
Hydrogen peroxide (H2O2), cisplatin, DNA damaging reagents, and replicative 

exhaustion techniques were selected to trigger senescence in fibroblast cell 

cultures (Kabir et al., 2016). Initially, primary human oral fibroblasts (NOF 803, 

804, 822 & DENF 316) were seeded into T75 flasks with a cellular density of 

500,000 cells/flask, when fibroblasts reached 70% to 80% confluence. Cells were 

next exposed to 500 μM H2O2 (catalogue number H/1750/15, Fisher Scientific) 

for 2 h, or 10 μM cisplatin (catalogue number BP809, Sigma Aldrich) for 24 h and 

allowed to incubate in a 99% humidified incubator in 5% CO2 at 37°C. Following 

treatment, fibroblasts were rinsed twice with sterile PBS, 10 ml of fresh growth 

media was added, and the cells were allowed to grow in an incubator for 5 days. 

Senescence induction by replicative exhaustion was conducted by allowing 

primary oral fibroblasts to grow and propagate until passage 25, where cell count 

doubling time decelerated, and the number of cells of the former passage 

(passage 24, 3.5 million cells/flask) was similar to the latter (passage 25, 3.52 
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million cells/flask) after 10 days in culture . NOF cultured in growth media and not 

exposed to H2O2 served as the negative control. 

2.4 Assessment of senescence 
2.4.1 Senescence-associated β-galactosidase assay 
It has been reported that senescent cells exhibit an accumulation and 

overexpression of endogenous lysosomal β-galactosidase, referred to a 

senescence-associated β-galactosidase (SA-β-gal), and regarded as a 

biomarker of cellular senescence. At pH 6, β galactosidase cleaves lysosomal X-

Gal, which precipitates as a blue chromogen in senescent fibroblasts (Dimri et al., 

1995). 

To determine the extent of fibroblast senescence after H2O2, cisplatin treatment, 

and replicative exhaustion, senescence associated β galactosidase (catalogue 

number ab65351, Abcam) activity analysis was performed on low passage 

normal oral fibroblasts (Kabir et al., 2016). 

Following senescence induction, fibroblasts were seeded (10,000 cells/well) into 

12 well plates. NOF (10,000 cells/well) at a low passage (passage 4 or 5) seeded 

in a 12 well plate were also investigated for senescence, and served as a 

negative control. Fibroblasts were left overnight in a humidified incubator for cell 

attachment. On the next day, fibroblasts were rinsed with PBS, and 500 μl of 

fixative was applied for 15 min.  

X-gal staining solution was prepared to a concentration of 20 mg/ml, and a 

mixture of 25 μl X-gal and 5μl 100X staining supplement was added to 470 μl of 

1X staining reagent. Plates were placed in a dark hood, and 500 μl of the mixture 
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was added to each well. Plates were wrapped with aluminium foil and kept in a 

humidified incubator overnight. 

Accumulation of β galactosidase in fibroblasts was analysed, and fibroblasts 

exposed to oxidative, genotoxic and replicative mitotic stress and NOF were 

evaluated at x20 magnification using Olympus CKX41 inverted microscope. 

 
2.4.2 Evaluation of accumulating lipofuscin in senescence, using 
Sudan B Black staining  
Sudan B Black (SBB) histochemical staining was conducted to examine 

lipofuscin accumulation, a recently described biomarker for cellular senescence 

(Georgakopoulou et al., 2013). SBB staining solution was prepared by dissolving 

0.7 g Sudan B Black (Catalogue number 190160250, Arcos Organics) in 70% 

ethanol, covered with parafilm and thoroughly stirred overnight at RT. On the next 

day, the staining solution was filtered three times using filter paper (Catalogue 

number FB59031, Fisherbrand). Primary oral fibroblasts left untreated or 

exposed to H2O2, cisplatin, or replicative exhaustion were seeded onto 12 mm 

sterile glass coverslips (10,000 cells) and allowed to adhere overnight in a 

humidified incubator at 37°C and 20% O2 saturation. On the following day, 

fibroblasts were rinsed twice in PBS followed by fixation in 3.7% formaldehyde 

for 5 min, washed in PBS and stained with SBB for 2 h. After incubation, 

coverslips were rinsed briefly with two changes of 70 % ethanol and washed with 

distilled water. Staining was visualised using a light microscope (Nikon Eclipse 

TS-100, Kingston-upon-Thames). 
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2.5 mRNA expression analysis from cultured cells 

2.5.1 Total RNA extraction and purification 
The cells were collected by adding 350 µl lysis buffer (RLY) to 3.5 µl beta-

mercaptoethanol to cell pellet. Cell lysate was then promptly loaded into the 

provided ISOLATE II Filter (ISOLATE II RNA Mini Kit, BIOLINE, UK) placed into 

2 ml collection tubes, and centrifuged for 1 min at 11,000 x g. Following filtration 

of lysate, 350 μl of 70% (v/v) ethanol was applied to the homogenized lysate and 

pipetted up and down (5-6 times). The lysate was then loaded into ISOLATE II 

RNA Mini Column, fitted into a 2 ml collection tube, and centrifuged for 30 s at 

11,000 x g. After centrifugation, the flow-through was disposed, the column was 

fitted into a new 2 ml collection tube, and membrane-desalting buffer (350 μl) was 

applied to each sample column. Following centrifugation (11,000 x g for 1 min), 

the flow through was disposed of and the samples were subjected to three 

washes, 200 μl RW1 wash buffer (centrifuge 30 s at 11,000 x g), and 600 μl RW2 

wash buffer (centrifuge 30 s at 11,00 x g). Finally, the samples were washed in 

250 μl RW2 wash buffer (centrifuged 2 min at 11,000 x g), flow through was 

discarded, and ISOLATE II RNA Mini column was fitted into a 1.5 ml nuclease 

free collection tube ready for RNA elution. To obtain optimal RNA yield, 60 μl of 

nuclease free water was added to each column, and centrifuged 11,000 x g for 1 

min. The eluted RNA was immediately placed on ice, ready for RNA quantification. 

2.5.2 Quantification of RNA concentration and purity 
The extracted RNA was measured using a Nanodrop (ND-1000) 

spectrophotometer (Thermo Scientific, VWR International; Illinois), and the 

concentration and purity of samples were observed at wavelength 260nm/280nm, 

with an optimal ratio of 2.0. 
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2.5.3 Reverse Transcription (RT) of RNA to complementary DNA 
(cDNA) 
RNA (100μg) was reverse transcribed using High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, USA), according to the manufacturer’s 

instructions. 

Reverse transcription master mix reaction (total volume 20 μl) was prepared 

(Table 2.7). 

Table 2.7: RT master mix components. 

Master mix reagents Volume (total volume 5.8 μl) 

Random primers 2 μl 

Reverse transcriptase buffer 2 μl 

Reverse transcriptase 
Multiscribe 

1 μl 

Deoxynucleotides (dNTPs) 0.8 μl 

 

A total volume of 14.2 μl diluted mRNA was pipetted into each PCR tube (VWR 

International, USA), and 5.8 μl of the prepared master mix added to each sample 

respectively. To ensure all samples collected at the base of the tubes, samples 

were centrifuged for 15 s at 10,000 xg. Following this, the samples were placed 

in a DNA Engine DYAD (Bio-Rad Laboratories, USA) thermo-cycler, programmed 

at a selected setting of 25°C for 10 min, followed by an increase in temperature 

to 37°C for 2 h, and for 85°C for 5 min, prior to the samples being held at 4°C, 

ready for use or stored at -80°C for cDNA preservation. 
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2.6 Quantitative Real-Time Polymerase Chain 
Reaction (qPCR) 
2.6.1 qPCR protocol 
Following reverse transcription to cDNA, all samples were exposed to real time 

qPCR evaluation using Rotor-Gene Q PCR system (Qiagen, Germany). TaqMan 

primers (Life Technologies, Thermo Fisher Scientific, USA) or primers for SYBR 

quantification (Sigma) were utilized for DNA amplification (Table 2.8 and 2.10). 

Table 2.8: TaqMan primers. 

TaqMan 
primer 

Details 

RANKL Reference code TNFSF11, Catalogue number PHP0034 

OPG Reference code TNFRSF1, Catalogue number PHC1684 

IL6 part no. Hs00985639_ml 

 

Table 2.9: Real time qPCR TaqMan master mix components. 

Real time qPCR master mix Volume (total volume 9.5 μl) 

Primer/probe 0.5 μl 

B2M reference gene 0.5 μl 

Nuclease free water 3.5 μl 

TaqMan Gene Expression Master Mix 
(Applied Biosystems, Catalogue number 
4369016, Thermo Fisher Scientific) 

5 μl 
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Table 2.10: SYBR green primers. 

SYBR primer Details 

p16INK4a Forward 5’ AATAACCTTCGGCTGACTGGCTG 3’, Sigma-Aldrich 

p16INK4a Reverse 5’ TTATTCGCCTCCAGCAGCGCCCG 3’, Sigma-Aldrich 

αSMA Forward 5’ GAAGAAGAGGACAGCACTG 3’, Sigma-Aldrich 

αSMA Reverse 5’ TCCCATTCCCACCATCAC 3’, Sigma-Aldrich 

U6 Forward  5’ CTCGCTTCGGCAGCACA 3’, Sigma-Aldrich 

U6 Reverse 5’ AACGTTCACGAATTTGCGT 3’, Sigma-Aldrich 

 

Table 2.11: Real time qPCR SYBR green master mix components. 

Real time qPCR master mix Volume (total volume 9.5 μl) 

Forward primer  0.5 μl 

Reverse primer 0.5 μl 

Nuclease free water 3.5 μl 

qPCRBIO SyGreen Mix (Catalogue 
number PB20.1501, PCRBIOSYSTEMS) 

5 μl 

 

Human beta-2 microglobulin B2M (Catalogue number Hs00187842_m1, Life 

Technologies, Thermo Fisher Scientific, USA) was chosen as a reference gene 

for TaqMan primers (Kabir et al., 2016), while SYBR green amplifications were 

normalised using the U6 gene due to their low variation across samples, in 

accordance to Livak method (Livak and Schmittgen, 2001). A volume of 0.5 μl of 

cDNA was added to the qPCR master mix (9.5 μl) (Table 2.9  and Table 2.11). 

To exclude the possibility that signals were obtained from amplification of 

contaminating genomic DNA, 0.5 μl RNA (instead of DNA) was used as a 

negative control for all samples. 

Samples were loaded into 0.2 ml PCR tubes (catalogue number 14230225, 

Fisherbrand) in triplicates, centrifuged briefly, to ensure collection of samples at 
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bottom of tube. A two-step setting was used for TaqMan primers, where the 

thermal profile commenced with a denaturation stage at 95°C for 10 s, followed 

by a decrease in temperature to 60°C for 45 s annealing and extension stage, 

this was repeated for 40 cycles. Gene expression of each sample was normalized 

to the corresponding endogenous gene B2M or U6 to obtain ΔCt. For SYBR 

green primer, three steps with melt setting, to generate a melt-curve, was used, 

where the thermal profile commenced with a denaturation stage at 95°C for 10 s, 

then a decrease in temperature to 60°C for 15 s, followed by 72°C for 20 s 

annealing stage, this was repeated for 40 cycles. 

Finally, 2-ΔΔCt method was used to measure fold-change of gene of interest to 

relevant untreated samples (Livak, 2001). 

2.7 Immunofluorescence (IF) 
Following a 24 h stimulation of fibroblasts with TGFβ1, conditioned media was 

discarded, and 1 ml methanol used to wash the coverslips. Methanol was 

aspirated and 1 ml of fresh absolute methanol was added for cellular fixation for 

15 min. The fixed fibroblasts were permeabilised in 1 ml 4 mM sodium 

deoxycholate (catalogue number 89905, ThermoFisher) for 15 min. Blocking 

buffer (2.5% bovine serum albumin (BSA) in PBS) (catalogue number A4503, 

Sigma-Aldrich) was prepared and applied at RT on a shaker to allow equal 

distribution of blocking solution for 15 min. The blocking reagent was discarded 

and monoclonal alpha smooth muscle actin FITC murine antibody (catalogue 

number A2547, Clone 1A4, Sigma-Aldrich), dissolved in 1:100 v/v in blocking 

buffer was applied for 1 h at 37°C. 
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Following antibody incubation, samples were washed in PBS (three times). 

Coverslips were carefully removed from wells, and mounted on glass slides 

(catalogue number 631-0108, VWR International) using a drop of Prolong gold 

DAPI containing mountant (catalogue number P36931, Thermo Fisher Scientific). 

Coverslips were placed in a slide box and allowed to attach to slides at 4°C for 

24 h to ensure uniform staining of DAPI. 

Images were taken at x40 magnification using an Axioplan 2 fluorescent 

microscope.  

2.8 Enzyme-linked immunosorbent assay (ELISA)  
NOF (803, 804, 822) and DENF 316 normal oral fibroblasts, NOF (803, 804, 822) 

exposed to senescence induction (at passage 25 or 5, 10 and 15 days after H2O2 

or cisplatin exposure) and CAF 002, 003 and 004 were cultured in T75 flasks to 

70-80% confluence and seeded in 6 well plates as previously mentioned. The 

plates were incubated for 24 h, to allow cell attachment. 

On the following day, spent media was aspirated, fibroblasts were irrigated in 

PBS, and serum starved in serum free media (2 ml/ well) for 24 h. The next day, 

serum free media was aspirated and stored at -80°C in preparation for an enzyme 

linked immunosorbent assay (ELISA). 

A sandwich duoSet ELISA kit (catalogue number DY626, R&D Systems) was 

conducted to demonstrate and evaluate soluble RANKL expression from CAF in 

comparison to NOF secretion in vitro. Required reagents were composed in 

accordance to manufacturer’s instructions (Table 2.11). 
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Table 2.12: ELISA reagents preparations. 

Reagents Composition 

PBS 1.5 mM KH2PO4 

8.1 mM Na2HPO4 

137 mM KCL 

Wash Buffer 0.05% (v/v) Tween 20 in PBS 

Reagent Diluent 1% (v/v) BSA in PBS 

Substrate Solution 1:1 mixture of colour reagent A (H2O2) and colour 
reagent B (Tetramethylbenzidine) 

Stop Solution 2 N H2SO4 

 

2.8.1 ELISA detection of soluble RANK ligand 
The capture antibody (murine anti-human RANK ligand) was diluted in PBS (180 

μg/ml of antibody reconstituted in 1 ml PBS), and 100 μl of the working 

concentration was applied to the 96-well microplate (Greiner bio-one), to coat the 

bottom of each well. The plate was sealed (catalogue number 676001, Greiner 

bio-one) to prevent evaporation of diluent, and allowed to incubate overnight at 

RT. 

On the next day, capture antibody was discarded, and each well was washed 

using 400 μl wash buffer (Table 2.12) twice. Extra care was taken following 

washing, and remnant wash buffer was removed by repetitive blotting of 

microplate on clean paper towels. Plates were blocked using 300 μl / well reagent 

diluent and left to stand for 1h at RT. Blocking reagent was aspirated, and the 

wells were washed as previously described.  

Collected conditioned media from samples was diluted in Reagent Diluent and 

added to each well. Plates were sealed and allowed to stand for 2 h at RT. 

Sample supernatant was aspirated, and the wells were washed using the 
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washing buffer and blotted dry. Biotinylated Goat Anti-Human RANKL Detection 

antibody (9 μg/ml of antibody reconstituted in 1 ml in Reagent Diluent), and 100 

μl per well was added, and incubated for 2 h at RT. Following aspiration, irrigation, 

and blotting, 100 μl streptavidin-HRP was applied to each well for 20 min, washed 

and blotted dry followed by addition of substrate solution (100 μl per well) for 

another 20 min at RT. Colour development was terminated by adding 100 μl of 

stop solution. Absorbance was instantly measured using TECAN (Magellan V7.2 

software, Infinite M200) plate reader set at 450 nm with a correction wavelength 

of 570 nm. 

2.8.2 ELISA quantification 
Quantification was carried out using a standard curve in which the optical 

densities of the standards were plotted against standards’ concentration. 

Subtraction of average standard (zero) from the average triplicate readings for 

each standard and sample was performed, and the equation (standard curve and 

the R2 values) was used to quantify RANKL (pg/ml) expression for all samples. 

The experiment was performed in triplicate. 

2.9 Osteoclastogenesis assay 
Murine monocyte/macrophage cells (RAW 264.7) were seeded in a 24 well Osteo 

Assay Surface plate (Catalogue number 3987, Corning, USA) (for 

osteoclastogenesis and pit forming assay), and on coverslips in 24 well plates 

(400 μl, approximately 20,000 cells/well). The cells were placed in a humidified 

incubator for 24 h, to allow cell attachment. On the following day, normal oral 

fibroblasts cultured in T75 flasks to 60-80% confluence, were treated with TGFβ1 

(5 ng/ml). NOF, CAF, S-NOF, and H357 were rinsed twice with sterile PBS, and 

serum starved in 3 ml alpha MEM media (1% Pen/Strep. And 1% anti-fungal, 



Chapter 2 Material and Methods  

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 72 

Amphotericin) for 24 h.  

On day three, conditioned media was collected from serum-starved cells, and 

TGFβ1 treated oral fibroblasts, filtered, centrifuged (1000 xg for 5 min), and 400 

μl per well added to RAW 264.7 cells (Figure 2.3). RAW 264.7 treated with 

recombinant RANKL (50 ng/ml) in serum free alpha MEM media served as a 

positive control, and RAW 264.7 in serum free alpha MEM media served as a 

negative control. 

 

 

Figure 2.3: Osteoclastogenesis assay. Corning osteo surface 24 well plate seeded 

with 20,000 RAW 264.7 monocyte/macrophage cells (passage 5). Cells were subjected 

to a daily alpha MEM conditioned media change for 7 days. Samples included 1. 

Conditioned media from serum starved NOF. 2. Conditioned media from serum starved 

NOF. 3. Conditioned media from serum starved CAF. 4. Conditioned media from serum 

starved OSCC (H357). 5. Conditioned media from serum starved NOF treated with 

TGFβ1. 6. Conditioned media from serum starved NOF treated with TGFβ1. 7. Positive 

control, RAW 264.7 treated with 50 ng/ml recombinant RANKL. 8. Negative control, 

monocytes in serum free alpha MEM media. Two wells were designated for TRAP 

staining, and the third well was left to dry after day 7 to observe pit formation. The 

experiment was performed in triplicate. 
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Treatment of monocytes was continued for 7 days, with a daily change of 

conditioned media (collected from NOF, CAF and cancer cell lines). After 7 days, 

TRAP staining (2.9.1), pit forming (2.9.2), and nucleation staining (2.9.3) was 

performed to assess osteoclastogenesis (Figure 2.4). 

 

Figure 2.4: Osteoclastogenesis assay protocol. Conditioned media was collected for 
serum starved cells, and monocytes (20,000 per well) were seeded on a Corning osteo 
surface 24 well plate. Following seven days of daily media change, osteoclast generation 
was evaluated by TRAP staining, and for further verification, the ability to resorb bone 
and multinucleation was assessed. 

 

2.9.1 TRAP staining  
Tartrate-resistant acid phosphatase (TRAP) activity was assessed using the B-

Bridge International (USA) assay kit (catalogue number AK04).  Culture media 

was aspirated, and wells were irrigated with 400 μl of PBS. Following the wash, 

cells were fixed in 200 μl per well of Reagent 1, after 5 min, all wells were washed 
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with 1000 μl of distilled water, this was repeated three times. One vial of 

Chromogenic Substrate (Reagent 3) was diluted in 5 mL of Reagent 2 (Tartrate-

containing Buffer). Following a brief vortex, to ensure all substrate has dissolved 

in buffer, 200 μl of Chromogenic Substrate was added to each well and incubated 

37°C for 1 h (excess incubation was avoided to prevent precipitation of 

chromogenic substrate). When optimal staining was evident, wells were washed 

with distilled water to stop the reaction. Cells were evaluated and positive staining 

quantified under a light microscope (Nikon Eclipse TS-100), in three randomly 

selected high-power fields (magnification x 40). 

 
	2.9.2 Pit formation 
Different wells of the 24 Osteo Surface plate were observed for active osteoclast 

resorptive pit formation assay (Figure 2.3). Initially, culture media was removed 

from wells, and 400μl of 10% (v/v) bleach (hypochloric acid) solution was added 

to each well. Plates were incubated at RT for 5min. Following incubation, wells 

were washed twice with distilled water, and allowed to dry in RT for 3-5 h. Single 

pits or pit clusters were analysed under a light microscope (Nikon Eclipse TS-100) 

in three randomly selected high-power fields (magnification x 40). 

2.9.3 Nucleation staining for osteoclast verification  
RAW 264.7 cells were seeded on coverslips in 24 well plates, at an approximate 

density of 20,000 cells/well, and allowed to propagate as described above 

(section 2.8). Medium was removed and the plates were washed with PBS 

followed by fixation in 3.7% formaldehyde for 5 min. Cells were dehydrated in 

acetone (5 min), and permeabilised with 0.1% TRITON X-100 in PBS. After 

thorough washing, coverslips were mounted on glass slides using SlowFade® 

Diamond Antifade Mountant with DAPI (catalogue number S36968, 
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ThermoFisher) for nuclear staining. Images were obtained using a fluorescent 

microscope. 

2.10 Evaluation of senotherapeutics 
2.10.1 Optimisation of senolytic drugs 
Heat shock protein 90 (HSP90) inhibitor Alvespimycin (17-DMAG) (Catalogue 

number HY-12024, MedChem Express, USA), and B-cell lymphoma -2 (BCL-2) 

inhibitor Navitoclax (ABT263) (Catalogue number A3007, APExBIO Technology, 

USA) were used to target senescence. These drugs were selected due to their 

reported ability to promote apoptosis of senescent cells (Fuhrmann-Stroissnigg 

et al., 2017; Zhu et al., 2017). The drugs were reconstituted in DMSO (5 mM, and 

10 mM respectively), then diluted in DMEM culture media to obtain a range of 

working solutions with graded concentrations. The concentrations 50 nM, 250 nM, 

500 nM, and 750 nM were prepared for Alvespimycin (Fuhrmann-Stroissnigg et 

al., 2017), and 1μM, 2 μM, 3 μM, 4 μM, 5 μM, and 10 μM for Navitoclax (Zhu et 

al., 2016), aliquoted and stored at -20℃. Functional assessment of 

senotherapeutics was optimized by exposing both proliferating and senescent 

fibroblasts to a range of concentrations for 24 h. 

Senescent oral fibroblasts, and proliferating NOF (passage 6) were seeded 

(5,000 cells/well) into 24 well plates and left overnight in a humidified incubator 

to allow cell adherence. On the next day, senescent fibroblasts as well as the low 

passage primary NOF were exposed to different concentrations of Alvespimycin 

and Navitoclax, and then incubated for 24 h at 37°C, in 99% humidity and 5% 

CO2. Senescent fibroblasts and NOF not exposed to the senolytic drugs served 

as a negative control. Following treatment, the cells were rinsed in PBS and fixed 

in 3.7% formaldehyde for 5 min, and a Sa-β-Gal assay was performed to examine 
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the senescent burden in the cell population. This data was then compared to 

senescent cells not treated with the senolytics. In addition, a PrestoBlue cell 

viability test was conducted on both senescent and NOF exposed to the 

senotherapeutic, and the concentration of the optimized drugs that specifically 

initiated apoptosis in senescent fibroblasts and had no significant effect of NOF 

was used. 

2.10.2 Evaluation of senotherapeutic toxicity on NOF viability 
To investigate the effect of Alvespimycin and Navitoclax on cell survival and 

apoptosis on proliferating non-senescent fibroblasts. an experiment was set up 

similar to the one previously described in the senolytics optimizing assay (section 

2.10). NOF were seeded (10,000 cells/ well) in a 12 well plate. NOF were treated 

with Alvespimycin or Navitoclax diluted in serum free DMEM media at graded 

concentrations (50 nM, 250 nM, 500 nM, and 750 nM and 1μM, 2 μM, 3 μM, 4 

μM, 5 μM, and 10 μM respectively) (Figure 2.5) for 24 h. 

Figure 2.5: NOF viability test. 24 well plate seeded with 5,000 NOF cells (passage 5. 
Cells were subjected to treatment with senolytics Alvespimycin or Navitoclax and 
incubated for 24 h. Samples included NOF treated with Alvespimycin (50 nM, 250 nM, 
500 nM, and 750 nM). NOF treated with Navitoclax (1µM, 2 µM, 3 µM, 4 µM, 5 µM, and 
10 µM), negative control, NOF in DMEM media.  
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Following 24 h, a resazurin-based PrestoBlue cell viability reagent (catalogue 

number A13261, Life Technologies) was used at a dilution of 1:10 to assess NOF 

viability after senolytic treatment. PrestoBlue was applied to each well (40 μl 

PrestoBlue in 360 μl conditioned media / well). The 24 well plate was covered in 

aluminum foil and allowed to incubate in a humidified incubator for 1 h. Cell media 

was then collected and transferred to a 96 well plate (each sample was pipetted 

in duplicate). To correct background fluorescence control wells of media with no 

cells was added. 

Fluorescence was measured using TECAN (Magellan V7.2 software, Infinite 

M200) plate reader set at an excitation wavelength of 560 nm with an emission 

wavelength of 590 nm. The mean of the fluorescent readings of the no cell 

controls was deducted from the values of each sample well. Relative 

fluorescence was plotted against time interval for the different senolytic drug 

concentrations and negative control. 

2.11 Extracellular vesicle (EV) isolation and 
analysis 
2.11.1 Graded concentration centrifugation for EV isolation from 
conditioned media in culture 
To enhance the purity of the EV samples and reduce any contaminants, 

conditioned media collected from serum starved cells were exposed to graded 

concentration centrifugations and size exclusion chromatography (SEC) (Théry 

et al., 2018; Peacock et al., 2018) was conducted to isolate EV from cancer cells 

(H357), NOF (803, 804, 822), myofibroblasts (NOF treated with TGFB), CAF (002, 

003, 004), and senescent fibroblasts (NOF exposed to H2O2 or cisplatin). Cells 
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were grown in three T175 flasks to confluence, rinsed twice in PBS and serum 

starved for 72 h in 20 ml serum free DMEM media supplemented with L-glutamine.  

A total volume of 60 ml of conditioned media was collected from serum starved 

cells was used for isolation of EV. 

After 3 days, the conditioned media was collected into 50 ml centrifuge tubes and 

centrifuged at 300 xg for 10 min (J-26XP Beckman Coulter high speed centrifuge) 

to pellet cells and exclude large cellular debris. After the first spin, conditioned 

media was aspirated into a new 50 ml centrifuge tube, centrifuged at 2000 xg for 

15 min, to pellet apoptotic bodies. After centrifugation the conditioned media was 

transferred to a new 50 ml tube, balanced and spun at 1000 x g for 45 min, to 

pellet large EV. Following the third centrifuge cycle, the conditioned media was 

filtered through a 0.22 µm filter,15 ml of the filtered media was transferred into 

Vivaspin protein concentrator spin columns (Catalogue number 28932363, GE 

Healthcare Life Sciences), balanced and centrifuged at 6000 xg for 20 min at 

15˚C. After 20 min the media in the lower compartment of the concentrated 

centrifuge tubes were discarded and 15 ml of the filtered media was added to the 

top compartment of the centrifuge, and centrifuged at the same speed of 6000 

xg, however the time was increased by 5 min. This procedure was repeated until 

all the filtered media was passed through concentration tubes and centrifuged at 

6000 x g, while adding 5 min to each cycle. 

SEC column preparation was performed by adding 14 ml sepharose suspended 

in ethanol (Catalogue number 17101404, GE Health Sciences) to each 10 ml flow 

column (Catalogue number 7321010, Bio-Rad) and allowed to settle for 2 h. A 

polystyrene fret was inserted and placed into the columns at a level 2 mm above 
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the top of the sepharose layer. The columns were then rinsed twice with 10 ml 

0.03% Tween 20 in PBS to remove ethanol. 

 2.11.2 Size exclusion chromatography (SEC) for EV separation 
Following the centrifugation, the concentrated sample of EV (0.5 ml – 1 ml) was 

transferred to the SEC columns. Immediately after the concentrated EV was 

allowed to flow through the fret filter, 10 ml of 0.03% Tween 20 in PBS was added 

to the columns. Fractions of EV (0.5 ml) were collected drop wise in 2 ml labelled 

eppendorf tubes (fractions 1-11) and stored at -20˚C (Figure 2.6). 

 

Figure 2.6: EV isolation by size exclusion chromatography. Conditioned media was 

collected centrifuged at graded speeds (300 xg, 2000 xg, and 10000 xg respectively). 

Following centrifugation, media was filtered, transferred to Vivaspin protein concentrator 

spin columns and centrifuged at 6000 xg for 25 min, adding 5 min to each spin until all 

the sample has been processed. Concentrated media was collected from the top 

chamber of the concentrator spin columns and loaded on to flow columns filled with 

sepharose beads. EV were collected in 2 ml eppendorf tubes (0.5 ml) in fractions (1-11). 
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2.11.3 Quantification of protein content in EV fractions to 
determine highest EV content 
To identify the fraction of isolated EV with highest EV count, a BCA assay was 

carried out using the Pierce BCA Protein Assay Kit (catalogue number 23225, 

Thermo Fisher Scientific, UK). In accordance with the manufacturers’ instructions, 

10 μl of each fraction of EV for each sample or the diluted albumin standard (BSA) 

supplied (0, 0.0025, 0.25, 0.5, 0.75, 1, 1.5, 2 mg/ml of BSA) were pipetted into a 

96 well plate, and 200 μl of the BCA working solution (reagent B to reagent A 

1:50) was added to each well. All standards and samples were run in triplicate. 

The plate was covered and incubated for 30 min at 37 ̊C. Following incubation, 

the plate was cooled to RT, and the optical density of the standards and samples 

were evaluated at 562 nm using a spectrophotometer plate reader TECAN 

(Magellan V7.2 software, Infinite M200). Quantification of protein concentration 

was carried out using a standard curve in which the optical densities of the 

standards were plotted against standards’ concentration. 

2.11.4 EV quantification by nano particle tracking 
ZetaView (ZetaView® BASIC NTA – Nanoparticle Tracking Video Microscope 

PMX-120, Particle Matrix) was used to analyse the size and concentration of EV 

sub-populations. The ZetaView detects particles via light scattering and uses 

Brownian motion to quantify the size of the EV sample. The microscope was 

calibrated using a bead dilution in Milli-Q water (1:250,000). Video was acquired 

with a sensitivity of 85% and shutter value of 70 sec. Sample (1 ml diluted EV in 

PBS) was scanned at 11 positions (in triplicate), and particles were tracked using 

Brownian motion to obtain a mean value. Concentration as a mean percentage 

of the population was further calculated. 
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2.11.5 EV characterisation  
Following quantification, an Exoview R100 (Nanoview Biosciences) – which uses 

antibody affinity-based technology for EV characterisation was used. EV markers 

CD9, CD63, and CD81 were selected, and antibodies against the specific 

tetraspanin antigen were labelled with fluorophores to detect the presence of EV.  

Samples were diluted in ExoView Incubation Solution (EV-TC-INC). 35 ul of 

sample was incubated on ExoView Tetraspanin Chips (EV-TETRA-C) placed in 

a 24 well plate for 16h at room temperature. Chips were washed three times in 1 

ml of Incubation Solution for 3 mins on an orbital shaker. After washing chips 

were incubated with ExoView Tetraspanin Labelling Abs (EV-TC-AB-01) 

consisting of anti-CD81 Alexa-555, anti-CD63 Alexa-647 and anti-CD9 Alexa-488. 

All antibodies were diluted 1:600 in ExoView Blocking Solution (EV-TC-BSA-01). 

Chips were incubated in 250 ul of the antibody solution and 250 ul of Incubation 

Solution for 1 h at room temperature. All chips were then washed as before, once 

in Incubation Solution, three times in ExoView Wash Solution (EV-TC-WSH) and 

once in ExoView Rinse Solution (EV-TC-RNS) prior to drying. Samples were 

imaged on the ExoView R100 using the nScan 2.7 acquisition software. Data was 

analysed using ExoViewer 2.6.9 with the sizing thresholds set at 50 nm and 200 

nm. Mouse IgG served as the negative control. 

2.11.6 Investigation of RANKL expression in EV  
Following EV isolation, quantification and characterisation, an ELISA was carried 

out as previously mentioned (section 2.8) to determine bone resorptive protein 

RANKL expression in EV. 

2.11.7 Osteoclastogenesis assay to examine EV functionality 
Functionality of EV was examined by carrying out an osteoclastogenesis assay. 

This assay was conducted as previously described (section 2.9). However, 
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instead of exposing monocytes to conditioned media collected from serum 

starved cells, these cells were exposed to EV isolated from the conditioned media 

resuspended in serum free alpha MEM media. Pit forming and nucleation assays 

were also performed to further verify osteoclast generation. 

 

2.12 Osteoprotegerin, a RANKL antagonist and 
regulator of osteoclast differentiation and 
activation 
2.12.1 Optimisation of OPG  
Human recombinant OPG (Catalogue number SRP3132, Sigma Aldrich) was 

reconstituted in 5 mM Tris (pH 7.5) to a concentration of 1 mg/ml, and stored at -

80°C. Following OPG preparation an osteoclastogenesis assay was conducted 

as described in section (section 2.9), however prior to exposing the monocytes 

to the conditioned media collected from the serum starved cells (NOF, CAF and 

S-NOF), recombinant OPG was added to the media samples at graded 

concentrations (1 ng/ml, 10 ng/ml, 50 ng/ml, 100 ng/ml and 200 ng/ml) to evaluate 

the optimal dose needed for optimal blockade of osteoclast generation. 

Conditioned media from serum starved cells (NOF, CAF, S-NOF) was the positive 

control, while monocytes in alpha MEM media served as a negative control. 

After 7 days of repeated change of media with or without OPG, TRAP staining 

was performed as previously described (section 2.9.1-2.9.3). The number of 

positive cells were counted and compared to the equivalent positive control. The 

dose of OPG showing the highest reduction in monocyte differentiation to 

osteoclasts was utilised. Optimal human recombinant OPG dose was determined 

to be 100 ng/ml. 
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2.12.2 Investigating the role of OPG in antagonising RANKL 
expression  
To confirm the significance of RANKL in OSCC bone invasion, OPG, RANKL 

decoy receptor and antagonist was studied. An osteoclastogenesis assay was 

conducted (section 2.9), monocytes were exposed to EV or conditioned media 

collected from serum starved NOF, experimentally induced CAF (NOF treated 

with 5 ng/ml recombinant human TGFβ1), CAF (isolated from human OSCC 

tissue), and senescent fibroblasts (exposed to 500 μM H2O2). Samples were 

treated with OPG (100 ng/ml) prior to exposure to monocytes. Monocytes 

exposed to CAF conditioned, and monocytes in alpha MEM media supplemented 

with OPG served as controls (Figure 2.7). 
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Figure 2.7: The effect of OPG on osteoclastogenesis. Corning osteo surface 24 well 

plate seeded with 20,000 RAW 264.7 monocyte/macrophage cells (passage 5). Cells 

were subjected to a daily alpha MEM conditioned media change for 7 days. Samples 

included 1. Conditioned media from serum starved NOF (NOF803). 2. Conditioned 

media from serum starved NOF (NOF803) treated with TGFβ1. 3. Conditioned media 

from serum starved CAF (CAF003). 4. Conditioned media from serum starved senescent 

fibroblasts (NOF803 exposed to H2O2). 5. EV isolated from conditioned media from 

serum starved NOF (NOF803).6. EV isolated from conditioned media from serum 

starved NOF (NOF803) treated with TGFβ1. 7. EV isolated from conditioned media from 

serum starved CAF (CAF003). 8. EV isolated from conditioned media from serum 

starved senescent fibroblasts (NOF803 exposed to H2O2). Negative control, monocytes 

in serum free alpha MEM media. Two wells were designated for TRAP staining, and the 

third well was left to dry after day 7 to observe pit formation. The experiment was 

performed in triplicate. 

 

Following 7 days of media change, TRAP staining, pit formation, and cell 

nucleation was assessed (2.10.1 - 2.10.3). 
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2.13 Statistical analyses 
Data was reported as mean ± standard deviation (mean ± STDV). ANOVA and 

Student’s t-test was utilised to verify the statistical significance of findings as 

indicated in individual figure legends. A p-value of less than 0.05 was considered 

significant. All experiments were conducted in triplicate and repeated three times. 
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3.1 Introduction  
The tumour microenvironment, also termed the tumour stroma, is composed of 

diverse non-malignant cells such as inflammatory cells, mesenchymal stem cells, 

pericytes, bone marrow derived cells, haematopoietic and vascular endothelial 

cells, nerves and lipocytes, and fibroblasts, integrated in a complex extracellular 

matrix (Joyce and Pollard, 2009). The cross talk between neoplastic cells and 

surrounding stroma is constantly maintained, enabling tumour cell stimulation of 

the microenvironment, which as a result actively transmits paracrine signals 

increasing tumour cell proliferation and invasion. Historically bone invasive 

OSCC was thought to be related to tumour size as a result of direct pressure 

related resorption. However, due to the close proximity of these tumours to bone, 

there is increasing evidence that the surrounding tumour stroma including bone 

cells play a key role in tumour progression. In current literature, the TME has 

become a major focus of cancer and in particular OSCC research. ɑSMA, a 

myofibroblastic marker has been frequently reported to be expressed by CAF in 

the tumour stroma in several solid tumours (Radisky et a., 2007; Xing et al., 2010; 

Shiga et al., 2015). The myofibroblastic differentiation of CAF from resting 

fibroblasts, circulating fibrocytes, pericytes, and mesenchymal cells has been 

described to be mainly triggered by TGFβ1 signalling (Bierie and Moses, 2006; 

Xu et al., 2009). CAF have also been reported to be involved in regional lymph 

node metastasis, local recurrence and poor patient outcome in OSCC 

(Kellermann et al., 2007; Vered et al., 2010; Lin et al., 2017). In addition, in vitro 

experiments have shown that CAF can significantly prompt tumour cell 

proliferation and dissemination (Kellermann et al., 2008; Daly et al., 2008), 

however, little is known of the role of CAF in bone invasion in OSCC.  
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Several reports have suggested that CAF may be a potential target in treating 

cancer, due to their genetic stability, and phenotypic similarities of stromal 

fibroblasts across various cancers (Kalluri et al., 2006; Santos et al. 2009; Shiga 

et al., 2015; LeBleu and Kalluri, 2018), suggesting that depletion of CAF could be 

a potentially effective therapeutic approach. This chapter investigates the 

expression and role of myofibroblastic CAF in OSCC progression and bone 

invasion. 

3.1.1 Aim 
To investigate the expression and role of myofibroblastic CAF in bone invasion 

and remodelling in OSCC. 

3.1.2 Experimental approach 
1. OSCC cases with bone involvement (from 1994 to 2017) were retrieved 

from the unit archive and reports reviewed for clinicopathological 

parameters. 

2. IHC was performed on a smaller cohort to investigate αSMA, RANKL and 

OPG expression in incisional OSCC biopsies of cases undergoing bone 

resection at a later date to compare expression of myofibroblastic marker 

αSMA and bone turnover markers RANKL and OPG. 

3. Double IHC on tissue from OSCC bone resection specimens were 

conducted to investigate the co-expression of αSMA and RANKL in CAF. 

4. Human primary osteoblasts (HOB) were indirectly co cultured with 

conditioned media from OSCC cells and CAF, and changes in RANKL and 

OPG mRNA was assessed using qPCR. 

5. Primary normal fibroblasts (NOF) were exposed to TGFβ1 to induce a 

myofibroblastic phenotype and αSMA expression determined through 
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immunofluorescence and further quantified on a transcript level by qPCR. 

6. Soluble RANKL protein secretion was also examined in both NOF and 

CAF using an ELISA. 

7. An osteoclastogenesis assay was performed by culturing murine 

monocytes (RAW 264.7) with OSCC, NOF, NOF exposed to TGFβ1 and 

CAF conditioned media. TRAP staining, pit formation and nucleation 

assays will be conducted to confirm osteoclastic differentiation. 

 

3.2 Clinicopathological data 
To study the clinical parameters involved in bone invasive OSCC, reports of 407 

diagnosed OSCC cases (1994 to 2017) with maxillary or mandibular bone 

resections were reviewed using the pathology database of the unit of Oral and 

Maxillofacial Pathology, University of Sheffield  and different clinicopathological 

parameters such as  gender, age, site, tumour grade, bone invasion, and 

metastasis were analysed. 

 
3.2.1 Gender and Site 
The bone resection cases included a broad age range (38 to 91 years), with an 

average age of 67 years, the average age in males and females was 64.8 and 

72.6 years with an age range of 38 to 91, and 48 to 87 years respectively.  Sixty-

three per cent (n=260) of the cases were from male patients while 36.11% 

(n=147) were from females, with a male to female ratio (1.76:1) (Figure 3.1).	
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Figure 3.1: Gender distribution in 407 bone invasive OSCC cases, 63.88% (n=260) 
were male, while 36.11% (n=147) were female patients. 

 

The majority of the cohort (71.49%, n=291) involved mandible resections 

whereas 28.5% (n=116) were maxillary bone resections (Figure 3.2). 

 

Figure 3.2: Site distribution of 407 bone invasive OSCC cases. 71.49% (n=291) 
were mandibular, while 28.50% (n=116) were maxillary resections. 
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3.2.2 OSCC histological grade 
A predominance of moderately differentiated tumours were observed in the 

cohort (54.79%, n=223), while 27.27% (n=111), and 17.93% (n=73) were well 

and poorly differentiated SCCs (Figure 3.3). 

 

Figure 3.3: Grade of primary OSCC tumour. Out of the 407 OSCC cases with bone 
resection reviewed, the majority of tumours were moderately differentiated (54.79%, 
n=223). 27.27% (n=111) of tumours were well differentiated and 17.93% (n=73) poorly 
differentiated SCCs. 

 

3.2.3 Bone involvement 
The involvement and extent of OSCC bone invasion was also examined. OSCC 

bone involvement was defined in accordance to pathology report to superficial 

cortical bone resorption and cancellous bone involvement, the latter categorised 

as true bone invasion (Frederick et al., 2002). Approximately half of the cohort 

(50.98%, n=207) exhibited some degree of bone involvement. 22.24% (n=90) of 

the cases presented with superficial cortical bone resorption (not true bone 

invasion), while 28.74% (n=117) displayed frank cancellous bone invasion 

(Figure 3.4 and 3.5). 
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Figure 3.4: Representative photomicrograph showing bone involvement 
distribution in OSCC cases with bone resection. (A) Superficial cortical resorption. 
(B) Cancellous bone invasion. (magnification x20) 
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Figure 3.5: Bone involvement distribution in 407 OSCC cases with bone resection. 
28.74% (n=117) showed true cancellous bone invasion, while 22.24% (n=90) superficial 
cortical bone resorption, and 49.02% (n=200) showed no evidence of tumour in close 
proximity of bone. 

 
3.2.4 Metastasis 
The OSCC cohort was further investigated for the presence or absence of 

metastasis using the archived pathology reports. Metastasis was evident in 

36.6% (n=149) (Figure 3.6). 30.7% (n=36/117) of SCCs with cancellous bone 

invasion, and 8.8% (n=8/90) with superficial cortical resorption showed regional 

metastasis.  
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Figure 3.6: Distribution of metastasis in 407 OSCC samples with bone resection. 
63.39% (n=258) had no metastasis, while 36.60% (n=149) showed neck lymph node 
metastases. 

 

3.3 Evaluation of stromal marker αSMA and bone 
turnover markers RANKL and OPG expression in 
OSCC tissue away from bone  
Ten incisional biopsies of patients with OSSC (5 cases cortical/superficial, and 5 

cases cancellous bone involvement) matched with bone resections previously 

examined (Elmusrati et al., 2017, data from masters thesis) were selected 

for  analysis, to investigate the expression of αSMA, RANKL and  OPG in 

OSCC CAF, and to correlate whether the intensity of expression of these markers 

could be used to predict bone invasion. IHC was conducted to examine the 

abundance of the CAF marker αSMA, as well as the expression of bone turnover 

markers RANKL and OPG in tumour and surrounding stroma. Following staining, 

the samples were scanned, and staining intensity was evaluated using 

HistoQuest software.	
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3.3.1 Expression of αSMA in tumour microenvironment away 
from bone 
In our previous data (Elmusrati et al., 2017) in over 90% of our cohort (n=10, 5 

deep bone invasion, 5 superficial bone resorption), αSMA positive fibrous stroma 

was seen invading bone ahead of the invasive front of the tumour. In an attempt 

to investigate whether tumour stroma away from bone expressed αSMA, and to 

assess whether αSMA abundance can be used to predict bone invasion on 

resections, incisional biopsies from cases with OSCC bone invasion were 

assessed. Although the expression of αSMA was evident, it was weakly detected 

in fibroblasts in 60% of cases, surrounding the main tumour mass, and in smooth 

muscle cells of blood vessels (Figure 3.7). The average expression of αSMA 

positive cells in incisional biopsy cases that later demonstrated superficial cortical 

resorption was 30.71 ± 10.56 (mean ± STDV), while the average αSMA 

expression intensity was 37.47 ± 3.19. In cases with cancellous bone 

involvement, the average expression of αSMA positive cells in incisional biopsies 

was 42.82 ± 5.04, while the average expression intensity was 41.57 ± 1.58, The 

highest expression of  αSMA positive cells was 48.82% detected in the TME of 

OSCC cancellous bone invasion, however there was no significant difference in 

αSMA expression (p=0.67) in incisional biopsy of superficial cortical bone 

resorption or cancellous bone invasive OSCC (Figure 3.8).	
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A  

B  

Figure 3.7: Representative photomicrographs showing IHC localisation of αSMA 
in incisional biopsies away from bone. (A) Strong αSMA (antibody dilution 1:100) 

expression in myofibroblastic stroma at the invasive tumour front. (B) Negative control 

(magnification x 20). 
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Figure 3.8: Quantification of αSMA expression in OSCC biopsy sections away from 
bone interface in selected cohort (n=10, 5 superficial cortical resorption and 5 
cancellous bone involvement). The average expression of αSMA positive cells in cases 
that presented with superficial cortical bone resorption was 30.71 ± 10.56 (mean ± 
STDV), while the average αSMA expression intensity was 37.47 ± 3.19. In cases with 
cancellous bone involvement the average expression of αSMA positive cells was 42.82 
± 5.04, while the average expression intensity was 41.57 ± 1.58. Error bar = STDV. 

 

3.3.2 RANKL and OPG expression  
Bone turnover markers RANKL and OPG were also evaluated in biopsies of 

tumour away from the bone interface. Our previous results showed readily 

detectable expression in tumour cells and fibroblasts adjacent to bone (Elmusrati 

et al., 2017). In the incisional biopsies, RANKL expression varied, as in cases 

with cancellous bone invasion the expression of RANKL positive cells 43.42 ± 

21.60 (mean ± STDV), and RANKL expression intensity (15.98 ± 4.07) was 

evident in tumour and stroma. This expression was weaker in comparison to 

cases with superficial cortical resorption 54.76 ± 12.30, 17.95 ± 1.17 respectively 

(p=1.01) (Figure 3.9). Moreover, OPG was also weakly detected or absent in 75% 

(n=8) of the samples (Figure 3.10). In cases with cancellous bone invasion the 

expression of OPG positive cells (58.67 ± 9.14 (mean ± STDV) was higher when 
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compared to cases with superficial cortical resorption (42.33 ± 5.3), however, 

these differences were not significant (p=0.98) (Figure 3.11 to 3.14).	

A  

B  

Figure 3.9: Representative photomicrographs showing IHC localisation of RANKL 
in incisional biopsies away from bone. (A) RANKL staining evident in OSCC and 
surrounding fibrous stroma. (B) Negative control (magnification x 20). 

Figure 3.9: Representative photomicrographs showing IHC localisation of RANKL 
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i 

A  

B  

Figure 3.10: Representative photomicrographs showing IHC localisation of OPG 
in incisional biopsies away from bone. (A) Weak OPG staining in tumour and stroma. 
(B) Negative control (magnification x 20). 
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Figure 3.11: Expression of RANKL and OPG in biopsies of tumour (away from bone 
interface) with superficial cortical bone resorption (n=5). The average expression of 
RANKL positive cells in biopsies of tumours with superficial cortical resorption was 58.76 
± 12.30 (mean ± STDV), while the average RANKL expression intensity was 17.95 ± 
1.17. Average expression of OPG positive tumour cells was 42.33 ± 5.38, while the 
average expression intensity was 14.74 ± 1.97. Error bar = STDV. 

 

Figure 3.12: Expression of RANKL and OPG in tumour biopsies (away from bone 
interface) with cancellous bone involvement (n=5). The average expression of 
RANKL positive tumour cells in biopsies of tumours with definite cancellous bone 
involvement was 37.42 ± 21.60 (mean ± STDV) while the average RANKL expression 
intensity was 15.98 ± 4.07. Average expression of OPG positive tumour cells was 58.67 
± 9.14, while the average expression intensity was 15.51 ± 4.35. Error bar = STDV. 
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Figure 3.13: Expression of RANKL and OPG in stroma of OSCC (biopsies-away 
from bone interface) with superficial cortical bone resorption(n=5). The average 
expression of RANKL positive stromal cells in biopsies of cases with superficial cortical 
bone resorption was 26.70 ± 16.27 (mean ± STDV), while the average RANKL 
expression intensity was 12.23 ± 3.62. Average expression of OPG positive cells was 
42.91 ± 3.68, while the average OPG expression intensity was 11.35 ± 3.68. Error bar = 
STDV.	

 

Figure 3.14: Expression of RANKL and OPG in stroma of OSCC biopsies (away 
from bone interface) with cancellous bone invasion (n=5). The average expression 
of RANKL positive stromal cells in initial biopsies of cases with cancellous bone 
involvement was 32.85 ± 12.77 (mean ± STDV), while the average RANKL expression 
intensity was 13.00 ± 4.08. Average expression of OPG positive stromal cells was 39.77 
± 4.58, while the average OPG expression intensity was 13.87 ± 3.48. Error bar = STDV. 
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3.4 Double αSMA and RANKL expression in OSCC 
microenvironment 
We have previously shown that OSCC stroma expresses the myofibroblastic 

marker (aSMA) and bone turnover marker RANKL in bone resections (Elmusrati 

et al., 2017). To further confirm the co-localisation of both markers in fibroblastic 

tumour stroma, a double immunohistochemical analysis of αSMA and RANKL 

was performed. Matching cases (n=10, 5 cortical/superficial bone resorption, and 

5 cancellous bone invasion) of OSCC with bone were selected and investigated. 

Our data shows that OSCC cells express RANKL, and co-localisation of αSMA 

and RANKL was expressed in fibroblastic stroma surrounding OSCC cells, 

confirming that αSMA positive CAF express RANKL (Figure 3.15). 
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Figure 3.15: Representative photomicrographs showing IHC co-localisation of 
αSMA and RANKL.  αSMA (antibody dilution 1:100) expression (green stain) in 
myofibroblastic stroma. RANKL expression (red) in tumour as well as SMA positive cells 
in OSCC stroma. Co-localization of αSMA and RANKL was evident in fibrous tumour 
stroma (blue). (A) Magnification x 10. (B) Higher magnification (x 20). 
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3.5 Experimentally induced CAF and primary CAF 
isolated from OSCC express stromal marker 
αSMA  
We have previously shown abundant expression of αSMA in stroma ahead of 

OSCC invasive front in tissue from bone resections (Elmusrati et a., 2017). To 

begin to explore the mechanisms underlying this observation, αSMA expression 

was examined in an in vitro model of CAF formation from normal fibroblasts and 

in OSCC-derived CAF. 	

To generate an in vitro model of CAF development, primary oral fibroblasts 

(NOF003, NOF804, and NOF822) were seeded on coverslips, serum starved (24 

h), and treated with recombinant TGFβ1 (5 ng/ml), as previously described 

(Elmusrati et al., 2017; Mellone et al., 2017; Melling et al.,  2018). After 24 h, 

fibroblasts were fixed, and αSMA expression and localisation examined by 

immunocytochemistry. Primary CAF isolated from fresh human OSCC tissue 

were also examined for αSMA. Primary normal oral fibroblasts, in serum free 

media, served as the negative control (Figure 3.16).	

The myofibroblastic marker αSMA was readily detected in NOF following TGFβ1 

exposure. Staining was observed as discrete fibres spanning the cell cytoplasm 

(Figure 3.16). αSMA staining was also evident, in a similar pattern to TGFβ1-

treated NOF in CAF isolated from OSSC tissue and its localisation is in keeping 

with previous reports showing αSMA association with contractile stress fibres in 

myofibroblasts (Serini and Gabbiani, 1999; Lewis et al., 2004; Hinsley et al., 

2012). However, minimal αSMA expression was seen in NOF not exposed to 

TGFβ1 (Figure 3.16). 
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Figure 3.16: Representative photomicrographs showing cytoplasmic αSMA 
expression in fibroblasts using immunofluorescence (A) Negative control, oral fibroblasts 
in serum free media. (B) Normal human oral fibroblasts following TGF-β1 (5 ng/ml) 
treatment (24 h) in serum free media. (C) CAF isolated from human OSCC tissue. 
Myofibroblastic differentiation is evident by αSMA staining in contractile stress fibres 
(magnification x40). 
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To assess αSMA mRNA expression, RNA extracted from NOF exposed to 

TGFβ1, CAF isolated from human OSCC tissue, and untreated NOF (negative 

control) were subjected to qPCR analysis. αSMA transcript expression was 

significantly higher in CAF, and in NOF following TGFβ1 treatment (by 44.21 ± 

2.91, and 39.13 ± 1.60 (mean fold change ± STDV) respectively) while the 

expression was undetectable in unstimulated NOF (Figure 3.17). 

 
 

 

Figure 3.17: Relative expression of αSMA mRNA in normal oral fibroblasts 
following TGFβ1 treatment and CAF isolated from OSCC. NOF (250,000 cells/ well) 
were seeded in 6 well plates, serum starved (24 h), then treated with TGFβ1 (5 ng/ml) 
for 24 h. CAF isolated from human OSCC tissue (250,000 cells/ well) were seeded in 6 
well plates, serum starved (24 h). A significant increase in αSMA mRNA was expressed 
with an average of 39.13 ± 1.60 (mean fold change ± STDV) following TGFβ1 exposure. 
αSMA expression in CAF was 44.21 ± 2.91. NOF in serum free media served as the 
negative control. Error bars= STDV. ** p≤0.01 and **p≤0.001, following a Student’s t-test. 
The graph represents combined results of multiple assays. Experiment performed three 
times in triplicate. 
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3.6 OSCC derived CAF express soluble RANKL 
protein 
We have previously shown that myofibroblasts and NOF exposed to TGFβ1 show 

significantly higher RANKL expression on a transcript and protein level (Elmusrati 

et al., 2017). To further investigate whether OSCC-derived CAF express soluble 

RANKL protein, CAF and NOF were serum starved (24 h), conditioned media 

was collected and RANKL detected by ELISA. RANKL protein expression (mean 

rg/ml ± STDV) was significantly up regulated in conditioned media collected from 

CAF and myofibroblasts (NOF exposed to TGFb1)  (430.90 ± 13.6, p=0.004 and 

323.33 ± 34.9, p=0.0008 respectively) when compared to NOF (161.04 ± 9.9) 

(Figure 3.18). 

 

Figure 3.18: Soluble RANKL protein expression in CAF and NOF. CAF isolated from 
human tissue express significantly higher RANKL than NOF. 250,000 cell/ well of NOF 
(803, 804, and 822), and (CAF 002, 003, and 004) were seeded into 6 well plates, 
allowed to settle overnight, and serum starved (24 h). Conditioned media was collected 
and subjected to an ELISA. Error bar=STDV. The experiment was performed three times 
in triplicate. The increased concentration of RANKL was significantly expressed (mean 
rg/ml ± STDV) in CAF (430.90 ± 13.6), myofibroblasts (323.33 ± 34.9) when compared 
to NOF (161.04 ± 9.9). The graph represents combined results of multiple assays. Error 
bars= STDV. * p≤0.05, following a Student’s t-test. Experiment performed three times in 
triplicate. 
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3.7 Expression of RANKL and OPG mRNA in 
primary human osteoblasts 
Bone remodelling is regulated by RANKL, its receptor RANK found on osteoclast 

precursors and the antagonist receptor OPG expressed by osteoblast. RANKL is 

the main marker of osteoclast activation, and only in the presence of RANKL in 

the tumour and surrounding microenvironment will bone destruction commence. 

We have previously demonstrated (Elmusrati et al., 2017) that human primary 

osteoblasts show significantly amplified RANKL and reduced OPG mRNA when 

exposed to conditioned media isolated from CAF compared to NOF.  	

3.7.1 CAF increase RANKL and reduce OPG expression in 
human primary osteoblasts on a transcript level 
To evaluate the influence of human OSCC cells and CAF on RANKL and OPG 

expression in human primary osteoblasts, OSCC cell line H357 and primary CAF 

were serum starved for 24 h, followed by conditioned media treatment (24 h) of 

serum-starved primary osteoblasts (HOB) for 24 h. RANKL and OPG expression 

was quantified using a TaqMan real time qPCR assay.  Media collected from 

primary osteoblasts in serum free DMEM, served as the negative control (Figure 

3.19).	

As exhibited in Figure 3.19, exposure of HOB to OSCC and CAF-derived 

conditioned media significantly amplified RANKL mRNA expression in primary 

osteoblasts. Conversely, OPG expression was significantly reduced in 

comparison with control. The greatest increase in RANKL (4.35 ± 1.02) (mean 

fold change ± STDV) (p< 0.009) and decrease in OPG expression (-0.21 ± 0.13) 

(p<0.004) in HOB was seen following exposure to primary CAF (conditioned 
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media. H357 conditioned media also increased RANKL expression (3.18 ± 0.77, 

p< 0.008), and reduced OPG expression (-0.37 ± 0.39, p< 0.006) in HOB 

 

Figure 3.19: Relative expression of RANKL and OPG mRNA in HOB when cultured 

with CAF, and OSCC conditioned media. HOB (5 X 105) were indirectly co-cultured with 

conditioned media collected from serum starved (24 h) CAF (CAF 002, CAF 003 and 

CAF 004) and H357 cells. A significant increase in RANKL mRNA expression was seen 

when HOB were indirectly co-cultured with conditioned media from CAF (4.35 ± 1.02) 

(mean ± STDV) compared to control (HOB in serum free media). A significant increase 

was also seen following exposure of HOB to H357 conditioned media (3.18 ± 0.77) OPG 

mRNA expression was significantly reduced in CAF (-0.21 ± 0.13), and H357 conditioned 

media (-0.37 ± 0.39). Values= mean ± SD. Error bar = STDV. The graph represents 

combined results of multiple assays. The experiments were performed thrice in 

triplicates. *p<0.05 was considered significant, following a Student’s t-test. 
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3.8 OSCC cells, experimentally induced CAF, and 
CAF isolated from human OSCC tissue induce 
osteoclastogenesis 
Osteoclasts develop from the fusion of monocytic haematopoietic cells. For the 

differentiation of haematopoietic cells to osteoclasts the cytokines RANKL and 

M-CSF1 are essential. M-CSF1 promotes osteoclastogenesis by stimulating the 

proliferation of osteoclast precursors, while RANKL is vital for promoting 

differentiation of osteoclast precursors to functional osteoclasts (Teitelbaum 

2000). In the presence of macrophage survival and proliferation cytokine M-

CSF1, monocytes fuse to form a pre-osteoclast and in the presence of RANKL 

results the quiescent pre-osteoclast becoming an active osteoclast that exhibits 

TRAP activity and the ability to form pits in bone substrates. In this study, 

osteoclasts were generated from the murine macrophage cell line RAW 264.7. 

The advantage of using RAW 264.7 cell is that they express both M-CSF1 and 

its receptor c-fms, and no treatment with M-CSF1 is required (Marino et al., 2014)	

After demonstrating that myofibroblastic CAF express RANKL ex vivo and in vitro, 

an experiment was conducted to investigate whether this expression was 

sufficient to initiate osteoclastogenesis. 	

Monocytes were seeded in Corning Osseo plates, which contain a synthetic bone 

substrate, serum starved, then treated with conditioned media collected from 

serum starved H357 cells, NOF, experimentally induced CAF (NOF treated with 

TGFβ1 (5 ng/ml), and primary CAF isolated from OSCC tissue, in separate wells. 

Media was changed daily. After 7 days, TRAP staining, pit formation assay, and 

nucleation, was studied (Figure 3.20).	
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As previously reported (Elmusrati et al., 2017), H357 cells induced 

osteoclastogenesis (mean number of TRAP positive cells/well ± STDV) (22.61 ± 

2.30), CAF showed a significantly higher increase on osteoclast generation 

(51.16 ± 4.5)  compared to NOF exposed to TGFβ1 (21 ± 1.35).These results 

were also reflected in pit forming assays (mean number of pits/ 3 high power 

fields ± STDV)  (13 ± 3), (24 ± 3), and (14 ± 2) (Table 3.1). Multi-nucleation was 

also indicative of osteoclastogenesis (Figure 3.21). 

Table 3.1: Osteoclastogenesis assay: quantification of TRAP positive cells and 
pits formed. 

Sample Total no. of TRAP 

positive cells  

(mean ± STDV, p value) 

No. of pits per 3 high 

power fields  

(mean ± STDV, p value) 

Negative control 0.0 ± 0.0 0.0 ± 0.0 

NOF  0.0 ± 0.0 0.0 ± 0.0 

NOF + TGFβ1 21 ± 1.35, p=0.0008 14 ± 3, p=0.00006 

Primary CAF 51.16 ± 4.5, p=0.0001 24 ± 3, p=0.00003 

H357 22.61 ± 2.30, p=0.00003 13 ± 2, p=0.00002 

RANKL 33.05 ± 1.8, p=0.00007 18.2 ± 4.0, p=0.00004 
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Figure 3.20: Osteoclastogenesis assay. Monocytes (RAW 264.7) were seeded in 

Osteo Assay surface 24 well plates at a density of 20,000 per well. (A) Negative control; 

cells were grown in serum free alpha MEM media. TRAP staining was negative, pit 

formation was not evident, and DAPI staining showed no multinucleated cells (B) NOF; 

cells were treated with conditioned media collected from serum starved NOF cells in 

alpha MEM media. TRAP staining was negative, pit formation was not evident, and DAPI 

staining showed no multinucleated cells. (C) Experimentally induced CAF; cells were 

treated with conditioned media collected from serum starved NOF treated with TGFβ1 

(5 ng/ml) in serum free alpha MEM media. TRAP staining was observed positively 

staining osteoclasts, pit formation was evident, and DAPI staining showed 

multinucleated cells. (D) CAF isolated from human tissue; cells were treated with 

conditioned media collected from serum starved CAF cells in alpha MEM media. TRAP 

staining was observed positively staining osteoclasts, pit formation was evident, and 

DAPI staining showed multinucleated cells. (E) H357; Cells were treated with conditioned 

media collected from serum starved H357 cells in alpha MEM media. TRAP staining was 

observed positively staining osteoclasts, pit formation was evident, and DAPI staining 

showed multinucleated cells. (F) Positive control; Cells were treated with rRANKL (50 

ng/ml) in serum free alpha MEM media. TRAP staining was observed positively staining 

osteoclasts, pit formation was evident, and DAPI nucleation showed multi-nucleated 

cells. Media was changed daily for 7 days. The experiment was performed three times 

in duplicate. Magnification x40. 
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A  

B  

Figure 3.21: Osteoclast and pit formation quantification. The number of TRAP 
positive cells was counted, and the average number of osteoclasts generated were 
plotted. The number of pits formed due to osteoclasts in three high power fields were 
counted, and the average number of pits was plotted. The highest number of osteoclast 
(mean ± STDV) (51.16 ± 4.5) and resorption pits (24 ± 3), was noticed when conditioned 
media from CAF were exposed to monocytes. H357 cells induced osteoclastogenesis 
(22.61 ± 2.30), as well as NOF exposed to TGFβ1 (21 ± 1.35). These results were also 
reflected in pit forming assays (mean pits ± STDV) (14 ± 3), and (13 ± 2). Error bar = 
STDV. Graphs represent combined results of multiple assays. *p<0.05 was considered 
significant, following a Student’s t-test. 
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3.9 Discussion  
In this chapter, the mechanism of OSCC bone invasion was investigated, with 

particular focus on whether stromal fibroblasts cross talk with proximal bone. 

OSCC is heterogeneous in nature and has a tendency to invade regional 

anatomical structures. Due to proximity of maxillofacial bones to oral mucosa, 

OSCC has a high tendency to invade these structures (Nomara et al., 2005).	

Marsh et al. (2011) highlighted that the presence of a myofibroblastic αSMA 

positive stroma in OSCC is a more sensitive predictor of disease progression and 

prognosis than other long standing and well-known parameters such as TNM 

stage (including tumour size, regional and distant metastasis), perineural or 

lymphovascular invasion and depth/pattern of invasion. Despite these recent 

findings showing the importance of stroma in OSCC, its role in bone invasive 

OSCC remains largely unexplored. We have previously reported that over 90% 

of bone invasive OSCC cases do not demonstrate direct contact between tumour 

cells and bone, and that αSMA positive myofibroblastic CAF are seen intervening, 

and infiltrating bone ahead of the tumour invasive front (Elmusrati et al., 

2017).  The expression of bone turnover markers (RANKL and OPG) in bone 

invasive OSCC and associated stroma was further investigated. Interestingly, 

these markers were highly expressed in both tumour and stroma in close 

proximity to bone suggesting a potential role of CAF in OSCC bone invasion and 

bone turnover.	

In the current study, we aimed to determine whether there is a difference in αSMA 

expression, indicative of the presence of CAF, in OSCC stroma, and 

RANKL/OPG expression adjacent to and away from bone and whether initial 

diagnostic biopsies from these cases can be used to predict bone invasion. In the 
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cohort, αSMA expression was consistently evident in all OSCC cases, in 

agreement with other studies showing high prevalence of αSMA-positive CAF 

(Kellermann et al., 2007; Rao et al., 2014; Bussard et al., 2016). RANKL was 

expressed was evident in tumour cells and surrounding stroma whereas OPG 

staining was either weak or absent. There was no significant difference in αSMA, 

RANKL or OPG expression between incisional diagnostic biopsies taken from 

tumours with cortical resorption or cancellous bone invasion. However, this may 

be due to the small cohort size. Expanding the sample size to include variations 

in histological pattern, tumour site (maxilla / mandible), size, and overall OSCC 

stage, and to examine whether the intensity of expression or the location of 

expression whether adjacent or away from bone is of more importance, is worth 

exploring further. 

Double IHC for bone destruction marker RANKL and myofibroblastic marker 

αSMA was further conducted on OSCC bone resections, to investigate whether 

αSMA-positive CAF express RANKL. RANKL staining was seen in fibrous stroma 

as well as in tumour cells in vicinity of bone. RANKL expression in OSCC stroma 

(Ishikuro et al., 2018) and OSCC cells (Tada et al., 2005; Kayamori et al., 2010) 

have been reported. These findings suggest that RANKL expression in tumour 

cells is related to proximity of invasive front, and the possibility that CAF adjacent 

to OSCC cells may be facilitating this expression.	

Osteoblast regulation of osteoclastogenesis by RANKL expression is a key 

modulator of bone remodelling (Simonet et al., 1997). In the current study, OSCC 

cells were shown to upregulate RANKL and down regulate OPG in HOB 

(Elmusrati et al., 2017), and these results are in agreement with previous reports 

(Ishikuro et al., 2008). However, following identification of αSMA positive CAF 
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express of bone turnover markers OPG and RANKL in OSCC stroma in bone 

resection tissue samples, the influence of CAF on mRNA expression of bone 

turnover markers RANKL and OPG in primary human osteoblasts after indirect 

co-culture was further investigated. CAF-derived factors induced significant 

RANKL amplification and OPG downregulation in primary human osteoblasts. 

These findings show for the first time that primary CAF isolated from human 

OSCC, and experimentally induced myofibroblasts influence similar responses to 

osteoblasts, playing a functional role, promoting a more aggressive TME 

susceptible to bone invasion (Elmusrati et al., 2017).	

Bone destruction and OSCC invasion requires complex interactions with diverse 

cell types, including osteoclasts, multinucleated bone resorbing cell, originating 

from monocyte/macrophage lineage haematopoietic precursors. It has been 

previously reported that the murine macrophage cell line RAW 264.7, upon 

exposure to RANKL, readily triggers osteoclastogenesis (Vincent et al., 

2009).  After demonstrating that CAF express RANKL in vitro and ex vivo, a 

functional assay was conducted to evaluate whether this expression was 

sufficient to induce osteoclastogenesis in the absence of OSCC cell or osteoblast 

derived RANKL. In the current study, highest osteoclast generation was noted 

when RAW 264.7 cells were exposed to CAF-derived conditioned media, further 

highlighting a possible role CAF play in OSCC bone invasion. These results were 

also reflected in the pit forming assay	

In conclusion, this data provides novel evidence that myofibroblastic CAF play a 

role in bone invasion in OSCC through a RANKL-dependent pathway. The 

mechanistic evidence presented here provides support to the ex vivo 

observations that myofibroblastic CAF may play a role in bone invasion of OSCC, 
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raising the possibility that targeting CAF may be an opportunity for therapeutic 

intervention.  
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4.1 Introduction 
Cellular senescence is a consequence of an accumulation in DNA damage 

whether due to replicative stress caused my telomeres shortening, or 

independent of telomeres length induced by exposure to elevated levels of 

oxidative or genotoxic stress. In spite of these cells being vital and metabolically 

functional, they are non-dividing cells that fail to proliferate following considerable 

cell division. The irreversible state of growth arrest (at G1 phase) is termed 

senescence, characterised by distinctive chromatin and secretome alterations, 

and distinctive to myofibroblasts, as senescent fibroblasts express up-regulated 

levels of tumour suppressor gene p16INK4a and p21 (Prime et al., 2016).	

Various stimulants are responsible for fibroblasts to undergo permanent DNA 

damage induced as a result of oxidative stress from mitochondrial malfunction, 

chemo and radiotherapy as well as exhaustive mitotic activity (Di Micco et al., 

2006). Senescence can be induced in vitro through treatment with hydrogen 

peroxide, anticancer therapeutics such as cisplatin, exposure to irradiation and 

replicative exhaustion (Rodier and Campisi, 2011; Kabir et al., 2016).	

In normal physiology, senescent cells and their SASP have recently been 

indicated to have beneficial roles in tissue remodeling and wound healing (Storer 

et al., 2013; Demaria et al., 2014). However, in carcinomas, irreversible damage 

in cell recovery, or over exhausted DNA, results in senescence, which acts as an 

effective tumour suppressor. Counter-intuitively, when senescent cells 

accumulate in cancer, they are considered as tumour promoters, through their 

enhancement of neoplastic proliferation, invasion, metastasis and therapeutic 

resistance (Prime et al., 2016). Senescent fibroblasts express a vast range of 

pro-tumorigenic secretory proteins, which are jointly termed SASP (Kuilman and 
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Peeper, 2009; Pazolli et al., 2009). Senescence has been reported in CAF, 

having the ability to promote dysplastic and neoplastic cell proliferation and 

tumorigenesis in carcinomas (Krtolica et al., 2011; Cirri and Chiarugia, 2011; 

Kabir et al., 2016)  	

Recently, a number of senotherapeutics have emerged specifically targeting pro-

apoptotic pathways eliminating senescent cell burden, these agents are called 

senolytics or senomorphics, which suppress SASP expression. Several recent 

studies have used senolytics, not to target senescent cells but due to their pro 

apoptotic capabilities (Zhu et al., 2015; Mertens et al., 2017)  Senolytics, which 

target pro-survival pathways as p53/p21, Bcl-2/Bcl-XL, and PI3K/AKT or ROS-

protective anti-apoptotic pathways, HSP90, when blocked result in senescent cell 

apoptosis. However, the inhibition of senescent cell SASP secretome can be 

targeted by using IɣB Kinase or JAK inhibitors as metformin and rapamycin 

(Niedernhofer and Robbins, 2018). Prospective concerns about the side effects 

and long-term consequences of senolytics must be raised. However, due to the 

intermittent delivery of drug, as senescent cells take a considerable amount of 

time to re-accumulation following clearance these concerns are diminished. In 

contrast, this argument cannot be made for senomorphics, which are 

administered in continuous levels to maintain SASP suppression.	

CAF are heterogenous population of cells comprising different phenotypes 

(LeBleu and Kallurri, 2018; Liu et al., 2019). Previous findings in our lab have 

shown that a subgroup αSMA positive OSCC derived CAF show senescent 

characteristics (Mellone et al., 2017). In this study we sought to identify 

senescence in OSCC microenvironment, understand the possible contribution of 
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senescent CAF to bone invasion. This is of particular interest due to the number 

of emerging drugs targeting senescent cells. 	

4.1.1 Aims  

To examine the different subsets of CAF, in particular the impact of senescence 

in tumour microenvironment of bone invasive OSCC. 

4.1.2 Experimental approach 

1. IHC was performed to investigate the expression of senescence markers 

p16INK4a, and DPP4 (CD26) in OSCC bone resections. 

2. Double IHC in OSCC bone resections was conducted to investigate the 

co-expression of αSMA and p16INK4a. 

3. Senescence was induced in vitro, by exposing low passage NOF to 

oxidative stress H2O2 (S-NOFH2O2), chemotherapeutic drug cisplatin (S-

NOFCis), and replicative stress (S-NOFRep). SA-β-Gal assays was 

conducted to monitor senescence. 

4. Lipofuscin has been reported to accumulate in senescence cells. 

Histochemical stain SBB, known to react towards lipofuscin was utilised to 

confirm senescence induction in NOF. 

5. Expression of myofibroblastic marker αSMA was determined in vitro using 

immunofluorescence. 

6. CAF isolated from human OSCC tissue, and S-NOFH2O2, S-NOFCis, S-

NOFRep was assessed on a transcript level for senescence marker 

p16INK4a, SASP factor IL6, and bone turnover markers RANKL and OPG. 

7. Soluble RANKL protein was examined in CAF, NOF, S-NOFH2O2, S-NOFCis, 

and S-NOFRep using an ELISA. 

8.  An osteoclastogenesis assay was performed by culturing murine 
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monocytes (RAW 264.7) with OSCC, NOF, S-NOFH2O2, S-NOFCis, S-

NOFRep, and CAF conditioned media. TRAP staining, pit formation and 

nucleation assays was conducted to confirm osteoclastic differentiation. 

9. Senescent fibroblasts were targeted by using senotherapeutics, and the 

impact of senolytics drugs (Alvespimycin (17-DMAG) and Navitoclax 

(ABT263)) on osteoclast generation was also studied.  

 

4.2 Evaluation of senescence marker p16INK4a 
and DPP4 expression in ex vivo OSCC bone 
resections at tumour bone interface  
Ten bone resection samples of patients with bone invasive OSSC (5 cases 

cortical/superficial bone resorption, and 5 cases cancellous bone involvement) 

were selected from the Unit archive and analysed using IHC to examine 

expression of senescence markers p16INK4a, and the recently described DPP4 

(CD26). Following staining, the samples were scanned, and staining intensity 

was evaluated using HistoQuest software. 

4.2.1 Expression of tumour suppressor gene p16INK4a in tumour 
microenvironment proximal to bone 
We have previously reported that αSMA expressing cells are seen invading bone 

ahead of OSCC islands in over 90% of cases (Elmusrati et al., 2017). Given the 

recent findings from our lab that ɑSMA positive fibroblasts frequently show 

characteristics of senescence (Mellone et al., 2017), we sought to determine 

whether a subpopulation of the fibrous stroma was senescent. 	

Expression of the well-characterised senescence marker p16INK4a was first 

investigated. Readily detectable p16INK4a was noticed in OSCC cells, stromal 

cells adjacent to bone, and surrounding osteoclasts in bone resorptive areas, and 
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osteoblasts. The percentage of expression of positive cells ranged from 26.8% to 

71.3% (Figure 4.1 and 4.2).	

A  

B  

Figure 4.1: Representative photomicrographs showing IHC localisation of 
p16INK4a. (A) Strong p16INK4a (antibody dilution 1:100) expression in myofibroblastic 
stroma at the invasive tumour front (magnification x40). (B) Negative control. 
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(magnification x 20). 

 

Figure 4.2: Quantification of p16INK4a expression in stromal cells of OSCC bone 
resections. (n=10, 5 superficial cortical resorption and 5 cancellous bone involvement).  
The average percentage of p16INK4a positive cells in cases with superficial bone 
resorption was (45.22 ± 18.96) and (60.48 ± 26.21) in cancellous invasion (mean ± 
STDV). Error bar = STDV. 

4.2.2 Expression of senescence marker DPP4 (CD26) in tumour 
microenvironment proximal to bone 
To further confirm the presence of senescent cells in the microenvironment of 

tumour bone interface an additional cell surface senescent marker, DPP4, was 

also examined. Recently, following mass spectrometry analysis of senescent 

fibroblasts, DPP4 was reported to be expressed by senescent but not proliferating 

fibroblasts (Kim et al., 2017). 	

DPP4 expression was observed in OSCC cells and fibroblasts near bone 

resorptive sites. The percentage of cells expressing DPP4 ranged from 21.7%, 

with the highest percentage of positive expressing cells being 64.05%, and a 

mean expression of 48.31% (Figure 4.3 and 4.4).	
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A  

B  

Figure 4.3: Representative photomicrographs showing IHC localisation of DPP4. 
(A) Strong DPP4 (antibody dilution 1:100) expression in myofibroblastic stroma at the 
invasive tumour front (magnification x 40). (B) Negative control. 
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Figure 4.4: Quantification of DPP4 expression in stromal cells in OSCC bone 
resections (n=10, 5 superficial cortical resorption and 5 cancellous bone involvement). 
The average percentage DPP4 positive cells in cases with superficial cortical bone 
resorption was (33.22 ± 18.96) and (57.48 ± 26.21) in cancellous invasion (mean ± 
STDV). Error bar = STDV. 

 

4.3 Senescent fibroblasts exhibit contractility 
features through the expression of aSMA in 
tumour microenvironment proximal to bone 
Following identification that CAF in OSCC fibrous stroma express myofibroblastic 

marker aSMA and senescence by p16INK4a expression through single staining 

IHC, double immunohistochemical analyses of aSMA and senescent marker 

p16INK4a was carried out to assess whether myofibroblastic CAF are also 

senescent. Matching cases of OSCC with bone involvement were selected as 

described previously. Our data shows that a large proportion of myofibroblastic 

CAF also show senescent characteristics. Senescence was also evident in 

tumour cells (Figure 4.5).	
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Figure 4.5: Representative photomicrographs showing IHC co-localisation of 
αSMA (Green) and p16INK4a (Red).  αSMA (antibody dilution 1:100) expression (green 
stain) in myofibroblastic stroma at the invasive tumour front. p16INK4a expression (red) 
in tumour as well as SMA positive cells in tumour stroma. Co-localization of αSMA and 
p16INK4a was evident in fibrous tumour stroma (blue).(A) Magnification x 10. (B) ifi(x 
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20) 

4.4 Characterisation of induction of senescence in 
vitro 
Following identification that stromal cells in bone invasive OSCC tissue express 

senescent characteristics ex vivo, senescence induction in NOF was conducted 

in vitro to investigate the potential functionality of senescent CAF in OSCC bone 

invasion. This assay was performed to verify whether senescence could be 

induced in oral fibroblasts (DENF 316, NOF803, NOF804, NOF822) subjected to 

oxidative stress, exposed to chemotherapeutic drugs or replicative mitotic 

exhaustion, by utilising β-galactosidase as a biomarker. The following 

abbreviations will be used (S-NOFH2O2, S-NOFCis, and S-NOFRep) to denote the 

associated conditions (Table 4.1). 

Table 4.1: Abbreviations used for different senescence induction methods	

Types of senescence induction Abbreviation 

Exposure of NOF to oxidative stress  
(500 µM H2O2 for 2 h) 

S-NOFH2O2 

Exposure of NOF to genotoxic stress  
(10 µM cisplatin for 24 h) 

S-NOFCis 

Exposure of NOF to replicative stress  
(passage 25) 

S-NOFRep 

 

Cells were seeded (10,000/well) in a 12 well plate and stained with X-gal 

solution. A blue precipitate was evident in senescent fibroblasts following the 

overnight incubation (Figure 4.6). The percentage of blue stained cells resulting 

from lysosomal galactosidase cleavage of X-gal chromogenic substrate was 

quantified. The highest percentage of senescent cells was detected in S-

NOFRep (78.04 ± 8.3, p=0.00003), followed by S-NOFH2O2 (64.21 ± 5.6, 
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p=0.00005), S-NOFCis (57.03 ± 3.8, p=0.00007), and CAF (31.89 ± 7.9, 

p=0.00009) (mean ± STDV) (Figure 4.7). 

 

Figure 4.6: Representative photomicrographs of SA-b-Gal detection in NOF 
following exposure to different senescence inducers. Primary oral fibroblasts 
exposed to H2O2, cisplatin or replicative mitotic exhaustion were seeded into a 12 well 
plate at a density of 10,000 cells/well. On the following day, cells were rinsed in PBS, 
fixated, and stained with X-gal staining solution (24 h). (A) NOF (803, 804 and 822) not 
subjected to oxidative stress served as a negative control (magnification x20). (B) 
Senescent fibroblasts following H2O2 exposure produced a blue/turquoise precipitate. 
(C) Senescent fibroblasts following cisplatin exposure. (D) Senescent fibroblasts 
following replicative exhaustion. (E) Primary CAF (002, 003, and 004) isolated from 
human tumour tissue also showed senescence. This experiment was performed three 
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times iplicate. (magnification x40). 

 

Figure 4.7: Quantification of SA-β-Gal positive cells. The number of stained cells 
(blue precipitate) in 3 high power fields (magnification x40) after SA-β-Gal assay was 
conducted. The highest percentage of senescence was seen when NOF were subjected 
to replicative exhaustion (passage 25) S-NOFRep (78.04 ± 8.3), followed by S-NOFH2O2 
(64.21 ± 5.6), S-NOFCis (57.03 ± 3.8), and CAF (31.89 ± 7.9) (mean ± STDV). Experiment 
conducted three times in triplicate. *p<0.05 was considered significant, following a 
Student’s t-test. Error bar = STDV. 

4.5 Primary oral fibroblasts express Sudan B 
Black in vitro after experimental senescence 
induction 
Sudan B Black has been recently identified as a biomarker of senescence, 

specifically staining lipofuscin, which distinctively accumulates in senescent cells 

(Georgakopoulou et al., 2013). As there is no single specific marker to detect 

senescence, Sudan B Black histochemical staining was performed to further 

support the findings from the SA-β Gal assay (Figure 4.8). The percentage of 

SBB stained (black deposits) cells was quantified. The highest percentage of 

positive cells was noticed in S-NOFH2O2 (61.66 ± 3.4, p=0.00009), followed by S-

NOFCis (54.21 ± 6.0, p=0.00076), and CAF (28.97 ± 8.3, p=0.00083) (mean ± 

STDV, p value) (Figure 4.9).  
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Figure 4.8: Representative photomicrographs showing Sudan B Black 
histochemical staining in response to different senescence inducers. Primary oral 

fibroblasts exposed to H2O2, cisplatin or replicative mitotic exhaustion were seeded into 

a 12 well plate at a density of 10,000 cells/well. On the following day, cells were rinsed 

in PBS, fixated, and stained Sudan B Black stain (2 h). (A) NOF (803, 804, and 822) not 

subjected to oxidative stress served as a negative control (magnification x20). (B) NOF 

following H2O2 exposure produced a black granular precipitate. (C) NOF following 

cisplatin exposure. (D) Primary CAF (002, 003, and 004) isolated from human tumour 

tissue showing evidence of senescence.  This experiment was performed three times in 

triplicate. (magnification x40).  
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Figure 4.9: Quantification of SSB positive cells. The number of stained cells (black 

precipitate) in 3 high power fields (magnification x40) was counted and the percentage 

of stained cells calculated following Sudan B Black staining. The highest percentage of 

positive cells was noticed in S-NOFH2O2 (61.66 ± 3.4, p=0.00009), followed by S-NOFCis 

(54.21 ± 6.0, p=0.00076), and CAF (28.97 ± 8.3, p=0.00083) (mean ± STDV, p value) 

Error bar = STDV. *p<0.05 was considered significant, following a Student’s t-test. 

Experiment conducted three times in triplicate.  
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4.6 mRNA expression of p16INK4a and SASP 
factor IL6 is significantly higher in senescent 
fibroblasts 
Senescent fibroblasts S-NOFH2O2, S-NOFCis, S-NOFRep and primary CAF were 

tested for their expression of p16INK4a, and IL6. qPCR analysis of p16INK4a 

and IL6 was performed to detect and quantify senescence on a transcript level. 

These results were compared to primary normal oral fibroblasts, which served as 

a negative control. Significant amplification in senescent marker p16INK4a and 

IL6 expression was observed in senescent fibroblasts, and CAF.  The increased 

fold change of p16INK4a was observed as follows, S-NOFH2O2 (4.1 ± 2.04, 

p=0.006), S-NOFCis (6.30 ± 0.13, p=0.0008), S-NOFRep (7.43 ± 1.88, p=0.0004), 

and CAF (3.14 ± 1.7, p=0.005) (mean ± STDV, p value) (Figure 4.10 A). 

Moreover, IL6 expression was S-NOFH2O2 (15.3 ± 2.08, p=0.03), S-NOFCis (24.5 

± 3.52, p=0.002), S-NOFRep (24.43 ± 1.88, p=0.0006), and CAF (22.56 ± 2.7, 

p=0.00034) (Figure 4.10 B). 
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A  

 

B  

Figure 4.10: Relative expression of p16INK4a and IL6 mRNA in senescent oral 
fibroblasts. mRNA expression of senescent marker (A) p16INK4a and (B) IL6 in 

senescent NOF (NOF803, NOF804, and NOF822) was significantly amplified, following 

exposure of low passage NOF (passage 5) to H2O2 (500 μM) for 2 h, cisplatin (10 μM) 

for 24 h, or exposure to replicative mitotic exhaustion (passage 25). (A) The increased 

fold change of p16INK4a was observed as follows, S-NOFH2O2 (4.1 ± 2.04, p=0.006), S-

NOFCis (6.30 ± 0.13, p=0.0008), S-NOFRep (7.43 ± 1.88, p=0.0004), and CAF (3.14 ± 1.7, 

p=0.005) (mean ± STDV, p value). (B) IL6 expression, S-NOFH2O2 (15.3 ± 2.08, p=0.03), 

S-NOFCis (24.5 ± 3.52, p=0.002), S-NOFRep (24.43 ± 1.88, p=0.0006), and CAF (22.56 ± 

2.7, p=0.00034) Data represented n=3, ± STDV *p<0.05 was considered significant, 

following a Student’s t-test. Error bar = STDV. 
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4.7 Experimentally induced senescent fibroblasts 
express stromal marker αSMA 
Following SA-β-Gal and SBB staining, and senescent marker p16INK4a 

expression confirming senescent induction, senescent oral fibroblasts S-NOFH2O2, 

and S-NOFCis, were seeded on coverslips and analysed for intracellular αSMA 

(dilution 1:100) expression using a FITC-conjugated antibody. These results 

show that senescent fibroblasts also exhibit myofibroblastic characteristics as 

αSMA expression was evident in contractile stress fibres (Figure 4.11 A and B). 

These findings were further compared to experimentally induced myofibroblasts 

following TGFβ1 stimulation (Figure 4.11 C), and primary oral CAF isolated from 

human tissue (Figure 4.11 D) which showed similar results.  Expression in 

proliferating normal oral fibroblasts was not detectable (Figure 4.11 E).  
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Figure 4.11: Representative photomicrographs showing immunofluorescence 
detection of αSMA (1:100) αSMA evident staining in contractile stress fibres in normal 

human oral fibroblasts following (A) Negative control, oral fibroblasts (NOF 803, 804) in 

serum free media. (B) NOF (803, 804) exposure to H2O2 (500μM, 2 h) (C) NOF (803, 

804) exposure to cisplatin (10 μM, 24 h) (D) TGFβ1 (5 ng/ml) treatment (24 h) in serum 

free media. (E) CAF (003) isolated from human OSCC tissue. (magnification x40). 
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4.8 Senescent oral fibroblasts express RANKL a 
transcript and protein 
We have previously demonstrated that myofibroblasts (NOF exposed to TGFβ1) 

and primary CAF isolated from human tumour tissue express significantly higher 

levels of the bone turnover marker RANKL compared to primary NOF (Elmusrati 

et al., 2017).  

To investigate whether experimentally induced senescent fibroblasts produce 

bone turnover marker RANKL and OPG on a transcript level and soluble RANKL 

protein level in culture, senescent fibroblasts S-NOFH2O2, S-NOFCis, S-NOFRep 

and primary CAF were examined. RANKL mRNA was significantly amplified (S-

NOFH2O2 (5.8 ± 1.14, p=0.01), S-NOFCis (3.70 ± 1.83, p=0.013), S-NOFRep (5.87 

± 1.23, p=0.001), and CAF (8.84 ± 0.97, p=0.00051) (mean ± STDV, p value) 

(Figure 4.12 A), while a significant downregulation of RANKL decoy receptor 

OPG was observed (S-NOFH2O2 (-0.5 ± 0.64, p=0.017), S-NOFCis (-0.30 ± 0.15, 

p=0.0042), S-NOFRep (-0.53 ± 0.48, p=0.0055), and CAF (-0.42 ± 0.7, p=0.0044) 

(Figure 4.12 B).  

For soluble RANKL protein detection, on day 5, 10 and 15 following treatment, S-

NOFH2O2 and S-NOFCis were serum starved (24 h), conditioned media was 

collected and subjected to an ELISA. RANKL expression in S-NOFRep (passage 

25) was also examined. RANKL protein expression was significantly up regulated 

in conditioned media collected from S-NOFH2O2 after 5 days, and this expression 

increased following 10 and 15 days (220 ± 3.10, p=0.05, 311 ± 4.2, p=0.002, and 

356 ± 4.01, p=0.0006 respectively) (mean rg/ml ± STDV, p value). However, for 

S-NOFCis a significant RANKL expression was only noticed following 15 day of 

cisplatin exposure (338 ± 2.02, p=0.002). Moreover, primary CAF and S-NOFRep 
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demonstrated a significant RANKL expression (497 ± 8.03, p=0.0002 and 366 ± 

4.11, p=0.00011 respectively) when compared to NOF media (Figure 4.13). 

A  

B  

Figure 4.12: Expression of mRNA RANKL and OPG in senescent oral fibroblasts. 
mRNA expression of bone turnover markers (A) Significant RANKL and (B) Significant 

OPG downregulation was observed in senescent NOF (NOF803, NOF804, and 

NOF822), which was significantly increased, following exposure of low passage NOF 

(passage 5) to H2O2 (500 μM) for 2 h, cisplatin (10 μM) for 24 h, or exposure to replicative 

mitotic exhaustion (passage 25). Data represented n=3, ±SD *p<0.05 was considered 

significant, following a Student’s t- test. Error bar = STDV. 
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Figure 4.13: Expression of soluble RANKL protein in senescent oral fibroblasts. 
Senescent oral fibroblasts express significantly higher RANKL protein than unstimulated 

NOF. Highest levels of RANKL seen following 15 days of genotoxic exposure, and in 

non-proliferative NOF (passage 25). 500,000 senescent fibroblasts were seeded in T75 

plates and allowed to settle overnight. The fibroblasts were subjected to oxidative stress 

by treating the cells with H2O2 (500 μM) for 2 h or exposure to chemotherapeutic agent 

cisplatin (10 μM) for 24 h. Conditioned media (day 5, 10 and 15 respectively) was 

collected from serum starved fibroblasts (24 h) and subjected to an ELISA. RANKL 

expression in replicative mitotic exhausted oral fibroblasts (passage 25) was also 

examined. Conditioned media from serum starved (24 h) NOF served as a negative 

control. A significant amplification in RANKL expression was noticed after day 10. Data 

represent n=3 ± SD. *p<0.05 was considered significant, following a Student’s t-test. 

Error bar = STDV. Experiment conducted three times in triplicate. The graph represents 

combined results of multiple assays. 
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4.9 Senescent oral fibroblasts induce 
osteoclastogenesis 
Following induction and assessment of senescence and demonstrating that 

senescent fibroblasts secrete elevated levels of RANKL protein compared to 

proliferating cells, an osteoclastogenesis assay was performed to study whether 

these cells had the ability to initiate osteoclast generation. RAW 264.7 cells were 

seeded on Corning Osseo plates, serum starved, then treated with conditioned 

media collected from serum starved S-NOFH2O2, S-NOFCis, S-NOFRep, OSCC-

derived CAF, and NOF, in separate wells. Media was changed daily. After 7 days, 

TRAP staining, pit formation, and nucleation was studied (Figure 4.14). 

 Following exposure of monocytes to conditioned media collected from senescent 

oral fibroblasts and primary CAF isolated from human OSCC tissue, TRAP 

staining was positive S-NOFH2O2 (32 ± 2, p=0.0002), S-NOFCis (26 ± 3, p=0.004), 

S-NOFRep (34 ± 5, p=0001) and CAF (37 ± 2, p=0.00006) (mean ± STDV, p value), 

the ability of the cells to form resorptive pits S-NOFH2O2 (18 ± 4, p=0.008), S-

NOFCis (13 ± 3, p=0.0005), S-NOFRep (16 ± 4, p=0.0002) and CAF (21 ± 6, 

p=0.0001) (Table 4.2) in the bone scaffold lining , as well as multinucleation was 

also evident further confirming osteoclast formation. However, when monocytes 

were exposed to conditioned media collected from serum starved NOF, 

osteoclastogenesis was not seen, in keeping with data in Chapter 3 (section 3.8). 

Monocytes in serum free alpha MEM media served as a negative control (Figure 

4.15). 
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Table 4.2: Quantification of TRAP positive cells and pits formed. 

Sample Total no. of TRAP 

positive cells  

(mean ± STDV, p value) 

No. of pits per 3 high 

power fields  

(mean ± STDV, p value) 

Negative control 0.0 ± 0.0 0.0 ± 0.0 

NOF  0.0 ± 0.0 0.0 ± 0.0 

S-NOFH2O2 32 ± 2, p=0.0002 18 ± 4, p=0.008 

S-NOFCis 26 ± 3, p=0.004 13 ± 3, p=0.0005 

S-NOFRep 34 ± 5, p=0001 16 ± 4, p=0.0002 

CAF 37 ± 2, p=0.00006 21 ± 6, p=0.0001 
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Figure 4.14: Osteoclastogenesis assay. Monocytes (RAW 264.7) were seeded in 

Osteo Assay surface 24 well plates at a density of 20,000 per well. Cell were serum 

starved in alpha MEM media, media was collected every 24 h and monocytes were 

exposed to a daily change of fresh conditioned media for 7 days (A) Negative control; 

cells were grown in serum free alpha MEM media. TRAP staining was negative, pit 

formation was not evident, and DAPI staining showed no multinucleated cells (B) NOF; 

cells were treated with conditioned media collected from serum starved NOF cells. TRAP 

staining was negative, pit formation was not evident, and DAPI staining showed no 

multinucleated cells. Conditioned media collected from (C) S-NOFH2O2; H2O2 (500 μM for 

2 h), (D) S-NOFCis; cisplatin (10 μM for 24 h), and (E) S-NOFRep; replicative exhaustion 

(passage 25) cells. TRAP staining was observed in osteoclasts, pit formation was evident, 

and DAPI staining showed multinucleated cells. (F) CAF; cells were treated with 

conditioned media collected from primary human CAF isolated from OSCC tissue. TRAP 

staining was observed in osteoclasts, pit formation was evident, and DAPI staining 

showed multi-nucleated cells. The experiment was performed three times in duplicate. 

Magnification x40. 

 

 

 

 

 

 

 



Chapter 4 Exploring the role of fibroblast senescence in bone invasion in OSCC  
 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 145 

A  

B  
 

Figure 4.15: Senescent oral fibroblasts induce osteoclastogenesis. 15 days after 
NOF (803, 804, and 822) were exposed to H2O2, cisplatin or replicative exhaustion 
(passage 25), RAW 264.7 monocytes were seeded in a 24 well plate at a density of 
20,000 cells/well. Senescent cells were serum starved in alpha MEM media, and 
monocytes were treated daily with the conditioned media for 7 days. (A) The number of 
TRAP positive cells was counted positive S-NOFH2O2 (32 ± 2, p=0.0002), S-NOFCis (26 ± 
3, p=0.004), and S-NOFRep (34 ± 5, p=0001). The highest stimulation of 
osteoclastogenesis was noticed when monocytes were exposed to conditioned media 
from primary CAF (37 ± 2, p=0.00006). (B) Pit formation quantification. The number of 
pits formed due to osteoclasts actively was counted S-NOFH2O2 (18 ± 4, p=0.008), S-
NOFCis (13 ± 3, p=0.0005), S-NOFRep (16 ± 4, p=0.0002). The highest significant 
differentiation of osteoclasts was seen when monocytes were exposed to conditioned 
media from primary CAF 21 ± 6, p=0.0001. Error bar = STDV. *p<0.05 was considered 
significant, following a Student’s t-test. 
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4.10 Senolytic drugs impede tumour progression 
and bone invasion, giving promising therapeutic 
benefits 
We have identified that senescent CAF are present in the microenvironment of 

bone-invasive OSCC. We have also provided evidence, in vitro, that senescent 

fibroblasts and CAF are able to induce osteoclastogenesis, suggesting that CAF 

senescence may play a functional role in bone invasion, and therefore represent 

a potential novel therapeutic target.	

 Alvespimycin and Navitoclax have recently been described as ‘senolytics’ due to 

their ability to selectively promote apoptosis of senescent cells, decreasing their 

pro-tumourgenic burden (Chen et al., 2016; Saini et al., 2018). These two drugs 

were chosen to examine their influence on senescent fibroblast-induced bone 

invasion as they target different pro-apoptotic pathways. 	

4.10.1 The effect of senolytics Alvespimycin (17-DMAG) and 
Navitoclax (ABT263) on NOF viability 
Normal oral fibroblasts were exposed to a range of concentrations of 

Alvespimycin or Navitoclax, to determine the optimum dose to deplete senescent, 

but not proliferating, fibroblasts. NOF and S-NOFH2O2, and S-NOFCis were 

exposed to senolytic drugs Alvespimycin (17-DMAG), and Navitoclax (ABT263) 

of various doses, and the dose with minimal effect on proliferative cells was 

selected 500 nM for Alvespimycin (17-DMAG), and 3 μM Navitoclax (ABT263) 

(Figure 4.16 A and B). 
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A 

 

 

B 

 

Figure 4.16: Effect of senolytics on NOF viability. NOF (803, 804 and 822), S-
NOFH2O2 , and S-NOFCis were subjected to different concentrations of (A) Alvespimycin 
(50 nM, 250 nM, 500 nM and 750 nM), or (B) Navitoclax (1 μM, 2 μM, 3 μM, 4 μM, 5 μM 
and 10 μM) in separate wells of a 24 well plate seeded with 20,000 NOF (803, 804 and 
822). Cell viability was measured at 24 h. Cell viability (%) was plotted against different 
senolytic drug concentrations. Experiment conducted three times in triplicate. Error bar 
= STDV. 
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4.10.2 Senotherapeutics Alvespimycin (17-DMAG) and 
Navitoclax (ABT263) target senescence.   

SA-b-Gal assays were conducted to investigate the effect of senolytic drugs 

Alvespimycin and Navitoclax on senescent fibroblasts (Figure 4.17 and 4.18). A 

significant decrease in senescent cell number was noted. Navitoclax (3 μM) 

reduced senescence by a range of 58-63% (p=0.0005), while Alvespimycin’s 

(500 nM) effect was more potent reducing the senescence by 66-75% 

(p=0.00021) (Figure 4.19). 
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Figure 4.17: Representative photomicrographs showing the effect of senolytics on 
S-NOFH2O2. Oral fibroblasts (NOF803, NOF804and NOF822) exposed to H2O2 (500 μM) 

were seeded into a 12 well plate at a density of 10,000 cells/well. On the following day, 

these cells were exposed to senolytic drugs Alvespimycin (500 nM) or Navitoclax (3 μM). 

After 24 h, cells were rinsed in PBS, fixed, and stained with X-gal staining solution (24 

h). (A) Senescent fibroblasts induced by exposure to H2O2 produced a blue/turquoise 

precipitate. (B) Senescent fibroblasts following exposure to Alevspimycin (500 nM). (C) 

Senescent fibroblasts following exposure to Navitoclax (3 μM).  (magnification x20). The 

experiment was performed three times in triplicate. 
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Figure 4.18: Representative photomicrographs showing the effect of senolytics on 
S-NOFCis. NOF (803, 804 and 822) exposed to cisplatin (10 μM) were seeded into a 12 

well plate at a density of 10,000 cell/well. On the following day, these cells were exposed 

to Alvespimycin (500 nM) or Navitoclax (3 μM). After 24 h, cells were rinsed in PBS, fixed, 

and stained with X-gal staining solution (24 h). (A) Senescent NOF induced by exposure 

to chemotherapeutic cisplatin produced a blue/turquoise precipitate, and a reduction in 

positive cells was seen following treatment with senolytics. (B) Senescent fibroblasts 

following exposure to Alespimycin (500 nM). (C) Senescent fibroblasts following 

exposure to Navitoclax (3 μM).  (magnification x20). The experiment was performed 

three times in triplicate. 
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Figure 4.19: Evaluation of senescence following exposure to senolytics. NOF (803, 
822), S-NOFH2O2, and S-NOFCis were exposed to senolytic drugs. The percentage of SA-
b-Gal positive cells following 24 h treatment with (A) Alvespimycin (50 nM, 250 nM, 500 
nM, and 750 nM). (B) Navitoclax (1 µM, 2 µM, 3 µM, 4 µM, 5 µM, 10 µM) was assessed. 
The graph represents combined results of multiple assays. Experiment conducted three 
times in triplicate. *p<0.05 was considered significant, following a Student’s t-test. Error 
bar = STDV. 
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4.10.3 Senolytic drugs limit bone invasion by reducing 
osteoclast generation 
The influence of Alvespimycin, and Navitoclax on osteoclastogenesis was next 

studied. Murine monocytes (RAW 264.7) were seeded in 24 well Osteo assay 

surface plates, and treated with conditioned media from serum starved 

experimentally induced senescent fibroblasts  S-NOFH2O2, S-NOFCis,  S-NOFH2O2 

and S-NOFCis exposed to Alvespimycin (500 nM) or Navitoclax (3 μM), and 

conditioned media from serum starved CAF. After 7 days, TRAP staining, pit 

formation and nucleation was evaluated. RAW 264.7 cells cultured in NOF 

conditioned media served as the negative control. The number of osteoclasts 

generated were significantly less following Alvespimycin and Navitoclax exposure,  

S-NOFH2O2 (33 ± 4, 7 ± 2 after Alvespimycin exposure, and 12 ± 4 Navitoclax), S-

NOFCis  (24 ± 4, 3 ± 1 Alvespimycin, and 5 ± 3 Navitoclax), CAF (38 ± 3, 13 ± 2 

Alvespimycin, and 21 ± 3 Navitoclax) (mean ± STDV). These results were also 

reflected in the pit forming (S-NOFH2O2 (17 ± 2, 4 ± 1 after Alvespimycin treatment, 

and 7 ± 1 Navitoclax), S-NOFCis  (14 ± 3, 2 ± 1 Alvespimycin, and 5 ± 1 Navitoclax), 

CAF (19.1 ± 3.8, 6.9 ± 1.5 Alvespimycin, and 10 ± 2 Navitoclax), and nucleation 

assays (Table 4.3). Throughout the samples Alvespimycin exposure had a more 

potent effect on osteoclastogenesis and pit formation reduction compared to 

Navitoclax (Figure 4.20 and 4.21).  
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Table 4.3: Quantification of TRAP positive cells and pits formed following 
senolytic drug exposure 

Sample Total no. of TRAP 

positive cells 

(mean ± STDV,  

p value) 

No. of pits per 3 high 

power fields  

(mean ± STDV, p value) 

Negative control 0.0 ± 0.0 0.0 ± 0.0 

NOF  0.0 ± 0.0 0.0 ± 0.0 

S-NOFH2O2 33 ± 4, p=0.001 17 ± 2, p=0.0001 

S-NOFH2O2+ Alvespimycin  7 ± 2, p=0.00006 4 ± 1, p=0.00002 

S-NOFH2O2 + Navitoclax 12 ± 4, p=0.0001 7 ± 1, p=0.001 

S-NOFCis  24 ± 3, p=0.00003 14 ± 3, p=0.0001 

S-NOFCis + Alvespimycin 3 ± 1, p=0.00005 2 ± 1, p=0.00008 

S-NOFCis + Navitoclax 5 ± 3, p=0.001 5 ± 1, p=0.0008 

CAF 38 ± 2, p=0.00002 19.1 ± 3.8, p=0.00002 

CAF + Alvespimycin 13 ± 2, p=0.0005 6.9 ± 1.5, p=0.0007 

CAF + Navitoclax 21 ± 3, p=0.003 10.01 ± 2, p=0.0006 
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Figure 4.20: Osteoclastogenesis assay, the effect of senolytics on osteoclast 
generation. RAW 264.7 monocytes (20,000 cells/well) were seeded in Osteo Assay 

surface 24 well plates. Cell were serum starved in alpha MEM media. Monocytes were 

exposed to the collected media. Media was changed daily for 7 days (A) Negative control; 

cells were grown in serum free alpha MEM media. TRAP staining was negative, pit 

formation was not evident, and DAPI staining showed no multinucleated cells (B) NOF; 

cells were treated with conditioned media collected from serum starved NOF cells. TRAP 

staining was negative, pit formation was not evident, and DAPI staining showed no 

multinucleated cells. (C) S-NOFH2O2; cells were treated with conditioned media collected 

from serum starved NOF treated with H2O2 (500 μM for 2 h). TRAP staining was 

observed was observed in osteoclasts, pit formation was evident, and DAPI staining 

showed multinucleated cells. (D) S-NOFH2O2 treated with Alvespimycin; cells were treated 

with conditioned media collected from serum starved S-NOFH2O2 following exposure to 

Alvespimycin (500 nM for 24 h) and (E) S-NOFH2O2 treated with Navitoclax; S-NOFH2O2 

following exposure to Navitoclax (3 μM for 24 h). A significant reduction of TRAP staining 

osteoclasts, pit formation, and multinucleated cells DAPI staining was observed. (F) S-

NOFCis; cells were treated with conditioned media collected from serum starved NOF 

treated with cisplatin (10 μM for 24 h). TRAP staining was observed positively staining 

osteoclasts, pit formation was evident, and DAPI staining showed multinucleated cells. 

(G) S-NOFCis treated with Alvespimycin; cells were treated with conditioned media 

collected from serum starved S-NOFH2O2 following exposure to Alvespimycin, and (H) S-

NOFCis treated with Navitoclax; S-NOFH2O2 following exposure to Navitoclax. A significant 

reduction of TRAP positive osteoclasts, pit formation, and multinucleated cells with DAPI 

staining were observed. (I) CAF; cells were treated with conditioned media collected from 

primary CAF isolated from OSCC tissue. TRAP staining was observed in osteoclasts, 

the ability for the activated osteoclast to form pits in the bone scaffold was evident, and 

DAPI nucleation showed multi-nucleated cells. (J) CAF treated with Alvespimycin; cells 

were treated with conditioned media collected from serum starved primary CAF following 

exposure to Alvespimycin, and (K) CAF treated with Navitoclax; primary CAF following 

exposure to Navitoclax. The number of TRAP positive osteoclasts, pit formation, and 

multinucleated cell DAPI staining significantly decreased. The experiment was 

performed three times in duplicate. Magnification x40. 
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Figure 4.21: Senolytics reduce osteoclast generation. 15 days after fibroblasts 

(NOF803, NOF804, NOF822) were exposed to H2O2, or cisplatin, senescent fibroblasts 

were treated with Alvespimycin (500 nM) or Navitoclax (3 μM) for 24 h.  RAW 264.7 

monocytes were seeded in a 24 well plate at a density of 20,000 cells/ well. Senescent 

cells before and after exposure with senolytic drugs were serum starved in alpha MEM 

media, and monocytes were treated daily with the conditioned media for 7 days. (A) 

Osteoclast generation quantification. The number of TRAP positive cells was counted. 

The number of osteoclasts generated were significantly less following Alvespimycin and 

Navitoclax exposure,  S-NOFH2O2 (33 ± 4, 7 ± 2 after Alvespimycin exposure, and 12 ± 4 

Navitoclax), S-NOFCis  (24 ± 4, 3 ± 1 Alvespimycin, and 5 ± 3 Navitoclax), CAF (38 ± 3, 

13 ± 2 Alvespimycin, and 21 ± 3 Navitoclax) (mean ± STDV). (B) Pit formation 

quantification. These results were also reflected in the pit forming (S-NOFH2O2 (17 ± 2, 4 

± 1 after Alvespimycin treatment, and 7 ± 1 Navitoclax), S-NOFCis  (14 ± 3, 2 ± 1 

Alvespimycin, and 5 ± 1 Navitoclax), CAF (19.1 ± 3.8, 6.9 ± 1.5 Alvespimycin, and 10 ± 

2 Navitoclax), The experiment was performed three times in duplicate. Error bar = STDV. 

**p<0.01was considered significant, following a Student’s t-test. 
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4.11 Discussion  
The TME plays a critical role in cancer progression and invasion. A considerable 

amount of research has focused on αSMA-expressing myofibroblastic CAF in the 

TME. However, recent reports have provided evidence that CAF represent a 

heterogeneous population, and one sub-population of CAF, which are senescent 

fibroblasts have been described. Senescent fibroblasts are evident in 

premalignant lesions (Costea et al., 2013; Procopio et al., 2015) as well as OSCC 

stroma (Hassona et al., 2013). Campisi et al. (2007), reported that the 

characteristic features of senescent cells including elevated levels of cytokines 

and growth factors which have a pro tumourgenic effect in cancers.  

In oral cancer, senescent cells have been described to be evident through the 

elevated expression of p16INK4a (Parkinson, 2010; Hassona et al., 2013; Kabir 

et al., 2016; Mellone et al., 2017). However, in the current study, cell surface 

protein DPP4 (CD26), reported by Kim et al. (2017), which is specifically 

expressed in senescent cells was investigated for the first time in OSCC to further 

support the expression of the well-recognised senescent marker p16INK4a. 

Tissue from OSCC bone resections was examined for the presence of senescent 

cells in tumour stroma. Senescent markers p16INK4a and DPP4 were analysed 

and the percentage of positive stromal cells at the tumour bone interface ranged 

from 21% to 73%. These findings identify that senescence is evident in OSCC 

cells and surrounding stroma, suggesting an active role in bone invasion. 

To study senescence in vitro, normal oral fibroblasts at a low passage were 

exposed to DNA damaging agents H2O2, cisplatin or replicative exhaustion to 

induce senescence. Following five days of H2O2 or cisplatin treatment, and 

replicative mitotic exhaustion (passage 25) the majority of the fibroblasts were 
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positive for SA-β-Gal, further confirming senescence transformation of resting 

oral fibroblasts. These results are in agreement with previous studies (Kabir et 

al., 2016). 

Senescent fibroblasts were investigated on a transcript level for senescence 

marker p16INK4a, and SASP factor IL6, and a significant amplification was noted 

when compared to NOF. Bone turnover markers RANKL and antagonist or decoy 

receptor OPG were further examined and a significant up-regulation in RANKL 

was observed, while OPG mRNA expression was down-regulated consistently, 

compared to control NOF. Conditioned media collected at different time intervals 

was also subjected to an ELISA to investigate whether senescent fibroblasts 

secreted RANKL protein. Senescent fibroblasts produced significantly more 

soluble RANKL protein in comparison to untreated NOF. These findings are in 

further agreement that RANKL expression is activated in senescence and may 

be considered a novel SASP factor (Kim et al., 2017) 

To further evaluate these findings, exposure of RAW 264.7 monocytes to 

conditioned media from senescent fibroblasts resulted in osteoclast generation. 

These findings suggest that the TME in OSCC comprises CAF as well as 

senescent fibroblasts and both could potentially contribute to OSCC-mediated 

bone destruction. 

Following confirmation that senescent fibroblasts play a key role in the initiation 

of osteoclastogenesis, senolytics were investigated to assess whether a 

reduction in senescence can reduce the paracrine effects promoting 

osteoclastogenesis. Fuhrmann-Stroissnigg et al. 2017 first introduced 

Alvespimycin as a novel senolytic agent able to promote apoptosis in senescent 
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fibroblasts. In addition, in recent studies, Navitoclax has been reported to promote 

apoptosis in senescent cells as human lung fibroblasts, human umbilical vein 

epithelial cells, and mouse embryonic fibroblasts (Zhu et al., 2015). Moreover, 

navitoclax decreased senescence fibroblast burden in the liver leading to a 

reduction in fibrosis (Moncsek et al., 2018). Furthermore, Chen et al. (2016), 

demonstrated the pro apoptotic functionality of Navitoclax in targeting CAF in 

hepatocellular carcinoma, however senescence was never examined. 

The current study is the first to specifically target senescent CAF with senolytics. 

Drugs were optimised, and dose selected targeting senescent fibroblasts but 

having minimal effect on proliferative cells, 500 nM for Alvespimycin (17-DMAG), 

and 3 µM Navitoclax (ABT263). Significant reduction in osteoclast generation was 

recorded following exposure to both senolytics. These results suggest a potential 

clinical application for senolytic drugs as an adjunct therapy in the treatment of 

bone invasive oral cancer, reducing the pro-tumourigenic burden of senescence 

cells.  
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5.1 Introduction 
EV have been gaining interest as a novel mode of cellular communication in 

biomedical research. Increasing evidence shows that cancer-derived EV play 

important roles in tumour progression (Kahlert and Kalluri, 2013). EV transport 

nucleic acids and proteins to recipient cells, influencing tumour growth, 

advancement, metastasis and therapeutic resistance (Vader et al., 2014; 

Minciacchi et al., 2015; Becker et al., 2016). EV derived from malignant cells are 

capable of inducing dysplastic transformation in normal cells. Abd Elmageed et 

al. (2014), found that adipose-derived stem cells became malignant when 

exposed to EV isolated from prostate cancer. Similar results have also been 

reported in breast cancer, where miRNA containing EV silenced mRNA in non-

neoplastic cells, resulting in transcriptome reprogramming and malignant 

transformation (Melo et al., 2014). 

Cancer derived EV have a significant impact on the TME by encouraging tumour 

angiogenesis, immune cell infiltration, and activation of resting fibroblasts to CAF, 

facilitating tumour progression. Webber et al. (2010), reported that prostate 

cancer EV expressed TGFβ, and actively triggered myofibroblastic differentiation 

of normal fibroblasts in tumour microenvironment promoting tumour growth. 

These results are in further agreement where cancer EV stimulated the 

differentiation of mesenchymal cells to CAF in gastric (Gu et al., 2012) and breast 

cancer (Cho et al., 2012). 

In bone, EV have also been reported to regulate osteoclast-osteoblast 

communication, where EV derived from osteoblasts were described to promote 

osteoclastogenesis (Deng et al., 2015). Moreover, Huynh et al. (2016) observed 

that osteoclasts expressed EV inhibited osteoclast generation.  As one of the 
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main objectives of this study, we sought to investigate the role of EV and CAF in 

OSCC microenvironment and examine their influence on bone invasion. 

 

5.1.1 Aims 
To examine OSCC and different subsets of CAF derived EV and assess whether 

these EV influence bone invasion in oral cancer. 

 

5.1.2 Experimental approach 
1. EV were isolated from NOF, OSCC, CAF and senescent fibroblasts by 

graded centrifugation and size exclusion chromatography, quantified using 

nano particle tracking.  

2. Assessment of enrichment of the EV markers CD9, CD63 and CD81 was 

used to confirm EV isolation.  

3. Soluble RANKL protein was also examined in EV isolated from OSCC, 

NOF, CAF, and senescent fibroblasts with an ELISA. 

4. An osteoclastogenesis assay was performed by culturing murine 

monocytes (RAW 264.7) with OSCC, NOF, CAF, and senescent 

fibroblasts conditioned media as well as EV isolated from these samples. 

TRAP staining, pit formation and nucleation assays was conducted to 

confirm osteoclastic differentiation. 

5. The ability of OPG, a RANKL decoy receptor, to influence the functions of 

EV was assessed through an osteoclastogenesis assay, following 

exposing monocytes to conditioned media or EV treated with OPG.  
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5.2 EV isolation from OSCC, NOF, CAF, 
myofibroblasts and senescent oral fibroblasts 
 

5.2.1 Collection of EV from oral cancer and stromal cells 
Cells were grown in culture media (DMEM) in tissue culture treated surface flasks. 

Once 70-80% confluence was reached, cells were rinsed twice with PBS, and 

serum starved in DMEM for 72 h. Conditioned media was collected ready for EV 

isolation by graded centrifugation and SEC. A cell count of 18 million cells was 

sufficient for optimal EV isolation and downstream analyses. 

5.2.2 Quantification and size distribution of EV 
A ZetaView (ZetaView Basic NTA- Nanoparticle Tracking Video Microscope 

PMX-120, Particle Matrix) was used to analyse the concentration and size of EV. 

Following EV isolation, a small quantity (3 ml) of the isolate was used for 

nanoparticle tracking analysis.  

EV from NOF, myofibroblasts (NOF exposed to TGFβ1), CAF, S-NOFH2O2 and S-

NOFCis, and H357 were loaded into the ZetaView. The samples were scanned at 

11 positions (in triplicate), and particles were tracked by Brownian motion to 

obtain an average measurement. The number of EV produced per cell was 

calculated by multiplying the dilution factor of the sample used with the particle 

concentration and divided by the total number of cells at the time of conditioned 

media collection (Figure 5.1 and 5.2). 

The average number of particles (mean ± STDV) and majority of the particle size 

range were observed as follows, NOF (84.12 ± 7.53, and 105 to 165 nm), 

myofibroblasts (NOF + TGFβ1) (127.15 ± 2.2, and 105 to 225 nm). CAF (142.51 

± 6.26, and 75 to 195 nm), S-NOFH2O2 (182.58 ± 5.39, and 105 to 225 nm), S-
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NOFCis (166.34 ± 3.33, and 75 to 165 nm), and H357 (280.5 ± 2.7, and 75 to 255 

nm). The data showed significant differences (p<0.0001) in average particle 

number between samples following a one-way ANOVA statistical test. 
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Figure 5.1:  EV size distribution analysis by nanoparticle tracking using ZetaView 
instrument. Cells were serum starved (72 h), following EV isolation by SEC, EV were 
tracked by Brownian motion to obtain and average measurement. (A) Representative 
distribution of EV size distribution profile in NOF (803, 804, and 822). (B) Representative 
distribution of EV size in myofibroblasts, NOF (803, 804, and 822) treated with TGFβ1 
(5 ng/ml). (C) Representative distribution of EV size in CAF (002, 003, and 004). (D) 
Representative distribution of EV size in senescent oral fibroblasts (NOF803, 804, and 
822) induced by exposure to H2O2 (500 µM). (E) Representative distribution of EV size 
in senescent oral fibroblasts (NOF803, 804, and 822) induced by exposure to cisplatin 
(10 µM). (F) Size distribution of EV in OSCC cell line H357. p value of 0.0001 following 
a one-way ANOVA statistical test. All samples were run in triplicate (3 biological and 
experimental repeats). Histograms plotted using GraphPad Prism 8 software. 



Chapter 5 Extracellular vesicles: communicators in OSCC microenvironment 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 168 

 

 
Figure 5.2: Average number of EV produced by different cell types.  The ZetaView 

instrument was utilised to calculate the mean number of EV produced, NOF (84.12 ± 

7.53), myofibroblasts NOF exposed to TGFβ1 (5 ng/ml) (127.15 ± 2.2), CAF isolated 

from human tissue (142.51 ± 6.26), senescent oral fibroblasts NOF exposed to H2O2 

(500 µM) (182.58 ± 5.39), senescent oral fibroblasts NOF treated with cisplatin (10 µM) 

(166.34 ± 3.33), and OSCC cell line H357 (280.5 ± 2.7). Values are expressed as (mean 

± SD). Error bar = STDV. Experiment was conducted in triplicate. *p<0.05 was 

considered significant, following a Student’s t-test. **p value of 0.0013 following a one-

way ANOVA statistical test. 

 

5.3 Characterisation of EV expressed by oral 
cancer cells and NOF  
 
Following EV isolation and particle profile analysis conducted through ZetaView 

nanoparticle tracking, further investigation was required to confirm the 

enrichment of EV, and exclude the presence of non-EV lipoproteins, salt 

aggregates, or other contaminants as isolation/profile analyses only detect 

nanoparticles but do not provide definitive evidence that these particles are EV.  

An ExoView R100 was utilised using affinity-based technology to characterise EV 
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isolated from OSCC cell line H357, and primary NOF from conditioned media of 

serum starved cells (72 h), through graded centrifugation and SEC. EV samples 

were probed with widely reported EV markers tetraspanins CD9, CD63, and CD8 

(Théry et al., 2018). Murine IgG acted as a negative control.  

As previously described (section 2.11.5) samples were diluted in ExoView 

Incubation Solution. 35ul of sample was incubated on ExoView Tetraspanin 

Chips (placed in a 24 well plate for 16h RT) to allow EV marker-specific binding. 

Following incubation, fluorophore secondary antibody labelling with anti-CD81 

Alexa-555, anti-CD63 Alexa-647 and anti-CD9 Alexa-488 was further applied, 

specifically binding to tetraspanins expressed on EV membrane. Both H357 and 

NOF samples were positive for tetraspanin markers CD9, CD63, and CD8, and 

expression of multiple markers was also observed (Figure 5.3 and 5.4). 

Furthermore, in addition to characterisation, EV size distribution profiling was also 

conducted. In both NOF and H357 cells, the largest group of EV was between 

45-70 nm, with slight discrepancy between tetraspanin expression. The average 

size of NOF derived EV in accordance with tetraspanin marker expression was 

as follows CD9 (63.4 nm) (Figure 5.3 A), CD63 (67.7 nm) (Figure 5.3 B), and 

CD81 (63.1 nm) (Figure 5.3 C) , while H357 EV profile was CD9 (65.6 nm) (Figure 

5.4 A), CD63 (65.1 nm) (Figure 5.4 B), and CD81 (65.9 nm) (Figure 5.4 C). The 

particle count however was distinctly different. H357 cells (Figure 5.4 E) produced 

10 times more EV in comparison with NOF derived EV (Figure 5.4 E). These 

results are in agreement with the data generated following EV quantification using 

the ZetaView nanoparticle tracking instrument (section 5.2.2). 
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Figure 5.3. Characterisation of EV derived from primary NOF. Exoview R100 was 
utilised for affinity-based technology for EV characterisation. EV tetraspanin markers (A) 
CD63 (red), (B) CD81 (blue), and (C) CD9 (green) were selected, and antibodies against 
the specific tetraspanin antigen were labelled with fluorophores to detect the presence 
of EV. EV expression of more than one marker exhibited a mixed colour of fluorophore 
probes. SEC isolated NOF samples were diluted (1:600). (D) Murine IgG negative control. 
(E) EV population size distribution showed an amplified expression in EV with a size 
range of 45 to 70 nm, with a specific EV profile of CD9 (63.4 nm), CD63 (67.7 nm), and 
CD81 (63.1 nm). 
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Figure 5.4. Characterisation of EV derived from OSCC cell line H357. Exoview R100 
was utilised for affinity-based technology for EV characterisation. EV tetraspanin 
markers (A) CD63 (red), (B) CD81(blue), and (C) CD9 (green) were selected, and 
antibodies against the specific tetraspanin antigen were labelled with fluorophores to 
detect the presence of EV. EV expression of more than one marker exhibited a mixed 
colour of fluorophore probes. SEC isolated H357 samples were diluted (1:600). (D) 
Murine IgG negative contro. (E) EV population size distribution showed an amplified 
expression in EV with a size range of 45 to 70 nm, with a specific EV profile of CD9 (65.6 
nm), CD63 (65.1 nm), and CD81 (65.9 nm). 
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5.4 EV isolated from OSCC, CAF and senescent 
fibroblasts express bone resorption marker 
RANKL 

EV can carry different cargo as growth factors. RANKL has been reported to be 

carried in osteoblast derived EV playing a functional role in osteoclast formation 

(Deng et al., 2015). After identifying that RANKL expression is significantly 

increased in H357, myofibroblasts, CAF (section 3.6 and 3.7), and S-NOF 

(section 4.8) and had the ability to promote osteoclastogenesis , the presence of 

RANKL in  EV derived from H357, OSCC-derived CAF , NOF, myofibroblasts 

(NOF treated with 5 ng/ml TGFβ1), and  S-NOFH2O2 and S-NOFCis  was 

investigated. Cells were serum starved (72 h), conditioned media was collected 

and EV isolated by SEC were subjected to ELISA for RANKL. Secreted RANKL 

protein was significantly increased in conditioned media collected from H357, 

CAF and senescent oral fibroblasts compared to NOF. Concentration (ρg/ml) of 

soluble RANKL protein was recorded as follows (mean rg/ml ± SD, p value) , 

NOF (102.01 ± 9.04, p=0.012), myofibroblasts (NOF + TGFβ1) (155.6 ± 8.3, 

p=0.0008), senescent EV S-NOFH2O2 (198.76 ± 7.16, p=0.0004), senescent EV 

S-NOFCis (177.37 ± 7.83, p=0.013), CAF EV (183.85 ± 9.11, p=0.011), and  H357 

EV (267.48 ± 2.60, p=0.00077). (Figure 5.5). 
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Figure 5.5: Soluble RANKL protein expression in EV isolated from OSCC, CAF, 
myofibroblasts and senescent oral fibroblast. OSCC cell line H357, primary CAF 

isolated from human tissue (CAF 002, 003, and 004), senescent oral fibroblasts 

senescent oral fibroblasts induced by exposure of NOF (803, 804 and 822) to H2O2 (500 

μM) or cisplatin (10 µM) following 15 days of senescence induction, myofibroblasts (NOF 

803, 804, and 822 treated with 5 ng/ml TGFβ1), and primary normal oral fibroblasts (NOF 

803, 804, and 822) were propagated in T175 flasks (3 flasks) until 80% confluence (8 

million cells/flask). Cells were then serum starved (72 h), conditioned media was 

collected and EV isolated by SEC. EV resuspended in PBS were subjected to an ELISA. 

Error bar=STDV. *p<0.05 was considered significant, following a Student’s t-test. The 

graph represents combined results of multiple assays. Experiment was conducted in 

triplicate. 
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5.5 EV isolated from OSCC, CAF and senescent 
fibroblasts EV are instrumental in promoting bone 
invasion in OSCC 
 
After demonstrating that EV isolated from H357, CAF, and S-NOFH2O2 or S-

NOFCis express RANKL in vitro, an experiment was conducted to investigate 

whether this expression was sufficient to initiate osteoclastogenesis.  

As previously mentioned (section 2.9) monocytes (RAW 264.7, which express 

MCSF-1) were seeded in Corning Osseo plates, serum starved, then treated with 

EV isolated from conditioned media collected from serum starved (72 h) cells (20 

million cells), H357, NOF, experimentally induced myofibroblasts (NOF treated 

with TGFβ1, primary CAF, and senescent oral fibroblasts in separate wells. EV 

isolated from 18 million cells were resuspended in alpha MEM media, and media 

was changed daily. After 7 days, TRAP staining, pit formation assay, and 

nucleation, was examined as described (section 2.9) (Figure 5.6). 

Osteoclast generation (Figure 5.7 A) and pit formation (Figure 5.7 B) was evident 

following exposure of monocytes to EV derived from NOF +TGFβ1 (25 ± 1.54, 

p=0.0003 and 18 ± 2.9, p=0.0004, respectively),  S-NOFH2O2 (30 ± 2.35, p=0.0005 

and 20 ± 3.77, p=0.0003) , S-NOFCis (25 ± 3.01, p=0.00007 and 15 ± 2.40, 

p=0.0009), CAF (34 ± 1.06, p=0.0001 and 20 ± 1.73, p=0.00008), and H357 (36 

± 2.77, p=0.00004 and 22  ± 3.03, p=0.00002) compared to NOF (Table 5.1). 
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Table 5.1: Number of TRAP positive cells and pits formed following EV exposure 

Sample Total no. of TRAP 

positive cells  

(mean ± STDV, p value) 

No. of pits per 3 high 

power fields  

(mean ± STDV, p value) 

 EV NOF 0.0 ± 0.0 0.0 ± 0.0 

EV NOF + TGFβ1 25 ± 1.54, p=0.0003 18 ± 2.9, p=0.0004 

EV S-NOFH2O2 30 ± 2.35, p=0.0005 20 ± 3.77, p=0.0003 

EV S-NOFCis 25 ± 3.01, p=0.00007 15 ± 2.40, p=0.0009 

EV CAF 34 ± 1.06, p=0.0001 20 ± 1.73, p=0.00008 

EV H357 36 ± 2.77, p=0.00004 22 ± 3.03, p=0.00002 

CAF 41.83 ± 2.7, p=0.0001 36.2 ± 2.7, p=0.00001 
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Figure 5.6: Osteoclastogenesis assay with EV isolated from conditioned media. 
Monocytes (RAW 264.7) were seeded in Osteo Assay surface 24 well plates at a density 

of 20,000 per well. RAW 264.7 cells were exposed to EV isolated (graded centrifugation 

and SEC) from conditioned media collected from serum starved (72 h) cells (18, 000,000 

cells) in alpha MEM media. (A) NOF (803, 822) EV; TRAP staining negative, no pit 

formation or multinucleation observed. (B) NOF + TGFβ1 (803, 822) EV (C) S-NOFH2O2 

(803, 822) EV (D) S-NOFCis (803, 822) EV; (E) CAF (003, 004) EV (F) H357 EV TRAP 

positive osteoclasts, pit formation and multinucleated cells observed. (G) CAF (003, 004) 

conditioned media; media was collected from serum starved CAF and monocytes were 

exposed to this media. This sample served as a positive control. Osteoclasts stained 

positive for TRAP, pit formation and multinucleated cells were evident. Error bar=STDV. 

*p<0.05 was considered significant. The graph represents combined results of multiple 

assays. Experiment was conducted in triplicate. Magnification x40. 
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A  

 

B  

 
Figure 5.7: EV produced by OSCC, CAF, and senescent oral fibroblasts induce 
osteoclastogenesis. RAW 264.7 monocytes were seeded in a 24 well plate at a density 
of 20,000 cells/ well. OSCC cell line H357, CAF (003, and 004), senescent oral 
fibroblasts (NOF 803, and 822 exposed to H2O2 (500 μM) or treated with cisplatin (10 
μM) were serum starved in alpha MEM media. EV were isolated by SEC, and monocytes 
were treated daily with EV isolated from conditioned media for 7 days. (A) The number 
of TRAP positive cells was counted. EV derived from NOF +TGFβ1 (25 ± 1.54), S-
NOFH2O2 (30 ± 2.35), S-NOFCis (25 ± 3.01), CAF (34 ± 1.06), and H357 (36 ± 2.77) (B) 
Pit formation quantification. The number of pits formed by EV derived from NOF +TGFβ1 
(18 ± 2.9), S-NOFH2O2 (20 ± 3.77) , S-NOFCis (15 ± 2.40), CAF (20 ± 1.73), and H357 (22  
± 3.03). Error bar=STDV. *p<0.05 was considered significant, following a Student’s t-test. 
The graph represents combined results of multiple assays. Experiment was conducted 
in triplicate. 
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5.6 OPG antagonises RANKL production by EV 
isolated from OSCC, CAF and senescent 
fibroblasts and impedes bone invasion in OSCC  
The major factors responsible for bone homeostasis are RANK, RANKL and its 

antagonist OPG. The RANK/RANKL signalling cascade facilitates differentiation 

of bone lining cells, osteocytes and osteoblasts to osteoclasts, along with M-CSF 

while OPG suppresses these signals. Alterations in functional equilibrium of 

these cytokines will either result in osteogenesis, favoured by elevated OPG 

expression or osteolysis, promoted by elevated RANKL levels. 	

OPG acts as a signal for bone deposition, and limitation of bone resorption. This 

experiment was conducted to study the importance of RANKL in bone invasive 

OSCC and evaluate if blocking RANKL with its decoy receptor OPG, affects 

osteoclast generation.	

5.6.1 Optimisation of RANKL antagonist OPG 
Following OPG preparation (section 2.12.1) an osteoclastogenesis assay was 

conducted as described before (section 2.9). However, unlike the 

osteoclastogenesis assay previously described, NOF, H357, CAF and S-NOF 

were treated with OPG at graded concentrations (1 ng/ml, 10 ng/ml, 50 ng/ml, 

100 ng/ml and 200 ng/ml) in serum free media. Following 24 h for OPG treatment, 

monocytes were exposed to the conditioned media and EV collected from the 

treated cells, and the optimal dose needed for maximum hindering of osteoclast 

generation was analysed. Conditioned media from serum starved cells (H357, 

CAF, senescent fibroblasts) served as the positive control, while monocytes in 

alpha MEM media acted as the negative control. An osteoclastogenesis assay 

was conducted, and the optimal dose of OPG with the highest reduction in 
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monocyte differentiation to osteoclast was analysed. A significant reduction 

(mean ± STDV) in osteoclast numbers was observed following exposure OPG 

(100ng/ml) exposure. S-NOFH2O2 (24.6 ± 2.5, and 3 ± 1.4, p=0.003), CAF (33.92 

± 4.21, and 5 ± 2.2, p=0.00082), H357 (41.77 ± 3.44, and 6 ± 2.55, p=0.00003) 

(Figure 5.8). 

 

 

Figure 5.8: Optimisation of cell treatments with recombinant human OPG. NOF, 
CAF, H357, and senescent oral fibroblasts were serum starved for 24 h and subjected 
to different concentrations of recombinant human OPG (1ng/ml, 10 ng/ml, 50 ng/ml, 100 
ng/ml, and 200ng/ml), prior to exposure to monocytes RAW 264.7, with a daily media 
change for 7 days. The relative reduction of osteoclast generated following OPG 
treatment was plotted against dose. Monocytes in serum free alpha MEM media served 
as the negative control. Experiment was conducted three times in duplicate. 
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5.6.2 OPG significantly reduces osteoclast generation 

To confirm the significance of RANKL in OSCC bone invasion, an 

osteoclastogenesis assay was conducted (section 2.9), monocytes were 

exposed to conditioned media and EV collected from serum starved NOF, 

experimentally induced myofibroblasts (NOF exposed to TGFβ1), CAF (isolated 

from human OSCC tissue), and S-NOFH2O2 treated with OPG (100 ng/ml) (Figure 

5.9). The number of TRAP positive cells generated (Figure 5.10 A) and pits 

formed (Figure 5.10 B) following OPG exposure to conditioned media and EV 

samples were quantified, and these results were compared to conditioned media 

not supplemented with OPG, and negative controls (RAW 264.7 in serum free 

alpha MEM media). A significant reduction in osteoclasts was observed (Table 

5.2). 
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Table 5.2: Number of TRAP positive cells and pits formed following OPG 
exposure 

Sample Total no. of TRAP 

positive cells  

(mean ± STDV, p value) 

No. of pits per 3 high 

power fields  

(mean ± STDV, p value) 

Negative control 0.0 ± 0.0 0.0 ± 0.0 

NOF  0.0 ± 0.0 0.0 ± 0.0 

NOF + TGFβ1 27.2 ± 3.6, p=0.001 15.3 ± 2.25, p=0.001 

NOF + TGFβ1 + OPG 5.05 ± 2.1, p=0.00038 4.7 ± 1.5, p=0.04 

EV (NOF + TGFβ1) + OPG 1 ± 1.2, p=0.008 2 ± 1.5, p=0.02 

S-NOFH2O2 24.7 ± 3.4, p=0.0007 30.1 ± 5.4, p=0.00003 

S-NOFH2O2 + OPG 11.83 ± 2.7, p=0.0009 6.8 ± 2.7, p=0.002 

EV (S-NOFH2O2 + OPG) 3.05 ± 1.8, p=0.0079 2.2 ± 1.3, p=0.04 

H357 36.7 ± 4.2, p=0.00004 33.1 ± 4.6, p=0.0002 

H357 + OPG 15.01 ± 3.82, p=0.0005 17.02 ± 2.88, p=0.0031 

EV (H357) + OPG 7.0 ± 2.8, p=0.006 5.1 ± 3.8, p=0.019 

CAF 37.03 ± 3.85, p=0.00003 32.95 ± 7.35, p=0.00007 

CAF + OPG 13.04 ± 1.28, p=0.0002 16.01 ± 2.28, p=0.018 

EV (CAF) + OPG 5.01 ± 3.39, p=0.008 2.03 ± 1.7, p=0.05 
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Figure 5.9: Osteoclastogenesis assay with OPG treatment. Monocytes (RAW 264.7) 

were seeded in Osteo Assay surface 24 well plates at a density of 20,000 per well. RAW 

264.7 cells were exposed to conditioned media or EV isolated (graded centrifugation and 

SEC) from conditioned media collected from serum starved (72 h) cells (18, 000,000 

cells) in alpha MEM media. Samples were then treated with OPG (100 ng/ml) prior to 

being exposed to monocytes. Media was changed daily for 7 days. (A) Negative control; 

RAW 264.7 exposed to serum free alpha MEM media. TRAP staining negative, no pit 

formations or DAPI multinucleation. In samples (B) NOF, (C) NOF conditioned media 

treated with OPG, and (D) NOF EV treated with OPG, TRAP staining, pit formation and 

multinucleation was not evident. (E) Experimentally induced CAF/myofibroblasts (NOF 

treated with 5 ng/ml TGFβ1) conditioned media. TRAP staining was seen in osteoclasts, 

pit formation was evident, and DAPI staining showed multinucleated cells. (F) 

Experimentally induced myofibroblasts conditioned media and (G) EV treated with OPG. 

TRAP positive cells, pit formation and multinucleated cells reduced in number. (H) S-

NOFH2O2, NOF803 conditioned media exposed to H2O2 (500μM) initiated osteoclast 

generation, pit formation and multinucleation. (I) S-NOFH2O2 media treated with OPG. 

RAW 264.7 cells were exposed to OPG (100 ng/ml) treated conditioned media collected 

from serum starved S-NOFH2O2, reduction of osteoclast generation, pit formation and 

multinucleated cells. (J) S-NOFH2O2 EV treated with OPG. TRAP staining was negative, 

pit formation was absent, and DAPI staining showed no multinucleated cells. (K) H357 

conditioned media, TRAP staining was observed positively staining osteoclasts, pit 

formation was evident, and DAPI staining showed multinucleated cells. (L) H357 

conditioned media and (M) EV treated with OPG. A reduction in TRAP staining, pit 

formation was evident, as well as DAPI stained multinucleated cells. (N) CAF conditioned 

media. TRAP staining was observed in osteoclasts, pit formation was evident, and DAPI 

staining showed multinucleated cells. (O) CAF conditioned media and (P) EV treated 

with OPG. TRAP positive cells, pit formation and multinucleated cells were evident but 

less in number. (Q) OPG diluted in alpha MEM media. Monocytes were exposed to OPG 

(100 ng/ml) in alpha MEM media. TRAP staining was negative, pit formation was absent, 

and DAPI staining showed no multinucleated cells. The experiment was performed three 

times in duplicate. Magnification x40. 
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Figure 5.10: OPG significantly reduced osteoclast generation caused by H357, 
CAF, and senescent oral fibroblasts and derived EV. RAW 264.7 monocytes were 

seeded in a 24 well plate at a density of 20,000 cells/ well. Normal oral fibroblasts 

(NOF803), myofibroblast (NOF exposed to TGFβ1, 5 ng/ml), OSCC cell line H357, CAF 

(003), senescent oral fibroblasts (NOF 803 exposed to H2O2 500 μM) or treated with 

cisplatin (10 μM) were serum starved in alpha MEM media. EV were isolated by SEC, 

and monocytes were treated daily with conditioned media or EV isolated from 

conditioned media. A media change was conducted daily, OPG (100 ng/ml) was added 

to the conditioned media/EV for 7 days. Monocytes exposed to CAF conditioned media 

served as a positive control, while monocytes treated with OPG diluted in alpha MEM 

media was a negative (A) The number of TRAP positive cells was counted. A reduction 

in osteoclastogenesis was significantly noticed throughout the samples. NOF + TGFβ1 

(27.2 ± 3.6), NOF + TGFβ1 + OPG (5.05 ± 2.1), EV (NOF + TGFβ1) + OPG (1 ± 1.2), S-

NOFH2O2 (24.7 ± 3.4), S-NOFH2O2 + OPG (11.83 ± 2.7), EV (S-NOFH2O2 + OPG) (3.05 ± 

1.8), H357 (36.7 ± 4.2), H357 + OPG (15.01 ± 3.82), EV (EV (H357) + OPG) (7.0 ± 2.8), 

CAF (37.03 ± 3.85), CAF + OPG (13.04 ± 1.28), and EV (CAF) + OPG (5.01 ± 3.39).  (B) 

Pit formation quantification. The number of pits formed due to osteoclasts was counted. 

NOF + TGFβ1 (15.3 ± 2.25), NOF + TGFβ1 + OPG (4.7 ± 1.5), EV (NOF + TGFβ1) + 

OPG (2 ± 1.5), S-NOFH2O2 (30.1 ± 5.4), S-NOFH2O2 + OPG (6.8 ± 2.7), EV (S-NOFH2O2 + 

OPG) (2.2 ± 1.3), H357 (33.1 ± 4.6), H357 + OPG (17.02 ± 2.88), EV (EV (H357) + OPG) 

(5.1 ± 3.8), CAF (32.95 ± 7.35), CAF + OPG (16.01 ± 2.28), and EV (CAF) + OPG (2.03 

± 1.7). Error bar=STDV.  *p<0.05 was considered significant, following a Student’s t-test. 

The experiment was performed three times in triplicate. 
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5.7 Discussion. 
In the previous chapters CAF were observed to play a significant role in bone 

remodelling and OSCC bone invasion. To further investigate the role of EV as 

communicators in TME, in this chapter, cancer and CAF derived EV were isolated 

from conditioned media, characterised and examined to determine whether they 

play a role in bone invasion in oral cancer.  

Cancer derived EV have a significant impact on the TME by encouraging tumour 

angiogenesis, immune cell infiltration, and activation of resting fibroblasts to CAF, 

mediating tumour progression. Webber et al. (2010), reported that prostate 

cancer carried TGFβ on the EV surface and actively triggered myofibroblastic 

differentiation of normal fibroblasts in the TME, which promoted tumour growth. 

These results are in agreement with findings subsequently reported in gastric (Gu 

et al., 2012), and breast cancer (Cho et al., 2012). Stromal derived EV have also 

been suggested to promote invasion and metastasis in breast cancer (Luga et 

al., 2012). Hence, EV communication between cancer and surrounding stromal 

fibroblasts may add another dimension to the complexity of TME and contribute 

to tumour progression.  This chapter showed for the first time OSCC 

communication with the surrounding fibroblastic stroma, and the communication 

between non-malignant cell of the TME. In particular, the role of EV released by 

OSCC, CAF, myofibroblasts, and senescent oral fibroblasts in bone remodelling.  

In this study, EV were isolated from OSCC cell line H357, CAF, NOF, 

myofibroblasts (NOF exposed to TGFβ1), and senescent oral fibroblasts (induced 

by H2O2 or cisplatin exposure). Size profiling, and quantification was performed 

by ZetaView nanoparticle tracking analysis. It is important to highlight that 

although nanoparticle analysis is commonly used for EV profiling, this technique 
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has its limitations. The ZetaView lacks specificity in detecting the purity of the 

sample to be examined, as it records any particles that can be tracked (Bachurski 

et al., 2019).  

To further confirm EV isolation, ExoView analysis which employs affinity-based 

system on a multiplex microarray chip was conducted to further supplement the 

data generated by NanoView nanoparticle tracking. In ExoView, tetraspanin 

CD81, CD63, and CD9 are immuno captured on the chip and observed for each 

single EV, and the co-expression of a maximum three EV surface proteins can 

be assessed. Furthermore, EV of a size as small at 50 nM can accurately be 

detected (Bachurski et al., 2019). Our samples demonstrated an EV size 

population ranging between 45-70 nm. Tetraspanin marker CD9, CD63, and 

CD81 were significantly expressed throughout the samples.  

The international Society of Extracellular Vesicles has recommended the 

assessment of EV markers by western blot in EV research (Lötvall et al., 2014). 

However, in this study several attempts were made but unfortunately due to the 

low yield of EV quantities and isolated protein, immunoblotting was unsuccessful.  

To evaluate the role of EV in bone invasion, the presence or absence of bone 

resorptive soluble RANKL protein in EV was analysed. EV isolated from 

conditioned media were subjected to ELISA. RANKL protein expression was 

significantly increased in EV isolated from H357, CAF and senescent oral 

fibroblasts compared to NOF. To further evaluate these findings and assess the 

functionality of RANKL, a functional osteoclastogenesis assay was conducted. 

RAW 264.7 monocytes were exposed to EV isolates extracted from H357, 

primary CAF isolated from human OSCC tissue, experimentally induced CAF 
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(NOF exposed to TGFβ1), S-NOFH2O2. Osteoclast generation was significantly 

amplified when compared primary human NOF. 

Following confirmation that H357, CAF, myofibroblasts, and senescent oral 

fibroblasts, and derived EV carry RANKL, and play a key role in the initiation of 

osteoclastogenesis, the ability of recombinant human OPG to block the observed 

effects was assessed. It has previously been reported that OPG inhibits 

osteoclast differentiation from murine haematopoietic precursors in vitro (Simonet 

et al., 1996; Lacey et al., 1998). Significant reduction in osteoclast generation 

was observed following exposure of OPG to both conditioned media and EV, 

suggesting that bone invasion in OSCC is mainly manipulated through a RANKL 

dependent pathway.  

In conclusion, these results show for the first time that cancer and CAF derived 

EV carry RANKL, and significantly promote osteoclast generation. On blocking 

this signal with OPG, osteoclastogenesis was significantly reduced. These results 

suggest that RANKL expressing EV are involved in cell to cell communication 

between CAF and osteoclast progenitor cells, and OPG decreases osteoclast 

formation by interrupting this signal. 
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6.1 Introduction 
Oral squamous cell carcinoma (OSCC) comprises 95% of all neoplasia of the oral 

cavity, and approximately 30% of head and neck malignancies (Haddad and Shin, 

2008). It is the eleventh most common cancer worldwide, with over half a million 

new patients diagnosed annually, and is the 8th most frequent cause of cancer-

related mortality (Warnakulasuriya, 2009). In the United Kingdom alone, more 

than 11,900 new cases of head and neck cancers were reported in 2016, with an 

increase in incidence of over 33% for new patients diagnosed with oral cancer in 

the last decade, and over 4000 oral cancer-related deaths reported annually 

(Cancer Research UK, 2019). 

In the past decade, accumulating evidence has emerged supporting a role for the 

tumour stroma in cancer progression (Radisky et al., 2007; De Wever et al., 2008; 

Xu et al., 2009; Marsh et al., 2011; Dourado et al., 2019). Pietras and Ostman, 

(2010) described the pro-tumourgenic stromal remodelling that occurs due to 

altered paracrine signalling from neoplastic epithelial cells, generating a more 

permissible environment promoting tumour progression and spread. Cancer 

associated fibroblasts (CAF), frequently the predominant cell type in the tumour 

microenvironment, have been shown to regulate various aspects of tumour 

advancement, such as the infiltration of immune cells, angiogenesis, and ECM 

remodelling promoting neoplastic cell migration and metastasis. In addition, the 

presence of CAF is considered a strong predictor of poor prognosis in OSCC 

(Surowiak et al., 2007; Kellermann et al., 2007; Marsh et al., 2011; Dourado et al, 

2019).  

In this study, the contribution of CAF to OSCC bone invasion was investigated. 

Ebrahimi et al. (2011) reported the frequent complication of bone invasive OSCC, 
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significantly increasing recurrence, morbidity and mortality rates. Owing to the 

proximity of maxillofacial bones, OSCC has a high tendency to invade bone 

(Nomara et al., 2005). However, the precise mechanisms by which OSCC 

invades bone remains unclear. Invasion of bone by OSCC has traditionally been 

ascribed to tumour size and a consequence of pressure related resorption 

(Slootweg and Müller, 1989). However, recent studies suggest that the process 

is not as simple as originally thought and small tumours can be highly infiltrative 

with evidence of bone invasion (Fives et al., 2017). This suggests the existence 

of more complex interactions between tumour, and possibly cells of the TME, and 

bone.  

In our previous study, over 90% of our cohort presented with stroma intervening 

between tumour front and proximal bone with absence of direct contact between 

OSCC cells and bone (Elmusrati et al., 2017, masters thesis). These findings 

suggested that the stroma in OSCC, which predominantly comprises CAF, may 

play a role in bone invasion. Therefore, in this current study we set out to further 

investigate interactions between CAF and bone invasion. 

CAF are heterogeneous in nature as they differentiate from various cell types and 

can also be divided into different sub populations (LeBleu and Kallurri, 2018; Liu 

et al., 2019). Of these different CAF phenotypes, a senescent CAF subgroup has 

previously been identified (Kabir et al., 2016; Mellone et al., 2017). 

This current study is the first to report that CAF, whether isolated from human 

OSCC tissue, experimentally induced in vitro by treatment of human primary NOF 

with TGFβ1 (myofibroblastic phenotype) or exposed to oxidative (H2O2), 

genotoxic stress (cisplatin) and replicative exhaustion (senescent phenotype) 
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have a functional role in up regulation of bone turnover markers and promotion 

of osteoclast generation and activation. Furthermore, we demonstrate a role for 

CAF-derived RANKL, a key mediator of bone destruction, in this process and 

provide evidence that extracellular vesicles may act as mediators of these effects. 

Interestingly, our data indicates that the pro-bone invasive effects of CAF may be 

ameliorated by a new class of drugs, senolytics, currently entering clinical trials 

for other indications. 

CAF, unlike cancer cells, are genetically stable, making them unlikely to develop 

resistance, and limiting side effects that are reported with available cancer cell 

targeted treatments, amplifying their therapeutic potential. Targeting these cells 

with senolytics may be a promising therapeutic approach to limit tumour spread 

and bone involvement. 

6.2 Myofibroblastic stroma in OSCC 
A great deal of attention has been focussed in recent years on studying tumour 

cell interaction with ‘myofibroblastic’ CAF in tumour growth and invasion (De 

Wever et al., 2008). Myofibroblasts were first described in healing wounds, and 

due to their contractile characteristics, facilitate healing by increasing proximity of 

wound edges (Majno et al., 1971). These fibroblasts differentiate from multiple 

cell types and can be divided into different subpopulations. Besides their 

contribution to wound healing, myofibroblast-like fibroblasts are present in the 

TME and play a key role in cancer cell proliferation and invasion (Marsh et al., 

2011; Elmusrati et al., 2017). 

Although there is no specific marker for CAF, αSMA, expressed in myofibroblasts, 

is the most reliable and frequently used marker to identify CAF histopathologically 



Chapter 6 Discussion 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 196 

(Pietras and Östman, 2010; Dourado et al., 2018). Marsh et al. (2011) highlighted 

that the presence of a myofibroblastic αSMA positive stroma in OSCC is a more 

sensitive predictor of disease progression and prognosis than other long standing 

and well-known parameters such as TNM stage (including tumour size and 

metastasis), perineural or lymphovascular invasion and depth and pattern of 

invasion. Despite these recent findings showing the importance of CAF in OSCC, 

its role in bone invasive OSCC remains largely unexplored. Ishikuro et al. (2008) 

reported the presence of intervening fibrous stroma that expressed RANK and 

RANKL in OSCC mandibular bone resections. Moreover, following co-culture of 

human OSCC cell lines with mouse osteoblasts, an up regulation in RANKL and 

RANK mRNA expression was reported. We have previously shown that over 90% 

of our bone invasive OSCC cases did not demonstrate direct contact between 

tumour cells and bone, and that αSMA positive myofibroblastic CAF were seen 

intervening, and infiltrating bone ahead of the tumour invasive front.  We further 

investigated the expression of bone turnover markers (RANKL and OPG) in bone 

invasive OSCC and associated stroma. Interestingly, the bone destructive marker 

RANKL was highly expressed in both tumour and stroma in close proximity to 

bone suggesting a potential role of CAF in OSCC bone invasion and bone 

turnover (Elmusrati et al., 2017). 

In our current study, we set out to determine whether there is a difference in 

αSMA-expression in OSCC stroma, and RANKL/OPG expression adjacent to and 

away from bone and whether initial staging biopsies from these cases can be 

used to predict bone invasion. RANKL expression was expressed in tumour cells 

and surrounding stroma in a number of our samples. On reviewing the histology 

of resection specimens from these cases, the tumour appeared to be in close 
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proximity to bone.  However, OPG staining was either weak or absent. These 

findings are quite similar to previous studies in the context of tumour and bone 

cells (Kayamori et al., 2010; Ishikuro et al., 2005; Tada et al., 2005) and show 

that RANKL expression is more prominent near bone, suggesting that RANKL 

plays a key role in promoting bone invasion 

Chuang et al. (2009) compared the IHC expression of osteoclastogenesis 

markers RANKL and OPG in OSCC samples with and without bone involvement. 

Amplified RANKL, and reduced OPG staining was evident in OSCC cells in both 

groups. This expression may be due to the proximity of underlying bone to tumour 

front, and the capability of both OSCC groups to initiate bone invasion. This study 

also reported positive RANKL expression in normal oral mucosa (control group), 

which is unusual and highlights the need for further investigations to determine 

the validity of these findings. 

Osteoblasts express RANKL and are necessary in promotion of osteoclast 

generation and activation (Kular et al., 2012). To further investigate the effect of 

H357 and CAF on RANKL and OPG mRNA expression in primary human 

osteoblasts, an indirect co-culture method was employed. A significant 

amplification of RANKL and down regulation of OPG on a transcript level was 

consistently noted in HOB after exposure to H357 and CAF conditioned media 

following 24 h compared to controls (human primary osteoblasts in serum free 

media). Our findings are in agreement with previous research where an indirect 

co-culture of murine osteoblast with OSCC (BHY) conditioned media show an 

upregulation in mRNA RANKL (Ishikuro et al., 2008). This is also in keeping with 

previous studies that have reported mRNA OPG down regulation when BHY 

(human OSCC cell line) cells were cultured with primary murine osteoblasts (Jimi 
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et al., 2011). Interestingly, these RANKL expressing BHY cells, when inoculated 

into mice, developed a highly invasive tumour but were unable to initiate 

osteoclast differentiation from murine haematopoietic cells. However, this study 

did not consider investigating any other tumour microenvironment variables, and 

only focused on the effect of cancer cells on mouse osteoblasts. In our study, we 

demonstrate for the first time the effect of CAF-derived factors on RANKL and 

OPG expression in primary human osteoblasts. 

Previous studies have demonstrated that OSCC cell lines can promote 

myofibroblastic transdifferentiation of oral fibroblasts by conditioned media 

treatments through TGFβ1 signalling (Lewis et al., 2004; Marsh et al., 2011; 

Webber et al., 2018). In culture, exposure of fibroblasts to recombinant TGFβ1 is 

sufficient to induce a myofibroblastic phenotype (Sobral et al., 2011). In the 

current study, primary NOF isolated from human gingival tissue were treated with 

an optimal dose (5 ng/ml) of recombinant TGFβ1 for 24 h to trigger the transition 

of resting NOF to a myofibroblastic, CAF-like phenotype (Elmusrati et al., 2017; 

Melling et al., 2018). Following TGFβ1 stimulation, αSMA is integrated in actin 

stress fibres, increasing the contractility of normal fibroblasts (Serini and Gabbiani, 

1999; Lewis et al., 2004; Hinsley et al., 2011). In keeping with these, αSMA 

expression was observed in contractile stress fibres through 

immunofluorescence and was significantly amplified on a transcript level in 

experimentally induced CAF as well as CAF isolated from human tissue 

compared to controls. CAF isolated from human OSCC tissue and experimentally 

induced CAF share common characteristics, however, it is now known that 

myofibroblastic CAF induced through TGFβ1 signalling pathway represent only a 

subpopulation of CAF (Lewis et al., 2004; Kellermann et al., 2008; Mellone et al., 
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2017). Other subpopulations, such as those displaying a senescent phenotype 

through the expression of both αSMA and senescent marker p16INK4a have 

been reported as a CAF subset (Mellone et al., 2017). 

Bone invasion in OSCC is mainly regulated by the differentiation and activation 

of osteoclasts from hematopoietic precursors (Jimi et al., 2010). It has previously 

been proposed that stromal cells and osteoblasts are required in osteoclast 

generation through a process involving cell-to-cell communication with osteoclast 

precursors. This assumption was further confirmed by the discovery of TNF 

ligand RANKL (Suda et al., 1999; Boyle et al., 2003). Osteoclastogenesis is a 

complex mechanism regulated by three necessary molecules, RANKL expressed 

by osteoblasts, stromal and cancer cells and osteoblasts, its receptor RANK 

found on osteoclasts, and decoy RANKL antagonist OPG regulated by 

osteoblasts. RANKL and M-CSF have been reported to promote 

osteoclastogenesis in the absence of osteoblasts highlighting the importance of 

these markers in osteoclast differentiation and survival (Suda et al., 1999; Ross 

and Teitelbaum, 2005). In the current study, osteoclasts were generated from the 

murine macrophage cell line RAW 264.7. It has been previously reported that the 

murine macrophage cell line RAW 264.7, upon exposure to RANKL readily 

triggers osteoclastogenesis (Vincent et al., 2009). The advantage of using RAW 

264.7 cell is that they express both M-CSF and its receptor c-fms, and no 

treatment with M-CSF is required (Marino et al., 2014). RAW 264.7 monocytes 

were exposed to conditioned media collected from experimentally induced 

myofibroblastic CAF, and CAF isolated from human OSCC tissue. In our study, 

we observed morphological transdifferentiation of RAW 264.7 cells to large 

multinucleated cells after five days, and TRAP positive osteoclasts within seven 
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days of RANKL treatment. In addition, osteoclast functionality was evaluated by 

observing resorption pit formation on osteo-surface wells. Although H357 cells 

induced osteoclastogenesis, CAF showed the highest influence on osteoclast 

generation and these results were also reflected in pit forming assays showing 

multi-nucleation indicative of osteoclastogenesis. This is the first evidence that 

CAF are able to influence osteoclastogenesis, suggesting they may play a role in 

bone invasion. 

6.3 Senescence promotes OSCC bone invasion 
A considerable amount of research has focused on the role of αSMA-expressed 

myofibroblasts or CAF in tumour microenvironment. However, in recent years it 

has become evident that CAF represent a heterogeneous population with 

different fibroblastic phenotypes, suggesting that these distinct activated 

fibroblasts may have discrete roles in cancer progression (Shiga et al., 2015; 

Prime et al., 2017; Puram et al., 2017). A subpopulation of CAF that show 

characteristics of senescence are also evident in premalignant lesions (Costea 

et al., 2013; Procopio et al., 2015) as well as OSCC stroma (Hassona et al., 2013). 

Laberge et al. (2015), reported the characteristic features of senescent cells 

comprising a state of irreversible growth arrest, whilst maintaining metabolic 

activity, and expressing elevated levels of cytokines, growth factors and 

extracellular matrix components. This altered secretome is referred to as 

senescence associated secretory phenotype (SASP). 

Two separate types of CAF have been isolated from genetically stable (GS-

OSCC) and unstable (GU-OSCC) oral cancers. In this study, OSCC 

characterisation was based on the expression of p53 and p16INK4a mutations. 

The research group reported that CAF extracted from GU-OSCC were senescent 
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due to their loss of p53 and p16INK4a, while in contrast CAF isolated from GS-

OSCC exhibited wild type p53 and p16INK4a (Lim et al., 2011). Hassona et al. 

(2013) further contemplated that the development of the senescent CAF 

phenotype was caused by amplified levels of ROS related to TGFβ1, and TGFβ2, 

resulting in oxidative DNA damage. However, not all CAF in this model were 

senescent, further confirming CAF heterogeneity in OSCC.  

In the current study, senescent CAF were identified through 

immunohistochemical analysis of tissue from OSCC bone resections. Staining for 

senescence markers p16INK4a and DPP4/CD26, a recently discovered marker, 

reported to specifically be expressed on senescent cells following mass 

spectrometry analysis (Kim et al., 2017), was seen in stromal CAF proximal to 

invading bone. 

Mellone et al. (2017) analysed the two CAF subtypes, aSMA positive 

myofibroblasts and senescent fibroblasts. They showed that senescent CAF 

predominantly expressed aSMA in vivo, and that following senescence induction 

in vitro (irradiation, exposure to H2O2, cisplatin and replicative exhaustion) 

developed molecular and morphological features similar to myofibroblasts 

induced through the TGFβ1 signalling pathway. Co-expression of p16INK4a and 

aSMA in senescent fibroblasts was also confirmed using dual IF staining. In our 

study, double immunostaining on OSCC bone resections was conducted to 

examine whether a subpopulation of senescent CAF was present within the 

aSMA positive population. Co-localisation of senescence marker p16INK4a in 

αSMA positive CAF was evident in our cohort confirming the presence 

of senescent CAF in bone invasive OSCC stroma. These findings were in 



Chapter 6 Discussion 

The Role of Cancer Associated Fibroblasts in Bone Invasive Oral Squamous Cell Carcinoma 202 

agreement with previous studies (Hassona et al., 2013; Mellone et al., 2017; 

Dourado et al., 2019).	

 

 Senescence induction can be induced in vitro by DNA damaging stimulants as 

exposure to H2O2, cisplatin, replicative exhaustion or irradiation (Prime et al., 

2017, Mellone et al., 2017). In this study, to examine mechanistically whether 

senescent oral fibroblasts could influence bone remodelling, senescence was 

induced in normal oral fibroblasts at a low passage. Following five days of H2O2 

or cisplatin treatment, and after being cultured to replicative exhaustion (passage 

25), the majority of the fibroblasts exhibited a flattened and expanded morphology 

(Wagner et al., 2008), and were significantly positive for SA-β-Gal, indicative of 

senescence induction in agreement with previous studies (Kabir et al., 2016). 

 

Due to the lack of one specific marker to identify cellular senescence, and SA-β-

Gal becoming the most reliable and widely used senescence biomarker, a panel 

of indicators was required to confirm senescence induction. Sudan B Black (SBB), 

a histochemical stain for lipofuscin, which accumulates in aging cells, has recently 

been reported to identify senescent cells (Georgakopoulou et al., 2013). 

Therefore, to support the SA-β-Gal and p16INK4a data, SBB abundance was 

analysed in fibroblasts in culture. Black granular deposits of SBB were evident, 

further confirming senescence in primary CAF isolated from human OSCC, and 

experimentally induced senescent CAF (S-NOFH2O2, S-NOFCis, and S-NOFRep).. 

These results are in agreement with the cytological staining reported by 

Georgakopoulou et al. (2013). However, the SBB staining in FFPE tissue sections 

reported by the group was somewhat unreliable and controversial, as staining did 
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not appear specific. In the current study, SBB was also attempted in tissue from 

FFPE OSCC bone reactions however staining appeared variable and not specific 

to senescent cells. The lack of specificity in staining lipofuscin in paraffin 

embedded section may be due to elimination of these lipoproteins in the process 

of tissue preservation and deparaffinisation, making senescence difficult to 

identify in archived, fixed, tissue. The lack of a reliable marker of senescence in 

fixed tissue remains a problem for the field; however, in this thesis we observed 

specific staining of stromal cells for DPP4, a recently described marker of 

senescent cells, suggesting this may be a good senescence indicator in FFPE 

tissue. 

Senescent CAF have been reported to express αSMA (Mellone et al., 2017), and 

αSMA positivity in OSCC stroma has been reported to be linked to poor survival 

(Kellermann et al., 2007). In this study. CAF isolated from human OSCC and 

senescent CAF induced in vitro (S-NOFH2O2, S-NOFCis, and S-NOFRep) exhibited 

apparent αSMA positive stress fibres when compared to unstimulated primary 

NOF, following immunofluorescence. These findings suggest that senescent CAF 

may represent a population of αSMA positive CAF identified in OSCC, and these 

cells must be considered when investigating prognosis and potentially CAF-

targeting therapy. 

In bone, cellular senescence accumulating at pathological sites has a detrimental 

effect on bone mass (Kim et al., 2017; Farr et al., 2019). Chen et al., (2013), 

reported that an increased cellular senescence in bone resulted in an 

upregulation of SASP components such as IL6, TNFα, and NF-kB ligand 

(RANKL), and a decrease in OPG protein, leading to an unbalanced RANKL to 

OPG ratio promoting osteoclastogenesis and favouring bone destruction.  
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In this study, further analysis of senescence marker p16INK4a, IL6 and bone 

turnover RANKL and OPG in senescent CAF revealed a significant increase in 

p16INK4a, IL6 and RANKL, while OPG expression was downregulated on a 

transcript level throughout our cohort when compared to NOF. The prime bone 

destruction marker RANKL is expressed in both membrane bound and secreted 

soluble forms (Ikeda et al., 2001). Based on the evidence that NF-kB signalling 

is activated in senescence (Chen et al., 2013; Kim et al., 2017) and SASP 

develop with time (Kabir et al., 2016; Ohtani, 2019) an ELISA was conducted to 

investigate the expression of soluble RANKL protein at different time intervals 

following senescence induction in vitro. RANKL expression was significantly up-

regulated in S-NOFH2O2, S-NOFCis, and S-NOFRep following 5 days, 15 days of 

senescence induction and at passage 25 respectively. These findings provide 

direct evidence that senescent oral fibroblasts can synthesise and secrete 

elevated levels of RANKL, and the kinetics are similar to those of the well-

established SASP component IL6, indicating that RANKL may be considered a 

novel component of SASP. 

 

Exposure of RAW 264.7 monocytes to conditioned media collected from 

senescent fibroblasts resulted in osteoclast generation. These findings suggest 

that the TME composed of senescent and myofibroblastic CAF could potentially 

contribute to OSCC-mediated bone destruction. 
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6.4 Senolytics, a promising therapeutic 
application in limiting bone invasion in OSCC 
The common modality for treatment of OSCC with bone involvement is surgery 

with bone resection followed by chemo and/or radiotherapy. Unfortunately, the 

available chemotherapeutic drugs are cytotoxic for both normal and cancerous 

cells. In addition, exposure of the tumour and surrounding normal tissue to 

genotoxic stress caused by chemotherapeutic drugs such as cisplatin or high 

doses of radiation may further complicate treatment by triggering senescence 

induction. 

Senolytic drugs have recently been shown to selectively promote apoptosis in 

senescent cells, decreasing their pro-tumourgenic burden (Short et al., 2019). 

Several senolytics have been developed targeting different pro-apoptotic 

pathways. In this study, Navitoclax (ABT263) - an inhibitor of BCL-2 family - was 

used. Navitoclax has been reported to trigger senescent cell death in some but 

not all human and mouse cells (Chang et al., 2016; Zhu et al., 2016; Moncsek et 

al., 2018), however, toxicity has been reported due to weak cell selectivity 

exhibited with BCL-2 senolytics (Garland et al., 2013). Nonetheless, since the 

development of navitoclax as a senolytic it has been substantially used as a tool 

to study senescence (Chang et al., 2016; Kim et al., 2017; Zhu et al., 2017). Kim 

et al., (2017) recently reported an increase in apoptosis of bone marrow stromal 

cells following treatment with navitoclax in aged mouse models. This depletion in 

senescent cell burden in bone microenvironment resulted in a significant 

decrease in RANKL expression, further impeding osteoclast formation.  
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More recently, HSP90 inhibitors (17-DMAG) have been identified as a novel 

group of senolytic drugs (Fuhrmann-Stroissnigg et al., 2017). HSP stabilizing 

proteins have been reported to be associated with tumour cell proliferation in 

several cancers, making it a potential drug target (Taipale et al., 2010). Numerous 

current and previous clinical trials have explored the use of HSP90 solely or in 

adjunction with chemo or radiotherapy (Trepel et al., 2010; Jhaveri et al., 2012; 

Shah et al., 2018). HSP90 inhibitors are not only expressed in pathology,but have 

important physiological roles in cellular processes.It is probably for these reasons 

that there are still no FDA approved HSP90 inhibitors available for cancer 

treatment.  

 
Following demonstration that senescent fibroblasts are able to promote 

osteoclastogenesis, we next assessed whether the removal of senescent 

fibroblasts would reduce the paracrine effects promoting osteoclastogenesis. 

Previous reports have demonstrated the pro apoptotic functionality of senolytics 

in targeting CAF in hepatocellular carcinoma, nonetheless senescence was 

never examined (Chen et al., 2016). However, this current study is the first to 

specifically target senescent CAF with senolytics. Doses were selected targeting 

senescent fibroblasts but having minimal effect on proliferative cells. Significant 

reduction in osteoclast generation was recorded following exposure of senescent 

fibroblasts to both senolytics. Although the reduction in osteoclastogenesis was 

significant when CAF were exposed to Alvespimycin and Navitoclax, this 

reduction was less compared to experimentally induced S-NOF. These findings 

may be due to the heterogeneous nature of primary CAF isolated from OSCC, 

comprising different phenotypes. 
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6.5 Cell to cell communications in the tumour 
microenvironment are mediated by secreted EV 
In the past decade, a role has been established for EV in cell-to-cell 

communication. In the context of cancer, the cross talk between tumour and 

associated microenvironment is crucial to support cancer development and 

invasion. EV are involved in diverse mechanisms that sustain tumour 

advancement including angiogenesis, inflammation, EMT transition, cell 

proliferation as well as migration subsequently leading to invasion and metastasis 

(Becker et al., 2016; Xu et al., 2018).  

Unfortunately, the literature is lacking in research on oral cancer/OSCC derived 

EV. Most of the published studies have focused on investigating oral cancer 

biomarkers in EV isolated from saliva (Tanaka et al., 2013; Winck et al., 2015; 

Iwai et al., 2016; Kawahara et al., 2016) highlighting its diagnostic and prognostic 

potential in oral cancer. More recently, Dourado et al. (2019) reported that CAF-

derived EV secreted in the tumour microenvironment promoted OSCC cell 

proliferation and invasion. This research group highlighted the heterogeneous 

nature of five primary CAF cultures isolated from well differentiated OSCC of the 

lateral border of the tongue or floor of mouth. All the primary CAF exhibited 

myofibroblastic features, and senescent phenotypes were also detected in these 

cultures (approximately 20% of the CAF population). Moreover, CAF-derived EV 

showed an increased proteolytic profile and loss of cell adhesion factors when 

compared to EV isolated from NOF following proteomic analysis, explaining the 

migratory phenotype of CAF, and on further exposure of OSCC cell lines to CAF-

EV, an increase in OSCC cell migration was reported. 
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To date, the role of EV in bone invasion hasn’t been studied. However, recent 

reports have investigated the role of EV in bone remodelling, providing evidence 

that EV play a functional role in the dynamics of bone synthesis and resorption 

(Deng et al., 2015; Yin et al., 2017; Tao and Guo, 2019). These findings provided 

rationale to investigate the role of EV in bone invasive OSCC.  

In the current study, EV were isolated from OSCC cell line (H357), primary NOF 

and CAF, experimentally induced CAF (NOF exposed to TGFβ1) and senescent 

fibroblasts (S-NOFH2O2, S-NOFCis). To enhance purity and decrease 

contaminants, graded centrifugation followed by SEC was chosen as an optimal 

method in isolating EV from cell culture supernatants (Gardiner et al., 2016). 

Following EV extraction, size profiling and quantification, characterisation was 

conducted to confirm EV isolation. Well-established EV ‘markers’ CD9, CD63, 

and CD81 were examined, and were significantly observed throughout our 

samples confirming EV isolation. 

To investigate the potential of EV to communicate with osteoclast precursors 

and initiate osteoclastogenesis, RANKL expression was examined through an 

ELISA and the soluble RANKL protein was significantly increased in EV isolated 

from conditioned media collected from H357, CAF and senescent oral fibroblasts 

compared to NOF.  

To further evaluate these findings and assess the functionality of RANKL, RAW 

264.7 monocytes were exposed to EV isolates extracted from H357, primary CAF 

from human OSCC tissue, experimentally induced CAF (NOF exposed to TGFβ1), 

S-NOFH2O2, S-NOFCis, and  compared to primary human NOF, in an attempt to 

study the influence of EV derived from these cells on osteoclastogenesis, 
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Osteoclast generation and activation was evident throughout the samples, 

suggesting a significant contribution of RANKL expressed EV in bone invasive 

OSCC. Previous reports have implicated EV in bone remodelling (Deng et al., 

2015; Yin et al., 2017; Tao and Guo, 2019). However, this data is the first to show 

the effect of cancer cell and CAF-derived EV, and the first to directly demonstrate 

association of RANKL with EV in OSCC related bone invasion. 

OPG, a decoy receptor of RANKL has been reported to limit bone resorption by 

inhibiting osteoclast formation (Simonet et al., 1997). Several studies have shown 

that following administration of OPG, cancer cell invasion or metastasis to bone 

was inhibited (Canon et al., 2008; Armstrong et al., 2008; Tada et al., 2013). 

These results suggest that RANKL is the key modulator of bone involvement in 

cancer. Tada et al. (2013), demonstrated that by treating a co-culture of OSCC 

cells and murine osteoblasts with OPG, osteoclastogenesis was inhibited. 

Furthermore, in a recent study, RANKL expression in OSCC cells was inhibited 

following OPG exposure, and conditioned media collected from OSCC cells 

following RANKL knockout decreased osteoclast generation and bone resorption 

(Sambandan et al., 2017). 

In this current study, and previously published data (Elmusrati et al., 2017) 

RANKL expression was seen in tissue OSCC bone resections with staining seen 

in carcinoma cells and CAF invading bone ahead of tumour using IHC. Moreover, 

following the observation that OPG expression was down regulated in H357, 

primary CAF, experimentally induced myofibroblasts, and S-NOF, while 

increased levels of RANKL in H357, CAF, myofibroblasts, and senescent oral 

fibroblasts, and EV derived from these cells was observed in vitro. This further 

suggests that RANKL play a key role in bone invasive OSCC. 
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Recombinant human OPG, was used to target RANKL/RANK signalling cascade. 

Significant reduction in osteoclast generation was recorded following exposure of 

both conditioned media and EV to OPG. These findings suggest that obstructing 

RANKL/RANK interaction with OPG can impede osteoclastogenesis and inhibit 

bone invasion in oral cancer. 

6.6 Prospective implications in improvement of 
cancer therapies 
Bone destruction associated with OSCC invasion is a devastating sequel leading 

to a poor prognosis. Numerous studies have focused on understanding the 

pathway by which carcinoma cells invade bone in oral cancer, however, the 

molecular mechanism associated with how CAF promote tumour advancement 

is not fully understood. CAF, unlike cancer cells, are generally thought to be 

genetically stable and therefore make good therapeutic targets as resistance is 

unlikely to develop.  

Amongst the heterogeneous subpopulations of CAF in oral carcinomas, the 

myofibroblastic and senescent phenotypes are the most characterised. The 

introduction of senolytic drugs that target CAF in anti-cancer therapies is an 

expanding and particularly promising specialty of contemporary research for 

modern cancer treatments. However, this study is the first to utilise senolytic 

drugs to target senescent CAF and derived EV. Alvespimycin and Navitoclax 

demonstrated a significant reduction in senescent CAF burden, and further 

reducing OSCC bone destruction by osteoclastogenesis impediment.  

The perspective of EV targeted cancer therapies has also recently emerged. EV 

have low immunogenicity, biocompatible and are naturally capable of 
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communicating with target cells. They can carry cargo of vast oncogenic proteins, 

and also have potential for drug delivery as well (Samanta et al., 2018). The 

growing focus on EV in cancer, however, brings about new challenges as 

isolation and quantification, and whether current technologies are efficient in 

detecting minimal EV levels remains controversial. Regardless of these obstacles, 

unlike protein biomarkers, EV contain RNA which can be promptly amplified and 

profiled, providing advanced opportunities for the development of diagnostic 

biomarkers in cancer. Moreover, EV also have the ability to transmit messages 

raising the possibility that senescent cells may potentially have systemic effects 

on the body. 
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6.7 Conclusions 
I. αSMA-positive CAF intervening between tumour and underlying bone 

appear to play a role in bone invasive OSCC. 

II. RANKL and OPG expression ex vivo correlates to proximity of tumour to 

bone. The expression of both RANKL and OPG is higher in cases with 

frank OSCC bone invasion. 

III. Indirect co-culture of human primary osteoblasts with conditioned media 

from human OSCC and human isolated CAF significantly amplify RANKL 

and reduce OPG mRNA expression in vitro. 

IV. Treatment of normal oral fibroblasts with recombinant TGFβ1 induces 

transdifferentiation of resting fibroblasts to a αSMA positive CAF 

phenotype, significantly increasing RANKL expression on a transcript and 

protein level, and further promoting osteoclastogenesis. 

V. Senescent fibroblasts can be experimentally induced by exposure to 

oxidative (H2O2), genotoxic stress (cisplatin) and replicative exhaustion.  

VI. Conditioned media collected from primary CAF isolated from fresh human 

oral tissue, and experimentally induced senescent fibroblasts (S-NOFH2O2, 

S-NOFCis, and S-NOFRep) and derived EV, show significantly higher 

expression of soluble RANKL protein compared to NOF. 

VII. EV isolated from H357, primary CAF, experimentally induced 

myofibroblasts (NOF exposed to TGFβ1), S-NOFH2O2, S-NOFCis produce 

significantly more RANKL protein compared to NOF derived EV. 

VIII. CAF isolated from human tissue, experimentally induced myofibroblasts 

(NOF exposed to TGFβ1) and experimentally induced senescent 

fibroblasts (S-NOF) all show a significant increase in osteoclast generation. 
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IX. Senolytics Alvespimycin and Navitoclax, significantly promote death in 

senescent fibroblasts, and reduce osteoclast formation. 

X. Recombinant OPG blocks RANKL expression in CAF and senescent 

fibroblasts and derived EV, and reduces osteoclastogenesis 

To summarise, this study shows that CAF play a key role in bone invasive 

OSCC providing an opportunity for therapeutic intervention. 

6.8 Future work 
I. Our restricted ethical approval limited the extent of the clinical data to be 

analysed. We would further like to expand and correlate all the OSCC 

bone invasive clinical reports for 5-year disease free survival rate and 

prognostic evaluation. 

II. Examining a larger histological and IHC bone invasive cohort, and further 

increasing the control group as well. 

III. Further verify the presence of CAF in tumour microenvironment but 

studying other myofibroblastic IHC markers as FAP and FSP. 

IV. Examine other components of the tumour environment as inflammatory 

cells, through IHC staining for lymphocytes, macrophages and endothelial 

cells and correlate with bone invasion. 

V. Further examine the role of CAF and senescent oral fibroblasts on 

osteoclastogenesis in vivo. 

VI. Investigate the efficacy of senolytics or senomorphics on OSCC bone 

invasion in vivo. 
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