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Abstract

A measurable set - a shape - can be considered as a measure; the present thesis treats
the inverse problem - to characterize those measures which can be considered as shapes,
in a very generalized sense - by solving some optimal shape and optimal shape design
problems which are governed by linear or nonlinear elliptic equations. A new method
is introduced for solving the usual optimal shape problems, and also a new set of prob-
lems which are defined in terms of a pair of elements, a shape (defined by its boundary)
and an optimal control associated with it. The problems are considered in polar and
cartesian coordinates separately.

The new method to attack these problems, which is applicable to both system of coordi-
nates, consists in using the variational form of the elliptic equations and then applying
the process of embedding into some appropriate spaces of measures; thus the problem
is replaced by a measure-theoretical one in which one seeks to minimize a linear form
over a subset of positive Radon measures defined by linear equalities. The optimal so-
lution is approximated then by a finite combination of atomic measures so that the op-
timal shape design problem is transformed into a finite linear programming problem.
The solution of this problem is used to construct the optimal shape and its associated
optimal control. The advantages of this new method with respect to other methods, and

the existence of the optimal solution in each case, have been carefully considered.
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Chapter 1

Introduction

The study of optimal shape design tries to answer the question,“What is the best shape
for a physical system?” We will discuss several such physical systems, mostly those
that can be described by an elliptic partial differential equation; the optimal shape min-
imizes a certain performance criterion.

Broadly speaking, the term optimal shape design (OSD) is used whenever a function is
to Ee minimized with respect to a particular geometric element (or elements). In gen-
eral, the element is a curve, a domain (an open measurable set), or a point. Traditionally,
OSD has been treated as a branch of the calculus of variations and more specifically of
optimal control; this subject interfaces with several fields including optimization, opti-

mal control theory, differential equations (or inequalities) and their numerical solutions.

1.1 OSD in Calculus of Variations

. The foundations of the calculus of variations were laid by great mathematicians like

Bernoulli, Euler, Lagrange and Weirstrass. As a matter of fact, all problems of Minima
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and Maxima in functional analysis properly belong to the calculus of variations; when
this minimization or maximization takes place over a set of geometrical elements, the
problem is usually an OSD problem. Many of these problems can be found in text books
on the calculus of variations (see for instance [6?;] and [21]). One of the most famous
and oldest of them is the free-boundary problem, in which the solution of a differential
equation has to satisfy certain conditions on the boundary of a variable domain; in many
particular cases the domain has to be determined as a part of the solution (see [27] for

more details). In this thesis we shall consider some of these problems.

1.2 OSD and Optimization

The fundamental problem of optimization is to arrive at the best possible decision in any
given set of circumstances. The study of optimization techniques is attractive because
of its very wide field of application such as operational research, economics, aerospace,
pure geometry, physics, control theory, chemigal engineering and many other subjects
(it has been claimed that everyone is optimizing something all the time!!). Walsh in
his book [60] has given many examples of optimization problems in diverse fields. The
one factor that has influenced this growth and extension of optimization theory more
than any other, has been the parallel development of computer equipment with which

optimization theory can be applied to broad classes of problems.

An optimization problem sometimes can be considered as an OSD problem and vice -
versa. An OSD problem is obviously an optimization problem; _dependjng upon the
physical structural of the problems, opﬁmization problems can be classified as optimal
and nonoptimal control problems. Again, if the minimization or maximization associ-

ated with a control problem takesplace over a set of geometric elements, the problem
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can be considered as an OSD problem.

Optimality of an OSD problem defined by partial differential equations has been studied
in many ways, as in [8] and [9] by the dynamic interpretation of optimal shape design,
in [19], [44] and [43] by some direct calculation.of shape variations, in [64] and [41]
via minimax differentiébility method, in [40] via the mapping method. The manner of
solution has an important role in the numerical computation of optimal shapes. In the
present work, for the first time, we consider an optimality of an OSD problem by chang-
ing the problem into a measure-theoretical one. In this procedure, we will apply many

optimization methods and techniques to reach an optimal solution.

1.3 OSD in Optimal Control Theory

An optimal control problem is a mathematical programming problem involving a num-
ber of stages, where each stage evolves from the previous stage in a prescribed manner.

In studying an optimal control problem, one usually requires:

e i) A real closed (time) interval J = [to, t;], in which the controlled system will

be involved.
e ii) A bounded-closed set U C R™ on which u takes its values.

e iii) A differential equation describing the controlled system, satisfied by the tra-
jectory functiont € J — X(t) € R™and the control function t € J — u(t) €

U, where u is a measurable function.

e iv) An observation function f,[t, X(t), u(t)] which is given.

A classical optimal control problem is to find an admissible control u which satisfies

the differential equation and minimizes the functional I : 7 — R defined by I(p) =
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P(fo(t,p)), Vp € F, where p = [X(-),u(-)], ¥ is given and F is the set of admissible

trajectory and control pairs.

The following problems are among the main fields of study and developments of opti-

mal control theory:

¢ Existence of an optimal control.
o Necessary (and possibly sufficient) conditions for « to be an optimal control.

o Constructive algorithms amenable to numerical computations for the approxima-

tion of optimal controls.

Clearly the development of such theory depends on the form of the differential equa-
tion describing the controlled system. The theory described in the works of Pontryagin,
Boltyanskii, Gamkerlidze and Mischenko in [46], and also Hestenes in [29], is applica-
ble to controlled systems defined by a family of ordinary differential operators. To see
the development of optimal control theory, the reader is recommended to have a look

at [34], [30], and [15], for instance.

. By performing changes of variables which bring the variable domain into a fixed
domain, one can convert a problem of OSD into an optimal control one, where the con-
trol va;riable is the coefficient of the partial differential equation defined in the OSD
problem. This method allowed Begis and Glowinski in [5] and Morice in [39] to de-
vise a satisfactbry method for optimal design problems; it has, however, two important

shortcoming points:

o It is difficult to take into account geometrical constraints.

¢ A completely new study of the (new) state equation is necessary.
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Thus, solving an OSD problem in general needs special methods.

One of the attractive and powerful recent methods for solving an optimal control
problem is based on an idea of Young in [63], consisting of the replacement of the clas-
sical variational problem by problems in measure spaces. An early version of this ap-
proach was carried out in 1967 by Ghouila-Houri in [22]. In 1977, this method was
employed for the first time by Wilson and Rubio in [62] and [52] on an optimal con-
trol problem defined by a diffusion equation; then the method has been theoretically
established by Rubio in his book [50] in 1986. The application of the new method was
extended and improved gradually; it was completed for systems governed by diffusion
and wave equations in [31], [16] and [17]. Moreover it was extended for the elliptic
equations in [53]. But no attempt has yet been made to solve an OSD problem via this

ideas; we attempt such an application in this thesis.

1.4 Optimal Shape Design Théory

In an OSD process, the objective is to optimize certain criteria involving the solution
of a partial differential equation with respect to a particular geometrical element (or el-
ements) appearing in the partial differential equation. In optimal shape design theory,
attempt§ are directed to computerize the design process to create a new shape design
or improve an existing design. From a mathematical point of view, an optifhal shape
design problem is (usually) defined. as follows:

- Let up be the solution of a partial differential equation related to the geometrical ele-
ment D; let I(up, D) be areal-valued fﬁnction of up and D. We say that we have an

OSD problem to solve if we find D* in a class F of allowable geometrical elements, to

e
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minimize I. Symbolically, one may write an OSD problem as:

Minimize : I(up, D)

Subject to : A(up, D) =0,

where A is an operator that forevery D € F defines a unique up, and the minimization
takes place over the set F. Here we deal only with the cases that A is an elliptic opera-
tor. To take some examples, one can see [7] (Appendix 4) for the design of a nozzle at
low speed with a required velocity of air in some prescribed region, and {44] for some

examples in the optimization of an electromagnet, a wing and minimum drag problems.

Although OSD is a branch of optimal control theory with geometrical elements as
controls, there are two notable differences between classical problems of optimal con-
trol and OSD. The first is that the control sets in the latter are classes of gometrical
elements which do not have natural algebrical or topological structures. The second is
that the state up here is related to D which is not fixed; this makes it difficult to ex-
amine the convergence of sequences of the form {up, }, which is one of the key steps
to the establishment of the existence for OSD. However, sometimes one may éonvert a
shape design problem into an optimal control problem wifh controls appearing in the

coefficients of the differential equation (see for example [5], [39] and [44]).

Historical background and references: OSD has been studied in a wide variety

of fields; it is difficult to give a complete account of the previous works. The studies of
OSD were started a long time ago; Bernoulli’s speediest descent problem, for example,
‘can be viewed as such a problem. Hadamard’s book [25] in 1910, is considered as the

most influential early work; he gave a formula for computing the derivative of Green’s
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function of Laplace operator with respect to the normal variations of domain.

Later on, studies were made only for those problems with an explicit solution for the
partial differential equation, as the work of Miele [37] in 1965 on the optimization of
wing profiles at supersonic speed. Eventually the ;nethod was extended to problems of
structural engineering; in particular those possible to convert into optimal control prob-
lems. Meanwhile, OSD has been studied in great depth by the French school of Applied
Mathematics (at universities of Parise and Nice, specially) and the treatment using the
optimal control technique of distributed systems, seems to have begun in 1972 with Li-
ons in [35] and with Cea, Giaan and Michel (1973) in [10], where the first algorithm
is found. Optimality conditions were found concurrently by Pironneau [43] and Murat
and Simon (1976) [40] for problems with Dirichlet conditions, by Dervieux and Plame-
rion (1975) in [13] for Neumann problem, by Rousselet (1976) [49] for eigenvalue prob-
lem. The existence of solution was then studied by Murat and Simon (1976) [40] and
Zolezio (1979) [64]. Numerical methods based on the above results were devised and
tested by Begis and Glowinski (1975) [5] and Morice (1974) [39] for the technique of
mapping and also many others like Pironneau (1983) [44] and Haslinger and Neittaan-
maki (1978) [27] by use of the finite element method.

| Optimal shape design is an applications-oriented subject; the use of OSD can be
found in many engineering branches, because systems described by partial differential
equations have particular shape design applications in industry. We can describe some
of them as mechanical engineeriﬁg (for designing airplanes, wings at supersonic speed _
and in Fluid dynamic), civil en gine;erin g, electrical engineering (for electromagnet and
antenna design), marine industry (for design of submerged in naval hydrodynamics) and
chemical engineering (for change the anode surface to a given fixed shape) for more de-

tail see [27], [44], [43] and [7]. Thus, OSD problems have been studied extensively by
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engineers where the state equations are governed by partial differential equations with
suitable boundary conditions. The results can be found in textbooks, for example Haug
and Arora [28] (1979), Vanderplaats [59] (1984) and Komkov [32] (1988), and in some
conference proceedings like that one which edited by Adelman [1] (1986). In the last
twenty years, there has been increased mathematical interest in studying the question
of the existence of optimal shapes, numerical approximation, convergence and sensitiv-
ity analysis, dynamical interpretation of OSD algorithms, topologies and compactness
properties, and optimality condition;: that are referenced in [27] and [36]. However,
enormous work has been done by mathematicians for OSD problems governed by vari-
ational inequalities; see [7], [27] and [36].

In general, most methods of solving an OSD problem are related to the numerical so-
lution of (partial) differential equations. The exception is the mapping method which
maps the solution spaces of the partial differential equations in an OSD problem on a
fixed domain, and then converts the shape design problem into an optimal control prob-
lem with controls appearing in the coefficients of the differential equation (see [40]
and [44] for example). We can also consider, tﬁe recent works in [26] on finite el-
emént method, [61] on boundary-element method, [41] on minimax (computing the
shape derivative by differentiating a Min Max problem with respect to an appropriate
vector field), and on the Least-Squares method in [4].

Up to now, there has been no attempt to solve an OSD problem by applying the measure-
theoretical method. Also, all OSD problems considered have been based on not more
than one geometrical element (which, indeed, has usually been a domain); thus efforts

have been directed to obtain an optimal element as the optimal solution.

In this task, we introduce a new approach to attack an OSD problem by transferring

the problem into a new one in which positive Radon measures are involved. The method
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has been successfully applied on some optimal control problems as explained above,
but never applied on an OSD problem before. This method has some important advan-
tages in comparison with others, such as automatic existence theorems, achieving the
global minimizer, and applying a linear treatment'for nonlinear problems. Moreover,
an C)SD problem has normally been defined with respect to a particular geometrical el-
ement (which usually has been a domain). Here we also consider a new and larger set
of OSD problems; those are defined in terms of a pair of geometrical elements (a do-
main and its boundary). We attack these problems and obtain their solution by use of

the new approach.

1.5 Outline of the work

In the present thesis, we are going to solve some OSD problems in which they are de-
fined with respect to a pair of geometrical elements. This pair consists of a measurable
set (in R?) that can be regarded as a domain, and a simple closed curve which is the
bouhdary of the measurable set and contains é given point. Based on the simple prop-
erty of curves, the related OSD problem depends on the geometry which is used. We
shall solve the appropriate OSD problems in polar coordinates (in chapters 2 and 3)
where 0 < 6 < 27 and r > 0, and in cartesian coordinates (in chapters 4, 5 and 6)

where the boundary curve consists of fixed and variable parts.

In the whole of the thesis we use a common approach, to extend the problem into a
measure-theoretical one which is defined on a class of positive Radon measures. Then,
the new problem is approximated by a ﬁﬁite linear programming one in which its results
approximate the optimal solution of the OSD problem. We remind the reader that all

partial differential equations involved are chosen as different cases of elliptic equations.
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In Chapter 2: The solution of an OSD problem which is defined in terms of a pair
of geometrical elements, a set C and its boundary 9C, is studied in éhapter 2. By intro-
ducing the set of admissible pairs, F, a classical ‘O’SD problem is introduced (in (2.4))
as the finding of the minimizer pair in F for the given functional

I(C,8C) = /G fodA + hods,

1
where area of C is fixed and w = % is the control function while 8C is represented by
r =r(9).

By some analysis, the necessary conditions for admissibility of a pair (C, C) in the
classical formulation, are characterized as integral equalities which are mentioned in
(2.6), (2.8) and (2.11) in section 2.2. To be sure that F is not empty and the problem
has a solution in F, we try to somehow enlarge this set; the basis of this metamorphosis
is the fact that an admissible pair can be considered as e; pair of positive Radon measures,
say (e, vc), which is proved by means of Propdsition 1. Moreover the transformation
(C,8C) — (i, v.) isan injection (Proposition 2) and it changes the classical problem
OSD into a measure-theoretical one. Then by enlarging the image of the transforma-
tion, we change the problem into a new nonclassical one (defined in (2.13)), where the
involved pair (u, v) belongs to M*(Q) x M*(w) (indeed, the measure satisfying the
conditions of 2.13 can be approximated, in weakly* sense, by the actual pair (C, 8C')).
The new problem has some important advantages which are listed in section 2.4.

Regarding the simple compactness properties of the weak* topology and the concepts
of Proposition 3, the existence of an optimizer for problem (2.13) is proved in Theo-
rem 1. Problem (2.13) is linear in terms of the variables y and v; thus it is an infinite-
dimensional linear programming problem. Our attempt is to approximate its solution

with the solution of a finite dimensional linear one. In the first step of approximation,
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by introducing countable total sets in an appropriate space and then choosing a finite
number of their functions, the solution of the problem can be approximated by one in
which the number of constraints is finite (Proposition 6). Moreover it is proved that the

optimal measures p* and v* have the following forms:

W= ai(Z), v = 3563,

i=1 7=1

where § is a unitary atomic measure and the coefficients of 2 0, B > 0 and points
Z?, z} (belong to a dense subset of {2 and w respectively) are unknowns. So in the sec-
ond step, by using discretization on appropriate spaces the problem is approximated by
one (in (2.17)) with unknowns ;’s and §3;’s. By introducing the function ¢ (Proposition
8) in section 2.7,' we show that the measure 4 can be identified in terms of the boundary
measure v; hence the problem is approximated by a finite linear programming prob-
lem (in (2.19)) in which its unknowns are only §;’s. But this replacing may cause some
limitations which are discussed in section 2.8. In the end of the chapter, based on the
continuity of the integrand functions, two exampies are given in detail. We can also
claim that this chapter is an answer of the interesting question: “When can a measure

p € M*(Q) be approximated by a shape C associated with the given measure n as

Jo fdp = [o fdn, Vf € C(Q)V

In Chapter 3: Based on the concepts of the previous chapter, we are going to solve

a similar problem in which the solution of the following elliptic equation on C'

div(k(6,7)Vu) — f(8,r,u) =0, A | (1.1)
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with the Neumann condition
Vu.n,, =v, (1.2)

is involved (herew : @ — U C Rand v : [0,27] — V C R). We say the quadruplet
(C,8C, u,v)is admissible when v and v satisfy (1.1) and (1.2), and the pair (C, 8C) is
defined as Chapter 2. Let the set of all admissible quadruplets be denoted by F, then

the aim of Chapter 3 is to find the minimizer of
I(C, 00, u,v) = /c Fol6,7,u, V) drdd + /a _holf,r,w,0) ds,

over F (problem (3.4)); here (r, u) is the trajectory and (w, v) is the control pair.
In general, it is difficult to identify a classical solution for the elliptic problem; thus (by

proving Proposition 9) we apply the variational form of the elliptic problem as
/c (kVuVy + fo) rdrdd — /8 kv ds =0, Vo € HY(O), (13)

and look for a bounded weak solution u satisfying (1.3) for all ¢ in H'(C') (the Sobolev
space of order 1 on ). We attack the problem by use of the Radon measures. An ad-

missible (C, 0C, u, v) defines two positive Radon measures as
A(F) = /c F(,r,u, Vu)drdd, 0,(G) = /J G(6,r,w, ) db;

here F € C()and G € C(w’') where @' = Qx U x U’ andw’ = w x V (where Vu €
U’). Thus there is an injection transformation between F and a subset of M*(Q') x
M*(w"), which changes the problem into a measure-theoretical one. Then the prob-
lem is extended to a bigger space defined by all pair of measures (), o) satisfying some

linear conditions. .
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Considering the variational equality (1.3), the first set of conditions are already intro-
duced (see (3.13)). Because the restriction of the measures A and o over § and w are
the measures p and v in Chapter 2, measure o must satisfy the same conditions as for
v (see (3.15)). Stokes’s theorem defines another rel.ation between ) and & (see (3.16)).
The last set of conditions is obtained Hy use of Green’s formula (see (3.17)). Thus we
replace the problem with new one (at (3.18)) which definitely has a minimizer. Then
the minimizer is approximated by a solution of a finite linear programming problem;
for this reason we apply the same total sets as Chapter 2 for the related spaces. For the
rest, in section 3.4 we show that the set of functions ¢, such that ¢, = r™cosnf or
¢ = r"sinnf forn = 1,2,3,..., is total in H'(C) and can be applied as a part of
the approximation scheme. Applying discretization on Q' and w’ gives requisted finite

linear program (shown in (3.21)). This chapter ends with a numerical example.

In Chapter 4: It is difficult to introduce a linear condition which determines the
property of a closed curve being simple, in cartesian coordinates; thus in the following
chapters, we consider those measurable sets D Whose boundary 0D consists of a vari-
able part I" and a fixed part between two given points, so that it is certainly simple. A

domain D is called admissible if the elliptic equation
Au(X) + f(X,u) = v(X) (1.4)
§vith the boundatry condition
Ul =0, (15

has a bounded solution on D, Let D be the set of all admissible domains. We deal in

Chapter 4 with solving an optimal shape problem (an OSD problem with a fixed con-
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trol), which is to find the optimal domain for the functional I(D) = [, fo(X, ) dXx
over Dy (the set of domains D where I is determined by joining M segments); here
u is the solution of the elliptic equations over D. The process of solution is achieved
in two stages. First for a fixed domain, by using the density property and the idea of
approximating a curve by broken lines, I (and hence 0 D) can be determined with ﬁxed
number of points (M -representation). Then D and any integral on D can be considered
as a function of M variables. Based on the elliptic équations, the generalized solution

w is determined (in Proposition 13) by the following integral equality
/D(uA¢ +9f)dX = /Dw dX ; Y4 € HY(D). (1.6)

Then by introducing measure p,(F) = [ F dpw = [p F(X,u) dX, VF € C(Q),
(Q = U x D thatu € U), we transfer the problem into a measure-theoretical one in
which more than the set of equalities induced by (1.6) the measure muét be projected on
(z, y)-space as the Lebesgue measure (condition (4.1 1)). Then we enlarge the underly-
ing space to reach an infinite linear system of equaﬁons that the unknown is a measure
in M+(Q) (see (4.12)).

In section 4.3 we show that the set of functions
pi=zyly—Dz—z+y-N)(e—z2+y—Y2)...(z —zm +y — Yur)gi,

in which that Y;,’s are given and ¢; € {1,z,y,2% 2y,v% ...}, is total in H}(D). By
the use of this total set and putting an appropriate discretization on {2, one can approxi-
mate the solution of the problem wi'th the solution of a finite linear syétem (see (4.24)). .
Hence the value of I( D) is calculated as a function of M variables, 3314,‘ Z2,...,ZTM, for

any given domain D.

In the second stage (section 4.4), considering the previous one, a vector function J :
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D € Dy — I(D) is set up. Using a standard minimization algorithm on J (like
AMOEBA), gives the minimizer domain for J; then Theorem 3, proves that the M-
representation determined by this minimizer, is the optimal solution for the problem.
Many examples for the linear and nonlinear cases of elliptic problem are given in sec-

tion 4.5.

In Chapter 5: Here we consider an optimal shape problem similar to those in Chap-
ter 4, however the control function v in this case is not fixed; rather, it represents a fur-

ther means of optimization, so that the performance criterion is:
I(D,v) = /D FOX,u(X)) dX + /D F2(X, (X)) dX. (L.7)

By fixing the domain, we change the problem into an optimal control one which is to
find the optimal control v}, for the given D. Then the classical control problem is re-

placed with a measure-theoretical one by introducing measures
u(F) = /D F(X,u(X))dX,YF € C(), »(G) = /D G(X,v(X))dX, VG € C(w)

in Proposition 16, in which their projections on (z, y)-plane are the respective Lebesgue
measures (here w = D x V that v(X) € V). The existence of the optimal solution for
the new formulation is proved in Theorem 4. We limited the number of constraints by
use of total sets (see (5.17)); then Theorem 5 shows that the solution of the new f)roblem
can introduce two piecewise-constant functions which are close enough to the optimal
trajectory and control function of the optimal control problem. Moreqyer, this solution
can be obtained by the solution of a finite iinear program by discretization (see (5.39)).

Hence the value of I( D, v}) is determined as a function of M variables.

”
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To obtain the optimal shape in the next approach, we establish the function
J: DeDy — I(D,v}) €R,

in section 5.4 which is a vector function. By use of a standard minimization algorithm,
the minimizer pair for J is obtained. Then Proposition 20 shows that this pair estimates
nearly optimal domain and control for the mentioned OSD problem. In the numerical
examples we use the same data asin exémples of Chapter 4; thus the reader can compare

the result of the controlled system with those for the uncontrolled one.

In Chapter 6: We consider a different type of elliptic equation by changing the
boundary condition into u},, = v, thatis, v is a boundary control; hence we try to

solve an OSD problem with the objective function

I(D,v) = /D F(X,u(X)) dX + /8  fals,v(s)) ds.

This change results in the following integral equalify as the variational form of the el-

liptic equation

[wap+endx - [ o(vvn)ds = [ $9dX, v§ € HY(D).

For the fixed domain, the weak solution u and the control function introduce two posi-

tive Radon measures as
p(F) = [ F(X,u(X)) dX,VF € C(Q), w(G) = [ G(s,V(s))ds,YF € O(w),

where w = 0D x V. We replace the problem with a measure-theoretical one and fol-

lows the concepts of chapter 5 for the rest of the process to reach the solution.

e
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Some proofs of the above given results and many other related materials is described
in the following Appendixes:
In Appendix A we introduce and prove the way of calculating the function ¢ in Chapter
2, when the discretization is used. —
Appendix B, related to the concepts of Chapters 4, 5 and 6, explains why we chose the
admissible set D¢ for a fixed M. Also it is discussed there what could happen as M
tends to infinity.
The frequent use of the subroutine AM O E B A requires the description of this prégram
in Appendix C; we also mentioned some limitations in using AMOEBA in this Ap-
pendix.
Appendix D introduces the way of obtaining the suboptimal control function for the re-
sults of the numerical examples in Chapter 5. It is also explained there how one can

plot this suboptimal control in 3-dimensions.



Chapter 2

Shapes and Measures

2.1 Introduction

A measurable set - a “shape” - can be considered as a measure. Indeed, let  C R?
be a bounded domain, and C C 2 a measurable subset. If p € M*(Q) (that is, 7 is
a positive Radon measure on the Borel subsets of the given set (1), then the following

function F defined by
F:f—»/cfdn,‘v’feC(Q) ' 2.1)
is a continuous linear functional, and therefore it can be identified with a unique mea-

sure 7¢ in M*(), by the Riesz Representation theorem (see for instance [55]).

In this Chapter, by defining an appropriate optimal shape design problem, we at-

tempt to treat a more general version of the inverse problem; that is: “When can a mea-

sure p € M*(Q) be approximated (weakly*, to be sure) by a shape C associated with
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the given measure 1 as:

(u(f) =) [ fdu = [ fan, vf e c(@. 22)

We remind the reader that not only the shape C but also its boundary C' will be in-
volved in the optimal shape design problem. By solving this problem, the shape C
which satisfies (2.2), and also the curve 0C will be determined. In the first stage, by
introducing necessary conditions, the appropriate classical optimal shape design prob-
lem will be setup. Then, by a process of embedding, this problem will be extended to
a measure-theoretical one in which one looks for two unknown positive Radon mea-
sures. The new formulation has some advantages; especially, it always has a solution,
as shown in an existence theorem. Changing the problem into an infinite dimensional
linear programming problem helps to approximate the solution with the solution of the
appropriate finite linear programming problem. Meanwhile, we will show that one of
the measures can be evaluated in terms of the other one; hence the number of unknowns
will be decreased. In the final stage the optimal control, the optimé.l shape and the min-
imum value of the performance criteria will be illustrated (approximately of course)
from the result of the appropriate finite linear programming problem. We state here
that one may use some standard minimization algorithms (like AMOE B A in [47]) and
penalty method (see for example [60] for details) as well, to consider some logical lim-

itations, more details will be given in section 2.8. At the end of the Chapter some nu-

merical examples will be given.
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2.2 The optimal shape design problem

2.2.1 Classical form of the problem

In order to define a classical optimal shape design (control) problem we need to describe
its several components, such as the differential equation satisfied by the controlled sys-
tem, the performance criterion, conditions, étc. The conditions that We shall put on the
functions and sets will serve two impartant purposes. First, they are the kind of reason-
able conditions which are usually met when considering classical problems; second,
they will allow the modification of these classical problems into other problems which

appear to have some advantages.

Let » and u be two real-valued functions, and 8 a real variable; then consider:

e (i) The closed interval J = [0, 27} in R; its interiorin the real line is J° — (0,27).

o (i2)A = [0, 1], abounded, closed set in R. The trajectory of the controlled system
is constrained to stay in this set for all§ € J. In other words: 0 < r(6) < 1,V0 ¢
J.

e (iti) r = 74, an element of A which is to be the initial and final states of the

trajeétory of the controlled system.

e (iv) The bounded closed subset W of R, the set in which the control function

takes values.

e (v) Consider the following differential equation:

#(6) = w(8) = g(d,7,w), 6 € J°, (2.3)
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where the trajectory function § € J — r(f) € A is absolutely continuous
and the control function § € J — w(#) € W is Lebesgue-measurable; this

differential equation describes the controlled system.

o (vi) Let @ = J x A (the unit disk in polar coordinate), w = J x A x W, and
fo : @ — Randh, : w — R be two integrable functions in appropriate
spaces. These functions make the integrands in the performance criterion for the

related optimal shape design problem.

o (vit) Let OC be a continuous simple closed curve and C' be a (measurable) set
which is bounded by C in the polar plane. Here C and OC are the geometrical
objects of the classical optimal shape design problem; a simple closed curve is
a curve with the same initial and final points which does not cut itself. It means
that the cufve r = f(8) defined on [0, 8,] is called simple closed, whenever f

satisfies in the following conditions:

(81, £(61)) = (82, £(82));
(9, £(8)) = (¢, f(6')) when 6 # &' and 6,6 € (81, 62](see [2]).

In a classical optimal shape design problem, the optimization takes place on the set
of all admissible (geometrical) elements which are related to the problem. In our case,

these elements are defined as follows.

Definition 1 : An admissible pair (C,80) is a pair consisting of measurable set C C
Q and its continuous simple closed boundary, 0C (which are mentioned before), so if

aC is defined by the trajectory function r(8) then:

e 1) the differential equation (2.3) holds.

~

e 12) The boundary condition r(0) = r(2n) = r, is satisfied.



Chapter 2: Shapes and Measures 22
e 1i1t) The area of C is a given number.
The set of all admissible pairs (C,8C) is denoted by F.

The appropriate optimal shape design problem related to the mentioned question, is

as follows:

L * 1
Minimize: I(C,0C) = /;' fodA + /ac' mhods.
Subject to: (C,00) e F;

the area of C = given;

T, = given. 2.4)

We know that in the polar coordinates whenr > 0and0 < 6 ‘S 27, the curve
r = f() is simple. Therefore with these constraints that have appeared in the determi-
nation of {2 and w, searching for the mentioned cloéed and simple curve is completely
poséible. But in the zy—plane (orthognal coordinates), finding the similar necessary

conditions, for a curve to be simple and closed, is much more difficult.

In general the set of all admissible pairs, 7, may be empty or may not contain the
optimal pair (see [44] and [36]). Even if the set F is nonempty, and a minimizing pair
fbr (2.4) does exist in F, it may be difficult to characterize it.; necessary conditions are
not always helpful because the information that they give may be impossible to inter-
‘bret. Also the optimal pair may be very difficult or impossible to estimate numerically; |
there are no comprehensive computational methods for this purpose. However using
some effort could be better directed t’owards finding an alternative way, perhaps one

using other spaces, other sets, different things and so on. We shall apply such an ap-

1t
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proach in the rest of this Chapter.

We shall effect the transformation of this classical optimal shape design into another,
nonclassical, problem which appears to have better properties in some respects. Before
this, in the next section, we shall analyse further this classical problem, to gain some

idea on how to find the minimizer for the problem (2.4). -

2.2.2 Conditions

To identify the optimal pair, it is necessary to point out some characteristics of the ad-
missible pairs (C, 0C) in F.

We first consider the boundary conditions; let B be an open ball in R? containing J x A4,
and denote by C’( B) the space of real-valued continuously differentiable functions on
B such that they and their first derivatives are bounded on B (this space is the same as
that of all real-valued functions that are uniformly continuous on B together with their

derivatives). Let ¢ € C’'(B) and define:
¢*(0,r,w) = ¢.(0,m)w + ¢(0,7) (2.5)
for all (6, r,w) € w. The function ¢ is in the space C(w) and we have:

#(8,r,w)ds =) [ #(6,7(0), w(6))ds

1
o

= [ 18.(6,7(8)) 7(6) + ¢a(6,7(6))} dt
-/ " 5(6,7(6))d8 = 5, (2.6)

forall ¢ € C’'(B) (regard that in polar coordinates ds? = r2d§? +dr? = (r?+w?)d6?).
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We now consider a special case of (2.5). Let D(J°) be the space of infinitely dif-

ferentiable real-valued functions with compact support in J°. Define:

$°(6,m,w) = r(0)'(6) + w(0)%(9) 2.7)
for all 4 € D(J°). Now for an admissible pair (0C, C') and ) € D(J°) we have
w@))d& =

1
——eeee)9(0, v, w)ds =) [ 9(0,7(0),
(/ac /(,.z Fw?) (6,7,w) )/J (8,(6)

P(O1(0) 7 + [ [5(6) ~ w()](6)d0 = r(2m)(2r) — r(0)h(0). 2.8

Since (C, 8C) is an admissible pair satisfies (2.3) on J°, and, since the function 3 has
compact support in J°, so supp(y) C J° = (0, 2x); then 0 and 2x do not belong to

supp(v), and therefore
$(0) = 9(2r) = 0.

Hence the right-hand side of (2.8) is zero. We note that the equality (2.8) also can be

derived from (2.6) by choosing
$(6,r,w) =r(6)¥(8); (6,r,w) € w. (2.9)

It is important to single out this special case of (2.6); because later on, when we want
to considér the approximation, we shall be forced to consider problems in which (2.6)
is satisfied only for finite number of functions in C’(B); it will be necessary“then to
include among these some functions of type (2.9). So we wish to make sure that we do

not overlook these.

The same situation arises for another special choice of functions in C'( B); put

#(8,7,w) =O(8); (6,r,v) € w, (2.10)
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that is, a function which depends on the variable 6 only; then ¢9(, 7, w) = ©(6), forall
(6,7, w) € w, also is a function of § only. We are led thus to consider a subset of C(w),
to be denoted by C1(w), of the functions in this space which depend only on the variable
8; its elements will be denoted as a function of three variables, 0,r,w) — f(8,r,w),
even if their value does not chénge when r or u, or both change. The equation (2.6)

with the choice (2.10) implies that

w(0))db = a; ; f € Ca(w)
(2.11)

1 )
(/ac \/”‘(‘T—wj)f(e,r,w)ds _)/Jf(e,r(e),

where a; is the integral of f(.,r,u) over [0, 2], independent of r and u; we have put f

for © in (2.10).

The set of equalities (2.6) and its special cases (2.8) and (2.11), are properties of the
admissible pairs in the classical formulation of the optimal shape design problem. By
suitably generalizing them we shall transform this into another nonclassical one which

appears to have much better properties in some respects.

2.3 Metamorphosis

It appears that the situation mentioned in section (2.2) may become more favorable if
the set F could somehow be made larger; if we could only enlarge this set. Of course,
in a given classical problem, the set of admissible pairs is fixed. If we somehow add
glements to it, we are changing the ;.>roblem, and considering a new one, a different for- _
mulation nevertheless. This is precisely our intention; the basis of this metamorphosis
is the fact that an admissible pair (C, 0C') € F can be considered as something else (like

a pair of measures), that is, a transformation can be established between the admissible
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pairs and other mathematical objects. This transformation is an injection (one-to—oné
mapping), so the optimal pair and its image under the transformation can be identified.
It is possible then to augment the set of all images of (_)ptimal pairs under this transfor-
mation.

Hence we will replace C and 0C with the measures p. and v, respeétively by the fol-

lowing proposition.

Proposition 1 : Let C, 0C, Q and w are defined as before, then there exist two unique

positive Radon measures p. € M*(Q) and v, € M*(w) so that:

peg) = /ngA, Vg € C(Q)

and

ve() = [ hdo(= [ \/ﬁhds), Vh e C(w).

Proof: R?, and therefore by the Heine-Borel theorem its closed subset Q, are locally
compact Hausdorff topological spaces. Let g € C(). Since g is continuous, by us-
ing again of the Heine-Borel theorem, it has the compact support. So g € C.(Q) and
consequently, C(Q) C C.(). Now for all g € C(Q) we define the functional A as

below:

Ac:geC(Q)——-»/cgdAeR.

A is a linear and positive functional in C(§2) because of:

- o Ac(a1g1 + a292) = Jo(a1g1 + az292)dA = a1 [c g1dA + a2 [¢ ngiA
= a1Ac(91) + azAc(gz); for all ay,a; € Rand gy, 9 € C(Q).

o Ifg(6,7) >0, V(8,r) € Q then abviously Ac(g) = [o gdA > 0.
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Hence, the conditions of the Reisz Representation Theorem in [55] are satisfied and

thus there exists a unique positive Radon measure, say, p. € M*(Q) so that:
pel9) = Acl9) = [ gdA, ¥g € C().
Similarly, by defining:

hds) € R,

Asc hEC(w)——-»/th(/\/(_m

Asc is a positive linear functional on C(w). Using again Riesz Representation Theo-

rem, we obtain the unique positive Radon measure, say, v. € M*(Q) such that: .

———hds), Vh € C(w).

ve(h) = Asc(h) = / hdf(= /ac \/(,.2——
d

The above Proposition shows that each pair (C, 0C) in F can be regarded as a pair
of measures (4., v.) in the appropriate subset of M*(Q2) x M*(w).The Uniqueness of

L. and v, in the Proposition 1, state that there exist a transformation
(C, 60) — (#cy Vc)

between those two sets. The following proposition shows that this transformation is an

injection (a.e.).

Proposition 2 : The transformation (C,0C) — (Ac, Ac) of the admissible pair in
F into the pair of linear mapping (A¢, Asc), defined in the proof of Propositionl, is an

injection.
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Proof: It must be shown that if (C;,8C,) and (C,, 8C;) are not equal in F, then we
have (A¢,, Aac,) # (Ac,,Aac,). Let (C1,0C:) # (Ca,0C,) then because C; and
0C, are two simple closed curves which are the boundary of C'; and C,, we have C; #

C, and 0C; # 9C,. If we have A¢,(f) = Ac,(f) forall f € C(Q), then
[ faa= /C FdA, Yf € C(Q).

Therefore [, ¢, fdA = 0, for all continuous functions fin C(£). Hence C; — C, is
an empty set (a.e.), or equally C; = C; (a.e.), which contradicts with C; # C,. (Also
as Rubio did in [50], let J; be the subinterval of J so that r1(8) # r,(6) for all § € Jy;
then, one may make F' € C(w) independent from w, equal zero on Jy, and such that it
is positive on the appropriate portion of the graph r;(.) and zero on that of 72(.). Then

the related linear functions are not equal.) O

Now each pair (C, 0C) can be identify with the pair of related linear functionals
(Ag,Asc). Some may think that we have not achieved something new, that we are
simply writing some integrals in different way. But in reality, we have achieved some-
thing deep and useful, when identifying the optimal pairs with the positive Radon mea-
sures. Consider the equalities (2.6), (2.8) and (2.11), their left-hand sides are all inte-
grals which are exactly the same type as that appearing in the definition of the positive
linear functional Asc in Proposition 1. These equalities can then be written by using

the definition of the related Radon measures v, as follow:

Vc(¢g) = 5(#1 ¢ e C’(B)l
ve(y?) =0, ¥ € D(J°);
ve(f) = a5, f € Co(w).” (2.12)
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Besides, by applying the definition of A¢ and its related Radon measure 4., the perfoxr-

mance criterion in (2.3) can be written as

1(C,8C) = pe(fo) + ve(ho).

The image of the set of all admissible pairs in F under the transformation (C,8C) —
(tte, ve) (in the Propdsition 2) is in the set of all those pairs of positive linear function-
als (Ac, Aac) on M*(Q) x M*(w), or equally those pairs of Radon measures (., v.)
which satisfy the equalities (2.12). We shall now enlarge this image which, we repeat,
can be identified with F itself (remember that the transformation (C, 8C') — (u., v.)
is injective); and define the new, nonclassical, problem. The classical problem caﬁ be
rephrased as follows:

Among those pairs of positive Radon measures on M+ (Q)x M*(w) of the type (., ve),
we seek one for which the number p.(fs) + ve(ho) is minimum.

But in the new nonclassical problem simply do this:

We shall consider all pairs (u,v) of positive Radon measures in MH(Q) x M+ (w)
which satisfy (2.12), and seek to minimize the function (u,v) — u(f,) + v(ho) over
this new, larger set of positive Radon measures. (we shall discuss later about the rea-

sons for taking this approach.)

We should emphasize that what we are doing is to consider the problem as defined
over all measures in M+(Q) x M*(w) which satisfy the conditions (2.12), as shown in
(2.13). The measures satisfy (2..13). can be approximated (in weakly* éense) by actual
pairs (C, 8C). ‘

Thus by using these concepts we can put our nonclassical problem in its definitive form,

which will be used in the rest of the Chapter. As a conclusion, the new nonclassical op-
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timal shape design problem that we treat to find its minimizer, say (p*, v*) € M*(Q2) x

MT*(w), is as follows:

Minimize: I(C,8C)= u(f,)+ v(hs)
subjectto: v(¢9) =64, ¢ € C'(B);
v($?) =0, ¥ € D(J°);

v(f) = as, f € C1(w). (2.13)

In the next, we shall examine the advantages of this new nonclassical problem with
respect to the old one in section 2.2. Also we will indicate how the optimal pair of the
measures can be used so that a reasonable modification of the original problem comes

to be solved, and the optimal shape can be found.

2.4 The advantages of the new formulation

As ﬁxentioned before, in the classical form of the optimal shape design problem, gener-
ally the minimization of the performance criterion in (2.5) over the set F is not possible,
the infimum may not attained at any admissible pair; it is not possible, then to write the
necessary conditions for the problem. Conditions which guarantee the existence of a
minimum take usually the form of some sort of convexity requirements on the sets or
functions; these conditions may or may not be artificial when imposed on a particular
system. Also if the minimizer pair exists, it may be difficult to characterize it. More-
over the minimizer pair may be very difﬁcult‘or sometimes impossible to be estimated
numerically; there are no comprehensive methods for this purpose.

But in the nonclassical optimal shape design problem, which has been formulated as a

~

measure-theoretical problem in (2.13), there are some characteristics which make this
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new problem more effective. Let the subset of M*(Q2) x M*(w) defined by the equai-
ities (2.12) be denoted by Q; then:

e 1) The existence of an optimal pair of measures in the set Q minimizing (x, v) —
w(fo) + v(ho) is guaranteed because of the automatical existence theorem. We
shall examine the interesting relationships between a particular topology on the

set () and existence properties.

o 1) The function (g, v) — u(fo) + v(ho), as well as the functions appearing in
the left-hand side of the equalities (2.12) - those that defined the set @ C M*(Q2)x
M+(w) - are linear in their arguments, measures v and u. This fact forms the
basis of our approach; since the functions involved are linear even for those prob-
lems normally classed as nonlinear, the whole machinery properties of linear anal-
ysis can be used to attack the problem. So the computational methods for getting

the solution are much easier.

e 132) Since the set F of admissible pairs can be considered, by means of the injec-

tion function (C,8C) — (Ac, Asc), as a subset of Q, therefore
infI(C,0C) > igf I(p,v).
F

Thus, here, the minimization is global, that is, the global infimum of the problem'
can be approximated well. So in the nonclassical form, the global minimizer of
the problem will be found, or rather, a reasonable approximation to it.

As explained in [50], the infimum associated with the new formulation can be

strictly less than the classical infimum.

In the next section we will explain that why the minimizer pair of measures (u*, v*) for

4

the problem (2.13) exists.
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2.5 Existence

It is the aim of this section to show that the linear function (g, v) — p(f,) + v(hs)
always has at least one optimizer (an optimal pair of r-neasures) in the set Q) under the
conditions on the functions and sets of the problem (2.13). This is based on simple com-
pactness properties of the weak* topology. The following proposition which is proved

in [50] Chapter 2, will be used to prove the way to reach to the existence of the optimal

pair.

Proposition 3 : If S is a compact subset of the Hausdorff space X and the function
y : § — R is lower semi continuous (Isc) in S, then:

(i) inf, y(3) < —o0

(ii) There is an element s, € S such that y(s,) < y(s), for all s € S, that is, the

infimum of y is attained on S.

We assume that @ is nonempty. Of course that the set Q) may be nonempty while F
is empty; one of the advantages of the nonclassical formulation. The space M*(Q2) x
M*(w) of all pairs of Radon measures will take on the role of the space X in the above
Proposition but no topology has been put on it yet. We try to find a Hausdorff topology
on this space so that Q is compact and the function (g, v) — /1,( fo) + v(h,) is lower
semicontinuous. Of course, if no optimal measure does exist under our hypothesis we
will never find such topology. But, as we shall see below, a Hausdorff topology can be
found in which the set Q is compact and the function (g, v) — u(f,) + v(h,) is not
only lower semi continuous but actially continuous.
Th“ere are several ways of characterizing the topology we have in mind, known as weak*
topology, or vague topology on the space M(£2) x M(w). We note that this space
is a linear space, which will become a lgcally convex topological vector space when

given the weak® topology; this can be defined by the family of semi norms (u,v) —

"
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|w(F)| + |v(H)|, (F,H) € C() x C(w); then, where gives rise to a basis ofneigh'-
borhoods of zero of M(Q2) x M(w) is:

U, = {(gv) € M(Q) x M(w) : |p(F)| + |v(H;)| < &5 = 1,2,...,7},

foreverye > 0 and all finite subset {( F;, H;) € C() x C(w);5 =1,2,...,7}. Hence
M(Q) x M(w) is a Hausdorff topological vector space (see [58] Chapter 19 and [11]
Chapter 3 and 4). The following Proposition shows that Q is dense in M(Q) x M(w).

Proposition 4 : The set of measures @ C M*(Q) x M*(w), is compact in the topol-

ogy induced by the weak™* topology on M*(Q) x M*(w).

Proof: Denote Q, C M*(w) the set of those measures v € M*(w) which satisfies
in the equalities (2.13). Then by Proposition/1.2 in [50], @, is dense in M*(w) by
the induced weak* topology on M*(w). Moreover, @ = M*(Q) x Q, (because no
measures of M*(Q) is involved in the conditions of (2.13)), and each subset of Q is the

form of M*(Q)x Q' where @’ C Q.. Thus, by regafding the definition of compactness,

Q is a compact subset of M () x M*(w) under the same topology. O

The proof of the following Proposition is much the same as that one in [50] Chapter

2, so it is omitted.

Proposition 5 : The function (1, v) — p(fo) + v(he), mapping Q into the real line,

is continuous.

The last two Propositions state that Q) is compact and the function (x, v) — u(f,)+
v(h,) is continuous, therefore it is lower semi continuous. Now by applying the Propo-

sition 3 the following Theorem will be obtained.
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Theorem 1 : There exist an optimal pair of measures (u*, v*) inthe set @ C M*(Q)>x<

M™*(w) of pair of measures that satisfy the equations (2.12), for which p*( fo)+v*(ho) <
p(fo) + v(ho). forall (u,v) € Q.

As aresult of the Theorem 1, one can state that the problem (2.13) has an optimal
solution in Q; but still it is difficult to obtain the exact solution, the underlying spaces
are not a finite dimensional, the number of equations are not finite, etc. Hence we look
for a suboptimal solution. In the next section, we will explain how the solution of (2.13)

can be approximated by a solution of a finite linear programming problem.

2.6 Approximation

As noted before, the problem defined in (2.13) is a linear programming problem; all the
functions are linear in the terms of the variables 1 and v; moreover these measures are
required to be positive. But this linear programming problem is not finite-dimensional,
because not only the underlying space, M() X JW(w), is infinite-dimensional but
also the number of equalities in (2.13) is not finite. (This kind of problems is called an
infinite-dimensional linear programming problem; there is a large and growing litera-
ture on such problems, for example see [14]). In our case it is péssible to approximate
the solution of this problem by the solution of a finite-dimensional linear one (which
is much more common and easier to deal with) of sufficiently large dimensions.. Be-
sides, by increasing the dimensionality of the problem the accuracy of approximation
can be increased. In this section we'will first consider the minimization of (x, v) —
#(}o)-*- v(h,) over a subset of M*(£2) x M*(w) which contains those pairs of measures
(p, v) satisfying only a finite number of constraints in (2.13). We remind the reader that
a fotal set in an appropriate space is a set such that the linear combinations of its ele-

ments are uniformly dense - that is, dense in the topology of uniform convergence - in

o
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the related space.

For the first set of equationsin (2.13), letthe set {¢;; i = 1,2,3,... } beacountable
total set in C'(B). These functions can be taken as monomials.

In D(J°) consider the functions defined by:
sin2rj8 , 1—cos2mjd, = 1,2,3,..., (2.14)
and then we introduce the sequence of functions {x : h =1,2,3,...} as
xn =9'(8) + wip(6)

when the function 1) are the sin and cos functions in (2.14). The set of these functions
is total in D(J°).
Also let the set {f, : s = 1,2,... } be total in Cy(w); we will talk about these function

later. Now we have the important following proposition which its proof is much like as

the proof of Proposition 711.1 in [50].

Proposition 6 : For positive integer numbers My, M, M, consider the problem of min-
imizing

(1, v) — p(fo) + v(ho)
over the set Q(M,, M, Ms) of measures in M*(Q) x M*(w) satisfying
V(¢f) = 645-') 1= 1)27'°"M1;

V(Xh)=0) h=1’2,°~"M2;

v(f)) =a,, s=1,2,..., Ms. (2.15)



Chapter 2: Shapes and Measures 36

If My, M3, M; tends to infinity, then

inf  [6(£o) + v(ho)] — influ(fo) + v(ho)).

Q( My, Mz, M3

Up to now, in the first stage of approximation, we have limited the number of cdn—
straints in the original linear program. But the underlying space is still inﬁnite-dimensional.

Next we are going to approximate this problem with the finite-dimensional one.

It will be assumed that the first function appearing in the first set of equations in
(2.15) is ¢i(z) = 1 forz = (8,r,w) € w; then the first equality will be written as
v(1) = 2m.

Here we remember the fact that a unitary atomic measure with support the singleton
point set z, to be denoted by §(z) € M*(Q) x M¥(w), is characterized by §(z)(F) =
F(z),F € C(w), z € w. Then from the Proposition 1.2 of [50] Chapter 3 (which has
been taken from [48]), one can conclude that the measure v* in the set Q(M;, M,, M)

at which the function (u,v) — p(fo) + v(ho) attains its minimum has the form:

v = 3 B25(z),

j=1

where m = M; + M, + M3; 25 € wand,B; >0fory =1,2,...,m. Now for the other
measure, let us consider a finite number of arbitrary continuous functions Fy, F5, ... F),
on 2 which is a Hausdorff topological space, so that F;(Z) = 1 for all Z € Q. Because
u is a positive Radon measure we suppose 4(F1) = ¢1 > 0; in the other words, without

loss of generality we assume u is nonzero (which is what we are usually looking for).
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Therefore, from the Theorem A.5 in [50] (Appendix), 1* has the form:

pt =3 al6(20),

i=1 .

witha? > 0,2 € Qfori =1,2,...,n. Here §(Z) is a unitary atomic measure on §2

with support at Z. The following proposition has been proved.

Proposition 7 : The optimal measure p* and v* for the function
(1, v) — 1 fo) + v (ko)
with the constraints in (2.15) have the from

pr=y_e;8(Z7), vt = Zﬂ;&(z;)
i=1 j=1
Thus, the measure-theoretical optimization problem is equivalent to a nonlinear opti-
mizgtion problem in which the unknowns are the coefﬁcients o, ﬁ;‘ and supports {Z}},
{z;} fori = 1,2,...,n, j = 1,2,...,m. It would be much more convenient if we
could minimize the function (g, v) — p(f.) + v(h.) only with respect to the coeffi-
cients ¢ and 3;; which would be a linear programming problerﬁ.
The answer of that possibility, lies in the next stage of approximation, where we intro-
duce dense sets in 2 and w. Let Dq and D,, be two countable dense subset of 2 and w

respectively; then as a result of Proposition /1.3 in [50], measures p, € M* () and

v, € M*(w) of the form
Ho = Eaiﬁ(Zi) y Vo = E'Bj6(zj) (216)
=1 i=1

exist such that Z; € Dq,z; € D, and théy can approximate y* and v* (respectively).

o

L i e YUY
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This result suggests that the problem (2.15) can be approximated by the following lineaf
programmingone which Z; and z; for: = 1,2,...,N,7 = 1,2,..., M, belong todense

subsets of {2 and w respectively.

N M
Minimize: - Z aifo(Z;) + Zﬁjho(zj)
=1 7=1 .
Subject to : a; >0 1=12,...,N;
ﬂjZO) .7=112’7M7
M
Zﬂj¢k(zj)=5¢k’ k= 1,2,...,M1;
7=1

M
Z,B_,-Xh(zj) =0, h = 1,2,...,M2;
=1

M
Zﬁjfs(zj) = as, $ = 112’°'-;M3- (217)
=1

For the last set of equations in (2.17) we define:

1 if6ed
f,(9)= ‘

0 otherwise,

where J, = [31%2,3;12, %’] and a, in (2.17) is written for the integral of f, over J. Since
these functions are not continuous, two remarks need to be made concerning their suit-

ability:

e (i) Each of the functions f,,s = 1, 2,..., Mj, is the limit of an increasing se-

quence of positive continuous functions, f;,; then if » is any positive Radon mea-

sure in M+(w), v(f,) = lim,__ v(fs,)-

e (i2) Consider now the set of all such functions, for all positive integers M3; the
linear combinations of these functions can approximate a function in Cy(w) ar-

bitrarily well (see [3] Theorem 24.4), in the sense that the essential supremum
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(see [18]) of the error function can be made to tend to zero by choosing in an a;;-

propriate manner, a sufficient number of terms in the corresponding expansion.

Now, by using the solution {3}, a3, . . ., o, O1, ﬁé, .+« B3} of the problem (2.17),
one is able to construct the pair of suboptimal trajectory and control functions. Of course,
we only need to construct the control function, w(-), since the trajectory function, r(-),
then is the corresponding solution of the differential equation (2.2), with the initial val-
ues (0) = rq,7(27) = 7,. The construction of the control function is based on the
methods introduced in [50] ChapterI V. This pair of trajectory (shape) and control func-
tions, turns out to be the solution to the modified shape design problem; we note that the

functions f,, h, and j—; will be required to be Lipschitz rather than merely continuous

for these properties to hold (see [50] Chapter I'V).

2.7 Relationships between the measures y and v

As mentioned before, the measure p is notinvolved in the constraints of (2.13) and it ap-
pears only in the performance criteria of the optimal shape design problem. We would
like to express this measure p in terms of the boundary measure v. If this were be pos-
sible, the §3;’s would be the only unknowns in (2.17). To confirm this possibility, first

we prove the following proposition.

Proposition 8 : Suppose u = YN :8(Z;), then there exists a v-measurable function

¢ so that
o; Z;€C
v(&) = :

0 otherwise.

(Here the dependence of the function { on the point Z; is shown as &i=¢Ez,).
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Proof: To define the function ¢ we use the idea of generating an electromagnetic ﬁel&
by an infinite wire. An infinite wire that carries a fixed current, which is perpendicular to
the polar plane, at an arbitrary point Z;, produces an electromagnetic field B at distance
p from Z;. This field has two components B, and By (in plane) in the direction of p and
perpendicular to it (see figure 2.1, that p is the line segment between the points Z; and
z ). The components B, and B, are zero, so B = By = 2—7’:—; where  is a constant

(see [45]). We wish to have a circulation equal to 1 atz = (r,9),

PLI
acB.dl:/o 5y A0 =1.

Hence we should choose k = 1;soinourcase B = By = ﬁ Moreover, in cylindrical

Figure 2.1: Electromagnetic field produced by an infinite wire

coordinates, with the unit vectors u,, ug and u,, we have:

Gurl8 = 250 = 2 (pBa)lu, — 15 = G2l + 215 (0Be) = Sl
o 1.0 l 1,0,1
(g e + 2l (. 218
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Hence, if p # 0 then (2.18) shows that CurlB = 0 therefore by Stokes’s Theorem thé
circulation is zero unless p = 0. In other words the circulation at Z; € C is nonzero.
So we define the function {,T as the integrand function for calculating the circulation at

any point z € w. So we have

u(€]) = /a _B.dl.

Thus v(¢]) is the circulation of B at Z;, and so

1 Z,eC
v(El) =

0 otherwise.

To complete the proof, it is enough to define:
&(2) = aitl(2), Vz € w.

a

Now by applying Proposition 8, in the related equation (2.16) one could have p =
1Ly v(&)8(Z:) and hence
M
/J'(fo) = Zﬂj7b;
i=1

where 7, = SN, f.¢: is a function defined in Q. So the performance criteria in (2.17)

changes into

S~ Bi(ho +10).

=1
The main point here is that o;’s, in the definition of ¢, are still unknown and our effort
is to find them. For a given partition {%}Y, onQ, wecalleach Q; a quagi-rectangular

subset of ; consider an extra condition on y that for all (¢, v) € Q(M,, M;, M3) we

e
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have:

(%) = area of Q;, Vi=1,2,...,N.

Let select a set of points {Z;, Z,, . . ., Zn } as a subset of a dense set in Q where Z; € ;

forall: =1,2,..., N. Then from (2.16) we have:

-
w() =D eila(Z:) = au.

=1

Thus by regarding the above discretization on §2, one can consider ¢; in the definition
of ¢ as the area of the quasi-rectangular {);, foreach: = 1,2,..., N. (In Appendix A,

we have shown how one can compute ¢ by putting a discretization on §2.)

Finally, if we chose the L number nodes in a dense subset of w by discretization,
the optimal shape désign problem in (2.3) can be approximated with the result of the
finite linear programming problem below in which the unknowns are the 3,.’s. We put

Zp, = (On,Tn, un), which is a node in the discretizations. -

L
Minimize : > Balho +70)(2n)
n=1
subjectto: IBnZO’ n=1’2";'1L;
L .
3 Budi(z) = 84, i=1,2,..., My,
n=1
L .
Eﬁn¢j(zn) =0, 3=12,..., My
n=1

L
> Bufs(za) = as, s=1,2,..., M3
n=1
L 1 ) :
B Er:) = given area. 2.19
1

n=
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We note that the last equation in (2.19) is separated from the second set of the equations

to emphasize the area of C; the equation shows the area of C because of

2r 1 2 .
/0 (57' )df = area of C.

2.8 Limitations

AsRubio in [50] has proved, the resulted trajectory from the solution of (2.19) isclose to
the real one when the functions in the performance criteria are the Lipschitz functions.
We remind the reader that a function f is said to satisfy a Lipschitz condition with a

Lipschitz constant k on D, if there is a constant k such that for all z,y € D we have

| f(z) - f@) IS klz—y].

But the function ¢, and therefore 7., which appears in the performance criterion, is
not Lipschitz. So the optimal solution of (2.19) may not be an accurate approximation
for (2.3). However, if the function ¢ is considered in the context of our discretization

scheme, one can see from Figure 2.2 below that one can replace ¢ by a function with
Lipschitz constant 75.

Thus, since a large Lipschitz constant needs a large number of equalities in (2.19),
to achieve a given accuracy, finer discretization may need a large‘number of such equal-

ities.

If the function f, is not a continuous, as in Ezample 2 below, we can not expect

good approximation; however, we have foynd that the resulting shape provides a good
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2
‘maximum value 1/h

1
1
]
1
t
]
1
[}
L

Figure 2.2: A function with Lipschitz constant 75

starting point for a standard minimization algorithm, like AMOEBA in [47]. In our
case, the result of (2.19) is a very good initial solution, because it is satisfied in all the
necessary conditions of the problem and in some sense makes the performance crite-
rion minimum. By using a standard algorithm the initial solution, initial shape, can
be improved into another one that is the nearest one to the minimizer of the problem
(2.4). Plainly the necessary conditions (like area condition) may be applied by using

the penalty method with the minimization algorithm (see [60)).

2.9 Numerical examples

2.9.1 Example 1

In this example, we looked for the optimal shape with the area of 0.6 which is located

inside the Lemniscate »r = sin264,0 < 9’ < 27 as much as possible; this shape is
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supposed to contain the fixed points (0,0.5) and (27, 0.5) as its initial and final pointi
Thus we chose b, = 0 and
r >’sin26

fo(o,'f') =

r —sin20 otherwise.

fols a continuous function. We wish to minimize the integral of f, (which is nega-
tive inside the Lemniscate) on C; that is, C' will be as such is allowed by the constraints,
inside the Lemniscate. (Note that the fixed point (0, 0.5) is outside of the Lemniscate;

so it must cause that a part of the optimal shape to be located outside of Lemniscate).

By trial and error we chose W = [—0.3, 0.3]; then
w=1[0,27] x[0, 1] x W, andQ =[0, 27] x [0, 1].

Then by selecting the following 10 points in W

21 15 9 3 3 9 15 21

~90° 90’ "0’ 0’90’ 90° 90’ 99’ 0%

w : —0.3,

and choosing 10 angles in [0, 27]:

a discretization on w was made with M = 10 x 10 x 10 = 1000 nodes z = (r, 6, w);

each component of nodes is a rational number (we supposed 7 = 3.141592654) and
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hence all nodes belong to the dense subset of w.

With respect to §2, we divided it by 10 circles with radius
r:0.1,02,...,1,

and the following 10 lines y
o ar
100107777

2%,

into N = 10x 10 = 100 subdivisions; and thenode Z; in subdivisionz (z = 1,2,..., N)
was selected as the top left corner of each subdivision. We emphasize that each 10 sub-
division of Q which has the same radius (i.e. same r;), has the equal area. Hence:

For a fixed k, the area of the inside part of the circle with radius r, which is located

outside the circle with radius r_1 is equal to:

2k -1
w(ry —ri_y) = w(re + rh-1)(Tk — Tho1) = f(-ﬁoh)

Now each ten ;’s corresponded is one-tenth of this area; it means, o; = Z(2:-1)
P 1000

Finally when k takes value from 1 to 10, 100 values for ;s will be determined. Ac-
cording to the discretization, the calculation of the function € is eiplained in Appendix
A.

The results of the appropriate finite linear program (2.19) is presented in the following

table.
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LNCON | STATE VALUE | LOWERBOUND | UPPERBOUND | LAGRMULT | RESIDUAL
L1 EQ 0.1554312E-14 0. 0. -0.6396E-02 0.1554E-14
L2 EQ 3.141593 3.141593 3.141593 0.2308E-02 0.§06GE-13
L3 EQ | -0.1062483E-12 o o | -0s027E-03 | -0.1062E-12
! L 4 EQ <0.310644E-12 0. 0. 0.7529E-03 -03106E-12
Ls EQ | -01731948E-12 o o | -1zEm | ormEa2
L 6 EQ 0.99253ME-13 0. 0. -0.1323E-02 0.9925E-13
L7 EQ -0.8298917E-14 0. 0. -0.1300E-02 -0.8299E-14
Ls EQ | 01408322612 o o | osssE03 | o014mEI2
L9 EQ 0.3574918E-13 0. 0. 03102E-03 0.3575E-13
L 10 EQ 0.1654232E-12 0. 0. -0.6917E-03 0.1654E-12
L EQ 06283185 06283185 06283185 | -0294E-02 | -0.2220E-15
L 12 EQ 0.6283185 0.6283185 0.6283185 -0.1207E-01 04441E-15
L3 EQ 06283185 06283185 06283185 | -099E-02 | OAMIELS
L 14 EQ 0.6283185 0.6283185 0.6283185 -0.1'10%-17 o.
L1s EQ 06283185 06283185 06283185 | -02596E-02 | -02220E-15
L 16 EQ 0.6283185 06283185 0683185 | -0163E-01 | -0333iE-15
L 17 EQ 0.6283185 0.6283185 0.6283185 -0.1053E-0t -04441E-15
L 18 EQ 0.6283185 0.6283185 06283185 -0.6583E-02 | -0.2220E-15
L19 'EQ 0.6283185 0.6283185 06283185 | -0.37406-08 o
L 20 EQ 0.6283185 06283185 06283185 | -048996-02 | 056628-14
L EQ 0.6000000 0.6000000 06000000 0599E-0l | -06661E-15
EXIT EGIMBE - OPI‘IMAL. LP SOLUTION FOUND.
LP OBJECTIVE FUNCTION = 1.568288D-03
NO. OF ITERATIONS = 65

47
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We remind the reader that the subroutine EO4M AF from N AG-library Routine
have been applied for solving the related finite linear program.
From these results, on the base of (2.3), we obtained the suboptimal control (which is
plotted in Figure 2.3) and the following points which a;"e located on the boundary of the

suboptimal shape:
(0.252828138409, 0.4241515554631) , (0.628318530718, 0.5367986888222),

(1.192201841392, 0.3676336888977) , (1.256637061435, 0.3483031221167),
(1.680677884428, 0.2210908701640) , (1.884955592153,0.1598075554112),
(2.246363104187,0.0513852974929) , (2.320256157762, 0.07355321664839),
(2.513274122871,0.0156478248144) , (3.012859572856,0.1655234806540),
(3.141592653589, 0.2041434102453) , (3.275060367330,0.2441837299362),
(3.769911184307, 0.3926389956762) , (4.300393415010, 0.2334943201414),
(4398229715025, 0.2041434289707) , (4.846031655481,0.0698028414956),
(4.847613316953,0.0693283430353) , (5.026548245743, 0.1230088291382),
(5.468624725335, 0.2556317914605) , (5.654866776461,0.3115044145691),
(6.283185307179, 0.4999999999999).

Linking these points, creates the optimal shape which is plotted with the Lemniscate in
Figure 2.4. Note that the point (0, 0.5) is outside of Lemniscate and that this curve is
not simple; in spite of all these, most of the shape is inside it. So we did not apply any

standard minimization Algorithm. However one may use it to get a better result.
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Optimal control function

©1 00 01 02 03
]

0.2

-0.3
L

Figure 2.3: The optimal control function

Optimal Shape
o
w
(=]
>3
n
q
e
"0 05 00 05 10

Figure 2.4: The optimal shape and the Lemniscate

49
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2.9.2 Example2

For the second example, chose one &, = 0 and

1 rsin(f) < 0.25
f 0(0’ 7') =

0 otherwise.
In the other words, the above function f, states that we are looking for a closed shape
C satisfying in the conditions of (2.4) and located under the line rsin(6) = 0.25. We
remind the reader that the function f, is not a continuous function and therefore it is
not a Lipschitz function. For this reason (as shown in section 2.8), we will not an-
ticipate that the resulting shape from (2.19) does take place completely under the line

rsind = 0.25 and hence we will use a standard minimization algorithm (for example

AMOEBA in [47]) as explained.

Finding Optimal Control and Trajectory:

To find the optimal control and shape, first we disbretize on 2 andw. We selected ev-
erything the same as in Example 1, except W = [—0.1, 0.1]; then we setup the appropri-
ate finite linear program in (2.19) by using 21 equations (M; = 2, M, = 8, M5 = 10).
To solve the problem, we applied the EO4M AF from N AG-library Routine; the sum-

mary of the result is shown in the following table.
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LNCON | STATE VALUE | LOWERBOUND | UPPERBOUND | LAGRMULT | RESIDUAL
L1t EQ -0.7766357E-14 1) 0. 04164 -0.T766E-14
L2 EQ 3.141593 3.141593 3.141593 0.173t -0.1008E-12
L3 EQ -0.3487488E-13 0. 0. -0.1088E-01 -0.3487E-13
L4 EQ -0.1365852E-12 0. Q. 04233E-02 -0.1366E-12
LS EQ 0.9259538E-12 0. 0. 6.1293!-:-02 0.9260E-12
L6 EQ -0.1600386E-12 . 0. 0. -0.9263E-02 -0.1600E-12
L7 EQ -0.5015779%E-13 [+ 0. -0.1069E-01 -0.5016E-13
L8 EQ | -0.273%75E-13 [\ 0. 04933E-02 | -0.2739E-i3
L9 EQ | -040256(60E-12 0. o. Q.237TE-02 | -04026E-12
L 10 EQ 0.2997602E-12 0. 0. -0.3872E-02 0.299E-12
L1 EQ 0.6283185 0.6283185 0.6283185 -0.2469E-01 0.6661E-15
L 12 EQ 0.6283185 0.6283185 0.6283185 -0.1521 0.
L13 EQ 0.6283185 0.6283185 0.6283185 -0.2014 -0.3331E-15
L4 EQ 0.6283185 0.6283185 0.6283185 ( ' -0.1005 0.2220E-15
L 15 EQ 0.6283185 06283185 0.6283185 -0.4468E-01 0.6661E-15
L16 EQ 0.6283185 06283185 0.6283185 -0.1662E-0t | O4MIE-1S
L 17 EQ 0.6283185 0.6283185 0.6283185 -0.1556E-01 | -0.5773E-14
L8 EQ 0.6283185 0.6283185 0.6283185 -0.4140E-01 -03331E-15
L 19 "EQ 0.6283185 0.6283185 0.6283185 -0.5923E-01 -0.3331E-15
20 EQ 0.6283185 0.6283185 0.6233185 -0.8159-01 <0.6606E-13
EQ 0.6000000 0.6000000 0.6000000 -0.1096 -0.2520E-13

EXIT EOMBF - OPTIMAL LP SOLUTION FOUND.

LP OBJECTIVE FUNCTION = 1.448595D-02

NO. OF ITERATIONS =78
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The resulting optimal control function, given by the solution of the reminded lineé.r

program, was modified in the Figure 2.5 by using Rubié’s method in [50] Chapter 5.

In the case of equation w(f) = %, the trajectory function (6 (shape) can be taken
by integrating from the above optimal control function over the interval [0, 2]. Be-
cause the control is a piecewise-constant function, the mentioned integration gives us

the following 21 points which are located on the boundary of the suboptimal shape:
(0.000595979095, 0.4999404020895) , (0.628318530717,0.437168145991),

(1.256637061435,0.3743362919838) , (1.831261918818,0.3168738053893),
(1.884955592153,0.3115044379758) , (2.206.005111473, 0.2793994855654),
(2.513274122871,0.2486725839677) , (3.101783117978,0.1898216835801),
(3.141592653589, 0.1858407299596) , (3.141592887656, 0.1858407065529),
(3.509669220769, 0.2226483458974) , (3.769911184307,0.2486725465170),
(4.074511522101,0.2791325852891) , (4.119983818585,0.2836798156829),
(4.398229715025,0.3115044098877) , (4.727550645424, 0.3444365083256),
(5.026548245743,0.3743362732585) , (5.494982199890, 0.4211796763514),
(5.654866776461,‘0.4371681366.292) , (6.145061554817,0.4861876224997),

(6.283185307179, 0.4999999999999).

Linking these points creates the shape which is plotted in the Figure 2.6, with the
line r sin = 0.25. (Note that here X and Y in the Figure are the Cartesian axes.)
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The optimal shape

Figure 2.6 shows that a part of the shape C is located over the line rsin § = 0.25,
which was predicted before in section 2.8, because of the limitations; for this reason, a
standard minimization algorithm and the penalty method have been used. As we knew,
the optimal shape must go through the initial point (0,0.5) and the same final point
(27,0.5) when its area is 0.6. Hence ;ave need a constraint to present the area when
each point (r, ) on the boundary of C, is satisfied at the conditions 0 < r < 1 and
0 < 8 < 2x. Also, it is necessary to have another condition on the shape to be located
under the line. Precisely it can be done by selecting a suitable performance criterion

like the previous one in the finite linear programming case.

Letf;, =1, 2,‘. .., 19, be the fixed resulted angles from (2.19) without the initial
and the final value; and suppose Z; = (i,7:), ¢ = 1,2,...,19, are nineteen points in

Q. Assumer; : 1=1,2,...,19, are variables and

0 r;sin(6;) <025
fi(Z;) =

1 otherwise.

We define:
19
FO(Z‘i) = Z fi(Zi);
=1

which is obviously a function of (71,72, .. -,T19).

Letfp =0, o = 0.5, 00 = 27, m20 = 0.5, and the area of that part of the shape which
is located between the lines § = 6;_;.and 8 = §;, be estimated by the same part of the

circle with radius “*2i=t. Thus the area condition for the optimal shape C is introduced

by:

29 bt - 2 0,’ —9,'..
P(ry,r2,...,719) = (retr 1)8( 1) = (.6,

=1 -
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which is also a function of the (r1,72,...,719) as well. Hence for the resulted fixed
values of 6;’s, we can look for the answer of the following constrained minimization

problem over all (r;,7,...,719) € [0, 1]® C R

Minimize : Fo(r1,72,...,719)

subject to : - P(ri,r2,...,719) = 0.6. (2.20)

To get the solution of (2.20), it may possible to use one of the related constrained
minimization programs; but for the standard algorithm (like AMOEBA) it is bettef
to replace the above constraint problem with an unconstrained one. There are several
ways to do this (see for example [60]). We chose the penalty method and applied the
function c[P(r1,7s,...,719) — 0.6] as a penalty function for a real positive constant ¢
(for more details see [60]). Hence the appropriate unconstrained optimization problem

at this stage is as follows:

Minimize : Fo(r1,7r2, .-+ s710) + c[P(r1,72,...,718) — 0.6]. (2.21)

In spite of the fact that F, is not a continuous function, some standard minimization
algorithms for continuous performance criteria like, E04JAF NAG-library Routine,
are applicable. These algorithms can be run by a little change in the performance cri-
teria to make it continuous without any changes in the value. One of the advantages of
applying this type of algorithm is that they (usually) give the glbbal minimizer for the

given function. For this purpose let us to define:

0 r; sin(6;) < 0.25
f:(ZJ) = (T‘j — a,z)(g%‘ﬁl) 0.25 < T; sin((),-) < 0.25 + ¢
1 0.25 + ¢; < r;sin(6;)



Chapter 2: Shapes and Measures 56

where a; = &(2—9% and0 < ¢; < 1,fori =1,2,...,19. Now for each ¢, the function f,f

is a continuous function and therefore the function
19 )
Fi(Z:) = fi(Z),
=1

is also continuous. Moreover, because for a sufficiently small value of ¢; the value of
(rj — a;)(%’i) is a large enough positive number then in the minimization algorithm,
this value would be disregarded automatically (note that for 0.25 < r;sin(6;) < 0.25+
¢; the value of the (r; — a;) is positive). As a result, the problem (2.21) can be replaced

by the following one for the mentioned algorithms,

Minimize : Fl(r1,72,...,710) + c[P(r1,72,...,710) — 0.6]. (2.22)

We applied the E04J AF minimization algorithm from NAG Routine library to find
the solution of the (2.22) with ¢; = 0.11,V2 =1,2,...,19 and ¢ = 20. Also the previ-
ous result from the linear programming problem was used as an initial solution which
was necessary for the Routine. The optimal value of the performance criteria (2.22) was

zero which means that all of the points has been located below the line. The resulted

r;’s from E04J AF were:

0.35523058385207 , 0.14012364797159 , 0., 0., 0.19260268747351
0.38302730144207 , 0.31290102243751 , 0.29205929667316 , 0.30138263551773
0.3_4559652292155 ) 0.39060671726193 , 0.42975811313137 , 0.45075?95177859
0.48921228505258 , 0.53850854481107 , 0.59098608536728 , 0.65079219282540

0.69405223541451 , 0.75117213275203.
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The optimal shape (9C) with the line r sin(6) = 0.25 are plotted in the Figure 2.7,

Note that X and Y in the Figure, are the Cartesian axes.
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Figure 2.7: The Optimal Shape



Chapter 3

Shapes, Measures and Elliptic

Equations in Polar Coordinates

3.1 Introduction

In the present chapter, we consider again J = [Q, 27r], J° = (0,2r), A = [0,1],
Q =. J x A, and consider the variables § and r in polar coordinates, to belong to J and A
respectively. We also assume that the curve 9C is a simple and closed curve in R?, con-
tains the fixed point (4,, v, ); the curve is defined by the equationr = r(6) € A,V € J.
Moreover we consider w = %g as a bounded function on J which takes values in the
bounded set‘ W c R. Let C C R be a Lebesgue measurable set which is determined
by AC as its boundary; it is supposed that C has a fixed area. We remind the reader that
the pair (C, 8C) is the same as one in Chapter 2. Letu : @ — R, a differentiable and
bounded function in C?(C) in which its first derivatives are bounded in C, be a solutién

for the elliptic problem

div(k(8,7)Vu) — f(6,r,u) = 0, (3.1

58
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with the Neumann condition
Vu.n,, =v. (3.2)

Here it is supposed that the function u takes values in the bounded set U C R, k(4,r)
is a positive function in C*(C), f : € x U — R is a bounded function in C(Q x
U), n is the outward normal vector on c »andv : J — R is a bounded Lebesgue
measurable function which takes values in the bounded set V' C R. In this Chapter, the
functions v = v(§) and w = w(8) are considered as the pair of control functions, and
the functions r = () and v = u(6, ) are regarded as the pair of trajectory functions

in a classical optimal control (or shape design) problem.

Definition 2 : The quadruplet (C,8C,u,v), defined above, is called admissible if the

elliptic equations (3.1) and (3.2) have a bounded solution on C. The set of all admis-

sible quadruplets is denoted by F.

Based on the mentioned concepts, the aim of this Chapter is to find the minimizer of
the following performance criterion, I, over the set 7 by applying the similar method

as explained in the previous Chapter.
I(C,8C,u,v) = /C fo(6,7,u, Vu) drdd + /a o ho(8smyw,v) ds; (3.3)

here f, and k, are two given continuos functions.
Indeed, when one regards the functions v (appeared in (3.2)) and w (corresponding to
dCand C) as the control functions, and the functions u (appeared in (3.1) and (3.2))

and r (corresponding to §Cand C) as the trajectory functions, we are going to solve
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the following optimal shape design problem over F:

Minimize : I(C,0C, u,v) = [ fudrdd + [, hods
Subject to: (C,8C,u,v) € F;
the afea of C = given;

8, and r, = given;

div(k(8, r)V) — F(6,7, ) = O;

Vu.ny,, =v. (3.9

3.2 Weak solution

Definition 3 : The functionu is called a classical solution of the elliptic equations (3.1)

and (3.2) whenever u € C*(C) N C*(C) and satisfies the equations (3.1) and (3.2).

It is difficult to identify a classical solution for the genéral case of the elliptic Neumann
probiem; thus usually it has been tried to find a weak (or generalized) solution of the
problem, which is more applicable in our work. The main idea in this replacement, is to
change the elliptic problem into the variational form; the following Proposition shows

that how this can be done. It is necessary to introduce a new space first.

Definition 4 : The Sobolev space of order 1 on C'is denoted by H'(C') and defined as

Bh

HY(C)= {h € Lz(C) E Lz(C) € Lg(C’)}

We follow Mikhailov in [38] to prove the below Proposition.

rd
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Proposition 9 : Let u be the classical solution of (3.1) and (3.2), then we have the fol-

lowing integral equality

/C (kVuVe + fo) rdrdf — /a _kpvds =0, Vp € H'(C). (3.5)

Proof: By multiplying (3.1) with a function ¢ € H'(C) and then integrating over
C, we obtain

/C ediv(kVu) rdrdf — /c wf rdrdf = 0.

Because div(kVu) = kAu + VuVk (see for instance [38]), thus

./;' pkAurdrdd + /;' ¢kVuVEkrdrdd — /Cgof rdrdf = 0. 3.6

Green’s formula (see [38]) gives rise to

/c okAurdrdd = gok-aﬁ ds — / VuVk rdrdd. 3.7)

But V(pk) = ¢Vk + kV; hence by considering (3.2) and applying (3.7) in (3.6), the
equality (3.5) is obtained. O

Definition 5 : A bounded functionw € H(C) is called a bounded weak solution of
the problem (3.1) and (3.2) if it satisfies the equality (3.5) for all function ¢ € H 1(C’).

Note that the existence of a classical and a bounded weak solution for a problem like
(3.1) and (3.2) has been considered in many references; in Chapter 4 we will explain
some of these results very briefly. Considering the above Proposition, instead of looking

for the minimizer of (3.4) in F we seek the optimal solution of the following problem
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in the same admissible set.

Minimize : I(C,8C, u,v) = /C £, drdd + /a hods
Subject to : - (C,0C,u,v) € F;
the area of C' = given,;

8, and r; = given;

/C (kVuVe + fo) rdrdf — /a kpvds =0, Vp e BY(C). 339)

It is usually difficult and sometimes impossible to obtain the solution of the problem
like (3.8); some of these difficulties are explained in Chapter 2. In the next section,
we will replace the problem with the new one in which positive Radon measures are
involved. The following integral equality, based on the Green’s formula, will be used

later;

— 1
/C (uhg + VuVe) rdrdd = /a _pvds, ¥y € H'(C). (3.9)

3.3 Metamorphosis

In general, the minimization of (3.8) over F is not easy. The infimum may not be at-
tained at any admissible quadruplet; it is not possible, for instance to write necessary
conditions for this problem. We proceed then to transform it into a measure-theoréﬁcal
form. Because u € H'(C) and bounded, then Vu is a bounded real-valued function;

let Vu takes values in the bounded set U’, then we define

V=AxUxU,w =wxV(thatw=J x Ax W).

e
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An admissible quadruplet (C,dC,u,v) € F introduces two functionals. A bounded
weak solution of (3.1) and (3.2) defined on C, determines a linear, bounded and positive

functional
ue(-) : F — /C F(6,r,u, Vi) drd (3.10)

on the space C(§'). Also a control function v, defined on O0C which satisfis (3.2), in-

troduces a linear, bounded and positive functional

vec(-) : G —» /J G(8, 7, w,v) db(= Gds)  (3.11)

1
ac /12 4 w?

on the space C(w'). On the base of the Riesz Representation Theorem (see [55]), the
above functionals represent two positive Radon measures as shown in the following

Proposition; the proof is similar to the proof of Proposition 1, so it is omitted.

Proposition 10 : There exists uniquely a pair of positive Radon measures X\, € M+ ()

and o, € M*(W'), so that

A(F) = /C F(6,r,u,Vu)drdd = ug(F), VF € (@),

04(G) = jJ G(8,7,w,v) d = va0(G), VG e CW). (312

Proposition 10 shows that each admissible quadruplet (C, 8C, u,v) € F can be con-
sidered as a pair of measures (), 0,) in the appropriate subset of M*(Q') x M ('),

say JF again; thus there exist the transformation

(C,0C,u,v) e F — (Au,04) € MH(Q) x M¥(').
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As we showed in Chapter 2 (see Proposition 2), this transformation is injective. Hence
someone may think that nothiné is changed and the same difficulties as before (existing
the optimal pair, achieving to the minimizer, belonging the minimizer to F and so on)
still remain. So, we will extend the underlying space of the problem; instead of seeking
in the set of all pairs ()., o, ), F, we look for the minimizer of the functional Iin a subset .
of M*(Q') x M*(w') defined by some linear equalities which will be explained later.

Indeed, we are going to find the minimizer of the functional
(A, 0) € MH(Q) x M (') — Mfo) + o(hovVr? + w?),

in which X and ¢ are satisfied some linear equalities defined by properties of admissi-
ble quadruplets. We remind the reader that the advantages of the new formulation have
been studied in Chapter 2.

According to the new formulation, Prdposition 9 shows that an admissible pair of mea-

sures (A, o) must satisfy

MFy)+0(Gy) =0, Yo € H'(C) (3.13)
where
F, =rkVuVeo +rfp, G, = —kpvVr? + w2 (3.14)

The condition (3.13) does not cover all properties of an admissible pair; it just modifies
the weak solution of the elliptic problem. Somehow these kind of properties must come

into account.
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The admissibility of the curve 0C (and hence the set C) has been characterized by
equalities (2.6), (2.8) and(2.11) in Chapter 2. Moreover the restriction of the measures
A and o over (2 and w respectively, are the measures p and v defined in Chapter 2. Thus

we have

(%) = §¢, Vé € C'(B);
o($?) =0, Vi€ D(J°);

o(f)=a;, Vfe€Ci(w). (3.15)

Also there is a relationship between the set C and 9C that the simple and closed
curve 0C is the boundary of C. This fact introduces a relation between the measures A
and o. In the previous Chapter, this fact has been considered by computin gthe measures
p in terms of the measure v with applying a special function; but here we are going to
show thisrelation by use of the Stokes’s (or Green’s) Theorem in polar coordinates. Let

p, T € CY(Q), then from Stokes’s Theorem we have:

/C[%(rp) - %} drdf = /J[Tw + pr] dé.

So, we have:

Mo +r 22— 90— olrw+ pr) = 0, Yp,7 € CH@). (3.16)

Moreover, the definition of u¢ in (3.10), that represents measure A¢ in Proposition
10, shows that for (6, r,u,t) € ' there is a relation between the variables u € U and
t € U'(thatt = Vu). Let (4, r,u,t) € ' — f'(6,7r,u,t) € Rbeafunctionin C();
whenever the measure A¢ (or equally the functional u() is applied on a function like

f' € C(fY'), this relation should be considered. In other words, the variables v and ¢
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are not independent from each other and this dependency should be regarded in the de-
termination of the measures A and o; it is also very important to regard this fact in the
numerical examples when we identify the variables v and ¢ just by some (finite) val-
ues in the appropriate bounded sets (see Example). From Green’s formula, the equality

(3.9) shows this relation for every function ¢ € H*(C) as

AMrulyp 4+ rVuVyp) = a(pvVr? + w?), Yo € H(C). (3.17)

Asa result,. to find the minimizer of I over F, one can search for the minimizer
of the functional (A, 0) — A(fo) + o(hov/7? + w?) over a subset Q of M*+(Q') x
M*(w') defined by all pairs (A, o) which satisfied the conditions (3.13), (3.15), (3.16),

and (3.17). Thus, instead of solving the problem (3.8), we look for the minimizer of the

following new problem over Q:

Minimize : i(A,0) = A(fo) + o(hoVT? + w?)
Subject to : o(97) = by, V¢ € C'(B);

o(¥°)=0, VY€ D),
o(f) = afg, Vfe Cr(w);
A(F,p) +0(Gy) =0, Vo € HI(C); .
dp Or

Mpt+ra —3¢)~ o(rw+pr)=0, Vp,7eCYQ)

Arulp +rVuVp) = o(puV/ T w?), . Vi € HY(C). (3.18)

The following theorem states that the above problem has a minimizer. To prove the
Theorem the reader can follow Rubio in [50] as we did for proof of the Theorem 1 in

previous Chapter.
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Theorem 2 : There exists an optimal pair of measures (A\*, o*) in the set Q@ C M™* (') x

M (w") such that for which

i\, 0%) <i(),0), Y(), o) € Q.

We remind the reader, since the set F of admissible quadruplets can be considered, by

means of the mentioned injective transformation, as a subset of (), therefore
inf I(C, 8C, u,v) > igf i(A,0).
F

Thus, in (3.18) the minimization is global, that is the global infimum of the problem can
be obtained. So in the nonclassical form of the optimal shape design problem (problem

(3.18)), the global minimizer will be illustrated.

3.4 Approximation

All the equations in the problem (3.18) are linear in their arguments A and o. Itis an
infinite linear program; the number of equations and the dimension of the underlying
space are infinite. In this section we are going to approximate the solution of the prob-
lem by the solution of an appropriate finite linear programming problem so thatnot only
the number of equations is finite, but the underlying space on which minimization takes

place on it, will be a finite dimensional space. This important can be happened by use

of a total set in each space H(C), C*(Q), C1(w), D(J°) and C'(B).

In Chapter 2 we introduced the total sets in the spaces C;(w), D(J°) and C'(B);

here, we identify the total sets in the other spaces. Let P be the C-vector space with
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the basis {Z",Z" : Z € Q} (note that indeed @ = {Z € C: | Z |< 1}). Under mul-
tiplication, P is an algebra and/ satisfies in the conditions of Stone’s-Wierstrass The-
orem (see for instance [54]); hence it is dense in C(2). Regarding the polar coordi-
nates, each Z € () can be rewritten as Z = r(cos§ + isin ), where r =| Z |. Also
Z™ = r™(cosnf + isinnf) and Z* = r"(cosnf — isinnb); thus if one consider
Q as a subset of R? the set of functions r™ cosné and r™sinnf thatn = 1,2,3,...,
is a base for P (indeed these functions can bé regarded as projections of the function
Z — (r™cosnf,r™sinnf) on R). Hence the set of functions ¢, that ¢, = r™ cosnf
or ¢, = r"sinnf forn = 1,2,3,..., is dense in C}(Q) C C(R), for all (4,7) € Q;
moreover, by Theorem 3 in Chapter I of [38], C*(Q?) is dense in H*(C). Thus, as a
conclution of the above discussion, the set of functions p,,n = 1,2,3,...,is also total

in HY(C).

Now consider the following problem which is resulted from (3.18) just by choosing

a finite number of functions in the appropriate total sets;

Minimize: i(},0) = A(fo) + o(hoVr? + w?)
Subject to: o(41) = b4y k=1,2,...,My;
o(xi) =0, l=i,2,...,M2;
o(fs) = as, s=1,2,..., M
ME)+0(Gi) =0, i=1,2,..., M,
MD;)+o(E;))=0, ;= 1,2,..., Ms;

MH)+o(l,)=0, r=1,2,...,Ms. (3.19)
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Here

D; =rulp; + rVuVy;,  E; = —(p;vVr? + w?);
F,=F,, Gi = Gyi;

H.=H;=¢;+r3 -2 I =I; = ~(p;uw+gir). (3.20)

Now we have the following Proposition which shows that the solution of the problém
(3.18) can be approximated by the solution of (3.19); for proof, one can follows Rubio

in [50] Chapter I11.

Proposition 11 : For positive integer numbers My, My, M3, My, Ms, Mg, let Qs be
the set of the pairs (A, 0) € M+ (Q') x M+(w'") which satisfy the constraints of (3.19).
If My, My, M3, My, Ms, Mg, tends to infinity then

inf i(),0) — infi(}, o);
Q! Q

in other words, the solution of (3.19) tends to the solution of (3.18).

We have already limited the number of constraints of (3.18) in the first stage of ap-
proximation; but the underlying space, @, is still infinite-dimensional. We shall ap-
proximate now the solution of this problem with the solution of a finite linear program-
ming one. Let (X*, 0*) be the optimal solution of (3.19) (the existence of the solution
can be obtained from Theorem 2). By applying Theorem A.5 of [50], as shown in Chap-
ter 2, one can obtain

N M
X =3008(22), 0" = Y B8z,
n=1

m=1

that foreachn =1,2,...,Nandm =1,2,..., M, wehave o, > 0, 8, > 0, and also
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Z; and z;, belong to the dense subsets of {2 and w’ respectively; here M and N are two

positive integers and §(z) is a unitary atomic measure with support the singleton point

set {z}.

Up to here, the measure-theoretical optimization problem is equivalent to a nonlin-
ear optimization one in which the unknowns are the coefficients o, B, and supports
{2:},{z}forn=1,2,...,N,andm = 1,2,..., M. It would be much more conve-
nient if we could minimize the functional i only with respect to the coefficients, which
would cause the problem to change into a finite linear program.

In the next stage of approximation, let Dgs and D, be two countable dense subset of
Q' and ' respectively. Then, (as a result of Proposition 711.3 in [50]) measures A* and

o™ can be approximated by

N M
A= 2—31 anb(Z,), o = Z Brmb(2m)

m=1

where Z,, € Dq/,z, € D,s. This result suggests that the problem (3.19) can be ap-
proximated by the following linear programming one which the points Z,, and z,, are
chosen from a finite subset of a countable dense subsets in the appropriate space by
putting discretization on £’ and w’. Hence the only unknowns are the coefficients o,

and Bm,forn=1,2,...,N,andm =1,2,..., M.
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N M
Minimize : Yo anfo(Za) + Y Bmho(zm)y/r2 + w2,
n=1 m=1

Subject to : o, >0,

Bm 20,
M

Z_: Brmbi(2m) = b4,

m=1

M

Z_ ﬂle(z‘m) =0,

m=1

M

Z— ,Bmfs(zm) = as,

N M
Y anFi(Z,) + 3 BnGi(zm) =0,
n=1

m=1

N M
Z anDj(Zn) + Z ﬂmEJ(z"n) = 0’

m=1

N M
3 anH(Z2) + D Bali(2m) =0,
n=1

m=1

M 1
> ﬂm(irfn) = given area;
m=1 ’

n=1,2,
m=1,2,
k=12,
=12,
s=1,2,
1=1,2,
71=12,
r=1,2,

71

(3.21)

here is assumed that Z,, = (0,7, Un,tn) € ' and 2o = (61, 7my Win, Um ) € w'. The

last equation in (3.21) represents the area condition as explained in previous Chapter.

35 N umerical example

As an example, we chose one that f, = 0, ko = v?, f = u(u — 0.5) and k(6,r) = 1.

We remind the reader that in polar coordinates

Oy 10¢
Ve = 6rur+'r—55

ug, Vo € HY(C);
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also it is supposed that Vu = wuju, + uyuy where u; € Uy and uy € U,. So, for
this problem we also chose W = [-0.3,0.3], V = [-10,10], U = [-5,5] and U’ =
Uy x U; = [-15,15}]2

To set up the finite linear program (3.21) for this example, the appropriate discretization

was made on ' and ' as follows. By selecting:

® 3r 197,

e 10 angleson J = [0,27] for 6 as: 5, 35, ..., 505
o in A, 10valuesforras: 0,%,2,...,1;
e 10 values for w in W as; —0.3, 22, =23,...,0.3

in V, 10 values for v as: —10, =12, =52, ..., 10;

a discretization with M = 10* nodes z = (6, r, w, v) was put on w’. With respect to £/,

we also chose :

e 10 values in each sets J and A for 4 and r as above;
o in U, 10 values for u as: —5, =25,738,...,5

o 10 values in each sets Uy and U for u; and u; as: —15, =18 =15 ., 15;

hence we made a discretization on §’ with M = 10° nodes Z = (4, r,u, u1, us). Each
component éf nodes Z and z is arational number (we supposed that 7 = 3.141592654)
and hence all nodes belong to the dense subset of 2’ and ' respectively.

For the first three set of equations in (3.21), the same 20 equations as in examples of
Chapter 2 have been applied (M; = 2, M; = 8, M3 = 10) with the same values for
the fixed point and area. We also chose My = 5, Ms = 2 and Mz = 2; then the lin-
ear program (3.21) was run with 30 equations and 110000 variables. We applied the
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E04M BF NAG-Routine to solve the problem. The optimal value of performance cri-
terion was 274.23683327352. Based on the equation w() = j—;—, as Rubio in [50], the
suboptimal control function w and the following points of the boundary of the (approx-

imate) optimal shape were obtained:
(0.6283185482025 , 0.31150437270739), (1.1843659597573 , 0.14469009363621),

(1.2446240940434 , 0.12661264732457), (1.2566370964050 , 0.13021654966397),
(1.7049525491271 , 0), (1.8104140347910 , 0),
(1.8849556446075 , 0), (2.3533600786619 , 0.12696729964365),
(2.5132741928101 , 0.78993049407780), (2.9936742628018 , 0.22311313562577),
(3.1415927410126 , 0.17873757737069), (3.6413286509549 , 0.32865841819894),
(3.7699112892151 , 0.29008361386263), (4.2646965540754 , 0.14164798492600),
(4.3982298374176 , 0.10158798657002), (4.6766879544327 , 0.01805052361967),
(4.8688439868599 , 0.07569735943546), (5.0265483856201 , 0.12300870047393),
(5.4861769095531 , 0.26089732005427), (5.6548669338226 , 0.31150435023696),
(6.0230599912156 , 0.42196231744179), (6.2831854820251 , 0.5).

Linking these points together, gives rise the optimal shape; the optimal control function

(function w) and the 'optimal shape is plotted in Figures 3.1 and 3.2 respectively.
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Chapter 4

Shapes, Measures and Elliptic

Equations (Fixed Control)

4.1 Introduction

Let D C R?be a bounded domain with a piecewise-smooth, closed and simple bound-
ary 8D. We assume that some part of D is fixed and the rest, I', with the given initial

and final points A(z,,y,) and B(zs, ys) respectively, is not fixed (see Figure 4.1).

Suppose we choose an appropriate (variable) curve I' joining A and B, so that D
is well-defined. Let X € D — u(X) € R, where X = (z,y) € R?, is a bounded

solution of the following elliptic partial differential equation on the domain D
Au(X] + f(X,u) = v(X) : (4.1)
with the boundary condition

Ujp =0, 4.2)

75 "
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ariable
art

Figure 4.1: A domain D in its general form

where X € D — v(X) € R is (in this chapter) a bounded fixed control func-
tion; the function f is assumed to be a bounded and continuous real-valued function
in L2(D x R). We remind the reader that the equation (4.1) with the boundary condi-
tion (4.2), is known as the Dirichlet problem (see for instance [38], [33], [20]). A do-
mair} D as above, is called an admissible domain if tﬁe elliptic equation (4.1) and (4.2)

has a bounded solution on D; we denote by D as the set of all such admissible domains.

In this chapter, we consider first the problem of minimizing the following functional

on the set D defined above:
(D) = /D fo X, u) dX, (4.3)

where f, is a given continuous, nonnegative, real-valued function on D x R. Then we

will find the minimizer domain D* in Dy, a subset of D to be defined later, for the

functional (4.3) in the following way:
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¢ (1) In the first step, we will obtain a solution of (4.1) and (4.2) for a fixed admis-
sible domain in a class to be denoted as Dxs. By using the density property of an
appropriate subset of points on R?, we establish the fact that the bouﬁdary 0D of
adomain D € D can be determined by a countable subset of points in R? which
is dense in & D. This countable set will be called the representative set of D. Be-
cause the simple, closed curve 9D is the boundary of D, the domain also is deter-
mined by this representative set. Moreover, an approximation to this domain is
denoted by a finite set, to be called an M-representation . For a fixed number M,
we shall denote Dy the set of all such M-representations. Therefore, the variable
part I of 8D is defined by a finite set of M real variables. Then any integral like
(4.3) - with a fixed control - is simply a function of this finite number of real vari-
ables. The problem (4.1) and (4.2) will then be generalized and the variational
form of the problem will be obtained. Next, by using the répresentation set and
the generalized form, the problem will be changed into a measure-theoretical one,
which has some advantages. The new formulation helps us replace the problem
with an infinite dimensional linear system of équations; then we shall approxi-

| mate this system with a finite one. Hence the solution of (4.1) and (4.2) will be
approximated by the solution of the appropriate finite linear system as a function
of M variables. So, we will be able to approximate the value of I( D) for any

given domain D € Dyy.

We want to emphasize that in this and the following Chapters we will consider M
as a fixed posi-tive integer number, and that we will search for an optimal domain
in the class Dyy. It is not at all obvious that as M — oo a sequence {D}} of
optimal domains, D} € D;,: = 1,2,3,..., tends - in any sense whatsoever - to

a domain D € D. We shall discuss this problem in Appendix B.
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¢ (2) For a fixed positive integer number M, we are going to solve the optimal shapé
problem, which is to find the minimizer domain for the functional (4.3) over Dyy.
The previous step states that how one can determine a solution for the elliptic
equations (4.1) and (4..2) for any arbitrary M-representation D € Djy; this solu-
tion is a function of M variables. The solution defines a unique value for I( D) in
terms of the finite number of variables as explained. Therefore, one can define a

function
J: DeDy — I(D)eR,; (4.4)

here J is a function of a finite number M of variables; in fact, it is a vector func-
tion. To find the minimizer of the optimal shape problerri, it is now enough to
identify the minimizer of J. The application of a standard minimization algo-
rithm (like Nelder and Mead [42]), gives us that minimizer. The minimizer is a
set of points (an M-representation) which intrbduces the optimal domain for the
functional I in D;,s; indeed it presents the optimal shape (domain) and also deter-
mines the minimal value of the performance criterion for the mentioned optimal

shape problem.

In spite of the fact that there are some other methods for solving the problem, for
instance the methods involving finite elements and finite differences (see [44] for exam-
ple), our method has some advantages. Itis applicable to solve the related optimal shape
design and control problems (see the following chapters), it can deterrrline the optiina.l
shape (domain) and the optimal distributed or boundary control functic.)ns at the same
time. Moreover the computation is much easier than the others because of the linearity

properties of the replaced system. We shall also give some numerical examples to see
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how this method can be applied.

4.2 Solution in the fixed domain D € Dy,

In thel present section we are going to obtain the solution of (4.1) and (4.2) on a given
domain, D, so as to calculate I( D). A domain in D is identified b3.1 the variable part
(T') of its boundary; replacing I" with the representative set and applying the variational
form of the equations (4.1) and (4.2), change the problem into a measure-theoretical
one in which its result will approximate the generalized solution of (4.1) and (4.2) in
the given domain D. Therefore we shall be able to compute the value of I(D) and set

up an appropriate function in the next section.

4.2.1 Representative sets

Let D € D be a fixed, open and bounded subset of R? which is an admissible domain
for the elliptic partial differential equations (4.1) aﬁd (4.2). Let 0D be the piecewise-
smooth, simple and closed curve in R? that is the boundary of the given domain D;
thus 8D and also its subset " are fixed. In general the curve D, and hence T, can be
regarded as an infinite set of points. More specifically, by applyiﬁ g the density property,
one can regard I" as a known countable set as follows.

The space R? contains many countable dense subsets; for example if we denote Q as the
set of rational numbers, then Q x Q is a countable dense subset of R? (see [54] for exam-
ple). Let D, be a given countable der;se subset of R?, then the set D, (T is a countable
d;nse subset of I'; thus by the density property, the known set D, (" determines a se-
quence of points in R?like {(z, ¥&)},cy S0 that (zx,yx) € T for all k € N. Whenever

D, is fixed, this sequence determines I' and hence the domain D uniquely; so, the set
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D, NT and the domain D are equivalent and one can characterize the domain D just by

this sequence of points uniquely. Therefore, we have proved the following Proposition.

Proposition 12 : For a fixed dense subset D, C R?, any domain D € D is determined

uniquely by D, (T, as a sequence of its boundary points.

Definition 6 : For a given countable dense subset D, in R? and for the given domain

D, the countable dense subset of I’

Dy (T = {(zx, y#) }ren »
which determines the domain D, is called “the representative set of D”.

Since a domain D is characterized by its representative set, as above, one can con-
sider its representative set, for a known countable dense set D,, instead of the domain
D . Moreover, because each curve in R? can be approximated by a finite set of broken
lines, the curve I' will be approximated by the ﬁni;e set of broken lines in which their
corners belong to the representative set of D. Conséquently, to identify a representative
set approximately, one can determine these finite number of corners (see Figure 4.2). In
the section 4.3, without loosing generality, we shall show that these corners may have

a fixed y-direction (i.e. each has a fixed y-component, see Figure 4.2).

Thus a.n arbitrary domain could be shown approximately with a finite set of its bound-
ary points (corners). By replacing D with Dy for a fixed number M of points (see Ap-
pendix (B)), it will be shown how the value of I( D) can be computed from these points.
In section 4.4 we shall introduce a way to identify those finite points in which I(D) has
the minimum value. Hence the missing part of the boundary, I, and therefore the opti-

mal domain will be obtained.
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Figure 4.2: Approximating curve I' with broken lines

To calculate the value of I{ D) for a given domain D, it is necessary, first, to identify
the solution of the partial differential equations (4.1) and (4.2). For this reason, in the

following, the variational form of the problem (4.1) and (4.2) will be considered.

422 Generalized solution

Definition 7 : The function u(X) : D — R is called a classical solution of (4.1)
and (4.2) whenever w(X) € C*(D)N C*(D) and also satisfies (4.1) and (4.2).

In general, it is difficult and sometimes impossible to identify a classical solution
for the problem like (4.1) and (4.2); thus usually one tries to find a genqralized or weak
solution of them. Also the generalized solution is more applicable than the classical
one in some branches like calculus of variations. In our method, especially whenever

one wants to change the problem into a measure-theoretical form, this kind of solution

is more appropriate.
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For these reasons, it is necessary to introduce the new spaces, the new functions and

also the new variational form of the problem (4.1) and (4.2) as follows.
Definition 8 : The space H(D) is defined as follows:
Hy(D) = {4 € H'(D) : ¥, = 0};

HY(D) is the Sobolev space of order 1 which is defined as

HYD) = {h € Ly(D) : ah € Lo(D), 5 Oh ;€ Lz(D)}

Proposition 13 : Let u be the classical solution of (4.1) and (4.2), then we have the

following integral equality

/D (uAp + $f) dX = /D bvdX ; Vo € HY(D). (4.5)

Proof: Multiplying (4.1) by the function ¢ € Hé(D) and then integrating over D,

/D(szu+ Yf)dX =/Dz/w dX. | (4.6)

Green’s formula (see for instance [38]) gives:

/D (bAu — uAY)dX = / (¢ Zﬁ) is,

where n is the unit vector normal to the boundary D and directed outward with respect

to D. Because 9|,, = 0 and ,, = 0, then

(z/)— — u ) dS =0 ~ 4.7)
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Now the equality (4.5) simply follows by applying (4.7) and (4.6). a

Definition 9 : A function w € H'(D) is called a generalized solution of the problem

(4.1) and (4.2) when it satisfies in the equality (4.5) for all functions ¢ € H(D).

Indeed the equality (4.5), which introduces the generalized solution, is just an inte-
gral representation of the original elliptic problem (4.1) and (4.2). Now we are going
to find this generalized solution for the given domain D. Conditions for the existence
of the classical and of the generalized solution of the problem (4.1) and (4.2), and also
other properties of them such as boundedness and uniqueness, have been considered
in many references, like [38], [33] and [20]. For instance, in the linear case when the

function f(X,u) in (4.2) is assumed to be a linear function of u of the form
f(X,u) = o(X)u,

if v(X) € Ly(D) and moreover the function a(X ) is a nonnegative function on D
(a(X) = 0, VX € D), then there exist a unique generalized solution v € H}(D)
for the problem (4.1) and (4.2). This solution is bounded because v(X) is supposed
to be a bounded function on the domain D (for details see [38]-chapter IV, especially
Theorem 1 and for the more general case Theorem 7). Also one can similarly find the
sufficient conditions for the bounded generalized solution for the nonlinear case of the

elliptic equations, in the literature [33] (for example Theorem 7.1 in Chapter 4).

_ The bounded generalized solution can be represented by a positive Radon measure
and then one can replace the problem with a measure-theoretical one. Hénce instead of
looking for the generalized solution on the given domain D, one prefers to seek for its

related measure, defined on the appropriate space. In the Metamorphosis, this matter
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will be discussed.

4.2.3 Metamorphosis

The following Proposition, which is the base of our metamorphosis, shows that the gen-
eralized solution can bé regarded as a positive Radon measure. Moreover, it also indi-
cates that the representing measure is uniqu'e. We remind the reader that for the rest
of the Chapter, @ = U x D, where U C R is the smallest bounded set in which the

bounded generalized solution u(-) takes values.

Proposition 14 : Letw(X) be a bounded generalized solution of (4.1) and (4.2). There

exist a unique positive Radon measure, say p, in M*(Q) so that:

p(F) = [ Fdp = [ F(X,u)dX ; VF € O(). 4.8)

Proof: By applying the Riesz Representation Theorem ( [55]), similar to the Propo-

sition (1), one can obtain the equality (4.8) easily, the detail is omitted. (W]

By the above Proposition, the equality (4.5) changes into the following:
m(Fo)=r 5 Ve H(D) (4.9)
where

Fo=ubp+fp ;= /D bv dX. (4.10)
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Also, I(D) in (4.3) is changed to I( D) = p.(f,).
It is clear that the measure p, brojects on the (z,y)-space as the respective Lebesgue

measure; hence we should have

ou"u(é‘) = ag,

where ¢ : © — R depends only on variable X (i.e. { € C1(Q?)), and a; is the Lebesgue
integral of { over D, ie. a¢ = [p £ dX ) '
Therefore the problem can be described as follows:

Find a measure y, € M*(Q) so that it satisfies the following constraints:

pu(Fy) =, V¥ € H)(D);

#u(€) = ag, V¢ € Cu(Q). (4.11)

Let us now consider a more general version of the problem. We extend the underlying
space; instead of finding a measure ., € M*(§2), defined by Proposition 14, satisfying

equalities (4.11), we seek a measure u € M*(§2) which satisfies just the conditions

w(Fy) =2y, V¥ € Hy(D);

w(€) = ag, V¢ € C1(Q). (4.12)

Hence we have I(D) = p(f,). The system (4.12) is linear because all the functions
in the right-hand-side of equations are linear functions in their argument u. But the
number of equations is not finite and also the underlying space is not finite-dimensional.
In the next, we are going to approximate a solution of (4.12) by another one in which

the number of equations and also the underlying space are finite.
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4.3 Approximation

The linear system (4.12) is not finite-dimensional; indeed the number of equations is
not finite. We shall develop the system by requiring that only a finite number of the
constraints are satisfied. This will be achieved by choosing countable sets of functions
whose linear combinations are dense in the appropriate spaces, and then selecting a fi-

nite number of these.

First set of functions: Consider the first set of equalities in (4.12); we are going to

introduce the set
{s € H}(D):i=1,2,...}

so that the linear combinations of the functions ¢; € Hy(D) are uniformly dense - that
is, dense in the topology of the uniform convergence - in the space H; (D). For instance,
these functions can be taken to be a special subset of polynomials in the components of

z and y, as follows.

We know that the vector space of polynomials with the variable z and y, P(z,y), is

dense in C*°(D); therefore the set Py(z,y):
Po(z,y) = {p(z,¥) € P(z,y) | p(z,y) = 0,¥(z,y) € 6D},

is dense (uniformly of course) in the space {h € C*(D): hy,, = 0} = C¢(D). By

the way, the set
Q(m,y) = {11 Ty Y, m2, TY, yz, 333, §E2y, $y2,y3, ce } , -

is a countable base for the vector space P(z,y) and hence each elements of P(z,y) and

also Po(,y), is a linear combination of the elements in Q(z,y). In the other hand, by
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theorem 3 of Mikhailov [38] page 131, the space C*°(D) is dense in H'(D); thus the
space C5°(D) will be dense in H}(D) (see the definition of H}(D)). Consequently,
the space Py(z,y) is uniformly dense in Hy(D). As before, let {(zk,yx)},cy be the

representation set for the fixed D; we define the function %; for each ¢ € N as follows:

Yi(z,y) = [[(z — zx + v — we)7(2,9)a(2,y) - (4.13)
keN

where 7(z,y) is a function which is zero on the fixed part of D, and g¢; is an element

of the countable set Q(z,y). Then the set
{$i(z,9):i1=1,2,...},

is total (uniformly dense in the topology of the uniform convergence) in the space H}(D).

We remind the reader that the term

[[(z-axty—p)=(@-nty-—n)z-z2ty—yp)...
keN .
(4.14)

in (4.13) implies that Vi, = 0.

Despite the fact that ¢; is zero on the boundary of D for each 1, there is no guar-
antee that the value of (4.14) is convergent at every point (z,y) € D; hence we have
the same difficulty for ¢; in (4.13). Besides, if the function [Tyey(z — & + ¥ — ¥ ), OF
equally ¥;(z,y), is ﬁniformly convergent on D, it may be too difficult or impossibl_e to
characterize them; there is no comprehensive method to calculate Fy, and 4y, in (4.12)
for every (z,y) € D. In fact this difficulty is caused by the number of points in the
representative set, which is infinite. We will approximate the boundary 8D by a finite

number of points in the representative set.
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Approximating 8D with broken lines: The general idea of selecting a finite sét

of points instead of the curve 0 D, comes from the approximation of a curve by broken
lines. For the given D and hence for the given I', let An = (Tmyym)ym=1,2,..., M,
be a finite points of 9D in the representative set of D (we suppose A; = B). We link
together each pair of consecutive poinfs Anand A, yq form =1, 2-, o.M —1. The
set of segments A, Ay, m = 1,2,..., M — 1, defines a curve. We close this curve
by joining the points A, and Az together. Now the resulted shape, which is denoted by
0Dy, is an approximation for 0 D; we also call Dy to the domain which introduced by
itsboundary 0 Dps. The domain Dy is called a M-approximated domain of D (domains
D, Dy and their boundaries are shown in Figure 4.3). We remind the reader that this
method, approximation by broken lines, is more convenient when the fixed part of D

is too complicated to be denoted by a formula.

Figure 4.3: Approximation of 0D by finite number of segments

It is possible that by increasing the number of points, M, the curve 8 Djs will be-

come closer and closer (in the Euclidean metric) to the curve D, and hence one may
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conclude that the minimizer of I over D)y, if one exists, tends to the minimizer of I over
D, if one exists. In the Appendix B, we have explained some of the difficulties that arise
and have discussed these matters. Here, we will fix the number of points (M) and look

for the minimizer of (4.3) amongst all admissible Das’s.

As a result, the equality (4.13), for each i, changes into

Yi=(z—zi+y—y)(z—22+y—92)...(z— M+ Y —ym)7T4.
(4.15)

It is necessary to mention that whenever the fixed part of 0D is defined explicitly,
for instance an expression of the form y = h(z), we have 7 = y — h(z). Hence ¢; will

have the following form:

pi=(c—z1+y—y)(z—z2+y—¥2)... (2~ zm +y —ym)(y — h(z))g:.
' (4.16)

Moreover one may define ¥;(z,y) so that it will be zero on each segment A, A1

where the points A,,,m = 1,2,..., M are belong to the both parts of D, as follows:

Yo—U1 YK — YK
;= —_— e (rx—z —_ _—— I\ — Tr_ - -
1/) = (y Z 1( 1) y1) (y _1( K 1) YK 1)

(z —2rs1+ Y —Yk41)...(z — 2y + ¥y — ym)gs; (4.17)

here it is supposed that the points A, 4, ..., Ak, belong to the fixed part of 8D and
A K+1,AK+2,- .., Ay are in T (this expression of 1; is more convenient when the fixed

part of 0D is too complicated to be given by an explicit function).
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For the rest of this chapter and also for the following Chapter, we suppose that the

fixed part of 0D is the union of the following three segments:

1) The part of the line y = 0 between the points (1, 0) and(0,0)
2) The part of the line z = 0 between the points (0,0) and(0, 1)
3) The part of the line y = 1 between the points (0, 1) and(1, 1);

hence A = (1,0) and B = (1,1) (see Figure 4.4). Also we denote Dy, for a fixed

number M, as the class of all M-approximated domains D).

©.1)

0.0

Figure 4.4: 0D in our assumption

By the assumption made above, the function ¢; in (4.16) will be chosen as

Yi(z,y) =ay(y — Dz —z1+y—p)(z—z:+y — 12)

(z —2m +y —yu)ai(z,y), (4.18)

where each Ayr = (Tm,Ym),m = 1,2,..., M, is an unknown point in I'; ¥;(z,y)

is zero at the points A(1,0) and B(1, 1), hence there is no need to consider the terms
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(z +y —1) and (z + y — 2) in (4.18). Here we have actually 2M unknowns to de-
termine, 1, T2,...,TM, Y1, Y2, - - » Ym. It would be more convenient if one, somehow,

could reduce the number of unknowns, without losing the generality.

Let the value of the components 1,2, . . . , Y, be fixed, for a given positive integer
M. In other words suppose that for each m = 1,2,..., M, the pdint A, is located
somewhere on the line y = Y,,,,z > 0. Because z,, is a free term, the point A4,, could
be anywhere on the line for every m (see Figure 4.5). Therefore points A, and A 41
can be chosen so that they belong to I and hence the part of I' between the linesy = Y,
and y = Y,,41 can be approximated by the segment A,, A1, €specially whenever the
number M is large. It means, we do not lose generality by fixing 1,2, ..., ya. Thus,
from now on, we suppose that in (4.18) the components y1,¥s, ..., yum are fixed with

the values Y3, Y3, . .., Yar, respectively; so
Yi(z,y)=zyly— (- +y—-Yi)(z—z2+y-12)...
(¢ —zm+y—Yu) q(z,y). (4.19)
Definition 10 : For a fixed number M, the set of finite points in T, i.e. the set
{AM = (mm,Ym),m = 1,2,...,M},

with the fixed components Y1,Y3, ..., Yu, and unknowns z,, z,, ..., zp, is called the

M -representation of D. Indeed, this set introduces the M -approximated domain D .

Second set of functions: For the second set of equations in (4.12), let L be a given pos-

itive integer number and divide D into L (not necessary equal) parts Dy, D, ..., Dy,

so that by increasing L the area of each D,,s = 1,2,..., L, will be decreased. Then,
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Figure 4.5: 8D with the M lines

foreachs =1,2,..., L, we define:

1 if(z,y) € D,
68(9’7 Y, 'U') =
0 otherwise.

These functions are not continuous, but each of them is the limit of an increasing
sequence of positive continuous functions,{¢,, }; then if u is any positive Radon mea-
sure on §, p(£,) = limk—eo (€5, ). Now consider the set {¢; : j = 1,2,... } of all such
functions, for all positive integer L. The linear combination of these functions can ap-
proximate a function in Cy(Q) arbitrary well, in the sense that the essential supremum
of the error function can be made to tend to zero by choosing in an appropriate manner,

a sufficient number of terms in the corresponding expansion (see [50] chapter 5).

As aresult, the problem (4.12) can be replaced by another one in which we are look-
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ing for the measure x € M*(R), so that it satisfies the following constraints:

p(Fy) =, 1=1,2,...;

pE)=q, §=1,2.... (4.20)
where the functions ¢;’s and {;’s belong to the above mentioned total sets, and

Fi=Fy, v =y 05 = ag.

To approximate the system of equations in (4.20) with a finite system of equations,

we choose a finite number of equations and thus set up the following finite linear system

of equations:

#M;,Mz(ﬂ)=7‘i1 1:= 172""7M1;

iuMth({]') = aj, 1=12,..., M, (4.21)

where M, and M, are two positive integers. If We denote by Q(My, M;) the set of
positive Radon measures in M*(Q) which satisfy equalities (4.21), and also denote
by Q the set of positive Radon measures in M*(Q) which satisfy equalities (4.12), by
regarding the property of the total sets one can easily prove the following Proposition

by considering the proof of Proposition 111.1 in [50].

Proposition 15 : If My, M; — oo, then Q(My, M;) — Q, hence for the large
enough numbers M, and M the set Q) can be identified by Q(M,, M3).

Therefore, instead of seeking a measure 4 € Q) we prefer to seek the measure uar, u, €
Q(M, M,); but even if the number of equations in (4.21) is finite, the underlying space

Q( My, M) is still not finite-dimensional. It is possible to define finite linear systems
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whose solutions can be used to approximate that for (4.21). A measure g, um, in the
set Q( M1, M:) can be characterized by a result of Rosenbloom [48], which was proved

in Theorem A.5 Appendix in {50], that pas, a, in (4.21) has the form

Mi+M;
o, = Y, onb(Z), (4.22)

n=1

with triples Z,, €  and the coefficients a;' > 0forn = 1,2,...,M; + M,, where
6(z) € M*(RQ) is supposed to be a unitary atomic measure with support the singleton
set {z}. |

This structural result points the way toward a further approximation scheme; the mea-
sure problem is equivalent to a nonlinear one in which the unknowns are the coefficients
o, and supports {Z,},n = 1,2,..., M; + M,. It would be more convenient if one
could find the solution only with respect to the coefficients o, in (4.22); this would be
alinear system of equations (a type of linear programmingproblem). The answer iies in
approximating this support, by introducing a set dense in 2. Proposition I11.3 of [50]

Chapter 3, states that the measure s, ur, in (4.22) has the following form

N
pana = 9 onb(Z,), . (4.23)
n=1

where Z,,n = 1,2,..., N, belongs to a dense subset of Q. 'Note that the elements

Zn,n=1,2,..., N,are fixed; the only unknowns are the numbers a,, n = 1,2,..., N.

Now let put a discretization on {2, with thenodes Z,, = (zn,yn, un),n = 1,2, ... N

in a dense subset of §2; then we can set up the following linear system ;n which the un-
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knowns are the coefficients a,,n = 1,2,...,N:

N
donéi(Zn)=aj,  §=1,2,..., M2 (4.24)

We remind the reader that we should not be surprised if we find more than one solu-
tion for the problem, (even if the problem (4.1) and (4.2) satisfies the necessary condi-
tions for having a unique bounded generalized solution). It is true that, in this case, u,
in (4.18) is also unique by Proposition 4.2; but remember that the generalized solution
must satisfy the equality (4.5) for all v € Hj(D); there we have chosen just a finite
M, number of them for (4.21) and also for (4.24), to obtain the measure paz, ar,. Thus
i, M, may not be unique because of this reduction. Each solution introduces :;1 mea-
sure pag, a1, via the equality (4.23) which has the same properties (approximately) as
the measure p.,, the representative measure for the generalized solution u(X). Indeed

we achleve an approximate solution for the elhptlc problem in the given domain D.

We have shown in this section how to find the representative set of a domain D € D
and then approximate it, and hence D, by a finite set of its boundary points (the M-
representation of D). As aresult of this, one can obtain a solution (approximately) for
the problem (4.1) and (4.2) for any given domain D € Dy, via the related linear system.
Therefore we are éble to calculate the value of I(D) for each given domain D. In the
next section, we shall explain how one can find the optimal domain for the functional A

(4.3) in Dy by applying the results of this section.
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4.4 The optimal solution

The main aim of the present section is to find an optimal domain D* € D) so that the
value of I( D*) in (4.3) will be the minimum on the set Dy. In the other words, we are
going to identify the lowest value of I( D) for every admissible domain D to determine
its related minimizer domain D*. The process of finding an approximation to D*, is as
follows:

Each D € Dy is an M-approximated domain with the mentioned M -representation
set, like {A1, A, ..., Aar, } as explained above. By applying the result of the previous
section, a solution of (4.1) and (4.2) can be found as a function of the finite number of
unknowns (the finite unknown components of an unknown M -representation). Thus
we will be able to calculate I(D) for every D € Dyy; and hence, we can define the

following function that it is a function of finite number M of variables,
J:DeDy — I(D).

By applying a standard minimization algorithrﬁ on J, the optimal value of the variables
(optimal M -representation) will be obtained. These values identify the optimal domain
D~ for (4.3). Indeed, instead of identifying the optimal domain D*, we are going to

determine its M -representation
{Am = (25, Ym),m =1,2,..., M},

or other words, the components, z3},z3,...,z},.

To calculate I( D) for an arbitrary D € D)y, it is necessary to obtain a solution for

(4.1) and (4.2) in D. This solution is approximated by a solution of the linear system
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(4.24) according to the variables, z,,m = 1,2,..., M. As mentioned in section 4.3,
the solution of (4.24) is not necessary unique. Let us to specify one of them for each D;
there are some possibilities, for example, by solving the following linear programming

problem, one may chose that one in which the value of [, f,(X, u)dX (for a given D)

is minimum according to the variables ap,n = 1,2,..., N:
N
Minimize: > anfo(Zn)
n=1
Subject to: a, 2> 0, n=12,...,N;

N
S Fi(Z) =y  i=1,2,..., M

n=1

N
z_:langj(z,,)=aj, i=12,....,M, (425

For the given examples in the present Chapter, the solution will be specified by apply-

ing a certain subroutine for solving the system.

As a result, for each D, the value of I( D) below:
(D) = [ fo(X,u)dX = p(£) = masaa,(fo),

is defined uniquely in terms of the variables z,,,m =1,2,..., M.

So, for an arbitrary domain D € Dy, we approximate I(D) = YV . . f,(Z,)

in the mentioned manner uniquely. In other words, we set up a function, J, on Dy in

which for each D € Dy shows a value for I( D):

J : D €Dy — I(D)= pumy,(fo) €ER; (4.26)
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here, in the sense of (4.23), ua,, Mz( fo) = Ef=1 a, fo(Z.,,). Clearly J is a function of

the variables z,, z,, ..., s, and hence can be regarded as a vector function:

J : (zl,:z:g,...,:z:M) € RM E— }LMx.Mz(fO) S R. (427)

It is not possible in general to ascertain continuity properties of this function (see
for instance [44]); we can say, however, that, since this is a real-valued function which
is bounded below, and is defined on a compact set (since constraints are to be put in
the variables) it is possible to find a sequence of points P; say so that the value of the
function along the sequence tends to the (finite) infimum of the function. The coordi-
nate values corresponding to the points in the sequence are of course finite. The same

properties can be ascertained for similar functions to be found in the next two Chapters.

Now, suppose that (z}, =3, . . ., Z}) is the minimizer of the vector function J; it can
be identified by using one of the related minimization methods (for instance the method
intraduced by Nelder and Mead, see [60] and [42]). For this, one can apply standard
Algorithms and Routines (like AMOEBA [47] or EO4J AF-NAG Library Routine).
Let D* € Dy be the domain which is introduced by the minimizer (z3,23,...,z},);

indeed, it is defined according to its M -representation, the set
{A:n = (x:n7Ym)7m = 1121°"1M}-

We assume in the following theoretical result that the minimization algorithm used (such
as AMOE BA) is perfect; that is, that it comes out with the global minimum of J in its
(compact) domain. (The same, rather optimistic, assumption, is made in deriving some

related results in the following Chapters). Thus,
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Theorem 3 : Let M, M, and M; be the given positive integer numbers which were
defined in section 4.3, and D* rbe the minimizer of (4.27) as mentioned above. Then D*
is the minimizer domain of the functional (4.3) over Dy and the value of 1(D*) can be

approximated by J(D*); moreover J(D*) — 1(D*) as M, and M, tend to infinity.

Proof: Suppose D* is not the minimizer of I in (4.3); hence at least there exists a do-

main, call D', in Dy, so that
I(D') <I(D"). (4.28)

Proposition 14 shows that there is a unique measure, call ', in M*(Q) so that I(D’) =

#'(f5). In the other hand, Proposition 15 states that for sufficiently large numbers M;
and Mz, p'(f,) can be approximated by iy, 47,(fo) in Q(My, My). Thus, by the defi-

nition of the function J, we have
(D) & g ag(£2) = I(D).
In ﬁe same way, one can show that J(D*) appréximates I(D*); so
I(D*) = piag 0a,(fo) = I(D7).
Therefore from (4.28) we have
J(D’) < J(D*),

“which isin contrary with the fact that D* is the minimizer of J. Consequently, D* is the |

minimizer of I over Djs. Moreover, from Proposition 15 it follows that J(D*) tends to

I(D*) as My, My — oo. O
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4.5 Numerical Examples

For the next two sets of examples, we consider the elliptic equations (4.1) and (4.2)

for which for each admissible domain D ¢ p » the function v(z, y) (the fixed control

function) is defined as:

1
o(e,y) = if (z,y) e DNC

0 otherwise,

where C is the square [}, ] X [}, 2] ( see Figure 4.6 ); then the right-hand-side of the
first set of equations in (4.24), 7;, is '

%= foe WX =12, M (4.29)

As explained in section 4.3, an admissible domain like D € Dj, is bounded by its
boundary, D, which includes a union of three segments of lines‘ and a simple curve be-
tween the points A(0, 1) and B(1, 1) (see Figure 4.4). For a fixed number M, this curve
and therefore the domain was defined by the set of M points (the M-representation set)
{A = (2m, Yn),m=1,2,..., M} with the known components Y3, Yz, ..., Yar. In the

following examples, we take M = 8 and also
Y, =0.15,Y; =025, Y; =035, Y, = 045,

Y; =0.55, Y6 =0.65, Y7 =0.75, Ys = 0.85
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(see Figure 4.6); hence each z,,z,,...,zs, defines a domain . By an extra constraint

onzz,Z3,...,T7,

Tm > -;m=23,...,7,

> w

the calculation of (4.29) will be simple and the valve of «y; for any D € D)y is defined

as

i ' .
’y,~=/ / Yi(z,y)dedy; 1 =1,2,..., M;.
g

l E
D
085 | b
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]
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Figure 4.6: An admissible domain D under the assumptions of the numerical work

We also assume that the function u(-) takes value in the bounded set U = [—1, 1];
_therefore @ = D x U, for each given domain D € Dy;. One may obtain the set U

by trial and error so as to be sure that the appropriate finite linear sysiem in4.24hasa

solution.
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Our way to find an optimal domain for functional (4.3) is an iterative method. For a
given domain D, in other words for the given set of variablesz; = X;,z, = X3,...,z8
= Xs, in the M -representation form, we will set up the linear system (4.24) to find the
solution of the related elliptic equations (4.1) and (4.2), which is necessary to calculate
the value of I(D) according to the X,,’s. Then the standard minimization algorithm
changes the value of X, X3,. .., Xs, to new ones for which the value of I( D) is sup-
posed to be less than previous; by these neW values introduce a new domain. Again, in
the next iteration, an appropriate linear system (4.24) for the new domain will be solved
to calculate the value of I( D) and see whether I(D) is smaller than the previous on in
the former iteration or not. In the next iteration, if the value is not smaller, the Algo-
rithm changes the domain with the suitable one; if it has been smaller, the Algorithm
seeks again for the other domain like D' € Dy with the smaller value of I(D’) than
I(D). The iteration will be stopped whenever the optimal domain is obtained; note that
we assume in this discussion that the standard minimization Algorithm (AM OFE B A)

is qualified to obtain the global minimizer without any restriction (see Appendix C).

Now for a given domain D with the given values z; = Xj,z;, = X,,...,25 =
Xs, we must consider an appropriate discretization on Q for solving the linear sys-
tem (4.24); because our method is iterative, the discretizations depends on the values

X1, X3,..., Xg at each iteration.

4.5.1 Discretization

To establish the linear system (4.24) for a given domain D with the M-representation
{A=(zm,Yn),m=1,2,..., M}, we need to put a discretization on Q. For this rea-

son, we select N = 740 nodes Z, = (Zn,Yn,un) in §, so that each component is
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a rational number; hence these nodes belong to a dense subset of {2 and therefore the
statement (4.23) and consequently, the linear system (4.24) can be determined. Since
u|,, = 0 (the Dirichlet condition (4.2)), for each (z,,y,) € 0D, we should have

Zn = (Zn,Yn, 0). This fact has been taken into account in the discretization by choos-

ing the following 36 nodes as follows:

The below 10 points of R® in which their projection on the (z, y)-plane, belong to the

liney =0,
Z, =(0,0,0), Z, =(0.15,0,0) , Z3 = (0.25,0,0),..., Z, = (0.85,0,0),

Z10 = (1,0,0);

the points Zy1, Z13, - .., 219, SO that their projection on the (z, y)-plane locate on the

linez =0,
Zyu1 = (0,0.15,0), Z;2 = (0,0.25,0),. .., Z1s = (0,0.85,0), Z1 = (0,1, 0);
the follow'mg nodes that their projection on the (z, y)-plane is on the line y = 1,
Zy = (0.15,1,0), Z2, = (0.25,1,0),...,Z27 = (0.85,‘1,0), Z2s = (0,1,0);
and finally 8 points corresponded to the M-representation set as
Zao = (X1, 0.15,0), Zso = (X3,0.25,0), . .., Zss = (Xs,0.85,0).

" Therest of the nodes are related to the interior points of D. We consider Z,, = (Zn, Yn, Un)

forn = 37,38,...,740 as

Zy = Z36+88(i—1)+11(j—1)+k
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where

(i + 0.5)X;
T36+88(i—1)+11(j—1)+k = ‘T y Y364-88(i-1)+11(j-1)+k = Yj,
2(k—1
U36+88(i-1)+11(j~1)+k = ( 10 ) -1

fort=1,2,...,8,7 =1,2,...,8,and k = 1,2,...,11. Indeed the value of z,,’s are

one of the following values:
0.15X;, 0.25X;,..., 0.85Xj};
and the component u,, takes one of the below numbers:
-1,-0.8,...,-0.2,0,0.2,...,0.8,1.

Now, the set §2 is covered by a grid, defined by taking all points in 2 with coordinates
Zn = (TnyYn,Un),n = 1,2,..., 740, which have been already expressed. To solve the

corresponded linear system (4.24) it is necessary to identify its equations first.

4.5.2 Equations in the linear system

To find an approximated solution for (4.1) and (4.2) in the domainD, we consider the
mentioned linear system in (4.24) for M; = 10 and M, = 8. Thus, for the first set of

equations, the function v; has been defined by (4.19) as

Yi(z,y)=zy(y -z -Xaity-N)z-X+y-Y2).

(z~Xsg+y—Ys) a(z,y).
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where the polynomial ¢;(z,y) foreach s = 1,2,...,10, is selected as follows:
ql(m’ y) - 1’ qZ(way) = wiqB(w’ y) =Y, q4(w’y) = mzi qS(z’ y) = zy,

as(z,y) = ¥2, ¢7(z,9) = 2°, gs(2, ¥) = 2%y, 0s(z, ¥) = 2y, qro(z,9) = ¢°.

For the second set of equations 1n (4.24), we divide the domaixi D into 8 parts, say
Dy, D,,...,Ds,as follows:
D, is the region of D between the lines y = 0 and y = 0.2 (O Ae; 0, in Figure 4.6),
D, is the region of D between the lines y = 0.2 and y = 0.3 (0,e; €20, in Figure 4.6),
D3 is the region of D between the lines y = 0.3 and y = 0.4 (0ze3€303 in Figure 4.6),
D, is the region of D between the lines y = 0.4 and y = 0.5 (03ese404 in Figure 4.6),
Dy is the region of D between the lines y = 0.5 and y = 0.6 (0se4e505 in Figure 4.6),
Ds is the region of D between the lines y = 0.6 and y = 0.7 (oseseq0¢ in Figure 4.6),
Dy is the region of D between the linesy = 0.7 and y = 0.8 (0sege7o7 in Figure 4.6),
Dg is the region of D between the linesy = 0.8 and y = 1 (o7e7BE in Figure 4.6),

where the z—component of the points e;, | = 1,2,...,7, in the (z,y)—plane is
1
Te = §(X1+1 —Xz)-II-Xz; l= 1’2’.f.’7'
Therefore the value a;, the right-hand-side of the second set of equations in (4.24), is
a; = /ij(m,y)dX —areaof Dj; Vj=1,2,....8;
- thus by some calculation one can get:

ay = 0.15 + 0.075(X; — 1) 4 0.05X; + 0.025(z., — X1),
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az = 0.05z,, + 0.025(X; — z.,) + 0.05X; +0.025(z,, — X3),
as = 0.05z,, + 0.025(X3 — z.,) + 0.05X3 + 0.025(z., — X3),
a4 = 0.05z., + 0.025(X; — z.,) + 0.05X, + 0.025(z., — Xy),
as = 0.05z,, + 0.025(Xs — z.,) + 0.05X;5 + 0.025(z., — X5),
as = 0.05z., + 0.025(X6'— Tey) +0.05X¢ + 0.025(::,; — Xe),
ar = 0.05z, + 0.025(X7 — z.,) + 0.05X7 + 0.025(z,, — X7),
ag = 0.05z., + 0.025(Xs — z.,) + 0.15X5 + 0.075(1 — Xj).

Hence in our case, the linear system (4.24) is

a, >0, n=12,...,740;

740

S F(Z)=7, i=12...,10;
n=l

740

S anbi(Z)=a;,  j=1,2,...,8. (4.30)

n=1

To find the nonnegative unknowns ¢,’s we apply the E0O4 M BF — N AG Library
Routine Document. Although this Routine is usually used for finding the minimizer
of a linear programming problem, it is also suitable for finding an admissible solution
of a linear system (like (4.30)) by selecting LINOBJ = .FALSE., when the objec-
tive function, CV E S, is not referenced. The result shows a nonnegative value for each
an,n=1,2,...,740, that satisfy the linear system. By applying these values in (4.23),
" one can calculate the value of I( D) for a given function f,. As mentioned in Section
4.4, this value, I( D), is a function of the variables X3, X;, ..., Xs; thus we have set up
the function J in (4.27). By applying a standard minimization algorithm (AMOE B A)

we are going to obtain the optimal domain in Dy, for (4.3). We remind the reader that
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the functions F; and also the values of v;, 2 = 1,2,..., 10, has been calculated by the

package “Maple V.3”.

4.5.3 Minimization and penalty functions

Up to now, the function J in (4.27) has been established as a function of the variables
X1, Xs,...,Xs. We apply the Downhill Simplex Method in Multidimension by us-
ing the Subroutine AMOEBA ( see [47] ) with the conditions X; > 0, X3 > 0 and
Xn > 0.75,m = 2,3,...,7; besides these conditions, we also consider an upper
bound for variables, for example suppose they are not higher than 2. These conditions
are applied by means of a penalty method to change the constraint minimization prob-
lem into an unconstrainted one (for instance see [60]). There are several possibilities
for applying this method; one may define the same penalty fuhction as Walsh in [60]
(like the example of the previous Chapter), or may apply the transformation function
(see [6] and [15]). We apply the following penalty function; let
max (0.000001 — X»,0) ifm=1orm =2

T1 =
max (0.750001 — X,,,0) ifm=23,...,7,

and

Tp = max(X,, — 1.99999, 0);

then we consider

Pn(Xm) = Ti +T2; ¥m=1,2,...,8.
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The penalty function P(X;, X;,..., Xs) is defined as:

8
P(X1, X2y, Xs) = 3 Pr(Xn).

m=1

Then we change the form of the objective function into the new one for AMOEBA

that is shown by J’ as follows;

107 ifP(Xy,X,,..., X 0
(D) = | ( 8) #
J(D) ifP(Xy,X,,...,Xs)=0.
If one of the constraints is violated, the value of J'(D) will be 107 which is too big;
to suppress, the minimization algorithm will ignore this value by finding new values
for X1, X, . .., Xs, that satisfy in all constraints to achieve the value of J (D) which is

much less than 107.

To start, AM O E B A needs an initial value for ;Jariables Xm,whenm =1,2,...,8,
(a given domain). Each time that AM O E B A needs to calculate a value for the objective
function , J’, the linear system (4.30) with the conditions ., > O forn = 1,2,..., 740,
must be solved. At any iteration the new domain is illustrated and the new value for J’
is calculated; comparing this value with the previous one leads the algorithm to find a
domain with a smaller value of the objective function in the new iteration. This proce-
dure is repeating till the optimal domain is characterized. In the next, two examples are
given; one for the linear case and the other for the nonlinear case of the elliptic equation

" in (4.1) and (4.2). We chose the function f, as:

fo= (U' - 0'1)21
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this function, indeed, can be considered as a distribution of heat in the surface for the

system governed by an elliptic equations.

454 Examplel

In the linear case defined by the partial differential equations (4.1), (4.2) and f(z,y,u) =

0, the function F; in (4.30) is
Fi=ul;i=1,2,...,10.

We used the initial values X,, = 1.0,m = 1,2,...,8, as a given domain for starting the
algorithm; also the stopping tolerance for the program (variable ftol in the Subroutine

AMOE BA) has been chosen as 10~7. Here are the results;

o The optimal value of I = 0.70469099432415;
e The number of iterations = 827;

e The value of the variables in the final step:
X, = 1.033028, X, = 1.390598, X5 = 1.422364, X, = 0.97706,
Xs = 1.017410, X5 = 0.958974, X7 = 1.018387, X5 = 0.951333.

These values represent the optimal domain. The initial and the final domain has
been shown in the Figure 4.7, and also the alteration of the objective function, according

to the number of iterations, has been plotted in the Figure 4.8.
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~Initial Domain

1.5 20

1.0

0.0 05

00 05 10 15 20
X

Optimal Domain

1.5 2.0

1.0

00 0.5

00 05 10 15 20
X

Figure 4.7: The initial and the optimal domain for the starting initial values X,, =
1,m=1,2,...,8,in the linear case.
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Figure 4.8: Changes of the objective function according to iterations in the linear case
with the starting valves X, =1,m =1,2,...,8.
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Also we applied the initial values X,, = 1.1,m = 1,2,...,8, and ran the same
program with this; the obtained results are:
o The optimal value of I = 0.85045367617752;
e The number of iterations = 389;

o The value of the variables in the final step:
X; =1.150384, X; = 1.081058, X3 = 1.076638, X4 = 1.078285,
X5 = 1.714226, X¢ = 1.050096, X7 = 1.107141, X5 = 1.014125.

Initial Domain
Q
N
n
=2
0
o
(=}
o
00 05 1.0 15 20
x t
Optimal Domain
Q
N
n
=2
0
o
o
o

00 05 10 15 20
X

_ Figure 4.9: The initial and the opt1ma1 domain for the startmg initial values X
1.1,m =1,2,...,8, in the linear case.
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These values represent the optimal domain which has been shown in the Figure 4.9
with the initial domain. The changes of the objective function according to the number

of iterations was also plotted in the Figure 4.10.

300

, iteration

100

co'L 00t <c6'0 06’0 680
enjea

Figure 4.10: Changes of the objective function according to iterations in the linear case
with the starting valves X, =1.1,m =1,2,...,8.
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We remind the reader that the difference between the two values of the objective
function and variables associated with the use of two different initial values (in this Ex-
ample and also in Example 2), is caused by some limitation in the Subroutine AMOFE BA

and it is not in relation with the method used. This fact will be discussed in Appendix

C.

4.5.5 Example2

For the nonlinear case of the partial differential equations (4.1) and (4.2), we have taken
f(z,y,u) = 0.25u. Asin Ezample 1 we used the initial values X,, = 1.0,m =
1,2,...,8, asa given domain for starting the algorithm with the same value for stopping

tolerance. The obtained results are:

e The optimal value of I = 0.45467920356379;
e The number of iterations = 502;

e The value of the variables in the final step:
X, = 1.050197, X, = 1.085212, X5 = 0.750001, X; = 0.768701,
Xs = 1.129861, Xs = 1.137751, X7 = 0.977838, X = 1.615668,

which represent the optimal domain. The initial and the final domain has been shown in
the Figure 4.11, and also the change of the objective function, according to the number

of iterations, has been plotted in the Figure 4.12.
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Initial Domain
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1.0
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00 05 10 15 2.0
X

Optimal Domain

1.5 2.0
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0.0 05

00 05 10 15 20
X

Figure 4.11: The initial and the optimal domain for the starting initial values X,, =
1,m =1,2,...,8, in the nonlinear case.
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Figure 4.12: Changes of the objective function according to iterations in the nonlinear
case with the starting valves X, =1,m =1,2,...,8.

Asin Ezample 1, we chose the initial values X,, = 1.1,m = 1,2,...,8, and ran

the program again with this initial; here are the results:

o The optimal value of I = 0.40243494655212;

e The number of iterations = 586;
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e The value of the variables in the final step:
X1 =0.825538, X; = 0.952122, X5 = 0.923957, X4 = 0.96417,
Xs = 1.358162, Xs = 1.088290, X7 = 1.250303, X5 = 1.884825,

these values represent the optimal domain which has been shown in the Figure 4.13 with
the initial domain. The changes of the objective function according to the number of

iterations was also plotted in the Figure 4.14.

Initial Domain

y
00 05 10 15 20

00 05 10 15 20
X

Optimal Domain

Y
00 05 10 15 20

00 05 10 15 20
X

Figure 4.13: The initial and the optimal domain for the starting initial values X,, =
- 1.1,m =1,2,...,8, in the nonlinear case.
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Figure 4.14: Changes of the objective function according to iterations in the nonlinear
case with the starting valves X,, =1.1,m=1,2,...,8.



Chapter 5

Shapes, Measures and Elliptic

Equations (Variable Control)

5.1 Introduction

In this chapter, as in the previous one, we assumé D C R?to be a bounded domain
with a piecewise-smooth, closed and simple boundary D which consists of a fixed
and a variable part. The fixed part is a union of three segments, part of the liney = 0
between the points (1, 0) and (0, 0), part of the line z = 0 between the points (0, 0) and
(0,1), and part of the line y = 1 between the points (0, 1) and (1, 1). The variable part
is a curve T with the initial and the final points A = (1,0) and B = (1, 1) respectively,
T is a simple curve but not a closed one; it does not cut itself between the points A and

B (see Figure 4.4).

A domain D as defined above, and the pair (D, v) are called admissible if the elliptic

119
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equation
Au(X) + f(X,u) = v(X) 5.1)
with the boundary condition

=0, ' (5.2)

UYjop

has a (unique) bounded solution on the domain D. We remind the reader that the func-
tions u(-) and f(-,-) have the same properties as in the previous chapter; however, v :
D — Ris a Lebesgue measurable function which is defined as a bounded Distributed
control function. This function is assumed to take values on the bounded set V.

The set of all admissible domains is denoted by D; indeed it contains all mentioned
admissible domains like D for all possible curves like I'. It was explained in the pre-
vious chapter how an admissible domain D (or in other words I'), can be defined by a
countable dense subset of its points, called the representative set of D. Then, by means
of the procedure of approximating a curve with broken lines, these countable points,
and hence T, is approximated with a number M of its points; this was called the M-
representation of D. For a fixed number M, without losing generality, the points in the
M -representation set can have the y-components fixed, Uke ;ym =Y, m=12,...,.M
(see chapter 4, section 4.3). Thus an admissible domain D € D can be identified by its

M -representation set such as:
{Am = (@Zm, Ym),m = 1,2,...,M}.

In this way, for a given fixed M, we replace D with Dy, the set of all admissible M-
representations; we also call F' the set of all admissible pairs (D, v) such that D € Dy,.

Let f1, f2 : D x R — R be two functions in C(D X R), further, we assume that there
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is a constant K > 0 so that the function f; satisfies
| A(X,w(X)) IS K |ul, (5.3)

for all pairs (X, u(X)) where X € D. The present chapter is going to identify the

minimizer pair of domain and control, (D*, v}.) for the functional
(D,v) = [ A(Xu(X)dX + [ £(X,0(X))dX, (5.4)
over the set F. This optimal pair will be characterized in two stages:

o (2) In the first stage, we are going to determine the obtimal control function for
each given domain. For fixed domain D € Dy, or in other words for a fixed val-
uesof z; = Xi,z2 = Xo, ...,z = Xpr, we will usé the generalized' form of
the equations (5.1) and (5.2) to introduce the classical form of the optimal control
problem. Then the problem will be changed into a measure-theoretical one. The

~ new problem has a solution because of existence theorems. We also replace the -
problem with an infinite dimensional linear programming one, and then approxi-
mate it by a finite one. Hence the optimal control and a solution of (5.1) and (5.2)
will be characterized (approximately) from the solution of the appropriate finite
linear programming. Thus, at the end of this stage, we will be able to determine
the nearly optimal control function, v}, for the given domain D; also we can cal-
culate the minimum value of the performance criterion for any given domain like

D, 1(D, vf,), in terms of the finite number of variables X;, X, ..., Xar.

e (i1) We have shown (in the Chapter 4) that each domain D € D, and hence

each control function v : D — R defined on D, is a function of the vari-
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ables X1, X3, ..., Xu; also in the stage one, we calculate the value of I( D, v})
in terms of these variables. To introduce the optimal pair (D*, v},.) for the func-

tional I in (5.4), in the second stage, we will define a function, say J,
J: DeDy — I(D,vp) €R,

which is a vector function with the variables X3, X5, ..., Xs. Then, by applying
an iterative standard minimization algorithm, like the Algorithm introduced by
Nelder and Mead [42], we will obtain 3, 23, . . ., T}, the global minimizer of the
function J. This minimizer which, indeed, is an M -representation, shown by the
values z}, z3, . . . , T}y, introduces the (nearly) optimal shape (domain), call it D*.
Then, in the manner which has been explained in the first stage, the associated
suboptimal control function to the domain D*, say v},., will be determined, The

pair (D*, v}, ) will be the minimizer of the of the functional I over the set F.
The new method has some advantages:

¢ An automatic existence theorem: there always is a minimizer for the measure-

theoretical problem.

o The problem is changed into a linear one even if the pérf ormance criterion isnon-
linear: then one can use the whole paraphanalia of linear analysis for dealing with

such problem; thus the computation is much easier.

o Our minimization is global: the value reached, say, numerically is close to what
one could reasonably call the global infimum of the problemry(here it is supposed

that the standard minimization algorithm gives us the global fninimizer).

¢ The optimal shape (domain) and the optimal control function can be determined

at the same time.
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In the last section of this chap;er, some numerical examples for the linear and nonlinear
cases of the elliptic equations, will be given. These examples will show how the method

is applied.

5.2 The optimal shape design problem

In order to define an optimal shape design problem, it is necessary to describe its several
components, such as the (partial) differential equation satisfied by the controlled sys-
tem, a function to be minimized with respect to a particular geometrical element (per-
formance criterion) and the admissible space in which the minimization takes place.
We have already defined in the Introduction section all the necessary components for
the optimal shape design problem which we are going to solve.

In the present Chapter, we seek in the admissible set F', for the minimizer pair of do-
main and control function, (D*, vp.), for the functional (5.4), so that the elliptic equa-
tion (5.1) with the Dirichlet condition (5.2), is sa}isﬁed. Indeed we are going to find the

solution of the following (classical) shape design problem over the set of admissible

pairs, F.

Minimize : I(D,v) = /Dfl(X’ u(X)) dX + /D-fZ(X,'U(X)) dX
Squect to: Au(X) + f(X,u) = v(X);

Ujp = 0. ' (5.5)

. As we mentioned in Chapter 4, in general, it is difficult to characterize a classical so-
lution for the elliptic equations (5.1) and (5.2). By applying the variational form of the
elliptic problem (see the Proposition 4.1), we prefer to obtain a bounded weak solution

(generalized solution) of the problem; so the functions u(-) and v(-) in (5.1) and(5.2)
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must satisfy the general equalities mentioned in (4.5). Consequently, the optimal shape

design problem (5.5) changes into the following one:

Minimize : I(D,v) =/Df1(X,u(X)) dX+/Df2(X,v(X)) dX

Subject to : /D(qul) +¥f)dX = /Dt,bv dX ; V¢ € Hg(Dj. (5.6)

To solve the above optimal shape design problem, in the first step we will find out how
one can calculate the minimum value of I( D, v) for a given domain D € Dy, subject
to the mentioned conditions. In other words, for a given domain D € Dy, the optimal
shape design problem becomes an optimal control problem; hence one should find an
optimal pair of trajectory and control functions which satisfy the conditions of (5.6).
Then the minimum value for I( D, v) can be calculated. Afterwards, in the next step, itis
possible to look for an admissible domain D* which gives the minimal value I( D*, v}.)
between the domains in Djs. In the following section we will characterize the optimal
pair of trajectory and control functions for a given domain D € Dy, according to the

mentioned conditions in (5.6).

5.3 The control problem for a fixed domain

In this section we suppose that D € Dy is a given admissible domain. For this fixed
domain, the optimal shape design problem (5.6) changes into a classical optimal control
problem which is to find a pair of trajectory function , u, and the control function, v, so

that they satisfy the following conditions:

[ wtb+40)dX = [ 4o dx; v e HYD), 57)
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and minimizes the function
(I(D, v) =)i(u,v) = /D A(X,u(X)) dX + /D A(X, (X)) dX. (5.8

In the present section we are going to find the minimizer pair of functions,by solving
the classical control problem. We will change the problem into the measure-theoretical
one and identify its related space; this new formulation has some advantages. By apply-
ing Rosenbloom theorem [48] and discretization method, the problem will be approx-
imated by a finite linear programming one in which its result identifies the trajectory

and the optimal control function for the given domain approximately.

5.3.1 The classical optimal control problem

In the sense of the classical form of a control problem, we assume that the function
u : D — R s the trajectory and the function v : D — R s the control function. An

admissible pair of trajectory and control function is defined as follows.
Definition 11 : A pair of the functions (u,v) is called admissible if:

e 1) Thetrajectory functionu € H'(D) is bounded and takes values in the bounded
set U; moreover here we assume that U is the intersection of all such bounded

sets.
e ii) The trajectory function is zero on the boundary of D (i.e. on 8D ).

o ii1) The function v is the bounded control function which takes values on the
bounded set V. This function also is supposed to be Lebesgue-measurable on

D.
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e 1v) The functions u and v satisfy the condition (5.7) for every € H}(D). -
The set of all admissible pairs is denoted by F.

We suppose that the set F is nonempty. In fact, we assume that the elliptic equation
(5.1) and (5.2) has a bounded weak solution on D. So, for a fixed domain the optimal

shape design problem (5.6) changes into the following optimal control problem over F.

Minimize : i(u,v) = /Df1(X,U(X)) dX + /D o X, v(X)) dX

Subject to : /D (v + 9 f) dX = /D Yv dX ; Vo € H(D). (5.9

Problems may arise in the quest for the finding the optimal pair; it is difficult to
determine the solution of the elliptic equations although we know it exists, there is no
comprehensive method to identify an admissible pair (u, v). There may be many meth-
ods which estimate numerically the generalized solution (trajectory function) for a fixed
distributed control function (see for instance [12]‘ and [24]). But it is difficult to find a -
general applicable approximation method to estimate numerically the optimal control
and its related generalized solution at the same time for a problem like (5.9). Also itis
difficult to prove that these methods can find the global minimum for the problem.
We therefore change the problem and consider a new one with different formulation.
The basis of this metamorphosis is the fact that an admissible pair (u,v) can be con-
sidered as something else, that is, a transformation can be established between the ad-
missible pairs and other mathematical entities; this transformation is an injection. Itis
possible then to set up an applicable method for calculating the image of an admissible

pair under the transformation.
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5.3.2 Metamorphosis .

In general, the minimization of the functional i in (5.9) over F may notbe possible since
an optimal control may not exist; even it exists, there is no comprehensive way to char-
acterize the optimal pair either numerically. In the following, by replacing the problem
(5.9) with another one, the minimizer of the functional i will be calculated over a set of
pairs of positive Radon-measures; these pairs should have some properties which can

be deduced from the definition of an admissible pair of control and trajectory functions.

The basis of this metamorphosis consists of replacing the pair (u, v) of an admissi-
ble trajectory and control functions with a pair of positive Radon measures. Any weak

solution of (5.1) and (5.2) defines a positive and linear functional like
) e X
u() : F —» /DF( Ju(X)) dX

on C(f), that @ = D x U; also a control funct_ioh v defines a positive and linear func-
tional like
v(): G — /D G(X,v(X))dX

on C(w), thatw = D x V.

We remind the reader that the transformation between admissible pairs (u,v) in F and
the pairs of linear functionals (u(-),v(-)) defined above, is an injection; one can show
it easily by using the same method as Rubio did in [50].‘ Now by applying the Riesz
Representation Theorem (see for 'm'stance [55]) for the functionals u(-) and v(-), one

can deduce the following Proposition.

Proposition 16 : For each admissible pair (u,v) € F there is a pair of positive Radon
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measures (g, v), p € M*(Q), v € M¥(w), so that

u(F) = /D F(X,u(X))dX; VFeC®),

W@) = /D G(X,v(X))dX; VYGeC(w). (5.10)

Proof: The proof is similar to the Proposition 1, thus it is omitted. O

Definition 12 :The pair of measures (u,v) defined in the Proposition 16 is called a

representing pair of measures.

By applying the mentioned transformation between the set of admissible pairs, F, and
the set of all representing pairs of measures, the new form of the problem (5.9) is as

follows:

Minimize : i(g,v) = p(fi) + v(f2)

Subject to: p(Fy) 4+ v(Gy) =0; Vo € Hy(D). (5.11)
where the functions Fy, € C(Q) and Gy € C(w) are defined as
Fy =ulyp+9f, Gy = —yo. (5.12)

So far, we have not achieved anything new, and just changéd only the appearance of the
problem; nothing else. We will extend the problem and shall consider the minimiza-
tion of (5.11) over the set of all pairs of measures in M+(Q) x M*(w) satisfying the
mentioned conditions in (5.11) for all ¢ € H](D), plus the extra properties which are
deduced from the definition of admissible pairs (u,v). These properties indicate that

the measures p and v project on the (z, y)-plane as the respective Lebesgue measures.

1
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In fact, if a function

£:0 — R
in C(Q2) depends only on variable X = (z,y) (i.e. £ € C1(Q2)), then
= dX =
W) = /D §(m,y) a, | (5.13)
the Lebesgue integral of £ over D. Also, if a function
(:w—R
in C'(w) depends only on variable X (i.e. ( € Ci(w)), then
v(¢) = /DC(w,y) dX =b;, (5.14)

the Lebesgue integral of ¢ over D. Therefore, instead of solving the optimal control

problem (5.9), we are going to solve the following measure-theoretical one in the space

MHQ) x M*(w):

Minimize : i(p,v) = p(fr) +v(f2)

Subjectto:  u(Fy)+v(Gy) =0, V¢ € Hy(D); (5.15)
u(€) = ag, V¢ € C1(Q);
v(¢) = b, V¢ € Cy(w).

As mentioned before, in the classical form of the optimal shape design problem the min-
imization of the performance criterion in (5.8) over the set F may not be possible, the
infimum may not attained at any admissible pair; also, it is difficult to write the nec-

essary conditions for the problem. If the minimizer pair does exist, it may difficult to
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characterize it or estimate it numerically. But in the nonclassical optimal control prob-
lem, which has been formulated as a measure-theoretical problem in (5.15), there are

three major characteristics which make the new formulation more effective. Let the

subset of M*(Q2) x M*(w) which satisfy the conditions in (5.15), be denoted by Q,
then,

e (1) The existence of an optimal pair of measures in ), minimizing the functional
(g, v) — p(f1) + v(f2) is guaranteed because of the automatic existence theo-

rem. We shall deal with this fact below.

e (2) The functional (g,v) — (f1) + v(f2) and other functions appearing in
(5.15) are linear in their arguments, the measures p and v, even for those prob-
lems normally classed as nonlinear. So the computational methods for getting the

solution are simpler.

e (3) Since the set F can be considered, by means of the transformation, as a subset
of @, therefore,

qulfl(;L, v) < 11;f i(u,v);

thus in (5.15) the minimization is global, that is, the global infimum of the prob-

lem can be approximated.

5.3.3 Existence

We intend to prove the existence of an optimal pair of measures, say (4, v*), in the set
Q for the function (g, v) — p(f1) + v(f2) under the conditions on the functions and
the sets of the problem given in (5.15). Let assume that the set of measures @ is not
empty. In other words, the elliptic equation (5.1) and (5.2) has a bounded generalized

solution for a given bounded control function (as mentioned in Chapter (4)) and hence

o
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F # ¢, as supposed before. Even though of course the set Q may nonempty while
the set of the pairs of trajectory u and control v (i.e. the set F) is empty (one of the
advantages of the theoretical-measure formulation). Existence theorems have a very
heavy topological content; we note that no topoloéy has yet been put on the set @, or
the (linear) space M(f2) x M(w) of all Radon measures, positive or otherwise, or on
the spaces Q2 and w. One must try to find a topology on the space M*(Q) x M+(w)
so that @ is compact in this topology and the function (u,v) — u(f1) + v(f2) is

continuous. This topology can be the weak*-topology on
S ={(mv) : (mv) € MHQ) x M*(w)};
for more information, the reader is advised to see Chapter 2.

Proposition 17 : The set Q of measures (i, v), defined as those measures in S satisfy

the conditions of (5.15), is compact.

Proof : Let the space M*(Q) x M*(w) be topologized by the weak*-topology and
define
So={(1¥) : (la) = ¥(L.) < W}

where W is a positive fixed number. The set Sp is a compact set (see for instance [11]).
Proposition 16 shows that
p(la) =L =v(l,)

N

where L is defined as the Lebesgue measure of D; therefore @ is a subset of the compact

set So. Moreover the set @) is closed, since one can write

Q= () {(wv): u(Fy)+v(Gy) =0},

veH(D)
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where the set {(, v) : p(Fy) + v(Gy) = 0} is the inverse image of a closed set on the
real line, the set {0}, under the continuous map (u,v) € Q@ — u(Fy) + v(Gy) € R.

Since @ is a closed subset of a compact set, it is compact. a

Theorem 4 : There exists an optimal pair of measures (p*, v*) in the set Q) so that it

is the minimizer of i(p,v) in (5.15).

Proof : The function (y,v) € @ — p(f1) + v(f2) € R, mapping the compact set
@ on the real line, is a continuous function (one may show it easily as the same way as
Rubio in [50]). Thus it attains its minimum on the compact set ) by Proposition I7.1

of [50]; thus there exists a pair of measures (u*,v*) € @, such that:
i(p*,v*) <i(p,v)

for all (p,v) € Q. : O
Up to now, it has been shown that the probleﬁ (5.15) has an optimal solution. In the‘
next we shall explain how this optimal solution could be characterized approximately
of course. In the end of this subsection, we present the following Proposition which

will be used later to prove the important theorem of approximation.

Proposition 18 : The set Q1 C Q of measures associated with (u, v) which are piecewise-
constant trajectory and control function on ) and w respectively and satisfy the men-

tioned conditions in (5.15), is weak*-dense in Q).

Proof : See the proof of Theorem 7.1 of Kamyad, Rubio and Wilson in [31]. O
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5.3.4 Approximation

Up to here we have developed an infinite-dimensional program by considering mini-
mization of i(x, v), over the set @ in (5.15). Now we intend to consider the minimiza-
tion of i(u, v) not over the set Q, but over a subset of M*(Q) x M*(w) defined by
requiring that only a finite number of constraints in (5.15) be satisfied; then the solution
of the problem (5.15) will be achieved by choosing a countable sets of functions that
are total in the spaces H}(D), C1(Q) and C1(w), that is, so that the linear combinations
of these functions are uniformly dense (dense in the topology of uniform convergence)

in the appropriate spaces. The total sets in the spaces H}(D) and C(2) are the sets
{$:;,1=1,2,3,...},{6,7=1,2,3,...},

which have been already defined in Chapter 4. Because C1(2) = Cy(w), we define
(i:w — Rsothat(y, = ¢, foralll/=1,2,3,...; hence the set

(G 1=1,2,3,...}

is total in C;(w). Thus the problem (5.15) can be replaced by the following one;

. Minimize : i(p,v) = p(fi) +v(f2)
Subject to ¢« w(F) +v(G;) =0, 1=1,2,3,...; (5.16)
w(&5) = aj, 7=123,...;

v(C) = b, 1=1,2,3,...,

where

F,':= F¢‘.,Gg = G,;,‘.for i=1,2,3,...,
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aj:=ag for j =1,2,3,...,
by :=bg for 1 =1,2,3,....

Then the important following Proposition can be deduced; its proof is similat to as the

proof of the Proposition J11.1 in [50].

Proposition 19 : Let My, M, and M3 be the positive integers. Consider the problem

of minimizing the function

(s v) — iy, v)

over the set Q(My, Mz, M3) of measures in M*(Q) x M*(w) satisfying

p(F)+v(Gi)=0, 1i=1,2,...,M;

lu(éj)=aj’ j=1)2)'-'aM2;
W) = b, 1=1,2,..., M,
then
n(M17M27M3) = Q(M},%E.M;)[l(”’ V)]
tends to

7 = inf [i(s,v)
whenever My, Mz, M3 — oo.
We remind the.‘reader that, because-the set Q in the calculation of 7 is an extension of °

the set F, our minimization is global; that is, for the given D, n < inf_ i; indeed, this

is another advantage of the new formulation.
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Note that we have limited the number of constraints in the original problem; but the

underlying space is still infinite-dimensional. In fact the problem is:

Minimize : i(p,v) = p(f) +v(f2)

Subject to : ,u(F,) +v(G;) =0, i=1,2,..., My (5.17)
wé) =aj, i=1,2,..., My;
v(() = by, [=1,2,...,Ms,

where the minimization takes place over the set Q(M,, M,, M3). This problem is one
of linear programming, in which all functions in (5.17) are linear in their arguments y
and v. Indeed it is a semi-infinite linear programming problem, since the unknowns, u
and v, are in . Let (u*, v*) be the minimizer pair, then for the mentioned fixed D, the
optimal control, v}, can be characterized from the measure v* (see below); hence the

value of I(D,v}) isi(p*, v*) = 9(My, M3, M3).

We have reached the main point of this seétion; how do we construct suboptimal
pairs of trajectories and controls for the functionaliin (5.9)? We shall proceed in several

steps:

e (i) First we shall obtain the optimal pair of measures (u*, v*) for a problem such
as (5.17). The existence of such a minimizer follows from the simple considera-

tions as the existence theorem given in Theorem 4.

e (#i) We obtain a (weak®) approximation to (u*,»*) by a set of two piecewise-
constant functions (u, v) by means of the results given in Proposition 18 (see Ap-

pendix D).
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e (2i1) The control function v obtained above, is in Ly(D), since it is piecewise-
constant and D is bounded. It can give rise to a weak solution of the system (5.1)
and (5.2) to be denoted by w,. This solution will be in H}(D). Conditions for

the existence of such weak solution are given in [38] and [33] for instance.

e (iv) We shall prove below that if the numbers M;, M, and Mj; are sufficiently
large and the weak*-approximation in step (11) above, is sufficiently good, then
the value of the functional i at the (u,,v) defined by (5.9), i(u,,v), is close to 7
and thus is a good suboptimal paJr Note that no use is made of the trajectory u,

obtained in step (z2) together with the control v.
To prove the next theorem, we follow Farahi in [15], Rubio in [51] and especially in [53].

Theorem 5 : Let (u,,v) be the pair constructed as explained above. Then, under the
appropriate conditions on the approximations involved, as My, M, M5 tend to oo, we
have

i(uy,v) — igf [i(,u, v)].

Proof: First we are going to show that for a given positive number ¢ > 0, one can
choose the positive integers My, M; and M3 so that

l i(uv’v) - inf i(l"’ V) | < 2. (5.18)

Q(My, M2, M3)

Let (u*,v*) be the minimizer of the problem (5.17) over the set Q(M;, Mz, Ms) for
fixed integers M; > 0, M; > 0 and M5 > 0; its existence can be proved by the same
arguments as the proof of the Theorem 4. We choose € := MLI; then by Proposition 18,

because the set Q; is weakly* dense in (), there exists a pair trajectory-control (u, v) so
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that the pair of measures (p., v,) € @1 generated by the pair (u, v) satisfies

| [pu(fr) + ()] = [ (A) + v (f2)] | < € (5.19)

pu(F) +v(Gs) = 0;i=1,2,..., My; (5.20)

we note, further, that these measures satisfy the rest of the conditions in (5.17) for func-
tions in C;(Q2) and Cy(w).

Now, by the manner explained in step (4¢z), one can obtain the weak solution, the tra-
jectory u,, corresponded to the control v. Let p,, be the corresponding measure to the
trajectory u,; hence the trajectory-control pair (uq,v) introduces the pair of measures

(lu,, o) in Q. At this stage, we intend to prove that

| (#ue — pu)(f1) | < € (5.21)
We remind the reader that the function f; satisfies (5.3); thus we have

| (e = ) () 1S K | (e = )8 |, (522)

where ¥ : § — U is a function defined by 9(X, u) = u for each (X, u) € Q. Further,
by considering the statements (5.17) and (5.20), the folloWing equalities are satisfied

foreach: =1,2,..., M;:

(Puu - ,Uu)(Fz) = (l"uv - .uu)(Fz) + [Vu(Gi) - Vu(Gi)]
= [ (F2) + 2u(Gi)] = [1u(F) + 12(G5))]

= 0
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then by considering the definition of F; in (5.12), foreach ¢ = 1,2,..., M;, we have

(Buy = #u)(F3) = (fuy — B )(FAP; + fib;) = 0. (5.23)

As explained before, the set of functions ;,2 = 1,2,3,..., was chosen so that this
set is total in the space H}(D); this means that the set of the linear combinations of
the functions 4;,7 = 1,2,3,..., is uniformly dense in the space Hgj(D). Thus each
function ¢ € H](D), can be approximated by one of these linear combinations; hence
if we consider {1; : 4 =1,2,3,...} as a base for the Hilbert space H}(D), there exist

coefficients ¢; € R,2=1,2,3,..., so that, if define P = 32, ¢;9;, we have
sup |[¥ — P |[<e. (5.24)
D

From (5.23), it is calculated that

[ (i = 1 )OAP+FP) | = | ol = m)IAY 4 F)|
= 1Yl — )0+ )|
=M +1

Yo el (Buy — m)(OAY; + F3) |

i=Mi+1 )
0 (5.25)

IN

by considering again the equality (5.23), the above statements shows that whenever

the number M, is increased, the value of O will decrease; therefore 1\% —— 0 when
1

M; — oo (indeed, © —» 0 where M; — oo). Thus from (5.24) and (5.25) one can

conclude that

| (g = pu)(FAY + f2) | = o My). (5.26)
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Now, choose i € H}(D) so that on the given domain D we have
| fél< €, |Ap—-1]< € (5.27)

with
LN
¢ TK (T + DI(Q)
that L(Q) is the Lebesgue measure of §2 and the positive number T' will be defined later

on. So, by applying (5.26), we have

(g — )I) | = | (pus — L )[(FAY + foh) — (H(Ay — 1)+ f¥)] | (5.28)
< (e = #a)(FAY + ) | + | (Buy = pu)(F(A% — 1) + FP)] |

< o(Mi)+ | (puy — pu)(B(AY — 1) + f9) |;

also note that

| (uy — p)(F(AY = 1)+ f) | < ¥ (5.29)
where

¥ = max{| ptu, (H(A% — 1) + f) || pu($(A% - 1) + f3) | ].

Without loss of generality, here we suppose that the righ_t—hand-side of (5.29) is equal
with | ., (9(Ay — 1) + f) |. Moreover, the functions 4 and f are assumed to be
bounded on ; by the boundedness of Q itself, the function ¢ € Hj (D) is also bounded
(since C2 (D) isdense in Hy(D), see Chapter 4 section 4.3'). Thus the function 9 (A —
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1) + fi is a bounded function on 2. Therefore
| pu((A% — 1) + ) | < max | 9(A% — 1) + fib | pu(la);
but g, (lg) = L(2). As aresult,
| pu($(A% — 1) + f) l.s max | H(AY — 1) + fy) I.L(Q)- (5.30)

Also, the inequality (5.30) is satisfied if p, is changed with y,,, .
By regarding (5.29) and (5.30), inequality (5.28) implies

| (B — pu)(P) | £ o(M1) + max | $(AY — 1) + f3 | L(). (531)
From (5.27) it is deduced that

| 9(A -1+ | < [F[AY—1]+]fd]|
< €(ld]+1). (5.32)

The function | ¢ | is bounded on §2, because the generalized solution is bounded; let T
be the least upper bound of | 9 | over { (in other words T = max, | ¥ |), then, by

consid_erin g(5.32) we have
max | d(AY — 1)+ fop | < (T +1). (5.33)
Hence, it is concluded from (5.31) and (5.33) that

| (o = w)(@) | S o(M) +€(T +1)L(R) = 7, (5:34)
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whenever M, is taken sufficiently high to make o(M;) = 3%. Now the inequality (5.21)
can be deduced from (5.22) and (5.34).
Further,

i(u,0) = inf (0 ) = () + 0] = 0°(5) + 77 ()]

= [pu, (f1) + ()] = [6°(f1) + v°(f2)] + [u(f1) — pu(F1)]
= {pu(f1) + v(Ff2)] — (" (f1) + v (f2)] + [t (A1) — pu(F1)];

hence

[i(uo,0) = inf 300 0) [ ST )+ F)] = () + ()]
+ | (g = pu)(f1) | (5.35)

Applying (5.19) and (5.21) in (5.35) shows the following relation:

|i(uy,v)— inf  i(p,v) | < 2,

Q( My, Mz, M3)

which is the inequality (5.18) that we were looking for. Now if M;, M;, M3 — oo,
by applying the Theorem 4,

My .Ml%giﬂw i(uv, 'U) - uqlf i(#, V).

In this section we have explained how one can obtain the pair of trajectory and con-
trol functions for the problem (5.9). By means of the Proposition 16, the problem has

been replaced by a measure-theoretical one. We have identified the corresponding pair
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of optimal measures (u*, v*) as the solution of the linear programmingproblem in (5.17)
defined by just a finite number of constraints. The measure v* introduces a piecewise-
constant suboptimal control function, say v*, for the problem, by means of the Propo-
sition 18; in the Appendix D, we explain how on—e can obtain v*. This control gives
rise to u,s, a weak solution of the system (5.1) and (5.2). Then, Theorem 5 proved
that the value of i(u,«,v*) is a very close approximation for the ‘optimal value of the
performance criterion in the general case. Thereforé the pair of trajectory and control
functions (u,+,v*), is the nearly optimal solution for the problem (5.9).

Indeed, for a given domain, we can characterize the suboptimal control function (de-
fined on D of course) for the problem (5.6), say v}, by applying the above procedure.
Since, for a fixed domain, the optimal shape design problem (5.6) changes into the op-
timal control problem (5.9), and the optimal value of the functional I (i.e. I( D, v} ) can
be calculated as

I(D,vp) = i(uws,vp).

Calculating the weak solution v = u,s for tﬁe problem (5.1) and (5.2), defined by
v = v}, isnot alwayseasy. For the rest of the work, we need only the optimal control v},
(which already have) and the value of I( D, v},)) which is exactly the value of 5, defined
in the Proposition 19; there is no need to use the function u,s anymore. Proposition 19

shows that we can calculate the optimal value of the functional I as
I(D,vp) =i(u",v") = n(My, Mz, Ms) (5.36)

(To see an example about finding the weak solution for the similar cése, the reference [15]

is recommended for instance.)
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5.3.5 Approximation by finite linear progi'amming

The problem (5.17) is a semi-infinite linear programming problem; the number of equa-
tions is finite but the underlying space Q(M;, M, M3) is not a finite-dimensional space.
It is possible, therefore, to estimate the solution by a process of discretization. We re-
mind the reader that there are several methods for treating numerically such problem
which do not involve discretization, for instance Rudolph method (see for example [56]
and [57]) and the Glashoff and Gustafson method (see [23]). We mention also that one
may try to solve these kinds of problems in the space M+ (2 Uw) orin M*(Q x w) in
the appropriate manner (see for example [51]).

A pair of measures (g, v) in the set Q( My, M, M3) can be characterized by a result of
Rosenbloom [48], which was proved in TheQrem A.5 of an Appendix in [50], that u

and v in (5.17) have the form

M1+M2 M1+M3
p= Z an6(Zn) , V= Z ,BkS(zk) (537)
n=1 k=1

with triples Z,, € §, z; € w and the coefficientsa, > 0,8, > 0,forn =1,2,..., M;+
M,k =1,2,..., M;+Ms, where 6(t) is supposed to be a unitary atomic measure with
support the singleton set {¢}.

This structural result points the way toward a further appréximation scheme; the mea-
sure problem is equivalent to a nonlinear one in which the unknowns are the coefficients
Qn, Bk, and supports {Z,}, {zc} forn = 1,2,..., M, + Mk =1,2,..., M + M,
It would be more convenient if one could find the solution only with respect to the co-
efficients o, and Gy in (5.37); this would be a finite linear programming problem. The
answer lies in approximating this support, by introducing a‘ set dense in §2 and w. Propo-

sition II1.3 of [50] Chapter 3, states that the measures u and v in (5.37) have the fol-
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lowing form

N K
b= 0nb(Z), v =3 Bub(z) (5.38)
n=1 k=1

where Z,,n =1,2,...,N,and z;,k = 1,2,..., K, belongs to dense subset of  and
w respectively. Note thatthe elements Z,,,n = 1,2,...,N,and 2z, k = 1,2,..., K, are

fixed; the only unknowns are thenumbersa,,n = 1,2,..., N,and i, k = 1,2,..., K.

Now let us put a discretization on Q and w with the nodes Z, = (2, Yn, us) for
n=12,...,N,and zx,k = 1,2,..., K, belong to dense subset of them; then we can
set up the following finite linear programming problem in which the unknowns are the

Coefﬁcientsan,n= 1,2,---’N’and,8k7k = 1)27'--1K:

N K
Minimize : > anfi(Za) + Y Brfa(zk)
k=1

n=1

‘Subject to : a, 20, n=12,...,N;
Br>0, k=12...,K;

N K
S anFi(Za)+ D BiGi(z) =0, i=1,2,..., My
n=1 k=1

N
Zangj(zn)=aj, j=1,2,...,M2;

n=1

K
Y Bli(z) =b, 1=1,2,...,Ms.

k=1

(5.39)

We have shown in this section how one can obtain a solution (approximately) for

the optimal control problem given in (5.9) via the finite linear programming problem



Chapter 5: Shapes, Measures and Elliptic Equations (Variable Control) 145

mentioned in (5.39) above. fIherefore we are able to characterize the optimal control
v}, and moreover, calculate the value of I{( D, v},) for each given domain D. In the next
section, we shall show how one can find out the optimal domain and its associated opti-
mal control of course, for the optimal shape design problem shown in (5.5) by applying

the result of this section.

5.4 The Optimal Shape

In the previous section we have pointed out how one can calculate the minimum value
of I(D, v) for a given domain D. In the other words, we obtained the approximate pair
of trajectory and control functions (u, v) for the optimal control problem (5.9) in which
they have characterized the optimal value for the functional I( D, v) over F. Consider-
ing this fact, in the present section we shall develop a procedure for finding (an approx-
imation to) the optimal value of the same functional, over the set of all admissible do-
mains Dyy; also, we intend now to solve the optimal shape design problem mentioned
in (5.5) by determining the optimal shape and its related optimal control function, to
obtain the minimum value of the performance criterion I( D, v) on F. From the results
of the previous section, a function of a finite number of variables, J, will be defined, in
which its minimizer will be the (weak*-approximated) optimal domain for (5.5). This
minimizer, further, will be characterized by applying a standard minimization algorithm
(like Nelder and Mead [42]) over the function J, assumed to be perfect in the theoreti-

cal work below.

Each domain D € Dy, as explained in Chapter 4, is defined by a M -representation
like {Am = (Tm, Ym),m=1,2,..., M} where the numbers Y;,,m = 1,2,..., M, are

fixed; therefore each admissible domain is determined by a set of finite points. Thus,
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we choose a domain D € Dy just by fixing the set of M numbers, the z-components,
{z1,%2,...,zp}. By solving the appropriate finite linear programming problem in
(5.19), the nearly optimal value for I( D,v) (ie. I(D,vp) = i(p*, v*)) is calculated as

a function of the variables z1,z3,...,ZM;m. Conseciuently, one can define the function
J: DeDy — I(D,vp) € R;

indeed J is a function of the variables z1, z2, ..., Zas, and hence it is a vector function.

So, let us to redefine this function as follows:

J: (2,23,...,2m) € RM — I(D,v}) € R. (5.40)

The global minimizer of the vector function J, say (z3},z3,...,z}), can be identi-
fied by using one of the appropriate minimization methods; one can apply thé method
introduced by Nelder and Mead, [60] and [42], for instance from Subroutine AMOEBA
in [47]) or EO4J AF-NAG Library Routine. These routines usually need an initial set
of components (initial domain) to start the process of minimization; we also suppose
that they give the global minimizer.

Each time that the Algorithm wants to calculate a value for J, a finite linear program-
ming problem like (5.39) should be solved; thus for a given domain D, the optimal con-
trol ('UB) is characterized. Whenever it reaches to the minimum value for J, the mini-
mizer (z3},23,...,z5) (the optimal domain D*), and therefore its associated optimal
control have been obtained. So, the gptimal domain and the optimal control are deter-
. mined at the same time; this is the main advantage of the new metﬁod. The following
Proposition shows that the value of I(D*, v},.), obtained by the aﬁove process, is the
optimal value for the functional (5.4) and hence(D*,v},.) is the optimal solution for

the given optimal shape design problem defined in (5.5).
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Proposition 20 : Let the minimization Algorithm (for finding the minimizer of J in
(5.40)), give the global minimizer (z3,z3,...,23,). If the domain found by the mini-
mizer is denoted by D*, then I( D*,v},.) is the optimal value of the functional Lin (5.5)

and hence the pair of domain and control ( D*, ‘UE;-) is optimal.

Proof: Assume that the value of I(D*,vp.) is not optimal, thus there exists a pair of

domain and control (D’,v) € F, where D’ € Dy, so that:
I(D',v) < I(D*,v}.).

Let v’ be the optimal control for the problem (5.9) defined with respect to the given
domain D’; then

i(p*,v*) = I(D',v") SI(D',v) =i(p,v).

Because the process of embedding defined above, is injective and v’ is optimal, we

should have v’ = v},,; see Proposition 19 and also Theorem 5. Therefore,
I(D',vp) < I(D*,vp.).

Now, by considering the definition of the function J, this inequality implies that J(D’) <
J(D*). Let (z}, 5, . ..,z be the representation of the domain D’ € Dyy; by (5.40)

we have

J(:l!’l, ‘L'Iz, seey 2;\4) < J(m;,(l?;, e ,:B;M).

The above inequality states that (z7, 3, . . ., Z},) isnot the global minimizer of J, which
is a contradiction; since, as explained above, it is supposed that the minimization Al-
gorithm is perfect; it gives rise to the global minimizer. As a result, I(D*,v}.) is the

optimal value for functional I over F, so the pair of (D*, v},.) is optimal. a
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5.5 Numerical Examples

We will apply the method introduced in this chapter for estimating nearly optimal do-
mains and controls in the following examples. We will make the same assumptions as
in the examples in Chapter 4, same performance criterion, same discretization and so
on; thus the reader can compare the results for the controlled system with those for the
uncontrolled one.

It is assumed M = 8 and that each domain in D)y is characterized by the set of 8
points, {Am = (Tm, Ym),m = 1,2,..., M}, with the same constant Y,,’s as Chapter
4 (see Figure 4.6) so that z,, > 0 foreachm =1,2,..., M. We assume that the func-
tions u(-) and v(-) take value in the set U = V' = [-1,1] and hence for each given
domain D € Dy we have @ = D x [-1,1] and w = D x [—1, 1]; one may obtain sets
U and V by trial and error so as to be sure that the appropriate finite linear program-
ming problem (5.39) has a feasible solution in each iteration. We have chosen them as
above by solving the finite linear program without using the standard minimization AJ;
gorithm, and have also checked the results of t_he' ﬁnite linear program in each iteration

when used in the minimization Algorithm.

Our way to find an optimal domain for functional (5.4)- is an iterative method. For
a given set of variables z; = X3,22 = X»,...,23 = Xj, in other words for the given
domain D, the finite linear program (5.39) will be solved to find the optimal control and
its trajectory pair for the elliptic equations (5.1) and (5.2);. thus the value of I( D, v}) is
calculated. Then, the standard minimization Algorithm advises us to change the value
of X;,X;,,...,Xg, with the new one so that the functioné.l I, should have less value
than before. These new values define a new domain for the next iteration. The pro-

cess will continue till the Algorithm finds the global minimizer; note that the applied
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minimization Algorithm, AMOE BA, is supposed to Cover this fact.

5.5.1 Discretization

To set up the linear programming problem (5.39) for given values X, Xs,..., X, it
is necessary first to put an appropriate discretization on the spaces {2 and w. We select
N = 740 nodes Z, = (Zn,Yn,Un) € § as same as examples in Chapter 4. Also the

nodes zx = (zk, Y&, vk) € wfork =1,2,..., K = 1100, are chosen as follows:
Zl = 210(i-1)+11(j~1)+D

fori=1,2,...,10,7 =1,2,...,10,1 = 1,2,...,11, where

t—1)+0.5
T10(i-1)+11(G~-1)+ = (_')_'—‘Xi—l;
10
Yio(i-1)+11(j-1)+ — Y1
2(1—1)
Vio(-+nG-H = e -1,

with

! .
XO = g(Xl —_ 1) + 1, }’0 = 005,

1
X, = §(1 - Xs) + 1, Yy = 0.95.
Indeed the value of z is one of the following values:

0.05X;-1,0.15X;_1,...,0.95X;_4,
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and the component vy, takes one of the below numbers:
-1,-038,...,-0.2,0.0,0.2,...,0.8,1.

Now, the set w = D x [—1,1] is covered by a grid, defined by taking all points z; =
(zk, Yk, uk), k = 1,2,...,1100, as above. For the linear programming problem men-
tioned in (5.39), we also select M; = 10, number of functions %;’s and M; = 8, num-
ber of functions §;’s in which they have been defined for the examples in Chapter 4.
We select M3 = 8, the number of fuﬁctions in C1(w); since C1(Q) = C1(w), we chose
G:=¢&forl=1,2,...,8 Although these functions seem to be the same, but we con-
sider that they are applied for the different spaces, and hence they affect on the different

set of points; thus they indeed are different. Therefore
b = /D G(z,y) dX = theareaof D;(:=a;), VI=1,2,...,8;

where a; and D, are defined in Chapter 4 section 4.5.
For the next examples the integrand functions f; and f; in the performance criterion in

(5.4), are selected as
f]_(X, U) = (U haad 0.1)2 ’ fz(X’ ‘U)V - 0,

so, the performance criterion is precisely the same as Chapter 4 and hence it is possible
for the reader to use these values for any comparison between the controlled and the
uncontrolled problems. In one example, the control function is plotted as the way as

described in Appendix D.

Consequently, for the following two sets of examples, the finite linear programming
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in (5.39) is the below one:
740 ’
Minimize : > on(u —0.1)?
n=1
Subject to : _ an, >0,
:Bk 2 07
740 1100

Z anFi(Zn) + Z IBkGi(zk),
n=1 k=1

740

Z a‘né‘j(zn) = aja
n=1
1100

> Brli(ze) = b,
k=1

n=1,2,
k=1,2,
1=1,2,
3=12,
[=1,2,

151
, 740;
, 1100;
, 10;
., 8;
8.
(5.41)

To find the optimal value for unknowns o, and By, the E04M BF — N AG Library

Routine Document was applied; from the resulted values, one can obtain the optimal

control function. Also the result shows the optimal value of I{( D, v},) for the given D.

As mentioned before, this value is a function of the variables X;, X, ..., Xs. Thus the

function J (see (5.40)) has been established. Then, by applying a standard minimiza-

tion Algorithm (AMOE B A) we obtained the optimal domain in Dy and also charac-

terized its associated suboptimal control. We remind the reader that the functions F;

and G;,1=1,2,..., 10,Ahave been calculated by means of the package “Maple V.3”.
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5.5.2 Minimization and penalty functions

Up to now, the function J as a function of variables X, X5, ..., X, has been estab-

lished. The variables are supposed to satisfy in conditions:
0<Xn<2,m=1,2,...,8.

These conditions are applied by means of a penalty method to change the constraint
minimization problem into an unconstraint one (for instance see [60]). For this reason,

the following penalty function is defined; let
Ty = max(0.000001 — X, 0), T2 = max(X,, — 1.99999, 0);
then we consider
Pu(Xm) =/Ts +/T5; Ym=1,2,... 8.
Hence the penalty function P(X1, X3, ..., X3) is defined as:
8
P(X1, X2, Xs) = 3 Pr(Xn):
m=1

Thus the objective function for minimization, the function J’, is shown as:

107 i P(X1,Xs,...,Xes) # 0
J(D) ifP(Xy,Xs,...,Xs)=0..

J(D) =

Now by applying the Downhill Simplex Method in Multidimension, the Subroutine
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AMOEBA (see[47]), one is able to find the minimizer of the problem (5.5). To know
how the penalty function and AMOE B A work, the reader is recommended to read the
related part of section 4.5 in Chapter 4. In the next, two sets of examples will be given,

one for a linear and the other for a nonlinear case of the elliptic equation (5.1) and (5.2).

5.5.3 Examplel

Asin Ezamplel in the previous Chapter, in the linear case we consider f(z,y,u) = 0,

the functions F; and G; in (5.12) are
F,' = uA’l,b,;, G,; = —’(,b,;'v, 1= 1,2,...,10.

We used the initial values X,, =1,m =1,2,...,8, as a given domain for starting the

Algorithm and applied ftol = 10~". Here are the results:

o The optimal value of I(D,v) = 4.4447937006414 x 10~%;
; The number of iterations = 395;

e The value of the variables in the final step:
X; = 0.043032, X, = 0.085128, X5 = 1.178854, X, = 0.003257,
X5 = 0.000717, X5 = 0.002100, X7 = 0.004760, X5 = 1.292132.

These define the optimal domain; this, together with the initial domain have been plot-
ted in the Figure 5.1, and the obtained optimal control is plotted in the Figure 5.2. We )

also plotted the change of the objective function, according to the number of iterations,

in the Figure 5.3.



Chapter 5: -Shapes, Measures and Elliptic Equations (Variable Control) 154

Initial Shape

o
Al
b
>3
N
o
o
o L . : :
00 05 10 15 20
X
Final Shape
i~
Q¥
0
>3 .
0 .
o
=
o

00 05 10 15 20
X

Figure 5.1: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X,, = 1.0,m = 1,2,...,8, in the linear case.
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Optimal Control function

Figure 5.2: The optimal (distributed) control function for the starting initial values
X, =10,m=1,2,...,8, in the linear case.
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Figure 5.3: Change of the objective function according to iterations (for the dis-

tributed controlled system) in the linear case with the starting valves X,, = 1.0,m =
1,2,...,8. mo
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Further, we applied the initial values X, = 1.1,m = 1,2,...,8, and ran the same

program with this; the results obtained are:

o The optimal value of I( D,v) = 5.9912470738808 x 10~3;
e The number of iterations = 373;

o The value of the variables in the final step:
X; = 0.002314,X, = 0.018096,X; = 1.136087,X; = 0.004777,Xs =
0.320013, X = 1.981772, X7 = 0.284138, X3 = 0.594778.

The initial and final shape and the change of the objective function have been plotted

in Figures 5.4 and 5.5.
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Figure 5.4: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X,,, = 1.1,m =1,2,...,8, in the linear case.
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Figure 5.5: Change of the objective function according to iterations (for the dis-
tributed controlled system) in the linear case with the starting valves X, = 1.1,m =
1,2,...,8.
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5.5.4 Example2

In the nonlinear case, again as in Ezample 2 in Chapter 4, we have taken f(z,y,u) =
0.25u? and also the same value for stopping tolerance (the variable fol in the subroutine

AMOE BA). Thus the functions F; and G; in (5.12) have been defined as

F, = ulAy; + 0.25u2¢;, Gi=—¢wv, 1= 1,2,...,10.

By applying the initial value X,, =1,m =1,2,...,8, as a given domain for start-

ing the standard minimization algorithm (AM OE B A), the results are the following:
o The optimal value of I( D,v) = 5.9905811520515 x 1073;

e The number of iterations = 373;

o The value of the variables in the final step:
X; = 0.003829, X, = 1.982183, X5 = 0.321985, X, = 0.018270,
- X5 = 0.001920, X = 1.134801, X7 = 0(.283892,X8 = 0.594196.

According to the above results, the initial and the optimal domain are shown in the
Figure 5.6; moreover, the change of the objective function, according to the number of

iterations is also plotted in the Figure 5.7 below:
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Figure 5.6: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X, = 1.0,m = 1,2,...,8, in the nonlinear case.
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Figure 5.7: Change of the objective function according to iterations (for the distributed

controlled system) in the nonlinear case with the starting valves X, = 1.0,m =
1,2,...,8.
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As in Ezample 1, we also chose initial values X,, = 1.1,m =1,2,...,8, and ran
the program; here are the results obtained:
e The optimal value of I( D,v) = 4.4439439539026 x 10~3;
e The number of iterations = 395;

e The value of the variables in the final step:
X; = 0.044476, X, = 0.084477, X3 = 0.004738, X, = 0.001490,
Xs = 0.003245, Xs = 1.180229, X, = 0.000127, Xz = 1.291236.

For this case, the initial and the final shape and also the change of the objective func-

tion, have been plotted in the Figures 5.8 and 5.9 respectively.
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Figure 5.8: The initial and the optimal domain (for the distributed controlled system)
with the starting initial values X,, = 1.1,m = 1,2,...,8, in the nonlinear case.
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Figure 5.9: Change of the objective function according to iterations (for the distributed
controlled system) in the nonlinear case with the starting valves X,, = 1.1,m =
1,2,...,8.



Chapter 6

Shapes, Measures and Elliptic

Equations (Boundary Control)

6.1 Introduction

In the present chapter, we consider again D C R2asabounded domain with a piecewise-
smooth, closed and simple boundary 0D which consists of a fixed and a variable part;
these parts have been introduced in Chapters 4 and 5 in detail (see Figure 4.4).

Letf: DxR — R, f€ C(DxR);g: D — R,g € C(D), be two given functions.

A domain D is called admissible if the elliptic equation
Au(X) + f(X,u) = g(X), (6.1)
with the boundary condition

Ulgp = V) (6.2)

164
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has a bounded solution on the domain D; here are also supposed that X = (z,y) € D,
v : D — R is a bounded function which takes values in the bounded set U, and
v : 0D — R is a bounded boundary control function, taking values in abounded set
V. '

As explained in Chapter 4, the variable part of D can be approximated with M number
of corners. For a fixed positive integer M, the set of all admissible domains is denoted

by Du.

The aim of this chapter is to identify the optimal domain in Dy, D*, and its as-
sociated optimal control function, v}., for a given optimal shape design problem with
a functional performance criterion, I(D,v)(D € D), governed by the elliptic equa-
tions (6.1) and (6.2). Again, as explained in previous chapters, the optimal pair will be

characterized in two stages:

¢ (i) For a given domain D € Dy, by applying the generalized form of (6.1) and
' (6.2) (weak solution), and using the process of embedding, the problem will be
replaced by a measure-theoretical one which definitely has a solution because of
existence theorems. Then its optimal solution can be approximated sufficiently
close by a solution of a finite linear program. Hence the optimal control v}, as-
sociated with the fixed domain D, will be characterized. In this manner, for any
given domain D, one can calculate the value I(D,v}); thus in the end of this

stage, the following function J can be identified,

J: DeDy — I(D,vp) €R.

o (ii) In the next stage, a standard minimization algorithm will be applied on the

function J above, to find its minimizer. The result determines the optimal pair of



Chapter 6: Shapes, Measures and Elliptic Equations (Boundary Control) 166

domain and control which indeed is (an approximation of) the optimal solution

for the given optimal shape design problem.

As explained in Chapter 4, this new method has some advantages in comparison

with similar methods; some of these advantages are listed in previous Chapters.

6.2 Classical optimal Shape and Control problem

For a given admissible domain D € Dy, let fy : DxU — Rand, f,: 0DxV — R
be two continuous, non- negative, real-valued function; further we assume that there is

a constant K > 0 so that the function f; satisfies
| A(X, u(X)) IS K | u], (6.3)

for all pairs (X, u(X)) where X € D. We define the functional I as the performance

criteria for a classical optimal shape design problem as

I(D,0) = [ A(X,u(X))dX + [ fa(s,0(s)) ds, 64)

where u is the bounded solution of the boundary elliptic equations (6.1) and (6.2); more-
over the function v is supposed to be a Lebesgue measurable function which appears in

(6.2). We define also

F = {(D,v) | D € Dy is admissible,v : 0D — R satisfies (6.2)}
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In this Chapter we are going to solve the following optimal shape design problem on

F.

Minimize:  I(D,v)= /D F(X, u(X)) dX + /a _fals,0(s)) ds
Subject to : Au(X) + f(X,u) = g(X)

Upp = V. (6.5)

In general it is difficult to characterize a classical bounded solution for the elliptic equa-
tion (6.1) and (6.2); therefore it is too difficult to find the solution of (6.5). By applying
the variational form of the elliptic equations, defined by the following Proposition, we
will change the problem into the other in which a bounded weak solution of (6.1) and

(6.2) is involved.

Proposition 21 : Let u be the classical solution of (6.1) and (6.2), then we have the

Jollowing integral equality:

[t +vf)dx - [ o(ven)ds= [ 4gdX, vy € HY(D).
(6.6)

that here n is the outward unit vector on 0D

Proof: By applying Green’s formula in the same way as we did in the Proposition 13,

one can prove this proposition; so the detail is omitted. - O

Proposition 6.1 states that the equations (6.1) and (6.2) can be written in a new for-
mulation in (6.6). A function u € H*(D) is called weak (generalized) solution of the
problem (6.1) and (6.2) if it satisfies in the equality (6.6). By applying this fact, we are

going now to calculate the value of the functional I for a given domain D and its as-

"
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sociated control v; for a fixed domainD, the optimal shape problem is changed into an

optimal control one as follows:

Minimize : I(D,v) = /D A(X,u(X)) dX + /8 Falsv()) ds;
Subject to : /D(uA¢ +¢f)dX - /aDv(vwn) ds = /1;1/19 dX V¢ € HY(D),

6.7)

where the minimization takes place on the set of admissible pair of trajectory and con-
trol functions (u, v), say F, which was defined in section 5.3 in Chapter 5. We suppose
that F is nonempty; in other words, because D is admissible, the elliptic equations (6.1)

and (6.2) have a bounded weak solution.

6.3 Metamorphosis and Approximation

Let D be a fixed domain, and define 2 = D x U and w = 8D x V. Then, a bounded

weak solution defines a positive and linear functional like
u(:) : F — ‘/;) F(X,u(X))dX

on C(Q); moreover, a control function v, defines the following positive, linear func-
tional |
o) : G —s /6 L Gs,V(s)) ds

on C(w). Therefore there exists an injective transformation between the set F and the

set of all pairs of linear functionals (u(:),v(-)) (see Proposition 2). The Riesz Repre-
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sentation Theorem [55] shows that there are measures p,, and v, so that,
pu(F) = uw(F)VF € CR), 1(G) = v(G) VF € C(w),

(see for proof Proposition 16).

Now, by applying the mentioned transformation, the new formulation of the problem

(6.7)is:
Minimize : i(pu, ) = pu(f1) + vu(f2)
Subjectto:  p.(Fy)+ 1(Gy) = cy; Vo € HY(D), (6.8)
where
Fy=ubp+9f, Gy = —o(v¥nlon), e = [ 4g. (69)

So far, we have just changed the appearance of the problem; now we consider the
minimization of the problem (6.8) over the set of all pairs of measures (g, v)in MH(Q)x

M*(w) satisfying the mentioned conditions plus the extra properties:

w(e) = [ €e,y)dX = a,

ur)= [ 7(s)ds =b, (6.10)

which are deduced from the definition of admissible pair of trajectory and control func- _
tions, (u, v). These properties indicz;lte that the measures x and » project on the (z, y)-
plan and real line respectively, as Lebesgue measures. We remind the reader that here it
is supposed ¢ : @ — R in C(Q) depends only on variable X = (z,y),and 7 : w —»

R in C(w) depends only on variable s. Therefore, we are going to solve the following
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problem:
Minimize : i(p,v) = u(f1) +v(f2)
Subjectto:  u(Fy)+u(Gy)=cy Ve HID),
(&) = ag, V¢ € Ci(Q);
v(T) = bs, VT € C’l(w). (6.11)

The new formulation has some advantages that were explained precisely in Chapter 5;
for instance, if we denote @ C M*1(2) x M*(w) as the set of all pairs of measures
(u, v) that satisfy the conditions mentioned in (6.11), then Q is compact (see Chapter
5, Proposition 17) and moreover the function (g, v) € @ — u(fi) + v(f2) € Ris
continuous. Thus by Proposition 1.1 of [50], the problem (6.11) definitely has a min-

imizer in Q.

The problem (6.11) is an infinite-dimensional linear program; but its solution can
be achieved by choosing the countable sets of functions that are uniformly dense (total),

in the appropriate spaces. Let
{d)i,i = 1’2’3)“'} ’ {£j’j = 1’2’3""} ’ {Tl,l: 17273a"'}’

be total sets in the spaces Hj (D), C1(£2) and C(w) respectively, thus the problem (6.11)



Chapter 6: Shapes, Measures and Elliptic Equations (Boundary Control) 171

can be replaced by the following one;

Minimize : i(p,v) = p(f1) + v(f2)

Subject to : w(F) 4+ v(G;) = o, i=1,2,3,...;
p(é;) = aj, 7=142,3,..;
v(m) = by, 1=1,23,..., (6.12)

where

F,:=F,,,G; =Gy, ci=cy, for i=1,2,3,...,
aj i= ag; for =1,2,3,...,
by :=byfor [=1,2,3,....
Let us now choose just a finite number of constraints in (6.12) and consider the follow-

ing minimization problem:

Minimize : i(p,v) = p(fr) +v(f)

Subjectto:  u(F)+v(Gi)=c, i=1,2,..., My;
p(fj)=aj, j=1727"°1M2;
u(m) = by, 1=1,2,..., M. (6.13)

Proposition 19 in Chapter 5 shows that the solution of (6.13) tends to the solution of
(6.12) whenever My, M, M3 —, oo; hence the solution of (6.11) can be approx- -
imated by a solution of (6.13) when the positive integers M, Mg and M3 are chosen
large enough. Now one can construct suboptimal pair of trajectofy and control func-
tions for the functional i in (6.7) via the optimal solution, (x*, v*), of (6.13); in Chapter

5, this procedure has been explained in detail. Let (u,,v) be the pair of trajectory and
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control functions constructed as explained there; then we have the following theorem
which guarantees that the pair is a good approximation for the solution of (6.11). The

reader can find its proof similar to others in [53] and Chapter 5.

Theorem 6 : Under the appropriate conditions on the approximations involved, if the

values My, M, and M; tend to oo then

i(us,0) — infli(s, )]

The problem (6.13) is a semi-infinite linear programming problem; the number of
equations is finite but the underlying space is not a finite-dimensional space. Itis possi-
ble then to estimate its solution by a process of discretization. a pair of measures (, )
can be characterized by a result of [48] which is proved in [50], that 4 and v in (6.13)
have the form like (5.37). By introducing appropriate dense subsets in {2 and w, and ap-
plying the Proposition I11.3 of [50], one can conclude that 4 and » have the following

form

N - K
p= Z an5(Zn) y V= ’;ﬂk6(zk)

n=1
where Z,,n = 1,2,...,N,and z;, k = 1,2,..., K, belong to dense subset of Q and
w respectively, and §(¢) is the unitary atomic measure with support the singleton set
{t}. Hence, by defining a discretization on Q and w with the nodes Z, = (n, Yn, Un)
forn = 1,2,...,N, and z;, k = 1,2,..., K, the solution of (6.13) can be obtained

by solving the following linear programming problem in which its unknowns are the
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coefficients a,,n = 1,2,...,N,and Bx, k =1,2,..., K.

N K
Minimize : Z onfi(Z,) + Z B f2(zx)
n=1 k=1

Subjectto: g 2 0, n=12,...,N;

N K
EanF.;(Zn)-f- EﬂkGi(zk) = ¢, t=1,2,..., My;
n=1 k=1

N
Z a‘ﬂﬁj(Zﬂv) = ay, .7 = 1127' .- 7M2;

n=1

K

S Ben(z) =b, 1=1,2,..., M.
k=1

(6.14)

The result of this problem introduces a pair of measures, call (p*, v*), that for this pair,
the value of the functionali, i.e. i(p*, v*), will be minimum on the set Q(M;, M2, M3),
defined by the pairs of measures in M*(Q) x M*(w) satisfying in conditions explained
in (6.14). This pair of measures, as explained in Chapter 5, serves the suboptimal pair of
trajectory and control functions (u.s , v5). Thus for the fixed domain D, the minimum

value of the functional I in the problem (6.5) is approximated as

I(D,vp) =i(p*, v*).

6.4 The optimal shape

For a fixed domain, we have explained in the former section how one can find the opti-

mal control v}, for the problem (6.5), so that the value of I( D, v,) is minimum. Hence
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we have defined the function
J:DeDy — I(D,vp) €R. (6.15)

+ To find the optimal pair of domain and control function in F, say (D*,v}.), which
solves the optimal shape design problem (6.5), itis enough to find the minimizer of J in
the same way as pointed out in Chapter 5; details of doing this fact, has been explained
completely in the former chapters, thus there is no need to bring them here again. So,
we only present some examples. We remind the reader that Proposition 20 in Chapter

5 guarantees that the pair (D*,vp.) is optimal.

6.5 Numerical work

In this section, we apply the method introduced in the previous sections to solve the
appropriate optimal shape design problem in (6.5), defined by functions g(X) = 0 (thus
¢y, = 0in (6.14)), f2(s,v) =0 and ' _

400 -0.05 <u<0.05
fl(m’u) =

1

-z  otherwise.

We will present two examples for the linear and nonlinear cases of the elliptic equa-
tions in (6.1) and(6.2); in each example we take M = 8. Hence each domain in Daris
characterized by the set of 8 points, {Am = (zm, Y),m = 1,2,...,8}, with the same \
constants Y5, ’s as Chapter 4 (see Figure 4.6) so that z,,, > 0 foreachm = 1,2,..., M.
We assume that the function u(-) takes values in the bounded set U = [—1.0,1.0]. The
control function is supposed to be zero on 8D expcet the segment of line y = 1; alon g

this segment, it is assumed that v(s) takes values in the bounded set V = [—1.0, 1.0],
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when s € [0, 1]. Thus, in (6.14) we have

0Yi(s,y)
Gi = —(———)._,.
( ay )ly=1
So, for any given domain D, the spaces {2 and w have been consider as = D x

[-1.0,1.0) and w = 8D x [—1.0,1.0].

6.5.1 Functions and Discretization

The functions ¥;’s have been chosen the same as those defined in (4.20); it was shown
that the set {t; : ¢ € N} is total in Hj(D). For the second set of equations in (6.12),
the function {;’s are chosen as the same as in the chapter 4 and 5. Also the functions
7;’s in the third set of equations, are selected as the test functions f,’s in Chapter 2 on

the interval [0, 1].

To set up the finite linear programming (6.14) for the next examples, we choose
M, = 3, M; and M3 = 10; thus a; = areaof D;,j = 1,2,..., 8 (see Chapter 5), and
h=01,l1=1,2,...,10.

To apply the condition z,, > 0,m =1,2,...,8, we have used the penalty method
with the same penalty function as defined for the numerical examples in Chapter 5.
Moreover we put a discretization on  with N = 1100 nodes with the points Z, =
(ZnyYn,un)sn = 1,2,...,N, in th'e same way as explained in section 5.5. Because
the control function is zero on 0D except the segment of the line y = 1, we have put

a discretization on w with K = 110 nodes like z; = (s¢,vk), k = 1,2,..., K; these
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nodes have been chosen as follows:

Zk = Z11(i-1)+3

fori=1,2,...,10and 3 = 1,2,...,11, where

(1—1)+0.5
S11G-1)45 = ‘——16-—
\ 2(; -1
Vi1(i-1)45 = (310 ) - 1.0.

176

Hence the total number of variables in the finite linear programming problem (6.14) is

1100 + 110 = 1210.

In the case of the above concepts, we solved the following examples for the lin-

ear and nonlinear case of the elliptic equations; in each case we chose the mentioned

subroutine AMOFE BA as the standard minimization Algorithm with the initial valves

Xp=1.0,form =1,2,...,8. Also, we applied the E04 M B F NAG-Library Routine

for solving the appropriate finite linear program in each iteration.

6.5.2 Examplel

For the linear case of elliptic equations (6.1) and (6.2), we chose f(X,u) = 0, therefore

F; = u/A+; in (6.14); we achieved to the following results:

e The optimal value of I = 0.44432256772971;

e The number of iterations = 497;
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e The value of the variables in the final step:
X7 = 0.044671, X; = 0.000003, X3 = 0.000018, X, = 0.083868,

Xs = 0.004590, X = 1.181268, X7 = 0.003360, X5 = 1.291424,

According to the results obtained, the suboptimal control function, the initial and the fi-
nal domain, and the changes diagram of the objective function according to the number

of iterations, have been plotted in the Figures 6.1, 6.2 and 6.3.

Initial Shape

y
00 05 1.0 15 20

00 05 10 15 20
X

OptimalShape

y
1.0 15 20

—

00 05 10 15 20
’ X

0.0 05

Figure 6.1: The initial and the optimal domain (for the boundary controlled system)
with the starting initial values X,,, = 1.0,m = 1,2,..., 8, in the linear case.
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Optimal Control function - linear case

10

05

05

0.0 0.2 0.4 0.6 08 1.0
L3

Figure 6.2: The optimal (boundary) control function for the linear case.

Changes of Objective function - linear case

10

value
08

06

0 100 200 300 400 500
itoration

Figure 6.3: Change of the objective function according to iterations (for the boundary
controlled system) in the linear case

6.5.3 Example2

By choosing f(X,u) = 5u2, an example for the nonlinear case of the elliptic equations

was given; the result of this example was as follows:

o The optimal value of I = 0.44432182922939;

e The number of iterations = 492;
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e The value of the variables in the final step:
X; = 0.044691, X, = 0.083889, X3 = 0.004568, Xy = 0.003356,
Xs = 0.000026, Xs = 0.000001, X7 = 1.181291, X3 = 1.291379,

These results have introduced the suboptimal control function, the initial and the final
domain, and the changes diagram of the objective function according to the number of

iterations; they have been plotted in the Figures 6.4, 6.5 and 6.6.

Initial shape

1.5 20

1.0

0.0 05

0.0 05 1.0 15 20
X

Final shape - nonliner case

y
1.0 15 20

—

0.0 05

00 05 10 15 20
' X

Figure 6.4: The initial and the optimal domain (for the boundary controlled system)
with the starting initial values X,,, = 1.0,m =1,2,...,8, in the nonlinear case.
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Optimal Control function - nonlinear case

-0.80

-0.90 -0.85

-0.95

-1.00

00 02 0.4 0.8 08 1.0
8

Figure 6.5: The optimal (boundary) control function for the nonlinear case.

Change of the objective function - nonlinear case

10

value
08

0.6

100 200 300 400 500
iteration

Figure 6.6: Change of the objective function according to iterations (for the boundary
controlled system) in the nonlinear case

6.6 Conclusionand recommendation for further research

The solution of optimal shape and optimal shape design problems which are governed
by different types of elliptic equations, and defined in ternis of a pair of geometrical ei-
ements, have been discussed in this work by the use of a new method. The main idea of
the solution is based on the replacement of the classical problem by a problem defined

on a subset of positive Radon measures, to find a pair of measures (or one measure,
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sometimes), subject to some related linear conditions.

The new measure-theoretical problem, can then be approximated by a finite linear pro-
gramming problem by the use of total sets and discretization. The existence of the op-
timal solution has been immediately proved by tl-le use of compactness properties of
the weak™* topology via existence theorems. In both systems of coordinates, polar and
cartesian, we are able to find the optimal shape and its associated optimal control func-
tion together; this makes the method very effective. The new approach enables us to

solve also the related optimal control problem (in cartesian coordinates).

There are still some more problems to be solved related to the concepts presented

in this thesis; we recommend here some of them for further research works:

o Except in Chapter 2, all the OSD problems defined have been governed by par-
tial differential elliptic equations. We have indeed considered different types of
elliptic problems, but no other type of partial differential equations has been stud-

. ied. Applying the method introduced here to solve those OSD problems which
are associated with the solution of hyperbolic or parabolic equations would be of
great interest. The worksin [31], [51], [16] and [17] on solving a control problem
governed by diffusion and wave equations via measures are good guides to apply

the method for OSD problems governed by diffusion equations.

e The OSD problems for systems defined by elliptic inequalities are important in
many industrial and engineering fields; the solutions of these problems have been -
considered in many references (see for instance [7]). Howe\;er, there has been no
attempt to solve them by the use of measures. Extending the new method to this
field and attacking the OSD problems governed by elliptic inequalities by this

approach, is a further research work.
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o The solutions of measure-theoretical problems have been approximated by those
of a finite linear programming problems in this thesis. The estimation of the error
is an open problem even for the simpler related optimal control problems. It has
just been tried to find a bound for the error m a particular case in [15]; the same

solution may possible in our case.

o Suppose that the measurable set, fhe geometrical element C (or D) in the defini-
tion of an OSD problem, has some fixed holes. Then one can define the similar
OSD problems as in this work, over the set of all admissible pairs (C, 8C) for
the mentioned C'; there are many examples of this type of problems in industry.
Solving these kind of problems by use of measures can be considered as a new

work.



Appendix A

Calculating the function ¢ in a

discretization

To use the linear program (2.19), it is necessary to calculate the function { in terms of
the components of the appropriate points which are chosen from the discretization on
Q) and w. First of all the function ¢! must be calculated with respect to the components
of the points Z; = (8;,7;) € @ and z; = (8;,7j,w;) € w which will appear in the

discretization on Q and w. Afterwards, by the equality
&(2) = astl(z)),

the function ¢ will be determined easily. The coefficient ; is known.

As proved in the section 2.7, the value of the electromagnetic field in the point z; =

(9,75 w;) € w from an infinite wire source at Z; = (6;,r;), which it carries a fixed
. — ._1- ) .

current, is | B| = 3, where p is the distance between Z; and z;. If us and u, are shown

as the unit vectors in the directions of 8 and r, the vector field B can be represented in

183 y
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two dimension coordinates by
B= B‘rur + Beue

where B, and B; are the components of B in the directions of r and 8 respectively. But
B, = 0, then B = Bgug; here ug is the normal vector to the circle with center Z; € Q,
not the u, in the Figure A.1, which is anyhow printed in bold face. Therefore |By| =
| B| cos b, that b is the angle between B and u4 (see figure A.1). Also it was assumed

that the circulation is equal by 1; so we have the following line integral equation

/ac B.dl = 1. (A1)

From (A.1) one can conclude that

1 m ]
V(—2-7r—p(cos b)y/r? + w?) = /0 %(cos b)(y/7? + w?)df = 1.

Henc;e

£(z) = %p(cos B (72 + w?), (A2)

that by the cosine law in the triangle O Z;z; one can get:

p? =712+ 17— 2rir;cos(8; — 6;). (A3)

Considering Figure A.1, since §; is an exterior angle for Z;2;R, a = 6; — n,

sina = sinf; cosn — cosd; sinn;
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cos a = cos 0, cosn + sin 6; sinn;

OA+0OD T cos 0; —r;cos9,~.

cosn = = ;
p p
. 2;A—Z;D rijsinf; —r;sinb;
sinn = = .
p p
Since:
psina = sin 0;(r; cos §; — r; cos §;) — cos §;(r; sin 6; — r; sin 6;)
= —r;sin(f; — 6;),
then
. i .
sinag = ~ sin(8; — 6;); (A4)
similarly:
T r:y '
cosa = — — —cos(6; — 6,). A5
> 5 (6; — 6:) (A.5)
Because b = x + a — 7 ; then
cosb = sin x cosa + sin a cos x. (A.6)

Since x is the angle between the tangent line and the ray at z;,

-

i1

5wy

fanx =

a.

(

&l
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Hence:

siny = N ; COS Y = ————%———. (A.7)
r? + w? o ridw?

- Applying (A.4), (A.5) and (A.7) in (A.6) gives:
. )
(\/r? + w?)cos b = -’— - TJ"’ 5% cos(6; — 8;) — “”“ 25T sin(8; — 6;).
Now from (A.2) we have:

2
i

r, —r;r; cos(&,- - (9,') — W;T; Sin(ej - 9,))

Finally by applying (A.3) the function ¢f can be calculated as:

(r? — rjricos(8; — 0;) — wjr; sin(8; — 6;))
rJ + r? — 2r;r; cos(6; — 6;)

¢'(z;) = (A.8)

So the function ¢ can be evaluated from (A.8) by putting the appropriate discretiza-
tion on w and 2. Therefore we are able now to solve the linear programming problem

in (2.19) via this discretization.



Appendix A¥ Calculating the function € in a discretization 187

Figure A.1: Angles in calculating ¢



Appendix B

Why D, instead of D?

Based on the approximation of a closed and simple curve in R? by a set of broken lines,
we decided to consider Dys as the underlying space in which the minimizagion takes
place. Indeed we approximated the variable part of any domain D € Dy, T, by M
number of segments (in other words by M + 1 corners); then we decided to look for

the solution of the appropriate optimal shape design problems in Chapters 4,5 and 6 in

Dum .instead of D.

As M — co, if an appropriate optimal shape design' problem in Dy has a min-

imizer, then this may tend in some topology to the minimizer over D if such exists.
However things can go wrong; for instance:

e There may be no minimizer over Dyy.

e There may be no minimizer over D (or both D and Djs.)

e The sequence of minimizer over Dy, may not be convergent or may tend in some

sense towards a curve that does not define a shape.

188 "
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On the other hand, let D}, € Dy be the optimal solution of the appropriate prob-
lem over Dy, and 73, € M*(w) be the optimal measure which represents the bound-
ary of D}, (0Dj4); then because M*(w) is compact, the sequence {n},}37_, and hence
{8Dj,}37-1, have a convergent subsequence even tixey are not convergent. Youngin [63]
has shown that their related subsequences of broken lines, tends to an infinitesimal zigzag
(generalized curve). This is not (necessarily) an admissible curve (see [63] Chapter
VI). So the solution over Dys does not tend to the solution over D, even in the weakly*-
sense. Also, there is the important point that too oscillatory boundaries (like the in-

finitesimal zigzag) sometimes cause problem; Pironneau in [44] shows some of these

problems.

So, we prefer to fix the number of M in Chapters 4, 5 and 6, and search for the op-
timal solution of the appropriate optimal shape design problems over Djy; and perhaps

do this for several, interesting, values of M.
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Some limitations on AMOEBA

The downhill simplex method (for finding the minimizer of a function with more than
one variables), requires only function evaluations, not derivatives. It is not very effi-

cient in terms of the number of function evaluations that it requires. However it may

frequently be the best method to use ( [47]).

The method is appropriate for the minimizing of a function of N variables; it de-
pends on the comparison of function values at the N + 1 vertices of a general simplex
(a geometric figure consisting, in N' dimensions, of N + 1 points or vertices and all their
interconnecting line segments, polygonal faces, etc; for instance in two dimensions, a
simplex is a triangle), followed by the replacement of the vertex with the highest value
by another point. The simplex adapts itself to the local landscape, and contracts to the
final minimum. The method takes a series of steps; most steps just moving the points
of the simplex where the function is largest through the opposite face of the simplex to

a lower point. The routine name AMOE BA is intended to be descriptive of this kind

of behaviors (see [47]).
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In one-dimensional minimization, it is possible to bracket a minimum, so that the
success of a subsequent isolation is guaranteed. But there is no analogous procedure
in multidimensional space. For multidimensional minimization, the best we can do is
give the algorithm a starting guess, that is, an N -vé:ctor of independent variables as the
first point (initial value) to try. The algorithm is then supposed to make its own way till
it obtains an (at least local) minimum. Therefore, it is frequently a good idea to restart
AMOEBA at a point where it claims to have found a minimum. But in the examples
of Chapters 4, 5 and 6 we do not have any idea about the minimizer. Hence we ob-
tained different values for the different initial values; indeed, we obtained the different
local minimizers. Also there is no claim that AMOE B A is able to determine the global
minimizer (see for instance [42] and [47]). Beside this, it is also advised not to use the
method for minimizing a function with more than 6 variables; although, in Chapters 4,

5 and 6, we applied AMOE BA to minimize functions with 8 variables.
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Introducing the suboptimal Control

Let the pair (u*, v*) be the optimal solution of the finite linear programming problem

in (5.39), and v* be defined as:
K
v = Bré(zk)
k=1

where the coefficients §; > 0, and z; belongs to a dense subset of w. We are going
to introduce the nearly optimal control function, v}, for the given optimal measure v*,
defined on the given domain D. We know that the set of measures associated with the
piecewise-constant functions on D is dense in M ¥ (w); hence we will approximate the

optimal measure v* by a piecewise-constant function on D, which is called the subop-

timal control function.

In the same way as Rubio in [50], for a given €; > 0, it is possible to find numbers

0=y0<y1<...<yi<...<yR=1’

192 "
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and Borel sets V4, V3,...,V;,..., Vs, forming a partition on x X V such that for any
1= 1,27-'°’R’j =12,...,5k= L2,...,My, 3,y € [yi—layi)’ (a:,v) md(mlav,)
in V;, we have

| Ge(z,y,v) — Gi(z', ¥, V") |< e

here it is supposed that x = {z | 3y : (z,y) € D}.

Let Dy, .y, = {(z,9) € D : i1 Ly S ui}, Kij = v*(([yi-1, %) X V;)Nw); we define

1 if(z,y,v) € (x X [¥i-1,%:) X V)Nw
gi(m,y:”) =
0 otherwise;

then 35, Kij = v*((x X [¥i-1,%:) X V)Nw) = v*(g;). We note that the function g; de-
pends only on variable y. We also have UR,(Dy._,v) = D, and the Lebesgue measure
of D,,_,y, is the area of Dy,_,,, (the region in D introduced by lines y = yi_i, Y=y
and the boundary of D); this area is denoted by A; (i.e. the area of D,,_,,, = A, see
Figure D.1).

Y=y,

y=yi
]

y=yi
i1

y=y
i1

Figure D.1: Domain D and the region D,,_,
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Now, we follow the same way as Rubio did in Chapter 4 of [50] and apply the Cheby-

shev approximation of G; (one may also use the method explained in [31] by some

.3 Lo— .. M, M; _ -5 M i3
changes); if one defines H;; = K;;j(1 + p;™®) where p;® = Yo that §;"° is in-

troduced in [50], we have v*(g:) = A; + 625 and ¥5_, Hy; = A,

We can now proceed to construction of the suboptimal control function which ap-
proximates the action of v* on the.func’:tions Gt = 1,2,.. .,Ml, and (, for k =
1,2,..., M, (note that (i and g; are similar functions). Let the linesy = y_, and
y = yj-, that

i1 S90S <wi,

be such that the area of Dy _ is equal to H;;, and (z;,v;) be an element of V; for

7=1,2,...,S. Define now the control function as follows
v(z,y) = v, Y(z,y) € Dyj_w;"

Itis shown in [50] (and similarly in [31]) that this piecewise-constant function approxi--
mates the suboptimal control function. By applying the above information on the result
of the finite linear programming problem defined in (5.39), we will be able to find the

suboptimal control function in the following,

Let .,81, B2, . . ., B, + M, be the nonzero coefficients in the definition of v*, which
resulted from the finite linear programming problem (5.39), and zx = (%, ¥, V&), k =
1,2,..., M; 4+ M;, be its corresponded points in the discretization onw (in which they
were ordered as a decreasing sequence with respect to the components y;’s and z}.’s).

For a number s so that 1 < s < M, assume the points

(To1s o) (To2s Ys2)s - - o (‘”:3,7 y.’,p), 1<sj <M+ M3
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(forallj = 1’27"')?)’ are in Da and ﬂsl:ﬂa%'-'vﬂsw in {ﬁlfﬂZ)--'vﬁM1+M3} are

their corresponding coefficients. Because v* is projected on D as Lebesgue measure,

?_B. = areaof D, = a,;indeed for each 1, B8,; = H,;, defined above. For the given
value ;, we look for the line y = y,; so that the r;lrea of the region of D, between the
lines y = y,; and y = y,(:—1) (shape EFHG or EFOHG in the Figure D.2) is equal to
B.i; here we assume y,0 = Y2 ; and Y = 1 = yo, a is the area of ABOP, and we
also suppose that the line y = y,; and hence the point (z,;, ys;) (the intersection point
of line and the curve I'), is calculated for each § = 1,2,...,2 — 1,. Then we have the
following three possible cases. In each cases we try to determine the line y = y,; and
the point (z,;,ys:) by solving the system of two equations; the first one represents an

area condition, and the other a line formulation.

o (DIfY;<;Bs; < a,thentheliney = y,; islocated under the liney = Y;; thus the

line and the point (z,:, y¥si) can be obtained from the system of equations below,

0.5(ysi — Yii1)(@si — XJ_1) = ¥j<i Bsj(= area of ABHG);

o= Ye (msi - Xs) + Ys-

Yoi = Xy

e IDIfY; ;B <a,andIf 35;c; 855 > a, then the line y = y,; is located above
the line y = Y; hence the solution of the following system of equations gives the

line and the point;

0.5(ysi — Y5)(zsi — Xi) = Yj<i Bsj — a(= area ofvPOHG);

Yss = %‘i::_}’:(msi h Xs) + Y;
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o (D If3°;; Bsj > a, then at least the lines y = y,(;-1) and y = y,; are located
above the line y = Y;. Hence f,; is the area of the region of D, which locates
between the lines; thus the linear system of the equations below, determines the

line and the point;

0-5(yai - ys(i—l))(msi - ms(i—l)) = ﬁsj;

Ysi = %’::‘5%’(3:31' - Xs) + Y_;

Therefore, the suboptimal control function v(-) is determined on the region of D located

between the lines y = y,(i-1) and y = y.i, by v(z,y) = v

D
y=Y,
G
Y=y
Pl e —eeee e
y=1,
G
Y=Yy
E F
y=y 1)
. . -
A 3 \B (x:-l 'Y'_‘ )
I y=Y ol ~ .

Figure D.2: The possible position of the line y = y,; in D,
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