Dedication

I would like to dedicate this thesis to my loving wife, Fatima, who provided me with unconditional love and support throughout the course of my research.

Abstract

Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) lead to significant interference in the quality of life of the millions of women affected by them. The treatment options for these women include surgical prostheses which are currently fraught with high failure and complication rates. Our aim was to explore tissue engineering as a solution to the problems of prosthetic failure. The objective was to identify suitable scaffolds that may be used to produce tissue engineered prostheses, with autologous fibroblasts, for use in women with SUI/ POP. Seven candidate scaffolds; Alloderm, cadaveric dermis, polypropylene, porcine dermis, sheep forestomach, porcine small intestinal submucosa and thermoannealed poly(I)lactic acid were investigated. We seeded 800 000 oral fibroblasts to 2cm² of each scaffold. We assessed the metabolic activity and proliferation of attached cells using AlamarBlue and DAPI staining, contraction using serial photographs, biomechanical properties using a uniaxial tensiometer, collagen production using Sirius red and immunofluorescence staining, and extracellular matrix production using scanning electron microscopy. In addition, the effect of mechanical restraint, simple variable stress and ascorbate-2-phosphate on the above parameters of the tissue engineered prostheses were also investigated. Two scaffolds; porcine small intestinal submucosa and thermoannealed poly(I) lactic acid have been identified as suitable matrices for supporting fibroblast attachment and new extracellular matrix production. Both scaffolds showed cells proliferated and increased their metabolic activity over 14 days of culture. Immunostaining also revealed new collagen I, III and elastin. The mechanical properties of the two scaffolds when cellularised were also close to those of native tissue. We have also shown that mechanical and chemical modulation of the culture environment may be beneficial in producing tissue engineered prostheses with improved properties. Further work will now take these findings in to *in vivo* models.

Contents

DEDICATION	i
ABSTRACT	ii
CONTENTS	iii
PUBLICATIONS AND PRESENTATIONS	Viii
ACKNOWLEDGEMENTS	iX
ABBREVIATIONS	Х
IST OF FIGURES AND TABLES	Xi

Chapter 1 Introduction

1.1	Epidemiology of stress urinary incontinence	1
1.1.1	Aetiology of SUI	2
1.1.2	Risk factors for SUI	6
1.2	Epidemiology of pelvic organ prolapse	7
1.2.1	Aetiology of POP	11
1.2.2	Risk factors for POP	12
1.3	Treatment of SUI	13
1.3.1	Non surgical treatments	13
1.3.2	Surgical treatments	15
1.3.2.1	Complications of SUI surgery	20
1.3.2.2	Outcome measures of SUI surgery	21
1.4	Treatment of POP	22
1.4.1	Non surgical treatments	22
1.4.2	Surgical treatments	23
1.4.2.1	Upper vaginal prolapse	23
1.4.2.2	Anterior vaginal wall prolapse	24
1.4.2.3	Posterior vaginal wall prolapse	28
1.4.2.4	Complications of POP surgery	28
1.4.2.5	Outcome measures of POP surgery	29
1.5	Simultaneous SUI and POP	29
1.6	Prostheses in SUI/ POP	30
1.6.1	Absorbable synthetic prostheses	32
1.6.2	Non Absorbable synthetic prostheses	32
1.6.3	Autologous prostheses	33
1.6.4	Allograft prostheses	34
1.6.5	Xenograft prostheses	35
1.6.6	Tissue engineered prostheses	35

1.6.7	Design of a tissue engineered prosthesis	37
1.7	The scaffold	37
1.8	The cell	38
1.8.1	Buccal mucosa	39
1.8.2	Fibroblasts	39
1.9	Cell culture conditions	42
1.10	Biomechanical testing	42
1.10.1	Biomechanical testing protocols	46
1.10.2	Biomechanical properties of paravaginal tissue	47
1.10.3	Mechanical properties of pelvic organ prostheses	48
1.10.4	In vivo host response to the mechanical properties of	
	pelvic organ prostheses	52
1.10.5	Correlation of mechanical properties, host response	
	and success of prostheses	55
1.10.6	Mechanical properties of materials to be tested	58
1.11	Paravaginal tissue histology	64
1.11.1	Collagen in POP/SUI	67
1.11.2	Elastin in POP/SUI	68
1.11.3	GAG's in POP/SUI	71
1.11.4	Proteoglycans in POP/SUI	71
1.11.5	Other proteins in POP/SUI	71
1.11.6	Collagenase in POP/SUI	72
1.11.7	Paravaginal tissue in POP/SUI	72
1.12	Aims, objectives and hypotheses	74
Chapter 2	Materials and Methods	

2.1	Materials	76
2.2	Cell isolation and culture	77
2.3	Material preparation and cell seeding	78
2.4	AlamarBlue	78
2.5	DAPI	78
2.6	Contraction	79
2.7	Tensiometry	79
2.8	Sirius red	79
2.9	Immunofluorescence	80
2.10	Scanning electron microscopy	81
2.11	Restraint	81
2.12	Variable stress rig	81
2.13	Vitamin C	82

Chapter 3 Attachment of fibroblasts to scaffolds

3.1	Introduction	85
3.2	AlamarBlue results	86
3.2.1	Alloderm	86
3.2.2	Cadaveric dermis	86
3.2.3	Polypropylene	86
3.2.4	Porcine dermis	87
3.2.5	Sheep forestomach	87
3.2.6	Small intestinal submucosa	87
3.2.7	Thermoannealed PLA	87
3.3	Comparison of cell metabolic activity on potential	
	scaffold materials	92
3.4	DAPI images	92
3.5	Discussion	96

Chapter 4 Comparison of the mechanical properties of scaffolds seeded with fibroblasts

Introduction	100
Tensiometry results	101
Alloderm	101
Cadaveric dermis	101
Polypropylene	101
Porcine dermis	101
Sheep forestomach	102
Small intestinal submucosa	102
Thermoannealed PLA	102
Comparison of materials	102
Discussion	106
	Introduction Tensiometry results Alloderm Cadaveric dermis Polypropylene Porcine dermis Sheep forestomach Small intestinal submucosa Thermoannealed PLA Comparison of materials Discussion

Chapter 5 Contraction of scaffolds seeded with fibroblasts

5.1	Introduction	108
5.2	Scaffold contraction results	109
5.2.1	Alloderm	109
5.2.2	Cadaveric dermis	109
5.2.3	Polypropylene	109
5.2.4	Porcine dermis	109
5.2.5	Sheep forestomach	109
5.2.6	Small intestinal submucosa	110
5.2.7	Thermoannealed PLA	110
5.3	Comparison of materials	110
5.4	Discussion	116

Chapter 6	Matrix production by fibroblasts on scaffolds	
6.1	Introduction	118
6.2	Total collagen production results	118
6.3	Immunostaining for collagen I, III, IV and elastin results	121
6.4	Scanning electron microscopy results	127
6.5	Discussion	130
Chapter 7	The effect of restraint on the production of tissue engineered prostheses	
7.1	Introduction	133
7.2	The effect of restraint on the production of tissue	
	engineered prostheses results	134
7.2.1	Cell attachment	134
7.2.2	Tensiometry	134
7.2.3	Contraction	140
7.2.4	Matrix production	140

7.3 Discussion

Chapter 8 The effect of a variable stress rig on a thermoannealed PLA tissue engineered prosthesis

8.1	Introduction	148
8.2	The effect of variable stress results	149
8.2.1	Cell attachment	149
8.2.2	Contraction	153
8.2.3	Tensiometry	153
8.2.4	Matrix production	153
8.3	Discussion	158

Chapter 9 The effect of Vitamin C on a PLA tissue engineered prosthesis

9.1	Introduction	160
9.2	Results of the effect of Asc-2p	161
9.2.1	Cell attachment	161
9.2.2	Tensiometry	161
9.2.3	Contraction	161
9.2.4	Matrix production	161
9.3	Discussion	167

146

Chapter 10 Discussion

10.1 10.2 10.3 10.4	Failure of current prostheses Solutions for an improved prosthesis Relating results from this study to the current literature On-going and future work	169 182 186 193
Conclusions		196
References		197
Appendices		
Appendix 1	Data collection tables of the biomechanical testing of pelvic organ prosth	ieses

Appendix 2 Patient information leaflet for buccal mucosa samples

Publications

Mangera A, Bullock AJ, Chapple CR, MacNeil S. Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourol Urodyn. 2012 Jan;31(1):13-21.

Presentations

Comparative investigation of seven candidate scaffolds for the production of an autologous tissue engineered connective tissue for use in SUI/POP. International Continence Society meeting, Glasgow.

Investigation of seven candidate scaffolds for the production of an autologous tissue engineered connective tissue for use in SUI/POP. Tissue and cell engineering meeting, Manchester.

The effect of scaffold restraint on the properties of tissue engineered prostheses being developed for use in SUI/POP. European Association of Urology congress, Vienna.

Engineering a novel tissue engineered autologous prosthesis for use in SUI/ POP repair. British Association of Urological Surgeons academic meeting, Dublin.

Developing a tissue engineered autologous prosthesis for use in SUI/POP repair; which scaffold? Biomaterials and Tissue Engineering Group meeting, Leeds.

Developing an autologous tissue engineered prosthesis for use in SUI/POP. International Continence Society meeting, Toronto.

A novel tissue engineering approach for creating prostheses for the treatment of SUI/POP. European Association of Urology congress, Barcelona.

Increasing collagen production & contraction with ascorbate in a tissue engineered autologous prosthesis for use in the treatment of SUI/POP. British Association of Urological Surgeons academic meeting, London.

Acknowledgments

From the commencement of this thesis, to the final submission, I owe an immense debt of gratitude to both my supervisors Professors Sheila MacNeil and Christopher Chapple. Their sound advice, expertise and guidance were invaluable throughout this entire project.

I would also like to thank Dr Anthony J Bullock who spent many hours working with me and helped my transition from clinician to scientist. For their support and advice I am also indebted to my fellow researchers in the laboratory. In particular I would like to thank Mr Sabiniano Roman for spending time with me towards the end of my thesis to progress this project further, Dr Shweta Mittar for her advice on formatting my thesis and Dr Pallavi Deshpande and Ms Claire Johnson for helping me to get around the laboratory.

Finally, I would like to thank the Urology Foundation and the Robert Luff foundation for a two year research fellowship.

To all of the above, I extend my deepest appreciation.

Abbreviations

AL	Alloderm®
Asc-2p	Ascorbate-2-phosphate
CD	Cadaveric dermis
DAPI	4',6-diamidino-2-phenylindole dihydrochloride
DMEM	Dulbecco's Modified Eagle Medium
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
EPAC	Electronic Personal Assessment Questionnaire
FACS	Fluorescence Activated Cell Sorting
FITC	Fluorescein isothiocvanate
GAG	Glycosaminoglycans
HOXA11	Homeobox-A11
ICIO-UF SF	International Consultation on Incontinence modular Ouestionnaire-Short Form
ICS	International Continence Society
LAMC1	Laminin-C1 gene
	Lower urinary tract symptoms
MMP	Matrix metallonroteinase
MRI	Magnetic resonance imaging
MTS	$3_{1}/4$ 5_dimethylthiazol_2_vl}_5_(3_carbovymethovynhenyl}_2_(4_sulfonhenyl}_
IVIT 5	2H-tetrazolium
NATT	2.(1.5.Dimethylthiazol.2.yl)-2.5.diphenyltetrazoliym bromide
	National Institute of Clinical Excellence
	Phosphata huffored saling
	Phosphale bullered same
	Polycapiolacione Distolat derived growth factor
PDGF	Platelet derived growth lactor
PFDI	Pelvic Floor Distress Inventory
PFIQ	Pelvic Floor Impact Questionnaire
PGA	Poly glycolic acid
PLA	Poly(L)lactic acid
PLGA	Poly lactic co glycolic acid
POP	Pelvic organ prolapse
POPQ	Pelvic Organ Prolapse Quantification system
PPL	Polypropylene
PTFE	Polytetrafluoroethylene
RPMI-1640	Roswell Park Memorial Institute 1640 medium
RCT	Randomised controlled trial
SEM	Scanning electron microscopy
SF	Sheep forestomach
SIS	Small intestinal submucosa
SUI	Stress urinary incontinence
Th PLA	Thermoannealed poly(L)lactic acid
TIMP	Tissue inhibitors of matrix metaloproteinases
ТОТ	Transobturator tape
TVT	Tension free vaginal tape
TVT-O	Tension free vaginal tape inside- out
UTS	Ultimate tensile strength
UT Strain	Ultimate tensile strain
YM	Young's modulus of elasticity

List of figures and tables

Figures	
Figures.	Discuss of the endered is faction
Fig 1.1.1.1	Diagram of the endopeivic fascia
Fig 1.1.1.2	Image of the pervic fascia and ligaments
Fig 1.1.1.3	Diagram of the nammock theory for urethral support
Fig 1.2.1	Diagram of anterior compartment prolapse (cystocele)
Fig 1.2.2	Diagram of middle compartment vaginal prolapse (enterocele)
Fig 1.2.3	Diagram of posterior compartment prolapse (rectocele)
Fig 1.2.1.1	Diagram of the pelvic floor supports
Fig 1.3.2.1	Diagram of an anterior vaginal repair
Fig 1.3.2.2	Diagram of the colposuspension procedure
Fig 1.3.2.3	Variations of the sling/ tape procedures
Fig 1.3.2.4	Diagram of the anatomy of the TOT procedure
Fig 1.4.2.1.1	Diagram of the common positions of tapes in SUI/ POP procedures
Fig 1.4.2.2.1	Diagram of a paravaginal repair
Fig 1.4.2.2.2	Diagram of an anterior repair with graft placement
Fig 1.6.7.1	Schematic of the ideal tissue engineered prosthesis and its outputs
Fig 1.8.2.1	Image of fibroblasts
Fig 1.10.1	Stress Vs strain plot
Fig 1.10.4.1	Graph of the change of the UTS of prostheses pre and post explantation
Fig 1.10.4.2	Graph of the change in the YM of prostheses pre and post explantation
Fig 1.10.5.1	Graph of the YM and UTS of prostheses in relation to native tissue
Fig 1.10.5.2	Graph of the YM and UTS of prostheses post implantation in relation to native
0	tissue
Fig 1.11.1	H & E stained image of a section through vagina and bladder wall with
U	endopelvic fascia
Fig 1.11.2	H & E staining of vaginal tissue
Fig 1.11.1.1	Immunohistochemical staining for collagen I in women with and without SUI
Fig 1.11.1.2	Immunohistochemical staining for collagen III in women with and without SUI
Fig 1.11.2.1	Immunohistochemical staining for elastin in women with and without SUI
Fig 2.11.1	Picture of variable stress rig 1
Fig 2.11.2	Diagram of variable stress rig 2
Fig 3.2.1.1	Graph of the metabolic activity of fibroblasts on AL
Fig 3.2.2.1	Graph of the metabolic activity of fibroblasts on CD
Fig 3.2.3.1	Graph of the metabolic activity of fibroblasts on PPL
Fig 3.2.4.1	Graph of the metabolic activity of fibroblasts on PD
Fig 3.2.5.1	Graph of the metabolic activity of fibroblasts on SF
Fig 3.2.6.1	Graph of the metabolic activity of fibroblasts on SIS
Fig 3.2.7.1	Graph of the metabolic activity of fibroblasts on Th PLA
Fig 3.3.1	Graph of the metabolic activity of fibroblasts on the seven scaffolds
Fig 3.4.1	DAPI stained images cell nuclei on the seven scaffolds
Fig 4 3 1	Graph of the LITS of the seven scaffolds with and without cells
Fig 4 3 2	Graph of the UT strain of the seven scaffolds with and without cells
Fig / 3 3	Graph of the VM of the seven scaffolds with and without cells
Fig 5 2 1	Graph of the % contraction of AL over 1/ days culture
Fig 5 2 2	Graph of the % contraction of CD over 14 days culture
Fig 5.2.2	Graph of the % contraction of PDL over 14 days culture
Fig 5 7 /	Graph of the % contraction of PD over 14 days culture
ι 18 J.2.4 Είσ 5 2 Ε	Graph of the % contraction of SE over 14 days culture
н в J.2.J Бія Б Э А	Graph of the % contraction of SIS over 14 days culture
1 18 J.Z.O	Graph of the % contraction of Th DLA over 14 days culture
гід э.2./	Graph of the % contraction of th PLA over 14 days culture

Fig 5.3.1 Graph of the % contraction of the seven scaffolds with cells over 14 days culture Fig 5.3.2 Graph of the correlation of % scaffold contraction with YM Fig 6.2.1 Graph of the total collagen production by fibroblasts on the seven scaffolds Fig 6.3.1a DAPI and FITC stained image of collagen I on Th PLA Fig 6.3.1b DAPI and FITC stained image of collagen III on Th PLA Fig 6.3.1c DAPI and FITC stained image of elastin on Th PLA Fig 6.3.2a DAPI and FITC stained image of collagen I on SIS Fig 6.3.2b DAPI and FITC stained image of collagen III on SIS Fig 6.3.2c DAPI and FITC stained image of elastin on SIS Graph of the mean collagen I scores on the seven scaffolds Fig 6.3.4 Fig 6.3.5 Graph of the mean collagen III scores on the seven scaffolds Fig 6.3.6 Graph of the mean elastin scores on the seven scaffolds Fig 6.4.1 Graph of the mean ECM scores on the seven scaffolds Fig 6.4.2 SEM images of the seven scaffolds with and without cells Fig 7.2.1.1 Graph of the metabolic activity of fibroblasts on the seven restrained scaffolds over 14 days culture Fig 7.2.1.2 Graph of the metabolic activity of fibroblasts on the seven scaffolds with and without restraint at 14 days culture DAPI images of the distribution of fibroblasts on restrained and unrestrained Fig 7.2.1.3 PPL Fig 7.2.2.1 Graph of the UTS of the seven restrained scaffolds with and without cells Fig 7.2.2.2 Graph of the UT strain of the seven restrained scaffolds with and without cells Fig 7.2.2.3 Graph of the YM of the seven restrained scaffolds with and without cells Fig 7.2.2.4 Graph of the UTS of the seven scaffolds with and without restraint Graph of the UT strain of the seven scaffolds with and without restraint Fig 7.2.2.5 Fig 7.2.2.6 Graph of the YM of the seven scaffolds with and without restraint Fig 7.2.3.1 Graph of the % contraction of restrained and unrestrained scaffolds with and without cells after 14 days culture Graph of the collagen produced by scaffolds with and without restraint Fig 7.2.4.1.1 Fig 7.2.4.2.1 Graph of the mean collagen I scores on the seven scaffolds with and without restraint Fig 7.2.4.2.2 Graph of the mean collagen III scores on the seven scaffolds with and without restraint Fig 7.2.4.2.3 Graph of the mean elastin scores on the seven scaffolds with and without restraint Fig 7.2.4.3.1 Graph of the mean ECM scores on the seven scaffolds with and without restraint Fig 7.2.4.3.2a SEM image of unrestrained PPL Fig 7.2.4.3.2.b SEM image of restrained PPL Fig 8.1.1 Diagram of the variable stress on the female pelvis Fig 8.1.2 Diagram of the variable stress rig Fig 8.2.1 Graph of the metabolic activity of fibroblasts on Th PLA in variable stress rig 1 Fig 8.2.1.1 Graph of the metabolic activity of fibroblasts on Th PLA in variable stress rig 2 Images of DAPI stained nuclei on Th PLA in variable stress rig 2 Fig 8.2.1.2 Fig 8.2.3.1 Graph of the UTS of Th PLA scaffolds in variable stress rig 2 Fig 8.2.3.2 Graph of the UT strain of Th PLA scaffolds in variable stress rig 2 Fig 8.2.3.3 Graph of the UTS of Th PLA scaffolds in variable stress rig 2 Fig 8.2.4.1 Graph of the collagen production by cells on Th PAL in variable stress rig 2 Fig 8.2.4.2 Immunostained images of collagen I on Th PLA on variable stress rig 2 Fig 8.2.4.3 Immunostained images of elastin on Th PLA on variable stress rig 2 Fig 9.2.1.1 Graph of the metabolic activity of fibroblasts on PLA in varying concentrations of Asc-2p over 14 days culture

Fig 9.2.1.2	DAPI stained images of nuclei on PLA scaffolds in varying concentrations of Asc-2p
Fig 9.2.2.1	Graph of the UTS of PLA scaffolds with cells cultured in varying concentrations of Asc-2p
Fig 9.2.2.2	Graph of the UT strain of PLA scaffolds with cells cultured in different concentrations of Asc-2p
Fig 9.2.2.3	Graph of the YM of PLA scaffolds with cells cultured in different concentrations of Asc-2p
Fig 9.2.3.1	Graph of the % contraction of PLA scaffolds in different concentration of Asc- 2p
Fig 9.2.4.1	Graph of the total collagen production by fibroblasts on PLA scaffolds in different concentrations of Asc-2p
Fig 10.1.1	Timeline of the failure and complications of synthetic prostheses for SUI
Fig 10.1.2	Timeline of the failure and complications of autologous sling procedures for SUI
Fig 10.1.3	Timeline for the failure and complications of biological grafts for SUI
Fig 10.1.4	Schematic of the host inflammatory response to synthetic implants
Fig 10.1.5	Schematic of the host inflammatory response to autologous transplants
Fig 10.1.6	Schematic of the host inflammatory response to biological grafts
Fig 10.2.1	Schematic of the target host inflammatory response to tissue engineered prostheses
Fig 10.3.1	Schematic of the proposed one stage approach
Fig 10.4.1	Schematic of the future work with tissue engineered prostheses

Tables:

Table 1.2.1.1	Structural elements of pelvic organ support
Table 1.10.2.1	Biomechanical properties of paravaginal tissue
Table 1.10.3.1	Biomechanical properties of pelvic organ prostheses
Table 1.10.4.1	Biomechanical properties of pelvic organ prostheses post explantation
Table 1.11.7.1	Summary of the evidence reporting changes in connective tissue components
	in women with SUI/ POP
Table 1.11.7.2	Summary of the evidence reporting mRNA changes in connective tissue
	components in women with SUI/ POP
Table 3.1.1.	Parameters of the seven scaffolds
Table 3.3.1	Order of materials according to cell attachment
Table 4.3.1	Order of materials according to UTS
Table 4.3.2	Order of materials according to UT strain
Table 4.3.3	Order of materials according to YM
Table 5.3.1	Order of materials according to contraction
Table 6.2.1	Order of materials according to total collagen production
Table 6.3.1	Summary of immunostaining scores for collagen I, III IV and elastin
Table 6.4.1	Summary of SEM results of ECM production
Table 7.2.3.1	Differences in contraction of the seven scaffolds with and without restraint
Table 7.2.4.2.1	Quantitative and qualitative results of immunostaining for collagen I, III and
	elastin with and without restraint
Table 7.2.4.3.1	Quantitative and qualitative results of ECM production with and without
	restraint
Table 10.3.1	Summary of the relative properties of scaffolds in different conditions