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Abstract

Power system state estimation is essential and crucial for power system operation.
The operator uses the estimated states for decision making and anomaly detection.
To facilitate the upgrade from classical power system to smart grid, a large amount of
advanced sensing and communication infrastructure is built to improve the efficiency
of the communication and control within power systems. But these sensing and
communication infrastructures also expose the smart grid to cyber threats. One of
the cyber threats that smart grid faces is the data injection attacks, in which the
attacker compromises the measurements that are used for state estimation to mislead
the operator.

In this thesis, we use information-theoretic measures to quantify the disruption
caused by the attacks and the probability of detection induced by the attacks.
Specifically to minimize the amount of information acquired by the operator from the
measurements about the state variables describing the states of the grid, the attacker
minimizes the mutual information between the state variables and the compromised
measurements. Also to bypass the likelihood ratio test set by the operator, the
attacker minimizes the Kullback-Leibler (KL) divergence between the distribution of
measurements with attack and without attack to minimize the probability of detection.
The stealth attacks achieve these two contradictive objectives by minimizing the sum
of them, and closed-form expression for the optimal Gaussian attack is proposed.

To decrease the probability of detection induced by the stealth attacks, the equal
sum in the objective of stealth attacks is generalized to a weighted sum by introducing
a weighting parameter to the KL divergence term that represents probability of
detection. Closed-form expression is proposed for the optimal generalized stealth
attacks when the weighting parameter is larger or equal to one, i.e. when the attacker
prioritizes the probability of detection over the disruption. Additionally a closed-form
expression of the resulting probability of detection is obtained, but the expression
does not give explicit insight into the relation between the probability of detection
and the weighting parameter. As a result, a concentration inequality upper bound
is proposed for the probability of detection to inform the design guidelines for the
corresponding weighting parameter.
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To construct the (generalized) stealth attacks, the attacker requires the second
order statistics, i.e. the covariance matrix, of the state variables. When the attacker
only gets access to a limited number of samples of the state variables, the attacker
estimates the covariance matrix of the state variables by the sample covariance matrix
of the state variables. Random matrix theory tools are employed to characterize the
ergodic performance of the attacks using the sample covariance matrix for both the
asymptotic scenario and the non-asymptotic scenario. Given the fact that there is no
closed-form expression for the distribution of eigenvalues of random matrices under
the non-asymptotic scenario, a closed-form expression is not available for the ergodic
performance. Instead, an upper bound is proposed for the ergodic performance,
for which a simple convex optimization needs to be solved to compute it. For the
asymptotic case, a closed-form expression is provided for the ergodic performance of
the attacks using the sample covariance matrix.

Keywords: Stealth, data injection attacks, information-theoretic measures, imper-
fect knowledge, learning
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Chapter 1

Introduction

1.1 Background and Motivation

Electricity is key in all aspects of industrial and daily activity, and therefore, electrifi-
cation becomes a crucial indicator of the level of modernization and development of a
society [1]. However the current power system architecture was proposed more than
one hundred years ago, and its functioning and technology have not been significantly
updated since its inception. In its classical setting power plants generate power,
then the generated power is delivered by the transmission system in the form of
high voltage, and the distribution system distributes the power to the users. Due
to the limited power storage capability of the grid, the electricity generated by the
generators has to be consumed by the users immediately. Otherwise the unbalance
between generation and consumption can lead to significant performance degradation
and eventually the collapse of the power system. So the operator of the power
system schedules the generation and dispatches the power carefully according to the
consumption of the loads and the structure of the power system. For that reason,
larger grids give the operator more flexibility to regulate the power systems, which
in turn makes the operation of the power systems more efficient and manageable.
For example power systems with large capacity have high reliability and good peak
regulation ability [1]. However power systems with large capacity also exhibit some
risks. One of the problems is that accidents spread easily, and as a result, the large
power systems are prone to collapse [1]. For example in 2003 a transmission line
failure and the following cascading outages led to the largest power failure in North
American history [2]. The continuous increase of electricity consumption (3.2 %
increment in 2016 [3]) moves electricity grids towards larger-scale implementation
to include more generators and users, which makes the management and control of
such large systems increasingly challenging for the operator.
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Physical Layer (Power Flow) Cyber Layer (Information Flow )

Remote Terminal Unit

Operator

�����States 
Measurements

Control 
Commands

SCADA

Fig. 1.1. Interconnection between the power system in the physical layer and the
control units in the cyber layer.

To guarantee the reliable and efficient operation of power systems, the operator
needs to know the state of the system and to make decisions based on the observed
states. The state monitoring procedure relies on the sensors or remote terminal units
(RTUs) distributed across the power network. These sensors provide measurements
that contain information about the state of the power system, which are utilized by
the operator to verify the state of the power system and to schedule the generation to
meet the consumption. The measurements produced by the sensors are transmitted
to the Supervisory Control and Data Acquisition (SCADA) system through a public
or dedicated communication system. Then the operator in the control center uses
the measurements in the SCADA system to determine the state of the power system
and to make decisions based on the available state information, such as determining
the optimal power flow (OPF) and detecting abnormalities. As the measurements
are usually noisy linear or nonlinear observations of the state, the operator performs
state estimation to retrieve information about the state, i.e. to obtain an estimation
of the state based on the measurements. With the estimated state, the operator
manages the power system and detects abnormalities within the system.

The interconnection between the power system in the physical layer and the
sensing and decision-making in the cyber layer is depicted in Fig. 1.1. The cyber
layer monitors the states of the physical layer through the RTUs, which forms the
information flow; the physical layer implements the decisions made by the operator
in the cyber layer to operate the power system, which forms the power flow. The
cooperation and coherence of the physical layer and the cyber layer guarantee the
efficient and reliable operation of the power system.

Power system has been moving toward the smart grid in recent years, a solution in
which various technologies are implemented to make the power system more efficient,
more intelligent, and more resilient. The definition of the smart grid is given below.
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Definition 1.1 ([4]). The Smart Grid is an electric system that uses information,
two-way, cyber-secure communication technologies, and computational intelligence
in an integrated fashion across electricity generation, transmission, substations,
distribution, and consumption to achieve a system that is clean, safe, secure, reliable,
resilient, efficient, and sustainable. The Smart Grid has the following characteristics.

• Self-healing: repair or removal of potentially faulty equipment from service
before it fails and reconfigure the system automatically;

• Flexible: interconnect the distributed generations and energy storage units in
the system rapidly and safely;

• Predictive: use different kinds of tools, such as machine learning, to predict
the most likely events in the power system;

• Interactive: provide information to both the operator and the customers to
allow them to play an active role;

• Optimized: know the state of major components in the system and optimize
the system based on the state;

• Secure: guarantee the security of all critical assets in the system, both physical
security and cyber security.

This definition highlights that advanced communication technology and renewable
generation sources are two key enabling components to make the grid “smart”. Instead
of the one-way information flow in which only the operator acquires information,
the advanced communication infrastructure allows two-way communication between
the operator and the users, which makes the power generation, transmission, and
consumption more efficient [5]. As a complement to central power plants, the
distributed generators that use renewable resources, such as wind turbines, enable
green and cost-effective power generation. Also distributed generation makes power
systems more resilient to incidents, as the users are still supplied by distributed
generation option in the event of the main power plant failing. In the U.S.A., the
capacity of distributed generators is one-sixth of the capacity of the nation’s existing
centralized power plants [6]. These technologies make power generation greener and
more efficient, but they also make the management of power systems more challenging.
For example, the power generated by wind turbines is highly affected by the wind
speed, which is hard to predict accurately and to control efficiently. To monitor the
state of distributed generations, the operator deploys more advanced communication
infrastructure and places more sensors in the power system to monitor the state of
the power system for reliable and efficient operation.
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As the number of distributed generators and sensors increases, the interconnection
between the physical layer and the cyber layer needs to be more efficient and speedier.
Advanced communication infrastructure makes the efficient and rapid interconnection
possible, but they also expose the smart grid to the cyber threats, such as computer
viruses and data injection attacks, c.f. [7] and [8]. The frailty of the cyber layer in
the smart grid affects the security of the physical power system directly. In 2015
attackers hacked the power supply system of Ukraine using the BlackEnergy virus,
and shut down 30 generation substations, which made about 225,000 residents lose
power [9]. Although some protection approaches were set up against the cyber
threats after the failure, a similar attack happened again in 2017 [10].

Data injection attacks (DIAs) are one of the main cyber security threats that
the smart grid faces. Unlike the BlackEnergy virus whose consequences are easy
to be observed by the operator, DIAs aim to disrupt the power system in a covert
fashion. Specifically, DIAs disrupt the state estimation procedure implemented
by the operator in the control center by compromising the sensors in the system.
Therefore the attacker can inject an additional term into the true measurements,
and mislead the operator with fake measurements. It is shown in [7] and [8] that
when the attacks are designed in a “smart” way, the anomaly detection procedure
set by the operator is unable to distinguish the attacks. Detailed information about
DIAs is covered in Section 2.2.

The cyber security threats to which the smart grid is exposed are not well-
understood yet, and therefore, practical security solutions need to come forth as
a multidisciplinary effort combining technologies such as cryptography, machine
learning, and information-theoretic security [11]. Information-theoretic tools are well-
suited to analyze power systems by leveraging the stochastic description of the state
variables. Information-theoretic measures also provide fundamental limits for the
information acquisition between the cyber layer and the physical layer. For example,
a sensor placement strategy that accounts for the amount of information acquired
by the sensing infrastructure is studied in [12], in which the operator maximizes
the mutual information between the state variables and the gathered measurements.
Also information-theoretic privacy guarantees for smart meter users of power systems
are proposed in [13–15] for memoryless stochastic processes and in [16] for general
random processes.

In this thesis, we investigate DIAs using information-theoretic measures to
quantify the disruption caused by the attacks and the resulting probability of
detection. The mutual information between the state variables and the measurements
obtained by the sensors determines the amount of information that the operator
obtains about the state variables from the measurements. As a result, the attacker
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minimizes the mutual information between the state variables and the compromised
measurements to minimize the amount of information acquired by the operator
from the measurements. Meanwhile, the attacker minimizes the Kullback-Leibler
(KL) divergence between the distribution of measurements with attacks and without
attacks to minimize the probability of detection. Stealth attacks achieve these two
contradictive objectives by minimizing the sum of them, which is generalized by
adopting a weighted sum of the objective later. Then the performance of the stealth
attacks when the attacker has imperfect knowledge about the system is analyzed
using tools from random matrix theory (RMT).

1.2 Overview of Thesis

The remaining part of the thesis is divided into five chapters.

• Chapter 2 Literature Review

Chapter 2 introduces the commonly adopted state estimation problem frame-
work for general settings and the specific observation model arising in power
systems. Based on the observation model, we introduce the classical power
system state estimation and anomaly detection approaches. Afterward, state
estimation and anomaly detection formulation are extended to the Bayesian
framework, in which the state variables are modeled by some given distribution.
In the end, we provide the fundamental formulation of the DIAs and the attack
construction for different estimation and detection frameworks, including the
least squares (LS) framework, Bayesian framework, and data-driven framework.

• Chapter 3 Information-Theoretic Stealth Attacks

In Chapter 3, we propose an information-theoretic framework for DIAs under
Bayesian estimation framework with linearized dynamics. Specifically the
mutual information between the state variables and the compromised measure-
ments is treated as the disruption objective of the attack, and the resulting
probability of detection is characterized by the KL divergence between the dis-
tribution of measurements with attack and without attack. The stealth attacks
combine the mutual information objective and the KL divergence objective by
summing these two objectives. A closed-form expression of the stealth attacks
construction is provided.

• Chapter 4 Generalized Information-Theoretic Stealth Attacks

In Chapter 4, the stealth attacks construction in chapter 3 is generalized by
adopting a weighted sum of the mutual information objective and the KL
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divergence objective, in which a weighting parameter is assigned to the KL
divergence objective. The optimal attack construction is characterized for the
case in which more weight is given to the detection constraint. Additionally a
closed-form expression of the resulting probability of detection is obtained, but
the expression does not give explicit insight into the relation between the prob-
ability of detection and the weighting parameter. As a result, a concentration
inequality upper bound is proposed for the probability of detection to inform
the design guidelines for the corresponding weighting parameter.

• Chapter 5 Learning Requirements for Stealth Attacks

In Chapter 5, we investigate the attack construction when an attacker does not
have perfect knowledge of the distribution of the state variables. Specifically
the attacker only gets access to a limited number of realizations of the state
variables and uses the sample covariance matrix of the samples to construct the
attacks. RMT tools are employed to characterize the ergodic performance of the
attacks using the sample covariance matrix for both the asymptotic scenario
and the non-asymptotic scenario. Given the fact that it is challenging to
characterize the sample covariance matrices under the non-asymptotic scenario,
a closed-form expression is not available for the ergodic performance. Instead
an upper bound is proposed for the ergodic performance, for computing which
a simple convex optimization problem needs to be solved. For the asymptotic
case, a closed-form expression is provided for the ergodic performance of the
attacks using a sample covariance matrix.

• Chapter 6 Conclusions and Future Work

The thesis ends with Chapter 6, which contains the conclusion and potential
future work.

1.3 Disseminated Results

The results from this research are disseminated in following papers.

Journal paper:

• K. Sun, I. Esnaola, S.M. Perlaza, and H.V. Poor, “Stealth attacks on the
smart grid,” IEEE Trans. Smart Grid (Early Access), 2019.

https://ieeexplore.ieee.org/document/8799014
https://ieeexplore.ieee.org/document/8799014
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Book chapter:

• I. Esnaola, S.M. Perlaza, and K. Sun, “Bayesian attacks,” in Advanced Data
Analytics for Power Systems, A. Tajer, S.M. Perlaza and H.V. Poor, Eds.,
Cambridge University Press, Cambridge, UK, 2020 (to appear).

Conference paper:

• K. Sun, I. Esnaola, A.M. Tulino and H.V. Poor, “Learning requirements for
stealth attacks”, in Proc. IEEE Int. Conf. on Acoust., Speech, and Signal
Process., Brighton, UK, May 2019, pp. 8102-8106. (invited paper)

• K. Sun, I. Esnaola, S.M. Perlaza, and H.V. Poor, “Information-theoretic
attacks in the smart grid,” in Proc. IEEE Int. Conf. on Smart Grid Commun.,
Dresden, Germany, Oct. 2017, pp. 455-460.

Poster Presentation:

• K. Sun, I. Esnaola, A.M. Tulino and H.V. Poor, “Learning requirements for
stealth attacks”, in Proc. 5th London Symp. on Inform. Theory , London, UK,
May 2019.

• K. Sun, I. Esnaola, “Information theoretical attack in electricity grids”, in
ACSE PGR Symp. (Departmental Ph.D. Symp.), Sheffield, UK, Oct. 2016.

Oral Presentation:

• K. Sun, I. Esnaola, A.M. Tulino and H.V. Poor, “Learning requirements for
stealth attacks”, in Proc. IEEE Int. Conf. on Acoust., Speech, and Signal
Process., Brighton, UK, May 2019, pp. 8102-8106.

• K. Sun, I. Esnaola, , A.M. Tulino and H.V. Poor, “Learning requirements for
stealth attacks”, in ACSE PGR Symp. (Departmental Ph.D. Symp.), Sheffield,
UK, Feb. 2019.

• K. Sun, I. Esnaola, S.M. Perlaza, and H.V. Poor, “Information-theoretic
attacks in the smart grid,” in Proc. IEEE Int. Conf. on Smart Grid Commun.,
Dresden, Germany, Oct. 2017, pp. 455-460.

https://ieeexplore.ieee.org/document/8682919
https://ieeexplore.ieee.org/document/8682919
https://ieeexplore.ieee.org/document/8340708
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Chapter 2

Literature Review

2.1 State Estimation in Power System

Economic and efficient operation of the power system requires the operator to get
access to the correct state of the power system. For this reason, the operator of
the power system places large numbers of sensors in the system to monitor it. The
measurements obtained by the sensors are transferred to the SCADA system through
the communication network to support decision-making at the energy control center.
Using the measurement data, the operator averts major system failures and regional
blockout. Before making security assessments or taking control actions, a reliable
estimate of the existing state of the system must be determined [17]. The procedure
of estimating the states from the measurements is called state estimation.

The power system state estimation procedure has three main tasks [18, 19]:

• Observability Analysis: To determine if a unique estimate for any state of the
system can be obtained.

• State Estimation: To determine an optimal estimate for any state of the system
in real-time.

• Bad Data Detection: To detect measurement errors and identify bad data, and
to eliminate them if possible.

In the following, we introduce the observation model for the power system state
estimation problem first, and the bad data detection based on the estimated states
or the obtained measurements. Then we review the state estimation and detection
approaches within a Bayesian framework. We end by providing an overview of some
advanced estimation and detection approaches for the power system.
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2.1.1 Classical Power System State Estimation and Anoma-
ly Detection

Power System Observation Model

The observation model is the relation between the measurements obtained from a
system and the state variables describing the state of this system, which is given by

Y m =


Y1

Y2
...
Ym

=


H1(X1, X2, · · · , Xn)
H2(X1, X2, · · · , Xn)

...
Hm(X1, X2, · · · , Xn)

+


Z1

Z2
...
Zm

=H (Xn)m +Zm (2.1)

where Xn ∈ Rn is a vector of random variables describing the state of the system;
H (Xn)m = [H1(Xn), H2(Xn), · · · , Hm(Xn)]T ∈ Rm with H(Xn)m : Rn → Rm

denoting the nonlinear or linear relation between the measurements Y m and the
state variables Xn; and Zm ∈ Rm is the additive noise introduced by the sensors,
which is usually modeled by a Gaussian distribution [17, 20].

In power systems, the phase angle and voltage magnitude of the buses are the
state variables that are difficult to measure directly using the sensors, but they are
required by the operator to verify the state of the grid and make corresponding
decisions. So the phase angle and voltage magnitude of buses are usually chosen to
be the state variables that need to be estimated from the measurements. Within this
setting, a power system containing N buses is described by 2N − 1 state variables,
i.e., N bus voltage magnitudes and N − 1 bus phase angle, for which the phase
angle of a chosen reference bus is set to a known value, usually 0. Sometimes the
voltage magnitude of the reference node is also set to a known value, usually 1.0,
to simplify the state estimation calculation, and the voltage magnitude of the other
nodes is expressed as a percent or per unit of the reference value. For example, if a
base voltage of 120 kV is chosen, i.e. the voltage magnitude of the reference node is
120kV, the voltage of 108 kV is expressed as 0.90 per unit. Here except the direct
current (DC) state estimation that will be covered later in this section, we do not
specify the voltage magnitude of the reference node in this thesis.

Assuming bus 1 to be the reference bus, the vector of state variables has the
following form

Xn = [θ2, θ3, . . . , θN , V1, V2, . . . , VN ]T , (2.2)
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where θi ∈ [−π,+π] and Vi ∈ R+ are the phase angle and voltage magnitude of bus
i, respectively 1. In power systems, the measurements are of different types. The
commonly measured variables are line power flows and bus power injections, i.e.

Y m = [P1, . . . , Pn, Q1, . . . , Qn, . . . Pij . . . , . . . Qij . . .]T , (2.3)

where Pi ∈ R and Qi ∈ R are the net active power and reactive power injected into
bus i, respectively; and Pij ∈ R and Qij ∈ R are the active power flow and reactive
power flow from bus i to bus j, respectively. Here when Pi and Qi are of negative
values, it implies that bus i consumes active and reactive power from the main grid;
when Pi and Qi are of positive values, it implies that bus i injects active and reactive
power into the main grid. Similarly when Pij and Qij are of negative values, it
implies that bus i receives active and reactive power from bus j; when Pij and Qij

are of positive values, it implies that bus i transmits active and reactive power to
bus j.

Here we use a 4-Bus system from [17, Problem 15.10] as an example to illustrate
the nonlinear observation function H (Xn)m. The topology and parameters of the 4
bus system are provided in Fig. 2.1, in which bus 1 is chosen to be the reference
node. The real line flow P12 between bus 1 and bus 2 is given by

P12 = real
(

(V2∠θ2 − V1∠0)2

Z12

)
= −real

(
(V2∠θ2 − V1∠0)2 Y12

)
. (2.4)

where Z12 is the impedance for the branch connecting bus 1 and bus 2, and Y12 =
−1/Z12 is the negative of the admittance of the branch. Changing the polar coordinate
in (2.4) to Cartesian coordinate yields

P12 = −|V1|2G12 + |V1V2Y12|cos (δ12 + θ2 − θ1) , (2.5)

in which G12 is the real part of Y12, and δ12 is the argument of Y12, i.e.

Y12 = |Y12|∠δ12 = |Y12|cosδ12 + j|Y12|sinδ12 = G12 + jB12. (2.6)

Instead of taking the real part in (2.4), the reactive power flow follows from taking the
imaginary part of (2.4). The net active power injection of bus 1 follows immediately

1 Without confusion, we use subscript n to denote the dimension of the vector of state variables.
The exact dimension of the vector is determined by the operator. For example, the operator can
estimate the phase angle, or the voltage magnitude, or both of them, so we have n = N − 1, n = N ,
or n = 2N − 1. Here we do not specify the variables that are estimated by the operator. Similarly
we use subscript m to denote the dimension of the vector of measurements. The value of m changes
when the number of measurements used in the state estimation changes.
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60MW

40 MW

Bus 1 Bus 2

60MW

Bus 4

70 MW

Bus 3

Z12

Z13
Z3 Z24

Z34

P13

P12

V1∠0 V2∠θ2

V4∠θ4V3∠θ3

: Generator

Fig. 2.1. 4-Bus system.

by

P1 = P12 + P13 + (Pinj)1 − (Pconsump)1, (2.7)

where (Pinj)1 is the power generated by the generator at bus 1, which is 60 MW for
the 4 Bus system; and (Pconsump)1 is the power consumption at bus 1.

Under a general setting, the real power flow and the reactive power flow of the
branch connecting bus i and bus j are given by

Pij = −|Vi|2Gij + |ViVjYij|cos (δij + θj − θi) (2.8)

Qij= −
(

|Vi|2
(
B′

ij

2 −Bij

)
+ |ViVjYij|sin (δij + θj − θi)

)
, (2.9)

respectively, where Yij is the negative of the admittance of the branch connecting
bus i and bus j, which is given by

Yij = |Yij|∠δij = |Yij|cosδij + j|Yij|sinδij = Gij + jBij; (2.10)
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and B′
ij/2 is the line-charging susceptance of the branch connecting bus i and bus j.

The real power and reactive power injected into bus i are given by

Pi = |Vi|2Gii +
n∑

j=1,j ̸=i

|ViVjYij|cos (δij + θj − θi) (2.11)

Qi= −

|Vi|2Bii +
n∑

j=1,j ̸=i

|ViVjYij|sin (δij + θj − θi)
 , (2.12)

respectively, where

Yii = −
n∑

j=1,j ̸=i

Yij = |Yii|cosδii + j|Yii|sinδii = Gii + jBii. (2.13)

State Estimation with Linearized Dynamics

When the nonlinear relation between the state variables and the measurements is
considered for power system case, the state estimation is called “alternating current
(AC) state estimation”. Given the nonlinearity of the observation functions H(Xn)
in power systems, the state estimation is difficult to implement, even under some
specific assumptions about the distribution of the state variables. So the nonlinear
observation functions are often linearized at some operation point to simplify the state
estimation problem. The observation functions H (Xn)m with linearized dynamics
are given by

Y m = Hx + Zm, (2.14)

where H ∈ Rm×n is the Jacobian matrix of H (Xn)m for operation point x, which is
given by

H = ∂

∂Xn
H (Xn)m|Xn=x =



∂H1
∂X1

∂H1
∂X2

· · · ∂H1
∂Xn

∂H2
∂X1

∂H2
∂X2

· · · ∂H2
∂Xn... ... . . . ...

∂Hm

∂X1
∂Hm

∂X2
· · · ∂Hm

∂Xn

|Xn=x. (2.15)
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For the vector of measurements given in (2.3) and the vector of state variables in
(2.21), the Jacobian matrix for state estimation is given by



...
Pi

...

...
Qi

...

...
Pij

...

...
Qij

...



=



... ...
· · · ∂

∂θj
Pi · · · · · · ∂

∂Vj
Pi · · ·

... ...
· · · ∂

∂θj
Qi · · · · · · ∂

∂Vj
Qi · · ·

... ...
· · · ∂

∂θj
Pij · · · · · · ∂

∂Vj
Pij · · ·

... ...
· · · ∂

∂θj
Qij · · · · · · ∂

∂Vj
Qij · · ·

... ...





...
θi

...

...
Vi

...


+ Zm, (2.16)

where

∂

∂θj

Pi =
 −|ViVjYij|sin (δij + θj − θi) , i ̸= j∑n

l ̸=i |ViVlYil|sin (δil + θl − θi) , i = j
(2.17)

∂

∂θj

Qi =
 −|ViVjYij|cos (δij + θj − θi) , i ̸= j∑n

l ̸=i |ViVlYil|cos (δil + θl − θi) , i = j
(2.18)

∂

∂θl

Pij =
 −|ViVjYij|sin (δij + θj − θi) , l = j

|ViVjYij|sin (δij + θj − θi) , l = i
(2.19)

∂

∂θl

Qij =
 −|ViVjYij|cos (δij + θj − θi) , l = j

|ViVjYij|cos (δij + θj − θi) , l = i
. (2.20)

The linearized observation function in (2.14) is further simplified by setting the
bus magnitude of every bus to 1.0 per unit, and by ignoring the shunt elements and
the branch resistances, which leads to the DC state estimation. As a result, the
vector of state variables of the DC state estimation case is given by

Xn = [θ2, θ3, . . . , θN ]T , (2.21)

i.e. the state variables to be estimated are the phase angles of the buses. Within
the DC state estimation, only the real power injections and the real power flows are
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considered, i.e. the vector of measurements is given by

Y m = [P1, . . . , Pn, . . . Pij . . .]T . (2.22)

The real power flow from bus i to bus j in (2.8) is given by

Pij = θi − θj

Bij

, (2.23)

and the real power injection at bus i is given by

Pi =
N∑

j=1,j ̸=i

Pij (2.24)

for all buses connected to bus i with i = 1, . . . , N .

Classical Power System State Estimation

The aim of the state estimator g : Rm → Rn is to obtain an estimate of the state
variables that minimizes a cost function c : Rm → R that describes the cost of the
estimate x̂ with respect to real state x.

For the observation model with linearized dynamics given by

Y m = Hx + Zm (2.25)

and the cost function given by

c (x̂,x) = c (x̂,y(x)) = ∥y − Hx̂∥2
ℓ2 (2.26)

with x̂ denoting an estimate of state variables and ∥ · ∥ℓ2 denoting the ℓ2 norm of
the vector given in ·, the resulting estimator is given by

x̂⋆ = arg min
x̂

∥y − Hx̂∥2
ℓ2 =

(
HTH

)−1
HTy, (2.27)

which is the LS estimate. Specifically when Zm ∼ N (0,ΣZZ),

x̂⋆ = arg min
x̂

∥y − Hx̂∥2
ℓ2 =

(
HTΣ−1

ZZH
)−1

HTΣ−1
ZZy, (2.28)

which is the weighted least squares (WLS) estimate.
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Anomaly Detection Based on LS/WLS Estimation

As mentioned before, one of the objectives of the power system state estimation is bad
data detection, i.e. the operator has to decide to accept or reject the measurements.
Accepting the measurements means that the operator trusts the measurements
obtained from the grid and uses them to dispatch the power or optimize the power
flow; rejecting means that the measurements are not reliable and the system is
operating in an abnormal condition.

Given the observation model in (2.14), the anomaly detection approaches are
mainly residual-based. The residual of the LS or WLS estimation is given by

r = ∥y − Hx̂⋆∥2
ℓ2 , (2.29)

where r is the residual. Using the residual, bad data detection is cast as a hypothesis
testing problem with hypotheses

H0 : r < τ no bad data

H1 : r ≥ τ bad data presents,
(2.30)

where τ is a detection threshold set by the operator.
When the noise term is assumed to follow a zero mean multivariate Gaussian

distribution with independent entries, the normalized residual, which is given by

rn = (y − Hx̂⋆)T Σ−1
ZZ (y − Hx̂⋆) , (2.31)

is another option for anomaly detection. It is easy to show that

rn ∼ χm−n
2 , (2.32)

where χm−n
2 is the chi-square distribution with m−n degrees of freedom. That being

the case the hypothesis testing problem for the anomaly detection is given by

H0 : rn ∈ χm−n
2 (α) no bad data

H1 : rn ̸∈ χm−n
2 (α) bad data exists,

(2.33)

where α ∈ [0, 1] is the significance level, i.e. the probability of false alarm; and
χm−n

2 (α) is the critical region of the χm−n
2 distribution when the significance level is

α.
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2.1.2 State Estimation and Dad Data Detection within Bayesian
Framework

Unlike the deterministic setting for the state variables in (2.14), the state variables
are described by a vector of random variables Xn within the Bayesian framework.
Also the conditional distribution of Y m given Xn, i.e. PY m|Xn , needs to be set to fit
the observation process.

The Bayesian framework has two main advantages. Firstly the Bayesian frame-
work takes the prior information about the state variables into consideration. The
prior information about the state variables is represented by the distribution of
the state variables, i.e. PXn . Through the conditional distribution PY m|Xn , the
prior knowledge about the state variables changes the statistical structure of the
measurements. Secondly the Bayesian framework provides a probabilistic modeling
of the state variables. The deterministic setting regards the state variable as an
unknown but fixed parameter. But the state variables are considered as unknown
and random variables within the Bayesian framework, which allows the uncertainty
of the state variable and matches the real applications more.

State Estimation within Bayesian Framework

The observation model with linearized dynamics for the Bayesian framework is given
by

Y m = HXn + Zm, (2.34)

where Xn is the vector of random variables describing the states of the grid. Here
the condition distribution PY m|Xn follows directly from the observation model in
(2.34). That being the case, the vector of state variables Xn and the measurement
vector Y m are dependent with known joint distribution PXnY m .

The commonly adopted cost function for the state estimation within the Bayesian
framework is the mean squared error (MSE), which is given by

c = E
[
c
(
Xn, X̂n

)]
= E

[
∥Xn − X̂n∥2

ℓ2

]
, (2.35)

where X̂n is an estimate of Xn. The optimal estimator that achieves the minimum
mean squared error (MMSE) is given by

X̂n⋆ = arg min
X̂n

E
[
∥Xn − X̂n∥2

ℓ2

]
= E [Xn|Y m] . (2.36)
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When a realization y of measurement vector Y m is available, the optimal estimator
is given by

x̂⋆ = E [Xn|Y m = y] . (2.37)

Specifically when Xn ∼ N (0,ΣXX), the MMSE estimator is given by

x̂⋆ = My, (2.38)

where M is given by

M = ΣXXHT
(
HΣXXHT + ΣZZ

)−1
(2.39)

with ΣZZ denoting the covariance matrix of the system noise.

Detection within Bayesian Framework

The detection within the Bayesian framework is usually cast as an M -ary hypothesis
testing problem, in which the operator has to decide among M possible statistical
situations describing the observations. Here we focus on the binary hypothesis testing
problem, i.e. M = 2, described by

H0 : Y m ∼ P0, versus
H1 : Y m ∼ P1,

(2.40)

where P0 and P1 are two probability distributions. The null hypothesis Y m ∼ P0 in
H0 means that the measurements follow distribution P0, and similarly the alternative
hypothesis H1 means that the measurements follow distribution P1. In the following
without loss of generality, we assume that the null hypothesis H0 states that the
system is safe, and the alternative hypothesis H1 states that the system is under an
abnormal condition.

Two types of error exist in binary hypothesis testing: Type I error and Type II
error. Type I error, or “false alarm”, is the event that rejects a true null hypothesis,
and the probability of Type I error is usually denoted by α. Type II error, or “miss”,
is the event that accepts a false null hypothesis, and the probability of Type II error
is usually denoted by β. Table 2.1 summarizes the relation between Type I error
and Type II error in the binary hypothesis testing.

Here we adhere to the Neyman-Person hypothesis testing framework, in which the
decision rule aims to minimize the probability of Type II error with a given constraint
on the probability of Type I error, i.e. maximize the probability of anomaly detection
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Table 2.1. Relations between Type I error and Type II error in binary hypothesis
testing

Accept H0 Reject H0
H0 is true

√
Type I error (false alarm)

H1 is true Type II error (miss)
√

with a given constraint on the probability of false alarm. The following lemma shows
the optimality of likelihood ratio test (LRT) for hypothesis testing problem given in
(2.40) within the Neyman-Person framework.

Lemma 2.1. [21, Proposition II.D.1: Neyman-Pearson Lemma] Compared with the
other tests that achieve probability of Type I error α ≤ α′ in the hypothesis testing
problem (2.40), the LRT given by

L(y) = fP0(y)
fP1(y)

H0
≷
H1

τ (2.41)

achieves the minimum probability of Type II error, where τ is the value that achieves
probability of Type I error equals to α′ in (2.41); and fP0(·) and fP1(·) are the
probability density functions (p.d.f.s) of distributions P0 and P1, respectively.

The Neyman-Person lemma states that the LRT is the optimal test in the sense
that it maximizes the probability of detection for a given constraint on the probability
of false alarm. However for the non-asymptotic setting, i.e. when the number of
samples is finite, it is challenging to obtain the probability of detection under LRT.
The following lemma characterizes the asymptotic probability of Type II error, i.e.
probability of miss, for the LRT.

Lemma 2.2. [22, Theorem 11.8.3: Chernoff-Stein Lemma] For the LRT given in
(2.41), for any ϵ ∈ (0, 1/2),

lim
k→∞

1
k

log βϵ
k = −D(P0∥P1), (2.42)

where βϵ
k is the minimum probability of Type II error β when the probability of Type

I error α < ϵ and k samples are available; and D(·∥·) is the KL divergence.

In a nutshell, the Chernoff-Stein Lemma states that the logarithm of the averaged
minimum probability of Type II error β for any probability of Type I error α smaller
than one half asymptotically converges to the negative of the KL divergence between
the distributions of the two hypotheses for LRT in (2.41).
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2.1.3 Advanced State Estimation

In addition to the conventional state estimation setting introduced before, there are
some other advanced state estimation approaches for the power system case, such as
nonlinear LS and dynamic state estimation.

The state estimation approaches proposed above rely on a linearized observation
model. For the observation model with nonlinear dynamics, the cost function given
in (2.26) is given by

c (x̂,x) = c (y,y(x̂)) = ∥y −H (x̂) ∥2
ℓ2 . (2.43)

Iterative approaches, such as the Gauss-Newton method, are employed to solve the
nonlinear problem above. In these approaches, the estimate of the state variables
is updated at each iteration based on the residual in a given iteration. However
such iterative approaches are sensitive to the choice of the initial point, and the
convergence is not guaranteed [23]. For this problem, [24] and [25] reformulate the
nonlinear state estimation problem as a semidefinite programming problem, in which
the complex expression of the bus voltages is regarded as state variables, i.e. x = v
in (2.43) with v denoting the vector of bus voltages in complex expression. The
resulting estimator is given by

v̂= arg min
v̂

m∑
i=1

(yi −Hi (v̂))2 (2.44)

s.t. i = Yv, (2.45)

where i is the vector of bus currents, and Y is the admittance matrix which is
determined by power system parameters [17, pp.32]. Note that the power flows and
bus injections are quadratic function of bus voltage v, the estimator in (2.44) is
reformulated as

V̂= arg min
V̂

m∑
i=1

(
yi − tr(HiV̂)

)2
(2.46)

s.t. V̂ < 0

rank
(
V̂
)

= 1,

where

V = vevT
e , with ve =

[
real(vT) ; imaginary(vT)

]T
; (2.47)

and Hi is a matrix obtained from admittance matrix Y, which is determined by
power system parameters, c.f. [24, (11a) - (11e)]. [24] and [25] show that finding
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the estimator in (2.46) is a relaxed semidefinite programming problem, and propose
the necessary and sufficient condition for the existence of the optimal solution.
Specifically [25] solves the semidefinite programming problem in a decentralized
pattern.

The states of the power system evolve over time, so dynamic modeling of the
state evolution allows dynamic state estimation [23]. The evolution of the state
variables is modeled by

x(t+ 1) = F(t)x(t) + z, (2.48)

where x(t) is the vector of state variables at time t ∈ R+, and F(t) is the state
transition matrix. Specifically when F = I, the state evolution in (2.48) changes to a
“random walk” [26]. Another approach to include the state dynamics into account is
the state space model given by

x(t+ 1)= F(t)x(t) + B(t)u(t) + z (2.49)

y(t+ 1)= C(t)x(t) + z̃, (2.50)

where B(t) is the actuation matrix at time t, u(t) is the input to the system at time
t, C(t) is the observation matrix at time t, and z̃ is the additive white Guassian
noise (AWGN) in the measurements. The state space model allows considering the
state estimation problem in a control-theoretic framework. Given the sate space
model or state evolution model, Kalman filter techniques obtain the estimate of the
state variables [26].

There are also some other approaches for state estimation. For example, the
operator can infer the topology of the power system when information about the
status of the breakers in the power system is available, and estimate the state
variables based on the inferred topology.

2.2 Data Injection Attacks

In the following, we introduce DIAs and their different approaches to the attack
formulation. We first focus on DIAs targeting on the LS estimation with different
residual-based detection approaches. Then we show DIAs construction and detection
within the Bayesian framework. In the end, we review the data-driven approach for
DIAs construction and detection, such as machine learning approaches and statistical
learning approaches.
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2.2.1 DIAs Against LS Estimation and Residual-Based De-
tection

DIAs are a kind of cyber threats that target state estimation of power systems,
and they were first proposed by [7] and [8]. Therein, DIAs aim to disrupt the
state estimation by compromising the measurements available to the operator, i.e.
injecting some extra terms into the true measurements, which are modeled as, from
(2.14),

Y m
A = Hx + Zm + a, (2.51)

where a ∈ Rm is the attack injected by the attacker. Furthermore, [7] and [8] prove
the following lemma.

Lemma 2.3. For any attacks constructed as

a = Hc, ∀c ∈ Rn (2.52)

the attacks are undetectable under the residual detection given in (2.30).

Proof. For any attacks constructed as a = Hc, the residual given in (2.29) of LS
estimation for the observation model (2.51) is the same as the residual for the
observation model (2.14), i.e.

∥ya −Hx̂a∥ = ∥y+a−H(x̂+c)∥ = ∥y−Hx̂+a−Hc∥ = ∥y−Hx̂∥, (2.53)

where c is the extra term injected into the estimated state variables via attack a, x̂a

is the estimated state variables using compromised measurements ya, and ya is a
realization of compromised measurement Y m

A . Note that the result in (2.53) holds
for any vector norm. This implies that the residual-based detection approaches are
easily bypassed by the attacks given in (2.52), as the residual of LS estimation is
unchanged.

The structure a = Hc implies that the attacker needs to get access to the Jacobian
matrix H, which is defined in (2.15). Although the assumptions for the DIAs, i.e.
perfect knowledge of system and capability of compromising measurements, are
strong, the attacker that launched the cyber attack towards Ukraine in 2015 truly
meets these assumptions [27].

The DIAs compromise the measurements at three different periods: the sensing
period, the communicating period, and the SCADA processing period. The attacks
that target these three periods are shown by A1, A2, and A3 in Fig. 2.2, respectively
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Fig. 2.2. Data injection attack launch points of the power system network.

[28]. Although Fig. 2.2 represents the attacks on the power system, it is easy to
extend this framework to any cyber-physical systems or networked systems [29].
Without triggering the residual-based alarm, DIAs are also capable of destabilizing
control systems, for which the dynamic of state variables are modeled by a state
space model [30]. Also the attack targeting at the transmission system is extended
to the distribution system of the power system, which usually has low transform
ratio at the transformers in the system [31].

The DIAs proposed above target the observation model with linearized dynamics,
which allows closed-form expressions and analytical results for the attack construction.
For the observation model with nonlinear dynamics, i.e. AC state estimation, [32]
shows that the optimal attack in (2.52) is usually not the optimal in the AC case,
but it still has acceptable performance.

In the following part, we review the DIAs for the LS estimation and residual-based
detection at first. Then two assumptions for the attacker, i.e. ability to compromise
meters and perfect information of systems, are relaxed. Since changing the state
variables affects the decisions made by the operator, the DIAs that target some
specific decisions, such as OPF, are covered in the Extended DIAs subsection. We
finish by reviewing the state of the art detection and attack protection mechanisms
again DIAs.

Sparse Attacks

One of the assumptions made by [7] and [8] is that the attacker has the capability to
compromise meters in the power system. However compromising sensors in power



24 Literature Review

systems is usually costly for the attacker. As a result, the attacker has to minimize or
limit the number of sensors that need to be hacked. Also the operator protects some
of the sensors in the system, which implies that the attacker cannot compromise
the measurements from the protected sensors. This problem is called sparse attack
construction problem by [7], which is given by

min
a

∥a∥ℓ0 (2.54)

s.t. a = Hc (2.55)

ai = 0 for all i ̸∈ Sa, (2.56)

where ∥a∥ℓ0 is the ℓ0 norm of vector a and Sa is the set of compromisable sensors.
However, it is difficult to solve this problem as the problem is usually NP-hard. To
solve this problem, [7] proposes an equivalent expression for the detection constrain
in (2.55), which is given by

a = Hc ⇐⇒ Ba = 0, (2.57)

where B = H
(
HTH

)−1
HT − Im. Then some heuristic or greedy algorithms, such as

the matching pursuit algorithm [33] and the orthogonal matching pursuit [34], are
used to find a sparse attack vector subject to the unobservable constraint in (2.57).
The heuristic algorithms are also proposed by [35] and [36] to solve this problem.
Specifically [35] provides an upper bound for the number of sensors that need to be
compromised to construct sparse attacks. The minimum number of sensors that need
to be compromised is also studied in [37] and [38]. [37] shows that the necessary
and sufficient condition for the attack to be undetectable under residual detection is
that the Jacobian matrix describing the relation between the measurements from the
uncompromisable sensors and the state variables is rank deficient. And [38] obtains
the same result in [37] via a graph-theoretical approach.

Unlike the heuristic algorithms, [39] relaxes the ℓ0 norm of the attack vector in
(2.54) to the ℓ1 norm, which turns this problem into a convex problem given by

min
a

∥a∥ℓ1

s.t. a = Hc

ai = 0 for all i ̸∈ Sa. (2.58)

In [39], the sparsity of the attack vector and the sparsity of the compromised state
variables are achieved simultaneously by the reweight approach proposed by [40]. The
ℓ1 relaxation approach is also utilized in [41], [42], and [43] to construct sparse attacks.
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Usually the solution to the ℓ1 norm optimization problem is not the same as the
original ℓ0 norm problem. However [42] proves that when there is no measurements
about the power injections or the power injections are not used in the state estimation,
the solution to the ℓ1 norm problem is the same as the solution for the ℓ0 norm case.

Finding the minimal number of sensors need to be compromised not only leads to
sparse attack construction for the attacker, but also helps the operator to evaluate
the vulnerability of the power system. [41] uses the minimal number of meters needed
to be compromised for injecting some certain error into a specific state variable as an
index for the cyber-security of the power system. Also the minimal number of meters
needed to be compromised to launch an unobservable attack is used as an index of
security for the power system in [44] and for the joint system of power system and
communication system in [45].

Attack Construction with Incomplete System Information

The other assumption made by [7] and [8] is that the attacker needs to know the
Jacobian matrix H, which is determined by the power system topology, the system
parameters, and the operation point. Incomplete system information known by
the attacker results in a mismatch between the actual Jacobian matrix H and the
Jacobian matrix H̃ the attacker has, which is modeled as

H̃ = H + ∆H, (2.59)

where ∆H is the mismatch. The mismatch ∆H increases the probability of the
attack being detected. For example, [46] shows that when the attacker has limited
information about the admittance of branches, the mismatch ∆H truly increases the
probability of detection under residual-based detection. The enough condition for
the attack to be undetectable under residual detection is also proposed in [46].

For the case that the attacker only has perfect knowledge about a part of the
grid, [47], [48], and [49] show that the attack is still able to be stealthy. [47] proves
that when the line incidence matrix and the line admittances of the attack region in
the system are perfectly known by the attacker, the attack is still undetectable when
the state variables representing the boundary buses of the region change the same
amount. The result in [47] is extended to the AC state estimation case in [50]. The
choosing of such an attack region is proposed [48] with the consideration of using less
information of the power system. Specifically when it is not feasible for the attack to
be stealthy using partial information, the framing attack proposed by [49] is able to
make the attack stealthy. When the operator chooses to remove the abnormal part
from the measurements during the state estimation, the framing attack makes the
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operator removing some key measurements to guarantee the stealthy of the attacks.
Also the imperfect knowledge of the power system further impacts the performance
of the attacks on the electricity market. [51] studies the impact of imperfect attacks
on the electricity market, in which the state variables and the system model are
modeled with uncertainty. Especially, the optimal stochastic guarantees for the
attack and the resulting economic impacts are proposed.

Extended DIAs

The objectives of DIAs are not limited to just disrupting state estimation. The
compromised state variables further affect the decisions made by the operator, such
as OPF. The operator chooses the configuration that minimizes the generation and
distribution cost for power systems, and the resulting power flow is called OPF.
Also some constraints, such as the balance between generation and consumption,
are added in the problem of determining the OPF. The impact of compromising
the generation of the generator on the DC OPF is analyzed in [52], in which the
generations of generators are the decision variables for the OPF. Also [53] illustrates
the impact of DIAs on the OPF within an integrated simulation platform.

Changing the estimated state variables to some value also brings economic benefits
to the attacker within the electricity market. [54] shows that changing the state
variables using DIAs leads to the change of nodal price in the electricity market, and
then the attacker makes profits during the virtual bidding period. The impact of
DIAs on the locational marginal prices is studied in [55]. Furthermore [56] considers
the benefits that the attacker obtained from the electricity market when the attacker
only has some samples of the measurements, for which the attacker has to infer the
system information from the samples. [57] shows that the operator cheats the users
in the power system to pay extra for the electricity bill by changing the status of the
breakers in the power system without causing any security threats. Except for the
induced finical profits, DIAs are also able to mask some physical faults in the power
system. For example, the measurements corrupted by the attacks make the operator
ignore the outage of the transmission line [58, 59].

The interaction between attacks from the attacker and defense from the operator
forms a game, in which the attacker updates the attack strategy according to the
information the attacker has about the operator and the same for the operator. [60]
studies the behavior of the attacker and the operator using game theory, in which
the attacker tries to make profit from the electricity market and the operator tries
to protect the sensors in the system to detect the attack. [61] considers the same
scenario when two attackers and one operator in the system. It is worth to note that
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when the attackers are uncoordinated, the effects of these attackers are eliminated
by each other [62].

The target measurements of the attacker are not limited to the power flow or the
power injection. Other than compromising the usual measurements in power systems,
the on or off status of the switches and the load information in the power system are
also potential targets for the attacker. Changing the statue of the switches results
in the changes of the power system topology, which leads to the “topology attack”
proposed by [63]. Also [63] proposes the sufficient condition for the topology attacks
to be undetectable under residual detection. Compromising of the load information
deviates the frequency of the power system away from the normal value [64], which
is named “load alter attack” by [65]. The timestamp of phase measurement units
(PMUs) is also a target for the attacker, this leads to a delay of transmission of
measurements [66]. Only changing the timestamp of PMUs guarantees that the
attacks are still undetectable under the residual detection. Also the energy trading or
energy transmission between different parts in the power system is a potential target
of DIAs. [67] chooses the distributed energy routing that guarantees the economic
operation of the grid with multiple demanders or suppliers as the target to attack.
Specifically, the corruption of the energy supply quantity, the energy request quantity
and the link state of energy transmission is studied in a simulation-based way. The
impact of DIAs on the load sharing between microgrids is analyzed in [68], in which
the region and the sufficient condition for the stability of the microgrids under DIAs
is proposed.

Detection and Protection

As the countermeasures for DIAs, different kinds of detection approaches are im-
plemented by the operator to detect the attacks. The compromised measurements
lead to the derivation of preset variables from the nominal values. For example, [69]
shows that when the attacker compromises the measurements of currents, current
angles or voltage angles, the calculated impedances of the branches in the power
system are different from the setting known to the operator. The update of the
classical detection approaches in (2.30) and (2.33) also helps the operator to detect
the attacks. [70] proposes a trimmed least squares based detection approach, and
several least trimmed square detectors are implemented together to increase the
accuracy of attack detection. When further information or actions are available for
the operator, the operator uses this information to detect the attack. For example,
load forecasts are utilized in [71] and [72] to detect attacks. Also [73] shows that when
the operator knows the location about the protected meters and the compromisable
meters, only the topology information is sufficient for the operator to know whether
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the attack is undetectable or not. [74] considers the scenario that the operator has
the ability to shut down one of the transmission lines to detect the attack, and it
shows that the attacks are detectable when the connectivity of the grid is larger than
two.

The detection approaches reviewed above are implemented in a centralized way,
also the decentralized state estimation is another option for the operator to detect the
attacks. [75] proposes an adaptive partitioning approach for the grid to implement
decentralized state estimation to detect an attack. Partitioning the grid increases the
sensitivity of the chi-squared detection in the separated system. The decentralized
detection approach is also proposed in [76] for the attack targeting at the electro-
mechanical swing dynamics of the generator. Also [77] proposes a distributed
detection and estimation approach for simultaneously DIAs and Jamming attacks.

For the dynamic setting of state estimation in (2.49) and (2.50), [78] designs a
detection method for state estimation with Kalman filter, in which a new chi-squared
metric for residual and an Euclidean distance metric for residual are proposed to
detect the attack. To detect the replay attack that changes the current measurements
to some historical measurements, [79] shows that when the operator of the power
system adds watermark, i.e. white noise, into the input signal of the system, the attack
is detectable. Here the design of the optimal watermark is cast as an optimization
problem, in which the probability of attack detection is maximized and the disruption
caused by the watermark is constrained.

Except for the passive detection approach, the active protecting approaches are
also implemented by the operator to protect the system. Through these approaches
the operator increases the difficulty of the attacker launching the attack or makes
the undetectable attack impossible. The measurements gathered by the PMUs are
with timestamps, which are difficult to corrupt. Therefore, using the PMUs to
collect measurements is an effective tool to protect the power system. [80] shows
that placing PMU at a bus not only guarantees the security of this bus, but also
the buses connected to the bus with PMU. The number of PMUs needed to protect
the power system is studied in [81] and [82]. [81] shows that the number of PMUs
should be larger than the number of state variables to detect the attacks that are
undetectable under residual detection. Also [82] shows that DIAs are detectable
when the magnitude of the buses is protected securely.

Other than using the PMUs to guarantee the integrity of the measurements,
encrypting the measurements in the power system also guarantees that the measure-
ments that the operator obtained are accurate. [83] uses the McEliece cryptographic
schemes to resist the DIAs. Also coding the measurements is helpful for the operator
to protect the measurements [84]. When the attacks passed through the detection
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mechanism, the operator is able to implement corresponding approaches to mitigate
or eliminate the effect of the undetected attacks. For example, [85] studies mitigating
the physical overload induced by attacks using a corrective dispatch.

2.2.2 DIAs within Bayesian Framework

The DIAs proposed by [7] and [8] are undetectable for the LS estimation in (2.27)
and residual detection in (2.30). Unlike [7] and [8], the DIAs within the Bayesian
estimation framework, which is covered in Section 2.1.2, are considered by [44], [86],
[87], and [88].

Within the Bayesian framework, the distribution of the measurements changes
from the distribution under normal condition to the distribution under attack. So
the detection of attacks is cast as a hypothesis testing problem given in (2.40). Under
this setting, the probability of detection for the attack is given by

PD
∆=
∫

S
dPY m

A
, (2.60)

where PY m
A

is the distribution of the measurements under attack and S is the set of
all the realizations of Y m

A that being detected by the detection approach. Given the
fact that the LRT is of fastest decay rate for probability of miss [44] and is optimal
in the sense that it achieves the maximum probability of detection (Lemma 2.1), the
LRT is the most commonly adopted detection approach for the attack [44, 86–88].
On the other hand, the disruption caused by attacks is measured by the extra MMSE
induced by the attack in [44] and [86]. Information-theoretic measures are adopted
by [87] and [88] to quantify the disruption, in which the attacker minimizes the
amount of information that the measurements contained about the state variables.

The caused disruption and the probability of detection are two contradictive
objectives with the Bayesian framework. In [44] and [86], the tradeoff between
disruption and probability of detection is cast as an optimization problem given by

max
a

∥Ma∥2 or min
a

PD

s.t. PD ≤ τ ′ s.t. ∥Ma∥2 ≥ τ ′

in which M is given in (2.39) and τ ′ is a threshold set by the operator, i.e. maximize
the distortion with a constraint on the probability of detection or minimize the
probability of detection with a constraint on disruption. For the information-theoretic
attacks adopted by [87] and [88], the information loss caused by the attacks and the
asymptotic probability of detection is summed up, in which a weighting parameter
is assigned to the objective representing the probability of detection. The weighting



30 Literature Review

parameter reflects the preference of the attacker and allows the attacker tuning the
probability of detection. Details for [87] and [88] are provided in Chapter 3 and
Chapter 4.

For the Bayesian framework that is considered in [44] and [86], the tradeoff
between disruption and probability of detection is also considered by [89] under the
dynamic setting. Furthermore the Bayesian framework with dynamics for packet
substitution attack and the extra package injection attack is considered by [90], in
which a two-step approach, i.e. predication-correction, is proposed for the attack
detection and state estimation.

2.2.3 Data-Driven DIAs

Power systems are of large scale and are with lots of sensors placed across the
systems. As a result, there are large numbers of measurements generated every
day. Using these measurements, the attacks are still able to be stealthy even when
the attacker has incomplete information about the power system. The available
measurements allow the attacker constructing the attacks via learning, in which
the attacker learns the system information from the measurements. The learning
of power system topology information from bus injection measurements is studied
in [91], in which the learning is cast as a maximum a posteriori problem of the
system parameters under sparsity constraints. Except for the topology information,
some other information is also being extracted from the measurements. For example,
the power flow measurements or the power injection measurements are used by the
attacker to infer the operation point in [31]. Learning the system information is also
studied in [92], [93], and [94], in which the statistical behavior of the measurements
is extracted by statistical tools, such as principal component analysis (PCA) in [92]
and independent component analysis in [93], to construct stealth attacks.

As countermeasures for DIAs, the statistical behavior of the state variables or
the measurements are used by the operator to detect the attacks, as the distribution
of the state variables or the measurements changes when the attacks launch. [95]
proposes a detection approach for AC state estimation using the difference between
the distribution of measurements obtained from historical data and the distribution
at current time, in which two different measures, i.e. absolute distance and KL
divergence, are utilized to quantify the differences in distributions. The change of
distribution is also utilized by [96] to detect the attack when the state variables
are modeled by a Gaussian Markov random field. Specifically the decentralized
detection method proposed by [96] compares the marginal distributions of state
variables under normal condition and under abnormal condition to locate the attack.
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Expect the statistical quantify of the difference in distribution, such as KL divergence,
the LRT is also a powerful tool to distinguish the distributions. The generalized
LRT is adopted in [97] for the observation model with white noise and in [98] for
the observation model with colored noise. Specifically the generalized LRT in [97]
achieves the minimal averaged maximum delay of the detection. The likelihood of
the state variables is also utilized to detect the attack by [99], in which the behavior
of the attacker is modeled as a Markov decision process.

When the power system operates at steady status, the measurements at different
time instants are of small difference, so the matrix of measurements at different time
instants is of low rank. The low rank characteristic of the matrix of measurements and
the sparsity of the attacks are used by [100] to detect the attack. Also a compromised
measurement recovery approach is proposed in [101] using the low rank characteristic
of the matrix of measurements. However the rank minimization in [101] is a NP
hard problem, so the nuclear norm is utilized to approximate the rank operation.
The data recovery in the dynamic setting is studied by [102].

As a powerful and useful tool to classify and cluster data, the machine learning
approach is also capable to detect the attack. Different machine learning algorithms,
such as support vector machine (SVM) and Adaboost, are compared in [103] for attack
detection. The distributed SVM and PCA are utilized by [104] to distinguish the
abnormality of the grid. Some other machine learning algorithms, such as common
path mining [105], density ratio estimation [106], and margin setting algorithm [107],
are also capable to detect the attacks. As a powerful tool in machine learning, the
neural network is also utilized to detect the DIAs, which lead to a black box modeling
problem. Given the training measurements, [108] uses the deep neural network
to detect the attacks in the system. Other than using the training measurements
directly, [109] uses the wavelet transform of the time series of the estimated state
variable as features and trains the deep neural network to detect the attacks.

2.3 Summary

In this chapter, the state estimation problem is formulated for the power system
cases, including the classical state estimation and anomaly detection, as well as
the Bayesian case estimation and detection. Within the presented estimation and
abnormal data detection framework, the DIAs construction is posed as a sparse
attack construction problem for the sensor constrained case. Similarly, the case with
imperfect knowledge is introduced and analyzed within this setting. We finish by
providing an overview of learning approaches for DIAs construction and detection.
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Therein, the attacker learns the information about the system from a limited number
of training samples.



Chapter 3

Information-Theoretic Stealth
Attacks

In this chapter, DIAs that utilize information-theoretic measures as merit metrics
are proposed. Specifically, the attacker minimizes the mutual information between
the state variables and the compromised measurements to minimize the amount of
information that the operator obtained from the measurements about the states vari-
ables. Meanwhile the attacker minimizes the KL divergence between the distribution
of measurements with attack and the distribution without attack to minimize the
asymptotic probability of detection. The proposed stealth attacks minimize the sum
of these two information-theoretic objectives. Closed-form expression of the stealth
attacks is obtained for the Gaussian state variables and Gaussian attacks case.

3.1 Bayesian Framework for State Estimation

The observation model with linearized dynamics for power system state estimation
problem is given in (2.34), i.e.

Y m = HXn + Zm, (3.1)

where Xn ∈ Rn is the vector of random variables describing the true state of the
system; H ∈ Rm×n is the Jacobian matrix, which is defined in (2.15); Y m ∈ Rm is
the vector of random variables containing the measurements available to the attacker;
and Zm ∈ Rm is the AWGN introduced by the sensors in the power system [17, 20],

The work in Chapter 3 is published in “K. Sun, I. Esnaola, S.M. Perlaza, and H.V. Poor,
“Information-theoretic attacks in the smart grid,” in Proc. IEEE Int. Conf. on Smart Grid
Commun., Dresden, Germany, Oct. 2017, pp. 455-460.”.

https://ieeexplore.ieee.org/document/8340708


34 Information-Theoretic Stealth Attacks

i.e. the vector of random variables Zm follows a multivariate Gaussian distribution
N (0, σ2Im), in which σ2 is the noise variance.

3.1.1 State Variable Model

In the Bayesian framework that is reviewed in Section 2.1.2, the state variables are
described by a vector of random variables and follow a given distribution. Modeling
the distribution is arbitrary and has been tackled using different approaches in the
literature. The state variables are modeled by a joint Gaussian distribution in [44]
and [86], and by a general distribution in [110] and [111] for the power system state
estimation scenario. The statistical modeling of the state variables within power
systems is studied by [112] and [113] when the bus voltage magnitudes are chosen
to be state variables. It is shown in [112] that the bus voltages of a low voltage
distribution system in the north-west of England are well described by a multivariate
Gaussian distribution, and [113] shows that the Gaussianity of the voltage magnitude
for a 6-Bus circuit is a sensible modeling assumption. In [114] it is shown that the
measurements, i.e. active power consumption and reactive power consumption, from
real power grids also follow a joint Gaussian distribution. The Gaussian distribution
also has some other advantages. For example, the Gaussian distribution has the
maximum entropy, i.e. maximum uncertainty, among all the real-valued distributions
that have the same variance, which makes the modeling of the state variables more
robust [22].

As a result, here the state variables are assumed to follow a multivariate Gaussian
distribution denoted by

Xn ∼ N (0,ΣXX), (3.2)

where ΣXX ∈ Sn
+ is the covariance matrix of the state variables with Sn

+ denoting the
set of positive semi-definite matrices of dimension n× n. Consequently, from (3.1),
the measurement vector also follows a multivariate Gaussian distribution given by

Y m ∼ N (0,ΣYY ), (3.3)

where ΣYY = HΣXXHT + σ2Im is the covariance matrix of the measurements.
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3.1.2 Random Attack Model

The observation model for the case in which the measurements are compromised is
given by

Y m
A = HXn + Zm + Am, (3.4)

where Am ∈ Rm is the attack vector [7]. Given the stochastic nature of the state
variables, it is reasonable for the attacker to pursue a stochastic attack construction
strategy. As a result, an attack vector independent of the state variables is constructed
as

Am ∼ PAm , (3.5)

where PAm is the distribution of Am.
The i-th element of the vector of the compromised measurements is given by

(YA)i = (H)i X
n + Zi + Ai, (3.6)

in which (H)i is the i-th row of H, (YA)i is the i-th elements of Y m
A . It is shown in

[115] that Gaussian distribution is the distribution that achieves

min
E[Ai]=σ2

a<∞
I (Xn; (YA)i) (3.7)

for i = 1, . . . ,m, where I(·; ·) is the mutual information between two state variables
given in ·, which is defined in Definition A.12; and σ2

a is the variance of random
variable Ai. It is worth to point out that this result holds for any distribution of the
state variables, i.e. for any PXn . This implies that the additive attack distribution
that minimizes the mutual information between the vector of state variables and the
compromised measurements under a fixed covariance for the attack term is Gaussian.
For this reason, in this thesis we adopt a Gaussian random attack framework. While
the Gaussian distribution guarantees the minimization of the mutual information
under second order constraints, we do not have a formal justification when detection
constraints are introduced. However, we adopt the Gaussian attack construction for
the rest of this thesis.

In the following, an attack vector independent of the state variables is constructed
following a multivariate Gaussian distribution denoted by

Am ∼ N (0,ΣAA), (3.8)
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where ΣAA ∈ Sm
+ is the covariance matrix of the attack vector. As a result of

the linearity in (3.4) and the Gaussianity of the attack vector, the compromised
measurements, i.e. Y m

A , follow a multivariate Gaussian distribution described as

Y m
A ∼ N (0,ΣYAYA

), (3.9)

where ΣYAYA
= HΣXXHT + σ2Im + ΣAA.

It is worth noting that the independence of the attack vector with respect
to the state variables implies that the attacker does not need to know the joint
distribution of the state variables and the measurements to construct the attack
vector. Knowledge of the second order moments of the state variables and the
variance of the AWGN introduced by the observation process suffice to construct the
attack. This assumption significantly reduces the difficulty of the attack construction.
Later we show in Theorem 3.1 that the variance of the AWGN introduced by the
observation process is not required to construct the Gaussian attacks.

3.1.3 Attack Detection Formulation

The detection problem within the Bayesian framework is usually cast as a hypothesis
testing given in (2.40). Given the distribution of the measurements without attack
and under attack in (3.3) and (3.9), respectively, the attack detection problem is
cast into a hypothesis testing problem with hypotheses

H0 : Y m ∼ N (0,ΣYY ), versus

H1 : Y m ∼ N (0,ΣYAYA
). (3.10)

The null hypothesis H0 describes the case in which the power system is not compro-
mised, while the alternative hypothesis H1 describes the case in which the power
system is under attack.

The Neyman-Pearson Lemma ([116], or Lemma 2.1) states that for a fixed
probability of Type I error, the LRT achieves the minimum probability of Type II
error β, when compared with any other tests with an equal or smaller probability of
Type I error α. In view of this, a LRT is chosen as the attack detection strategy.
The LRT between H0 and H1 takes the following form

L(y) =
fY m

A
(y)

fY m(y)
H1
≷
H0

τ , (3.11)
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where y ∈ Rm is a realization of the vector of random variables modeling the
measurements, fY m

A
and fY m denote the p.d.f. of Y m

A and Y m, respectively, and τ is
the decision threshold set by the operator to meet the false alarm constraint.

3.2 Information-Theoretic Objectives

3.2.1 Disruption Measure

The information-theoretic attacks aim to disrupt the state estimation by minimizing
the amount of information that the measurements contained about the state variables.
By doing so, the amount of information retrieved from the measurements about the
state variables during the state estimation is minimized. So the operator obtains less
information about the state variables, and the estimation, forecasting, and control
the operator conducts with these measurements are carried out with less information
about the state of the system.

The mutual information between two random variables is a measure of the
amount of information obtained about one random variable through observing the
other random variable. Consequently, the amount of information that the vector
of measurements contains about the vector of state variables is determined by
the mutual information between the vector of state variables and the vector of
measurements. Information measures have previously been used to quantify the
amount of information acquired by different monitoring systems in a smart grid
context. For instance, in [12] mutual information is used to quantify the amount of
information obtained by PMUs from the grid about the state variables. Similarly,
mutual information is used in [13] and [14] to quantify the amount of information
leaked by smart meters in the power system. Except for the smart grid context, the
mutual information is also utilized in [117] for parameter setting in machine learning
algorithm.

Capitalizing on the Bayesian framework and the observation model under attack
in (3.4), the attacker constructs the attack vector, i.e. chooses the distribution of
the attack vector, in such a way that it

min
Am

I(Xn;Y m
A ). (3.12)

This is equivalent to guaranteeing that the amount of information that the operator
acquires about the state variables Xn by observing Y m is minimized.

Minimizing the mutual information between the state variables and the compro-
mised measurements leads to an increase in the MMSE defined in (2.35). Specifically
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[118] proves that for the linear system given by

Y m =
√

SNRLHXn + Zm (3.13)

with SNRL denoting the Signal-to-Noise Ratio of the observation model in linear
scale, the mutual information is connected with MMSE, as a function of SNRL, by
the following equality.

d
d SNRL

I
(
Xn;

√
SNRLHXn + Zm

)
= 1

2MMSE (SNRL) . (3.14)

Injecting extra terms, i.e. launching attacks, that are independent with respect to
the state variables is equivalent to decreasing the SNRL of the observation model.
When the mutual information is a concave and monotonically increasing function 1

of the SNRL, a decrease in the SNRL leads to an increase in the derivative of the
mutual information as a result of the concavity of mutual information, which leads
to an increase in MMSE.

The conclusion that minimizing the mutual information between the state vari-
ables and the compromised measurements leads to an increase in MMSE also follows
from Corollary A.2 in Appendix A, which states that

E
[(
Xn − X̂n(Y m

A )
)2
]
≥ 1

2πee
2h(Xn|Y m

A ) (3.15)

= 1
2πee

2(h(Xn)−I(Xn;Y m
A )), (3.16)

in which X̂n(Y m
A ) is any estimator using the compromised measurements Y m

A ,
h(Xn|Y m

A ) is the conditional entropy of Xn given Y m
A , and h(Xn) is the entropy of

Xn. Given the fact h(Xn) is only determined by the power system, it is easy to
see that minimizing the mutual information between the state variables and the
compromised measurements leads to an increase in MMSE, which is the minimum
value of the expression that is on the left-hand side of (3.15).

3.2.2 Detection Measure

Except maximizing the disruption represented by mutual information, the attacker
also wants to minimize the probability of attack being detected. Note that the LRT

1 It is clear that the mutual information is a monotonically increasing function of SNRL,
the concavity of the function needs further proof. The idea is that when SNRL = 0, the
mutual information is 0; when SNRL → ∞, the mutual information saturates at the value of
min

(
H (Xn) , H

(√
SNRLHXn + Zm

))
. The rate of the increase in mutual information decreases

as SNR increases. So we think the mutual information is a concave function of SNR.
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attack detection is given by

L(y) =
fY m

A
(y)

fY m(y)
H1
≷
H0

τ, (3.17)

where Y m
A ∼ N (0,ΣYAYA

), Y m ∼ N (0,ΣYY ), and ΣYAYA
= ΣYY + ΣAA. As a result,

the probability of detection under finite scenario is given by

PD
∆= E

[
1{L(Y m

A )≥τ}
]
, (3.18)

where 1{·} is the indicator function. However the probability of detection is involved
to characterize without closed-form expression for ΣAA, as the expected value is
taking with respect to random variables Y m

A . Instead of minimizing the probability
of detection, the attacker can minimize the expected value of the likelihood ratio
between PY m

A
and PY m

A
to minimize the probability of detection as in [44]. But

the relation between the expected value of likelihood ratio and the probability of
detection is not easy to characterize, as the distribution of the likelihood ratio is
involved.

As a result, here we use the asymptotic value of the likelihood ratio to characterize
the probability of detection. For the hypothesis testing problem given in (3.10), the
probability of detection equals to one minus the probability of miss, or equals to one
minus the probability of Type II error. For the LRT given in (3.11), the Chernoff-
Stein Lemma ([22], or Lemma 2.2) states that for any probability of Type I error α
smaller than one half, the logarithm of the averaged minimum value of probability of
Type II error β asymptotically converges to the inverse of the KL divergence between
the distributions of the two hypotheses. Therefore, for the attacker, minimizing the
asymptotic detection probability is equivalent to maximizing the probability of Type
II error, which is achieved by

min
Am

D(PY m
A

||PY m), (3.19)

where PY m
A

and PY m denote the probability distributions of Y m
A and Y m, respectively.

Minimizing the KL divergence ensures that the effect of the attacks on the induced
distribution over the measurements is minimized, i.e. the attack is stealthy [119].

The KL divergence between two probability distributions is a measure of the
statistical difference between the distributions. As such, it is a practical measure to
quantify the deviation of the measurement statistics with respect to the statistics
under normal operating conditions. For instance, in [96] it is used to test abnormal
behaviors on the grid. For the hypothesis testing problem in (3.11), a small value
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of the KL divergence between PY m
A

and PY m implies that on average the attack is
unlikely to be detected by the LRT set by the attacker for a fixed value of τ .

3.3 Stealth Attack Construction

In this information-theoretic setting, the attacker aims to minimize the mutual
information between the state variables and the compromised measurements, i.e.
I(Xn;Y m

A ), and the asymptotic probability of detection via D(PY m
A

||PY m) as the
asymptotic probability of detection is PD ≈ 1−exp

{
−D(PY m

A
||PY m)

}
, simultaneously.

Following the approach in [119], the attacker constructs the utility function

I(Xn;Y m
A ) +D(PY m

A
||PY m) (3.20)

for the attack. The attacker minimizes this utility function to disrupt the estimation
and bypass the detection set by the operator simultaneously.

Note that

I(Xn;Y m
A ) +D(PY m

A
||PY m) (3.21)

=
∫
fXnY m

A
log

fXnY m
A

fXnfY m
A

dxdya +
∫
fY m

A
log

fY m
A

fY m

dya (3.22)

=
∫
fXnY m

A
log

fXnY m
A

fXnfY m
A

dxdya +
∫
fXnY m

A
log

fY m
A

fY m

dxdya (3.23)

=
∫
fXnY m

A
log

fXnY m
A

fXnfY m

dxdya (3.24)

= D
(
PXnY m

A
||PXnPY m

)
, (3.25)

where (3.22) follows from taking the definition of KL divergence in Definition A.10
and the definition of mutual information in Definition A.12 into (3.21), in which
fXnY m

A
are the joint p.d.f. of (Xn, Y m

A ); (3.23) follows from extending the integration
domain of the last term in (3.22) from all the realizations of Y m

A to all the realizations
of (Xn, Y m

A ) without changing the value of the integration; (3.24) follows from
summing the two terms in (3.23); (3.25) follows from the fact that (3.24) coincides
with the KL divergence between PXnY m

A
and PXnPY m with PXnY m

A
denoting the joint

distribution of (Xn, Y m
A ), see Definition A.10.

In view of this, minimizing I(Xn;Y m
A ) +D(PY m

A
||PY m) is posed as the following

optimization problem:

min
Am

D(PXnY m
A

||PXnPY m). (3.26)
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Note that in the Bayesian framework the state variables and the compromised
measurements follow a joint multivariate Gaussian distribution given by

(Xn, Y m
A ) ∼ N (0,Σ), (3.27)

where the block covariance matrix has the following structure:

Σ =
 ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im + ΣAA

 . (3.28)

Proposition 3.1. [22] The mutual information between the vectors of random vari-
ables Xn ∼ N (0,ΣXX) and Y m

A ∼ N (0,ΣYAYA
) is given by

I(Xn;Y m
A ) = 1

2 log |ΣXX ||ΣYAYA
|

|Σ|
, (3.29)

in which | · | is the determinant of the matrix given in ·.

Proof. Note that

I(Xn;Y m
A ) (3.30)

= EXnY m
A

[
log

fXnY m
A

fXnfY m
A

]
(3.31)

=1
2 EW

[
−wTΣ−1w−log|Σ|+xTΣ−1

XXx+log|ΣXX|+yT
a Σ−1

YAYA
ya+log|ΣYAYA

|
]

(3.32)

= 1
2 log |ΣXX ||ΣYAYA

|
|Σ|

− 1
2EW

[
−tr(Σ−1wwT)+tr(Σ−1

XXxxT)+tr(Σ−1
YAYA

yayT
a )
]
(3.33)

= 1
2 log |ΣXX ||ΣYAYA

|
|Σ|

, (3.34)

where (3.31) follows from taking the definition of mutual information in Definition
A.12 into (3.30); (3.32) follows from combining the Gaussianity of Xn, Y m

A , and
(Xn, Y m

A ) with (3.31), in which W = [Xn;Y m]T is distributed as N (0,Σ), and w is
a realization of random variable W ; (3.33) is obtained by taking the constant terms
outside the expectation; (3.34) follows from the fact that

EW

[
tr(Σ−1wwT)

]
= tr

(
Σ−1EW

[
wwT

])
= tr

(
Σ−1Σ

)
= m+ n (3.35)

and applying the same operation in (3.35) to the terms tr(Σ−1
XXxxT) and tr(Σ−1

YAYA
yayT

a ).
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Proposition 3.2. [22] The KL divergence between two m-dimensional multivariate
Gaussian distributions P0 = N (0,Σ0) and P1 = N (0,Σ1) is given by

D(P0∥P1) =1
2

(
log |Σ1|

|Σ0|
−m+ tr(Σ−1

1 Σ0)
)
. (3.36)

Proof. Note that

D(P0∥P1)= EV

[
log fN (0,Σ0)(v) − log fN (0,Σ1)(v)

]
(3.37)

= 1
2EV

[
− log |Σ0| − vTΣ−1

0 v + log |Σ1| + vTΣ−1
1 v|

]
(3.38)

= 1
2 log |Σ1|

|Σ0|
+ 1

2EV

[
vTΣ−1

1 v − vTΣ−1
0 v|

]
(3.39)

= 1
2 log |Σ1|

|Σ0|
+ 1

2EV

[
tr(Σ−1

1 vvT) − tr(Σ−1
0 vvT)

]
(3.40)

= 1
2

(
log |Σ1|

|Σ0|
−m+ tr(Σ−1

1 Σ0)
)
, (3.41)

where (3.37) follows from the definition of KL divergence in Definition A.10, in which
V is a multivariate Gaussian random variable follows distribution P0 and v is the
realization of V ; (3.38) follows from taking the Gaussian p.d.f. of V into (3.37);
(3.39) is obtained by taking the constant terms outside the expectation; (3.40) follows
from the fact that

vTΣ−1
1 v = tr

(
vTΣ−1

1 v
)

= tr
(
Σ−1

1 vvT
)

(3.42)

and apply the operation in (3.42) also to the term vTΣ−1
0 v; (3.41) is obtained via

the same approach in (3.35).

Combining (3.36) and (3.26) yields

D(PXnY m
A

||PXnPY m)= 1
2

(
log |Σ̃|

|Σ|
− (m+ n) + tr((Σ̃)−1Σ)

)

= 1
2
(
− log |(Σ̃)−1Σ| − (m+ n) + tr((Σ̃)−1Σ)

)
, (3.43)

where Σ̃ is the covariance matrix of PXnPY m and is given by

Σ̃ =
 ΣXX 0

0 ΣYY

 .
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Note that

(Σ̃)−1Σ=
[

Σ−1
XX 0
0 Σ−1

YY

][
ΣXX ΣXXHT

HΣXX ΣYAYA

]
=
[

In HT

Σ−1
YY HΣXX Σ−1

YY ΣYAYA

]
(3.44)

and

|(Σ̃)−1Σ| = |In||Im + Σ−1
YY ΣAA + σ2Σ−1

YY |, (3.45)

an equivalent expression for the optimization problem in (3.26) is obtained in the
following lemma.

Lemma 3.1. The optimization problem in (3.26) is equivalent to

min
ΣAA∈Sm

+

[
tr(Σ−1

YY ΣAA) − log |ΣAA + σ2Im|
]
. (3.46)

Proof. Taking (3.44) and (3.45) into (3.43) and neglecting the constant term log |Σ−1
YY |

yields the result.

In the following we show that the optimization problem in Lemma 3.1 is a convex
optimization problem.

Proposition 3.3. The optimization problem given by (3.46) is equivalent to mini-
mizing a convex function within a convex set.

Proof. The trace operator is a linear operator, and − log |ΣAA + σ2Im| is a convex
function of the positive semi-definite matrix ΣAA [120, pp. 74]. Therefore, the
objective function in (3.46) is a convex function of ΣAA.

Since Sm
+ forms a convex set, the result follows immediately.

Before introducing the closed-form expression for the stealth attacks, the first
order condition for convex functions is proposed to aid the proof.

Proposition 3.4. [120, pp. 69] Suppose f is differentiable (i.e., its gradient ∇f
exists at each point in dom f , which is open). Then f is convex if and only if dom
f is convex and

f(y) ≥ f(x) + ∇f(x)T(y − x) (3.47)

holds for all x, y ∈ dom f , where dom f represents the domain of function f .

Using Proposition 3.4, it is easy to show that when a convex function only has
one critical point x0, i.e. ∇f(x0) = 0, then x0 is the global minimum of the convex
function.
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The following theorem provides the closed-form expression for the stealth attacks.

Theorem 3.1. The solution to the attack construction optimization problem (3.46)
is the covariance matrix Σ⋆

AA = HΣXXHT.

Proof. Taking the derivative of tr(Σ−1
YY ΣAA) with respect to ΣAA yields [121, Sec. 17.5.2]

∂

∂ΣAA

(
tr(Σ−1

YY ΣAA)
)

= 2Σ−1
YY − diag(Σ−1

YY ).

Similarly we have

∂

∂ΣAA

(
log |ΣAA + σ2Im|

)
= |ΣAA + σ2Im|−1∂|ΣAA + σ2Im|

∂ΣAA

(3.48)

= 2(ΣAA + σ2Im)−1 − diag(ΣAA + σ2Im)−1. (3.49)

from [121, Sec. 17.5.3]. So taking the derivative of the objective function in (3.46)
with respect to ΣAA yields

∂

∂ΣAA

(
tr(Σ−1

YY ΣAA) − log |ΣAA + σ2Im|
)

= 2Σ−1
YY − diag(Σ−1

YY ) − 2(ΣAA + σ2Im)−1 + diag(ΣAA + σ2Im)−1 (3.50)

= 2
(
Σ−1

YY − (ΣAA + σ2Im)−1
)

−
(
diag(Σ−1

YY ) − diag(ΣAA + σ2Im)−1
)
. (3.51)

Notice that the only critical point is ΣYY = Σ⋆
AA + σ2Im, i.e. Σ⋆

AA = HΣXXHT.
The result follows immediately from combining this result with Proposition 3.3 and
Proposition 3.4.

Interestingly, the optimal attack construction depends only on the second order
moments of the state variables, i.e. ΣXX , and the Jacobian matrix H. The variances
of the noise terms are not required to construct the attacks. This implies that the
quality of the measurements from the sensing infrastructure has a limited impact on
the attack construction. The Jacobian matrix H is determined by the topology of
the network and the admittance of the branches, which are of minor difference under
different operation conditions.

In a practical setting, the covariance matrix of the state variables is usually
estimated through the historical data of the state variables. Therefore, historical
data of the state variables is central to the proposed attack construction. From a
practical point of view, making historical data and the topology of the grid available
to the public poses a security threat to the operator. However, the extent to which
historical data aids the attack construction remains to be determined. In fact, due to
practical and operational constraints, it is safe to assume that the attacker gets access
to only partial information about the second order statistics of the state variables.
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In Chapter 5, the attacker is assumed to only get access to a limited number of
samples of the state variables. Other than the exact covariance matrix ΣXX , the
sample covariance matrix is employed to construct the attack. Also the performance
of the attack using the sample covariance matrix is analyzed in Chapter 5 using
RMT tools.

The following proposition characterizes the mutual information loss and the KL
divergence for the stealth attacks in Theorem 3.1.

Proposition 3.5. The mutual information loss induced by the stealth attacks in
Theorem 3.1 is given by

I(Xn;Y m) − I(Xn;Y m
A ) = 1

2
(
log |ΣYY | − log |σ2Im| − log |2Im + σ2Σ−1

YY |
)
. (3.52)

Proof. Note that

I(Xn;Y m) − I(Xn;Y m
A ) = 1

2

(
log |ΣYY ||ΣXX |

|ΣN |
− log |ΣYAYA

||ΣXX |
|Σ|

)

= 1
2

(
log |ΣYY ||ΣXX |

|ΣN |
− log |ΣYAYA

||ΣXX |
|Σ|

)

= 1
2

(
log |ΣYY ||ΣYAYA

− HΣXXHT|
|ΣYAYA

|
− log |σ2Im|

)

= 1
2
(
log |ΣYY | − log |σ2Im| − log |2Im + σ2Σ−1

YY |
)
,

where ΣN is the covariance of the joint Gaussian distribution of (Xn, Y m), i.e. the
distribution of (Xn, Y m) under normal condition, which is given by

ΣN =
 ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im

 . (3.53)

Proposition 3.6. The KL divergence induced by the stealth attack in Theorem 3.1
is given by

D(PY m
A

||PY m) = 1
2
(
m− σ2tr(Σ−1

YY ) − log |2Im − σ2Σ−1
YY |

)
. (3.54)
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Proof. Note that

D(PY m
A

||PY m) = 1
2

(
log |ΣYY |

|ΣYAYA
|

−m+ tr(Σ−1
YY ΣYAYA

)
)

= 1
2
(
tr(2Im − σ2Σ−1

YY ) − log |2Im − σ2Σ−1
YY | −m

)
= 1

2
(
m− σ2tr(Σ−1

YY ) − log |2Im − σ2Σ−1
YY |

)
.

3.4 Numerical Simulation

The IEEE 30-Bus test system and IEEE 118-Bus test system are used to simulate
the DC state estimation setting in which the bus voltage magnitudes are set to 1.0
per unit, c.f. (2.23) and (2.24). Here the bus voltage angles are chosen to be the
state variables, and the power injections and the power flows in both directions are
used as the measurements. The Jacobian matrix H is determined by the branch
reactances of the grid and it is computed using MATPOWER [122].

The optimal attack construction in Theorem 3.1 shows that the covariance matrix
of the attack is a function of the covariance matrix of the state variables. The
result in Theorem 3.1 holds for any positive semi-definite covariance matrix. Since
covariance matrices of weakly stationary random processes are Toeplitz, here to
simplify the simulation, a specific Toeplitz matrix with exponential decay parameter
ρ is adopted [86]. The Toeplitz matrix of dimension n× n with exponential decay
parameter ρ is given by ΣXX = [sij = ρ|i−j|; i, j = 1, 2, . . . , n], i.e.

ΣXX =



1 ρ ρ2 . . . ρn−2 ρn−1

ρ 1 ρ . . . ρn−3 ρn−2

... ... ... . . . ... ...
ρn−2 ρn−3 ρn−4 . . . 1 ρ

ρn−1 ρn−2 ρn−3 . . . ρ 1


. (3.55)

The parameter ρ reflects the correlation strength between the state variables, which
is the correlation strength between the buses connected by branches in the power
system. Under this setting, the utility function of the optimal attack is a function of
the correlation strength ρ and the noise variance σ2. We define the Signal-to-Noise
Ratio (SNR) to be

SNR = 10 log10

(
tr(HΣXXHT)

mσ2

)
. (3.56)
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Fig. 3.1. Performance of the stealth attack in terms of the utility function in (3.26)
for different values of ρ and SNR on IEEE 30-Bus test system.
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Fig. 3.2. Performance of the stealth attack in terms of the utility function in (3.26)
for different values of ρ and SNR on IEEE 118-Bus test system.

As a result, the utility function is a function of the correlation strength ρ and the
SNR at which the grid operates.

3.4.1 Performance of Stealth Attacks

The performance of the optimal attack as measured by the utility function given
by (3.26) is shown in Fig. 3.1 and Fig. 3.2 for IEEE 30-Bus test system and IEEE
118-Bus test system, respectively, in which the maximum value of the utility function,
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Fig. 3.3. Performance of the stealth attack in terms of mutual information (MI) and
KL divergence for different values of ρ and SNR on IEEE 30-Bus test system.

i.e. the worst performance of the attack vector, is represented by a star. Surprisingly,
the performance of the attack is non-monotonic with the correlation strength ρ.
The simulations show that higher values of SNR yield worse performance for the
attacker. Moreover, the performance of the attack is insensitive to the correlation
strength, ρ, for a wide range of correlation values and only becomes significant
when the correlation strength is large. For low and medium range values of the
SNR, the performance of the attack is governed by the SNR and the correlation
strength does not play a significant role. In the high SNR regime, the performance
of the attack does not change significantly with the value of the correlation strength.
This observation contrasts with linearly encoded Gaussian communication systems
in which the impact of correlation is significant even for the cases in which the
correlation strength is low [123]. Furthermore, the performance gain that benefits
from the high correlation strength is more obvious in the power system of large scale.

The tradeoff between the disruption and the probability of attack detection is
shown in Fig. 3.3 and Fig. 3.4 for IEEE 30-Bus test system and 118-Bus test system,
respectively. The performance of the attack is analyzed in terms of the mutual
information, I(Xn;Y m

A ), and the KL divergence, D(PY m
A

||PY m), that the attack
induces. Interestingly, the performance of both objectives of the utility function is
similar and there is no significant difference in the effect of the SNR or the correlation
strength. This suggests that the tradeoff between disruption and detection achieved
by the optimal attack construction does not change significantly with different system
parameters. It is only when the value of the correlation strength is high that the
performance gain obtained in terms of mutual information grows faster than the
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Fig. 3.4. Performance of the stealth attack in terms of mutual information (MI) and
KL divergence for different values of ρ and SNR on IEEE 118-Bus test system.

performance gain obtained from the KL divergence improvement. This is more
significant in larger power system. From a practical point of view, this suggests that
the attacker expects to inflict a similar disruption on the grid for a given probability
of detection regardless of the system parameters ρ and SNR. Furthermore, the
performance of the attack is more sensitive to the correlation strength in larger power
system, which is the same as the results from Fig. 3.1 and Fig. 3.2.

3.4.2 MMSE Degradation and Probability of Detection In-
duced by Stealth Attacks

As proposed in Section 3.2, the objective of the stealth attacks is two-fold. On one
hand, the attacker minimizes the mutual information between the state variables
and the compromised measurements to minimize the amount of information that
the operator obtained from the measurements about the state variables. As stated
in (3.14), minimizing the mutual information leads to an increase in the MMSE of
the estimation. The MMSE degradation induced by the stealth attacks, i.e. Ma
with M given in (2.39), is shown in Fig. 3.5 for IEEE 14-Bus test system and in
Fig. 3.6 for IEEE 30-Bus test system, in which 10, 000 and 20, 000 realizations are
generated for 14-Bus system and 30-Bus system, respectively. It is shown that the
stealth attacks have better performance on MMSE degradation when the correlation
strength ρ is of high value and have quite steady performance when ρ is of low and
medium value, which coincides with the performance of the attacks on the mutual
information objective. Also when SNR is of high value, the stealth attacks have
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Fig. 3.5. MMSE degradation induced by stealth attack for different values of ρ and
SNR on IEEE 14-Bus test system.
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Fig. 3.6. MMSE degradation induced by stealth attack for different values of ρ and
SNR on IEEE 30-Bus test system.

better performance on MMSE degradation, but it is also shown in Fig. 3.3 that the
probability of detection of the attacks is also high when SNR is of high value. So
the attacker needs to tradeoff carefully between the mutual information objective
and the probability of detection objective.

On the other hand, the attacker minimizes the asymptotic probability of detection
by minimizing the KL divergence given in (3.19). For the finite case, the probability
of detection is given by (3.18), which is the probability that the attacks trigger the
LRT given in (3.11). The finite probability of detection in (3.18) and the asymptotic
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Fig. 3.7. Probability of detection of stealth attack for different values of ρ, τ = 1.5
and τ = 2 on IEEE 30-Bus test system when SNR = 20 dB.

probability given by PD ≈ 1 − exp
{
−D(PY m

A
||PY m)

}
are depicted in Fig. 3.7 for

IEEE 30-Bus test system, in which 20,000 realizations are generated for the finite
probability of detection. The detection threshold τ in LRT given by (3.11) is chosen
to be 1.5 and 2, and the SNR is set to be 20 dB. Except that the asymptotic
probability is higher than the finite probability of detection, the finite probability
of detection is similar to the asymptotic probability of detection, i.e. quiet steady
for for wide range of ρ and decrease a little bit when ρ is of large value. But both
the asymptotic probability of detection and the finite probability of detection of
the stealth attacks are high. This implies that when the operator chooses to put
less importance to the probability of false alarm and focuses on the probability of
detection, i.e. chooses a small value for τ , the stealth attack is easy to be detected.

In next chapter, we introduce the generalized stealth attacks, which allow the
attacker set preference between the mutual information objective and the probability
of detection objective. As a result, the attacks lead to a lower probability of detection
for both the asymptotic case and the finite case when the attacker prioritizes the
probability of detection objective.

3.5 Summary

In this chapter, the stealth attacks construction within the Bayesian framework
is proposed using the information-theoretic measures. Specifically the attacker
minimizes the amount of information that the operator obtained about the state
variables from the measurements, which is achieved by minimizing the mutual
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information between the state variables and the compromised measurements. On the
other hand, the attacker minimizes the asymptotic probability of detection under LRT
via minimizing the KL divergence between the distribution with attack and without
attack. The stealth attacks achieve these two contradictive objectives simultaneously
by summing them up, which is a convex optimization for the Gaussian attacks case.
Closed-form expression is obtained for the Gaussian stealth attacks.



Chapter 4

Generalized Information-Theoretic
Stealth Attacks

In this chapter, the stealth attacks in last chapter are generalized by introducing
a weighting parameter to the KL divergence objective that represents the proba-
bility of detection. The weighting parameter allows the attacker to adopt different
tradeoff strategies between the mutual information and the probability of detec-
tion. Closed-form expressions for the generalized stealth attacks and the resulting
probability of detection are proposed for the case that the attacker emphasizes the
probability of detection objective, i.e. the weighting parameter is larger than one.
To provide explicit insight into the relation between the probability of detection and
the weighting parameter, a concentration inequality upper bound is proposed for the
probability of detection, which provides a guideline to the attacker for choosing the
weighting parameter.

4.1 Generalized Stealth Attacks

The aim of the stealth attacks is to minimize the mutual information between the
state variables and the compromised measurements, i.e. minimize I(Xn;Y m

A ), and to
minimize the asymptotic probability of detection by minimizing the KL divergence
between the distribution of the compromised measurements and the distribution
of the uncompromised measurements, i.e. minimizing D(PY m

A
∥PY m). The attacker

combines these two objectives by

I(Xn;Y m
A ) +D(PY m

A
∥PY m) = D(PXnY m

A
∥PXnPY m). (4.1)

The work in Chapter 4 is published in “K. Sun, I. Esnaola, S.M. Perlaza, and H.V. Poor,
“Stealth attacks on the smart grid,” IEEE Trans. Smart Grid (Early Access), 2019.”.

https://ieeexplore.ieee.org/document/8799014
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The resulting optimization problem to construct the stealth attacks is given by

min
Am

D(PXnY m
A

∥PXnPY m). (4.2)

Therein, it is shown that this is a convex optimization problem and the covariance
matrix of the optimal Gaussian attack is Σ⋆

AA = HΣXXHT. The simulation on IEEE
test system shows that the stealth attack has a good performance on the mutual
information, but it also has a high probability of detection.

To address the issue of high probability of detection, a parameter that weights
the detection term in the cost function on the left-hand side of (4.1) is introduced to
allow the attacker tuning the probability of detection. The resulting optimization
problem is given by

min
Am

I(Xn;Y m
A ) + λD(PY m

A
∥PY m), (4.3)

where λ ≥ 1 governs the weight given to each objective in the cost function. It
is interesting to note that for the case in which λ = 1 the proposed cost function
boils down to the effective secrecy proposed in [119] and the attack construction
in (4.3) coincides with that in Theorem 3.1. For λ > 1, the attacker adopts a
conservative approach and prioritizes remaining undetected over minimizing the
amount of information acquired by the operator. By increasing the value of λ,
the attacker decreases the probability of detection at the expense of increasing the
amount of information acquired by the operator via the measurements.

The following lemma proposes an equivalent expression for the optimization
problem in (4.3) for the Gaussian state variables and Gaussian attacks case.

Lemma 4.1. The optimization problem in (4.3) is equivalent to the optimization
problem given by

min
ΣAA∈Sm

+

− (λ− 1) log |ΣYY + ΣAA| − log |ΣAA + σ2Im| + λtr(Σ−1
YY ΣAA). (4.4)

Proof. Combing the objective function in (4.3) with Proposition 3.1 and Proposition
3.2 yields

I(Xn;Y m
A ) + λD(PY m

A
∥PY m)

= 1
2 log |ΣXX ||ΣYAYA

|
|Σ|

+ λ

2

(
log |ΣYY |

|ΣYAYA
|

−m+ tr(Σ−1
YY ΣYAYA

)
)

(4.5)

= 1 − λ

2 log |ΣYY + ΣAA| − 1
2 log |ΣAA + σ2Im| + λ

2 tr(Σ−1
YY ΣAA) + c, (4.6)
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where (4.6) follows from expanding the logarithm terms in (4.5) and combining the
similar terms, in which c is a constant that is only determined by system parameters,
i.e. it is not a function of ΣAA.

We now proceed to solve the optimization problem above. First, note that the
optimization domain Sm

+ is a convex set. The following proposition characterizes the
convexity of the cost function.

Proposition 4.1. Let λ ≥ 1. Then the cost function in the optimization problem in
(4.4) is convex.

Proof. Note that the term − log |ΣAA +σ2Im| is a convex function on ΣAA ∈ Sm
+ [120,

pp. 74]. Additionally, −(λ− 1) log |ΣYY + ΣAA| is a convex function on ΣAA ∈ Sm
+

when λ ≥ 1. Since the trace operator is a linear operator and the sum of convex
functions is still a convex function, it follows that the cost function in (4.4) is convex
on ΣAA ∈ Sm

+ .

As a result, the optimization problem in (4.4) is an optimization problem that
minimizes a convex function within a convex set. The following theorem provides a
closed-form expression for the solution of the optimization problem given in (4.4).

Theorem 4.1. Let λ ≥ 1. Then the solution to the optimization problem in (4.4) is

Σ⋆
AA = 1

λ
HΣXXHT. (4.7)

Proof. Denote the cost function in (4.4) by f(ΣAA). Following the approach utilized
in the proof of Theorem 3.1 and taking the derivative of the cost function in (4.4)
with respect to ΣAA yield

∂f(ΣAA)
∂ΣAA

=−2(λ− 1)(ΣYY + ΣAA)−1 − 2(ΣAA + σ2Im)−1

+2λΣ−1
YY + (λ− 1)diag((ΣYY + ΣAA)−1)

+diag((ΣAA + σ2Im)−1) − λdiag(Σ−1
Y Y ). (4.8)

Note that the critical point satisfies

(λ− 1)(ΣYY + ΣAA)−1 + (ΣAA + σ2Im)−1 − λΣ−1
YY = 0, (4.9)

which has a solution given by Σ⋆
AA = 1

λ
HΣXXHT. The result follows immediately

from combining this result with Proposition 3.4 and Proposition 4.1.
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The generalized stealth attacks given in Theorem 4.1 are also the solution to the
optimization problem given by

min
ΣAA∈Sm

+

I(Xn;Y m
A ) (4.10)

s.t. D(PY m
A

∥PY m) ≤ δ, (4.11)

where δ is an upper bound for the KL divergence between the distribution of
measurements with attacks and without attacks, and

δ ≤ D(PY m
A⋆

∥PY m), (4.12)

in which D(PY m
A⋆

∥PY m) is the KL divergence achieved by the stealth attacks, i.e.
when Σ⋆

AA = HΣXXHT. Here the setting in (4.12) guarantees that the asymptotic
probability of detection of the attacks is smaller than that of the stealth attacks.
The Lagrangian L : Rm×m × R → R associated with the optimization problem in
(4.10) and (4.11) is given by

L (ΣAA, λ) = I(Xn;Y m
A ) + λ

(
D(PY m

A
∥PY m) − δ

)
, (4.13)

in which λ behaves as the Lagrange multiplier. It is easy to see that Σ⋆
AA =

1
λ
HΣXXHT is the saddle point of the Lagrangian function L (ΣAA, λ), as

∂

∂ΣAA

L (ΣAA, λ) = ∂

∂ΣAA

(
I(Xn;Y m

A ) + λD(PY m
A

∥PY m)
)
, (4.14)

which is characterized in Theorem 4.1. Then the optimality of the generalized stealth
attacks follows from the Karush-Kuhn-Tucker conditions [120, pp.243].

Theorem 4.1 shows that the generalized stealth attacks share the same structure
of the stealth attacks in Theorem 3.1 up to a scaling factor determined by λ. The
solution in Theorem 4.1 holds for the case in which λ ≥ 1, and therefore, lacks full
generality. However the case in which λ < 1 yields unreasonably high probability
of detection, which indicates that the proposed attack construction is indeed of
practical interest in a wide range of state estimation settings. Furthermore the
optimization problem in (4.4) results in a non-convex problem when λ < 1 and the
solution obtained above no longer holds.

For the bi-objective optimization problem with objectives

min
Am

I(Xn;Y m
A ) and min

Am
D(PY m

A
∥PY m), (4.15)
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changing the value of λ yields different solutions on the Pareto front of the opti-
mization problem in (4.4). This implies that the solution moves along the Pareto
front when the attacker changes the value of λ. We will show this in the numerical
results in Section 4.3.4. For any λ ≥ 1, Theorem 4.1 guarantees that the generalized
stealth attack is the only Parento efficient solution, i.e. the attack construction that
minimizes the mutual information subject to the probability of detection constraint
being satisfied. By increasing the value of λ the attacker places more importance on
the probability of detection than on the mutual information which results in a more
conservative attack that disrupts less but is more difficult to detect.

Theorem 4.1 also shows that the resulting attack construction is remarkably
simple to implement provided that the information about the system is available to
the attacker. Indeed, the attacker only requires access to the linearized Jacobian
measurement matrix H and the second order statistics of the state variables, but
the variance of the noise introduced by the sensors is not necessary, this is the same
as the stealth attacks in Theorem 3.1. To obtain the Jacobian, a malicious attacker
needs to know the topology of the grid, the admittances of the branches, and the
operation point of the system. On the other hand, the second order statistics of the
state variables can be estimated using historical data, i.e. the covariance matrix of
the state variables can be approximated by the sample covariance matrix. Later
in Chapter 5, we will show that the attack construction with a sample covariance
matrix of the state variables obtained with historical data is always suboptimal when
the attacker has a limited number of training samples, but is asymptotically optimal
when the size of the training data grows to infinity.

For the generalized stealth attack given in Theorem 4.1, the mutual information
induced by the attack is given in the following corollary.

Corollary 4.1. The mutual information between the vector of state variables and
the vector of compromised measurements induced by the optimal attack construction
is given by

I(Xn;Y m
A ) = 1

2 log
∣∣∣∣∣HΣXXHT

(
σ2Im + 1

λ
HΣXXHT

)−1
+ Im

∣∣∣∣∣ . (4.16)

Proof. Combining the generalized stealth attacks given in (4.7) with Proposition 3.1
yields the result.

Corollary 4.1 shows that the mutual information increases monotonically with λ

and that it asymptotically converges to I(Xn;Y m), i.e. the case in which there is
no attack. While the evaluation of the mutual information as shown in Corollary
4.1 is straightforward, the computation of the associated probability of detection
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yields involved expressions that do not provide much insight. For that reason, the
probability of detection of optimal attacks is treated in the following section.

4.2 Probability of Detection

The asymptotic probability of detection of the generalized stealth attacks charac-
terized in Theorem 4.1 is governed by the KL divergence as described in Lemma
2.2. However in the non-asymptotic case, determining the probability of detection is
difficult, and therefore, choosing a value of λ that provides the desired probability
of detection is a challenging task. In this section, we first provide a closed-form
expression of the probability of detection by direct evaluation and show that the
expression does not provide any practical insight over the choice of λ that achieves
the desired detection performance. That being the case, we then provide an upper
bound on the probability of detection, which in turn provides a lower bound on the
value of λ that achieves the desired probability of detection.

4.2.1 Direct Evaluation of Probability of Detection

As stated in Section 3.1.3, the detection within the Bayesian framework is cast as a
hypothesis testing problem with hypotheses

H0 : Y m ∼ N (0,ΣYY ), versus

H1 : Y m ∼ N (0,ΣYAYA
). (4.17)

The LRT between H0 and H1, which is given by

L(y) =
fY m

A
(y)

fY m(y)
H1
≷
H0

τ , (4.18)

is chosen by the operator to detect the attacks due to the optimality from Neyman-
Pearson lemma in Lemma 2.1.

For the LRT with threshold τ in (4.18), the probability of detection of the attacks
is the probability that the likelihood ratio between PY m

A
and PY m is larger than τ for

any realization of Y m
A . As a result, the detection based on the LRT with threshold τ

in (4.18) yields a probability of detection given by

PD
∆= E

[
1{L(Y m

A )≥τ}
]
, (4.19)

where 1{·} is the indicator function. The following theorem particularizes the above
expression to the optimal attack construction described in Theorem 4.1.
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Theorem 4.2. The probability of detection of the LRT in (4.18) for the attack
construction in (4.7) is given by

PD(λ) = P
[
(Up)T∆Up ≥ λ

(
2 log τ + log

∣∣∣Ip + λ−1∆
∣∣∣)] , (4.20)

where p = rank (HΣXXHT), Up ∈ Rp is a vector of random variables with dis-
tribution N (0, Ip), and ∆ ∈ Rp×p is a diagonal matrix with entries given by
(∆)i,i = λi(HΣXXHT)λi(Σ−1

YY ), where λi(A) with i = 1, . . . , p denotes the i-th
eigenvalue of matrix A in descending order.

Proof. Taking the Gaussian p.d.f. of Y m
A , i.e. Y m

A ∼ N (0,ΣYY + Σ⋆
AA) with Σ⋆

AA

given in (4.7), into the probability of detection given in (4.19) yields

PD(λ)=
∫

S
dPY m

A
(4.21)

= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S

exp
{

−1
2yTΣ−1

YAYA
y
}

dy, (4.22)

where the integration domain S only contains the realizations of Y m
A that yield a

likelihood ratio value larger than τ , i.e.

S= {y ∈ Rm : L(y) ≥ τ} (4.23)

=
y ∈ Rm : |ΣYY | 1

2

|ΣYAYA
| 1

2
exp

{
−1

2yTΣ−1
YAYA

y + 1
2yTΣ−1

YY y
}

≥ τ

 (4.24)

=
{
y ∈ Rm : yT∆0y ≥ 2 log τ + log |Im + ΣAAΣ−1

YY |
}
, (4.25)

where (4.24) follows from taking Y m
A ∼ N (0,ΣYY + Σ⋆

AA) into (4.18); and (4.25)
follows from taking logarithm on both sides of the inequality in (4.24) with ∆0

∆=
Σ−1

YY − Σ−1
YAYA

.
Let ΣYY = UYY ΛYY UT

YY where ΛYY ∈ Rm×m is a diagonal matrix containing the
eigenvalues of ΣYY in descending order and UYY ∈ Rm×m is a unitary matrix whose
columns are the eigenvectors of ΣYY ordered matching the order of the eigenvalues.
Noticing that

Σ⋆
AA = 1

λ
HΣXXHT = 1

λ

(
ΣYY − σ2Im

)
(4.26)

and

ΣYAYA
= ΣYY + Σ⋆

AA = HΣXXHT + σ2Im + 1
λ

HΣXXHT (4.27)

are also diagonalized by UYY .
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Applying the change of variable

y1
∆= UYY y (4.28)

in (4.22) results in

PD(λ)= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S

exp
{

−1
2yTΣ−1

YAYA
y
}

dy (4.29)

= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S

exp
{

−1
2(UYY y)TΛ−1

YAYA
UYY y

}
dy (4.30)

= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S1

exp
{

−1
2yT

1 Λ−1
YAYA

y1

}
dy1, (4.31)

where ΛYAYA
∈ Rm×m denotes the diagonal matrix containing the eigenvalues of

ΣYAYA
in descending order. Also the integration domain S is changed into S1, which

is given by

S1 =
{
y1 ∈ Rm : yT

1 ∆1y1 ≥ 2 log τ + log |Im + ΛAAΛ−1
YY |

}
, (4.32)

where ∆1
∆= Λ−1

YY − Λ−1
YAYA

and ΛAA denotes the diagonal matrix containing the
eigenvalues of ΣAA in descending order.

Further applying the change of variable

y2
∆= Λ−1

2
YAYA

y1 (4.33)

for (4.31) results in

PD(λ)= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S1

exp
{

−1
2yT

1 Λ−1
YAYA

y1

}
dy1 (4.34)

= 1
(2π)m

2 |ΣYAYA
|

1
2

∫
S1

exp
{

−1
2

(
Λ−1

2
YAYA

y1

)T
Λ−1

2
YAYA

y1

}
dy1 (4.35)

= 1√
(2π)m

∫
S2

exp{−1
2yT

2 y2}dy2, (4.36)

with the transformed integration domain given by

S2 =
{
y2 ∈ Rm : yT

2 ∆2y2 ≥ 2 log τ + log |Im + ∆2|
}
, (4.37)

with

∆2
∆= ΛAAΛ−1

YY . (4.38)
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Setting ∆ ∆= λ∆2, the result given by

rank(∆) = rank(∆2) = rank(ΛAAΛ−1
YY ) = rank(ΛAA) = rank(HΣXXHT) (4.39)

follows immediately from the fact that ΛYY is of full rank and diagonal. Combining
(4.39) and (4.37) yield the theorem.

Theorem 4.2 shows that the probability of detection is equivalent to the probability
that a weighted sum of independent χ2 random variables exceeds a certain threshold.
In our setting, the threshold is determined by the tradeoff parameter λ. Notice
that the left-hand term (Up)T∆Up in (4.20) is a weighted sum of independent χ2

distributed random variables with a single degree of freedom where the weights are
determined by the diagonal entries of ∆ which depend on the second order statistics
of the state variables, the Jacobian measurement matrix, and the variance of the
noise; i.e. the attacker has no control over this term. The right-hand side contains
in addition λ and τ , and therefore, the probability of attack detection is described
as a function of the parameter λ.

The probability of false alarm of the LRT given in (3.11) for the attack construction
in (4.7) is given by

PFA
∆= E

[
1{L(Y m)≥τ}

]
. (4.40)

As we focus on the probability of detection in this thesis, the probability of false
alarm is proved in Appendix C using the same approach in Theorem 4.2, which is
also equivalent to the probability that a weighted sum of independent χ2 random
variables exceeds a certain threshold.

Unfortunately, no closed-form expression is available for the distribution of posi-
tively weighted sum of independent χ2 random variables with one degree of freedom
[124]. To solve this problem, some moment matching approximation techniques
approximate this distribution by matching the moment of this distribution to some
order, such as the Lindsay-Pilla-Basak (LPB) method [125]. But the resulting expres-
sions are complex and the relation of the probability of detection with λ is difficult to
describe analytically following this course of action. As a result, both the closed-form
expression in Theorem 4.2 and the moment matching methods provide no detailed
insight into the relation between the probability of detection and λ. So there is no
clue for the attacker to choose the suitable λ that achieves a certain probability of
detection.
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In the following, an upper bound on the probability of attack detection is derived.
The upper bound is then used to provide a simple lower bound on the value λ that
achieves the desired probability of detection.

4.2.2 Upper Bound for Probability of Detection

In this section, a lower bound for λ that yields an upper bound on the probability of
detection is proposed using concentration inequality result. This gives the attacker a
guideline in choosing suitable λ to achieve a certain probability of detection. The
concentration inequality result, or χ2 tail inequality, that is used in the proof later is
provided first.

Lemma 4.2. [126, Proposition 1.1] Let A ∈ Rn×n be a matrix, and let Σ̃ = ATA.
Let Qn be an isotropic multivariate Gaussian random vector with mean zero. For all
t > 0,

P
[
(Qn)TΣ̃Qn > tr(Σ̃) + 2

√
tr(Σ̃2)t+ 2∥Σ̃∥∞t

]
≤ e−t, (4.41)

where ∥Σ̃∥∞ is the spectral norm of matrix Σ̃.

The isotropic multivariate Gaussian random vector implies that Qn ∼ N (0, σ2
1In),

i.e. the elements of Qn share the same variance σ2
1. For any diagonal matrices, the

spectral norm of the matrix is the maximum entries of the matrix, which is equivalent
to the infinity norm of the matrix.

Note that when σ2
1 = 1 in Lemma 4.2 the expected value of (Qn)TΣ̃Qn is tr(Σ̃).

So the concentration inequality result in Lemma 4.2 shows that the probability of
(Qn)TΣ̃Qn deviating the mean by 2

√
tr(Σ̃2)t + 2∥Σ̃∥∞t is upper bounded by e−t

for all t > 0. Interestingly the left-hand term (Up)T∆Up in (4.20) is identical to
(Qn)TΣ̃Qn when Σ̃ = ∆. As a result, an upper bound for the probability of detection
can be obtained using the concentration inequality result in Lemma 4.2.

In the following, the concentration inequality upper bound for probability of
detection is proposed.

Theorem 4.3. Let τ > 1 be the decision threshold of the LRT. For any t > 0 and
λ ≥ max (λ⋆(t), 1) then the probability of attack detection satisfies

PD(λ) ≤ e−t, (4.42)

where λ⋆(t) is the only positive solution of λ satisfying

2λ log τ − 1
2λtr(∆2) − 2

√
tr(∆2)t−2∥∆∥∞t = 0. (4.43)
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Proof. We start with the result of Theorem 4.2 which gives

PD(λ) = P
[
(Up)T∆Up ≥ λ

(
2 log τ + log

∣∣∣Ip + λ−1∆
∣∣∣)] . (4.44)

Note that ∆ is a diagonal matrix, we now proceed to expand the term log |Ip + λ−1∆|
using the Taylor series expansion, which results in

log
∣∣∣Ip + λ−1∆

∣∣∣
=

p∑
i=1

log
(
1 + λ−1(∆)i,i

)
(4.45)

=
p∑

i=1

 ∞∑
j=1

(λ−1(∆)i,i)2j−1

2j − 1 − (λ−1(∆)i,i)2j

2j

 . (4.46)

Since

(∆)i,i = λi(HΣXXHT)λi(Σ−1
YY ) = λi(HΣXXHT)

λi(HΣXXHT) + σ2 ≤ 1 (4.47)

for i = 1, . . . , p and λ ≥ 1, then λ−1(∆)i,i ≤ 1 and

(λ−1(∆)i,i)2j−1

2j − 1 − (λ−1(∆)i,i)2j

2j ≥ 0, for j ∈ Z+. (4.48)

Thus, (4.46) is lower bounded by the second order Taylor expansion, i.e.,

log |Ip + ∆| ≥
p∑

i=1

(
λ−1(∆)i,i − (λ−1(∆)i,i)2

2

)
(4.49)

≥ 1
λ

tr(∆) − 1
2λ2 tr(∆2). (4.50)

Substituting (4.50) in (4.44) yields

PD(λ) ≤ P
[
(Up)T∆Up ≥ tr(∆) + 2λ log τ − 1

2λtr(∆2)
]
. (4.51)

Note that E
[
(Up)T∆Up

]
= tr(∆), and therefore, evaluating the probability in (4.51)

is equivalent to evaluating the probability of (Up)T∆Up deviating 2λ log τ − 1
2λ

tr(∆2)
from the mean. In view of this and using Lemma 4.2, the right-hand side in (4.51) is
upper bounded by

PD(λ)≤ P
[
(Up)T∆Up ≥ tr(∆) + 2

√
tr(∆2)t+ 2∥∆∥∞t

]
(4.52)

≤ e−t (4.53)
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for t > 0 when

2λ log τ − 1
2λtr(∆2) ≥ 2

√
tr(∆2)t+ 2∥∆∥∞t (4.54)

is satisfied.
The expression in (4.54) is rewritten as

(2 log τ)λ2 −
(

2
√

tr(∆2)t+ 2∥∆∥∞t
)
λ− 1

2tr(∆2) ≥ 0. (4.55)

When τ ≥ 1, it is clear that the quadratic equation on the left-hand side of (4.55) is
convex and goes through the point

(
0,−1

2tr(∆2)
)
. Then the quadratic equation on

the left-hand side of (4.55) is satisfied with equality for two values of λ, one is strictly
negative and the other one is strictly positive denoted by λ∗(t), which is given by

λ⋆(t) =

(
2
√

tr(∆2)t+2∥∆∥∞t
)

+
√(

2
√

tr(∆2)t+2∥∆∥∞t
)2

+4tr(∆2)logτ

4logτ . (4.56)

The result follows by noticing that the left-hand term of (4.55) increases monotonically
for λ ≥ λ⋆(t) and choosing λ ≥ max (λ⋆(t), 1). This concludes the proof.

It is interesting to note that for large values of λ the probability of detection
decreases exponentially fast with λ. We show in the numerical results section below
that the regime in which the exponentially fast decrease kicks-in does not align with
the saturation of the mutual information loss induced by the attack.

The assumption that τ > 1 is a realistic setting. When τ = 1, the probability of
false alarm is one for the LRT given in (4.18), as the likelihood ratio always equals
to one for every realization of Y m. Considering the unreasonable high probability of
false alarm, the operator of the power system has to set τ > 1. Usually λ is of some
small or moderate value, as high value of λ results in a low probability of detection.

The expression in (4.46) is also lower bounded by the higher order Taylor ex-
pansion, which leads to a tighter lower bound. However, the Taylor expansion of
higher order also increases the order of the inequality given in (4.50). This, in turn,
results in a λ⋆ that is less intuitive. The generalization to higher order terms is
straightforward.

The addition of the requirement that λ ≥ 1 into λ ≥ λ∗(t) comes from the
definition of the generalized stealth attacks, in which λ has to be greater than or
equal to one. Usually for the power system λ∗(t) is greater than one, especially for
the power systems of large scale. This is from the fact that the

√
tr(∆2)t+ 2∥∆∥∞t



4.3 Numerical Evaluation 65

term in the nominator of (4.56) is usually larger than 2 log τ for small and moderate
values of τ , and increases as the size of the grid increases.

4.3 Numerical Evaluation

In this section, we present simulations to evaluate the performance of the proposed
attack strategy in practical state estimation settings. In particular, the IEEE 14-
Bus, 30-Bus, and 118-Bus test systems are considered in the simulation. In state
estimation with linearized dynamics, the Jacobian measurement matrix is determined
by the operation point, see (2.15). We assume a DC state estimation scenario, in
which we set the resistances of the branches to 0 and the bus voltage magnitude to
1.0 per unit, c.f. (2.23) and (2.24). Note that in this setting it is sufficient to specify
the network topology, the branch reactances, real power flow, and the power injection
values to fully characterize the system. Specifically, we use the IEEE test system
framework provided by MATPOWER [122]. We choose the bus voltage angles to
be the state variables, and use the power injection and the power flows in both
directions as the measurements.

As stated in Section 4.2.1, there is no closed-form expression for the distribution
of a positively weighted sum of independent χ2 random variables, which is required
to calculate the probability of detection of the generalized stealth attacks as shown
in Lemma 4.2. For that reason, we use the LPB method and the MOMENTCHI2
package [127] to numerically evaluate the probability of attack detection.

The simulation setting is the same as in Section 3.4. The covariance matrix
of the state variables is assumed to be a Toeplitz matrix with exponential decay
parameter ρ, where the exponential decay parameter ρ determines the correlation
strength between different entries of the state variable vector. The performance of
the generalized stealth attack is a function of weight given to the detection term in
the attack construction cost function, i.e. λ, the correlation strength between state
variables, i.e. ρ, and the SNR of the power system which is defined in (3.56).

4.3.1 Performance of Generalized Stealth Attacks

Fig. 4.1 and Fig. 4.2 depict the performance of the optimal attack construction given
in (4.7) for different values of ρ with SNR = 10 dB and SNR = 20 dB, respectively,
when λ = 2 and τ = 2. Interestingly, the performance of the attack construction
does not change monotonically with correlation strength, which suggests that the
correlation among the state variables does not necessarily provide an advantage
to the attacker. Admittedly, for a small or moderate value of ρ, the performance
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Fig. 4.1. Performance of the generalized stealth attack in terms of mutual information
and probability of detection for different values of ρ when λ = 2, τ = 2, and
SNR = 10 dB.
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Fig. 4.2. Performance of the generalized stealth attack in terms of mutual information
and probability of detection for different values of ρ when λ = 2, τ = 2, and
SNR = 20 dB.

of the attack does not change significantly with ρ for both objectives. This effect
is more noticeable in the high SNR scenario. However, for large values of ρ the
performance of the attack improves significantly in terms of both mutual information
and probability of detection. Moreover, the advantage provided by large values of ρ is
more significant for the 118-Bus system than for the 30-Bus system, which indicates
that the correlation between the state variables is easier to exploit for the attacker
in large systems.
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Fig. 4.3. Performance of the generalized stealth attack in terms of mutual information
and probability of detection for different values of λ and system size when ρ = 0.1,
ρ = 0.9, SNR = 10 dB and τ = 2.
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Fig. 4.4. Performance of the generalized stealth attack in terms of mutual information
and probability of detection for different values of λ and system size when ρ = 0.1,
ρ = 0.9, SNR = 20 dB and τ = 2.

Fig. 4.3 and Fig. 4.4 depict the performance of the optimal attack construction
for different values of λ and ρ with SNR = 10 dB and SNR = 20 dB, respectively,
when τ = 2. As expected, larger values of the parameter λ yield smaller values of the
probability of attack detection while increasing the mutual information between the
state variables vector and the compromised measurement vector. We observe that
the probability of detection decreases approximately linearly with respect to log λ for
moderate values of λ. On the other hand, Theorem 4.3 states that for large values of
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λ the probability of detection decreases exponentially fast to zero. However, for the
range of values of λ in which the decrease of probability of detection is approximately
linear with respect to log λ, there is no significant reduction in the rate of growth
of mutual information. In view of this, the attacker needs to choose the value of λ
carefully as the convergence of the mutual information to the asymptote I(Xn;Y m)
is slower than that of the probability of detection to zero.

The comparison between the 30-Bus and 118-Bus systems shows that for the
smaller size system the probability of detection decreases faster to zero while the
rate of growth of mutual information is smaller than that on the larger system. This
suggests that the choice of λ is particularly critical in large size systems as smaller
size systems exhibit a more robust attack performance for different values of λ. The
effect of the correlation between the state variables is significantly more noticeable
for the 118-bus system. While there is a performance gain for the 30-bus system
in terms of both mutual information and probability of detection due to the high
correlation between the state variables, the improvement is more noteworthy for the
118-bus case. Remarkably, the difference in terms of mutual information between
the case in which ρ = 0.1 and ρ = 0.9 increases as λ increases, which indicates that
the cost in terms of mutual information of reducing the probability of detection is
large in the small values of correlation.

The performance of the upper bound given by Theorem 4.3 on the probability of
detection for different values of λ and ρ when τ = 2 and SNR = 10 dB is shown in
Fig. 4.5. Similarly, Fig. 4.6 depicts the upper bound with the same parameters but
with SNR = 20 dB. As shown by Theorem 4.3 the bound decreases exponentially
fast for large values of λ. Still, there is a significant gap in the probability of attack
detection evaluated numerically. This is partially due to the fact that our bound
is based on the concentration inequality in Lemma 4.2 which introduces a gap of
more than an order of magnitude. Interestingly, the gap decreases when the value of
ρ increases although the change is not significant. More importantly, the bound is
tighter for lower values of SNR for both 30-bus and 118-bus systems.

4.3.2 MMSE Degradation Induced by Generalized Stealth
Attacks

As stated in Section 3.2.1, the minimization of the mutual information between
the state variables and the measurements leads to an increase in the MMSE of the
estimation. Fig. 4.7 and Fig. 4.8 depict the MMSE degradation induced by the
generalized stealth attacks on IEEE 14-Bus test system and IEEE 30-Bus test system
when ρ = 0.1 and ρ = 0.9 for different values of SNR and λ, in which the setting is
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Fig. 4.5. Upper bound on probability of detection given in Theorem 4.3 for different
values of λ when ρ = 0.1 or 0.9, SNR = 10 dB, and τ = 2.
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Fig. 4.6. Upper bound on probability of detection given in Theorem 4.3 for different
values of λ when ρ = 0.1 or 0.9, SNR = 20 dB, and τ = 2.

the same as the setting in Section 3.4.2. It is shown that the MMSE degradation is a
monotonically decreasing function of λ, adding the fact that the mutual information
is a monotonically increasing function of λ, this verifies the conclusion that the
minimization of mutual information leads to an increase in MMSE. Comparing Fig.
4.7 and Fig. 4.8 with Fig. 4.3 and Fig. 4.4, it is found that although the mutual
information between the state variables and the compromised measurements increases
linearly with log λ, the MMSE degradation induced by the attacks decreases faster
when λ is of small and medium values and starts to flat when λ continues to increase.
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Fig. 4.7. MMSE degradation induced by the generalized stealth attacks on IEEE
14-Bus test system when ρ = 0.1 and ρ = 0.9 for different values of SNR and λ.
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Fig. 4.8. MMSE degradation induced by the generalized stealth attacks on IEEE
30-Bus test system when ρ = 0.1 and ρ = 0.9 for different values of SNR and λ.

So when the attacker chooses a large value for λ, the performance of the attacks on
MMSE is not as good as the performance of the attacks on mutual information.

4.3.3 Sensitivity of Attacks to System Information

As shown in Theorem 4.1 the construction of generalized stealth attacks requires
knowledge of the linearized Jacobian matrix H. In practical settings, it is reasonable
to assume that the attacker only has access to imperfect system information and that
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Fig. 4.9. Performance of generalized stealth attack in terms of mutual information
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∆ and λ on IEEE 14-Bus system
when ρ = 0.1, τ = 2, and SNR = 20 dB. The marker represents the same value of λ
is used in the attack construction.
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Fig. 4.10. Performance of generalized stealth attack in terms of mutual information
and probability of detection for different values of σ2

∆ and λ on IEEE 30-Bus system
when ρ = 0.1, τ = 2, and SNR = 20 dB. The marker represents the same value of λ
is used in the attack construction.

the Jacobian matrix available during the attack construction is not the real one. For
that reason, in the following we numerically analyze the attack performance when
the Jacobian matrix is not perfectly known by the attacker and instead a postulated
mismatched Jacobian matrix is employed by the attacker. Specifically, we model
the Jacobian matrix available to the attacker as H + ∆H where ∆H is a matrix
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modeling the mismatch introduced by imperfect system information. Uncertainty
about the operating point and the dynamics of the power system suggest that it
is reasonable to assume a random mismatch framework. That being the case, we
model the mismatch as a random matrix with entries given by

(∆H)i,j =
 ∆, for (H)i,j ̸= 0

0, otherwise,
(4.57)

for i = 1, . . . ,m, and j = 1, . . . , n, where each entry of the matrix are determined by
the independent random variables ∆ ∼ N (0, σ2

∆).
Fig. 4.9 depicts the performance of the generalized stealth attack in terms of the

mutual information and the probability of detection for different values of σ2
∆ and λ

on the IEEE 14-Bus system when ρ = 0.1, τ = 2, and SNR = 20 dB. We generate
100 realizations of the mismatched Jacobian matrix per point and for each realization
of the Jacobian matrix we evaluate 1000 realizations of the state variables. The
curve corresponding to the perfect Jacobian matrix case, i.e. σ2

∆ = 0, describes the
Pareto optimal front. As expected, when the mismatch of the Jacobian matrix that
is available to the attacker increases the performance decreases and moves away from
the Pareto front. Interestingly, the performance decrease is smooth and the shape of
the curve does not change significantly, which suggests that the tradeoff behavior
between the disruption introduced by the attacker and the probability of detection
is maintained in the mismatched case. It is also worth noticing that, with larger
values of mismatch, the probability of detection increases faster than the mutual
information decreases. In view of this, it seems that the stealth of the attack is more
severely impacted by the imperfect system information than the disruption. Fig.
4.10 depicts the performance on the IEEE 30-Bus system with the same parameters.
Comparing 14-Bus system and 30-Bus system, it easy to see that the performance of
the attacker, both mutual information and probability of detection, decreases when
mismatch, i.e. σ2

∆, increases. But the decrease of performance on IEEE 30-Bus test
system is more slowly than that in IEEE 14-Bus test for both the mutual information
and the probability of detection. This implies that the uncertainty of H affects the
larger network less, i.e. larger networks exhibit more robust attack construction
scenarios and the construction of stealth attacks is simpler in larger networks.

4.3.4 Performance and Sensitivity under AC State Estima-
tion

In the AC state estimation case the iterative estimation methods require a nominal
operation point that is updated for each iteration. When the attacker has perfect
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Fig. 4.11. Performance of generalized stealth attack in terms of mutual information
and probability of detection for different values of σ̃2

∆ and λ on IEEE 14-Bus system
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Fig. 4.12. Performance of generalized stealth attack in terms of mutual information
and probability of detection for different values of σ̃2

∆ and λ on IEEE 30-Bus system
when ρ = 0.1, τ = 2, and SNR = 20 dB. The marker represents the same value of λ
is used in the attack construction.

information about the operation point in each iteration, i.e. perfect information
about Jacobian matrix H in each iteration, the resulting mutual information and
probability of detection follow from Corollary 4.1 and Theorem 4.2 directly. In the
following, we study the impact of imperfect nominal operation point information on
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the attack performance. In particular, the generalized stealth attacks are constructed
as Am

0 ∼ N (0, 1
λ
H0ΣXXHT

0 ), where H0 is the Jacobian matrix at the nominal
operation point x0 and is given by

H0 = ∂

∂Xn
H(Xn)m|Xn=x0 , (4.58)

with H(Xn) ∈ Rm denoting the vector of random variables induced by the nonlinear
relation between the state variables and the measurements. To model the imperfect
knowledge of the nominal point, the nominal linearization point is perturbed with
random variable ∆̃ ∼ N (0, σ̃2

∆I) resulting in the Jacobian matrix H̃ given by

H̃ = ∂

∂Xn
H(Xn)m|

Xn=x0+∆̃. (4.59)

Note that the introduction of this random perturbation gives us a way to control the
strength of the perturbation, i.e. the uncertainty over the nominal linearization point,
and as a result, we study the sensitivity of the attacks under AC state estimation by
changing the variance σ̃2

∆ in the simulations.
Fig. 4.11 depicts the performance of the generalized stealth attacks in terms of

the mutual information and the probability of detection for different values of σ2
∆ and

λ on the IEEE 14-Bus system when ρ = 0.1, τ = 2, and SNR = 20 dB. Similarly Fig.
4.12 shows the performance of the attacks under the same setting on IEEE 30-Bus
system. We generate 200 realizations of ∆̃ per point and for each realization of ∆̃
we evaluate 2000 realizations of the state variables. The curve corresponding to the
case when σ̃2

∆ = 0 describes the performance of the attacks with perfect knowledge
of the nominal operation point. As expected, when there is less accurate knowledge
about the nominal operation point, i.e. σ̃2

∆ increases, the performance of the attack
Am

0 decreases. Interestingly the performance decrease translates in a larger value of
mutual information for all cases. However, the change in probability of detection
is not as significant, to the extent that in some cases the probability of detection
decreases. Note that this is different from the results in Section 4.3.3, in which both
the mutual information and probability of detection decrease simultaneously as a
result of imperfect system information. For all cases, overall the attack performance
decreases when perfect operation point is not available. Interestingly, the stealth of
the attacks is more robust for the IEEE 30-Bus system than for the IEEE 14-Bus
system, which suggests that the attacker is better positioned to cope with system
uncertainty for larger networks.
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4.4 Summary

The stealth attacks in Chapter 3 are generalized by adding a weighting parameter to
the KL divergence term that represents the probability of detection in the objective of
stealth attacks. The introducing of the weighting parameter allows the attacker taking
different tradeoff strategies between the two contradictive objectives, i.e. mutual
information and probability of detection. The closed-form expression is proposed
for the generalized stealth attacks when the attacker prioritizes the probability of
detection over the caused disruption, i.e. the weighted parameter is larger than
or equal to one. Changing the value of the weighting parameter allows the closed-
form solution moves along the Pareto front between the mutual information and
probability of detection. Closed-form expression is also proposed for the probability
of detection of the generalized stealth attacks, but it provides no insight into the
relation between the probability of detection and the weighting parameter. To
that end, a concentration inequality upper bound for the probability of detection is
proposed to provide a guideline for the attacker to choose the weighting parameter.





Chapter 5

Learning Requirements for Stealth
Attacks

Both the stealth attacks in Theorem 3.1 and the generalized stealth attacks in
Theorem 4.1 require the Jacobian matrix and the second order statistics of the state
variables, i.e. H and ΣXX , to construct the attacks. In Section 4.3.3 and Section 4.3.4,
we numerically evaluate the impact of having access to an imperfect Jacobian matrix
on the performance of the attacks. Therein, we show that the attacks constructed
using an imperfect Jacobian matrix impose performance degradation on both mutual
information and probability of detection. In this chapter, we analyze the impact
of imperfect knowledge of the second order statistics of the state variables on the
performance of the attacks. Specifically, we focus on the scenario that the attacker
only gets access to a limited number of samples of the state variables, and estimates
the second order statistics of the state variables via the sample covariance matrix of
the samples. Here we use RMT tools to characterize the performance of the attacks
constructed using the sample covariance matrix in substitution of the second order
moments for the non-asymptotic case and the asymptotic case.

5.1 Stealth Attacks Using Imperfect Second Or-
der Statistics

5.1.1 Statistical Learning Setting

Theorem 3.1 shows that the stealth attack construction is given by Σ⋆
AA = HΣXXHT,

which implies that the attacker needs the Jacobian matrix, i.e. H, and the covariance

The non-asymptotic part in Chapter 5 is published in “K. Sun, I. Esnaola, A.M Tulino and
H.V. Poor, “Learning requirements for stealth attacks”, in Proc. IEEE Int. Conf. on Acoust.,
Speech, and Signal Process., Brighton, UK, May 2019, pp. 8102-8106.”.

https://ieeexplore.ieee.org/document/8682919
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matrix of the state variables, i.e. ΣXX , to construct attacks. In the following, we
study the performance of the attack when the second order statistics are not perfectly
known by the attacker but the linearized Jacobian measurement matrix is known.
We model the partial knowledge of the attacker about the covariance matrix by
assuming that the attacker has access to a given number of samples of the state
variables. Specifically, we assume that the training data set consisting of k state
variable realizations {Xn

i }k
i=1 is available to the attacker. Since the sample covariance

matrix is an unbiased estimate of the covariance matrix of the state variables and
is asymptotically optimal, the sample covariance matrix is computed to estimate
the second order statistics from the training data. That being the case, the sample
covariance matrix of k realizations is given by

SXX = 1
k − 1

k∑
i=1

Xn
i (Xn

i )T. (5.1)

Given the optimal expression in Theorem 3.1, the stealth attacks constructed using
the sample covariance matrix follow a multivariate Gaussian distribution given by

Ãm ∼ N (0,ΣÃÃ), (5.2)

where ΣÃÃ = HSXXHT is the covariance matrix of Ãm.
Recall that the objective of the stealth attacks is to minimize the cost function

given by

min
Am

D(PXnY m
A

∥PXnPY m). (5.3)

With the estimated statistics in (5.1), the KL divergence in (5.3) conditioned on the
covariance matrix obtained from the training data becomes

D(PXnY m
Ã

|SXX
∥PXnPY m|PSXX

), (5.4)

where PXnY m
Ã

|SXX
is the conditional joint distribution of (Xn, Y m

Ã
), in which

Y m
Ã = HXn + Zm + Ãm (5.5)

and ΣÃÃ = HSXXHT; and PSXX
is the distribution of SXX .

5.1.2 Suboptimality of the Learning Attacks

The following lemma shows that the objective function in (5.3) for exact statistics is
a lower bound on the KL divergence conditioned on the training data given by (5.4).
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Before introducing the lower bound, Jensen’s inequality is reviewed first to aid
the later proof.

Lemma 5.1. [22, Theorem 2.6.2] If f is a convex function and X is a random
variable, then

E [f(X)] ≥ f (E [X]) . (5.6)

If f is strictly convex, the equality in (5.6) implies that X = E [X] with probability 1.

Using Jensen’s inequality obtains the following lemma.

Lemma 5.2. The conditional divergence for the attack vector construction with
covariance matrix ΣÃÃ = HSXXHT in (5.4) is lower bounded by the divergence in
(5.3) with Σ⋆

AA = HΣXXHT, that is

D(PXnY m
Ã

|SXX
∥QXnY m|PSXX

) ≥ D(PXnY m
A⋆

∥QXnY m), (5.7)

where PXnY m
A⋆

is the joint distribution of (Xn, Y m
A⋆) when the optimal attack is con-

structed, and QXnY m = PXnPY m.

Proof. We have that

D
(
PXnY m

Ã
|SXX

∥QXnY m |PSXX

)
= D

(
PXnY m

Ã
|SXX

∥QXnY m|SXX
|PSXX

)
(5.8)

= ESXX

[
D(PXnY m

Ã
|SXX=S∥QXnY m|SXX=S)

]
(5.9)

= 1
2ESXX

[
tr(Σ−1

YY ΣÃÃ)
]

− 1
2ESXX

[
log |ΣÃÃ + σ2Im|

]
− 1

2 log |Σ−1
YY | (5.10)

≥ 1
2tr

(
Σ−1

YY Σ⋆
AA

)
− 1

2 log
∣∣∣Σ⋆

AA + σ2Im

∣∣∣− 1
2 log

∣∣∣Σ−1
YY

∣∣∣ (5.11)

= D
(
PXnY m

A⋆
∥QXnY m

)
, (5.12)

where (5.8) follows from the independence of Xn and Y m with respect to SXX ; (5.9)
follows from the definition of conditional divergence in Appendix A.11; (5.10) follows
from taking the Gaussianity of (Xn, Y m

Ã
), i.e.

(Xn, Y m
Ã ) ∼ N

0,

 ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im + ΣÃÃ

 , (5.13)

and the Gaussianity of QXnY m into Proposition 3.2; and (5.11) follows from Jensen’s
inequality and the fact that − log |V| is a convex function of V ∈ Sm

+ . The proof
completes.
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Lemma 5.2 shows that the KL divergence achieved by the attack conditioned on
the training data is higher than the performance of the attack construction with
exact statistics. This implies that the attacks constructed using sample covariance
matrix are always suboptimal. However, the performance of the attack constructed
by the sample covariance matrix converges asymptotically in k to that of the attack
constructed by the exact covariance matrix. Therefore, the speed of convergence
needs to be characterized to analyze the performance of the attacks constructed
using the sample covariance matrix.

The sample covariance matrix of samples from zero mean multivariate Gaussian
distribution follows a central Wishart distribution, c.f. (B.2). As a result, the sample
covariance matrix in (5.1) is a random matrix with central Wishart distribution
given by

SXX ∼ 1
k − 1Wn(k − 1,ΣXX), (5.14)

the ergodic counterpart of the cost function in (5.3) is defined in terms of the
conditional KL divergence given by

ESXX

[
D
(
PXnY m

A |SXX
∥PXnPY m

)]
. (5.15)

The ergodic cost function characterizes the expected performance of the attack
averaged over the realizations of the training data. In the next section, we introduce
an upper bound for the ergodic performance of attacks constructed using sample
covariance matrix under the non-asymptotic setting.

5.2 Bounds for Non-asymptotic Ergodic Perfor-
mance

As just stated before, the sample covariance matrix follows the central Wishart
distribution gave in (5.14), and therefore, the cost function in (5.3) is a random
variable. Here we focus on the ergodic performance, i.e. the expected value of the
distribution, which describes the expected performance of the attack constructed
using sample covariance matrix. In the following, RMT tools are used to characterize
the distribution of the performance in (5.3) for the non-asymptotic case and the
asymptotic case. As covered in Appendix B, the asymptotic analysis of RMT shows
the limiting distribution of a function of the eigenvalues of random matrix when
the dimensions of the random matrix go to infinity with a given ratio between the
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dimensions. On the other hand, the non-asymptotic analysis of RMT focuses on the
condition that the dimension and number of samples are of finite values.

In this section, we focus on the non-asymptotic scenario. Specifically RMT tools
are utilized to propose an upper bound for the ergodic performance of the attacks
using the sample covariance matrix and study it within the non-asymptotic scenario.
The proposed upper bound converges to the ergodic performance when the number
of samples increases. Adding the fact that the performance of the attacks using
sample covariance matrix is lower bounded by the performance of the attacks using
the exact covariance matrix, i.e. Lemma 5.2, the proposed upper bound and the
performance of the attacks using the exact covariance matrix regulates the ergodic
performance of the attacks.

In the next subsection, some auxiliary results for Wishart matrices are presented
to aid the derivation of the upper bound later.

5.2.1 Auxiliary Non-asymptotic Results using RMT

The standard Gaussian matrix is a matrix whose entries are independent standard
normal random variables, and therefore, the maximum singular value of the standard
Gaussian matrix is a random variable. The following lemma shows that under
certain moment constraints the maximum singular value of the Gaussian matrix is a
sub-gaussian random variable with variance smaller than one.

Before we introduce the lemma, two auxiliary definitions are presented.

Definition 5.1. A function f : R(k−1)×l → R is a C-Lipschitz function when

|f(A) − f(B)| ≤ C∥A − B∥2 (5.16)

holds for any matrix A and B in the domain of f .

Definition 5.2. A random variable X is said to be sub-gaussian with variance proxy
σ2

p if E [X] = 0 and it satisfies

P [X > t] ≤ exp
(

− t2

2σ2
p

)
(5.17)

for all t ≥ 0.

The following lemma proves the sub-gaussianity of the maximum singular value
of the standard Gaussian matrix.
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Lemma 5.3. Let Zl be a (k − 1) × l matrix whose entries are independent standard
normal random variables, then

var (smax(Zl)) ≤ 1, (5.18)

where var (·) denotes the variance and smax(Zl) is the maximum singular value of Zl.

Proof. Note that smax(Zl) is a 1-Lipschitz function of matrix Zl, the maximum
singular value of Zl is concentrated around the mean given by E[smax(Zl)] [128,
Proposition 5.34] . Then for t ≥ 0, it holds that

P [smax(Zl) − E[smax(Zl)] > t] ≤ exp{−t2/2}. (5.19)

Therefore smax(Zl) − E[smax(Zl)] is a sub-gaussian random variable with variance
proxy σ2

p ≤ 1. The lemma follows from the fact that the variance of a zero-mean
sub-gaussian random variable is smaller than the variance proxy of this random
variable, i.e. var (smax(Zl)) ≤ σ2

p.

Note that a standard central Wishart random matrix is the product of a Gaussian
random matrix and its transpose. So a given eigenvalue of the standard central
Wishart matrix is equivalent to the square of the corresponding singular value of the
standard Gaussian matrix. The following lemma provides bounds for the expected
values of the eigenvalues of standard central Wishart matrix.

Lemma 5.4. Let Wl denote a central Wishart matrix distributed as 1
k−1Wl(k−1, Il),

then the non-asymptotic expected value of the extreme eigenvalues of Wl are bounded
by

1 −
√

l

k − 1

2

≤ E [λmin(Wl)] (5.20)

and

E [λmax(Wl)] ≤

1 +
√

l

k − 1

2

+ 1
k − 1 , (5.21)

where λmin(Wl) and λmax(Wl) denote the minimum eigenvalue and maximum eigen-
value of Wl, respectively.

Proof. Note that [128, Theorem 5.32]

√
k − 1 −

√
l ≤ E[smin(Zl)] (5.22)
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and √
k − 1 +

√
l ≥ E[smax(Zl)], (5.23)

where smin(Zl) is the minimum singular value of Zl. Given the fact that Wl =
1

k−1ZT
l Zl, then it holds that

E[λmin(Wl)]=
E
[
smin(Zl)2

]
k − 1 (5.24)

= E [smin(Zl)]2 + var(smin(Zl))
k − 1 (5.25)

≥ E [smin(Zl)]2

k − 1 (5.26)

and

E[λmax(Wl)]=
E
[
smax(Zl)2

]
k − 1 (5.27)

= E[smax(Zl)]2 + var(smax(Zl))
k − 1 (5.28)

≤ E [smax(Zl)]2 + 1
k − 1 , (5.29)

where (5.29) follows from Lemma 5.3. Combining (5.22) with (5.26), and (5.23) with
(5.29), respectively, yields the lemma.

5.2.2 Upper Bound for Non-asymptotic Ergodic Performance

The ergodic attack performance given in (5.15) is expanded as

E [f(ΣÃÃ)] = 1
2E

[
tr(Σ−1

YY ΣÃÃ) − log |ΣÃÃ + σ2Im| − log |Σ−1
YY |

]
= 1

2

(
tr
(
Σ−1

YY Σ⋆
AA

)
− log

∣∣∣Σ−1
YY

∣∣∣− E
[
log |ΣÃÃ + σ2Im|

] )
, (5.30)

where (5.30) follows from the fact that E
[
tr(Σ−1

YY ΣÃÃ)
]

= tr(Σ−1
YY Σ⋆

AA) due to the
linearity of the trace operator, see (B.3). The assessment of the ergodic attack
performance boils down to evaluating the last term in (5.30). Closed-form expressions
for this term are provided in [129] for the same case considered in this chapter.
However, the resulting expressions are involved and are only computable for small
dimensional settings. For systems with a large number of dimensions, such as
power systems, the expressions are computationally prohibitive. To circumvent this
challenge we propose a lower bound on the last term that yields an upper bound on
the ergodic attack performance.
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Before presenting the lower bound, we provide the following auxiliary convex
optimization result, in which a lower bound is proposed for the expected value of
the logarithm of the determinant of an identity matrix plus the inverse of a standard
Wishart matrix.

Lemma 5.5. Let Wp denote a central Wishart matrix distributed as 1
k−1Wp(k−1, Ip)

and let B = diag(b1, . . . , bp) denote a positive definite diagonal matrix. Then

E
[
log

∣∣∣B + W−1
p

∣∣∣] ≥
p∑

i=1
log (bi + 1/x⋆

i ) , (5.31)

where x⋆
i is the solution to the convex optimization problem given by

min
{xi}p

i=1

p∑
i=1

log (bi + 1/xi) (5.32)

s.t.
p∑

i=1
xi = p (5.33)

max (xi) ≤
(

1 +
√
p/(k − 1)

)2
+ 1/(k − 1) (5.34)

min (xi) ≥
(

1 −
√
p/(k − 1)

)2
. (5.35)

Proof. Note that

E
[
log

∣∣∣B + W−1
p

∣∣∣] =
p∑

i=1
E
[
log

(
bi + 1

λi(Wp)

)]
(5.36)

≥
p∑

i=1
log

(
bi + 1

E[λi(Wp)]

)
(5.37)

where in (5.36), λi(Wp) is the i-th eigenvalue of Wp in decreasing order; (5.37)
follows from Jensen’s inequality due to the convexity of log

(
bi + 1

x

)
for x > 0 when

bi > 0.
Finding the minimum value for the expression in (5.37) yields a lower bound for

the left-hand side expression of (5.36), which is formulated as the objective in (5.32).
Constraint (5.33) follows from the fact that E[trace(Wp)] = p, and constraints (5.34)
and (5.35) follow from Lemma 5.4. This completes the proof.

The following theorem provides a lower bound for the last term in (5.30), and
therefore, it enables us to characterize the ergodic attack performance.

Theorem 5.1. Let ΣÃÃ = HSXXHT with SXX distributed as 1
k−1Wn(k − 1,ΣXX)

and denote by Λp = diag(λ1, . . . , λp) the diagonal matrix containing the nonzero
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eigenvalues of HΣXXHT in decreasing order. Then

E
[
log |ΣÃÃ + σ2Im|

]
≥

p−1∑
i=0

ψ(k − 1 − i)
− p log(k − 1) +

p∑
i=1

log
(
λi

σ2 + 1
λ⋆

i

)
+ 2m log σ, (5.38)

where ψ(·) is the Euler digamma function, p = rank(HΣXXHT), and {λ⋆
i }

p
i=1 is the

solution to the optimization problem given by (5.32) - (5.35) with bi = λi

σ2 , for i =
1, . . . , p.

Proof. We proceed by noticing that

E
[
log |ΣÃÃ + σ2Im|

]
= E

[
log

∣∣∣∣∣ 1
σ2 Λ

1
2
s

ZT
mZm

k − 1 Λ
1
2
s + Im

∣∣∣∣∣
]

+ 2m log σ (5.39)

= E
[
log

∣∣∣∣∣ 1
σ2 Λs

ZT
mZm

k − 1 + Im

∣∣∣∣∣
]

+ 2m log σ (5.40)

= E
[
log

∣∣∣∣∣Λp

σ2
ZT

p Zp

k − 1 + Ip

∣∣∣∣∣
]

+ 2m log σ (5.41)

= E

log
∣∣∣∣∣Z

T
p Zp

k − 1

∣∣∣∣∣+ log
∣∣∣∣∣∣Λp

σ2 +
(

ZT
p Zp

k − 1

)−1∣∣∣∣∣∣
+ 2m log σ (5.42)

≥

p−1∑
i=0

ψ(k − 1 − i)
− p log(k − 1) +

p∑
i=1

log
(
λi

σ2 + 1
λ⋆

i

)
+ 2m log σ, (5.43)

where (5.39) follows from (B.3), i.e.

ΣÃÃ = HSXXHT ∼ 1
k − 1Wm(k − 1,HΣXXHT), (5.44)

and

HSXXHT d= VΛ
1
2
s

ZT
mZm

k − 1 Λ
1
2
s VT, (5.45)

in which Λs and V are the matrix of eigenvalues in decreasing order and the unitary
matrix of the corresponding eigenvector, respectively, of HΣXXHT, and d= denotes
equality in distribution; (5.40) follows from Sylvester’s determinant identity, which
states that

|I + CD| = |I + DC| (5.46)

for matrices C and D of proper dimensions; (5.41) follows from the fact that Λs is a
rank deficient matrix with rank p; (5.42) follows from the non-singular property of
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Wishart matrix when k− 1 ≥ p; (5.43) follows from [130, Theorem 2.11] and Lemma
5.5. This completes the proof.

Substituting Theorem 5.1 into (5.30) yields the following upper bound for the
expected value of the ergodic performance.

Theorem 5.2. The ergodic attack performance given in (5.30) is upper bounded by

E [f(ΣÃÃ)]≤ 1
2

tr
(
Σ−1

YY Σ⋆
AA

)
− log

∣∣∣Σ−1
YY

∣∣∣− 2m log σ

−
( p−1∑

i=0
ψ(k − 1 − i)

)
+p log(k − 1) −

p∑
i=1

log
(
λi

σ2 + 1
λ⋆

i

). (5.47)

Proof. The proof follows immediately from combing Theorem 5.1 with (5.30).

Using the same approach as in Lemma 5.5 and Theorem 5.1, a lower bound for
the performance in (5.30) can be derived. However the simulation on IEEE 30-Bus
test system shows that the obtained lower bound is better than the performance of
the attack using exact covariance matrix. This goes against the result in Lemma 5.2,
which states that the performance of the attacks using sample covariance matrix is
worse than the one using exact covariance. The derivation for the lower bound is
provided in Appendix D for completion.

5.3 Explicit Expression for Asymptotic Ergodic
Performance

In the following section, we analyze the asymptotic performance of the attacks
constructed using the sample covariance matrix. By studying the asymptotic setting,
we are able to provide a closed-form expression for the asymptotic ergodic attack
performance. Before introducing the asymptotic ergodic performance, some auxiliary
definitions under asymptotic scenario are provided.

5.3.1 Auxiliary Asymptotic Results from RMT

Definition 5.3. [130] The η-transform of a nonnegative random variable X is

ηX(γ) = E
[

1
1 + γX

]
, (5.48)

where γ ≥ 0 and thus 1 ≥ ηX(γ) > 0.
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Definition 5.4. [130] The Shannon transform of a nonnegative random variable X
is defined as

VX(γ) = E [log(1 + γX)] . (5.49)

The Shannon transform is linked to the η-transform by noticing that

∂

∂γ
VX(γ) =

(
1 − ηX(γ)

) log e
γ

. (5.50)

Example 5.1. The Shannon transform of the Marc̆enko-Pastur law fβ(·) in (B.6)
is given by

V(γ) = log
(

1 + γ − 1
4F

(
γ,

1
β

))
+ β log

(
1 + γ

β
− 1

4F
(
γ,

1
β

))
− β log e

4γ F
(
γ,

1
β

)
(5.51)

with

F(γ, β) =


√√√√γ (1 +

√
1
β

)2

+ 1 −

√√√√γ (1 −
√

1
β

)2

+ 1


2

. (5.52)

Definition 5.5. [130] The asymptotic/empirical eigenvalue distribution (AED or
EED), FA(·), of an n× n Hermitian random matrix A is defined as

FA(x) = lim
n→∞

1
n

n∑
i=1

1{λi(A)≤x}, (5.53)

where λ1(A), . . . , λn(A) are the eigenvalues of A.

5.3.2 Explicit Ergodic Performance

Before characterizing the ergodic performance of the attack constructed with the
sample covariance matrix in the asymptotic case, the following theorem provides an
equivalent distribution for the random variable describing the performance of the
attack in (5.30).

Here without loss of generality, we assume that the rank of matrix HΣXXHT is
equal to n. The rational of this assumption comes from the observability check set
by the operator, which guarantees that H is a full rank matrix with m ≥ n for the
state estimation procedure. As a result, it holds that

rank(HΣXXHT) = rank(ΣXX). (5.54)
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For power systems, the covariance matrix of the state variables is usually of full rank,
which implies that any random variable in the vector of state variables is not a linear
combination of the other random variables. This also implies that the distribution of
any random variable in the vector of state variables is not singular.

Theorem 5.3. The performance of the attack using the sample covariance matrix is
equivalent in distribution to the random variable given by

f(ΣÃÃ) d= 1
2

(
tr
((

Λ̃+In

)−1
Λ̃

ZT
n Zn

k−1

)
+log

∣∣∣Λ̃+In

∣∣∣− log
∣∣∣∣∣Λ̃ZT

n Zn

k−1 +In

∣∣∣∣∣
)
, (5.55)

where Λ̃ ∆= 1
σ2 Λp ∈ Rn.

Proof. Note that

f(ΣÃÃ)

= 1
2
(
tr(Σ−1

YY ΣÃÃ) − log |ΣÃÃ + σ2Im| − log |Σ−1
YY |

)
(5.56)

d=1
2

(
tr
(

Σ−1
YY VΛ

1
2
s

ZT
mZm

k−1 Λ
1
2
sVT

)
+log|ΣYY |−log

∣∣∣∣∣VΛ
1
2
s

ZT
mZm

k−1 Λ
1
2
sVT+σ2Im

∣∣∣∣∣
)

(5.57)

d=1
2

(
tr
((

Λs+σ2I
)−1

Λs
ZT

mZm

k−1

)
+log

∣∣∣Λs+σ2Im

∣∣∣−log
∣∣∣∣∣VΛ

1
2
s

ZT
mZm

k−1 Λ
1
2
sVT+σ2Im

∣∣∣∣∣
)

(5.58)

d=1
2

(
tr
((

Λs+σ2I
)−1

Λs
ZT

mZm

k−1
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+log
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∣∣∣∣∣−log
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d= 1
2

(
tr
((

Λ̃ + I
)−1

Λ̃
ZT

n Zn

k − 1

)
+ log

∣∣∣Λ̃ + I
∣∣∣− log

∣∣∣∣∣Λ̃ZT
n Zn

k − 1 + In

∣∣∣∣∣
)

(5.60)

where (5.56) follows from the definition of objective f(ΣÃÃ) in (5.30); (5.57) follows
from the fact that ΣÃÃ = HSXXHT ∼ 1

k−1Wm(k − 1,HΣXXHT), so it holds that

HSXXHT d= VΛ
1
2
s

ZT
mZm

k − 1 Λ
1
2
s VT; (5.61)

Given the fact that ΣYY = HΣXXHT+σ2I shares the same eigenvectors as HΣXXHT,
(5.58) follows from apply cyclic permutation for the trace term in (5.57); (5.59)
follows from Sylvester’s determinant identity; (5.60) follows from the fact Λs is a
rank deficient matrix with rank n. This completes the proof.

The ergodic performance of the attack is the expected value of the performance
with respect to the distribution given in (5.55). To obtain the asymptotic ergodic
performance in (5.55), the asymptotic behavior of diagonal matrix Λ̃ ∈ Rn needs to
be defined. Let n0 denote the number of state variables of the power system. For
example, when the voltage angles of the buses are chosen to be the state variables
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Fig. 5.1. An example for AED of Λ̃, or empirical c.d.f. of Λ̃ when n = n0.

there are 29 state variables for the IEEE 30-Bus test system, which implies that
n0 = 29. As a result, there are 29 positive eigenvalues of the matrix HΣXXHT. The
empirical cumulative distribution function (c.d.f.) of the diagonal elements of Λ̃
when n = n0 is given by

Fn0
Λ̃ (x) =

∑n0
i=1 1{x≤λi(Λ̃)}

n0
, (5.62)

which is obtained from the parameters of the power system. When n → ∞, the AED
of Λ̃, i.e. FΛ̃(x), is the limiting distribution of Fn0

Λ̃ (x), i.e.

FΛ̃(x) = lim
n→∞

∑n
i=1 1{x≤λi(Λ̃)}

n
. (5.63)

Here we define that

FΛ̃(x) = lim
n→∞

∑n
i=1 1{x≤λi(Λ̃)}

n
=
∑n0

i=1 1{x≤λi(Λ̃)}
n0

, (5.64)

which states that the AED of Λ̃ is the same as the distribution of eigenvalues when
n = n0. Fig. 5.1 provides an illustrative example for AED of Λ̃, or empirical c.d.f.
of Λ̃ when n = n0.

The following proposition provides a closed-form expression for the Shannon
transform of the AED of the attack covariance matrix.
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Lemma 5.6. Let k → ∞ with n
m

→ α and k−1
n

→ β. Then it holds that

1
n
E
[
log

∣∣∣∣∣Λ̃ZT
n Zn

k − 1 + In

∣∣∣∣∣
]

→ VΛ̃ (η) − β log η + β (η − 1) log e, (5.65)

where → denotes almost surely convergence to, η denotes the η-transform of Z̃nΛ̃Z̃T
n

evaluated at γ = 1 and satisfies

1
β

= 1 − η

1 − ηΛ̃ (η) , (5.66)

for which Z̃n
∆= Zn√

k−1 is a random matrix of size (k − 1) × n with i.i.d. entries
distributed as N (0, 1

k−1); and Λ̃ is a diagonal matrix of size n × n whose AED is
given by (5.62).

Proof. Note that

1
n
E
[
log

∣∣∣∣∣Λ̃ZT
n Zn

k − 1 + In

∣∣∣∣∣
]

= 1
n
E
[
log

∣∣∣∣∣Ik−1 + Zn√
k − 1

Λ̃
ZT

n√
k − 1

∣∣∣∣∣
]

(5.67)

→ βE
[
log

(
1 + λZ̃nΛ̃Z̃T

n

)]
(5.68)

→ βVZ̃nΛ̃Z̃T
n

(1) (5.69)

→ VΛ̃ (η) − β log η + β (η − 1) log e (5.70)

where (5.67) follows from Sylvester’s determinant identity; (5.68) follows from
denoting the unordered eigenvalues of matrix A by λA; (5.69) follows from the
definition of Shannon transform given by Definition 5.4; (5.70) follows from [130,
Theorem 2.39] directly.

Lemma 5.6 characterizes the Shannon transform of the attack covariance matrix,
in which the η-transform of Z̃nΛ̃Z̃T

n denoted by η is solved from (5.66). The following
proposition shows that (5.66) always has a unique solution of η for any β ≥ 0.

Proposition 5.1. Let n0 ≥ 1, β ∈ [0,∞), and the AED of Λ̃ is given by (5.62).
Then η in (5.66) has a unique solution.

Proof. Given the fact that the unordered eigenvalue distribution of Λ̃ is given by
(5.62), it follows that the η-transform of Λ̃ at γ = η is given by

ηΛ̃ (η) = EΛ̃

[
1

1 + ηΛ̃

]
=

n0∑
i=1

1
n0

1
1 + η

σ2λi

, (5.71)
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where Λ̃ is a random variable distributed as the AED of Λ̃, i.e. Λ̃ ∼ FΛ̃(x). After
some algebraic manipulation (5.66) can be expressed as

βη − 1
n0

 n0∑
i=1

1
1 + η

σ2λi

 = β − 1. (5.72)

Note that the range of η is within the interval [0, 1], the left-hand term of (5.72) is a
monotonically increasing function of η ∈ (0, 1] and its range contains the value β − 1.
This completes the proof.

It is worth pointing out that Proposition 5.1 can be easily extended for any
positive semi-definite matrix Λ̃. Taking Lemma 5.6 into the expected value of
f(ΣÃÃ) in (5.55) yields the following theorem, which characterizes the asymptotic
ergodic performance is characterized.

Theorem 5.4. Let k → ∞ with n
m

→ α and k−1
n

→ β, then the ergodic performance
of the stealth attacks

f̄n
∆= 1
n
f(ΣÃÃ) (5.73)

converges almost surely to f̄∞

f̄∞
∆= 1

2

(
Λ̃

Λ̃ + 1
λZ̃T

n Z̃n
+ log

(
Λ̃ + 1

)
− log

(
1 + λZ̃nΛ̃Z̃T

n

))
(5.74)

with

E
[
f̄∞
]

= 1
2

(
Θ + Ξ

)
− 1

2 (VΛ̃ (η) − β log η + β (η − 1) log e) , (5.75)

where

Θ ∆= lim
n→∞

1
n

tr
((

Λ̃ + I
)−1

Λ̃
)

= 1
n0

n0∑
i=1

λi

λi + σ2 (5.76)

and

Ξ ∆= lim
n→∞

1
n

log
∣∣∣Λ̃ + I

∣∣∣ = 1
n0

n0∑
i=1

log
(
λi

σ2 + 1
)

(5.77)

are determined by the distribution given in (5.62).
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Proof. Starting from (5.60), there is

f̄∞ = lim
n→∞

1
n
f(ΣÃÃ) (5.78)

= 1
2n

(
tr
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+log
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(5.79)

→ 1
2

(
Λ̃

Λ̃+1
λZ̃T

n Z̃n
+log

(
Λ̃+1

)
− log

(
1+λZ̃nΛ̃Z̃T

n

))
, (5.80)

where (5.80) follows from the same operation in (5.68).
Adding the fact that E[λZ̃T

n Z̃n
] = 1, the expected value of f̄∞ follows from taking

Lemma 5.6 into (5.80) and is given by

E
[
f̄∞
]

= 1
2

(
Θ + Ξ

)
− 1

2 (VΛ̃ (η) − β log η + β (η − 1) log e) . (5.81)

This completes the proof.

5.4 Numerical Results

The numerical simulations are implemented on the IEEE 30-Bus and 118-Bus test
system, where the Jacobian matrix H is obtained using MATPOWER [122]. The
construction of the vector of measurements is the same as Section 4.3. For the
construction of the stealth attack the covariance matrix of the state variables is
chosen to be a Toeplitz matrix with exponential decay parameter ρ as in (3.55).
Specifically, the Toeplitz matrix of dimension n×n with exponential decay parameter
ρ is given by ΣXX = [sij = ρ|i−j|; i, j = 1, 2, . . . , n]. We define the SNR as

SNR = 10 log10

(
tr(HΣXXHT)

mσ2

)
. (5.82)

To verify the results in Lemma 5.2, we generate 100 realizations for the sample
covariance matrix distributed as SXX ∼ 1

k−1Wn(k − 1,ΣXX). Fig. 5.2 shows the
minimum objective value in (5.4) among the 100 realizations under different numbers
of training samples. It is easy to see that when the number of training samples
increases the minimum value of the performance converges to the optimal value of
the perfect knowledge scenario, i.e. when the attacker knows the covariance matrix
ΣXX exactly. However the performance of the attacks using sample covariance is
always above the optimal value, which is consistent with Lemma 5.2. Here we only
provide the results on IEEE 30-Bus test system and SNR = 20 dB, the simulations
for the IEEE 118-Bus test system and the other parameter for the SNR show the
same result as the simulation using the IEEE 30-Bus test system.
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Fig. 5.2. The minimum objective value in (5.4) for ρ = 0.1 and ρ = 0.8 for SNR =
20 dB on IEEE 30-Bus test system.
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Fig. 5.3. Performance of the upper bound in Theorem 5.2 for ρ = 0.1 and ρ = 0.8 on
IEEE 30-Bus test system when SNR = 10 dB.

5.4.1 Simulation for Upper Bound in Theorem 5.2

Fig. 5.3 depicts the performance of the upper bound in Theorem 5.2 for ρ = 0.1 and
ρ = 0.8 on IEEE 30-Bus test system when SNR = 10 dB, in which the Monte Carlo
utility function value is obtained by averaging over 100 realizations of the sample
covariance matrix. Similarly Fig. 5.4 and Fig. 5.5 show the performance of the
bound when SNR = 20 dB and SNR = 30 dB, respectively. It is easy to see that
the proposed upper bound is tight when the number of training samples is large for



94 Learning Requirements for Stealth Attacks

102 103

number of samples

12

14

16

18

20

22

24

26

28

u
ti
lit

y
 f
u
n
c
ti
o
n
 v

a
lu

e

optimal utility function value for ρ = 0.1

Monte Carlo utility function value for ρ = 0.1

upper bound for utility function value for ρ = 0.1

optimal utility function value for ρ = 0.8

Monte Carlo utility function value for ρ = 0.8

upper bound for utility function value for ρ = 0.8

Fig. 5.4. Performance of the upper bound in Theorem 5.2 for ρ = 0.1 and ρ = 0.8 on
IEEE 30-Bus test system when SNR = 20dB.
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Fig. 5.5. Performance of the upper bound in Theorem 5.2 for ρ = 0.1 and ρ = 0.8 on
IEEE 30-Bus test system when SNR = 30dB.

different values of SNR. Especially when the SNR is high the proposed upper bound
is almost the same as the performance obtained through Monte Carlo. Interestingly
unlike the performance obtained via Monte Carlo, the upper bound is quite steady
under different values of SNR. This implies that when the SNR of the power system
is high, the attacks have a higher probability of detection, but the upper bound in
Theorem 5.2 is tighter.

Fig. 5.6 to Fig. 5.8 depicts the performance of the upper bound in Theorem 5.2
for ρ = 0.1 and ρ = 0.8 on IEEE 118-Bus test system when SNR = 10 dB, 20 dB
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Fig. 5.7. Performance of the upper bound in Theorem 5.2 for ρ = 0.1 and ρ = 0.8 on
IEEE 118-Bus test system when SNR = 20dB.

and 30 dB, respectively, in which the Monton Carlo utility function value is obtained
by averaging over 200 realizations of the sample covariance matrix. Similar to the
simulation on IEEE 30-Bus test system, the bound is tighter when SNR is high and
is insensitive to the change of SNR. The tradeoff between the probability of detection
and the tightness of the bound still exists for the 118-Bus test system.
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Fig. 5.9. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1 and
ρ = 0.8 on IEEE 30-Bus test system when SNR = 10dB.

5.4.2 Simulation for Asymptotic Performance in Theorem
5.4

Fig. 5.9 depicts the asymptotic performance of the attacks in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 30-Bus test system when SNR = 10 dB, in which the Monte
Carlo utility function value is obtained by averaging over 100 realizations of the
sample covariance matrix. Similarly Fig. 5.10 and Fig. 5.11 show the asymptotic
performance of the attacks in Theorem 5.2 when SNR = 20 dB and SNR = 30
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Fig. 5.10. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 30-Bus test system when SNR = 20dB.

102 103

number of samples

14

16

18

20

22

24

26

28

u
ti
lit

y
 f
u
n
c
ti
o
n
 v

a
lu

e

optimal utility function value for ρ = 0.1

Monton Carlo utility function value for ρ = 0.1

Asymptotic performance for utility function value for ρ = 0.1

optimal utility function value for ρ = 0.8

Monton Carlo utility function value for ρ = 0.8

Asymptotic performance for utility function value for ρ = 0.8

Fig. 5.11. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 30-Bus test system when SNR = 30dB.

dB, respectively. It is shown that the asymptotic performance is quite close to the
performance obtained via Monte Carlo approach for different values of the correlation
strength ρ. When the number of samples is high, i.e. β is of high values, the
asymptotic performance is almost the same as the performance from Monton Carlo.
Furthermore the asymptotic performance is closer to the performance from Monte
Carlo with the SNR increases.

Fig. 5.12 to Fig. 5.14 depict the performance of the asymptotic performance
in Theorem 5.4 for ρ = 0.1 and ρ = 0.8 on IEEE 118-Bus test system when SNR
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Fig. 5.12. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 118-Bus test system when SNR = 10dB.

= 10 dB, 20 dB, and 30 dB, respectively. Compared with the simulation results
for IEEE 30-Bus test system, the asymptotic performance in IEEE 118 Bus test
system is closer to the results from Monton Carlo. This implies that the asymptotic
performance is closer to the finite performance of attacks on the power system of
large scale, which suggests that the attacker approximates the finite performance
better in a power system of larger scale. This observation is consistent with the
results of RMT covered in Appendix 5, which states that with the dimension of
sample covariance matrix increases, the distribution of unordered eigenvalues of
sample covariance matrix under the finite case is closer to the limiting distribution
of it under the asymptotic case.

5.5 Summary

In this chapter, the performance of the attacks is analyzed using RMT tools for the
case that the attacker has imperfect knowledge about the second order statistics of
the state variables. Specifically the attacker only gets access to a limited number of
samples of the state variables, and estimates the second order statistics of the state
variables via the sample covariance matrix of the samples. RMT tools are employed
to characterize the ergodic performance of the attacks constructed using sample
covariance matrix for both the non-asymptotic scenario and the asymptotic scenario.
Given the fact that the distribution of the singular values of random matrices is
challenging to characterize under the non-asymptotic scenario, an upper bound is
proposed for the ergodic performance of the attacks using sample covariance matrix,
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Fig. 5.13. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 118-Bus test system when SNR = 20dB.
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Fig. 5.14. Performance of the asymptotic performance in Theorem 5.4 for ρ = 0.1
and ρ = 0.8 on IEEE 118-Bus test system when SNR = 30dB.

in which a simple convex optimization needs to be solved. As a result, the ergodic
performance of the attacks using sample covariance matrix is regulated by the the
proposed upper bound and the performance of the attacks when perfect knowledge
is known by the attacker. For the asymptotic scenario, an equivalent distribution is
proposed for the performance of the attacks using sample covariance matrix, and the
closed-form expression for the ergodic performance is provided via the equivalent
distribution.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the information-theoretic measures are utilized to quantify the disrup-
tion caused by DIAs and the probability of detection induced by DIAs. Specifically
the mutual information between the state variables and the compromised measure-
ments is minimized to reduce the amount of information acquired by the operator
about the state variables from the obtained measurements. On the other hand, the
minimization of the probability of detection induced by the attacks is characterized
by minimizing the KL divergence between the distribution of measurements under
attacks and without attacks. The stealth attacks sum up these two contradictive
objectives, and the closed-form expression for the stealth attacks is proposed for the
Gaussian attack case.

To achieve lower probability of detection, the stealth attacks are generalized
by assigning a weighting parameter to the KL divergence term in the objective of
stealth attacks. When the weighting parameter is larger than one, the attacker is
conservative and prioritizes the probability of detection over the caused disruption.
A closed-form expression is proposed for the generalized stealth attacks when the
weighting parameter is larger than one. Also closed-form expression is proposed for
the resulting probability of detection. To provide explicit insight into the relation
between the probability of detection and the weighting parameter, a concentration
inequality upper bound is proposed for the probability of detection, which provides
a guideline to the attacker for choosing the weighting parameter.

The (generalized) stealth attacks require the second order statistics of the state
variables to construct the attacks. The requirement is relaxed for the scenario that
the attacker only gets access to a limited number of samples of the state variables.
Specifically the attacker estimates the second order statistics of the state variables
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via the sample covariance matrix of the samples of the state variables. RMT tools
are used to characterize the ergodic performance of the attacks constructed using
sample covariance matrix for the asymptotic scenario and non-asymptotic scenario.
Given the randomness of sample covariance matrices under the non-asymptotic
scenario, closed-form expression is not available for the ergodic performance. Instead
an upper bound is proposed for the ergodic performance, for which a simple convex
optimization needs to be solved to compute it. For the asymptotic case a closed-form
expression is provided for the ergodic performance of the attacks using a sample
covariance matrix.

6.2 Future Work

This section discusses the open research directions that arise based on the work
presented in this thesis.

Asymptotic Characterization of Variance of Performance of Attacks using
Sample Covariance Matrix

In Chapter 5 we use RMT to characterize the ergodic performance of the attacks using
sample covariance matrix both asymptotically and non-asymptotically. In section 5.3
we propose the equivalent distribution for the performance of the attacks using sample
covariance matrix, and the explicit expression for the ergodic performance under the
asymptotic setting. Specifically Theorem 5.4 describes the ergodic performance, i.e.
the expected value, of the equivalent distribution given in Theorem 5.3. The central
limit theorem results for linear spectral statistics of random matrices can be utilized
to characterize the asymptotic variance for the distribution given in Theorem 5.3.

Sparse Information-Theoretic Attacks

As reviewed in section 2.2, compromising the sensors in the system is costly for
the attacker, as a result, the attacker wants to minimize or constrain the number
of sensors that need to be hacked. Two different scenarios can be considered here.
Firstly when the attacker can only compromise the sensors within a certain subset of
all the sensors, and the cardinality of the subset is K, then the attack construction
problem is the same as the one in (3.26) or (4.3), in which m−K constraints are
added to guarantee that the rest of the sensors are not compromised. This problem
is still a convex optimization problem, as the constraints still form a convex set.
Secondly when the attacker has the ability to compromise at most K meters in the
system, and the attacker has the ability to compromise any meters within the system,
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the attack construction problem is equivalent to a subset selection problem, in which
the attacker chooses a K-cardinality subset of all the sensors that maximizes the
caused distortion with a constraint on the probability of detection.

Decentralized Information-Theoretic Attacks

The stealth attacks in Chapter 3 and the generalized stealth attacks in Chapter 4
construct the attacks in a centralized pattern, i.e. there is only one attacker in the
power system. For the condition that there are multiple attackers in the system, the
collaboration between the attackers is modeled by a game, in which the attackers
are the players. Specifically, each of the attackers in the system has the ability to
compromising part of all the sensors in the power system, and each attacker only
injects attacks into the sensors that are compromisable for this attacker. In this
game, the attackers aim to maximize the distortion caused by the attackers with the
constraint that the probability of detection is smaller than a threshold.





Appendix A

Information Theory

Discrete Case

Definition A.1. The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑
x∈X

p(x) log p(x), (A.1)

where X is the alphabet of X.

• Entropy is a measure of the uncertainty of a random variable, it is also a
measure of the amount of information required on the average to describe the
random variable.

• We use the convention that 0 log 0 = 0.

• Entropy is expressed in bits when the log is to base 2, and in nats when the
base is the Euler’s number.

• H(X) ≥ 0.

• H(X) = EX

[
log 1

p(X)

]
.

Definition A.2. The joint entropy H(X, Y ) of a pari of discrete random variables
(X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (A.2)

where Y is the alphabet of Y .

• H(X, Y ) = EX,Y

[
log 1

p(X,Y )

]
.
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Definition A.3. If (X, Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined
as

H(Y |X)=
∑
x∈X

p(x)H(Y |X = x) (A.3)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (A.4)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (A.5)

= −EX,Y [log p(Y |X)] . (A.6)

• H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

Definition A.4. The relative entropy or KL divergence between two probability
mass functions p(x) and q(x) is defined as

D(p∥q)=
∑
x∈X

p(x) log p(x)
q(x) (A.7)

= EX∼p

[
log p(x)

q(x)

]
. (A.8)

• The expectation is taken with respect to distribution p(x).

• We use the convention that 0 log 0
0 = 0, 0 log 0

q
= 0, and p log p

0 = 0.

• D(p∥q) ≥ 0, and with equality only when p(x) = q(x) for all x ∈ X .

• KL divergence or relative entropy measures the “distance” between distributions,
but it is not a true distance since it is not symmetric and does not satisfy the
triangle inequality.

• In statistics, KL divergence arises as an expected logarithm of the likelihood
ratio.

Definition A.5. The condition divergence between two probability mass functions
p(Y |X) and q(Y |X) is defined as

D (p(Y |X)∥q(Y |X)|PX)= EX [D (p(Y |X = x)∥q(Y |X = x))] (A.9)
=
∑
x∈X

p(x)D (p(Y |X = x)∥q(Y |X = x)) . (A.10)

Definition A.6. Consider two random variables X and Y with a joint probability
mass function p(x, y) and marginal probability mass functions p(x) and p(y). The
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mutual information I(X;Y ) is the relative entropy between the joint distribution
and the product distribution p(x)p(y):

I(X;Y )=
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)
p(x)p(y) (A.11)

= D(p(x, y)∥p(x)p(y)) (A.12)

= EX,Y

[
log p(X, Y )

p(X)p(Y )

]
. (A.13)

• Mutual information is a measure of the amount of information that one random
variable contains about another random variable. It is the reduction in the
uncertainty of one one random variable due to the knowledge of the other, i.e.
H(X) −H(X|Y ).

• I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X) = H(X) +H(Y ) −H(X, Y ).

• I(X;Y ) = I(Y ;X), i.e. mutual information is symmetric.

Continuous Case

Definition A.7. The differential entropy h(X) of a continuous random variable
X with density f(x)is defined as

h(X) = −
∫

S
f(x) log f(x), (A.14)

where S is the support of X.

• h(X) can be negative, such as the differential entropy of uniform distribution.

• Translation does not change the differential entropy, i.e. h(X + c) = h(X).

• h(aX) = h(X) + log |a| for single variate case, and h(AX) = h(X) + log |A|
for multivariate case.

Definition A.8. The differential entropy h(X) of a set X1, . . . , Xn of continuous
random variable with density f(x1, . . . , xn) is defined as

h(X1, . . . , Xn) = −
∫
f(xn) log f(xn). (A.15)

Definition A.9. If (X, Y ) has a joint density function f(x, y), the conditional
differential entropy h(Y |X) is defined as

h(Y |X) = −
∫
f(x, y) log f(y|x)dxdy. (A.16)
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• h(X, Y ) = h(X) + h(Y |X) = h(Y ) + h(X|Y ) when any of the differential
entropies are not infinite.

Definition A.10. The relative entropy or KL divergence D(f∥g) between two
densities f and g is defined as

D(f∥g) =
∫
f
f

g
. (A.17)

• We use the convention that 0 log 0
0 = 0.

• D(f∥g) is finite only if the support of f is contained in the support of g.

• D(f∥g) ≥ 0 with equality iff f = g almost everywhere.

Definition A.11. The condition divergence between two probability density func-
tions f(Y |X) and g(Y |X) is defined as

D (f(Y |X)∥g(Y |X)|PX)= EX [D (f(Y |X = x)∥g(Y |X = x))] (A.18)
=
∫
f(x)D (f(Y |X = x)∥g(Y |X = x)) . (A.19)

Definition A.12. The mutual information I(X;Y ) between two random variables
with joint density f(x, y) is defined as

I(X;Y ) =
∫
f(x, y) log f(x, y)

f(x)f(y)dxdy. (A.20)

• I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X) = H(X) +H(Y ) −H(X, Y ).

• I(X;Y ) = D(f(x, y)∥f(x)f(y)).

• I(X;Y ) ≥ 0 with equality iff X and Y are independent.

Connection between Information Theory and Estimation Theory

Here we observe a random variable Y that is related to X by the conditional
distribution p(y|x). From Y , we calculate a function g(Y ) = X̂, where X̂ is an
estimate of X and takes in values in X̂ .

Theorem A.1 (Fano’s inequality). For any estimator X̂ such that X → Y → X̂

forms a Markov chain, with Pe = P (X ̸= X̂), we have

H(Pe) + Pe log |X | ≥ H(X̂|X) ≥ H(X|Y ). (A.21)



109

This inequality can be weakened to

1 + Pe log |X | ≥ H(X|Y ) (A.22)

or

Pe ≥ H(X|Y ) − 1
log |X |

. (A.23)

Corollary A.1. Let Pe = P (X ̸= X̂), and let X̂ : Y → X ; then

H(Pe) + Pe(log |X | − 1) ≥ H(X|Y ). (A.24)

For the continuous variable case, let X be a random variable with differential
entropy h(X) (in nats), and let X̂ be an estimate of X, and let E

[
(X − X̂)2

]
be the

expected estimation error.

Theorem A.2. For any random variable and estimator X̂,

E
[
(X − X̂)2

]
≥ 1

2πee
2h(X) (A.25)

with equality iff X is Gaussian and X̂ is the mean of X.

Corollary A.2. Given side information Y and estimator X̂(Y ), it follows that

E
[
(X − X̂(Y ))2

]
≥ 1

2πee
2h(X|Y ). (A.26)





Appendix B

Random Matrix Theory

Introduction to Random Matrix Theory

RMT is a subject that analyzes the behavior of random matrices, mainly spectral
of the random matrices, i.e. eigenvalues or eigenvectors of the random matrices.
The landmark contributions to the theory of random matrix of Wishart (1928),
Wigner (1955), and Marc̆enko and Pastur (1967) were motivated to a large extent by
practical experimental problem [130]. Due to the limited space in the thesis, here
we focus on the Wishart matrix, which is utilized in this thesis to characterize the
distribution of the sample covariance matrix of samples from a multivariate Gaussian
distribution. Let X l denote the vector of dimension l × 1 whose entries are normal
random variables, i.e. X l ∼ N (0,ΣXX), then Zl = [X l

1, · · · , X l
i , · · · , X l

k]T is the
matrix of dimension k × l composed of k realizations of X l. The sample covariance
matrix of X l using k samples is given by

SXX = 1
k − 1

k∑
i=1

X l
i(X l

i)T. (B.1)

As a result of the Gaussianity of X l, the sample covariance matrix SXX follows a
central Wishart distribution given by

SXX ∼ 1
k − 1Wl (k − 1,ΣXX) , (B.2)

where Wl (k − 1,ΣXX) denotes Wishart distribution with degree of freedom k − 1.
When the mean vector of X l is 0, the Wishart distribution is called central Wishart
distribution. The Wishart distribution has many properties, here we only list some
properties that are used in this thesis. Further details about the properties are
available at [130], [131], and [132].
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Proposition B.1. Let SXX ∼ 1
k−1Wl (k − 1,ΣXX), then it holds that

E [SXX ] = ΣXX . (B.3)

Proposition B.2. Let SXX ∼ 1
k−1Wl (k − 1,ΣXX) with ΣXX being a full rank matrix,

then it holds that

P [|ΣXX | = 0] = 0 (B.4)

when k − 1 ≥ l.

Proposition B.3. Let SXX ∼ 1
k−1Wl (k − 1,ΣXX) and E ∈ Rq×l, then it holds that

ESXXET ∼ 1
k − 1Wq

(
k − 1,EΣXXET

)
. (B.5)

Asymptotic Analysis of Random Matrix Theory

The analytical results for the random matrices, like Wishart matrices, are mainly
categorized into two kinds, non-asymptotic results and asymptotic results. The
asymptotic results mainly focus on the scenario that k − 1 → ∞, l → ∞ and
k−1

l
→ β, which allows closed-form expressions for analytical purposes. As mentioned

before, the researches of the random matrix mainly focus on the spectral analysis. The
unordered eigenvalue of Wishart matrices following 1

k−1Wl (k − 1, Il) is characterized
by the Marc̆enko-Pastur law [130, pp.7], which is given by

fβ(x) =
 max{1 − β, 0}δ(x) + β

√
(b−x)(x−a)

2πx
, when a ≤ x ≤ b

0, elsewhere
(B.6)

with

a =
(

1 −
√

1/β
)2
, b =

(
1 +

√
1/β

)2
. (B.7)

For the maximum eigenvalue of the Wishart matrix Wl (k − 1, Il), it is shown in [131,
Theorem 5.21] that the recentred and rescaled maximum eigenvalue Wmax follows
the Tracy-Widom law of order 1, that is,

λmax − µmax

σmax

D→ Wmax ∼ F1, (B.8)

where λmax is the maximum eigenvalue; µmax and σmax are the recenter mean and
the rescale standard deviation for the maximum eigenvalue, respectively, which are
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given by

µmax =
(√

k − 2 +
√
l
)2
, σmax =

(√
k − 2 +

√
l
) (

1/
√
l + 1/

√
k − 2

) 1
3 , (B.9)

and F1 is the Tracy-Widom law of order 1. For the minimum eigenvalue of the
Wishart matrix Wl (k − 1, Il), it is shown in [133] that the recentered and rescaled
minimum eigenvalue Wmin follows the Tracy-Widom law of order 1, that is,

λmin − µmin

σmin

D→ Wmin ∼ F1, (B.10)

where λmin is the minimum eigenvalue; µmin and σmin are the recenter mean and the
rescale standard deviation for the minimum eigenvalue, respectively, which are given
by

µmin =
√k − 1

2 −
√
l + 1

2

2

, σmin =
(
k − 1

2

)1/2 (
l + 1

2

)−1/6
. (B.11)

For the asymptotic scenario, a key point here is the rate of convergence of the
distributions from the finite case to the asymptotic limit. Although there is no
analytical solution to this question, the convergence of distribution is usually quite
fast. Some simulations can help us to understand the rate of convergence. Fig. B.1
compares the histogram from Monte Carlo simulation with the Marc̆enko-Pastur law
in (B.6) when β = 2, in which 10,000 realizations are generated. With n increases,
the distribution of the unordered eigenvalues of Wishart distribution converges to the
Marc̆enko-Pastur law. Especially when l = 20, these two distributions are quite close
to each other. This implies that although the Marc̆enko-Pastur law is for asymptotic
scenario, it fits the finite scenario quiet well.

Non-asymptotic Analysis of Random Matrix Theory

The non-asymptotic results for the random matrices mainly show the statistical
behavior of the eigenvalues of the matrices when k and n are of finite numbers.
Unlike the asymptotic scenario, the results in the non-asymptotic scenario usually
provide bounds for the statistical behavior of the matrices, instead of the closed-form
expression. As there are loads of research results on the non-asymptotic behavior of
the random matrix, here only the results that are used in this thesis are introduced.
For a random matrix with independent standard normal entries, the expected value
and the variance of the singular value are bounded by the following theorem and
corollary.
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Fig. B.1. Comparison between the histogram from Monte Carlo simulation and the
Marc̆enko-Pastur law in (B.6) when β = 2.

Theorem B.1 (Theorem 5.32 in [128]). Let Zl be a (k− 1) × l matrix whose entries
are independent standard normal random variables. Then

√
k − 1 −

√
l ≤ E [smin (Zl)] ≤ E [smax (Zl)] ≤

√
k − 1 +

√
l. (B.12)

Corollary B.1 (Corollary 5.35 in [128]). Let Zl be a (k−1)× l matrix whose entries
are independent standard normal random variables. Then for every t ≥ 0, with
probability at least 1 − 2 exp(−t2/2) one has

√
k − 1 −

√
l − t ≤ smin (Zl) ≤ smax (Zl) ≤

√
k − 1 +

√
l + t. (B.13)

Applications of Random Matrix Theory to Power Systems

Although RMT is a powerful tool, it has not been widely utilized to solve the power
system problems. The power system is usually of big scale, so the state variables
govern the states of the power system, or the measurements representing the condition
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of the power system, are of high dimension. This makes the asymptotic results of
RMT work quite well in the finite but large dimensional case, which is a result of
the fast rate of convergence of asymptotic results. The works that employ random
matrix theory tools to solve power system problem mainly include [134–137] and
[138]. The single-ring law of the product of Gaussian random matrices is used in
[134] to visualize the high-dimensional data in the power system. Also the validity
of the Marc̆enko-Pastur Law, kernel density estimation, and the ring law on the
IEEE test system is studied by [135], [136], and [137], respectively. Furthermore the
correlation between the state variables in the power system is characterized in [138]
via spectral analysis of random matrices.
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Probability of False Alarm

Lemma C.1. The probability of false alarm of the LRT in (3.11) for the attack
construction in (4.7) is given by

PFA(λ) = P
[
(Up)T∆̄Up ≥ 2 log τ + log

∣∣∣Ip + λ−1∆
∣∣∣] , (C.1)

where ∆̄ ∈ Rp×p is a diagonal matrix with entries given by (∆̄)i,i = λi(ΣAA)λi(Σ−1
YAYA

).

Proof. The probability of false alarm of the stealth attack is given by

PFA(λ)=
∫

S̃
dPY m (C.2)

= 1
(2π)m

2 |ΣYY |
1
2

∫
S̃

exp
{

−1
2yTΣ−1

YY y
}

dy, (C.3)

where the integration domain is given by

S̃= {y ∈ Rm : L(y) ≥ τ} (C.4)

= {y ∈ Rm : yT∆0y ≥ 2 log τ + log |Im + ΣAAΣ−1
YY |} (C.5)

with ∆0
∆= Σ−1

YY − Σ−1
YAYA

. Applying the change of variable y1
∆= UYY y in (4.22)

results in

PFA(λ) = 1
(2π)m

2 |ΣYY |
1
2

∫
S̃1

exp
{

−1
2yT

1 Λ−1
YY y1

}
dy1 (C.6)

with the integration domain S̃1 given by

S̃1 =
{
y1 ∈ Rm : yT

1 ∆1y1 ≥ 2 log τ + log |Im + ΛAAΛ−1
YY |

}
, (C.7)
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where ∆1
∆= Λ−1

YY − Λ−1
YAYA

. Further applying the change of variable y2
∆= Λ− 1

2
YY y1 in

(4.31) results in
PFA(λ) = 1√

(2π)m

∫
S̃2

exp{−1
2yT

2 y2}dy2, (C.8)

with the transformed integration domain given by

S̃2 =
{
y2 ∈ Rm : yT

2 ∆̄y2 ≥ 2 log τ + log |Im + ∆2|
}
, (C.9)

with

∆̄ ∆= ΛAAΛ−1
YAYA

. (C.10)

The proof completes.
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Non-asymptotic Lower Bound

To provide the non-asymptotic lower bound for the performance in (5.30), it boils
down to providing upper bound for the last term in (5.30). The following lemma
provides an upper bound for the last term in (5.30).

Lemma D.1. Let Wp denote a central Wishart matrix distributed as 1
k−1Wp(k−1, Ip)

and let B = diag(b1, . . . , bp) denote a positive definite diagonal matrix. Then

E [log |Ip + BWp|] ≤
p∑

i=1
log (1 + bix̃

⋆
i ) , (D.1)

where x̃⋆
i is the solution to the convex optimization problem given by

max
{x̃i}p

i=1

p∑
i=1

log (1 + bix̃i) (D.2)

s.t.
p∑

i=1
x̃i = p (D.3)

max (x̃i) ≤
(

1 +
√
p/(k − 1)

)2
+ 1/(k − 1) (D.4)

min (x̃i) ≥
(

1 −
√
p/(k − 1)

)2
. (D.5)

Proof. Note that

E [log |Ip + BWp|] =
p∑

i=1
E [log (1 + biλi(Wp))] (D.6)

≤
p∑

i=1
log (1 + biE [λi(Wp)]) (D.7)

where (D.7) follows from Jensen’s inequality due to the concavity of log (1 + bix) for
x > 0. Constraint (D.3) follows from the fact that E[trace(Wp)] = p, and constraints
(D.4) and (D.5) follow from Lemma 5.4. This completes the proof.
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The following theorem characterizes the lower bound for the performance in
(5.30).

Theorem D.1. The ergodic attack performance given in (5.30) is upper bounded by

E [f(ΣÃÃ)]≥ 1
2

tr
(
Σ−1

YY Σ⋆
AA

)
− log

∣∣∣Σ−1
YY

∣∣∣− 2m log σ −
p∑

i=1
log

(
1 + λi

σ2 λ̃
⋆
i

), (D.8)

where {λ⋆
i }

p
i=1 is the solution to the optimization problem given by (D.2) - (D.5) with

bi = λi

σ2

Proof. The proof follows immediately from combing Lemma D.1 with (5.30).
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