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Abstract 

Optimising the allocation of limited resources, be they existing assets or 

investment, is an ongoing challenge for rail network managers. Recently, 

methodologies have been developed for optimising the timetable from the 

passenger perspective. However, there is a gap for a decision support tool 

which optimises rail networks for maximum passenger satisfaction, captures 

the experience of individual passengers and can be adapted to different 

networks and challenges. Towards building such a tool, this thesis develops a 

novel methodology referred to as the Sheffield University Passenger Rail 

Experience Maximiser (SUPREME) framework. First, a network assessment 

metric is developed which captures the multi-stage nature of individual 

passenger journeys as well as the effect of crowding upon passenger 

satisfaction. Second, an agent-based simulation is developed to capture 

individual passenger journeys in enough detail for the network assessment 

metric to be calculated. Third, for the optimisation algorithm within SUPREME, 

the Bayesian Optimisation method is selected following an experimental 

investigation which indicates that it is well suited for ‘expensive-to-compute’ 

objective functions, such as the one found in SUPREME. Finally, in case studies 

that include optimising the value engineering strategy of the proposed UK High 

Speed Two network when saving £5 billion initial investment costs, the 

SUPREME framework is found to improve network performance by the order 

of 10%. This thesis shows that the SUPREME framework can find ‘good’ 

resource allocations for a ‘reasonable’ computational cost, and is sufficiently 

adaptable for application to many rail network challenges. This indicates that a 

decision support tool developed on the SUPREME framework could be widely 

applied by network managers to improve passenger experience and increase 

ticket revenue. Novel contributions made by this thesis are: the SUPREME 

methodology, an international comparison between the Journey Time Metric 

and Disutility Metric, and the application of the Bayesian Optimisation method 

for maximising the performance of a rail network. 
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Chapter 1 

Introduction 

In 2017, 8% of Great Britain’s (GB) passenger journey miles were undertaken by 

rail (Davis, 2018). Between 2002 and 2017, the number of passenger road miles 

fell, whereas the rail miles increased 28% (Davis, 2018), and the number of rail 

journeys is forecast to increase 40% further by 2040 (Carne, 2018). These 

figures demonstrate that rail travel has an increasingly important role to play in 

meeting the country’s passenger journey needs. To fulfil this role, the rail 

industry Technical Leadership Group (2017) set targets for the GB network 

that included improving customer experience (passengers and freight – this 

thesis considers passengers only). However, traditionally, rail networks have 

been assessed with train focussed metrics. For example, the GB industry 

standard Public Performance Measure describes the percentage of services 

that arrive at their final destination within five (ten for long distance trains) 

minutes of the timetabled time, but this metric does not capture the effect on 

passengers if the train arrives late to intermediate stations, or if the train is 

crowded. Therefore, to accurately monitor changes to passenger experience 

requires a different approach using a metric that directly captures passenger 

experience.  

Operational resources of a rail network include timetable slots on track 

sections, junctions and platforms as well as rolling stock and crew. Rail network 

managers, such as infrastructure managers and train operating companies, 

may wish to alter the allocation of these resources to improve passenger 

experience. Two examples of this activity are: re-timetabling trains for better 

passenger connections and re-allocating rolling stock amongst trains to reduce 

on train crowding. In some cases no further benefit can be obtained through 

re-allocation and investment is required to either increase or upgrade the 

resources available. To illustrate the capital required for investment: upgrading 

110 miles of the GB West Coast Mainline to increase train throughput has cost 

£2.8 billion (Committee of Public Accounts, 2017) and purchasing new rolling 

stock often costs millions of pounds per train (Rail Delivery Group et al., 2018). 
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Because increasing the operational resources is often expensive, it is usually 

desirable for network managers to ensure that resources are well allocated 

and that capital is allocated to the best investment scenario. A decision support 

tool that optimises resource allocation considering the passenger perspective 

would allow network managers to select ‘good’ operational and investment 

strategies to improve passenger experience cost effectively. From here on in, 

the word ‘methodology’1 is used to describe the output of this thesis to 

emphasise that it is a collection of ideas rather than a single, commercially 

viable, ‘product’. Although this thesis incorporates international findings 

relating to the topic, e.g. a passenger journey metric developed in Japan is 

investigated, it concentrates on the GB network. Consequently, the institutions 

referred to are UK institutions unless otherwise stated. Nonetheless, the 

discussions herein also have relevance to rail networks in other countries 

where passenger experience is considered by network managers, e.g. across 

Europe (TNS Political & Social, 2013) and Japan (Kunimatsu et al., 2012). 

Because the management structure of rail networks varies between different 

networks, this thesis generalises all network managers as an entity controlling 

all the components of a rail network, e.g. in the UK no distinction is made 

between infrastructure managers and train operating companies, implicitly 

assuming that cooperation between different managing entities can occur.   

 Research question and scope 

The research question considered by this thesis is: can a methodology be 

developed for optimising resource and investment allocation, explicitly for 

maximum improvement to passenger experience? The aim of this thesis is to 

develop such a methodology and investigate its value, applicability and 

limitations. There are three points defining the scope of this thesis: 

1) An adaptable methodology: The GB rail network is large and can be 

abstracted to smaller sub-networks. Furthermore, on a global 

                                                   

1 Defined by the Oxford University Press (c2019) to mean ‘a system of methods used in a particular 
area of study or activity’.  
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perspective, there are many other international rail networks and 

associated sub-networks. Each of these networks may have their own 

resource and investment allocation challenges, therefore there are 

many associated optimisation tasks. This thesis does not aim to solve a 

specific task on a specific network, it considers developing a general 

methodology that can be adapted and applied to many different specific 

challenges. 

2) Optimising resource allocation: This thesis considers optimising 

resource allocation between the components of a network. Optimising 

the design of a single component in isolation, e.g. the suspension of 

trains for better passenger comfort, will not be considered.  

3) Individual rail passengers: The primary objective is to improve 

passenger experience. Other customers to the network (freight) are not 

considered and nor are other targets such as those for network 

capacity (Technical Leadership Group, 2017). Passenger journeys are 

modelled individually, but simultaneously, so that factors such as waiting 

times, journey times and on-train crowding can be captured. 

Furthermore, Goodman and Takagi (2004) describe how information 

from individual passenger journeys could be used to personalise the 

service provided to them. The recent widespread availability of 

increased computational power makes it timely to consider individual 

passenger journeys, despite the increase in computational cost. Factors 

such as safety and passenger information are not considered. 

 Method, research objectives and chapter outline 

In this thesis, a rail network is defined to be a specific combination and 

configuration of components including, but not limited to, the network 

topography, infrastructure properties, rolling stock, the timetable and sub-

components of these. Passengers use the network to make their journey, but 

are not part of it. In a resource allocation task, these components can either be 

the resources-to-be-allocated, e.g. the rolling stock allocated to trains, or are 

sensitive to the allocation of investment, e.g. the comfort of rolling stock. 
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Consequently candidate ‘allocations’ each define a specific ‘network’ and, in 

this thesis, ‘optimising the network’ is synonymous with ‘optimising the 

resource allocation’. To address the research question this thesis develops an 

optimisation methodology, referred to as the Sheffield University Passenger 

Experience Maximiser (SUPREME) framework. The procedure of SUPREME is 

shown by Figure 1 where, after initialising a candidate network, there is an 

iterative cycle of modelling the candidate network, using the model to assess 

network performance and selecting a new candidate network. During each 

iteration a decision is made whether to continue the cycle or terminate and 

output the ‘best’ network encountered so far, i.e. the solution. 

 

Development of the modules to perform A, B and C in Figure 1 form the 
majority of this thesis:  

A. Model network: It is often time consuming and expensive to alter rail 

networks, therefore computer modelling is used within SUMPREME so 

that many candidate networks can be assessed. The network model 

within SUPREME must adequately capture the passenger experience 

A) Model network 

B) Assess 

network 

performance 

C) Select new 

candidate 

network 

Continue? 

No 

Yes 

Initial  

candidate 

network 

Solution 

Figure 1 – The flow of processes within SUPREME. 
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and be adaptable for different challenges. To fulfil these requirements 

an agent-based simulation model of train and passenger movements is 

developed.  

B. Assess network performance: A quantitative assessment of network 

performance is required to differentiate between candidates. Two 

metrics are identified (one from the UK and one from Japan) that 

quantify the experience of an individual passenger journey by capturing 

the multi-stage nature of passenger journeys and the effect of crowding. 

From these individual journey metrics a whole network metric is 

developed and validated against data from the Victoria Line of the 

London Underground Limited network. In this thesis, the network 

assessment metric is developed first because it informs the design of a 

network model. 

C. Select new candidate network: An optimisation algorithm is required 

to select new candidate networks. The choice of optimisation algorithm 

is affected by the computation-cost and formulation of the model. This 

thesis focuses on investigating and evaluating potential algorithms with 

an in-depth comparison of the Genetic Algorithm and Bayesian 

Optimisation methods. Bayesian Optimisation is identified as a suitable 

method and, to the best knowledge of the author, is previously unused 

in the context of maximising the performance of a rail network model.  

The research aim of this thesis can therefore be broken into four objectives 

which are the focus of the following chapters: 

 In Chapter 3, develop a method to quantitatively assess network 

performance considering passenger experience. 

 In Chapter 4, develop a model of the passenger experience supplied by a 

network.  

 In Chapter 5, identify a suitable optimisation algorithm for selecting new 

candidate networks and conduct an in-depth study of algorithm 

effectiveness.  
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 In Chapter 6, apply SUPREME to case studies and investigate its 

suitability for the challenges identified. The case studies involve a 

regional GB sub-network and the planned High Speed Two network. The 

resources allocated vary between the case studies. 

 

Across the chapters a range of network examples and case studies are used to 

develop and investigate the SUPREME methodology. This strategy, rather than 

focussing on just one, is chosen to demonstrate that the SUPREME 

methodology is adaptable and not specific to one network or challenge type. 

This is consistent with the project scope described in Section 1.1. 

Consequently, metro, regional, and inter-city networks are investigated, with 

challenges with long, medium, and short time windows available for decision 

making.  

The specific networks used for the validation experiments presented in 

Chapter 3 and Chapter 4 are chosen because they capture all the features of 

the phenomena being modelled, and suitable data sets were available. The 

models are successfully validated with input parameters gathered from real-

world measurements, without the need for ‘parameter tuning’. This indicates 

that the form of the models is suitable for the validation networks. Since the 

behaviours of the phenomena being modelled remain similar between 

networks, e.g. passenger experiences accumulate and train motion obeys 

Newton’s laws, this suggests the form of the models can likely be transferred to 

other networks if appropriate parameters values are used. Input parameter 

values might need to be re-evaluated for networks in different locations, and 

the same network at different times. For example, the maximum line speed of 

some track sections may need altering to reflect line speed upgrades or 

temporary restrictions.  

Whilst Chapter 6 presents findings that can be used to inform addressing the 

identified challenges, it is stressed that this is not the purpose of including 

these case studies in this thesis. Rather, the case studies are used as a basis to 

demonstrate the application of the SUPREME methodology and investigate its 
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strengths and weaknesses. Since there are similarities in some behaviours of 

some rail networks with relatable features, it might be attractive to consider 

transferring the findings of these case studies to other suitable networks. In 

some cases expert opinion might be sufficient for determining whether two 

networks are similar enough for the findings to be translated, in other cases 

modelling might be required to validate this. If there is need and sufficient data 

for the latter activity, it would be more beneficial to investigate the specific 

case directly – thus utilising the adaptability of the SUPREME methodology. 

 Contribution 

The primary contribution of this thesis is a methodology that is adaptable to 

different rail network challenges and can be used for maximising passenger 

satisfaction through optimum resource allocation. Furthermore, to the best of 

the author’s knowledge, this thesis also describes the first:  

 International comparison between two passenger journey metrics; the 

Journey Time Metric and Disutility Metric. 

 Application of the Bayesian Optimisation method for maximising the 

performance of a rail network.  

The work in Chapter 3 has been described in the paper ‘A rail network 

performance metric to capture passenger experience’ published in the Journal 

of Transport Planning and Management (Hickish et al., 2019). The work in 

Chapter 5 has been described in the paper ‘Investigating Bayesian Optimization 

for rail network optimization’ and accepted for publication in the International 

Journal of Rail Transportation. The network model and assessment method 

have been described in the paper ‘Maximising passenger satisfaction through 

optimised train movements’, presented at the 2017 Stephenson Conference 

(Hickish et al., 2017). The author’s contribution to these papers is described in 

more detail in Appendix I. Further to these papers, part of the network model 

developed in this thesis has been used in an industry-led project to develop the 

Siemens-Sheffield Advance Multimodal Simulator (S2AM) for simulating 

passenger journeys through a multi-modal network (University of Sheffield, 

2017).  
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Chapter 2 

Literature review 

The large number of components to a rail network often mean that there are 

many possibilities for network alterations, through investment or operational 

changes, to address challenges it may face. Furthermore, because the 

components are highly interconnected, often predicting the effect of 

alterations can be difficult. To assist network managers, prior to this thesis, 

decision support tools have been developed which capture the real-world 

challenge and the effect of alterations. In this thesis, the word ‘tool’ is used 

regardless of a methodology’s development stage, i.e. any of the Rail Industry 

Readiness Levels described by the UK’s Rail Safety and Standards Board 

(c2019), so does not imply that it is ready to be applied commercially. Whilst 

improving components in isolation might improve the experience of 

passengers, given the scope of this thesis described in Chapter 1, this literature 

review focusses on tools which capture the interconnected nature of networks 

as well as resource allocation. The remainder of this literature review is 

organised as follows: the next section gives an overview of some of the 

challenges identified in rail network optimisation, Section 2.2 discusses 

optimisation methods and, because the heuristic method is selected, defines 

the modules of the methodology developed in this thesis. Sections 2.3, 2.4 and 

2.5 review the literature surrounding each one of these modules.  

 Rail network management challenges 

Marinov et al. (2013) describe that it is common to consider the management 

of rail networks on three levels: strategic, tactical and operational. The 

strategic level is the long term planning for the network, generally considering 

how capital should be invested to acquire resources for the network, e.g. 

extending or improving network infrastructure. The tactical level is the medium 

term planning and involves allocating existing resources, for example, deciding 

the station stopping pattern of trains, i.e. line planning. The operational level is 

short term and deals with the implementation of plans, timetables and 
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schedules. Table 1 gives some examples of challenges existing at each 

management level as well as references to tools which address them. The list is 

not exhaustive but demonstrates the range of challenges and tools 

encountered in this review. Some challenges can span between two 

management levels. For example, Goodwin et al. (2016) consider train control 

at the tactical level, but Howlett and Pudney (1995) consider this at the 

operational level. 

Management 
Level 

Challenge 

Strategic 
Expanding stations with extra platforms or sidings (Qi et 
al., 2016) 

Tactical 
Timetabling trains (Gupta et al., 2016) 
Scheduling train crew (Lin and Tsai, 2019) 
Assigning rolling stock to trains (Cacchiani et al., 2010) 

Operational 

Re-timetabling trains after disruption (Meng and Zhou, 
2014) 
Train control (Goodwin et al., 2016) 
Train priority at junctions (Fan et al., 2012) 

Table 1 – Challenges for rail networks identified in this review and references to 
tools addressing them. The management level that the challenge exists in is 
shown by the left column. 

By considering multiple challenges simultaneously a better network 

management strategy can be identified than if they are considered separately. 

This is because the optimum operational plan for a challenge, which does not 

consider all aspects of rail network operation, might force subsequent 

optimisations to only consider extremely sub-optimal candidates. For example, 

Burggraeve et al. (2017) consider line planning and timetabling simultaneously 

because an optimal line plan does not guarantee a operationally-feasible 

timetable. Optimising the line plan and timetable sequentially in isolation might 

cause a line plan and timetable to be created that is sub-optimal, since 

selecting a line plan without considering the timetables that can accommodate 

it might result in a choice of line plan that forces a timetable which is sub-

optimal. The example of Burggraeve et al. also demonstrates the advantage of 

tools that have the adaptability to be extended to include further challenges. 

Few of the tools found in this review have the adaptability to address the range 
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of challenges and management levels shown in Table 1, thereby confirming one 

of the aims of this thesis as a gap in the literature.  

 Optimisation methods 

Owing to the difficulties associated with altering networks, e.g. cost and 

disruption, it is common for decision support tools to represent the real-world 

challenge with a simplified model optimisation problem, i.e. task, which is then 

solved either exactly or approximately. Here, using the formal notation 

commonly applied by authors such as Chong (2013), the tasks are generalised 

to consider selecting the optimum value of a vector, 𝒙, which maximises a non-

negative objective function, 𝑓(𝒙). In the case of a rail network, the objective 

function quantifies the performance of the network and 𝒙 represents the 

components to be optimised. The vector, 𝒙, comprises 𝑛 elements and exists in 

the 𝑛-dimensional search space, 𝑋, bounded by the upper and lower bounds 

(constraints) of each optimisation variable, 𝑥𝑖, 𝑖 = 1,2, … 𝑛, leading to the 

optimisation task given by (2.1) subject to constraints (2.2) and (2.3): 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥∈𝑋

𝑓(𝒙) 

(2.1) 

𝑔𝑗(𝒙) = 0  𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐽 
(2.2) 

ℎ𝑘(𝒙) ≤ 0 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝐾 
(2.3) 

where 𝒙∗ denotes the global optimum. The set of equality constraints, 𝑔𝑗(𝒙), 

and inequality constraints, ℎ𝑘(𝒙), are indexed by 𝑗 and 𝑘 respectively up to 𝐽 

and 𝐾. For a case requiring minimisation of 𝑓(𝒙), maximisation of – 𝑓(𝒙) would 

be used (Press et al., 1992). A task is defined by 𝑓(𝒙), 𝑔𝑗(𝒙) and ℎ𝑘(𝒙). In this 

thesis, a vector evaluated in the optimisation process is referred to as a 

candidate.  

Some optimisation tasks can be classified by their properties. For example, as 

well as having a linear objective and constraint function, Linear Programs (LP) 

have continuous variables whereas Integer Linear Programs (ILP) have 

exclusively integer optimisation variables and Mixed Integer Linear Programs 

(MILP) have a mixture. Methods to find or approximate 𝒙∗ for the above types 
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of formulation are well-established and the reader is referred to Chong (2013) 

and Matoušek and Gärtner (2007) for a discussion of these. These task 

formulations have been popular in tools for rail network optimisation 

challenges. For example, LP and MILP formulations are used in tools included in 

reviews of: timetable planning (Cacchiani and Toth, 2012), timetable recovery 

after perturbation (Visentini et al., 2014), train control optimisation (Yin et al., 

2017) and rolling stock allocation (Piu and Speranza, 2014). However whilst 

some challenges might naturally relate to a LP, ILP or MILP formulation, others 

do not. For example, Kanai et al. (2011) state that it is difficult to adequately 

capture the detail of individual passenger journeys with one of these 

formulations and Yang (2008) states that most real-world problems are non-

linear. Caimi et al. (2017) suggest that simplifying assumptions can restrict the 

applicability of decision support tools. This is because 𝒙∗ for a task which does 

not adequately capture the challenge, e.g. a task with an ill-fitting formulation, 

might not perform well in the real-world, thus diminishing the usefulness of the 

tool to network managers. Furthermore, the complex interactions between 

components of a rail network and the introduction of integer variables in 

associated tasks, can lead to search spaces which are non-convex. This means 

that the search space can contain local maxima as well as a global optimum. 

Figure 2 illustrates the difference between these by showing the value of an 

example objective function over the complete search space. There are two 

local maxima and a single global optimum. Many of the gradient based 

approaches for solving programming formulations can become ‘trapped’ in a 

local maxima of the search space, because in the case of maximisation 

problems, they always move towards greater values of 𝑓(𝒙), i.e. ‘uphill’. This 

means that they do not guarantee to find the global optimum.  



 

12 

 

Figure 2 – An illustration of the value of the objective function, 𝑓(𝒙), over the 
complete search space. The maxima are labelled either ‘global’ or ‘local’. 

To overcome these difficulties associated with the programming formulations, 

some heuristic optimisation methods, e.g. Genetic Algorithms and Bayesian 

Optimisation, can be used which do not place any restrictions on the 

formulation of the task. However, heuristic optimisation methods do not 

guarantee to locate 𝒙∗, but instead aim to find a ‘good’ 𝒙 for a ‘reasonable’ 

computational cost. Nonetheless, for many practical optimisation tasks 𝒙∗ is 

not a necessity and a user-defined ‘good enough’ is acceptable. Consequently, 

heuristic optimisation methods have been widely applied for rail networks, e.g. 

for crew scheduling (Kokubo and Fukuyama, 2018), train control (Goodwin et 

al., 2016) and timetabling (Wei and Yuan, 2017). A heuristic method is chosen to 

be the most suitable for use in SUPREME because its adaptability means that 

the detail of the real-world challenge can be better captured for a wider range 

of challenges, thus improving the adaptability of the SUPREME framework and 

supporting the aims of this thesis. Generally, a heuristic method for rail 

network optimisation can be described as the combination of three modules: a 

model of the network dependent on 𝒙, a metric to assess the performance of 

the model network dependent on 𝒙, and an optimisation algorithm to select 

new candidates to evaluate. Sections 2.4, 2.3 and 2.5 respectively review the 

literature surrounding each one of these modules individually. As the network 

Local maximum 

𝒙 

𝑓(𝒙)

) 

Global optimum 

Local maximum 
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assessment metric informs what elements of a network should be modelled, 

the section relating to the assessment metric is discussed prior to the section 

discussing the model. 

 Metrics for assessing rail networks 

Within the methodology of a network optimisation tool it is necessary to make 

quantitative assessments of candidates. In many cases, the assessment of rail 

networks has been train focussed. For example, in the case of the timetable 

optimisation tool presented by Abid (2015), network performance is assessed 

as the aggregate of train journey times. However, reducing train journey times 

might negatively affect passenger experience if it leads to worse connections at 

transfer stations, for example. To fully capture the effect of network alterations 

upon passengers a network assessment metric should be used which explicitly 

consider passengers. In this section of the literature review possible methods 

to do so are discussed.  

The aggregate of passenger end-to-end journey time has been used as a metric 

to assess network performance, for example by Vuchic and Newell (1968), 

Chang et al. (2000) and Cacchiani and Toth (2012). However, there is evidence 

that end-to-end journey time does not fully capture the passenger experience. 

For example Susilo and Cats (2014) show that, for public transport travellers, 

factors such as station environment, ease of transfer and service frequency are 

significant determinants of passenger satisfaction. Chen and Chen (2010) 

describe customer satisfaction as being influenced by customer experience, 

therefore in this thesis it is assumed that the satisfaction of a passenger is an 

indicator of their experience, and the effect of other factors such as ticket 

pricing is disregarded. Consequently, in this thesis, decreasing passenger 

dissatisfaction or disutility and increasing passenger satisfaction are 

considered to be equivalent to ‘improving passenger experience’. The 

disconnect between passenger journey time and passenger satisfaction is 

evident in the results of a rail passenger survey by Transport Focus (2016) 

which showed that journey time has a smaller influence upon passenger 

satisfaction than punctuality of the service or its cleanliness. Therefore, to 
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better capture passenger satisfaction it is necessary to quantify a passenger 

journey in greater depth than journey time or punctuality alone. 

A passenger journey can be modelled as the combination and repetition of 

specific activities, i.e. journey stages. For example, Wang et al. (2015) state that 

a passenger journey can be well represented with the stages: walking into and 

out of a station, waiting on the platform, riding on a train and transferring 

between platforms. However, they do not take into account the relative impact 

of time in each stage upon the whole passenger experience. Vansteenwegen 

and Van Oudheusden (2007) and Sels et al. (2016) describe a passenger 

journey using two stages (‘In Station’ and ‘On Train’) and capture the varying 

impact of time in different stages by weighting these times with a different 

Value of Time (VoT). The VoT concept has been developed in Transport 

Economics and describes, in monetary terms, the disutility experienced by a 

passenger over a time period. It can be thought of as the price a passenger 

would pay to reduce their travel time by one unit, hence a greater VoT 

indicates a worse experience for passengers. For further reading on the VoT 

concept, the reader is referred to Gronau (1970) and Watson (1973). As well as 

being sensitive to the journey stage of a passenger, a VoT can be sensitive to 

the mode of transport, journey purpose and distance, for example having 

different values for travel by car, bus, train or other public transport (ARUP et 

al., 2015). Wardman (2004) showed that the VoT is sensitive to the activity of 

the passenger, and Vansteenwegen and Van Oudheusden provide values 

showing that passengers rate 1 minute of waiting in a station to be equivalent to 

2.5 minutes on a moving train. By modelling the amount of time passengers 

spend in both of these stages and weighting it by the VoT for each stage, 

Vansteenwegen and Van Oudheusden create a network assessment metric 

which can capture the relative effect on passengers of time savings in either 

stage. However, their metric does not capture the effect of crowding (i.e. the 

number of passengers on a train relative to the number of seats and standing 

space) which can reduce the personal space and comfort of passengers 

(Preston et al., 2017), causing additional disutility and hence increasing the VoT.  



 

15 

Horowitz (1978) showed that, as well as the journey stage, the ‘environmental 

conditions’ that a passenger experiences during a stage (referred to as 

conditions in this thesis) affect the VoT. As well as weather conditions, which 

are not considered in this thesis, Horowitz considered standing versus seated 

travel and crowding levels. Models to quantify the impact of crowding upon the 

VoT have been developed by Wardman and Murphy (2015) and Qin (2014), 

amongst others. Two metrics developed in different international systems to 

assess individual passenger journeys across journey stages and crowding levels 

are the Journey Time Metric (JTM) and the Disutility Metric (DM).  

 Cost-Benefit Analysis 

Van Wee (2007) states that when conducting large rail projects it has been 

common in western countries to conduct Cost-Benefit Analyses (CBAs) as a 

method to compare the relative merits of proposed network changes. In their 

guidelines for conducting analyses of transport networks, The Department for 

Transport (2018a) describe that a CBA entails presenting, in monetary terms, 

as many of the impacts of a proposed scheme as is feasible. It is often 

necessary to employ modelling to predict the impact of different schemes. For 

example the MOIRA model described by Worsley (2012), or the commercial 

software Emme (INRO, c2020) – based on the model described by Florian 

(1977), could be used to determine the changes to travel demand. Similarly, 

commercial simulation packages such as RailSys and OpenTrack (described 

further in Section 2.4) might be used to determine changes in passenger travel 

times. Some of the ‘standard’ input parameters needed for modelling and 

some of the conversion parameters needed to translate the results of 

modelling to a monetary value, e.g. VoTs, are collected in documents such as 

the Rail Delivery Group’s ‘Passenger Demand Forecasting Handbook’ described 

by Worsley and The Department for Transport (2009). However some values 

may be project specific and require estimation – which can be difficult. The 

results of a CBA are often presented as a benefit-cost ratio, a metric of 

investment performance, and investigation is often conducted into the 
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sensitivity of this ratio to different estimated values used in the calculations 

(Department for Transport, 2018b).  

Because the CBAs used in the rail industry often take into account a large 

number of effects, they can be difficult to calculate. Consequently, they are 

often calculated for a ‘small’ (less than ten) number of investment scenarios, 

for example in the case of HS2 (Department for Transport, 2017b). The human 

brain can easily compare the cost-benefit ratios for this number of investment 

scenarios and search for the optimum – therefore a formal, computer aided, 

optimisation procedure is rarely employed. However, in the context of 

SUPREME where a formal optimisation procedure will be used and a larger 

number of network scenarios investigated, it is not feasible to conduct a full 

CBA for each candidate. Consequently this method in itself is discounted from 

further consideration for SUPREME, but the relevant information and concepts 

described in The Department for Transport’s guidelines for conducting CBAs 

are used to inform the developed metric. 

 Established journey metrics and network metrics 

The JTM has been developed by London Underground Limited and shared with 

the author by private communication, the most informative accessible 

documentation being the investigations of Chan (2007) and Hickey (2011). It 

describes passenger journeys using five stages ‘Buying Ticket’, ‘Moving Through 

Station’, ‘On Platform’, ‘On Platform (Left Behind)’ (where a passenger has not 

been able to board a suitable train because it is overly occupied) and ‘On Train’. 

The effect of crowding conditions are considered in the ‘On Train’ stage by 

modifying the VoT with a crowding penalty that is dependent on the number of 

passengers, train capacity and seats. The DM has been developed in Japan and 

is documented in English by Kunimatsu et al. (2009, 2012). It takes a similar 

approach to the JTM, but resolves a journey using two stages (‘On Train’ and ‘In 

Station’) with weightings different to those used by the JTM. Similar to the 

JTM, the DM applies a crowding penalty for passengers in the ‘On Train’ stage 

that is sensitive to the same factors as the JTM crowding penalty, however a 

different formula is used. The DM is used again by Kanai et al. (2011) to assess 
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individual journeys as part of a network assessment metric used in a decision 

support tool for delay management. They discuss different methods of 

combining journey scores into a network score, however as presented, none of 

their methods normalise for the distance travelled by passengers, meaning that 

networks providing shorter journeys could compare favourably against 

networks providing longer journeys even if passenger experience is worse.  

Moving from individual journey to network metrics, Ali et al. (2017) predict 

network performance by combining journey scores calculated using an 

individual journey metric with similarities to the JTM and DM. The network 

metric is demonstrated to predict observed simple qualitative relationships 

between timetable features and network performance, e.g. fewer train services 

result in worse network performance as determined by their metric. 

The JTM, DM and the metric described by Ali et al. are the only metrics, found 

for this review, to capture the multi-stage nature of passenger journeys and 

weight the time spent in each stage including the effect of crowding. They 

therefore capture individual passenger journeys in more detail than the other 

metrics identified here which consider journey stages or crowding only. 

However, the parameter values used within the metric of Ali et al. could not be 

retrieved so this is excluded from further analysis. Consequently, the JTM and 

DM are selected for investigation as the basis for a metric to assess network 

performance within the SUPREME framework. To the best of the author’s 

knowledge, no publicly available documents describe the validation or 

comparison of the JTM and DM, or network assessment metrics based upon 

them. This gap defines the targets of Chapter 3, to make a comparison of the 

JTM and DM methods, and to develop a validated network metric based upon 

them for use within the SUPREME framework. 

 Network models 

The network model must capture the network features required for the 

assessment metric. The previous section has explained that the SUPREME 

framework will use an assessment metric which involves assessing individual 

passenger journeys. Network models formulated from a program of equations, 
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i.e. equation-based models, are eliminated from consideration for use within 

SUPREME because there is evidence that they do not adequately capture real-

world journeys. For example, both Yao et al. (2013) and Kanai et al. (2011) state 

that it is difficult to capture the complexity and interaction of passenger 

journeys with equation-based models. Similarly, well-established commercial 

software for simulating train movements, e.g. OpenTrack (OpenTrack Railway 

Technology Ltd, n.d) and RailSys (Rail Management Consultants GmbH, c2019) 

are eliminated because Caimi et al. (2017) point out that they do not model 

passenger movements. 

An Agent-Based Model (ABM), sometimes referred to as a Multi-Agent System 

model, can be used to represent the movements of many individuals. For 

example the commercially available LEGION simulator (Bentley Systems, 

c2020) uses an ABM to capture the movements of individual pedestrians. To 

capture individual passenger journeys, Yao et al. (2013) use an ABM to encode 

passenger and train behaviours into virtual representations, i.e. agents. By 

simulating a day’s operation of the Beijing network with two million passengers 

and two thousand trains, Yao et al. demonstrate that their model can capture 

the complexity of passenger journeys and scale to a large network. However, 

their model is not combined with a quantitative network assessment metric 

and therefore is not used for optimisation. The details of ABM are discussed 

further in Chapter 4 and the reader is directed to Bonabeau (2002) and Macal 

and North (2010) for more information. Kanai et al. also simulate the 

interactions of passengers and trains using separate models of the behaviour 

of each, but do not state whether it as an ABM. Kanai et al. combine their model 

with the DM to optimise delay management using a Tabu Search algorithm, 

however no validation is presented and the computational cost of the network 

model is not discussed. More recently, Chen et al. (2019) have also used an 

ABM network model in an optimisation of the train timetable, however they do 

not state the optimisation algorithm used or the computational cost of the 

network model and optimisation. Nonetheless, the tools of Kanai et al. and 

Chen et al. give a precedent for using an ABM within a heuristic optimisation.  
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The ABM method is adaptable and allows any number of agent types to be 

represented (within available computing power). For example, Li et al. (2011b) 

show that the ABM method can be extended to model passengers using a train 

and bus network, i.e. a multi-modal network. More recently, the author was 

involved in an industry project where ABM was used to simulate a train and bus 

network including the pedestrian movement of passengers in the station 

(University of Sheffield, 2017). From this review, the ABM method is considered 

to be the most suitable method for developing a model to capture individual 

passenger journeys.  

 Heuristic optimisation algorithms 

In general, heuristic optimisation algorithms, sometimes also referred to as 

metaheuristics, use information from previous objective function evaluations 

to guide the selection of new candidates from the search space until some 

stopping criteria is reached, e.g. the number of objective function evaluations 

exceeds a user-defined limit. The 𝒙 with the maximum objective function value 

encountered so-far is then returned as the solution. In an overview of heuristic 

optimisation Yang (2010) describes some of the different methods that can be 

used to interpret the information from previous evaluations to select new 

candidates. For example, within the field of rail network optimisation, methods 

including the following types have been used: Ant Colony (AC) (Sama et al., 

2016), Particle Swarm (PS) (Fernandez-Rodriguez et al., 2015), Simulated 

Annealing (SA) (Burdett, 2015), Tabu Search (TS) (Kanai et al., 2011) and 

Genetic Algorithm (GA) (Zhu et al., 2017). Elbes et al. (2019) discuss the 

comparative advantages and disadvantages of the PS, TS, SA and GA methods 

for ‘general engineering’ challenges, showing that the relative effectiveness of 

any given method is task specific. For example, Fan et al. (2012) compare the 

AC, SA, TS and GA methods for use in a railway re-scheduling tool applied to 

different tasks. Their results show that the relative performance of solutions 

found with different methods, is sensitive to the task. Furthermore, the 

performance of the solutions found with the AC and TS methods are within 

10% of those found with the GA method indicating that their effectiveness is 
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similar. Fan et al. measure the computational cost of the optimisation using 

computation time of the whole optimisation. However, this measure does not 

make a distinction between the computational cost of all the objective function 

evaluations and that of computing the algorithm to select new candidates. In 

other cases the cost of a single objective function evaluation, and the number 

required, may be different to that of Fan et al., therefore their findings cannot 

be generalised.  

In particular the Genetic Algorithm method has been widely applied for 

challenges including timetabling (Xu et al., 2016), train control (Goodwin et al., 

2016) and resource allocation (Wang et al., 2019). However, typically these 

tasks have required the evaluation of 104 to 105 candidates to find a ‘good’ 

solution. Although the performance of an optimisation algorithm is task-

specific and sensitive to the value of any control parameters used, there is 

evidence, described below, to suggest that a similar number of objective 

function evaluations are required for the AC, PS and SA methods. As for GAs, 

the AC and PS methods evolve a ‘population’ of candidates at every iteration 

with the premise that the population members converge towards optimum 

areas of the search space. Often, elements of ‘randomness’ are introduced into 

implementations of these methods so that, if the population is converging 

towards a local maxima of the search space, the population can ‘escape’ the 

local maxima and ‘discover’ the area containing the global optimum. The total 

number of objective function evaluations is computed as the product of the 

population size and the number of algorithm iterations. For example Caceres et 

al. (2015) describe that typically AC is used with a budget 104 or more objective 

function evaluations. Similarly, Elbes et al. state that typically PS is used with a 

population size of approximately 50 and Kennedy and Mendes (2002) find that 

typically 104 iterations are required, meaning that to the order of 104 or more 

objective function evaluations are used. Although the TS method does not use a 

population, it often evaluates the objective function multiple times per 

iteration. Considering that Kokubo and Fukuyama (2018) state that the TS 

implementation they use for a crew scheduling tool requires to the order of 103 

iterations, this indicates that the TS method also requires a ‘large’ number of 
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objective evaluations. Elbes et al. and Fouskakis and Draper (2002) describe 

that the SA method is poorly-suited to tasks with ‘expensive-to-compute’ 

objective functions, indicating that it also requires many evaluations. The term 

‘expensive-to-compute’ is subjective, however, henceforth in this thesis it is 

used to describe objective functions which require more than a second of 

computation time.   

Owing to the large number of objective function evaluations required, it may be 

intractable to optimise an expensive-to-compute objective function using the 

AC, PS, SA, TS or GA methods. Where these methods have been used for rail 

network optimisation, the computational cost of the optimisation procedure 

has often been kept reasonable by ensuring that the models used for evaluating 

candidates require less than approximately ten seconds of computation time. 

For example, Wei and Yuan (2017) demonstrate the use of a GA 

implementation for a task involving a comparatively small model network 

consisting of a single line and 13 stations. However, there are 2560 mainline 

stations in GB (Steer Davies Gleave, 2017a) and scaling a network model to this 

size might lead to substantial increase in the computational cost. An 

optimisation algorithm method which can find a ‘good’ solution using fewer 

objective function evaluations would allow models with a greater 

computational expense to be used.  

Another heuristic method, Bayesian Optimisation (BO), only uses one objective 

function evaluation at every algorithm iteration and consequently might need 

fewer evaluations for the whole optimisation process than the previously 

mentioned methods. The BO method is discussed further in Chapter 5 and the 

reader is referred to Shahriari et al. (2016) for an overview. To the best of the 

author’s knowledge, no publically available documentation exists describing the 

application of BO to optimise the performance of a model rail network. 

However, there are many examples of BO being used to select the 

hyperparameter values of expensive-to-compute machine learning algorithms 

(Snoek et al., 2012, Jordan and Mitchell, 2015). Applications outside the field of 

machine learning are less common but can be categorised into two purposes:  
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 To maximise the agreement between a model and observed data by 

optimally fitting model parameters. 

 To maximise the performance of a real-world entity by optimising 

design and operational model parameters.  

Within SUPREME, an optimisation algorithm is performing the latter activity. An 

example of this is the use of BO by Candelieri et al. (2018) to maximise the 

performance of a simulated water distribution network by optimising the 

pump schedule. Candelieri et al. state they use BO because of its advantages 

when applied with expensive-to-compute objective functions. For an 

alternative case, Lisicki et al. (2016) report that BO finds a solution which 

performs approximately 50% better than that found by arbitrarily selecting an 

equal number of candidates with uniform probability, i.e. a Random Search. 

Neither Candelieri et al. or Lisicki et al. make a quantitative comparison of BO 

against a sophisticated optimisation method such as GA and, to the best of the 

author’s knowledge, the only identified application of BO in a transportation 

network setting is by Schultz and Sokolov (2018) who optimise the parameters 

of transportation network simulators to maximise agreement with observed 

data, i.e. the former activity listed above.  

An explicit comparison between GAs and BO is presented by Trotter et al. 

(2017) to compare both approaches for maximising the performance of a 

distributed computing system. However, it can be inferred that this 

comparison is not made for an equal budget of objective function evaluations 

and is therefore difficult to generalise from. In another comparison of GAs and 

BO, Chandrashekaran et al. (2016) report the number of candidate evaluations 

in a comparative optimisation of a speech recognition model. However, the use 

of atypical GA parameters limits the generalizability of the conclusions.  

This section has identified three things. First, the GA method is a commonly 

applied heuristic within the field of rail network optimisation, however, it 

places restrictions on the computational cost of the objective function. Second, 

to the best of the author’s knowledge, the BO method has not been used for 

optimising the performance of a rail network and it has the potential to allow 

an expensive-to-compute objective function to be used. Third, to the best of 
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the author’s knowledge, there is a literature gap for a quantitative, like-for-like, 

comparison of the GA and BO methods.  

 Summary and research direction 

This review has shown there is a diverse range of challenges associated with 

managing rail networks and there is a gap for a tool which can be adapted to 

many of these challenges. Developing an optimisation methodology that is 

adaptable is therefore one of the research aims of this thesis. Traditional 

programming methods for optimisation such as IP, ILP and MILP are excluded 

from consideration because of this adaptability requirement as well as 

evidence, described in Section 2.2, suggesting that they are poorly-suited to 

capturing passenger experience. Instead the heuristic method for optimisation 

is investigated because it can be applied to a wider range of optimisation tasks. 

The associated quantitative assessment of different network options can be 

calculated using a network assessment metric and model. Section 2.3 identifies 

that the JTM and DM are two metrics that can be used for capturing the 

experience of individual passengers. In the case of the JTM, to the best of the 

author’s knowledge, there are no publically available documents describing its 

application for rail network optimisation. In the case of the DM only one has 

been identified. Furthermore, to the best of the author’s knowledge, these two 

metrics have not been quantitatively compared when applied to the same 

network. Consequently, the research direction identified is to determine a 

whole-network assessment metric, based on individual passenger journey 

experiences captured with either of the JTM or DM, which can be used in the 

SUPREME framework. A comparison can then be made of the whole-network 

assessment metric when either the JTM or DM is used to assess individual 

passenger journeys. To support the use of this network assessment metric, a 

network model must be developed which can capture individual passenger 

movements as well as passenger-passenger, passenger-component and 

component-component interactions. Therefore the research direction also 

includes developing a suitable network model for use in SUPREME with the 

network assessment metric. Section 2.4 has identified that ABM techniques are 
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well suited to this. The heuristic method also requires an optimisation 

algorithm to explore the search space and Section 2.5 has identified that GAs 

are commonly used within rail network optimisation but may restrict the 

computational expense of the objective function. However the BO method 

might reduce this limitation and, to the best of the author’s knowledge, has not 

been used for rail network optimisation. Consequently, applying a BO 

implementation for rail network optimisation within SUPREME is another 

research direction identified in this review. Separately applying a GA 

implementation within SUPREME will allow comparison of BO with a 

benchmarking measure and address the literature gap for quantitative, like-

for-like, comparison. 
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Chapter 3 

A metric to assess passenger rail networks 

The previous chapter has described the need within SUPREME for a metric to 

assess the performance of model rail networks. It has also described the JTM 

and DM as two existing metrics for assessing individual passenger journeys. In 

this chapter a new method is developed which combines assessments of all 

individual passenger journeys, i.e. journey scores, within a network to give a 

network score. In a case study relating to the Victoria Line of the London 

Underground Limited (LUL) network, this whole-network assessment metric is 

validated against measured data from passenger surveys gathered by LUL 

(2018a). Additionally, international comparison is made by using the whole-

network assessment metric with either the JTM or DM, which originate from 

different countries. The developed whole-network assessment metric gives a 

parameter summarising the overall network performance from the passenger 

perspective, enabling this to be effectively optimised and supporting the aims 

of this thesis. 

Some of the work presented in this chapter is also presented in the author’s 

paper: ‘A rail network performance metric to capture passenger experience’ 

published in the Journal of Transport Planning and Management (Hickish et al., 

2019). However to the best of the author’s knowledge, prior to the above 

paper, no publicly available documents describe the validation or comparison 

of the JTM and DM, or network assessment metrics based upon them.  

 Network assessment metrics that capture the passenger 

perspective 

To assess a rail network, the metric developed in this chapter evaluates 

individual passenger journeys and captures the distribution of experiences. To 

evaluate modelled passenger journeys, the term state is introduced to 

describe a specific combination of journey stage and conditions. A passenger 

journey is decomposed into a sequence of states as shown in Figure 3, which 

illustrates an example four-state passenger journey. Shading is used to indicate 
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which journey stage the passenger is in (‘On Train’ or ‘In Station’). Crowding is 

only considered in the ‘On Train’ stage and text is used to indicate this. The 

markers t0 to t4 indicate the times at which the passenger changed state. At t0, 

the passenger enters the origin station and their train at t1. At t2 the train stops 

at an intermediate station where more passengers board making it crowded. 

The passenger journey stage does not change, but the state does. At t3 the 

passenger reaches their destination station and exits at t4. The number of 

states in a passenger journey, 𝑆, is variable dependant on the journey and the 

index, 𝑠, is used to enumerate the sequence of states, 𝑠 = 1, 2, … 𝑆. 

  

Figure 3 – An example passenger journey decomposed into four states. The 
journey is described with two stages: ‘On Train’ and ‘In Station’. The shading of 
the state indicates the stage. Text is used to describe the conditions of the 
state. The markers t0 to t4 relate to the times when the passenger changed 
state.  

The sum of VoT weightings across all states of a passenger journey can be used 

as an individual journey score. The following section describes how this is 

calculated when either the JTM or DM is used. The following section also 

compares how the JTM and DM calculate the crowding penalty. Section 3.1.2 

then describes how the distribution of journey scores is evaluated to give a 

network score.  

 Calculating an individual journey score 

A journey score calculated using the JTM is computed from the formula:  

ψJTM = ∑TsΩ
JTM(αs

JTM, βs
JTM, ωJTM)

s=S

s=1

 

(3.1) 

where 𝜓 denotes the journey score, 𝑇𝑠, the time (in seconds) spent in the 𝑠th 

state, Ω, the VoT weighting function, 𝛼𝑠 and 𝛽𝒔, respectively the journey stage 
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and conditions of the passenger’s 𝑠th state and 𝜔 the crowding penalty 

function. 𝜓𝐷𝑀 (given by (3.2)) is calculated similarly to 𝜓𝐽𝑇𝑀 , but has an 

additional term to capture the relative disutility experienced by passengers 

changing train with a parameter for the number of times a passenger must 

change trains, 𝜀, and a weighting factor, 𝑞1. A value of 600 is used by Kunimatsu 

et al. for 𝑞1, meaning that each train change has an associated disutility 

equivalent to 10 minutes (600 seconds) travelling on an otherwise unoccupied 

train. Table 2 provides the other parameter values for each metric. 

𝜓𝐷𝑀 = ∑𝑇𝑠𝛺
𝐷𝑀(𝛼𝑠

𝐷𝑀, 𝛽𝑠
𝐷𝑀, 𝜔𝐷𝑀)

𝑠=𝑆

𝑠=𝑆

+ 𝑞1𝜀 

(3.2) 

𝛼𝑠
𝐽𝑇𝑀 = 1 2 3 4 5 

Description On Train On 
Platform 

On 
Platform 
(Left 
Behind) 

Moving 
Through 
Station 

Buying 
Ticket 

Ω𝐽𝑇𝑀 = 1 + 𝜔𝐽𝑇𝑀(𝛽𝑠
𝐽𝑇𝑀) 

 

2.5 3 2.7 2.5 

𝛼𝑠
𝐷𝑀 = 1 2 

Description On Train In Station 
Ω𝐷𝑀 = 1 + 𝜔𝐷𝑀(𝛽𝑠

𝐷𝑀) 
 

3 

Table 2 – The VoT weighting, 𝛺, for both metrics dependent on the journey 
stage, 𝛼, of a passenger’s 𝑠th state. A description of the journey stage relating 
to 𝛼 is also shown. The VoT weighting for passengers in the the ‘On Train’ 
stage is dependent on a crowding penalty function, 𝜔, calculated using the 
conditions of the state, 𝛽. For the JTM, these values have been shared with the 
author by personal communication from the Transport Planning department 
of London Underground Limited (Kelt, 2015)2, and for the DM they are taken 
from Kunimatsu et al. (2012). 

Table 2 shows the relative weighting both metrics put on each state (a lower 

value of Ω indicates a better passenger experience) and that the JTM describes 

a journey using five journey stages whereas the DM uses two. Both methods 

consider crowding only when passengers are in the ‘On Train’ journey stage. 

The JTM crowding penalty, 𝜔𝐽𝑇𝑀, is determined with the formula given by (3.3), 

                                                   

2 For more information, see the list of personal communications in the reference list. 
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using values given in Table 3, where 𝛿 denotes the number of passengers, 𝜇, the 

number of seats on the train, 𝛿max, the maximum passenger capacity, 𝜛, the 

crush capacity and 𝑐1 to 𝑐3 constants. 

𝜔𝐽𝑇𝑀 = {

0 ,                           𝛿 ≤ 𝜇

𝑐1 + 𝑐2
𝛿 − 𝜇

𝜛
− 𝑐3

𝛿𝜇 − 𝜇2

𝜛2
, 𝜇 < 𝛿 ≤ 𝛿max

 

(3.3) 

The crowding penalty formula given by (3.3) has been shared with the author 

by personal communication from the Transport Planning department of LUL 

(Kelt, 2015)3. The second term of (3.3) captures the number of standing 

passengers relative to the crush capacity of the train and the third term 

captures the effect of seated passengers also. The value of 𝜛 describes the 

theoretical maximum number of passengers that can fit into the train assuming 

seven passengers per square meter of standing floor space. However, LUL have 

determined that the practical maximum capacity of a train is less than 𝜛 and 

under ‘normal operating conditions’ the value of 𝛿max is defined as 71% of 𝜛. 

The DM crowding penalty, 𝜔𝐷𝑀, is determined with the formula given by (3.4) 

and requires computing the crowding factor, 𝛨, given by (3.5). The value of the 

constants 𝑞2 to 𝑞7 and 𝑐1 to 𝑐3 are shown by Table 3. 

𝜔𝐷𝑀 = {

 𝑞2𝛨,                 𝛨 < 1
𝑞3𝛨 − 𝑞4,       1 ≤ 𝛨 < 1.5
𝑞5𝛨 − 𝑞6, 1.5 ≤ 𝛨 ≤ 2

 

(3.4) 

𝛨 = 
𝑞7𝛿

𝛿max
 

(3.5) 

Name 𝑐1 𝑐2 𝑐3 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 

Value 0.85 1.915 1.03 0.027 0.0828 0.0558 0.179 0.2 2 
Table 3 - Constant values used to calculate the crowding penalty, ωJTM and ωDM , 
in (3.3), (3.4) and (3.5). For the JTM, these values have been shared with the 
author by personal communication and the DM constants 𝑞2 to 𝑞6 are taken 
from Kunimatsu et al. (2012). The value of 𝑞7 is informed by Nippon (2018). 

                                                   

3 For more information, see the list of personal communications in the reference list. 
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The values of 𝑐1 to 𝑐3 have been derived by LUL and shared with the author by 

personal communication (Kelt, 2015). The values of 𝑞2 to 𝑞6 are listed by 

Kunimatsu et al. (2012). Although Kunimatsu et al. do not explicitly define 𝜂, 

they describe it as the ‘congestion rate of the train’, therefore it can be 

inferred as being proportional to 𝛿/𝛿max. However because Nippon (2018) 

report the largest crowding factor (𝛨) observed in Japan during 2017 as 2 

(relating to when ‘bodies come into contact with each other and one feels 

considerable pressure’), the scaling factor 𝑞7 is introduced into (3.5) and given 

a value of 2. The values of 𝜇, 𝛿max and 𝜛 are rolling stock specific and are 

defined by LUL for each fleet. For the LUL 2009 rolling stock (used on the 

Victoria Line and the subject of this investigation) their values are 288, 730 and 

1028 respectively (Kelt, 2015). 

For varying number of passengers (δ), Figure 4 compares 𝜔𝐽𝑇𝑀, 𝜔𝐷𝑀 and the 

minimum VoT weighting for passengers in the ‘On Train’ stage. Values on the y-

axis are expressed as a multiple of the VoT for a passenger travelling on an 

uncrowded train, 𝜁. The number of seats on the train is shown by a vertical 

dashed line and reflects that when 𝛿 ≤ 𝜇, the JTM does not apply a crowding 

penalty. A crowding penalty is applied by the DM even at this level of 

occupancy, but it is small in comparison to the minimum VoT weighting for 

passengers in the ‘On Train’ journey stage (the dash-dot horizontal line). When 

𝛿 > 𝜇, the JTM applies a crowding penalty that is 4 to 8 times greater than the 

DM crowding penalty. For both metrics, the crowding penalty is always less 

than the minimum VoT weighting for the ‘On Train’ stage. Both the JTM and DM 

models of crowding assume that passengers are homogenously distributed 

throughout the train and that passengers will always find and occupy a seat if 

one is available. Although this may not be realistic, it is the same for both 

models so the comparison is like-for-like. The VoT weightings (in Table 2) and 

crowding penalty function for the JTM and the DM have been derived for the 

LUL network and Japanese railway respectively. It is therefore expected for 

these values to capture local preferences and expectations. 
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Figure 4 - The crowding penalty, ω, applied by the JTM and the DM for different 
numbers of passengers, δ, in LUL 2009 rolling stock up to its maximum 
capacity. The number of seats, μ, is shown by a vertical dash line. The minimum 
VoT weighting applied by both metrics to passengers that are in the ‘On Train’ 
stage is shown by a horizontal dash-dot line.  

 Calculating a network score from journey scores 

Networks provide journeys for multiple passengers so there is a distribution of 

journey scores. To ensure that journey scores only capture the quality of the 

service provided to the passenger by the network (and not the distance of the 

passenger journey which is a passenger choice), journey scores are normalised 

by the distance travelled. This allows like-for-like comparison of journey scores 

within the distance-normalised journey score distribution, Ψ, given by: 

Ψ = [
𝜓1
𝑑1
,
𝜓2
𝑑2
, … . ,

𝜓𝑅
𝑑𝑅
] 

(3.6) 

where 𝑅 denotes the number of passengers, 𝜓𝑟 the journey score of the 𝑟th 

passenger and 𝑑𝑟 the distance travelled by the 𝑟th passenger. Different features 

of Ψ can be used to provide the network score, 𝜙, for all 𝑅 passengers 
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conveyed by the network. It is desirable to capture the effect of passenger 

numbers upon crowding, but for the network score to be independent of the 

number of journey scores within Ψ. Consequently, an additional passenger-

number normalisation step is included so 𝜙 is defined by: 

𝜙 = 
1

𝑅
∑

𝜓𝑟
𝑑𝑟

𝑟=𝑅

𝑟=1

 

(3.7) 

Beyond this network score the characteristics of the distribution of Ψ can offer 

additional insight. For example, a manager wishing to examine the consistency 

of their service to passengers taking different journeys may evaluate the range 

of Ψ in addition to 𝜙. This thesis focuses primarily on 𝜙 to study quality of 

service provided to all passengers within the network. 

 Validation and comparison 

To validate the network assessment metric, 𝜙 values are calculated using 

either the JTM or DM (𝜙𝐽𝑇𝑀 or 𝜙𝐷𝑀) for the Victoria Line of the LUL network. 

For the same network, a network score is determined from measured 

Customer Satisfaction Survey (CSS) data, 𝜙𝐶𝑆𝑆. The predictive values of 𝜙𝐽𝑇𝑀 

and 𝜙𝐷𝑀 are compared against the measured 𝜙𝐶𝑆𝑆 values and the correlation 

between their changes relative to a baseline year is quantified. The predictive 

values are then compared to each other to determine a relationship between 

the network assessment metric when either journey score metric is used. To 

calculate 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀, data describing the network was combined with data 

describing the number of passengers travelling between each station at 

different times, i.e. the passenger load, and captures the effect of varying 

timetables and passenger loads over ten years. For the Victoria Line in the 

period investigated, the formation, length and interior layout of rolling stock 

remain constant, therefore the frequency of trains (determined by the 

timetable) has the greatest effect upon the passenger carrying capacity of the 

network. Decreasing the speed of trains on a line slows travel but also reduces 

headway with potential to decrease intervals between trains, so typically there 

is a trade-off between journey times and frequency. To meet increasing 
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demand for travel, minimise crowding and generate more revenue, whilst 

maintaining competitive journey times against other transport modes, there is 

a pressure on LUL to balance this trade-off when updating their timetable.  

 Data sources 

The data sources used in this investigation are: Victoria Line Working Timetable 

(WTT) numbers 31 to 41 (London Underground Limited, 2007, 2009, 2011, 

2012a, 2012b, 2014, 2015a, 2015b, 2016b, 2016c, 2017), Access, Egress and 

Interchange (AEI) data provided by LUL (2016a), the Performance Data 

Almanac (PDA) (London Underground Limited, 2018a) and the Rolling Origin 

Destination Survey database (RODS) (London Underground Limited, 2018b). In 

the following section, the data is described in more detail. 

 Input data 

The network operation data is taken from the WTTs and the AEI data. For each 

day, the WTTs provide the average train frequency and interstation run times 

for the three weekday operational periods on which the investigation 

concentrates: Morning Peak, Midday Off Peak and Evening Peak. Later 

operational periods are excluded because their timings are not consistent 

between the WTTs. The effect of this exclusion is unlikely to be significant 

because observing the RODS database indicates that this period is when the 

fewest passengers travel and so it has the least weighting on the network 

score. Weekends and holidays are not considered because they are more likely 

to be affected by events (e.g. sporting events or planned line closures for 

maintenance works) that affect passenger experience but are not captured in 

all the input data sources. The operational pattern described in the WTT is 

applied for every day the timetable was in effect (LUL update their timetable 

irregularly, but the date of introduction is provided by each WTT). The WTTs 

also provide the distance between adjacent station pairs. The AEI data 

describes the passenger travel time from station door to platform and vice 

versa, and platform to platform. The AEI data available relates to every four 

week period of the year beginning 2011 (the LUL reporting year begins on 1st 



 

33 

April), the annual mean for this period is 2.23 minutes. Because data is only 

available for one year, this is applied for all years of the investigation, implicitly 

assuming that personal mobility within the station remains constant over this 

period.  

The passenger load data is a combination of two data sources: the PDA and 

RODS. RODS provides the proportion of passengers included within the 

database that travel between adjacent station pairs in an operational period, 

i.e. line section loadings. However, this data does not describe whole passenger 

journeys (i.e. an origin and destination with any transfer stations). The PDA 

provides the total number of passengers travelling on the Victoria Line each 

year, and the quarterly CSS data. To collect the CSS data, LUL use 

questionnaires to ask approximately 2,500 passengers per quarter to rate, on a 

scale of 1 to 10, their satisfaction with their travel on the line of the last leg of 

their journey. The mean of the ratings is then multiplied by 10 and reported for 

each line by LUL.  

Customer satisfaction is affected by factors that are not captured in 𝜙𝐽𝑇𝑀 and 

𝜙𝐷𝑀, and hence are not included in this investigation. For example, Paramita et 

al. (2018) describe that passengers will have a satisfaction associated with the 

fare they paid for a journey -this will affect their overall satisfaction with the 

journey. The results presented by Transport Focus (2016) indicate that train 

cleanliness and ‘how train companies dealt with delays’ are important drivers 

of passenger satisfaction and dissatisfaction, respectively, yet these also are 

not captured. Transport Focus also indicate that train punctuality is an 

important driver of passenger satisfaction. Whilst this factor can be captured 

by 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 (passengers accrue greater journey scores whilst waiting for 

delayed trains), it is not included in this investigation. Journey length, train 

frequency, and crowding, are other important drivers of passenger satisfaction 

identified by Transport Focus which are captured in this investigation.  

 Experimental method 

Figure 5 gives an overview of the data and processes used to calculate values of 

𝜙𝐽𝑇𝑀, 𝜙𝐷𝑀 and 𝜙𝐶𝑆𝑆  for corresponding years so that a like-for-like comparison 
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could be made. In Figure 5, a rectangular box represents an action and a 

parallelogram represents a data item. To calculate 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀, the line 

section loading data was scaled by the yearly passenger numbers data and 

used to disaggregate the journeys of passengers who travelled farther than the 

station adjacent to their origin, into a series of journeys between adjacent 

station pairs. For each operational period (Morning Peak, Midday Off Peak and 

Evening Peak) and line section, the number of passengers per train was 

calculated by dividing the number of passenger journeys in that period by the 

number of trains. Where demand for travel exceeded provision, the excess 

passengers were modelled as being ‘left behind’ by one train before catching 

the next. The frequency of trains was used to determine the total passenger 

time spent in the ‘On Train’, ‘On Platform’ and ‘On Platform (Left Behind)’ 

stages. The journey score metrics were used to calculate the VoT weighting for 

these states. To avoid over-counting, the AEI time and weighting was only 

applied twice for each whole passenger journey defined by the PDA data rather 

than the RODS data. The ‘Buying Ticket’ journey stage was disregarded because 

the use of pre-paid travel cards (‘Oyster cards’) and contactless payment at 

ticket gates is common for this network. For example, in 2012 Oyster cards 

were used for over 80% of public transport travel in London (Transport for 

London, 2012). The interstation distances were multiplied by the line section 

loadings so that the aggregate of the VoT weightings could be normalised by 

the total passenger distance travelled.  

Figure 5 shows how the analysis of network performance was conducted for 

the Morning Peak, Midday Off Peak and Evening Peak operational periods of 

every weekday and was dependent on the daily timetable and yearly number of 

passenger journeys. To calculate the network score for that day, the values 

from the three operational periods of the day were summed. The year value 

was calculated as the mean of the year’s day values. Because the CSS data is 

already normalised for passenger numbers and distance travelled, it is not 

relevant to normalise 𝜙𝐶𝑆𝑆 using (3.7). 
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Figure 5 - The method for calculating the measured network score, 𝜙𝐶𝑆𝑆, and 
predicted network score using the Journey Time Metric or Disutility Metric, 
𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀. 

 Results 

Figure 6 enables comparison of 𝜙𝐶𝑆𝑆 with 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀, and also presents 

data where no distance or passenger normalisation is applied, 𝜙𝐽𝑇𝑀 (𝑈𝑁) and 

𝜙𝐷𝑀 (𝑈𝑁), for the years 2008 to 2017. The number of passengers, 𝑅, is also 

included in the plot. Upward-pointing bars with values displayed on the left 

ordinate are used for 𝜙𝐶𝑆𝑆, while 𝜙𝐽𝑇𝑀 (𝑈𝑁), 𝜙𝐷𝑀 (𝑈𝑁), 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 are 

represented by downward-pointing bars with values displayed on the right 

ordinate. Because the prediction metrics measure dissatisfaction and 𝜙𝐶𝑆𝑆 

 Working timetable  

 Access Egress Interchange data  

 Passenger load 

 Passenger seconds in each state 

 Mean number of passengers on each 
train 

Network assessment metric 

Operational period 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 

 𝜙𝐽𝑇𝑀 and  𝜙𝐷𝑀 over all 

operational periods 

Day value 𝜙𝐽𝑇𝑀 and 

𝜙𝐷𝑀 

 Calculate for every day of the year  

 Mean of day values 

Year value 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 

Compare 

Performance Data 

Almanac 

Quarterly 𝜙𝐶𝑆𝑆 

Mean of quarterly values 

Year value 𝜙𝐶𝑆𝑆 
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measures satisfaction, the right ordinate is inverted. A positive change in the 

vertical position of a bar-top for 𝜙𝐶𝑆𝑆 indicates a ‘better’ performing network. 

𝑅 is also represented by markers with values displayed on the right ordinate. 

To allow comparison of relative changes on different scales and using different 

units, all series have been normalised against their 2008 value. It can be seen 

that over time, in general, the measured network scores (𝜙𝐶𝑆𝑆) indicate 

improving network performance, with rising values relative to 2008. In general, 

this behaviour is successfully predicted by 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀. However, 𝜙𝐽𝑇𝑀 (𝑈𝑁) 

and 𝜙𝐷𝑀 (𝑈𝑁) predict deteriorating network performance and correlate with 

the increasing passenger numbers. It should be noted that, whilst the 

prediction metrics appear to give equal scores in 2008, this is because of the 

series normalisation process. The importance of normalising the predictive 

values by passenger numbers and distance travelled is clear if the metrics are 

to be compared over time. 

To investigate the importance of applying VoT weightings to different 

passenger states, Figure 7 enables comparison of 𝜙𝐶𝑆𝑆, 𝜙𝐽𝑇𝑀, 𝜙𝐷𝑀 and a simple 

end-to-end journey time metric, 𝜙𝐸𝐸 . To ensure like-for-like comparison, 𝜙𝐸𝐸  

has been normalised for passenger numbers and distance. The ordinates are 

similar to Figure 6 with the right ordinate now displaying 𝜙𝐸𝐸  normalised 

against the 2008 value. To quantify the level of agreement between predicted 

and measured performance, Kendall’s rank correlation coefficient B, 𝜏𝐵, is 

calculated between the series of 𝜙𝐶𝑆𝑆 with each series of: 𝜙𝐽𝑇𝑀, 𝜙𝐷𝑀 and 𝜙𝐸𝐸 . 

For the series of 𝜙𝐶𝑆𝑆 with 𝜙𝐽𝑇𝑀 and 𝜙𝐶𝑆𝑆 with 𝜙𝐷𝑀 a value of -0.82 (P<0.005) is 

found (-1.0 indicates perfect negative correlation between prediction and 

measurement and 0 indicates no correlation). For the series of 𝜙𝐶𝑆𝑆 with 𝜙𝐸𝐸  a 

value of -0.73 (P<0.005) is found, indicating worse correlation and that the 

network assessment metric is improved by representing a passenger journey 

as a series of states and applying weighting to these.  
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Figure 6 - Bar chart to compare predicted and measured network scores for 
different years and different prediction methods. Measured customer 
satisfaction scores, 𝜙𝐶𝑆𝑆, are shown by the left ordinate. Predictions using the 
Journey Time Metric, 𝜙𝐽𝑇𝑀, Journey Time Metric with no distance or passenger 

normalisation, 𝜙𝐽𝑇𝑀 (𝑈𝑁), Disutility Metric, 𝜙𝐷𝑀, and Disutility Metric with no 

distance or passenger normalisation, 𝜙𝐷𝑀 (𝑈𝑁), are shown by the right ordinate 
which has been inverted. The right ordinate also displays the number of 
passengers, R. All values have been normalised against the corresponding 2008 
value.  

 

Figure 7 - Bar chart to compare predicted and measured network scores for 
different years and different prediction methods. Measured customer 
satisfaction scores, 𝜙𝐶𝑆𝑆, are shown by the left ordinate. Predictions using the 
Journey Time Metric, 𝜙𝐽𝑇𝑀, Disutility Metric, 𝜙𝐷𝑀 , and end-to-end journey time, 
𝜙𝐸𝐸 , are shown by the right ordinate which has been inverted. All year scores 
have normalised against the 2008 value for the corresponding metric. 

To explore the importance of the crowding penalty Figure 8 enables 

comparison of 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 against the case where no crowding penalty has 
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been applied in the calculation, 𝜙𝐽𝑇𝑀 (𝑁𝐶) and 𝜙𝐷𝑀 (𝑁𝐶). The y-axis displays the 

raw values of 𝜙, i.e. they are not normalised against the 2008 value, which are 

displayed in units of the VoT for passengers travelling on an uncrowded train 

(𝜁) per passenger per metre. To determine what proportion of the network 

score is contributed by factors other than the crowding penalty, the value of 

𝜙(𝑁𝐶)/𝜙 is calculated when either journey metric is used. For the JTM and DM 

series respectively, a mean value of 0.91 and 0.99 is found both with a standard 

deviation less than or equal to 0.002. This behaviour is discussed in Section 3.3. 

Figure 9 plots 𝜙𝐷𝑀 against 𝜙𝐽𝑇𝑀 for the data from the years 2008 to 2017. The 

strong linear relationship of the data (ρ=1.00, P<0.005) suggests that, in 

general, similar changes in network performance are predicted by the JTM and 

the DM. A linear fit to this data shows a gradient of 1.013 (95% confidence 

bounds of 1.012 and 1.015). The intercept has been forced to the origin because 

both metrics are zero under the same condition: when no passenger time is 

spent in the network. The gradient implies that 𝜙𝐽𝑇𝑀 is consistently 

approximately 1.3% greater than 𝜙𝐷𝑀, but both are reacting consistently to 

external change over the period investigated.  

 

Figure 8 – Bar chart to compare the predicted network scores, 𝜙, for different 
years and different prediction methods. Predictions using the Journey Time 
Metric, 𝜙𝐽𝑇𝑀, and the Disutility Metric, 𝜙𝐷𝑀, are compared against the case 

where no crowding penalty is applied, 𝜙𝐽𝑇𝑀 (𝑁𝐶) and 𝜙𝐷𝑀 (𝑁𝐶) respectively.  
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Figure 9- The relationship between the ten network score predictions for the 
Victoria Line from 2008 to 2017. The fit has an intercept forced to the origin 
and a gradient of 1.013. 

 Discussion 

The results in Figure 6 indicate that, to successfully predict behaviour of 𝜙𝐶𝑆𝑆, 

it is necessary to normalise the network assessment metric by the number of 

passengers and the distance they travel. In this investigation, the ratio between 

different line section loadings remains constant for all years therefore the 

value of 𝑅 plotted in Figure 6 represents changes to passenger numbers and 

distance travelled. Consequently, the results in Figure 6 show that without 

passenger numbers and distance normalisation, the predicted network scores 

become sensitive to both. This effect is unwanted therefore including 

passenger number and distance normalisation within the network assessment 

metric is supported. 

Choosing a typical significance level of 0.005, the results shown in Figure 7 are 

statistically significant evidence that the null hypothesis (that predicted and 

measured data are uncorrelated) can be rejected. Although the choice of 
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significance level is arbitrary (Wasserstein and Lazar, 2016), considering the 

JTM and DM have been developed from empirical studies of passenger 

preferences and there is evidence that end-to-end journey time influences 

passenger experience (Transport Focus, 2016), the alternate hypothesis is 

accepted, i.e. there is correlation between CSS data and predictions with the 

developed assessment metric when using the JTM, DM or end-to-end journey 

time. Because 𝜏𝐵
𝐽𝑇𝑀 and 𝜏𝐵

𝐷𝑀 are closer to -1 than 𝜏𝐵
𝐸𝐸 , these results suggest that 

using the developed network performance metric with the JTM or DM better 

predicts relative changes to the CSS data than using end-to-end journey time. 

However, observing tables calculated by Walker (2016) indicate that even the 

80% confidence intervals of 𝜏𝐵
𝐽𝑇𝑀, 𝜏𝐵

𝐷𝑀 and 𝜏𝐵
𝐸𝐸  are too large to determine a 

statistically significant difference between the values of 𝜏𝐵
𝐽𝑇𝑀, 𝜏𝐵

𝐷𝑀 and 𝜏𝐵
𝐸𝐸 . To 

determine a statistically significant difference by reducing the confidence 

interval without altering the significance level, more years of data for 

comparison are needed in the series of 𝜙. It is unsurprising that 𝜏𝐵
𝐽𝑇𝑀 and 𝜏𝐵

𝐷𝑀 

do not equal -1.0 because, in this study, 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 do not capture the effect 

of some factors, beyond the timetable and passenger load, which may affect 

𝜙𝐶𝑆𝑆, e.g. delayed trains. The network assessment metric using the JTM or DM 

can capture the effect of some of these other factors, but the limitation of data 

available to this study means that they are not well captured by the model of 

network operation used. Similarly, because of factors such as survey design 

and implementation, the CSS data may not fully capture influencers to 

passenger experience that distinguish 𝜙𝐽𝑇𝑀, 𝜙𝐷𝑀 and 𝜙𝐸𝐸 , e.g. if the surveys 

were not conducted during times of high travel demand the effect of crowding 

will not be well captured. Consequently, not being able to determine a 

statistically significant difference in the accuracy of 𝜙𝐽𝑇𝑀, 𝜙𝐷𝑀 and 𝜙𝐸𝐸  might 

also be a limitation of the measured CSS data. 

Section 3.1.1 describes that for low passenger numbers, 𝜙𝐽𝑇𝑀is insensitive to 

crowding (because no crowding penalty is applied), whereas 𝜙𝐷𝑀 is. However 

when some passengers are standing (the normal operating regime for many 

GB services, e.g. 70% of services into London St. Pancras during the morning 
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peak (Peluffo, 2018)), 𝜙𝐽𝑇𝑀 will be more sensitive to crowding than 𝜙𝐷𝑀 

because it applies a crowding penalty four to eight times greater. This is 

confirmed by the results of Figure 8 which demonstrate that the contribution 

of the crowding penalty to the network score is on average 9% and 1% for the 

𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 respectively. Section 3.1.1 also describes that the DM applies a 

greater VoT weighting than the JTM to passengers who are ‘In Station’. Because 

the VoT weightings of the JTM and DM have been derived from surveying 

passengers, this may reflect local differences in passenger expectations where 

the metric was developed. For example, when used in the network assessment 

metric the JTM (developed in London) penalises crowding more and delay on 

the platform, less, than the DM (developed in Japan). This suggests that when 

considering a specific network, it is important to ensure the use of VoT 

weightings relevant to the passengers of that network. However, the similarity 

of the 𝜙𝐽𝑇𝑀 and 𝜙𝐷𝑀 values in the results indicate that the difference in 

weightings placed on different passenger journey states approximately cancel 

out (for the study network in the years investigated). The results in Figure 9 

show a high degree of correlation (ρ=1.00, P<0.005) between network scores 

calculated using the JTM and network scores calculated using the DM, despite 

their different formulations and countries of origin. 

Considering all the results together suggests that the newly developed network 

performance metric, using either the JTM or DM, can predict network 

performance from the passenger perspective, and successfully aggregates 

across passenger states to capture effects such as crowding and different 

journey stages. There is evidence that the network assessment metric, using 

either the JTM or DM, better predicts changes to customer satisfaction than 

end-to-end journey time. Because the JTM, CSS data and network operation 

data are all related to LUL, this result might be considered special to this case 

where there is a ‘closed-loop’ between metric and validation. However, the DM 

has no connection to the LUL data but is demonstrated here to achieve similar 

outcomes. This indicates the result is not particular to the ‘closed-loop’ case. 
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 Summary 

Passenger journeys are multi-stage and the conditions of a journey stage, e.g. 

crowding when on a train, can vary. The term ‘state’ has been introduced to 

describe a specific combination of stage and conditions. A passenger journey 

can be described as a series of states and the literature discussed in Chapter 2 

has shown that the relative time spent in each of these will have differing 

effects on the overall experience of the passenger. Measuring the passenger 

end-to-end journey time alone, or the train punctuality at final destination (as 

used in the GB Public Performance Measure) will not capture this. The JTM and 

DM are journey assessment metrics that can capture individual journey 

experience by applying a VoT weighting to time spent in each state. Both 

metrics sum the weighted time spent in each state, but they use different 

weightings, journey stages and the DM applies an additional penalty for train 

changes. Both apply a crowding penalty to capture the additional disutility 

caused to a passenger when traveling on a train with other passengers. For 

networks operating in the regime where some passengers cannot find a seat, 

the crowding penalty applied by the JTM is four to eight times greater than the 

DM. In this regime, the assessment of network performance using the JTM is 

more sensitive to crowding than when using the DM. Both the JTM and the DM 

can be used as part of the network assessment metric introduced here, where 

the network score is taken to be the aggregate of journey scores normalised by 

the distance travelled and the number of passengers. It is found that, for the 

Victoria Line of the LUL network from 2008 to 2017, there is a high degree of 

correlation (ρ=1.00, P<0.005) between the network scores calculated with the 

JTM and network scores calculated with the DM, despite their different 

formulations and countries of origin.  

When comparing network scores against measured values of customer 

satisfaction for the same network (obtained from surveys) there is statistically 

significant evidence (P<0.005) to reject the null hypothesis that predicted and 

measured changes do not correlate. Considering other evidence from the 

literature, this thesis adopts the hypothesis that predicted and measured 
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changes are correlated which means the network assessment metric can be 

applied to predict the relative performance of different networks from the 

passenger perspective. For the data available, the network assessment metric 

using the JTM or the DM better predicted relative changes to customer 

satisfaction than end-to-end journey time. However, to determine a statistically 

significant difference more data for comparison is required.  

In this thesis, from here on in, all network scores are calculated with the 

network assessment metric developed in this chapter, using the JTM for 

assessing individual journeys, and are denoted by 𝜙 (for brevity the superscript 

‘JTM’ is omitted). The information required for the JTM, i.e. the passenger 

journey stages and crowding penalty parameters, informs what must be 

captured in the passenger rail network model developed in the next chapter. 

Because of the evidence discussed in Chapter 2, it is considered that 

minimising a network score calculated using the metric developed in this 

chapter is equivalent to maximising the satisfaction of passengers.  
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Chapter 4 

A passenger rail network model 

The SUPREME framework optimises a rail network model for the maximum 

satisfaction of virtual passengers travelling within it. This chapter discusses the 

rail network model developed and used for this purpose. As pointed out in 

Chapter 2, a model is necessary because of the impracticalities associated with 

testing, in the real world, the many network variations typically required by 

optimisation procedures. A requisite for this model is to capture the 

information required by the network performance metric developed in 

Chapter 3. Namely it must be able to: model individual passenger journeys as a 

series of states, capture the time a passenger spends in each state and capture 

the conditions relating to passenger crowding. Furthermore, Chapter 2 

describes that the model must be adaptable to different network challenges 

and must be able to capture passenger-passenger, passenger-component and 

component-component interactions. Considering these requirements, Chapter 

2 identifies that no pre-existing suitable models are known and available to the 

author. Therefore the Passenger Rail Model (PRaM), described in this chapter, 

has been developed by the author for use within SUPREME to model networks 

and their effect upon on passenger journeys. This model is discussed in the 

paper ‘Maximising passenger satisfaction through optimised train movements’ 

presented at the 2017 Stephenson Conference (Hickish et al., 2017). Given that 

accuracy and computational cost are important features of PRaM for its 

applicability in SUPREME, experiments to investigate these are described in 

this chapter. 

 The Passenger Rail Model 

To meet the requirements listed in the previous section, PRaM uses Agent-

Based Modelling (ABM) techniques described by Macal and North (2010) and 

Bonabeau (2002) to simulate each passenger and train individually but 

concurrently in a shared environment. Each train or passenger is represented 
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by a virtual agent with structure illustrated by Figure 10, adapted from Macal 

and North (2010).  

 

Figure 10 - An illustration of the structure of the agents used in PRaM. This is 
similar to the ‘typical agent structure’ described by Macal and North (2010).  

Figure 10 shows that, as a virtual entity an agent has attributes, which maybe 

static or dynamic, as well as agent-methods. Some static attributes are unique 

identifiers, e.g. a name and an ID, whereas some describe a parameter 

modelling the real world, e.g. the number of seats in a train agent or the origin 

station of a passenger agent. Dynamic attributes are updated during the 

simulation, for example the number of passengers on board a train agent or 

the current location of a passenger agent. The agent-stage is a dynamic 

attribute which classifies the activity the agent is engaged in, e.g. ‘At Platform’ 

for train agents or ‘On Train’ for passenger agents. The agent-methods allow 

agents to function in the dynamic simulation without human input, i.e. be 

autonomous. Macal and North (2010) state that the behaviours of an agent 

‘relate information sensed by the agent [both internal and external] to its 

decisions and actions’. Furthermore, the behaviours of the agents capture their 

goals, e.g. for train agents to adhere to their timetable and for passengers to 

reach their destination, and their constraints, e.g. signalling constraints. Other 

agent-methods allow the agents to ‘sense’ the state of the environment or 

other agents as well updating their dynamic variables. The shared environment 

of the simulation is defined by the parameters of the network model 

representing the infrastructure, e.g. the stations and lines. The agents interact 

with each other and the environment according to their behaviours. Within an 

Agent 

Attributes: 

• Static: name, ID….  
• Dynamic: stage, location…. 

Methods: 

• Behaviours 
• Sensing the environment 
• Update rules for dynamic 

attributes 
• … 

Interaction 

with 

environment 

Interaction 

with other 

agents 
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agent type (e.g. passenger or train), the methods are identical, however the 

attributes may vary to represent different real-world instances of train or 

passengers. PRaM is a continuous simulation that models a user-defined period 

of operation, e.g. a whole day. Agents are sequentially updated, with a one 

second time step, based on the attributes of themselves, other agents and the 

environment at the start of the time step. The next sections describe the 

infrastructure environment, train agents and passenger agents in more detail. 

 Infrastructure environment 

The simulation occurs in a two-dimensional environment with two 

infrastructure entities: stations and lines. Stations are represented as point-

like with co-ordinates determined by real-world track distance separation. 

Multiple passenger and train agents can occupy the station location 

concurrently but stations have a defined number of platforms which limits the 

number of train agents. Lines connect the stations and are straight, one-

dimensional, can have variable maximum speed limit along their length, and are 

either single or bi-directional. One line represents a pair of rails.  

The signalling system within PRaM is a moving block system where the exact 

location and speed of all trains is known and used to determine for, each train, 

the furthest it can safely travel from its current location, i.e. the Limit of 

Movement Authority (LMA). This signalling system is chosen because the 

regulation of the European Traffic Management System (ERTMS) by the 

European Commission (2019), means that many European states (including the 

UK (Furness et al., 2017)) are developing towards moving block signalling, i.e. 

ERTMS Level 3. Appendix II includes a further discussion of this choice. 

Generally, moving block signalling systems require constant communication of 

the LMA to the train, e.g. through wireless technology. Therefore, lineside 

signalling infrastructure is not included in PRaM because, when moving block 

signalling is used, the signalling infrastructure topography does not affect the 

movement of trains. PRaM captures the LMA communicated to a real-world 

train in the train agent behaviour (discussed in the next section).  
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 Train agents 

Train agents are single homogenous units which travel around the network and 

are used by passenger agents to make their journey. The maximum capacity, 

number of seats and current occupancy of a train agent are described by 

parameters stored as attributes. The goal of train agents is to adhere to the 

timetable which specifies the stations they must visit, via which lines, as well as 

the target arrival times and earliest departure times at each station. However, 

the behaviour of train agents ensure they avoid collision, obey safety rules (e.g. 

speed restrictions and dispatching) and operate within the limits of their 

performance, which means they can become delayed. There are two train 

agent stages, ‘At Platform’ and ‘On Line’, which are used to indicate when 

passenger agents may board and alight, and when train agents travel around 

the network. The movement behaviour of train agents in the ‘On Line’ stage is 

described in the next section. A train agent will change from the ‘On Line’ to ‘At 

Platform’ stage when it is motionless at the station it is calling at. When in the 

‘At Platform’ stage, train agent behaviour is determined by the Dispatcher 

Model (described in Section 4.3.2) which governs when the train agent changes 

to the ‘On Line’ stage.  

 The movement behaviour of train agents 

Whilst in the ‘On Line’ stage, the movement behaviour of train agents is 

determined by three models: the Signaller Model (SM), the Train Control 

Model (TCM) and the Train Dynamics Model (TDM). The SM determines the 

LMA for the train agent depending on its location and agent-stage as well as the 

location of other train agents and stations. Using the approach of Tao and Ke-

Ping (2007), the SM applies standard kinematic equations to determine the 

train agent’s braking distance at its current speed. The location of the LMA is 

calculated by considering the last location at which the brakes can be applied 

to avoid a collision, plus a ‘safety margin’. If there is no Movement Authority for 

a train agent, its LMA is equal to its current position. The TCM determines the 

applied traction control, i.e. the control of traction or braking systems 

governing the magnitude of train acceleration or deceleration. The TDM 
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determines the position and velocity of the train agent when a traction control 

is applied.  

Four types of traction control are used to capture the movement behaviour of 

trains: acceleration, cruising (speed holding), coasting and braking. Figure 11 is 

a schematic representation showing how two hypothetical train journeys can 

be described using this model. The vertical lines indicate the locations where 

the traction control phase changes, i.e. control points. In the left window the 

permissible line speed, i.e. the speed limit of the line section, is constant for the 

whole journey. The train agent accelerates to the permissible line speed, 

cruises at this speed, then coasts and brakes. In the right window, the 

permissible line speed is reduced for a midway section of the journey. For this 

journey, there are 7 control points separating a sequence of traction control 

phases where the acceleration, cruising and coasting phases are repeated. By 

combining and repeating traction controls it is possible to capture the 

distance-speed profiles of real world trains, as is shown by the results of 

Powell and Palacin (2015). 

 
Figure 11 – Schematic distance-speed relationships and traction control phases 
for two hypothetical train journeys. The solid line represents train speed, the 
dashed line represents the permissible line speed and the vertical dotted lines 
represent the location of control points between traction control phases.  

The TCM dynamically determines control points and the traction control. In the 

case of acceleration or cruising, the traction control is a percentage of the 

tractive effort available to the train. In the case of braking, the traction control 

describes a constant rate of deceleration relating to: ‘service brake’, ‘full brake’ 

and ‘emergency brake’. 
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To determine appropriate traction control, the TCM requires information from 

the TDM and SM. Figure 12 illustrates the flow of information between the SM, 

TCM and TDM as well as the input and output information. The TCM proposes 

a traction control and the TDM computes the resultant train agent position, 

velocity and stopping distance using the ‘service brake’. This information is 

then compared against the LMA determined by the SM and the permissible line 

speed. If the proposed traction control does not meet the safety constraints it 

is rejected and a reduced traction control is proposed (less tractive force from 

the propulsion system or greater braking). This process iterates until an 

acceptable traction control is found. So that the movement behaviour of train 

agents captures the ‘smooth’ driving requirements of real world trains (i.e. no 

rapid changes between acceleration and braking), the TCM only proposes an 

increased tractive force after braking if: the LMA has been altered or the 

permissible line speed has been changed, or the train agent’s velocity is less 

than 75% of the maximum that would meet the safety constraints. 

 

Figure 12 – An Illustration of the flow of information in the movement behaviour 
of PRaM train agents. 

Because braking deceleration is modelled as constant, the TDM calculates the 

time-dependant position and velocity of the train agent using standard 

kinematic equations. However, when a tractive force is applied, the TDM uses 

Newton’s second law of motion with the effective mass of the train agent and 

the total force acting upon it. Howlett and Pudney (1995) show that the mass of 

the train can be considered point-like for this calculation. The effective mass of 

the train agent, 𝑀𝐸 , is given by the formula: 

𝑀𝐸 = 𝑀𝑇(1 + 𝓇) +𝑀𝑃 
(4.1) 
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where 𝑀𝑇  denotes the train stationary tare mass, 𝑀𝑃, the mass of the 

passengers and 𝓇 is an empirically derived constant to capture the effect of 

rotating parts, i.e. the rotary allowance. The values of 𝑀𝑇  and 𝓇 are specific to 

the train being modelled and are provided by data. The total force is calculated 

by resolving the tractive force at the rail-wheel contact, the resistance force 

and the force due to gravity. The applied tractive force is calculated by 

multiplying the force available to the train, and the traction control percentage 

output by the TCM. The available tractive force is speed dependent and is 

calculated from the formula, given by (4.2), which models data relating to the 

speed-dependent power output of a real world train engine.  

𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = {

𝐹𝑚𝑎𝑥 , 𝑣 ≤ 𝑣0 
𝐹𝑚𝑎𝑥𝑣0
|𝑣|

, 𝑣 > 𝑣0  
 

(4.2) 

The symbol 𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 denotes the tractive force available to the train, 𝐹𝑚𝑎𝑥  

denotes the maximum tractive force available to the train when at rest, 𝑣 

denotes the train speed and 𝑣0 denotes the boundary speed between constant 

tractive effort and constant tractive power. Similar to the approach of 

Bešinović  et al. (2013), the formula of (4.2) uses a simple model of constant 

tractive power at speeds above 𝑣0, but could be replaced by another 

relationship trivially. The resistance force, 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, is modelled using the 

Davis formula: 

𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝒜 + ℬ𝑣 + 𝒞𝑣2 
(4.3) 

where 𝒜, ℬ and 𝒞 are train-specific constants respectively relating to the 

static, rolling and aerodynamic resistance of the train with values determined 

from analysing real-world train motion, e.g. by Hansen et al. (2017). The force 

due to gravity, 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦, is calculated from the formula: 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = −𝑔 𝑐𝑜𝑠 (𝜃) 
(4.4) 

where 𝑔 denotes acceleration due to gravity and θ the angle between the rail 

and the horizontal with a positive value as uphill and a negative value as 

downhill. Because the total force acting upon the train is nonlinear, the 
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equations for position and velocity are approximated using the Euler method. 

The parameter values of 𝑀𝑇 , 𝓇, 𝒜, ℬ and 𝒞 are stored as static attributes of 

train agent. The value of 𝑀𝑃 is a dynamic attribute recalculated everytime the 

train agent departs a station using a single passenger mass of 77kg (Matheson, 

2010). The value of θ is determined by cross referencing the position and 

direction of travel of the train agent against a database of line gradients for the 

network.  

 The Dispatcher Model 

On the GB network, for a real-world train to be dispatched: the train must have 

Movement Authority, all passengers must be clear of the doors and the doors 

must be closed (Rail Safety and Standards Board, 2017). To capture this, the 

Dispatcher Model returns a Boolean statement on whether a train agent can be 

‘dispatched’ depending on if the train agent has Movement Authority from the 

SM and if the inequalities given by (4.5) and (4.6) are satisfied. 

𝓉 ≥ 𝓉𝐷 
(4.5) 

𝓉 ≥ 𝓉𝐴 + 𝓉𝐷𝑊 
(4.6) 

The symbol 𝓉 denotes the current simulation clock time, 𝓉𝐷𝑊 denotes the dwell 

time of the train agent, and 𝓉𝐷 and 𝓉𝐴 respectively denote the timetabled 

departure and arrival time of the train agent. The value of 𝓉𝐷𝑊 is determined 

for each train agent at every station stop and models the minimum amount of 

time required for the real-world passengers to board and alight a real-world 

train including door opening and closing times. To calculate 𝓉𝐷𝑊, the formula 

developed by Weston (cited by Harris and Anderson (2007)) is used:  

𝓉𝐷𝑊 = 𝐶0 + [1.4 (1 + (
𝑈

35
) (
𝑊 − 𝑍

𝑄
))]

× [(𝑈 ×
𝐸

𝑄
)
𝐶1

+ (𝑈 ×
𝐿

𝑄
)
𝐶2

+ 0.027 (𝑈 ×
𝐸

𝑄
)(𝑈 ×

𝐿

𝑄
)]  

(4.7) 

𝑈 =
 𝑏𝑢𝑠𝑖𝑒𝑠𝑡 𝑑𝑜𝑜𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑓𝑙𝑜𝑤

𝑚𝑒𝑎𝑛 𝑑𝑜𝑜𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑓𝑙𝑜𝑤
 

(4.8) 
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where, 𝐶0, denotes the total time in seconds for the train doors to open and 

close, 𝑊, the number of passengers remaining on the train, 𝑍, the number of 

seats, 𝑄, the number of doors, 𝐸, the number of passengers boarding, 𝐿, the 

number of passengers alighting, 𝐶1 and 𝐶2, weighting constants and 𝑈 the door 

factor. The purpose of 𝑈 is to capture the heterogeneous distribution of 

passengers along the train and platform, with a value calculated from the 

formula given by (4.8). However, because PRaM does not model passenger 

locations on the train or platform, its value is set to 1. Weston proposed values 

of 15, 0.7 and 0.7 for 𝐶0, 𝐶1 and 𝐶2 respectively. These values are network-

specific, but Harris and Anderson (2007) found that the value of 𝐶1 and 𝐶2 only 

needed to vary across a range of 0.45 to 0.9 and 0.8 to 0.9, for the model to 

have validity for 26 urban rail networks worldwide. Observing (4.7) it can be 

seen that there are terms to capture: the number of boarding and alighting 

passengers, their interaction with each other (at the door) and their 

interaction with other passengers in the train. Models such as that presented 

by Li et al. (2016) capture additional factors such as the dimensions of the 

door, train-platform gap and layout of the station and may be valid for a wider 

range of network types than Weston’s. However, because data relating to these 

has not been available to the author for all networks investigated in this thesis, 

Weston’s model is used.  

 Passenger agents 

Passenger agents are defined with an origin and destination, and their route 

through the network is predetermined as the shortest path between these. 

The goal of passenger agents is to travel their route in the minimum time. 

Passenger agents can only move through the network using the train agents 

and so take the location of these or stations. Their journey is described by the 

sequence of agent stages that relate to the journey stages described in 

Chapter 3: ‘Not In System’, ‘Buying Ticket’, ‘Moving Through Station’, ‘On 

Platform’, ‘On Platform (Left Behind)’ and ‘On Train’. The behaviours of 

passenger agents relate to changing their stage. Figure 13 illustrates the 

sequence of passenger agent stages for a journey and the behaviours which 
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connect them. The agent stages are shown in boxes and the behaviours as 

named arrows (the code ‘PB’ relates to ‘Passenger Behaviour').  

  

Figure 13 – Illustration of the possible passenger agent stages and the 
behaviours which connect them in the order of a journey. The stages are shown 
inside boxes. The behaviours are the named arrows connecting them. 
Passenger stages can only change in the direction shown by the arrow.  

In Figure 13 it can be seen that the initial stage of passenger agents is ‘Not In 

System’ which means they have no location. PB1 occurs at a predetermined 

time for each passenger and they become in the ‘Buying Ticket’ stage with the 

location of their origin station. The passenger agent remains in the ‘Buying 

Ticket’ stage for ℶ1 seconds before PB2 occurs and are then in the ‘Moving 

Through Station’ stage for ℶ2 seconds before PB3 occurs. When in the ‘On 

Platform’ stage, PB5 occurs to move them onto the first train agent to call at 

their station whose next stop is on their route and has space. If a train agent 

with a suitable next stop is full and a passenger agent cannot board, then PB4 

Not In System 

Buying Ticket 

Moving Through Station 

On Platform On Platform (Left Behind) 

On Train 

Moving Through Station 

Not In System 

PB1 

PB2 

PB3 

PB4 

PB5 

PB4 

PB6 

PB7 



 

54 

occurs and the passenger remains at the station but in the ‘On Platform (Left 

Behind)’ stage. The criteria are the same for a passenger agent to move from 

the ‘On Platform’ or ‘On Platform (Left Behind)’ stage to the ‘On Train’ stage, so 

PB5 connects both pairs. Passenger agents board a suitable train in order of 

priority given to the length of time they have been at the platform. A passenger 

agent will remain on the train agent, in the ‘On Train’ stage, until the train agent 

stops at a station and its next station stop is not on the passenger agent’s 

route. In this case, PB6 occurs and the passenger agent alights the train, takes 

on the location of the station and is in the ‘Moving Through Station’ stage. If this 

station is the destination station of the passenger agent, it remains in this agent 

stage for ℶ3 seconds before PB7 occurs and the passenger agent moves to the 

Not In System stage. If the station is not the passenger agent’s destination, the 

passenger agent is in the ‘Moving Through Station’ stage for ℶ2 seconds before 

PB3 occurs and the passenger goes back to the ‘On Platform’ stage to wait for 

another train agent. This loop continues until the passenger agent reaches 

their destination. The values of ℶ1, ℶ2 and ℶ3 are network specific but are 

constant for all passenger agents and are supplied as parameters to the PRaM 

simulation. The specific routes and departure times of all the passenger agents 

define the passenger load on the network.  

To calculate the network score, Chapter 3 describes that passenger journeys 

are captured as a series of states. The state of a passenger agent changes each 

time their journey stage or the crowding conditions they are experiencing 

change. The crowding conditions that a passenger agent is experiencing are 

determined using information stored in the attributes of the associated train 

agent, e.g. maximum capacity, number of seats and number of riders. The VoT 

weighting function for each state a passenger agent experiences is calculated 

using (3.1) and (3.2). The simulated duration of the passenger state and the VoT 

weighting function is stored for each passenger agent so that journey scores 

can be calculated. The distance travelled by each passenger agent is 

determined from their route and the network topography.  
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 Validation of train movement 

To validate the TCM and TDM, measured train movement data was compared 

against model predictions of train velocity and displacement. To validate the 

TCM, the location of control points for the predicted motion of the train were 

compared against the measured location of changes in train acceleration for a 

real-world train. The TDM must be validated independently of effects from the 

TCM, therefore the TDM was validated by comparing the predicted and 

measured time-distance and distance-speed relationships during a single 

phase only. Because the TCM is dependent on the TDM, the TDM was validated 

first. 

The measured data was collected by Fletcher (2015)4 using a GPS device on 

board the 17:57 InterCity 125 High Speed Train service as it travelled from 

Stevenage to Grantham on the East Coast Mainline on 10/06/2015. The GPS 

device recorded the position, altitude and speed of the train at approximately 

one second intervals. The TCM and TDM predictions were calculated using the 

parameter values corresponding to an InterCity 125, shown by Table 4, with line 

gradients calculated from the altitude data collected by Fletcher. 

Parameter Value 
Effective mass, 𝑀𝐸 489 tonnes 
Traction system phase boundary 
speed, 𝑣0 

55 km/hour 

Maximum tractive force, 𝐹𝑚𝑎𝑥 170 kN 
Davis formula 𝒜 3.22 kN 
Davis formula ℬ 113 Ns/m 
Davis formula 𝒞 7.8 Ns2/m2 

Table 4 – Parameter values used to describe an InterCity 125 in the validation 
experiment of the Train Dynamics Model.  

The effective mass of the train shown in Table 4, has been calculated using (4.1) 

with a tare mass (𝑀𝑇) of 393 tonnes (provided by personal communication 

with Nicholson (2016)4), a rotary allowance (𝓇) of 0.08 (Steimel, cited by Zhao 

(2013)), 630 seats in the train (Angel Trains, c2019b) and assuming they are all 

                                                   

4 For more information, see the list of personal communications in the reference list. 



 

56 

occupied (as is common for trains departing London between 17:00 and 18:00 

(Peluffo, 2018)). The other values in Table 4 have also been provided by 

Nicholson. To calculate the line gradients, first the altitude data was smoothed 

by taking the altitude at a location to be the mean of all data points in an 

interval 300m either side. The line gradients are then calculated by considering 

the change in altitude between each location. No data could be retrieved for 

the deceleration of an InterCity 125 at different braking levels therefore values, 

provided by Gill (2016)5 in a personal communication, for the ‘Desiro’ trains 

were used: 0.85 ms-2, 1.0 ms-2 and 1.1 ms-2 respectively for service, full and 

emergency brake.  

To isolate it from the effects of the TCM, validating the TDM requires 

comparing measurements and predictions of train movement for the same 

traction control. Although there is no measured data for the traction control 

applied for the train, Powell and Palacin (2015) state that generally during the 

acceleration phase, a traction contol is continuosly applied that is close to 

100%. Consequently, Figure 14 compares the predicted and measured 

distance-speed relationship of the train for the initial acceleration phase, which 

was assumed to be from stationary at Stevenage until the first reduction in the 

train’s speed (in this case, the first 12km of the journey). Measured values are 

shown by markers and predicted values are shown by lines, all with values 

relating to the left ordinate. Although the GPS device reports an accuracy of to 

within 10m for the data collected, it applies processing to the data which 

obscures the uncertainty in speed readings. Consequently, no error bars are 

plotted for the measured speed data, however, it can be seen to be ‘smooth’ 

indicating a small (approximated to be within ± 5km/hour) uncertainty relative 

to the speeds involved. For clarity, no error bars are plotted for the distance 

data because in the scale of the x-axis a 10m uncertainty is indistinguishable. 

Predictions when a 100% and 80% traction control have been continuously 

applied are shown. Observing Figure 14 shows the TDM correctly predicts the 

                                                   

5 For more information, see the list of personal communications in the reference list. 
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train to accelerate to near top-speed with decreasing acceleration. The 

predicted top speed reached in 12km is dependent on the traction control 

applied. Corresponding changes in the gradient of the altitude data and 

distance-speed speed relationship indicate that the model is capturing the 

effect of line gradients, e.g. at approximately 4 km of the journey the downhill 

line gradient increases, causing the model to predict an acceleration which is 

also present in the measured data. It can be inferred that the distance-speed 

behaviour of the train is well predicted by the TDM with a traction control 

between 100% and 80%. 

 
Figure 14 – Measured and predicted values of an InterCity 125’s speed. The x-
axis displays the distance from Stevenage. The left ordinate displays train 
speed for measured values and predicted values when different traction 
controls have been applied. The right ordinate shows the smoothed altitude at 
that point in the train journey.  

Figure 15 compares the measured and predicted time-distance relationships 

for the initial acceleration phase. With a traction control of 100%, the TDM very 

closely predicts the location of the train at all times so the markers and line are 

almost indistinguishable. To travel 12km, the train is measured to take 344 
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seconds. The model shows that with 100% and 80% traction control, 342 

seconds and 372 seconds are predicted respectively.  

 

Figure 15 – Measured and predicted values of an InterCity 125’s distance-time 
relationship during the initial acceleration phase of its journey. Predicted 
values have been calculated with the TDM when a traction control of either 
100% or 80% have been applied continuously.  

Assuming that the TDM is valid, the TCM is validated by comparing the 

measured and predicted motion of the train for the whole journey when the 

traction control input to the TDM is variable and determined by the TCM. 

Figure 16 plots the measured and predicted speed of the train for the whole 

125km journey. Observing the measured data, it can be seen that the real-world 

train does not exceed 195km/hour although train capability is 201km/hour and 

the Sectional Appendix published by Network Rail (2013, 2015) either side of 

the journey  indicates that the permissible line speed for the journey was also 

201km/hour. Consequently to maintain a like-for-like comparison, the 

predictions were calculated using a permissible line speed of 195km/hour. 

Vertical markers have been plotted at predicted control points.  
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Figure 16 – The measured distance-speed relationship of an InterCity 125 
travelling from Stevenage to Grantham on the East Coast Mainline, and 
predictions of the same journey made using the Passenger Rail Model (PRaM). 
The measured altitude of the train is also shown. 

The results of Figure 16 show that during the initial acceleration phase there is 

good agreement between measurements and predictions. The control point 

from acceleration to cruising is predicted to occur at 11km and, by observing 

the first measured data point where the real-world train speed acceleration 

became less than or equal to 0, is measured to occur at 12km. During the 

cruising phase of the predicted train journey the model correctly predicts the 

train to maintain a speed of up to the permissible line speed, however, there 

are substantial variations between predicted and measured values. 

Furthermore, the measured data indicates that the real-world train had an 

additional braking and acceleration phase with control points at respectively 

64km and 75km. This might be because of an event that can be captured by 

PRaM, but is not captured in the validation simulation (e.g. a temporary speed 

restriction or congestion in the network). There are also small changes in the 

train speed during the cruising phase of the predicted journey, but these are 
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not caused by additional control points. By comparison with the altitude data it 

can be seen that the small changes in predicted speed during the cruising 

phase correlate with steep gradients. Consequently, the small changes in speed 

during the cruising phase of the predicted journey are attributed to an 

increased effect from the force due to gravity at parts of the journey with a 

steeper gradient. The TCM predicts the coasting phase control point to occur 

at 112km which corresponds in a measured negative acceleration beginning at 

111km. The braking phase is predicted to begin at 124km which corresponds 

with an increase in the measured train deceleration at 123km. The mean 

percentage error between measured and predicted speeds is 6% with a 

standard deviation of 9%. The standard deviation indicates a positive skew on 

the distribution which might be caused by the model overestimating train 

speed in the cruising phase where not all control points have been predicted. 

The whole journey is predicted to require 2499 seconds, but is measured to 

take 2610 seconds.  

 Sensitivity analysis of Train Dynamics Model parameters 

To investigate the sensitivity of the TDM to the input parameters, each was 

varied using a factor multiplier, 𝜍, and changes to the time predicted for the 

train to travel the first 12km of the journey were recorded. Each parameter was 

varied independently whilst others maintained their original value. Figure 17 

plots the value of 𝜍 on the x-axis which was varied to reflect up to an order of 

magnitude error in TDM parameter values. The percentage change in time, 

relative to the case when all TDM input parameters have the value shown in 

Table 4, is plotted on the y-axis. All series have the same value when 𝜍 = 1 

because this the case where no input parameters are affected. Linear fits have 

been plotted for the first four series. For the last two series of data (𝐹𝑚𝑎𝑥  and 

𝑀𝐸) fits of the form 𝑦 = 𝑑𝑥ℎ + 𝑐 have been used because in the case of 

constant acceleration the relationship can be shown analytically to be: 𝑦 =

(𝑀𝐸 −√𝑀𝐸)𝜍
1/2 and 𝑦 = (𝐹𝑚𝑎𝑥 −√𝐹𝑚𝑎𝑥)𝜍

1/2 where 𝐹𝑚𝑎𝑥 and 𝑀𝐸 have their 

original values (see Appendix II). Table 5 shows the value of the fit parameters 
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and their upper and lower confidence bounds when a 95% confidence level is 

used.  

 

Figure 17 – The percentage change in time, to travel the first 12 km of the 
journey, calculated by TDM when different input parameters are multiplied by, 
𝜍, shown on the x-axis. The percentage change in journey time relative to when 
all parameters have the value shown in Table 5 is shown on the y-axis. 

 𝒎 LCB UCB 𝒄 LCB UCB    
𝓐 1.39  1.33 1.45 -1.38 -1.61 -1.15    
𝓑 1.31 1.26 1.35 -1.10 -1.23 -0.91    
𝓒 2.89 2.84 2.93 -2.58 -2.76 -2.40    
𝒗𝟎 16.9 10.8 21.6 -13.0 -19.2 -6.8    

 𝑑 LCB UCB ℎ LCB UCB 𝑐 LCB UCB 
𝑭𝒎𝒂𝒙 38.9 33.9 43.8 -0.91 -1.04 -0.79 -39.0 -43.1 -34.9 
𝑴𝑬 39.4 37.3 41.6 0.81 0.76 0.86 -39.6 -41.4 -37.7 

Table 5 - Parameters of the fits plotted in Figure 17. The series the fit relates to 
is shown in the first column. Fits of the form 𝑦 = 𝑚𝑥 + 𝑐 and 𝑦 = 𝑑𝑥ℎ + 𝑐 are 
used. The Lower Confidence Bound (LCB) and Upper Confidence Bound (UCB) 
are shown for each fit parameter when a 95% confidence level is used.  

Observing Figure 17 shows that the TDM is much more sensitive to changes in 

𝑣0, 𝐹𝑚𝑎𝑥 and 𝑀𝐸 than to the Davis formula coefficients 𝒜, ℬ and𝒞. Relative to 

other parameters, changes to 𝐴 and 𝐵, have very similar effects, with the 

markers and fits almost being indistinguishable. The results show that an error 

of 50% in a single input parameter will result in an error in time that is less than 

20%. 



 

62 

 Sensitivity analysis of time step used  

To investigate the sensitivity of the TDM to the time step used, a simulation of 

the train applying 100% traction control from stationary for 340 seconds was 

computed using different time steps. The distance-time profiles were then 

considered relative to a baseline case. For each profile, the distance travelled 

at 20 second intervals was compared with the corresponding baseline 

distance. The differences were expressed as an absolute percentage of the 

baseline distance and the mean calculated for each profile. Because the 

baseline has been computed with a small time step (10-4 seconds), it is taken to 

represent the ‘true’ value of the simulated train movement and therefore 

Figure 18 plots the mean absolute percentage error for three different time 

steps. Reducing the time step from 10 seconds to 1 second, and from 1 seconds 

to 0.1 seconds, reduces the error by a factor of 26 and 3 respectively. These 

results indicate that at a time step of 1 second or less, errors in the TDM 

introduced by discretised time become unsubstantial. Furthermore, there 

become diminishing reductions in this error at smaller time steps. These 

results are discussed further in the context of the computational cost in 

Section 0. 

 

Figure 18 – The percentage error of the TDM when three different time steps 
are used.  
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 Discussion of results 

For modelling the time required by a train to travel a distance under constant 

traction control, the results of Figure 15 show that the TDM is accurate to 

within 0.6% of the measured time. This result has been found through 

considering an accelerating train only, but by symmetry it is reasonable to 

expect it to hold for decelerating trains also. Although this result is based on 

comparison with one train journey only, the similarity between the approach of 

other researchers, e.g. Sumpavakup and Kulworawanichpong (2015), and the 

TDM gives further confidence that the TDM is accurate enough for use in PRaM 

where larger errors can be introduced by the TCM. 

The results of Figure 16 show that the TCM controls train speed to, on average, 

within 6% of the measured value and that the control points predicted by the 

TCM are within 1km of corresponding measured control points. For the range 

of speeds involved, it takes 18 to 23 seconds to travel 1km and given that human 

train control behaviour is varied, e.g. Dorrian et al. (2007) have shown that train 

driver performance is afffected by fatigue, it is possible that this difference in 

control points is within the bounds of realistic train control behaviour. To 

determine the bounds of realistic driving behaviour, it is necessary to compare 

the speed profiles of human driven trains for the same journey (e.g. the results 

of Mott MacDonald (2006, p.55)).  

To quantify the error expected from the TDM for predicting times for a whole 

journey, the results from Figure 15 and Figure 16 can be combined. The TCM 

predicts this train journey to have non-zero acceleration for 35% of the total 

measured journey time. An error of 0.6% during this time (because of 

inaccuracies in the TDM) causes an error of 0.2% in the total journey time. 

However, because acceleration and deceleration also occur in the cruising 

phase, this is likely to be an underestimate. The upper bound on the error in 

journey time will be 0.6% in the case that the train always has non-zero 

acceleration. Therefore, an error of 0.2% to 0.6% is expected for predicting 

journey times, however, this would increase if more than one acceleration, 
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coasting or braking phase occurs. The error would also increase further in the 

case that TCM does not predict all traction control phases. 

The accuracy of journey time predictions is dependent on the parameter 

values used in the TDM. For example, the results of Figure 17 show journey 

times predicted with the TDM vary by more than 30%, if input parameters 

relating to the effective mass of the train or the traction system are not 

accurate to within an order of magnitude. However, for all input parameters, an 

error of 50% in an individual input parameter will result in a variation in 

predicted journey time that is at most 20%. Obtaining parameter values to this 

level of accuracy is realistic (see Appendix II) and a 20% variation in journey 

time is acceptable for the purposes of PRaM within the SUPREME framework. 

Because the results of Figure 17 show that the accuracy of the TDM is relatively 

insensitive to changes in the Davis formula coefficients, and the results of 

Hansen et al. (2017) indicate that the value of 𝒞, representing aerodynamic 

resistance, changes by less than an order of magnitude for trains in a tunnel 

(where aerodynamic resistance rises), this means that the TDM can still be 

applied for networks involving these. Only the effect of an error in an individual 

TDM parameters has been investigated, but in some combinations, errors in 

multiple parameters will interact, e.g. effective mass and maximum tractive 

force.  

 Validation of passenger agent behaviour 

Having validated train movement in the previous section, this section discusses 

the validation of passenger agent behaviours. In Great Britain, there has been a 

historical shift in general service provision from high capacity trains to smaller, 

more frequent trains. Whilst discussing the use, in this shift, of DMUs to 

replace locomotive-hauled trains, Ford (1986) describes the rail industry’s 

belief that increased service frequency increases the number of passengers. 

Consequently, to validate passenger behaviour, different networks reflecting 

this shift in service pattern are simulated and the changes to indicators of 

attractiveness to passengers are compared against the statements of Ford.  
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Two networks are simulated with the same topography and train performance, 

and carrying the same passenger load, but with different timetables and 

passenger capacity of the trains. Figure 19 illustrates the topography of the two 

networks simulated with a circle representing a station, the letter the station 

name, and a connecting edge representing a line. The outer stations are all 

connected to the central station by two single direction lines with opposite 

directions, i.e. an ‘up’ and ‘down’ line. All lines are the same length and are flat. 

At each station, there is one platform serving each line. There are 12 different 

combinations of origin and destination stations, i.e. routes, in this network and 

the passenger load is distributed homogenously between all of them. The 

journeys of 1.7 x 104 passengers over a 14 hour day are simulated. The arrival 

time of passenger agents at their origin station (the time at which PB1 for that 

passenger agent occurs) is distributed homogenously from 09:00 to 21:00 and 

equivalently between the routes. The time to buy a ticket (ℶ1), move through 

the station (ℶ2) and exit the destination station (ℶ3) was 120 seconds.  

 

Figure 19 - The network topography used for the investigation. A circle 
represents a station with the letter as its name. A single edge represents a line 
so there are two lines connecting each outer station to the inner station. 

For both networks, the train agents are timetabled to travel back-and-forth 

between a single outer station and the central station. The network operating a 

service of less frequent, larger trains is referred to as ‘Network X’ and the 

network operating a service of more frequent, smaller trains is referred to as 

‘Network Y’. Network X has one train travelling between each outer and central 
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station pair. Table 6 shows the first three hours of the timetable and final 

arrival time of all the trains in Network X. It can be seen that all the trains travel 

synchronously and that there is an hourly service between all stations, which 

continues until the trains arrive at the outer station at 23:00.  

Train 1  Train 2  Train 3 
Station Arrive Depart  Station Arrive Depart  Station Arrive Depart 
A 09:00 09:03  B 09:00 09:03  D 09:00 09:03 
C 09:30 09:33  C 09:30 09:33  C 09:30 09:33 
A 10:00 10:03  B 10:00 10:03  D 10:00 10:03 
… … …  … … …  … … … 
A 23:00   B 23:00   D 23:00  

Table 6 – The first three hours of the timetable for all the trains in Network X 
and half the trains in Network Y.  

All the trains in Network X are simulated to be InterCity 125s with a passenger 

seating capacity of 630 (Angel Trains, c2019b) and a standing capacity of 63. 

The standing capacity has been determined as 10% of the seating capacity, 

because data published by the UK government (2003) shows that this is the 

case for the British Rail (BR) Class 442 which uses the same coach design as an 

InterCity 125. The formula given by (4.1) shows that the number of passengers 

in the train effects the effective mass of the train, but all other parameters 

values are the same as stated in Section 4.6. 

In Network Y, an additional train agent is simulated operating between each 

outer and central station pair, making a total of six train agents. Three train 

agents have the same timetable as for Network X. The first three hours of the 

timetable and the final arrival time of the other three train agents is shown by 

Table 7 which shows that the additional train agents are timetable to travel 

synchronously with each other, but by comparison with Table 6, 

asynchronously with the other three train agents. For Network Y, there is a 

half-hourly service between all connected stations. All trains agents in Network 

Y have the performance parameters of an InterCity 125, but with half the 

seating capacity, standing capacity, tare mass, maximum tractive force and 

Davis formula resistance coefficients.  
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Train 4  Train 5  Train 6 
Station Arrive Depart  Station Arrive Depart  Station Arrive Depart 
C 09:00 09:03  C 09:00 09:03  C 09:00 09:03 
A 09:30 09:33  B 09:30 09:33  D 09:30 09:33 
C 10:00 10:03  C 10:00 10:03  C 10:00 10:03 
… … …  … … …  … … … 
C 23:00   C 23:00   C 23:00  

Table 7 - The first three hours of the timetable for the additional trains in the 
smaller, more frequent trains network.  

Both networks were simulated and the total passenger time in two different 

journey stages recorded. Figure 20 plots the total passenger time spent either 

on the train or in the station for both networks. The results show the total 

passenger time on a train is the same because the timetabled train journey 

times are the same for both networks. Since Network Y has double the 

frequency of train agents, passenger agents must wait less time before a 

suitable train arrives causing the time in station to be reduced by 53% 

compared to Network X. For both networks, all passengers successfully make 

their journeys. 

 

Figure 20 - The total passenger time spent either on a train or in a station for 
Network X and Network Y. For both columns, the lower portion represents time 
on the train and the upper portion represents time in the station. Network X 
has a service of less frequent, larger trains. Network Y has a service of more 
frequent, smaller trains.  
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To investigate the effect of high passenger demand, the number of passengers 

was doubled to 3.5 x 104 whilst the other parameters describing the networks 

remained constant. The passenger load remained evenly distributed between 

routes and homogenous in time. Figure 21 shows the total passenger time 

spent in different journey stages for both networks. The passenger time spent 

on a train remains equal between the two networks and the time in a station is 

less for Network Y than Network X. As a result of the increased passenger 

demand, not all passengers can fit on the first train and some passengers are 

left behind at the platform. The total amount of time left behind is equal for 

both networks.  

 

Figure 21 - The total passenger time spent either on a train, in a station or left 
behind in a station for Network X and Network Y. For both columns, the lower 
portion represents time on the train, the middle portion represents time in the 
station and the upper portion represents time in the station ‘left behind’. 
Network X has a service of less frequent, larger trains. Network Y has a service 
of more frequent, smaller trains.  

Owing to the fact that all passenger agents complete their journey, the results 

of Figure 20 indicate that passenger behaviours PB1, PB2, PB3, PB6 and PB7 

allow a passenger agent to travel through the network. The results of Figure 20 
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also show that a more frequent service reduces the total journey time of all 

passenger agents, this indicates that behaviour PB5 only occurs when a suitable 

train agent is available. The results of Figure 21 show that behaviour PB4 

captures the effect of passengers not being able to board an overly crowded 

train. However, this effect is sensitive to the standing capacity of the train agent 

which may not fully capture the real world because situation dependent 

factors might not be fully included in an assessment of standing capacity, e.g. a 

specific group of passengers’ willingness to ‘crush’, or variations in luggage 

volume. Furthermore, PRaM models passenger distribution through the train 

as homogenous and assumes that passenger agents will locate and occupy any 

available seat, which is not always realistic. Both sets of results indicate that 

Network Y is more attractive to passengers than Network X because as would 

be intuitively expected, on average, passengers spend less time waiting for a 

train (with all other factors affecting service quality remaining constant). 

Network Y relates to smaller, more frequent trains and the results agree with 

the statements of Ford and the historical trend in service patterns.  

The investigation in Section 4.6 has assumed the same passenger demand for 

both Network X and Network Y despite different service frequencies. This 

assumption has been made in order to isolate the effect of service frequency 

on passenger experience from secondary effects so that this primary 

relationship can be clearly validated. However, in reality passenger demand is 

sensitive to service frequency – as has been described by Balcombe et al. 

(2004). Increased service frequency provides a more convenient service for 

most passengers, and hence is likely to lead to an increase in demand for 

travel. If it were desirable to include the effect of service frequency upon travel 

demand, this could be done by calculating the elasticity of demand to service 

frequency, i.e. comparing the percentage change in demand divided by the 

percentage change in frequency for a series of observed values. 

 Testing the performance of the Passenger Rail Model 

By recording the wall clock time required for different simulations, the 

computational cost of PRaM is investigated for its sensitivity to: the number of 
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train and passenger agents as well as the time steps used for both agent types. 

A virtual network is created using the same topology described in the 

experiments of Section 4.6. The number of train agents is incremented in 

threes and these are distributed evenly between the outer and central station 

pairs. Passenger agents are also distributed evenly between the possible routes 

and the arrival times to their origin station are homogenously distributed over 

the simulated day. Train agents have parameters relating to an InterCity 125 

and a timetable with a one-hour period. The simulation terminates when 12 

hours of network operation have been simulated. The simulations have been 

computed using MATLAB R2017b on an Intel Xeon Dual Processor @ 2.4 GHz. 

This is an unremarkable ‘server’ machine with performance likely similar to 

machines available to organisations for whom SUPREME is intended for, i.e. 

network managers. 

Figure 22 plots the factor increase in computational cost and agent numbers 

compared to the case of 3 train agents and 1.7 x 104 passengers, which required 

17 seconds of computation time. A time step of 1 second was used for both 

agents. Linear fits have been plotted for the data with parameters and their 

95% Lower Confidence Bound (LCB) and Upper Confidence Bound (UCB) 

values shown in Table 8.  

 

Figure 22 - The relationship between increases in agent numbers and 
computational cost 
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Series Gradient LCB UCB Intercept LCB UCB 
‘Passengers’ 0.014 0.014 0.014 0.99 0.98 1.02 
‘Trains’ 0.69 0.68 0.70 0.26 0.17 0.36 

Table 8 – The fit parameters for the two series of data shown in Figure 22. 

The strong linear fits and gradients of the results in Figure 22 indicate that the 

computational cost of PRaM increases proportional to increases in agent 

numbers with a constant of proportionality of 0.014 and 0.69 for passengers 

and trains respectively. The computational cost is more sensitive to increases 

in train agents because the code for train agent calculations runs serially, 

whereas the passenger agent code uses MATLAB’s vector coding functionality. 

Vector coding can substantially speed up computation (Mathworks, 2019), 

therefore the passenger agent code may be computationally cheaper than the 

train agent code. This would mean that changes to computational cost of the 

agent code are unsubstantial compared to the train agent code, which is 

observed in the results. Since the intercepts of the fits do not equal zero, the 

results confirm that there is a computational overhead of the simulation 

regardless of the number of agents. 

To investigate the effect of changing the time step to 60 seconds for 

passengers and 0.1 seconds for trains, Figure 23 plots the increase in 

computational cost compared to the same simulation but with a time step of 1 

second for both trains and passenger. A linear fit has been plotted for the data 

the ‘Passengers’ series, the fit has a gradient of -3.5 x 10-3 (95% lower and 

upper confidence bounds of -4.1 x 10-3 and -2.9 x 10-3) with intercept of 0.95 

(95% lower and upper confidence bounds of 0.92 and 0.98). As the ‘Trains’ 

series does not support a linear fit but there is no reason to expect a different 

relationship, no fit has been plotted. The intercept of the ‘Passenger’ series 

indicates that changing the time step used by passenger agents from 1 second 

to 60 seconds reduces the computational cost by 5%, however this reduction 

becomes gradually greater at higher passenger numbers. The computational 

cost of train agents is more sensitive to changing the time step, but this 

reduces with greater numbers of train agents. For a factor increase of 16 times 

more train agents, the factor increase in computational cost is less than 1. 

Therefore these results imply that once a threshold of train agents is reached it 
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is faster to use a 0.1 second time step than 1 second, which is surprising. 

Consequently, this is an area for further investigation. In the context of the 

relationship of TDM accuracy and time step, discussed in Section 4.5.2, these 

results indicate that a 1 second time step offers the best compromise between 

computational cost and accuracy. Increasing the time step to 10 seconds would 

reduce computational cost but result in a 5% error in train movement 

calculations, which is substantial if modelling a congested network. Reducing 

time step to 0.1 seconds does bring a small increase in accuracy (<1%), but is 

outweighed by the substantial increase in computational cost. 

 

Figure 23 – The relationship between the increase in computational cost, 
relative to the value for the same number of agents but with a time step of 1 
second for passengers and 1 seconds for trains, at different numbers of agents, 
calculated with a time step of 60 seconds and 0.1 seconds for passengers and 
trains respectively.  

 Summary 

Within SUPREME, PRaM is used to model simultaneous passenger journeys so 

that they can be assessed using the metric developed in Chapter 3. In this way 

network performance can be determined dependent on the parameters 
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describing it. PRaM is an ABM where train and passenger agents are simulated 

in the network with their actions determined by ‘behaviours’. Because of the 

likelihood of future implementation of moving block signalling within the GB 

network, PRaM only models the stations and track sections of a network 

infrastructure. Including junctions is identified as an area for further work 

which can be informed by existing models. Train agents have behaviours with 

the goal of adhering to their pre-defined timetable, whilst capturing the 

constraints of obeying safety restrictions. Experimental comparison shows that 

the journey times of trains can be modelled to within 0.6% when the traction 

control is known, and that traction control can be predicted to within 23 

seconds. Further comparison between predicted and measured journeys is 

needed to determine the statistical significance of this result and whether this 

difference is within the range of variation in human driver control. The 

accuracy of train movement predictions is sensitive to the input parameters 

describing the performance of the train. It is shown that an error of 50% in a 

single input parameter will lead to a maximum of 20% error in train journey 

times, however the magnitude of the effect of error in multiple parameters has 

not been investigated. A time step of 1s is used to simulate trains and the ratio 

of proportionality between train agent numbers and computational cost is 0.7.  

Passenger agents are simulated individually with behaviours determined by the 

goal of reaching their destination station as quickly as possible. The journeys of 

passenger agents relate to the journey stages of the network assessment 

metric described in Chapter 3, therefore the time passenger agents spend in 

each state, and the conditions, can be determined from the simulation. The 

behaviours of passenger agents allow them to travel through the network but 

captures the constraints of passengers not being able to board trains that do 

not take them towards their destination or are overly crowded. The 

computational cost of PRaM scales with the number of passenger agents with a 

constant of proportionality of 0.02. 

Considering all the errors discussed for the movement of train agents, PRaM 

can predict train journey times in a network with a maximum error on the 

order of 10%. This means that the time passengers spend on a train is modelled 



 

74 

with on the order of 10% maximum error, however, because of the connected 

nature of rail networks, this might have a non-linear effect on the error in total 

journey time. For, example the error in train journey time may be the 

difference between a passenger agent making a connection or not. The 

position of passengers is not modelled within stations or trains and as a 

consequence there is also error introduced in determining the time 

passengers spend moving through a station and their level of crowding on a 

train. Nonetheless, for this stage in the investigation of the SUPREME concept, 

this level of accuracy is considered acceptable. More accurate models of rail 

networks and pedestrian movement have already been developed and these 

can be used to inform the development of PRaM once the overall SUPREME 

concept has been evaluated.  
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Chapter 5 

Selecting an optimisation algorithm 

The SUPREME framework requires an optimisation algorithm to locate ‘good’ 

solutions for a ‘reasonable’ computational budget that places no restrictions on 

the task formulation. Chapter 2 described that Genetic Algorithms (GAs) have 

been popular for this purpose in existing rail network optimisation 

methodologies where objective function evaluations are cheap-to-compute. 

However, the requirement for cheap-to-compute objective function 

evaluations might limit the challenges to which SUPREME can be scaled to. 

Consequently, GAs might be poorly suited for use within SUPREME. 

Optimisation algorithms using the Bayesian Optimisation (BO) method have the 

potential to find similarly ‘good’ solutions to a GA, but in fewer model 

computations because they use a predictive model of the search space to 

target the selection of new candidates for evaluation. However, calculating the 

predictive model has a computational overhead that increases substantially 

with the number of optimisation variables. Therefore, whilst GAs might be well-

suited to tasks with cheap-to-compute models, BO has the potential to be 

computationally cheaper than GAs for tasks with an expensive-to-compute 

model and few (many established implementations currently perform well for 

less than approximately 25) optimisation variables. This reduction in 

computational expense would allow SUPREME to be applied to larger scale 

challenges. Consequently, following a brief review of both methods in the next 

section, in this chapter the BO method is compared experimentally against the 

GA method as a benchmarking measure and its suitability for use within 

SUPREME discussed.  

Some of the work presented in this chapter is also presented in the author’s 

paper: ‘Investigating Bayesian Optimization for rail network optimisation’ which 

has been accepted for publication in the International Journal of Rail 

Transportation. Prior to this, to the best of the author’s knowledge, no publicly 

available documents describe the application of BO for optimising the 
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performance of a rail network model, or a like-for-like comparison of BO and 

GA. 

 Genetic Algorithms and Bayesian Optimisation 

A brief description of both GAs and BO is given in the following subsections. 

The general optimisation task described in Chapter 2 by (2.1), (2.2) and (2.3) is 

considered as the basis for an equitable comparison of BO and GAs. More 

comprehensive descriptions of GAs can be found in Goldberg (1989) and 

Mitchell (1996), and of BO in Shahriari et al. (2016). Note that within the GA 

literature, the objective function is usually referred to as a ‘fitness function’, 

however ‘objective function’ is used here for both cases for consistency. 

 Genetic Algorithms 

A GA is a simple computational model of the process of natural selection in an 

evolving population. At every iteration, a GA evaluates the objective function for 

every candidate within a population. By selecting the candidates with the best 

objective function scores and ‘mating’ them, the population at later generations 

exhibits more characteristics of candidates with ‘good’ objective function 

scores and converges towards the optimum. ‘Mutation’ is used to allow a GA to 

‘explore’ the search space. The GA method can be applied to many types of 

optimisation task with any number of optimisation variables and, because it 

requires many (typically >104) evaluations of 𝑓(𝒙), it is well suited to tasks 

where 𝑓(𝒙) is cheap-to-compute. Algorithm 1 presents pseudo-code for a 

simple GA. An important control parameter of the algorithm is the population 

size, 𝑃. The algorithm iterates depending on a conditional statement at line 4 

that is often related to the objective function scores of the candidates found 

so-far, or, the computational resources used. The number of algorithm 

iterations used by a GA, 𝛩𝐺𝐴, is the final value of 𝜚 in Algorithm 1. At every 

iteration all of the candidates in a generation are evaluated so the number of 

objective function evaluations, 𝜂𝐺𝐴, required, is given by: 

𝜂𝐺𝐴  =  𝛩𝐺𝐴 ∙ 𝑃 
(5.1) 
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 Bayesian Optimisation 

To estimate the global maximum of an objective function, a BO implementation 

creates an approximation of it, called a proxy function (also referred to as a 

surrogate model or response surface). In comparison to the objective function, 

the proxy function is cheaper to compute and is continuous so it is ‘easier’ to 

find its maximum. To create the proxy function, a probabilistic model is 

inferred from previous evaluations of the objective function’s value at different 

locations in the search space. For this model, it is common (Snoek et al., 2012) 

to use a Gaussian Process (GP) regression model as is the case considered 

here. The proxy function and its uncertainty are respectively the mean and 

variance of the GP model – an overview of how these are calculated is given in 

the next section. At each iteration of a BO algorithm, the objective function is 

evaluated and the new data is used to update the probabilistic model and, 

hence, the proxy function. Information from the proxy function is used to 

create an acquisition function, whose global maximum indicates where in the 

search space the objective function should next be evaluated. The acquisition 

function is important to the success of BO because it ‘guides’ the search, but 

finding its maximum increases the computational expense of the whole 

process, particularly for tasks with more than approximately 25 dimensions 

(Kandasamy et al., 2015). Nonetheless, for tasks with less than approximately 25 

dimensions, it is often cheaper than evaluating an expensive-to-compute 

objective function and consequently the BO method is often well suited to task 

Algorithm 1: Genetic-Algorithm(𝑃) 

1. Initialise population, 𝐺1, with 𝑃 candidates 

2. Evaluate objective function for every candidate in 𝐺1 

3. 𝜚 = 1 

4. while Is-Not-Terminated(𝜚, 𝐺𝜚) 

5.   𝐺𝜚+1  = Evolve (𝐺𝜚)  // select, mate and mutate candidates 

6.   Evaluate objective function for every candidate in 𝐺𝜚+1 

7.   𝜚 = 𝜚 + 1 

8. end 

9. Return best candidate evaluated so far 
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of this type. For higher dimension tasks, BO implementations are still being 

developed that keep the cost of maximising the acquisition function reasonable 

(Li et al., 2017).  

Algorithm 2 presents pseudo-code outlining BO and is supplemented by Figure 

24 which illustrates the early stages of a BO procedure. The x-axis represents 

the value of the optimisation variable, 𝒙, and the left ordinate represents both 

the value of the objective function, 𝑓(𝒙), its proxy function, 𝜇(𝒙), and the 

uncertainty about the proxy function, 𝜇(𝒙) ± 𝜎(𝒙). The right ordinate 

represents the value of the acquisition function, 𝛼(𝒙). The first stage is to 

evaluate 𝑓(𝒙) at the initial candidate, 𝒙1, whose location is shown by a square 

marker (line 2 of Algorithm 2). It should be noted that where the vector, 𝒙, is 

indexed this refers to its order in the list of all candidates evaluated during the 

optimisation, and is different to the indexing of scalar optimisation variables, 

e.g. 𝑥𝒊, introduced in Chapter 2 and also used later in this thesis. Stage 2 shows 

that this information is used to create an initial 𝜇(𝒙) that models what is known 

about 𝑓(𝒙) at this stage (line 4 of Algorithm 2). A corresponding 𝜎(𝒙) is also 

calculated and combined with 𝜇(𝒙) to calculate the acquisition function. Stage 

3 shows that 𝛼(𝒙) increases further away from objective function evaluation 

because of the increased uncertainty on the value of 𝑓(𝒙). Stage 3 also shows 

the maximum of the acquisition function with a triangle marker. The value of 

this maximum is 𝒙𝟐 (line 7 of Algorithm 2) which is then used to evaluate 𝑓(𝒙) 

in Stage 4, shown by a square marker (line 9 of Algorithm 2). Stage 4 shows a 

circle marker to represent that data from previous samples remain in the 

probabilistic model and because there is now more data, 𝜇(𝒙) better 

approximates 𝑓(𝒙) than in Stage 2 with reduced 𝜎(𝒙) in the region around the 

second observation. Stages 5 and 6 demonstrate that maximising 𝛼(𝒙) and 

calculating 𝜇(𝒙) and 𝜎(𝒙) are two important processes that are repeated in the 

‘while loop’ of Algorithm 2. Furthermore, Algorithm 2 also demonstrates that 

the BO method only uses one function evaluation per iteration, therefore the 

number of expensive-to-compute evaluations, 𝜂𝐵𝑂, is equal to the value of 𝜚 at 

the end of the algorithm.  
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Algorithm 2: Bayesian-Optimisation() 

1. Initialise candidate, 𝒙1 

2. 𝑦1 = 𝑓(𝒙1)  // sample objective function 

3. 𝐷 = [𝒙1, 𝑦1] //  data set of corresponding x and y values 

4. Calculate proxy model, 𝜇(𝒙), and uncertainty, 𝜎(𝒙), using 𝐷 

5. 𝜚 = 1  

6. while Is-Not-Terminated(𝜚, 𝐷) 

7.   Create acquisition function, 𝛼(𝒙), using 𝜇(𝒙) and 𝜎(𝒙) 

8.   𝒙𝜚+1 = argmax
𝑥∈𝑋

𝛼(𝒙) 

9.  𝑦𝜚+1 = 𝑓(𝒙𝜚+1)   

10.  𝐷 = {𝐷, [𝒙𝜚+1, 𝑦𝜚+1]} // augment new data to data set 

11.   Calculate 𝜇(𝒙) and 𝜎(𝒙) using 𝐷 

12.   𝜚 =  𝜚 + 1  

13. end 

14. Return best candidate evaluated so far 

 

 

 

 

 

 

Figure 24 - Illustration of six of the early stages in the BO approach. The 
objective function, 𝑓(𝒙), is shown by a solid line, the proxy function, 𝜇(𝒙), is 
shown by a dotted line and the uncertainty about the proxy function, 𝜇(𝒙) ±
𝜎(𝒙), is shown by a dash-dot line. The values of 𝑓(𝒙), 𝜇(𝒙) and 𝜇(𝒙) ± 𝜎(𝒙) are 
plotted on the left ordinate. The acquisition function, 𝛼(𝒙), is shown by a 
dashed line and its value plotted on the right ordinate. The x-axis represents 
the variable, 𝒙, being optimised. 
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 Gaussian Process regression modelling 

Here an overview on GP regression modelling is given, for further descriptions 

the reader is referred to Rasmussen and Williams (2006) and Seeger (2004). 

The following descriptions concentrate on a noiseless scenario because this 

thesis considers modelling the output of a deterministic simulation. 

A GP is a collection of random variables, any finite number of which have joint 

Gaussian distribution, and is fully specified by a mean function and covariance 

function6. A GP can be used to describe a distribution over functions, in a 

function space defined by a covariance function. An unknown target function 

can be modelled as the mean function of a GP. A convenient outcome of this 

approach is that the variance of the function distribution provides explicit 

information about the uncertainty around the target function’s value. GP 

regression modelling uses Bayesian inference to calculate the mean function of 

a GP that models the target function – hence estimating the target function. 

Including target function observation data in the GP model improves the 

estimation of the target function and reduces the variance of the GP model. In 

the context of Bayesian inference the GP model which includes previous 

assumptions or knowledge (such as a choice of covariance function or 

observation data) is referred to as the prior, and the GP model to be used for 

estimation is referred to as the posterior. In summary, GP regression modelling 

is a non-parametric approach to regression modelling which uses prior 

information when updating its model of the objective function, i.e. a Bayesian 

approach.  

In the context of BO, the ‘target function’ described above is the ‘objective 

function’ referred to in Section 5.1.2 and throughout this thesis. The prior GP 

model is updated with additional data iteratively. The mean function and 

variance of the posterior GP model are used in the acquisition function to 

determine where the next sample of the objective function should occur. The 

                                                   

6 Sometimes referred to as a kernel. 
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information from both of these can be combined to reflect a user choice 

balancing exploitation and exploration.  

The effectiveness of GP regression modelling is dependent on the choice of 

covariance function used – it being an assumption about the class of basis 

functions for the target function, and one of the first prior assumptions made. 

Covariance functions are required to be positive semi-definite functions, i.e. for 

all points in the search space the resultant covariance matrix should be 

Hermitian and its eigenvalues positive, and typically aim to reflect that the 

closer together two points are in the input space – the stronger they should be 

correlated. It is also possible to encode specific prior knowledge or 

assumptions about the target function into the mean function of the GP model, 

however it is common to apply a zero valued prior mean function when such 

knowledge does not exist – as is the case here. The specific covariance 

function, mean function and hyperparameter values used in these experiments 

are further described in Section 5.2.5.  

 Comparing the computational cost of Genetic Algorithms and 

Bayesian Optimisation 

For this investigation the total computational cost of each method is 

decomposed into the cost of all the objective function evaluations, Γ , and the 

cost of computing the algorithm (excluding objective function evaluations), 𝛱. Γ  

is the product of the number of evaluations, 𝜂, and the cost of a single 

evaluation, 𝛾. Note that when variables apply to both methods, superscripts are 

used to denote variables specific to an method. Because of the multiplier, 𝑃, in 

(5.1), it is expected that 𝜂𝐺𝐴 > 𝜂𝐵𝑂and consequently that ΓGA > ΓBO. However, 

because BO involves the expensive step of maximising an acquisition function at 

every iteration, 𝛱𝐺𝐴 < 𝛱𝐵𝑂 resulting in a trade-off between the low algorithm 

cost, high objective function evaluation cost of GAs and the high algorithm cost, 

low objective function evaluation cost of BO. The case of BO being cheaper than 

a GA is captured by (5.2) which demonstrates that the value of 𝛾 is important 

for determining the best method. Note that 𝛾 is constant between the 

approaches and is assumed to be constant for all 𝒙.  
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𝛱𝐵𝑂 + 𝛾 ∙ 𝜂𝐵𝑂 < 𝛱𝐺𝐴 + 𝛾 ∙ 𝜂𝐺𝐴 
(5.2) 

Because the number of objective function evaluations and the number of 

algorithm iterations are related, the value of 𝛱 is dependent on 𝜂. In the case of 

a GA this is a linear dependency. However in the case of BO with a GP model, 

calculating the model with 𝜚 data points requires inversion of a square matrix 

of dimension 𝜚 The computational cost of this is O(𝜚3). Consequently, the value 

of 𝛱𝐵𝑂 may become fourth order for large 𝜂𝐵𝑂. However, developing methods 

to compute large matrix inversions at reduced cost is an active area of 

research (Li et al., 2011a, Ballard et al., 2016) so this is not seen as a fundamental 

limitation of BO. Furthermore, although not utilised with BO, Gardner et al. 

(2018) present a method using parallel computing techniques that can reduce 

the cost of computing a GP model to O(𝜚2). 

 Experimental comparison of Genetic Algorithms and 

Bayesian Optimisation 

For an experimental comparison, specific GA and BO implementations were 

applied to a range of test-tasks involving an expensive-to-compute objective 

function that simulates passengers using a rail network and captures their 

satisfaction. For an unambiguous comparison, the globally optimal solutions 

(𝒙∗) must be known. For this reason, the test-tasks have been chosen so that 𝒙∗ 

can be calculated analytically. 

 The test-tasks 

Two examples of demands in rail network operation are:  

 The allocation of finite rolling stock between scheduled train paths 

(Abbink et al., 2004). 

 The choice of which areas of the rail network should receive investment 

for increased permissible line speed (Network Rail, 2018). 

These general demands are synthesised with a family of rail networks to create 

a family of test-tasks that involve the allocation of a limited number of identical 

carriages between trains and the setting of permissible line speeds around the 
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network. The number of carriages allocated to a train determines its passenger 

capacity but, for these test-tasks, does not affect any other characteristics of 

the train. For the purpose of the test-tasks, any number of carriages greater 

than zero can be allocated to a train provided that the limit on the total 

number of carriages available is not exceeded. The passenger capacity of a 

train affects the performance of the network because it is related to the 

comfort and duration of passenger journeys. A line linking adjoining stations in 

the test-task network is homogenous and bi-directional. In these test-tasks, the 

permissible line speed can be one of two alternatives: a ‘basic’ level and an 

‘upgraded’ level. The permissible line speed affects passenger journey times 

and hence the network performance. For the test-tasks, the carriage 

allocations and permissible line speeds are the optimisation variables whose 

values are chosen to maximise network performance calculated using the 

metric developed in Chapter 3.  

The family of networks used in the test-tasks are chosen to have a high degree 

of symmetry so that the global optimum can be calculated analytically. A radial 

network design is used where the central station is connected to outer stations 

by two lines. The networks are named B2, B3 and B4 where the number refers 

to the number of links in the network. Figure 25 shows the topographies of the 

networks with a circle representing a station and a connecting edge 

representing a railway line. Each line within the network has one train 

operating upon it and the trains do not transfer between lines. Table 9 displays 

the number of lines and trains in the test-networks and how this controls the 

number of optimisation variables. The number of trains within the network is 

equal to the number of lines within the network so, from here on in, only the 

number of trains are stated. The trains operate to a symmetrical timetable and 

all lines have a dedicated platform at their connected station. The passenger 

load has a symmetrical origin-destination-time matrix. It is recognised that 

these networks are simplistic and idealised relative to real-world networks, 

however their properties are sufficient to test the relative performance of the 

GA and BO methods in preparation for application to more realistic cases. 

Furthermore, although the BO implementation tested cannot be scaled to tasks 
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representing the whole GB network in this way, i.e. every individual line 

represented by an optimisation variable, the task demonstrates the type of 

network parameters which managers may wish to optimise. To address a GB 

network sized task, the network model could be reformulated so that each 

optimisation variable represents multiple lines or a BO implementation that 

allows more optimisations variables might be used, e.g. the implementation 

presented by Li et al. (2017). 

 

Figure 25 – Topographical representation of three different sized networks 
from the family of networks used for test-tasks. A circle represents a station. 
An edge between two stations represents a bi-directional line upon which 
trains travel. The name of the network topography is displayed below each 
network. 

Network topography name B2 B3 B4 

Number of lines 4 6 8 

Number of trains 4 6 8 

Number of optimisation variables 8 12 16 

Table 9 - The number of lines and trains for the three different sized networks 
used in test-tasks. 

 Formal definition of the test-tasks 

Here the general definition of constrained optimisation given by (2.1), (2.2) and 

(2.3) is modified to the family of test-tasks described in the previous section. 

The tasks can be described as optimising the distribution of ℵ identical 

carriages amongst 𝑇 trains and selecting the permissible line speed of each of 

the ℒ lines from ℘ discrete choices. The vector, 𝒙, is 𝑇 + ℒ dimensional with 

𝑥1, 𝑥2, … . 𝑥𝑇 describing the number of carriages allocated to trains 1 to 𝑇 and 
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𝑥𝑇+1, 𝑥𝑇+2…𝑥𝑇+ℒ describing the permissible line speeds of lines 1 to ℒ. The 

form of 𝒙 is therefore shown by: 

𝒙 = [𝑥1, 𝑥2, … . 𝑥𝑇 , 𝑥𝑇+1, 𝑥𝑇+2…𝑥𝑇+ℒ] 
(5.3) 

The general objective function, 𝑓(𝒙), is modified to the specific objective 

function 𝐹1(𝒙; 𝜆, 𝜃) which quantifies network performance, relative to other 

candidate networks, from the passenger perspective where 𝜆 describes the 

network parameters that are constant for this task (e.g. station locations, train 

performance, timetable) and 𝜃 describes the passenger load. Neither 𝜆 or 𝜃 

are optimised. The test-tasks have no constraints placed on the choice of 

permissible line speed (i.e. all lines can have the maximum permissible line 

speed). Furthermore, there is no penalty associated with increasing the 

permissible line speed, meaning that the globally optimum solution has all 

permissible line speeds maximised. Although it may not be realistic to have no 

constraint or penalty placed on increasing permissible line speed, this does 

ensure that the global optimum to the task is known and therefore is 

appropriate for the purpose of the test-tasks. However, there is a constraint on 

the carriage allocations that a maximum of ℵ carriages can be distributed 

between all the trains, captured by: 

∑𝑥𝑖

𝑖=𝑇

𝑖=1

≤ ℵ 

(5.4) 

A negative number of carriages cannot be allocated, this is captured by (5.5), 

and the limit on the number of choices of permissible line speed is captured by 

(5.6). 

  0 ≤ 𝑥𝑖                 𝑓𝑜𝑟     1 ≤ 𝑖 ≤ 𝑇             
(5.5) 

 
 1 ≤ 𝑥𝑖 ≤ ℘        𝑓𝑜𝑟    𝑇 + 1 ≤ 𝑖 ≤ 𝑇 + ℒ 

(5.6) 

𝐹1(𝒙; 𝜆, 𝜃) captures the performance of a network, relative to other candidate 

networks, on a percentage scale from 0% to 100%. 100% relates to the known 

global maximum, 0% relates to the known global minimum, i.e. where no 

carriages are allocated and all permissible line speeds are at their minimum. 
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Consequently, the challenge of maximising network performance relates to the 

task of maximising 𝐹1(𝒙; 𝜆, 𝜃). As a result, the formal definition of the family of 

test-tasks can therefore be written as (5.7) subject to (5.4), (5.5) and (5.6). 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥∈𝑋

𝐹1(𝒙; 𝜆, 𝜃) 

(5.7) 

 Calculating the value of the objective function 

To calculate the value of 𝐹1(𝒙; 𝜆, 𝜃), the formula given by (5.8) is used:  

𝐹1(𝒙; 𝜆, 𝜃) =  
𝜙(𝒙; 𝜆, 𝜃) − 𝜙(𝒙∗; 𝜆, 𝜃)

𝜙(𝒙−; 𝜆, 𝜃) − 𝜙(𝒙∗; 𝜆, 𝜃)
 

(5.8) 

where 𝜙(𝒙; 𝜆, 𝜃) is the network score (calculated using the method described 

in Chapter 3) relating to the PRaM simulation (described Chapter 4) of the 

network defined by 𝒙 and 𝜆, carrying the passenger load defined by 𝜃. The 

symbol 𝒙− denotes the candidate where no carriages are allocated and all 

permissible line speeds are minimised, and the symbol 𝒙∗ denotes the 

candidate where each train is allocated ℵ/T carriages and all permissible line 

speeds are maximised. 

The experimental parameter, 𝐹1
∗, is introduced to describe the target 

performance of the solution. 𝐹1
∗ is the smallest value of 𝐹1(𝒙; 𝜆, 𝜃) that must be 

found by an implementation before terminating with a result. Candidates (𝒙) 

for which 𝐹1(𝒙; 𝜆, 𝜃) ≥ 𝐹1
∗ are referred to as acceptable. 

 Features of the search space 

For an optimisation task with integer variables, such as the ones considered in 

this chapter and the next, the number of candidates in the search space, 𝑁𝐶 , is 

generally calculated by multiplying the range of each optimisation variable. For 

the family of test-tasks considered in this chapter, the formula given by (5.9) 

can be used. 

𝑁𝐶 = ℘
ℒ (𝑇 + 1)ℵ 

(5.9) 

Candidates in the search space which satisfy the constraint functions, e.g. for 

this task (5.4), are referred to as feasible. For these test-tasks, the number of 
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feasible candidates in the search space, 𝑁𝐹 , can be calculated with the formula 

given by (5.10).  

𝑁𝐹 = ℘
ℒ  ∑

(𝑎 + ℵ − 1)!

𝑎! (ℵ − 1)!

𝑎=𝑇

𝑎=0

 

        (5.10) 

 The Genetic Algorithm and Bayesian Optimisation 

implementations 

The BO implementation used was a modification of a proprietary MATLAB 

2017b function, here denoted ‘bayesopt’. The BO algorithm was seeded with 

two initial observations, relating to when all line speeds are maximised and all 

the carriages are distributed evenly amongst the trains, and when all line 

speeds are maximised and no carriages are distributed. Evaluating these 

candidates and updating the data set, 𝐷, replaces steps 1 to 3 in Algorithm 2 in 

Section 5.1.2. These evaluations are included in the value of count of objective 

function evaluations used. Within the GP regression model an ARD Matern 5/2 

kernel was used, 𝑘(𝒙𝑚, 𝒙𝑝) - given by: 

𝑘(𝒙𝑚, 𝒙𝑝) =  𝜎𝑓
2 (1 + √5𝔯 +

5𝔯2

3
) 𝑒−√5𝔯 

(5.11) 

where  𝒙𝑚 is the vector relating to the 𝑚’th observation, 𝒙𝑝 is the vector 

relating to the 𝑝’th observation, and 𝜎𝑓 is the signal standard deviation 

parameter and had a value of the standard deviation of the objective function 

values observed so-far, divided by √2. The value of 𝔯 is given by:  

𝔯 =  √∑
(𝑥𝑚,𝑖 − 𝑥𝑝,𝑖)

2

𝜎𝑖
2

𝑛

𝑖=1

 

(5.12) 

where 𝑥𝑚,𝑖 is the 𝑖’th element of  𝒙𝑚, 𝑥𝑝,𝑖 is the 𝑖’th element of 𝒙𝑝, 𝑛 is the 

number of optimisation variables within 𝒙, and 𝜎𝑖 is the kernel length scale 

parameter, which controls how ‘far apart’ two values of 𝒙 need to be for the 

objective function values to become uncorrelated. Observing (5.12) it can be 
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seen that a different kernel length scale was used from each dimension of 𝒙. 

The value of this parameter was calculated as the standard deviation of the 𝑥𝑖 

values where observations have been made so-far. The GP model was 

initialised with a zero value mean function. The bayesopt function was applied 

with the ‘Probability-of-Improvement’ acquisition function, i.e. the probability 

that an observation will ‘better’ the ‘best’ observation observed so far, and an 

exploration ratio of 0.5. Clearly there is opportunity for investigating and even 

tuning the parameter values, location and number of seed points, or function 

types used here. However, considering that the aim of this thesis is to 

investigate SUPREME and hence Bayesian Optimisation for a range of different 

challenges and that tuning for one challenge might diminish its performance 

for another, this is considered out of scope. 

The first modification made to bayesopt was the removal of a portion of code 

that checked whether the task submitted to bayesopt had constraint functions 

that could be satisfied. The removed code compared 106 candidates, arbitrarily 

selected from the search space, against the constraint functions. If no 

candidates from this selection satisfied the constraint functions, the 

unmodified bayesopt determines that the constraint functions cannot be 

satisfied and terminates the optimisation procedure. However, using (5.10) and 

(5.9) with parameters values of 2, 8, 48 and 8 for ℘, ℒ, ℛ and ℵ respectively, 

which are also values used in these experiments, gives 𝑁𝐹/𝑁𝐶 to the order of 10-

40. This meant that the unmodified bayesopt often, incorrectly, determined the 

constraints of this task as ‘impossible to satisfy’. Removal of this code meant 

that the modified bayesopt can be used for this task without early termination. 

In the context of these test-tasks, there is little reason for the removal of this 

code to alter the effectiveness of the BO implementation other than the 

desired effect of preventing it to terminate unnecessarily.  

The second modification was to alter the number of local optimisations used to 

approximate the global maximum of the acquisition function (line 8 of 

Algorithm 2). The local optimisations begin from arbitrarily selected candidates 

within the search space. This means that there is no guarantee that the 
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acquisition function maximum found by this process relates to a feasible 

solution. If 𝑁𝐶 is ‘large’, the number of local optimisation seeds is ‘small’ and 

𝑁𝐹/𝑁𝐶 is ‘small’, this causes bayesopt to regularly find infeasible acquisition 

function maximums. This leads to a waste in computation because the 

objective function is evaluated at the candidate relating to the acquisition 

function maximum at every iteration, regardless of whether it satisfies the 

constraint functions. Increasing the number of local optimisation seeds 

increases the likelihood of locating a maximum of the acquisition function that 

relates to a feasible candidate, and hence increases the bayesopt’s 

effectiveness. Consequently, the number of seeds was increased to the 107, 

which was the maximum that allowed MATLAB to remain stable owing to 

increases in the system memory required.  

The GA implementation used was a modification of a proprietary MATLAB 

2017b function, here denoted ‘ga’. The default ga settings were used with a 

cross-over rate of 0.5, a mutation rate proportional to the initial range of values 

in the population (shrinking to zero at the final generation) and a uniform 

stochastic selection function. In the literature, GA implementations are used 

with population sizes typically ranging from 30 to 100. Here, the minimum of 

this range has been used so that, with a budget of objective function 

evaluations in the order of 100 (a typical number required by the BO method), 

ga has the opportunity to converge on a solution. A population size that did not 

allow the ga algorithm to iterate before exceeding the number of evaluations 

use by the BO method would be equivalent to a Random Search algorithm and 

would not be representative of GA effectiveness. 

 Experimental method 

The number of objective function evaluations used by the GA and BO 

implementations was measured for eight ‘jobs’, i.e. a specific combination of 

test-task and 𝐹1
∗ that is input to a function. A test-task is defined by the number 

of trains in the network and the number of carriages to be allocated. To collect 

experimental data, a job is submitted to a function and the algorithm iterates 

until an acceptable solution is found or a limit on the number of objective 
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function evaluations is reached. Because the algorithms are non-deterministic 

it is necessary to repeat, independently, each experiment multiple times and 

describe distributions. For comparison between the GA and BO methods, 

identical tasks are submitted to the algorithms. Because the control 

parameters of each implementation differ, attainment of identical terminal 

objective function values is used to ensure like-for-like comparison. The 

algorithm computational cost is measured using the computation time. This is 

machine specific, but gives an indication to the behaviour of algorithm and is 

comparable across jobs since they were performed on the same machine, an 

Intel Xeon Dual Processor @ 2.4 GHz.  

 Results 

Figure 26 is a box and whisker plot comparing the number of evaluations 

required by ga and bayesopt, 𝜂𝐺𝐴 and 𝜂𝐵𝑂 , for eight jobs. Each box and whisker 

represents, on a logarithmic scale, a distribution from 32 repeats of an 

experiment. Distributions for the same job are plotted next to each other and 

separated by vertical dashed lines to allow easy comparison. The job and 

method that each distribution relates to is displayed on the x-axis. The notation 

‘J1’, ‘J2’, ‘J3’ etc. can be cross-referenced against Table 10 to observe the 

experimental parameters defining the job. A full factorial design for three 

experimental parameters and two levels has been used. An arbitrary limit of 1.6 

x 104 objective function evaluations was used which corresponds to 

approximately 48 hours of objective function computation time per 

experiment. This limit only affects the median and quartile results of ‘J6,GA’, 

but still allows a discernible difference with ‘J6,BO’. The box notches indicate a 

95% confidence interval of the median. When comparing distributions for the 

same job but different methods, there are no cases in which the notches 

overlap indicating that, on average, 𝜂𝐺𝐴 > 𝜂𝐵𝑂 with approximately 95% 

confidence (Chambers et al., 1983). The features of the ‘J6,GA’ plot are 

indiscernible because for 31 of the experiments, the GA implementation did not 

find an acceptable solution within the limit of objective function evaluations. 

Comparing all eight jobs, the mean of the factor differences between 𝜂𝐵𝑂 and 
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𝜂𝐺𝐴 is 43 with a standard deviation of 76. Furthermore, excluding J6 where the 

comparison is not valid, the inter-quartile ranges of the BO distributions are 

narrower (the log scale of the y-axis means this is true even for J7), indicating 

that BO is more consistent in the number of objective function evaluations 

required to find an acceptable solution. 

 

Figure 26 - Box plots showing the distribution of the number of objective 
function evaluations required, 𝜂, for eight different jobs. The y-axis is on a log10 
scale. Each box plot represents a distribution of 32 repeat experiments. Table 
10 displays the experimental parameters of each job described by the ‘J 
number’. The whiskers extend to a maximum of the inter-quartile range below 
and above the 25th and 75th percentiles respectively. Data outside this range is 
considered an outlier and is shown by a cross. 

 J1 J2 J3 J4 J5 J6 J7 J8 

Trains 4 4 4 4 8 8 8 8 

Carriages 8 8 48 48 8 8 48 48 

F1
∗ (%) 90 95 90 95 90 95 90 95 

Table 10 –The experimental parameters of the eight jobs for which the BO and 
GA methods are compared in Figure 26. 
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 The number of objective function evaluations and target 

performance 

Following the comparison to a GA, the relationship between the number of 

objective function evaluations required by bayesopt and the target solution 

performance was investigated. Five different tasks were considered and the y-

axis value of Figure 27 is the logarithm of the median from 24 repeats of the 

experiment.  

 

Figure 27 – Scatter plots to show the number of objective function evaluations 
required by Bayesian Optimisation, 𝜂𝐵𝑂 , at varying target performance, 𝐹∗. 
Data is shown for five different tasks. The values plotted are the median of a 
distribution of 24 repeat experiments. The y-axis displays 𝜂𝐵𝑂 on a log10 scale.  

The data shows a positive relationship between 𝐹1
∗ and log10(𝜂

𝐵𝑂) that is at 

least linear. This means that the relationship between 𝐹1
∗ and 𝜂𝐵𝑂 is at least 

exponential. The increase in 𝜂𝐵𝑂 is more sensitive to the number of trains in the 

task than the number of carriages. It can be seen that for the two most difficult 

problems (six and eight trains, 48 carriages) there is no data for 𝐹1
∗> 99% and 

95.5% respectively. This is because after 4 days of computation time 𝐹1 had not 

been increased and the experiment terminated. While this appears limiting it is 
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worth nothing that, in the case of the 8 train task, relaxation of the target 

performance to 95% enables the target solution performance to be reached in 

only 1 hour and 20 minutes of computation time. The rapid increase in 𝜂𝐵𝑂 for 

solutions close to the optimum is believed to be because of the GP model and 

not inherent to BO. This is further explained in the Section 5.4.  

 Algorithm computation time 

To investgate the relationship between the measured total computation time 

for the bayesopt algorithm (𝛱𝐵𝑂) at varying iterations, Figure 28 plots 𝛱𝐵𝑂 and 

𝜂𝐵𝑂 for different numbers of trains. The computation time required was found 

to be insensitive to the number of carriages so this is not displayed. For each 

task the data plotted is the median from eight repeat experiments.  

 

Figure 28 – The total algorithm computation time of the Bayesian Optimisation 
implementation, ΠBO, at increasing objective function evaluations, 𝜂𝐵𝑂 . This 
relationship is investigated for three different tasks. The value displayed by 
each marker is the median from eight repeat experiments. 

Figure 28 shows that the computational cost of the bayesopt implementation 

grows rapidly at later iterations of the algorithm. This is thought to be specific 
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to the use of a GP model within BO and the associated matrix inversion, rather 

than inherent to the BO approach. The data also shows that the algorithm 

computation time increases faster for tasks with more trains. This is because 

increasing the number of trains in the task increases the GP model matrix 

dimensions and the associated cost of inverting it. Taking the logarithm of 𝛱𝐵𝑂 

and 𝜂𝐵𝑂, to determine the order of compuational cost as a function of 𝜂𝐵𝑂, 

O(𝜂𝑏), gives 𝑏 = 2.73 . However, testing to larger values of 𝜂𝐵𝑂 would be 

required to confirm 𝑏 is not larger. 

 Computation time of the whole procedure 

Values can be substituted into the inequality given by (5.2) to investigate the 

smallest computation time for a single objective function evaluation (𝛾), for 

which it is satisfied. This represents the ‘threshold’ at which it becomes 

computationally cheaper to use BO over GA. The data for 𝛱𝐵𝑂 from Figure 28 is 

used as well as the median values of the data shown in Figure 26 for 𝜂𝐵𝑂 and 

𝜂𝐺𝐴 . The value of 𝛱𝐺𝐴 is assumed to be the product of 𝜂𝐺𝐴 and the 

computational cost of a single iteration of the GA algorithm excluding objective 

function evaluations, 𝜋𝐺𝐴. To reflect that 𝜋𝐺𝐴 may vary between GA 

implementations, here it is given values of 0.001 seconds and 5 seconds to 

capture reasonable lower and upper bounds inferred from results published 

by Kohmoto et al. (2003) and Zhu et al. (2017). Figure 29 plots the threshold 𝛾 

for all of the jobs shown in Figure 26. It can be seen that for most of the jobs, 

the threshold time is less than a second, regardless of 𝜋𝐺𝐴. For Job 6 and 𝜋𝐺𝐴 = 

5, there is no positive value of 𝛾 which does not satisfy inequality (5.2), 

indicating that in 𝛱𝐺𝐴 > 𝛱𝐵𝑂 for all tasks, i.e. the BO method is computationally 

cheaper. This is because of the large number of objective function evaluations 

required by the GA implementatipon for this job. For Job 8, the threshold value 

of 𝛾 is substantially greater but the sensitivity to changes in 𝜋𝐺𝐴 is still less than 

a second.  
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Figure 29 – The computation time for a single objective function evaluation (𝛾) 
at which the total computational cost of the optimisation becomes equal, for 
the eight jobs in the results of Figure 26 and under two different assumptions 
of the algorithm computational cost of one GA implementation iteration (𝜋𝐺𝐴). 

 Discussion 

The results of Figure 27 indicate that increasing the target performance of the 

solution leads to an at least exponential increase in the number of objective 

evaluations required by BO. This is thought to be because in general, for jobs 

with a high target performance, a proxy function which accurately models the 

objective function is required. This demands a higher density of evaluations but 

when many evaluations become clustered in one region the ability of BO to 

effectively select new candidates is reduced (McLeod et al., 2018). In addition 

to the increase in objective function evaluations, the results in Figure 28 

indicate that there is a super-linear relationship between the number of 

evaluations and the algorithm cost. This is thought to result from the matrix 

inversion when calculating a GP. Both these effects are thought to be a 

consequence of implementing BO with a GP model rather than inherent in the 

BO method. Taken together, the results of Figure 27 and Figure 28 indicate that 
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when a GP regression model is used as the probabilistic model within BO, 

increasing the quality of the solution significantly increases this total expense. 

However if accelerated techniques for calculating GP models, such as the one 

developed by Gardner et al. (2018), can be implemented with the BO method, 

this effect might be reduced. As identified by McLeod et al. (2018) it is likely 

that in applications where the target performance for the solution is high, a 

multi-strategy optimisation method would be most effective, i.e. switching 

from BO to GA (or another alternative). 

The results of Figure 26 indicate that for certain tasks BO may find ‘good’ 

solutions in significantly fewer objective function evaluations than a GA. For 

tasks involving expensive-to-compute objective functions, this leads to a 

reduction in total computational expense. Figure 29 shows that the threshold 

computational cost of one evaluation (𝛾) for which BO is cheaper than GA was 

less than one second all but one of the jobs in this chapter and for the 

remaining job it was approximately 20 seconds. Given that the results of 

Chapter 4 have shown that the objective function associated with a small 

network requires approximately 20 seconds of computation, but this increases 

with the size of the network, the results of Figure 29 indicate that the BO 

method is more suitable for use in SUPREME when applied to realistic sized 

networks. 

 Summary 

GAs are a well-established optimisation method. However, there is a pressure 

to keep the computational cost of an objective function evaluation low because 

they typically require, for real-world applications, in the order of 104 objective 

function evaluations or more. BO uses information from all previous 

evaluations of the objective function to guide the selection of new candidates 

so that the most beneficial ones are targeted. This means that BO has the 

potential to find solutions of a similar quality to a GA, but in fewer objective 

function evaluations, and to be computationally cheaper for tasks with 

expensive-to-compute objective functions. This was experimentally confirmed 

using a range of test-tasks where the mean factor difference between the 
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numbers of evaluations required by the methods was 43 with standard 

deviation of 76. However, due to the overhead in the algorithm of the BO 

implementation tested, a super-linear relationship was found between the total 

algorithm cost and the number of objective function evaluations required. 

Furthermore, the relationship between the number of objective function 

evaluations required and improving solution quality is at least exponential. This 

is thought to be an effect of using a GP model within the BO algorithm and not 

inherent to the BO method itself. This means that the BO implementation 

tested is better applied to tasks involving expensive-to-compute objective 

functions where approximate answers are satisfactory and the budget for 

computational expense is small. Two approaches which may improve the 

solutions found by BO are to either: improve the probabilistic model used 

within BO, or, sequentially combine BO with GA for a multi-strategy 

optimisation method.  

The BO method is selected for use within SUPREME because the results in this 

chapter suggest it is well suited for with tasks with expensive-to-compute 

objective functions and the results of Chapter 4 indicate that the objective 

functions encountered within SUPREME will be of that type. For the remainder 

of this thesis, the BO implementation used in this chapter is used as the 

optimisation algorithm within SUPREME and symbols defined within this 

chapter that can apply to GA or BO, e.g. 𝜂, are used without the superscript but 

relate to BO.  
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Chapter 6 

Applying SUPREME 

Chapter 3, Chapter 4 and Chapter 5 have discussed the three main 

components of SUPREME in isolation. This chapter describes the application of 

the SUPREME framework to three case-study examples, and evaluates its 

effectiveness. To demonstrate the adaptability of the SUPREME framework, the 

case studies involve different networks and different optimisation tasks. The 

first case study involves optimising a timetable which is typically undertaken 

with a planning window of the order of months. The second case study 

considers the situation where equipment failure has occurred and resources 

must be reallocated in a time window of the order of hours. The third case 

study considers the optimisation of network design, where the time window 

may be of the order of years. In the case studies, due to the data available to 

the author, some assumed values are used to represent the real-world 

challenges. Although this might reduce the accuracy of the task, it is 

emphasised that the focus of this chapter is to demonstrate the application of 

the SUPREME framework rather than ‘solve’ the real-world case studies 

investigated. 

 Case study one – optimising the timetable of the regional 

train network around Derby 

The first case study considers the part of the regional network which connects 

Crewe, Nottingham, Matlock and Derby in GB. This network is part of the East 

Midlands rail franchise which has been managed by East Midlands Trains 

(EMT) from 2007 to the time of writing in 2019. Figure 30 A) illustrates the 

approximate geographical location of the network. Figure 30 B) uses network 

map data, provided by the Association of Train Operating Companies (c2015) 

and Network Rail (2016), to illustrate how these stations are connected to each 

other and the wider GB network. Intermediate stations are also included in the 

case study and Figure 30 C) illustrates these as well as their connections with 
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either one bi-directional line, e.g. between Crewe and Alsager, or two single 

direction lines, e.g. between Alsager and Kidsgrove. 

 

Figure 30 – A) displays with an ellipse the geographical area of the case study 
network and contains OS data © Crown copyright and database right (2019)7. 
B) uses circles to show five of the stations included in the study network and 
displays how these are connected to other cities. Connections are informed by 
maps published by the Association of Train Operating Companies (c2015) and 
Network Rail (2016). C) displays all the stations included in the model network 
and their connections with either one bi-directional line or two single-direction 
lines.  

                                                   

7 This is used under an Open Government Licence, a copy of which can be found at the URL: 
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/  
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The Department for Transport (2017a) identified challenges for this network 

which included overly-long passenger waiting times for connecting trains and 

overcrowding. Assuming a punctual service, the timetable controls the waiting 

time for a passenger making connections between trains, i.e. the connection 

time. Furthermore, because it also controls the interval between trains and 

hence the accumulation of passengers waiting for a train, the timetable also 

affects the level of crowding. The SUPREME framework captures the effect of 

the timetable upon passenger connection times and crowding, as well as the 

overall effect on passenger disutility. It should be noted that in this 

investigation these are the only effects of altering the timetable which are 

captured - other effects are not captured, for example that passengers often 

prefer a ‘clock face’ timetable (Johnson et al., 2006). In the study network, the 

trains operate between Crewe and Derby, and Nottingham and Matlock (calling 

at Derby), therefore passengers make connections at Derby. Consequently, in 

this case study the SUPREME framework is used to optimise the arrival and 

departure times of regional trains at Derby station. The timetabled interstation 

journey times and number of trains are based on the current timetables for the 

network provided by EMT (2019) and, together with the dwell times, are not 

altered. The movements of services that the Department for Transport (2017a) 

describes as ‘Intercity’ or ‘Inter-urban’, which also pass through the real-world 

network, are not modelled and assumed not to constrain the optimisation.  

 Formal definition 

The optimisation task models three trains operating between Crewe and Derby 

as well as three trains between Nottingham and Matlock. Because the timetable 

follows an hourly pattern throughout the day, where interstation run times and 

dwell times do not vary, it is modified by adding a time supplement to all arrival 

and departure times of a train. This is done for each train independently with 

integer minutes. The notation discussed in Chapter 2 can be adapted to this 

task where the vector 𝒙 captures the time supplement to all of the six trains 

with form shown by: 

𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] 
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(6.1) 

where the element 𝑥𝑖 denotes the time supplement for train 𝑖. The formal 

definition of the task can therefore be written as (6.2) subject to (6.3), (6.4) 

and (6.5). 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈𝑋

𝐹2(𝒙; 𝜆, 𝜃) 

(6.2) 

−29 ≤ 𝑥𝑖 ≤ 30     𝑓𝑜𝑟    𝑖 = 2,3,5,6 
(6.3) 

−10 ≤ 𝑥𝑖 ≤ 30     𝑓𝑜𝑟    𝑖 = 1 
(6.4) 

0 ≤ 𝑥𝑖 ≤ 30     𝑓𝑜𝑟    𝑖 = 4 
(6.5) 

The value of the objective function, 𝐹2(𝒙; 𝜆, 𝜃), is equal to the network score 

(calculated using the method described in Chapter 3) relating to the PRaM 

simulation (described in Chapter 4) of the network defined by 𝒙 and 𝜆, 

carrying the passenger load defined by 𝜃. The objective function cannot be 

expressed on the same percentage scale as used in Chapter 5 because the 

global maximum and minimum are not known. Consequently, the raw network 

scores calculated using the metric described in Chapter 3 are used. Because 

these relate to disutility, improving the network score is a minimisation task. 

The purpose of the constraints shown by (6.3), (6.4) and (6.5) is to preserve 

the order of trains as well as controlling the operational hours of the network 

to be within 6am to 1am. The search space contains 4.7 x 1010 candidates.   

 Constant parameters describing the network 

To describe the topography of the network, the Origin Destination Matrix 

(ODM) supplied by Steer Davies Gleave (2017b) provides the interstation line 

distances, and the Sectional Appendix supplied by Network Rail (2019) 

provides the permissible line speeds.  

The trains are modelled as British Rail (BR) Class 153 DMUs because Pettit 

(2017) describes that Class 153, 156 and 158 units operate on the study network 

(of which only the Class 153 uses a single carriage formation), but Furness 

(2017) reports that trains with ‘one carriage’ operate ‘most of the time’ on the 

Crewe-Derby route and The Friends of Derwent Valley Line (2019) report that 
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two out of three services on the Matlock-Nottingham route are single carriage. 

The number of seats for a Class 153 is provided by Angel Trains (c2019a) as 75. 

To determine the standing capacity of a Class 153, data provided by the UK 

government (n.a, 2003) was used to calculate the standing capacity as a 

proportion of the total capacity for Class 150 and Class 156 trains, which are 

both similar to a Class 153. The mean of these values is 31% which when applied 

to the Class 153 gives a standing capacity of 23. Although this is likely an 

underestimate of the maximum number of standing passengers encountered 

in the real world, it represents the ‘recommended’ maximum and so is used 

here.  

The speed-dependent tractive force available (𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) to a Class 153 was 

provided by extracting data from the Birmingham Rail Virtual Environment 

(BraVE) simulator described by Umiliacchi (2016). Because this data did not fit 

well to the relationship described by (4.2), 𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 was determined during 

PRaM by linear interpolation of the extracted data. Other parameters 

describing the performance of a Class 153 were also extracted from the BraVE 

simulator and have values shown in Table 11. The Davis formula coefficients 

were determined by fitting a second order polynomial to extracted speed and 

resistance data, this is further discussed in Appendix III.  

Parameter Value 
Tare mass, 𝑀𝑇  45 tonnes 
Rotary allowance, 𝓇 0.17 
Maximum speed 121 km/hour 
Davis formula 𝒜 1.09 kN 
Davis formula ℬ 1.56 × 10−10 Ns/m 
Davis formula 𝒞 4.76 Ns2/m2 

Table 11 – Parameter values used to describe a British Rail Class 153, derived 
from data extracted from the BRaVE simulator described by Umiliacchi (2016).  

 Capturing the passenger load 

The passenger load input was determined from three data sources:  

 The Origin Destination Matrix (ODM) (Steer Davies Gleave, 2017b) 

describes the passenger flows between each station pair in the study 
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network. This was shared through private communication with the 

Information and Analysis team of the Office of Rail and Road (ORR). 

 The Estimates of Station Entry Exit (ESEE) data describes estimates of 

the number of passengers to enter and exit each station, published by 

the ORR (Steer Davies Gleave, 2017a). 

 Hourly variations in the number of passenger arrivals and departures in 

London (Department for Transport, 2012). No data specific to the case-

study network was available to the author, however it is assumed the 

London data approximates the temporal variation in demand for travel 

and could easily be replaced by data specific to the network if this 

became available. To capture the variation in total demand for rail travel, 

the arrivals and departures were combined.  

The ODM underestimates the passenger flows because it only captures 

passengers whose origin and destination is inside the study network. For 

example, passengers travelling from Alsager to Derby before making an onward 

connection to London would not be captured. To quantify this effect, the total 

entries and exits in the ESEE data was compared with the total number of flows 

in the ODM beginning or ending at that station. To reduce the effect of 

passengers captured in the ESEE who do not travel on the services included in 

this study, this comparison is done for stations that are only called at by 

services included in the study. The factor difference between the ESEE and 

ODM data was recorded for each station compared, and the mean calculated 

as 14%. The mean value was then used to scale all passenger flows between 

station pairs where at least one station is called at by services not included in 

this investigation. When determining the time that each passenger arrives at 

their origin station the daily total number of passengers in each flow was 

scaled to the hourly variation in passenger demand data. Within each hour, the 

‘ideal’ time that passengers would wish to travel was assumed to have a 

uniform distribution. However, Ingvardson et al. (2018) show that at train 

intervals of five minutes or more, at least 43% of passengers plan their arrival 

time considering the departure time of a train. They report the ‘average’ 

difference between passenger arrival time and train departure time, i.e. the 
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waiting time, for train intervals from five minutes to one hour but do not state 

what statistical measure they mean by ‘average’. The median of this distribution 

across the train intervals is six minutes. Consequently, in the model discussed 

here, passengers are modelled to arrive at their origin station (the time PB1 

occurs in Figure 13 of Chapter 4) six minutes before the departure of their 

train. Although Ingvardson et al. also show that for a given train interval there is 

distribution of waiting times, this effect is not included in the PRaM input 

because the distribution of passenger agent arrival times would remain 

constant for all timetables and hence will not affect the relative performance of 

different candidates. The passenger load data therefore captures: passengers 

who travel on the services studied, the time-varying demand for travel 

throughout the day, and that passengers plan their arrival time depending on 

the timetable.  

 Experimental method 

To compute the task defined by (6.2) to (6.5), an initial feasible candidate was 

arbitrarily chosen and the objective function evaluated using the method 

described in Section 5.2.3. The BO implementation discussed in Chapter 5 was 

then used with the ‘Expected-Improvement-Plus’ acquisition function, and one 

arbitrarily chosen feasible 𝒙 used to seed the algorithm. A fixed budget of 

objective function evaluations, 𝜂𝑚𝑎𝑥 , were used after which the algorithm 

terminates and results are returned containing the value of the objective 

function at every evaluation number (𝜂). There was no restriction upon the 

objective function value of the solution.   

For a given value of 𝜂𝑚𝑎𝑥 , the solution returned by SUPREME is sensitive to the 

initial candidate. Consequently, the optimisation task was repeated, 

independently, 40 times with different initial candidate and the distribution of 

values relating to the results were examined. All experiments were computed 

on an Intel Xeon Dual Processor @ 2.4 GHz.  



 

105 

 Results 

The BO implementation function returns the ‘best’, in this case the minimum, 

network score found so-far at every algorithm iteration. Figure 31 displays two 

plots, both showing data relating to the distribution of ‘minimum network 

score found so-far’ values at different values of 𝜂. For both plots, the network 

score is expressed in units introduced by Figure 8 in Chapter 3. The left plot 

shows a trace for every optimisation with the maximum and minimum traces at 

𝜂 = 1 emphasised to show that there is a weak relationship between the 

network score at 𝜂 = 1 and 𝜂 = 100, relative to other repeats of the optimisation. 

For all optimisations, the network score at 𝜂 = 100 is less than at 𝜂 = 1, indicating 

that the network score has been improved. The median improvement in 

network score, compared to the corresponding initial score, is 19% with 

standard deviation of 7%. The right plot uses markers to show features of the 

distribution and also plots the network score of the unmodified timetable, i.e. 𝒙 

= [0 0 0 0 0 0]. When 𝜂 = 100, the difference between the minimum and upper 

quartile marker is 3% of the difference between the median marker at 𝜂 = 1 and 

𝜂 = 100, indicating that 75% of the optimisations found a solution ‘close’ in 

performance to the best one found out of all the optimisations, hereafter 

referred to as the best solution. The value of the median marker at 𝜂 = 100 is 

13% less than the network score of the unmodified timetable. Taken together 

the results shown in Figure 31 indicate that the BO implementation is effectively 

searching the search space regardless of the candidate it is initialised with. 
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Figure 31 – Data relating to the distribution, from 40 independent repeats of 
the optimisation, of ‘minimum network score found so-far’ values at different 
numbers of objective function evaluations (𝜂). The left plot displays a trace for 
each optimisation with the trace emphasised for the maximum and minimum 
network score at 𝜂 = 1. The right plot uses markers to show features of the 
distribution and the network score of the unmodified timetable.  

Figure 32 displays 𝒙 relating to the ‘minimum network score found so-far’ 

values at 𝜂 = 1 and 𝜂 = 100, for all forty repeat optimisations. The value of each 

element of 𝒙 has been plotted with the index (𝑖) on the x-axis and the 

optimisation variable’s value on the y-axis. For the 𝜂 = 100 plot, the filled 

markers relate to the best solution out of all the forty repeat optimisations. 

Observing the 𝜂 = 1 plot it can be seen that the optimisation variable values 

distributed across close to their full feasible range. This indicates that, as 

expected, 𝒙 is being initialised with uniform distribution, therefore the 

solutions found by the optimisation are free from any bias in initialisation. 

Where the optimisation variables have not taken a value in the feasible range is 

because of the small (40) sample size of the distribution. There are no 𝑥1 and 

𝑥4 values less than -10 and 0 respectively because of the constraints capturing 

the operational hours of the network.  
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Figure 32 – The values of each optimisation variable at initialisation (𝜂 = 1) and 
the end of the optimisation (𝜂 = 100), shown for forty repeats of the 
experiment. The optimisation variable index is shown on the x-axis. The value of 
the variable is shown on the y-axis. For the 𝜂 = 100 plot, the markers for the 
values relating to the ‘best’ solution found are filled.  

For the 𝜂 = 1 plot in Figure 32, the sum of the standard deviation for all six 

variables is 91, whereas for the 𝜂 = 100 plot it is 35. This indicates that the 

repeat optimisations are finding solutions that are more similar than the 

initialisations. Furthermore, the values of the optimisation variables inform how 

the timetable might be modified. For example, all the solutions have 𝑥4 = 0 to 3, 

indicating that it is important not to modify the timetable of Train 4 by more 

than 3 minutes. However, there is a wider range for the value of 𝑥3 indicating 

that the timetable of Train 5 is less important, but adding a time supplement of 

28 minutes to its timetable is most advantageous. 

To investigate the effect of the best solution upon passengers, Figure 33 

displays the histograms of the individual distance-normalised passenger 

journey scores for the unmodified timetable and the timetable relating to the 

best solution. So that differences are visible across the whole range of journey 
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scores, the histograms have been split over two plots. The left plot shows the 

frequency of journey scores from 0 to 5 and the right plot shows the frequency 

of journey scores from 5 to 11 with differently scaled y-axis. Comparing the 

histograms shows that the best timetable increases the frequency of the two 

lowest journey score groups by 20% and reduces the modal journey score, 

indicating that more passengers have a ‘very good’ journey in comparison to 

the unmodified timetable. The histograms also show the best solution 

timetable changes the frequency of all journey scores. This indicates that even 

though only 46% of passengers change train at Derby, and hence will have their 

journey affected directly by changes to the timetable, many passengers have 

their journey improved by the best solution timetable because of the knock-on 

effect of reduced crowding. Furthermore, observing the right plot shows that 

the maximum journey score of the best solution timetable is 20% less than the 

unmodified timetable, indicating that ‘very bad’ journeys are also improved. 

Passengers who experience very bad journeys are possibly more likely to 

complain, therefore improving the journey of these passengers, even though 

there are few, might be important to network managers. Where passengers 

have been delayed, reducing the severity of ‘very bad’ journeys might also 

reduce the proportion of passengers that request ‘delay compensation’ and, as 

a result, reduce losses in ticket revenue for network managers.

 

Figure 33 – Two plots showing the histogram of passenger journey scores for 
the unmodified and best solution timetable. So that differences are visible for 
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the whole range of journey scores, the x-axis is split over the two plots with 
differently scaled y-axis.  

To investigate the effect of increasing the budget of algorithm iterations, the 

value of 𝜂𝑚𝑎𝑥 was increased to 300 and the experiment repeated with the same 

initial candidates as used for the results in Figure 31. Figure 34 uses markers to 

show features of the distribution of ‘best network score found so-far’ values at 

different 𝜂. It can be seen that, compared to 𝜂𝑚𝑎𝑥 = 100, the additional 

algorithm iterations improve the solution found by the worst-case optimisation 

so that it has performance closer to the solution found by the best-case 

optimisation. As a percentage of the unmodified network score, the difference 

between the minimum and maximum marker at 𝜂 = 100 is 8.9%, whereas at 𝜂 = 

300 it is 1.6%. Compared to 𝜂𝑚𝑎𝑥 = 100, the additional algorithm iterations also 

improve the solution found by the best-case optimisation, however this is 

difficult to see in Figure 34 because the improvement is very small. As a 

percentage of the unmodified network score, the difference between the 

minimum at 𝜂 = 100 and 𝜂 = 300 is 0.2%. These results indicate that, for this 

test task, increasing 𝜂𝑚𝑎𝑥 from 100 to 300 reduces the range of network scores 

relating to solutions found by SUPREME, rather than substantially improving 

the best solution, i.e. it improves the consistency of SUPREME. Increasing 𝜂𝑚𝑎𝑥 

from 100 to 300 more than triples the computational cost of each optimisation 

because, as Chapter 5 has shown, the algorithm computation cost of the BO 

implementation increases super-linearly. Since timetabling is typically 

conducted with a planning window of months or more, in the real-world 

application of SUPREME this increase in computational cost may be justifiable 

for even a 0.2% improvement in the solution. However, for the purposes of 

investigating the effectiveness of SUPREME when applied to the task described 

in Section 6.1, the results of Figure 34 indicate that a value of  𝜂𝑚𝑎𝑥= 100 is 

sufficient because the best solution is of greater interest than the consistency 

of SUPREME. This will have little effect on other results discussed in this 

section because either: the worst-case optimisation is not included, e.g. Figure 

33, or the full distribution of optimisations is shown but focus is on the best-

case, e.g. Figure 32.  
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Figure 34 - Markers to show features of the distribution of ‘best network score 
found so-far’ values at different numbers of objective function evaluations(𝜂). 
The network score of the unmodified timetable is also shown. 

The interval between trains at stations other than Derby is also a consideration 

for passengers. To investigate the effect of capturing this an additional 

passenger journey stage is introduced to PRaM which captures the ‘schedule 

delay’, i.e. the difference between the passenger’s ‘ideal’ departure time and 

the actual departure time of the soonest train after this (Balcombe et al., 

2004). This approach has precedent - Hendrickson and Kocur (1981) have also 

examined timetabling decisions including the concept of schedule delay. The 

term ‘schedule delay’ also relates to the time difference between a passengers 

actual arrival time and their ‘ideal’ arrival time at their destination, if they catch 

a train which gets them to their destination ‘early’ (Small, 1982). Passenger 

agents in the newly introduced stage are modelled as outside of the network 

and their movements are not considered. To distinguish between the two 

meanings and highlight that the introduced stage occurs before departure, 

rather than at the arrival station, the newly introduced journey stage is 

referred to as the ‘Spare Time’ stage. Figure 35 illustrates how the ‘Spare Time’ 
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stage relates to the other stages described in Chapter 4 and waiting time 

described in Section 6.1.3. Passengers begin the ‘Spare Time’ stage at their 

‘ideal’ departure time (assigned when determining 𝜆 and described in Section 

6.1.3), and finish the ‘Spare Time’ stage when PB1 occurs (described in Chapter 

4). Conditions are not captured during the ‘Spare Time’ stage. Waiting time 

describes the time from when passengers enter the station to catching their 

first train. 

 

Figure 35 – A sequence of journey stages for a partial journey when the 'Spare 
Time' stage is introduced. The time at which different events occur, including 
the passenger behaviours enumerated with ‘PB’ and described in Chapter 4, 
and corresponding journey stages are shown inside boxes. The journey stages 
included in the ‘waiting time’ described in Section 6.1.3 are shown.  

No data could be found relating to the VoT weighting (Ω) during this stage, 

therefore its value is set to the experimental parameter, 𝜅𝑉 . The value of 𝜅𝑉 is 

varied between experiments to investigate the sensitivity of the results to this 

parameter. A range of 0 to 0.6 was chosen for 𝜅𝑉 , to reflect the assumption 

that the disutility of schedule delay to passengers is less than travelling on an 

uncrowded train because the time may be used for work or leisure activities as 

the passenger chooses. In the case that this assumption is incorrect, the 

experiments can easily be repeated with an alternative value of 𝜅𝑉. 

Figure 36 displays plots using markers to show features of the distribution of 

'minimum network score found so-far' values and the network score of the 

unmodified timetable. The value of 𝜅𝑉 used for the experiments is shown above 

each plot. Comparing the plots it can be seen that greater 𝜅𝑉 values cause an 
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increase in the network scores. This is because the journey score associated 

with the ‘Spare Time’ stage is proportional to 𝜅𝑉 , which affect the total journey 

score of the passenger. For the results relating to 𝜅𝑉 values of 0, 0.3 and 0.6, 

the median marker at 𝜂 = 100 is respectively 0.146, 0.148 and 0.149 𝜁 pax-1 m-1 

less than the network score for the unmodified timetable. This indicates that as 

the value of 𝜅𝑉 increases, i.e. passengers value their time more, there are more 

benefits to be gained by optimising the timetable. This is what would be 

intuitively expected and is evidence to suggest the introduction of the ‘Spare 

Time’ stage is valid. However, despite increasing in absolute magnitude, the 

improvement in network score through optimisation becomes respectively 

12%, 11% and 9% of the network score for the unmodified timetable, i.e. a 

decreasing proportion of the network score. This indicates that, at greater 

values of 𝜅𝑉 , the network score is less sensitive to the arrival and departure 

times of trains than it is to the frequency of trains. Therefore, increasing the 

number of trains will have more substantial benefit than optimising the interval 

between them. Observing all the plots it can be seen that when 𝜂 is greater 

than approximately 50, the location of the markers for the upper quartile and 

the minimum become indistinguishable, indicating that at least 75% of the 

optimisations have found a solutions ‘close’ to the best solution. However for 

the 𝜅𝑉 = 0 results the value of maximum marker at 𝜂 = 100 is 0.11 pax-1 m-1 

greater than the minimum marker, and is distinguishable in the plot, indicating 

a substantial difference between the performance of the solution found by the 

best-case and worst-case optimisation. This difference decreases to 0.08 and 

0.04 pax-1 m-1 for 𝜅𝑉 = 0.3 and 0.6 respectively and indicates that the BO 

implementation becomes more consistent for greater values of 𝜅𝑉 . This might 

be because optimisation algorithm implementation is less easily ‘trapped’ by 

local minima since they are less ‘deep’. Becoming trapped in areas of the 
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search space that do not contain the global optimum is further discussed in 

Chapter 2.  

Figure 36 - Three plots displaying markers for the distribution, from 40 repeats 
of the experiment, of 'minimum network score found so-far' values and the 
network score of the unmodified timetable. Each plot relates to a different VoT 

weighting used for the ‘Spare Time’ journey stage, 𝜅𝑉 , with value shown above 
the plot. The number of objective function evaluations, 𝜂, so-far is shown on the 
x-axis.  

The results of this case study indicate that the SUPREME framework can be 

used to support improving the timetable. The results of Figure 31 show that the 

BO implementation can consistently locate ‘good’ solutions. Compared to the 

unmodified timetable, the best timetable identified gives a 13% improvement in 

the network score, indicating that the VoT for the mean journey was reduced 

by 13% and therefore passenger experience was improved. Bruzelius (1981) 

describes the ‘generalised cost of travel’ to a passenger as the sum of the ticket 

price and VoT for the journey, i.e. 𝜓 in Chapter 3. Assuming this simple model, if 

the VoT is reduced, passengers may be willing to pay more for a ticket whilst 

maintaining the same ‘generalised cost of travel’. To calculate the potential 
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extra ticket revenue: the VoT for commuter passengers provided by ARUP 

(2015) is reduced by 13%, multiplied by the median journey duration for the 

unmodified timetable, and multiplied by the number of passengers in 𝜃 - 

giveing a potential ticket revenue increase of £10,000 per day for this network. 

Commuter passengers are focussed upon here for simplicity because the VoT 

for business travellers varies with journey distance, however passenger journey 

purpose has not been included in the case study so the journey VoT for 

passengers could not be determined. Although Peluffo (2018) reports 57% of 

rail passengers in 2017 were commuters, a substantial proportion were not and 

therefore had a different VoT. Consequently, there is uncertainty in the 

potential extra ticket revenue value. Nonetheless, it demonstrates that 

substantial extra revenue might be generated and considering that the best 

timetable identified requires no additional physical resources, implementing it 

might require little investment from network managers therefore giving it a 

strong business case. Furthermore, for the purposes of this case study a 

maximum of 100 objective function evaluations have been used but in practice, 

because timetabling is often an activity with a long planning window, it may be 

possible for users to increase the number of objective function evaluations and 

possibly find better solutions. The results of Figure 32 show how the output of 

the SUPREME framework can be used to demonstrate general trends as well as 

supplying the best solution. Many tasks abstract the real world challenge in 

some way, therefore supplying the human manager with more information will 

allow them to choose solutions which are sufficiently robust to transfer back to 

the real world. The results of Figure 33 demonstrate that network changes can 

have knock-on effects causing many passengers to be positively affected and 

improving the experience of the small number of ‘very bad’ journeys. This 

further supports the case for a methodology which models passengers and 

components individually, to ensure that knock-on effects are captured. This 

case study has also shown that, to better capture or assist with more 

challenges, the SUPREME framework can be extended to include other factors, 

i.e. in this case the effect captured by the ‘Spare Time’ journey stage. The 

results of Figure 36, show that optimising the timetable will have greater 
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absolute effect on the network score if the interval between trains is 

considered in the assessment, indicating that the SUPREME framework is more 

useful when more factors of the network performance are considered. 

However, because the results also show that optimising the timetable has less 

relative effect on the network score for larger values of 𝜅𝑉 , the results also 

indicate that reducing the VoT weightings for journey stages is also important 

for improving the network score. Network managers might consider the two 

approaches simultaneously since, generally, reducing VoT weightings would 

require investment to improve rolling stock or station comfort whereas 

optimising the timetable can be comparatively cheap if no additional resources 

are required. Although a sensitivity study has been used here to mitigate the 

uncertainty of unknown parameters, this case study has identified that 

obtaining a VoT weighting for the ‘Spare Time’ stage is an area for development 

of the SUPREME framework.  

 Case study two – optimising the allocation of attributes to 

trains in the regional network around Derby 

This case study considers the same physical network as the first case study, 

however a different optimisation task is developed to address additional 

challenges identified for the network: allocating additional rolling stock, 

maintaining different levels of train cleanliness, and rolling stock defects. Both 

Furness (2017) and The Friends of Derwent Valley Line (2019) report that the 

overcrowding challenge described in Section 6.1 is sometimes addressed by 

allocating additional rolling stock to the trains. Consequently the task in this 

case study considers the optimum allocation of additional rolling stock 

between a fixed number of trains. This is operationally feasible because the 

network is serviced by BR Class 153 rolling stock, which can operate in 

formations of multiple units or with other rolling stock types such as BR Class 

156 (Haigh, 2018). The cleanliness of trains is a challenge for many GB networks, 

for example it is identified by the Department for Transport (2017a) for the 

East Midlands franchise and Network Rail (2016) for the GB network, and so is 

considered for this case-study network also. In the UK passenger trains are 
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typically cleaned every night (Watchdog, 2017) however, events such as 

industrial action might mean that not all trains are cleaned (n.a, 2016, RMT, 

2017) and cleanliness deteriorates during use throughout the day. In an 

interview conducted on 15/6/2017, the Customer Experience Strategy Manager 

for EMT stated that determining which train to allocate less recently cleaned 

rolling stock to, for the minimum effect to passengers, was a challenge (Emma 

Davies, 2017)8. Consequently, the task in this case study also considers the 

optimum allocation of cleaned and less-recently-cleaned rolling stock. For 

many networks, component defects in rolling stock is a challenge which can 

cause can cause substantial delay. For example, Railnews (n.a, 2018) report on 

door failures causing a delay of up to 45 minutes to a train. Ideally rolling stock 

with component defects would be removed from service and replaced without 

affecting the service. However, owing to operational constraints, this is not 

always feasible and the UK’s Rail Safety and Standards Board (2015) state that, 

depending on the nature and severity of the defect as well as other situational 

considerations, removing a train from service may be more dangerous to 

passengers than keeping it in service with the component defect. 

Consequently, for minor defects, the rolling stock may remain in service until 

repair or replacement can be scheduled. Dinmohammadi et al. (2016) find that 

for a fleet of 38 BR Class 380 trains there were 205 door defects, ranging in 

severity, which caused 518 minutes of train delay. Although Dinmohammadi et 

al. do not specify the time period over which this data was collected, from 

other information they report it can be inferred to be approximately 100 days 

which would mean a defect rate of approximately one defect per train every 

twenty days. Clearly the majority of these do not cause the train to be removed 

from service, but it is reasonable to assume that they might cause the train to 

have longer door opening and closing times. If defects are detected prior to a 

train entering service, it might be operationally feasible to allocate rolling stock 

with defects to trains such that the effect to passengers is minimised. 

Therefore the task discussed here also optimises the allocation of rolling stock 

                                                   

8 For more information, see the list of personal communications in the reference list. 
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with door defects to the trains. The task considers all the challenges 

concurrently and optimises which trains are allocated additional rolling stock, 

which trains are allocated less-recently-cleaned rolling stock and which train is 

allocated the defective rolling stock.  

 Formal definition 

The task described in the previous section can be considered as one of 

optimising the allocation of five attributes between six trains. There are three 

unique attributes, but some are allocated to two trains. Table 12 displays how 

these attributes are enumerated with the index, 𝑖. 

Attribute, 𝑖 Description 
1 Train has an additional rolling stock unit 
2 Train has an additional rolling stock unit 
3 Train is less-recently cleaned 
4 Train is less-recently cleaned 
5 One rolling stock unit of the train has door failure 

Table 12 – The five attributes to be allocated to the trains. 

The vector 𝒙 captures which train each attribute is allocated to with form 

shown by: 

𝒙 = [𝑥1, x2, 𝑥3, 𝑥4, 𝑥5] 

(6.6) 

where the element 𝑥𝑖 denotes the train that attribute 𝑖 is allocated to. The 

formal definition of the task can therefore be written as (6.7) subject to (6.8) 

and (6.9) which captures the fact that there are two separate less-recently-

cleaned trains. 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈𝑋

𝐹2(𝒙; 𝜆, 𝜃) 

(6.7) 

1 ≤ 𝑥𝑖 ≤ 6     𝑓𝑜𝑟    1 ≤ 𝑖 ≤ 5 
(6.8) 

𝑥3 ≠ 𝑥4 
(6.9) 

 Data input and experimental method 

The model network has the same topography and permissible line speeds 

described in Section 6.1.2. The timetable has hour intervals between the trains 
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and uses interstation run times provided by East Midlands Trains (2019). Trains 

1 and 4 are the first trains to depart on their route, followed by Trains 2 and 5 

and finally Trains 3 and 6. Trains that are not allocated extra rolling stock units 

have the performance characteristics of a BR Class 153 unit, described in 

Section 6.1.2. Trains that are allocated extra rolling stock have scaled 

parameters relating to their tare mass, passenger standing and seating 

capacity, number of doors, and for simplicity, the available tractive effort and 

Davis formula coefficients. These parameters are scaled directly proportional 

to the number of rolling stock allocated to the train. Trains that are allocated to 

have faulty doors have the value of the door parameter (𝐶0) in formula (4.7) 

multiplied by the experimental factor, 𝜅𝐷. The value of the VoT weighting 

function (Ω) for passengers in the ‘On Train’ stage is multiplied by the 

experimental factor, 𝜅Ω, when riding on a less-recently-cleaned train. The 

passenger load described in Section 6.1.3 is also used for this case study. The 

same experimental method as described in Section 6.1.4 is used, however, to 

reflect that in practice this task might need to be carried out with a short time 

window, e.g. on the morning of operation, the budget of objective function 

evaluations (𝜂𝑚𝑎𝑥) is reduced to 30. Because the task is sensitive to the value of 

𝜅𝐷 and 𝜅Ω these are respectively varied from 2 to 32 and 1.5 to 2.5. 

 Results 

Figure 37 uses markers to display features of the distribution, from 40 repeats 

of the optimisation, of the ‘minimum network score found so-far’ values at 

every objective function evaluation (𝜂). For these optimisations, 𝜅𝐷 and 𝜅Ω 

were respectively 8 and 2, i.e. the median of the values investigated. The 

network scores in the distribution at 𝜂 = 1 relate to 40 random samples of the 

search space. Therefore, comparing the features of the distribution at larger 

values of 𝜂 against their value at 𝜂 = 1 allows comparison of the BO 

implementation against random sampling of the search space. Observing Figure 

37 it can be seen that the maximum marker at 𝜂 = 6, is less than the median 

marker at 𝜂 = 1. This indicates that the ‘worst case scenario’ of using the BO 

implementation for six objective function evaluations, found a solution better 
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than the median of 40 random selections. Similarly the results indicate that 

using 23 objective function evaluations, 75% of the optimisations have found a 

solution at least as good as the best one found in 40 random selections. 

Furthermore, the upper quartile and minimum marker at 𝜂 = 25 are within 8% 

of each other, this indicates that 75% of the optimisations find a solution ‘close’ 

to the best solution. Since all the optimisations found a better network score 

than the one relating to their initial candidate and the median improvement in 

network score is 32% with standard deviation of 14, these results indicate that 

the BO implementation is consistently finding ‘good’ solutions with an efficient 

use of objective function evaluations. 

 

Figure 37 - Markers to show the value of features of the distribution, from the 
distribution of 40 optimisations, of ‘minimum network score found so-far’ 
values at different numbers of objective function evaluations, 𝜂. The values of 
𝜅𝐷 and 𝜅𝛺 were respectively 8 and 2. 

Figure 38 plots the frequency that each attribute was allocated to a certain 

train in the distribution of 𝒙 relating to ‘minimum network score found so-far’ 

values at 𝜂 = 1 and 𝜂 = 25. Each column represents a train and attribute pairing, 

with its height representing the frequency of that allocation in the distribution. 
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Trains with ID numbers one to three operated on the Crewe-Derby route and 

ID numbers four to five operated on the Nottingham-Matlock route. To further 

investigate whether the solution found is dependent on the initial candidate, 

for all the optimisations, no attributes were initially allocated to Train 6 and 

consequently the columns relating to Train 6 are obscured from view in the 𝜂 = 

1 plot. However the results in the 𝜂 = 25 plot show that the BO implementation 

did find solutions where Train 6 was allocated attributes, indicating that the BO 

implementation was able to ‘discover’ this region of the search space.  

 

Figure 38 - From a distribution of 40 solutions, the frequency that each 
attribute was allocated to different trains at different numbers objective 
function evaluations, 𝜂.  

Excluding Train 6 in Figure 38, it can be seen that the attributes are initially 

allocated uniformly between the trains indicating that for all other trains, the 

initial allocation code was working correctly. In comparison, the 𝜂 = 25 plot 

shows that the solutions in this distribution have clear grouping of attributes 

and train numbers which, by observing the results in Figure 37, corresponds 

with better performing solutions. For example, 63% of solutions in the 𝜂 = 25 

distribution have Attribute 1 and 2 allocated to Train 1 and 2 indicating that 

additional rolling stock should be allocated to the Crewe-Derby route. 

Similarly, 60% of solutions allocated Attributes 3, 4 and 5 all to Trains 5 and 6, 

indicating that these are the least critical trains in the network. Trains 3 and 4 

rarely have attributes allocated to them, this indicates that they are ‘mid-

critical’ trains who do not necessarily need additional resources but should 
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have the standard of their service maintained. For a given route, trains with 

smaller ID numbers are more ‘critical’ to the network score than trains with 

greater ID numbers because the order in which they begin operation means 

they are in-service for longer and hence carry more passengers.  

To investigate the sensitivity of the results to the parameters 𝜅𝐷 and 𝜅Ω, Figure 

39 displays graphs of the results from experiments where these have been set 

to the maximum and minimum values used. Similar to Figure 37, each graph 

displays markers describing the distribution of ‘minimum network score found 

so-far’ values at different algorithm iterations. The values of 𝜅𝐷 and 𝜅Ω are 

shown above each plot. For all plots of Figure 39, the value of the distribution 

features marked and the spread of the distribution, reduces at grater values of 

𝜂. This is consistent with the results of Figure 37 and indicates that the BO 

implementation is able to find ‘good’ solutions regardless of the parameters 

defining the optimisation task. Observing Figure 39 shows that in general, for a 

given feature of the distribution and value of 𝜂, the network score value is 

greater for experiments with greater 𝜅𝐷 and 𝜅Ω values. This is expected 

because increasing dwell time will decrease passenger disutility and penalising 

dirty trains more heavily will also result in a greater, i.e. worse, network score. 

The results also show that for low values of 𝜂, the distribution features become 

increasingly more sensitive to 𝜅𝐷 and 𝜅Ω in order from the distribution 

minimum to the maximum. For example, comparing values between the results 

for 𝜂 =1 for 𝜅𝐷 = 2 and 𝜅Ω = 1.5 with 𝜅𝐷 = 32 and 𝜅Ω = 2.5, the increase in the 

network score relating to the minimum marker, is 20% and the increase in the 

network score relating to the maximum marker is 200%. This indicates that 

‘good’ solutions are less sensitive to 𝜅𝐷 and 𝜅Ω as would be expected since 

their negative effects have been minimised. This means that optimising 

resource allocation can significantly reduce the effect of faulty rolling stock and 

less-recently-cleaned trains upon network performance.  
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Figure 39 – Markers to features of the distribution of ‘minimum score found so-
far’ values at different numbers of algorithm iterations (𝜂). The distribution is 
displayed four different experimental parameter sets. Each plot shows the 
value of the parameters determining the door opening and closing time of 
faulty trains, 𝜅𝐷, and the Value of Time weighting for passengers on a dirty 
train, 𝜅𝛺.  

For the results shown in Figure 39, Figure 40 plots the number of times, in the 

distribution of ‘minimum network score found so-far’ values at 𝜂 = 25, each 

attribute was allocated to a certain train. The plots use the same axes as 

described for Figure 38 and the value of 𝜅𝐷 and 𝜅Ω are shown above each plot. 

Observing Figure 40 it can be seen that for all values of 𝜅𝐷 and 𝜅Ω there is trend 

towards allocating Attribute 1 and 2 to Trains 1 and 2 and Attributes 3, 4 and 5 

to Trains 5 and 6. Comparing the plots with 𝜅𝐷 = 2 with 𝜅𝐷 = 32, it can be seen 

that the former results occasionally have Attribute 5 allocated to Train 1, 2 or 4 

but the latter do not. This suggests that as 𝜅𝐷 is increased, causing longer dwell 

time for faulty doors, the train allocation of faulty doors, i.e. Attribute 5, 

becomes more critical. This is what intuitively would be expected and indicates 

that the task is capturing the real-world challenge well.   
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Figure 40 – Four plots indicating the attributes allocated to each train under 
four combinations of 𝜅𝐷 and 𝜅𝛺. Each plot shows the number of times that 
each attribute was allocated to different trains, from a distribution of 40 
solutions.  

This case study has shown how the SUPREME framework can be applied to 

tasks where resources of different types must be allocated with a short time 

window, for example on the morning of operation due to unforeseen 

circumstances. The results of Figure 37 have shown that the SUPREME 

framework can find ‘good’ solutions regardless of the candidates it is initialised 

with, meaning that it can be applied quickly without specialist knowledge of the 

challenge and ‘good’ candidates. During these experiments eight optimisations 

were computed in parallel on one machine, for which the median time 

required was one hour of wall clock time, with standard deviation of one 

minute. To better investigate the performance distribution of the SUPREME 

framework, in these experiments 40 optimisations have been computed, 

however, in practice the best of eight would likely still find a ‘good’ solution. 

Machines with performance characteristics equivalent to the one used for 

these experiments are available to rail network managers, meaning that the 
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required computational power and time window might be operationally 

feasible for the SUPREME framework to be used in practice. If less time is 

available, the results of Figure 37 indicate that even if the budget of objective 

function evaluations is reduced to 6, relating to 14 minutes of computation 

time, the solution found by the SUPREME framework is better than the median 

of 40 random selections. The results of Figure 38 and Figure 40, could be used 

by a rail network manager to identify general strategies for improving network 

performance or maintaining it in unexpected circumstance. For example, 

increasing the capacity of Train 1 and 2 is of higher priority than increasing the 

capacity of other trains in the network. Although these experiments have used 

parameters whose value is estimated, i.e. 𝜅𝐷 and 𝜅Ω, the results of Figure 39 

and Figure 40 indicate that they do not affect the primary findings, therefore 

the solutions identified are likely to be robust to the real-world value of these 

parameters.  

 Case study three – optimising a value engineering strategy 

for the High Speed Two network 

In the UK, the High Speed Two (HS2) network is under construction to link the 

cities of London, Birmingham, Leeds and Manchester with high-speed, i.e. 

>250km/hour (Civity Management Consultants, 2014), rail travel on mostly 

dedicated, purpose built lines. There is concern that the project might be more 

expensive than predicted (Calder, 2018) and, although the budget has been 

increased (Smale, 2019), HS2 managers might need to consider options to 

reduce the initial cost of the network by reducing investment into certain 

components, i.e. a value engineering strategy. Considering that there are 

multiple components for which savings could be made, choosing the optimum 

value engineering strategy could be a challenge for managers. This case study 

demonstrates how the SUPREME framework might assist with this challenge by 

applying it to an optimisation task which maximises passenger satisfaction 

whilst considering a ‘minimum total saving’ constraint. 
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The optimisation task models the HS2 network using a ‘Y’ topography, shown in 

Figure 41 where four stations are represented by circles, and the Birmingham 

station is connected to all the outer stations by two single direction lines, i.e. an 

‘up’ and a ‘down’ line. Components where savings are considered are the 

trains, lines and stations. Currently, it is planned that the network will use 

newly designed and built rolling stock that can travel at 360km/hour (HS2 

Limited, 2019). This is 40 km/hour faster than the next fastest rolling stock 

operated in the UK, the BR Class 374 (Siemens Mobility, 2016). Using already 

designed rolling stock with lower maximum speeds, such as the Class 374, 

might reduce the initial cost of HS2 but the effects of longer train journey times 

might also affect passenger experience. The task considered here chooses 

between four types of rolling stock that might be used on the HS2 network and, 

by optimising this choice, this task captures the trade-off between train 

maximum speed and savings. The speed-dependent maximum tractive effort 

available associated with each rolling stock type is also included. Together with 

train maximum speed, permissible line speeds can also affect train journey 

times and hence passenger experience. Civity Management Consultants (2014) 

describe that although the construction costs of lines is highly sensitive to the 

terrain, e.g. mountainous or urban, for a given terrain the permissible line 

speed also affects the construction costs. In this task, the choice of permissible 

line speed is also optimised with the trade-off against savings. As well as 

journey times, the comfort of both trains and stations also affects passenger 

experience, with network managers investing in refurbishing both (Rail 

Technology Magazine, 2014, Network Rail, c2019) and Preston et al. (2008) 

Figure 41 – The topography of the model HS2 network. Stations are represented 
by circles and the Birmingham station is connected to all other stations by two 
single direction lines, i.e. an ‘up’ and a ‘down’ line. 

London 

Birmingham 

Leeds 

Manchester 
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showing that station investment increases demand for travel from passengers. 

For overall passenger experience, increasing the comfort of stations and trains 

might offset any increase in journey times, or vice-versa, at a reduced cost. To 

capture this, the VoT weighting for passengers in the ‘On Train’ or ‘In Station’ 

stage is optimised whilst considering the expense of creating trains and 

stations with that VoT value. By modelling the network defined by the 

parameters associated with each value engineering strategy, the resultant 

network performance is assessed. The ‘total savings’ associated with each 

value engineering strategy is also calculated with a total savings function, 

which is then constrained to capture the ‘minimum total savings’ requirement.  

 Formal definition 

The optimisation task described in the previous section considers nine saving 

areas, which are shown in Table 13 and enumerated by the index, 𝑖. All rolling 

stock in the model are identical therefore savings 1 and 2 apply to all trains. The 

permissible line speeds of lines connecting each city pair in Figure 41 are 

optimised together, though each pair is optimised in isolation, and the 

permissible line speed applies for the whole length of the line, consequently 

there are three saving areas associated with permissible line speed. The 

passenger comfort of each station is considered individually.  

Saving, 𝑖 Description 
1 Rolling stock maximum speed and tractive effort available 
2 Rolling stock comfort 
3 London – Birmingham, Birmingham – London permissible line 

speed 
4 Birmingham – Manchester, Manchester – Birmingham 

permissible line speed  
5 Birmingham – Leeds, Leeds – Birmingham permissible line speed 
6 London station comfort 
7 Birmingham station comfort 
8 Manchester station comfort 
9 Leeds station comfort 

Table 13 – The nine areas for savings. 

For all of the saving areas, the possible ‘design options’ are considered as a 

discrete set, where each option is enumerated. The vector 𝒙 captures the 

design options of each value engineering strategy with form shown by: 
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𝒙 = [𝑥1, 𝑥2…𝑥9] 
(6.10) 

where the discrete variable, 𝑥𝑖 , denotes the design option of the 𝑖 th saving 

area listed in Table 13. The formal definition of the task is written as:  

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈𝑋

𝐹2(𝒙; 𝜆, 𝜃) 

(6.11) 

0 ≤ 𝑥𝑖 ≤ 3   𝑓𝑜𝑟    𝑖 = 1 
 (6.12) 

0 ≤ 𝑥𝑖 ≤ 4   𝑓𝑜𝑟    𝑖 = 2 
   (6.13) 

0 ≤ 𝑥𝑖 ≤ 13      𝑓𝑜𝑟    3 ≤ 𝑖 ≤ 5 
   (6.14) 

−5 ≤ 𝑥𝑖 ≤ 5     𝑓𝑜𝑟    6 ≤ 𝑖 ≤ 9 
   (6.15) 

𝐺(𝒙) ≥ 𝜅𝑆  
     (6.16) 

where 𝐺(𝒙) denotes the total saving function and 𝜅𝑆 the minimum total saving 

required. The constraints (6.12) to (6.15) capture the number of design options 

available in each saving area, with increasing values of 𝑥𝑖 representing 

increasing savings. The constraint (6.16) captures the minimum total saving 

requirement with the total savings function given by: 

𝐺(𝒙) = 𝐺𝑇(𝑥1) + 𝐺𝐶(𝑥2) +∑𝐺𝐿(𝑥𝑖)

𝑖=5

𝑖=3

+∑𝐺𝑉(𝑥𝑗)

𝑖=9

𝑖=6

 

(6.17) 

where 𝐺(𝒙) denotes the total savings, 𝐺𝑇(𝑥), the saving function relating to 

rolling stock type, 𝐺𝐶(𝑥), the saving function relating to train comfort, 𝐺𝐿(𝑥), 

the saving function relating to permissible line speed, 𝐺𝑉(𝑥), the savings 

function relating to station comfort and 𝑖 is an index. There are 1.5 x 109 

candidates in the search space.  

 Parameters capturing the fixed network components 

The line distance from Birmingham to Leeds is 198km (HS2 Limited, 2016b), 

London to Birmingham is 225km (Railway Technology, c2019b) and the total for 

the network is 531km (Railway Technology, c2019b), therefore Birmingham to 

Manchester is 108km. The number of platforms at each station in the model 

are provided by HS2 Limited (2016b, c2019), as 11 for London, 5 for Leeds and 4 
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for Manchester. One station with eleven platforms is modelled to represent 

Birmingham Curzon Street and Birmingham Parkway with seven (HS2 Limited, 

c2019b) and four (ARUP, n.d) platforms respectively. A timetable was not 

available to the author, but interstation run times and trains-per-hour 

predictions were provided by the Department for Transport (2016, 2017b,p.43) 

and HS2 Limited (HS2 Limited, c2019b). All services were modelled to stop at 

Birmingham. The interstation run times were combined with a two minute 

dwell time (HS2 Limited, 2019), to create a timetable with equal intervals 

between trains and constant service pattern between 6am and 11pm. 21 

identical trains are modelled to fulfil this timetable.  

 Parameters capturing the variable network components  

The four types of rolling stock that train agents can represent are shown in 

Table 14, together with the corresponding value of 𝑥1, the values used for each 

characteristic and the source of data where applicable. The tare mass for the 

HS2 Design Specification is unknown, however, the value for the Class 374 is 

used because they are a similar configuration high-speed train (Siemens 

Mobility, 2016, HS2 Limited, 2019). For the BR Class 395 and BR Class 373, 

speed dependent 𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 data was extracted from the BRaVE simulator, 

described by Umiliacchi (2016). No 𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 data was available for the Class 

374 or the HS2 Design Specification, so these were based on the values for a 

Class 373. For a Class 374, the Class 373 values were used with the value of 

𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 remaining constant above the maximum speed of the Class 373, i.e. 

300km/hour. For the HS2 Design Specification, in order to meet the minimum 

performance requirements specified by HS2 Limited (2019), the values of 

𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 for the Class 373 were increased by 10%. The value of 𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 also 

remained constant above 300km/hour. Appendix III describes how the Davis 

formula coefficients were determined for the Class 395 and 373 by fitting to 

speed dependent rolling resistance data extracted from the BraVE simulator. 

Similarly, no resistance data was available for the Class 374 or HS2 Design 

Specification so the values for a Class 373 were used. The BraVE simulator 

provides the value of the rotary allowance (𝓇) as 7.8 for the Class 395 and 373, 
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this is also applied for the Class 374 and the HS2 Design Specification. The 

braking performance used in Chapter 4 was applied for all trains. To represent 

the case study hypothesis that, rolling stock already in manufacture might be 

long-formed or adapted to meet HS2 requirements, all rolling stock were 

modelled to have 700 pax seating capacity and 250 pax standing capacity, i.e. 

the high-density capacity requirement set by HS2 Limited (2019). For trains 

with smaller passenger capacity, e.g. the Class 395 has a seating capacity of 340 

pax (Mochida et al., 2010), the extra mass of these additional passengers would 

cause up to a 16% change in the effective mass of the train. The sensitivity study 

in Chapter 4 has shown that uncertainties of this magnitude in mass are 

acceptable. This is also true for uncertainty introduced by estimates of 𝓇 

values used for the HS2 Design Specification and the Class 374, as well as the 

estimate of 𝑀𝑇  for the HS2 Design Specification.  

𝑥1 =  0 1 2 3 
Train type HS2 Design 

Specification 
BR Class 374 BR Class 373 BR Class 395 

Maximum 
speed, 𝑣𝑚𝑎𝑥 , 
(km/hour) 

360 (HS2 
Limited, 2019) 

320 (Siemens 
Mobility, 
2016) 

300 (Railway 
Museum, n.d) 

225 (Mochida 
et al., 2010) 

Tare mass, 
𝑀𝑇  (tonnes) 

970 970 (Clinnick, 
2018) 

665 (BraVE 
simulator) 

300 (BraVE 
simulator) 

𝐹𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 110% x Class 373 Class 373 Class 373 
(BraVE 
simulator) 

Class 395 
(BraVE 
simulator) 

Davis formula 
coefficients 

Class 373 Class 373 Class 373 
(BraVE 
simulator) 

Class 395 
(BraVE 
simulator) 

Rotary 
allowance, 𝓇 

7.8 7.8 7.8 (BraVE 
simulator) 

7.8 (BraVE 
simulator) 

Passenger 
capacity 

950 950 950 950 

Table 14 - The maximum speed associated with each value of the optimisation 
variable, 𝑥1. The data source is shown for each train.  

To reflect the planned maximum permissible line speed (HS2 Limited, 2016b) 

as well as the maximum speed of the fastest train and slowest train considered, 

in the model the permissible line speed can be set in the range of 360km/hour 

to 230km/hour with discrete steps of 10km/hour. Table 15 shows the 

permissible line speed associated with the value of 𝑥3, 𝑥4 or 𝑥5. 
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𝑥3, 𝑥4, 𝑥5 0 1 2 … 12 13 
Permissible 
line speed, 
(km/hour) 

360 350 340 … 240 230 

Table 15 - The permissible line speed associated with the value of the 
optimisation variables 𝑥3, 𝑥4 and 𝑥5. 

To capture changes to the comfort of trains and stations, the VoT weighting 

(Ω) is modified for passengers that are in the ‘On Train’ or ‘In Station’ stage. 

Data presented by Wardman and Whelan (1998) shows up to 7% variation in 

the VoT for passengers travelling on different rolling stock, relating to a Class 

442 and Mk2 carriage. Making the assumption that this variation could be 

increased if greater emphasis was put on designing rolling stock to be more 

comfortable, in this investigation Ω is varied by ±5% with 1% increments and 0% 

relating to 𝑥 = 0. 

 Parameters capturing the passenger load 

A total passenger load of 300,000 passengers a day is provided by HS2 Limited 

(HS2 Limited, c2019a). However, this value has been scaled to 117,000 to reflect 

that only 21 of the 54 trains planned for HS2 are being modelled. One reason 

for this discrepancy in train numbers is HS2 Limited are purchasing rolling 

stock for services that travel outside of the model network, e.g. via Sheffield, 

and these are not included in the creation of the model timetable. Predicted 

passenger flows for the HS2 network, and current flows between the cities it 

serves, were not available to the author. Consequently, the relative passenger 

flows were determined by scaling the train flows in the model timetable and 

are shown in Table 16. The origin station of passengers relates to the row of the 

table, the destination relates to the column. It can be seen that between each 

station pair, the flows in either direction are equal. As described in Section 

6.1.3, for each flow, a passenger arrival time to their origin station is set to 

capture hourly variation in demand for travel and that passengers plan their 

origin station arrival time considering the departure time of trains.  
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 London Birmingham Manchester Leeds 
London 0 14584 11667 11667 

Birmingham 14584 0 8750 8750 

Manchester 11667 8750 0 2917 

Leeds 11667 8750 2917 0 

Table 16 – The modelled daily passenger flows on the HS2 network between 
cities. The row represents the origin stations, the column represents the 
destination station, the values represent number of passengers. The total 
passenger load is 117,000.  

 The savings functions 

The values of 𝐺𝑇(𝑥) over the domain of 𝑥1 are shown in Table 17 and capture 

the saving for the full fleet. These values are speculative because rolling stock 

prices represent a commercial package dependent on finance and long-term 

service agreements, however, the values used do allow demonstration of the 

SUPREME framework. Appendix III describes how these have been determined 

by considering the cost of each train type in 2019 prices, and then scaling it to 

reflect the number of carriages needed to form a 950 capacity train. The saving 

is then calculated by comparing the scaled cost of the train against the budget 

for the planned HS2 Design Specification.  

𝑥1 0 1 2 3 
Train 
maximum 
speed and 
tractive force 
equivalent to: 

HS2 Design 
Specification 
(HS2 Limited, 
2019) 

BR Class 374 BR Class 373 BR Class 395 

𝐺(𝑥1) (£ 
millions) 

0 320 630 1580 

Table 17 – The value of 𝐺𝑇(𝑥1) over the domain of 𝑥1 and the train type it relates 
to.  

The savings functions for train comfort, permissible line speed and station 

comfort are respectively given by: 

𝐺𝐶(𝑥2) = 𝔪𝐶𝑥2 
(6.18) 

𝐺𝐿(𝑥3,4,5) = 𝔪𝐿𝑥3,4,5 
(6.19) 

𝐺𝑉(𝑥6,7,8,9) = 𝔪𝑉𝑥6,7,8,9 
(6.20) 
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where 𝔪𝐶 , 𝔪𝐿 and 𝔪𝑉 are parameters obtained by fitting to observed data,  and 

have values shown in Table 18. These parameters describe the relationship 

between the savings associated with a component performance or comfort, 

and the value of the integer variable, 𝑥𝑖 , enumerating this component type. In 

the case of 𝔪𝐿, the value is shown per kilometre and must be multiplied by the 

length of the line being considered. To determine the value of 𝔪𝐿, no data 

relating to different permissible line speeds and construction costs, of the HS2 

network, is available to the author. However, data provided by Bodman (2012) 

is scaled to 2019 prices then used to compare the construction costs and 

permissible line speeds of the High Speed One network, which is also a high-

speed network operating out of London, with those planned for the first phase 

of HS2. To determine the value of 𝔪𝐶 , no data was available to the author 

directly relating HS2 train cost and comfort. However, data reported by 

Railway Technology (c2019a) indicates that the Class 373 have been 

refurbished at £12 million per train in 2019 prices9. This cost is assumed to 

relate to changing the comfort from ‘poor’ to ‘average’ and be reflected by 𝑥2 = 

5 and 𝑥2 = 0 respectively. Consequently, when scaled to 54 trains, a value of 

£108 million is determined for 𝔪𝐶 . Owing to a lack of data available to the 

author which directly related HS2 station cost and comfort, a similar approach 

is taken for determining the value of 𝔪𝑉. Using data provided by the Rail 

Delivery Group (2017), the mean cost of refurbishment for six stations is £139 

million in 2019 prices9. Again assuming this relates to changing the comfort 

from ‘poor’ to ‘average’, i.e. from 𝑥6,7,8,9 = 5 to 𝑥6,7,8,9 = 0, gives a value of 𝔪𝑉 = 

£28 million. Although there is uncertainty for the value of 𝔪𝐶 , 𝔪𝐿 and 𝔪𝑉, their 

accuracy is sufficient for the purpose of demonstrating how the SUPREME 

framework can be used to support an optimisation challenge of this type. HS2 

Limited (2016a) have conducted cost-benefit analyses under different spending 

options, so it is likely that data to reduce the uncertainty and possibly improve 

the accuracy of these values exists even if it is not in the public domain. If this 

data were to be made available the optimisation task could easily be repeated 

                                                   

9 Converted to 2019 prices using an inflation calculator provided by Alioth Finance (c2019). 
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with updated parameters. Applying the parameters listed in Table 17 and Table 

18 to (6.17), and setting 𝑥1to 𝑥9 to their maximum values listed in (6.12) to (6.15), 

the maximum possible saving is calculated to be £6 billion. This maximum total 

saving relates to a network with the slowest train and line speeds, and lowest 

train and station comforts, included in this investigation. It relates to the 

boundary of the search space and is defined by the upper bounds on the 

optimisation variables, 𝑥𝑖 .  

Parameter 𝔪𝐶 𝔪𝐿 𝔪𝑉 

Value (£ millions) 108 0.58 per km 28 

Table 18 - Saving function parameter values. 

 Experimental method 

Using the same method as described by Section 6.1.4, solutions to the task 

defined by (6.10) to (6.16) were found using a value of 100 for 𝜂𝑚𝑎𝑥 . The 

optimisation was repeated independently 24 times with different, uniformly 

distributed, initial feasible candidates. The parameter 𝜅𝑆 was set to 5000 to 

represent a minimum total savings requirement of £5 billion. This value relates 

to a constraint on the feasible region of the search space, rather than the £6 

billion value which relates to the upper bounds of the optimisation variables. 

The value of 𝜅𝑆 was chosen to demonstrate SUPREME making a substantial 

saving, whilst allowing the feasible region of the search space to be large 

enough to present a meaningful optimisation task. 

 Results 

Figure 42 plots markers to display features of the distribution, from 24 repeats 

of the optimisation, of the ‘minimum network score found so-far’ values at 

every algorithm iteration, counted by 𝜂. It can be seen that the network scores 

for this network are an order of magnitude less than the scores for the 

network investigated in Sections 6.1 and 6.2. This is expected because of the 

higher speeds encountered in this network and the distance normalisation 

applied when calculating the network score, described by Chapter 3, as well as 
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the greater frequency of trains. So that the effect of the value engineering 

strategies can be compared against a ‘baseline’ case, Figure 42 also shows the 

network score when no savings are applied. From 𝜂 = 50 all the optimisations 

found a solution better than when no savings are applied because they choose 

to improve the comfort of the trains. It can be seen that, in general, features of 

the distribution reduce in value at greater values of 𝜂 and the range of the 

distribution becomes less. The network score of the best and worst-case 

optimisation at 𝜂 = 100, is respectively 8% and 4% less, i.e. better, than the 

network score when no savings are applied.  

 

Figure 42 – Markers to show the value of features of the distribution, from 24 
optimisations, of ‘minimum network scores found so-far’ values at different 
numbers of objective function evaluations (𝜂). 

For the ‘minimum network scores found so-far’ distribution from 24 repeat 

optimisations, Figure 43 plots the number of times that the vector (𝒙) 

contained an optimisation variable (𝑥𝑖) at a certain value. There is a plot for 

every optimisation variable, with the value of the index (𝑖) shown above each 

plot. The value of 𝑥𝑖 is shown on the x-axis, the number of times it occurred in 
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the distribution is shown by the y-axis. The results are plotted for the 

distribution at = 1 and 𝜂 = 100 and bars for these are plotted next to each other 

to allow comparison. Observing the plot for rolling stock maximum speed and 

tractive effort, it can be seen that most initial candidates have 𝑥1= 3, this is 

because the proportion of candidates that are feasible increases with the value 

of 𝑥1 and the initial candidates are selected with uniform probability from the 

pool of feasible candidates. However, at 𝜂 = 100 all the optimisations select 𝑥1 = 

2, as well as indicating the optimum maximum speed of the train, this suggests 

the BO implementation is successfully exploring all regions of the search space.  
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Figure 43 – The frequency that each optimisation variable took different values. 
The values the optimisation variable took, 𝑥𝑖 , are shown on the x-axis. The 
number of times there was a vector (𝒙) with the variable at the value shown by 
the x-axis, is shown by the y-axis. For every value of 𝑥𝑖 , the values shown at the 
first algorithm iteration (𝜂 = 1) and last algorithm iteration (𝜂 = 100) are 
plotted next to each other for comparison.  
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For the rolling stock comfort plot in Figure 43, the variation in frequency of the 

initial values of 𝑥2 is within the bounds of what would be expected from a small 

sample size of a uniform probability distribution. This is because the saving 

associated with 𝑥2 is small compared to the other optimisation variables so 

there is a weak relationship between its value and the feasibility of the 

candidate. However the values at 𝜂 = 100 show that all the solutions cluster 

towards increased train comfort despite the reduction in savings, with most 

solutions relating to increasing train comfort by close to the maximum amount. 

The 𝑖 = 3 plot shows that most optimisations found a solution to have 

permissible line speeds of 300 to 280 km/hour between London and 

Birmingham, whereas the plots for 𝑖 = 4 and 𝑖 = 5 show that most optimisation 

had speeds less than this for the Birmingham-Manchester and Birmingham-

Leeds lines. This is because the London-Birmingham line has the greatest 

number of passengers travel upon it, meaning that shortened journey times 

here have a large positive effect. However, because this task models a constant 

line capacity that is feasible at the highest permissible line speed, this task does 

not capture the trade-off between permissible line speed and line capacity for 

trains. As intuitively expected, the solution permissible line speed has been 

approximately ‘matched’ to the solution train maximum speed. The plots for 𝑖 = 

6, 7, 8 and 9 show that all the optimisation found solutions which decreased the 

comfort of stations in order to make savings. 

The results indicate that by redistributing investment in HS2 to prioritise the 

comfort of the trains rather than speed and station comfort, a £5 billion saving 

can be made and the network score can be improved by up to 8%. Whilst an 

improved network score at lower investment might be counterintuitive, it is 

plausible - the ‘base case’, i.e. 𝑋 = [0,0,0,0,0,0,0,0,0], network might relate to a 

network defined by a larger amount of investment which is poorly allocated. 

Similarly, the magnitude of this improvement (8%) might be counterintuitive 

given that the maximum improvement in passenger VoT is 5%. A hypothesis for 

this difference is - the solutions have slower trains, this leads to better 

connections between trains, i.e. less waiting time for passengers, at 

Birmingham and hence better network score. There is evidence to confirm this 
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hypothesis. Figure 43 shows that the ‘optimum network’ is using slower trains. 

The total amount of passenger time spent in the ‘On Platform’ stage can be 

used to compare the quality of the connections at Birmingham. For the 

‘optimum network’ this time is 12% less than it is for the ‘base case’ network, 

which indicates better connections in the optimum network. This is consistent 

with the real world – slower trains mean less headway is required and 

therefore increased frequency of train arrivals. A consequence of the 

dependence of connection frequency to 𝑋 is that the improvement in network 

score from the ‘base case’ to the ‘optimum’ network is a combination of more 

factors than just train comfort – and hence the magnitude of the improvement 

is greater than the change to the VoT weighting for the ‘On Train’ journey stage.  

The optimum train maximum speed and acceleration was found to be that 

represented here by a Class 373 with permissible line speeds to facilitate its 

maximum speed. If permissible line speeds are to be reduced further for 

greater savings, maintaining the permissible line speed of the London-

Birmingham lines is most critical. However, the investigation does not capture 

the benefit of investing in greater permissible line speed capability now so that 

faster rolling stock might be used in the future. The comfort of stations is 

found to be a low priority and reducing investment in these can be considered. 

The results are likely sensitive to the relationship between savings and 

component performance. Consequently, another area for further investigation 

is to conduct a sensitivity analysis on the parameter values used to represent 

these. Nonetheless, the case study has shown how the SUPREME framework 

can be used to support network design and has indicated a value engineering 

strategy for the HS2 network. Investigating the effect of varying the minimum 

savings requirement (𝜅𝑆) is an area for further investigation.  

 Summary  

The case studies in this Chapter have demonstrated the application of the 

SUPREME framework to challenges at the three management levels discussed 

in Chapter 2: strategic (case study three), tactical (case study one), and 
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operational (case study two). This confirms the suitability of the SUPREME 

framework with respect to the adaptability aims of this thesis. 

The case studies have also shown that an area for future development of the 

SUPREME framework is to capture the time between the passengers ‘ideal’ 

departure time and the time of the soonest train after that, i.e. the ‘Spare Time’ 

stage. In this chapter PRaM has been developed to capture this, however, the 

VoT weighting value for the ‘Spare Time’ journey stage has been estimated 

because no data could be found for this. Improving the accuracy of this value 

would be beneficial. 

The case studies have shown that the PRaM model can capture different 

networks, again confirming the adaptability of the SUPREME framework. In 

general, the results show that the BO implementation can find solutions to the 

task which typically reduce, i.e. improve, the network score by more than 10% 

with a budget of objective function evaluations that is representative to the 

planning window of the challenge. It has also been seen that ‘good’ solutions 

can be found by arbitrarily choosing the initial candidate. This indicates that the 

SUPREME framework could be used by non-expert practitioners without the 

insight to provide ‘good’ initial candidates. This chapter also demonstrates how 

the results of each optimisation can be interpreted to support decision making 

in rail network management. 
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Chapter 7 

Conclusions 

In this thesis the Sheffield University Passenger Rail Experience Maximiser 

(SUPREME) framework has been developed to assist rail network managers 

optimise their network for maximum passenger satisfaction. This is achieved 

by minimising a parameter capturing passenger disutility which is dependent 

on parameters describing the network. To quantify the effect of a network 

upon passenger satisfaction, a network assessment metric was developed in 

Chapter 3 which considers the distribution of normalised individual journey 

scores captured with a journey metric. Chapter 2 describes evidence in the 

literature that a journey metric which includes different journey stages and 

conditions, will better capture passenger satisfaction than end-to-end journey 

time only. Chapter 3 demonstrates how the multi-stage nature and conditions 

of a journey can be captured using the Value of Time (VoT) concept to weight 

the time spent in different passenger states. The developed metric therefore 

captures passenger disutility which, if minimised, is taken to be the equivalent 

of maximising passenger satisfaction; an assumption that is supported by 

evidence discussed in Chapter 2. The developed network metric based on 

journey scores is shown to predict observed changes in passenger satisfaction 

for the London Underground Limited (LUL) Victoria Line. This validation 

indicates that the metric can be used to determine a parameter summarising 

network performance from the passenger perspective, which can then be 

optimised.  

The investigation also focusses on comparison of the journey score metrics 

from the UK and Japan. In what is, to the best of the author’s knowledge, the 

first comparison of the journey score metrics used in the developed network 

metric, Chapter 3 has shown that the VoT for periods in similar states varies 

between journey metric. Because the journey metrics originate from different 

countries, this indicates that VoT weightings might vary and reflect the differing 

priorities of passengers in different regions, as would be intuitively expected. 

Therefore it is concluded that, for the best representation of passenger 
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experience when using the developed metric, network managers should 

determine VoT values relevant to the passengers of their network, either at the 

country level or even more locally. This can be achieved with the methods 

described by ARUP (2015). Nonetheless, the network metric does predict 

relative changes to the satisfaction of passengers when either journey metric is 

used, so could likely be used ‘as is’ if determining network-specific VoT values 

is not possible. To the best of the author’s knowledge, Chapter 3 describes the 

first whole-network assessment metric to capture the multi-stage nature of 

passenger journeys and crowding, that has been quantitatively validated 

against observed data.  

To model candidate networks the Passenger Rail Model (PRaM) simulation of 

passenger rail networks has been developed in Chapter 4 using Agent-Based 

Modelling (ABM) techniques. It is shown that train control actions are 

predicted to within 23 seconds and, when train control is known, the journey 

time required by a train for a 100km journey is predicted to within two 

seconds. This demonstrates that using simple models of the tractive force and 

resistance acting on a train, as well as driving behaviour and signalling, a model 

can be developed with accuracy acceptable for investigating challenges within 

rail network optimisation such as timetable design and rolling stock allocation. 

Similarly, it is shown that passenger agents can be used to model the stages of 

a journey required to calculate the network assessment metric developed in 

Chapter 3. As well as demonstrating the suitability of PRaM against the aims of 

this thesis to capture whole-network effects and individual passenger journeys, 

this indicates that ABM techniques are well-suited to capturing individual 

passenger journeys in the detail required for an assessment of network 

performance from the passenger perspective. Consequently, ABM techniques 

might be further applied for tools modelling rail networks. Within the PRaM 

simulation, a model of the train dwell times is also included, demonstrating that 

PRaM can be extended to include sub-models of different rail network effects. 

This extendibility and adaptability is a strength of the ABM approach because it 

has the potential to better capture the interconnected nature of rail networks 

and the effect upon passenger journeys. This could be achieved with 
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commercial train movement simulations, e.g RailSys and OpenTrak, and models 

of other factors which affect passenger journeys, e.g. pedestrian movement 

within stations and the platform-train interface. The previously mentioned 

industrial project (University of Sheffield, 2017) involving the author has 

investigated this  and shown it to be a promising area for development.  

Following their validation, the network model and assessment metric, 

respectively developed in Chapter 4 and Chapter 3, were used within the 

SUPREME framework as an objective function to quantify the performance of 

different candidate networks within the optimisation procedure. However, 

representing trains and passengers individually increases the computational 

cost of the objective function. For example, Chapter 6 has shown that 

computing this objective function requires approximately eight minutes of 

computation time to capture a day’s operation of the prospective HS2 network, 

i.e. is ‘expensive-to-compute’. If applied with many of the common optimisation 

algorithm methods used within rail network optimisation, e.g. the Genetic 

Algorithm (GA) method, a task involving an expensive-to-compute objective 

function might be intractable. Therefore an optimisation tool using the 

developed objective function with the GA method might have been restricted 

to challenges involving small networks and long planning windows. However, 

Chapter 5 has shown that using the Bayesian Optimisation (BO) method within 

the SUPREME framework means that ‘good’ solutions can be found with a 

mean reduction of 43 times fewer objective function evaluations than if the GA 

method is used, and consequently is selected for use within SUPREME. To the 

best of the author’s knowledge, this is the first time that BO has been applied 

for optimising the performance of a rail network. For the expensive-to-

compute objective functions encountered in this thesis, the use of BO 

substantially reduces the computational cost of the optimisation procedure. 

Consequently, this indicates that using the BO method allows the SUPREME 

framework to be applied to challenges involving larger networks than if the GA 

method was used with the same computational budget. Furthermore, it also 

means that the SUPREME framework can assist with challenges where there is 

a limited time available for computation, e.g. re-timetabling after perturbation. 
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The investigation in Chapter 5 identifies some drawbacks to the BO 

implementation used and possible directions for its improvement. Developing 

optimisation algorithm methods is outside the scope of this work, which 

concentrates on their application within the wider framework, however if 

improved optimisation algorithms were developed they could readily be 

integrated within the SUPREME framework owing to its modular structure. The 

benefits of BO identified in this thesis might be transferable to other rail 

network optimisation tools, allowing either the use of objective functions which 

better capture the real-world challenge, or reducing the computational cost of 

the tool.  

Chapter 6 has shown the application of the SUPREME framework in case 

studies with varying networks, time windows for the optimisation and 

resources to be allocated. This indicates that the SUPREME framework is 

adaptable enough to be used for different challenges within rail networks, thus 

increasing its usefulness to network managers and confirming its suitability 

with respect to the aims of this thesis. Furthermore, Chapter 2 explains that it 

is likely that a solution to a task which captures multiple challenges at once will 

perform better in the real-world than if solutions to individual challenges are 

combined. Therefore a methodology adaptable enough to capture multiple 

challenges is likely to yield better solutions. Chapter 6 has also shown that 

although, in general, better solutions are found when more objective function 

evaluations are used, in some cases ‘good’ solutions can still be found with 

approximately ten objective function evaluations. This is unlikely to be possible 

with population based methods, e.g. GA, because the typical population sizes 

used mean that ten objective function evaluations is equivalent to a Random 

Search algorithm. This indicates the use of the BO method within the SUPREME 

framework has meant that it can be applied to tasks with a limited time 

window, e.g. on the morning of operation. The case studies also demonstrated 

how the output of SUPREME can be analysed to better understand the 

solutions and consequently demonstrates an advantage of choosing to 

distance-normalise the passenger journey scores in Chapter 3. Furthermore, 

for the case studies investigated, the SUPREME framework is shown to 
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improve the network score by the order of 10%, hence improving the 

experience of passengers. Section 6.1.5 describes that if passenger experience 

is improved, passengers may be willing to spend more on their ticket, as would 

be intuitively expected. Using the VoT provided by ARUP (2015) and focussing 

on commuter passengers because they are the national majority (Peluffo, 

2018), a 10% improvement in the network score would result in an additional 

£1.12 of ticket revenue per passenger travel hour. Although no data was 

available to the author describing the number of GB rail passenger travel hours, 

an estimate for this value can be calculated by considering that there were 

approximately 1.8 billion passenger journeys in 2017 (Peluffo, 2018) and 

estimating that the mean journey time was half an hour based on the 38km 

average journey distance in 2018 (Office of Rail and Road, 2019). Consequently, 

a 10% improvement in GB network score could enable an extra billion pounds 

of ticket revenue to be collected annually. This would represent approximately 

a 10% increase on the current ten billion pound annual ticket revenue reported 

by the Office of Rail and Road (2019). Clearly, before it can be scaled to a GB 

sized network, the SUPREME framework requires further development and 

this is described in the following sub-sections.  

 The network assessment metric 

There are two strands of further work relating to the network assessment 

metric, which will be considered in order: to further investigate the accuracy of 

the developed metric, and to further capture a greater range of passenger 

experiences.  

Although Chapter 3 has shown some experimental evidence that the developed 

network metric better predicts changes to passenger satisfaction than a 

metric based on journey time only, there is not enough data to determine a 

statistically significant difference beyond the 95% confidence level. In order to 

determine a statistically significant difference with greater confidence level, 

further work would be needed to conduct an investigation where more than 

ten measurements of network performance can be collected and 

corresponding predictions computed (in the case of the experiment in 
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Chapter 3 each measurement equates to a year over which there is available 

passenger satisfaction data relating to the timetable operated that year, but 

any timescale over which a system change and its effect can be measured may 

be considered in future experiments). This might be achieved by re-

investigating the Victoria Line in the future as additional years of customer 

satisfaction data become available.  

The data available for the investigation in Chapter 3 meant that individual 

passenger routes were not captured in the validation experiment. 

Consequently, further work might also to investigate networks where a more 

detailed description of the passenger route is available so that the effect of 

train transfer on passenger experience can be captured. The network 

assessment metric could then be validated for journeys which include this 

activity and potentially also allow a statistically significant difference with end-

to-end journey time to be discerned. Furthermore, if data describing 

passenger satisfaction for more networks is available, additional comparisons 

between prediction and measurement would make it possible to determine if 

the results in Chapter 3 are network-specific or general. 

Updating the network assessment metric with new VoT weightings to capture 

other factors which influence passenger experience is also an area for further 

work. For example, the findings of Transport Focus (2016) indicate that the 

cleanliness of trains has an effect on passenger satisfaction. To capture 

cleanliness conditions, The VoT weighting for passengers in the ‘On Train’ stage 

could be modified with a ‘cleanliness penalty’. The case studies of Chapter 6 

have shown that SUPREME might be improved if more journey stages are 

included. For example, the ‘Spare Time’ stage is introduced but the VoT 

weighting is estimated. Furthermore, Transport Focus identify that the 

punctuality of trains is an important factor of passenger satisfaction. To 

capture this, additional journey stages could be introduced representing when 

a passenger is waiting for, or on-board, a delayed train. All these additions to 

the metric would require models and parameters relating to the VoT 

weightings and would necessitate the revalidation of the metric. The VoT 

weightings for different passenger travel purposes are already available, e.g. 
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commuter and business (ARUP, 2015). These could be implemented within the 

current SUPREME framework, however data describing the number of 

passengers for each journey type was not available so this was not 

demonstrated. 

Consistent with the aims of this thesis, the developed network assessment 

metric considers passenger experience only. However, for network managers 

there are often competing interests that need to be balanced. To address this, 

some authors consider multiple-objectives simultaneously, e.g. Goodwin et al. 

(2016) optimise the trade-off between energy use and journey times. 

Therefore, a metric to capture passenger experience could be combined with a 

metric which captures other considerations for network managers, e.g. energy 

use.  

 The network model 

There are three strands of further work relating to PRaM, which will be 

considered in order: to better understand its performance and limitations as it 

currently is, to develop its modelling capability further, and to reduce its 

computational cost. The Train Control Model (TCM) validation experiment in 

Chapter 4 has shown that, when data describing a real-world situation is 

available, the TCM can predict the time of control points to within 23 seconds. 

However, this comparison is for one train journey only, where not all the data 

describing situations which may have affected the control of the real-world 

train is available (e.g. temporary permissible line speed reductions and the 

location of other trains). The validation could be improved by using the live 

data published by Network Rail (c2017), which was unknown to the author at 

the time of investigation, describing the signalling communicated to trains as 

well as their position and velocity. Train performance data for the input 

parameters of the Train Dynamics Model (TDM) would be needed for all trains 

investigated, as well as the line gradients of the journeys. This would allow the 

comparison of predictions and measurements for many more train journeys, 

and would better capture the variation of human driving as a result. 
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Similarly, quantifying the sensitivity of the TDM to different parameters has 

been considered for one journey only, yet it may vary for different line 

gradients and train types. By considering the distribution of results when 

investigating the sensitivity of the TDM for more journeys and train types, a 

value can be obtained with greater confidence of representing a ‘general train 

and journey’. To achieve this, train performance and line gradient data would 

be required from the sources already described. Furthermore, the sensitivity 

of the TDM has only been considered for individual errors in the input 

parameters, however, combined interactions are likely to be significant (e.g. if 

the train mass is overestimated and the maximum tractive force 

underestimated). This investigation could be undertaken with no additional 

input data, but has been a low priority task compared to developing the other 

modules of the SUPREME framework. 

Developing the movement model for train agents so that junctions can be 

represented would improve the modelling capability of PRaM. The BRaVE 

simulator and others developed by authors such as Dessouky and Leachman 

(1995) and Lee-Gunther et al. (1995), can represent networks with junctions 

and could be used to inform the development of this functionality in PRaM. 

Power distribution within the network is another topic of interest to rail 

managers where models have previously been developed, e.g. by Mott 

MacDonald (2006). The inclusion of more models within PRaM allows more 

factors relating to rail network operation to be considered simultaneously, 

however it also increases the computational cost. 

Modelling the physical location and movement of passengers within stations 

and trains is another area that could improve PRaM. Currently, for example, 

PRaM models the amount of time passengers require to move through a 

station as being constant, however passenger numbers within the station or 

the station’s layout may affect this. This variation in time might be the 

difference between passengers making a connection or not. Similarly, 

Farnsworth et al. (2017) discuss how a heterogeneous distribution of 

passengers along the platform and train affects dwell times and passenger 

comfort. Train capacity is also affected because passengers on the platform at 
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densely packed areas of the train erroneously believe it to be full. ABM 

simulations of crowd movements through buildings (Karmakharm et al., 2010) 

and the platform-train interface (Fletcher et al., 2018) have already been 

developed. The author has been involved in a project to integrate the model of 

train agents developed in this project with a pedestrian simulation (University 

of Sheffield, 2017), extending this and interfacing these models with PRaM 

would allow it to better capture the interactions between the network and 

passengers and the effect on individual passenger journeys. A challenge to this 

is the increase in computational cost. A further development that could be 

made to PRaM is to capture the variations in individual passenger preferences 

and behaviours. For example, passenger agents could be given individual 

walking speeds, or tolerances of crowding which determine whether they 

board a crowded train agent or wait for the next. Programmatically, these are 

simple adjustments to make to PRaM, however, identifying or developing 

models which capture the distribution of these preferences and behaviours 

may be more difficult. Models of passenger route choice (Ke et al., 2012) and 

information systems (Kattan and Bai, 2018) would better allow PRaM to 

capture changes to the flow of passengers when the network is altered.  

The case studies of Chapter 6 have shown that PRaM could better capture 

some challenges if models of the interactions between different network 

components were included. For example, in the HS2 network investigation the 

trade-off between permissible line speed and the capacity for trains is not 

captured. All candidate networks are modelled to have the capacity for trains 

associated with the minimum permissible line speed investigated. The inclusion 

of a line planning and timetabling model, e.g. those reviewed by Scheepmaker 

et al. (2017), would allow this to be captured. Similarly, the network capacity at 

stations and junctions model could be captured using the relationship with 

delay described by Armstrong and Preston (2017), for example. The addition of 

these sub-models to PRaM would increase the computational cost of the 

objective function so only relevant models would be calculated at every 

objective function evaluation. Those that are not sensitive to the optimisation 
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variables would be calculated once at the start of the optimisation and their 

output applied for all evaluations. 

Considering that simulating a small network once with PRaM requires 

approximately 20 seconds and that, within SUPREME, variations of the network 

will be simulated multiple times, there is a clear benefit to reducing the 

computational cost of a single simulation. Using existing computational 

resources more effectively is preferential to requiring a more powerful 

machine (compared to the Intel Xeon Dual Processor @ 2.4 GHz used for the 

experiments in this thesis - a ‘server’ machine with performance likely available 

to the large institutions involved in network management). Some savings may 

be made by using more efficient serial coding techniques. Parallel 

programming techniques have been shown to allow substantial speed up 

(Eager et al., 1989) and might be well suited to computing the updates for 

passenger agents because of the large number of agents involved. However, for 

the benefits of parallelism to be realised, many agents must be undergoing a 

similar process. This requires arranging passenger agents undergoing similar 

processes to be arranged into ‘blocks’ for computing. For example, all 

passengers in the same carriage might be arranged into one block. The 

arrangement process has a computational overhead in itself and may need to 

be repeated each time the occupancy of the carriage changes. Investigation is 

needed to see whether the savings from computing the number of passengers 

in a block in parallel outweigh the overhead. Because passenger numbers and 

the frequency of changes to the occupancy of a carriage vary, depending on the 

network (e.g. inter-city network compared to metro), the benefits of 

parallelism may be network dependent.  

 The optimisation algorithm 

The experiments in this thesis are conducted on tasks with up to 16 

optimisation variables. If SUPREME is to be scaled to larger networks, it is likely 

that the tasks would involve more optimisation variables. Investigating the 

effectiveness of the BO implementation for tasks with more than 16 

optimisation variables is an area for further work. This could be achieved using 
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hypothetical tasks, similar to those used in Chapter 5. Other BO 

implementations, specifically those for higher-dimension tasks, could also be 

compared as well as the effect of using a different probabilistic model, i.e. not a 

Gaussian Process regression model, within the BO method. Chapter 5 also 

describes evidence that it might be most effective to use a combination of BO 

and GA methods. Developing and investigating an implementation to do this is 

an area for further work that could possibly have wide-spread application in 

other fields.  

The case studies in Chapter 6 indicate that, for a given computational budget, 

there is a trade-off between the strategies of computing a single optimisation 

with a large number of objective function evaluations, or computing multiple 

optimisations each with less objective function evaluations. Investigating this 

trade-off, and whether it itself can be optimised, is an area for further 

investigation. This could be achieved by comparing the best solution found 

when using different strategies for a given total computational budget. The 

investigation would need to be repeated for different tasks to see whether the 

results are task-specific or general. If a general relationship for the best 

strategy can be determined this might further reduce the total cost of 

optimising with the BO method and have application in many scenarios where 

BO is applied. 
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Appendix I 

This thesis has resulted in the following three academic papers: 

Paper A 

‘A rail network performance metric to capture passenger 

experience’, published in the Journal of Transport Planning and 

Management (Hickish et al., 2019). 

Paper B 

‘Maximising passenger satisfaction through optimised train 

movements’, presented at the 2017 Stephenson Conference 

(Hickish et al., 2017). 

Paper C 

‘Investigating Bayesian Optimization for rail network 

optimization’, accepted for publication in the International 

Journal of Rail Transportation. 

For paper A, the author of this thesis created the testable hypothesis, designed 

the experiments, created the experimental code, conducted the experiments 

and drafted the manuscript. The author of this thesis revised later versions of 

the paper manuscript with support from the co-authors of the paper, David 

Fletcher and Robert Harrison. 

For paper B, the author of this thesis designed the experiments, created the 

experimental code, conducted the experiments and drafted the manuscript. 

The author of this thesis revised later versions of the paper manuscript with 

support from the co-authors of the paper, David Fletcher and Robert Harrison. 

For paper C, with the co-authors of the paper, David Fletcher and Robert 

Harrison, the author of this thesis was involved in the creation of the testable 

hypothesis. The author of this thesis created the experimental design, created 

the experimental code, conducted the experiments and drafted the 

manuscript. The author of this thesis revised later versions of the paper 

manuscript with support from the co-authors of the paper, David Fletcher and 

Robert Harrison. 
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Appendix II 

Demonstration of expected power fit in Section 4.5.1 

In the idealised case where acceleration is constant, the standard kinematic 

equation applies. 

0 =  
1

2
𝕒𝕥2 + 𝕦𝕥 − 𝕤 

(8.1) 

Where 𝕒 denotes the acceleration, 𝕥, time, 𝕦, initial velocity and 𝕤 displacement. 

Substituting Newton’s second law into (8.1), then comparing to the general 

form of a quadratic equation and the quadratic formula, shown by (8.2) and 

(8.3) respectively, gives (8.4) which describes the time required for an object 

to travel distance 𝕤 from stationary when a constant force 𝔽 is applied. 

𝕓𝑥2 + 𝕔𝑥 + 𝕕 = 0 
(8.2) 

𝕩 =
−𝕔 ± √𝕔2 − 4𝕓𝕕

2𝕓
 

(8.3) 

 

𝕥 = √
2𝕤𝕞

𝔽
 

(8.4) 

where 𝕞 is mass and 𝕓, 𝕔 and 𝕕 are coefficients. If two forces are related by 

(8.5) where 𝜍 denotes a scaling factor, then plotting the change in time from 𝕥1 

to 𝕥2 on the y-axis (as a decimal percentage) gives (8.6): 

𝔽2 =  𝜍𝔽1 
(8.5) 

 

𝕪 =
𝕥2
𝕥1
− 1 

(8.6) 

which by substituting (8.4) and (8.5) into (8.6), gives: 

𝕪 = √𝜍(𝔽1 − √𝔽1) 
(8.7) 
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If 𝜍 is plotted on the x-axis, there is the equation of the form 𝑦 = 𝑒𝑥ℎ where 𝑒 =

 (𝐹1 −√𝐹1) and ℎ =  1/2. 

Parameter values for different trains referred to in Section 

4.5.3 

TDM parameters relating to the exact train are not always available, however 

parameters for a similar train can be used. Table 19 shows the TDM parameters 

for two pairs of similar trains, i.e. High Speed Trains and Commuter Trains. The 

InterCity 125 data provided by Nicholson (personal communication, 2016)10, can 

be compared against data for a Class 390 Pendolino, provided by Zhao (2013). 

Data provided by a Railway Signalling and Train Control Systems Engineer at 

Siemens (Gill, 2016)10 in a personal communication can be compared for two 

formations of a Desiro commuter train. In both cases of comparison between 

similar trains, it can be seen that all parameters are within a factor of two of 

each other.  

 High Speed Trains Commuter Trains 
Parameter InterCity 

125 
BR Class 
390 
Pendolino 

Desiro 12 
unit 
formation 

Desiro 8 
unit 
formation 

Effective mass, 𝑀𝐸 , 
(tonnes) 

489  510  492 334 

Boundary speed, 𝑣0 
(km/hour) 

55  88  5 10 

Maximum tractive force, 
𝐹𝑚𝑎𝑥 , (kN) 

170  203  631 421 

Davis formula 𝐴 (kN) 3.22  5.42 5.41 3.67 
Davis formula 𝐵 (kNs/m) 0.113  0.069 0.0083 0.0056 
Davis formula 𝐶 (kNs2/m2) 0.0078  0.0142 1.40 x 10-4  1.05 x 10-4 
Table 19 – Input parameters for the TDM for four different trains 

Discussion of signalling systems referred to in Section 4.2 

In simulation experiments comparing the ability of networks to recover from 

delay under different signalling systems, Koning (2002) found a ‘small’ 

difference between a fixed block and moving block system for a range of sub-

                                                   

10 For more information, see the list of personal communications in the reference list. 
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networks of the Dutch railway. Using the results published by Koning to 

compare the percentage of trains that recover from delay under the two 

signalling systems, it can be estimated that the mean difference is 4% with a 

standard deviation of 3%. Because Koning’s experiment ignores the influence of 

traffic controllers who allocate resources (e.g. junctions) when there is 

competition between trains, the main method captured for networks to 

recover from delay is to reduce the interstation run time of trains. Therefore, 

the result of Koning indicates that the interstation run time is similar between 

moving block and fixed block signalling systems. Whilst researchers such as 

Grimm and Sandblad (2000) have shown that a moving block system increases 

the train carrying capacity of the network, this does not necessarily change the 

interstation run times. In simulation experiments of a 35.9 km section of the 

West Coast Mainline, the results of Zhao (2013) indicate that a moving block 

signalling system would reduce journey times by up to 6% compared with a 4-

aspect fixed block system. For the accuracy required by PRaM at this stage in 

the development of SUPREME, this magnitude in error of predicted journey 

times is considered acceptable, therefore PRaM can be used to model real-

world networks with fixed block and moving block signalling except in cases 

where maximising the train carrying capacity of the network is the objective.  
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Appendix III 

Determining Davis formula coefficients used in Chapter 6 

To obtain Davis formula coefficient values for the Class 153, 395 and 373 trains, 

speed dependent rolling resistance data relating to each train type was 

extracted from the BraVE simulator, which is described by Umiliacchi (2016), 

and fitted to the Davis formula described in Chapter 4. The data and fit is 

plotted in Figure 44 for the Class 153 and Figure 45 for the Class 395 and 373. 

No measure of uncertainty in the speed or resistance data was available, so 

error bars are not plotted. Observing Figure 44, it can be seen that the data 

point for the lowest speed does not fit well to a quadratic relationship. This is 

because it relates to the static starting resistance of the train and for simplicity 

it data point has been removed from the fit and the first-order term in the 

Davis formula (ℬ) has been forced to be greater than or equal to 0. Observing 

Figure 45 shows that the Davis formula fits well to all the data points for both 

the Class 395 and 373 data. However, it can be seen that there is no data for 

either train operating above 75% of their maximum speed. This may be because 

of the difficulty in finding suitable locations or methods to collect this data. 

Nonetheless, it is assumed that the relationship seen at lower speeds can be 

extrapolated to higher speeds. Although errors may be introduced to the Davis 

formula parameters by the lack of data over the whole speed range, Chapter 4 

has shown that the accuracy of the PRaM model is relatively insensitive to 

changes in the Davis formula coefficients compared to inaccuracies introduced 

by not representing all traffic on the line, for example. Consequently, the Davis 

formula coefficients derived by converting the fit parameters to SI units are 

considered acceptable for use in this thesis and are shown in Table 20. 
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Figure 44 – Resistance data for a Class 153 train, with fits. The data has been 
extracted from the BraVE simulator described by Umiliacchi (2016). The data 
point for the lowest speed has been excluded from the fit and the first order fit 
parameter has been forced to be greater than or equal to 0.  

 
Figure 45 – Resistance data for a Class 395 and Class 373 train, with fits. The 
data has been extracted from the BraVE simulator described by Umiliacchi 
(2016).  

 𝒜 (kN) ℬ (Nsm−1) 𝒞 (Ns2m−2) 
Class 153 1.09 1.56 × 10−10 4.76 

Class 395 3.95 1.47 × 102 33.62 
Class 373 4.20 1.38 × 102 11.8 

Table 20 - The Davis formula coefficient values derived from the fits shown in 
Figure 44 and Figure 45. 
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High Speed Two savings functions used in Section 6.3 

The case study in Section 6.3 investigates the savings-benefit trade-off of using 

rolling stock with performance parameters equal to trains already in 

production. Consequently, to ensure comparison is like-for like, the cost of in-

production trains must be scaled to capture the number of additional rolling 

stock units necessary to meet the capacity requirement specified by HS2 

Limited. To do so the cost of all the trains in the network, ℂA, is calculated with 

the formula:  

ℂ𝐴 = ℕℂ𝑆 
(9.1) 

where ℕ denotes the number of trains and ℂS the scaled cost of a single train. 

In the case study the value of ℕ is provided by HS2 Limited (2017) as 54 . The 

value of ℂS is given by the formula: 

ℂ𝑆 = ℂ𝑃 (
𝕡𝑅𝕟

𝕡
+ 𝕃𝕄) 

(9.2) 

where ℂ𝑃 denotes the cost for a single passenger carriage, 𝕡R, the required 

passenger capacity of a single train, 𝕟, the number carriages in the train, 𝕃, the 

number of power cars in the train and 𝕄 a scaling factor between the cost of a 

single passenger carriage and a single power car. In the case study, 𝕡R has a 

value of 950 pax (HS2 Limited, 2019) and 𝕃 and 𝕄 both have a value of 2. The 

value of ℂP is given by the formula: 

ℂ𝑃 =
ℂ𝑇

𝕟 − 𝕃(1 +𝕄)
 

(9.3) 

where ℂ𝑇  denotes the cost for one real-world train set. For each train Table 21 

displays the values used to calculate ℂ𝑇 , the values of 𝕟 and 𝕡, data sources and 

the value of ℂA. For the case study in Section 6.3, the savings associated with 

each train type are calculated by subtracting the value of ℂA relating to a 

certain train type from the value of ℂA relating to the HS2 Design Specification 

trains.  
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 Cost in 201911 
(million £) 

Number of 
sets 

Passenger 
carriages 
per set, 𝕟 

Passenger 
capacity 
per set, 𝕡 

Cost for 
54 scaled 
trains, ℂA, 
(billion £) 

Class 395 370 (Railway 
Gazette 
International, 
2005) 

28 (Railway 
Gazette 
International, 
2005) 

4 (Mochida 
et al., 2010) 

340 
(Mochida 
et al., 2010) 

1.29 

Class 373 
(regional 
set) 

198 
(Baldwinson, 
2015) 

7 
(Baldwinson, 
2015) 

14 (n.a, 
2002) 

560 (n.a, 
2014) 

2.24 

Class 374 333 (Rail 
Technology 
Magazine, 
2014) 

7 (Rail 
Technology 
Magazine, 
2014) 

14 (Rail 
Technology 
Magazine, 
2014) 

900 (Rail 
Technology 
Magazine, 
2014) 

2.55 

HS2 Design 
Specification 

2870 
(Railway 
Gazette 
International, 
2018) 

54 (HS2 
Limited, 
2017) 

n/a 950 (HS2 
Limited, 
2019) 

2.87 

Table 21 – Parameter values used with formulas (9.1), (9.2) and (9.3) to 
calculate the cost associated with using different train types for the service 
modelled in Section 6.3. The right-hand column shows the cost for 54 trains.  

 

 

 

 

 

                                                   

11 Converted to 2019 prices using an inflation calculator provided by Alioth Finance (c2019). 


