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Abstract  
Musculoskeletal disorders (MSDs) are the second largest cause of disability 

worldwide and cost the UK National Health Service (NHS) over £4.7 billion yearly. 

One holistic approach to alleviate this burden is to create in silico models that provide 

insight into MSDs which will improve diagnostic and therapeutic procedures. 

This thesis presents a modelling framework that analyses the mechanical 

behaviour of anatomical skeletal muscles. The anatomical geometry and fibre paths of 

the medial gastrocnemius muscle were acquired from the Living Human Data Library 

(LHDL). The medial gastrocnemius model was further sophisticated by incorporating 

morphological representations of the aponeurosis and myotendon transition region. 

Having carried out a finite element analysis on the medial gastrocnemius, it was found 

that the morphology and size of the transition region significantly affected the 

mechanical response of the muscle.  Three illustrative simulations were subsequently 

carried out on the model, to better understand the muscle’s mechanical response in 

differing mechanical environments: (1) the effects of high extensions on the muscle’s 

mechanical response, (2) lengthening of the aponeurosis - a phenomenon often 

observed following aponeurosis regression - and (3) the stress-strain regime of the 

muscle when the tendon experiences a laceration and heals over 21 days. These models 

show the regions that experienced the highest strains were the muscle-tendon 

transition regions. 

As MSDs tend to be of a degenerative nature and progress over time, the temporal 

changes of the mechanical response of skeletal muscle tissue is of great interest. In the 

penultimate chapter, the medial gastrocnemius was assessed across various 

remodelling regimes. It was found that the muscle returned to homeostasis only when 

both the muscle and tendon remodelled – albeit, at different remodelling rates. Whilst 

this observation seems intuitive, most other growth and remodelling models of skeletal 

muscles have only remodelled either the muscle or tendon constituent. The model 

developed in this thesis therefore has the potential to inform multi-scale musculo-

skeletal muscle models thus providing a significant contribution to understanding 

MSDs. 
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1

Tc  Isotropic Material constant of the tendinous constituent 

1

Mc  Isotropic Material constant of the muscular constituent 

1

Tk  First anisotropic material constant of the tendinous constituent 

1

Mk  First anisotropic material constant of the muscular constituent 

2

Tk  Second anisotropic material constant of the tendinous 

constituent 

2

Mk  Second anisotropic material constant of the muscular 

constituent 

0 5x −  The known x-coordinates that determine the different 

constituent boundaries in linear dependence 

Cx
 

The x-coordinate of the centroid along the long axis of the 

muscle 

0y  The central averaged y coordinate across a selected plane 

Cn  
The number of centroids specifically situated on a selected 

plane 

0z
 

The central averaged z coordinate across a selected plane 
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C

ix  The x-coordinates along the central line 

r  The perpendicular distance of a centroid point to the central line 

1

0( , )C

AB if x r−

 The volume fraction of the origin transition zone defined in 

triangle ABC 

1

0( , )C

DE if x r−

 The volume fraction of the insertion transition zone defined in 

triangle DEF 

br  Radial Boundary 

  The structural parameter that represents the symmetry of fibre 

dispersion 

 aniso  Anisotropic stress contribution  

 h  Homeostatic range of Cauchy stresses 

(min)  h  Minimum bound of homeostatic range of Cauchy stresses 

(max)  h  Maximum bound of homeostatic range of Cauchy Stresses 

, (min)  aniso h  Anisotropic contribution of minimum bound of homeostatic 

range of Cauchy stresses 

, (max)   aniso h  Anisotropic contribution of maximum bound of homeostatic 

range of Cauchy Stresses 

,

1

T Mk  
Modified first anisotropic material constant for Tendon or 

Muscle, respectively 

2k  
Modified second anisotropic material constant for tendinous 

constituents 

y  Modified second anisotropic material constant for muscular 

constituents 

T  Remodelling parameter for tendinous constituent 

M  Remodelling parameter for muscular constituent 
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1 Chapter 1 

Thesis Objectives, Aims and Overview 

This chapter briefly covers the motivation and rationale outlined behind this thesis. 

The primary aim is stated, followed by the objectives, which will set the context of the 

current work. 
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 Motivation and Introduction 

Musculoskeletal disorders (MSDs) are the second largest cause of disability 

worldwide. Though convention usually associates MSDs with the ageing population, 

the disease could also manifest early on in life. At least 1 in 3 people of the world’s 

population will live with a debilitating MSD (WHO, February 2018). This results in 

sickness, loss of working hours – hence impacting global economy. MSDs in 2013-14 

were the third largest area of spending for the National Health Service UK’s (NHS) 

budget as £4.7 billion was spent on directly remedying MSDs, with a further £103-

£129 billion spent on issues related to MSDs (Public Health England, 2018). The direct 

costs to remedy MSDs by the NHS in the UK is expected to increase to £118 Billion 

over the next decade (York Health Economics, 2017). As such, MSDs are an 

increasingly demanding problem that needs to be addressed. 

Research into MSDs provides an economic benefit, as innovative studies can 

provide insights that will improve healthcare outcomes, and gradually reduce the cost 

of MSD strain on global economics. This benefit has been monetised, as it is believed 

that every £1 invested in MSD research, will deliver a return of around £0.25 every 

year, forever (Wellcome Trust, 2017). 

Skeletal muscle is a major component of movement and support in the human 

body, and therefore plays a central role in various daily physiological and mobility 

functions. Therefore, if the mechanisms of healthy skeletal muscle as a mechanical 

entity can be better understood and simulated, then further insight into the 

pathophysiology of skeletal muscle can be explored.  

The mechanical phenomena of skeletal muscles are predominantly governed by 

their macro architecture (Lieber & Bodine-Fowler, 1992; Burkholder et al., 1994; 

Blemker, 2005). Thus, the main area of interest in this thesis is to investigate the 

mechanical response of skeletal muscles to their mechanical environment by means of 

an anatomical finite element (FE) model.  

Finite element modelling is a computational technique that uses numerical iterative 

processes to solve problems of engineering and mathematical physics. This method is 

effective in solving partial differential problems, where differences occur over a 

spatial (dx) and temporal (dt) scale. As such, finite element modelling discretises the 

special portion of the problem into small regions called elements, and then provides 
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an approximated result of the assembly of these regions (mesh). This enables the 

computation and solution of mechanical problems over a specified temporal domain 

(Craig, 2002). 

Finite element models and skeletal muscle modelling is an emerging field, with 

only a handful of centres around the world working in this area – in stark contrast to 

cardiac muscle (Humphrey & Yin, 1989; Ambrosi et al., 2011; Humphrey, 2013) or 

smooth muscle mechanics (Watton et al., 2004; Watton et al., 2009; Bevan et al., 

2018), which has seen advanced development in the past decades. This project 

proposes to make a significant contribution to the current body of knowledge on 

skeletal muscle computational modelling by incorporating standard continuum finite 

element methods to skeletal muscle mechanics, with a high focus on constitutive 

(muscle and tendon tissue) relationships and representation of the architecture and 

morphology of the skeletal muscle, which will intrinsically provide insight to MSDs 

and alleviate its global burden. 

 

  Objectives and Aims 
The primary goal of this thesis is to develop an anatomically-based finite element 

model that will simulate and explore the mechanical (stress and strain) response of 

passive skeletal muscles. This will provide quantitative values on the mechanical 

behaviour of skeletal muscles (stresses and strains) under stress. This information will 

help enhance our understanding of how skeletal muscle tissue works and elucidate its 

function in diseased state in the future. 

Secondary objectives include: 

I. Elucidating, analysing and investigating the functional role of the 

aponeurosis using various methods to represent the muscle-tendon 

junction, aponeurosis morphology and constituent distribution; 

II. Explore the effects that the mechanical environment of a muscle has on its 

mechanical response - by considering remodelling of the muscle-tendon 

complex in response to an illustrative application - bone lengthening. 
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These aims have been deduced upon a review of the literature. The methods, 

results and processes used to achieve these aims have been demonstrated throughout 

the thesis. Henceforth, the chapters that form this thesis are outlined below.  

 

  Chapter Outline 
Chapter 1 describes the thesis outline, and the translational motivation of the work 

carried out in the thesis. 

 

Chapter 2 describes the anatomy of the Medial gastrocnemius muscle and 

physiology of skeletal muscle tissues. The hierarchical structure of skeletal muscle 

tissue is discussed, and an overview of the active and passive behaviour of skeletal 

muscle mechanics are outlined, to elucidate the possible processes that lead to the 

passive response of skeletal muscle. These processes will be considered with respect 

to the muscle’s mechanical environment, which therefore induces the motivation of 

the studies in this thesis. 

 

Chapter 3 provides a literature review of the state-of-the-art on skeletal muscle 

modelling, models of the muscle-tendon complex and growth and remodelling of 

skeletal muscle. Comparisons are made between various types of one-dimensional and 

three-dimensional models, with insight on the physiological mechanisms that occur 

during under- and overstretch of skeletal muscle tissue. The contributions to 

knowledge concerning finite element modelling of the medial gastrocnemius, with 

respect to its remodelling regimes, are also outlined. 

 

Chapter 4 offers an overview of the finite element and mathematical methods that 

were used in this thesis to simulate the mechanical response of the medial 

gastrocnemius, with a brief background of the theory of finite deformation 

hyperelasticy and continuum mechanics. The constitutive relationships of the full 

muscle-tendon are described in this chapter, with exploration of the estimation of the 

material parameters used for the isotropic and non-linear anisotropic relationship of 

muscle and tendon tissue. The numerical process and finite element set-up carried out 



 Chapter 1 

_____________________________________________________________   

5 

 

in ANSYS, APDL Inc. are verified in this chapter, against benchmark analytical 

solutions. 

 

Chapter 5 Illustrates the approach taken to process the anatomical features of the 

medial gastrocnemius from input data (of a cadaveric specimen). This chapter covers 

the challenges experienced trying to mesh the acquired geometry, as well as the 

smoothing process of the geometry surface, and goes on to propose the application of 

an inverse distance interpolation technique to map anatomically palpated muscle fibre 

paths into a three-dimensional finite element workflow. An illustrative simulation is 

performed, and a convergence analysis of the mesh is carried out to determine the 

optimal element size against computational expense.   

 

Chapter 6 Proposes a novel approach to represent the aponeurosis and muscle-

tendon morphology and constituent distribution. This is done by means of several 

methods (a linear distance-dependence method, a cone radial-dependence method, and 

an ellipsoid-dependence method). These methods are compared to each other, and to 

a conventional arbitrary muscle to tendon junction. The simulations carried out show 

favourable results towards the cone and ellipsoid dependant morphology. Illustrative 

simulations are carried out to assess the effects of high displacements on the medial 

gastrocnemius, the effects on the stress-strain distribution of the medial gastrocnemius 

of longer muscle-tendon junctions – often observed following aponeurosis regression 

or tendon lengthening surgery. The results show that the way the morphology and 

material properties of the aponeurosis and muscle-tendon junction are defined in a 

simulation are imperative to obtaining an accurate stress-strain distribution. This is an 

important contribution to current finite element simulations of skeletal muscles, since 

other state-of-the-art models simulate the tendon as a disproportionately stiff tissue 

(Zellner et al., 2012; Zöllner et al., 2015), or do not consider the morphology or 

constituent distribution of the aponeurosis and muscle-tendon junction (Böl, et al., 

2011; Röhrle & Pullan, 2007; Valentin et al., 2018). 

 

Chapter 7 investigates a simplistic remodelling regime of skeletal muscle, with 

an ellipsoid shaped muscle-tendon junction. In particular, the remodelling regimes 

illustrate the changes of the stress-strain relationship during overstretch in leg 

lengthening. As the muscle remodels and it is hypothesised that the stresses 



 Chapter 1 

_____________________________________________________________   

6 

 

experienced by the fibres will drive the onset of remodelling to get the fibre stresses 

back to their homeostatic values. The remodelled muscles show the stress difference 

from the homeostatic stretch, such that when the muscle has fully remodelled, the 

stress difference returns to 0, and the evolution of a material parameter (k2) across the 

anatomical geometry of the medial gastrocnemius. 

 

Chapter 8 Summarises the findings of this thesis by addressing the main 

modelling outcomes, limitations and recommendations regarding future work on finite 

element skeletal muscle modelling. 

 

 Thesis Contributions 
1 Fibre paths of a cadaveric specimen used in the Living Human Digital project 

have been applied using an inverse distance method to determine anatomically 

detailed vector directions for a finite element work-flow. These vectors have been 

provided for each element (centroid point) of a 24-year-old female cadaveric 

medial gastrocnemius, as described in Chapter 5. 

2 In Chapter 6, A novel approach to represent the aponeurosis morphology is 

proposed. The aponeurosis and features of its morphology are applied to a three-

dimensional mathematically-based model and used in a finite element model of 

the medial gastrocnemius muscle-tendon complex. This was done by means of 

idealised shapes - as an ellipsoid, cone, linear distribution and sharp transition 

morphology. The various shapes show that the morphology of the aponeurosis 

and muscle-tendon region has a qualitatively significant effect on its strain-stress 

response. 

3 The muscle-tendon constituents have been defined by means of a volume fraction 

distribution that are dependent on the morphology and distance of each 

constituent point from muscle or tendon. As such, the muscle-tendon material 

properties are defined by incorporating this volume fraction to the Holzapfel et 

al., (2000) fibre-reinforced soft tissue model, also shown in Chapter 6. 

4 The remodelling profile of the passive medial gastrocnemius shows a stiffer 

muscle, during overstretch (leg lengthening) mechanical environments, hence 

changing the muscles’ peak stress-strain profile, detailed in Chapter 7.  
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2 Chapter 2 

Background Anatomy and Physiology 

 

This chapter covers the background anatomy and physiological function of 

muscle, encompassing both muscle’s passive mechanical response as well as the 

interaction between its active and passive mechanics. The chapter concludes by 

outlining the complex geometrical morphology of the medial gastrocnemius muscle, 

which is the main muscle of interest in this study. 
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  Muscle Anatomy and Physiology 
Muscle was first conceptualised as being a mound of mass that increases in breadth 

and shortens in length as it contracts. This idea was derived from Erasistratus’ and 

Aristotle’s idea of locomotion being like puppetry, or neurons and tendons being 

hollow tubes that premia can occupy (McMahon, (1984)). McMahon acknowledges 

muscle to have a constant volume as it contracts, which was explicated by his work 

on the frog leg model. This supports the idea of isometric contraction, where the 

muscle does not change in length as it contracts. Muscle is now conventionally known 

to be a hierarchical collection of striated fibres that act in synchronous coordination 

with electrical signals from the brain. Muscle contraction is primarily elicited through 

electrical stimulation from nerves, where specific input parameters influence the 

strength and time course of the contraction (Kesar et al., 2009). 

Muscle models can be studied under two main categories; intrinsic biophysical 

deterministic models (Hodgkin & Huxley, 1952; Huxley, 1957), and 

phenomenological models (Hill, 1938) (Winters & Stark, 1987). Whilst 

phenomenological models predict the muscle’s response to specific external stimuli 

by means of experimental measurements, biophysical models (such as structural and 

functional three-dimensional finite element models of skeletal muscles) attempt to 

predict the muscle’s response by trying to idealise and represent the underlying 

physiology of the system and describe the behaviour of a system based on empirical 

observations. The scope of this thesis explores the mechanical behaviour of muscle 

and looks at using engineering techniques to analyse phenomenological models to 

assess mechanical muscle function. The first step to this exploration was done by 

gaining an understanding of the anatomical architecture of skeletal muscle tissues. 

 

Skeletal muscle is made up of thin actin molecules and thick myosin molecules. 

Myosin is an ATP dependent motor protein, that works with the actin motor proteins 

to enable muscle contraction. The myosin consists of the head domain, and the actin 

consists of the filamentous domain that eventually slide over each other through the 

process of ATP hydrolysis, hence causing the myosin heads to slide over the actin tails 

during a power stroke – conventionally known as muscle contraction (Pollard & Korn, 

2.1.1 Anatomical Architecture 
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1973). The interaction of the actin (thin) and myosin (thick) filaments govern muscle 

contraction and primarily establish the sarcomere complex, which is a collection of 

myofibrils that constitute the muscle fibre cell. These muscle fibre cells are the 

singular components contained in the fascicle, which together make up the muscle 

(Lieber, 2002). The skeletal muscle is connected to the rest of the bony skeletal system 

by tendons and co-ordinates with somatic nerve system stimuli. This hierarchical 

muscle structure is shown in detail in Figure 2.1 and Figure 2.2. 
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Figure 2.1: Higher muscle organ to muscle fibre cell anatomical structure. 

Image adapted from: Myofibril complex physiology of a skeletal muscle fibre: PP 

288-294. (2014) 
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Figure 2.2: Lower skeletal muscle macro structure muscle fibril to 

myofilament anatomical structure. Image adapted from: Myofibril complex 

physiology of a skeletal muscle fibre: PP 288-294. (2014) 
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From the above illustrations we can deduce that muscle tends to be a collaborated 

collection of tissue structures that allow for neural interaction and stimulation. This 

stimulation occurs at the neuro-muscular junction therefore allowing for the excitation 

of the ‘motor unit’. As muscle is generally orientated with its antagonistic counterpart, 

skeletal muscle is known to only actively ‘contract’ rather than extend; unless 

passively through its antagonistic partner.  

The muscle contracts through a phenomenon called excitation-contraction 

coupling. The first stage of this cascade of events occurs from the arrival of an action 

potential from motor neurons and dendrite ends. This stimulates the detachment of a 

myosin head to actin fibril, which therefore allows for the myosin to bind to a new 

actin molecule forming a new cross-bridge (Widmaier, et al., 2010). Once the new 

cross-bridge is formed, the Adenosine Triphosphate (ATP) is hydrolysed by myosin, 

the process of which releases energy to allow for a partial bond with the actin. The 

hydrolysed myosin head contains Adenosine Diphosphate (ADP), an extra phosphate 

group and two Ca+2 ions. The remainder of the acting binding sight is blocked by 

tropomyosin, which leaves the troponin C to bind to the Ca+2 heads and the exposed 

ADP and Phosphate group. This troponin - Ca+2 complex causes the tropomyosin to 

slide over and release the rest of the actin binding site, which allows for the myosin 

heads to close and strongly bind to actin. This phenomenon results in the shortening 

of the actin-myosin complex (sarcomere); hence these cyclic occurrences result in 

further contraction of the sarcomere (Roger & Pearson, 2013). Due to the hierarchical 

architecture of muscle tissue, this contraction results in the shortening of the muscle 

fibres, and finally cascades to the contraction of muscle fibres – hence resulting in the 

contraction of the entire muscle that has been activated.  

The macroscopic arrangement of muscles in this context is referred to as the 

muscle’s architecture (Ganz & Bock, 1965), and it is this that is the primary 

determinant of muscle function. Elucidating the structure-function relationship of 

muscle is therefore of great importance since it provides the physiological basis of 

force production and movement. Although much focus has been placed on factors such 

as fibre-type distribution in determining muscle function there is no question that 

muscle function is also strongly determined by its architecture and morphology 

(Burkholder et al., 1994). Skeletal muscle architecture can therefore be defined as “the 

arrangement of muscle fibres within a muscle relative to the axis of force generation” 

(Lieber, 2002).  
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The next section discusses the physical processes that occur within muscle 

mechanics. 

 

There are four types of contraction phenomenon, depending on the behaviour of 

the muscle when it contracts: concentric, eccentric, isometric and isotonic contraction. 

In concentric contraction, the length of the muscle shortens as it contracts, which 

follows the conventional belief of muscle contraction (Faulkner, 2003). In eccentric 

contraction the force generated is not enough to overcome external loads on muscles, 

which results in the muscle fibres lengthening as their antagonistic pairs contract 

(Colliander & Tesch, 1990; Nikolaidis et al., 2012). This type of contraction typically 

happens when the muscle is trying to decelerate a moving body (for example placing 

a body gently down rather than letting it fall). In this type of contraction, the muscle 

is thought to be resisting extension against an external force through contraction. 

During isometric contraction, the muscle remains the same length, which is 

characteristic during passive exercise (for example when someone is simply holding 

up an object but not moving it through space). In this type of contraction, the muscular 

force generated is equal to the load therefore no movement/strain results from it. 

Conversely, in isotonic contraction the tension in the muscle remains constant despite 

a change in muscle length (Maton, 1981), which occurs when the muscle reaches its 

maximal plateau of force generated for contraction (Scherrer & Monod, 1960). A less 

common contraction phenomenon occurs when the contraction velocity of the muscle 

remains constant, whilst the force in the muscle varies (Guilhem et al., 2010). This 

contraction phenomenon is known as iso-velocity or isokinetic contraction. Tetanic 

contraction is the phenomenon of contraction where the muscle produces its maximum 

force at an optimal stretch range. Consequently, tetanic contraction applies to all the 

contraction phenomena described above, as it is a region within the operational force-

length range of the muscle during contraction. Isokinetic muscle phenomena will be 

considered in this thesis, in order to limit viscous-elastic effects that are often observed 

in vivo.  

The active mechanics of the muscle originate from the action potential triggered 

event of muscle contraction, where a force is generated by the muscle. This has been 

studied by others but will not be covered comprehensively in this thesis - as this study 

2.1.2 Muscle Physiology 
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mainly focuses on the passive mechanics of the skeletal muscle. The passive behaviour 

of the muscle arises from the intrinsic mechanical properties of the muscle 

constituents, including the ground substances and muscle fibres. 

 

 Active and Passive Mechanics of 

Skeletal Muscle Tissue  

The time taken for skeletal muscle contractions can be categorised into twitch and 

tetanic contractions. In a twitch contraction, neural stimulation causes the muscle to 

contract very quickly however as the twitch is so short, the muscle begins to relax even 

before reaching the peak force. McMahon (1984) acknowledges that it is generally 

easier to measure the resistance to an externally imposed stretch than the development 

of force (McMahon, (1984)). The resulting descriptive force vs time graphs can 

elucidate information about the sarcoplasmic reticulum and the calcium release rates. 

Once this burst of shock occurs, there is no force produced in the muscle, because it 

is held isometrically; this is because in isometric muscle there is a short/small fall in 

tension before the active tension is developed (Abbott & Richie, (1951)).  

Marey (1874) suggested that the elasticity of muscle is one of the features that 

determines how the effects of collaborated shocks occur in a tetanic contraction 

phenomenon. Based on this assumption, the two separate contributions of skeletal 

muscle can be considered: i.e. the passive and active behaviour of muscle (Marey, 

(1874)). McMahon acknowledges the passive properties of isolated muscle in that, as 

a non-linear intrinsically fibrous material, its fibrous elements are redundant at low 

extension and then become tensed at high extension, which simultaneously 

accumulates their spring stiffness. The passive and combined (active and passive) 

tension vs stretch function for a frog Sartorius is shown in Figure 2.3. 
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Figure 2.3 Tension –length curve of a frog Sartorius muscle at 0 °C. The 

passive muscle is based on the resting muscle at a series of different lengths; the 

total curve has two components: (1) Active tension with the maximum tetanized 

tension highlighted. This was measured at a series of constant lengths as the 

muscle was held in isometric contraction. (2) Passive tension, which is also 

illustrated as a separate curve. Image taken from Aubert et al. (1951). The 

Tension-length diagram of the frog’s Sartorius muscle. 

 

As shown in Figure 2.3, at a small amount of stretch, there was no passive response 

from the muscle. The force is mainly generated due to tetanized activation of the 

muscle where the maximum tension is achieved at a relative length of approximately 

1. At around a stretch of 1.25, the passive response of the muscle tissue kicks in as the 

tissues are being stretched close to their physical limit. This sharp increase in the 

passive response also contributed to the sharp increase in the total force curve, as 

illustrated in Figure 2.4. The physical limit of the muscle is illustrated to be at around 

a stretch value of 1.6. 

Figure 2.3 shows that the muscle behaves in a generally non-linear fashion, where 

the passive part behaves as a transversely isotropic fibre reinforced material. As such 
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it can be idealised as a hyperelastic quasi-incompressible material (Röhrle & Pullan, 

(2007)). Further, McMahon shows that the pennation angle, defined as the angle each 

muscle fibre makes with its force-generating axis, affects the passive and total 

(tetanised) tension-length relationship, as shown in Figure 2.3 (Mahon, 1984). 

  

Figure 2.4 shows force length curves of the pennate fibred gastrocnemius with 

short fibres and the parallel-fibred Sartorius. 

 

 

 

 

Figure 2.4 Tension – length relationship of a gastrocnemius and Sartorius 

frog muscle. Image taken from Mahon (1984). Muscles, Reflexes and 

Locomotion. P11, fig 1.7, Fundamental muscle mechanics. 
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The muscles of the lower extremity are important powerhouse to achieve mobility 

of the skeleton. Furthermore, given the available literature data and the existing 

physiology knowledge, the medial gastrocnemius muscle was chosen to be the main 

muscle of interest in this thesis.  

The general anatomy and physiology of skeletal muscles has been described 

previously. The following section will focus on describing the complex geometrical 

morphology of the medial gastrocnemius muscle in detail. 

  

2.2.1 This clearly illustrates that the fibre orientation of the muscle and its 

macro-architecture play an important role in the mechanical response of 

the skeletal muscles, even in a passive state. Furthermore, every muscle in 

the body has a complex structure that usually consists of muscle, tendon, 

aponeurosis and transition region. The aponeurosis is not synonymous 

with the transitional region – here, the aponeurosis is a fibrous sheet made 

of connective tissue that separates neighbouring muscles, as well as 

present in the tendon – muscle transition region (Azizi & Roberts, 2009). 

Each of these structures have a different form, when considering 

anatomical simulations, it is imperative to focus on a muscle with a specific 

morphology to better elucidate its mechanical response. 
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 Morphology of the Medial 

gastrocnemius   

The structure of the triceps surae consists of the medial and lateral gastrocnemius 

muscles which lie superficially of the soleus muscle, and both extend from their 

tendinous origins by the knee. They both have an aponeurosis region that connects the 

heads of the muscles to tendon at the distal insertion and merge before transitioning 

into the Achilles tendon (Blitz & Eliot, 2008). Despite both the gastrocnemius and 

soleus muscles having aponeuroses which are in direct contact with each other, there 

is no connection between these aponeuroses until they finally fuse and transition into 

the Achilles tendon (Blitz & Eliot, 2008). The medial and lateral gastrocnemius bellies 

are attached to a singular thin aponeurosis on their deep surface, and at the lower end 

of the gastrocnemius muscle. The aponeurosis extends below the end, however is 

initially comprised of muscle for a short distance before it merges with the soleus 

aponeurosis, this is referred to as the gastrocnemius aponeurosis “run-out” and can be 

seen in Figure 2.5; which shows the general structure of the triceps surae (Blitz & Eliot 

(2008)). 

 

Figure 2.5:(a) Cadaveric specimen and (b) illustrative schematic showing the 

long gastrocnemius aponeurosis for both the medial and lateral muscle heads. 

(Blitz & Eliot, 2008).  

 

The limited information of the morphology of the aponeurosis, its morphology and 

mechanical behaviour has created an impediment to the development of computational 
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models of the muscle-aponeurosis-tendon complex. Although gastrocnemius 

aponeurosis length has not been previously quantified, a study by Blitz & Eliot (2008) 

provides insightful information on the anatomical morphology of the medial 

gastrocnemius aponeurosis that will be summarised here. 

As mentioned previously, the “run-out” is defined as the transition region between 

the gastrocnemius muscle belly and the Achilles tendon. Variation in the length of this 

run-out region is defined to have three main categories of differing lengths, categorised 

as “long”, “short”, or “direct” attachment to the soleus aponeurosis (Blitz & Eliot, 

2007). This region applies to the length of the myotransition region, hence different 

lengths of this region are of importance to consider. 

 

 

 

Figure 2.6: (a) Cadaveric specimen of the gastrocnemius aponeurosis for both 

the medial and lateral heads. (b) Cadaveric specimen showing the short medial 

aponeurosis. (c) Cadaveric specimen showing the direct attachment for both the 

medial and lateral heads. Black line shows the muscle tissue boundaries based on 

points A-E. White line shows insertion boundary onto soleus aponeurosis from 

points P-T (Blitz & Eliot, 2008).  

 

Figure 2.6 shows the muscular boundary to the aponeurosis (black line) ‘cupping’ 

the muscle as a conical region of muscle penetrates the aponeurosis region. The soleus 

insertion (white line) also shows conical-like type of attachment. These observations 
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provide useful information regarding how one might attempt to model the morphology 

of the muscle-aponeurosis-tendon complex. 

As well as the morphological issues previously discussed of the aponeurosis, the 

thickness of the aponeurosis is also important to consider. Studies have shown that the 

thickness of the gastrocnemius aponeurosis becomes thinner, as it approaches the 

muscle belly region of the muscle, as schematically illustrated in Figure 2.7. 

 

Figure 2.7 Schematic representation of tapering aponeurosis at the posterior 

end of the soleus. Note that the muscle belly is not shown here. The aponeurosis 

tissue is shown in shaded grey, and muscle fibre orientation (pennation) are 

shown in blue lines (Pinney et al., 2004).  

 

It has been demonstrated that the strain distribution across the aponeurosis changes 

with thickness (Bavel et al., 1996), thus highlighting how changes in thickness may 

influence the mechanical behaviour as well as the force transmission across the 

muscle-aponeurosis-tendon complex.  

 Whilst the above section highlights the complex morphology of the muscle, 

fibre orientations of the medial gastrocnemius are also a governing feature of the its 

mechanical response. It is of particular importance at the muscle-tendon junction, and 

how the muscle tapers as it approaches the middle of the muscle of the muscle and 

thickens as it approaches the Achilles tendon (Blitz & Eliot, 2007; Blitz & Eliot, 2008) 
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as shown in Figure 2.7. The types of models that can effectively represent the 

mechanical response of skeletal muscle in relation to its anatomical geometry are finite 

element numerical models that incorporate soft tissue constitutive relationships. 

Therefore, now that the general structure of the muscle of interest (medial 

gastrocnemius) has been described, the next chapter will cover the current literature 

concerning finite element models and soft tissue mechanics. These types of models 

will form the basis of the computational and mathematical techniques used in this 

thesis to explore the mechanical response of anatomical skeletal muscles.  
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3 Chapter 3 

Literature Review 

This chapter covers the previous research done on skeletal muscle models to 

elucidate a comprehensive review of the literature and ascertain potential areas in 

which this thesis might contribute to the current body of knowledge. The mathematical 

models proposed by various investigators are covered and critically analysed to set out 

a work-flow for the simulations associated with this work. 
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 Review of the literature on Models of 

Skeletal Muscles  

The earliest models of skeletal muscles originated from highly idealised lumped 

parameter models (Hill, 1938) (models that obtain parameters that approximate a 

number of variables in natural anatomical phenomena), before developing into more 

complex three-dimensional finite element anatomical models. One of the very earliest 

sophistications of Hill’s model involves incorporating some features of the structure 

of the muscle and the governance of such features to the muscle’s function. This was 

investigated in 1965 by McPhedran et al., when they acknowledged the difference 

between the size of individual motor units and their various contractile characteristics 

(McPhedran et al., 1965; Wuerker et al., 1965). Further studies were undertaken to 

follow the idea that the excitability of motor neurons was an inverse function of their 

size (Henneman et al., 1965). A corollary conclusion was that the amount of 

contractile activity of a motor unit (i.e. the nerve and its corresponding muscle fibre) 

decreases as its size increases (Henneman & Olson, 1965). Even at this early stage of 

research in skeletal muscles, it was clear that the structure of the skeletal muscles had 

a significant influence on its function. This conclusion is reflected in the group of 

parameters, also known as the size principle parameters that take precedence in 

skeletal muscle mechanics. 

Further work was carried out in 1987 to measure the time-dependant parameters 

of contraction within the fibres: i.e. motor unit conduction velocity, twitch torque, 

twitch rise time and half-relaxation time (Andreassen & Arendt-Nielsen, 1987). 

Andreassen & Arendt-Nielsen demonstrated that there was a high correlation between 

these four parameters, therefore justifying the inclusion of fibre conduction velocity 

in the family of size principle parameters when considering the mechanical response 

of skeletal muscle (Arendt-Nielsen, et al., 1992). This elucidated the fact that skeletal 

muscle tissue behaves in a viscoelastic nature in vivo. The mechanical behaviour is 

dependent on time – i.e. contraction velocity and relaxation time. 

Further detail regarding the muscle-tendon properties and the size considerations 

of the parameters was explored in Zajac (1989), which acknowledged that the 

mechanical properties of skeletal muscle and its tendon complex are similar on both a 
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fibre and sarcomere scale level (Zajac, (1989)). Zajac also studied the creation of nerve 

signals to muscles through the motor neuron complex nonetheless recognises only one 

parameter in his studies - the ratio of tendon length (at rest) to muscle fibre length (at 

rest). This was the basis of his 1D lumped model of a complete musculotendon 

actuator, with emphasis on fibre orientations and length. From the normalised non-

linear force curves produced within his studies, Zajac presents muscle as a transversely 

isotropic material whose non-linearity supports the sliding filament theory (Zajac, 

(1989)). A comprehensive review was later done in Monti et al. (2000), regarding the 

motor unit structure and its definition of function at the neuromuscular junction 

(Monti, et al., 2000). The muscle fibres, and motor unit components can be considered 

as different elements within Hill-type models and, for the scope of this review, this 

literature will be explored separately to the literature pertaining to three-dimensional 

skeletal muscle finite element models. 

Whilst the models developed by Hill (1938), Zajac (1989) and Andreassen & 

Arendt-Nielsen (1987) were phenomenological lumped parameter models of skeletal 

muscle, they created the convention of one-dimensional lines of action to represent 

skeletal muscles. Having compared these models to three-dimensional models (Röhrle 

& Pullan, (2007); Blemker & Delp, (2005); Blemker et al., (2005)), these one-

dimensional lines of action induced significant error when considering the mechanical 

response of skeletal muscles, reinforcing the importance of considering the anatomy 

and three-dimensional morphology of the skeletal muscle-tendon complex. As 

explained above, the muscle fibre orientation will also be considered, since the 

orientations have a significant effect on their mechanical response. The next section 

explores the current body of knowledge relating to skeletal muscle fibre architecture, 

and models that have currently considered this. 

 

Most mammalian muscle fibres are long cylindrical bodies that span from the 

tendinous origin to a tendinous insertion (Monti et al., 2000). Some skeletal muscles, 

however, have a complex structure consisting of short muscle fibres, or fibres that are 

arranged in series and in overlapping arrays (Bardeen, 1903; Huber, 1917). The 

specific length of muscle fibres is highly variable across different muscles. However, 

several investigators have suggested that the length of muscle fibres can be 

3.1.1 Muscle Fibre Orientation  
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approximated, as has been done in respect to a range of muscles in other cat models 

(Loeb et al., 1987). On the other hand, Chanaud et al.’s earlier results in 1991 indicated 

that in-series short fibres that make up the longer fibres can essentially be considered 

as separate motor units (Chanaud, et al., 1991), thus playing an important role in the 

activation component of muscle. While it was found that cat muscle fibres are usually 

approximately 2.0 cm long, some can be longer than 3.0 cm: such as the cat splenius 

(Richmond et al., 1985), sartorius (Loeb et al., 1987), tenuissimus (Lev-Tov et al., 

1988) and biventer cervivis (Richmond & Armstrong 1988). Previous work suggests 

that the various fibre lengths reported are essentially based on the different extraction 

techniques for identifying intercepts of connective tissue (Lieber & Blevins, 1989; 

Friederich & Brand, 1990), which highlights and may account for the variability of 

fibre lengths listed in the different cat muscles. One important note to consider, 

however, is that cat muscle fibres do not normally extend the entire length of the 

muscle (Sacks & Roy, 1982; Roy & Edgerton, 1992). Monti et al., suggested that the 

fact that the ‘longer fibres’ are composed of smaller ‘shorter fibres’ is not functionally 

relevant when considering the muscle recruitment and fibre response, (Monti, et al., 

2001). Therefore, the supposition that most mammalian fibres span across the full 

muscle length will be used here. 

The significance of functional fibre geometry, and a further justification for its 

inclusion, is further supported by the observation that the maximum force produced 

by a muscle can be predicted quite accurately from its physiological cross-sectional 

area (PCSA), which can be derived by the following relationship (Monti et al., 2000): 

 :

cos

F PCSA

m
PCSA

l







•
=

  (3.1) 

 

Where the muscle mass is denoted by m,   is the mean pennation angle of the 

fibre, the muscle length is represented by l and the muscle density is ρ. As the length 

of the fibres can be approximated to span across the full length of the muscle, whilst 

the PCSA will have a functional relationship to the force produced by the muscle. 

These functional fibres play an important role in skeletal muscle function and 

indeed their active mechanical response. Since the work carried out in this thesis 

concerns the passive mechanics of skeletal muscle, the length and PCSA of muscle 

fibres will be approximated.  
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The series and parallel mechanics of the muscle (sarcomeres) are affected by the 

anatomy. One of the first muscle models ever to be developed was done by A V Hill 

(1938), and this remains the basis of several forward dynamics (Bélaise et al., 2018; 

Siebert et al., 2018) or inverse kinematics (Carlos et al., 2018) skeletal muscle models 

today. Hill-type muscle models are therefore briefly discussed below to determine the 

loose connection between the passive mechanics (series and parallel elements) and the 

muscles geometrical features (fibre orientations). 

 

Hill’s model of skeletal muscle originates from phenomenological observations 

simplified into a one-dimensional dash-pot lumped model developed in 1938 (Hill, 

1938). 

Hill derived his model by using a thermopile to measure the change in heat of a 

frog leg. The thermopile converted changes in heat into electrical pulses, which were 

then read by a galvanometer. As the frog skeletal muscle contracted, there was an 

influx of potential energy within the muscle. Although blood regulates the heat within 

the muscle, Hill accounted for the heat dissipation from the system with variables that 

related to the force generated within the muscle and how fast the muscle was able to 

contract (Hill, 1938). Hill’s derivations covered isotonic contraction of the tetanised 

muscle. 

Although widely used, Hill’s one-dimensional model cannot be used as a stand-

alone model compared to finite element continuum mechanics models. Whilst it 

rigorously describes the force-velocity relationships of contracting skeletal muscle, 

there are issues surrounding the inherent over-simplicity of the model, as highlighted 

by another author (Winters, 1990). Hence, the need to develop a three-dimensional 

skeletal muscle model. 

As explored by Hill, the contractile phenomenon of skeletal muscle can be 

accounted for through various components of the models namely the contractile 

element (CE), the series element (SE) and the parallel element (PE), defined below. 

The contractile element (CE) is used to model the active contribution of the 

muscle where forces originate from actin and myosin cross-bridges at the sarcomere 

level. Since the CE is the main factor that is responsible for the force generation within 

the muscle (Winters, 1990), it can be ignored when the muscle is not activated. The 

3.1.2 Hill-type Models  
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contractile element governs the force-length relationship within the muscle. The force-

velocity relationship derived by Hill, also referred to as Hill’s rectangular hyperbolic 

equation, is shown below and it was this that was used to determine the force 

generation and extrapolation of Hill’s results from his thermopile experiment (Hill, 

1938; Winters & Stark, 1987).  

 
0 1

F a
V b

F a

 +  
= −  

+  
 (3.2) 

 

  

Where a and b are material parameters fitted from experimental data, F0 is the 

maximum isometric tension generated in the muscle, F is the operational tension in 

the muscle and V represents the velocity of contraction. 

The Series Elastic Element (SE) is generally modelled as a non-linear visco-

elastic spring in series with the contractile element (Winters & Stark, 1987). This 

element acts as the refractory element between the passive and active states of the 

muscle and tends to govern the passive forces of the connective tissues within the 

muscle, incorporating the soft tissue mechanical behaviour (Fung, 1993). As such, it 

offers a rapid change of muscle states during contractions of the muscle. It also 

includes a residual energy storing mechanism, which is often observed in muscle (Hill, 

1938; Winters & Stark, 1987; Winters, 1990; Baker, 2015).  

The Parallel Element (PE) is modelled as a non-linear spring in parallel with the 

contractile element and series element. This element is responsible for the passive 

behaviour of the muscle when stretched since it is related to the elasticity of the 

connective tissues (Fung, 1993). Although there have been many studies on the CE 

and SE components, not much is currently known about the PE (Baker, 2015). 

 The conceptual anatomical fitting of these elements is shown in the diagram 

below. 
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Figure 3.1 A schematic illustration of Hill’s model, where 𝝋𝒆 is the elbow joint 

angle and 𝝋𝒔 is a shoulder joint angle. CE = contractile element length ; lCE = 

CE length ; PE= parallel elastic element ; SE = series elastic element ; lSE = SE 

length. Kistermaker et al (2010) : 104(6). 

 

From deduction, the total force would be equal to the summation of the forces of 

the parallel  PEF and contractile elements  CEF , which is shown in the relationship 

below: 

 𝐹𝑇 = 𝐹𝑃𝐸 + 𝐹𝐶𝐸 (3.3) 

 

 

where the force generated in the contractile element must be equal to the force 

generated in the series element  SEF  (Hill, 1938): 

 𝐹𝐶𝐸 = 𝐹𝑆𝐸 (3.4) 

 

 

The contractile element can therefore be defined as the multiplicative coupling of 

functions that all contribute to the contractile phenomenon in skeletal muscle, being: 

time 𝑓𝑡(𝑡), velocity of contraction 𝑓𝑣(𝑣) and the force-length relationship 𝑓𝜆(𝑙). 

Therefore, the following equation is used (Hill, 1938): 

 

 𝐹𝐶𝐸 =  𝐹0 ×  𝑓𝑡(𝑡) × 𝑓𝑣(𝑣) × 𝑓𝜆(𝑙) (3.5) 
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From Hill’s approximations, the contractile element, which is the active element, 

generates a force with a magnitude that depends on the deformation velocity and the 

respective muscle length. This elucidates the extent of activation over time. Similarly, 

there is a general relationship that couples the length of the parallel (𝐿𝑃𝐸), contractile 

(𝐿𝐶𝐸) and series elements (𝐿𝑆𝐸), as shown below: 

 𝐿𝑃𝐸 =  𝐿𝐶𝐸 + 𝐿𝑆𝐸  (3.6) 

 

Whilst this work is conceptualised in components, in 1984, M. Blix carried out a 

pioneering study to determine the relationship between sarcomere length and force 

generation within the full muscle, and this set the precedent for cellular scale 

considerations of skeletal muscle (Blix, 1984). Although the contraction mechanisms 

of skeletal muscle are highly complex, most models seem to have simplified certain 

aspects of the physiological processes of muscle by compartmentalising the full 

system and then modelling each component. In 1998, Martins et al. proposed a 

numerical model of passive and active behaviour in skeletal muscles that only 

modelled the time history of a contractile strain as an input for the finite element 

computations, rather than considering the full activation process (Martins et al., 1998). 

Zajac et al. (1989) hypothesized that the mechanics at the fibril (sarcomere to fibre) 

scale can be scaled to the muscle organ scale, and this assumption has been widely 

adopted since.  

An extension of the one-dimensional model Hill proposed can be achieved by 

compartmentalising the various contributions to the total stress across the volume of 

the muscle, rather than the forces. The conventional approach involves adding up the 

longitudinal stresses from the muscle fibres, the stress from the base matrix and the 

stresses related to the incompressibility of the muscle. This means that the total 

Cauchy stress (𝜎) of the muscle can be expressed as the following relationship; 

 𝜎 =  𝜎𝑓𝑖𝑏𝑟𝑒 + 𝜎𝑚𝑎𝑡𝑟𝑖𝑥 + 𝜎𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 (3.7) 

 

Kojic et al., (1998) proposed that the CE and the SE played the role of the active 

muscle fibres, where the PE played the role of the surrounding matrix, and their 

conceptualisation of the SE model considered the PE to behave linearly as an isotropic 

elastic material. Based on Kojic’s foundation, Tang et al. (2005) and Tang et al. (2007) 

incorporated muscle fatigue into three-dimensional skeletal muscle models. This 
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fatigue function incorporated the rate of activation and the stretch explored by 

Stojanovic et al. (2006), which extended the previous models by taking into account 

different fibre types, as well as including different types of sarcomeres in parallel with 

the connective tissue. Each sarcomere was modelled by one non-linear elastic element, 

which was connected in series with one other active contractile element, as shown in 

Figure 3.2. 

 

  

 

Figure 3.2 Various fibre types in the muscle model placed in parallel to each 

other, where the summation of each of the fibre types gives the final stress. 

Stojanovic et al. (2006): 71(7).   

 

 

As a natural progression of the lumped parameter models reviewed above, the 

work carried out on three-dimensional skeletal muscle models were of great interest. 

The next section reviews literature that established the foundation of three-

dimensional models, in particular finite element models of skeletal muscle.  
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Whilst the configuration of fibres in skeletal muscle models has a significant effect 

on its mechanics, other models have looked to incorporate this in order to attempt to 

model the muscle-tendon junction and aponeurosis. Examples of computational 

models of muscle and muscle-tendon complexes exist in abundance, but models that 

include an aponeurosis structure are far less common. A few examples of such finite 

element models that include the aponeurosis will be discussed here. 

Blemker et al. (2005) created a three-dimensional finite element model of the 

biceps brachii (arm) to investigate strain distribution across the muscle. The study 

compared the predicted results obtained from their model with experimental results 

and found that their model was in good agreement with the experimental data, within 

one standard deviation. Their muscle geometry (see Figure 3.3) was an idealised 

geometry of the biceps brachii and was axisymmetric around a centre line.  

 
Figure 3.3 Idealised muscle model created in Blemker et al. (2005) showing a 

simplified model with symmetric muscle geometry and uniform aponeurosis. 

 

This method of creating the muscle geometry is not ideal as it did not accurately 

reflect the in vivo muscle morphology – most notably since the in vivo muscle will not 

be symmetric. An improvement could be made using data from Magnetic Resonance 

Images (MRI) scans to provide the actual 3D muscle geometry. Furthermore, whilst 

the aponeurosis was included in this model, no connecting tendon region or muscle-

tendon transition was included. Despite this simplification, the aponeurosis induced a 

non-uniform strain distribution in the finite element muscle simulation. An 

improvement here could include changing the thickness across the aponeurosis (so 

that the aponeurosis is not symmetrical), as well as considering an aponeurosis-muscle 

3.1.3 Three-Dimensional Anatomical Models of Skeletal Muscle Tissue  
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transition zone, with the exception that the omittance of a tendon extremity might be 

compensated for by the application of appropriate boundary conditions.  

Other studies have operated at the other extreme to this work, with complex and 

patient specific models that consequently limit their usability for parameter studies 

and compromise the ease with which they can be adjusted to model different 

phenomena. One example of this type of study investigated strain distribution in the 

biceps femoris longhead, also using a finite element model (Rehorn & Blemker, 2010). 

Rehorn et al. (2010) made use of MRI to develop the muscle geometry used for the 

study, which allowed for an accurate definition of muscle geometry – an improvement 

on the model by Blemker et al. (2005). The anatomical model is shown in Figure 3.4. 

From Rehorn et al. (2010), it was concluded that the dimensions of the aponeurosis 

substantially affect deformation within muscle tissue, highlighting the importance of 

the morphology of the aponeurosis in the stretch distribution throughout the muscle 

(Rehorn & Blemker, 2010). 

 

 

Figure 3.4 MRI-based model of the hamstring from Rehorn et al. (2010). This 

model is defined via MRI data to provide an accurate geometry of the 

aponeurosis region’s fibres, making it individual specific. 

 

More recently, a three-dimensional finite element model was used in a study, 

investigating the influence of intramuscular fibre orientation on the curvature of the 

Achilles tendon during gastrocnemius muscle contraction (Kinugasa et al., 2016). This 

model included the aponeurosis and tendon, but only at one end (distal) of the muscle. 

It was found that the aponeurosis transfers force between the muscle and tendon and, 
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influences the force distribution throughout the muscle complex. This result suggests 

that including the aponeurosis at both ends (origin and insertion) may influence how 

force is transferred through the model and thus alter the results. Again, the lack of 

inclusion of these anatomical features of the muscle-aponeurosis-tendon complex 

represents a simplification of the modelling methodology, which could have an impact 

on the results. Furthermore, the models discussed above have not considered the 

material property distribution of the muscle-tendon junction. Computational models 

of muscle and muscle-tendon complexes exist in abundance, but models that include 

an aponeurosis structure at both the distal and proximal ends with a muscle-tendon 

transition region are far less common, hence the motivation to produce a model that 

includes such structures.   

From the review carried out so far, it is notable that the fibre orientations, and their 

description have an impact on the mechanical response of skeletal muscle complexes. 

Whilst there are a number of ways that the fibre of the muscle-tendon fibres can be 

represented in a finite element workflow (Blemker & Delp, 2005; Zöllner, et al., 

2015), the experimental methods required to obtain these fibre orientations must be 

comprehensive. One of the most comprehensive methods used is Diffusion-weighted 

magnetic resonance imaging (DW-MRI), that makes use of the diffusion of water 

molecules to generate contrast colours in MRI (Bihan & Breton, 1985; Merboldt, et 

al., 1985). DW-MRI allows for the mapping of the diffusion aqueous molecules in 

vivo, which interact with muscle fibres hence allowing for a clear image of fibres 

within an organ – such as the medial gastrocnemius. Diffusion Tensor Imaging (DTI) 

is a sub-set technique of DW-MRI, where the measurement of restricted diffusion of 

aqueous particles in tissues produce colour-mapped trajectories of the rate of diffusion 

and preferred diffusion direction. These colour maps allow for the orientation of 

aqueous molecules that experience restricted diffusion - into a muscle fibre for 

example. This process therefore provides the orientation of the membrane of muscle 

fibres, non-invasively. It is important to note, however that this does not elucidate the 

explicit orientation of the muscle fibre, rather, it represents the aqueous molecules that 

surround the muscle fibre. 

With an emphasis on skeletal muscle architecture as a fibrous material (as 

explained above), skeletal muscle tissue is modelled as a fibre reinforced material. We 

can therefore use constitutive relationships of fibrous materials to model fibrous 

tissues as are those found in skeletal muscles (muscle, tendon and transition tissues). 
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Constitutive modelling is an important field of research in skeletal muscle modelling 

that has been adapted from models of similar soft tissues, e.g. vascular tissue, cardiac 

tissue, tendons or ligaments. The next section looks at the constitutive modelling of 

soft tissues as fibre reinforced materials, with emphasis on the specific functions that 

define the energy the constituents store in relation to how they deform, namely the 

strain energy functions (SEF).  

 

The general material properties of skeletal muscle are mainly represented by their 

constitutive equation, which is the relation of a material substance to its external 

stimuli. The strain energy density of a material can be defined with respect to the 

invariants of the Cauchy-Green strain tensor, and principal stretches. 

For uniaxial stress, therefore, the invariants can be defined as specific relationships 

with the Cauchy-Green tensor, and each invariant can be used for various structural 

components. In this context, skeletal muscle is modelled as a fibre-reinforced material, 

which includes a unit vector in the undeformed configuration that accounts for the 

direction vectors of the fibres (Weiss, 1996).  

Wiess’s models have been used extensively for modelling the material behaviour 

of cardiac muscle (Humphrey & Yin, 1987; Humphrey et al., 1990). Weiss appreciates 

the compartmentalised components of the skeletal muscle model, where the base 

matrix is modelled as a basic isotropic material, and the fibre response is modelled as 

an anisotropic contribution from the interactions between the fibres and the matrix. 

The fibre contribution is thought to come from the collagen fibres embedded in the 

matrix; or in this context, one family of fibres (whether it be muscle fibres or collagen 

fibres). This follows the general strain energy function mode: 

 

 𝐹𝑇 = 𝐹1 + 𝐹2 + 𝐹3 (3.8) 

 

Where F1 is the base material contribution, F2 is the collagen fibre family 

contribution, and F3 is the mechanical contribution of the interactions between the 

fibres and the base matrix. 

 

3.1.4 Constitutive Models of Skeletal Muscle with Emphasis on Strain Energy 

Functions  
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F1 is usually modelled as an isotropic material, and the anisotropy (F2,3) is defined 

with respect to the first, second and fourth invariants, where their derivatives provide 

sufficient representation for the structural components. 

Although this strain energy function provided comprehensive information for 

skeletal muscle mechanics, there are several things that cannot be accounted for in this 

model. These omissions include the active muscle recruitment component, the non-

homogeny of the skeletal muscle-tendon tissue and morphology, and the other 

structural components of skeletal muscle. As such, Röhrle used a different strain 

energy function that allowed for the incorporation of the passive second Piola-

Kirchhoff stress component 𝑆𝑝𝑎𝑠𝑠𝑖𝑣𝑒 to the active second Piola-Kirchhoff stress 

component 𝑆𝐴𝑐𝑡𝑖𝑣𝑒 in a summative split, with respect to the total second Piola-

Kirchhoff stress 𝑆𝑇; 

 𝑆𝑇 = 𝑆𝑃𝑎𝑠𝑠𝑖𝑣𝑒 + 𝑆𝐴𝑐𝑡𝑖𝑣𝑒 (3.9) 

 

The passive stress component is thought to comprise of a Gaussian linear-like 

(isotropic) and more non-linear (anisotropic) response. The next section covers the 

form and behaviour of each of these responses. 

 

The isotropic contribution usually accounts for the base matrix response 

(Holzapfel et al., 2000). The primary, and probably most widely employed isotropic 

SEF is the Mooney-Rivlin (MR) model, which reduces to the well-known Neo-

Hookean (NH) model (Hackett, 2018). The isotropic response is an important 

contribution to consider, as it represents the intrinsic material properties that make up 

the muscle and tendon constituents. The isotropic part is generally modelled as a Neo-

Hookean or Mooney Rivlin material, expressed in terms of the first two invariants of 

the Cauchy-Green deformation tensor (mathematically defined in Chapter 4, Equation 

4.49). The Neo-Hookean isotropic model originates from the Gaussian model 

proposed by Boyce & Arruda, (2000). The Mooney Rivlin model is a more 

comprehensive and descriptive model than the Neo-Hookean model, since it provides 

a constant modulus in shear that is not dependent on the shear strain or non-linear 

deviations from the Gaussian Neo-Hookean uniaxial tension. Other constitutive 

equations, such as exponential functions, can also be utilised for the isotropic part of 

3.1.5  Isotropic Response  
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the model. The strain energy density function can be considered as the amount of 

energy stored in a material constituent, with respect to the way in which it deforms. 

The Neo-Hookean (  NH ) and Mooney Rivlin (  MR ) mathematical relationships are 

shown in Equation (3.10. 

 

 
1 1( 3)NH C I = −   (3.10) 

 

 
1 1 2 2( 3) ( 3)MR C I C I = − + −  (3.11) 

 

In Equation (3.10, 1C  is the material constant used in the Neo-Hookean model. In 

Equation 3.11, 1C  and 2C  are material constants used in the Mooney-Rivlin model. 

These material constants are typically obtained by fitting the equation to experimental 

stress-strain data. The first and second invariants of the Right Cauchy-Green 

Deformation tensor, respectively are represented by 1I  and 2I . 

These models can therefore represent the base matrix of the skeletal muscle, where 

the  MR (Mooney-Rivlin) model is commonly used in skeletal muscle mechanics 

(Blemker, 2005; Röhrle & Pullan, 2007; Röhrle et al., 2012).  

Whilst constitutive modelling lays down the foundation of skeletal muscle finite 

element modelling, skeletal muscle is a highly dynamic tissue that remodels in 

response to its mechanical environment. The next section discusses the growth and 

remodelling of skeletal muscles, in particular the physiological phenomena that occur 

during the remodelling of skeletal muscles. 

 

 

Skeletal muscle is a remarkable tissue that is capable of undergoing significant 

adaptations in response to mechanical cues. Whilst growth and remodelling may 

conventionally be considered synonymous, in the context of this thesis growth is 

considered to be the overall turnover of mass, hence volumetric growth (Rodriguez, et 

al., 1994), which occurs in response to a muscle’s mechanical environment. 

3.1.6 Remodelling Phenomena of Skeletal Muscle  
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Remodelling meanwhile, is here considered to be the changes in mechanical response 

in relation to mechanical stimuli (Humphrey, 2002).  

Whilst growth and remodelling of skeletal muscle tissue can occur upon cues from 

various stimuli (e.g. the chemical environment), only the mechanical response of the 

tissue will be considered here.  

Muscle tissue is a hierarchical structure, it experiences changes across the 

molecular, subcellular, cellular, tissue and organ scales. These scales collaboratively 

contribute to macroscopic adaptations in overall muscle structure (Wisdom et al., 

2015). The sarcomeres that are found at the subcellular level contribute to the growth 

and remodelling of skeletal muscle, where more sarcomeres are added in parallel in 

response to elevated forces produced by the muscle, hence building the muscle cross-

sectional area (Johnson & Klueber, 1991; Farup, et al., 2012). Conversely, sarcomeres 

in parallel are lost in response to disuse (Yasuda et al., 2005; Narici & Maganaris, 

2007; Campbell et al., 2013). Sarcomere numbers will increase in series - for example; 

when the muscle is stretched and held at a fixed length, or intermittently stretched to 

a perturbation of its homeostatic range, or decrease in series number when held in a 

shortened position (Baker & Matsumoto, 1988; Heslinga et al., 1995; Csapo, 2010), 

as observed in eccentric exercise (Lynn, 1994; Blazevich et al., 2007; Seynnes et al., 

2007). The mechanical environments can be described as over- and under- 

stretch/loading. As such, the homeostatic range of different constituents are considered 

to be different, where the tendon and muscle constituents therefore could not only 

remodel at different rates, they may also have different homeostatic stretches and 

stresses which determine the onset of remodelling. Further investigation of this 

homeostatic range will be explored in this thesis, hence determining over – and under- 

stretch/loading. 

Such mechanical environments in skeletal muscle mechanics include overstretch, 

which is interpreted as the extension of a muscle past its homeostatic operational range 

(Weerapong et al., 2004), and understretch, a reduction in the extension of a muscle 

below its homeostatic operational range. Overloading is the excessive production of 

force during muscle contraction, past the muscle’s homeostatic threshold force 

operational range (this threshold is not necessarily its maximum force), for a prolonged 

period, as observed in resistance training, concentric and eccentric loading (Colliander 

& Tesch, 1990; Brooks et al., 1996). Underloading is therefore the opposite; the 

deficient production of force below the muscle’s homeostatic operational range, as 
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observed in the disuse of muscles or Botulinum toxin (Botox) therapy (Ellman et al., 

2013). 

 Overloading phenomena are observed during eccentric exercise and eventually 

enables muscle fibre lengthening through the increase of sarcomeres in series (Lynn, 

1994; Brockett et al., 2001), as well as an increase in sarcomeres in parallel (Wisdom 

et al., 2015), as observed in anisotropic growth phenomena (Menzel, 2005; Tsamis et 

al., 2012). In contrast, individuals who decrease weight bearing on the triceps surea 

muscle group and keep them at a shortened length (understretch), when wearing high 

heels for instance, develop shorter muscles through the loss of sarcomeres in series 

(Csapo, 2010).  

The current body of literature concerning growth and remodelling of skeletal 

muscle spans over different scales of skeletal muscle in specific mechanical 

environments for example; underloading limb suspension (Hackney & Ploutz-Snyder, 

2012), or underloading in micro-gravity environments (Tabary et al., 1972; Trappe, 

2002; Adams et al., 2003) and changes of the sarcomere numbers. Since the work 

carried out in this thesis concerns the passive mechanics of skeletal muscle, the 

mechanical stimuli and drivers of remodelling will focus on overstretch conditions. 

Muscle plasticity is synonymously referred to as muscle adaptation (Bottinelli & 

Reggiani, 2006), where the deformations caused by chronic lengthening are inelastic 

in that they neither store energy nor generate force (Go¨ktepe, et al., 2010). Whilst 

others have aimed to model the growth mechanics of sarcomerogenesis in a continuum 

mechanics regime (Zollner et al., 2012), here the remodelling from overstretch will be 

considered as a one-dimensional phenomenon (in the direction of loading), and then 

further developed into a three-dimensional finite element workflow. The remodelling 

from overstretch in this thesis is based on stress-driven remodelling, which results in 

changes of the material constituents. Physical mechanisms that can lead to overstretch 

include limb lengthening (Williams & Goldspink, 1971; Williams et al., 1998; Deyne, 

2002; Lindsey, 2002; Boakes et al., 2007), immobilization in limb lengthened position 

(Tabary et al., 1972; Goldspink & Scutt, 1992; Pontén & Fridén, 2008) or stretch 

regimes (Goldspink, 1999; Nordez et al., 2009). 

When the muscle is perturbed from its homeostatic operational range, growth or 

remodelling is thought to occur, where the muscle can increase or decrease in number 

3.1.7 Muscle Overstretch Physiological Mechanics  
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in series (growth) or it can increase or decrease in sarcomere length (remodelling). 

Such phenomena are illustrated in Figure 3.5. 

 

 

Figure 3.5 Possible nature of muscle fibre adaptation to chronic lengthening 

(A) muscle fibre length before growth or remodelling, (B) Increase in fibre 

length due to an increase in serial sarcomere numbers and (C) increase in fibre 

length due to an increase in the homeostatic length of sarcomeres (Boakes et al., 

2007). 

 

 

As the muscle is stretched and held at fixed length, the number of sarcomeres is 

thought to increase in series (Williams & Goldspink, 1971; Tabary et al., 1972; 

Simpson & Williams, 1995; Deyne, 2002; Lindsey et al., 2002; Boakes et al., 2007; 

Makarov et al., 2009). As demonstrated above, the sarcomere length is also thought to 

increase when the muscle is gradually stretched (Elsalanty et al., 2007; Makarov et al., 

2009), which consequently increases the fibre length of the muscle (Lindsey, 2002; 

Elsalanty et al., 2007; Makarov et al., 2009).  

The Myosin heavy chains that facilitate the sarcomere length changes and take 

longer to slide over each other, suggesting a stiffer material as the muscle is stretched 

more (Goldspink & Scutt, 1992; Deyne et al., 1999). As the passive stiffness of the 

muscle increases during overstretch (Williams et al., 1998; Reid & Mcnair, 2004), the 

extracellular matrix of the muscle is thought to increase (Pontén & Fridén, 2008), as 

does the collagen in the muscular and tendinous constituents (Williams et al., 1998). 

The pennation angle decreases and aligns more closely to the force-generating axis as 

the muscle experiences overstretch (Elsalanty et al., 2007).  
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Some of the first attempts made to simulate chronic adaptation of skeletal muscle 

in a fully three-dimensional finite element modelling framework were carried out 

relatively recently (Zöllner et al., 2012). The model produced by Zöllner et al. (2012), 

relied on a three-step procedure. They first project the whole muscle stress-strain onto 

local subcellular stretch and force, secondly, they consider the local generation or 

removal of sarcomeres in series or parallel, based on these strains and stress, and 

finally they use this information to predict the resulting stress-stretch across the 

muscle. Whilst this process is modular, and has been used successfully, the 

homeostatic stress and stretch of the skeletal muscle was thought to be one, hence if 

the muscle is not at rest, remodelling occurs, rather than allowing for an operational 

range where the muscle can function before the onset of remodelling. 

Further work has been carried out to consider sarcomere loss when the muscle is 

held at a shortened configuration, namely the shortening of the gastrocnemius when 

high heels are worn (Zollner et al., 2015). Their case-study reported an overall 5% 

decrease of the gastrocnemius length, with extreme shortening of up to 22% in the 

central region of the muscle belly, when the heel was raised by 13 cm, whilst the 

Achilles tendon remains virtually unaffected. Due to the shortened configuration of 

the muscle, sarcomere loss occurred on average of 9%, up to a maximum sarcomere 

loss in the belly of the muscle of 39%. Whilst these values seem excessive after just 

ten weeks of wearing high heels, their tendon was modelled as an infinitely stiff 

material, and their critical stretch (threshold of the onset of modelling) was set to be 

1. One can contend that these assumptions are contrary to what occurs in physiological 

phenomena, as this inherently assumes that remodelling will occur as soon as the tissue 

is not idle. Furthermore, the geometrical model used does not consider the muscle-

tendon junction, or aponeurosis, which may cause erroneous remodelling 

distributions, as it has been established above that the morphology, and material 

property distribution, of skeletal muscles highly affect the stress and strains they 

experience: those stresses and strains are the main drivers of remodelling in the 

muscle. 

3.1.8 Previous Continuum-Mechanics Models of Growth and Remodelling of 

Skeletal Muscles  
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Altan et al.’s model in (2016) modelled sarcomerogenesis during overstretch. This 

model was implemented through a continuum mechanics framework by a 

multiplicative split of the total deformation gradient F , by the elastic deformation 

gradient eF , and the growth tensor 
gF . The deformation gradient and continuum 

mechanics methods are covered in Chapter 4, which is based on the work carried out 

by Rodriguez et al. (1994).  

 

 e g=F F F   (3.12) 

This multiplicative split allows for the deformation of the body to be defined with 

respect to reference 0 , current , and an intermediate ̂ configurations, where the 

mapping between the reference and intermediate configurations involve the growth of 

each particle, individually. This may lead to voids and overlaps of individual parts 

within the body. Hence an elastic deformation configuration is used to restore its unity 

(Rodriguez et al., 1994). These states are shown conceptually in Figure 3.6. 

 

Figure 3.6 Kinematics of finite growth (Altan et al., 2016). 

 

Altan et al., (2016) do however, employ an evolution equation that is used to 

determine the strain energy density function, which also accounts for the muscle’s 

active force production activities. Altan et al., reported that the stress response of the 

skeletal muscle decreases over time, as the sarcomeres in series decrease whilst the 

muscle has contracted. However, they verified their growth model through a unit cube 

in uniaxial extension, rather than in compression, hence modelling overstretch, whilst 

making inference to under stretch mechanics. Whilst it is conventionally thought that 

sarcomere turnover in series occurs during over- and understretch phenomena, which 

predominantly consist of the passive mechanics of skeletal muscle, Altan et al. 
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included active mechanics of the skeletal muscle tissue by means of their strain energy 

density function. However, they did not consider the sarcomere turnover in parallel, 

which is driven by over- and-underloading – an active process. These are therefore, 

areas of possible limitations.  

Altan et al. (2016) used the idea of an operational range of stretch of the muscle, 

as did Blemker et al. (2005), where muscle growth begins once the muscle is perturbed 

from this operational range. Neither study however, clearly stated this range, how it 

can be experimentally determined or how the fibres may constitutively behave in 

over– and understretch conditions (Blemker et al., 2005; Ehret et al., 2011; Calvo, 

2010; Shearer, 2015). There has been speculation regarding the overlap of the 

operational range of the muscle and its homeostatic range, and it has been suggested 

that this is governed by the tissue’s operational optimality (Cyron et al., 2015). 

Whilst the optimal operational range,
opt , used by Altan et al. (2016) was not 

clearly determined, it was an extension of the work carried out by Zollner et al. (2012) 

and Goktepe et al. (2010), where the threshold optimal operational stretch was defined 

as 1, hence suggesting that muscle growth occurs as soon as the muscle is no longer 

idle and moves from its resting position. Further, with the inclusion of finite growth, 

as the architecture and mass density of the constituents are thought to change, recent 

speculation has proposed that the homeostatic configuration will resultantly change, 

or reset upon each evolved step (Latorre & Humphrey, 2018) to an update homeostatic 

configuration. It is not currently known, however, how this homeostatic configuration 

changes during growth phenomena in skeletal muscle tissue. 

Considering the current literature on the growth (changes in mass) and remodelling 

(changes in architectural structure and mechanical response), the kinematics of growth 

and remodelling require a multiplicative decomposition of the elastic and inelastic 

deformations. The work carried out in this thesis predominantly considers remodelling 

of skeletal muscle tissue and omits the effects of growth. When considering illustrative 

examples in which a skeletal muscle remodels, i.e. in limb lengthening, a subject 

specific finite element model can be highly personalised with specific considerations 

to the muscle’s mechanical environment. For simplicity and reasonable inference, this 

thesis will only consider the remodelling regimes of the medial gastrocnemius. 
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The above review of the literature has elucidated areas of novelty that can be 

assessed, as well as what aspects of muscle architecture are important to include in the 

finite element model of skeletal muscle. These points are discussed in the next section. 

 

  Conclusions  

Whilst constitutive modelling is a field of research that is well developed, with 

applications to a wide variety of soft fibre reinforced materials, its application to 

skeletal muscles is still relatively new. Whilst the recent advances in skeletal muscle 

models have looked towards modelling the muscle-tendon complex as a multi-scale 

model (Röhrle et al., 2017), with chemical, electrical and physiological phenomena 

(Mordhorst et al., 2015; Heidlauf & Röhrle, 2014), there are still areas of improvement 

to be made to each of these physiological phenomena and across the sub-cellular to 

organ scale. This thesis aims to address the following areas of novelty:  

(i) How the aponeurosis region and the muscle-tendon junction of the medial 

gastrocnemius can be morphologically represented; 

(ii) The effect the morphology and architecture of the muscle-tendon junction 

has on the medial gastrocnemius’ mechanical response; 

(iii) The constituent relationship and distribution between the muscle, tendon 

and muscle-tendon junction regions;  

(iv) The remodelling regimes that may occur due to structural and 

morphological changes of the medial gastrocnemius in a perturbed 

mechanical environment.  

From the review of literature carried out above, there are several other mechanisms 

that can be added to skeletal muscle models. For simplicity, only the areas outlined 

above will be investigated, to better understand the mechanical response of the medial 

gastrocnemius, the effects of different anatomical features and how its mechanical 

response changes over time in relation to its mechanical environment. 

The next chapter details the mathematical methods that were used to develop the 

three-dimensional continuum finite element model of skeletal muscle tissue. 
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4 Chapter 4 

The Exploration of a Mathematical Model of Skeletal 

Muscle and Tendon Tissue 

 

 

The previous chapters have offered a general overview of the thesis and have 

discussed the anatomy and physiology of skeletal muscles. A chronological review of 

the literature concerning mathematical and finite element modelling of skeletal 

muscles was also undertaken. Together, these chapters underpin the subsequent work 

and outline the areas in which this thesis seeks to contribute to. The current chapter 

starts by reviewing the basics of non-linear solid mechanics and then justifies the 

selection of the constitutive relationships used in this thesis. From the constitutive 

relationships used, the benchmark analytical formulation is tested against a numerical 

simulation of an idealised cuboid in order to verify the accuracy of the numerical 

formulation. 
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 Basics of Non-Linear Solid 

Mechanics 

Bodies deforming in a space-time continuum can be defined using non-linear solid 

mechanics, meaning that each position vector on a body in its initial/reference state 

can be mapped onto its current/deformed state, with respect to time, as shown in Figure 

4.1. This transformation function is defined by means of a deformation tensor as 

derived below. The deformation and location of the body can be described using 

Eulerian (spatial cartesian) co-ordinates and Lagrangian (material) co-ordinates, 

where the Lagrangian coordinates deform with the material as it deforms. 

 

 

Figure 4.1 Initial reference and current configurations of a continuum body. 

  

The position vector of a point on a material in the initial reference position can be 

given by the following relationship (Belytschko et al. (2000)): 

 

 
IX= I

X E  (4.13) 

 

4.1.1 Lagrangian and Eulerian Co-ordinates 
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 XI denotes the components of the position vector in the reference configuration 

(‘spatial’ or ‘Lagrangian’ co-ordinates), and EI is the unit base vectors of a rectangular 

Cartesian coordinate system in the initial position. 

The position vector of the deformed body in the current configuration is defined 

by the same relationship but denoted in lowercase lettering, as also shown in Figure 

4.1. 

 
Ix= I

x e  (4.14) 

 

Here, 𝑥I represent the components of the position vector in the current 

configuration (‘spatial temporal’ or ‘Eulerian’ co-ordinates) and eI is the unit base 

vectors of a rectangular Cartesian coordinate system in the current position. 

The motion and displacement of a body from its reference configuration can 

therefore be mapped onto its current configuration by mathematically defining its 

motion and displacement in the Lagrangian co-ordinate system.  

 

As shown by Shabana (2008), a point in the initial configuration can be mapped 

onto its current configuration at time t through the following direct relationship:  

 

 ( , ) ( , )t u t= = +x X X X  (4.15) 

 

u(X,t) is the displacement of the material point through the deformation gradient – a 

matrix which defines the deformation of the body through a Eulerian co-ordinate 

system. This deformation gradient is described below. 

 

The deformation gradient, F, can be defined as (Belytschko et al. (2000)): 

 

 
( ) i Ii

I

x

x X



 
= = F x e E  (4.16) 

 

4.1.2 Motion and Displacement 

4.1.3 Deformation Gradient 
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F can also be referred to as the Jacobian matrix of the mapping function 𝜑, where 

the determinant of F is called the Jacobian (𝐽) determinant, or the Jacobian, of the 

deformation gradient, as shown by Belytschko et al. (2000): 

 

 det( )J = F  (4.17) 

 

The deformation gradient can therefore be compartmentalised into two parts that 

take into account, first, the related change in volume (the dilatational part) and, second, 

the change of shape of the deforming body (the deviatoric part), per unit volume of a 

homogenous substance, as shown by Flory (1961) in Equation 4.18:  

 

 

1
3

2
3

.vol dev

vol

dev

J

J

=

=

=

F F F

F F

F F

 
    

(4.18) 

 

where volF is the deformation gradient that attributes to the volumetric change and devF

is the deviatoric part. It is important to note that the volumetric part is synonymously 

referred to as the isochoric and dilatational response in this context. 

The determinant of the deviatoric deformation gradient is always 1, Therefore the 

determinant of the isochoric response is equal to the determinant of the whole 

response, which is equal to the Jacobian matrix J (Flory, 1961), for instance:  

 

 det( ) det( )vol J= =F F  (4.19) 

 

 

Following on from these principles of solid mechanics, we can begin to derive and 

quantify the stress and strains associated with the material. The next section defines 

the following strains: Green Strain, the right and left Cauchy-Green deformation 

tensors and the principal stretches of the Cauchy-Green deformation tensors. 
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The Green strain (also referred to as the Lagrangian strain) measures the squares’ 

difference of an infinitesimal segment in the reference configuration and the current 

configuration, and can be given by the following relationship (Fung, 1993): 

 2 2( ) ( ) 2d d d d− =  x X X E X  (4.20) 

 

Provided: 

𝑑𝑿2 = 𝑑𝑋𝑖𝑑𝑋𝑖 = 𝛿𝑖𝑗𝑑𝑋𝑖𝑑𝑋𝑗 

𝑑𝒙2 = 𝑑𝑥𝑖𝑑𝑥𝑖 = 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 

Hence:  

 1
( )

2
= T

E F F - I  (4.21) 

 

The Green strain tensor is denoted by E  and I is a second order unit tensor – 

which can be considered as unity. 

𝛿𝑖𝑗 is used in the Kronecker delta nomenclature: 𝛿𝑖𝑗 = 1 𝑖𝑓 𝑖 = 𝑗;and 𝛿𝑖𝑗 =

0 𝑖𝑓 𝑖 ≠ 𝑗; again, note here that the lowercase letters refer to the current deformed 

configuration at time t, and the uppercase letters refer to the initial undeformed 

reference configuration when t=0. This means that the Green strain can be re-written 

in the following format:  

 1
( - )

2

T

ij ik kj ijE F F =  (4.22) 

 

The right ( C ) and left ( B ) Cauchy-Green deformation tensors are shown below, 

respectively (Weiss (1996)): 

 
iL iJF F= =T I J

C F F E E  

iI jJF F= =-1 T i j
B = C FF e e  

(4.23) 

 

As such, we can eliminate the volume change factor and express the right and left 

Cauchy-Green deformation tensors as the following: 

 2
3T J=C = F F C  (4.24) 

4.1.4 Strain Measures 
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2
3T J=B = FF B  

 

Equating C and B  as a volumetric-eliminated version of the right and left 

Cauchy-Green deformation tensors, respectively. 

 

Using the finite elasticity relationships, and based on the principle of least action, 

the principle of virtual work (governing equation) in the bodies of interest can be 

defined in terms of the internal (Cauchy) stress, the sum of the applied forces and 

inertial forces. These forces should reach an equilibrium, whereby the total energy is 

equal to zero (Yang et al., 2002; Baruh, 1999). Hence, the variational form of the 

principle of virtual work;  

 
:  0W J dVol dVol dS  


= − • − • =
  

V V S

U
σ b U Tr U

X
 (4.25) 

 

The field of virtual displacements are represented by U , b  denotes the body force 

per unit mass and Tr  represents the surface traction vector, W is the virtual work of 

a rigid body (which is a function of the strain energy density function), S  is the surface 

of the body and Vol is the volume of the body. As expressed above, the volumetric 

part may be considered negligible (i.e. the second term in the integration function 

above may be considered as negligible). . . 0dV dS − = 
V S

b U Tr U , therefore, only 

the first term will be used to derive the virtual work function:  

( )
:

v

W J dVol
 

=


U
σ

X
 

These integrals are performed over the initial undeformed volume and its surface 

area. As such, this is used to show the stress definitions expounded below. 

 ,  ,  J J= =-T -1 -T
P σF S F σF P = FS  (4.26) 

Muscle can be considered as a quasi-incompressible hyper-elastic, transversely 

isotropic material (Namani & Bayly, 2010). The Jacobian and the hydrostatic pressure 

can therefore be modelled with the inclusion of a penalty function, where D is large, 

and J approaches and asymptotes towards 1. 

4.1.5 Stress Measures 
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1

1
( 1) 0h

v

J dVol
D

 − =  
    

(4.27) 

 

The hydrostatic pressure is denoted by
h , which is to be derived, and the 

incompressibility parameter is defined as 1D . The Jacobian (det[F]) is J . 

 

 When considering hyper-elastic materials, the second Piola-Kirchhoff stress is 

calculated from the strain energy function (SEF) (Belytschko et al. (2000)): 

 ( )( )
2 SEFdWd

S
d d


= =

CE

E C
 (4.28) 

 

 

Therefore, from the definition of E in Equation 4.28: 

 ( ) (2 )W =C E+ I  (4.29) 

 

  

 

Thus, substituting Equation 4.28 into the Equation 4.26, the Cauchy stress, σ  can 

be calculated by: 

 

 1 ( )
2 SEFdW

J
d

−= TC
σ F F

C
 (4.30) 

 Hyper-elastic Constitutive 

Relationships 

The isotropy of a constitutive material can be expressed and represented by the 

invariants of the right Cauchy-Green deformation tensor. There are nine invariants (I1-

9) in total – however only five are required when modelling an isotropic constitutive 

relationship. A transversely isotropic material can be considered as an isotropic 

material with one family of fibres embedded in its matrix (Lieber & Friden, 2000), 

and therefore skeletal muscle has previously been modelled as an implicit fibre-

4.1.6 Determining Stress Measures Using Strain Energy Density Functions 
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reinforced material (Limbert & Taylor, 2002). This simplification allows for the 

general mechanical response considerations of the fibres but limits the complexity of 

traction and visco-elasticity of the fibre-fibre interactions. An illustrative diagram of 

the implicit concept of the muscle as a fibre-reinforced material is shown in Figure 

4.2. 

A transversely isotropic material models the base matrix as an isotropic material, 

and the fibre stretch will introduce anisotropy. These two factors can be incorporated 

in the total SEFs selected later. Accordingly, the fibres will deform according to the 

deformation configuration of the full body. This can be quantified by the following 

relationship given by Martins et al. (1998): 

 f = •n F N  (4.31) 

 

where 𝜆𝑓 is the fibre stretch ratio in the direction of the undeformed fibre and n  is a 

unit vector in the current configuration, with N a unit vector in the undeformed 

configuration (principal direction of the fibres). 

 

Spencer states that the fourth and fifth invariants are the most appropriate for use 

to model the mechanical response induced by reinforced fibres, for transversely 

isotropic materials (Spencer, 1984). The concept of muscle tissue as a fibre reinforced 

material is illustrated in Figure 4.2. The strain energy function can therefore be 

expressed with respect to invariants 1 to 5 of the right Cauchy-Green deformation 

tensor: 

  

𝑊(𝑪) = 𝑊(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) 
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Figure 4.2 Representation of the fibre direction in an implicitly modelled 

fibre-reinforced material 

Image taken from: Limbert, G. and Taylor, M. (2002). 

 

 

The Piola-Kirchhoff stress of the body can therefore be derived using the following 

function irrespective of the loading conditions (uniaxial, biaxial or shear loading) 

(Weiss, 1996): 

 5 5
1

1 11

2 2SEF SEF

i i

dW dWdI

dI d d
 

= =

= + = + -1 -1
S C C

C C
 

    

(4.32) 

 

 

 

Therefore,  

 
1 1 2 2 3 3 4 52( ) 2 2 ( )W I W W I W W W= + − + +  +  + -1

S I C C N N N C.N N.C N  
    

(4.33) 

The invariants can therefore be expressed in terms of the principal stretches as 

derived by Spencer (1984). 

𝑓𝑜𝑟 𝐼(λ); 

 𝐼1 =  𝜆1
2 + 𝜆2

2 + 𝜆3
2 

 

(4.34) 

 
𝐼2 =  𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆3

2𝜆1
2 =

1

2
((𝑡𝑟𝑪)2 − 𝑡𝑟𝑪2) 

(4.35) 
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 𝐼3 =  𝜆1
2𝜆2

2𝜆3
2 = 𝑑𝑒𝑡𝑪 =  𝐽2 

 

(4.36) 

 𝐼4 =  𝑵 ⊗ 𝑵: 𝑪 

 

(4.37) 

 𝐼5 =  𝑵 ⊗ 𝑵: 𝑪𝟐 

 

(4.38) 

 

The derivatives of the right Cauchy-Green deformation tensor with respect to the 

invariants are therefore the following: 

 𝜕𝐼1

𝜕𝑪
= 𝑰 (4.39) 

 𝜕𝐼2

𝜕𝑪
= 𝐼1𝑰 − 𝑪 

 

(4.40) 

 𝜕𝐼3

𝜕𝑪
= 𝐼2𝑰 − 𝐼1𝑪 + 𝐼3𝑪−1 

 

(4.41) 

 𝜕𝐼4

𝜕𝑪
= 𝑵 ⊗ 𝑵 

 

(4.42) 

 𝜕𝐼5

𝜕𝑪
= 𝑵 ⊗ 𝑪. 𝑵 + 𝑵. 𝑪 ⊗ 𝑵 

 

(4.43) 

 

Where I1-5 = 1-5th invariants, N is a unit vector to represent the fibre direction in 

the undeformed configuration. C represents the right Cauchy-Green deformation 

tensor and I is a second order unit tensor. 

 

Provided;  

 
𝑊𝑖 =

𝜕𝑊

𝜕𝐼𝑖
;  𝑖 = 1,2,3,4,5 (4.44) 

 

Based on the mathematical formulations above we can separate the SEF into two 

compartments for a quasi-incompressible hyper-elastic material, where one 
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compartment accounts for the volumetric contribution expressed with respect to the 

Jacobian, and the other compartment is expressed considering the deviatoric 

contribution.  

 

Therefore, the second Piola-Kirchhoff stress can be written as:  

 

 2
32vol devdW dW

J J DEV
dJ d

−  
= +  

 

-1
S C

C
 

    

(4.45) 

 

 

The Cauchy stress can therefore be derived as: 

 2vol devdW dW
dev

dJ J d

 
= +  

 
σ I F F

C
 

    

(4.46) 

 

 

The function dev[x] is defined by Weiss (1996) as shown below: 

 
𝑑𝑒𝑣[𝑥] = [𝑥] −

1

3
(𝑥: 𝑰)𝑰 (4.47) 

 

 

These functions will therefore allow for the explicit Cauchy stress and stretch ratio 

to be calculated to compare the mechanical response of the materials, based on the 

constitutive equations chosen. The next section will explore this in more detail. 

 

As skeletal muscle is a fibre reinforced transversely isotropic material, an 

equation that can define the fibrous anisotropic behaviour, as well as the isotropic 

base-matrix behaviour of the muscle and tendon constituents must be considered and 

used. The Holzapfel et al., (2000) constitutive relationship is one of the most widely 

used formula for modelling this type of material, where the isotropic response is 

expressed with respect to the first invariant ( 1I ), the first family of fibres are expressed 

in terms of the fourth invariant  ( 4I ), and the second family of fibres are expressed in 

4.2.1 The Strain Energy Density Function of Skeletal Muscle Tissue 
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terms of the sixth invariant ( 6I ). The strain energy function used in the current work 

is taken from Holzapfel et al. (2000) takes the form:  

 22
2 62 4 ( 1)( 1)1 1

1 4 6 1 1

2 2

( , , ) ( 3) ( 1) ( 1)
2 2

y Ik I

SEF SEF

k y
W W I I I c I e e

k y

−−
= − + − + −=  (4.48) 

  

Where W is the strain energy function, and 1C  is the isotropic constant, usually 

measured in MPa. Parameters 1k  and 1y  are anisotropic constants of the first and 

second families of fibres, respectively, and are measured in MPa. Parameters 2k  and 

2y  are also anisotropic constants of the first and second fibre families respectively, 

which are dimensionless. The isotropic response tends to represent the base or bulk 

response, while the anisotropic response represents the fibre response. 

This strain energy function represents the isotropic and anisotropic summative 

contribution to the total Cauchy stress, based on the idealisation that muscle tissue 

consists of a family of two types of fibres embedded in an isotropic ground matrix. 

These invariants are expressed in terms of the right (C) and left (B) Cauchy-Green 

deformation tensor, which takes the form:  

 

 
11 12

21 22

33

11 12 11 12

21 22 21 22

33 33

0

0

0 0

since:

0 0

0 0

0 0 0 0

C C

C C

C

F F

F F

F

 

 



 
 
 
  

   
   

= =
   
      

T
C = = F F

F

 
    

(4.49) 

 

 

2

11 12 21

2

21 12 22

2

33

0

0

0 0

  

  





 
 
 
 
 

T
C = = F F
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Note that; 

  

11 33 12 33

1

21 33 22 33

1

33

0

0

0 0

C C C C

C C C C

C

−

−

− 
 
− =
 
  

C = B  

 

 

 

The Cauchy, first and second Piola-Kirchhoff stress terms can therefore be derived 

following the above conjecture, shown specifically in Equation 4.50, and the strain 

energy function shown in Equation 4.48, as the following:  

 

( )

( )

1 4 6

1 4 6

1

1 4 6

2 2 ( ) 2 ( )

2 2 ( ) 2 ( )

2 2 ( ) 2 ( )

T

T

p W W W

p W W W

p W W W

−

− −

= − + +  + 

= − + +  + 

= − + +  + 

σ I B m m n n

P I B m m n n F

S I B m m n n F F

 
    

(4.50) 

 

Where;  

 

1,4,6

i

i

dW
W

dI

i

=

=

 
    

(4.51) 

 

 

The invariants are expressed in terms of the axial stretches, as derived by Spencer 

(1984): 

 

( ) ( )

( ) ( )

2 2 2

1 11 22 33

2 2

4 11 12 21 22

2 2

6 11 12 21 22

( )

cos sin cos sin

cos sin cos sin

I tr

I

I

  

       

       

= = + +

=  = + + +

=  = + + +

C

m m

n n

 
    

(4.52) 

 

Noting the following from Holzapfel & Ogden (2009):  

 
1 11 12

2 21 22

1 11 12

2 21 22

cos cos sin

sin cos sin

0 0 0

cos cos sin

sin cos sin

0 0 0

F F

F F

F F

F F

  

  

  

  

+     
     

= = = +
     
          

+     
     

= = = +
     
          

m

m F m F

n

n F n F  

    

(4.53) 
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Hence enabling the evaluation of the following from Equation 4.51: 

 

2
2 4

2
2 6

1 1

( 1)

4 1 4

( 1)

6 1 6

1

( 1)

( 1)

k I

y I

W c

W k I e

W y I e

−

−

=

= −

= −

 (4.54) 

 

 

For pure homogeneous planar biaxial deformation of the cuboid the Cauchy stress 

components can be written as:  

 
1 4 6

33 1 33

2 2 2

1,2,

1,2,

2

ij ij i j i jp W B W m m W n n

i

j

p W B





= − + + +

=

=

= − +

 

 

    

(4.55) 

Adopting the assumption that 33 0 = ,  can be eliminated and the Cauchy stress 

term can be expressed so as to elucidate the specific stress terms that have been used 

for the analytical solution: 

 

 
1 33 1 4 62 2 2 2

1,2,

1,2,

ij ij i j i jW B W B W m m W n n

i

j

 = − + + +

=

=

 
    

(4.56) 

 

 

During uniaxial loading, the deformation gradient can be defined by the referential 

stretch according to the following relationship:  

 

11 12 11 12

21 22 21 22

33 33

0 0
0 0

1
0 0 0 0

0 0 0 0
1

0 0

F F

F F

F


 

 






 
 
    
    

= = =     
       
 
 
 

F  
    

(4.57) 

 

so that the condition of incompressibility is satisfied:  

4.2.2 Analytical Formulation of Uniaxial Loading  
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11 22 33. . 1   =  

 

and as it is in homogenous uniaxial (or biaxial) tension, the following conditions 

must also be satisfied, where sheer stresses are not considered in the analytical and 

one-dimensional numerical investigations.  

Material symmetry is a material property that considers the way in which a 

materials’ mechanical response changes in relation to its axis of loading. Orthotropic 

materials have a material rotational symmetry order of 2 and isotropic materials have 

an infinite order of material rotational symmetry; that is – the material will respond 

uniformly in all directions (Humphrey, 2013; Holzapfel, et al., 2015). Transversely 

orthotropic materials are unique orthotropic materials that have only one order of 

material rotational symmetry, therefore only the orthogonal components are 

considered, hence: 

 

 

12 21 0 = =  

 

Therefore, the referential stretch can be defined as: 

  
11

22 33

1

 

 


=

= =
 

(4.58) 

 

 

 

During biaxial loading, like Equation 4.57, the deformation gradient is defined by 

the referential stretch using the following definition: 

 

4.2.3 Analytical Formulation of Biaxial Loading  
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2

0 0

0 0

1
0 0







 
 
 

=  
 
 
 

F  
    

(4.59) 

The orthogonal (principal) components of the referential stretch can therefore be 

defined as: 

 

11 22

33 2

1

  




= =

=
 

 

These stretches can be used to determine the invariants of the Cauchy-Green 

deformation tensor, and hence the analytical formulation that will be used to verify the 

numerical implementation in ANSYS. 

The numerical simulation is a cube of muscle tissue that is being loaded uniformly 

in one direction (uniaxial) and homogenously in two directions (biaxial). The 

mathematical formulations above explicitly show the analytical formulation that was 

used for comparison with the numerical simulations. The cubes that were extended 

numerically required material constants for the numerical model defined by the strain 

energy density function of Holzapfel et al. (2000). The material constants were 

carefully selected as reported below. 

 

 Determining the Material Constants 

There are various material models that have been used to define strain energy 

functions that are like the constitutive model of Holzapfel et al. (2000). Whilst 

Holzapfel et al. (2000) created a model for arterial wall tissue, as shown in Equation 

4.48, their work has been widely used to model other biological fibrous tissues. Since 

the muscle and tendon lie adjacent to each other and their tissue constituents are 

similar (both modelled as fibre-reinforced materials), a careful selection of material 

constants has been carried out so that this model can be used to represent muscle and 

tendon tissue accurately in the current simulations as an assembly of different fibre 

reinforced materials. Firstly, a comprehensive search of constitutive models for 
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skeletal muscle or tendon tissue were considered and reviewed for similarities – some 

of the models considered are shown in Table 4.1.  
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Table 4.1 Constitutive relationships from the literature with the tissue 

representation, constitutive equations and respective material constants used. 

Author Tissue Type Const. Relationship Material Constants 

Taglialavoro 

et al. (2005) 

Cyclic Loading 

Human Tendon ( )







−−−

+−+−=

−
1)1(...

...)3()3(

4

)1(3

2211

2
4 Ie

c

IcIc

I 





 

C1 = 1.0 [MPa]; 

C2 = 2.0 [MPa]; 

C3 = 4 [MPa]; 

γ = 10 [-]; 

Blemker et 

al. (2005) 

Bicepts Bracchi 

Muscle, 

Tendon/Aponeur

osis Fascicles 
( )

2

2

1

1

*

1

1

*

( 1);  

when 

( ) ( 1);  

when 1.0

ofl
P

fiber

pass

ofl

Ltendon

f P e

L e






  

 

 

 
− 

 

−

= −

 

= −

 

 

P1 = 0.05 [-]; 

P2 = 6.6 [-]; 
*

musc = 1.4 [-]; 

*

apon = 1.03 [-]; 

L1 = 2.7 [MPa]; 

L2 = 46.4 [-]; 

Ehret et al. 

(2010) 

Rat Tibialis 

Anterior Skeletal 

Muscle. 







−+−= −−
]1[

1
]1[

1

4

)1~()1( 




 ee pI  

 = 0.159 [kPa]; 

 = 19.69 [-]; 

 =1.19 [-]; 

Calvo et al. 

(2010a) 

Rat Tibialis 

Anterior Skeletal 

Muscle  

( ) ( )

( )

4 4 40

0 0

( )3
1 1 4 4 4 4 4 4 4

4

1 1 5 4 6 4 7 4 4

3 ( ) 1 ,     

1
3 ln( ) ,    

2 ref

C I I

ref

C
C I e C I I I I and I I

C

C I C I C I C I I





− 
 = − + − − −    

 

 
 = − + + +   

 

 

C1=0.0088 [MPa]; 

C3= 0.0099 [MPa]; 

C4=2.237; 

C5=3.064 [MPa]; 

C6=-4.7596; 

C7= -2.7635 [MPa]; 

Calvo et al. 

(2010b) 

Rat Tibialis 

Anterior Tendon  

( ) ( )

( )

4 4 40

0 0

( )3
1 1 4 4 4 4 4 4 4

4

1 1 5 4 6 4 7 4 4

3 ( ) 1 ,     

1
3 ln( ) ,    

2 ref

C I I

ref

C
C I e C I I I I and I I

C

C I C I C I C I I





− 
 = − + − − −    

 

 
 = − + + +   

 

 

C1=0.081 [MPa]; 

C3= 0.045 [MPa]; 

C4=7.57; 

C5=58.007 [MPa]; 

C6=-66.7; 

C7= -57.33 [MPa]; 

Roerhle et al. 

(2013) 

Chemo-Electro-

Mechanical 

Model 








−−+−+−= f

d

f b
d

b
IcIc  ln)1()3()3( 2211

 

C1=6.352e-10 [kPa]; 

C2 = 3.627 [kPa]; 

b=2.75 e-5 [kPa]; 

d = 43.373 [-]; 

Shearer 

(2015) 
Human Tendon 

( ) ( )1 41 3 ,   1,
2

I I

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1
,I

cos 


 

0 < Ф < 1; 

μ=0.01 MPa]; 

k1 = 25 [MPa]; 

k2 = 183 [-]; 

ФE = 552 [MPa]; 

θ = 0.19 rad; 

Bajuri et al. 

(2016) 

Ageing Human 

Tendon ( )
' 2

2 4 4

'
[ (1 3 ) 1)1 1

1 '

2

( 3) 1
2

k I Ic k
I e

k

  + − − 
= − + − 

 
 

C1 = 0.00046[MPa]; 

k1 = 9.127 [MPa]; 

k2 = 1.6 [-]; 

 =0 [-]; 
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 Whilst Table 4.1 is not exhaustive, currently, no skeletal muscle data is available 

in the literature with exactly the same mathematical form as that used in this thesis 

(Holzapfel et al., 2000). The Holzapfel et al., (2000) constitutive relationship was 

chosen due to its wide application to previous soft tissue models (Bajuri, et al., 2016; 

Holzapfel & Ogden, 2009; Holzapfel, et al., 2000; Roehrle & Pullan, 2007), its 

availability in ANSYS for finite element modelling, and its ability to represent the 

structural features of the anatomical muscle model. The Holzapfel et al. (2000) 

constitutive relation contains several material properties (see Equation 4.48). The 

stress-stretch response of this constitutive relationship can be plotted to illustrate the 

relative contribution of each parameter. These are shown in Figure 4, where the 

isotropic contribution of the model represents the base matrix constituent and the 

anisotropic contribution represents the fibrous. Please note arbitrary numbers within 

the representative range are used for C1, k1 and k2 in these plots. 
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Figure 4.3a 

 

Figure 4.3b 

 

Figure 4.3c 

Figure 4.3 Comparing the effects on the strain energy function used from 

Holzapfel et al. (2000) of changing C1 (a), k1 (b) and k2 (c) in terms of the total 

stress contribution of the first Piola-Kirchhoff stress. 
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It is clear from Figures 4.3a-c that k1 has a marked effect on both the gradient and 

stiffness of the constitutive model for small to medium levels of stretches (e.g. stretch 

over 1.1), whereas k2 has a much bigger effect at higher stretches (more than 1.4). The 

parameter k2 provides a rapid stiffening response to prevent permanent tissue damage 

when approaching the stretch limit. The effect of C1 lies predominantly within the 

isotropic linear region. Therefore, when estimating these parameters, particular care 

has been taken to optimise for k1 and k2, in order to ensure a reasonable non-linear 

response of the muscle and tendon tissues. The C1 values for muscle and tendon were 

taken directly from the literature, if the same isotropic linear behaviour would be 

expected for the ground matrix substances. 

 

4.3 Determining the Material Properties of the tendon 

Calvo et al., (2010b) reported the stress-stretch data of rat tibialis anterior tendon 

tissues under uniaxial tension. It should be noted that Calvo et al., (2010a and b) used 

a slightly different form of constitutive equation compared with the one selected in 

this thesis from Holzapfel et al., (2000). It was assumed that the same C1 value from 

Calvo et al., (2010b) could be used in Holzapfel et al., (2000). And parameters k1 and 

k2 were then optimised to fit the Calvo et al., (2010b) data using the Levenberg-

Marquardt algorithm in MATLAB1 (Levenberg, 1944) (see Figure 4.1). The final 

material parameters (C1 and k1) for muscle are listed in Tables 4.2. The value of 

Parameter k2 has been checked against that in Bajuri et al. (2016) to ensure it was 

within the range of those previously reported in the literature. 

 

 

  

                                                 
1 Matlab is a multi-paradigm platform that is used for numerical computing. It provides a 

mathematical and engineering computing environment and consists of a proprietary programming 

language developed by MathWorks. www.mathworks.com  

http://www.mathworks.com/
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Determining the Material Properties of the Tendon 

 

 

Figure 4.4 Final material parameters to be used for tendon.  Parameters k1 

and k2 have been optimised based on Calvo et al. (2010b) data. C1 is taken 

directly from the value used in Calvo et al. (2010b) as shown in Table 4.2.  

 

 

Table 4.2 Final Material properties used for Tendon 

Material 

constants 

C1 [MPa] k1 [MPa] k2 [-] R2 value 

Tendon 0.08124 0.1047 0.1356 0.9986 

 

A similar approach was adopted to determine the material constants for the muscle 

constituents using the same strain energy function. The methods used to determine the 

Material properties of the muscle are discussed in the next section. 

 

 

Determining the Material Properties of the Muscle 

For the muscle tissue, Calvo et al (2010a) provided stress-stretch data for rat 

tibialis anterior skeletal muscle. Like the tendon, the same C1 value estimated in Calvo 

et al (2010a) was assumed in Holzapfel et al., (2000) to reflect a similar isotropic 

response. In order to reduce the number of parameters to be optimised against 

experimental data, only k1 was optimised here against data reported in Calvo et al 

(2010a), unlike in the case of tendon where both k1 and k2 were optimised. The 
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decision to optimise k1 was based on the observation made in Figure 4.3, which 

showed k1 to be the most influential factor in a low to medium stretch range.  

In order to find the muscle-specific parameter for k2, a muscle-tendon parameter 

ratio of 0.1083 was determined based on the two k2 values reported in the two Calvo 

et al (2010a and b) studies. This ratio was then applied to the k2 value estimated for 

tendon in the previous section in order to obtain the new k2 value for muscle in the 

Holzapfel et al., (2000) formula. The Calvo et al (2010a) data was then used to 

optimise for k1 as shown in Figure 4.5 below. The final parameters estimated for 

modelling muscle are illustrated in Table 4.3. 

 

 

 

 

 

Table 4.3 Final material properties used for Muscle 

Material 

constants 

C1 [MPa] k1 [MPa] k2 [-] R2 value 

Muscle 0.0088  2.65 1.244 0.9992 

 

  

Figure 4.5 Final material parameters to be used for muscle.  Parameters k1 

and k2 have been optimised based on Calvo et al. (2010a) data. C1 is taken 

directly from the value used in Calvo et al. (2010a) as shown in Table  4.3 
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 Numerical Simulation 

Implementation and Verification 

All finite element models with complex geometry and material property are 

solved numerically via an iterative process. The selection of the boundary constraints, 

material parameters and solution algorithms will affect model convergence. It would 

therefore be desirable to start with simplified FE models, before adding complexity, 

in order to check for predictive accuracy and resolve potential convergence issues. 

This was done by first using a cuboid geometry to approximate the muscle-tendon 

complex and compare its numerical results with benchmark analytical solutions. This 

section describes the boundary conditions and implementation process carried out to 

construct and verify the cuboid model.  

 

Based on the derivation of the stress and strains in continuum mechanics, the strain 

energy function (W ) used in ANSYS is similar to that defined in Equation 4.48, which 

takes the form:  

 

 ( ) ( )
22

2 62 4

3 3
( 1)( 1)1 1

1 2
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( 3) ( 3) 1 1
2 2

E Ic Ii j

i j

i j
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g E

−−

= =

= − + − + − + −   (4.60) 

 

With ic and id being the respective isotropic constants that attribute to the first 

and second invariants of the Cauchy-Green deformation tensor (
1I  and 

2I ), 

respectively. 1g & 2g and 1E & 2E are the anisotropic material constants for the first 

and second family of fibres, respectively, that attribute to the fourth and sixth 

invariants of the Cauchy-Green deformation tensor (
4I and 

6I ), respectively. 

This strain energy function was implemented into discrete elements in ANSYS by 

means of an input file that was applied to define the material model for one element 

in ANSYS. The block of code that was applied is shown by the TB, AHYPER 

command:  

 

4.4.1 ANSYS Numerical Implementation 

TB, AHYPER, , , EXPO 

TBDATA, 1, 1c , 2c , 3c , 1d , 2d , 3d , 

TBDATA,7, 1g , 2g , 1E , 2E  
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Note that the following model congruency from the strain energy density function 

from Holzapfel et al. (2000) (Equation 4.48) and the strain energy density function 

from ANSYS apply as shown in Tables 4.4 and 4.5, where either the first or the second 

family of fibres were used (i.e., entered as 0, or their respective value, depending on 

the constituent)  

 

Table 4.4a Congruency of material parameters used in strain energy 

functions from ANSYS and Holzapfel et al., (2000). 

ANSYS Parameter Holzapfel et al. (2000) Value [Units] 

1c  1C  0.081 [MPa] 

2c  n/a - 

3c  n/a - 

1d  n/a - 

2d  n/a - 

3d  n/a - 

1g  1k  35.04 [MPa] or 0 

2g  2k  1.6 [-] or 0 

1E  1y  0 or 4.10250 [MPa] 

2E  2y  0 or 0.04728 [-] 

 

 The fibre directions are defined with respect to the unit vectors, as shown in 

Equation 4.53, where m attributes to the fourth invariant 
4I which concerns the unit 

vectors of the first family of fibres, and n attributes to the sixth invariant 
6I  which 

concerns the unit vectors of the second family of fibres. Hence, the following 

congruency exists when defining the fibre directions in ANSYS:  
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Table 4.5 Congruency of unit vectors used in strain energy functions from 

ANSYS and Holzapfel et al., (2000). 

ANSYS Parameter Holzapfel et al. (2000) Value 

1A  1m  1 

2A  2m  0 

3A  3m  0 

1B  1n  0 

2B  2n  1 

3B  3n  0 

 

Since the material model defined by Holzapfel et al. (2000) is an incompressible 

hyper-elastic transversely isotropic material, incompressibility had to also be enforced 

in ANSYS for the numerical implementation. The command that enabled this is shown 

below:  

 

 

 

 

 

 

 

 

TB, AHYPER, , , AVEC 

TBDATA,, 1A , 2A , 3A , 

TB, AHYPER, , , BVEC 

TBDATA,, 1B , 2B , 3B , 

TB, AHYPER, , , PVOL 

TBDATA,, 1D , 
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The PVOL command defines the volumetric potential of the material body, which 

is defined by its volumetric deformation (Fvol) shown in Equation 4.18. This can be 

explicitly defined as 
2

1

1
( 1)

D
= −volF J , where 

1D  is the incompressibility parameter 

with a unit of MPa-1 (or 
1

MPa
), and acts as a penalty function, and hence enforcing 

incompressibility in each element. 

 

A cube was produced in ANSYS, of the dimensions 10mm x 10mm x 10mm. A 

tetrahedral mesh was fitted onto the cuboid, each with the longest side-length of 1mm. 

There were 2415 nodes and 1233 elements with a mesh density of 1.233 

elements/mm3. An image of the mesh is shown below;  

 

Figure 4.6 The mesh of the cube used for the simple numerical simulations 

to compare to analytical simulations. 

 

A displacement of 1mm (10%) was applied in the X direction of the cuboid, where 

the opposing side was fixed across all nodes (Gauss points) in the X direction only, 

and free in the Z and Y, apart from the nodes at the corners (vertices) of the cube 

opposing the displaced face. As shown in Figure. 4.7(a) & Figure. 4.7(c). For stability, 

the node shown in Figure. 4.7(c) was fixed in the X, Y and Z direction. In Figure. 

4.4.2 Boundary Conditions 
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4.7(b) the node highlighted (yellow) was fixed in the X and the Y directions leaving 

the Z direction free, where Figure. 4.7(d) was fixed in the X and Z direction, but free 

to move in the Y. This was done to satisfy uniform uniaxial deformation in the 

numerical simulation.  

 

 

 

Figure 4.7 Boundary conditions for a cube with representative fibres 

directions (purple) in the x and y axes. Back face (grey) nodes were all fixed in x 

direction, free to move in z and y axes. Node 1 (yellow) was free to move in all 

directions. Node 2 was fixed in x and y directions, and free to move in z. Node 3 

was fixed in x and z direction, and free to move in the y direction. Node 4 was 

fixed in X, Y and Z direction.  

 

These boundary conditions were applied for uniaxial loading in the x direction, 

followed by equibiaxial loading in the x and y direction. This was done because the 

constituent is modelled as incompressible, therefore as deformation occurs, the cross-

sectional area of the cube will change, correspondingly.  
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The simulation for a uniaxially loaded 1 mm cube was carried out, as implemented 

from the boundary conditions in Figure 4.7. This was done to extrapolate uniform 

stress numerical results that could then be compared to the analytical solutions. The 

deformed cuboid is shown in the Figure 4.8 in both uniaxial and biaxial loading 

conditions. 

 

Figure 4.8 Uniaxial and equibiaxial extension deformation, with fibres 

orientated in the X and Y directions, respectively. 

 

The total strain energy function (base matrix and fibre response) was then solved 

analytically at each stretch and plotted in Matlab and compared to the numerical results 

to assess the extent of congruency between the work-flow set up of the numerical 

simulation of a simple geometry and the analytical mathematical simulation derived 

4.4.3 Numerical Verification of Uniaxial and Biaxial Loading against the 

Analytical Solution Results 
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above. The comparisons of the analytical and numerical results are shown in Figures 

4.9 and 4.10. 

The Cauchy stress tensor represents force measured per unit deformed area acting 

on an element of surface in the deformed configuration. The normal stress (or first 

Piola-Kirchoff stress) represents the forces acting on an element of surface in the 

deformed configuration but measured per unit undeformed area. The 2nd Piola-

Kirchoff stress tensor represents force measured per unit deformed area, acting on an 

element of surface in the undeformed configuration. The stresses plotted in the 

analytical comparison below shows the three different stresses and how they change 

with the stretch, hence confirming that these stresses can be reliably predicted. These 

stresses are frequently referred to in numerical and experimental studies, and therefore 

it is important that they can be accurately estimated in the model. 

 

Figure 4.9 Numerical (black points) vs analytical (red line) comparison of 

uniaxial deformation in the X direction with 2 bodies of fibres in the X and Y 

axial direction. 
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Figure 4.10 Numerical (black points) vs analytical (red line) comparison of 

equibiaxial deformation in the X direction with 2 bodies of fibres in the X and Y 

axial direction 

 

From Figures 4.10 and 4.9, it can be seen that the analytical solutions are very 

similar to the predicted numerical results by ANSYS, and hence validating this 

modelling approach. This would bring the thesis to the next step - where a more 

complex geometry of the skeletal muscle will be used for finite element simulations. 

 

  Discussion 

From the simulations carried out, the one-dimensional model clearly coincides 

with the numerical implementation. The normal stress in ANSYS is numerically 

equivalent to the first Piola-Kirchhoff stress. It was found that the incompressibility 

had a detrimental effect on the stress results of the muscle, where an incompressibility 

parameter above 10 changed the stress response (however noting, that the larger the 

incompressibility parameter, the faster computational time and converges was 

observed).  

Whilst a specific incompressibility parameter is not reported for skeletal muscle 

constitutive finite element simulations, the value chosen was 10, when using the MPa 

unit dimensions. The uniaxial model demonstrated that loading in the fibre direction 

causes a more anisotropic response than the biaxial simulation. More specifically, the 
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uniaxial simulation demonstrated the cross-fibre effects of the fibres in the y-axis, as 

the cube is loaded in the x axis. In contrast, the biaxial simulation showed a more 

linear stress-profile over the different stretches compared to the uniaxial response. 

This supports the corollary conclusion that fibre orientation highly affects the 

mechanical response of the muscle (Belytschko et al., 2000), in that the equal and 

opposite orientation of fibres cancels out its anisotropic effects on the overall stress 

response of the constitutive tissue (Holzapfel & Ogden, 2009). 

As such, the verification above has established that the simulation was producing 

reasonable results, and the model can progress to anatomical simulations of the medial 

gastrocnemius.  
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5 Chapter 5  

Numerical Simulation of the Medial Gastrocnemius – 

an Anatomical Study  

  

The previous chapter discussed the constitutive and continuum mechanics upon 

which the current work is based. This chapter builds on the previous chapter to create 

a subject-specific finite element model of the medial gastrocnemius. A simulation has 

been carried out to investigate the effects of using certain anatomical features – such 

as anatomical fibre paths – in finite element modelling and how such detail affects the 

current skeletal muscle model.  
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 Finite Element Models of the 

Medial Gastrocnemius  

 

The anatomical features of the medial gastrocnemius muscle are comprehensively 

surveyed in Chapter 3. The medial gastrocnemius comprises of the muscle, tendon, 

aponeurosis and the muscle-tendon transition regions. The region at which the tendon 

dissipates into muscle tissue on the medial gastrocnemius muscle is known as the 

muscle-tendon junction. Very little is known about this transition zone, only that 

injuries attributing to medial gastrocnemius strains often occur in this region (Azizi et 

al., (2009)). This transition zone is thought to lie adjacent to the aponeurosis, which 

spans across the muscle mid-belly.  

Whilst the anatomical geometry and location of the muscle is well understood, the 

mechanical behaviour of the skeletal muscle and how it is governed by its anatomical 

architecture, is still a subject of significant research. Two main types of models have 

previously been used; lumped parameter one-dimensional models, and continuum 

mechanics models. The differences between the two are discussed in Chapter 3, and 

briefly covered below. 

Continuum mechanics models, which incorporate the three-dimensional structure 

of the muscle geometry, have used various computational techniques to define 

complex muscle fibre orientations (Blemker & Delp, 2005). Whilst the work done by 

Blemker et al. (2005) has shown good consistency with anatomical muscle fibre 

orientations, the model is based on a Bezier spline weighted algorithm, which adds 

extra computational demand to a subject specific finite element model. To address 

this, Zollner et al. (2015) have considered a compartmentalisation approximation, 

where the muscle is compartmentalised into six to eight divisions, and a general fibre 

orientation is applied to each compartment. Roerhle et al. (2012) also used a number 

of divisions, and generated the fibre orientations of the model using Diffusion Tensor 

Magnetic Resonance Imaging (DT-MRI), which was one of the first finite element 

models to use subject-specific fibre orientations (Roehrle, et al., 2012). Whilst the use 

of DT-MRI method displays diffusion of aqueous molecules which approximates 

individual fibre orientations (Bihan & Breton, 1985; Roehrle, et al., 2012), other 



 Chapter 5 

_____________________________________________________________   

80 

 

augmented and complex methods have been used to better represent and determine 

anatomical muscle fibres – for example – by means of normalized DT-MRI, 

Stimulated Echo Acquisition Mode (STEAM)-DTI and correction of directional 

(laterality) of the skeletal muscle orientation (McMillan, et al., 2011; Giraudo, et al., 

2018). One commonality that stands across all these procedures is the requirement to 

further process the DT-MRI to clarify the fibre orientations (water content striations) 

within skeletal muscle tissue. 

 

 

 

 Applying Subject-Specific Data to a 

Finite Element Simulation 

 

The anatomical muscle geometry and fibre orientations of the medial 

gastrocnemius from a female cadaver were acquired from the Living Human Digital 

Library (LHDL) (Viceconti, et al., 2007). The geometry acquired from the LHDL 

project required further processing (smoothing, cropping and fibre vector 

interpolation) before they could be meshed and used for a finite element study. A 

simplified process map of this work-flow is shown in Figure 5.1. 

 
Figure 5.1 Process chart showing the procedures followed from original 

imaging data to finite element simulation. 
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The muscle was a surface membrane that had small discontinuities and only 

consisted of the posterior region of the muscle. Therefore, to get this to a geometry 

that could be used in finite element mechanics, the general order of pre-processing 

occurred as follows: 

(i) The discontinuities were filled by an arbitrary automated hole fitting 

function. 

(ii) A triangulation algorithm was applied, followed by a Delaunay three-

dimensional function to re-create a close surface and three-dimensional 

volumetric geometry. 

(iii) The geometry was then cropped, at specific regions to provide a musculo-

tendon complex 

(iv) The geometry was then smoothed using a Lagrangian function which 

therefore allowed a mesh to be fitted to the muscle. 

This process is covered in detail below, and Figure 5.1 outlines the full process 

required to get the muscle geometry ready for meshing, and the process of 

incorporating the anatomical fibre orientation data into the finite element workflow. 

The muscle geometry of the medial gastrocnemius muscle acquired from the LHDL 

project is shown in Figure 5.4a. The images acquired from LHDL consisted of the 

rough surface path of the posterior side of the muscle, as shown in Figure 5.3 a. Before 

the model could be used, the geometry needed to be processed and refined, as the 

surface of the geometry had discontinuities (small holes). These were resolved by 

using the ‘hole-filing’ function in the LHPBuilder2 (Kohout & Clapworthy, 2012). 

This then provided a continuous anterior surface of the muscle. Some of the holes in 

the surface were very small, however have been shown in the image below (note, there 

were several holes on the surface and edge of the geometry, where most of them were 

situated towards the proximal end of the gastrocnemius. Figure 5.2 is representative 

of some of the miniscule holes that were present on the geometry surface and edge). 

Effectively, the holes consisted of small discontinuities in the surface of the muscle, 

as shown schematically in the image below. The hole filing algorithm has not been 

                                                 
2 LHPBuilder is an application developed using the Multimod Application Framework that provide 

to the LHP participants a software tool to import, fuse, and store biomedical data on the Living Human 

Digital Library. www.swmath.org/software/6798  

http://www.swmath.org/software/6798
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well documented in the LHPBuilder; however, the algorithm used is based on the 

mathematical framework reported in (Kohout & Clapworthy, 2012).  

 

Figure 5.2 (a) The anterior view of the muscle showing areas in which the 

hole-filling algorithm was used in LHPBuilder (red elements). (b) Shows the 

posterior-lateral view of the geometry and (c) shows a closer view of the hole-

filling algorithm by LHPBuilder as per element/pixel, where green dots denote 

geometry vertex boundaries automatically detected by LHPBuilder. 

 

The continuous anterior surface was then imported into Paraview 5.2.0 – RC33 and 

the triangulate function was used there (Ayachit, 2016). This triangulate function 

created a boundary by creating surfaces between adjacent vertices. Consequently, the 

posterior surface of the muscle was estimated using the adjacent soleus muscle as a 

reference (as shown in Figure 5.3 b), to ensure that the estimated posterior side of the 

medial gastrocnemius does not penetrate the soleus muscle, as shown in Figure 5.4. 

                                                 
3 Paraview is an open source multiple-platform application for interactive, scientific visualization. 

www.paraview.org (Ayachit, 2016) 

http://www.paraview.org/
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The 3D estimation of the muscle was based on creating a triangulation of the geometry 

information and its neighbouring points; so that the estimation a) created a closed 3D 

surface and b) ensured that one closed 3D surface did not extend/penetrate the 

geometry boundary of the neighbouring tissues. The three-dimensional Delaunay 

triangulation algorithm (Delaunay, 1934) - also available in Paraview, was used to 

define the entire closed surface of the 3D medial gastrocnemius. 

 

 

 

 

Figure 5.3 (a) The anterior surface geometry of the medial gastrocnemius 

obtained from LHDL data. (b) Processed surface after using the hole-filing 

function available in LHP Builder to fix discontinuity. (c) An enclosed surface 

describing the three-dimensional geometry of the medial gastrocnemius 

following three-dimensional triangulation. 

 

The muscle was also cropped at the calcaneal distal tendon, so that while up to 40 

mm of tendon at the insertion remained, the rest of the Achilles tendon was omitted, 
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as illustrated in Figure 5.4. This was done by obtaining the muscle-tendon geometry 

co-ordinates of these geometrical regions and cross-checked visually using the data 

from the palpated landmarks from LHDL data. The landmarks marked where the 

muscle fibres on the geometry began and the tendon fibres ended, so it was visually 

easy to differentiate between the muscle tissue and the tendon tissue. The soleus is 

shown in Figure 5.4 to ensure that the 3D estimation of the gastrocnemius geometry 

did not penetrate the boundary of the Soleus muscle. This was also done to 

qualitatively determine the accuracy of the estimation of the gastrocnemius geometry. 

Following the determination of the three-dimensional geometry outlined above, 

the surface of the muscle was still very coarse and could not be meshed for finite 

element simulations, therefore smoothing was carried out to ensure that a good mesh 

would fit the surface (Figure 5.4b). This was done by exporting the surface geometry 

as a stereolithography ASCII (STL - ASCII) file and imported into an FE Bio module 

- Preview4. Once in Preview, smoothing was done using its Laplacian smoothing 

function. This smoothing function is widely used to smooth a polygonal mesh in 

various computational geometry models (Herrmann, 1976; Sorkine, et al., 2004). The 

general method this function follows is to smooth each vertex or node, by moving the 

vertex to a new location based on the average location of its neighbours. The 

smoothing operation per vertex can be described by the following Equation 5.61:  

 

 

 

1

1 N

i j

j

x x
N =

=   (5.61) 

Where N is the number of neighbouring vertices to node i . The position of 

the j-th neighbouring vertex is jx  and 
ix is the new node location. 

The number of iterations selected in this context was the minimum required to 

allow for a simple mesh to be fitted onto the geometry, with minimal element 

distortion (aspect ratio <1.1 and skewness <0.2).  

The data points of the medial gastrocnemius were originally defined in an 

anatomical co-ordinate system, so the long axis (middle) of the muscle was not aligned 

                                                 
4 PreView is a Finite Element (FE) preprocessor that has been designed specifically to set up finite 

element problems. Is was designed for FEBio, and is a module of the open source FEBio software. 

https://febio.org/preview 
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with any orthogonal axes. The data points therefore needed to be transposed which 

resulted in the x-axis running down the long axis of the muscle (Figure 5.4c). The 

transposition was done to ensure that the displacement being applied at the insertion 

site was applied along the muscle axis, rather than at an angle to the muscle. This 

process of cropping, smoothing, transposition is illustrated in Figure 5.4. 

 

 

Figure 5.4 (a) Original anterior surface of the gastrocnemius muscle, 

showing the tendon and muscle region (blue box). (b) After the three-

dimensional Delaunay triangulation function, the volumetric muscle geometry 

is cropped and smoothed, in its original co-ordinate system. (c) The muscle was 

then transposed into the new co-ordinate system with the x-axis running down 

the muscle length. The geometry is now ready for meshing. 

 

Finally, the processed geometry was exported and meshed in ANSYS ICEM 

CFD5. A 10-node tetrahedral volumetric mesh was fitted with a maximum element 

size of 1 mm based on the mesh convergence analysis carried out later in this chapter. 

The resulting mesh contains 144995 elements and 497016 nodes and a mesh 

density of 0.96 elements/mm3, as shown in Figure 5.5.  

                                                 
5 A pre-processing and meshing module for use in ANSYS finite element simulations that provides 

sophisticated geometry tools, accurate and hybrid mesh generation for complex geometries. 
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Figure 5.5 Mesh of the medial gastrocnemius muscle 

It should be noted that the cuboid model was meshed with both hexahedral and 

tetrahedral elements, and the results were very similar between the two. Tetrahedral 

elements however, were chosen for the anatomical geometry, as the mesh fitted better 

over the surface of the muscle in comparison to the hexahedral elements. 

 

 Centroid Calculation 

As previously discussed, the fibre orientation was defined for each element. As the 

fibre orientations of the muscle were non-uniform, the centroid location of each 

element had to be calculated in order to assign an averaged fibre orientation across 

that finite element. Although ANSYS has a built-in function to obtain these centroids, 

the python script was used to assign the fibre orientations to the centroids to reduce 

the disjoint of the algorithm work-flow and computational time. The centroid 

calculation was carried out by calculating the average x, y and z co-ordinates of the 

nodes making up each element.  

This calculation was performed using a python script. Once the centroids were 

computed, their co-ordinates were then used to interpolate the fibre vectors from the 

vector field data provided by LHDL as shown in Figure 5.6. It is important to note, 

however that the term ‘fibre vectors’ in relation to the raw data that was acquired from 

LHDL is used loosely in this thesis: the palpated landmarks were the general direction 
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of fibres, that emulated an estimated surface muscle fibre path. This is because the 

data was obtained from a cadaver of which only the surface directions were obtained 

– hence volumetric vector fields of the fibre directions were not acquired. A possible 

remedy to this issue could be to use DTI imaging, which enables a more 

comprehensive three-dimensional description of the fibres. 

 

 

Figure 5.6 Interpolation process; (a) centroid point data ~144995 points,  

(b) superimposition of vector field from LHDL (square denotes the 

landmarks from LHDL data and arrows are the direction of spline at that point) 
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onto centroid points, (c) Using an inverse distance interpolation function showing 

the mapped fibre orientations. (d) Close up of the interpolated fibre orientations 

of each of the different regions (aponeurosis, muscle and tendon respectively) 

showing the difference and slight fibre orientations within each of the regions. 

 

The changes in each of these regions as shown in Figure 5.6 highlight the general 

fibre orientation of the different regions. This is expected to affect the stress and strain 

response of these regions, which will be explored in the next section. 

As shown from the image above, the vector directions are interpolated onto the 

centroid locations, so each centroid resultantly had a known vector assigned to it. The 

following section describes the interpolation of fibre orientations in detail. 
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The application of these anatomical fibres from cadavers has provided a valuable 

alternative to finite element modelling compared to previous literature (Blemker & 

Delp, 2005; Blemker, et al., 2005), where the fibre paths are either approximated in a 

few zones within the muscle, or derived from DTI-MRI images. All these methods 

carry some uncertainties, and therefore it will be useful to be able to compare and 

benchmark various approaches in the future. The fibre orientations obtained from 

LHDL are illustrated in Figure 5.2a. This was done by physically palpating the 

cadaveric medial gastrocnemius and determining 15 key-points for each approximated 

fibre orientation across the muscle. These 15 key points were joined up to make one 

spline, which was considered as one general fibre direction in that region. The medial 

gastrocnemius had four splines in total (i.e. four splines across the muscle), which ran 

from the proximal origin to the distal insertion site, with increasing curvature as the 

fibres approached the surface of the muscle. The path these 4 splines followed 

determined 4 general fibre paths.  

The interpolation method allowed the superimposition of the fibre vector field to 

the centroids from the mesh. This deterministic multivariate interpolation method 

enabled the centroids in the study region (muscle geometry) to be calculated with a 

weighted average of the values from known neighbouring vector (i.e. from the four 

splines). 

The result was therefore a known discrete assignment of the interpolated function 

(fibres onto centroids) in a specific region. The formula that relates this method 

incorporates the specific space explored, D, the known points and the unknown vector 

field, 𝒖(𝒙), and is shown in Equation 5.62: 

 𝒖(𝒙): 𝒙 → ℝ𝒏, 𝒙 ∈ 𝐃  (5.62) 

 

   

This formulation shows that the four splines were used to interpolate the vector 

direction at any centroid, where each ‘unknown point’ was determined by the vectors 

at the centroids and the known points were the direction vectors along the splines. This 

is illustrated in the Figure 5.6, where 𝒖 points are unknown fibre vectors at centroids, 

5.3.1 Fibre Orientations from Anatomical Data to the Finite Element 

Simulation 
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and 𝒘 represents the known direction vectors along the splines. Depending on how 

close 𝒖 is from 𝒘, the value of 𝑤 is weighted to reflect the respective fibre vectors at 

𝒖. Note that the closer 𝒖 is to 𝒘, the more congruent their values will be; similarly, 

the further apart they are, the less congruent their values will be. This concept is 

illustrated visually in Figure 5.7. 

  

Figure 5.7 Schematic showing the inverse distance weighting interpolation of 

an unknown function (centroid vector) 
iu in a specific field (muscle geometry); 

interpolating a known function (direction vectors along spline) w . The 

numerical values represent weighting between w and u. 

 

The unknown value 𝑢𝑖 of the function 𝑢(𝑥𝑖) where 𝒊 − 𝟏, 𝟐, … , 𝑵 can be calculated 

by finding the average weighted distance of known spline vectors onto the unknown 

fibre vectors at centroids by the relationship shown in Equation 5.63: 
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(5.63) 

Where 
iw is the vector direction along the spline, d is the given distance from the 

known vector ( )iw x to the centroid. Where the distance ( )d x  is inversely proportional 

to the location of the known vector on the spline ( )iw x , as demonstrated by Shepard, 

(1968):  

 1
( )

( )i

d x
w x

  (5.64) 
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With this information available, each centroid for each element on the mesh could 

be assigned a unique fibre orientation. The interpolated fibre orientations are shown 

in Figure 5.8 . The convergence criteria for each fibre was dependent on a weighted 

average of the distances between the vectors and the respective centroids. 

 

Figure 5.8 Interpolated vectors indicating fibre orientations at each element. 

(Blue is muscle tissue fibres, green is transition muscle-tendon junction and red 

is tendon tissue fibres.) 

 

 This procedure was carried out using Python 2.76 scripts. The centroids and fibre 

orientation data were combined into one file and then the fibre orientations were 

interpolated onto the centroid locations. This was defined for the finite element 

simulation in ANSYS and applied to the material description of each element. Since 

each element had a different fibre vector, therefore, each element also had a different 

constituent defined, based on the anatomical data from LHDL, and whether it was 

muscle or tendon. 

 

The fibre orientations of the data were interpolated from four splines. Since these 

data originated from anatomical data, and were approximated using an inverse 

distance interpolation method to inform the finite element simulation, this work-flow 

                                                 
6 Python is a high-level programming language for general-purpose programming. It features a 

dynamic type system and automatic memory management and supports object-oriented, imperative, 

functional and procedural programming paradigms. ywww.python.org  

http://www.python.org/
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provides a different approach to estimate fibre orientations from physical palpation, 

as opposed to DT-MRI, thus adding to the current literature of muscle fibre modelling 

and enabling researchers to draw comparisons between different approaches to the 

modelling of fibre orientations. The process defined in the current workflow can be 

transferred to different muscle geometries with other muscle fibre orientations 

(excluding over-lapping asymmetrical fibre orientations). 

To conclude this work, an illustrative finite element simulation was undertaken, 

and the boundary conditions and results are explained in detail below.  

 

 

 An Anatomical Finite Element 

Simulation of the Medial 

gastrocnemius  

A simple simulation of the medial gastrocnemius muscle in extension was carried 

out. This was undertaken to ensure that the anatomical geometry and fibre orientations 

produced physically meaningful results. The muscle was extended at the distal 

insertion by 12 mm, which was within the range of extension experienced by the 

medial gastrocnemius when the ankle is in dorsi-flexion during slow walking. This 

extension is consistent with other investigators who reported strains of the medial 

gastrocnemius  during slow walking with values between 10 mm – 16 mm (Lichtwark, 

et al., 2007; Fukunaga, et al., 2001; Kawakami, et al., 2002; Grieve, et al., 1978), The 

extension was applied at the insertion end only (in the x direction), since the distal 

insertion of the skeletal muscle is thought to move – during active and passive motion 

– whilst the origin of the muscle was anchored (fixed in the x, y and z direction) 

(Willert, et al., 2001). The side of the muscle adjacent to the lateral gastrocnemius was 

fixed in the y direction only, and the side adjacent to the soleus was fixed in the z 

direction only. The lengthening of the gastrocnemius is said to be homogenous from 

the distal to proximal ends (Lichtwark, et al., 2007), so the boundary conditions were 

set to mimic only the physiological phenomena. This inherently was applying 

Dirichlet boundary conditions – as a specified boundary condition for the solution was 
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applied to the elements at the boundary. Figure 5.7 shows the nodes selected and the 

respective boundary conditions on the geometry of the muscle. The fibres were applied 

to the muscle model as described in Section 5.3.1.  

 

Figure 5.9 Applied boundary conditions for the medial gastrocnemius  in the 

simple extension simulation. 

 

A comparative simulation was done between the anatomical fibre orientation and 

a transversely-isotropic fibre orientation (fibres were aligned with the long axis in the 

x direction). This was done to assess the effect of anatomical fibre orientations on the 

finite element simulation. The constitutive model and material constants used for the 

subsequent simulations have been described in Chapter 4. The accuracy of the 

computed mesh was assessed by means of a mesh convergence analysis. This analysis 

was done on the anatomical meshed geometry and is reported in the next section. 

 

 

 

The mesh shown in Figure 5.5 was used and a convergence analysis was carried 

out to determine the optimal mesh (element) size.  

5.4.1 Mesh Convergence Analysis and Finite Element Results 

X 

Z Y 
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The converged maximum first principal strain and stress were obtained from the 

region of interest in the muscle belly and the tendon region, then plotted against each 

mesh density increment. The regions of interest are illustrated in Figure 10 below.

 

  

Figure 5.10 Illustrating the regions of interest selected (dashed lines) for the 

exploration of peak stress-strain values. 

 

The region of interest is defined as follows; the muscle tissue and tendon tissue are 

easily determined by the contour as shown in Figure 5.9. Given that the length of the 

muscle and the tendon-aponeurosis complex were known, the nodes across a length of 

70% of each tissue, in the centre of the constituent, were selected as regions of interest. 

Approximately 15% at each edge were omitted from the selection to avoid selecting 

an area too close to where the boundary conditions were applied. Approximately 70% 

of the length of each constituent was selected to ensure an adequate region of response 

was examined. The tendon tissue selected in the regions of interest at the insertion and 

origin ends were linked together in series so that the peak values across the regions of 

interest were explored at both ends, since they were both tendinous. The results from 

these regions were examined to determine the converged mesh density. The peak 

maximum first principal stress and strain for each mesh resolution are shown in Figure 

5.11 for tendon, muscle and transition region (aponeurosis). The convergence criteria 

for the strain was set to an asymptotic precision of 10-1, and the stress convergence 

criteria was set to a precision of 10-3 MPa. 
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Figure 5.10a The predicted maximum first principal strain plotted against mesh 

density for muscle, tendon and aponeurosis. 

 

 

 

 

 

Figure 5.11b The predicted maximum first principal stress plotted against 

mesh density for muscle, tendon and aponeurosis. 

 

As the maximum element size decreased (i.e. increasing mesh density), the strain and 

stress reached a plateau. The values reached convergence at a maximum element size 

of around 1.4mm. The chosen maximum element size of the mesh was therefore 1 
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mm, which provided a more accurate description of the geometry, as at this size, the 

element aspect ratio and skewness were minimal, whilst still maintaining an accurate 

solution upon convergence. 

The same convergence analysis was also carried out on the models with different 

material constant distributions and with both transversely isotropic and anatomically-

based fibre orientations. A similar trend was observed as shown in Figure 5.11, with 

a 1 mm maximum element size guaranteeing mesh convergence across the various 

meshes fitted.  

Using the selected mesh size (1 mm), an illustrative comparison of the stress-strain 

profiles of the simulations incorporating anatomical fibre orientations and transversely 

isotropic fibres are shown in Figures 5.12 and 5.13. 

 

 

 

Figure 5.12 First principal strain of the medial gastrocnemius muscle belly 

when the knee is in extension and ankle is in dorsi-flexion at 12 mm extension of 

the transversely-isotropic muscle. The right-hand sides column shows 

corresponding fibre orientations in each case. 
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Figure 5.13 First principal stress of the medial gastrocnemius muscle belly 

when the knee is in extension and ankle is in dorsi-flexion equating to 12 mm 

extension of the muscle. The right-hand side column shows corresponding fibre 

orientations in each case. 

 

From Figures 5.12 and 5.13, it can be seen that there is a significant difference in 

the stress and strain results of the transverse fibre simulation compared to that of the 

anatomical fibres, and the no-fibre (isotropic Neo-Hookean) simulation. Specifically, 

the transverse fibres provide a more homogenous stress-strain response – particularly 

in the stress response of the transverse fibres, whereas the anatomical fibres displayed 

more differentiated strain and stress patterns, especially at the extremities (at the distal 

insertion end). The island of high strains observed in Figure 5.12 may be due to the 

anatomical geometry and fibre orientation of the muscle, in that the muscle is thinnest 

towards the distal end, as the muscle approaches the Achilles tendon. High strains and 

stresses are expected at the distal end under physiological loading during the extension 

of the medial gastrocnemius (Azizi & Roberts, 2009; Azizi, et al., 2009). This was 

more apparent in the anatomical fibre simulation than the transverse and in the no-

fibre simulation. 
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 Discussion 

Considering the simulation of the medial gastrocnemius  presented in this Chapter, 

the anatomical fibres seem to provide a more realistic presentation, as the highest 

stress-strain response is more localised, in the areas that are expected – the distal 

insertion, and moving towards the belly of the muscle (Azizi & Roberts, 2009) (Azizi, 

et al., 2009). The peak strains appear to be higher in the transversely isotropic fibres. 

From Figure 5.12 and Figure 5.13, the fibre orientation had a significant effect on the 

mechanical response of the skeletal muscle, showing how important it is to have an 

accurate anatomical fibre orientation in the skeletal muscle model. 

Whilst this model has used anatomical data in a finite element simulation, it 

currently does not represent the tendinous aponeurosis regions, which are important 

supporting structures for the muscle. The next chapter looks to enhance the anatomical 

description of the model by using mathematical and computational techniques to better 

mimic the ‘wrapping’ structure of the aponeurosis and the various material parameters 

that can be used for the muscle-tendon transition zone. 
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6 Chapter 6  

 

Tendinous, Aponeurosis and Anatomical Muscle 

Representation  

 

 

The morphology of a full muscle-tendon structure is complex. Considering the 

medial gastrocnemius, the full structure consists of tendinous regions, the aponeurosis, 

which spans across the surface of the muscle-tendon junction, and the muscle-tendon 

junction itself. The anatomical features of the medial gastrocnemius are the key 

elements in its mechanical response, meaning that it is important to consider the 

various structures within the muscle-tendon complex. The anatomical structure of the 

gastrocnemius aponeurosis, muscle, tendon and muscle-tendon junction are shown in 

Figure 6.1. 
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Figure 6.1 Anatomical features of the medial gastrocnemius  aponeurosis 

(red square) and the muscle-tendon junction run-out shape (red circle) from the 

transverse plane and the posterior plane. Images taken from: (Blitz & Eliot, 

2008) (Blitz & Elliot, 2007) 

  

Figure 6.1 demonstrates that the gastrocnemius aponeurosis spans anteriorly over a 

large area of the muscle (red square), whilst the posterior side has a smaller region of 

muscle-tendon junction and aponeurosis area (red circle). Whilst it could be 

interpreted that the posterior junction meets the muscle at either a sharp or at a blunt 

cup apex, the exact apex could be argued to be rounded and cup like, rather than a 

sharp region, depending on how large the gastrocnemius muscle is. Therefore, there 

are three major features to consider when simulating the aponeurosis; i) The rounded 

or sharp apex, ii) the thin membrane spanning the aponeurosis up the belly of the 

muscle, iii) the muscle-tendon junction material parameters (where the aponeurosis 

meets the muscle).   

Whilst there are several finite element models of skeletal muscles that consider 

some of the anatomical features of the muscle-tendon complex, there are few that 
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consider the aponeurosis morphology and even fewer that look to model the muscle-

tendon junction. This chapter proposes a novel approach to represent the aponeurosis 

and muscle-tendon junction in a finite element muscle model. 

 

 The Constitutive Relationship of a 

Muscle – Tendon Complex 

The active and passive mechanical characteristics of skeletal muscle tissue have 

been covered in detail in Chapter 3 and 4. Considering the anatomical arrangement, 

the medial gastrocnemius is an assembly of constituents in series - tendinous tissue, 

the aponeurosis and transition tissue (the muscle to tendon junction). Therefore, a good 

understanding of the constituents of the tendinous aponeurosis is required when 

developing a representative model of the muscle-tendon complex. 

Various finite element studies have been developed to represent tendon tissue 

(Handsfield, et al., 2017; Blemker & Delp, 2005; Handsfield, et al., 2017) with 

comprehensive imaging data of specific tendon tissues  (; Mithraratne, et al., 2017; 

Lin, et al., 2004; Neal M. Blitz, 2007; Toumi, et al., 2016).  

Tendons are collagenous tissues, with a crimped collagen configuration at low 

strains, until the collagen begins to bear load, hence it has a visco-elastic nature 

(Herchenhan, et al., 2011). The mechanical responses of tendons are highly dependent 

on the orientation of the collagenous fibre (McPhedran, et al., 1965; Henneman, et al., 

1965; Henneman & Olson, 1965). The collagenous orientations vary from muscle to 

muscle and change depending on the muscle’s function (Thorpe C.T., 2013). 

Generally, the dry mass of tendons consists of about 86% collagen, (Jozsa, 1997), thus 

having a significant fibrous (anisotropic) response. The anisotropic non-linear 

behaviour of the collagen fibres is consequently expected to govern the mechanical 

response of tendinous and aponeurotic tissue. 

Tendons respond to their mechanical environment much like skeletal muscles do; 

with studies showing a decrease in the collagen fibre thickness of the Achilles tendon 

due to disuse (Nakagawa, 1989), or a reduction in tendon stiffness due to microgravity 

(Reeves, 2005). It has previously been stated that modelling the muscle-tendon 

continuum alongside imaging data is imperative to gain an insightful and informed 
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understanding of the stress-strain profile of muscles (Blemker et al., 2005). This was 

shown in a model created for the bicep femoris longhead, which was used to explore 

strain injuries and ruptures of the hamstrings. The results showed that damage 

frequently occurred at the myotendon junction (Rehorna & Silvia S. Blemker, 2010). 

This model was comprehensive in showing the potential effect of the morphology of 

the aponeurosis on determining muscle injury susceptibility, despite using idealised 

geometries and fibre orientations (Rehorna & Silvia S. Blemker, 2010). A further 

study by Chi et al. (2010) also suggested that the complex strain mechanics of 

aponeuroses were highly influenced by their fibre orientations close to the transition 

zone  (Chi, 2010). 

The passive strains found in the fascicles are thought to counteract active strains 

in the gastrocnemius, causing local lengthening in the proximal insertion and 

shortening in the distal origin ends of the medial gastrocnemius  (Karakuzua, et al., 

2017). Although the active and passive response of the muscle’s mechanical response 

can be amalgamated, these responses (active and passive) are decoupled in an additive 

split, as shown in Chapter 4. The tissues that make up the medial gastrocnemius consist 

of muscle, aponeurosis and tendon tissues and it is important to note again - only the 

passive contribution has been considered in this thesis. An active component can be 

added to the constitutive formulation (Equation 4.48) shown in Chapter 4, as has been 

done with other similar formulations (Blemker, et al., 2005; Röhrle, et al., 2007), but 

is beyond the scope of this thesis.  

Due to the tissue constituents of the tendon and aponeurosis, they have been 

modelled as transversely isotropic, fibre-reinforced quasi-incompressible materials  

(Roberts, 2009; Bajuri, et al., 2016; Holzapfel, et al., 2000; Lieber & Blevins, 1987). 

Since skeletal muscle is composed of various fibre-reinforced materials in series, each 

of these tissues is modelled with a strain-energy function, as explained in Chapter 3 

and shown in Equation 6.70. The muscle and tendon tissues were considered to have 

one family of fibres each (Blemker, et al., 2005; Bajuri, et al., 2016), while the 

aponeurosis and muscle-tendon junction is considered to be a mixture of muscle and 

tendon tissue – i.e. a transition zone from muscle to tendon. The muscle-tendon 

junction areas have therefore been modelled with two families of fibres (muscle 

fascicles and collagenous tendon fibres), each with a respective volume fraction 

depending on the distance to muscle or tendon. It is assumed that the muscle and 
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tendon constituents had similar passive mechanical characteristics, with different 

material constants. 

As shown in Chapter 4, the stresses and deformations of the constitutive tissues 

are related by means of a strain energy density function adapted from Holzapfel et al. 

(2000). Each of the respective tissues are therefore defined by the inclusion of a 

volume fraction as shown in Equation 6.65. The total strain energy function of the 

muscle consists of a deviatoric (shape change) and volumetric isochoric 

(incompressible) part. The strain energy function defined in Equation 6.70 

encompasses a further additive split of the passive response between the isotropic and 

anisotropic parts.  

 

  Mathematical Representation of 

the Tendinous Aponeurosis to 

Muscle Transition zone 

Building on the strain energy function defined in Holzapfel et al. (2000), the 

aponeurosis and transitional zones between tendon and muscle have been represented 

by means of a volume fraction. This formulation separates the tendinous constituent 

and muscle constituent as separate mathematical terms, whilst defining the material 

constants of the transition zones of the muscle tendon junction. This has been done by 

introducing a new parameter – the volume fraction – to the conventional formulation 

developed by Holzapfel et al. (2000).  
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The strain energy functions denoted as Medial Gastrocnemius , T , and M  represent 

the medial gastrocnemius , tendon and muscle constituents, respectively.  

 

As: 
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Where 
,

1

T Mc  is the Neo-Hookean isotropic material constant for tendon or muscle 

tissue, respectively, and 
,

1

T Mk is the first anisotropic material constant for tendon or 

muscle tissue, respectively. These two constants are measured in MPa. 
,

2

T Mk is the 

second anisotropic material constant for tendon or muscle tissue and this parameter is 

dimensionless. The fourth invariant of the Cauchy-Green deformation tensor is 

represented by 4I , and represents the fibre directions for the tendon fibres in the 

constitutive relationship. 6I  is the sixth invariant of the Cauchy-Green deformation 

tensor and represents the fibre directions for the muscle fibres. 

 

Following the assumptions above, the fibres governed by 4
I  are tendon fibres and 

the fibres defined by 6
I are muscle fibres; thus the deviatoric part of the muscle and 

tendon tissues can be defined by; 

 ( ) ( )( )Medial Gastrocnemius ( ) 1 ( )T iso aniso T iso anisoT M
f x f x    = + + − +  (6.69) 

 

Which leaves; 



 Chapter 6 

_____________________________________________________________   

105 

 

 
( )

( ) ( ) ( )








−−+








−−

+









−+








−=

−

−

1
2

)(1)3(
2

)(1...

...1
2

)()3(
2

)(

2
62

2
42

)1(

2

1

1

)1(

2

1

1iusGastrocnem Medial

Ik

M

M

T
M

T

Ik

T

T

T
T

T

M

T

e
k

k
xfI

c
xf

e
k

k
xfI

c
xf

 (6.70) 

 

Further analysis now requires the exploration and selection of the correct material 

parameters to use for numerical simulations - which has been comprehensively 

discussed in Chapter 4. 

It is important to note, however, that the specific and independent material 

properties of muscle and tendon are required in the formulation defined in Equation 

6.70 because of the additional assumptions made about the muscle-tendon junction 

constituents. 

 

  Numerical Implementation of a 

Muscle-Tendinous Aponeurosis 

Junction 

The mathematical representation of the transition zone, tendinous aponeurosis, 

muscle and tendon tissue has been defined in Chapter 6.1. The current section 

describes the numerical implementation in ANSYS, utilising the material parameters 

stated in Tables 4.2 and 4.3. The model was built in ANSYS, using anatomical data of 

the medial gastrocnemius geometry and fibre orientations. The strain energy function 

dW  used in ANSYS is defined in Equation 6.71. 
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From Equation 6.71, As the terms have been defined above in Chapter 4, the new 

terms introduced here can be defined as follows. A is the vector field for the first 
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family of fibres. B  is the vector field for the second family of fibres and ic and ib  

can be defined by the first and second isotropic material constants, respectively, that 

relate to the distortional response usually measured in MPa. The first anisotropic 

material constant related to the distortional response is represented by 1k  for the first 

body of fibres and by 1E  for the second body of fibres. The second anisotropic 

material constant related to the distortional response, meanwhile, is represented by 2E  

for the first body of fibres and 2k  for the second body of fibres. These second material 

constants are dimensionless.  

The constitutive relationship that is used in this thesis, as shown in Equation 6.70, 

consists of only one isotropic term (therefore ‘b’ = 0), where the ‘k’ material constants 

refer to the tendon tissue and the ‘E’ material constants refer to the muscle tissue in 

Equation 6.71. The transitional tissue is represented by a mixture of the two, derived 

through the volume fraction parameter, which is defined with respect to the x-

coordinate of each centroid (linear dependence) and the perpendicular distance of each 

centroid to the central line (radial dependence). These dependencies are described in 

detail below. 

 

The transitional zone was represented with a measure of the volume fraction f(x), 

ranging between 0<fT(x)<1. This volume fraction was used to differentiate: the muscle 

tissue, the tendon tissue and the transitional muscle-tendon junction. Using the 

material constants reported in Tables4.2 and 4.3, two families of fibres were defined 

(muscle and tendon), each with their own material constants, with the tendon 

constituent (when f(x) = 1) being stiffer than the muscle (when f(x) = 0). The function 

in Equation 6.72 then defines the linear dependence of the volume fraction, which is 

reliant on the distance of each centroid from the origin. Figure 6.2 provides a 

schematic of the linear distance dependant function. 

6.3.1 Linear Dependence 
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Figure 6.2 Schematic showing the linear dependence of the discretised 

muscle-tendon complex 

 

The zones defined in Figure 6.2 can be mathematically represented by a volume 

fraction f(x) using the following piece-wise function. 
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(6.72) 

   

 

 

Where Cx is the x-coordinate of the centroid along the long axis of the muscle, and 

are the known x-coordinates that determine the different tissue boundaries, as 

shown in Figure 6.2 . 

This means that the calculated centroid location of each element at the muscle-

tendon junction will have a different volume fraction f(x), and each element will have 

different material parameters, being either muscle, tendon, or a constitutive mixture 

0 5x −



 Chapter 6 

_____________________________________________________________   

108 

 

of the two, where any centroid point ‘P’ will be more muscular or tendinous based on 

its proximity to those respective tissues.  

A schematic to show the distribution of the volume fraction with linear dependence 

is shown in Figure 6.3  

 

 

Figure 6.3 Contour of volume fraction of tendon dispersion across the body 

of the tendon-muscle complex. 

 

The linear dependence algorithm was then used to define the radial dependence 

which further improved the morphological description of the aponeurosis and muscle-

tendon junction. This is described in the next section. 

Whilst the linear dependence defined in Figure 6.3. showed the efficacy of the 

concept of a transition zone, the linear degradation of material properties is quite crude 

compared to the real anatomical structure, since the morphology of the aponeurosis is 

such that it spans over the body of the muscle with an encapsulating apex-like 

morphology. The radial dependence aims to follow the general anatomical structure 

of the muscle through a mathematical algorithm that closely ties in with the finite 

element mesh. 

The radial dependence function was created by first calculating a central line. This 

is necessary because the x-axis does not necessarily run along the long-axis of the 

muscle belly. The central line was defined by first isolating planes across the muscle 

geometry, every 1 mm down the x-axis in the y-z plane. The coordinates of each 

6.3.2 Radial Dependence 
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centroid (of each element), within each respective plane, were collected as shown in 

Figure 6.4. The average y and z coordinates of all the centroid points within a plane 

were calculated to estimate the central line. 

 

Figure 6.4 Schematic of the tendon-muscle complex showing the z-y 

approximation used to calculate the geometrical central line, in relation to the 

x-axis based on centroid points ‘P’. 

 

It is important to note from Figure 6.4 that the x-axis of the skeletal muscle was 

independent of the central line. Specifically, the central line was calculated by getting 

the mean value of all y and z-coordinates across each plane, defined in Equation 6.73 

and Equation 6.74, respectively.  

 

1
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(6.73) 

   

Where 0y  is the central averaged y coordinate across a selected plane, iy  is the y 

coordinate of each respective centroid on a selected plane and Cn  is the number of 

centroids specifically on a selected plane. 
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(6.74) 

 

0z is the central averaged z coordinate across a selected plane and iz is the z 

coordinate of each respective centroid on a selected plane. This provides a range of 

key points from each plane, with varying x-coordinates along the centre of the planes, 

projected along the centre of the muscle: 

 

 ( , , )C

ix y z  (6.75) 

 

Where C

ix = the varying x-coordinates along the central line. The radius that f(x) 

was to depend upon, was calculated by the perpendicular distance from a centroid 

point P to the central line coordinates, calculated in Equation 6.75 and defined using 

the parameters shown in Figure 6.4. This radius was calculated using the Euclidean 

distances of the y and z coordinates for each point, as shown in the Equation 6.13. 

 

 2 2

0 0( ) ( )i ir y y z z= − + −  (6.76) 

 

Where r  is the radius of the perpendicular distance of a centroid point ‘P’ to the 

central line. This provided a respective radius and x-coordinate ix , that was on the 

axis of the muscle for each centroid point - iP  which is defined with respect to r and

ix  by: 

 ( , )i iP r x=  (6.77) 
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Figure 6.5 Schematic showing the function of ‘r’ radius for each defined 

centroid point shown here as ‘P’. 

 

The transition zone between the muscle and tissue was represented by a cone 

shape. A simple linear equation was used to define the known points A and B. A was 

determined by the anatomical base point on the central line where the tendon ended 

and the transition zone started, as shown in Blitz et al. (2007). B was the outermost 

point that the ‘cone’ shape reached on the muscle geometry surface, also congruent 

with anatomical landmarks reported in Blitz et al. (2007). B was also the largest x 

coordinate on the muscle geometry surface where the transition zone began, and the 

tendon zone ended. This was then rotated along the x-axis to define a projected 3D 

cone-like structure of the tendinous-aponeurosis transition and muscle junction. This 

process was repeated for points DEF as shown in Figure 6.6. 

P

i 
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Figure 6.6 Schematic showing the discretisation of the muscle-tendon 

complex with the muscle-tendon origin and insertion junction defined within 

ABC and DEF, respectively. 

 

The aim was then to define any point within this triangular structure as a transition 

zone becoming muscle, and anything outside of this triangular zone as 

aponeurotic/tendinous. To this end, the piece-wise function for the linear dependence 

shown in Equation 6.72 was slightly amended to show instead the piece-wise function 

for the radial dependence shown in Equation 6.78: 
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(6.78) 

1

0( , )C

AB if x r−  can be defined as the volume fraction of the origin transition zone 

defined in triangle ABC and transposed in a 3D fashion, with the radius of each 

centroid 0r being dependent on its perpendicular central line x-coordinate C

ix . 

1

0( , )C

DE if x r−  represents the volume fraction of the insertion transition zone defined in 

triangle DEF and transposed in a 3D fashion, with the radius of each centroid 0r  being 

dependent on its perpendicular central line x-coordinate C

ix .
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Figure 6.7 provides a graphical representation of the volume fraction f(x) 

distribution across the muscle using the radial function described in Equation 6.78. 

 

 

Figure 6.7 Colour separation of the tendon - muscle distribution f(x), 

according to the radial dependence, which served to define the material 

constant distribution. Three-dimensional model (top) and sliced section plane in 

the z axis (bottom). 

 

Whilst the current model elucidated an enhanced description of the medial 

gastrocnemius aponeurosis, there were still some issues surrounding the region in 

which the muscle penetrated the tendon. At these transition regions, the apex was very 

sharp, as shown in Figure 6.7. Therefore, further erudition of the model was employed, 

where this apex was modelled as a blunt ‘cupping’ feature using an ellipsoidal 

function. 

The cone model presented in the previous section has a few limitations, one of 

which is the sharp apex at which the muscle penetrates tendon. Therefore, an 

alternative model is presented in this section, using a 3D half-ellipsoid, to provide a 

more accurate description of the core geometry and to ease the penetration angle at the 

apex. This is shown in Figure 6.8 . 

 

6.3.3 Ellipsoid Apex Enhancement 
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Figure 6.8 (a) Anatomical representation of the gastrocnemius muscle, 

showing a cup-like radius (red circle). (b) Half-ellipsoid schematic 

representation of radial boundaries (rb), of the cup. (c) The muscle geometry 

with central line as defined in Equations 6.73, 6.74 and 6.75 (Patterson & 

Watton, 2018). 
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This geometrical representation of the cup was implemented where a point along 

the pre-defined centre line (c) of the muscle co-ordinate system, at an x-axis position, 

was used for the radial dependence, as described in section 6.3.2. The formula for an 

ellipsoid, (Equation 6.79) was then applied to every centroid within the aponeurosis 

region, hence resulting in a value for the volume fraction, ( )Tf x , as shown in 

Equation 6.78. 

 

 2 2 2

1 1 1

2 2 2

( ) ( ) ( )
 ( )  T

x x y y z z
f x

a b c

      − − −
= + +      

      

 (6.79) 

 

1x , 1y and 1z indicate the co-ordinates for the central points of the ellipsoid, x , y

and z determine the centroid co-ordinates and a ,b and c represent the variable 

dimensions of the ellipsoid in the x , y and z directions, respectively. The parameters 

that represent the ellipsoid dimensions are taken from the anatomical study done by 

Blitz & Rush., (2007) and Blitz & Eliot (2008). This half ellipsoid model implemented, 

is illustrated in Figure 6.9. 

 

Figure 6.9 Schematic illustrating the implementation of the half ellipsoid 

muscle-tendon cup apex geometry. The red dot indicates the centre point of the 

ellipsoid. 
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The values of  ( ) Tf x vary between 0 and 1, hence determining the constituents in 

each element being either muscle, tendon or transition depending on its proximity to 

muscle or tendon tissue within the ellipsoid region. 

As an ellipsoid is an idealised shape within an axisymmetric muscle geometry, 

further modifications were required to provide a more accurate anatomical description 

of the aponeurosis. Therefore, flat boundaries were applied to the ellipsoidal model, 

in a tapered fashion as illustrated in Figure 6.10 

 

 

Figure 6.10 Schematic representation of the tapering base added to the half-

ellipsoid muscle-tendon junction, using an increasing radius. 

 

The tapering base was achieved by using a two-dimensional boundary that 

increased in radius in the y-z plane, as the x-axis increased along the central line. 

Therefore, any centroids within this region became part of the muscular penetration, 

and the centroids outside this region were tendon. The transition region in this area 

was still radially dependant, as defined in Equation 6.79. The length and gradient of 
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the tapering region can be changed by increasing the radial length along the central 

line, e.g. a 10% increase in radial length per 1mm increase in the central line. 

The final ellipsoid model with the tapering edges are shown in Figure 6.11.  

 

Figure 6.11 with the volume fractions f(x) = 1 (red) tendon, f(x) = 0 (blue) 

muscle and 0<f(x)<1 (white shade) transition region. 

  

The linear, radial and ellipsoidal algorithms of the material constant distribution 

were applied to the muscle geometry, and simulations were carried out to determine 

the stress-strain profile, and hence the mechanical response of the muscle. The muscle 

was fixed at the proximal origin and extended by 12 mm at the distal insertion to 

simulate the muscle in dorsi-flexion. The sides of the muscle adjacent to the lateral 

gastrocnemius and soleus were fixed in the y and z directions, respectively. 

The boundary conditions used for this simulation are identical to those used and 

described in Chapter 5 
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The predicted stress-strain distribution is shown in Figure 6.12. The four cases 

presented are: (1) A sharp junction (i.e. no muscle-tendon transition zone); (2) A linear 

distance dependence as defined in Section 6.2.1; (3) A radial dependence as defined 

in Section 6.2.2; and (4) An ellipsoid apex model defined in Section 6.3.3. 

 

 

Figure 6.12 First principal strain results of case (1) with a sharp transition 

region,  linear case (2), radial case (3) and finally ellipsoid case (4) dependence 

of f(x) muscle - tendon transition junction. Shown in anterior view (side 

adjacent to the soleus) with the muscle extended by 12 mm.   

6.3.4 Finite Element Results of the Various Aponeurosis Morphologies 
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Figure 6.13 First principal stress results of case (1) with a sharp transition 

region, linear case (2) and radial case (3) and finally ellipsoid case (4) dependence 

of f(x) muscle - tendon transition junction. Shown in anterior view (side adjacent 

to the soleus) with the muscle extended by 12mm.  

 

Figures 6.12 and 6.13 show the strain and stress results, respectively, of the 

muscle-tendon junction. The muscle-tendon junction (transition zone) has been 

mathematically applied as above, according to the material constants of the 

constitutive relationship shown in Equation 6.70 (Holzapfel, 2000). The arbitrary 

dependence case (1) has no transition zone, in other words the muscle-tendon junction 

is acute and goes straight from muscle to tendinous constitutive tissue.  Figures 6.12 

and 6.13 reveal that the arbitrary and linear dependence stress and strain results are 

not qualitatively different, with a similar ‘band’ or transverse region of intensity across 
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both methods and cases (1 and 2). In Figure 6.12, the strain results show a region of 

high strain intensity at the muscle-tendon transition region of the muscle geometry. 

These regions have been labelled anatomically in Figure 6.7 and Figure 6.3 , and these 

islands are located at the side close to the skin of the medial gastrocnemius . However, 

there is a clear difference between the strain results for cases (2) and (3). In the radial 

dependence (case 3) simulation, the island of intensity previously found in cases (1) 

and (2) has reduced. This suggests a more physiologically accurate strain distribution 

with the radial implementation in case (3). Higher strains are also present at the distal 

insertion or myotendinous junction of the muscle (towards the Achilles tendon), which 

agrees with experimental findings with respect to high strain injuries of the medial 

gastrocnemius  (Azizi & Roberts, 2009; Prakash, et al., 2017; Gilbert, et al., 1996; 

Severance & III, 1982; Bianchi, et al., 1998; Delgado, et al., 2002; Koulouri, et al., 

2007; Cibulka, et al., 2017). Compared with cases (1) and (2), case (3) also predicted 

lower strains in the belly of the muscle. This is however, in contrast to case (4), which 

appeared to have higher strains in the belly of the muscle, although the resultant strains 

and stresses in the tendinous region are much lower, which are expected as the Achilles 

tendon has been previously reported to be more than 4 times stiffer than muscle tissue 

(Kawakami, et al., 2008).  The next section discusses the inference of these results, 

and which setup maybe more favourable for subsequent simulations. 

 

Whilst case (4) is more favourable in that it emulated a more uniform strain 

distribution with generally higher strains in the belly of the muscle; during high 

displacements the musculotendinous junction and the tendon has been shown to be the 

main area of strain injury when the muscle has been exposed to high displacements 

during dorsi-flexion. As such, case (4) suggests the areas of highest strain will occur 

in the belly of the muscle, (as opposed to the myotendinous junction) which is contrary 

to other physiological findings (Armfield, et al., 2006), and experimental studies 

which reported that almost no strains were present in the proximal medial 

gastrocnemius  when the muscle is in maximum dorsi-flexion of -30° (Kawakami, et 

al., 2008; Hobara, et al., 2012; Whitting, et al., 2013). 

Having carried out these illustrative simulations, the aponeurosis representation 

emulates a finite element solution that suggests that case 3 – the aponeurosis with 

6.3.5 Discussion 
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radial dependence – offers a more physiologically representative result, hence the 

model used in the following sections. However, it should be noted that case (4) should 

be further explored in future to provide a better understanding of the difference in 

mechanical response of the changes in aponeurosis representation. 

Using the converged mesh defined in Section 5.2.1, simulations were carried out 

to investigate the effects of the geometry of the muscle-tendon transition zone on the 

stress-strain response of the muscle. Three scenarios were considered: (i) the muscle 

under high strains, (ii) the aponeurosis increasing in length and (iii) the tendon healing 

over a period of 21 days after a prior laceration. 

 

 

 The Effects of High Strains on the 

Muscle-Tendon Complex  

The individual muscles that comprise of the triceps surae (the calf muscle 

including soleus, gastrocnemius and plantaris) often experience injury induced by high 

strains. This trio of muscles join to form the aponeurosis of the Achilles tendon 

(Dixon, 2009). Localised injuries in these muscles, particularly in the soleus and 

gastrocnemius muscle, are particularly important for the accurate prognosis, treatment 

and deterrence of recurrent injury (Dixon, 2009).  

Although strain injury rates of the triceps surae are low (Coughlin et al., 2006; 

(DeLee et al., 2003; Brukner & Khan, 2002; Garrett, 1996), when they occur, they are 

predominantly found in athletes (Armfield et al., 2006), which may be due to the high 

strains the triceps surae muscles are exposed to when the ankle is in extreme dorsi-

flexion and the knee is in extension during strenuous sporting activities such as 

running. 

Triceps surae injuries are commonly found in the medial head of the gastrocnemius 

muscle (Brukner & Khan, 2002), which were initially associated with playing tennis, 

referred to as ‘Tennis Leg’ (Fu & Stone, 2001). The classic presentation of this injury 

is when the knee suddenly extends with the foot in dorsi-flexion, which passively 

extends the triceps surae muscles. This type of rapid extension results in immediate 

pain, disability and swelling which can last from months up to years depending on the 
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severity of the injury, and the efficacy of treatment (Coughlin et al., 2006). The medial 

gastrocnemius  not only covers two joints (ankle and knee), it also contains many type 

two fast twitch muscle fibres, which inherently increase the risk of injury; which in 

the case of this muscle occurs particularly in relation to tennis-leg type strain injuries 

(Simon et al., 2006; DeLee et al., 2003; Garrett, 1996; Armfield, et al., 2006). In 

addition, the diarthrodial architecture of the muscle, along with excessively forceful 

and rapid stretching, also contribute to muscle injury. This mechanism conjures the 

image of a ‘cracking whip’ which consequently and has historically, been referred to 

as ‘coup de fouet’ (directly translated as ‘snap of the whip’ (Fu & Stone, 2001)). 

Although previous studies have tried to localise areas of damage during high strain 

injuries in the gastrocnemius by using palpation and physical examinations (Armfield 

et al., 2006), the full anatomical location of the injury is not fully known (Dixon, 

2009).Hence, the benefit of a finite element model that can show distributions of strain 

along the muscle pose great potential in physical therapy diagnosis.  

Gastrocnemius strains are often characterised by tenderness in the medial belly or 

at the muscular-tendinous junctions (Dixon, 2009), thus suggesting the most likely 

areas of damage in the gastrocnemius. Palpation, strength testing and stretching are all 

physical measures that can be done to help diagnose strains of the medial 

gastrocnemius head, but an accurate diagnosis of the extent of damage is required to 

gain a better understanding of strain injuries, particularly in the medial gastrocnemius 

muscle. Such an understanding would help localise and determine areas of high risk 

as well as determine the amount of strain that could lead to injury.   

 

The boundary conditions were prescribed to mimic extreme strains in the medial 

gastrocnemius. These were similar to those described in Chapter 5, with the exception 

that the muscle-tendon complex was stretched to the furthest length (convergence 

allowed), which was approximately 20% of its original length (29 mm, as opposed to 

the 12 mm as described in Chapter 5.) to assess the effects of extreme strains on the 

muscle-tendon complex of the medial gastrocnemius  muscle and to also determine 

the limit of strain the muscle would extend to.  

The length, depth, radial dependence and thickness of the myotendinous junction, 

aponeurosis, tendon and muscle constituents were kept constant, with the distal 

6.4.1 Boundary Conditions 
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insertion muscle-tendon junction being set at 15 mm and the distal insertion tendon at 

18 mm. The muscle only region had a length of 100 mm. The proximal origin muscle-

tendon junction and tendon were set at 5 mm and 10 mm, respectively. This anatomical 

configuration is shown in Figure 6.14 and was done to mimic the full medial 

gastrocnemius  muscle-tendon configuration as comprehensively discussed by Blitz et 

al. (2007). All material constants were the same as those reported in Chapter 4, Table 

4.2.  

 

Figure 6.14 Sections in the muscle-tendon model. The spectrum shows the 

volume fraction. 

 

This section describes the simulation results of the medial gastrocnemius tendon-

muscle complex after being stretched to its computational limit of 20% of its original 

length (29 mm). The distribution of the first principal strain and stress are shown in 

Figure 6.15. The contours of the strains were plotted up to 0.17, since this was the 

contour range that allowed for a clear distribution across all the various simulations. 

6.4.2 Simulation Results of High Strains on the Medial gastrocnemius Muscle. 
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Figure 6.15 Results of the first principal strain distribution of the muscle-tendon complex of the medial-gastrocnemius having 

been stretched from 2 mm to 29 mm. The grey areas in the images show strains higher than 0.17. 

. 
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The peak strains observed in Figure 6.15 were located at the extremities of the 

muscle, with the highest strains occurring at the distal insertion. The strains in the belly 

of the muscle increased as the muscle was extended. After a 10 mm extension, 

however (approximately 6.7% of the muscle’s original length), an intensity of strain 

is apparent around the muscle-tendon junction transition zones. This is thought to be 

due to the changes in material parameters in the transition zone, as the volume fraction 

f(x) was dependent on location and radial distance. The change in material properties 

in this heterogeneous model appeared to be an area of weakness as the muscle-tendon 

complex resulted in areas where damage or rupture is likely to occur. Consequently, 

strain injuries, pain and remodelling are most likely to occur in the transitional regions 

of the muscle-tendon structure, especially when the muscle experiences higher strains. 

In contrast, the strains found in the belly of the muscle were relatively low. 
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Figure 6.16 First principal stress of the muscle-tendon complex of the Medial-Gastrocnemius having been stretched from 2 

mm to 29 mm. 

Y 
X 

Z 
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The general pattern of the stress distribution was like that of the strain, as 

shown in Figure 6.16. The higher the extension at the insertion end, the higher 

the stresses in the muscle, with almost no stress being experienced at very 

low strains (2 mm-10 mm or approximately 1.3% - 6.7%). The peak stresses 

were, once again, largest at the extremities, namely the distal insertion end, 

and slowly increased across the belly of the muscle as the amount of extension 

increased. The stresses at the proximal origin became more apparent at strains 

of 14 mm and above (approximately 9.4%). Whilst the current simulations 

provide valuable insights into the high strain and stress regions in the medial 

gastrocnemius muscle, future work in a finite element context may consider 

the stress and strain thresholds that will induce injury. With that information, 

it could be possible to predict regions of high risk of injury. 

  

Whilst the above analysis acknowledges that future work will involve 

determining areas of high risk of injury, the regions of high strains in the 

muscle strain-distribution results above also suggest the areas that are most 

likely to undergo sarcomerogenesis strain-driven growth when the medial 

gastrocnemius muscle is extended (Zollner et al., 2015). However, these high-

risk areas may induce different remodelling regimes when the muscle is 

exposed to prolonged and intensive cyclic loading. Concentrated strains were 

consistently observed at the proximal origin, suggesting an increased risk of 

injury in the ankle region. When the muscle was stretched excessively, the 

model also showed an increased strain around the soft tissues of the knee 

towards the insertion end of the muscle. The muscle belly only began to bear 

more load when the muscle-tendon complex experienced higher 

displacements. This model provides a preliminary anatomical map of the 

likely areas of injury associated with over-stretch in the medial 

gastrocnemius.  

There are a few limitations of this model. The current approach did not 

consider active contraction of the muscle. This is likely to affect the 

mechanical response of the muscle and needs to be explored in the future. 

6.4.3 Discussion 
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Although the muscle tissue is very compliant and can withstand high strains, 

the tissues surrounding the muscle, namely the tendon and surrounding soft 

tissues, may limit the amount of excessive stretch experienced by the muscle-

tendon complex. Furthermore, the current model only simulated the 

instantaneous effects of the mechanical response of the muscle tissue; long 

term growth and remodelling features also need to be considered in the future 

to gain insights into tissue repair and remodelling post-injury. One approach 

could be to simulate remodelling in the areas of high stress – this proposition 

will be discussed in Chapter 7. 

 

 

 The Effects of Aponeurosis 

Lengthening on the Mechanical 

Response of the Medial 

gastrocnemius  

The distal end of the gastrocnemius aponeurosis and the superficial tendinous 

region of the soleus attach over a range of lengths that are unique to 

individuals (Blitz, 2007). This distal muscle-tendon junction plays an 

important role in the mechanics of the medial gastrocnemius, and changes in 

this junction may alter the normal function of the muscle. For example, one 

surgical intervention, known as ‘gastrocnemius or aponeurotic recession’ has 

been used to assist several foot and ankle conditions (Fulp & McGlamry, 

1974; Joolan et al., 1999; (Lin et al., 1996). This technique is based on 

relieving tension in the triceps surae, in the gastrocnemius complex, to restrict 

the dorsi-flexion of the ankle joint. The tendon of the triceps surae is 

lengthened by making a lateral incision on the Achilles tendon from the 

posterior plane and either leaving it to heal or suturing it loosely to adjacent 

tissue. Consequently, a wound is created, and as the tendon heals the scar 
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tissue results in the tendon being longer, allowing for intramuscular and 

aponeurotic lengthening, hence restoring the foot and ankle function (Blitz & 

Rush, 2007; Tashjian et al., 2003; Blitz & Elliot, 2007).  

Although the surgical process of aponeurosis recession has been 

extensively studied, and the resultant physiological effects observed are 

consistent (Tashjian et al., 2003; Joolan et al., 1999), not much is known about 

the long-term changes to the mechanics of the medial gastrocnemius -tendon 

complex following aponeurotic recession or tendon lengthening.  

This section investigates the effects of the aponeurotic lengthening at the 

muscle-tendon aponeurotic junction, to demonstrate how this will affect the 

mechanical response of the medial gastrocnemius. This has been done by 

changing the length of the distal tendinous aponeurosis at the insertion end in 

the model, which in turn changes the transition zone at the muscle-tendon 

junction. 

 

The simulation was designed to mimic the changes in the transition zone 

at the muscle-tendon junction and the effects of aponeurosis 

regression/lengthening. Hence, the boundary conditions applied were the 

same as those reported in Chapter 5. Both the length of the aponeurosis and 

transition length were varied over a physiological range determined by the 

anatomical work in Blitz (2007).  

The distal insertion muscle-tendon junction was defined to range from 0 

mm (direct attachments) to approximately 25 mm, in 5 mm increments, which 

was the minimum length increment that allowed a qualitative difference to be 

observed in the results. The proximal origin tendon was defined to be 

approximately 10 mm in length, with a small 5 mm transition zone (see Figure 

6.17). All other parameters were kept constant in the simulation in 

congruence with the material parameters defined in Chapter 4, and boundary 

conditions described in Chapter 5, where each muscle-tendon complex was 

extended by 12 mm at the insertion end.  

  

6.5.1 Boundary Conditions 
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Figure 6.17 Varying muscle-tendon junction transition zone from 

0mm to 25mm. 

 

The simulations were carried out to examine the effects of a lengthened 

muscle-tendon junction, which mimics the results of an aponeurosis 

regression intervention (Blitz & Rush, 2007). The first principal strain results 

are shown in Figure 6.18. The sagittal cross-sectional plane of the muscle has 

been displayed, as this provides a direct view of the mechanical response 

across the transition zone. 

6.5.2 Numerical Results of the Medial gastrocnemius with Aponeurosis 

Lengthening 
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Figure 6.18 First principal strain of the muscle-tendon complex of the 

medial-gastrocnemius with a varying muscle-tendon junction from 0 mm 

to 25 mm. 

 

The strain results show the changes in the strain distribution as the 

transition zone was lengthened in the model. The highest strains were 

observed at the distal insertion, particularly in the transition zone, suggesting 

that this region is at higher risk of damage. The area with the smallest strains 

were at the thickest cross-section of the muscle belly. 

Although the transition zones at the proximal origin remained at 5 mm, 

when the transition zone length increased to above 5 mm at the insertion end 

(15 mm and 25 mm), the strains at the proximal origin began to increase. 

Indeed, when the length of the transition zone at the distal insertion reached 

25 mm, the highest strains were observed at the proximal origin, indicating a 

shift in the strain distribution towards the proximal end when the distal 

transition zone was increased. 

The stress results (not shown here for the sake of concision) showed a 

similar trend as the strain results. 

Y 
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As the transition zone lengthened, the maximum strains reduced at the 

distal insertion end, thereby changing the strain intensity distribution across 

the muscle so that it became more homogenous. As the aponeurosis and 

muscle-tendon junction lengthened, the region of high strain/stress gradually 

shifted from the distal to the proximal end; at the same time the mechanical 

response became more uniformly distributed across the muscle. The 

lengthening of the aponeurosis therefore suggests a positive outcome in that 

the strain distribution is more homogenised across the belly rather than being 

exclusively localised at the distal and proximal extremities of the muscle-

tendon complex. These results indicate that it is important to consider the 

effects of different anatomical features on the overall mechanical response of 

the muscle-tendon region and aponeurosis of the medial gastrocnemius 

muscle.  

The next section considers the effects of damaged tendon, the mechanical 

stress-strain profile of the medial gastrocnemius , which will bring further 

insight on stretching exercises that are carried out in rehabilitation regimes 

following damaged tendon and how long healing should take place before a 

tendon can be safely exposed to strains in the normal ranges of motion of the 

medial gastrocnemius . 

  

6.5.3 Discussion  
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 The effects of a Damaged 

Tendon on the Mechanical 

Response of the Medial 

gastrocnemius  

Damage to the muscle and/or tendinous tissues of the calf can occur in 

strain injuries with partial or whole tears (rupture). Rupture of the distal 

myotendon junction at the insertion end is one of the most common sports-

related injuries (Miller, 1977). Although most people who suffer from this 

injury experience partial tears, sometimes the damage could be severe enough 

to cause the detachment of muscle fibres at the medial head distal aponeurosis 

(Bianchi et al., 1998). 

Experimental findings have shown that the muscle-tendon junction is 

most susceptible to injuries under extreme loading (McMaster, 1923) - a 

sudden contraction of the muscle, with concomitant overstretching when the 

knee is in extension, often leads to excessive tensile force and stretching, thus 

causing injury. Such injuries can take months (or years) to fully heal (Bajuri 

et al., 2016). Although it is believed that mechanical loading of tendinous 

tissues could improve mechanically induced healing processes (Andersson & 

Aspenberg, 2009; Killian et al., 2012; (Schepull et al., 2009; Wang et al., 

2012), the optimal mechanisms of this phenomenon in respect to the tendon 

and muscle remain unclear.  

This section therefore aims to explore a simple case of damage of the 

tendinous tissue and how this affects the stress-strain profile of the muscle-

tendon complex of the medial gastrocnemius. This was done by extracting the 

material constants used in a previous study (Bajuri et al., 2016), which applied 

a similar constitutive relationship to healing medial gastrocnemius tendon 

tissue from a murine medial gastrocnemius model. 
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The tendon’s mechanical response changes during its various healing 

stages (Bajuri et al., 2016). This was modelled by changing the material 

constants of the constitutive relationships based on Bajuri et al.’s (2016) well-

established constitutive relationship that takes into account non-symmetric 

fibre dispersions and structural parameters, as defined in Equation 6.80. This 

constitutive relationship is similar to its former version, which has been used 

in the finite element simulations in this thesis (Equation 6.80) (Holzapfel et 

al., 2000).  

A murine model of the Achilles tendon was examined at the distal 

insertion and cut transversely, proximal to the calcaneal insertion. A 3 mm 

segment of the Achilles tendon was removed, and the wound was closed and 

allowed to heal over 3 days, 8 days, 14 days and 21 days (Eliasson et al., 

2009). The tendons were then tested mechanically, which expounded the 

stress-strain relationship of each of the healing tendons (Eliasson et al., 2009). 

These data were then fitted to the Bajuri et al., (2016) model, which had the 

following formulation, as shown in Equation 6.80: 

 
( )
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2 4 4
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[ (1 3 ) 1)1 1
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2

( 3) 1
2

k I Ic k
I e
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  + − − 
= − + − 

 
 (6.80) 

 Where: 1c  is the Neo-Hookean isotropic material constant for the 

isotropic tissue, and 1k is the first anisotropic material constant for the 

anisotropic tissue, respectively. These two constants are measured in MPa. 

2k is the second anisotropic material constant for the constituent fibres, which 

is dimensionless. The fourth invariant of the Cauchy-Green deformation 

tensor is signified by 4I , which represents the fibre directions for one family 

of fibres in the constituent.  is the structural parameter representing the 

symmetry of the fibre dispersion. 

The material parameters used in this constitutive relationship are shown in 

Table 6.1, where one simulation was done for each healing time-phase. 

 

6.6.1 Estimation of the Damaged Tendinous Material Properties 
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Table 6.1 Material constants used in the constitutive relationship for 

tendon tissue (Bajuri et al., 2016). 

Healing 

Phase 

C1  

[MPa] 

k1 

[MPa] 

k2 

[-] 

к 

[-] 

Day 3 0.1669 1.110 5.802 0.25 

Day 8 0.0807 1.915 13.864 0.24 

Day 14 0.1791 2.271 7.077 0.23 

Day 21 0.1066 1.238 3.870 0.22 

Intact 0.00046 9.127 1.6 0 

 

The ratio of the relative stiffness of the muscle to that of the tendon was 

calculated by scaling each material constant ratio separately (C1, K1 and K2). 

This was undertaken since the constitutive relationship defined in this thesis 

is slightly different to the one reported in Bajuri et al. (2016). The tendon 

values for the healing phases (i.e. all phases apart from intact phase) were 

therefore scaled to eliminate the   constant. The material properties reported 

in Bajuri et al. (2016) are shown in Table 6.2. 

The stress response was derived according to Nanson’s formula from the 

strain energy function used in Bajuri et al., (2016), as shown in Equation 6.80. 

The stress response was plotted analytically using the material constants in 

Table 6.2, as shown in Figure 6.19. This reveals the stress response of the 

tendon tissue during each healing phase. In Bajuri et al.’s (2010) work the 

intact healthy tendon was the only tendon that had a   value of 0, thus, 

according to Equation 6.80, the strain energy function was exactly the same 

as that used in this thesis, as shown in Equation 4.48. Since   was not 0 for 

the healing tendon (Equation 6.80), however, the stress ratio was calculated 

from the ratio of the healthy stress value (45.4043 MPa) to that of the healing 

stress values (0.6670 MPa at 3 days, 1.3060 MPa at 8 days, 1.6627 MPa at 14 

days and 0.9712 MPa at 21 days) using a maximum tendon stretch of 1.2. 

This ratio was used to scale the material parameters of the strain energy 

function used in this thesis (Equation 6.70). This was done to determine the 

ratio required to scale the parameters from healthy tendon, which was used to 
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scale the parameters for the constitutive relationship used here (Holzapfel, 

2000). These scaled values are shown in Table 6.2. 

 

Figure 6.19 Analytical solution (first Piola-Kirchhoff Stress) of the 

tendon tissue across different healing phases. 

 

Table 6.2 Scaled material constants of muscle and tendon tissue for 

the simulation of the healing tendon. 

Constitutive relationship: 

64 111 1
. 1 1 1 1
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Material Constant C1 [MPa] K1 [MPa] K2 

Muscle 0.0228 0.1938 0.0039 

Tendon (intact) 0.00046 9.127 1.6 

Tendon (3day) 0.001566 0.13407 0.0235 

Tendon (8day) 0.003066 0.262527 0.0460 

Tendon (14day) 0.003904 0.33423 0.0585 

Tendon (21day) 0.00228 0.19522 0.0342 
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The boundary conditions of the radial dependant transition zone and the 

aponeurosis anatomical configuration are the same as those reported in 

Section 6.3.2.  

A simulation was done according to the healing phase (3 days, 7 days, `4 

days, 21 days and intact), where the material parameters were applied as 

shown in Table 6.2. This was used to simulate the way in which the healing 

tendon’s mechanical response changed over time. 

 

The following results (see Figures 6.20 and 6.21) show the damaged 

tendon and how the tendon healed over the 21 day period, by examining the 

distribution of the first principal strains in the muscle-tendon complex.  

6.6.2 Simulation Boundary Conditions 

6.6.3 Simulation Results 
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Figure 6.20 Anterior view of the first principal strain of the muscle-

tendon complex of the medial-gastrocnemius in the case of a healing 

tendon. 

 

Figure 6.20 shows the distribution of the first principal strains of the 

simulation as the tendon healed from the most damaged (after 3 days) to the 

most healed (after 21 days) phases, compared to the response of a healthy 

tendon. Note that only the tendon has undergone the ‘healing’ process here, 

and the muscle is simulated as healthy tissue throughout all simulations.  

As the tendon healed, the strains at the distal insertion decreased and the 

strains across the belly of the muscle increased. The load appeared to be more 

evenly distributed with a healthy tendon compared to a damaged tendon. 
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Figure 6.21 Anterior view of the first principal stress of the muscle-

tendon complex of the medial-gastrocnemius with healing tendon. 

 

Similar trends were also observed in the predicted stress distribution of 

the muscle; in that the stress was more evenly distributed across the muscle 

belly as the tendon healed, compared to its damaged counterpart. It is worth 

noting, however, that the maximum stresses were always found at the 

insertion and distal ends of the muscle regardless of the state of the tendon. 

This could potentially be an effect of the boundary conditions applied at both 

ends.  
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The material parameters used here were directly scaled from the material 

constants used in a similar constitutive relationship of healing tendons (Bajuri 

et al., 2016), where C1 (the Neo-Hookean shear modulus of the non-

collagenous matrix) reduced as healing progressed and k1 increased as 

expected. In Bajuri et al. (2016), however, k2 decreased as healing progressed, 

where it increases in the current simulation – noting that the strain energy 

functions in Bajuri et al. contain the fibre dispersion parameter  , whereas 

the simulations in this thesis have scaled the parameters to eliminate  .  

It is well recorded that the elastic modulus increases during healing of 

tendon tissue (Eliasson et al., 2009; Schepull, 2007; Schepull, 2013). These 

phenomenological parameters are thought to represent tissues like ligaments 

and arteries when considering their rate independent elastic behaviour (Weiss 

& Gardiner, 2001). The selection of the parameters used (an optimisation 

algorithm in MATLAB called the Levenberg–Marquardt Algorithm) is 

highly dependent on the initial values selected and the parameter space being 

explored, however, meaning that there could be several different 

combinations of optimised material parameters that result in the same overall 

stress-strain response. Nevertheless, the results showed some insight into the 

effects of tendon damage on the medial gastrocnemius muscle. 

It is important to consider the different healing stages of the muscle, 

specifically, the stress response of the muscle that rendered an anomaly at day 

21 of the healing process. Bajuri et al. (2016) acknowledge a change in the 

stress response at day 21 of the healing process related to up or 

downregulation of genes, suggesting that the formation of scar or residual 

tissue at this stage. This suggests that the change of the tissue resulted in a 

change in the stress response in comparison to the other healing phases. One 

possible explanation for this observed increase in stiffness could be the 

formation of scar tissue.  

It is important to note, however, that the extent of damage of the murine 

tendon was excessive – a healing 3 mm incision. Such damage will not only 

cause anatomical changes in the muscle-tendon complex, as explored earlier 

6.6.4 Discussion 
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in this chapter, but will also lead to a much longer healing processes than the 

21 days studied (Eliasson et al., 2009). Future work could include an 

exploration of minor to moderate damage of the tendon, and experimentation 

on the mechanical response over a longer period, until the tendon is fully 

recovered. 

This exploration suggested that stretching a damaged tendon beyond its 

physiological limit during the healing phase may cause more damage and 

should be avoided; hence the implication that the rehabilitation and loading 

regime of the healing tendon must be carefully considered. 

The growth and remodelling formulation proposed in the next chapter can 

be used to explore such phenomena in future. 
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 Discussion and Conclusions 

A number of previous models of the muscle-aponeurosis/tendon complex 

have been created and used in finite element simulations (Blemker, et al., 

2005; Chi, 2010; Pamuk, et al., 2016; Chi, 2010). Few of these models 

however, have been able to capture the anatomical path of the fibres 

appropriately (Blemker & Delp, 2005). The current work not only presents a 

unique method to use anatomical fibres for the computational finite element 

modelling of skeletal muscles, but also provides a novel model that considers 

the muscle-aponeurosis/tendon complex with a transitional myotendon 

region. In addition, most other finite element muscle-tendon work-flows have 

used a manual or semi-automatic process, where a region of tendon or muscle 

tissue is assumed and manually selected according to their anatomical 

locations on the mesh, and material constants assigned thereafter (Blemker, 

et al., 2005; Chi, 2010). The drawback of such an approach is that it requires 

a good understanding of the anatomical location of each region, which can be 

difficult to identify in different individuals (Neal M. Blitz, 2007). In contrast, 

the muscle-tendon/aponeurosis model presented here uses a distance method 

to determine the exact material constants for each region. The results shown 

in this chapter demonstrated that the transitional zone and tendon/aponeurosis 

morphology will influence the mechanical behaviour of the muscle, and this 

is further investigated in the next chapter by investigating a range of 

parameters defined in the model and their effects on the stress-strain 

prediction.  

From the arbitrary formulation case (1), (no distance dependence) and 

linear distance-dependence formulation case (2), the stress-strain results 

exhibit a lamellar pattern, where transverse ‘bands’ of intensity are presented. 

This is not consistent with physiological phenomena in the cases of high strain 

locations of the medial gastrocnemius in that the most common localisation 

of medial gastrocnemius tears are found at the muscle-tendon junction (the 

transition zone) in the case of high strain injuries of the Triceps Surae. These 

tears are expected to occur closer to the posterior side of the muscle – the side 

adjacent to the skin (Dixon, 2009; Bianchi, et al., 1998). Although the 
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quantitative stress-strain profile of the medial gastrocnemius  muscle is not 

clearly understood, from medical convention with respect to such strain 

injuries, it is clear to see that the radial dependence simulation applied in this 

chapter has rendered results that are more analogous to the physiological 

phenomena when the muscle is stretched (Bianchi, et al., 1998; Dixon, 2009). 

When the muscle is stretched extensively, additional disruption and partial 

tears are found to occur around the muscle belly  (Bianchi, et al., 1998). These 

extensive stretches of the muscle will be explored further in Chapter 7. 

This investigation highlights the importance of having a more accurate 

anatomical representation of the muscle-tendon transition zone. Further 

analysis therefore needs to be done to explore the skeletal muscle model 

created here more fully, along with other pathological phenomena such as 

tendon healing or the effect of anatomical features on the stress-strain profile 

of the muscle. Such studies will provide further insights into the mechanical 

response of skeletal muscle tissue and indeed, a full anatomical muscle-

tendon complex. To begin this work, this chapter goes on to explore the 

effects of the radial dependent anatomical configuration of the skeletal 

muscle, comparing the stress-strain effects of the skeletal muscle over three 

cases; (i) excessive strains on the medial gastrocnemius, (ii) lengthening of 

the aponeurosis and muscle-tendon transition zone and (iii) healing tendon. 

Changes in the mechanical environment surrounding a muscle often affect 

the behaviour and performance of that muscle. Consequently, the lengthening 

of the aponeurosis beyond a critical length may lead to regions of high strain 

(e.g. after a 25 mm transition length), where higher strains are observed in the 

proximal origin than the distal insertion. Similar effects are also observed 

when the medial gastrocnemius muscle-tendon complex is stretched beyond 

10% of its original length. 

Previous finite element models of muscles have used idealised 

geometries, fibre orientation and approximated material parameters to 

explore the mechanics of skeletal muscle (Blemker et al., 2005; Blemker & 

Delph, 2005; Zollner et al., 2015; Tang et al., 2007). Although these models 

have enabled the exploration of the intended research question, the current 

model offers a novel framework to provide an anatomical geometry, 
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anatomical fibre orientation and a comprehensive exploration on the material 

constants used. 

The results shown above suggest an ‘optimum’ region for muscle 

displacements and aponeurosis muscle-tendon lengths which needs to be 

further confirmed by experimentation. The current work-flow has 

demonstrated the mechanical response of a specific skeletal muscle and how 

it responded to mechanical stimuli. The limitations of the current model lie in 

the transition zone of the muscle-tendon junction. This is currently modelled 

as a cone with a sharp radial edge, but has been enhanced by a smoother 

transition, and a blunt cup-like apex to more closely mimic the true 

anatomical structure of the skeletal muscle.  

The long-term effects of loading on the muscle’s mechanical response can 

be explored by means of the growth and remodelling formulation proposed 

in Chapter 3. Other similar models have been proposed that use a mixed 

constrained method that considers myosin heavy chain isoforms, serial 

sarcomere numbers, parallel sarcomere numbers, pennation angles, and 

extracellular matrix composition (Wisdom et al., 2015). Models built on these 

formulations, however, have not comprehensively considered the muscle-

tendon complex, its mechanical behaviour or the muscle-tendon junction 

(Zollner et al., 2015). Further, although the finite element model proposed by 

Zollner et al. (2015) suggests a novel and comprehensive model of sarcomere 

genesis, and uses relatable foundations of sarcomere genesis in series and 

parallel with the muscle’s mechanical environment, the model does not 

explicitly consider the mechanical response of the muscle-tendon junction, or 

the aponeurosis over the gastrocnemius muscle, and the tendon was modelled 

as an infinitely stiff component adjoined to the muscle tissue.  

Future work can shadow the work-flow of Roerhle et al. (2008), to 

incorporate the anatomical specificity and higher dimensionality of multi-

scale models. Simulations of the mechanics, and the growth and remodelling 

regimes of the medial gastrocnemius muscle, however, must be explored to 

gain further insight into the temporal behaviour of the muscle’s mechanics. 

The next chapter explores the growth and remodelling of the medial 

gastrocnemius, whilst under different mechanical stimuli. 
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7 Chapter 7  

Growth and Remodelling of Skeletal Muscle: 

Application to Limb Lengthening  

Chapter 6 explored the different anatomical structures required to achieve 

a more representative finite element model of the medial gastrocnemius. 

Because skeletal muscle tissue responds to its mechanical environment and 

MSDs are degenerative diseases that progress over time, useful research of 

skeletal muscle mechanics will require the inclusion of a temporal domain. 

Whilst the quasi-static stress-strain profile of the muscle-tendon complex has 

been demonstrated, the longer term changes the muscle experience during 

various mechanical environments (e.g. during overstretch) have not yet been 

investigated in this thesis.  

This chapter will explore the application of the remodelling formulation 

to simulate overstretching of the muscle during limb lengthening, considering 

work performed by Boakes et al., (2006). Boakes et al. stated that muscle 

adaptability limits the outcome of reconstructive limb lengthening surgery. In 
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their study, the limb was lengthened incrementally over a quarter of a year 

and then held at fixed length for the remaining nine months as the muscle was 

left to adapt. The study showed that the procedure was successful, and the 

muscle lengthened accordingly over that timescale, however the lengthening 

regime was governed by the remodelling time of the muscle – hence the 

requirement to explore what possible timescales could be considered for 

muscle tissues. The example illustrated by Boakes et al., (2006) will inform 

the boundary conditions and simulation time (one year) of the remodelling 

formulation proposed in this thesis. This will test the current remodelling 

formulation and allow for the investigation of what appropriate simulation 

parameters are required to achieve a muscle that will remodel to its 

homeostatic configuration. 

 

 This chapter shows 3 modelling approaches to simulate the remodelling 

of muscle-aponeurosis-tendon tissue;  

(i) An analytical model, with the consideration and inclusion of a 

homeostatic range of values. 

(ii) An idealized finite element model with a cuboid geometry, uniaxially 

loaded. 

(iii) An anatomically realistic finite element model of the medial 

gastrocnemius - as described in Chapter 6.  

These models build on the previous work of this thesis and progressively 

inform one another as follows: 

The analytical model (i) uses constitutive parameters described in Chapter 

4, to derive the remodelling rate parameters - hence informing the succeeding 

finite element models. The cuboid model (ii), introduces the axial variation 

of constituent properties and remodelling, which is independent of the 

anatomical features and their effects on the mechanical response of the 

muscle-tendon complex. The third approach brings together the anatomical 

geometry developed in Chapter 6, and the proposed remodelling framework, 

to assess what remodelling regime is most useful to use, to produce a 

predictive finite element simulation of the overstretched gastrocnemius.  
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 Growth and Remodelling Finite 

Element Models of Skeletal 

Muscle 

 

Skeletal muscle modelling has seen great advances in the last two 

decades, with three-dimensional models coupled with chemical and electrical 

pathways now able to provide significant insight into muscle physiology and 

function (Oomens et al., 2003; Lemos et al., 2004; Blemker & Delph, 2005; 

Böl & Reese, 2008; Röhrle et al., 2008; Böl, 2010; Röhrle, 2010). Such 

models have been further enhanced by elucidating the interactions between 

biochemistry, metabolism and force production (Dash et al., 2007; Murtada 

et al., 2012). Despite such advances in the skeletal muscle finite element 

modelling community, models that can reliably predict the longer-term 

response of skeletal muscle are surprisingly rare (Kuhl, 2014). Whilst other 

models have provided valuable insight into the adaptation of skeletal muscle 

in response to chronic under- and over-stretch in one-dimension (Wren, 

2003), three-dimensional continuum mechanics models are still currently 

lacking in this regard. Having comprehensively reviewed - in Chapter 3 - 

previous finite element models of skeletal muscle adaptation, when they are 

exposed to different mechanical environments, the next section expands on 

the modelling approaches used to model overstretch phenomena in skeletal 

muscles. 
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To model overstretch, the muscle is extended and held at a fixed length, 

which increases the length and/or number of sarcomeres in series (Makarov 

et al., 2009), and this in turn increases the length of the muscle-tendon 

complex. The passive stiffness of the muscle-complex is thought to increase, 

and the fibres of the muscles are thought to align more towards the direction 

of loading (Williams et al., 1998; Elsalanty et al., 2007). Overstretch in this 

context is defined as the maximum stretch the medial gastrocnemius maybe 

subjected to, during various activities, above its maximum homeostatic value 

– such as when the muscle is extended and held at fixed length. In contrast, 

understretch in this context is defined as the minimum stretch the medial 

gastrocnemius will be subjected to, below its minimum homeostatic value. 

The next section inspects various homeostatic stretches that are thought 

to lie within the physiological range of the motion of muscle, as well as how 

they are used to define the homeostatic stress values of the muscle-tendon 

complex model. 

 

Here, we propose a distinction between the homeostatic range of motion 

and the operational range of motion of the medial gastrocnemius. The 

homeostatic range is the stretch range within which the muscle can operate 

before the onset of remodelling occurs. The operational range is a stretch of 

0.9 – 1.15. Hence the supposition of the ‘homeostatic range’ which is 

different from the ‘operational range’ of the muscle.  

It is well accepted that passive stretch beyond a physiological threshold 

initiates the process of sarcomerogenesis (Caiozzo et al., 2002), however the 

exact cascade of mechanotransduction events that trigger serial sarcomere 

adaptation remains largely unknown (Lieber & Fridén, 2000). Furthermore, 

it is unclear how to define a homeostatic range. As a start, we review the 

homeostatic ranges of muscular tissues, soft collagenous tissues and tissues 

7.1.1 Modelling Overstretch and its Mechanical Phenomena 

7.1.2 The Definition of the Homeostatic Configuration and Constituent 

Remodelling 
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with unidirectional fibres are shown in Table 7.1, and from there, their 

homeostatic anisotropic contribution of the Cauchy stresses are calculated 

using the methods described in Chapter 4. 

Table 7.1 Homeostatic stretches of muscular, unidirectional fibres 

and soft tissues as reported in various sources of literature. 

Reference Study Type 

(Experimental/ 

Computational) 

Tissue (Muscle/Tendon) Homeostatic Stretch 

range, λ 

Zöllner et al. 

(2012) 

Computational Biceps Brachii Skeletal 

Muscle tissue 

1.00 

Gordon et al. 

(1966) 

Experimental Frog Skeletal Muscle 0.95 – 1.07 

Wisdom et al. 

(2015) 

Computational Analytical Skeletal 

Muscle tissue 

1.0 

Hamedzadeh 

& Gasser 

(2018) 

Computational Collagenous Soft 

Biological Tissues 

1.04  

Lanir (2015) Computational Tissues with 

Unidirectional fibres 

1.03~1.067 

 

It should be noted that different constitutive relationships will inherently 

have different homeostatic stresses. The smallest and largest values have been 

selected from Table 7.1 to help provide a benchmark value for the 

homeostatic stretch range and hence a homeostatic Cauchy stress range. This 

range of homeostatic stress values is interpreted as the following;  

 
, (min) , , (max)   aniso h aniso h aniso h     (7.81) 

 

Whilst the model discussed by Wisdom et al. (2015) and the model developed 

by Zöllner et al. (2012) each determine the homeostatic state to be identical 

with the reference configuration,  considering the material parameters of the 

strain energy function used in this thesis (Equation 6.60), the material 

parameter 𝑘2 has been selected to evolve and bring the anisotropic stresses 

back to their homeostatic values. This is because during remodelling the 

muscle is expected to stiffen, which results in a right-ward shift of the stress-

strain relationship (as shown in Figures 4.a-c), and this shift is most sensitive 
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to the value of 𝑘2. The anisotropic stresses are used to drive remodelling, as 

they govern the total stress response of both muscle and tendon constituents 

at higher strains. Based on the strain energy function in Equation 6.70, the 

modified strain energy function can be written as:  
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=

 (7.82) 

To model overstretch,  𝑘2t (for tendon) and  

𝑘2𝑚 (for muscle) stiffness parameter defined in Chapter 6 (Equation 6.60) is 

evolved using the following relationship;  

 

 𝑑𝑘2𝑡(𝑡)

𝑑𝑡
= −𝛽𝑇 (

𝜎𝑎𝑛𝑖𝑠𝑜−𝜎|𝑎𝑛𝑖𝑠𝑜,ℎ(max )

𝜎|ℎ(max)
)

𝑇
  

𝑑𝑘2𝑚(𝑡)

𝑑𝑡
= −𝛽𝑀 (

𝜎𝑎𝑛𝑖𝑠𝑜 − 𝜎|𝑎𝑛𝑖𝑠𝑜, ℎ(max)

𝜎|𝑎𝑛𝑖𝑠𝑜, ℎ(max)
)

𝑀

 

 

(7.83) 

 

The t subscript represents the evolution of the tendinous constituent of k2, 

and the m subscript represents the evolution of the muscular constituent of 

k2. The remodelling constant  , will therefore be specific to the type of 

tissue constituents. As such, the evolution of the stiffness parameter, 2k t, is 

driven by the deviance of the anisotropic contribution of Cauchy stress values

aniso  from their homeostatic anisotropic stress values, ,aniso h . Whilst this 

thesis only models overstretch, the model could be extended by considering 

that the homeostatic Cauchy stress comprises of a range of values. The over- 

and understretch phenomena are produced when the stresses satisfy the 

following conditions:  

 , (max)

, (min)

Overstretch

Understretch

aniso h aniso

aniso h aniso

 

 

 

 
 (7.84) 
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aniso of the muscle-tendon complex is the anisotropic contribution of the 

Cauchy stress of a tissue constituent when held at fixed length during the 

remodelling regime. Therefore, as the anisotropic 1st Piola Kirchoff stress is 

the first derivative of the strain energy function   with respect to the stretch 

 , the anisotropic Cauchy stress term for tendon and muscle are then 

multiplied by the stress to obtain the Cauchy anisotropic stress. 

 

 𝜎𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 = 4𝑘1𝑡 ∙ 𝑘2𝑡(𝑡)𝜆(𝜆2 − 1)𝑒𝑘2𝑡(𝑡)(𝜆2−1)2
⇒ 𝑇𝑒𝑛𝑑𝑜𝑛

𝜎𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 = 4𝑘1𝑚 ∙ 𝑘2𝑚(𝑡)𝜆(𝜆2 − 1)𝑒𝑘2𝑚(𝑡)(𝜆2−1)2
⇒ 𝑀𝑢𝑠𝑐𝑙𝑒

  (7.85) 

 

 In the context of this remodelling algorithm, the maximum homeostatic 

stretch value is taken from the range used by Lanir et al. (2015) for 

unidirectional fibres of collagenous tissues, where the stretch ranges from 

1.03 ~ 1.067. The maximum homeostatic strains of the medial gastrocnemius 

complex are therefore estimated to lie around 3%-6.7% of the complex’s 

original length. In order to determine the boundary conditions of the models, 

the upper bound of this range was used, at 6.7% of strain. Considering that 

the original length of the muscle-tendon complex is 149 mm, the muscle’s 

maximum homeostatic stretch will therefore be approximately 6.7% of that 

value, which equates to 10 mm. It is from this stretch that the maximum 

homeostatic Cauchy stress to drive the remodelling of k2t and k2m, is 

calculated. 

The next section explores the proposed model using analytical solutions. 
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 An Analytical Investigation of 

Limb Lengthening of the medial 

gastrocnemius 

Bone lengthening surgery is a reconstructive therapy that often results in 

complications in muscle contracture and loss of joint motion. This is often 

observed where the muscle adaptive capacity seems to limit the extent of 

possible lengthening of the limb (Boakes et al., 2006) hence posing the 

question – ‘how quickly can the bone be lengthened, to achieve optimum 

muscle adaptation?’ It is also important to consider the modelling of the soft 

tissues (muscle, tendon and myotendinous tissues) attached to the bone. 

Whilst many studies showed the need of the cat soleus muscle remodelling 

during sarcomerogenesis or sarcomere-loss (Tabary et al., 1972; Tardieu et 

al., 1982; Goldspink & Scutt, 1992), others have shown that other muscles 

remodel to a lesser extent than the soleus (Simard et al., 1982; Spector et al., 

1982). It is therefore imperative to explore the different remodelling rates – 

defined as and T M  in Equation 7.83 for tendon and muscle constituents, 

respectively – of the medial gastrocnemius muscle, tendon and myotendinous 

junction tissue.  

An illustrative example of overstretch from limb lengthening leading to 

sarcomerogenesis has been provided by Boakes et al. (2006). This will be 

modelled by considering the evolution of k2t and k2m (Equation 7.83), to 

adapt the muscle stresses back to homeostasis when in overstretch. A 4 cm 

lengthening of the femoral bone was achieved incrementally (0.5 mm per day 

over 80 days), referred to as the ‘distraction’ period, and the leg was then left 

to heal for a total of 285 days, post-surgery – during the consolidation phase. 

Hence, the lengthening of the limb is interpreted to be linear over the reported 

timescales, and a simple linear interpolation was used to define the 

remodelling regime of the system, as shown in Figure 7.1. 
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Figure 7.1 Derived lengthening of the femoral bone across 1 year 

post surgery. 

 

The bone was increased by a total of 10% of its original length, i.e. a 4 

cm increase (Boakes et al., 2006) – hence the deduction that the original bone 

was originally 40 cm and increased to 44 cm. Whilst it is acknowledged that 

the bone lengthened in Boakes et al., (2006) was the femoral bone, rather than 

the tibial bone (which is closer to the medial gastrocnemius), the increases 

have been scaled, so that normalised values of the lengthening are obtained 

and applied to the current model of the medial gastrocnemius muscle system. 

This remodelling regime was explored so that the remodelling rate 

parameters of the current model could be calibrated against the data defined 

in Boakes et al. (2006) in order to extrapolate parameters - in particular the 

remodelling rate constant β - for overstretch during limb lengthening. This 

exploration was done analytically. The strain energy function used is that 

described in Equation 6.70, and the material parameters used for 𝐶1, 𝑘1and 

2 0tk =  for muscle and tendon are taken from Chapter 4, Table 4.2. 

From the Equation 7.83, k2t and k2m evolve at rates ( and T M  ) 

dependant on their initial values, homeostatic ( ,aniso h ) and operational 

aniso  Cauchy stress values. The initial stress values for the analytical 
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solutions shown in Figure 7.1 were taken to be the upper bound inferred 

Cauchy stress value calculated from Lanir (2015) as shown in Table 7.1 as 

1.3910 MPa 

To infer a suitable range of values for beta, both and tendon have been 

assumed to remodel to homeostasis within a year. These rate parameters are 

expected to differ for the tendinous and muscular constituents. The proposed 

way in which k2 and k2m evolve is shown in Figure 7.2 and 7.3 for different 

values of and T M   and for muscle and tendon constituents, respectively.  

 

Figure 7.2 Evolution of k2t in the 12 months post-surgery, with 

varying values of the remodelling rate parameter β for tendon tissue. 

 

For the remodelling scenario defined by Boakes et al. (2006), k2 is 

expected to asymptote within 1 year, hence suggesting that favourable values 

of the tendinous remodelling rate parameter lies within0.4 0.6T  , as 

shown in Figure 7.2.  
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Figure 7.3 Evolution of k2m in the 12 months post-surgery, with 

varying values of the remodelling rate parameter β for muscle tissue. 

 

M must be prescribed similarly to how 
T  has been, with its own 

respective material parameters. Since the remodelling scenario defined by 

Boakes et al. (2006), k2m is expected to asymptote within one year, 

favourable values of the muscular remodelling rate parameter are 

approximately 𝜷𝑴 ≥ 𝟎. 𝟏, as shown in Figure 7.3. 

These are the parameters used in the subsequent remodelling work-flow 

to simulate overstretch during limb lengthening. The Cauchy stress was 

analytically calculated for the varying values of 
M  and 

T to show how the 

stress changes and asymptotes to its homeostatic value (maximum dorsi-

flexion in its homeostatic range), as shown in Figures 7.4 and 7.5. 
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Figure 7.4 Illustrative example of Maximum anisotropic stress values 

[MPa] for different remodelling parameters of 
T (Tendon) in the 

overstretch remodelling regime of limb lengthening during the first year 

post-surgery (Boakes et al., 2006).  

 

There are peak anisotropic stresses that are experienced by the tendon 

constituent for each value of 
T as shown in Figure 7.4. This value is thought 

to lie around the same time ~ 0.25 years (which equates to 80 days) when the 

distraction period had ended, and the bone is no longer being incrementally 

extended. Following this, the muscle then left to remodel for the remaining 

0.75 years (285 days) and this is shown as the anisotropic stress values 

decrease over time. 

This analytical simulation confirms that the prescribed 
T calibrated to 0.6 

(purple curve) in Figure 7.4 presents a Cauchy stress profile that remodels 

back to its original maximum homeostatic stress in maximum dorsiflexion of 

the medial gastrocnemius tendon, hence showing the behaviour of the model, 

the calibration of 
T  and its boundary conditions and the efficacy the current 

model for the specific case study presented by Boakes et al. (2006). 

Congruent methods were carried out for the muscular constituents.  
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Figure 7.5 Illustrative example of Maximum anisotropic stress values 

[MPa] for different remodelling parameters of 
M (Muscle) in the 

overstretch remodelling regime of limb lengthening during the first year 

post-surgery (Boakes et al. 2006). 

 

Contrary to the peak anisotropic stresses that are experienced by the 

tendon constituent for each value of
T , the peak anisotropic stresses of the 

muscle constituent are all different, for different values of
M as shown in 

Figure 7.5. The value selected for 
M has the peak stresses experienced at 

approximately 0.25 years (80 days) which is also around about the end of the 

distraction period, and when the muscle was held at fixed length and left to 

remodel over the remainder of the year. When 
M is 0.1, the anisotropic 

stresses of the muscle are shown to decrease over time and asymptote at the 

homeostatic value. 

This analytical simulation confirms that the prescribed 
M calibrated to 

0.1 (red curve) in Figure 7.5, presents a Cauchy stress profile that remodels 

back to its original maximum homeostatic stress in overstretch of the medial 

gastrocnemius muscle tissue within a year, hence showing the behaviour of 
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the model, the calibration of 
M and the simulation boundary conditions that 

are able to represent the specific case study presented by Boakes et al. (2006).  

The evolution equations proposed are stress-driven. As such, the tendon 

is expected to remodel faster as the same displacement boundary condition is 

applied to both muscle and tendon constituents, which is confirmed by the 

analytical simulations and the calibration of the remodelling parameter values 

of 
T and 

M .  

 

  A Numerical Investigation of 

Limb Lengthening of the medial 

gastrocnemius   

The remodelling framework used above was applied to numerically test a 

cuboid of skeletal muscle tissue extended uniaxially. The cuboid constituents 

comprised of muscle, tendon and a linear myo-tendinous region. A 10 cm x 2 

cm x 2 cm cuboid was used to represent a small cuboidal section of skeletal 

muscle complex, the constituent material properties are identical to those 

stated in Chapter 4, Table 4.2. The dimensions of the cuboid were chosen to 

represent a simplistic model of the morphology of the muscle, whilst also 

being able to loosely represent the geometry of the medial gastrocnemius 

complex – hence the selection of a cuboid, rather than a cube.  

The muscle comprised of 50% of the total cuboid volume, the tendon 

consisted of 35% whilst the remaining 15% comprised of the muscle-tendon 

transition region. The transition region was not incorporated here since the 

individual constituents were to be explored. Hence, each of the constituents 

had the following volume fraction values, with an abrupt constituent junction 

applied, as illustrated in Figure 7.6.  

( ) 1

( ) 0

( ) 0.5

f x Tendon

f x Muscle

f x Junction

= 

= 

= 
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Figure 7.6 Simple material distribution of volume fraction f(x) in 

sample cuboid 

 

Whilst the analytical model proposed in section 7.2 was computed in 

Matlab, it was numerically incorporated into the finite element workflow 

using a Python script to assign features such as fibre orientation and 

constituent distribution. To link the remodelling algorithm with the updated 

k2 values, a custom Perl7 script was used to orchestrate the remodelling 

workflow and ANSYS (?).  

Further details of this, and the Perl code used are shown in Appendix A. 

This scheme was then used to inform the numerical analysis that was carried 

out in ANSYS. A brief description of this framework is illustrated in Figure 

7.7, taken from Dandapani et al. (2017):  

 

                                                 
7 Practical Extraction and Reporting Language (Perl) is a combination of two high-level 

multi-purpose dynamic programming languages – Perl 5 and Perl 6. It is a general-purpose 

scripting language, which derives broadly from C language. www.perl.org  

http://www.perl.org/
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Figure 7.7 General Remodelling framework applied in Perl, Python 

and ANSYS. Inc (Dandapani et al., 2017). 

 

The tissues that comprise of the medial gastrocnemius are fibre reinforced 

unidirectional soft tissues. For simplicity, the assumption that an axial 

alignment of fibres along the direction of loading is adopted. This numerical 

testing was undertaken to understand the remodelling regime of the medial 

gastrocnemius tissue more clearly, without the inclusion of geometrical and 

anatomical effects on the finite element analysis. The cuboid, its material 

property distribution, growth rates and boundary conditions are discussed in 

the next section.  

 

The k2t and k2m were degraded incrementally, over several time-steps. 

This was done over 1 year to illustrate the incremental evolution of k2t and 

k2m. The total time steps that were carried out to achieve homeostasis were 

30 time steps, carried out over 1 year. (i.e. Since each remodelling time step 

was calibrated to the time for the simulation being 1 year, hence each 

remodelling time. The cuboid was constrained to Dirichlet conditions where 

the origin face was fixed in the X direction, and the nodes in the corners were 

7.3.1 Boundary Conditions 
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fixed to allow for uniaxial deformation as illustrated in Section 4.4.2, Figure 

4.7. The (Figure 7.8) and then extended by 10% of its original length, which 

equates to 1 cm hence representing the maximum homeostatic stretch of the 

cuboidal muscle complex. The perturbed state of the cuboid was represented 

by extending the cuboid to 2 cm.  

 

 

Figure 7.8 Cuboid of skeletal muscle-tendon complex boundary 

conditions for the homeostatic configuration and its perturbed 

configuration. 

 

The cuboid was extended, and the remodelling workflow was left to run 

over 30 steps. The muscle and tendon remodelling constants (𝛽𝑇and 𝛽𝑀) were 

varied during different simulations using the prescribed values of 𝛽𝑇 and 𝛽𝑀 

from the analytical simulations above. In Simulation (a) only the muscle was 

set to remodel, with 𝛽𝑇= 0 and 𝛽𝑀= 0.1. In Simulation (b) only the tendon 

was set to remodel with 𝛽𝑇= 0.6, 𝛽𝑀=0, and finally, in simulation (c) both 

the tendon and muscle were made to remodel, with 𝛽𝑇= 0.6 and 𝛽𝑀= 0.1.  

This was done to i) assess the effects of the remodelling of individual 

constituents at the calibrated rates and ii) to illustrate how differential rates of 

remodelling of tendon/muscle can affect the evolution of the muscle-tendon 

complex. Hence highlighting the importance of correctly specifying 

remodelling rates for the tendon and muscle constituents so they can evolve 

‘physiologically’. Variation of the volume fraction of muscle – tendon and 

aponeurosis 

From the literature, the muscle constituent of the medial gastrocnemius 

on average comprised approximately 50 - 55% of the full muscle-tendon unit 

and the tendon constituent compromises of 40 - 45% (Kalkman, et al., 2018; 

Boakes, et al., 2007). As there is little to no information on the aponeurosis, 
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various proportions of the tendon and muscle regions have been selected, 

leaving approximately 10% of the full muscle tendon complex as the 

aponeurosis region, as illustrated in Figure 7.9. For this model, a 10cm x 2cm 

x 2cm cuboid was used to represent a section of the medial gastrocnemius. 

The cuboidal model consisted of a central muscle region, two tendinous 

regions at each end and the transition regions, separating the muscle and 

tendon. This series arrangement more closely represents the anatomical 

arrangement of the MG constituents than the 1D model reported in Section 

7.3.2. 

 In the previous section, the remodelling rates of each of the constituents 

have been investigated in order to define appropriate remodelling parameters 

in the current model. The remodelling regime of the tendon and muscle 

volume fraction has not yet been considered and will therefore be explored in 

the next section.  

This variation was done to explore potential changes in the remodelling 

algorithm of the muscle-tendon unit based on increased tendinous regions 

(e.g. healing anatomical tissues may become more tendinous as observed in 

the build-up of scar tissue), or increased muscle regions (Bajuri, et al., 2016). 

Note that the tendon tissue is much more fibrous and denser compared to 

aponeurotic tissue and muscle tissue. Therefore, the following section could 

provide insight into such physiological phenomena and hence highlight how 

the stresses experienced by the evolving tissues can be impacted by their 

changing material compositions and properties. 

Three simulations were carried out, where the proportion of tendon 

volume fraction was increased in Simulation B, compared to Simulation A, 

and then reduced (more muscle compromised of the muscle tendon complex) 

in Simulation C. The representative volume fractions and constituent 

proportions are shown in Table 7.2.  

 

Table 7.2 Volume fraction variation of the muscle, tendon and 

aponeurosis constituents in the representative cuboidal geometry 

 Muscle 

Constituent 

Tendon 

Constituent 

Aponeurosis 

Constituent 
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Simulation A 50% 40% 10% 

Simulation B 75% 15% 10% 

Simulation C 15% 75% 10% 

 

The selection of the proportions chosen were based on approximate 

anatomical data of the different tissue regions in the gastrocnemius muscle 

(Boakes, et al., 2007), albeit the location and proportion of the transition, 

muscle and tendon regions are difficult to determine. Therefore, the 

proportions chosen here are only representative values. 
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Figure 7.9 Schematic representation of the volume fractions of the 

muscle, tendon and aponeurosis tissue in the cuboidal geometry. 
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The cuboidal numerical models were developed from the studies done on the 

analytical studies shown in Section 7.2. It allowed for different variations of 

spatial configuration observed anatomically to be explored. This simplified 

geometry, however is by no means a true representation of the medial 

gastrocnemius muscle. Therefore, for the exploration of the difference in 

volume fractions on remodelling algorithms, a more comprehensive geometry 

has been created compared to that shown in Figure 7.6. This geometry is 

comprehensive, as it has a representation of transition regions and tendon 

regions of the distal insertion and proximal origin of the gastrocnemius 

muscle, as well as boundary constraints. 

 The cuboid was constrained using Dirichlet conditions as shown in 

Figure 7.8, however the origin face was fixed in all 3 degrees of freedom (X, 

Y and Z) to better represent the boundary conditions the anatomical muscle 

geometry would be subjected to. The insertion face of the cuboid was 

extended by 1% of its original length, which equates to 1 cm (10mm) hence 

representing the maximum homeostatic stretch of the cuboidal muscle 

complex.  

In the current remodelling framework shown in Section 7.1, Equation 

7.83, the anisotropic stress is the main driver of remodelling, and hence its 

return to homeostasis is the main indicator of a successful remodelling 

algorithm. The results in Figures 7.10, 7.11 and 7.12 show the anisotropic 

contribution of the Cauchy stress of the representative cuboidal geometry 

over three Simulations A, B and C, respectively. 
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Figure 7.10 Simulation A: muscle ~ 50%, tendon ~ 40% and 

aponeurosis ~ 10%. (a) Red regions showing the result of the tendon 

anisotropic stress (muscle stress is displayed as 0, therefore is blue) and 

(b) Red regions showing the result of the muscle anisotropic stress 

(tendon stress is displayed as 0, therefore in this section tendon is blue).  

 

 

 

Figure 7.11 Simulation B: muscle ~ 75%, tendon ~ 15% and 

aponeurosis ~ 10%. (a) Red regions showing the result of the tendon 

anisotropic stress (muscle stress is displayed as 0, therefore is blue) and 

(b) Red regions showing the result of the muscle anisotropic stress 

(tendon stress is displayed as 0, therefore in this section tendon is blue)  
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Figure 7.12 Simulation C: muscle ~ 15%, tendon ~ 75% and 

aponeurosis ~ 10%. (a) Red regions showing the result of the tendon 

anisotropic stress (muscle stress is displayed as 0, therefore is blue) and 

(b) Red regions showing the result of the muscle anisotropic stress 

(tendon stress is displayed as 0, therefore in this section tendon is blue)  

  

Due to the graphical constraints of Paraview, and the additive split of the 

anisotropic stress terms of the muscle and tendon constituent, the stress of the 

muscle and tendon were plotted separately. For clarity, the first images (a) 

consider only the anisotropic contribution of the Cauchy stress term of the 

tendon and therefore does not show the stress in the muscle and vice versa for 

images (b) in Figure 7.27. 

The peak stress in the tendon was generally higher in simulations A and 

B as expected, however when the tendon volume fraction in Simulation A 

was 15% where it was 40% in Simulation B. A consistent observation in the 

above simulations is that the aponeurosis tissue and muscle tissue experienced 

the least stress when the tendon was shorter as opposed to when it was longer. 

This suggests that the length of the tendon tissue affects the stress response 

of the muscle-tendon unit overall, as observed in the results in Chapter 6 (in 

tendon lengthening studies). Both the physiological changes and the 

remodelling process could affect the mechanical response of the recovering 

muscle, which needs to be further investigated in order to provide insight on 

how such changes can affect therapeutic treatments, and later determine the 

efficacy of these treatments (e.g. limb lengthening techniques). This is 

explored in the next section through illustrative results of a remodelling 

cuboid.  
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Figure 7.13 shows the numerical study carried out on the perturbation of 

the anisotropic stress from its homeostatic value on the cuboid of the tendon 

constituent as k2 remodels over 14 days (one casting cycle). Figure 7.14 

shows the numerical study carried out on the perturbation of the anisotropic 

stress from its homeostatic stress value – therefore showing normalised stress 

values of the muscle constituent as k2m evolves over 14 days (one casting 

cycle).  

 

Figure 7.13 (a) Evolution and contour map of k2
 evolving with respect 

to time over 14 days, and (b) evolution of anisotropic stress distribution 

of the tendon tissue in Simulation A – tendon ~40%, muscle~ 50% and 

aponeurosis ~10%. 

 

7.3.2 Illustrative Results of the Remodelling Algorithm on a Cuboid 
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Figure 7.14 (a) Evolution and contour map of k2m evolving with 

respect to time over 14 days, and (b) evolution of anisotropic stress 

distribution of the Muscle tissue in Simulation A – tendon ~40%, muscle~ 

50% and aponeurosis ~10%. 

 

Previous literature suggests that when held in extension, the anisotropic 

stress of the tissue gradually returns to homeostasis as k2 and k2m return to 

their original configurations as shown in the Figures 7.13 and 7.14. 

It was expected that Simulation C, where the tendon had the largest 

volume fraction, would have remodelled the slowest. However, the predicted 

remodelling results of Simulation A, B and C were very similar, regardless of 

the lengths of the constitutive regions, as illustrated in Figures 7.13 and Figure 

7.14. This suggests that the constituents are remodelling to their required 

states, synchronously. Since the remodelling of the tissue here is driven by 

the anisotropic stress, the remodelling regime is therefore responding to the 

stress experienced to return the cuboid to its homeostatic configuration 

regardless of the constitutive configuration of the cuboid. Since the 
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homeostatic stress of the cuboidal complex is not homogenous, the stress 

difference could be 0, as this shows the deviance of the resultant stress from 

its homeostatic value for each element. Therefore, the stress difference shows 

a more quantitative representation of distribution of remodelling in the muscle 

geometry. 

For each simulation, rapid progress towards the homeostatic stress was 

made over the first 7 days where stresses in the tendon were within 2% of 

homeostasis and the stress difference in muscle was negligible. It is important 

to consider the stress difference here as it explicitly shows the deviance of the 

stresses from its homeostatic value and hence is clearly indicative of 

remodelling regions in the muscle. By day 10, stresses in the tendon and 

muscle regions had reached homeostasis across all simulations. However, in 

each simulation, k2t (the tendon material parameter) began to converge to 

1.78 after seven days and k2m (the muscle material parameter) converged 

towards 0.4 generally (given, that there was variation in the distribution of 

values across the geometry).  

Generally, the simulations above have shown that increasing the length of 

the tendon had a larger effect on the muscle response than on the tendon. The 

results suggest that the lengths of the muscle and tendon volume fractions do 

not influence remodelling time but are still important to consider as they 

largely influence the tissue’s strain and stress response. 

The current cuboidal model has shown the various interactions in 

remodelling and stress-strain experienced in the muscle geometry which 

highlights the value of its implementation in exploring the overall muscle-

tendon-aponeurosis behaviour.  

 

In this chapter, the anisotropic contribution of the Cauchy stresses and 

strains were computed. The stress difference (remodelled stress – homeostatic 

stress) distribution explicitly shows the areas of remodelling as the 

remodelling is driven by the anisotropic stress and its deviance from the 

homeostatic stress, and finally illustrate that the model is behaving as 

7.3.3 Discussion 
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expected where the stress difference in the cuboidal model returns to 

homeostasis. The anisotropic stress results showed that only remodelling 

regime (c) (both the muscle and tendon were remodelling) resulted in the 

cuboidal muscle complex returning to its homeostatic anisotropic stress value. 

The higher anisotropic stresses observed in the muscle constituent in regime 

(b) when tendon remodelled in isolation, showed that the other constituents 

did not return to their homeostatic anisotropic stress value after remodelling, 

similar results were also observed in the tendon region when muscle was 

remodelled in isolation for case (a).   

In remodelling regime (c), the highest strains after remodelling were 

found in the muscle constituent, followed by the tendon tissue and then the 

transition zone. The difference of strains in the homeostatic and remodelled 

configurations represent the potential extent of lengthening of the constituent 

– which indicates regions of sarcomerogenesis (increase of sarcomere 

number, in this context sarcomere number in series). It is important to note 

that it is the change of strain from each constituent’s homeostatic value to its 

remodelled state that is indicative of sarcomerogenesis, rather than the mere 

presence of strain in either configuration. Therefore, the quantification of this 

phenomenon; as future work, could elucidate further results on 

sarcomerogenesis and growth or further development of the cuboidal skeletal 

muscle complex, since the current model is based on stress-driven 

remodelling only.  

 These results support the idea that in order to extrapolate a representative 

remodelling regime of overstretch in skeletal muscle-tendon complexes from 

a perturbed configuration back to homeostasis, both the tendon and muscle 

constituents should be considered to remodel, albeit at different rates. It is 

noteworthy, therefore, that other models have remodelled only the muscle 

constituent (remodelling regime (a)), in a muscle-tendon anatomical complex 

(Zöllner et al., 2012; Zöllner et al., 2015), and those results should be 

reviewed with caution.  

The volume fraction and its effect on the muscle-tendon unit has also been 

explored in Simulations A, B and C in Section 7.3.3. Whilst these simulations 

provide some insight on increasingly tendinous evolution or increasingly 
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muscular evolution in the muscle-tendon-aponeurosis complex, it has been 

concluded that the volume fraction and lengths of the various constituents 

affects the stress response – further strengthening the conclusion in Chapter 

6, as these lengths do not affect the remodelling regime of the muscle-tendon 

complex. 

Note that future work could explore the theory that mechanical 

homeostasis of the muscle lies within a range, rather than at a set threshold 

value as has previously been defined in (Zöllner, et al., 2015). This highlights 

the novelty in including a homeostatic range into a finite element model of 

the medial gastrocnemius in overstretch. Collaboratively, the maximum and 

minimum stretches in this context could be referred to as the muscle’s range 

of motion for this future work. 

Before the onset of remodelling, the muscle is assumed to operate within 

a homeostatic range, which is below the critical threshold that determines the 

onset of remodelling. After this threshold homeostatic range, the muscle is 

thought to be operating in a perturbed environment, where remodelling 

occurs. This concept of a range of motion coincides with a homeostatic range 

of values which have been discussed by other authors (Latorre & Humphrey, 

2018). Therefore, this highlights the importance to carefully consider the 

homeostatic configuration of the muscle and how to define it, as it is this 

configuration that determines the onset of remodelling in future work.  

 

The next section explores the remodelling regimes described above (a, b 

and c) using the anatomical geometry described in Chapter 6 with anatomical 

fibre paths, aponeurosis and constituent distribution. This last simulation is 

used to predict and provide further insights into the remodelling regimes an 

anatomical medial gastrocnemius muscle may experience during limb 

lengthening. 
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 An Anatomical FE Investigation 

of Limb Lengthening of the 

medial gastrocnemius   

 

The previous section explored the way in which each of the constituents 

remodelled, and the qualitative impact this had on the stress-strain 

relationship of a muscle-tendon complex. Whilst the cuboid with allocated 

constituents was an insightful simulation, the anatomical features were not 

considered. This section, therefore, investigates the same remodelling 

regimes. This exploration will be used to assess how such regimes will impact 

the overall stress-strain profile of the medial gastrocnemius, in an 

overstretched mechanical environment during limb lengthening, as defined in 

Boakes (2006). The boundary conditions inferred from this work and applied 

to the anatomical simulation are covered in more detail in the next section.  

 

The boundary conditions for this simulation are like those described in 

Chapter 5, with the exception that the muscle was extended by 10 mm initially 

at the insertion end, which represented the maximum homeostatic stretch the 

muscle might experience, and then further extended to 15 mm to represent 

the perturbed configuration as taken from the previous section. These values 

represent the anisotropic homeostatic stretches which attribute to the fibre 

response of the constituents.  

Since the length of the muscle-tendon complex is 149 mm, 6.7% of this 

equates to approximately 10 mm extension. The boundary conditions of the 

muscle are identical to those used in Chapter 5, with the exception that the 

muscle was extended by 10mm first, followed by 15mm in its perturbed 

configuration. The material constants used are identical to those described in 

Chapter 4, Table 4.2.  

7.4.1 Boundary Conditions  
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As the fibre stress exceeds the homeostatic stress, remodelling occurs to 

restore the fibre stress towards homeostatic levels. This is achieved by 

reduced k2 material parameter in both muscle and tendon (see Fig 7.4 and 

7.5). The homeostatic and perturbed anisotropic stress and k2 values for 

muscle and tendon are shown in Figure 7.15 and Figure 3.11 respectively. 

 

Figure 7.15 (left) Muscle fibre stress difference fraction from 

homeostatic levels. Initially at t=0 (top image), the stress is equal to 

homeostatic values throughout domain and hence stress difference is 

zero. As axial displacement is increased, the stress difference increases 

to 0.2 (a 20% elevation above homeostatic levels). The increase is due to 

stress driven remodelling of k2m (right). As k2m reduces (to around 

0.65), the stress differences are restored to within 2% of homeostatic 

values. 

7.4.2 Results 
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Figure 7.16 (left) Tendon fibre stress difference fraction from 

homeostatic levels. Initially at t=0, the stress is equal to homeostatic 

values throughout domain and hence stress difference is zero. As axial 

displacement is increased, the stress difference increases to 0.2 (a 20% 

elevation above homeostatic levels). The increase is due to stress-driven 

remodelling of k2 (right). As k2 reduces (to around 0.5), the stress 

differences are restored to within 2% of homeostatic values. 

 

In the first-time step (top images in Figures 7.30 and 7.31), the muscle 

was extended to the upper bound of the homeostatic range (e.g. 10 mm). The 

second row shows the onset of the perturbed configuration, where the muscle 

was extended to 15mm. Note that remodelling had not begun. Subsequent 

rows showed further time steps as remodelling occurs with time. The process 

is driven by the anisotropic stress difference (from homeostatic state), which 

in turn forced k2 to evolve in order to bring the stress back to the homeostatic 

value, as illustrated in the final row of the figures. This verifies that the 

remodelling algorithm is working on the anatomical model, and therefore 

further studies could be done to calibrate such a model to patient specific 

parameters to hence determine a more bespoke remodelling process for bone-

lengthening scenarios. In the above case, both k2m and k2t had to decrease, so 

that the stress could return to its homeostatic state. The evolution of k2m and 

k2t represents permanent changes of the material behaviour after the tissue 

was perturbed. 
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Figure 7.32 highlights how the anisotropic stress difference of tendon (a) 

and muscle (b) returned to 0 in the above simulation. Note that the simulation 

was run for 30 remodelling time steps, representing 1 year in real life. 

Therefore, each remodelling time step represented approximately 12.2 days. 

The stress difference started at 0 when t=0 (homeostatic state). The muscle-

tendon complex was then extended to 15mm at t=2. After that, the 

remodelling algorithm kicked in and the stress difference reached maximum 

at t=3, which in turn drove the evolution of k2 parameters. The model was 

able to return to homeostasis within 14 time steps, or 170 days. 
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Figure 7.17 Evolution of the average distributions in the stress 

difference ratio (from homeostatic stress) for tendon (a) and muscle (b). 

At t=0, the stresses are equal to the homeostatic stress distributions, i.e. 

stress difference is zero throughout the domain. For 0<t<3, the stresses 

increase to reach maximum. For t>2, the displacement is fixed, and 

stress distributions are gradually restored back to homeostatic levels 

(stress difference is zero at around t=14) as k2t and k2m remodels. 

 

From the results shown in Figure 7.31 and Figure 7.32, it is clear that 

remodelling both the muscle and tendon is imperative to getting the muscle 

back to its homeostatic state, specifically when looking at anatomical muscle 

geometries that have both muscle and tendon components.  

From Figure 7.17, it is clear to see that the muscle and tendon constituents 

remodel at different rates, over different remodelling cycles. The tendon has 

a faster remodelling rate, which is due to the tendon region having a smaller 

cross-sectional area and a stiffer response. 

Because the current remodelling algorithm is stress-driven, the strain 

distributions were not shown here for these models. Nevertheless, the stress 

results are verified by the results extrapolated from the cuboidal muscle 

complex simulations.  

 

7.4.3 Discussion 
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 Discussion 

The work in this chapter showed a novel remodelling framework for the 

medial gastrocnemius, which allows for the exploration of various 

remodelling algorithms in both muscle and tendon components of the skeletal 

muscle, which has not been explored previously (Böl & Reese, 2008; Zöllner 

et al., 2012; Zöllner et al., 2015). From the results shown in section 7.3, the 

description of the different constituents and their material distribution in a 

complex structure, such as skeletal muscle, has a powerful impact on the 

overall mechanical response. From the analytical, cuboid and anatomical 

simulations, results suggested that it is necessary to include the remodelling 

of both tendon and muscle components in order to capture the different 

remodelling rates in each material.  

Whilst other models (Zöllner et al., 2012; Zöllner et al., 2015) have 

attempted to disregard the tendinous mechanical response by setting it to a 

disproportionately stiff material, and not considering any muscle-transition 

zone, concern may arise around the initial structural analysis of the muscle, 

and around the accuracy of their muscles’ remodelled state. From the results 

in this section, it is therefore concluded that both the muscle and tendon 

constituents are required to model – potentially at different rates – in order to 

get the combined muscle-tendon constituent back to its homeostatic 

configuration.  

Whilst the proposed model offers a contribution to the current body of 

knowledge on skeletal muscle remodelling, there are some limitations that 

need to be acknowledged. The re-alignment of the muscle fibres during 

remodelling was informed by the structural analysis in section 7.3, however 

the degree to which the fibres realign in tendon, muscle and transition tissue 

needs further investigation. The proposed model has been formulated so that 

the fundamental idea of a muscle remodelling back to its homeostatic 

configuration can be satisfied. However, the exact homeostatic values of the 

muscle and tendon tissue are largely unknown and should be determined 

through future experiments.  
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The remodelling algorithm used here relied on the evolution of k2t and 

k2m in order to bring the anisotropic stresses back to homeostasis after 

perturbation. The homeostatic stresses are heterogeneous and calculated from 

Equation 7.83. This was shown in the analytical results in Section 7.2.  

In this study, homeostatic stretch range of the full muscle-tendon complex 

of the medial gastrocnemius was taken from Lanir et al. (2015) because they 

represented unidirectional collagenous fibrous tissues. This coincided well 

with the current assumption that the muscle-tendon complex were made up 

of different fibres. However, it should be acknowledged that the homeostatic 

stretch ranges could be different between muscle and tendon. This needs to 

be further investigated in the future.  

Furthermore, whilst the remodelling is stress based, the actual growth of 

the muscle-tendon complex (i.e. the increase in sarcomere number and 

volume) has not been modelled. This could be investigated in the future by 

incorporating and evolving mass-density variables. This might help represent 

the general mass turnover of the muscle. However, additional knowledge of 

how the different components (muscle, tendon and muscle-tendon transition) 

change during over- and under-stretch will need to be examined, which is 

currently not clearly understood.  

In conclusion, this chapter presented a remodelling framework that can 

propose an adaptive mechanism when the medial gastrocnemius is in 

overstretch. Results showed that the remodelling regimes of each constituent 

must be carefully considered, in order to simulate remodelling of muscle from 

a perturbed configuration back to its homeostatic configuration. The proposed 

remodelling algorithm works on the anatomical model, which is verified 

using results from the numerical cuboidal simulations as well as the analytical 

simulations. A series of assumptions has been made in the model, and further 

studies should be conducted to better inform and validate the model against 

physiological parameters. 

 The overall conclusions of the thesis, discussions and future work are 

covered in the next and final chapter. 
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8 Chapter 8 

Conclusions and Future Work  

The overall aim of this thesis was to develop an anatomical model of the 

medial gastrocnemius that can be used to explore its mechanical response 

Firstly, the medial gastrocnemius anatomical model was produced from a 

cadaveric geometry and fibre orientations from LHDL, and further 

sophisticated to accommodate the morphology and material constant 

distribution of the myotendon junction and aponeurosis. Secondly, the model 

was used to explore several different mechanical environments – lengthening 

of the myotendon junction, high strains and healing tendon. Finally, the 

muscle as applied to a preliminary remodelling framework that explored 

different remodelling regimes and which regimes might best describe the 

mechanical response of the muscle as it changes temporally. 

This Chapter summarises the general conclusions of the work of this 

thesis and discusses the results generated from the present investigations, 

hence giving guidelines for future research. 
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 Key Findings 

The key findings and areas of future publication of this thesis are 

highlighted here and separated into three summarized points;  

(i) A descriptive model of the anatomical morphology of the medial 

gastrocnemius muscle has been developed that proposed a unique approach 

to defining the anatomical fibre orientations and the constitutive description 

of the myotendon transition region and the aponeurosis.  

(ii) Further extrapolation of this model found that excessive strains shift 

the location of peak strains in the medial gastrocnemius, however, the 

maximum stresses and strains experienced at the distal insertion decreased as 

the transition zone lengthens and stretching damaged tendon may render 

higher stresses across the whole muscle-tendon structure - resultantly causing 

more damage.  

(iii) The final key aspect concerned the preliminary findings of 

remodelling different constituents in a composite constitutive geometry, in 

that adaptation of all constituents are imperative to consider, whilst they 

remodel at different rates.  

These areas of key findings provide a significant contribution to the 

current body of knowledge as the point (i) provides a unique and relatively 

simple method to incorporate anatomical fibre orientations from a cadaver 

(and possibly in vivo fibre orientations) into a finite element formulation. 

Whilst there have been more complex computational methods used to 

determine fibre orientations of different muscles (Blemker & Delp, 2005; Lu, 

2011), the use of an interpolation vector field onto centroid locations provides 

a sufficient solution to determining anatomical fibre orientations, which are 

not exclusive to fusiform muscles, but could be used for a number of other 

types of muscles, such as bipennate or multipennate muscles – provided the 

anatomical data used to inform the model is comprehensive. 
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 Limitations 

The preliminary remodelling formulation can provide some insight on the 

mechanical response of an anatomical medial gastrocnemius muscle in 

overstretch, over a temporal domain. It also has the potential to inform multi 

scale models for use in kinematics and dynamics models. Whilst this 

connection has been previously made between finite element muscle models 

and multi scale muscle models (Röhrle, et al., 2017), the current model offers 

a descriptive three-dimensional model of which can be used to improve 

precision of accuracy in stress-strain distributions. 

Such models can be used to holistically model MSDs, by incorporating 

the current model into multiscale models that have been used to investigate 

specific MSDs and hence better inform the area of research concerning 

musculoskeletal systems, therapies, diagnosis and latently, cost reduction 

strategies. Therefore, the current model has the potential to inform a variety 

of applications, however in order to do this efficiently, the limitations of the 

thesis must be clearly acknowledged and are discussed here.  

 

Whilst this model has used anatomical data in a finite element simulation, 

it incorporated the tendon and aponeurosis regions using idealised shapes to 

represent the geometry of the aponeurosis. The current shapes rendered good 

results however, further scrutiny could be carried out to improve the shape of 

the aponeurosis – in particular the tapering angle at the aponeurosis edge, or 

the penetration depth of the muscular transition zone into the tendon.  

Another geometrical limitation concerns the fibre orientations of the 

muscle where the fibre vectors used in the simulation were augmented from 

only 4 splines that were palpated from the cadaver. If there were more splines 

made available, then the interpolation and fibre vector allocation would be 

more accurate. More descriptive data of muscle fibre orientations can be 

obtained from DT-MRI, as discussed in Chapter 3. This would better inform 

the current model, and hence provide an accurate interpolation of the vectors 

8.2.1 The Skeletal Muscle Geometry 
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at each centroid element – which would provide a more accurate stress-strain 

profile of the medial gastrocnemius. 

In addition, the acquired geometry had to go through several pre-

processing steps before finite element simulations commenced. The geometry 

had to be triangulated, cropped and smoothed. Whilst these processes may 

have altered the volume of the geometry, with further estimation of the 

geometry boundaries using surrounding soft tissues, the final geometry was 

able to provide a geometrical representation of the medial gastrocnemius for 

finite element simulations. A more accurate description of the 3D geometry 

(e.g. from MRI scans) of the medial gastrocnemius would considerably 

reduce the amount of pre-processing required and provide a more accurate 

description of the anatomy. This ought to be investigated in the future. 

 

 

Whilst the proposed remodelling formulation offers a contribution to the 

current body of knowledge on models of skeletal muscle remodelling, there 

are several limitations that need to be acknowledged. The formulation 

proposed in Chapter 7 is unique however preliminary. The remodelling 

formulation proposed in this thesis is mainly stress based, however the actual 

growth of the muscle-tendon complex (i.e. the increase in sarcomere number) 

has not been modelled - although this could be easily incorporated into the 

model by evolving the volume fraction parameters, f(x). Whilst growth might 

represent the general mass turnover of the muscle, additional knowledge of 

the change in distribution and location of the different constituents (muscle, 

tendon and muscle-tendon transition) are expected to change during over- and 

under-stretch/loading phenomena. It is also expected that the distribution of 

constituents, and how they grow and remodel, will vary across different 

muscles. Therefore, rigorous and gradual experimentation is required to 

inform this area of research.  

 

 

8.2.2 Remodelling Formulation 
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 Future Directions 

The current model has only considered the passive mechanics of the 

medial gastrocnemius, due to the mathematical nature of the mechanical 

contribution of the passive and active parts (additive split). However, there 

are some aspects of the active mechanics that will affect the passive 

mechanics of the muscle– such as the increase of PCSA found in stress-based 

remodelling, or muscle tonus which tends to increase the stiffness of the 

muscle tissue. An active component can be incorporated into the current 

model by means of an ANSYS subroutine, which will enable further studies 

to be carried out, and elucidate further insights on under/over loading 

mechanics of the muscle. The inclusion of an active component will enable 

the remodelling phenomena of over – and underloading mechanics – such as 

parallel sarcomerogenesis, increase in force generation and PCSA. 

Further, since the passive medial gastrocnemius was studied in isolation, 

the inclusion of surrounding tissues – such as the lateral gastrocnemius, and 

soleus are thought to have an impact on the active mechanics of medial 

gastrocnemius. The inclusion of these structures in a full finite element 

simulation may provide further insight into the physiological behaviour of the 

muscle. 

 

As highlighted in Chapter 6, further geometrical models could be used to 

represent the geometry of the aponeurosis, for example two ellipsoids 

representing the penetration of muscle into the transition region, and further 

8.3.1 Incorporation of skeletal muscle active mechanics and 

antagonistic pairs 

8.3.2 Further analysis on the geometrical representations of the 

transition region and aponeurosis  
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the transition region into the tendon region. Case (4) - the tapered ellipsoid 

could also be improved, and the effects of the tapering angle used could be 

investigated in a parametric study. The number of morphologies proposed in 

Chapter 6 however, offer a few ways to represent the aponeurosis and 

transition region in a variety of muscles – some which may have a linear-like 

transition and aponeurosis. The linear dependence case (2) could be used for 

the most fusi-form, bi-pennate and multipennate muscles; Sartorius, for 

example, which is a long thin muscle with a fusi-form fibre orientation and 

has a small linear like aponeurosis that joins from its proximal origin to the 

distal insertion. Another muscle that could also be modelled using Case (2) 

morphology is the tensor fascia lata, which has a similar fibre orientation to 

the Sartorius but has a much smaller muscle belly and longer tendinous 

aponeurosis at its insertion end. This shows the versatility of the approaches 

proposed in Chapter 6.  

The fibre orientations and how they evolve will provide more detailed 

insight into the final mechanical response of the muscle. The current model 

does not show the fibres upon remodelling due to computational and 

algorithm constraints, however this could be developed through further 

sophistication of the model and future work. 

The constitutive model adopted through-out this thesis is taken from 

Holzapfel et al., (2000), where the inclusion of a volume fraction equation 

has allowed for the representation of the different constituents. Whilst this 

model has allowed for the general fibre direction of each of the constituents 

to be modelled through 
4I  and 

6I  , it assumes that the material symmetry is 

homogenous. This may not be the case in highly collagenous tissues such as 

the tendon constituent; hence the inclusion of a structural tensor which can be 

used to statistically determine the asymmetry of fibre orientations (Gasser, et 

al., 2006). 
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In Chapter 7, whilst the current formulation has proposed a method to 

model the return of anisotropic stresses to their homeostatic value during 

overstretch, future work may include the investigation of other methods to 

simulate the mechanics of over/under stretch/loading and determine the 

efficacy of such methods, since only one method has been adopted in this 

thesis. Other methods could be used to remodel the stiffness k1 base matrix 

of the muscle, or to evolve the fibre orientations of the muscles as it is in over- 

and under-stretch/loading. The degree to which the fibre orientations realign 

during different remodelling regimes will also better inform the current 

model, with further enhancement by including the growth and mass turnover 

of the muscle and its distribution of material constituents.  

Further investigations need to be carried out with the current remodelling 

algorithm – such as specific and gradual experimentation to calibrate the 

parameters and values in the model. This can help elucidate further insight 

into the medium to long term changes a skeletal muscle may undergo. The 

work carried out in Chapter 7 is preliminary, and focus has lied around 

exploring the remodelling regimes and definition of the homeostatic 

configuration. Future work could be done to provide a more comprehensive 

understanding of skeletal muscle remodelling, as only one scenario has been 

explored – limb lengthening.  

 

The current model has a range of different areas that have been estimated 

from anatomical data. The model also incorporates a range of assumptions, 

such as fibre orientations, material properties, boundary constraints, as well 

as remodelling algorithms and parameters. Therefore, it is important to 

consider how the modelling pipeline can be validated. Although the 

numerical workflow has been verified by analytical solutions using a simple 

geometry, further validation of the numerical work-flow could be carried out 

using experimental data on isolated tendon, muscle, and aponeurosis 

8.3.3 Methods used to model growth and remodelling mechanics of 

muscles in over/under stretch/loading 

8.3.4 Validation 
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constituents under uniaxial loading. This would provide additional data to 

validate the assumptions on geometry, fibre orientation, material properties 

and boundary constraints.  

 

The validation of the remodelling algorithm is more challenging, as it would 

be difficult to track the behaviour of a piece of soft tissue over a period. 

Previous work has investigated the force generation of cardiac muscle kept in 

isolation in vitro over a period of time (Lopez & Kramer, 2019) and other 

growth and remodelling finite element models have been verified and applied 

to abdominal aortic aneurysms (Horvat, et al., 2019). A similar approach 

could be applied to skeletal muscles considering the long-term remodelling 

effects of limb lengthening – where the initial mechanical response of the 

gastrocnemius muscle (and its isolated constituents) are experimentally 

determined and upon remodelling measured again. This could be done to 

ensure that the remodelling of the parameter chosen is an accurate reflection 

of the underlying mechanical changes in the gastrocnemius. Furthermore, 

there has been extensive recent advance in the use of digital image correlation 

(DIC) and digital volume correlation (DVC) techniques to validate finite 

element modelling frameworks (Holak, et al., 2015; Sopher, 2017; Huang, et 

al., 2019). These techniques provide a detailed stress/strain map of the 

material under deformation and would help to further elucidate the change in 

material composition and behaviour during remodelling.  

 

 

 

 Summary 

This thesis developed an anatomical finite element model of the medial 

gastrocnemius muscle-tendon complex and proposed an approach to 

represent the aponeurosis region and the muscle tendon junction. From this 

work, further analysis has been carried out to assess the effect various 

morphologies have on the passive mechanics of the medial gastrocnemius 
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muscle. The model was then used to explore different remodelling regimes in 

a preliminary remodelling formulation that may occur when the muscle 

operates within a specific mechanical environment specifically – 

overstretched during limb lengthening.  

The main novelties of this thesis lie in the following areas;  

(i) The incorporation of cadaveric fibre paths into a finite element 

workflow in an anatomical simulation of the medial 

gastrocnemius, 

(ii) An innovative approach adopted to represent the morphology of 

the medial gastrocnemius aponeurosis, 

(iii) The inclusion of a simplistic method to determine the material 

constituent distribution with a radial dependence in the muscle-

tendon transition zone, 

(iv) The exploration of remodelling mechanisms of the passive medial 

gastrocnemius during overstretch (limb lengthening). 

 

The current model can be used to predict areas of high strains and low 

strains across the passive mechanics of skeletal muscle, This research has 

provided an informative model, that can be used in multi-scale models and 

further the research in MSD (Musculo-skeletal disorders), which can 

intrinsically alleviate the disease burden on the world economy (World Health 

Organisation, 2013). 
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10 Appendix A 
The material properties, which were defined according to the mesh and 

geometry of the muscle (Chapter 6) were one of the inputs for the model. 

Other inputs included; the boundary conditions (simple uniaxial tension) 

remodelling and degradation conditions (Equation 7.83) and the remodelling 

response (updated k2 and k2m values run through an updated numerical 

analysis). These various components were orchestrated by a Perl script, and 

upon a remodelling simulation, a new structural analysis was carried out.  
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Orchestrating Perl Script used in this thesis augmented from 

(Dandapani, 2018): 

#!usr/bin/Perl 

use warnings;   

use strict; 

use Cwd; 

use libraries::RemodellingRoutines::check_file; 

use libraries::RemodellingRoutines::execute_ansys; 

use File::Copy; 

my $datestring = localtime(); 

print "Start Time: ", $datestring; 

# ---------------------------------------------------------------------------- # 

# 1. Run the first time step with a displacement of 2 

# 2. Run the second step with a displacement of 4 

# 3. Deploy the remodelling algorithm :)  

# 4. This absolutely all that you need  

# 5. Get the results done  

# ----------------------------------------------------------------------------- # 

my $time_counter = 0; 

my $max_time = 11; 

my $job_name_clean = "gr_step_"; 

my $job_name = "gr_step_".$time_counter; 

my $python_file_name_gr = "gr_hgo_model.py"; 

my $input_file = 'ansys_job.inp'; 

my $file_stress = 'stress_list.txt'; 

my $file_strain = 'strain_list.txt'; 

my $file_homeo_stress = 'stress_list_0.txt'; 

my $file_homeo_strain = 'strain_list_0.txt'; 

my $material_values_homeo = "material_values_homeo.csv"; 

# Homeostatic Step 

open(my $fh, '>', 'max_time.txt'); 

print $fh "max_time=".$max_time; 

close $fh; 
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print "\nmax displacement file created\n"; 

system("python", $python_file_name_gr); 

rename "material_values_0.csv", $material_values_homeo; 

execute({ 

    input_file => $input_file, 

    job_name => $job_name 

}); 

my $exists_file_stress = check_file_existence({filename=>$file_stress}); 

my $exists_file_strain = check_file_existence({filename=>$file_strain}); 

# Rename stress, strain lists to _0.txt -> homeostatic state 

if ($exists_file_stress){ 

    rename $file_stress, $file_homeo_stress; 

    rename $file_strain, $file_homeo_strain; 

    print "\n Homeostatic state Saved"; 

    # rename $file_nlist, "renamed_n_list.txt"; 

} 

 #Total time for remodelling 

$max_time = 16; 

$time_counter += 1;  

# Rename to a new step. 

$job_name = "gr_step_".$time_counter; 

open(my $fh2, '>', 'max_time.txt'); 

print $fh2 "max_time=".$max_time; 

close $fh2; 

print "max displacement file created\n"; 

system("python", $python_file_name_gr); 

rename "material_values_0.csv", "material_values_1.csv"; 

execute({ 

    input_file => $input_file, 

    job_name => $job_name 

}); 

my $file_secondary_stretch_stress = 'stress_list_1.txt'; 

my $file_secondary_stretch_strain = 'strain_list_1.txt'; 
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# Rename stress_list strain_list 

if($exists_file_stress){ 

    copy($file_stress, $file_secondary_stretch_stress); 

    copy($file_strain, $file_secondary_stretch_strain); 

    print "\n Secondary Stretched Muscle State Saved"; 

} 

#number of remodelling steps taken 

$time_counter += 1; 

my $step_limit = 20; 

my $prev_material_values = ""; 

my $remodelled_material_values = ""; 

for(my $i = $time_counter; $i < $step_limit; $i++ ){ 

    # 1. Read in all the names 

    # 2. $job_name to include "_rem_".$i; (if first step read in from  

    #    second stage of stretch) 

    # 3. renam stress, strain all results to "_rem_".$i; 

    # 4. Feed that back into the next step 

    # 5. Loop it up 

    print "\n Step: ", $i; 

    #my $file_mat_curr = "material_values_rem_".$i.".csv"; 

    my $file_mat_new = "material_values_rem_".$i.".csv"; 

    my $new_job_name = $job_name_clean."rem_".$i; 

    if ($i == 2){ 

        $prev_material_values = "material_values_1.csv"; 

    } else { 

        $prev_material_values = "material_values_rem_".($i-1).".csv"; 

    } 

    # Remodelling Python Script 

    system("python", 

         "remodelling_hgo.py", 

            $file_strain, 

            $file_homeo_strain, # needs to be defined 

            $file_stress, 
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            $file_homeo_stress, # needs to be defined 

            $prev_material_values, 

            "materials.inp", 

            $file_mat_new, 

            $material_values_homeo, 

            "time_info.txt" 

    ); 

    my $new_rem_stress_list = "stress_list_rem_".$i.".txt"; 

    my $new_rem_strain_list = "strain_list_rem_".$i.".txt"; 

        execute({ 

        input_file => $input_file, 

        job_name => $new_job_name 

    }); 

    if($exists_file_stress){ 

        copy($file_stress, $new_rem_stress_list); 

    } 

    if($exists_file_strain){ 

        copy($file_strain, $new_rem_strain_list); 

    } 

} 
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