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Abstract

A measurable set - a shape - can be considered as a measure; the present thesis treats 

the inverse problem - to characterize those measures which can be considered as shapes, 

in a very generalized sense - by solving some optimal shape and optimal shape design 

problems which are governed by linear or nonlinear elliptic equations. A new method 

is introduced for solving the usual optimal shape problems, and also a new set of prob­

lems which are defined in terms of a pair of elements, a shape (defined by its boundary) 

and an optimal control associated with it. The problems are considered in polar and 

cartesian coordinates separately.

The new method to attack these problems, which is applicable to both system of coordi­

nates, consists in using the variational form of the elliptic equations and then applying 

the process of embedding into some appropriate spaces of measures; thus the problem 

is replaced by a measure-theoretical one in which one seeks to minimize a linear form 

over a subset of positive Radon measures defined by linear equalities. The optimal so­

lution is approximated then by a finite combination of atomic measures so that the op­

timal shape design problem is transformed into a finite linear programming problem. 

The solution of this problem is used to construct the optimal shape and its associated 

optimal control. The advantages of this new method with respect to other methods, and 

the existence of the optimal solution in each case, have been carefully considered.
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Chapter 1

Introduction

The study of optimal shape design tries to answer the question “What is the best shape 

for a physical system?” We will discuss several such physical systems, mostly those 

that can be described by an elliptic partial differential equation; the optimal shape min­

imizes a certain performance criterion.

Broadly speaking, the term optimal shape design (OSD) is used whenever a function is 

to be minimized with respect to a particular geometric element (or elements). In gen­

eral, the element is a curve, a domain (an open measurable set), or a point. Traditionally, 

OSD has been treated as a branch of the calculus of variations and more specifically of 

optimal control; this subject interfaces with several fields including optimization, opti­

mal control theory, differential equations (or inequalities) and their numerical solutions.

1.1 OSD in Calculus of Variations

The foundations of the calculus of variations were laid by great mathematicians like 

Bernoulli, Euler, Lagrange and Weirstrass. As a matter of fact, all problems of Minima

1
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and Maxima in functional analysis properly belong to the calculus of variations; when 

this minimization or maximization takes place over a set of geometrical elements, the 

problem is usually an OSD problem. Many of these problems can be found in text books 

on the calculus of variations (see for instance [63] and [21]). One of the most famous 

and oldest of them is the free-boundary problem, in which the solution of a differential 

equation has to satisfy certain conditions on the boundary of a variable domain; in many 

particular cases the domain has to be determined as a part of the solution (see [27] for 

more details). In this thesis we shall consider some of these problems.

1.2 OSD and Optimization

The fundamental problem of optimization is to arrive at the best possible decision in any 

given set of circumstances. The study of optimization techniques is attractive because 

of its very wide field of application such as operational research, economics, aerospace, 

pure geometry, physics, control theory, chemical engineering and many other subjects 

(it has been claimed that everyone is optimizing something all the time!!). Walsh in 

his book [60] has given many examples of optimization problems in diverse fields. The 

one factor that has influenced this growth and extension of optimization theory more 

than any other, has been the parallel development of computer equipment with which 

optimization theory can be applied to broad classes of problems.

An optimization problem sometimes can be considered as an OSD problem and vice 

versa. An OSD problem is obviously an optimization problem; depending upon the 

physical structural of the problems, optimization problems can be classified as optimal 

and nonoptimal control problems. Again, if the minimization or maximization associ­

ated with a control problem takes place over a set of geometric elements, the problem



Chapter l: Introduction 3

can be considered as an OSD problem.

Optimality of an OSD problem defined by partial differential equations has been studied 

in many ways, as in [8] and [9] by the dynamic interpretation of optimal shape design, 

in [19], [44] and [43] by some direct calculation of shape variations, in [64] and [41] 

via minimax differentiability method, in [40] via the mapping method. The maimer of 

solution has an important role in the numerical computation of optimal shapes. In the 

present work, for the first time, we consider an optimality of an OSD problem by chang­

ing the problem into a measure-theoretical one. In this procedure, we will apply many 

optimization methods and techniques to reach an optimal solution.

1.3 OSD in Optimal Control Theory

An optimal control problem is a mathematical programming problem involving a num­

ber of stages, where each stage evolves from the previous stage in a prescribed manner. 

In studying an optimal control problem, one usually requires:

• i) A real closed (time) interval J  =  [i0, fj], in which the controlled system will 

be involved.

• ii) A bounded-closed set U C on which u takes its values.

• iii) A differential equation describing the controlled system, satisfied by the tra­

jectory function t € J  —> X (t)  € R n and the control function t e  J  u(t) 6 

U, where u is a measurable function.

• iv) An observation function f 0[t,X (t), u(t)] which is given.

A classical optimal control problem is to find an admissible control u which satisfies
*

the differential equation and minimizes the functional I  : J7 —> R  defined by I(p) =
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?))> Vp € T ,  where p — [X(-), V1 is given and T  is the set of admissible 

trajectory and control pairs.

The following problems are among the main fields of study and developments of opti­

mal control theory:

• Existence of an optimal control.

• Necessary (and possibly sufficient) conditions for u to be an optimal control.

• Constructive algorithms amenable to numerical computations for the approxima­

tion of optimal controls.

Clearly the development of such theory depends on the form of the differential equa­

tion describing the controlled system. The theory described in the works of Pontryagin, 

Boltyanskii, Gamkerlidze and Mischenko in [46], and also Hestenes in [29], is applica­

ble to controlled systems defined by a family of ordinary differential operators. To see 

the development of optimal control theory, the reader is recommended to have a look 

at [34], [30], and [15], for instance.

By performing changes of variables which bring the variable domain into a fixed 

domain, one can convert a problem of OSD into an optimal control one, where the con­

trol variable is the coefficient of the partial differential equation defined in the OSD 

problem. This method allowed Begis and Glowinski in [5] and Morice in [39] to de­

vise a satisfactory method for optimal design problems; it has, however, two important 

shortcoming points: •

• It is difficult to take into account geometrical constraints.

✓
• A completely new study of the (new) state equation is necessary.
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Thus, solving an OSD problem in general needs special methods.

One of the attractive and powerful recent methods for solving an optimal control 

problem is based on an idea of Young in [63], consisting of the replacement of the clas­

sical variational problem by problems in measure spaces. An early version of this ap­

proach was carried out in 1967 by Ghouila-Houri in [22], In 1977, this method was 

employed for the first time by Wilson and Rubio in [62] and [52] on an optimal con­

trol problem defined by a diffusion equation; then the method has been theoretically 

established by Rubio in his book [50] in 1986. The application of the new method was 

extended and improved gradually; it was completed for systems governed by diffusion 

and wave equations in [31], [16] and [17]. Moreover it was extended for the elliptic 

equations in [53]. But no attempt has yet been made to solve an OSD problem via this 

ideas; we attempt such an application in this thesis.

1.4 Optimal Shape Design Theory

In an OSD process, the objective is to optimize certain criteria involving the solution 

of a partial differential equation with respect to a particular geometrical element (or el­

ements) appearing in the partial differential equation. In optimal shape design theory, 

attempts are directed to computerize the design process to create a new shape design 

or improve an existing design. From a mathematical point of view, an optimal shape 

design problem is (usually) defined.as follows:

Let u£> be the solution of a partial differential equation related to the geometrical ele­

ment D; let I(u.d , D ) be a real-valued function of uD and D. We say that we have an 

OSD problem to solve if we find D* in a class T  of allowable geometrical elements, to
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minimize I. Symbolically, one may write an OSD problem as:

M i n i m i z e :  I(ud,D )

S u b je c t to  : A(«£>, D) = 0,

where A is an operator that for every D € T  defines a unique uD, and the minimization 

takes place over the set T . Here we deal only with the cases that A is an elliptic opera­

tor. To take some examples, one can see [7] (Appendix 4) for the design of a nozzle at 

low speed with a required velocity of air in some prescribed region, and [44] for some 

examples in the optimization of an electromagnet, a wing and minimum drag problems.

Although OSD is a branch of optimal control theory with geometrical elements as 

controls, there are two notable differences between classical problems of optimal con­

trol and OSD. The first is that the control sets in the latter are classes of gometrical 

elements which do not have natural algebrical or topological structures. The second is 

that the state uD here is related to D which is not fixed; this makes it difficult to ex­

amine the convergence of sequences of the form {uDn}, which is one of the key steps 

to the establishment of the existence for OSD. However, sometimes one may convert a 

shape design problem into an optimal control problem with controls appearing in the 

coefficients of the differential equation (see for example [5], [39] and [44]).

Historical background and references: OSD has been studied in a wide variety 

of fields; it is difficult to give a complete account of the previous works. The studies of 

OSD were started a long time ago; Bernoulli’s speediest descent problem, for example, 

can be viewed as such a problem. Hadamard’s book [25] in 1910, is considered as the 

most influential early work; he gave a formula for computing the derivative of Green’s
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function of Laplace operator with respect to the normal variations of domain.

Later on, studies were made only for those problems with an explicit solution for the 

partial differential equation, as the work of Miele [37] in 1965 on the optimization of 

wing profiles at supersonic speed. Eventually the method was extended to problems of 

structural engineering; in particular those possible to convert into optimal control prob­

lems. Meanwhile, OSD has been studied in great depth by the French school of Applied 

Mathematics (at universities of Parise and Nice, specially) and the treatment using the 

optimal control technique of distributed systems, seems to have begun in 1972 with Li­

ons in [35] and with Cea, Giaan and Michel (1973) in [10], where the first algorithm 

is found. Optimality conditions were found concurrently by Pironneau [43] and Murat 

and Simon (1976) [40] for problems with Dirichlet conditions, by Dervieux and Plame- 

rion (1975) in [ 13] for Neumann problem, by Rousselet (1976) [49] for eigenvalue prob­

lem. The existence of solution was then studied by Murat and Simon (1976) [40] and 

Zolezio (1979) [64]. Numerical methods based on the above results were devised and 

tested by Begis and Glowinski (1975) [5] and Morice (1974) [39] for the technique of 

mapping and also many others like Pironneau (1983) [44] and Haslinger and Neittaan- 

maki (1978) [27] by use of the finite element method.

Optimal shape design is an applications-oriented subject; the use of OSD can be 

found in many engineering branches, because systems described by partial differential 

equations have particular shape design applications in industry. We can describe some 

of them as mechanical engineering (for designing airplanes, wings at supersonic speed 

and in Fluid dynamic), civil engineering, electrical engineering (for electromagnet and 

antenna design), marine industry (for design of submerged in naval hydrodynamics) and 

chemical engineering (for change the anode surface to a given fixed shape) for more de­

tail see [27], [44], [43] and [7]. Thus, OSD problems have been studied extensively by
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engineers where the state equations are governed by partial differential equations with 

suitable boundary conditions. The results can be found in textbooks, for example Haug 

and Arora [28] (1979), Vanderplaats [59] (1984) and Komkov [32] (1988), and in some 

conference proceedings like that one which edited by Adelman [1] (1986). In the last 

twenty years, there has been increased mathematical interest in studying the question 

of the existence of optimal shapes, numerical approximation, convergence and sensitiv­

ity analysis, dynamical interpretation of OSD algorithms, topologies and compactness 

properties, and optimality conditions that are referenced in [27] and [36]. However, 

enormous work has been done by mathematicians for OSD problems governed by vari­

ational inequalities; see [7], [27] and [36].

In general, most methods of solving an OSD problem are related to the numerical so­

lution of (partial) differential equations. The exception is the mapping method which 

maps the solution spaces of the partial differential equations in an OSD problem on a 

fixed domain, and then converts the shape design problem into an optimal control prob­

lem with controls appearing in the coefficients of the differential equation (see [40] 

and [44] for example). We can also consider, the recent works in [26] on finite el­

ement method, [61] on boundary-element method, [41] on minimax (computing the 

shape derivative by differentiating a Min Max problem with respect to an appropriate 

vector field), and on the Least-Squares method in [4],

Up to now, there has been no attempt to solve an OSD problem by applying the measure- 

theoretical method. Also, all OSD problems considered have been based on not more 

than one geometrical element (which, indeed, has usually been a domain); thus efforts 

have been directed to obtain an optimal element as the optimal solution.

In this task, we introduce a new approach to attack an OSD problem by transferring

the problem into a new one in which positive Radon measures are involved. The method/
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has been successfully applied on some optimal control problems as explained above, 

but never applied on an OSD problem before. This method has some important advan­

tages in comparison with others, such as automatic existence theorems, achieving the 

global minimizer, and applying a linear treatment for nonlinear problems. Moreover, 

an OSD problem has normally been defined with respect to a particular geometrical el­

ement (which usually has been a domain). Here we also consider a new and larger set 

of OSD problems; those are defined in terms of a pair of geometrical elements (a do­

main and its boundary). We attack these problems and obtain their solution by use of 

the new approach.

1.5 Outline of the work

In the present thesis, we are going to solve some OSD problems in which they are de­

fined with respect to a pair of geometrical elements. This pair consists of a measurable 

set (in R 2) that can be regarded as a domain, and a simple closed curve which is the 

boundary of the measurable set and contains a given point. Based on the simple prop­

erty of curves, the related OSD problem depends on the geometry which is used. We 

shall solve the appropriate OSD problems in polar coordinates (in chapters 2 and 3) 

where 0 <  6 < 2tt and r > 0, and in cartesian coordinates (in chapters 4, 5 and 6) 

where the boundary curve consists of fixed and variable parts.

In the whole of the thesis we use a common approach, to extend the problem into a 

measure-theoretical one which is defined on a class of positive Radon measures. Then, 

the new problem is approximated by a finite linear programming one in which its results 

approximate the optimal solution of the OSD problem. We remind the reader that all 

partial differential equations involved are chosen as different cases of elliptic equations.
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In C hapter 2: The solution of an OSD problem which is defined in terms of a pair 

of geometrical elements, a set C and its boundary <9(7, is studied in Chapter 2. By intro­

ducing the set of admissible pairs, T ,  a classical OSD problem is introduced (in (2.4)) 

as the finding of the minimizer pair in T  for the given functional

where area of C is fixed and w =  ^  is the control function while <9(7 is represented by 

r  =  r(6).

By some analysis, the necessary conditions for admissibility of a pair ((7, dC) in the 

classical formulation, are characterized as integral equalities which are mentioned in 

(2.6), (2.8) and (2.11) in section 2.2. To be sure that T  is not empty and the problem 

has a solution in T ,  we try to somehow enlarge this set; the basis of this metamorphosis 

is the fact that an admissible pair can be considered as a pair of positive Radon measures, 

say (yuc, vc), which is proved by means of Proposition 1. Moreover the transformation 

(C, dC) — > (pc, uc) is an injection (Proposition 2) and it changes the classical problem 

OSD into a measure-theoretical one. Then by enlarging the image of the transforma­

tion, we change the problem into a new nonclassical one (defined in (2.13)), where the 

involved pair (p, v) belongs to A/i+(fl) x A i+(u>) (indeed, the measure satisfying the 

conditions of 2.13 can be approximated, in weakly* sense, by the actual pair ((7, dC )). 

The new problem has some important advantages which are listed in section 2.4. 

Regarding the simple compactness properties of the weak* topology and the concepts 

of Proposition 3, the existence of an optimizer for problem (2.13) is proved in Theo­

rem 1. Problem (2.13) is linear in terms of the variables p and v\ thus it is an infinite­

dimensional linear programming problem. Our attempt is to approximate its solution
*

with the solution of a finite dimensional linear one. In the first step of approximation,
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by introducing countable total sets in an appropriate space and then choosing a finite 

number of their functions, the solution of the problem can be approximated by one in 

which the number of constraints is finite (Proposition 6). Moreover it is proved that the 

optimal measures p* and v* have the following forms:

n m

i=l ¿=1

where S is a unitary atomic measure and the coefficients a* > 0, ¡3* > 0 and points 

Z*, z* (belong to a dense subset of Q, and u> respectively) are unknowns. So in the sec­

ond step, by using discretization on appropriate spaces the problem is approximated by 

one (in (2.17)) with unknowns a t ’s and /3j’s. By introducing the function £ (Proposition 

8) in section 2.7, we show that the measure p can be identified in terms of the boundary 

measure u; hence the problem is approximated by a finite linear programming prob­

lem (in (2.19)) in which its unknowns are only {3j’s. But this replacing may cause some 

limitations which are discussed in section 2.8. In the end of the chapter, based on the 

continuity of the integrand functions, two examples are given in detail. We can also 

claim that this chapter is an answer of the interesting question: “When can a measure 

p E M +{Zl) be approximated by a shape C associated with the given measure r\ as 

J o f d p  = f c f d v , v f e C ( n ) r

In C hapter 3: Based on the concepts of the previous chapter, we are going to solve 

a similar problem in which the solution of the following elliptic equation on C

div(&(0, r)V u ) — f ( 0 , r, u ) =  0, (1.1)

jr
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with the Neumann condition

V u.n |so =  v, (1.2)

is involved (here u : il —> U C R and v : [0,2n] —► V  C R). We say the quadruplet 

(C, dC, u , v ) is admissible when u and v satisfy (1.1) and (1.2), and the pair (C , d C) is 

defined as Chapter 2. Let the set of all admissible quadruplets be denoted by F,  then 

the aim of Chapter 3 is to find the minimizer of

I( C, dC ,u, v) = f  f o(0,r, u, Vu)drd9  +  f  ho(0,r ,w,v)  ds, 
JO  J  dO

over T  (problem (3.4)); here (r, u) is the trajectory and (w, v) is the control pair.

In general, it is difficult to identify a classical solution for the elliptic problem; thus (by 

proving Proposition 9) we apply the variational form of the elliptic problem as

/  (k 'V u 'V tp  +  f<p) rdrdQ — f  k<pv ds =  0, € H 1(C), (1.3)
Jc JdC

and look for a bounded weak solution u satisfying (1.3) for all ip in i f 1(C) (the Sobolev 

space of order 1 on C). We attack the problem by use of the Radon measures. An ad­

missible (C , dC, u,v)  defines two positive Radon measures as

AU(F) = Jc F(0, r, u, Vu)  drdô, ov{G) =  J  G{9, r, w, v) d$;

here F  G C(i2') and G € C(u')  where 12' =  Q x U  x U '  and w' =  w x V  (where V u e  

U'). Thus there is an injection transformation between T  and a subset of M +(Q') x 

M +(u>'), which changes the problem into a measure-theoretical one. Then the prob­

lem is extended to a bigger space defined by all pair of measures (A, a) satisfying some 

linear conditions.
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Considering the variational equality (1.3), the first set of conditions are already intro­

duced (see (3.13)). Because the restriction of the measures A and a over fi and u  are 

the measures p and v in Chapter 2, measure <r must satisfy the same conditions as for 

v (see (3.15)). Stokes’s theorem defines another relation between A and o (see (3.16)). 

The last set of conditions is obtained by use of Green’s formula (see (3.17)). Thus we 

replace the problem with new one (at (3.18)) which definitely has a minimizer. Then 

the minimizer is approximated by a solution of a finite linear programming problem; 

for this reason we apply the same total sets as Chapter 2 for the related spaces. For the 

rest, in section 3.4 we show that the set of functions (pn such that tpn = rn cos nO or 

<pn — rn sin nd for n  =  1, 2, 3 , . . . ,  is total in H l (C) and can be applied as a part of 

the approximation scheme. Applying discretization on i2' and uj' gives requisted finite 

linear program (shown in (3.21)). This chapter ends with a numerical example.

In C hapter 4: It is difficult to introduce a linear condition which determines the 

property of a closed curve being simple, in cartesian coordinates; thus in the following 

chapters, we consider those measurable sets D whose boundary dD  consists of a vari­

able part T and a fixed part between two given points, so that it is certainly simple. A 

domain D is called admissible if the elliptic equation

A u(X)  + f ( X , u )  = v (X)  (1.4)

with the boundary condition

« I«  =  0. (1-5)

has a bounded solution on D. Let V  be the set of all admissible domains. We deal in 

Chapter 4 with solving an optimal Shape problem (an OSD problem with a fixed con­
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trol), which is to find the optimal domain for the functional 1(D) =  f D f 0(X,  u) d X  

over T>m  (the set of domains D where V is determined by joining M  segments); here 

u  is the solution of the elliptic equations over D. The process of solution is achieved 

in two stages. First for a fixed domain, by using the density property and the idea of 

approximating a curve by broken lines, T (and hence dD)  can be determined with fixed 

number of points (M-representation). Then D and any integral on D can be considered 

as a function of M  variables. Based on the elliptic equations, the generalized solution 

u is determined (in Proposition 13) by the following integral equality

/  (uAt/> +  V>/) d X =  [  ipv dX  ; VV- € ff t(D ). (1.6)
J D  JD

Then by introducing measure ¿¿U(F ) = / n F  dpu — f D F( X , u)  dX,  VF G C(Q), 

(Q =  U x F  that u g 17), we transfer the problem into a measure-theoretical one in 

which more than the set of equalities induced by (1.6) the measure must be projected on 

(x, y)-space as the Lebesgue measure (condition (4.11)). Then we enlarge the underly­

ing space to reach an infinite linear system of equations that the unknown is a measure 

inA4+(ft)  (see (4.12)).

In section 4.3 we show that the set of functions

ipi =  xy(y -  l ) (x -  xi  + y -  Yi)(x -  x 2 +  y -  Y2) . . .  (x -  xM + y — YM)qi,

in which that l^n’s are given and G { l , x , y , x 2, x y , y 2, . . . } ,  is total in Hq(D). By 

the use of this total set and putting an appropriate discretization on fi, one can approxi­

mate the solution of the problem with the solution of a finite linear system (see (4.24)). 

Hence the value of 1(D) is calculated as a function of M  variables, x i, x2, . . . ,  xM, for 

any given domain D.

In the second stage (section 4.4), considering the previous one, a vector function J  :
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D  € V m  —* I {D) is set up. Using a standard minimization algorithm on J  (like 

A M O E B A ), gives the minimizer domain for J ;  then Theorem 3, proves that the M-  

representation determined by this minimizer, is the optimal solution for the problem. 

Many examples for the linear and nonlinear cases of elliptic problem are given in sec­

tion 4.5.

In  C hapter 5: Here we consider an optimal shape problem similar to those in Chap­

ter 4, however the control function v in this case is not fixed; rather, it represents a fur­

ther means of optimization, so that the performance criterion is:

I ( D , v ) =  [  h { X , u { X ) ) d X +  [  f 2( X , v ( X ) ) d X .  (1.7)
J D  j d

By fixing the domain, we change the problem into an optimal control one which is to 

find the optimal control v*D for the given D. Then the classical control problem is re­

placed with a measure-theoretical one by introducing measures

f j , (F)= f  F (X ,u {X ) ) d X, VF eC(S2), u(G) = /  G(X,v(X) )dX,VG e C(u>) 
J d

in Proposition 16, in which their projections on (x, y)-plane are the respective Lebesgue 

measures (here u> = D x V  that v(X)  € V). The existence of the optimal solution for 

the new formulation is proved in Theorem 4. We limited the number of constraints by 

use of total sets (see (5.17)); then Theorem 5 shows that the solution of the new problem 

can introduce two piecewise-constant functions which are close enough to the optimal 

trajectory and control function of the optimal control problem. Moreover, this solution 

can be obtained by the solution of a finite linear program by discretization (see (5.39)). 

Hence the value of I(D , v*D) is determined as a function of M  variables.
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To obtain the optimal shape in the next approach, we establish the function

J  : D € V M — ► I (D ,v*d) e  R,

in section 5.4 which is a vector function. By use of a standard minimization algorithm, 

the minimizer pair for J  is obtained. Then Proposition 20 shows that this pair estimates 

nearly optimal domain and control for the mentioned OSD problem. In the numerical 

examples we use the same data as in examples of Chapter 4; thus the reader can compare 

the result of the controlled system with those for the uncontrolled one.

In C hapter 6: We consider a different type of elliptic equation by changing the 

boundary condition into u\aD =  v, that is, v is a boundary control; hence we try to 

solve an OSD problem with the objective function

I( D , v ) =  f f 1( X , u ( X ) ) d X +  ( f 2(s}v(s))ds.
J D  JdD

This change results in the following integral equality as the variational form of the el­

liptic equation

f  (uA4> +  V’/ )  d X  -  /  v(vV>-n) d s=  [  rf>g dX, € H%(D).
J D  JdD JD

For the fixed domain, the weak solution u and the control function introduce two posi­

tive Radon measures as

pu( F ) =  [  F ( X , u { X ) ) d X , V F e C ( S l ) , u v{G)=  /  G{s, V(s)) ds, VF € C(u;),
J D  JdD

where u> — dD  x V.  We replace the problem with a measure-theoretical one and fol­

lows the concepts of chapter 5 for the rest of the process to reach the solution.
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Some proofs of the above given results and many other related materials is described 

in the following Appendixes:

In Appendix A we introduce and prove the way of calculating the function (  in Chapter 

2, when the discretization is used.

Appendix B, related to the concepts of Chapters 4 ,5  and 6, explains why we chose the 

admissible set V M for a fixed M.  Also it is discussed there what could happen as M  

tends to infinity.

The frequent use of the subroutine A M O E B A  requires the description of this program 

in Appendix C; we also mentioned some limitations in using A M O E B A  in this Ap­

pendix.

Appendix D introduces the way of obtaining the suboptimal control function for the re­

sults of the numerical examples in Chapter 5. It is also explained there how one can 

plot this suboptimal control in 3-dimensions.



Chapter 2

Shapes and Measures

2.1 Introduction

A measurable set - a “shape” - can be considered as a measure. Indeed, let fi c  R 2 

be a bounded domain, and G C fi a measurable subset. If 77 € A/i+(fi) (that is, 77 is 

a positive Radon measure on the Borel subsets of the given set 17), then the following 

function F  defined by

is a continuous linear functional, and therefore it can be identified with a unique mea­

sure r]c in M +(Cl), by the Riesz Representation theorem (see for instance [55]).

In this Chapter, by defining an appropriate optimal shape design problem, we at­

tempt to treat a more general version of the inverse problem; that is: “When can a mea­

sure p € M +(J7) be approximated (weakly*, to be sure) by a shape C associated with

18
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the given measure rj as:

W )  =) Ja f t p  =  Ja fdri, V / € C(f2)” . (2.2)

We remind the reader that not only the shape C but also its boundary dC  will be in­

volved in the optimal shape design problem. By solving this problem, the shape C 

which satisfies (2.2), and also the curve dC  will be determined. In the first stage, by 

introducing necessary conditions, the appropriate classical optimal shape design prob­

lem will be setup. Then, by a process of embedding, this problem will be extended to 

a measure-theoretical one in which one looks for two unknown positive Radon mea­

sures. The new formulation has some advantages; especially, it always has a solution, 

as shown in an existence theorem. Changing the problem into an infinite dimensional 

linear programmingproblem helps to approximate the solution with the solution of the 

appropriate finite linear programmingproblem. Meanwhile, we will show that one of 

the measures can be evaluated in terms of the other one; hence the number of unknowns 

will be decreased. In the final stage the optimal control, the optimal shape and the min­

imum value of the performance criteria will be illustrated (approximately of course) 

from the result of the appropriate finite linear programming problem. We state here 

that one may use some standard minimization algorithms (like A M O E B A  in [47]) and 

penalty method (see for example [60] for details) as well, to consider some logical lim­

itations, more details will be given in section 2.8. At the end of the Chapter some nu­

merical examples will be given.
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2.2 The optimal shape design problem

2.2.1 Classical form of the problem

In order to define a classical optimal shape design (control) problem we need to describe 

its several components, such as the differential equation satisfied by the controlled sys­

tem, the performance criterion, conditions, etc. The conditions that we shall put on the 

functions and sets will serve two important purposes. First, they are the kind of reason­

able conditions which are usually met when considering classical problems; second, 

they will allow the modification of these classical problems into other problems which 

appear to have some advantages.

Let r  and u be two real-valued functions, and 9 a real variable; then consider:

• (z) The closed interval J  = [0, 27t] in R; its interior in the real line is J° = (0,27r).

• (ii)A  =  [0,1], abounded, closed set in R. The trajectory of the controlled system 

is constrained to stay in this set for all 9 6 J. In other words: 0 <  r(9) <  1 ,V0 € 

J .

• (Hi) r = ra, an element of A  which is to be the initial and final states of the 

trajectory of the controlled system.

• (iv) The bounded closed subset W  of R, the set in which the control function 

takes values.

• (v) Consider the following differential equation:

r(6) =  w(6) = g(0,r,w ) , 9 G J°, (2.3)
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where the trajectory function 9 G J  — ► r(9) € A is absolutely continuous 

and the control function 6 € J  — ► w(9) G W  is Lebesgue-measurable; this 

differential equation describes the controlled system.

• (uz) Let Cl =  J  x A  (the unit disk in polar coordinate), w =  J  x A  x W , and 

f 0 : Cl — ► R and h0 : oj — > R be two integrable functions in appropriate 

spaces. These functions make the integrands in the performance criterion for the 

related optimal shape design problem.

• (vii) Let dC  be a continuous simple closed curve and C be a (measurable) set 

which is bounded by dC  in the polar plane. Here C and dC  are the geometrical 

objects of the classical optimal shape design problem; a simple closed curve is 

a curve with the same initial and final points which does not cut itself. It means 

that the curve r  =  f(9 )  defined on [0i, #2] is called simple closed, whenever /  

satisfies in the following conditions:

(* i,/(* i) )  =  («*./(«*));

(6, f(0 ))  =  (O', f(e '))  when 9 ^ 6 '  and 9,9' G (91} 02](see [2]).

In a classical optimal shape design problem, the optimization takes place on the set 

of all admissible (geometrical) elements which are related to the problem. In our case, 

these elements are defined as follows.

Definition 1 : An admissible pair (C, dC) is a pair consisting o f measurable set C  C 

Cl and its continuous simple closed boundary, dC (which are mentioned before), so if  

dC is defined by the trajectory function r(9) then:

• i ) the differential equation (2.3) holds.
*

• ii) The boundary condition r(0) =  r(2-it) =  ra is satisfied.
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• Hi) The area o f C is a given number.

The set o f all admissible pairs (C, dC) is denoted by T .

The appropriate optimal shape design problem related to the mentioned question, is 

as follows:

M in im ize  : I(C, dC) =  f  f 0dA + f  —= = = h 0ds.
Jc JdC \/r2 -f- w2

S u b je c t to  : (C, dC) €

the area of C = given;

ra =  given. (2.4)

We know that in the polar coordinates when r > 0 and 0 < 6 < 2ir, the curve 

r  =  f{9)  is simple. Therefore with these constraints that have appeared in the determi­

nation of Q and lo, searching for the mentioned closed and simple curve is completely 

possible. But in the x y —plane (orthognal coordinates), finding the similar necessary 

conditions, for a curve to be simple and closed, is much more difficult.

In general the set of all admissible pairs, T ,  may be empty or may not contain the 

optimal pair (see [44] and [36]). Even if the set T  is nonempty, and a minimizing pair 

for (2.4) does exist in T ,  it may be difficult to characterize it; necessary conditions are 

not always helpful because the information that they give may be impossible to inter­

pret. Also the optimal pair may be very difficult or impossible to estimate numerically; 

there are no comprehensive computational methods for this purpose. However using

some effort could be better directed towards finding an alternative way, perhaps one
*

using other spaces, other sets, different things and so on. We shall apply such an ap­
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proach in the rest of this Chapter.

We shall effect the transformation of this classical optimal shape design into another, 

nonclassical, problem which appears to have better properties in some respects. Before 

this, in the next section, we shall analyse further this classical problem, to gain some 

idea on how to find the minimizer for the problem (2.4).

2.2.2 Conditions

To identify the optimal pair, it is necessary to point out some characteristics of the ad­

missible pairs (C , dC) in T .

We first consider the boundary conditions; let B  be an open ball in R 2 containing J  x A, 

and denote by C '{B ) the space of real-valued continuously differentiable functions on 

B  such that they and their first derivatives are bounded on B  (this space is the same as 

that of all real-valued functions that are uniformly continuous on B  together with their 

derivatives). Let <f> € C'{B) and define:

f t  (9, r, w ) =  ft(9 , r)w + <f>g{9, r) (2.5)

for all (9, r, w) £ u>. The function f t  is in the space C(oj) and we have:

(2.6)

for all (j> € C '(B )(  regard that in polar coordinates ds2 = r2d92 + dr2 =  ( r 2-|-u/2)<f02).
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We now consider a special case of (2.5). Let V (J°) be the space of infinitely dif­

ferentiable real-valued functions with compact support in J°. Define:

ip3 (9, t, w ) =  r{9)ip'{9) + w{9)ip{9) (2.7)

for all -0 € T>{J°). Now for an admissible pair (5(7, C) and tp G V (J°)  we have

( f  .  ̂ = ip 9(9,r,w)ds =) f  rp9(9,r(0),w(0))d9 =
ac J ( r 2 + w2)

/*2-7T
r{9)-ip{9) +  /  [r(0) — tü(5)]^(0)d0 =  r(27r)'0(27r) -  r(0)^>(0).(2.8)Jo

Since ((7,5(7) is an admissible pair satisfies (2.3) on J°, and, since the function -ip has 

compact support in J° , so supp(ij>) C J° — (0, 2tt); then 0 and 2ir do not belong to 

supp(ip), and therefore

ip(0) = ip fa )  =  0.

Hence the right-hand side of (2.8) is zero. We note that the equality (2.8) also can be 

derived from (2.6) by choosing

<p(0,r,w) =  r(9)ifi(9) ; (9 ,r,w ) G oj. (2.9)

It is important to single out this special case of (2.6); because later on, when we want 

to consider the approximation, we shall be forced to consider problems in which (2.6) 

is satisfied only for finite number of functions in C'(B); it will be necessary then to 

include among these some functions of type (2.9). So we wish to make sure that we do 

not overlook these.

The same situation arises for another special choice of functions in C'(B)\ put

(j>(0,r,w) =^Q(0); (0, r, w) G u, (2. 10)
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that is, a function which depends on the variable 0 only; then 4>3{6, r, w) =  0 (0 ), for all 

(0, r, w) € oj, also is a function of 0 only. We are led thus to consider a subset of C (v), 

to be denoted by C\ (cu), of the functions in this space which depend only on the variable 

0; its elements will be denoted as a function of three variables, (0, r, w ) — > /(0 , r, w ), 

even if their value does not change when r  or u, or both change. The equation (2.6) 

with the choice (2.10) implies that

( /  _ T r ;1 7J (0’ r ’ w)ds =)  f  f(0,r(O),w(6))de = a, ; f  e Cx{u) 
JdC \ I \T* H~ ^  ) JJ

(2.11)

where a /  is the integral of / ( . ,  r, u) over [0,27r], independent of r and u; we have put /  

for 0  in (2.10).

The set of equalities (2.6) and its special cases (2.8) and (2.11), are properties of the 

admissible pairs in the classical formulation of the optimal shape design problem. By 

suitably generalizing them we shall transform this into another nonclassical one which 

appears to have much better properties in some respects.

2.3 Metamorphosis

It appears that the situation mentioned in section (2.2) may become more favorable if 

the set T  could somehow be made larger; if we could only enlarge this set. Of course, 

in a given classical problem, the set of admissible pairs is fixed. If we somehow add 

elements to it, we are changing the problem, and considering a new one, a different for­

mulation nevertheless. This is precisely our intention; the basis of this metamorphosis 

is the fact that an admissible pair (C, dC) 6 T  can be considered as something else (like 

a pair of measures), that is, a transformation can be established between the admissible
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pairs and other mathematical objects. This transformation is an injection (one-to-one

mapping), so the optimal pair and its image under the transformation can be identified. 

It is possible then to augment the set of all images of optimal pairs under this transfor­

mation.

Hence we will replace C and dC  with the measures pc and vc respectively by the fol­

lowing proposition.

Proposition 1 : Let C, dC, Ü and u  are defined as before, then there exist two unique 

positive Radon measures ¡ic G M +(fi) and vc € M +(w) so that:

Proof: R 2, and therefore by the Heine-Borel theorem its closed subset Q, are locally 

compact Hausdorff topological spaces. Let g G C(i2). Since g is continuous, by us­

ing again of the Heine-Borel theorem, it has the compact support. So g G Cc(Q) and 

consequendy, C(Q) C Cc(i2). Now for all g G C'(fl) we define the functional Ac  as 

below:

pc(g) =  [  gdA, V<7 G C{9) 
J c

and

hds), Vh G C(u).

Ac  is a linear and positive functional in <7(fl) because of:

~ •  Ac(aigi +  0252) =  Sc(ai9i +  o>292)dA — 01 fc  9idA  +  02 fç  gidA  

— a\Ac{gi) +  a-2Ac(92)‘t for all <zi, <12 G R and gi,g2 G C7(iî).

•  If g(9, r) > 0 , V(0, r )  G 0  then abviously Ac(g) =  Sc gdA >  0.
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Hence, the conditions of the Reisz Representation Theorem in [55] are satisfied and 

thus there exists a unique positive Radon measure, say, pc 6 M +(Q) so that:

pc(g) =  Ac (g) = f  gdA, \/g e  C(Q). 
J c

Similarly, by defining:

A sc  : h € C^w) — > / hd6(= / —= = = h d s )  e  R ,
J j  Jac </(r2 to2)

A sc  is a positive linear functional on C(u>). Using again Riesz Representation Theo­

rem, we obtain the unique positive Radon measure, say, vc € ,M+(i7) such that:

uc(h) =  Adc(h) =  f  hdB{= f  --------—hds), 'ih  G C(ui).
J j  JdC J ( r 2 + w2)

□

The above Proposition shows that each pair ((7, dC) in T  can be regarded as a pair 

of measures (pc, vc) in the appropriate subset of M +(Cl) x ,Vi+(o;).The Uniqueness of 

p c and vc in the Proposition 1, state that there exist a transformation

{C, dC) — > (pc, Vc)

between those two sets. The following proposition shows that this transformation is an 

injection (a.e.).

Proposition 2 : The transformation ((7, dC ) — ► (Ac, Ac) o f the admissible pair in 

F  into the pair o f linear mapping (Ac, A sc), defined in the proofof Propositionl, is an 

injection.



Chapter 2: Shapes and Measures 28

Proof: It must be shown that if (C7j, dC\) and (C2, dC2) are not equal in T ,  then w<e 

have (Acu A ad) ^  (Ac2,Aac2)- Let (Cx,dC i) ^  (C2,dC 2) then because dCi and 

dC2 are two simple closed curves which are the boundary of Ci and C2, we have C\ ^  

C2 and dCi ^  dC2■ If we have Acj ( / )  =  Ac2( / )  for all /  G C(Cl), then

Jc fd A  = j c fd A ,  V / € C(Q).

Therefore f Cl- c 2 fd A  =  0» for all continuous functions /  in C(Q). Hence C\ -  C2 is 

an empty set (a.e.), or equally C\ =  C2 (a.e.), which contradicts with C\ ^  C2. (Also 

as Rubio did in [50], let Jx be the subinterval of J  so that rx(0) ^  r2(0) for all 0 E Ju  

then, one may make F  E C(oj) independent from w, equal zero on Jlt and such that it 

is positive on the appropriate portion of the graph r i( .)  and zero on that of r 2(.). Then 

the related linear functions are not equal.) □

Now each pair (C, dC) can be identify with the pair of related linear functionals 

(Ac, Aac). Some may think that we have not achieved something new, that we are 

simply writing some integrals in different way. But in reality, we have achieved some­

thing deep and useful, when identifying the optimal pairs with the positive Radon mea­

sures. Consider the equalities (2.6), (2.8) and (2.11), their left-hand sides are all inte­

grals which are exactly the same type as that appearing in the definition of the positive 

linear functional Aac in Proposition 1. These equalities can then be written by using 

the definition of the related Radon measures vc as follow:

= o, </> e

Vc{f) = af , f  E Ci(w). (2.12)
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Besides, by applying the definition of Ac  and its related Radon measure pc, the perfor­

mance criterion in (2.3) can be written as

l(C ,dC ) = pc( f0) + uc(h0).

The image of the set of all admissible pairs in T under the transformation (C, dC) —>• 

(pc, uc) (in the Proposition 2) is in the set of all those pairs of positive linear function­

als (Ac, Aac) on M +(fi) x M +(u), or equally those pairs of Radon measures (pc, uc) 

which satisfy the equalities (2.12). We shall now enlarge this image which, we repeat, 

can be identified with T  itself (remember that the transformation (C, dC) — ► (pc, vc) 

is injective); and define the new, nonclassical, problem. The classical problem can be 

rephrased as follows:

Among those pairs o f positive Radon measures on M +(Q)x M +(u>) o f the type (pc, uc), 

we seek one for which the number pc(fo) +  vc(h0) is minimum.

But in the new nonclassical problem simply do this:

We shall consider all pairs (p, v) o f positive Radon measures in A f+(fl) x M +(u>) 

which satisfy (2.12), and seek to minimize the function (p, v) — >• p ( f0) +  u(h0) over 

this new, larger set o f positive Radon measures, (we shall discuss later about the rea­

sons for taking this approach.)

We should emphasize that what we are doing is to consider the problem as defined 

over all measures in M +(Q) x M +(oj) which satisfy the conditions (2.12), as shown in 

(2.13). The measures satisfy (2.13) can be approximated (in weakly* sense) by actual 

pairs (C, dC).

Thus by using these concepts we can put our nonclassical problem in its definitive form, 

which will be used in the rest of the Chapter. As a conclusion, the new nonclassical op­
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timal shape design problem that we treat to find its minimizer, say (¿¿*, u*) e  M .+(0.) x 

M +(v), is as follows:

M in im ize  : I(C, dC) = p ( f0) +  v{h0) 

s u b je c t to  : i =  6$, <f> € C'{B)\

v m  =  0, t  e v ( r y ,

K / )  =  <* /» /€  C\{u). (2.13)

In the next, we shall examine the advantages of this new nonclassical problem with 

respect to the old one in section 2.2. Also we will indicate how the optimal pair of the 

measures can be used so that a reasonable modification of the original problem comes 

to be solved, and the optimal shape can be found.

2.4 The advantages of the new formulation

As mentioned before, in the classical form of the optimal shape design problem, gener­

ally the minimization of the performance criterion in (2.5) over the set T  is not possible, 

the infimum may not attained at any admissible pair; it is not possible, then to write the 

necessary conditions for the problem. Conditions which guarantee the existence of a 

minimum take usually the form of some sort of convexity requirements on the sets or 

functions; these conditions may or may not be artificial when imposed on a particular 

system. Also if the minimizer pair exists, it may be difficult to characterize it. More­

over the minimizer pair may be very difficult or sometimes impossible to be estimated 

numerically; there are no comprehensive methods for this purpose.

But in the nonclassical optimal shape design problem, which has been formulated as a
✓

measure-theoretical problem in (2.13), there are some characteristics which make this
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new problem more effective. Let the subset of M +(fi) x M +(u>) defined by the equal­

ities (2.12) be denoted by Q; then:

• i) The existence of an optimal pair of measures in the set <3 minimizing (/¿, v) — > 

p(fo) +  v(h0) is guaranteed because of the automatical existence theorem. We 

shall examine the interesting relationships between a particular topology on the 

set Q and existence properties.

• ii)  The function (p, u) — ► p ( f0) + v(h0), as well as the functions appearing in 

the left-hand side of the equalities (2.12) - those that defined the set Q C M +(ft) x 

M +(u>) - are linear in their arguments, measures v and p. This fact forms the 

basis of our approach; since the functions involved are linear even for those prob­

lems normally classed as nonlinear, the whole machinery properties of linear anal­

ysis can be used to attack the problem. So the computational methods for getting 

the solution are much easier.

• Hi) Since the set T  of admissible pairs can be considered, by means of the injec­

tion function {C, dC) — ► (Ac-, Aac), as a subset of Q, therefore

inf I (C, dC) >  inf l(p, v).r Q

Thus, here, the minimization is global, that is, the global infimum of the problem 

can be approximated well. So in the nonclassical form, the global minimizer of 

the problem will be found, or rather, a reasonable approximation to it.

As explained in [50], the infimum associated with the new formulation can be 

strictly less than the classical infimum.

In the next section we will explain that why the minimizer pair of measures (p*,u*) for
*

the problem (2.13) exists.
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2.5 Existence

It is the aim of this section to show that the linear function (p, v) — > p(fo) +  u(h0) 

always has at least one optimizer (an optimal pair of measures) in the set Q under the 

conditions on the functions and sets of the problem (2.13). This is based on simple com­

pactness properties of the weak* topology. The following proposition which is proved 

in [50] Chapter 2, will be used to prove the way to reach to the existence of the optimal 

pair.

Proposition 3 : I f  S  is a compact subset o f the Hausdorff space X  and the function 

y : S  — ► R is lower semi continuous (Isc) in S, then:

(i) infs y(s) <  -o o

(ii) There is an element s0 e S  such that y(s0) <  y(s),for all s € S; that is, the 

infimum o f y is attained on S.

We assume that Q is nonempty. Of course that the set Q may be nonempty while T  

is empty; one of the advantages of the nonclassical formulation. The space yVi+(fi) x 

M +(u) of all pairs of Radon measures will take on the role of the space X  in the above 

Proposition but no topology has been put on it yet. We try to find a Hausdorff topology 

on this space so that Q is compact and the function (p, v) — > p ( f0) +  u(h0) is lower 

semicontinuous. Of course, if no optimal measure does exist under our hypothesis we 

will never find such topology. But, as we shall see below, a Hausdorff topology can be 

found in which the set Q is compact and the function (p, v ) — > p ( fQ) +  v{h0) is not 

only lower semi continuous but actually continuous.

There are several ways of characterizing the topology we have in mind, known as weak*

topology, or vague topology on the space M(Cl) x M(u>). We note that this space

is a linear space, which will become a locally convex topological vector space when✓
given the weak* topology; this can be defined by the family of semi norms (p, v) — >
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|/i(F )| +  \v(H)\, (F, H) e  C(Q) x C(w); then, where gives rise to a basis of neigh­

borhoods of zero of A'i(ft) x M {w) is:

Ue = {(p t v) € M {0 )  x M(u>) : \p(Fj)\ +  \v{Hf)\ < e \j  = 1 ,2 , . . .  , r}  ,

for every e >  0 and all finite subset {(F j, Hj ) € C(Q) x C(u>);j = 1,2 Hence

M (Q )  x M ( cj) is a Hausdorff topological vector space (see [58] Chapter 19 and [11] 

Chapter 3 and 4). The following Proposition shows that Q is dense in M (Q ) x M(co).

Proposition 4 : The set o f measures Q C A4+(ÎÎ) x M +{u), is compact in the topol­

ogy induced by the weak* topology on x M +(w).

Proof: Denote Qv C M +(w) the set of those measures v e  M .+(u>) which satisfies 

in the equalities (2.13). Then by PropositionI I . 2 in [50], Q„ is dense in M +(u>) by 

the induced weak* topology on M +{oj). Moreover, Q =  A4+(iî) x Qv (because no 

measures of -M+(fi) is involved in the conditions of (2.13)), and each subset of Q is the 

form of A l +(f2)x Q' where Q' C Qv. Thus, by regarding the definition of compactness, 

Q is a compact subset of A f+(il) x M +(u>) under the same topology. □

The proof of the following Proposition is much the same as that one in [50] Chapter 

2, so it is omitted.

Proposition 5 : The fiinction (p, v) — ► p ( f0) + v(h0), mapping Q into the real line, 

is continuous.

The last two Propositions state that Q is compact and the function (p, v) — > p ( f0)+ 

u{h0) is continuous, therefore it is lower semi continuous. Now by applying the Propo­

sition 3 the following Theorem will be obtained.
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Theorem 1 : There exist an optimal pair ofmeasures {p*,v*) in the set Q C A4+(fi)x 

M +(u>) o f pair o f measures that satisfy the equations (2.12), for which p*(f0)+t/*(h0) < 

p(fo) +  v{h0),for all (p, v) € Q.

As a result of the Theorem 1, one can state that the problem (2.13) has an optimal 

solution in Q; but still it is difficult to obtain the exact solution, the underlying spaces 

are not a finite dimensional, the number of equations are not finite, etc. Hence we look 

for a suboptimal solution. In the next section, we will explain how the solution of (2.13) 

can be approximated by a solution of a finite linear programming problem.

2.6 Approximation

As noted before, the problem defined in (2.13) is a linear programming problem; all the 

functions are linear in the terms of the variables p and v\ moreover these measures are 

required to be positive. But this linear programming problem is not finite-dimensional, 

because not only the underlying space, M{Vt) x M(u>), is infinite-dimensional but 

also the number of equalities in (2.13) is not finite. (This kind of problems is called an 

infinite-dimensional linear programming problem; there is a large and growing litera­

ture on such problems, for example see [14]). In our case it is possible to approximate 

the solution of this problem by the solution of a finite-dimensional linear one (which 

is much more common and easier to deal with) of sufficiently large dimensions.. Be­

sides, by increasing the dimensionality of the problem the accuracy of approximation 

can be increased. In this section we'will first consider the minimization of (p, u) — ► 

p ( f0)+i/(h0) over a subset of M +(fl) x M +(u>) which contains those pairs of measures 

(p, v) satisfying only a finite number of constraints in (2.13). We remind the reader that 

a total set in an appropriate space is a set such that the linear combinations of its ele- 

ments are uniformly dense - that is, dense in the topology of uniform convergence - in
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the related space.

For the first set of equations in (2.13), let the set {fc  ; i =  1 ,2 ,3 , . . .  } be a countable 

total set in C'(B). These functions can be taken as monomials.

In T>(J°) consider the functions defined by:

sin27rj0 , 1 — cos 2irj9, j  — 1 , 2 , 3 , . . . ,  (2.14)

and then we introduce the sequence of functions {xh : h =  1 ,2 ,3 , . . . }  as

Xh = H>\9) +  wip(O)

when the function ip are the sin  and cos functions in (2.14). The set of these functions 

is total in V(J°).

Also let the set {f s : s =  1 , 2 , . . . }  be total in Ci(u); we will talk about these function 

later. Now we have the important following proposition which its proof is much like as 

the proof of Proposition 777.1 in [50].

Proposition 6 : For positive integer numbers M i, M 2, M 2 consider the problem o f min­

imizing

(p ,v)  — > /¿(/o) +  K M

over the set Q(M 1,M 2, M f) o f measures in M +(Q) x M +(u>) satisfying

v(<t>9i)  =  fyo  * =  1, 2 , . . . ,  M i ;

KXh) =  0, h =  1 ,2 , . . . , M 2)

v{f>) = a*, s = 1 , 2 , . . . ,  M3. * (2.15)
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I f  M i, M 2, M 3 tends to infinity, then

inf [p ( f0) +  v(K)] — ► inf[/i(/0) +  v(h0)\.
<J(Af1,Af2 ,M3 ) <3

Up to now, in the first stage of approximation, we have limited the number of con­

straints in the original linear program. But the underlying space is still infinite-dimensional. 

Next we are going to approximate this problem with the finite-dimensional one.

It will be assumed that the first function appearing in the first set of equations in 

(2.15) is =  1 for z  =  (6 ,r ,w ) G u>; then the first equality will be written as 

1/(1) =  27T.

Here we remember the fact that a unitary atomic measure with support the singleton 

point set z, to be denoted by 6(z) G M +(il) x M +(u), is characterized by i(z ) (F )  =  

F (z), F  E C(u), z e  u>. Then from the Proposition I I I .2 of [50] Chapter 3 (which has 

been taken from [48]), one can conclude that the measure v* in the set Q(Mlt M 2, M f) 

at which the function (p, v) — > p(fo) +  v{h0) attains its minimum has the form:

m

3=1

where m  = Mi +  M 2 +  M3; zf G u> and j3* > 0 for j  =  1 , 2 , . . . ,  m. Now for the other 

measure, let us consider a finite number of arbitrary continuous functions Fi ,F 2, .... Fn 

on f2 which is a Hausdorff topological space, so that FX{Z) =  1 for all Z  e il. Because 

p  is a positive Radon measure we suppose p{Fi) =  ci >  0; in the other words, without 

loss of generality we assume p is nonzero (which is what we are usually looking for).
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Therefore, from the Theorem A .5 in [50] (Appendix), p* has the form:

»=i

with a* >  0, Z* e  Cl for i =  1 , 2 , . . . ,  ra. Here 8(Z) is a unitary atomic measure on Cl 

with support at Z. The following proposition has been proved.

Proposition 7 : The optimal measure p* and v* for the function

( p , u )  — > p ( f0) + v(h0)

with the constraints in (2.15) have the from

n m
/*• =  T , < s iz i ) . >-■ =  £ # * ( * ; ) •

t=i j =l

Thus, the measure-theoretical optimization problem is equivalent to a nonlinear opti­

mization problem in which the unknowns are the coefficients a*, (3J and supports {Z*}, 

{z?} for i = 1 , 2 , . . . ,  n, j  =  1 , 2 , . . . ,  m. It would be much more convenient if  we 

could minimize the function (p , v) — ► p(fo) +  v(h0) only with respect to the coeffi­

cients a* and (3J; which would be a linear programming problem.

The answer of that possibility, lies in the next stage of approximation, where we intro­

duce dense sets in Cl and u>. Let Dq and Du be two countable dense subset of Cl and ui 

respectively; then as a result of Proposition 7/7.3 in [50], measures p 0 € A f+(f2) and 

v0 € M +(w) of the form

A* » Y ^o ii8{Z i) , v0 
1=1 3=1

(2.16)

exist such that Zi 6 Da, zj G and they can approximate p* and v* (respectively).

rv [
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This result suggests that the problem (2.15) can be approximated by the following linear 

programming one which Z{ and Zj fori =  1 , 2 ,N , j  =  1 , 2 , . . . ,  M, belong to dense 

subsets of ii and u> respectively.

Minimize : 

Subject to :

N  M

E a M Z )  +
*=l i=i

ouj. >  0

P i >  0,
M

y i  Pj ) ~  4̂>k >
i -1

M

^2PjXh.(zj) =  0) 
¿=1 

M
S &/•(**) =  a*>
3=1

* =  1 ,2 , . . . ,JV;  

J =  1 , 2 , . . . ,  M; 

k =  1 , 2 , . . . ,  Mi;

/i =  1 ,2 , . . . ,  M2;

3 =  1 , 2 , . . . ,  Af3. (2.17)

For the last set of equations in (2.17) we define;

/.(* )  =
1

0

if e e J s 

otherwise,

where J3 =  and a4 in (2.17) is written for the integral of f s over J .  Since

these functions are not continuous, two remarks need to be made concerning their suit­

ability:

• (i) Each of the functions / „  s — 1 , 2 , . . . ,  M3, is the limit of an increasing se­

quence of positive continuous functions, f 3k; then if v is any positive Radon mea­

sure in M +{u), v ( fs) =  l im ^ ^  1/ ( / , J .

•  (ii) Consider now the set of all such functions, for all positive integers M3; the 

linear combinations of these functions can approximate a function in C\(u>) ar- 

bitrarily well (see [3] Theorem 24.4), in the sense that the essential supremum
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(see [18]) of the error function can be made to tend to zero by choosing in an ap­

propriate manner, a sufficient number of terms in the corresponding expansion.

Now, by using the solution {a* , a ^, . . . ,  a*N, f t , /?£, . . . ,  fi*M} of the problem (2.17), 

one is able to construct the pair of suboptimal trajectory and control functions. Of course, 

we only need to construct the control function, w(-), since the trajectory function, r(-), 

then is the corresponding solution of the differential equation (2.2), with the initial val­

ues r(0) =  ra, r(2ir) = ra. The construction of the control function is based on the 

methods introduced in [50] Chapter IV . This pair of trajectory (shape) and control func­

tions, turns out to be the solution to the modified shape design problem; we note that the 

functions f 0, h0 and ^  will be required to be Lipschitz rather than merely continuous 

for these properties to hold (see [50] Chapter IV).

2.7 Relationships between the measures ji and v

As mentioned before, the measure p is not involved in the constraints of (2.13) and it ap­

pears only in the performance criteria of the optimal shape design problem. We would 

like to express this measure p in terms of the boundary measure v. If this were be pos­

sible, the flj’s would be the only unknowns in (2.17). To confirm this possibility, first 

we prove the following proposition.

Proposition 8 : Suppose p  =  then there exists a ¡/-measurablefunction

£ so that

K 6 ) =
0

Zi € C 

otherwise.

(Here the dependence o f the fiinction £ on the point Zi is shown as & =  £^).
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Proof: To define the function (  we use the idea of generating an electromagnetic field 

by an infinite wire. An infinite wire that carries a fixed current, which is perpendicular to 

the polar plane, at an arbitrary point Zi, produces an electromagnetic field B  at distance 

p from Zi. This field has two components Bp and Be (in plane) in the direction of p and 

perpendicular to it (see figure 2.1, that p is the line segment between the points Zi and 

z  ). The components B p and B z are zero, so B  =  Be =  where k is a constant 

(see [45]). We wish to have a circulation equal to 1 at z = (r, 6),

Hence we should choose k =  1; so in our case B  = Be =  Moreover, in cylindrical

B
Be

Bp

Figure 2.1: Electromagnetic field produced by an infinite wire

coordinates, with the unit vectors up, ue and u2, we have:
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Hence, if p ^  0 then (2.18) shows that CurIB = 0 therefore by Stokes’s Theorem the 

circulation is zero unless p — 0. In other words the circulation at Zi e  C is nonzero. 

So we define the function $  as the integrand function for calculating the circulation at 

any point z E u>. So we have

Thus is the circulation of B  at Zi, and so

v
Z{ e C  

otherwise.

To complete the proof, it is enough to define:

£(z)  =  Vz € u.

□

Now by applying Proposition 8, in the related equation (2.16) one could have p =  

E i l i  v{(i)S(Z.i) and hence
M

K /« ) =  ]C A ‘To,
3=1

where 70 =  fo(% is a function defined in ft. So the performance criteria in (2.17) 

changes into
M

E & ( A o + 7 . ) .
j=i

The main point here is that a t ’s, in the definition of (, are still unknown and our effort 

is to find them. For a given partition {ft»}^! on ft, we call each ft; a quasi-rectangular 

subset of ft; consider an extra condition on p. that for all (p, v) G Q (M i, M 2, M3) we
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have:

p(Cli) =  area o f Cli, Vi =  1 ,2 , . . . ,  iV.

Let select a set of points {Zi ,Z 2, . . . ,  Zm} as a subset of a dense set in Cl where Z{ € Cli 

for all i =  1 , 2 , . . . ,  JV. Then from (2.16) we have:

w
p (CU) =  E ^ M ^ )  =  a *-

i=l

Thus by regarding the above discretization on Cl, one can consider a* in the definition 

of £ as the area of the quasi-rectangular Cli, for each i =  1 , 2 , . . . ,  iV. (In Appendix A, 

we have shown how one can compute £ by putting a discretization on Cl.)

Finally, if we chose the L number nodes in a dense subset of u> by discretization, 

the optimal shape design problem in (2.3) can be approximated with the result of the 

finite linear programming problem below in which the unknowns are the /3n’s. We put 

zn =  (0n, r n, un), which is a node in the discretizations.

M inim ize: 

subject to :

E  M h° +  7o)(*»)
n—\

Pn>  0,
L

E l  f in (!>i{.zn )  =
n= 1

E  AiVvC21» ) =
n=l
L

E  finfs{zn) — as, 
n=l

L l
E  =  given area‘

n =  1,2,. . . ,L ;

* =  1,2,. . . , M i;

3 = 1,2,.. . , m 2

5 = 1 , 2 , . . ■ , m 3

(2.19)
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We note that the last equation in (2.19) is separated from the second set of the equations 

to emphasize the area of C; the equation shows the area of C because of

=  area of C.

2.8 Limitations

As Rubio in [50] has proved, the resulted trajectory from the solution of (2.19) is close to 

the real one when the functions in the performance criteria are the Lipschitz functions. 

We remind the reader that a function /  is said to satisfy a Lipschitz condition with a 

Lipschitz constant k on D, if there is a constant k such that for all x, y e  D  we have

I / (* )  -  f ( y )  l< k I x -  y I •

But the function £, and therefore 7<>, which appears in the performance criterion, is 

not Lipschitz. So the optimal solution of (2.19) may not be an accurate approximation 

for (2.3). However, if the function £ is considered in the context of our discretization 

scheme, one can see from Figure 2.2 below that one can replace £ by a function with 

Lipschitz constant p .

Thus, since a large Lipschitz constant needs a large number of equalities in (2.19), 

to achieve a given accuracy, finer discretization may need a large number of such equal­

ities.

If the function f 0 is not a continuous, as in Example 2 below, we can not expect 

good approximation; however, we have found that the resulting shape provides a good
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Figure 2.2: A function with Lipschitz constant p

starting point for a standard minimization algorithm, like A M O E B A  in [47]. In our 

case, the result of (2.19) is a very good initial solution, because it is satisfied in all the 

necessary conditions of the problem and in some sense makes the performance crite­

rion minimum. By using a standard algorithm the initial solution, initial shape, can 

be improved into another one that is the nearest one to the minimizer of the problem 

(2.4). Plainly the necessary conditions (like area condition) may be applied by using 

the penalty method with the minimization algorithm (see [60]).

2.9 Numerical examples

2.9.1 Example 1

In this example, we looked for the optimal shape with the area of 0.6 which is located
*

inside the Lemniscate r — sin 20,0  <  0 < 2t  as much as possible; this shape is
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supposed to contain the fixed points (0,0.5) and (27r, 0.5) as its initial and final points. 

Thus we chose h0 =  0 and

0 r >  sin 29
/.(* , r)  =  «

i—  sin 29 otherwise.

/ 0is a continuous function. We wish to minimize the integral of f 0 (which is nega­

tive inside the Lemniscate) on C; that is, C will be as such is allowed by the constraints, 

inside the Lemniscate. (Note that the fixed point (0,0.5) is outside of the Lemniscate; 

so it must cause that a part of the optimal shape to be located outside of Lemniscate). 

By trial and error we chose W  — [—0.3 , 0.3]; then

u> =  [0 , 27t] x [0 , 1] x W, and =  [0 , 2-k) x [0 , 1].

Then by selecting the following 10 points in W :

21 15 9 3 3 9 15 21
’ —90’ *~90’ ~ 9 0 ’ 90’ 90’ 90’ 90’ 90

0.3,

and choosing 10 angles in [0 , 2it}\

7r 37T 197t

: 10’ 10 ’ ‘ ‘ ’ 10 ’

and also by 10 values in A  =  [0 , 1] as:

a discretization on a» was made with M  =  10 x 10 x 10 =  1000 nodes z  =  (r, 9, w ); 

each component of nodes is a rational number (we supposed ir = 3.141592654) and
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hence all nodes belong to the dense subset of u>.

With respect to Q, we divided it by 10 circles with radius

r  : 0 .1 ,0 .2 , . . . ,  1,

and the following 10 lines
27T 4-7T

: T ó’T ó’ "
. ,2 tt,

into N  = 10 x 10 =  100 subdivisions; and the node Zi in subdivision i (i =  1 , 2 , . . . ,  N) 

was selected as the top left comer of each subdivision. We emphasize that each 10 sub­

division of fi which has the same radius (i.e. same r j ,  has the equal area. Hence:

For a fixed k, the area of the inside part of the circle with radius which is located 

outside the circle with radius i is equal to:

7r(7fc _  rk-1) =  7r(r * +  r fc-l)(r fc _  rk-1) =
ir(2k -  1) 

100

Now each ten a t ’s corresponded is one-tenth of this area; it means, a* =

Finally when k takes value from 1 to 10,100 values for c^’s will be determined. Ac­

cording to the discretization, the calculation of the function £ is explained in Appendix 

A.

The results of the appropriate finite linear program (2.19) is presented in the following 

table.
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LN CO N STATE VALUE LO W ER BO UN D U PPER BO UN D LA G R M ULT RESID U A L

L  1 EQ 0.15543I2E -14 a a -0.6396E -02 01554E~14

L  2 EQ 3.141593 3.141593 3.141593 0.2306E -02 01066E -13

L  3 E Q -O 1062483E -12 0. 0 -0.4027E -03 -O 1062E-12

L  4 EQ -03106404E -12 a 0. 07529E -03 -0J1 0 6 E -1 2

L  5 EQ -0 J731948E -12 0. a -01027E -03 -0.1732E -12

L  6 E Q 09925394E -13 0. a -0.1323E -02 0.9925E -13

L  7 E Q -a8298917E -14 a 0. -O 139G E-02 -0 8 2 9 S E -I4

L  8 E Q 0.1403322E -12 a a 0.4485E -03 0.1403E -12

L  9 EQ 0J574918E -13 a a 0J10 2 E -0 3 03575E -13

L  10 E Q 0.1654232E -12 0. a -0.6917E -03 0.16S4E -12

L  11 E Q 0.6283185 0.6283185 0.6283185 -0.2924E -02 -0.2220E -15

L  12 E Q 0.6283185 06283185 06283185 -01207E -01 04441E -15

L  13 EQ 0.6283185 0.6283185 0.6283185 -0.9974E -02 0 .444IE -15

L  14 E Q 0.6283185 0.6283185 06283185 -O 1109E -17 0

L  15 EQ 0.6283185 0.6283185 0.6283185 -0.2596E -02 -0.2220E -15

L  16 E Q 0.6283185 0.6283185 06283185 -0.1633E-01 -03331E -15

L  17 E Q 0.6283185 0.6283185 06283185 -O1G53E-01 -0.4441E -15

L  18 E Q 0.6283185 06283185 0.6283185 -0.6583E -02 -O 2220E-15

L  19 E Q 0.6283185 06283185 0.6283185 -0.3740E -03 a

L  20 EQ 0.6283185 0.6283185 0.6283185 -O 4899E -02 0 J6 6 2 E -1 4

L  21 EQ 0.6000000 06000000 0.6000000 O 5993E-01 -0.6661E -15

E X IT  E04M B F -  O PTIM A L LP SO LU TIO N  FO U N D .

LP O B JEC TIV E FU N CTIO N  *  1.568288D -03

N O . O F ITERA TIO N S =  65

ii
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We remind the reader that the subroutine E 0 4 M A F  from iVAG-library Routine 

have been applied for solving the related finite linear program.

From these results, on the base of (2.3), we obtained the suboptimal control (which is 

plotted in Figure 2.3) and the following points which are located on the boundary of the 

suboptimal shape:

(0.252828138409,0.4241515554631) , (0.628318530718,0.5367986888222),

(1.192201841392,0.3676336888977) , (1.256637061435,0.3483031221167), 

(1.680677884428,0.2210908701640) , (1.884955592153,0.1598075554112), 

(2.246363104187,0.0513852974929) , (2.320256157762,0.07355321664839), 

(2.513274122871,0.0156478248144) , (3.012859572856,0.1655234806540), 

(3.141592653589,0.2041434102453) , (3.275060367330,0.2441837299362), 

(3.769911184307,0.3926389956762) , (4.300393415010,0.2334943201414), 

(4.398229715025,0.2041434289707) , (4.846031655481,0.0698028414956), 

(4.847613316953,0.0693283430353), (5.026548245743,0.1230088291382), 

(5.468624725335,0.2556317914605) , (5.654866776461,0.3115044145691), 

(6.283185307179,0.4999999999999).

Linking these points, creates the optimal shape which is plotted with the Lemniscate in 

Figure 2.4. Note that the point (0,0.5) is outside of Lemniscate and that this curve is 

not simple; in spite of all these, most of the shape is inside it. So we did not apply any 

standard minimization Algorithm. However one may use it to get a better result.
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Optimal control function

Figure 2.3: The optimal control function

Optimal Shape

Figure 2.4: The optimal shape and the Lemniscate
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2.9.2 Example 2

For the second example, chose one h0 =  0 and

M0 , r )

*

1 rsin(0) <  0.25
<

0 otherwise.

In the other words, the above function f 0 states that we are looking for a closed shape 

C satisfying in the conditions of (2.4) and located under the line r sin(0) =  0.25. We 

remind the reader that the function f 0 is not a continuous function and therefore it is 

not a Lipschitz function. For this reason (as shown in section 2.8), we will not an­

ticipate that the resulting shape from (2.19) does take place completely under the line 

r sin 9 =  0.25 and hence we will use a standard minimization algorithm (for example 

A M O E B A  in [47]) as explained.

Finding O ptim al Control and Trajectory:

To find the optimal control and shape, first we discretize on fi andò». We selected ev­

erything the same as in Example 1, except W  =  [-0.1,0.1]; then we setup the appropri­

ate finite linear program in (2.19) by using 21 equations (Mi =  2, M2 =  8, M3 =  10). 

To solve the problem, we applied the EO AM AF  from iVAG-library Routine; the sum­

mary of the result is shown in the following table.
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LN CO N STATE VALUE LOW ER BO U N D U P PE R  BO U N D L A G R M U LT RESID UA L

L  1 EQ -0.7766357E-I4 a 0. -0.4164 -0.7766E-14

L  2 EQ 3.141593 3.141593 3.141593 a i7 3 l -0.1008E-12

L  3 E Q -0.3487488E-13 0. 0. -0.1088E-01 -0.3487E-13

L  4 E Q -0.1365852E-12 a 0. 0.4233E-02 -0.1366E-12

L  S E Q 0.9259538E-12 0. 0. a i2 9 3 E -0 2 0.9260E-12

L  6 E Q -0.1600386E-12 0. o. -0.9263E-02 -0.1600E-12

L  7 E Q -0J015779E -13 0. a -0.1069E-01 -0 J0 1 6 E -I3

L  8 E Q -0.2739475E-13 a 0. 0.4933E-02 •0.2739E-13

L  9 E Q ■0A025669E-12 0. 0. -Q.2377E-Q2 -0.4026E-12

L  10 EQ 0.29976Q2E-12 a a -0J872E -02 0.2996E-12

L  11 E Q 0.6283185 0.6283185 0.6283185 -0.2469E-01 0.6661E-15

L  12 E Q 0.6283185 0.6283185 0.6283185 - a i5 2 t a

L  13 E Q 016283185 0.6283185 0.6283185 -0.2014 -0.3331E-15

L  14 E Q 0.6283185 0.6283185 0.6283185 f -0.1005 -0.222CE-15

L  15 E Q 0.6283185 0.6283185 0.6283185 -0.4468E-01 0.6661E-15

L  16 EQ 0.6283185 0.6283185 0.6283185 -0.1662E-01 •0.4441E-15

L  17 E Q 0.6283185 0.6283185 0.6283185 -0.155® -01 -0.5773E-14

L  18 EQ 0.6283185 0.6283185 0.6283185 -0.4140E-01 -03331E-15

L  19 E Q 0.6283185 0.6283185 0.6283185 -0.5923E-01 -0J331E -15

L  20 E Q 0:6283185 0.6283185 0.6283185 -Ü.8159E-01 -0 .660® -13

L  21 E Q 0.6000000 0.6000000 0.6000000 -0.1096 -O J520E-I3

E X IT  E04M BF - OPTIM A L LP SO LUTIO N FO U N D .

LP O BJECTIV E FU NCTIO N -  1.44859SD-02

N O . OF ITERATIONS » 7 8

u
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The resulting optimal control function, given by the solution of the reminded linear 

program, was modified in the Figure 2.5 by using Rubio’s method in [50] Chapter 5.

In the case of equation w{6) =  the trajectory function r(9) (shape) can be taken 

by integrating from the above optimal control function over the interval [0 , 27t]. Be­

cause the control is a piecewise-constant function, the mentioned integration gives us 

the following 21 points which are located on the boundary of the suboptimal shape:

(0.000595979095,0.4999404020895) , (0.628318530717,0.437168145991),

(1.256637061435,0.3743362919838) , (1.831261918818,0.3168738053893), 

(1.884955592153,0.3115044379758), (2.206005111473,0.2793994855654), 

(2.513274122871,0.2486725839677) , (3.101783117978,0.1898216835801), 

(3.141592653589,0.1858407299596) , (3.141592887656,0.1858407065529), 

(3.509669220769,0.2226483458974) , (3.769911184307,0.2486725465170), 

(4.074511522101,0.2791325852891) , (4.119983818585,0.2836798156829), 

(4.398229715025,0.3115044098877) , (4.727550645424,0.3444365083256), 

(5.026548245743,0.3743362732585) , (5.494982199890,0.4211796763514), 

(5.654866776461,0.4371681366292) , (6.145061554817,0.4861876224997), 

(6.283185307179,0.4999999999999).

Linking these points creates the shape which is plotted in the Figure 2.6, with the
✓

line r  sin 9 = 0.25. (Note that here X  and Y  in the Figure are the Cartesian axes.)
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Control function

Figure 2.5: The optimal control function

Figure 2.6: The suboptimal trajectory function
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The optimal shape

Figure 2.6 shows that a part of the shape C is located over the line r sin 9 =  0.25, 

which was predicted before in section 2.8, because of the limitations; for this reason, a 

standard minimization algorithm and the penalty method have been used. As we knew, 

the optimal shape must go through the initial point (0,0.5) and the same final point 

(2-7r, 0.5) when its area is 0.6. Hence we need a constraint to present the area when 

each point (r, 0) on the boundary of C, is satisfied at the conditions 0 <  r < 1 and 

O < 0 <  2tt. Also, it is necessary to have another condition on the shape to be located 

under the line. Precisely it can be done by selecting a suitable performance criterion 

like the previous one in the finite linear programming case.

Let 9i, i — 1 , 2 , . . . ,  19, be the fixed resulted angles from (2.19) without the initial 

and the final value; and suppose Zi =  (0i, r»), i =  1 ,2 , . . . ,  19, are nineteen points in 

i2. Assume r; : i = 1 , 2 , . . . ,  19, are variables and

m )  =
Tj sin(#i) <  0.25 

otherwise.

We define:

F,(Z,) = E / . t Z i ) ,
*=1

which is obviously a function of (r\ , r 2, . . . ,  ^g).

Let 9o =  0, r0 =  0.5, 02o = 2ir, r 2o =  0.5, and the area of that part of the shape which 

is located between the lines 9 =  9i-l.and 9 =  9u be estimated by the same part of the 

circle with radius r*+^~1. Thus the area condition for the optimal shape C  is introduced 

by:

P {r i,r2, . . . , r i 9) = 2 --------------£--------------=  0.6,
¿=i ^ 8
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which is also a function of the (ri, r2, . . . ,  r i9) as well. Hence for the resulted fixed 

values of 6t’s, we can look for the answer of the following constrained minimization 

problem over all (rx,?^, . . .  , r 19) e  [0 , l]19 C R 19.

To get the solution of (2.20), it may possible to use one of the related constrained 

minimization programs; but for the standard algorithm (like A M O E B A ) it is better 

to replace the above constraint problem with an unconstrained one. There are several 

ways to do this (see for example [60]). We chose the penalty method and applied the 

function c[P (ri, r2, . . . ,  r 19) -  0.6] as a penalty function for a real positive constant c 

(for more details see [60]). Hence the appropriate unconstrained optimization problem 

at this stage is as follows:

M i n i m i z e :  F0(r i,r2, ■ ■ • , r 19) +  c[P(rlt r2, . . . ,  r 19) — 0.6]. (2.21)

In spite of the fact that F0 is not a continuous function, some standard minimization 

algorithms for continuous performance criteria like, E0AJAF  NAG-library Routine, 

are applicable. These algorithms can be run by a little change in the performance cri­

teria to make it continuous without any changes in the value. One of the advantages of 

applying this type of algorithm is that they (usually) give the global minimizer for the 

given function. For this purpose let us to define:

subject to :

M i n i m i z e : F0(r i,r2, . . . t n 9) 

P ( r i , r 2, . . .  , r ig) =  0.6.' (2.20)

0 rj sin(0t) <  0.25

fl(Z j)  =  f o  -  a ; ) ( ^ )  0.25 < Tj sin(0j) < 0.25 +  *

1 10.25 -f €i <  rj sin(0»)
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where a* =  and 0 <  tj <  1, for z =  1 , 2 , . . . ,  19. Now for each i, the function /■ 

is a continuous function and therefore the function

19
K ( z i) = 5 2 f ; ( z i);

«=1

is also continuous. Moreover, because for a sufficiently small value of e» the value of 

(rj — is a large enough positive number then in the minimization algorithm,

this value would be disregarded automatically (note that for 0.25 <  r,sin (0 ;) <  0.25 +  

ei the value of the (rj — at) is positive). As a result, the problem (2.21) can be replaced 

by the following one for the mentioned algorithms,

M i n i m i z e :  F'0(ru r2, .. ■ ,r x9) +  c[P(rlyr2, . . .  , r 19) -  0.6]. (2.22)

We applied the EOAJAF minimization algorithm from NAG Routine library to find 

the solution of the (2.22) with e» =  0.11, Vi =  1 , 2 , . . . ,  19 and c =  20. Also the previ­

ous result from the linear programming problem was used as an initial solution which 

was necessary for the Routine. The optimal value of the performance criteria (2.22) was 

zero which means that all of the points has been located below the line. The resulted 

ri s from E O iJA F  were:

0.35523058385207 , 0.14012364797159 , 0. , 0 ., 0.19260268747351 

0.38302730144207 , 0.31290102243751 , 0.29205929667316 , 0.30138263551773 

0.34559652292155 , 0.39060671726193 , 0.42975811313137 , 0.45079795177859 

0.48921228505258 , 0.53850854481107 , 0.59098608536728 , 0.65079219282540

0.69405223541451 „0.75117213275203.
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The optimal shape (dC ) with the line r sin(9) = 0.25 are plotted in the Figure 2.7. 

Note that X  and Y  in the Figure, are the Cartesian axes.

Figure 2.7: The Optimal Shape



Chapter 3

Shapes, Measures and Elliptic 

Equations in Polar Coordinates

3.1 Introduction

In the present chapter, we consider again J  =  [0,27r], J° =  (0,27r), A  =  [0,1], 

Cl = J x  A, and consider the variables 9 and r in polar coordinates, to belong to J  and A  

respectively. We also assume that the curve dC  is a simple and closed curve in R 2, con­

tains the fixed point (0o, r o); the curve is defined by the equation r  =  r{9) e  A, V9 £ J. 

Moreover we consider w = % as a bounded function on J  which takes values in the 

bounded set W  C R. Let G C R be a Lebesgue measurable set which is determined 

by dC  as its boundary; it is supposed that G has a fixed area. We remind the reader that 

the pair (C, dC) is the same as one in Chapter 2. Let u : ft — * R , a differentiable and 

bounded function in G2{C) in which its first derivatives are bounded in C, be a solution 

for the elliptic problem

div(fc(0,r)Vu) — f(9 ,r ,  u) =  0, (3.1)
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with the Neumann condition

V «.n |ac7 =  v. (3.2)

Here it is supposed that the function u takes values in the bounded set U C R, k(9, r ) 

is a positive function in C71(C'), /  : ü  x U — > R is a bounded function in C(Q x 

U), n  is the outward normal vector on dC, and v : J  — > R is a bounded Lebesgue 

measurable function which takes values in the bounded set V  C R. In this Chapter, the 

functions v =  i>(0) and w = w(9) are considered as the pair of control functions, and 

the functions r  =  r(9) and u =  u(&, r ) are regarded as the pair of trajectory functions 

in a classical optimal control (or shape design) problem.

Definition 2 : The quadruplet (C, dC, u, v ), defined above, is called admissible i f  the 

elliptic equations (3.1) and (3.2) have a bounded solution on C. The set o f all admis­

sible quadruplets is denoted by 7 .

Based on the mentioned concepts, the aim of this Chapter is to find the minimizer of 

the following performance criterion, I, over the set 7  by applying the similar method 

as explained in the previous Chapter.

I (C ,d C ,u ,v )=  f fo(Ö,r,u, Vu)drdÖ  + Í h0(9 ,r ,w ,v) ds; (3.3)
JO  J  dO

here / 0 and h0 are two given continuos functions.

Indeed, when one regards the functions v (appeared in (3.2)) and w (corresponding to 

dC  and C) as the control functions, and the functions u  (appeared in (3.1) and (3.2)) 

and r  (corresponding to dC  and C) as the trajectory functions, we are going to solve
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the following optimal shape design problem over T \

Minimize : l (C ,d C ,u ,v )  = f f 0drd$ + f h0ds
J  C  » /  dC

Subject to : (C , dC, u, v) € (F\

the area of C = given;

6a and ra = given; 

div(k(0, r)S7u) — f ( 9 , r , u ) =  0;

Vu.n!ac = v - (3-4)

3.2 Weak solution

Definition 3 : The function u is called a classical solution o f the elliptic equations (3.1) 

and (3.2) whenever u 6 C'1(C') n  C 2(C) and satisfies the equations (3.1) and (3.2).

It is difficult to identify a classical solution for the general case of the elliptic Neumann 

problem; thus usually it has been tried to find a weak (or generalized) solution of the 

problem, which is more applicable in our work. The main idea in this replacement, is to 

change the elliptic problem into the variational form; the following Proposition shows 

that how this can be done. It is necessary to introduce a new space first.

Definition 4 : The Sobolev space o f order 1 onC  is denoted by H X(C) and defined as

H \C )  =  {ft 6 L2(C) : € L2(C), ^  € 1 , ( 0 )}  .
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We follow Mikhailov in [38] to prove the below Proposition.



Proposition 9 : Let u be the classical solution o f (3.1) and (3.2), then we have the fo l­

lowing integral equality
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f  (kVuV<p + ftp) 
Jc

rdrdQ — v ds — 0, G H \C ) . (3.5)

Proof: By multiplying (3.1) with a function <p G H X{C) and then integrating over 

C, we obtain

f  ipdiv(k'Vu) rdrdQ — f  p f  rdrdQ =  0. 
v c  </c

Because div(fcVii) =  kA u  +  'VuVk  (see for instance [38]), thus

J (pkA u  rdrdQ +  J (pkVuVk rdrdQ — J <pf rdrdQ =  0. (3.6)

Green’s formula (see [38]) gives rise to

/  (pkAu rdrdQ =  /  tp k ^ -d s  — f  VuVipk rdrdQ. (3.7)
Jc Jqc on Jc

But V(<pk) = <pVk + k\/<p; hence by considering (3.2) and applying (3.7) in (3.6), the 

equality (3.5) is obtained. □

Definition 5 : A bounded function u G H l {C) is called a bounded weak solution o f 

the problem (3.1) and (3.2) i f  it satisfies the equality (3.5) for allfiinction <p G H l (C).

Note that the existence of a classical and a bounded weak solution for a problem like 

(3.1) and (3.2) has been considered in many references; in Chapter 4 we will explain 

some of these results very briefly. Considering the above Proposition, instead of looking 

for the minimizer of (3.4) in T  we seek the optimal solution of the following problem



in the same admissible set.
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Minimize : 

Subject to :

f (JcVuVip +  f<p) Jc

I(C ,d C ,u ,v )  = / f 0 drdO+ / h0 ds
J G v  dG

(C ,d C ,u ,v ) e T -  

the area of C = given; 

6a and r 0 =  given; 

rdrdd — f kipv ds =  0, Vy> € H X(C).
J  dG

(3.8)

It is usually difficult and sometimes impossible to obtain the solution of the problem 

like (3.8); some of these difficulties are explained in Chapter 2. In the next section, 

we will replace the problem with the new one in which positive Radon measures are 

involved. The following integral equality, based on the Green’s formula, will be used 

later;

[  (uA(p +  VuV<p)rdrd$ =  f  ipv ds, Wtp G H X(C). (3.9)J C J dG

3.3 Metamorphosis

In general, the minimization of (3.8) over T  is not easy. The infimum may not be at­

tained at any admissible quadruplet; it is not possible, for instance to write necessary 

conditions for this problem. We proceed then to transform it into a measure-theoretical 

form. Because u e  H X{C) and bounded, then V u is a bounded real-valued function; 

let V u takes values in the bounded set U', then we define

i l’ = Q x U x U', J  =  u  x V  (that w =  J  x A  x W).

it
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An admissible quadruplet (C, dC, u ,v )  e  T  introduces two functionals. A bounded 

weak solution of (3.1) and (3.2) defined on C , determines a linear, bounded and positive 

functional

on the space C(Q'). Also a control function v, defined on dC which satisfis (3.2), in­

troduces a linear, bounded and positive functional

on the space C (u/). On the base of the Riesz Representation Theorem (see [55]), the 

above functionals represent two positive Radon measures as shown in the following 

Proposition; the proof is similar to the proof of Proposition 1, so it is omitted.

Proposition 10 : There exists uniquely apair o f positive Radon measures Au £ 

and crv e  ¿\4+(co'), so that

Proposition 10 shows that each admissible quadruplet (C, dC, u, v) e  T  can be con­

sidered as a pair of measures (AU) av) in the appropriate subset of yVi+(ft') x M +(u>'),

(3.10)

AU(F) = /  F(9,r,u,Wu)drd9 =  uc (F), VF G C(Q'),
J o

ov( G ) =  [  G{9,r,w,v)d9 =  vec{G), VG G C(w')- (3-12)

say T  again; thus there exist the transformation

(C ,d C ,u ,v )  e  F  — ► ( \ u,crv) € M +( i r )  x M +(u').



As we showed in Chapter 2 (see Proposition 2), this transformation is injective. Hence 

someone may think that nothing is changed and the same difficulties as before (existing 

the optimal pair, achieving to the minimizer, belonging the minimizer to T  and so on) 

still remain. So, we will extend the underlying space of the problem; instead of seeking 

in the set of all pairs ( Au, crv ), T ,  we look for the minimizer of the functional I  in a sub set 

of M +(ft') x M +(u>') defined by some linear equalities which will be explained later. 

Indeed, we are going to find the minimizer of the functional

(A,«t) € M +(Sl') X M +(u') — ► A(/0) +  cr(h0\ /r 2 + it;2),

in which A and a are satisfied some linear equalities defined by properties of admissi­

ble quadruplets. We remind the reader that the advantages of the new formulation have 

been studied in Chapter 2.

According to the new formulation, Proposition 9 shows that an admissible pair of mea­

sures (A, o) must satisfy
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\ (F v>) + a(Gip) = 0,V<P e H 1{C) (3.13)

where

Fv =  rkVuVip + rfip, Gv = -JcipvVr2 +  w2. (3.14)

The condition (3.13) does not cover all properties of an admissible pair; it just modifies 

the weak solution of the elliptic problem. Somehow these kind of properties must come

into account.
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The admissibility of the curve dC  (and hence the set C) has been characterized by 

equalities (2.6), (2.8) and(2.11) in Chapter 2. Moreover the restriction of the measures 

A and o over Î2 and oj respectively, are the measures p and v defined in Chapter 2. Thus 

we have

Also there is a relationship between the set C and dC  that the simple and closed 

curve dC  is the boundary of C. This fact introduces a relation between the measures A 

and <r. In the previous Chapter, this fact has been considered by computing the measures 

p in terms of the measure v with applying a special function; but here we are going to 

show this relation by use of the Stokes’s (or Green’s) Theorem in polar coordinates. Let 

p ,r  G C1(Q), then from Stokes’s Theorem we have:

Moreover, the definition of uc in (3.10), that represents measure Ac  in Proposition 

10, shows that for (6, r, u, t) € Q' there is a relation between the variables u £ U and 

t € Z/' (that i =  Vu). Let ( 0 , r , u , i ) € — > f ( 0 , r ,u , t )  € R be a function in (7(0');

whenever the measure Ac  (or equally the functional uc) is applied on a function like 

/ '  e  C(Q'), this relation should be considered. In other words, the variables u and t

*(rF) = Ot VtP £ V ( J 0)-, 

a ( f)  = af » V / € Ci(u). (3.15)

So, we have:

(3.16)
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are not independent from each other and this dependency should be regarded in the de­

termination of the measures A and a; it is also very important to regard this fact in the 

numerical examples when we identify the variables u and t just by some (finite) val­

ues in the appropriate bounded sets (see Example). From Green’s formula, the equality 

(3.9) shows this relation for every function <p € H l (C) as

A(ruA<p + rVuV<p) =  cr(ipvVr2 + to2), V<p 6 H 1(C ). (3.17)

As a result, to find the minimizer of I  over T ,  one can search for the minimizer 

of the functional (A, a) — * A(/<>) +  a(h0y/r2 +  w2) over a subset Q of A'i+(iT) x 

M +(u') defined by all pairs (A, a) which satisfied the conditions (3.13), (3.15), (3.16), 

and (3.17). Thus, instead of solving the problem (3.8), we look for the minimizer of the 

following new problem over Q:

M i n i m i z e :  i(A, a ) =  A(/0) +  cr(h0V r 2 +  w2)

Subject to : °r( ,̂s) =  6 C'(B)\

a(tP3) =  0, VV- G I>(J°);

< f )  = a / ,  V / € Ci (uj);

A(Fv) +  *(GV) =  0, \/y  € H \C )-  ,

A(p +  T%  -  % )  ~  a (TW +  Pr ) =  °> v />>T g c ,1(^);

A(™Ay> +  rVuVip) =  <r(</Wr2 +  w2), V<p € ^ ( C ) .  (3.18)

The following theorem states that the above problem has a minimizer. To prove the 

Theorem the reader can follow Rubio in [50] as we did for proof of the Theorem 1 in 

previous Chapter.
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T heorem 2 : There exists an optimal pair ofmeasures (A*,cr*) in the set Q C .M+(i2,)x  

M +(uj') such that for which

i(X*,o*)<i(X,<r), V(A,cr) £ Q .

We remind the reader, since the set T  of admissible quadruplets can be considered, by 

means of the mentioned injective transformation, as a subset of Q, therefore

inf I (C, dC, u, v ) >  inf i(A, cr).
-F Q

Thus, in (3.18) the minimization is global, that is the global infimum of the problem can 

be obtained. So in the nonclassical form of the optimal shape design problem (problem 

(3.18)), the global minimizer will be illustrated.

3.4 Approximation

All the equations in the problem (3.18) are linear in their arguments A and cr. It is an 

infinite linear program; the number of equations and the dimension of the underlying 

space are infinite. In this section we are going to approximate the solution of the prob­

lem by the solution of an appropriate finite linear programming problem so that not only 

the number of equations is finite, but the underlying space on which minimization takes 

place on it, will be a finite dimensional space. This important can be happened by use 

of a total set in each space H X{C), ^ ( Q ) ,  Ci(u>),V(J0) and C (B ).

In Chapter 2 we introduced the total sets in the spaces T>(J°) and C'(B);

here, we identify the total sets in the other spaces. Let P  be the C-vector space with



Chapter 3: Shapes, Measures and Elliptic Equations in Polar Coordinates 68

the basis \ z n,~Zn' : Z  £ ft} (note that indeed fi =  {Z  £ C : | Z  |<  1}). Under mul­

tiplication, P  is an algebra and satisfies in the conditions of Stone’s-Wierstrass The­

orem (see for instance [54]); hence it is dense in C (ii). Regarding the polar coordi­

nates, each Z  £ fl can be rewritten as Z  = r(cos 9 -f i sin 9), where r =\ Z  |. Also 

Z n = rn(cosn9 +  isinra#) and ~Zn = rn(cosn9 — i sin n9); thus if one consider 

ii  as a subset of R 2, the set of functions rn cos n9 and rn sin n9 that n  =  1 , 2 , 3 , . . . ,  

is a base for P  (indeed these functions can be regarded as projections of the function 

Z  —► (rn cos n9, rn sin n9) on R). Hence the set of functions <pn that ipn = rn cos n9 

or <pn = rn sinn9  for n  =  1 ,2 ,3 , . . . ,  is dense in C 1(Q) C C'(ii), for all (9 ,r) £ fi; 

moreover, by Theorem 3 in Chapter I I I  of [38], C 1(f2) is dense in H X{C). Thus, as a 

conclution of the above discussion, the set of functions <pn, n = 1 , 2 , 3 , . . . ,  is also total 

in H \C ) .

Now consider the following problem which is resulted from (3.18) just by choosing 

a finite number of functions in the appropriate total sets;

M inimize : i(A, o) = A(/0) + o(h0V r 2 +  w2)

Subject to :  °{<}>9k) ~  *>4>ky k =  1,2, . . . ,  Mi;

<Xi) = 0, l = 1 , 2 , . . . ,  M2;

o-(/») =  a s, s =  1 ,2 , . . .  ,M 3;

X(Fi) +  o(Gi) = 0, i =  1 , 2 , . . . ,  Mi]

X(D.j ) + o(E j ) = 0, j  =  1 , 2 , . . . ,  Ms;

X(Hr) + o (IT) =  0, r  =  1 , 2 , . . . ,  Mg- (3.19)



Here

D j  =  ruA( f i j  +  rV u V ip j ,  E j  =  —(p j v y / r 2 +  to2);

Fi = FVi, Gi = GVi;

Hr = Hi j = ipi + r ^ - ^ ,  IT = Iij =  -{ ifjw  +  tpir). (3.20)

Now we have the following Proposition which shows that the solution of the problem 

(3.18) can be approximated by the solution of (3.19); for proof, one can follows Rubio 

in [50] Chapter I I I .

Proposition 11 : For positive integer numbers M i ,M 2, M3, M4, M 5,M 6, let Qm < be 

the set o f the pairs (A, a) e  x M +(uj') which satisfy the constraints o f (3.19).

I f  M i, M 2, M 3, M i, M 5, M6, tends to infinity then

inf i(A,<r) — > inf i(A, cr);
Qm1 9

in other words, the solution o f (3.19) tends to the solution o f (3.18).

We have already limited the number of constraints of (3.18) in the first stage of ap­

proximation; but the underlying space, Qw> is still infinite-dimensional. We shall ap­

proximate now the solution of this problem with the solution of a finite linear program­

ming one. Let (A*, a*) be the optimal solution of (3.19) (the existence of the solution 

can be obtained from Theorem 2). By applying Theorem A .5 of [50], as shown in Chap­

ter 2, one can obtain

N  M

A' =  £  < K K ) . *• =  £  « . « « . ) .
n=l m=l
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that for each n  =  1 , 2 , . . . ,  N  and m  =  1 , 2 , . . . ,  M , we have a* >  0, /3^ >  0, and also



Chapter 3: Shapes, Measures and Elliptic Equations in Polar Coordinates 70

Z* and z*m belong to the dense subsets of Q' and u/ respectively; here M  and N  are two 

positive integers and 6(z) is a unitary atomic measure with support the singleton point 

set {z}.

Up to here, the measure-theoretical optimization problem is equivalent to a nonlin­

ear optimization one in which the unknowns are the coefficients a* , /3^ and supports 

{Z*} , { z ^ }  fo rn  =  1,2, andm =  1,2 It would be much more conve­

nient if we could minimize the functional i only with respect to the coefficients, which 

would cause the problem to change into a finite linear program.

In the next stage of approximation, let Dn> and Du> be two countable dense subset of 

Q,' and u/ respectively. Then, (as a result of Proposition J7J.3 in [50]) measures A* and 

o* can be approximated by

N  M
A =  OinS(Zn) , <7 =  An£(Zm)

n=l m=l

where Zm e  Dn>, zn G Du>. This result suggests that the problem (3.19) can be ap­

proximated by the following linear programming one which the points Zn and zm are 

chosen from a finite subset of a countable dense subsets in the appropriate space by 

putting discretization on fl' and a/. Hence the only unknowns are the coefficients a n 

and 13m, fo r n  =  1 , 2 , . . . ,  N, andm =  1 , 2 , . . . ,  M.

ii
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N  M
M inim ize: X <Xnfo(Zn) +  X Pmh0(zm)y /rl + U&

n=l m=l

Subject to : «n > 0, n = l ,2 ,.. . ,jV;

OAl m =  1,2, . . . ,  Af;
M
X P r n fk M  =  ¿fa fc = l , 2 , . . . , M i;

M
X PmXl(Zm) = 0, 1 = 1 , 2 , . . . , M 2;

MX Pmfs(zm) = a#l 5 = 1 ,2 , . . . ,M3;

JV MX <*n^(Zn) + X Prr,Gi{zm) =  0, i  = 1,2, . . . , M 4;

N MX anDj(Zn) + X PmEj(zm) — 0, j  = 1 ,2 , . . . ,M5;

N MX anHr(Zn) + X Pmlr(zm) = 0, r = 1 ,2 , . . . ,M6;
n=l m=l

AT i
X rm) =  given area; (3.21)
m= 1

here is assumed that Zn = (0n,rn,un,in) € i2' and =  (9m, r m,wm,vm) e u/. The 

last equation in (3.21) represents the area condition as explained in previous Chapter.

3.5 Numerical example

As an example, we chose one that / 0. = 0, h0 = v2, f  =  u(u — 0.5) and k(0, r ) =  1. 

We remind the reader that in polar coordinates

dw l dip
Vip =  5 7 Ur +  r f e U9' ^  G H  {G)]
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also it is supposed that Vu  =  u i u r +  u2xig where ux € Z7i and u2 € U2. So, for 

this problem we also chose W  =  [-0 .3 ,0 .3], V  =  [-10,10], U = [-5 ,5 ] and U' — 

Ux x U 2 = [ - 1 5 ,15]2.

To set up the finite linear program (3.21) for this example, the appropriate discretization 

was made on Q' and u/ as follows. By selecting:

• 10 angles on J  =  [0, 2tt] for 0 as: f f , . . . ,

• in A, 10 values for r as: 0, | ,  § , . . . ,  1;

• 10 values for w in W  as; -0 .3 , . ,0.3

• in V, 10 values for v as: -1 0 , =p-, . . . ,  10;

a discretization with M  =  104 nodes z =  (0, r, w, v) was put on a/. With respect to ft', 

we also chose :

• 10 values in each sets J  and A  for 0 and r as above;

• in U, 10 values for u as: —5, =p-t . . . ,  5;

• 10 values in each sets i7i and U2 for ui and u2 as: —15, — t . . . ,  15;

hence we made a discretization on ft' with M  =  105 nodes Z = (0, r, u, u x, u2). Each 

component of nodes Z  and z is a rational number (we supposed that 7r =  3.141592654) 

and hence all nodes belong to the dense subset of il' and u>' respectively.

For the first three set of equations in (3.21), the same 20 equations as in examples of 

Chapter 2 have been applied (Mi =  2, M 2 = 8, M3 =  10) with the same values for 

the fixed point and area. We also chose M4 =  5, M5 =  2 and M6 =  2; then the lin­

ear program (3.21) was run with 30 equations and 110000 variables. We applied the
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EQ4MBF  NAG-Routine to solve the problem. The optimal value of performance cri­

terion was 274.23683327352. Based on the equation w(6) =  as Rubio in [50], the 

suboptimal control function w and the following points of the boundary of the (approx­

imate) optimal shape were obtained:

(0.6283185482025 , 0.31150437270739), (1.1843659597573 , 0.14469009363621),

(1.2446240940434 , 0.12661264732457), (1.2566370964050 , 0.13021654966397),

(1.7049525491271 , 0), (1.8104140347910 , 0),

(1.8849556446075 , 0), (2.3533600786619 , 0.12696729964365),

(2.5132741928101 , 0.78993049407780), (2.9936742628018 , 0.22311313562577),

(3.1415927410126 , 0.17873757737069), (3.6413286509549 , 0.32865841819894),

(3.7699112892151 , 0.29008361386263), (4.2646965540754 , 0.14164798492600),

(4.3982298374176 , 0.10158798657002), (4.6766879544327 , 0.01805052361967),

(4.8688439868599 , 0.07569735943546), (5.0265483856201 , 0.12300870047393),

(5.4861769095531 , 0.26089732005427), (5.6548669338226 , 0.31150435023696),

(6.0230599912156 , 0.42196231744179), (6.2831854820251 , 0.5).

Linking these points together, gives rise the optimal shape; the optimal control function 

(function w) and the optimal shape is plotted in Figures 3.1 and 3.2 respectively.
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3 4t

Figure 3.1: The optimal control function w

Optimal Shape

Figure 3.2: The optimal shape



Chapter 4

Shapes, Measures and Elliptic 

Equations (Fixed Control)

4.1 Introduction

Let D e i 2 be a bounded domain with a piecewise-smooth, closed and simple bound­

ary dD. We assume that some part of dD  is fixed and the rest, T, with the given initial 

and final points A{xa, ya) and B(xb, yb) respectively, is not fixed (see Figure 4.1).

Suppose we choose an appropriate (variable) curve Y joining A  and B, so that D 

is well-defined. Let X  G D — ► u ( X ) G R, where X  =  (x , y ) G R 2, is a bounded 

solution of the following elliptic partial differential equation on the domain D

A u ( X )  + f ( X , u )  = v ( X)  (4.1)

with the boundary condition

U\0D = 0, (4.2)

75
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Figure 4.1: A domain D  in its general form

where X  € D — > v(X)  € R is (in this chapter) a bounded fixed control func­

tion; the function /  is assumed to be a bounded and continuous real-valued function 

in L 2(D  x R). We remind the reader that the equation (4.1) with the boundary condi­

tion (4.2), is known as the Dirichlet problem (see for instance [38], [33], [20]). A do­

main D  as above, is called an admissible domain if the elliptic equation (4.1) and (4.2) 

has a bounded solution on D ; we denote by T> as the set of all such admissible domains.

In this chapter, we consider first the problem of minimizing the following functional 

on the set V  defined above:

1(D) =  /  f 0( X , u ) d X ,  (4.3)J D

where f 0 is a given continuous, nonnegative, real-valued function on D x R. Then we 

will find the minimizer domain D* in V M, a subset of V  to be defined later, for the 

functional (4.3) in the following way:
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• (1) In the first step, we will obtain a solution of (4.1) and (4.2) for a fixed admis­

sible domain in a class to be denoted as T>m ■ By using the density property of an 

appropriate subset of points on R 2, we establish the fact that the boundary dD  of 

a domain D G D can be determined by a countable subset of points in R 2 which 

is dense in dD. This countable set will be called the representative set ofD.  Be­

cause the simple, closed curve dD  is the boundary of D, the domain also is deter­

mined by this representative set. Moreover, an approximation to this domain is 

denoted by a finite set, to be called an M-representation . For a fixed number M , 

we shall denote Dm the set of all such M-representations. Therefore, the variable 

part T of dD  is defined by a finite set of M  real variables. Then any integral like 

(4.3) - with a fixed control - is simply a function of this finite number of real vari­

ables. The problem (4.1) and (4.2) will then be generalized and the variational 

form of the problem will be obtained. Next, by using the representation set and 

the generalized form, the problem will be changed into a measure-theoretical one, 

which has some advantages. The new formulation helps us replace the problem 

with an infinite dimensional linear system of equations; then we shall approxi­

mate this system with a finite one. Hence the solution of (4.1) and (4.2) will be 

approximated by the solution of the appropriate finite linear system as a function 

of M  variables. So, we will be able to approximate the value of 1(D) for any 

given domain D  G Dm -

We want to emphasize that in this and the following Chapters we will consider M  

as a fixed positive integer number, and that we will search for an optimal domain 

in the class Dm - It is not at all obvious that as M  — > oo a sequence {£>*} of 

optimal domains, D* G D i,i =  1 , 2 , 3 , . . . ,  tends - in any sense whatsoever - to 

a domain D G D. We shall discuss this problem in Appendix B.
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• (2) For a fixed positive integer number M , we are going to solve the optimal shape 

problem, which is to find the minimizer domain for the functional (4.3) over T>m - 

The previous step states that how one can determine a solution for the elliptic 

equations (4.1) and (4.2) for any arbitrary M -representation D £ T>M\ this solu­

tion is a function of M  variables. The solution defines a unique value for 1(D) in 

terms of the finite number of variables as explained. Therefore, one can define a 

function

J  : D £ "Dm  — > 1(D) £ (4.4)

here J  is a function of a finite number M  of variables; in fact, it is a vector func­

tion. To find the minimizer of the optimal shape problem, it is now enough to 

identify the minimizer of J . The application of a standard minimization algo­

rithm (like Nelder and Mead [42]), gives us that minimizer. The minimizer is a 

set of points (an M -representation) which introduces the optimal domain for the 

functional I  in T>m ', indeed it presents the optimal shape (domain) and also deter­

mines the minimal value of the performance criterion for the mentioned optimal 

shape problem.

In spite of the fact that there are some other methods for solving the problem, for 

instance the methods involving finite elements and finite differences (see [44] for exam­

ple), our method has some advantages. It is applicable to solve the related optimal shape 

design and control problems (see the following chapters), it can determine the optimal 

shape (domain) and the optimal distributed or boundary control functions at the same 

time. Moreover the computation is much easier than the others because of the linearity 

properties of the replaced system. We shall also give some numerical examples to see
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how this method can be applied.

4.2 Solution in the fixed domain D e VM

In the present section we are going to obtain the solution of (4.1) and (4.2) on a given 

domain, D, so as to calculate I(£>). A domain in V  is identified by the variable part 

(r) of its boundary; replacing T with the representative set and applying the variational 

form of the equations (4.1) and (4.2), change the problem into a measure-theoretical 

one in which its result will approximate the generalized solution of (4.1) and (4.2) in 

the given domain D. Therefore we shall be able to compute the value of 1(17) and set 

up an appropriate function in the next section.

4.2.1 Representative sets

Let D G V  be a fixed, open and bounded subset of R 2 which is an admissible domain 

for the elliptic partial differential equations (4.1) and (4.2). Let dD  be the piecewise- 

smooth, simple and closed curve in R 2 that is the boundary of the given domain D; 

thus dD  and also its subset T are fixed. In general the curve dD, and hence T, can be 

regarded as an infinite set of points. More specifically, by applying the density property, 

one can regard T as a known countable set as follows.

The space R 2 contains many countable dense subsets; for example if we denote <Q> as the 

set of rational numbers, then Q x Q is a countable dense subset of R 2 (see [54] for exam­

ple). Let Do be a given countable dense subset of R 2, then the set D0 p| T is a countable 

dense subset of T; thus by the density property, the known set D0 f) r  determines a se­

quence of points in R 2 like {(a:*, S/fc)}feeN so (x*> Vk) € T for all k € N. Whenever 

D0 is fixed, this sequence determines V and hence the domain D uniquely; so, the set
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D0 f) r  and the domain D are equivalent and one can characterize the domain D  just by 

this sequence of points uniquely. Therefore, we have proved the following Proposition.

Proposition 12 : For a fixed dense subset D0 C R 2, any domain D e V  is determined 

uniquely by D 0f j r .  as a sequence o f its boundary points.

Definition 6 : For a given countable dense subset D0 in R 2 and for the given domain 

D, the countable dense subset o fT

A , f i r -  {(Xk,yk)}ke n »

which determines the domain D, is called “the representative set of D ”.

Since a domain D  is characterized by its representative set, as above, one can con­

sider its representative set, for a known countable dense set D0, instead of the domain 

D  . Moreover, because each curve in R 2 can be approximated by a finite set of broken 

lines, the curve T will be approximated by the finite set of broken lines in which their 

comers belong to the representative set of D. Consequently, to identify a representative 

set approximately, one can determine these finite number of comers (see Figure 4.2). In 

the section 4.3, without loosing generality, we shall show that these comers may have 

a fixed y-direction (i.e. each has a fixed y-component, see Figure 4.2).

Thus an arbitrary domain could be shown approximately with a finite set of its bound­

ary points (comers). By replacing V  with T>m  for a fixed number M  of points (see Ap­

pendix (B)), it will be shown how the value of 1(D) can be computed from these points. 

In section 4.4 we shall introduce a way to identify those finite points in which 1(D) has 

the minimum value. Hence the missing part of the boundary, T, and therefore the opti­

mal domain will be obtained.
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Figure 4.2: Approximating curve T with broken lines

To calculate the value of 1(D) for a given domain D, it is necessary, first, to identify 

the solution of the partial differential equations (4.1) and (4.2). For this reason, in the 

following, the variational form of the problem (4.1) and (4.2) will be considered.

4.2.2 Generalized solution

D efinition? : The function u(X)  : D — > R is called a classical solution o f (4.1) 

and (4.2) whenever u(X)  G C 2(D) f) C 1(D) and also satisfies (4.1) and (4.2).

In general, it is difficult and sometimes impossible to identify a classical solution 

for the problem like (4.1) and (4.2); thus usually one tries to find a generalized or weak 

solution of them. Also the generalized solution is more applicable than the classical 

one in some branches like calculus of variations. In our method, especially whenever 

one wants to change the problem into a measure-theoretical form, this kind of solution 

is more appropriate.
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For these reasons, it is necessary to introduce the new spaces, the new functions and 

also the new variational form of the problem (4.1) and (4.2) as follows.

Definition 8 : The space Hq(D) is defined as follows:

H \(D ) =  {V- £ H \D )  : V>|„ =  0} ; 

H l (D) is the Sobolev space o f order 1 which is defined as

r‘ (D ) =  | iHHDÌ  =  U  €  L2(D)  : € L,(D),  ^  € L ,(D )}

Proposition 13 : Let u be the classical solution o f (4.1) and (4.2), then we have the 

following integral equality

f (uAiP +  riff) d X  = f ipv d X  ; V-0 € H%(D). (4.5)J D J D

Proof: Multiplying (4.1) by the function -iff € Hl(D)  and then integrating over D,

J  (ip Au  +  ipf) d X  =  J  ipv dX. (4.6)

Green’s formula (see for instance [38]) gives:

U * A u  -  i X =J j ^  - u ^ ) d S ’

where n  is the unit vector normal to the boundary dD  and directed outward with respect 

to D. Because ip\3D =  0 and u\aD =  0, then
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Now the equality (4.5) simply follows by applying (4.7) and (4.6). □

D efinition 9 : A function u £ i7 1(D ) is called a generalized solution o f the problem 

(4.1) and (4.2) when it satisfies in the equality (45) for all functions ip £ Hq(D).

Indeed the equality (4.5), which introduces the generalized solution, is just an inte­

gral representation of the original elliptic problem (4.1) and (4.2). Now we are going 

to find this generalized solution for the given domain D. Conditions for the existence 

of the classical and of the generalized solution of the problem (4.1) and (4.2), and also 

other properties of them such as boundedness and uniqueness, have been considered 

in many references, like [38], [33] and [20]. For instance, in the linear case when the 

function f ( X ,  u) in (4.2) is assumed to be a linear function of u of the form

f ( X , u )  =  a(X)u,

if  v( X)  £ L 2(D) and moreover the function a(X)  is a nonnegative function on D 

(a(X)  >  0, V I  £ D), then there exist a unique generalized solution u £ H l ( D ) 

for the problem (4.1) and (4.2). This solution is bounded because v(X)  is supposed 

to be a bounded function on the domain D  (for details see [38] chapter IV,  especially 

Theorem 1 and for the more general case Theorem 7). Also one can similarly find the 

sufficient conditions for the bounded generalized solution for the nonlinear case of the 

elliptic equations, in the literature [33] (for example Theorem 7.1 in Chapter 4).

The bounded generalized solution can be represented by a positive Radon measure 

and then one can replace the problem with a measure-theoretical one. Hence instead of 

looking for the generalized solution on the given domain D,  one prefers to seek for its 

related measure, defined on the appropriate space. In the Metamorphosis, this matter
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will be discussed.

4.2.3 Metamorphosis

The following Proposition, which is the base of our metamorphosis, shows that the gen­

eralized solution can be regarded as a positive Radon measure. Moreover, it also indi­

cates that the representing measure is unique. We remind the reader that for the rest 

of the Chapter, fi =  U x D, where U C K is the smallest bounded set in which the 

bounded generalized solution u(-) takes values.

Proposition 14 : Let u(X)  be a bounded generalized solution of(4.1) and (4.2). There 

exist a unique positive Radon measure, say pu, in M +(£l) so that:

pu(F)  =  f  F  dpu = [  F(X, u) dX ; VF €  C(il).
J n J d

(4.8)

Proof: By applying the Riesz Representation Theorem ( [55]), similar to the Propo­

sition ( 1), one can obtain the equality (4.8) easily; the detail is omitted. □

By the above Proposition, the equality (4.5) changes into the following:

Pu(F*)= 7* ; VV> € Hl(D) (4.9)

where

(4.10)



Also, 1(D) in (4.3) is changed to 1(D) =  pu(fo)-

It is clear that the measure pu projects on the (x, y)-space as the respective Lebesgue 

measure; hence we should have

pu(£) =

where £ : 12 —> R depends only on variable X  (i.e. £ G Ci(f2)), and is the Lebesgue 

integral of £ over D, i.e. a^ = fD£ dX.

Therefore the problem can be described as follows:

Find a measure pu G yVi+(f2) so that it satisfies the following constraints:

Pu(F^) =  7ih W  e Hq(D)]

M £ )  = ac> V£€C71(fi). (4.11)

Let us now consider a more general version of the problem. We extend the underlying 

space; instead of finding a measure pu G A f+(D), defined by Proposition 14, satisfying 

equalities (4.11), we seek a measure p G A4+(i2) which satisfies just the conditions

p(F*) = W 1 € DoX(D);

p ( 0  =  V£ G Ci(Q). (4.12)

Hence we have 1(D) =  p ( f0)- The system (4.12) is linear because all the functions 

in the right-hand-side of equations are linear functions in their argument p. But the 

number of equations is not finite and also the underlying space is not finite-dimensional. 

In the next, we are going to approximate a solution of (4.12) by another one in which 

the number of equations and also the underlying space are finite.

Chapter 4: Shapes, Measures and Elliptic Equations (Fixed Control) 85



Chapter 4: Shapes, Measures and Elliptic Equations (Fixed Control) 86

4.3 Approximation

The linear system (4.12) is not finite-dimensional; indeed the number of equations is

not finite. We shall develop the system by requiring that only a finite number of the 

constraints are satisfied. This will be achieved by choosing countable sets of functions 

whose linear combinations are dense in the appropriate spaces, and then selecting a fi­

nite number of these.

F irst set of functions: Consider the first set of equalities in (4.12); we are going to 

introduce the set

so that the linear combinations of the functions G Hl{D ) are uniformly dense - that 

is, dense in the topology of the uniform convergence - in the space Hq(D). For instance, 

these functions can be taken to be a special subset of polynomials in the components of 

x and y, as follows.

We know that the vector space of polynomials with the variable x and y, P(x,y) ,  is 

dense in C°°(D); therefore the set Po(x, y):

Po(x,y) = {p(x ,y ) € P ( x , y ) I p(x,y)  =  0,V (x,y) G d D } ,

is dense (uniformly of course) in the space j/ i  G C°°(D): h\aD — o j  =  C£°(D). By 

the way, the set

Q(x,y) = { l , x , y , x 2, x y , y 2 2 2 3 1: y ,xy  ,y

is a countable base for the vector space P(x, y) and hence each elements of P (x , y) and 

also Po(x, y), is a linear combination of the elements in Q(x, y). In the other hand, by
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theorem 3 of Mikhailov [38] page 131, the space C°°(D) is dense in H X(D); thus the 

space C™(D) will be dense in Hq(D) (see the definition of Hl(D)).  Consequently, 

the space P0(x,y)  is uniformly dense in Hq(D). A s before, let {(xk,yk)}ken be the 

representation set for the fixed D; we define the function ipi for each i £ N as follows:

i>i(x , y ) =  Y i ( x ~ x k + y-yk)T(x, y)qi (x, y)  . (4.13)
ken

where r(x , y) is a function which is zero on the fixed part of dD, and qz is an element 

of the countable set Q(x, y). Then the set

{i>i(x,y) : i  = 1, 2, . . . } ,

is total (uniformly dense in the topology of the uniform convergence) in the space Hq(D). 

We remind the reader that the term

] J ( x  -  x k + y -  yk) = (x -  Xi + y -  yi)(x -  x2.+ y -  y2) 
ken

(4.14)

in (4.13) implies that V>t|r =  0.

Despite the fact that is zero on the boundary of D  for each i, there is no guar­

antee that the value of (4.14) is convergent at every point (x, y) £ D; hence we have 

the same difficulty for ^  in (4.13). Besides, if the function ~ x k + y  — yk), or

equally i>i(x, y), is uniformly convergent on D, it may be too difficult or impossible to 

characterize them; there is no comprehensive method to calculate and 7^  in (4.12) 

for every (x, y) £ D. In fact this difficulty is caused by the number of points in the 

representative set, which is infinite. We will approximate the boundary dD  by a finite 

number of points in the representative set.
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Approximating dD  with broken lines: The general idea of selecting a finite set 

of points instead of the curve dD,  comes from the approximation of a curve by broken 

lines. For the given D  and hence for the given T, let Am = (xmtym) ,m  =  1,2 

be a finite points of dD  in the representative set of D (we suppose Ai  =  B). We link 

together each pair of consecutive points Am and Am+i for m  =  1 , 2 , . . . ,  M  — 1. The 

set of segments A mAm+i , m  =  1,2, — 1, defines a curve. We close this curve

by joining the points A x and A M together. Now the resulted shape, which is denoted by 

dDM, is an approximation for dD; we also call Dm  to the domain which introduced by 

its boundary dDM• The domain DM is called a M-approximated domain ofD  (domains 

D, Dm  and their boundaries are shown in Figure 4.3). We remind the reader that this 

method, approximation by broken lines, is more convenient when the fixed part of dD  

is too complicated to be denoted by a formula.

Figure 4.3: Approximation of dD  by finite number of segments

It is possible that by increasing the number of points, M,  the curve dDM will be­

come closer and closer (in the Euclidean metric) to the curve dD,  and hence one may
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conclude that the minimizer of I  over Dm , if one exists, tends to the minimizer of I  over 

V,  if one exists. In the Appendix B, we have explained some of the difficulties that arise 

and have discussed these matters. Here, we will fix the number of points (M ) and look 

for the minimizer of (4.3) amongst all admissible Dm ’s.

As a result, the equality (4.13), for each i, changes into

tpi =  (x -  x x +  y -  yi)(x -  x2 + y -  2/2) • • • (x -  xM +  y -  VM)rqi.

(4.15)

It is necessary to mention that whenever the fixed part of dD  is defined explicitly, 

for instance an expression of the form y =  h(x), we have r  = y — h(x). Hence V’t will 

have the following form:

ipi =  (x -  xi +  y -  yi)(x  -  x 2 +  y -  3/2) ■ • • ~  +  y ~  J/m )(j/ -  h(x))qi.

(4.16)

Moreover one may define tpi(x,y) so that it will be zero on each segment A mA m+1 

where the points A m, m  = 1 , 2 , . . . ,  M  are belong to the both parts of dD,  as follows:

V’i =  ( y ----------------(x ~  * 1 )  --------------------- (x -  xK - i )  -  y K - i )x 2 — Xi X k  — X k - X

(x -  xK+x +  y -  yK+x) . . . ( x - X M  + y -  yM)qï, (4.17)

here it is supposed that the points Ax, A 2, . . . ,  A k , belong to the fixed part of dD  and 

A k +x 1 A k +2 , ■ • •, A m  are in T (this expression of ipi is more convenient when the fixed 

part of dD  is too complicated to be given by an explicit function).
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For the rest of this chapter and also for the following Chapter, we suppose that the 

fixed part of dD is the union of the following three segments:

1) The part of the line y =  0 between the points (1,0) and(0,0)

2) The part of the line x =  0 between the points (0,0) and(0,1)

3) The part of the line y =  1 between the points (0,1) and(l, 1);

hence A = (1,0) and B  =  (1,1) (see Figure 4.4). Also we denote T>m , for a fixed 

number M,  as the class of all M-approximated domains Dm -

( ° 4 )  B ( l , l )

Figure 4.4: dD  in our assumption

By the assumption made above, the function in (4.16) will be chosen as

ipi(x,y) =  xy(y -  l )(x -  Xi + y -  t/i)(x - x 2 + y - y 2) . . .

(x -  xM + y -  yM)qi(x,y), (4.18)

where each A m  =  (xm,ym) ,m  =  1, 2, . . . , M,  is an unknown point in T; ^ i (x ,y )  

is zero at the points A(l ,  0) and B(  1,1), hence there is no need to consider the terms

1!
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(* +  y — 1) and (x 4- y — 2) in (4.18). Here we have actually 2M  unknowns to de­

termine, x i , x 2, . . . ,  x m , 2/i , 3/2, • • • > ym - It would be more convenient if one, somehow, 

could reduce the number of unknowns, without losing the generality.

Let the value of the components y i , y2, •. •, 2/at, be fixed, for a given positive integer 

M.  In other words suppose that for each m  = 1 , 2 , . . . ,  M,  the point A m is located 

somewhere on the line y = Ym,x  > 0. Because xm is a free term, the point A m could 

be anywhere on the line for every m  (see Figure 4.5). Therefore points A m and Am+X 

can be chosen so that they belong to T and hence the part of T between the lines y — Ym 

and y =  Y„l+1 can be approximated by the segment AmAm+i, especially whenever the 

number M  is large. It means, we do not lose generality by fixing y1} y2, . . . ,  yM- Thus, 

from now on, we suppose that in (4.18) the components yx, y2, . . . ,  y m  are fixed with 

the values Yi, Y2, . . . ,  YM, respectively; so

y>i(®,y) = xy(y -  l )(x - x i + y  — Yx)(x - x 2 + y -  Y2) . . .

( x - x M + y - Y M) qi(x,y).  (4.19)

Definition 10 : For a fixed number M, the set o f  finite points in T, i.e. the set

{A m — (®m.> Ym)j in =  1 , 2 , . . . ,  M ) ,

with the fixed components YX, Y2, , Ym , and unknowns x i , x 2i. . . ,  x m , is called the 

M-representation of D. Indeed, this set introduces the M-approximated domain Dm -

Second set of functions: For the second set of equations in (4.12), let L be a given pos­

itive integer number and divide D into L (not necessary equal) parts DX,D 2, . . . ,  Dl , 

so that by increasing L the area of each D3,s — 1,2 will be decreased. Then,

ii
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Figure 4.5: dD  with the M  lines 

for each s = 1 , 2 , . . . ,  L, we define:

i s ( x , y ,u ) =  <
1

0

if (x , y ) e Ds 

otherwise.

These functions are not continuous, but each of them is the limit of an increasing 

sequence of positive continuous functions,{£afc}; then if p is any positive Radon mea­

sure on fl, fi(£a) =  limA;_oo )• Now consider the set {£,■ : j  =  1, 2, . . . }  of all such 

functions, for all positive integer L. The linear combination of these functions can ap­

proximate a function in Ci(f2) arbitrary well, in the sense that the essential supremum 

of the error function can be made to tend to zero by choosing in an appropriate manner, 

a sufficient number of terms in the corresponding expansion (see [50] chapter 5).

As a result, the problem (4.12) can be replaced by another one in which we are look­
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ing for the measure p € M +(£l), so that it satisfies the following constraints:

p(Fi) = 'fi, i = 1, 2, . . . ;

=  3 = 1.2, ' . . . .  (4.20)

where the functions f f s  and ( j ’s belong to the above mentioned total sets, and

Fi = F^x , 7, =  7i/>i > ■

To approximate the system of equations in (4.20) with a finite system of equations, 

we choose a finite number of equations and thus set up the following finite linear system 

of equations:

PMi,,M2̂ F;) =  7t, i = I» 2, . . . ,  Mi)

= tij, j  ~  1) 2 , . . . ,  IWJjj (4.21)

where Mi and M 2 are two positive integers. If we denote by Q(M i , M 2) the set of 

positive Radon measures in «M+(ft) which satisfy equalities (4.21), and also denote 

by Q the set of positive Radon measures in -M+(fl) which satisfy equalities (4.12), by 

regarding the property of the total sets one can easily prove the following Proposition 

by considering the proof of Proposition I I I . l  in [50].

Proposition 15 : I f  M x, M2 — ► oo; then Q(MU M 2) — ► Q, hence for the large 

enough numbers Mi and M 2 the set Q can be identified by Q(Mi ,M 2).

Therefore, instead of seeking a measure p  € Q we prefer to seek the measure pmx G

Q(M i , M 2); but even if the number of equations in (4.21) is finite, the underlying space 

Q(Mu M 2) is still not finite-dimensional. It is possible to define finite linear systems
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whose solutions can be used to approximate that for (4.21). A measure pmx,m2 hi the 

set Q(M1,M 2) can be characterized by a result of Rosenbloom [48], which was proved 

in Theorem A .5 Appendix in [50], that pmx,m2 hi (4-21) has the form

mx+m2
Pmx,M2 =  £  “ » « (2 0 , (4.22)

n=l

with triples Zn £ Cl and the coefficients a n >  0 for n  =  1 , 2 , . . . ,  M x + M 2, where 

S(z) 6 M +(Cl) is supposed to be a unitary atomic measure with support the singleton 

set {z }.

This structural result points the way toward a further approximation scheme; the mea­

sure problem is equivalent to a nonlinear one in which the unknowns are the coefficients 

a n and supports {Zn} ,n  =  1 , 2 , . . . ,  Mi  +  M 2. It would be more convenient if  one 

could find the solution only with respect to the coefficients an in (4.22); this would be 

a linear system of equations (a type of linear programming problem). The answer lies in 

approximating this support, by introducing a set dense in Cl. Proposition 777.3 of [50] 

Chapter 3, states that the measure ¡¿mx,m2 hi (4.22) has the following form

N
PMX M2 =  53  (4.23)

n— 1

where Zn, n -  1 , 2 , . . . ,  TV, belongs to a dense subset of Q. Note that the elements 

Zn,n  =  1 , 2 , . . . ,  N,  are fixed; the only unknowns are the numbers a n, n  =  1 , 2 , . . . ,  TV.

Now let put a discretization on Cl, with thenodes Zn = (xn, yn, un), n = 1 , 2 , . . . ,  N,  

in a dense subset of il; then we can set up the following linear system in which the un­
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knowns are the coefficients a n, n  =  1 , 2 , . . . ,  N:

a n > 0, n =  1, 2,
N

CLnFi(Zn) = 7i, i = 1 , 2 , . . . , Mi;
n=1

N
Y<Xntj(Zn) = aj , j  =  1 , 2 , . . . , M 2. (4.24)
71=1

We remind the reader that we should not be surprised if we find more than one solu­

tion for the problem, (even if the problem (4.1) and (4.2) satisfies the necessary condi­

tions for having a unique bounded generalized solution). It is true that, in this case, pu 

in (4.18) is also unique by Proposition 4.2; but remember that the generalized solution 

must satisfy the equality (4.5) for all tp £ Hi  (D); there we have chosen just a finite 

Mi  number of them for (4.21) and also for (4.24), to obtain the measure pmxMi - Thus 

may not be unique because of this reduction. Each solution introduces a mea­

sure pmx ,m2 via the equality (4.23) which has the same properties (approximately) as 

the measure pu, the representative measure for the generalized solution u(X).  Indeed 

we achieve an approximate solution for the elliptic problem in the given domain D.

We have shown in this section how to find the representative set of a domain D € V  

and then approximate it, and hence D, by a finite set of its boundary points (the M-  

representation of D). As a result of this, one can obtain a solution (approximately) for 

the problem (4.1) and (4.2) for any given domain D £ X>M, via the related linear system. 

Therefore we are able to calculate the value of 1(D) for each given domain D. In the 

next section, we shall explain how one can find the optimal domain for the functional 

(4.3) in T>m  by applying the results of this section.
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The main aim of the present section is to find an optimal domain D m g T>m  so that the 

value of I(D*) in (4.3) will be the minimum on the set T>m . In the other words, we are 

going to identify the lowest value of 1(D) for every admissible domain D to determine 

its related minimizer domain D ' . The process of finding an approximation to D*, is as 

follows:

Each D e  T>m  is an M -approximated domain with the mentioned M --representation 

set, like { A i , A 2, ■ ■ ■, A m , } as explained above. By applying the result of the previous 

section, a solution of (4.1) and (4.2) can be found as a function of the finite number of 

unknowns (the finite unknown components of an unknown M-representation). Thus 

we will be able to calculate 1(D) for every D € Dat; and hence, we can define the 

following function that it is a function of finite number M  of variables,

J  : D € T>m  — ► 1(D).

By applying a standard minimization algorithm on J , the optimal value of the variables 

(optimal M -representation) will be obtained. These values identify the optimal domain 

D* for (4.3). Indeed, instead of identifying the optimal domain D*, we are going to 

determine its M-representation

{Am =  m  = 1, 2 , . . . ,  M }  ,

or other words, the components, x{, a ^ , . . . ,  x*M.

To calculate 1(D) for an arbitrary D G T>m , it is necessary to obtain a solution for 

(4.1) and (4.2) in D. This solution is approximated by a solution of the linear system
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(4.24) according to the variables, xm, m  — 1, 2 , . . . ,  M.  As mentioned in section 4.3, 

the solution of (4.24) is not necessary unique. Let us to specify one of them for each D; 

there are some possibilities, for example, by solving the following linear programming 

problem, one may chose that one in which the value of fD f 0(X, u)dX  (for a given D) 

is minimum according to the variables a n ,n  =  l , 2, . . . , JV:

N
£  a nf 0(Zn)
n=1

a n > 0, n = 1, 2, . . . , iV;
N

Y J ccnFi{Zn) = l i , i = 1 , 2 , . . . ,  Afi;
n=1 

N
£  <*ntj(Zn) = ajt j  = 1, 2, . . . ,  M 2. (4.25)
n=1

For the given examples in the present Chapter, the solution will be specified by apply­

ing a certain subroutine for solving the system.

M inim ize: 

Subject to :

As a result, for each D, the value of I (D) below:

1(D) =  f  f 0(X, u) d X  = p ( f0) ~  p MllM 2( f o ) ,
J Z)

is defined uniquely in terms of the variables xm,m  = 1, 2, . . . ,  M.

So, for an arbitrary domain D G Dm , we approximate 1(D) =  J2n=i anfo(Zn) 

in the mentioned manner uniquely, in other words, we set up a function, J ,  on T>m  in 

which for each D e T>m  shows a value for 1(D):

J  : D € T>m  — ► 1(D) =  PbhMiifo)  ^  R; (4.26)
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here, in the sense of (4.23), pMuM2(fo) = J2n=i anfo(Zn). Clearly J  is a function of 

the variables x lt x2, . . . , x m , and hence can be regarded as a vector function:

It is not possible in general to ascertain continuity properties of this function (see 

for instance [44]); we can say, however, that, since this is a real-valued function which 

is bounded below, and is defined on a compact set (since constraints are to be put in 

the variables) it is possible to find a sequence of points Pi say so that the value of the 

function along the sequence tends to the (finite) infimum of the function. The coordi­

nate values corresponding to the points in the sequence are of course finite. The same 

properties can be ascertained for similar functions to be found in the next two Chapters.

Now, suppose that (x] , x*2, . . . ,  x*M) is the minimizer of the vector function J ; it can 

be identified by using one of the related minimization methods (for instance the method 

introduced by Nelder and Mead, see [60] and [42]). For this, one can apply standard 

Algorithms and Routines (like A M O E B A  [47] or E 0 4 J A.F-NAG Library Routine). 

Let D* G V M be the domain which is introduced by the minimizer (xj,  s * , . . . ,  x*M)\ 

indeed, it is defined according to its M-representation, the set

We assume in the following theoretical result that the minimization algorithm used (such 

as A M O E B A )  is perfect; that is, that it comes out with the global minimum of J  in its 

(compact) domain. (The same, rather optimistic, assumption, is made in deriving some 

related results in the following Chapters). Thus,

J  : ( i i ,  x2, • •. ,  x m ) £ R M — ► /¿Afi,Mj(/o) € R- (4.27)

Ym) ,m  = 1,2
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Theorem 3 : Let M, M x and M 2 be the given positive integer numbers which were 

defined in section 4.3, and D* be the minimizer of  (4.27) as mentioned above. Then D * 

is the minimizer domain of  the functional (4.3) over T>m and the value ofl(D*) can be 

approximated by J (Dm); moreover J(D*) — ► I (D*) as Mi and M 2 tend to infinity.

Proof: Suppose D* is not the minimizer of I  in (4.3); hence at least there exists a do­

main, call D', in T>m  so that

1 (1 0  < I (£>*)• (4.28)

Proposition 14 shows that there is a unique measure, call p', in M.+(Q) so that I(D ') =  

p'(fa). In the other hand, Proposition 15 states that for sufficiently large numbers M x 

and M 2, p'(fo) can be approximated by p'MuM2(f°) “  Q(Mi , M 2). Thus, by the defi­

nition of the function J ,  we have

l(D ')  ^  p’MlM2( f0) =  J(D ').

In the same way, one can show that 3(D*) approximates I (D*); so

Therefore from (4.28) we have

J(D')  <  J (D*),

which is in contrary with the fact that D* is the minimizer of J . Consequently, D* is the 

minimizer of I  over T>m - Moreover, from Proposition 15 it follows that J(D *) tends to 

I ( D * ) a s M 1, M 2 — ► oo. □
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4.5 Numerical Examples

For the next two sets of examples, we consider the elliptic equations (4.1) and (4.2) 

for which for each admissible domain D ç  the function v(x, y) (the fixed control 

function) is defined as:

v(x ,y) 1 if (x,y) £ D C 

0 otherwise,

where G is the square [\, f] x [ | ,  |]  ( see pigure 4.6 ); then the right-hand-side of the 

first set of equations in (4.24), 7, , is

=  i  =  ( 4 ‘ 2 9 )

As explained in section 4.3, an admissible domain like D e  T>m  is bounded by its 

boundary, dD,  which includes a union of three segments of lines and a simple curve be­

tween the points A (0 ,1) and B ( l ,  1) (see Figure 4.4). For a fixed number M,  this curve 

and therefore the domain was defined by the set of M  points (the M-representation set) 

{A =  (xm, Ym), m  — 1 , 2 , . . . ,  M }  with the known components Yi, Y2l . . . ,  Ym - In the 

following examples, we take M  — 8 and also

=  0.15 , Y2 = 0.25 , y3 =  0.35 , Y4 = 0.45 ,

Ys = 0.55 , Y6 = 0.65 , Y7 = 0.75 , Ya = 0.85
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(see Figure 4.6); hence each x j, x2, . . . ,  x8, defines a dom ain. By an extra constraint

On X2, X3, • • ■ , X f,

xm ^  ; m  =  2 , 3 , . . . , 7 ,
4

the calculation of (4.29) will be simple and the valve of 7* for any D G T>m  is defined 

as
3 3

7i =  j *  J*  Tpi(x,y) dxdy ; i =  1, 2, . . . ,  Mi.

0 0.25 0.75 1

Figure 4.6: An admissible domain D under the assumptions of the numerical work

We also assume that the function u(-) takes value in the bounded set U = [-1 ,1 ];

. therefore =  D x U, for each given domain D g T>m . One may obtain the set U 

by trial and error so as to be sure that the appropriate finite linear system in 4.24 has a 

solution.
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Our way to find an optimal domain for functional (4.3) is an iterative method. For a 

given domain D, in other words for the given set of variables x x = X x, x 2 = X 2, . . . ,  x8 

= X 8, in the M-representation form, we will set up the linear system (4.24) to find the 

solution of the related elliptic equations (4.1) and (4.2), which is necessary to calculate 

the value of 1(D) according to the X m’s. Then the standard minimization algorithm 

changes the value of X x, X 2, . . . ,  X 8, to new ones for which the value of 1(D) is sup­

posed to be less than previous; by these new values introduce a new domain. Again, in 

the next iteration, an appropriate linear system (4.24) for the new domain will be solved 

to calculate the value of 1(D) and see whether 1(D) is smaller than the previous on in 

the former iteration or not. In the next iteration, if the value is not smaller, the Algo­

rithm changes the domain with the suitable one; if it has been smaller, the Algorithm 

seeks again for the other domain like D' G T>m  with the smaller value of I(D ') than 

1(D). The iteration will be stopped whenever the optimal domain is obtained; note that 

we assume in this discussion that the standard minimization Algorithm (A M O E B A ) 

is qualified to obtain the global minimizer without any restriction (see Appendix C).

Now for a given domain D with the given values x x =  X x, x 2 = X 2, . . . , x 8 =  

X 8, we must consider an appropriate discretization on Q for solving the linear sys­

tem (4.24); because our method is iterative, the discretizations depends on the values 

X x, X 2, . . . ,  X a at each iteration.

4.5.1 Discretization

To establish the linear system (4.24) for a given domain D with the M-representation 

{A  = (xm, Ym), m =  1 , 2 , . . . ,  M }, we need to put a discretization on Q. For this rea­

son, we select N  =  740 nodes Zn = (xn,yn,un) in O, so that each component is
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a rational number; hence these nodes belong to a dense subset of fl and therefore the 

statement (4.23) and consequently, the linear system (4.24) can be determined. Since 

u \aD =  0 (the Dirichlet condition (4.2)), for each (xn, yn) 6 dD,  we should have 

Zn = (xn, yn, 0). This fact has been taken into account in the discretization by choos­

ing the following 36 nodes as follows:

The below 10 points of R 3 in which their projection on the (x, y)-plane, belong to the 

line y = 0,

^  =  (0, 0, 0) ,  Z2 (0.15,0,0), Z3 =  ( 0 . 25 , 0 , 0) , . . . ,  =  (0.85,0,0) ,

Z1Q — (1 ,0, 0);

the points Z n ,  Z i2, Z 19, so that their projection on the (x, y)-plane locate on the 

line x =  0,

Z n  = (0,0.15,0), Z\2 = (0,0.25,0) , . . . ,  Zia = (0,0.85,0), Z19 =  (0,1,0);

the following nodes that their projection on the (x, y)-plane is on the line y =  1,

Z20 =  (0.15,1,0), Z2l = (0.25,1,0) , . . . ,  Z27 = (0.85,1,0), Z28 =  (0, 1, 0);

and finally 8 points corresponded to the M-representation set as

Z29 = (Xx, 0.15,0), ^30 =  (X2, 0.25,0) , . . . ,  ^ 36 =  (X8, 0.85,0).

The rest of the nodes are related to the interior points of D. We consider Zn =  (xn,yn,un) 

for n  =  3 7 , 38 , . . . ,  740 as

Z n  —  • ^ 3 6 + 8 8 (t -l )+ ll ( i - l )+ f c
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where

_ (i +  0.5)X j
x 3 6 + 8 8 ( i- l ) + U ( j- l ) + k  ~  ------ J q------  , 2/36+88(t-l)+ll(j-l)+fc — * ] ,

„ _  2(fc- l )
u 36+88(t-i)+n(j-i)+fc — — —-------- i

for i = 1 , 2 , . . . ,  8, j  =  1 , 2 , . . . ,  8, and k =  1 , 2 , . . . ,  11. Indeed the value of ®n’s are 

one of the following values:

0.15-X) , 0.25-Xj , . . . ,  0.85Xj-;

and the component un takes one of the below numbers:

- 1, - 0.8, . . . ,  - 0.2, 0, 0.2, . . . ,  0.8, 1.

Now, the set ft is covered by a grid, defined by taking all points in ft with coordinates 

Zn =  (xn, yn, un), n = 1 , 2 , . . . ,  740, which have been already expressed. To solve the 

corresponded linear system (4.24) it is necessary to identify its equations first.

4.5.2 Equations in the linear system

To find an approximated solution for (4.1) and (4.2) in the domain£>, we consider the 

mentioned linear system in (4.24) for Mi = 10 and M 2 =  8. Thus, for the first set of 

equations, the function ip i has been defined by (4.19) as

Tpi(x ,y) =  xv(y -  iX® -  -Xi + y -  ^ iX 1 -  x 2 +  y -  y2) .
( x - X s  +  y - Y 6) qi(x,y).
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where the polynomial qi(x,y)  for each i = 1, 2, . . . , 10, is selected as follows:

qi(x,y)  =  l ,q 2(x,y) = x,q3(x,y)  = y,q i(x ,y) = x2,qs(x ,y)  = x y ,

qe(x,y) = y 2,q7(x,y) = x3,qs( x ,y ) =  x2y,q9(x ,y)  =  xy2,q10( x , y ) =  y3.

For the second set of equations in (4.24), we divide the domain D into 8 parts, say 

Di, D2, . . . ,  Ds, as follows:

D\ is the region of D between the lines y =  0 and y =  0.2 (OAe\o2 in Figure 4.6),

D2 is the region of D  between the lines y =  0.2 and y =  0.3 (o\e\e2o2 in Figure 4.6), 

Z?3 is the region of D  between the lines y — 0.3 and y =  0.4 (o2e2e303 in Figure 4.6), 

Da is the region of D  between the lines y =  0.4 and y =  0.5 (o3e3e404 in Figure 4.6), 

Ds is the region of D between the lines y — 0.5 and y = 0.6 (o4e4e505 in Figure 4.6), 

Ds is the region of D  between the lines y =  0.6 and y =  0.7 (o5e5e606 in Figure 4.6), 

D7 is the region of D between the lines y = 0.7 and y = 0.8 (o6e6e707 in Figure 4.6), 

Ds is the region of D between the lines y =  0.8 and y = 1 (o7e7B E  in Figure 4.6), 

where the x —component of the points e;, l =  1 , 2 , . . . ,  7, in the (s , y )—plane is

x ei = ^ ( X l+1- X i )  + X r , l  = 1 , 2 , . . . , 7 .

Therefore the value aj, the right-hand-side of the second set of equations in (4.24), is

=  /  fj(*> y) d% =  area of DJ ; V? =  1, 2, . . . .  8;JD

■■ thus by some calculation one can get:

a i =  0.15 +  0.075(*! -  1) +  0.05*1 +  0.025(xei -  * i ) ,
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a2 =  0.05xei +  0.025(X2 -  xei) +  0.05X2 +  0.025(xe2 -  X 2), 

a3 =  0.05xe2 +  0.025(X3 -  xe2) +  0.05X3 4- 0.025(xe3 -  X 3),

04 =  0.05xe3 +  0.025(^4 — xe3) +  0.05^4 +  0.025(xe4 — X 4), 

a5 = 0.05xe4 +  0.025(X5 -  xeJ  +  0.05XS +  0.025(xes -  X 5), 

a6 =  0.05xes +  0.025(X6 -  x es) +  0.05X6 +  0.025(xe6 -  X 6), 

a7 =  0.05xe6 4* 0.025(X7 — xeg) 4- 0.05X7 4- 0.025(xe? — X 7), 

a8 =  0.05xe7 4- 0.025(X8 -  xe7) 4- 0.15X8 +  0.075(1 -  X 8).

Hence in our case, the linear system (4.24) is

a n > 0, n  =  1,2 , . . . , 740;
740
^ a nFi(Zn) =  7i, i — 1, 2, . . . ,  10;
n=l
740
J 2 ^ j ( Z n ) = a jy j  =  1 , 2 , . . .  , 8. (4.30)
n=1

To find the nonnegative unknowns a n’s we apply the E04M B F -  N A G  Library 

Routine Document. Although this Routine is usually used for finding the minimizer 

of a linear programming problem, it is also suitable for finding an admissible solution 

of a linear system (like (4.30)) by selecting L I N O B J  =  .FALSE.,  when the objec­

tive function, C V E S ,  is not referenced. The result shows a nonnegative value for each 

a n , n  =  1 , 2 , . . . ,  740, that satisfy the linear system. By applying these values in (4.23), 

one can calculate the value of 1(D) for a given function f 0. As mentioned in Section 

4.4, this value, 1(D), is a function of the variables X x, X 2, . . . ,  X 8; thus we have set up 

the function J  in (4.27). By applying a standard minimization algorithm (A M O E B A ) 

we are going to obtain the optimal domain in T>m  for (4.3). We remind the reader that
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the functions F{ and also the values of 7*, i =  1, 2, . . . ,  10, has been calculated by the 

package “Maple V.3”.

4.5.3 Minimization and penalty functions

Up to now, the function J  in (4.27) has been established as a function of the variables 

X i , X 2, . . . , Xs.  We apply the Downhill Simplex Method in Multidimension by us­

ing the Subroutine A M O E B A  ( see [47]) with the conditions X i  > 0, X s > 0 and 

X m > 0.75, m  =  2, 3 , . . . ,  7; besides these conditions, we also consider an upper 

bound for variables, for example suppose they are not higher than 2. These conditions 

are applied by means of a penalty method to change the constraint minimization prob­

lem into an unconstrained one (for instance see [60]). There are several possibilities 

for applying this method; one may define the same penalty function as Walsh in [60] 

(like the example of the previous Chapter), or may apply the transformation function 

(see [6] and [15]). We apply the following penalty function; let

Zi =
max (0.000001 — X m,0) 

max (0.750001 — X m, 0)

if m  =  1 or m =  2 

if  m  =  2 , 3 , . . . ,  7,

and

T2 =  max(Xm — 1.99999,0);

then we consider

Pm(Xm) = y/Ti + y/T2 - Vm =  1 , 2 , . . . , 8.
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The penalty function P ( X i , X 2, . . . ,  X s) is defined as:

P ( X l t X 2, . . . , X 8) =  f ^ P m(Xn ).
m=1

Then we change the form of the objective function into the new one for A M O E B A  

that is shown by J '  as follows;

i f P ( X 1, X 2, . . . , X 8) ^ 0  

i f P ( X 1, X 2, . . . , X 8) =  0.

If one of the constraints is violated, the value of J '(D) will be 107 which is too big; 

to suppress, the minimization algorithm will ignore this value by finding new values 

for X i , X 2, . . . ,  Xa, that satisfy in all constraints to achieve the value of J ( D )  which is 

much less than 107.

To start, A M O E B A  needs an initial value for variables X m, when m  =  1 , 2 , . . . ,  8, 

(a given domain). Each time that A M O E B A  needs to calculate a value for the objective 

function, J ',  the linear system (4.30) with the conditions an > 0 for n  =  1 , 2 , . . . ,  740, 

must be solved. At any iteration the new domain is illustrated and the new value for J '  

is calculated; comparing this value with the previous one leads the algorithm to find a 

domain with a smaller value of the objective function in the new iteration. This proce­

dure is repeating till the optimal domain is characterized. In the next, two examples are 

given; one for the linear case and thé other for the nonlinear case of the elliptic equation 

in (4.1) and (4.2). We chose the function / 0 as:

f 107

1 J ( D )

/» =  ( U - O . l ) 2,
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this function, indeed, can be considered as a distribution of heat in the surface for the 

system governed by an elliptic equations.

4.5.4 Example 1

In the linear case defined by the partial differential equations (4.1), (4.2) and f ( x , y , u )  =  

0, the function Fi in (4.30) is

Fi =  u A &  ; i = 1, 2, . . . ,  10.

We used the initial values X m =  1.0, m  =  1 , 2 , . . . ,  8, as a given domain for starting the 

algorithm; also the stopping tolerance for the program (variable f to l  in the Subroutine 

A M O E B A ) has been chosen as 10~7. Here are the results:

• The optimal value of I  =  0.70469099432415;

• The number of iterations =  827;

• The value of the variables in the final step:

X x =  1.033028, X 2 =  1.390598, X 3 = 1.422364, X 4 =  0.97706,

X 5 =  1.017410, X 6 =  0.958974, X 7 = 1.018387, X s = 0.951333.

These values represent the optimal domain. The initial and the final domain has 

been shown in the Figure 4.7, and also the alteration of the objective function, according 

to the number of iterations, has been plotted in the Figure 4.8.
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Initial Domain
o  ------------------------------------
CM

LO

in
ö

o  ___________
O  C-------- ----------'-------- --------- ri

0.0 0.5 1.0 1.5 2.0

Optimal Domain

Figure 4.7: The initial and the optimal domain for the starting initial values X m = 
l,m  =  1, 2, . . . .  8, in the linear case.

f  I
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en|8A

Figure 4.8: Changes of the objective function according to iterations in the linear case 
with the starting valves X m — l , m  — 1 , 2 , . . . ,  8.
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Also we applied the initial values X m =  1.1, m =  1 , 2 , . . . ,  8, and ran the same 

program with this; the obtained results are:

• The optimal value of I  =  0.85045367617752;

• The number of iterations =  389;

• The value of the variables in the final step:

X i =  1.150384, X 2 = 1.081058, X 3 = 1.076638, X A = 1.078285, 

X 5 = 1.714226, X 6 = 1.050096, X 7 = 1.107141, X s = 1.014125.

Initial Domain

0.0 0.5 1.0 1.5 2.0 
x

Optimal Domain

X

Figure 4.9: The initial and the optimal domain for the starting initial values X m =  
1.1, m  = 1 ,2 , . . . ,  8, in the linear case.
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These values represent the optimal domain which has been shown in the Figure 4.9 

with the initial domain. The changes of the objective function according to the number 

of iterations was also plotted in the Figure 4.10.

Figure 4.10: Changes of the objective function according to iterations in the linear case 
with the starting valves X m =  1.1, m  =  1 , 2 , . . . ,  8.
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We remind the reader that the difference between the two values of the objective 

function and variables associated with the use of two different initial values (in this Ex­

ample and also in Example 2), is caused by some limitation in the Subroutine A M O E B A  

and it is not in relation with the method used. This fact will be discussed in Appendix 

C.

4.5.5 Example 2

For the nonlinear case of the partial differential equations (4.1) and (4.2), we have taken 

f ( x , y , u )  — 0.25u2. As in Example  1 we used the initial values X m =  1.0, m  =

1 ,2 , . . . ,  8, as a given domain for starting the algorithm with the same value for stopping 

tolerance. The obtained results are:

• The optimal value of I  =  0.45467920356379;

• The number of iterations =  502;

• The value of the variables in the final step:

X x =  1.050197, X 2 =  1.085212, X 3 =  0.750001, X 4 = 0.768701,

X 5 = 1.129861, X6 =  1.137751, X 7 =  0.977838, Z 8 =  1.615668,

which represent the optimal domain. The initial and the final domain has been shown in 

the Figure 4.11, and also the change of the objective function, according to the number 

of iterations, has been plotted in the Figure 4.12.
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Initial Domain

0.0 0.5 1.0 1.5 2.0
X

Optimal Domain

Figure 4.11: The initial and the optimal domain for the starting initial values X m =  
1, m  = 1 ,2 , . . . ,  8, in the nonlinear case.
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Figure 4.12: Changes of the objective function according to iterations in the nonlinear 
case with the starting valves X m =  1, m  = 1 , 2 , . . . ,  8.

As in Example  1, we chose the initial values X m =  1.1, m =  1 , 2 , . . . ,  8, and ran 

the program again with this initial; here are the results:

• The optimal value of I  =  0.40243494655212;

• The number of iterations =  586;
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• The value of the variables in the final step:

X t = 0.825538, X 2 =  0.952122, X z = 0.923957, X 4 = 0.96417, 

X 5 = 1.358162, X 6 = 1.088290,^7 =  1.250303, X 8 =  1.884825,

these values represent the optimal domain which has been shown in the Figure 4.13 with 

the initial domain. The changes of the objective function according to the number of 

iterations was also plotted in the Figure 4.14.

Initial Domain

0.0 0.5 1.0 1.5 2.0
X

Optimal Domain

X

Figure 4.13: The initial and the optimal domain for the starting initial values X m =  
1.1, m  =  1, 2, . . . ,  8, in the nonlinear case.

v
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Figure 4.14: Changes of the objective function according to iterations in the nonlinear 
case with the starting valves X m =  1.1, m  =  1 , 2 , . . . ,  8.
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Chapter 5

Shapes, Measures and Elliptic 

Equations (Variable Control)

5.1 Introduction

In this chapter, as in the previous one, we assume D C R 2 to be a bounded domain 

with a piecewise-smooth, closed and simple boundary dD  which consists of a fixed 

and a variable part. The fixed part is a union of three segments, part of the line y — 0 

between the points (1, 0) and (0, 0), part of the line x — 0 between the points (0, 0) and 

(0,1), and part of the line y = 1 between the points (0,1) and (1 ,1). The variable part 

is a curve T with the initial and the final points A — (1,0) and B  =  (1,1) respectively; 

T is a simple curve but not a closed one; it does not cut itself between the points A  and 

B  (see Figure 4.4).

A domain D as defined above, and the pair (D ,v) are called admissible if the elliptic

119
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equation

A u(X ) + f ( X ,u )  = v (X) (5.1)

with the boundary condition

«la* =  °> (5.2)

has a (unique) bounded solution on the domain D. We remind the reader that the func­

tions u(-) and /(•,■) have the same properties as in the previous chapter; however, v : 

D — > R is a Lebesgue measurable function which is defined as a bounded Distributed 

control function. This function is assumed to take values on the bounded set V.

The set of all admissible domains is denoted by V; indeed it contains all mentioned 

admissible domains like D for all possible curves like T. It was explained in the pre­

vious chapter how an admissible domain D  (or in other words T), can be defined by a 

countable dense subset of its points, called the representative set ofD . Then, by means 

of the procedure of approximating a curve with broken lines, these countable points, 

and hence T, is approximated with a number M  of its points; this was called the M - 

representation ofD . For a fixed number M , without losing generality, the points in the 

M-representation set can have the t/-components fixed, like ym — Ym,m  =  1 ,2 , . . .  , M  

(see chapter 4, section 4.3). Thus an admissible domain D 6 T> can be identified by its 

M-representation set such as:

— (xmi Ym), m  — 1 , 2 , . . . ,  M } .

In this way, for a given fixed M , we replace V  with T>m , the set of all admissible M - 

representations; we also call F  the set of all admissible pairs (D , v) such that D  e  V M. 

Let f i , / 2 : D  x R  — > R be two functions in C(D  x R ), further, we assume that there
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is a constant K  >  0 so that the function / i  satisfies

| / 1( X , u ( X ) ) | < X M ,  ’ (5.3)

for all pairs (X , u (X )) where X  £ D. The present chapter is going to identify the 

minimizer pair of domain and control, (D*, v*D.) for the functional

I ( D , u ) =  /  M X , u ( X ) ) d X +  [  f 2( X , v {X) )d X ,  (5.4)
J D JD

over the set F. This optimal pair will be characterized in two stages:

• (i) In the first stage, we are going to determine the optimal control function for 

each given domain. For fixed domain D £ V m , or in other words for a fixed val­

ues of x x = X i , x 2 = X 2, ■■■ , xm  = X m , we will use the generalized form of 

the equations (5.1) and (5.2) to introduce the classical form of the optimal control 

problem. Then the problem will be changed into a measure-theoretical one. The 

new problem has a solution because of existence theorems. We also replace the 

problem with an infinite dimensional linear programming one, and then approxi­

mate it by a finite one. Hence the optimal control and a solution of (5.1) and (5.2) 

will be characterized (approximately) from the solution of the appropriate finite 

linear programming. Thus, at the end of this stage, we will be able to determine 

the nearly optimal control function, v^, for the given domain D; also we can cal­

culate the minimum value of the performance criterion for any given domain like 

D, I (D, v*D), in terms of the finite number of variables X 1 ,X 2y. . . ,  X M-

• (ii) We have shown (in the Chapter 4) that each domain D £ V m  and hence 

each control function v : D — > R defined on D, is a function of the vari-
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ables X lyX 2, . . . ,  X m \ also in the stage one, we calculate the value of 1(D ,v*d) 

in terms of these variables. To introduce the optimal pair (D *,vp.) for the func­

tional I  in (5.4), in the second stage, we will define a function, say J ,

J  : D e V M — > I  {D ,v*d) € R,

which is a vector function with the variables X 2, X 2, . . . ,  X m . Then, by applying 

an iterative standard minimization algorithm, like the Algorithm introduced by 

Nelder and Mead [42], we will obtain x \ , x^ , . . . ,  x*M, the global minimizer of the 

function J . This minimizer which, indeed, is an M -representation, shown by the 

values x j, ®2, . . . ,  x*M, introduces the (nearly) optimal shape (domain), call it D*. 

Then, in the manner which has been explained in the first stage, the associated 

sub optimal control function to the domain D*, say v*D,, will be determined, The 

pair (D *, v *D, ) will be the minimizer of the of the functional I  over the set F.

The new method has some advantages:

• An automatic existence theorem: there always is a minimizer for the measure- 

theoretical problem.

• The problem is changed into a linear one even if the performance criterion is non­

linear: then one can use the whole paraphanalia of linear analysis for dealing with 

such problem; thus the computation is much easier.

• Our minimization is global: the value reached, say, numerically is close to what 

one could reasonably call the global infimum of the problem (here it is supposed 

that the standard minimization algorithm gives us the global minimizer).

•  The optimal shape (domain) and the optimal control function can be determined 

at the same time.
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In the last section of this chapter, some numerical examples for the linear and nonlinear 

cases of the elliptic equations, will be given. These examples will show how the method 

is applied.

5.2 The optimal shape design problem

In order to define an optimal shape design problem, it is necessary to describe its several 

components, such as the (partial) differential equation satisfied by the controlled sys­

tem, a function to be minimized with respect to a particular geometrical element (per­

formance criterion) and the admissible space in which the minimization takes place. 

We have already defined in the Introduction section all the necessary components for 

the optimal shape design problem which we are going to solve.

In the present Chapter, we seek in the admissible set F , for the minimizer pair of do­

main and control function, (£>*, v^,),  for the functional (5.4), so that the elliptic equa­

tion (5.1) with the Dirichlet condition (5.2), is satisfied. Indeed we are going to find the 

solution of the following (classical) shape design problem over the set of admissible 

pairs, F.

M i n i m i z e :  I  (D,v)  = j  f \ ( X , u ( X ) )  d X  +  f  f 2( X , v ( X ) ) d X
J D J  D

S u b je c t to  : A u (X )  + f ( X , u )  = v(X);

u\3D =  0. (5.5)

As we mentioned in Chapter 4, in general, it is difficult to characterize a classical so­

lution for the elliptic equations (5.1) and (5.2). By applying the variational form of the 

elliptic problem (see the Proposition 4.1), we prefer to obtain a bounded weak solution 

(generalized solution) of the problem; so the functions u(-) and u(-) in (5.1) and(5.2)
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must satisfy the general equalities mentioned in (4.5). Consequently, the optimal shape 

design problem (5.5) changes into the following one:

M i n i m i z e :  I ( D , v ) =  [  h( X , u ( X ) ) d X +  f f 2{ X , v ( X ) ) d X
J d  J d

S u b je c t to  : f (uAtp +  tpf) d X  = f %l>v dX  ; G Hq(D). (5.6)

To solve the above optimal shape design problem, in the first step we will find out how 

one can calculate the minimum value of I(D, v) for a given domain D G T>m , subject 

to the mentioned conditions. In other words, for a given domain D G T>m  the optimal 

shape design problem becomes an optimal control problem; hence one should find an 

optimal pair of trajectory and control functions which satisfy the conditions of (5.6). 

Then the minimum value for I (D,v)  can be calculated. Afterwards, in the next step, it is 

possible to look for an admissible domain D* which gives the minimal value I(D*, v^ , ) 

between the domains in T>m - In the following section we will characterize the optimal 

pair of trajectory and control functions for a given domain D G T>m , according to the 

mentioned conditions in (5.6).

5.3 The control problem for a fixed domain

In this section we suppose that D G T>m  is a given admissible domain. For this fixed 

domain, the optimal shape design problem (5.6) changes into a classical optimal control 

problem which is to find a pair of trajectory function, u, and the control function, v, so 

that they satisfy the following conditions:

/  (uAV> +  $ ! )  dX  — f  iPvdX-,Vj>e H£(D),
J d  J d

it

(5.7)
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and minimizes the function

(I (D , * )  = ) i(u , v)  =  /  f , ( X ,  u(X) )  d X  +  /  M X ,  v ( X) )  i X .  (5.8)
JD  JD

In the present section we are going to find the minimizer pair of functions,by solving 

the classical control problem. We will change the problem into the measure-theoretical 

one and identify its related space; this new formulation has some advantages. By apply­

ing Rosenbloom theorem [48] and discretization method, the problem will be approx­

imated by a finite linear programming one in which its result identifies the trajectory 

and the optimal control function for the given domain approximately.

5.3.1 The classical optimal control problem

In the sense of the classical form of a control problem, we assume that the function 

u : D — > R is the trajectory and the function v : D — ► R is the control function. An 

admissible pair of trajectory and control function is defined as follows.

Definition 11 : A pair o f the functions (u, v) is called admissible if:

• i) The trajectory function u G H X(D) is bounded and takes values in the bounded 

set U; moreover here we assume that U is the intersection o f all such bounded 

sets.

• i i ) The trajectory fiinction is zero on the boundary o f D (i.e. on dD ).

• in )  The function v is the bounded control function which takes values on the 

bounded set V. This function also is supposed to be Lebesgue-measurable on

D.
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• iv ) The functions u and v satisfy the condition (5.7) for every if) € Hq(D).

The set o f all admissible pairs is denoted by T .

We suppose that the set T  is nonempty. In fact, we assume that the elliptic equation 

(5.1) and (5.2) has a bounded weak solution on D. So, for a fixed domain the optimal 

shape design problem (5.6) changes into the following optimal control problem over T .

M i n i m i z e :  i ( u , u ) =  f  f i (X ,  u(X )) dX +  [  / 2(X, v(X))  dX
J D  J D

S u b je c t  t o  : f  (uXip +  ij>f) d X  = [  ipv d X  ; \fip e  Hl(D).  (5.9)

Problems may arise in the quest for the finding the optimal pair; it is difficult to 

determine the solution of the elliptic equations although we know it exists, there is no 

comprehensive method to identify an admissible pair (u, v). There may be many meth­

ods which estimate numerically the generalized solution (trajectory function) for a fixed 

distributed control function (see for instance [12] and [24]). But it is difficult to find a 

general applicable approximation method to estimate numerically the optimal control 

and its related generalized solution at the same time for a problem like (5.9). Also it is 

difficult to prove that these methods can find the global minimum for the problem.

We therefore change the problem and consider a new one with different formulation. 

The basis of this metamorphosis is the fact that an admissible pair (u , v ) can be con­

sidered as something else, that is, a transformation can be established between the ad­

missible pairs and other mathematical entities; this transformation is an injection. It is 

possible then to set up an applicable method for calculating the image of an admissible 

pair under the transformation.
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5.3.2 Metamorphosis

In general, the minimization of the functional i in (5.9) over F  may not be possible since 

an optimal control may not exist; even it exists, therë is no comprehensive way to char­

acterize the optimal pair either numerically. In the following, by replacing the problem 

(5.9) with another one, the minimizer of the functional i will be calculated over a set of 

pairs of positive Radon-measures; these pairs should have some properties which can 

be deduced from the definition of an admissible pair of control and trajectory functions.

The basis of this metamorphosis consists of replacing the pair (u , v) of an admissi­

ble trajectory and control functions with a pair of positive Radon measures. Any weak 

solution of (5.1) and (5.2) defines a positive and linear functional like

on C(Cl), that f2 =  D x U; also a control function v defines a positive and linear func­

tional like

on C(u)), that a; =  D x V.

We remind the reader that the transformation between admissible pairs (u, v ) m F  and 

the pairs of linear functionals (u(-), ■v(-)) defined above, is an injection; one can show 

it easily by using the same method as Rubio did in [50]. Now by applying the Riesz 

Representation Theorem (see for instance [55]) for the functionals u(-) and v(-), one 

can deduce the following Proposition.

Proposition 16 : For each admissible pair (u,v)  G F  there is a pair o f positive Radon



measures ( p ,  u ) ,  p  G M +((2), v  G so that
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p{F) = [  F ( X , u ( X )) dX-, VF G C(iî),
JD

u(G)= f G(X,v(X))dX-,  V G e C ( w ) .  (5.10)
Jd

Proof: The proof is similar to the Proposition 1, thus it is omitted. □

Definition 12 '.The pair o f measures (p, v) defined in the Proposition 16 is called a 

representing pair of measures.

By applying the mentioned transformation between the set of admissible pairs, F , and 

the set of all representing pairs of measures, the new form of the problem (5.9) is as 

follows:

M in im iz e  : i(p, v) =  p ( f x) +  v ( f2)

S u b je c t  t o :  /¿(i'V) +  v(G^)  =  0 ; € Hl(D).  (5.11)

where the functions F^ G C7(i2) and G^ G C(ui) are defined as

Fj, =u&'ij>+ ■$/, G4 = -tpv.  (5.12)

So far, we have not achieved anything new, and just changed only the appearance of the 

problem; nothing else. We will extend the problem and shall consider the minimiza­

tion of (5.11) over the set of all pairs of measures in A/f+(il) x M +(u>) satisfying the 

mentioned conditions in (5.11) for all £ Hq(D), plus the extra properties which are 

deduced from the definition of admissible pairs ( u , v ) .  These properties indicate that 

the measures p  and v  project on the ( i ,  y)-plane as the respective Lebesgue measures.
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In fact, if  a function

£ : n

in C (fl) depends only on variable X  = (x , y ) (i.e. £ € C i(il)), then

A*(0 =  /  f(*»y) d X  = a( , (5.13)
•v D

the Lebesgue integral of £ over D. Also, if a function

£ : u> — ► R

in C{oj) depends only on variable X  (i.e. £ € Cx(u)), then

K O  =  /  C(x ,y)dX = b( , (5.14)
JD

the Lebesgue integral of £ over D. Therefore, instead of solving the optimal control 

problem (5.9), we are going to solve the following measure-theoretical one in the space

M +(n)  X M +(u)\

M in im ize  : \ { p , v )  =  ii(fi) + v ( f2)

S u b je c t to  : K Fi>) + v {G'i>)= o> e  Hq(d )-, (5.15)

II o rt
v V£ € Cx(ny

KO = k , V£ € Cx{w).

As mentioned before, in the classical form of the optimal shape design problem the min­

imization of the performance criterion in (5.8) over the set T  may not be possible, the 

infimum may not attained at any admissible pair; also, it is difficult to write the nec­

essary conditions for the problem. If the minimizer pair does exist, it may difficult to



characterize it or estimate it numerically. But in the nonclassical optimal control prob­

lem, which has been formulated as a measure-theoretical problem in (5.15), there are 

three major characteristics which make the new formulation more effective. Let the 

subset of A4+(ft) x M +(oj) which satisfy the conditions in (5.15), be denoted by Q, 

then,

• (1) The existence of an optimal pair of measures in Q, minimizing the functional 

(/x, v )  — > p( f i )  +  K / 2) ^  guaranteed because of the automatic existence theo­

rem. We shall deal with this fact below.

• (2) The functional (p, v )  — > p(f i )  +  v ( f2) and other functions appearing in 

(5.15) are linear in their arguments, the measures p and u, even for those prob­

lems normally classed as nonlinear. So the computational methods for getting the 

solution are simpler.

• (3) Since the set T  can be considered, by means of the transformation, as a subset 

of Q, therefore,

in f i (p,v)  <  infi(u,t;);

thus in (5.15) the minimization is global, that is, the global infimum of the prob­

lem can be approximated.

5.3.3 Existence

We intend to prove the existence of an optimal pair of measures, say (p*, u*), in the set 

Q for the function (p, v )  — > p(f i )  +  v( f2) under the conditions on the functions and 

the sets of the problem given in (5.15). Let assume that the set of measures Q is not 

empty. In other words, the elliptic equation (5.1) and (5.2) has a bounded generalized 

solution for a given bounded control function (as mentioned in Chapter (4)) and hence
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T  7̂  4>, as supposed before. Even though of course the set Q may nonempty while 

the set of the pairs of trajectory u and control v (i.e. the set T )  is empty (one of the 

advantages of the theoretical-measure formulation). Existence theorems have a very 

heavy topological content; we note that no topology has yet been put on the set Q, or 

the (linear) space M(f l )  x M(u>) of all Radon measures, positive or otherwise, or on 

the spaces fl and u>. One must try to find a topology on the space A f+(fi) x M +(w) 

so that Q is compact in this topology and the function (p, v) — >■ p(fy) + v ( f 2) is 

continuous. This topology can be the weak*-topology on

5  =  {(p, v) : (p, v) € M +(n)  x M +(w)} ;

for more information, the reader is advised to see Chapter 2.

Proposition 17 : The set Q o f measures (p, v), defined as those measures in S  satisfy 

the conditions o f (5.15), is compact.

Proof : Let the space M +(ü)  x M +{u) be topologized by the weak*-topology and 

define

So =  {(p, v) : p( l n ) -  v( lu) < W }

where W  is a positive fixed number. The set S0 is a compact set (see for instance [11]). 

Proposition 16 shows that

/x(ln ) = L = v( lu)

where L is defined as the Lebesgue measure of D; therefore Q is a subset of the compact 

set S0. Moreover the set Q is closed, since one can write

Q — f l  { { ^ v ) '• K * 1*) +  V{G+) =  0} ,



Chapter 5: Shapes, Measures and Elliptic Equations (Variable Control) 132

where the set {(/z, v ) : p(F^)  +  v(G$) =  0} is the inverse image of a closed set on the 

real line, the set {0}, under the continuous map (p, u) e  Q — ► p(F^) + v(G^) € R. 

Since Q is a closed subset of a compact set, it is compact. □

Theorem 4 : There exists an optimal pair o f measures (p*, v*) in the set Q so that it 

is the minimizer o f i(p, v) in (5.15).

Proof : The function (p, v) 6 Q — > p{h)  +  v{h)  € R, mapping the compact set 

Q on the real line, is a continuous function (one may show it easily as the same way as 

Rubio in [50]). Thus it attains its minimum on the compact set Q by Proposition I I I  

of [50]; thus there exists a pair of measures (p*, v*) e  Q, such that:

KmV )  <

for all (p, v) €  Q. □

Up to now, it has been shown that the problem (5.15) has an optimal solution. In the 

next we shall explain how this optimal solution could be characterized approximately 

of course. In the end of this subsection, we present the following Proposition which 

will be used later to prove the important theorem of approximation.

Proposition 18 : The set Qx c  Q of measures associated with (u,v) which arepiecewise- 

constant trajectory and control function on Q and u> respectively and satisfy the men­

tioned conditions in (5.15), is weak*-dense in Q.

Proof : See the proof of Theorem 7.1 of Kamyad, Rubio and Wilson in [31]. □



5.3.4 Approximation

Up to here we have developed an infinite-dimensional program by considering mini­

mization of i(/x, v), over the set Q in (5.15). Now we intend to consider the minimiza­

tion of i(/z, v) not over the set Q, but over a subset of x M +(oj) defined by

requiring that only a finite number of constraints in (5.15) be satisfied; then the solution 

of the problem (5.15) will be achieved by choosing a countable sets of functions that 

are totalm  the spaces Hq(D),  C i(il) and C\(u), that is, so that the linear combinations 

of these functions are uniformly dense (dense in the topology of uniform convergence) 

in the appropriate spaces. The total sets in the spaces Hq(D) and C i(i)) are the sets

=  1, 2, 3 , . . . } ,  {£7,7 =  1 , 2 , 3 , . . . } ,

which have been already defined in Chapter 4. Because C'i(fi) =  Ci(u>), we define 

(1 : u  — > R so that 0 |D =  Ci\D for al l l  =  1, 2, 3 , . . . ;  hence the set

{( lt l = 1 , 2 ,3 , . . . }

is total in Ci(u>). Thus the problem (5.15) can be replaced by the following one; 

M in im iz e  : i(p, u) =  p(f i )  +  v( f2)

S u b je c t  to  < p{Fi) +  v{Gi) = 0, ¿ =  1 ,2 ,3 , . . . ;  (5.16)

=  3 — 1 ,2 ,3 , . . . ;

u{6 ) = bu / =  1 ,2 ,3 , . . . ,

Ft := F^ ,Gi  := G ^  for z =  1 , 2 , 3 , . . . ,
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f /

where
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Oj := % . for ;' =  1 ,2 ,3 , . . . ,  

bi := b for / =  1 ,2 ,3 , ----

Then the important following Proposition can be deduced; its proof is similat to as the 

proof of the Proposition 7/7.1 in [50].

Proposition 19 : Let M i , M 2 and M3 be the positive integers. Consider the problem 

of minimizing the function

(p,u)  — ► i(p,v)

over the set Q(M i , M 2, M3) o f measures in x M +(u>) satisfying

p{F i)  + v{Gi)  =  0, i ~  1)2,. . . , M i

Kt : )  =  ai> 3 = 1.2,. . . , m 2

KCO =  h. 1 = 1 , 2 , . , . . , m 3

then

-q{Mi,M2,Mz)  =  inf [i(/z,i/)]Q(Ml,Af2,M3)

tends to

V =  inf [i(/x, v)\

whenever M \, M 2, M3 — > 00.

We remind the reader that, because the set Q in the calculation of 7? is an extension of 

the set T ,  our minimization is global, that is, for the given D,rj < inf^ i; indeed, this 

is another advantage of the new formulation.
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Note that we have limited the number of constraints in the original problem; but the 

underlying space is still infinite-dimensional. In fact the problem is:

M in im iz e  : i(p, v) =  p( f i )  +  v ( f 2)

where the minimization takes place over the set Q(M i , M 2, M3). This problem is one 

of linear programming, in which all functions in (5.17) are linear in their arguments p 

and v. Indeed it is a semi-infinite linear programming problem, since the unknowns, p 

and v, are in Q. Let (p*, v*) be the minimizer pair, then for the mentioned fixed D , the 

optimal control, v*D can be characterized from the measure v* (see below); hence the 

value of I (D,v})) is \(p*,v*) = r](Mi,M2,Mz).

We have reached the main point of this section; how do we construct suboptimal 

pairs of trajectories and controls for the functional i in (5.9)? We shall proceed in several 

steps:

• (%) First we shall obtain the optimal pair of measures (p*, u*) for a problem such 

as (5.17). The existence of such a minimizer follows from the simple considera­

tions as the existence theorem given in Theorem 4.

• (i i ) We obtain a (weak*) approximation to (p*} v*) by a set of two piecewise- 

constant functions (u, v) by means of the results given in Proposition 18 (see Ap­

pendix D).

S u b je c t  t o :  p(F i )  +  v(Gi)  = 0, % =  1 , 2 , . . . ,  Mi; (5.17)

M ii) =  ai>

K C O  =  K
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• (Hi) The control function v obtained above, is in L2(D), since it is piecewise- 

constant and D is bounded. It can give rise to a weak solution of the system (5.1) 

and (5.2) to be denoted by uv. This solution will be in H£(D).  Conditions for 

the existence of such weak solution are given in [38] and [33] for instance.

• (iv) We shall prove below that if the numbers M i, M2 and M3 are sufficiently 

large and the weak*-approximation in step (it) above, is sufficiently good, then 

the value of the functional i at the (uv, v) defined by (5.9), i(u„, v),  is close to 77 

and thus is a good suboptimal pair. Note that no use is made of the trajectory u, 

obtained in step (n ) together with the control v.

Toprovethe next theorem, we follow Farahi in [15],Rubioin [51] and especially in [53].

Theorem 5 : Let (uv,v) be the pair constructed as explained above. Then, under the 

appropriate conditions on the approximations involved, as M i, M2, M3 tend to 00, we 

have

i(uv, v ) — ► inf [i(/x, v)\.
Q

Proof: First we are going to show that for a given positive number e >  0, one can 

choose the positive integers M i, M2 and M3 so that

| i(uv,v) -  inf i(/i,i/) | <  2e. (5.18)

Let (/x*, v*) be the minimizer of the problem (5.17) over the set Q(M U M2, M3) for 

fixed integers Mi > 0, M2 >  0 and M3 >  0; its existence can be proved by the same 

arguments as the proof of the Theorem 4. We choose e := then by Proposition 18, 

because the set Q\ is weakly* dense in Q, there exists a pair trajectory-control (u, v) so
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that the pair of measures (pu, vv) € Q\  generated by the pair (u, v) satisfies

I M / i )  +  ~  [fF(fi) +  ^ ( h ) }  | <  e (5.19)

^ ( F i )  + vv(Gi) = 0 ; i = 1 , 2 , . . . ,  Mi; (5.20)

we note, further, that these measures satisfy the rest of the conditions in (5.17) for func­

tions in C i(il) and Ci(u).

Now, by the manner explained in step (in),  one can obtain the weak solution, the tra­

jectory uv, corresponded to the control v. Let pUv be the corresponding measure to the 

trajectory uv; hence the trajectory-control pair (uv,v)  introduces the pair of measures 

(fiUv,uv) in Q. At this stage, we intend to prove that

I (/¿u* -  Mu)(/i) I <  e- (5.21)

We remind the reader that the function / i  satisfies (5.3); thus we have

I (f*uv -  M u )(/i)  I <  K  | ( ^  -  /O O ? )  I, (5 .22)

where i? : fl — ► U is a function defined by tf(X, u) ~ u  for each (X, u) e  Further, 

by considering the statements (5.17) and (5.20), the following equalities are satisfied 

for each i = 1 , 2 , ,  Mi.

(pUv -  fiu)(Fi) =  (fiuy ~  fJ>v)(Fi) +  [vv(Gi) -  vv(Gi)\

=  { ^ ( F ^  + K i G ^ - l p ^  + ^iGi)}

=  0;
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then by considering the definition of F{ in (5.12), for each i =  1 , 2 , . . . ,  M \ , we have

(/*u, -  Vu)(Fi) =  (pUv -  +  /V’») =  0. (5.23)

As explained before, the set of functions i =  1 ,2 , 3 , . . . ,  was chosen so that this 

set is total in the space Hq(D); this means that the set of the linear combinations of 

the functions ipi,i =  1 ,2 , 3 , . . . ,  is uniformly dense in the space H£(D).  Thus each 

function ip £ Hq(D), can be approximated by one of these linear combinations; hence 

if we consider {ip i: i =  1 , 2 , 3 , . . . }  as a base for the Hilbert space H]{D),  there exist 

coefficients ci e R , i = l , 2 , 3 , . . . , s o  that, if define P  =  aipi, we have

sup | ip — P  |<  e. (5.24)
D

From (5.23), it is calculated that

oo
\ (puv- P u ) ( ^ p + f p ) \  =

1=1 r 
OO

=  I E  Ciifav ~  A ^i +  flpi) |

OO

<  E  | C i | | ( ^ - / X u)(7?A^ +  / ^ ) l
»=Aii+l

=  O (5.25)

by considering again the equality (5.23), the above statements shows that whenever 

the number M\  is increased, the value of O will decrease; therefore ^  — ► 0 when 

Mi — > oo (indeed, O — ► 0 where M x — > oo). Thus from (5.24) and (5.25) one can 

conclude that

| {Puv -  Pu){ßM  +  /V O  I =  o ( M i ) . (5.26)
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Now, choose ip e  H£(D) so that on the given domain D we have

\ f i P \ <  e ', | -  1 | <  e' (5.27)

with

e • =  — ------------------------ ------------------

2K (T + l )L(i))

that L(Q) is the Lebesgue measure of Q and the positive number T  will be defined later 

on. So, by applying (5.26), we have

| (pUv -  Pu)($) I =  I (Puv -  pu)[(dAip +  f ip) -  (i?(AIp -  1) +  fip)\ I (5.28)

<  | ~ Pu){$A.ip +  /V O  | +  | (pUv -  pu)(d(A>ip -  1 )  +  fip)} |
<  o(M i)+  | (pu, -  pu)(d(Aip -  1) +  f ip) |;

also note that

I (puv -  ^u)(i?(A ip -  1) + fip) I <  ^  (5.29)

where

$  = max[ | /¿u*(i?(Aip -  1) + fip ) |, | pu(i)(Aip -  1) + ftp) | ].

Without loss of generality, here we suppose that the right-hand-side of (5.29) is equal 

with | pu(i)(Aip — 1) +  fi>) |- Moreover, the functions $ and /  are assumed to be 

bounded on fi; by the boundedness of Q itself, the function ip e  Hq(D) is also bounded 

( since C^( D)  is dense in Hq(D), see Chapter 4 section 4.3). Thus the function t?( A ip—
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1) +  /i/» is a bounded function on ft. Therefore

| pu(t}(Atp -  1) +  ftp) | <  max | i?(Atp -  1) +  ftp \ pu(ln); 

but //u( ln )  =  E(Q). As a result,

| pu(t)(Atp -  1) +  ftp ) | <  max | i?(Atp -  1 ) + ftp \ ¿ (ft). (5.30)

Also, the inequality (5.30) is satisfied if pu is changed with 

By regarding (5.29) and (5.30), inequality (5.28) implies

I (fj-uv -  M u)^) I <  o(Mx) +  max | i?(Atp -  1) +  ftp | ¿ (ft) . (5.31)

From (5.27) it is deduced that

\ # ( A t P - l )  + f tP\  <  | t ? | |A V ’ - l |  +  | / V ’ |

The function 1t? | is bounded on ft, because the generalized solution is bounded; let T  

be the least upper bound of | 1? | over ft (in other words T  = max^ | $ |), then, by 

considering (5.32) we have

<  ¿ (1 * 1 + 1 ) . (5.32)

max | iH(Atp -  1) +  ftp \ < e'(T + 1). (5.33)

Hence, it is concluded from (5.31) and (5.33) that

I ( f t .  -  f t ) M  I <  o(Ml ) + c'(T  +  l ) I ( f l )  =  ± (5.34)
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whenever M i is taken sufficiently high to make o(Mx) =  Now the inequality (5.21) 

can be deduced from (5.22) and (5.34).

Further,

i’(«V) u) -  inf i(/i, v) =  [/xu„ ( / i)  +  vv( f 2)] -  [p*(fi) + v*(/2)]

= [pUvifl) + Vv{h)\ — [^(/l) + ’̂(/s)] + [pu(fl) — Pu(fl)]

=  M l )  +  M * ) \  -  M l )  +  » ' • ( / a ) ]  +  M f i )  -  M l ) ] ’,

hence

i(n„, v) -  inf i(fi, v) | <  | [pu(fi) + Vv(h)\ ~  [A**(/x) +  v*(h)\

+  I (/**, -  /*u)(/i) I (5.35)

Applying (5.19) and (5.21) in (5.35) shows the following relation:

| i ( u v, u ) ~  inf i ( f i , v ) \ < 2e,
Q(MitM2,M$)

which is the inequality (5.18) that we were looking for. Now if M X, M 2, M3 — > oo, 

by applying the Theorem 4,

lim i(uv,v)  =  inf i(p, i/).
t^ 2 1W 3  ——̂ 0 0  Q

□

In this section we have explained how one can obtain the pair of trajectory and con­

trol functions for the problem (5.9). By means of the Proposition 16, the problem has 

been replaced by a measure-theoretical one. We have identified the corresponding pair
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of optimal measures (//*, v*) as the solution of the linear programming problem in (5.17) 

defined by just a finite number of constraints. The measure u* introduces a piecewise- 

constant suboptimal control function, say v*, for the problem, by means of the Propo­

sition 18; in the Appendix D, we explain how one can obtain v*. This control gives 

rise to uv., a weak solution of the system (5.1) and (5.2). Then, Theorem 5 proved 

that the value of i(uv*,v*) is a very close approximation for the optimal value of the 

performance criterion in the general case. Therefore the pair of trajectory and control 

functions (uv*, v*), is the nearly optimal solution for the problem (5.9).

Indeed, for a given domain, we can characterize the suboptimal control function (de­

fined on D of course) for the problem (5.6), say v*D, by applying the above procedure. 

Since, for a fixed domain, the optimal shape design problem (5.6) changes into the op­

timal control problem (5.9), and the optimal value of the functional I  (i.e. I (D, i>£) can 

be calculated as

I(D,v*D) = i(uv i ^ D).

Calculating the weak solution u =  uv*D for the problem (5.1) and (5.2), defined by 

v =  vjp, is not always easy. For the rest of the work, we need only the optimal control v*D 

(which already have) and the value of I (D, Vp) which is exactly the value of r), defined 

in the Proposition 19; there is no need to use the function uv*d anymore. Proposition 19 

shows that we can calculate the optimal value of the functional I  as

I  (D ,v 'd) = (5.36)

(To see an example about finding the weak solution for the similar case, the reference [ 15] 

is recommended for instance.)
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5.3.5 Approximation by finite linear programming

The problem (5.17) is a semi-infinite linear programming problem; the number of equa­

tions is finite but the underlying space Q(MX, M 2, M 3) is not a finite-dimensional space. 

It is possible, therefore, to estimate the solution by a process of discretization. We re­

mind the reader that there are several methods for treating numerically such problem 

which do not involve discretization, for instance Rudolph method (see for example [56] 

and [57]) and the Glashoff and Gustafson method (see [23]). We mention also that one 

may try to solve these kinds of problems in the space A l +(f2 U w) or in M +(i2 x u>) in 

the appropriate manner (see for example [51]).

A pair of measures (/¿, v) in the set Q(MX, M 2, M3) can be characterized by a result of 

Rosenbloom [48], which was proved in Theorem A .5 of an Appendix in [50], that p 

and v in (5.17) have the form

A i i A i i + A i i }
p =  Y  a^ i z n) , V =  Y  PkS(zk) (5.37)

m=l lc=1

with triples Zn € (l, zk 6 u  and the coefficients an >0,/3k > O.forn =  1 ,2 , . .  . , M X + 

M 2, k =  1 , 2 , . . . ,  Mi +  M3, where S(t) is supposed to be a unitary atomic measure with 

support the singleton set {i}.

This structural result points the way toward a further approximation scheme; the mea­

sure problem is equivalent to a nonlinear one in which the unknowns are the coefficients 

a« , Ph* and supports {Zn}, {zk} for n  =  1 , 2 , . . . ,  Mx +  M 2, k =  1 , 2 , . . . ,  M x +  M3. 

It would be more convenient if one could find the solution only with respect to the co­

efficients a n and f3k in (5.37); this would be a finite linear programming problem. The 

answer lies in approximating this support, by introducing a set dense in Q and u>. Propo­

sition 7 /7 .3  of [50] Chapter 3, states that the measures p and v in (5.37) have the fol­



lowing form

N  K

/* =  2  otn5{Zn) ,  i/ =  ^  Pk6(zk) (5.38)
n=l fc=1
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where Zn,n  = 1,2 and zk,k  =  1 , 2 , . . . ,  K,  belongs to dense subset of Q. and

irrespectively. Note that the elements Zn, n  =  1 , 2 , . . . ,  N,  and zk> k =  1 , 2 , . . . ,  K,  are 

fixed; the only unknowns are the numbers a n, n  =  1,2, . . .  ,N,andf3k,k  =  1,2

Now let us put a discretization on Q, and oj with the nodes Zn =  (xn, un) for 

n  =  1 , 2 , . . . ,  N,  and z*, k =  1 ,2 , . . . ,  K,  belong to dense subset of them; then we can 

set up the following finite linear programming problem in which the unknowns are the 

coefficients a n, n  =  1 , 2 , . . . ,  N,  and /3k, k =  1 , 2 , . . . ,  K:

N  K
M in im iz e  : 5 3  onf i (Zn) +  Pkfiizk)

n=l k=1

S u b je c t  t o  : an > 0,

Pk > 0,
N  K

T .  a n F i ( Z n )  +  5 3  (3kGi(zk) =  0,
n=l k=1

N

53  0inCj{^n) =  aji
n = 1

i=C
yPk(>i{zk) =
/c=l

n = 1 ,2 , . .

k = 1 ,2 , . .

» =  1 ,2 , . . . , M X

J =  1 ,2 , . . . , m 2

1 =  1 ,2 , . . . , m 3

(5.39)

We have shown in this section how one can obtain a solution (approximately) for 

the optimal control problem given in (5.9) via the finite linear programming problem
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mentioned in (5.39) above. Therefore we are able to characterize the optimal control 

Vp and moreover, calculate the value of I(D , v ’D) for each given domain D. In the next 

section, we shall show how one can find out the optimal domain and its associated opti­

mal control of course, for the optimal shape design problem shown in (5.5) by applying 

the result of this section.

5.4 The Optimal Shape

In the previous section we have pointed out how one can calculate the minimum value 

of I (D, v) for a given domain D. In the other words, we obtained the approximate pair 

of trajectory and control functions (u, v) for the optimal control problem (5.9) in which 

they have characterized the optimal value for the functional I (D, v) over T .  Consider­

ing this fact, in the present section we shall develop a procedure for finding (an approx­

imation to) the optimal value of the same functional, over the set of all admissible do­

mains T>m \ also, we intend now to solve the optimal shape design problem mentioned 

in (5.5) by determining the optimal shape and its related optimal control function, to 

obtain the minimum value of the performance criterion I (D, v ) on F. From the results 

of the previous section, a function of a finite number of variables, J ,  will be defined, in 

which its minimizer will be the (weak*-approximated) optimal domain for (5.5). This 

minimizer, further, will be characterized by applying a standard minimization algorithm 

(like Nelder and Mead [42]) over the function J ,  assumed to be perfect in the theoreti­

cal work below.

Each domain D 6 T>m > as explained in Chapter 4, is defined by a M-representation 

like {A m =  (xm, Ym), to =  1 , 2 , ,  M } where the numbers Ym, m  = 1 , 2 , . . . ,  M, are 

fixed; therefore each admissible domain is determined by a set of finite points. Thus,
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we choose a domain D e T>m  just by fixing the set of M  numbers, the a:-components, 

{ i i ,  x2, . . . ,  x m }- By solving the appropriate finite linear programming problem in 

(5.19), the nearly optimal value for I(D , v) (i.e. I(D , v*D) =  i(/¿*, i/*)) is calculated as 

a function of the variables x 1 , x 2, . . . ,  x m - Consequently, one can define the function

J  : D e V m  — ► I(Z>, € R;

indeed J  is a function of the variables x x, x2, . . . ,  x m , and hence it is a vector function. 

So, let us to redefine this function as follows:

J  : (xx, x2, . . . ,  xM) G R m  — ► I (D, v*D) G R. (5.40)

The global minimizer of the vector function J ,  say (xj, x \ , . . . ,  x*M), can be identi­

fied by using one of the appropriate minimization methods; one can apply the method 

introduced by Nelder and Mead, [60] and [42], for instance from Subroutine A M O E B A  

in [47] or E O iJA F -N A G  Library Routine. These routines usually need an initial set 

of components (initial domain) to start the process of minimization; we also suppose 

that they give the global minimizer.

Each time that the Algorithm wants to calculate a value for J ,  a finite linear program­

ming problem like (5.39) should be solved; thus for a given domain D, the optimal con­

trol (v*D) is characterized. Whenever it reaches to the minimum value for J ,  the mini­

mizer (xj, Xj, . . •, x*M) (the optimal domain D*), and therefore its associated optimal 

control have been obtained. So, the optimal domain and the optimal control are deter­

mined at the same time; this is the main advantage of the new method. The following 

Proposition shows that the value of I(D*, v*D.), obtained by the above process, is the 

optimal value for the functional (5.4) and hence(.D*,t>£,,) is the optimal solution for 

the given optimal shape design problem defined in (5.5).
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Proposition 20 : Let the minimization Algorithm (for finding the minimizer o f  J  in

(5.40)), give the global minimizer (xj, . . . ,  x*M). I f  the domain found by the mini­

mizer is denoted by D*, then 1(D*, Vp.) is the optimal value o f the functional I  in (55)  

and hence the pair o f domain and control (D*,v*d.) is optimal.

Proof: Assume that the value of I (£>*, v£ .) is not optimal, thus there exists a pair of 

domain and control (D1, v ) 6  F , where D'  6  T>m , so that:

1(7?» < I(Z)>£.)-

Let v'  be the optimal control for the problem (5.9) defined with respect to the given 

domain D'\ then

!(/•*, O  =  I(B ', v') < I(D’, «) =  i(ju, „).

Because the process of embedding defined above, is injective and v'  is optimal, we 

should have v'  =  v*Dr, see Proposition 19 and also Theorem 5. Therefore,

I(D ',v 'd, ) < I ( D ' , v*d.).

Now, by considering the definition of the function J , this inequality implies that J(D') < 

J (D*). Let (x[,  x '2, . . . ,  x'M) be the representation of the domain D' e  V M\ by (5.40) 

we have

J (* l,  *c2) • • • ) Xm ) ^  • • • i x*m)-

The above inequality states that (x J, , . . . ,  x*M) is not the global minimizer of J ,  which

is a contradiction; since, as explained above, it is supposed that the minimization Al­

gorithm is perfect; it gives rise to the global minimizer. As a result, I (D*, v^ . )  is the 

optimal value for functional I  over F, so the pair of (D*, v*D, ) is optimal. □
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5.5 Numerical Examples

We will apply the method introduced in this chapter for estimating nearly optimal do­

mains and controls in the following examples. We will make the same assumptions as 

in the examples in Chapter 4, same performance criterion, same discretization and so 

on; thus the reader can compare the results for the controlled system with those for the 

uncontrolled one.

It is assumed M  — 8 and that each domain in V M is characterized by the set of 8 

points, { Am =  (xm, Ym), m  — 1 , 2 , . . . ,  M},  with the same constant 3 ^ ’s as Chapter 

4 (see Figure 4.6) so that xm > 0 for each m  = 1 , 2 , . . . ,  M.  We assume that the func­

tions u(-) and v(-) take value in the set U = V  =  [—1,1] and hence for each given 

domain D  G T>m  we have Q, =  D x [—1,1] and u> = D x  [—1,1]; one may obtain sets 

U and V  by trial and error so as to be sure that the appropriate finite linear program­

ming problem (5.39) has a feasible solution in each iteration. We have chosen them as 

above by solving the finite linear program without using the standard minimization Al­

gorithm, and have also checked the results of the finite linear program in each iteration 

when used in the minimization Algorithm.

Our way to find an optimal domain for functional (5.4) is an iterative method. For 

a given set of variables i i  =  X\ ,  x2 =  X 2, . . . ,  x8 =  X 6, in other words for the given 

domain D,  the finite linear program (5.39) will be solved to find the optimal control and 

its trajectory pair for the elliptic equations (5.1) and (5.2); thus the value of I(D, v*D) is 

calculated. Then, the standard minimization Algorithm advises us to change the value 

of X i , X 2, . . . ,  X&, with the new one so that the functional I, should have less value 

than before. These new values define a new domain for the next iteration. The pro­

cess will continue till the Algorithm finds the global minimizer; note that the applied

tt
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minimization Algorithm, A M O E B A ,  is supposed to cover this fact.

5.5.1 Discretization

To set up the linear programming problem (5.39) for given values X x, X 2, . . . ,  X&, it 

is necessary first to put an appropriate discretization on the spaces i2 and u>. We select 

N  =  740 nodes Zn = (xn,yn,un) € ft as same as examples in Chapter 4. Also the 

nodes z* =  (x*, yk, Vk) G w for k =  1 , 2 , . . . ,  K  = 1100, are chosen as follows:

z h — •ZlO(i-l)+ll(j-l)+Z

fo r i  =  1 , 2 , . . . ,  10,;' =  1 , 2 , . . . ,  10, / =  1 , 2 , . . . ,  11, where

( t -  l )  +  0.5

yio(*-i)+n(j-i)+z

^10(i-l)+ll(j-l)+Z 10

with

X 0 =  -  1) +  1,

X , =  i ( l  -  X , )  +  1, Y9 = 0.95.

Y0 =  0.05;

Indeed the value of Xk is one of the following values:



and the component Vk takes one of the below numbers:

- 1 , - 0 . 8 , . . . , - 0 . 2 , 0 . 0 , 0 . 2 , . . . , 0 . 8 , 1 .

Now, the set oj =  D  x [-1 ,1 ] is covered by a grid, defined by taking all points zk = 

(xk , 2/fc, Uk), k = 1 , 2 , . . . ,  1100, as above. For the linear programming problem men­

tioned in (5.39), we also select Mi  =  10, number of functions ^¿’s and M 2 =  8, num­

ber of functions £t’s in which they have been defined for the examples in Chapter 4. 

We select M 3 = 8, the number of functions in (7i(w); since Ci(O) =  Ci(u>), we chose 

(i := ^  for l — 1 , 2 , . . . ,  8. Although these functions seem to be the same, but we con­

sider that they are applied for the different spaces, and hence they affect on the different 

set of points; thus they indeed are different. Therefore

bi =  /  (i(x,y) d X  = the area of D /(:= aj), V/ =  1 ,2 , . . .  ,8;
J d

where a; and D/ are defined in Chapter 4 section 4.5.

For the next examples the integrand functions / i  and / 2 in the performance criterion in 

(5.4), are selected as
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M X , U )  =  (u — 0.1)2 , h ( X , ») =  0;

so, the performance criterion is precisely the same as Chapter 4 and hence it is possible 

for the reader to use these values for any comparison between the controlled and the 

uncontrolled problems. In one example, the control function is plotted as the way as 

described in Appendix D.

Consequently, for the following two sets of examples, the finite linear programming
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in (5.39) is the below one:

740

Minimize : 53 a”-(u ~  0.1)2
n=l

Subject to : 0 tn > 0, n =. 1 ,2 , . . . , 7 4 0 ;

ßk > o, II . . , 1 1 0 0
740 1100
X > „ F (( z „ )  +  ; £ A G i (*,) , * =  1 ,2 , . . . , 1 0 ;
n=l k=1 

740

53 = dj, 3  = 1 ,2 , . . . , 8 ;
71=1

1100
53 ßkCl(Zk) = k,
k=1

1 = 1 , 2 , . . . , 8 .

(5.41)

To find the optimal value for unknowns a n and (3k, the E O i M B F  -  N A G  Library 

Routine Document was applied; from the resulted values, one can obtain the optimal 

control function. Also the result shows the optimal value of I (D, v*D) for the given D. 

As mentioned before, this value is a function of the variables X i , X 2, . . . , X 8. Thus the 

function J  (see (5.40)) has been established. Then, by applying a standard minimiza­

tion Algorithm (A M O E B A ) we obtained the optimal domain in V m  and also charac­

terized its associated suboptimal control. We remind the reader that the functions Fi 

and Gi, i = 1 ,2 , . . . , 1 0 ,  have been calculated by means of the package “Maple V.3” .



5.5.2 Minimization and penalty functions

Up to now, the function J  as a function of variables X i , X 2, . . . ,  X 8, has been estab­

lished. The variables are supposed to satisfy in conditions:

0 <  X m <  2, m  =  1 ,2 , . . . ,  8.

These conditions are applied by means of a penalty method to change the constraint 

minimization problem into an unconstraint one (for instance see [60]). For this reason, 

the following penalty function is defined; let

T\ =  max(0.000001 — X m,0), T2 =  max(Xm — 1.99999,0);
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then we consider

Pm(Xm) = y /r i  +  \fT 2\ Vm = 1,2, . . . ,  8.

Hence the penalty function P (X l, X 2, . . . ,  X 8) is defined as:

P ( X 1 }X 2, . . . , X 8) =  ¿ P m ( X m).
m—1

Thus the objective function for minimization, the function J ',  is shown as:

J’(D)
107 if P(-^i,2C2, . . .  ,X8) 0

J (D ) if P (2 fj, X 2, . . . ,  2f8) =  0.

Now by applying the Downhill Simplex Method in Multidimension, the Subroutine
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A M O E B A  ( see [47]), one is able to find the minimizer of the problem (5.5). To know 

how the penalty function and A M O E B A  work, the reader is recommended to read the 

related part of section 4.5 in Chapter 4. In the next, two sets of examples will be given, 

one for a linear and the other for a nonlinear case of the elliptic equation (5.1) and (5.2).

5.5.3 Example 1

As in Example  1 in the previous Chapter, in the linear case we consider f ( x ,  y,u)  =  0, 

the functions Fi and Gi in (5.12) are

Fi =  uAtpi, Gi = —ipiv, i = 1 , 2 , . . . ,  10.

We used the initial values X m =  1, m  =  1 , 2 , . . . ,  8, as a given domain for starting the 

Algorithm and applied f tol  = 10-7 . Here are the results:

• The optimal value of l (D,v)  =  4.4447937006414 x 10-3 ;

• The number of iterations =  395;

• The value of the variables in the final step:

X i =  0.043932, X 2 =  0.085128, X 3 = 1.178854, X 4 = 0.003257,

X 5 = 0.000717, X 6 = 0.002100, X 7 = 0.004760, X 8 =  1.292132.

These define the optimal domain; this, together with the initial domain have been plot­

ted in the Figure 5.1, and the obtained optimal control is plotted in the Figure 5.2. We 

also plotted the change of the objective function, according to the number of iterations, 

in the Figure 5.3.
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Initial Shape
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p  ___________
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0.0 0.5 1.0 1.5 2.0

Final Shape

X

Figure 5.1: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X m = 1.0, m  = 1 ,2 , . . . ,  8, in the linear case.
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O p t i m a l  C o n t r o l  f u n c t i o n

Figure 5.2: The optimal (distributed) control function for the starting initial values
X m =  1.0, m  =  1 ,2 , . . .  ,8 , in the linear case.
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en|BA

Figure 5.3: Change of the objective function according to iterations (for the dis­
tributed controlled system) in the linear case with the starting valves X m =  1.0, m  =
1 ,2 , . . . ,8 .
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Further, we applied the initial values X m =  l . l , r a  =  l , 2 , . . . , 8 ,  and ran the same 

program with this; the results obtained are:

• The optimal value of I ( ¿7, t;) =  5.9912470738808 x 10-3 ;

• The number of iterations =  373;

• The value of the variables in the final step:

X x =  0.002314, X 2 = 0.018096, X 3 =  1.136087, X 4 = 0.004777, X 5 =  

0.320013, X 6 = 1.981772, X 7 =  0.284138, X 8 = 0.594778.

The initial and final shape and the change of the objective function have been plotted 

in Figures 5.4 and 5.5.

Initial Shape
o
oJ
lO

l O

d
o 
d

0.0 0.5 1.0 1.5 2.0 
x

\

/

Initial Shape

X

Figure 5.4: The initial and the optimal domain (for the distributed controlled system) 
with the starting initial values X m =  1.1, m  = 1 , 2 , . . . ,  8, in the linear case.
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Figure 5.5: Change of the objective function according to iterations (for the dis­
tributed controlled system) in the linear case with the starting valves X m =  1.1, m  =
1 ,2 , . . . ,8 .
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5.5.4 Example 2

In the nonlinear case, again as in Example  2 in Chapter 4, we have taken f ( x ,  y, u ) =  

0.25u2 and also the same value for stopping tolerance (the variableftol in the subroutine 

A M O E B A ). Thus the functions Fi and Gi in (5.12) have been defined as

Fi =  uAtpi +  0.25it2̂ ,  Gi =  —ipiv, i = 1 , 2 , . . . ,  10.

By applying the initial value X m =  1, m  =  1 , 2 , . . . , 8 ,  as a given domain for start­

ing the standard minimization algorithm ( AMOEBA) ,  the results are the following:

• The optimal value of I(D,v)  — 5.9905811520515 x 10-3 ;

• The number of iterations =  373;

• The value of the variables in the final step:

X x = 0.003829, X 2 = 1.982183, X 3 = 0.321985, X A = 0.018270,

X 5 =  0.001920, X 6 = 1.134801, X 7 = 0.283892, X s = 0.594196.

According to the above results, the initial and the optimal domain are shown in the 

Figure 5.6; moreover, the change of the objective function, according to the number of 

iterations is also plotted in the Figure 5.7 below:
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Initial Shape
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Final Shape

X

Figure 5.6: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X m =  1.0, m  =  1 ,2 , . . . ,  8, in the nonlinear case.
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Figure 5.7: Change of the objective function according to iterations (for the distributed
controlled system) in the nonlinear case with the starting valves X m =  1.0, m  =
1 ,2 , . . . ,8 .
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As in Example  1, we also chose initial values X m =  1.1, m =  1 , 2 , . . . ,  8, and ran 

the program; here are the results obtained:

• The optimal value of I(D, v) =  4.4439439539026 x 10-3 ;

• The number of iterations =  395;

• The value of the variables in the final step:

X 1 =  0.044476, X 2 =  0.084477, X 3 =  0.004738, X 4 =  0.001490,

X 5 =  0.003245,X6 =  1.180229,-XV =  0.000127, X 8 =  1.291236.
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For this case, the initial and the final shape and also the change of the objective func­

tion, have been plotted in the Figures 5.8 and 5.9 respectively.

Initial Shape

0.0 0.5 1.0 1.5 2.0 
x

Final Shape

X

Figure 5.8: The initial and the optimal domain (for the distributed controlled system) 
with the starting initial values X m = 1.1, m  =  1 , 2 , . . . ,  8, in the nonlinear case.
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Figure 5.9: Change of the objective function according to iterations (for the distributed
controlled system) in the nonlinear case with the starting valves X m =  1.1, m  =
1 ,2 , . . . ,8 .
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Chapter 6

Shapes, Measures and Elliptic 

Equations (Boundary Control)

6.1 Introduction

In the present chapter, we consider again D C R 2 as a bounded domain with a piecewise- 

smooth, closed and simple boundary dD  which consists of a fixed and a variable part; 

these parts have been introduced in Chapters 4 and 5 in detail (see Figure 4.4).

Let /  : DxR — > R , f  £ C(DxR);g : D  — > R,g  £ C(D),  be two given functions. 

A domain D  is called admissible if the elliptic equation

A u(X)  + f ( X , u ) = g ( X ) ,  (6.1)

with the boundary condition

u \eD = (6.2)

164
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has a bounded solution on the domain D; here are also supposed that X  — (x, y) G D, 

u : D  — *■ R is a bounded function which takes values in the bounded set JJ, and 

v : dD  — ► R is a bounded boundary control function, taking values in abounded set 

V.

As explained in Chapter 4, the variable part of dD can be approximated with M  number 

of comers. For a fixed positive integer M,  the set of all admissible domains is denoted 

by Dm -

The aim of this chapter is to identify the optimal domain in V m , D*, and its as­

sociated optimal control function, vb * , for a given optimal shape design problem with 

a functional performance criterion, I (D ,v)(D  G Dm ), governed by the elliptic equa­

tions (6.1) and (6.2). Again, as explained in previous chapters, the optimal pair will be 

characterized in two stages:

• (i) For a given domain D G Dm , by applying the generalized form of (6.1) and

(6.2) (weak solution), and using the process of embedding, the problem will be 

replaced by a measure-theoretical one which definitely has a solution because of 

existence theorems. Then its optimal solution can be approximated sufficiently 

close by a solution of a finite linear program. Hence the optimal control v*D, as­

sociated with the fixed domain D, will be characterized. In this manner, for any 

given domain D, one can calculate the value 1 (D, u£>); thus in the end of this 

stage, the following function J  can be identified,

J  : D G Dm  — ► 1(D,v*d) G R.

• (ii) In the next stage, a standard minimization algorithm will be applied on the 

function J  above, to find its minimizer. The result determines the optimal pair of
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domain and control which indeed is (an approximation of) the optimal solution 

for the given optimal shape design problem.

As explained in Chapter 4, this new method has some advantages in comparison 

with similar methods; some of these advantages are listed in previous Chapters.

6.2 Classical optimal Shape and Control problem

For a given admissible domain D e  V m , let / i  : D x U — ► R and , / 2 : dD  x V  — > R  

be two continuous, non- negative, real-valued function; further we assume that there is 

a constant K  > 0 so that the function / i  satisfies

| / 1( X , U( X ) ) | < J f | w |, (6.3)

for all pairs (X , u(X))  where X  € D. We define the functional I  as the performance 

criteria for a classical optimal shape design problem as

l ( D , v ) =  f f 1 ( X , u ( X ) ) d X +  [ / , ( , , „ ( , ) )  (6.4)
J D  J dD

where u is the bounded solution of the boundary elliptic equations (6.1) and (6.2); more­

over the function v is supposed to be a Lebesgue measurable function which appears in

(6.2). We define also

F  =  {(D , v ) | D € V m  is admissible, v : dD  —-+ R satisfies (6.2)}
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In this Chapter we are going to solve the following optimal shape design problem on 

F.

M i n i m i z e :  I  (D,v) = (  f i ( X , u ( X ) )  d X  + f  f 2(s,v(s)) ds
JD  JdD

S u b je c t  t o  : A u(X)  + f ( X , u )  = g(X)

U \8D =  V • ( 6 -5 )

In general it is difficult to characterize a classical bounded solution for the elliptic equa­

tion (6.1) and (6.2); therefore it is too difficult to find the solution of (6.5). By applying 

the variational form of the elliptic equations, defined by the following Proposition, we 

will change the problem into the other in which a bounded weak solution of (6.1) and

(6.2) is involved.

Proposition 21 : Let u be the classical solution o f (6.1) and (6.2), then we have the 

following integral equality:

f  (uAiP + 1 > f ) d X -  [  v ( v ^ - n )  ds =  [  i>g dX,  VV> G H ^ D ) .
JD  JdD JD

(6.6)

that here n  is the outward unit vector on dD

Proof: By applying Green’s formula in the same way as we did in the Proposition 13, 

one can prove this proposition; so the detail is omitted. □

Proposition 6.1 states that the equations (6.1) and (6.2) can be written in a new for­

mulation in (6.6). A function u G H l (D) is called weak (generalized) solution of the 

problem (6.1) and (6.2) if it satisfies in the equality (6.6). By applying this fact, we are 

going now to calculate the value of the functional I  for a given domain D and its as­
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sociated control v; for a fixed domain/?, the optimal shape problem is changed into an 

optimal control one as follows:

where the minimization takes place on the set of admissible pair of trajectory and con­

trol functions (u, v), say T ,  which was defined in section 5.3 in Chapter 5. We suppose 

that T  is nonempty; in other words, because D is admissible, the elliptic equations (6.1) 

and (6.2) have a bounded weak solution.

6.3 Metamorphosis and Approximation

Let D be a fixed domain, and define fi =  D  x U and oj =  dD  x V . Then, a bounded 

weak solution defines a positive and linear functional like

on C'(Q); moreover, a control function v, defines the following positive, linear func­

tional

Minimize :

Subject to :

I ( B , » ) =  /  h ( X , u ( X ) ) d X +  I  f 2(s,v(‘ ))ds;
J D JdD

f  (uA-tp + -ipf) d X  — f  v(vV’-n ) ds = f  tpg d X  Vip € Hq(D),  
J d  J d D J d

(6.7)

on C(uj). Therefore there exists an injective transformation between the set T  and the 

set of all pairs of linear functionals (u(-), t>(-)) (see Proposition 2). The Riesz Repre-
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sentation Theorem [55] shows that there are measures and vv so that, 

pu{F) = u( F) VF  € CÜ), vv(G) = v(G)VF e C(w),

(see for proof Proposition 16).

Now, by applying the mentioned transformation, the new formulation of the problem 

(6.7) is:

M in im iz e  : \(pu, vv) =  pu(f i)  + Vv{h)

S u b je c t to  : Pu(F^) +  vv(G■$) =  ; V0 € Hq(D),  (6.8)

where

Ft  = uAip +  V>/ , =  - v ( V ^ -n  Ian) , c* = f  xpg. (6.9)Jd

So far, we have just changed the appearance of the problem; now we consider the 

minimization of the problem (6.8) over the set of all pairs of measures (p,v)  in M.+(£l)x 

M +(oj) satisfying the mentioned conditions plus the extra properties:

K O  = I t i x , y ) dx  =  afi,v D

v(T) =  f  t (s ) ds — bT, (6.10)

which are deduced from the definition of admissible pair of trajectory and control func­

tions, (u, v ). These properties indicate that the measures p and v project on the (x, y )- 

plan and real line respectively, as Lebesgue measures. We remind the reader that here it 

is supposed £ : ft — ► R in C(Q) depends only on variable X  =  (x, y), and r  : u> — > 

R in C(co) depends only on variable s. Therefore, we are going to solve the following
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problem:

M in im iz e  : i(/x, v) =  p(f i )  + v{f2)

Subject to : ¿¿(7 )̂ + V0 € H q(D );

M O =  °i>

v(t ) =  &T, Vr € Cxiu).  (6.11)

€ C i(n);

The new formulation has some advantages that were explained precisely in Chapter 5; 

for instance, if we denote Q C M +(Q.) x M +(cv) as the set of all pairs of measures 

(p, v ) that satisfy the conditions mentioned in (6.11), then Q is compact (see Chapter 

5, Proposition 17) and moreover the function (p, v) e  Q — > p (f i)  +  v ( f 2) G R  is 

continuous. Thus by Proposition 77.1 of [50], the problem (6.11) definitely has a min- 

imizer in Q.

The problem (6.11) is an infinite-dimensional linear program; but its solution can 

be achieved by choosing the countable sets of functions that are uniformly dense (total), 

in the appropriate spaces. Let

=  1 ,2 ,3 , . . . }  , =  1 ,2 ,3 , . . . }  , {7 7 , Z =  1,2,3, . . .  } ,

be total sets in the spaces Hi  (D), C\ (ft) and C\ (a>) respectively, thus the problem (6.11)
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can be replaced by the following one;

M in im iz e  : i(p, v) =  p{ fx) +  v( f2)

S u b je c t to  : p(Fi) +  v{Gi) =  c*,

~  «J.

K 7*) =  6/,

where

Fi .— F^ , Gt . Gipi, Ci .— for i =  1 ,2 ,3 , . .

dj :=a(j for j  =  1 ,2 ,3 , . . . ,

6; := fer, for 1 =  1 ,2 ,3 ,___

Let us now choose just a finite number of constraints in (6.12) and consider the follow­

ing minimization problem:

M in im iz e  : i(p, v) = /z(/i) +  v( f2)

S u b j e c t  t o :  ¡i(Fi) +  v{G{) =  Ci, i = 1 , 2 , . . . ,  M x\

K t j )  = aii j  =  1 , 2 , . . . , M 2;

v(n) = bh 1 = 1 , 2 , . . . , M 3. (6.13)

Proposition 19 in Chapter 5 shows that the solution of (6.13) tends to the solution of 

(6.12) whenever M X, M 2, M 3 — >. oo; hence the solution of (6.11) can be approx- ' 

imated by a solution of (6.13) when the positive integers M X, M 2 and M 3 are chosen 

large enough. Now one can construct suboptimal pair of trajectory and control func­

tions for the functional i in (6.7) via the optimal solution, (¿¿*, v*), of (6.13); in Chapter 

5, this procedure has been explained in detail. Let (uv, v) be the pair of trajectory and

i — 1 , 2 ,3 , . . . ;  

j  = 1 , 2 ,3 , . . . ;

1 = 1 , 2 , 3 , . . . ,  (6.12)
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control functions constructed as explained there; then we have the following theorem 

which guarantees that the pair is a good approximation for the solution of (6.11). The 

reader can find its proof similar to others in [53] and Chapter 5.

Theorem 6 : Under the appropriate conditions on the approximations involved, i f  the 

values M i, M 2 and M3 tend to oo then

v) — ► inf[i(/x, v)\.
Q

The problem (6.13) is a semi-infinite linear programming problem; the number of 

equations is finite but the underlying space is not a finite-dimensional space. It is possi­

ble then to estimate its solution by a process of discretization, a pair of measures (p,v)  

can be characterized by a result of [48] which is proved in [50], that p and v in (6.13) 

have the form like (5.37). By introducing appropriate dense subsets in Q, and u,  and ap­

plying the Proposition 777.3 of [50], one can conclude that p and v have the following 

form
N  K

anS(Zn) , V = 'SjTl Pk6(zk) 
n=l k=1

where Zn, n = 1 , 2 , N,  and zk,k = 1,2 belong to dense subset of i) and

uj respectively, and S(t) is the unitary atomic measure with support the singleton set 

Hence, by defining a discretization on Q and u> with the nodes Zn =  (xn , yn, un) 

for n =  1 , 2 , . . . ,  N,  and Zk, k = 1 , 2 , . . . ,  i f ,  the solution of (6.13) can be obtained 

by solving the following linear programming problem in which its unknowns are the
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coefficients a n , n =  1 , 2 , . . . ,  N,  and /?*, k  =  1 , 2 , . . . ,  K .

N  K
M in im iz e  :

71=1 fc=l .

S u b j e c t  to

o
'

A
l<3 n =  1,2 , . .

A « > o ,

N  K
k  =  1,2 , . .

¿ o wF <(Z n) +  X ; ^ G !i(2fc) =  Ci,
n=1 k—1 

N

i =  1,2 , . .

y i  a n £ j { Z n )  =  Clj, 
71=1 

K

7 =  1 ,2 , . .

X )P k T l ( z k ) =  bi, 
k— 1

1 =  1 ,2 , . . ,

(6.14)

The result of this problem introduces a pair of measures, call (p*, v*), that for this pair, 

the value of the functional i, i.e. i(p*, v*), will be minimum on the set Q(MU M 2, M3), 

defined by the pairs of measures in A4+(il) x .M+(a>) satisfying in conditions explained 

in (6.14). This pair of measures, as explained in Chapter 5, serves the suboptimal pair of 

trajectory and control functions (uv*D, v^). Thus for the fixed domain D, the minimum 

value of the functional I  in the problem (6.5) is approximated as

l(D,v*D) =  i(p*,u*).

6.4 The optimal shape

For a fixed domain, we have explained in the former section how one can find the opti­

mal control v*D for the problem (6.5), so that the value of I(D , v*D) is minimum. Hence
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we have defined the function

J  : D e V M — ► I  (D,v*d) e  R. (6.15)

To find the optimal pair of domain and control function in F , say (D*,v*d.), which 

solves the optimal shape design problem (6.5), it is enough to find the minimizer of J  in 

the same way as pointed out in Chapter 5; details of doing this fact, has been explained 

completely in the former chapters, thus there is no need to bring them here again. So, 

we only present some examples. We remind the reader that Proposition 20 in Chapter 

5 guarantees that the pair (D*,v*d,) is optimal.

6.5 Numerical work

In this section, we apply the method introduced in the previous sections to solve the 

appropriate optimal shape design problem in (6.5), defined by functions g(X)  =  0 (thus 

^  =  0 in (6.14)), f 2(s, v) =  0 and

400 -0.05 <  u <  0.05 

£  otherwise.

We will present two examples for the linear and nonlinear cases of the elliptic equa­

tions in (6.1) and(6.2); in each example we take M  =  8. Hence each domain in T>m  is 

characterized by the set of 8 points, '{Am =  (xm, Ym), m  = 1 , 2 , . . . ,  8}, with the same 

constants Ym's as Chapter 4 (see Figure 4.6) so that xm > 0 for each m  =  1 , 2 , . . . ,  M. 

We assume that the function u(-) takes values in the bounded set U =  [-1 .0 ,1 .0]. The 

control function is supposed to be zero on dD  expcet the segment of line y =  1; along 

this segment, it is assumed that v(s) takes values in the bounded set V  = [-1 .0 ,1 .0],
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when s € [0,1]. Thus, in (6.14) we have

^ ,dTpi(s,y)s

So, for any given domain D,  the spaces ft and a; have been consider as ft =  D  x 

[-1 .0 ,1 .0] andu  = dD  x [-1.0,1.0].

6.5.1 Functions and Discretization

The functions have been chosen the same as those defined in (4.20); it was shown 

that the set {ipi: z G N } is total in Hl(D).  For the second set of equations in (6.12), 

the function £,■ ’s are chosen as the same as in the chapter 4 and 5. Also the functions 

r / ’s in the third set of equations, are selected as the test functions / / s in Chapter 2 on 

the interval [0,1].

To set up the finite linear programming (6.14) for the next examples, we choose 

M i =  3, M2 and M3 =  10; thus a, =  area of D: , j  =  1 , 2 , . . . ,  8 (see Chapter 5), and 

k  =  o.l,Z =  1 ,2 , . . . , 1 0 .

To apply the condition xm > 0, m  =  1 , 2 , . . . ,  8, we have used the penalty method 

with the same penalty function as defined for the numerical examples in Chapter 5. 

Moreover we put a discretization on ft with N  =  1100 nodes with the points Zn =  

(xn, yn, un), n = 1 , 2 , . . . ,  N,  in the same way as explained in section 5.5. Because 

the control function is zero on dD  except the segment of the line y = 1, we have put 

a discretization on u> with K  =  110 nodes like Zk = (Sk,Vk), k =  1 , 2 , . . . ,  K;  these
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nodes have been chosen as follows:

z k — z l l ( i —l ) + j

fo r i  =  1 , 2 , . . . ,  10 and j  — 1 , 2 , . . . ,  11, where

■Sll(i_l)+j —
(* -  1) +  0.5 

10

vii(t-i)+y —

Hence the total number of variables in the finite linear programming problem (6.14) is 

1100 +  110 =  1210.

In the case of the above concepts, we solved the following examples for the lin­

ear and nonlinear case of the elliptic equations; in each case we chose the mentioned 

subroutine A M O E B A  as the standard minimization Algorithm with the initial valves 

X m =  1.0, for m  = 1 , 2 , . . . ,  8. Also, we applied the E0AMBF  NAG-Library Routine 

for solving the appropriate finite linear program in each iteration.

6.5.2 Example 1

For the linear case of elliptic equations (6.1) and (6.2), we chose f ( X , u) = 0, therefore 

Ft =  uAipt in (6.14); we achieved to the following results:

•  The optimal value of I  =  0.44432256772971;

• The number of iterations =  497;
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• The value of the variables in the final step:

X i  =  0.044671, X 3 = 0.000003, X 3 = 0.000018, X A =  0.083868,

X 5 =  0.004590, X 6 =  1.181268, X 7 =  0.003360, X 8 =  1.291424,

According to the results obtained, the suboptimal control function, the initial and the fi­

nal domain, and the changes diagram of the objective function according to the number 

of iterations, have been plotted in the Figures 6.1, 6.2 and 6.3.

Initial Shape
0  ----------------------------------
01

IO

lO
d

q  __________

0.0 0.5 1.0 1.5 2.0 
x

Optimal Shape

X

Figure 6.1: The initial and the optimal domain (for the boundary controlled system) 
with the starting initial values X m =  1.0, m  =  1 , 2 , . . . ,  8, in the linear case.



Chapter 6: Shapes, Measures and Elliptic Equations (Boundary Control)
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Optim al Control function - linear case

Figure 6.2: The optimal (boundary) control function for the linear case.

Changes of Objective function - linear case

Figure 6.3: Change of the objective function according to iterations (for the boundary 
controlled system) in the linear case

6.5.3 Example 2

By choosing f ( X ,  u) =  5u \  an example for the nonlinear case of the elliptic equations 

was given; the result of this example was as follows: •

•  The optimal value of I  =  0.44432182922939;

•  The number of iterations =  492;
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• The value of the variables in the final step:

X x =  0.044691, X 2 = 0.083889, X 3 =  0.004568, X» =  0.003356,

X 5 =  0.000026, X 6 =  0.000001, X 7 =  1.181291, X s =  1.291379,

These results have introduced the suboptimal control function, the initial and the final 

domain, and the changes diagram of the objective function according to the number of 

iterations; they have been plotted in the Figures 6.4, 6.5 and 6.6.

Initial shape
o  ----------------------------------
cvi

in

io
o

o  __________
o  ^------- -------- -------- ■------- d

0.0 0.5 1.0 1.5 2.0
x

Final shape - nonliner case

X

Figure 6.4: The initial and the optimal domain (for the boundary controlled system) 
with the starting initial values X m =  1.0, m  =  1 , 2 , . . . ,  8, in the nonlinear case.
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Optim al Control function - nonlinear case

0.0 0.2 0.4 0.6 0.6

Figure 6.5: The optimal (boundary) control function for the nonlinear case.

Change of the objective function - nonlinear case

Figure 6.6: Change of the objective function according to iterations (for the boundary 
controlled system) in the nonlinear case

6.6 Conclusion and recommendation for further research

The solution of optimal shape and optimal shape design problems which are governed 

by different types of elliptic equations, and defined in terms of a pair of geometrical el­

ements, have been discussed in this work by the use of a new method. The main idea of 

the solution is based on the replacement of the classical problem by a problem defined 

on a subset of positive Radon measures, to find a pair of measures (or one measure,
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sometimes), subject to some related linear conditions.

The new measure-theoretical problem, can then be approximated by a finite linear pro­

gramming problem by the use of total sets and discretization. The existence of the op­

timal solution has been immediately proved by the use of compactness properties of 

the weak* topology via existence theorems. In both systems of coordinates, polar and 

cartesian, we are able to find the optimal shape and its associated optimal control func­

tion together; this makes the method very effective. The new approach enables us to 

solve also the related optimal control problem (in cartesian coordinates).

There are still some more problems to be solved related to the concepts presented 

in this thesis; we recommend here some of them for further research works:

• Except in Chapter 2, all the OSD problems defined have been governed by par­

tial differential elliptic equations. We have indeed considered different types of 

elliptic problems, but no other type of partial differential equations has been stud­

ied. Applying the method introduced here to solve those OSD problems which 

are associated with the solution of hyperbolic or parabolic equations would be of 

great interest. The works in [31], [51], [16] and [17] on solving a control problem 

governed by diffusion and wave equations via measures are good guides to apply 

the method for OSD problems governed by diffusion equations.

• The OSD problems for systems defined by elliptic inequalities are important in 

many industrial and engineering fields; the solutions of these problems have been - 

considered in many references (see for instance [7]). However, there has been no 

attempt to solve them by the use of measures. Extending the new method to this 

field and attacking the OSD problems governed by elliptic inequalities by this 

approach, is a further research work.
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• The solutions of measure-theoretical problems have been approximated by those 

of a finite linear programming problems in this thesis. The estimation of the error 

is an open problem even for the simpler related optimal control problems. It has 

just been tried to find a bound for the error in a particular case in [15]; the same 

solution may possible in our case.

• Suppose that the measurable set, the geometrical element C (or D) in the defini­

tion of an OSD problem, has some fixed holes. Then one can define the similar 

OSD problems as in this work, over the set of all admissible pairs (C ,dC )  for 

the mentioned C; there are many examples of this type of problems in industry. 

Solving these kind of problems by use of measures can be considered as a new 

work.



Appendix A

Calculating the function £  in a 

discretization

To use the linear program (2.19), it is necessary to calculate the function £ in terms of 

the components of the appropriate points which are chosen from the discretization on 

ft and oj. First of all the function must be calculated with respect to the components 

of the points Zt =  (0i,r») G ft and Zj =  (8j,r j,W j) 6 w which will appear in the 

discretization on ft and u. Afterwards, by the equality

&(Zj) ~  ai£i(zj)i

the function £ will be determined easily. The coefficient a* is known.

As proved in the section 2.7, the value of the electromagnetic field in the point Zj =  

€ w from an infinite wire source at Zt =  which it carries a fixed

current, i s \B\ -  where p is the distance between Z* and zi . If u s and ur are shown 

as the unit vectors in the directions of 9 and r ,  the vector field B  can be represented in

183
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two dimension coordinates by

B  =  B rUr +  BgUg

where B r and Bg are the components of B  in the directions of r  and 8 respectively. But 

B r =  0, then B  =  Bgug; here ug is the normal vector to the circle with center Z{ € 0 , 

not the ug in the Figure A.1, which is anyhow printed in bold face. Therefore \Bg\ — 

\B\ cos b, that b is the angle between B  and ug (see figure A.1). Also it was assumed 

that the circulation is equal by 1; so we have the following line integral equation

[  B .d l = 1. (A.1)
JdC

From (A. 1) one can conclude that

6V ri +  ) =  J0 2 ^ ( cos 6) ( \ / rj +  w2i)de =  1-

Hence

f e )  =  ¿ ( cos h)(\lr! +  wj)» (A.2)

that by the cosine law in the triangle OZiZj one can get:

p2 =  r] + r \ -  2rJr i cos(^- -  Of). (A 3 )

Considering Figure A.1, since 8 j  is an exterior angle for Z i Z j R ,  a  =  8 j  — n ,

sin a = sin 8j cos n  — cos 9j sin n;
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Since:

cos a  =  cos 6 j  cos n  +  sin Oj sin n ;

OA +  OD rj cos Oj — r* cos 0t
cos n  = --------------- = ----------------------------

P P

ZjA — ZiD rj sin Oj — rj sin Oj 
sin n  =  —--------------= ----------- ----------------

P P

p  sin a  = sin O j ( r j  cos Oj — n  cos Oi) — cos O j ( r j  sin Oj — r t- sin Oj)

=  - r j  sin (O j -  Oj) ,

then

sin a = -^■ sin  (Oj-Oj); (A. 4)

similarly:

cos a  = -có s(O j-O j). 
P P

(A. 5)

Because b — x  +  o. — f  ; then

cos b =  sin x  cos a +  sin a cos x- (A. 6)

Since % is the angle between the tangent line and the ray at Zj,
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Hence:

sm x  =
rv Wi

--------------------------- ,  C O S  Y  —  .--------------------------

yjrì  +  w) . \Jrì  +  w)
(A.7)

Applying (A.4), (A.5) and (A.7) in (A.6) gives:

r?  +  W j )  cos b =  - i - -----3—  cos (Q j — 9 i )  — sin (^- _

Now from (A.2) we have:

¿ V i )  =  2 ^ 2  (ri ”  r i Ti cos(^' “  ~  w i r i sin(% -  **))■

Finally by applying (A.3) the function can be calculated as:

(r2 — rjn cos(9 j — 9i) — W j T i  s in (9 j — 9{)) 
r2 + r\ — ‘Iv jT i cos(0j — 9f) (A. 8)

So the function £ can be evaluated from (A.8) by putting the appropriate discretiza­

tion on oj and Q. Therefore we are able now to solve the linear programming problem 

in (2.19) via this discretization.



Appendix A : Calculating the function £ in a discretization 187

Figure A.1: Angles in calculating (



Appendix B

Why V M  instead of £>?

Based on the approximation of a closed and simple curve in R 2 by a set of broken lines, 

we decided to consider T>m  as the underlying space in which the minimization takes 

place. Indeed we approximated the variable part of any domain D  € Dm , I \  by M  

number of segments (in other words by M  +  1 comers); then we decided to look for 

the solution of the appropriate optimal shape design problems in Chapters 4,5 and 6 in 

T>m  instead of D.

As M  — ► oo, if  an appropriate optimal shape design problem in T>m  has a min­

imize^ then this may tend in some topology to the minimizer over V  if such exists. 

However things can go wrong; for instance:

•  There may be no minimizer over Dm -

• There may be no minimizer over V  (or both D  and T>m )

•  The sequence of minimizer over V M, may not be convergent or may tend in some 

sense towards a curve that does not define a shape.

188



Appendix Br Why T>m  instead o fD ? 189

On the other hand, let D*M 6 V u  be the optimal solution of the appropriate prob­

lem over V m , and rfM € M +(u>) be the optimal measure which represents the bound­

ary of D*m  (6D*m); then because M +(v)  is compact, the sequence {vm Ym =i and hence 

{dD *M} ^ =1, have a convergent subsequence even they are not convergent. Young in [63] 

has shown that their related subsequences of broken lines, tends to an infinitesimal zigzag 

(generalized curve). This is not (necessarily) an admissible curve (see [63] Chapter 

V I). So the solution over T>m  does not tend to the solution over V , even in the weakly* - 

sense. Also, there is the important point that too oscillatory boundaries (like the in­

finitesimal zigzag) sometimes cause problem; Pironneau in [44] shows some of these 

problems.

So, we prefer to fix the number of M  in Chapters 4 ,5  and 6, and search for the op­

timal solution of the appropriate optimal shape design problems over T>m  ; and perhaps 

do this for several, interesting, values of M.



Appendix C

Some limitations on A M O E B A

The downhill simplex method (for finding the minimizer of a function with more than 

one variables), requires only function evaluations, not derivatives. It is not very effi­

cient in terms of the number of function evaluations that it requires. However it may 

frequently be the best method to use ([47]).

The method is appropriate for the minimizing of a function of N  variables; it de­

pends on the comparison of function values at the N  +  1 vertices of a general simplex 

(a geometric figure consisting, in N  dimensions, of N  + 1  points or vertices and all their 

interconnecting line segments, polygonal faces, etc; for instance in two dimensions, a 

simplex is a triangle), followed by the replacement of the vertex with the highest value 

by another point. The simplex adapts itself to the local landscape, and contracts to the 

final minimum. The method takes a- series of steps; most steps just moving the points 

of the simplex where the function is largest through the opposite face of the simplex to 

a lower point. The routine name A M O E B A  is intended to be descriptive of this kind 

of behaviors (see [47]).
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In one-dimensional minimization, it is possible to bracket a minimum, so that the 

success of a subsequent isolation is guaranteed. But there is no analogous procedure 

in multidimensional space. For multidimensional minimization, the best we can do is 

give the algorithm a starting guess, that is, an N- vector of independent variables as the 

first point (initial value) to try. The algorithm is then supposed to make its own way till 

it obtains an (at least local) minimum. Therefore, it is frequently a good idea to restart 

A M O E B A  at a point where it claims to have found a minimum. But in the examples 

of Chapters 4, 5 and 6 we do not have any idea about the minimizer. Hence we ob­

tained different values for the different initial values; indeed, we obtained the different 

local minimizers. Also there is no claim that A M O E B A  is able to determine the global 

minimizer (see for instance [42] and [47]). Beside this, it is also advised not to use the 

method for minimizing a function with more than 6 variables; although, in Chapters 4, 

5 and 6, we applied A M O E B A  to minimize functions with 8 variables.



Appendix D

Introducing the suboptimal Control

Let the pair v*) be the optimal solution of the finite linear programming problem 

in (5.39), and v* be defined as:

■ '* = £ : «  s m
k=i

where the coefficients fil > 0, and z* belongs to a dense subset of u>. We are going 

to introduce the nearly optimal control function, for the given optimal measure v*, 

defined on the given domain D. We know that the set of measures associated with the 

piecewise-constant functions on D is dense in M +(u)\ hence we will approximate the 

optimal measure v* by a piecewise-constant function on D, which is called the subop­

timal control function.

In the same way as Rubio in [50], for a given >  0, it is possible to find numbers 

0 =  3/0 <  yi < ■ • • <  yi < • • • <  yR = 1,
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and Borel sets Vi, V2, . . . ,  V j,. . . ,  Vs, forming a partition on x  x V  such that for any 

i = = 1 , 2 , . . . ,  S ,k  = 1 ,2 , . . . ,  M u y ,y ' e  [y<-i,yO» (*>v) and (s ',  v')

in Vj, we have

I Gk(x ,y ,v )~  G k{x ',y ',v ')  |<  ea; 

here it is supposed that % =  {x  | 3y : (x, y) £ D }.
1 &tDyi_iyi =  { (x ,y ) € D  : <  y < yi},K ij =  x Vj)r\w)\ we define

9i{x,y ,v)

'
1 if (x ,y ,v )  E (x  X [yi-uyi) X V )riw

<
0 otherwise;

then J2j=i Kq  =  v*((x x [yi-u yt) x V) flu;) =  v*{gi). We note that the function g, de­

pends only on variable y. We also have L £ i ( A/i-ivi) =  A  and the Lebesgue measure 

of Dyi_iyi is the area of Dyi_iyi (the region in D  introduced by lines y =  y i- \ ,y  =  yi 
and the boundary of D); this area is denoted by A »(i.e. the area of Dyi_in  = A», see 

Figure D .l).

D

Figure D .l: Domain D and the region Dyt_iyi
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Now, we follow the same way as Rubio did in Chapter 4 of [50] and apply the Cheby- 

shev approximation of Gi (one may also use the method explained in [31] by some 

changes); if one defines Hzj =  Kij( 1 +  p ^ 3) where p*fz =  ~s' that 8^3 is in-

troduced in [50], we have v*{gi) =  A t +  8^3 and Hij =  A¿.

We can now proceed to construction of the suboptimal control function which ap­

proximates the action of v* on the functions Gi,i =  1 , 2 , ,  M i, and (k, for k =

1 .2 . .  . . ,  M3, (note that (k and g, are similar functions). Let the lines y =  and 

y =y) ,  that

Vi-1 <  y)~i < y ) < y i ,  .

be such that the area of Dv._i3/. is equal to H^,  and (xj, Vj) be an element of Vj for 

j  =  1 , 2 , . . . ,  jS'. Define now the control function as follows

v(x,y)  = Vj, V(x,y) € -Dy*_lVj-

It is shown in [50] (and similarly in [31]) that this piecewise-constant function approxi­

mates the suboptimal control function. By applying the above information on the result 

of the finite linear programming problem defined in (5.39), we will be able to find the 

suboptimal control function in the following.

Let /?i, /32, • • • > /?Mi+m3 , be the nonzero coefficients in the definition of v*, which 

resulted from the finite linear programming problem (5.39), and z* =  (x'k, y'k, Vk), k =

1 . 2 . .  . . ,  Mi +  M 3, be its corresponded points in the discretization on u> (in which they 

were ordered as a decreasing sequence with respect to the components y'k s and x'k s). 

For a number s so that 1 <  s < M , assume the points

(xsi> y*i)’ (xs2> y$2)i • • • > {.x sPi 1 ^  sj  ^  -Wi +  -^3
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(for a l l ;  =  1 , 2 , . . .  ,p ), are in Ds and/3, i , /342, • • • ,& P, in {/3i ,/32). • • ,0M!+m3} are 

their corresponding coefficients. Because v* is projected on D as Lebesgue measure, 

E L i  =  area of Ds =  a3; indeed for each =  H3i, defined above. For the given

value (3si, we look for the line y =  ysi so that the area of the region of D, between the 

lines y =  ysi and y = y3(i-i) (shape EFHG or EFOHG in the Figure D.2) is equal to 

(3si\ here we assume y3o =  y /_ ! and Y£ — 1 =  y0, a is the area of A B O P , and we 

also suppose that the line y = y3j and hence the point (xsj , y sj) (the intersection point 

of line and the curve T), is calculated for each j  = 1 , 2 , . . . ,  i — 1,. Then we have the 

following three possible cases. In each cases we try to determine the line y = y„ and 

the point (x 3i , ysi) by solving the system of two equations; the first one represents an 

area condition, and the other a line formulation.

• (I) If J2j<i Psj < a, then the line y =  ysi is located under the line y — thus the 

line and the point (x3i , ysi) can be obtained from the system of equations below,

0.5(ysi -  -  X U )  = E;<i ̂ ( =  area of A B H G );

y3i = x ‘~ _ x^(x^ ~  x *) +  Y>-

• (11) If J2j<i Psj < ai and If E j< i flsj > a, then the line y =  ysi is located above 

the line y = YS\ hence the solution of the following system of equations gives the 

line and the point;

0.5(y3i -  y ,)(z«  -  X s) =  -  a{= area of POHG)\
<

y** ~  x \ - x ,  (Xsi ~
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• (EQ) If J2j<i the11 at least the lines y =  y3(i- i)  and y =  y3i are located

above the line y =  Y3. Hence (33j  is the area of the region of D s which locates 

between the lines; thus the linear system of the equations below, determines the 

line and the point;

►

0 .5 (l/jt — y s ( i—l))(® at 2's(t—1)) =  fis i'i

Vsi =  ^Ej("s(xsi -  x s) +  Y3.

Therefore, the suboptimal control function u(-) is determined on the region of D located 

between the lines y -  ys(i-i) and y =  ysi, by v(x,  y) =  vsi.

Figure D.2: The possible position of the line y =  y„ in D,
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