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Abstract. Over the past two decades, reversible addition-fragmentation chain transfer (RAFT) 

polymerization has become widely recognized as a powerful technique for the synthesis of controlled-

structure polymers. However, RAFT-synthesized polymers are typically colored and malodorous owing to 

the presence of the organosulfur-based RAFT end-group(s). It is well-known that such end-groups can be 

removed by treating molecularly-dissolved copolymer chains with excess free radical initiators, amines or 

oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous 

dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal 

impact on the copolymer morphology and produces benign side-products that can be readily removed via 

dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects 

prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. It is 

demonstrated that UV GPC offers a decisive advantage over UV spectroscopy for assessing both the 

kinetics and extent of end-group removal. 

 

High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, 

their synthesis via solution polymerization invariably results in highly viscous fluids, which makes 

subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal 

dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures 

a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot 

synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via RAFT aqueous 

emulsion polymerization of a water-immiscible protected monomer, isopropylideneglycerol methacrylate 

(IPGMA), at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent 

as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA-PIPGMA 

diblock copolymer spheres at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming 

PIPGMA block leads to nanoparticle dissolution and affords a viscous aqueous solution comprising high 

molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. 

Moreover, it is shown that this latex precursor route offers an important advantage over the RAFT aqueous 

solution polymerization of glycerol monomethacrylate because it provides a significantly faster rate of 

polymerization (and hence higher monomer conversion) under comparable conditions. This latex precursor 

route has been extended to include aqueous emulsion polymerization of IPGMA using conventional free 

radical chemistry combined with an anionic surfactant. In this case, monomer-starved conditions are 

required to minimize gel formation when converting the PIPGMA latex into water-soluble PGMA chains 

via acid hydrolysis. Moreover, significantly higher molecular weight PGMA chains can be prepared 

compared to that obtained via RAFT aqueous emulsion polymerization. Finally, a one-pot synthetic 

protocol in which the intermediate PIPGMA latex is directly converted into PGMA at low pH appears to 

be feasible. 

 

Finally, a cis-diol-capped analogue of oligo(ethylene glycol) methacrylate (OEGMA) known as 

‘GEO5MA’ has been prepared on a 1.2 kg scale via a four-step synthesis performed while on secondment 

at GEO Specialty Chemicals. Preliminary experiments confirm that this monomer can be polymerized with 

good control by RAFT solution polymerization to produce PGEO5MA. The pendent cis-diol groups on 

this precursor can be selectively oxidized using sodium periodate in aqueous solution at ambient 

temperature to afford a rare example of an aldehyde-functional water-soluble polymer. A similar approach 

can be used to prepare aldehyde-functionalized diblock copolymer nano-objects via aqueous PISA.  
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Introduction 

In recent years, the use of polymers in modern society has become ubiquitous. With ever- 

increasing applications, polymer science has had to adapt and evolve to meet a wide range of 

complex requirements. It was less than 100 years ago when Staudinger first proposed that 

polymers were long-chain molecules made up of covalently-bound building blocks or repeat 

units called monomers.1 When this revolutionary and controversial concept was finally 

established in 1929, Carothers proposed that there were two categories of synthetic polymers: 

‘addition’ polymers and ‘condensation’ polymers.2 While the repeat unit of an ’addition’ 

polymer is identical to that of the monomer being polymerised, ‘condensation’ polymers are 

typically formed via elimination of a small molecule such as water, with one such side-product 

being eliminated for every repeat unit linkage. This initial classification system worked well 

for the majority of polymers but over time it became apparent that there were some obvious 

exceptions, such as polyurethanes. In 1953, this system was updated by Flory, who proposed 

that polymers should be classified as either ‘step’ or ‘chain’ depending on their reaction 

mechanisms.3 Step-growth polymers involve the gradual build-up of long-chain polymers via 

dimers, trimers, oligomers etc., whereas the formation of chain-growth polymers proceeds by 

sequential addition of a single (monomer) unit. The latter mechanism is used for the 

polymerisation of vinyl monomers, as discussed in this thesis. 

 

Unlike small molecules, synthetic polymers do not exhibit a single unique molecular weight. 

Instead, they possess a range of molecular weights and hence a molecular weight distribution 

(MWD). In this situation, it is useful to define certain moments of the MWD. For example, the 

number average molecular weight (Mn) is defined as follows: 

 

 ⟨𝑀𝑛⟩ =
∑𝑛𝑖𝑀𝑖

∑𝑛𝑖
 

 

( 1 ) 

 

 

Where M is the molecular weight of an polymeric fragment and n is the number of fragments 

of this molecular weight.4 Another important moment of the MWD is the weight-average 

molecular weight (Mw), which is defined as: 
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 ⟨𝑀𝑤⟩ =
∑𝑛𝑖𝑀𝑖

2

∑𝑛𝑖𝑀𝑖
 

 

( 2 ) 

 

 

 

According to equations (1) and (2), Mw is more biased towards higher molecular weight species 

than Mn. Mw/Mn is known as the polydispersity index, or dispersity, and is always greater than 

unity. This parameter provides a crude measure of the breadth of the MWD.4  

 

Over the past fifty years or so, synthetic polymer chemists have designed a remarkably wide 

range of complex architectures. Initially, the evolution of polymer architecture involved the 

use of multiple monomer feeds and monomers with multiple reactive sites to give rise to 

homopolymers, statistical copolymers, alternating copolymers and branched copolymers (see 

Figure 1.1)  

 

 

Figure 1.1. Examples of simple polymer architectures obtainable by non-living polymerisation 

techniques 

 

Although some degree of control over copolymer architecture is possible with conventional 

polymerisation techniques, the use of so-called living polymerisations offers superior control, 

as discussed below. 
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Free Radical Polymerisation (FRP) 

Free radical polymerisation (FRP) is a type of chain-growth polymerisation.3 It is an extremely 

versatile technique and is used for the polymerisation of many vinyl monomers in industrial 

applications. FRP is applicable to a wide range of functional monomers in various solvents and 

usually does not require protecting group chemistry.5 Moreover, FRP is unaffected by 

impurities or by the presence of protic solvents such as water. This enables FRP to be conducted 

under bulk, solution, suspension, emulsion or dispersion polymerisation conditions. One 

disadvantage of FRP is its susceptibility to oxygen; polymerisations must be carried out under 

an inert atmosphere in order to eliminate oxygen, which would otherwise cause retardation. 

FRP comprises four distinct stages: initiation, propagation, termination and transfer, as 

summarised in Figure 1.2.4-6 

 

 

Figure 1.2. The four distinct stages of free radical polymerisation (FRP)6 

 

During initiation, an initiator (I-I), commonly a peroxide or an azo compound, undergoes 

homolytic cleavage triggered by thermal degradation or irradiative decay to produce two 

primary radicals (2I˙). This is the relatively slow, rate-limiting step. These I˙ species then react 

rapidly with a vinyl monomer, M, to commence polymerisation by forming a new active radical 
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P1˙with a number-average degree of polymerisation (DPn) of unity. As the rate of initiator 

decomposition is relatively slow compared to that of the radical reacting with a monomer unit, 

the overall rate of initiation is given by Equation ( 3 ): 

 

 
𝑹𝒊 =

𝒅[𝑷𝟏
.]

𝒅𝒕
= 𝟐𝒌𝒅𝒇[𝑰] 

 

 

( 3 ) 

 

Here 𝑘𝑑 is the rate constant for the thermal decomposition of the initiator, 𝑓 is the efficiency 

of the initiator and the factor of two is required because two radicals are generated from the 

homolytic cleavage of every initiator molecule. The initiator efficiency is a fractional quantity 

that is a measure of the probability of the initiator radicals reacting with monomer. After 

initiation, polymer chains grow rapidly via addition of many monomer units to the active 

radical centre. This is known as the propagation step. The growth of individual chains during 

propagation typically occurs within a fraction of a second. It is assumed that the rate constant 

of propagation (𝑘𝑝) is independent of the size of the radical species 𝑃𝑛
.. Hence the rate of 

monomer consumption is given by Equation ( 4 ). 

 

 
𝑹𝒑 = −

𝒅[𝑴]

𝒅𝒕
= 𝒌𝒑[𝑷𝒏

.][𝑴] 

 

 

( 4 ) 

 

Owing to substantial temporal overlap between initiation and propagation, polymers with 

relatively broad molecular weight distributions are formed (typical Mw/Mn < 2.0 ).7 When two 

propagating polymer radicals meet, they undergo termination either by combination (which is 

favoured for less hindered monomers such as acrylates or styrene) or by disproportionation 

(which is favoured for more hindered monomers such as methacrylates). The latter pathway 

involves abstraction of a hydrogen atom from the carbon adjacent to the radical centre to form 

a polymer chain with an unsaturated end-group, or macromonomer. The predominant 

termination mechanism influences the final molecular weight: polymers that undergo 

termination solely by combination exhibit twice the molecular weight of those that solely 

undergo disproportionation.6 The overall rate of termination is given by Equation ( 5 ). 

 

 𝑹𝒕 = 𝟐𝒌𝒕[𝑷
.]𝟐 ( 5 ) 
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Finally, polymer radicals can undergo chain transfer reactions. This involves reaction of the 

active radical centre with either monomer, polymer, solvent or a deliberately added transfer 

agent. Typically, transfer does not affect the overall kinetics of polymerisation owing to fast 

reinitiation and no net loss of radicals.4 However, chain transfer can lead to significant 

branching, which affects the molecular weight and dispersity of the final polymer.6 

During FRP, the instantaneous free radical concentration is usually very low and approximately 

constant. Therefore, it is valid to apply the steady-state approximation and assume that the rate 

of initiation (𝑅𝑖) is equal to the rate of termination (𝑅𝑡). Combining equations ( 3 ) and ( 5 ) 

gives an expression for the concentration of polymer radicals [𝑃.]: 

 

[𝑷.] = √
𝒇𝒌𝒅[𝑰]

𝒌𝒕
 

 

 

 

( 6 ) 

 

In addition, the rate of propagation (𝑅𝑝) is significantly larger than that of either initiation or 

termination, so an expression for the rate of polymerisation can be obtained by substituting 

equation ( 6 ) into equation ( 4 ): 

 

 

𝑹𝑷𝒐𝒍𝒚𝒎 = 𝒌𝒑[𝑴]√
𝒇𝒌𝒅[𝑰]

𝒌𝒕
 

 

 

( 7 ) 

 

   

Thus the rate of polymerisation is first order with respect to the monomer concentration and 

proportional to the square root of the initiator concentration. Towards the end of the reaction, 

an ‘auto-acceleration’ effect can be observed for FRP syntheses conducted either in the bulk 

or at relatively high monomer concentration.4 This is associated with the relatively high 

viscosity of concentrated polymer solutions. Diffusion of large polymer chains is retarded 

under such conditions, which lowers the rate of termination (kt). However, small molecules 

(e.g. monomer) can still diffuse freely. Thus the rate of propagation (kp) remains relatively 

high, leading to an overall increase in the rate of polymerisation.6 If chain transfer to polymer 

occurs under such conditions, this can sometimes lead to macroscopic gelation.  
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Bulk/Solution Polymerisation 

Bulk polymerisation is the simplest type of polymerisation. Such formulations comprise liquid 

monomer and a monomer-soluble polymerisation agent such as an initiator or catalyst. The 

product of this polymerisation is typically either a solid casting (e.g. an acrylic bath) or an 

extremely viscous solution or gel (e.g. a soft contact lens). However, the polymerising solution 

becomes highly viscous which can make efficient heat dissipation somewhat problematic; 

extremely broad molecular weight distributions are very common. These issues are often best 

addressed by addition of a suitable solvent, transforming the formulation into a solution 

polymerisation.  Solution polymerisation involves reacting a miscible monomer with a soluble 

initiator to form a soluble polymer in a suitable, non-reactive solvent, allowing much greater 

control over the solution viscosity and heat dissipation. An important consideration is the 

boiling point of the solvent, as this limits the polymerisation temperature. Unfortunately, there 

are few truly inert solvents when it comes to radical polymerisation, and transfer to solvent is 

almost always observed to some extent. Solution polymerisation may still lead to high viscosity 

when targeting high molecular weight polymers, but this problem is significantly reduced 

compared to bulk polymerisation. Depending on the final intended application, one 

disadvantage of solution polymerisation can be isolation of the desired polymer and its 

purification (e.g. removal of unreacted monomer and solvent).8  

 

Precipitation Polymerisation 

If a polymerisation is conducted in a solvent that is a bad solvent for the polymer, the result is 

a precipitation polymerisation. The precipitated particles are typically large and ill-defined and 

it is usually difficult to obtain high monomer conversions or to be able to target high molecular 

weights.5, 9 More well-defined particles can be obtained by adding a suitable steric stabiliser to 

the formulation, which leads to a dispersion polymerisation (see below). 

 

Dispersion Polymerisation 

Dispersion polymerisation involves use of a preformed polymeric stabiliser to form latex 

particles. The monomer is miscible with the solvent and the initiator is soluble in the continuous 

phase. At a critical DPn, the growing polymer chains become insoluble and phase separate. In 

the absence of any polymeric stabiliser, a macroscopic precipitate is obtained. In the presence 

of a suitable polymeric stabiliser, a colloidal dispersion of sterically-stabilised latex is obtained. 
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Dispersion polymerisation has been conducted utilising a wide range of solvents, including 

polar solvents such as alcohols,10-12 non-polar solvents such as n-alkanes13-14 and also 

supercritical carbon dioxide15-18 or ionic liquids.19 In the specific case of aqueous dispersion 

polymerisation, there are relatively few water-miscible monomers that form water-insoluble 

polymers, which is a prerequisite for such formulations. Nevertheless, various examples have 

been reported in the literature, particularly over the past decade or so. These include the 

polymerisation of pyrrole (Py)20-22, N-isopropylacrylamide (NIPAM),23-24 N,N′-

diethylacrylamide (DEAA),25-26 2-methoxyethyl acrylate (MEA),27-28 2-hydroxypropyl 

methacrylate (HPMA),29-31 and di(ethylene glycol) methyl ether methacrylate (DEGMA).32 

 

The Armes group has published numerous papers describing the aqueous dispersion 

polymerisation of pyrrole.20-22 In particular, the effect of using various polymeric stabilisers on 

the mean latex diameter has been explored.20 For example, pyrrole was polymerised in water 

using an iron(III) chloride oxidant and either poly(vinyl alcohol-co-vinyl acetate) or poly(2-

vinyl pyridine-co-butyl methacrylate) or poly(ethylene oxide), see Figure 1.3. The purified 

polypyrrole particles were assessed by transmission electron microscopy (TEM) and a 

technique known as charge-velocity analysis (CVA). Relatively narrow size distributions were 

obtained and the mean latex diameter could be tuned between 50 and 350 nm depending on the 

choice of polymeric stabiliser.  

 

 

Figure 1.3. TEM images of polypyrrole latex particles prepared via aqueous dispersion polymerisation 

using poly(vinyl alcohol-co-vinyl acetate) (left), poly(2-vinyl pyridine-co-butyl methacrylate) (middle) 

or poly(ethylene oxide) (right) as the steric stabiliser.20  

 

Alternative methods for varying particle size were explored by Ali et al., who examined the 

aqueous dispersion polymerisation of HPMA using poly(N-vinyl pyrrolidone) (PNVP) as a 

polymeric stabiliser (see Figure 1.4).31 The initiator type (2,2’-azobis(2-
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methylpropionamidine) dihydrochloride (AIBA), azobisisobutyronitrile (AIBN), sodium 

persulfate (SPS), potassium persulfate (KPS), ammonium persulfate (APS)), PNVP stabiliser 

concentration (from 0 to 10 % w/w) and the presence of low levels of ethyl acrylate comonomer 

(from 0 to 4 mol. %) were systematically investigated. Purified PHPMA latexes were analysed 

by DLS to determine particle size distributions. Relatively narrow particle size distributions 

were obtained, with mean latex diameters varying between 350 and 1100 nm. This is not 

unexpected for FRP-mediated dispersion polymerisations, which often produce particles in the 

1-10 µm range. By adding anionic surfactant (0 to 2 % w/w), particles as small as 110 nm could 

be achieved. 

 

 

Figure 1.4. (a) Schematic for the aqueous dispersion of HPMA using a PNVP stabiliser. (b) Scanning 

electron microscope (SEM) image of formed PHMA latexes. Conditions: AIBA, 10 % w/w PNVP, 2 

mol. % ethyl acetate (EA), 60 °C.31 

 

Aqueous Emulsion Polymerisation 

Using water as a solvent for polymerisation has always been desirable in order to avoid large 

scale use of relatively expensive (and often toxic) organic solvents. However, most vinyl 

monomers are immiscible with water. This led to the development of new formulations to 

enable polymerisation of such monomers in aqueous media. The observation that natural rubber 

was produced in the form of an aqueous colloidal dispersion of latex particles was first made 

by scientists working at Bayer.33 In principle, synthesising high molecular weight polymer 

chains in the form of low-viscosity particles eliminates the problem of high solution viscosity 

associated with either solution or bulk polymerisation. This led to the first attempt to prepare 

the synthetic equivalent of synthetic rubber using an emulsified vinyl monomer via a 

formulation now termed as suspension polymerisation.34 Following substantial industrial 

research during WW II, synthetic rubber can now be prepared in the form of water-borne 

latex.35 

  



Chapter One – Introduction 

___________________________________________________________________________ 

10 

 

A typical aqueous emulsion polymerisation consists of a water-immiscible vinyl monomer 

polymerised in aqueous media in the presence of a water-soluble initiator and a surfactant. The 

surfactant is required to stabilise the growing polymer latexes and prevent macroscopic 

precipitation.36 When the heterogeneous reaction mixture is subjected to high shear, this 

produces micrometer-sized surfactant-stabilised monomer droplets, much smaller monomer-

swollen surfactant micelles and a relatively small amount of molecularly-dissolved monomer. 

Because the initiator is insoluble within the water-immiscible monomer, no polymerisation can 

occur within these large monomer droplets. Thermal decomposition of the initiator molecules 

generates radical species that in principle can react with dissolved monomer (homogeneous 

nucleation) to generate surface-active oligomers that then form micelles in situ.37 Alternatively, 

if the aqueous monomer solubility is relatively low, these initiator radicals can diffuse into the 

monomer-swollen surfactant micelles, leading to heterogeneous nucleation.37 In either 

scenario, the micelles provide the main locus for the vast majority of the polymerisation. Given 

the relatively high local monomer concentration, polymer radicals propagate rapidly within 

such micelles. As the supply of monomer becomes depleted, monomer transport from the 

micrometer-sized surfactant-stabilised droplets into the growing nascent particles occurs. At 

any given time, either one or zero growing polymer radicals are present in each particle. Thus 

termination is suppressed relative to propagation and relatively high molecular weight polymer 

chains can be obtained because of this so-called microcompartmentalisation effect. Eventually, 

the monomer droplet reservoirs are consumed and collodally stable latex particles are the final 

product.37-38 A schematic representation of an emulsion polymerisation is depicted in Figure 

1.5.37 

 

 

Figure 1.5. Schematic representation of the three main stages of emulsion polymerisation: I is the 

initiator molecule, I˙ is the corresponding initiator radical, M denotes the monomer and M˙ indicates 

the propagating monomeric/polymeric radicals.37 
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Living Polymerisations 

Although FRP is widely utilised on an industrial scale, it offers only limited control over 

molecular weight, dispersity or copolymer architecture. Living polymerisation resolves these 

issues by suppressing or eliminating termination with respect to propagation, giving all chains 

an equal probability of growth. Living polymerisation was discovered by Szwarc and co-

workers in 1956,39-40 where styrene was polymerised in dry tetrahydrofuran via anionic 

polymerisation. Anionic polymerisation is now used to prepare various controlled-structure 

copolymers on an industrial scale for various applications, including thermoplastic 

elastomers,41-42 polymeric surfactants/dispersants/emulsifiers/stabilisers,43-44 viscosity 

modifiers for engine oils45-46 and diesel soot dispersants.47-48 Living polymerisations are 

characterised by a linear evolution in molecular weight against conversion (see Figure 1.6). 

Moreover, there is either no intrinsic termination or the rate of termination is suppressed 

relative to that of propagation, which results in much narrower MWDs (Mw/Mn ~ 1.10) 

compared to that achieved using FRP. Such polymerisations also offer convenient access to 

various complex copolymer architectures, such as block, graft, star and ring copolymers (see 

Figure 1.7). For example, block copolymers can be prepared via sequential monomer addition. 

Another advantage of living polymerisation is that a range of desired end-groups can be 

introduced via post- polymerisation functionalisation.  

 

 

Figure 1.6. Evolution in molecular weight with monomer conversion for free radical polymerisation, 

anionic polymerisation and step polymerisation 
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Figure 1.7. Examples of well-defined copolymer architectures that can be accessed by living 

polymerisation. 

 

Living anionic polymerisation 

Anionic polymerisation involves propagation of a carbanion end-group via nucleophilic attack 

by vinyl monomer. Unlike the polymer radicals present in FRP, such growing carbanions 

cannot react with each other. Thus, assuming that all protic impurities have been carefully 

removed, there is no intrinsic termination mechanism. This facilitates the synthesis of polymers 

with very narrow MWDs and predictable Mn, where the latter parameter is simply equal to the 

mass of a monomer unit, M, multiplied by the monomer/initiator molar ratio, given all initiator 

undergoes polymerisation, see equation ( 8 ). 

 

 
𝑀𝑛 = 𝑀

[𝑀]

[𝐼]
 

 

( 8 ) 

 

Similarly, DPn is given by the monomer/initiator molar ratio, see equation ( 9 ). 

 

 
𝐷𝑃𝑛 =

[𝑀]

[𝐼]
 

( 9 ) 

 

An important prerequisite for living anionic polymerisation is that the vinyl monomer (denoted 

CH2=CRX) must be able to stabilise the terminal anionic charge. Hence X should be an 

electron-withdrawing substituent such as a nitrile, carbonyl or phenyl group. Solvent choice is 

also important as traces of protic solvents such as water cause premature termination of the 
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growing polymeric carbanions. Thus meticulous drying of all glassware, solvents and 

monomer(s) to remove traces of water is essential. 

 

If protic impurities can be eliminated, then in principle the highly reactive terminal carbanions 

should remain intact indefinitely even under monomer-starved conditions. Hence, addition of 

further monomer enables the preparation of block copolymers via sequential monomer 

addition.42 Alternatively, addition of electrophiles such as CO2 or ethylene oxide enables chain-

end functionalisation. Perhaps the most famous commercial example of a multiblock 

copolymer produced via living anionic polymerisation is polystyrene-block-polybutadiene-

block-polystyrene (PS-PB-PS). This formulation was patented by Holden and Milkovich49 who 

synthesised such triblock copolymers using an n-buyllithium initiator in an inert hydrocarbon 

solvent. It was later commercialised by Shell Chemicals (now Kraton) who utilised the 

enthalpic incompatibility of the two blocks to make microphase-separated elastomers and gels. 

The high Tg polystyrene blocks form either spherical or cylindrical domains within a matrix of 

low Tg polybutadiene (Figure 1.8).  

 

 

Figure 1.8. Electron micrograph of a PS-PB-PS triblock copolymer exhibiting microphase separation 

(i.e. white PS domains within a black PB matrix).50 

 

Heating this material above the Tg of the polystyrene block allows manipulation of the shape 

of such elastomers, hence they are known as thermoplastic elastomers. The unsaturated nature 

of the PB chains means that these materials are susceptible to UV degradation. However, 

catalytic hydrogenation of this central block confers stabilisation, enabling such synthetic 

rubbers to be used for footwear, automotive, coatings and adhesives applications.51-52  

 

Polystyrene-polybutadiene-polystyrene 
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In principle, living anionic polymerisation enables excellent control over both molecular 

weight distributions and copolymer architecture. However, in practice it requires rigorous 

purification to remove protic impurities and is not amenable to a wide range of vinyl 

monomers. 

 

Controlled Radical Polymerisation (CRP) 

Controlled radical polymerisation offers most of the benefits and convenience of FRP but the 

rate of termination is suppressed relative to that of propagation. Unlike living anionic 

polymerisation, termination is always present at a background level rather than eliminated 

entirely; this is why CRP is sometimes known as a ‘pseudo-living’ polymerisation. A rapid 

equilibrium is created between active (propagating) and dormant (unreactive) polymer chains. 

This lowers the number of active polymer chains at any given time, thus significantly reducing 

the probability of irreversible termination via radical-radical annihilation. The two most 

commonly used classes of CRP are discussed below. 

 

Atom Transfer Radical Polymerisation (ATRP) 

Since its more or less simultaneous discovery by Sawamoto and co-workers53 and Wang and 

Matyjaszewski,54 ATRP has grown to become one of the most widely-used types of CRP. It is 

essentially an example of atom transfer radical addition (ATRA), which is a well-known 

synthetic organic transformation for creating new carbon-carbon bonds (a.k.a. the Kharasch 

reaction). During ATRP, a transition metal catalyst abstracts a halogen atom via reversible 

redox chemistry. As a result, the catalyst becomes oxidised and a reactive carbon-centred 

radical is generated from a halogen-capped chain. During its relatively short lifetime, the 

carbon-centred radical reacts with multiple monomer units to give a short burst of 

polymerisation before being recapped with a halogen atom (Figure 1.9)55-56. Normally, such 

carbon-centred radicals are prone to bimolecular combination. However, in this case the 

oxidised transition metal complex reacts rapidly and reversibly to reintroduce the halogen end-

group and hence minimises the probability of premature termination. Because ATRP is based 

on radical chemistry, it is applicable to a much wider range of functional (meth)acrylic 

monomers than anionic polymerisation. This is a potentially decisive advantage for the design 

of functional polymers with complex architectures. 
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Figure 1.9. The mechanism of atom transfer radical polymerisation (ATRP) when X = Cl or Br. Tris(2-

pyridylmethyl)amine (TPMA) is acting as a ligand.57 

 

Two research teams independently recognised the potential for utilising this mechanism for 

CRP. Sawamoto and co-workers used carbon tetrachloride to initiate the polymerisation of 

MMA in the presence of a RuCl2(PPh3)2 catalyst but found that MeAl(ODBP)2 was required to 

activate the C-Cl bond for polymerisation. They reported a near-linear evolution of molecular 

weight with conversion and relatively low dispersities (Mw/Mn = 1.30-1.40). In contrast, Wang 

and Matyjaszewski used 1-phenylethyl chloride to initiate the polymerisation of styrene at 130 

°C in the presence of Cu(I)Cl and three equivalents of 2,2’-bipyridine, which served as a 

solubilising ligand for this transition metal. A linear increase in Mn with monomer conversion 

and a final dispersity below 1.50 was observed, which indicated reasonable control. 

Subsequent research has shown that optimisation of almost every aspect of an ATRP 

formulation is important to achieve good control over the target molecular weight and the 

molecular weight distribution, including the choice of initiator, transition metal, ligand, 

solvent, and even the order of monomer addition.58 ATRP initiators are typically alkyl halides, 

but efficient initiation requires careful consideration of the chemical structures of the initiator 

and the target monomer.59 The type of halogen atom in the initiator is also important, with 

relative reactivity following the trend: I > Br > Cl. In addition, it is vital that the initiator 

contains suitable radical-stabilising substituents, with adjacent nitrile (-CN) groups usually 

being the most effective followed by phenyl groups and esters (see Figure 1.10).58-59 
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Figure 1.10. Chemical structures of various ATRP initiators illustrating the effect of strong radical 

stabilisation on the rate constant for activation.58-59 

 

In principle, any transition metal that has two accessible oxidation states may be suitable as an 

ATRP catalyst. Transition metals successfully employed for this type of CRP include 

ruthenium, iron, osmium or molybdenum but the most common example is copper.60-61 

Another important parameter for influencing the activity of the transition metal catalyst is the 

choice of solubilising ligand(s). The effect of ligand structure on the rate constant for activation 

is shown in Figure 1.11. 
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Figure 1.11. Chemical structures of various ATRP ligands illustrating the effect of ligand structure on 

the rate constant for activation.58, 62 

 

In general, ligands for copper-based ATRP catalysts are almost exclusively nitrogen donor 

ligands.62 Multidentate ligands tend to afford much more active catalysts (tetradentate > 

tridentate > bidentate).62 In addition, cyclic and bridged ligands produce higher activities than 

the equivalent linear ligands.62 

 

In ATRP, if a polymer radical undergoes irreversible termination then the associated metal 

complex can no longer undergo reduction, resulting in a gradual reduction in catalytic activity. 

One strategy to address this problem is to regenerate the spent catalyst by adding an external 

reducing agent (Figure 1.12). This strategy is known as ‘activator regenerated by electron 

transfer’ (ARGET) ATRP.63 One important advantage of ARGET ATRP is that no external 

radical source is required. It is also considered to be a more environmentally-friendly type of 

polymerisation because much less transition metal catalyst is required compared to a 

conventional ATRP formulation (typically just ppm levels relative to the alkyl halide initiator, 

rather than stoichiometric levels). Common reducing agents that work effectively in this 

context are tin(II) 2-ethylhexanoate (Sn(EH)2),
64-65 ascorbic acid65 and glucose.66  
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Figure 1.12. Mechanism for ARGET ATRP whereby the active catalyst is continuously regenerated by 

excess reducing agent.58 

 

Finally, if the concentration of the reducing agent is high enough, then the generated active 

catalyst can effectively scavenge dissolved oxygen. This was demonstrated by Matyjaszewski 

and co-workers when polymerising styrene in the presence of only 5 ppm CuCl2/Me6TREN 

(TREN = tris(2-aminoethyl)amine) plus 500 ppm of a Sn(EH)2 reducing agent.66 Gel 

permeation chromatography (GPC) indicated a Mn of 12,500 g mol-1 (theoretical Mn = 12,600 

g mol-1) and an Mw/Mn of 1.28, suggesting a reasonably good level of control. 

 

One of the major disadvantages of ATRP is the presence of a toxic, coloured transition metal 

in the final product. Although ARGET ATRP enables a significant reduction in the catalyst 

concentration, many applications require even lower levels of residual catalyst. Fortunately, 

various methods have been developed for removing the spent catalyst, including precipitation 

into a non-solvent, column chromatography using either alumina or silica as the stationary 

phase or the judicious use of an ion exchange resin.61, 67  

 

In summary, ATRP is a versatile polymerisation technique that can polymerise a wide range 

of functional monomers and is tolerant of many types of solvents (including water). When 

ARGET ATRP is employed, even dissolved oxygen present in the formulation can be tolerated. 

Optimisation of reaction conditions and reagents can be complicated, particularly for new 
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systems. However, once an appropriate formulation has been identified, well-controlled 

polymerisations can be achieved with good reproducibility. 

Reversible Addition-Fragmentation chain Transfer (RAFT) Polymerisation 

Various types of controlled radical polymerisation are now known, but reversible addition-

fragmentation chain transfer (RAFT) polymerisation has become increasingly popular over the 

past decade owing to its versatility and relatively simple formulations compared to ATRP. 

RAFT polymerisation was first reported in 1998 by Rizzardo and co-workers: a series of 

dithiobenzoate compounds were added to otherwise conventional FRP formulations, yielding 

(co)polymers with remarkably narrow molecular weight distributions.68 It was hypothesised 

that RAFT displays living characteristics as a result of the rapid reversible chain transfer of 

polymer radicals to an organosulfur-based chain transfer agent (CTA). Such efficient chain 

transfer suppresses termination of active polymer radicals. Rizzardo and co-workers 

emphasised that an effective RAFT CTA requires both a stabilising group (Z) and also a good 

radical leaving group (R) (see Figure 1.13).  

 

 

Figure 1.13. Generic chemical structure of a RAFT chain transfer agent, where Z is a stabilising group 

and R is a good radical leaving group.68 

 

The RAFT mechanism differs from that of other controlled radical polymerisations. In ATRP, 

rapid reversible chain-capping by halogen atoms suppresses termination and hence ensures 

pseudo-living character. In contrast, rapid reversible addition-fragmentation chain transfer 

provides polymer chains with an equal probability to grow in the case of RAFT polymerisation. 

Growing polymer radicals react with the thiocarbonyl group to generate a dormant unreactive 

radical species, which can then fragment to generate a new polymer radical. The RAFT 

mechanism is shown in Figure 1.14. The presence of the RAFT CTA reduces the effective 

concentration of propagating polymer radicals and therefore suppresses termination by either 

combination or disproportionation.  
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Figure 1.14. RAFT mechanism as proposed by Rizzardo and co-workers.68-71 [N.B. Z = Ph 

(dithiobenzoate), S-R (trithiocarbonate), N-R (dithiocarbamate) or O-R (xanthate)] 

 

 

Initiation occurs via slow thermal decomposition as in FRP, with subsequent reaction with 

multiple monomer units producing polymer radicals, Pn˙. However, in the case of RAFT 

polymerisation, the chain equilibrium occurs faster than the rate of propagation. When 

combined with the rapid fragmentation of the intermediate species, this leads to an equal 

probability of propagation for all polymer chains. Meanwhile, the relatively short lifetime of 

the polymer radicals leads to suppressed termination, which results in polymers with narrow 

MWDs (Mw/Mn typically between 1.10 and 1.30). Owing to each polymer chain being capped 

with a RAFT CTA and having equal probability of propagating, the Mn of the polymer 

increases linearly with monomer conversion. Therefore, final polymer DPns can be calculated 

using equation ( 10 ) 

 

 
𝐷𝑃𝑛 =

[𝑀]

[𝐶𝑇𝐴]
 

( 10 ) 
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Initially, it was suggested that Z groups needed to be either aryl or alkyl in order to achieve 

effective RAFT polymerisation.68 However, it was subsequently found that less activating 

CTAs (i.e. dithiocarbamates or xanthates) can effectively polymerise certain monomer 

classes.72-74 In general, vinyl monomers can be split into two classes, more activated monomers 

(MAMs) and less activated monomers (LAMs). MAMs possess double bonds that are electron 

deficient, i.e. they are conjugated to a carbonyl, nitrile or aromatic groups. Some examples of 

MAMs are acrylates (e.g. acrylic acid or methyl acrylate), methacrylates (e.g. methyl 

methacrylate or glycerol monomethacrylate), acrylamides (e.g. N,N-dimethylacrylamide or N-

isopropylacrylamide), methacrylamides (e.g. 2-hydroxypropyl methacrylamide), acrylonitrile 

and styrene. Conversely, LAMs are monomers with electron-rich double bonds, i.e. they are 

adjacent to electron-donating heteroatoms. Some examples of LAMs are vinyl acetate, N-

vinylpyrrolidone and N-vinylformamide. In principle, well-controlled RAFT polymerisations 

are observed when dithiobenzoates or trithiocarbonates are employed to polymerise MAMs, 

whereas dithiocarbamates or xanthates must be used for LAMs. Some general guidelines for 

selecting the correct CTA for a specific monomer were published by Moad et al.71 and are 

depicted in Figure 1.15. 

 

Figure 1.15. General guidelines for the selection of appropriate RAFT agents for a given monomer 

type. Solid lines indicate good control, while a dashed line indicates only partial control71 
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One of the most famous early examples of RAFT was by Mitsukami et al. who polymerised 

water-soluble monomers by RAFT aqueous solution polymerisation.75 The authors utilised a 

4-cyanopentanoic acid dithiobenzoate CTA to polymerise sodium 4-styrenesulfonate in water 

at 70 °C. Quantitative levels of conversion were achieved within 2 h at this temperature and 

the resulting polymer had a Mn of 16,900 g mol-1 and an Mw/Mn of 1.17 as determined by 

aqueous GPC. The authors then chain extended this homopolymer with sodium 4-

vinylbenzoate at 70 °C for 24 h. The final diblock copolymer had an Mn of 18,600 g mol-1 and 

an Mw/Mn of 1.18. Finally, the polymers underwent reversible micellisation by means of a pH 

switch.  

 

RAFT polymerisation is conceptually simple compared to other controlled polymerisations. 

Moreover, it can be performed in many protic solvents such as water or lower alcohols, displays 

excellent tolerance of many functional groups and can be performed over a wide range of 

temperature. Furthermore, RAFT polymerisation is the only form of CRP that is able to 

effectively polymerise LAMs and acidic monomers (without recourse to protecting group 

chemistry in the latter case).69, 76-77 However, removal of oxygen is essential as oxygen is a 

well-known retarder. RAFT polymerisation formulations are essentially just FRP syntheses 

performed in the presence of a suitable CTA. This means there are just four components in a 

RAFT formulation: initiator, monomer, solvent and the RAFT CTA.69-71 

 

 Modification and Removal of RAFT End-Groups 

One of the major drawbacks of RAFT polymerisation is the inevitable presence of a 

malodorous and intrinsically coloured CTA, which becomes the end-group on the polymer 

chains. Thus, the facile removal or modification of this CTA species by post-polymerisation 

modification is of considerable interest.78-80 In principle, this can be achieved using various 

reagents.79, 81-86 A comprehensive review by Willcock and O’Reilly79 summarises many well-

established routes for the end-group modification of RAFT-synthesised polymers. One 

approach simply involves thermal elimination, whereby a monomer unit loses a hydrogen atom 

on the secondary carbon at elevated temperature in order to eliminate the end-group. This 

method yields a sulfur-free polymer, but the polymer chains need to be chemically stable at 

120 to 200 °C in order to avoid thermal degradation. As expected, the critical temperature 

required for thermal elimination depends on both the polymer type and the nature of the RAFT 

end-group. For the latter parameter, the observed order of thermal stability is: dithiobenzoates 

> trithiocarbonates > xanthates.81-82 Alternatively, RAFT end-groups can be readily removed 
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by reaction with various nucleophiles. The nucleophile attacks the thiocarbonyl and displaces 

the organosulfur unit to leave a terminal thiol group on the polymer chain. The reaction of 

nucleophiles with thiocarbonates was reported in 1990.84 However, it is only relatively recently 

that this chemistry has been utilised to remove RAFT end-groups from polymer chains. Typical 

nucleophiles are amines and the residual thiol end-group can be further functionalised to give 

a range of products. Another method for end group removal is addition of a large excess of a 

radical-generating species such as an azo initiator. The radicals react with the thiocarbonyl 

group, causing displacement of polymer radicals. One benefit of this method is that the RAFT 

agent can sometimes be recovered for reuse.85 Finally, Diels-Alder chemistry can be used to 

remove RAFT end-groups.87 More specifically, the thiocarbonyl end-group can be reacted with 

a diene. This chemistry is driven by the electron-deficient nature of the thiocarbonyl group. 

Although it does not remove the RAFT end-group, this modification is often sufficient to 

remove the intrinsic colour associated with this species.86 These end-group removal strategies 

are depicted below (Figure 1.16).83 

 

 

Figure 1.16. Summary of common RAFT end-group modification reactions.83 

 

More recently, RAFT end-group removal has involved exploration of more environmentally- 

friendly approaches. For example, Pfukwa et al. have examined the use of hydrogen peroxide 
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for the post-polymerisation modification of RAFT-synthesised polymers.88 Thus, RAFT 

homopolymerisation of either NVP or styrene was conducted in the bulk to afford PNVP with 

an Mn of around 2500 g mol-1 and polystyrene (PS) with an Mn of around 1800 g mol-1. Each 

polymer was reacted with a twenty-fold excess of hydrogen peroxide based on RAFT end-

groups at either 60 °C for 16 h (PNVP) or 80 °C for 6 h (PS), respectively. GPC analysis 

indicated only minimal changes in molecular weights and dispersities after end-group 

modification. The proposed mechanism is thermal decomposition of hydrogen peroxide to 

generate hydroxyl radicals, which then add to the CTA and eliminate the polymer radical. 

Given the large excess of peroxide reagent, this polymer radical then combines with a hydroxyl 

radical to give hydroxyl-terminated polymer chains. Evidence for the proposed hydroxyl chain-

ends was provided by 1H NMR and matrix assisted laser desorption/ionisation-time of flight 

mass spectrometry (MALDI-ToF-MS) analysis and a crosslinking reaction was performed 

using a trifunctional isocyanate.88 

 

Of particular relevance to this thesis, Destarac and co-workers utilised ozone to remove the 

xanthate end-groups from polymer latexes in aqueous solution.89 More specifically, n-butyl 

acrylate was polymerised by RAFT aqueous emulsion polymerisation using the commercially 

available xanthate CTA, rhodixan A1. The resulting low molecular weight latex dispersions 

(Mn = 1300 and 5300 g mol-1, Mw/Mn = 1.72 and 1.55 respectively) were treated with ozone 

using a custom-built rig that passed a stream of latex through an ozone-rich atmosphere. 

Progressive disappearance of the yellow colour associated with the RAFT end-groups was 

observed and quantified by using ultra-violet coupled GPC (UV GPC) at 290 nm, with full 

end-group modification being achieved within 1 h. The authors confirmed transformation of 

the xanthate moiety into a thiocarbonate using 13C and 1H NMRs and used this information to 

propose a mechanism for the reaction (see Figure 1.17). 

 

Figure 1.17. Proposed mechanism for the oxidation of xanthate end-groups with ozone.89 
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 Polymer Brushes 

Polymer brushes are formed when a high density of polymer chains are grafted by one end of 

each chain to a solid substrate.90 As a direct result of their high grafting density, the chains are 

forced to stretch out from the surface to adopt a low-entropy brush conformation as opposed to 

forming a typical random coil. In principle, such polymer brushes may be useful as adhesives, 

protein-resistant biosurfaces, chromatographic devices, chemical lubricants91 and lubricious 

(low friction) surfaces.92 This field has been well studied over the past fifteen years or so and 

many review articles have been published.90, 93-95 

 

There are many different types of polymer brushes, including 1D brushes (bottle brushes) 

which are graft copolymers grown from a single polymer chain,96 So-called 2D brushes are 

grown from a planar surface97 while 3D polymer brushes are grown from the surface of 

colloidal nanoparticles.98 Many brush synthesis protocols via various polymerisation 

techniques have been explored, including both covalent and non-covalent grafting, ‘grafting 

to’ and ‘grafting from’. However, in this Thesis will only focus on 2D polymer brushes grown 

from planar substrates by ARGET ATRP. 

Of particular relevance to this work is a study of oil repellent poly(N-(dimethylamino)ethyl 

methacrylate) (PDMAEMA) brushes by Dunderdale et al.99 These authors developed a brush 

synthesis protocol that is cheap, applicable to large-area substrates and relatively undemanding 

reaction conditions. More specifically, such methacrylic brushes can be grown in aqueous 

solution at ambient temperature without the need for rigorous oxygen removal and at monomer 

concentrations as low as 1 % w/v. This optimised route offers a cost reduction of almost three 

orders of magnitude and a reduction in toxic chemical usage by 99.9 %. 

 

 Self-Assembly of Amphiphiles 

Water is a unique naturally-occurring solvent that can dissolve many polar and ionic materials. 

The structure and physical properties of liquid water are dominated by its extensive network 

of hydrogen bonds. If a non-polar compound is placed in water, a ‘cage’ like structure is formed 

around the hydrophobic species. This rearrangement of water molecules is known as the 

‘hydrophobic effect’ and this provides the driving force for the self-assembly of amphiphilic 

molecules in aqueous media.100 

 

Micellar  self-assembly was first postulated for amphiphiles by Schryver et al. in 1913.101 Over 

the past century or so, this concept has become widely used to describe the behaviour of 
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surfactant molecules in aqueous solution. Surfactants are amphiphiles that generally contain a 

polar head group that interacts strongly with water and a non-polar highly hydrophobic tail. 

The hydrophobic effect (see above) causes the non-polar tails to cluster together in aqueous 

solution order to minimise disruption to the water structure. Relatively weak van der Waals 

attractive forces between these non-polar tails further stabilise the self-assembled micelles. 

The most common morphology for amphiphiles to adopt is spherical micelles.102 However, 

other possible morphologies include worms (cylindrical micelles), vesicles or lamellae (i.e. 

either curved or planar bilayers). Electrostatics, van der Waals forces and hydrogen bonding 

each have an impact on the overall area occupied per head group (𝑎), the volume occupied by 

the hydrophobic tail group (Vc) and hence the preferred morphology. The packing parameter 

(𝑁𝑆) was introduced by Israelachvili and co-workers for small molecule amphiphiles in 

1976.102 This purely geometric concept is useful for understanding micellar self-assembly and 

is based on the relative volume fractions of the solvophilic and solvophobic components of the 

surfactant. The packing parameter equation is shown below ( 11 ).103 

 

 

 
𝑵𝑺 =

𝑽𝒄
𝒂 ∗ 𝒍𝒄

 
 

( 11 ) 

 

 

Here 𝑉𝑐 is the volume occupied by the hydrophobic surfactant tail, 𝑙𝑐 is the length of this tail 

and 𝑎 is the equilibrium cross-sectional area of the head-group per molecule within the micelle 

aggregate. The numerical value of the packing parameter, Ns, indicates the preferred micelle 

morphology. If 𝑁𝑆 ≤ 1 3⁄ , this indicates that each surfactant molecule adopts a conical shape, 

which then self-assembles to form spherical micelles. For 1 3⁄ < 𝑁𝑆 ≤ 1 2⁄ , the surfactant 

molecules form a truncated cone (or frustum), which self-assembles to produce cylindrical 

micelles. Finally, if 𝑁𝑆 > 1 2⁄  the amphiphile has an approximately cylindrical shape, which 

leads to the formation of curved bilayers (vesicles or polymersomes) or planar bilayers 

(lamellae).102, 104 

 

Like surfactants, amphiphilic diblock copolymers can self-assemble when exposed to a solvent 

which is a good solvent for one block but a poor solvent for the other block. The latter structure-

directing block drives aggregation to form a range of nanostructures, depending on the relative 

volume fraction of each block. The packing parameter concept can also be (more loosely) 
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applied to amphiphilic block copolymers (see Figure 1.18). However, in this case it is even 

more difficult to assign reliable experimental values for Vc, lc and a. Nevertheless, it is still a 

useful qualitative concept for explaining the evolution in copolymer morphology that is 

observed when varying the relative volume fractions of the solvophilic and solvophobic blocks. 

 

 

Figure 1.18. Schematic illustration of the three most common morphologies (and their characteristic 

packing parameter, Ns) formed by amphiphilic diblock copolymers in aqueous solution.105 

 

Until relatively recently, the micellar self-assembly of amphiphilic diblock copolymer chains 

has only been achieved by post-polymerisation techniques such as direct dissolution,106 a 

solvent switch,107-108 a pH switch109 or thin film rehydration.110-111 Each of these techniques is 

typically only utilised at rather low copolymer concentrations (typically < 1 % w/w solutions) 

and involves a laborious multistep process.112 This makes industrial scale-up extremely 

problematic. However, the development of polymerisation-induced self-assembly (PISA) over 

the past decade enables the micellar self-assembly of block copolymers to be achieved at much 

higher copolymer concentrations (up to 50% w/w solids) during the synthesis of copolymer 

chains. This approach eliminates the need for post-polymerisation processing steps, and in 

some cases can even be conducted as a high-yielding one-pot synthesis starting from the 

constituent monomers. 
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Polymerisation-Induced Self-Assembly (PISA) 

Within the past decade or so, PISA has become widely recognised as a powerful route for the 

convenient synthesis of a broad range of block copolymer nano-objects at high copolymer 

concentration. In essence, PISA involves chain extension of a soluble polymer (known as a 

macro-CTA) with a second insoluble block in order to drive in situ self-assembly (see Figure 

1.19). The main prerequisite for PISA is a (pseudo)-living polymerisation that enables high 

blocking efficiencies to be achieved.105, 113 In principle, any (pseudo)-living polymerisation 

chemistry can be utilised. However, although spherical micelles have been produced by 

ATRP114-115 and Telluride-mediated polymerisation (TERP),116-117 it is mainly RAFT 

polymerisation and nitroxide-mediated polymerisation (NMP) that have been used to target 

higher order morphologies such as worms or vesicles. The PISA literature is now quite 

extensive, with many studies focusing on either water or lower alcohols as the continuous 

phase. In 2012 Charleux et al. published the first comprehensive review of the various advances 

in PISA using various CRP techniques.118 More recently, Canning et al. summarised recent 

advances in RAFT-mediated PISA.119 Copolymer morphologies that have been observed thus 

far include spheres,105 worms/rods,105 lumpy rods120, vesicles,105 framboidal (raspberry-like) 

vesicles121 and lamellae.122-123  

 

 

Figure 1.19. Schematic representation of the in situ formation of diblock copolymer nanoparticles by 

RAFT-mediated polymerisation-induced self-assembly (PISA) 
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One of the earliest examples of PISA was reported by Ferguson et al. in 2002.124 This 

Australian team aimed to address various technical problems associated with RAFT aqueous 

emulsion polymerisation, including poor molecular weight control, substantially incomplete 

conversions and colloidal instability.125-126 Acrylic acid (AA) was polymerised to a relatively 

low degree of polymerisation via RAFT solution polymerisation in water to afford poly(acrylic 

acid) (PAA). This macro-CTA was then chain-extended with various amounts of water-

immiscible n-butyl acrylate (BA), which was added under monomer-starved conditions. This 

led to the formation of well-defined spherical nanoparticles with a mean diameter of 

approximately 60 nm. THF GPC studies confirmed the expected linear evolution of molecular 

weight against conversion (see Figure 1.20). However, only limited control over the molecular 

weight distribution was achieved, with Mw/Mn values approaching 1.50 at higher conversions. 

These spheres could be used as a seed for further reactions without requiring any additional 

stabiliser.  

 

 

Figure 1.20. (a) THF GPC traces obtained for the chain extension of a poly(acrylic acid) macro-CTA 

with n-butyl acrylate. (b) Linear evolution in molecular weight (filled diamonds) and dispersity (open 

circles) against monomer conversion, where the solid line represents the theoretical molecular weight124 

 

One important disadvantage of RAFT aqueous emulsion polymerisation is that it is difficult to 

access higher order morphologies, with kinetically-trapped spheres being the typical 

morphology in many cases.127-134 For example, Cunningham et al. synthesised a series of 

poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) spheres via 

RAFT aqueous emulsion polymerisation of benzyl methacrylate.127 These spheres could be 

prepared at up to 50 % w/w solids and were characterised by transmission electron microscopy 

(TEM) and dynamic light scattering (DLS), see Figure 1.21a. The mean sphere diameter 

increased linearly with the target degree of polymerisation of the PBzMA core-forming block 
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up to a maximum size of 200 nm for PGMA51-PBzMA1000. Selected spheres were shown to be 

effective oil-in-water Pickering emulsifiers for several oils. Furthermore, pH-modulated 

adsorption onto a phenylboronic acid-functionalised micropatterned planar substrate was 

demonstrated. Control experiments confirmed that this was facilitated by complexation 

between the phenylboronic acid surface groups and the pendent cis-diol units on the PGMA 

stabiliser chains (see Figure 1.21c).  

 

 

Figure 1.21. (a) DLS and TEM diameters determined for PGMA51-PBzMAX spheres against the target 

PBzMA DP. (b) Optical microscopy images obtained for PGMA51-PBzMA100 stabilised Pickering 

emulsions. (c) AFM image illustrating the selective adsorption of PGMA51-PBzMA100 spheres onto a 

micropatterned silicon wafer (squares contain chemically-bound phenylboronic acid groups).127 

 

Davis and co-workers explored the synthesis of ultrahigh molecular weight polystyrene spheres 

(Mn > 106 g mol-1) by RAFT aqueous emulsion polymerisation.133 Initially, a series of P(PEGA-

stat-HEAA) macro-CTAs was prepared via RAFT solution copolymerisation in DMSO, 

incorporating an equimolar amount of each comonomer. These macro-CTAs were each chain- 

extended with styrene to produce near-monodisperse spheres. Copolymer molecular weights 

of up to 70 kg mol-1 could be prepared at high conversion within 6 h at 80 °C with final 

dispersities of around 1.20 (see Figure 1.22). Higher styrene concentrations enabled copolymer 

molecular weights in excess of 1 x 106 g mol-1 to be achieved, while maintaining Mw/Mn values 

below 1.40. Finally, the mean sphere volume increased linearly with molecular weight. 
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Figure 1.22. (a) Evolution of Mn and dispersity against conversion for the synthesis of P(PEGA-stat-

HEAA)-PS diblock copolymer spheres via RAFT aqueous emulsion polymerisation. (b) Linear 

relationship between copolymer volume and molecular weight for a series of P(PEGA-stat-HEAA)-PS 

spheres.133 

 

One of the first documented examples of non-spherical morphologies being obtained via PISA 

was by Wan et al. in 2009.135 In this study, a trithiocarbonate-capped poly(4-vinylpyridine) 

macro-CTA was chain-extended with styrene in methanol via RAFT alcoholic dispersion 

polymerisation. A gradual evolution in copolymer morphology was observed when the 

styrene/AIBN molar ratio was increased from 5,000 to 50,000. The morphology of the particles 

was determined by TEM and field emission scanning electron microscopy (FESEM), and their 

respective sizes were measured by dynamic light scattering (DLS). Periodic sampling of the 

reaction solution indicated that ~12 nm diameter spheres were formed after 2 h, followed by 

an increase in sphere diameter up to 32 nm after 3 h. During the fourth hour, a morphological 

transition from spherical micelles to ‘rod-like’ (with the benefit of hindsight, ‘worm-like’ is 

probably a more accurate description) micelles was observed. The ‘rods’ gradually grew in 

length up to 12 h (see Figure 1.23). From this point until the end of the reaction, the cross-

sectional diameter of the ‘rods’ progressively increased. According to the authors, such rods 

could be dried and then redispersed easily in methanol. While this successfully demonstrates 

the formation of non-spherical particles by PISA, optimisation of the monomer conversion is 

required (currently only 52 % conversion in 6 h at 80 °C)  
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Figure 1.23. FESEM images showing the evolution in copolymer morphology over time.135 

 

Since then, many copolymer morphologies have been reproducibly accessed via PISA. The 

Armes group has used RAFT aqueous dispersion polymerisation to design many types of 

diblock copolymer nano-objects with various morphologies. In particular, the commodity 

monomer HPMA has been widely explored as a weakly hydrophobic core-forming block 

owing to its aqueous solubility as a monomer. For example, Li and Armes chain-extended a 

PGMA macro-CTA using various amounts of HPMA monomer.137 More specifically, a 

PGMA65 macro-CTA was initially prepared in a water/dioxane mixture using 4-

cyanopentanoic acid dithiobenzoate. When this precursor was chain-extended with 30 to 300 

units of HPMA at 10 % w/w, well-defined spherical nanoparticles of 26 to 105 nm diameter 

were obtained, depending on the target DPn of the PHPMA core-forming block (see Figure 

1.24). Interestingly, when the copolymer concentration was increased to 20 % w/w, large 

polydisperse vesicles were observed by TEM. 
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Figure 1.24. Schematic representation of the chain extension of a PGMA65 macro-CTA with HPMA 

via RAFT aqueous dispersion polymerisation. The final particle size can be adjusted depending on the 

DPn of the PHPMA block (X).136 

 

Subsequently, spheres, worms or vesicles have been obtained for various PHPMA-based 

diblock copolymer nanoparticles prepared via RAFT aqueous dispersion polymerisation.138 

Blanazs and co-workers explored the evolution in copolymer morphology that occurs during 

such aqueous PISA syntheses.29 Initially, a well-defined PGMA45 macro-CTA was synthesised 

by RAFT solution polymerisation in ethanol. By fixing the copolymer concentration at 10 % 

w/v, and systematically increasing the target PHPMA DPn, either spheres, worms or vesicles 

could be reproducibly obtained (see Figure 1.25). 

 

Figure 1.25. Representative TEM images of the final particle morphologies (at more than 99% 

conversion and 10 w/v %) observed for a series of six PGMA47-PHPMAx diblock copolymers, where 

x corresponds to (a) 90, (b) 115, (c) 130, (d) 140, (e) 150, and (f) 160. 29 
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Blanazs and co-workers then continued to observe the evolution of worms into vesicles and 

identified some key structural intermediates. They targeted PGMA47-PHPMA200 at 10 % solids 

via RAFT aqueous dispersion polymerisation. The reaction mixture was periodically sampled 

at various monomer conversions, as determined by 1H NMR spectroscopy. TEM was used to 

characterise the evolution in copolymer morphology that occurred during the growth of the 

PHPMA block. The onset of micellar nucleation occurred at 46 % HPMA conversion and was 

accompanied by a five-fold increase in rate of polymerisation. The authors suggest that this 

rate acceleration is due to unreacted HPMA monomer diffusing into the newly-formed polymer 

spheres. These nascent spheres then underwent multiple 1D fusion events to form worms, and 

eventually pure vesicles were observed at high conversion. Interestingly, the transition from 

worms to vesicles proceeds via a series of transient intermediates, including branched worms, 

octopus-like and jellyfish-like structures (see Figure 1.26). The latter intermediate deserves 

particular mention as its hemi-vesicle appearance immediately suggests the opportunity for the 

in situ encapsulation of nanoparticles or other relevant payloads such as proteins.138 

 

Figure 1.26. (a) 1H NMR kinetic data obtained during the synthesis of PGMA47-PHPMA200 diblock 

copolymer nano-objects via aqueous RAFT dispersion polymerisation. The five distinct regions 
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represent molecularly-dissolved chains (M), spheres (S), worms (W), branched worms (BW) and 

jellyfish (J), and vesicles (V). The inset shows a semi-logarithmic plot, indicating that a significant 

acceleration in the rate of polymerisation occurs immediately after micellar nucleation. (b) TEM images 

obtained during the synthesis of PGMA47-PHPMA200, showing the evolution in copolymer morphology 

from worms to vesicles.29 

Later, Blanazs et al. explored the effect of polymerisation parameters on the final morphology 

of PGMA-PHPMA diblock copolymer nanoparticles.30 These polymerisations were conducted 

at various copolymer concentrations while targeting differing degrees of polymerisation for the 

PHPMA block. This systematic approach produced well-defined spheres, worms or vesicles. 

The final copolymer morphology depended on the DPn of the PGMA stabiliser block, the DPn 

of the PHPMA core-forming block and the overall copolymer concentration. Phase diagrams 

in which the copolymer concentration is varied against the degree of polymerisation of the 

PHPMA block were constructed for three different PGMA macro-CTAs. This information is 

of vital importance when targeting specific copolymer morphologies using a particular macro-

CTA (see Figure 1.27). For example, if the PGMA macro-CTA is too long (DPn = 112), then 

only kinetically-trapped can be obtained. If this macro-CTA is relatively short (DPn = 47), then 

either spheres, worms or vesicles can be obtained regardless of the copolymer concentration. 

On the other hand, if an intermediate PGMA DPn is utilised (DPn = 78), then a strong 

concentration dependence is observed for the final copolymer morphology, with higher 

concentrations favouring the formation of worms and vesicles. 

 

 

Figure 1.27. Phase diagrams constructed for PGMA-PHPMA diblock copolymer nano-objects by 

targeting various PHPMA DPs and copolymer concentrations where the mean DP of the PGMA macro-

CTA is (a) 47, (b) 78 or (c) 112.30 

 

Reproducible targeting of pure copolymer morphologies, particularly the relatively narrow 

worm phase, underpinned more detailed studies on such nanoparticles. Blanazs et al. 
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extensively explored PGMA-PHPMA worms.139 Interestingly, these highly anisotropic 

nanoparticles form relatively soft, free-standing physical hydrogels at 10 % w/w solids and 21 

°C. In addition, such highly hydroxylated diblock copolymers exhibit excellent 

biocompatibility. In principle, these worm gels might serve as ideal hydrogels for biomedical 

applications, including new 3D cell culture media. However, such hydrogels invariably require 

rigorous sterilisation. Blanazs et al. found that PGMA54-PHPMA140 worms underwent 

degelation on cooling to 4 °C as a result of a reversible worm-to-sphere morphological 

transition, as corroborated by TEM and small-angle x-ray scattering (SAXS) studies (see 

Figure 1.28). This behaviour proved to be fully reversible, which offered an opportunity to use 

ultrafiltration for convenient sterilisation. Thus, PGMA54-PHPMA140 worms were cooled to 4 

°C to form low-viscosity spherical nanoparticles of 20-30 nm diameter, which easily passed 

through a 0.45 µm filter. On the other hand, fluoresecently-labelled micrometer-sized bacteria 

that had been deliberately added to the original worm gel were completely removed by this 

simple protocol. Then the cold spheres were returned to room temperature and a sterile worm 

gel was reformed. 

 

 

Figure 1.28. Thermoresponsive aqueous solution behavior of a 10 w/w % aqueous dispersion of 

PGMA54-PHPMA140 diblock copolymer particles. A free-standing gel is formed at 21 °C, which 

becomes a free-flowing solution when cooled below 10 °C. TEM studies of grids prepared from a dilute 

aqueous dispersion of PGMA54-PHPMA140 dried at either 21 or 4 °C provide strong evidence for a 

reversible worm-to-sphere transition.139 

 

Potential biomedical applications for these worm gels was explored by Canton et al., who noted 

their structural and chemical similarity to naturally-occurring mucins (see Figure 1.29).78 These 

worm gels proved to be highly biocompatible and were examined as 3D matrices for the storage 

of pluripotent human stem cells and embryos. Remarkably, cells stored within these gels 
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entered stasis and could be stored in this non-proliferative state for up to two weeks at 37 °C 

without the need for any passaging. Once removed from the worm gel, the cells began to 

proliferate again and little or no loss of pluripotency was observed. In addition, human embryos 

stored in such worm gels appear to enter diapause (i.e. delayed gestation) for up to 4 days after 

immersion. 

 

 

Figure 1.29. Schematic representation of the similar physical and chemical (hydroxyl-rich brush) 

structures of naturally-occurring mucin gels and PGMA55-PHPMA135 worm gels.78 

 

Being able to consistently target the worm phase using any given initial PGMA macro-CTA is 

clearly important. Warren et al. collated data based on various PISA syntheses of PGMA-

PHPMA diblock copolymer nano-objects reported in the literature.140 TEM studies were used 

to confirm the morphology and hence construct a master phase diagram (see Figure 1.30a). 

This systematic approach enables each copolymer morphology to be predicted from the mean 

DPn of each block. This information was then used to target worms of various thickness (see 

red stars shown in Figure 1.30a). Shorter copolymer chains with the correct diblock 

composition formed thinner worms, as confirmed by TEM and SAXS studies. Interestingly, 

the DPn of the PHPMA block significantly affected the dynamics and reversibility of the worm-

sphere transition. On cooling to 2 °C, PGMA37-PHPMA80 worms underwent a fully reversible 

worm-to-sphere and a sphere-to-unimer double transition within a relatively short time frame. 

However, these worms appeared to be unstable with respect to dilution. In contrast, PGMA54-

PHPMA140 worms only exhibited a reversible worm-to-sphere transition but remained intact 

on dilution. Finally, PGMA71-PHPMA200 worms only underwent an irreversible worm-sphere 

transition on cooling (see Figure 1.30b).  
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Figure 1.30. (a) Phase diagram constructed for PGMAx-PHPMAy diblock copolymer nano-objects to 

determine the precise copolymer composition for each morphological phase. Each point represents the 

copolymer morphology assigned on the basis of post-mortem TEM studies. Green squares indicate 

spheres, red circles indicate worms, and blue squares indicate vesicles. Shaded boundaries represent 

regions of uncertainty. All copolymer syntheses were conducted at 20% w/w solids except for those 

involving PGMA DPs below 47, which were conducted at 10% w/w solids. These can be included in 

this phase diagram because the copolymer morphologies produced using such short stabilizer blocks 

exhibit no concentration dependence. (b) The effect of the worm composition on the temperature 

dependant worm-sphere transition.140 

 

PISA undoubtedly provides convenient access to a wide range of diblock copolymer nano-

objects. Some of these nanoparticles offer unique properties that suggest potential biomedical 

applications. However, their RAFT end-groups confer unwanted colour and malodour. Given 

their known long-term hydrolytic instability,79 these end-groups are also a potential source of 

toxic small molecule by-products that are likely to compromise biocompatibility. Clearly, it 

would be beneficial if such RAFT end-groups could be simply removed from the diblock 

copolymer nanoparticles at the end of the PISA synthesis. 

 

Aims of this PhD Project 

The main objectives for this industrially-sponsored PhD project are three-fold. Firstly, there is 

commercial interest from the industrial sponsor (GEO) in developing a convenient, cost-

effective and atom-efficient synthesis of high molecular weight (> 1 x 105 g mol-1) PGMA 

homopolymer. In principle, this can be achieved simply by FRP of GMA in either water or 

ethanol. However, in practice, this approach produces highly viscous solutions that require long 

reaction times, does not lead to full monomer conversion and can be susceptible to gelation 

owing to the dimethacrylate content (~0.06 mol %) present within GMA monomer. A potential 
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technical solution to these problems is to polymerise the water-insoluble precursor for GMA, 

isopropylidene glycerol methacrylate (IPGMA), in the form of insoluble PIPGMA latex 

particles by aqueous emulsion polymerisation. The kinetics of emulsion polymerisation are 

usually much faster than that of solution polymerisation, enabling significantly higher degrees 

of conversion to be achieved within comparable (or shorter) time scales. Such heterogeneous 

formulations also address the problem of high viscosity by producing a low-viscosity aqueous 

dispersion. In principle, the emulsion polymerisation of IPGMA can be performed via FRP 

using a suitable commercial surfactant to maintain colloidal stability. Alternatively, PIPGMA 

particles can be prepared via RAFT aqueous emulsion polymerisation, which can potentially 

provide much better control over the MWD by virtue of its pseudo-living character. Thus, a 

relatively short water-soluble PGMA macro-CTA could be chain-extended using water-

immiscible IPGMA to produce PGMA-PIPGMA diblock copolymer nanoparticles. In each 

case, the initial surfactant-stabilised PIPGMA latex or sterically stabilised PGMA-PIPGMA 

nanoparticles can be treated with mineral acid to remove the acetone protecting group and 

convert the water-insoluble PIPGMA component into water-soluble PGMA chains. These two 

approaches will be critically compared in terms of cost, convenience, maximum solids 

concentration, viscosity, monomer conversion and the molecular weight distribution of the 

final high molecular weight PGMA chains to determine the most effective protocol. 

 

Within the last five years or so, GEO has augmented their monomer palette by designing a new 

methacrylic monomer, GEO5MA. This hybrid monomer comprises a series of five EG units 

between the methacrylate backbone unit and the cis-diol end-group. Thus, it can be viewed as 

a hybrid structure that combines structural features found in GMA and oligo(ethylene glycol) 

methacrylate (OEGMA) (see Figure 1.31 for chemical structures). The physicochemical 

properties of GEO5MA and its corresponding homopolymer are yet to be explored, although 

the latter is expected to be water-soluble. Interestingly, there is good literature precedent to 

suggest that the terminal cis-diol group in GMA or GEO5MA could be readily converted into 

an aldehyde using a selective oxidant such as sodium periodate. However, preliminary data 

obtained by a former Armes group post-doc (Dr. N. J. Warren) suggests that, although this 

oxidative transformation can be achieved for PGMA, the resulting homopolymer was no longer 

water-soluble (and appears to be chemically cross-linked). Thus the same transformation will 

be applied to GEO5MA with the expectation that the OEG side-chain should ensure that water 

solubility is retained. If so, this would constitute a very rare example of a water-soluble 
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aldehydic monomer. In principle, this should in turn provide access to a wide range of 

aldehyde-functionalised water-soluble polymers, nanoparticles and polymer brushes.  

 

 

Figure 1.31. The chemical structures of GMA, OEGMA and GEO5MA 

 

The final step of this project examines the efficient removal of RAFT end-groups directly from 

diblock copolymer nano-objects in order to eliminate the intrinsic colour and noxious odour 

associated with these organosulfur groups. Previous work within the Armes group has 

demonstrated that thermoresponsive PGMA-PHPMA worm gels are highly biocompatible, 

readily sterilisable and may have applications for the long-term storage of human stem cells. 

However, the RAFT end-groups should be ideally removed for such biomedical applications, 

preferably retaining the desirable physical properties of such hydrogels. In principle, this can 

be achieved by addition of a suitable nucleophile or a large excess of a radical initiator. 

Although RAFT end-groups can be removed from soluble polymer chains using such 

chemistry, this unfortunately leads to deterioration in the physical properties of the PGMA-

PHPMA worm gels (e.g. a reduction in gel modulus). Herein we explore the use of hydrogen 

peroxide as a cost-effective reagent for the facile RAFT end-group removal from aqueous 

dispersions of PGMA-PHPMA diblock copolymer spheres, worms or vesicles. 
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Introduction 

Over the past two decades reversible addition-fragmentation chain transfer (RAFT) 

polymerisation1-4 has become a well-established route for the synthesis of a wide range of 

controlled-structure functional copolymers for various potential applications.5-10 RAFT 

polymerisation enables good control over target molecular weight, molecular weight 

distribution and copolymer architecture, while also providing access to a wide range of specific 

end-groups.11-18 The recent development of polymerisation-induced self-assembly (PISA) has 

been based largely on RAFT-mediated polymerisation conducted in heterogeneous media.19-26 

PISA has enabled the rational design of a wide range of bespoke block copolymer nanoparticles 

(e.g. spheres, worms, vesicles, framboidal vesicles, platelets etc.)27-30 and certain formulations 

appear to be promising for potential biomedical applications. For example, poly(glycerol 

monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer worm gels are 

readily sterilisable via cold ultrafiltration and induce stasis in human embryonic stem cells.31 

Closely-related disulfide-functional worm gels are sufficiently robust to enable 3D cell culture 

for extended periods in plastic matrices.32 Targeting diblock copolymer vesicles via PISA has 

enabled encapsulation (and, in some cases, the subsequent release) of various model payloads 

such as fluorescently-labelled water-soluble polymers, silica nanoparticles or globular proteins, 

which augurs well for drug delivery applications.12,33,34  

In the context of potential biomedical and cosmetics applications, one of the main drawbacks 

of RAFT-synthesised (co)polymers is the colour, malodour and possible toxicity conferred by 

the sulfur-based end-groups, whether they be dithioesters, trithiocarbonates or xanthantes,4 

RAFT end-group cleavage via hydrolysis35,36 (or other chemistries) results in the formation of 

low molecular weight by-products that may be preferentially internalised within mammalian 

cells, apparently without inducing toxicity in at least some cases.37  

In practice, such problems are often circumvented by pre-emptive removal of the RAFT end-

group under controlled conditions. Not surprisingly, this approach works rather better for 

acrylic (or styrenic) polymers compared to more sterically-congested methacrylic 

polymers.38,39 Numerous chemistries have been employed, such as aminolysis using either 

primary amines or hydrazine;40 ozonolysis,41 bond cleavage using radicals derived from 

addition of excess initiator,42-44  thermolysis45,46 or, more recently, light-mediated removal.47 

However, as far as we are aware, there is only one literature report of using H2O2 for removing 
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RAFT end-groups and this brief study was restricted to the derivatisation of soluble poly(N-

vinyl pyrrolidone) chains in aqueous solution at 80 °C.48  A radical mechanism was proposed, 

whereby hydroxyl radicals generated at elevated temperature replaced each RAFT end-group 

with a terminal alcohol.  

Herein we revisit the use of H2O2 as a means of removing RAFT end-groups from various 

examples of methacrylic diblock copolymer nanoparticles in aqueous solution. In this context, 

the non-ionic nature and relatively low molecular weight of H2O2 might be expected to offer a 

significant advantage in terms of its faster ingress within the nanoparticle interior. Moreover, 

it is emphasised that H2O2 is relatively cheap and produces only water and oxygen as by-

products. It is perhaps also noteworthy that relatively few RAFT end-group derivatisation 

studies have focused on methacrylic copolymers, rather than the more reactive acrylic or 

styrenic copolymers. 

 

Experimental 

Materials  

Glycerol monomethacrylate (GMA, 99.8%), 2-hydroxypropyl methacrylate (HPMA, 99.3%) 

and benzyl methacrylate (BzMA, 99.2%) were donated by GEO Specialty Chemicals (Hythe, 

UK) and used without further purification. The synthetic route used to obtain HPMA results in 

the production of two isomeric forms.49 The isomeric composition was confirmed by 1H NMR 

spectroscopy. The ‘HPMA’ monomer actually contained 75 mol % HPMA, with the remainder 

being its closely related isomer, 2-hydroxyisopropyl methacrylate [HIPMA].  

4,4′-Azobis(4-cyanopentanoic acid) (ACVA, 99%) and dichloromethane were purchased from 

Sigma-Aldrich (UK) and were used as received. 2-Cyano-2-propyldithiobenzoate (CPDB) was 

purchased from Strem Chemicals Ltd. (Cambridge, UK) and was used as received. 4-Cyano-

4-(2-phenylethanesulfanylthiocarbonyl)sulfanylpentanoic acid (PETTC) RAFT agent was 

synthesised as previously reported.50 For the sake of brevity, the acronyms DB and TTC are 

used to denote dithiobenzoate and trithiocarbonate end-groups for the various copolymers 

prepared in this study. Deuterated DMF and methanol were purchased from Goss Scientific 

Instruments Ltd. (Crewe, UK). All other solvents were purchased from Fisher Scientific 

(Loughborough, UK) and used as received. Deionised water was used for all experiments.  
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Protocol for the synthesis of PGMA macro-CTAs 

Synthesis of a dithiobenzoate functionalised poly(glycerol monomethacrylate) PGMA52 chain 

transfer agent is representative of all dithiobenzoate functionalised macro-CTAs and was 

prepared as follows. GMA monomer (25.0 g, 156.1 mmol) and CPDB RAFT agent (0.864 g, 

3.9 mmol; target degree of polymerisation, DP = 40) were weighed into a 100 mL round-

bottomed flask and purged under N2 for 30 min. ACVA initiator (218.6 mg, 0.78 mmol; 

CTA/ACVA molar ratio = 5.0) and anhydrous ethanol (49.6 mL; previously purged with N2 

for 30 min) were then added, and the resulting red solution was degassed for a further 10 min. 

The flask was subsequently sealed and immersed into an oil bath set at 70 °C. After 100 min, 

the GMA polymerisation was quenched by exposing to air, immersing in liquid nitrogen for 30 

seconds, followed by dilution with methanol (100 mL). A final GMA conversion of 78 % was 

determined by 1H NMR analysis. The methanolic PGMA solution was precipitated into a ten-

fold excess of dichloromethane. After filtration, the crude PGMA precipitate was washed with 

dichloromethane, dissolved in water and residual dichloromethane was evaporated under 

reduced pressure. The resulting aqueous solution was freeze-dried overnight to yield a pink 

powder. 1H NMR analysis indicated a number-average degree of polymerisation of 52 for this 

PGMA-DB macro-CTA (Mn = 13,600, Mw/Mn = 1.19, see Figure 2.1). This suggests a CTA 

efficiency of around 60 %. 

Synthesis of a trithiocarbonate-functionalised PGMA52 macro-CTA was performed using 

PETTC RAFT agent (target degree of polymerisation, DP = 55) instead of CPDB via the same 

general protocol as that described above. A final GMA conversion of 70% was determined by 

1H NMR analysis. The crude copolymer was purified via precipitation from methanol into 

excess dichloromethane to yield a yellow powder. 1H NMR analysis indicated a number-

average degree of polymerisation of 52 for this PGMA-TTC macro-CTA (Mn = 13,700, Mw/Mn 

= 1.26, see Figure 2.1). This suggests a CTA efficiency of around 74 %. 
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Figure 2.1. (a) Integrated 1H NMR spectra and (b) DMF GPC chromatograms for G52-TTC, G52-DB, 

G61-DB and G104-DB macro-CTAs  

 

Synthesis of PGMA104-PHPMAy diblock copolymer spheres 

These diblock copolymer nanoparticles were prepared via RAFT aqueous dispersion 

polymerisation, as reported by Blanazs et al.51 As a typical example, PGMA104-PHPMA600 

spheres were synthesised as follows. PGMA104-DB macro-CTA (0.332 g, 19.7 µmol), HPMA 

monomer (1.70 g, 11.8 mmol; target DP = 600) and ACVA initiator (1.84 mg, 6.55 µmol; 

macro-CTA/ACVA molar ratio = 3.0) were weighed into a 50 mL round-bottomed flask and 

dissolved in deionised water (18.3 mL). The resulting solution was purged under N2 for 30 min 

before being sealed and immersed in an oil bath at 70 °C for 5 h. The HPMA polymerisation 

was quenched by exposure to air. A final HPMA conversion of more than 99 % was determined 
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by 1H NMR analysis. These copolymer spheres were characterised by DMF GPC without 

further purification and used directly for RAFT end-group removal experiments (Mn =79,100, 

Mw/Mn =1.24, see Figure 2.2). 

 

 

Figure 2.2. (a) Integrated 1H NMR spectra and (b) DMF GPC chromatograms for G104-HX (X = 300, 

600, 900) diblock copolymer spheres 

 

Synthesis of PGMA52-PHPMA135 diblock copolymer worms 

These diblock copolymer nanoparticles were prepared via RAFT aqueous dispersion 

polymerisation, as reported by Blanazs et al.51 A typical protocol used for the PISA synthesis 

of PGMA52-PHPMA135 worms was as follows. PGMA52 macro-CTA (3.60 g, 0.395 mmol) and 

HPMA monomer (7.70 g, 53.5 mmol; target DP = 135) were weighed into a 25 mL round-
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bottomed flask and purged with N2 for 20 min. ACVA was added (28.3 mg, 0.101 mmol, 

CTA/ACVA molar ratio = 5.0) and purged with N2 for a further 5 min. Deionised water (46.1 

mL, producing a 20.0% w/w aqueous solution) that had been previously purged with N2 for 30 

min was then added and the solution was degassed for a further 5 min prior to immersion in an 

oil bath set at 70 °C. This reaction solution was stirred for 3 h before the polymerisation was 

quenched by exposure to air. These copolymer worms were characterised by DMF GPC 

without further purification and used directly for RAFT end-group removal experiments (Mn = 

35,600, Mw/Mn = 1.12, see Figure 2.3). 

 

Figure 2.3. (a) Integrated 1H NMR spectra and (b) DMF GPC chromatograms for G52-H135-TTC and 

G52-H135-DB worms, G61-B100 spheres and G52-H400 vesicles 
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Synthesis of PGMA52-PHPMA400 diblock copolymer vesicles 

These diblock copolymer nanoparticles were prepared via RAFT aqueous dispersion 

polymerisation, as reported by Blanazs et al.51 PGMA52-DB macro-CTA (0.133 g, 15.6 µmol), 

HPMA monomer (0.90 g, 6.2 mmol; target DP = 400) and ACVA initiator (1.46 mg, 5.20 

µmol, CTA/ACVA molar ratio = 3.0) were weighed into a 25 mL round-bottomed flask and 

dissolved in deionised water (9.31 mL). The resulting solution was purged under N2 for 30 min 

before being sealed and immersed in an oil bath at 70 °C for 4 h. The HPMA polymerisation 

was quenched by exposure to air and a final HPMA conversion of more than 99 % was 

determined by 1H NMR analysis. These copolymer vesicles were characterised without further 

purification and used directly for RAFT end-group removal experiments (Mn = 101,700, 

Mw/Mn = 1.32, see Figure 2.3). 

Synthesis of PGMA61-PBzMA100 diblock copolymer spheres  

These diblock copolymer nanoparticles were prepared via RAFT aqueous emulsion 

polymerisation, as reported by Cunningham et al.52 PGMA61-DB macro-CTA (0.368 g, 36.9 

µmol), BzMA monomer (0.65 g, 3.69 mmol; target DP = 100) and ACVA initiator (3.45 mg, 

12.3 µmol; macro-CTA/ACVA molar ratio = 3.0) were weighed into a 25 mL round-bottomed 

flask and dissolved in deionised water (9.19 mL). The resulting solution was purged under 

N2 for 30 min before being sealed and immersed in an oil bath at 70 °C for 4 h. The BzMA 

polymerisation was quenched by exposure to air and a final BzMA conversion of more than 99 

% was determined by 1H NMR analysis. These copolymer spheres were characterised without 

further purification and used directly for RAFT end-group removal experiments (Mn = 15,600, 

Mw/Mn = 1.26, see Figure 2.3). 

H2O2 protocol for cleavage of RAFT end-groups 

The dithiobenzoate end-groups on PGMA104-PHPMA600 spheres were cleaved as follows: A 

10 % w/w copolymer dispersion (3.0 mL) was diluted to 7.5 % w/w by addition of deionised 

water (1.0 mL). H2O2 (1.48 µL, 14.5 µmol; H2O2/CTA molar ratio = 5.0) was added to this 

dispersion as a 30 % w/w aqueous solution. The resulting reaction solution was immersed in 

an oil bath at 70 °C and left exposed to air. The intrinsic pink colouration disappeared after 

around 7 h as judged by visual inspection. The trithiocarbonate end-groups on PGMA52-
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PHPMA135 worms were cleaved using the same protocol. Visual inspection indicated that the 

initial yellow colouration almost completely disappeared after 8 h. Preliminary experiments 

were conducted at pH 6, but subsequent more detailed studies were conducted at pH 3-4, with 

these lower values arising from the presence of the carboxylic acid-functionalised ACVA 

initiator and RAFT CTA (PETTC). 

 

Characterisation Techniques 

NMR Spectroscopy. All 1H NMR spectra were recorded in either deuterated methanol (for the 

PGMA macro-CTAs and PGMA-PHPMA diblock copolymers) or deuterated DMF (for the 

PGMA-PBzMA diblock copolymers) using a 400 MHz Bruker Avance-400 spectrometer (64 

scans averaged per spectrum). 

 

Gel Permeation Chromatography (GPC). Copolymer molecular weights and polydispersities 

were determined using an Agilent 1260 Infinity GPC system equipped with both refractive 

index and UV-visible detectors. Two Agilent PL gel 5 μm Mixed-C columns and a guard 

column were connected in series and maintained at 60°C. HPLC-grade DMF containing 10 

mM LiBr was used as eluent and the flow rate was set at 1.0 mL min−1. DMSO was used as a 

flow-rate marker. The refractive index detector was used for calculation of molecular weights 

and polydispersities by calibration using a series of ten near-monodisperse poly(methyl 

methacrylate) standards (with Mn values ranging from 625 to 618,000 g mol−1). UV GPC 

chromatograms were obtained simultaneously by detection at a fixed wavelength of 309 nm 

which corresponds to the absorption maximum assigned to the dithiobenzoate or 

trithiocarbonate RAFT end-groups. 

 

UV-visible absorption spectroscopy. Absorption spectra were recorded between 200 and 800 

nm using a Shimadzu UV-1800 spectrophotometer. For kinetic studies, 0.10 mL aliquots were 

diluted ten-fold by addition of methanol (0.90 mL). Measurements were also conducted on 

purified freeze-dried copolymers after redispersing in water at either 0.25 mg mL-1 or 5 mg 

mL-1
 in order to observe absorption maxima at 309 nm and 550 nm, respectively.  
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Transmission Electron Microscopy (TEM). Copolymer dispersions were diluted fifty-fold at 

20°C to generate 0.20% w/w dispersions. Copper/palladium TEM grids (Agar Scientific, UK) 

were coated in-house to produce a thin film of amorphous carbon. These grids were then treated 

with a plasma glow discharge for 30 seconds to create a hydrophilic surface. Each aqueous 

diblock copolymer dispersion (12 μL; 0.20% w/w) was placed on a freshly-treated grid for 1 

min and then blotted with filter paper to remove excess solution. To stain the deposited 

nanoparticles, an aqueous solution of uranyl formate (9 μL; 0.75% w/w) was placed on the 

sample-loaded grid via micropipet for 20 s and then carefully blotted to remove excess stain. 

Each grid was then carefully dried using a vacuum hose. Imaging was performed using a FEI 

Tecnai Spirit TEM instrument equipped with a Gatan 1kMS600CW CCD camera operating at 

120 kV.  

 

Oscillatory Rheology experiments An AR-G2 rheometer equipped with a variable temperature 

Peltier plate, a 40 ml 2° aluminium cone and a solvent trap was used for all experiments. 

Temperature sweeps were conducted at an angular frequency of 1.0 rad s−1 and a constant strain 

of 1.0 %. The temperature was increased by 1.0 °C between each measurement, allowing an 

equilibration time of 2 min in each case. A solvent trap was required to prevent evaporation of 

water over the time scale of these experiments. 

 

Results and Discussion 

A series of PISA-synthesised diblock copolymer nano-objects were examined in this study. 

These nano-objects were carefully selected in order to enable various comparisons to be made. 

In particular we wished to explore: (i) the effect of varying the particle diameter for a series of 

spherical nanoparticles; (ii) the effect of copolymer morphology (i.e. spheres vs. worms vs. 

vesicles); (iii) the extent to which the hydrophobic character of the core-forming block retarded 

ingress of the H2O2 reagent; (iv) whether trithiocarbonate end-groups (TTC) could be removed 

as readily as dithiobenzoate end-groups (DB) from otherwise identical nano-objects. For the 

sake of brevity, the three PGMA, PHPMA and PBzMA blocks investigated in this study are 

abbreviated to G, H and B in all of the Figures and Tables, with the number-average degrees 

of polymerisation (DPn) of each block being indicated in subscript. 

Recently, we have designed a range of thermoresponsive PGMA-PHPMA worm gels for 

various biomedical applications, including highly biocompatible 3D cell culture matrices32,53 
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induction of stasis in human stem cell colonies31 and the cryopreservation of red blood cells.54 

For such biomaterials, the removal of RAFT end-groups is likely to be important for FDA 

approval, so in our initial experiments we focused on one such system. 

For the preparation of the PGMA-PHPMA-DB worm gel examined in this study, HPMA was 

polymerised using a well-defined PGMA52-DB macro-CTA (see Figure 2.1 for the 

characterisation of this macro-CTA) to almost full conversion (> 99 %, see Scheme 2.1a), as 

indicated by the disappearance of the vinyl proton signals at 5.5 and 6.2 ppm. According to 1H 

NMR spectroscopy, the mean diblock copolymer composition was calculated to be PGMA52-

PHPMA135. DMF GPC analysis (refractive index detector) indicated that this diblock 

copolymer had an Mn of 35,600 g mol-1 and an Mw/Mn of 1.12.  

 

 

Scheme 2.1. Reaction schemes for (a) the synthesis of a Gx-Hy-DB diblock copolymer via RAFT 

aqueous dispersion polymerisation, (b) the synthesis of a Gx-Hy-TTC diblock copolymer via RAFT 

aqueous dispersion polymerisation, (c) the synthesis of a Gx-By-DB diblock copolymer via RAFT 

emulsion dispersion polymerisation. 
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Initial attempts to cleave RAFT end-groups involved treating a 7.5 % w/w PGMA52-

PHPMA135-DB worm gel with various amounts of H2O2 in the presence of air at 70 °C (see 

Scheme 2.2). In each case, UV-visible absorption spectra were recorded after diluting the 

aqueous dispersion ten-fold with methanol to produce 9:1 methanol/water solutions.  

Normalised absorbance vs. time plots (see Figure 2.4) indicated that more than 90 % of 

dithiobenzoate end-groups could be removed using a H2O2/dithiobenzoate molar ratio of either 

5.0 or 10.0. Lower molar ratios required rather long reaction times, whereas higher molar ratios 

led to the evolution of a high molecular weight shoulder in the GPC chromatogram (see Figure 

2.5) and also produced subtle differences in the copolymer worm rheology (see Figure 2.6). 

On the basis of these preliminary experiments, a H2O2/dithiobenzoate molar ratio of 5.0 was 

selected for more detailed studies.  

 

 

 

Scheme 2.2. Proposed reaction scheme for the removal of dithiobenzoate end-groups from PGMAx-

PHPMAy diblock copolymer nano-objects using H2O2 in water. 
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Figure 2.4. Normalised absorbance plots obtained using UV spectroscopy for the rate of removal of 

dithiobenzoate (DB) end-groups from 7.5% w/w aqueous dispersions of poly(glycerol 

monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G52-H135-DB) worms. These data sets were 

obtained by monitoring the progressive attenuation of the UV absorption (λmax = 309 nm) using the 

stated H2O2/DB molar ratios at 70 °C and pH 4-6. 

 

Figure 2.5. DMF GPC traces recorded for G52-H135-DB before (black) and after (red) H2O2 treatment. 

Conditions: H2O2/dithiobenzoate molar ratio = 20 for 3 h at 70 °C. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

N
o

rm
al

iz
e

d
 A

b
so

rb
an

ce
 @

 3
0

9
 n

m
 

Time / min

[H2O2]/[DB] = 1 

[H2O2]/[DB] = 5 

[H2O2]/[DB] = 10 



Chapter 2 - H2O2 enables convenient removal of RAFT end-groups from block copolymer 

nano-objects prepared via polymerisation-induced self-assembly in water 

___________________________________________________________________________ 

66 

 

 

Figure 2.6. Gel storage modulus (G’, closed symbols) and loss modulus (G”, open symbols)  vs. 

temperature plots obtained for a G52-H135-DB worm gel before (black) and after (red) treatment with 

H2O2. Conditions: [H2O2]/[DB] = 20 for 3 h at 70 °C. Note that a weaker worm gel is obtained after 

H2O2 treatment (G’ = 71 Pa, vs. G’ = 96 Pa originally) and the critical gelation temperature (CGT) is 

raised from 19 °C to 21 °C. 

 

End-group removal from a 7.5 % w/w aqueous dispersion of PGMA52-PHPMA135-DB worms 

using a H2O2/dithiobenzoate molar ratio of 5.0 was repeated on a gram scale to enable full 

characterisation. Visual inspection indicated almost complete removal of the initial pink 

colouration, producing a white dispersion after 2 h at 70 °C.  After purification by dialysis, 1H  

NMR studies indicated disappearance of the aromatic signals at 7.5 – 8.0 ppm assigned to the 

dithiobenzoate group (see Figure 2.4a), suggesting successful end-group removal. Comparison 

of the remaining integrated copolymer signals suggests little effect on the overall copolymer 

composition. DMF GPC chromatograms obtained for PGMA52-PHPMA135 before and after 
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H2O2 treatment are similar, although a high molecular weight shoulder becomes slightly more 

prominent (see Figure 2.7b). However, there are only minimal change in Mn (from 35,600 g 

mol-1 to 35,700 g mol-1) and Mw/Mn (from 1.12 to 1.16), suggesting little change in the 

molecular weight distribution of this copolymer.  

 

Figure 2.7. (a) 1H NMR spectra recorded before and after removal of the dithiobenzoate (DB) end-

group from a 7.5 % w/w G52-H135 diblock copolymer aqueous dispersion by exposure to H2O2 for 160 

min in water (pH 4-6, 70 °C) using a [H2O2]/[DB] molar ratio of 5.0; a refractive index detector was 

used to obtain molecular weight data (vs. poly(methyl methacrylate) standards).  

 

A white powder was produced on freeze-drying the purified copolymer, which was dissolved 

in methanol and analysed by UV-visible spectroscopy in order to assess the extent of end-group 

removal (see Figure 2.8a). Methanol is a good solvent for both PGMA and PHPMA blocks, 

therefore this protocol leads to molecular dissolution of the copolymer chains and hence 

minimises light scattering effects on the spectra. Dithiobenzoate end-groups exhibit a 

characteristic absorbance at 309 nm, which is clearly visible in the original PGMA52-

PHPMA135 copolymer spectrum. However, H2O2 treatment of the aqueous copolymer 

dispersion (H2O2/dithiobenzoate molar ratio = 5.0; 70 °C for 160 min) leads to almost complete 

disappearance of this 309 nm peak. However, a relatively weak new absorption appears at 

approximately 270 nm, which prevents the absorbance at 309 nm falling to zero. The origin of 

this new spectral feature is currently unclear and probably warrants further studies. Similar 

observations are made in the corresponding visible region of the same spectrum (Figure 2.8b): 

the much weaker absorption located at around 509 nm almost completely disappears. This is 
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consistent with the digital images shown in Figure 2.8c, which confirm the complete removal 

of the pink colouration from the freeze-dried copolymer powder. Moreover, a tube inversion 

test indicated that thermo-reversible degelation can still be induced on cooling a reconstituted 

H2O2-treated copolymer worm gel from 37 °C to 4 °C. These observations were confirmed 

using variable temperature oscillatory rheology studies (Figure 2.9). Moreover, such gel 

rheology data are almost identical to the data set obtained for the original worm gel prior to 

H2O2 treatment. In particular, there is almost no change in the gel modulus, G’, at 37 °C or in 

the critical gelation temperature (CGT) for this worm gel. 

 

 

Figure 2.8. (a) UV-visible absorption spectra recorded for 0.25 mg mL-1 G52-H135 diblock copolymer 

solutions in methanol before and after dithiobenzoate end-group removal ([H2O2]/[DB] = 5.0, 70 °C, 

160 min) . (b) Visible absorption spectra obtained for the same copolymers at 5.0 mg mL-1 in methanol 

indicating the disappearance of the relatively weak absorption band at approximately 500 nm (which 

corresponds to the intrinsic pink colour conferred by the RAFT chain-end). (c) Digital image showing 

the freeze-dried G52-H135 copolymer before and after dithiobenzoate end- group removal. 
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Figure 2.9. Temperature-dependent oscillatory rheology studies on a 10 % w/w G52-H135 worm gel 

before (G52-H135-DB) and after (G52-H135) treatment with H2O2 to remove the dithiobenzoate chain-

ends. The freeze-dried powder was redispersed in cold 150 mM PBS at 2 °C. Inset digital images show 

a 10 % w/w dispersion of the reconstituted G52-H135 copolymer after end-group removal as a free 

flowing liquid at 2°C and a free-standing gel at 37 °C.   

 

The kinetics of dithiobenzoate end-group removal at 70 °C from H2O2-treated PGMA104-

PHPMA300-DB spheres was conducted by extracting a series of aliquots from the 7.5 % w/w 

copolymer dispersion after various time periods and subsequently diluting ten-fold with 

methanol (to produce a 9:1 methanol/water solution) prior to analysis by UV-visible 

spectroscopy at 20 °C. As expected, gradual attenuation in the 309 nm absorption band was 

initially observed (see Figure 2.10a). However, apparently no further reduction occurred after 

approximately 6 h. Inspecting the evolution in UV spectra more closely, this artefact appears 

to be the result of an additional spectral feature at 270 nm, which is associated with the 

formation of unknown low molecular weight degradation products. In order to circumvent this 

problem, further end-group removal studies were conducted using UV GPC analysis. By 
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setting the UV detector to a fixed wavelength of 309 nm, it was possible to monitor the extent 

of end-group removal for copolymer chains bearing either a dithiobenzoate or a 

trithiocarbonate end-group. The decisive advantage of this approach is that fractionation of the 

copolymer chains from the small molecule impurities occurs in the GPC column prior to 

analysis. Thus there is no longer any interference from the small molecule impurities absorbing 

at shorter wavelengths, which aids quantification. For this particular data set, an overall 96 % 

reduction in the original UV signal was observed within 8 h (see Figure 2.10b). At this point, 

we examined whether full end-group removal could be achieved given a sufficiently long 

reaction time. Thus the H2O2 treatment was extended from 8 h to 24 h at 70 °C, which led to 

an overall reduction in the original UV GPC signal of 98 % (see Figure 2.11). 

 

Figure 2.10. (a) UV  spectra and (b) UV GPC chromatograms (recorded at a λmax of 309 nm) obtained 

during kinetic studies of the removal of dithiobenzoate end-groups from a 7.5 % w/w G104-H300 aqueous 

dispersion using a H2O2/dithiobenzoate molar ratio of 5.0 at 70 °C in water (pH 3-4). All GPC samples 

were diluted to 7.5 mg mL-1 prior to analysis.  
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Figure 2.11. DMF GPC chromatograms (UV detector) of G104-HX-DB spheres before end-group 

removal and after H2O2 treatment for 24 h (see arrows) using a H2O2/dithiobenzoate molar ratio of 5.0 

at 70 °C. In each case at least 98 % of the original end-groups are removed. 

Applying this optimised analytical protocol to the PGMA52-PHPMA135-DB worms (see Figure 

2.9) indicated a 95 % reduction in RAFT end-group concentration within 2.5 h at 70 °C. 

Moreover, the rate of end-group removal achieved for this aqueous dispersion of copolymer 

worms was comparable to that achieved for a water-soluble dithiobenzoate PGMA52-DB 

homopolymer precursor under the same conditions (i.e. same molar concentration of 

dithiobenzoate groups) (see Figure 2.12). This indicates that the H2O2 reagent can readily 

access the dithiobenzoate end-groups within the weakly hydrophobic PHPMA cores, which is 

consistent with the partially hydrated nature of these core-forming chains.53 Essentially the 

same PGMA52-PHPMA135-TTC diblock copolymer worms (Mn = 37,400 gmol-1, Mw/Mn = 

1.15) were also prepared at 10% w/w solids using PETTC (see Scheme 2.1b), which is a well-

known trithiocarbonate-based RAFT agent.55 On dilution, the resulting 7.5% w/w copolymer 

worm dispersion was also treated with H2O2 under identical conditions as those utilised for the 

dithiobenzoate-functionalised copolymer worms. However, the kinetic data obtained by 

monitoring the UV GPC signal at 309 nm suggest that trithiocarbonate cleavage proceeded 

significantly more slowly than dithiobenzoate cleavage, with only around 89% end-group 

removal being achieved within 7 h at 70 °C (see Figure 2.12). This was not unexpected given 

that trithiocarbonates are known to exhibit greater hydrolytic stability compared to 

dithiobenzoates.35 The effect of varying the nature of the core-forming chains on the extent of 



Chapter 2 - H2O2 enables convenient removal of RAFT end-groups from block copolymer 

nano-objects prepared via polymerisation-induced self-assembly in water 

___________________________________________________________________________ 

72 

 

end-group removal was also investigated by replacing the PHPMA block with the more 

hydrophobic PBzMA block. More specifically, a dithiobenzoate-based PGMA61-DB macro-

CTA (see Figure 2.1 for characterisation of this macro-CTA) was used to prepare 

PGMA61
_PBzMA100-DB spheres via RAFT aqueous emulsion polymerisation (see Scheme 

2.1c) according to a protocol recently reported by Cunningham et al.52 This diblock 

composition was selected so that the mean diameter of these spheres was approximately 25 

nm, which is comparable to the mean width of the dithiobenzoate-based PGMA52-PHPMA135 

worms (as estimated by TEM studies). On treating these PGMA61
_PBzMA100-DB spheres with 

H2O2 the rate of end-group removal was found to be very slow, with 57 % of end-groups 

remaining after 8 h as judged by UV GPC (see Figure 2.12). This suggests that, despite its non-

ionic nature and relatively low molecular weight, diffusion of the H2O2 reagent into the PBzMA 

cores is severely retarded compared to PHPMA cores. 

 

Figure 2.12. Kinetic plots for the rate of removal of dithiobenzoate or trithiocarbonate end-groups using 

a [H2O2]:[end-group] molar ratio of 5.0 at 70 °C and pH 3-4. (a) 7.5 % w/w dithiobenzoate-terminated 

poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (G61-B100) spheres of 24 nm diameter; (b) 

7.5 % w/w trithiocarbonate-terminated poly(glycerol monomethacrylate)-poly(2-hydroxypropyl 

methacrylate) worms (G52-H135-TTC); (c) 7.5 % w/w dithiobenzoate-terminated poly(glycerol 

monomethacrylate)-poly(2-hydroxypropyl methacrylate) worms (G52-H135-DB); (d) 2.3 % w/w 

(equimolar to G52-H135-DB)  dithiobenzoate-terminated molecularly-dissolved poly(glycerol 

monomethacrylate) chains (G52-DB). 
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In a related series of experiments, three examples of PGMA104-PHPMAx-DB spheres (where x 

= 300, 600 or 900, which correspond to mean DLS hydrodynamic diameters of 54 nm, 81 nm 

and 117 nm respectively) were also subjected to H2O2 treatment followed by UV GPC analysis 

(see Figure 2.13). The purpose of these experiments was to examine whether particle size had 

any effect on the rate of end-group removal.  Normally, slower H2O2 ingress might be expected 

for larger particles, but if the PHPMA cores are relatively hydrated then in principle there might 

be no physical barrier to the diffusion of this reagent. 

 

 

Figure 2.13. Kinetic plots for the rate of removal of dithiobenzoate end-groups from poly(glycerol 

monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G104-Hy) aqueous dispersions as judged by 

UV GPC analysis (λmax = 309 nm) using a [H2O2]:[end-group] molar ratio of 5.0 at 70 °C and pH 3-4. 

(a) 7.5 % w/w G104-H300 spheres of 51 nm diameter; (b) 7.5 % w/w G104-H600 spheres of 81 nm diameter; 

(c) 7.5 % w/w G104-H900 spheres of 117 nm diameter; (d) 18.0 % w/w G104-H900 spheres of 117 nm 

diameter.  
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H2O2 treatment (using a H2O2/dithiobenzoate molar ratio = 5.0 at 70 °C) of these PGMA104-

PHPMA300-900-DB spheres at a fixed 7.5% w/w copolymer concentration led to a significant 

reduction in the rate of end-group removal with increasing PHPMA DP (see Figure 2.13). At 

first sight, this suggests a slower rate of H2O2 ingress into the larger spheres. However, targeting 

a higher DP at the same fixed copolymer concentration inevitably means a lower concentration 

of dithiobenzoate end-groups. Comparing the rate of end-group cleavage for PGMA104-

PHPMA300 spheres at 7.5% w/w with that for PGMA104-PHPMA900 spheres at 18.0% w/w (i.e., 

at the same molar concentration of dithiobenzoate end-groups) indicates essentially no 

difference in kinetics (see Figure 2.13). This confirms that the partially hydrated PHPMA cores 

of this series of spheres present no diffusional barrier to H2O2 ingress, at least for the particle 

size range investigated herein. 

Finally, 10% w/w aqueous dispersions of PGMA104-PHPMA600-DB spheres, PGMA52-

PHPMA135-DB worms and PGMA58-PHPMA400-DB vesicles were each subjected to H2O2 

treatment (H2O2/dithiobenzoate molar ratio = 5.0; 70 °C for 3 h). In each case a high degree of 

decolourisation was observed, indicating almost complete cleavage of the dithiobenzoate end-

groups (see digital images shown in Figure 2.14). Moreover, it is perhaps worth emphasising 

that, if any loss of RAFT end-groups did occur during such PISA syntheses, then the relatively 

low levels (2-5% in most cases) of residual RAFT end-groups determined by UV GPC analysis 

actually represent upper limit values. TEM studies confirmed that this derivatisation protocol 

produced no discernible effect on the copolymer morphology, with comparable images being 

obtained before and after H2O2 treatment in each case (Figure 2.14).  
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Figure 2.14. TEM and digital images recorded for 10 % w/w aqueous copolymer dispersions of G104-

H600 spheres, G52-H135 worms and G58-H400 vesicles before and after treatment using H2O2 at a 

[H2O2]/[DB] molar ratio of 5.0 for 3 h at 70 °C and pH 3-4. 

 

Moreover, DMF GPC analysis (using a refractive index detector) indicated only minimal 

changes (often within experimental error) in the Mn values obtained for each of the seven H2O2-

treated diblock copolymers examined in this study and also a PGMA52-DB macro-CTA control 

(see Table 2.1 and also Figure 2.15). The Mw/Mn values are typically slightly higher after 

derivatisation, but overall the extent of chemical degradation appears to be very modest. Longer 

reaction times of up to 7 h also led to no discernible change in the GPC chromatograms 

recorded for PGMA104-PHPMA300-900-DB spheres (see Figure 2.16).  
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Table 2.1. Summary of molecular weight data obtained using DMF GPC (refractive index detector; vs. 

poly(methyl methacrylate) calibration standards) before and after H2O2 treatment for the series of 

diblock copolymer nano-objects used in this study. 

Copolymer 

composition 

Copolymer 

morphology 

 Mn / g mol-1  Mw/Mn 

 Before After  Before After 

G52-DB 
Dissolved 

chains 
 15,700 15,500  1.18 1.19 

G52-H135-DB Worms  35,600 35,700  1.12 1.16 

G52-H135-TTC Worms  37,400 34,900  1.15 1.20 

G61-B100-DB Spheres  15,600 16,800  1.26 1.29 

G104-H300-DB Spheres  58,600 56,600  1.19 1.24 

G104-H600-DB Spheres  79,100 74,300  1.24 1.28 

G104-H900-DB Spheres  136,100 129,500  1.46 1.46 

G52-H400-DB Vesicles  101,700 106,300  1.32 1.40 

 

 

Figure 2.15. GPC chromatograms recorded for the G52-DB macro-CTA before (blue traces) and after 

(red traces) end-group removal via H2O2 treatment using a H2O2/dithiobenzoate molar ratio of 5.0 at 70 

°C: (a) minimal change in the molecular weight distribution as judged using a refractive index detector 

and (b) 97 % disappearance in the 309 nm signal associated with the RAFT end-group using the UV 

detector. 
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Figure 2.16. DMF GPC chromatograms (refractive index detector) of G104-HX-DB spheres before end-

group removal and after H2O2 treatment for 7 h using a H2O2/dithiobenzoate molar ratio of 5.0 at 70 °C. 

Note that there is minimal change in the molecular weight distributions under these optimised end-

group removal conditions. 

 

Although a hydroxyl radical mechanism was proposed by Pfukwa et al.48, the following 

observations indicate that an oxidation mechanism may be more likely, at least under the end-

group cleavage conditions described herein. Two identical batches of the same dithiobenzoate-

functionalised PGMA52-PHPMA135 copolymer were subjected to end-group removal using 

H2O2 (H2O2/dithiobenzoate molar ratio = 5.0; 7.5 % w/w copolymer dispersion; 70 °C). One 

batch was degassed for 30 min using N2 prior to end-group removal, with UV-visible 

spectroscopy studies indicating that dithiobenzoate cleavage was complete within about 240 

min. In contrast, the second batch was not degassed and remained exposed to air during the 

H2O2 reaction.  In this case, dithiobenzoate cleavage was complete within 150 min (see Figure 

2.17). This rate acceleration in the presence of oxygen is consistent with an oxidative 

mechanism. Moreover, oxygen is a well-known retarder of radical-based reactions (e.g. free 

radical polymerisations or RAFT polymerisations). In summary, we suggest that H2O2-

mediated end-group removal may proceed via an oxidative mechanism, rather than a radical 

mechanism. Further studies are required to establish the precise nature of the end-groups that 

are formed after H2O2 treatment, although Pfukwa et al.48 present some indirect evidence that 

terminal hydroxyl groups may be formed, at least in the case of poly(N-vinylpyrrolidone) 

prepared using a xanthate-based RAFT agent. 
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Figure 2.17. UV-Visible spectra showing the kinetics of RAFT end-group removal at 70 °C for (a) a 

G52H135 worm gel after degassing for 30 min under N2 prior to treatment with H2O2 and (b) a G52H135 

worm gel that was exposed to air during H2O2 treatment. Conditions: 7.5% w/w copolymer, 

[H2O2]/[DB] molar ratio = 5.0. Note that spectra were recorded at 30 min intervals in each case. 
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Conclusions 

H2O2 can be utilised as a relatively cheap reagent for the convenient and efficient removal of 

dithiobenzoate end-groups from PGMAx-PHPMAy diblock copolymer nano-objects in 

concentrated aqueous solution. The original spherical, worm-like or vesicular copolymer 

morphologies are retained after this chemical derivatisation and UV GPC analysis indicates 

that approximately 96 % of dithiobenzoate end-groups can be removed within 8 h at 70 °C 

when using a H2O2/dithiobenzoate molar ratio of 5.0. Moreover, H2O2 treatment of a series of 

PGMA104-PHPMAx-DB spheres indicates that the rate of end-group removal was both 

independent of particle size and comparable to that observed for a water-soluble PGMA52-DB 

homopolymer under the same  conditions. This suggests that the highly hydrated nature of the 

weakly hydrophobic PHPMA  core-forming chains does not inhibit H2O2 diffusion.  

Oscillatory rheology studies confirm that removal of dithiobenzoate end-groups does not 

adversely affect the thermoresponsive gelation behavior exhibited by PGMA52-PHPMA135 

worms in aqueous solution. However, end-group removal is much less effective for 

dithiobenzoate-functionalised PGMA61-PBzMA100 spheres, with less than 40 % of these RAFT 

chain-ends being cleaved within 8 h at 70 °C using the same H2O2/dithiobenzoate molar ratio. 

This marked difference simply reflects the retarded diffusion of the H2O2 reagent into the 

relatively dehydrated hydrophobic PBzMA cores. It is also clear from this study that 

trithiocarbonate end-groups are significantly more resistant to H2O2 cleavage than 

dithiobenzoate end-groups under the same conditions. Finally, it is emphasised that UV GPC 

analysis in DMF is much more useful than UV-visible spectroscopy analysis of aqueous 

dispersions for monitoring the rate of RAFT end-group removal. This is because the former 

technique separates the copolymer chains from small molecule impurities prior to analysis, 

which eliminates spectral interference from the latter species. 
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Introduction 

Water-soluble polymers can be used for a wide range of commercial applications, including as 

flocculants in brewing1 for dewatering in paper manufacture2-4 or for municipal water 

purification.5-7 High molecular weight (> 105 g mol-1) polymers are particularly efficient and 

include non-ionic, anionic or cationic polyacrylamides,7-9 poly(ethylene oxide) (PEO)10 and 

poly(diallyldimethylammonium) chloride (PDADMAC).11 Such polymers induce aggregation 

via a bridging flocculation mechanism.12-14 Water-soluble polymers are also widely employed 

as viscosity modifiers.15-17 For example, PEO18 and poly(acrylic acid) (PAA)19 are commonly 

used as thickening agents in cosmetics, while polyurethanes (PU)20 or poly(vinyl alcohol) 

(PVA) are utilised in paint formulations.21 In such applications polymers often confer the 

additional benefit of acting as steric stabilisers for other parts of the formulation e.g. oil droplets 

or pigments.22  

Poly(glycerol monomethacrylate) (PGMA) is another water-soluble polymer which is highly 

biocompatible and non-fouling and has been utilised for the manufacture of soft contact 

lenses,23-25 GMA is a relatively expensive specialty monomer. In principle, it can be obtained 

via hydrolysis of a cheap commodity monomer, glycidyl methacrylate, in aqueous solution,26 

but in practice it is actually prepared via a protected precursor, isopropylideneglycerol 

methacrylate.27 In the field of biomaterials, GMA-based copolymers have been used to prepare 

hydrogels that act as corneal substitutes,28 for the design of amphiphilic networks that serve as 

suitable substrates for dermal fibroblasts29-31 and grown in the form of a brush from tissue 

culture polystyrene in order to improve cell adhesion.32 Canton et al. demonstrated that human 

stem cell colonies enter stasis within 16 h of their immersion within PGMA-based block 

copolymer worm gels.33 In addition, the cis-diol moiety of PGMA has been utilised for metal 

binding to magnetite34 and other iron-based materials.35 Recently, Deng et al. reported that 4-

aminophenylboronic acid can bind to PGMA-based block copolymer vesicles in alkaline 

aqueous solution and hence induces various morphological order-order transitions.36 

Polymerisation-induced self-assembly (PISA) is a well-recognised versatile platform 

technology for the efficient synthesis of a wide range of block copolymer nano-objects.37-44 

PISA formulations based on RAFT aqueous emulsion polymerisation involve chain-extending 

a water-soluble precursor polymer with a water-immiscible monomer to produce an 

amphiphilic diblock copolymer in situ.45-56 This drives self-assembly to produce sterically-
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stabilised nanoparticles. In principle, the copolymer morphology should simply depend on the 

relative volume fractions of each block, with more asymmetric blocks forming either worms 

or vesicles.38,47,57-60 However, in many cases only kinetically-trapped spheres are 

accessible.45,61-67 This approach offers a method of synthesising high molecular weight 

polymers in a low viscosity form, however the resulting copolymers are inherently insoluble 

in the reaction medium. 

Destarac and co-workers recently reported the synthesis of high molecular weight water-

soluble polymers via the RAFT solution polymerisation of acrylamide.68 Mn values of more 

than 106 g mol-1 with relatively narrow molecular weight distributions (typically Mw/Mn < 1.30) 

were achieved reproducibly at 10 °C by utilising high monomer concentrations and a relatively 

low initiator concentration. However, the final reaction solutions were relatively viscous. 

Cunningham et al.69 offered a potential technical solution to this problem by utilising RAFT 

aqueous dispersion polymerisation to prepare a high molecular weight water-soluble polymer 

above its lower critical solution temperature (LCST). Thus a PGMA macromolecular chain 

transfer agent (macro-CTA) was chain-extended with N-(2-

(methacryloyloxy)ethyl)pyrrolidone (NMEP) at 70 °C to yield a low-viscosity dispersion of 

partially hydrated spherical PGMA-PNMEP nanoparticles. PNMEP exhibits an LCST of 

around 55 °C. Thus, cooling such aqueous dispersions induced particle dissolution to produce 

molecularly-dissolved copolymer chains at 20 °C, with a concomitant significant increase in 

solution viscosity. Although not a true homopolymer, the number-average degree of 

polymerisation (DPn) of the PNMEP could be systematically varied from 1000 up to 4500, 

which substantially exceeded that of the PGMA stabiliser block (DPn = 51). Moreover, DMF 

GPC analysis indicated relatively low dispersities (Mw/Mn < 1.50) and high NMEP conversions 

(> 98 %) could be achieved for such PISA formulations. However, literature examples of the 

preparation of high molecular weight water-soluble homopolymers in low-viscosity form using 

wholly aqueous formulations are rather rare.70,71  

Herein a new strategy for the synthesis of high molecular weight PGMA of relatively narrow 

molecular weight distribution is examined. More specifically, a water-soluble PGMA stabiliser 

is chain-extended with isopropylideneglycerol methacrylate (IPGMA) using RAFT aqueous 

emulsion polymerisation at pH 4 to produce amphiphilic PGMA-PIPGMA diblock copolymers 

in the form of sterically-stabilised nanoparticles, see Scheme 3.1. Optimisation of this PISA 

formulation enables DPn values of up to 1000 to be achieved at relatively high monomer 
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conversions. Subsequently, the hydrophobic PIPGMA block can be deprotected to afford a 

water-soluble PGMA homopolymer via selective hydrolysis at low pH. This approach bears 

some similarity to that employed by Zentel and co-workers, who copolymerised IPGMA to 

form pH-responsive nanoparticles that undergo dissociation on addition of acid.72 In this 

context, it is also worth noting a recent report by Rimmer and co-workers, who prepared 

polystyrene-poly(isopropylideneglycerol methacrylate) core-shell latexes via conventional 

aqueous emulsion polymerisation.73 Subsequent deprotection of the methacrylic residues in the 

shell at low pH led to PGMA-stabilised PS latexes that proved to be highly resistant to protein 

fouling. 

 

Scheme 3.1. Synthesis of PGMA-PIPGMA (G39-IX) diblock copolymer nanoparticles via 

RAFT aqueous emulsion polymerisation of isopropylideneglycerol methacrylate (IPGMA) at 

70 °C using a PGMA chain transfer agent as a steric stabiliser. 

  



Chapter 3 – Synthesis of high molecular weight poly(glycerol monomethacrylate) via RAFT 

emulsion polymerisation of isopropylideneglycerol methacrylate 

___________________________________________________________________________ 

90 

 

Experimental 

Materials 

Glycerol monomethacrylate (GMA, 99.8%), and isopropylideneglycerol methacrylate 

(IPGMA, 97.8%) were donated by GEO Specialty Chemicals (Hythe, UK) and used without 

further purification. 4,4′-Azobis(4-cyanopentanoic acid) (ACVA, 99%) and dichloromethane 

were purchased from Sigma-Aldrich (UK) and were used as received. 2-Cyano-2-

propyldithiobenzoate (CPDB) was purchased from Strem Chemicals Ltd. (Cambridge, UK) 

and was used as received. Deuterated DMF and methanol were purchased from Goss Scientific 

Instruments Ltd. (Crewe, UK). All other solvents were purchased from Fisher Scientific 

(Loughborough, UK) and used as received. Deionised water was used for all experiments.  

 

Protocol for the synthesis of PGMA macro-CTAs 

A PGMA39 (or G39) macromolecular chain transfer agent (macro-CTA) was synthesised as 

follows: CPDB RAFT agent (0.829 g, 3.70 mmol) and GMA monomer (30.0 g, 187.3 mmol) 

were weighed into a 100 mL round-bottomed flask and purged under N2 for 30 min. ACVA 

initiator (210 mg, 0.75 mmol; CTA/ACVA molar ratio = 5.0) and anhydrous ethanol (46.6 mL; 

previously purged with N2 for 30 min) were then added, and the resulting red solution was 

degassed for a further 10 min. The flask was subsequently sealed and immersed into an oil bath 

set at 70 °C. After 100 min, the GMA polymerisation was quenched by opening to air, 

immersing the flask in liquid nitrogen for 30 seconds and dilution with methanol (100 mL). A 

final GMA conversion of 69 % was determined by 1H NMR analysis by comparing the 

integrated monomer vinyl signals at 6.1-6.2 ppm to oxymethylene signals adjacent to the 

methacrylic ester groups of polymerised GMA residues at 3.8-4.3 ppm (see Figure 3.1). The 

methanolic solution was precipitated into a ten-fold excess of dichloromethane. After filtering 

and washing with dichloromethane, the crude polymer was dissolved in water and the residual 

dichloromethane was evaporated under vacuum. The resulting aqueous solution was freeze-

dried overnight to yield a pink powder. 1H NMR analysis indicated a mean degree of 

polymerisation of 39 ± 1, by comparing the integrated aromatic protons assigned to the RAFT 

CTA end-group at 7.3-8.0 ppm to that of the polymerised GMA repeat units at 3.8-4.3 ppm 

(see Figure 3.1), for this purified PGMA macro-CTA. DMF GPC analysis confirmed that this 

GMA homopolymerisation was well-controlled (Mn = 11,100 gmol-1, Mw/Mn = 1.13). 
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Figure 3.1. 1H NMR spectrum (d4-methanol) recorded for a crude PGMA39 macro-CTA. The GMA 

conversion can be calculated by comparing the integrated signals A and B while accounting for the 

number of protons associated with each signal. 

 

Preparation of PGMA39-PIPGMAX nanoparticles via RAFT aqueous emulsion polymerisation 

PGMA39-PIPGMA1000 (G39-I1000) was synthesised as follows: PGMA39 macro-CTA (0.026 g, 

4.00 µmol), IPGMA monomer (0.80 g, 3.99 mmol) and ACVA initiator (0.28 mg, 1.00 µmol) 

were weighed into a 10 mL round-bottomed flask and dissolved in deionised water (3.30 mL). 

The resulting solution was purged under N2 for 30 min before being sealed and immersed in an 

oil bath at 70 °C for 5 h. The polymerisation was quenched by exposure to air and cooling to 

20 °C. A final IPGMA conversion of > 97 % was determined by 1H NMR analysis by 

comparing the integrated monomer vinyl signals at 6.2 – 6.3 ppm to that of the six methyl 

protons assigned to the acetal group of the polymerised IPGMA residues at 1.5 – 1.7 ppm (see 

Figure 3.2). These PGMA39-PIPGMA1000 spherical nanoparticles were used without further 

purification. 
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Figure 3.2. 1H NMR spectrum (d7-DMF) recorded for a PGMA39-PIPGMA1000 diblock copolymer. The 

IPGMA conversion can be calculated by comparing the integrated signals A and B while accounting 

for the number of protons associated with each signal. 

 

Deprotection of PGMA39-PIPGMA1000 nanoparticles to afford water-soluble PGMA1039 

A 20 % w/w aqueous dispersion of PGMA39-PIPGMA1000 diblock copolymer spheres (4.0 mL; 

initial pH 3) was transferred into a 10 mL round-bottomed flask and adjusted to pH 1 by 

addition of concentrated HCl. The resulting acidic solution was immersed in an oil bath at 70 

°C for 3 h. 1H NMR analysis indicated that 99 % of the IPGMA residues were converted into 

GMA residues, yielding a 16 % w/w aqueous acidic solution of water-soluble PGMA1039 

homopolymer. 

 

One-pot protocol to afford water-soluble PGMA1039 via RAFT aqueous emulsion 

polymerisation of IPGMA followed by acid hydrolysis  

PGMA39 macro-CTA (0.026 g, 4.00 µmol), IPGMA monomer (0.80 g, 3.99 mmol) and ACVA 

initiator (0.28 mg, 1.00 µmol) were weighed into a 10 mL round-bottomed flask and dissolved 

in deionised water (3.30 mL). The resulting solution was purged under N2 for 30 min before 

being sealed and immersed in an oil bath at 70 °C for 6 h. A final IPGMA conversion of > 99 

% was determined by 1H NMR analysis. The polymerisation was quenched by exposure to air. 
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The solution was adjusted to pH 1 by addition of concentrated HCl. The resulting acidic 

solution was maintained at 70 °C for 3 h. 1H NMR analysis indicated that 99 % of the IPGMA 

residues were converted into GMA residues, yielding a 16 % w/w aqueous acidic solution of 

water-soluble PGMA1039 homopolymer. 

 

RAFT aqueous solution polymerisation of GMA  

CPDB RAFT agent (11 mg, 5.00 µmol) and GMA monomer (0.80 g, 5.00 mmol) were weighed 

into a 10 mL round-bottomed flask and purged under N2 for 30 min. ACVA initiator (0.35 mg, 

1.25 µmol; CTA/ACVA molar ratio = 4.0) and dissolved in deionised water (3.21 mL) The 

resulting solution was purged under N2 for 30 min before being sealed and immersed in an oil 

bath at 70 °C for 5 h. The polymerisation was quenched by exposure to air and cooling to 20 

°C. A final GMA conversion of more than 97 % was determined by 1H NMR analysis. 

 

NMR Spectroscopy. All 1H NMR spectra were recorded in either deuterated methanol (for the 

PGMA macro-CTAs) or deuterated DMF (for the PGMA-PIPGMA diblock copolymers and 

for monitoring the acid-catalysed deprotection of the PGMA-PIPGMA diblock precursor to 

afford PGMA homopolymer) using a 400 MHs Bruker Avance-400 spectrometer (64 scans 

averaged per spectrum). 

 

Gel Permeation Chromatography (GPC). Copolymer molecular weights and dispersities were 

determined using an Agilent 1260 Infinity GPC system equipped with both refractive index 

and UV-visible detectors. Two Agilent PL gel 5 μm Mixed-C columns and a guard column 

were connected in series and maintained at 60°C. HPLC-grade DMF containing 10 mM LiBr 

was used as eluent and the flow rate was set at 1.0 mL min−1. DMSO was used as a flow-rate 

marker. The refractive index detector was used for calculation of molecular weights and 

dispersities by calibration using a series of ten near-monodisperse poly(methyl methacrylate) 

standards (with Mn values ranging from 625 to 618,000 g mol−1). UV GPC chromatograms 

were obtained simultaneously by detection at a fixed wavelength of 309 nm which corresponds 

to the absorption maximum for the dithiobenzoate RAFT end-groups. 
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Transmission Electron Microscopy (TEM). Copolymer dispersions were diluted fifty-fold at 

20°C to generate 0.20% w/w dispersions. Copper/palladium TEM grids (Agar Scientific, UK) 

were coated in-house to produce a thin film of amorphous carbon. These grids were then treated 

with a plasma glow discharge for 30 seconds to create a hydrophilic surface. Each aqueous 

diblock copolymer dispersion (12 μL; 0.20% w/w) was placed on a freshly-treated grid for 1 

min and then blotted with filter paper to remove excess solution. To stain the deposited 

nanoparticles, an aqueous solution of uranyl formate (9 μL; 0.75% w/w) was placed on the 

sample-loaded grid via micropipet for 20 s and then carefully blotted to remove excess stain. 

Each grid was then carefully dried using a vacuum hose. Imaging was performed using a FEI 

Tecnai Spirit TEM instrument equipped with a Gatan 1kMS600CW CCD camera operating at 

120 kV.  

 

Oscillatory Rheology experiments An AR-G2 rheometer equipped with a variable temperature 

Peltier plate, a 40 ml 2° aluminium cone and a solvent trap was used for all experiments. 

Temperature sweeps were conducted at an angular frequency of 1.0 rad s−1 and a constant strain 

of 1.0 %. The temperature was increased by 1.0 °C between each measurement, allowing an 

equilibration time of 2 min in each case. A solvent trap was required to prevent evaporation of 

water on the time scale of these experiments. 

 

Dynamic light scattering (DLS). Measurements were conducted at 25 °C using a Malvern 

Instruments Zetasizer Nano series instrument equipped with a 4 mW He–Ne laser (λ = 633 nm) 

and an avalanche photodiode detector. Scattered light was detected at 173°. Copolymer 

dispersions were diluted to 0.10% w/w. Intensity-average hydrodynamic diameters were 

averaged over three runs and calculated via the Stokes–Einstein equation. 

 

Results and Discussion 

The goal of this research was to synthesise high molecular weight PGMA homopolymer in 

aqueous solution via deprotection of PGMA-PIPGMA diblock copolymer nanoparticles, thus 

circumventing the problem of high solution viscosity usually associated with an aqueous 

solution polymerisation route.68 Moreover, given that an emulsion polymerisation protocol was 

employed to prepare the intermediate sterically-stabilised nanoparticles, a significantly faster 
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rate of polymerisation was anticipated compared to that obtained via aqueous solution 

polymerisation owing to the well-known effect of compartmentalisation, which leads to a 

significant reduction in the rate of termination and hence allows access to high molecular 

weight polymer chains.74,75 

 

Optimisation of PGMA-PIPGMA diblock copolymer synthesis 

First, a well-defined PGMA macro-CTA (Mn = 11 100; Mw/Mn = 1.13) was prepared at 70 °C 

in ethanol using CPDB as the RAFT CTA. In principle, a trithiocarbonate-based RAFT agent 

should also be suitable for the RAFT emulsion polymerisation of IPGMA. However, a 

dithiobenzoate-based CTA was chosen based on the well-controlled RAFT emulsion 

polymerisations obtained for other water-immiscible monomers such as benzyl methacrylate 

or 2,2,2-trifluoroethyl methacrylate.61,76 The DPn of this water-soluble homopolymer was 

determined to be 39 by 1H NMR spectroscopy (see Figure 3.3).  

 

Figure 3.3. 1H NMR spectrum (d4-methanol) recorded for a PGMA39 macro-CTA synthesised 

by RAFT solution polymerisation of GMA in ethanol at 70 °C. The DPn for this polymer can 

be calculated by comparing the integrated signal A with that of either B or C while accounting 

for the number of protons associated with each signal. 
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Subsequently, this PGMA39 precursor was chain-extended via RAFT emulsion polymerisation 

of IPGMA at 20 % w/w solids. Like the majority of RAFT aqueous emulsion polymerisation 

formulations, only spherical nanoparticles were obtained using this protocol.40,61,62 In the 

context of the present study, this kinetically-trapped morphology is an advantage because it 

ensures that a relatively low dispersion viscosity is maintained during such syntheses. In each 

case, high monomer conversions (> 97%) were determined by 1H NMR spectroscopy, as 

judged by the disappearance of the vinyl proton signals at 5.9 and 6.2 ppm. In addition, DMF 

GPC analysis indicated low dispersities (typically Mw/Mn < 1.29, see Figure 3.4), while DLS 

studies confirmed the formation of near-monodisperse spheres (polydispersities typically 

below 0.10). Thus good control was achieved over both the molecular weight distribution and 

the particle size distribution during such heterogeneous polymerisations. 

 

Figure 3.4. Some representative DMF GPC for RAFT aqueous emulsion polymerisation of IPGMA 

from a PGMA39 macro-CTA showing good blocking efficiency and good control. Conditions: 20 % 

w/w solids; ACVA initiator; macro-CTA/ACVA molar ratio = 4.0. 

 

The kinetics for the RAFT emulsion polymerisation of IPGMA were monitored when targeting 

a final diblock composition of PGMA39-PIPGMA1000 by extracting aliquots from the reaction 

solution at regular time intervals. After quenching the polymerisation via dilution and cooling, 

these samples were analysed in turn by 1H NMR, DLS and DMF GPC (see  

Figures 3.5a, 3.5b and 3.5c, respectively. Further DLS data is available in the appendix Figure 

7.. 1H NMR spectra recorded at various reaction times (and hence monomer conversions) are 

shown in Figure 3.6). 
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Figure 3.5. Analysis of aliquots extracted during the PISA synthesis of PGMA39-PIPGMA1000 via 

RAFT emulsion polymerisation of IPGMA at 70 °C showing: (a) conversion vs. time curve and the 

corresponding semi-logarithmic plot against time as determined by 1H NMR spectroscopy, (b) 

evolution of intensity-average DLS diameter against time and (c) evolution of Mn and Mw/Mn against 

conversion determined by DMF GPC using a series of near-monodisperse poly(methyl methacrylate) 

calibration standards. The theoretical Mn is shown by a dashed line. Conditions: 20 % w/w solids; 

ACVA initiator; macro-CTA/ACVA molar ratio = 4.0. 
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Figure 3.6. Overlaid 1H NMR spectra showing the evolution of the RAFT emulsion polymerisation of 

IPGMA when targeting PGMA39-PIPGMA1000. The arrow indicates progression in time from 0 to 300 

min. 
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1H NMR studies confirmed that more than 95 % conversion was achieved within 2 h at 70 °C. 

DMF GPC analysis indicated the linear evolution of molecular weight with conversion 

expected for a well-controlled RAFT polymerisation, with relatively low dispersities (Mw/Mn 

< 1.40) being maintained throughout the reaction. Somewhat broader molecular weight 

distributions are observed above 90 % conversion, as judged by the significant increase in 

dispersity (from Mw/Mn ~ 1.23 up to Mw/Mn ~ 1.38). This is attributed to chain transfer to 

polymer, which becomes more likely under monomer-starved conditions. Close inspection of 

the semi-logarithmic plot revealed a significant rate acceleration between 90 and 120 min. In 

the case of RAFT dispersion polymerisation formulations, such data have been interpreted in 

terms of the onset of micellar nucleation.77-81 However, the concomitant DLS studies indicate 

the presence of (presumably) monomer-swollen nanoparticles of around 120 nm in the reaction 

solution after just 20 min (DLS attenuator = 4; this corresponds to the time at which the first 

aliquot was extracted). Such early nucleation is not atypical for RAFT emulsion polymerisation 

syntheses.61,82 For the present formulation it is also physically realistic, because the monomer 

conversion observed after 20 min is approximately 22 %, which corresponds to a DPn of 220 

for the hydrophobic PIPGMA block. Between 80 and 100 min there is a discernible increase 

in the rate of IPGMA polymerisation. There are only a few literature examples of PISA 

formulations exhibiting faster polymerisation kinetics after the onset of micellar 

nucleation.80,83,84 This unusual behavior is not fully understood but it is worth emphasising that 

we have seen such behavior in both aqueous and non-aqueous PISA systems.  

In a second set of experiments, a series of PGMA39-PIPGMAX diblock copolymers were 

prepared by targeting PIPGMA DPs ranging between 100 and 2000 whilst maintaining an 

overall solids concentration of 20 % w/w. Given that the PGMA macro-CTA/initiator molar 

ratio was fixed at 4, this means that lower initiator concentrations are utilised when targeting 

higher DPs. This leads to progressively slower RAFT polymerisations and at some point the 

radical flux becomes so low that the final monomer conversion becomes rather irreproducible 

for such formulations.69 Indeed, high IPGMA conversions (at least 97%) could be achieved 

when targeting DPs up to 1000, with narrow molecular weight distributions being maintained 

(see Table 3.1). However, a substantially lower conversion (42%) was obtained when targeting 

a DP of 2000. For an intermediate target DP of 1500, a final IPGMA conversion of 95% was 

achieved in one particular synthesis, but several attempts to repeat this result were unsuccessful 

(Table 3.1 contains details of the best results achieved for this PISA formulation, which is on 
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the cusp of irreproducibility owing to the relatively low initiator concentration). Thus high 

conversions could only be reproducibly achieved when targeting a DP of 1000. In this case, 

the Mw/Mn determined for the final PIPGMA homopolymer was 1.20, which indicates 

relatively good RAFT control.85-87  

 

Table 3.1. Summary of monomer conversion, molecular weight and intensity-average particle 

diameter data obtained using 1H NMR spectroscopy, DMF GPC (refractive index detector; 

poly(methyl methacrylate) standards) and dynamic light scattering (DLS) respectively for a 

series of PGMA39-PIPGMAX (G39-Ix) diblock copolymer nanoparticles prepared at 20 % w/w 

solids via RAFT aqueous emulsion polymerisation of IPGMA at 70 °C. 

 

* Attempts to reproduce this formulation led to significantly lower monomer 

conversions. 

 

DMF GPC analysis of the first eleven samples shown in Table 3.1 revealed a linear evolution 

in Mn with increasing PIPGMA block DP (see Figure 3.7a), which is similar to that previously 

observed for the RAFT aqueous dispersion polymerisation of NMEP.69 Moreover, DLS studies 

indicated a linear correlation between the intensity-average diameter and PIPGMA DP for this 
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series of spherical nanoparticles, see Figure 3.7b (for more detailed DLS data, see appendix 

Figure 7.2). For each sample, the DLS PDI was < 0.1 and the correlogram showed good 

monodispersity. Cunningham et al. also reported a monotonic increase in particle size with 

core-forming block DPn for the synthesis of PGMA-PBzMA diblock copolymer nanoparticles 

prepared via RAFT emulsion polymerisation. However, the mean hydrodynamic sphere 

diameters obtained in this earlier work were much smaller than those observed in the current 

study for similar core-forming block DPs.61 Unlike the PNMEP-core particles reported by 

Cunningham et al.,69 it seems unlikely that the PIPGMA-core particles are appreciably 

hydrated. However, we cannot rule out the possibility that some degree of deprotection of the 

IPGMA residues occurs in situ during the RAFT aqueous emulsion polymerisation. If this were 

the case, it would introduce hydrophilic GMA units within the core-forming block, which could 

lead to some degree of particle swelling. 

 

 

Figure 3.7. (a) Evolution of Mn and Mw/Mn with PIPGMA DP, where the theoretical Mn is 

shown by a dashed line and (b) correlation between intensity-average DLS diameter against 
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PIPGMA DP for a series of PGMA39-PIPGMAX spherical nanoparticles prepared via RAFT 

aqueous emulsion polymerisation of IPGMA at 70 °C (see Table 3.1).  

 

Transmission electron microscopy images obtained for the PGMA39-PIPGMA1000 diblock 

copolymer nanoparticles (see entry 11 Table 3.1) are shown in Figure 3.8. This confirms the 

well-defined spherical morphology for such nanoparticles. 

 

 

Figure 3.8. Representative TEM images obtained for the PGMA39-PIPGMA1000 diblock copolymer 

nanoparticles. 
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Systematic variation of the copolymer concentration 

PIPGMA DPns of 1000, 1500 and 2000 were targeted in turn at 30 % w/w solids using PGMA39 

as the steric stabiliser block. However, such formulations only led to the formation of thick 

pastes, rather than free-flowing colloidal dispersions. Similar results were obtained at 25 % 

w/w solids. Empirically, it was found that free-flowing dispersions could only be obtained at 

20 % w/w copolymer concentration when targeting PIPGMA DPns of 1000. Attempts to confer 

greater steric stabilisation by utilising a PGMA63 macro-CTA at 20% w/w solids also proved 

to be unsuccessful when targeting DPs of 1500 or 2000; free-flowing dispersions were obtained 

under such conditions but conversions proved to be substantially incomplete. Using a low-

temperature initiator (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride; VA-044) at 

50 °C combined with this longer stabiliser block enabled a final conversion of 84 % to be 

achieved when targeting a DPn of 2000. DMF GPC analysis of this PGMA39-PIPGMA1680 

copolymer indicated an Mn of 203,000 but a relatively broad molecular weight distribution was 

obtained (Mw/Mn = 1.65), which suggests significant loss of RAFT control under such 

conditions. In summary, the optimal conditions for the RAFT aqueous emulsion 

polymerisation of IPGMA at 70 °C involves using the PGMA39 macro-CTA at 20% w/w solids. 

This formulation reproducibly affords a final conversion of at least 97 % within 2 h when 

targeting a DP of 1000, which produces an apparent Mn of around 125 000 g mol-1 and an 

Mw/Mn of 1.20-1.37 (e.g. see entry 11 in Table 3.1). 

 

Deprotection of PGMA-PIPGMA spheres 

It is well-known that acetal protecting groups are readily removed on addition of aqueous 

acid.88 Indeed, the industrial manufacture of GMA monomer is achieved via acid-catalysed 

deprotection of IPGMA27 and Hoogeveen et al. reported the preparation of PGMA-based 

diblock copolymers from PIPGMA-based precursors via acid hydrolysis at ambient 

temperature for 72 h.89 Very recently, Russell and co-workers reported the deprotection of 

IPGMA residues in a series of polystyrene-PIPGMA (PS-PIPGMA) diblock copolymers using 

HCl in 1,4-dioxane.90 Of particular relevance to the present study, a similar strategy was 

recently utilised by Rimmer and co-workers for the synthesis of sterically-stabilised PS-PGMA 

latexes from precursor core-shell PS-PIPGMA particles.73 In this case, acid hydrolysis was 

conducted in aqueous solution at approximately pH 1 for 4-8 h at 60 °C, but no kinetic studies 

of the extent of deprotection were reported. 
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Initial deprotection experiments involved adjusting the solution pH of a 20% w/w aqueous 

dispersion of PGMA39-PIPGMA1000 nanoparticles to pH 1 via addition of HCl. This acidified 

turbid dispersion was then stirred for several days at 20 °C but there was no discernible change 

in its appearance. In principle, successful deprotection of the acetal groups on the hydrophobic 

PIPGMA block should result in nanoparticle dissolution to form a transparent solution, because 

the resulting PGMA homopolymer is water-soluble. This transformation was subsequently 

achieved for the same copolymer formulation by heating to 70 °C at pH 1. It is perhaps worth 

noting that the volatile acetone by-product (b.p. 56 °C) is removed from the reaction solution 

at this temperature, which helps to drive the reaction towards completion. The extent of acetal 

deprotection under such conditions was monitored by extracting aliquots from the reaction 

dispersion/solution at pre-determined time intervals for analysis by 1H NMR spectroscopy (in 

d7-DMF), DMF GPC and DLS (see Figures 3.9 and 3.10). 

 

 

Figure 3.9. (a) Reaction scheme for the acid-catalysed deprotection of PGMA39-PIPGMA1000 

nanoparticles at 70 °C to afford water-soluble PGMA1039 chains after 3 h at pH 1. (b) 1H NMR 

spectra in d7-DMF recorded for the initial PGMA39-PIPGMA1000 nanoparticles and the final 

water-soluble PGMA1039 product obtained as a result of this acid-catalysed deprotection. 



Chapter 3 – Synthesis of high molecular weight poly(glycerol monomethacrylate) via RAFT 

emulsion polymerisation of isopropylideneglycerol methacrylate 

___________________________________________________________________________ 

105 

 

 

Figure 3.10. (a) Gradual reduction in particle size and derived count rate observed during the 

deprotection of PGMA39-PIPGMA1000 nanoparticles under the conditions described in Figure 4. (b) 

DMF GPC curves indicating the apparent increase in Mn and reduction in Mw/Mn during the acid-

catalysed deprotection of PGMA39-PIPGMA1000. 

 

The disappearance of the pendent methyl proton signals assigned to the IPGMA residues at 

1.55 and 1.62 ppm relative to the methacrylic copolymer backbone proton signals at 0.93-1.43 

ppm in the 1H NMR spectra allowed the extent of hydrolysis to be determined during the course 

of the acetal deprotection reaction. This analysis confirmed that more than 98 % of the acetal 

groups were removed within 2 h at 70 °C. As expected, the initially turbid dispersion gradually 

became less opaque and eventually became transparent as water-soluble GMA-rich copolymer 

chains (and ultimately PGMA homopolymer) were formed towards the end of the reaction. 

Surprisingly, DMF GPC analysis of the initial PGMA39-PIPGMA1000 diblock copolymer, 

intermediate copolymers and final PGMA1039 homopolymer indicated an apparent increase in 
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Mn during acid deprotection. This is clearly an experimental artifact, because the GMA repeat 

unit (160 g mol-1) is less massive than the IPGMA repeat unit (200 g mol-1). Presumably, DMF 

is a significantly better solvent for the PGMA chains (which hence occupy a larger 

hydrodynamic volume) than for the PIPGMA chains. It is perhaps also noteworthy that the 

molecular weight distribution remains essentially unchanged after deprotection, which 

confirms that no chain scission or cross-linking of the (co)polymer chains occurred under the 

hydrolysis conditions. Finally, DLS enabled the nanoparticle dissolution process to be 

conveniently monitored. The initial intensity-average diameter of 270 nm was reduced to just 

30 nm within 150 min at 70 °C, while the scattered light intensity (or derived count rate) was 

reduced by more than two orders of magnitude over this time period. Moreover, the DLS 

polydispersities exceeded 0.50 after 120 min, which approximately corresponds to the time at 

which a significant reduction in solution turbidity is observed. Clearly, the size data shown 

here are rather noisy compared to the scattered light intensity (derived count rate), which most 

likely indicates the formation of transient, weakly scattering hydrogen-bonded complexes in 

aqueous solution. Overall, these observations are consistent with complete dissolution of the 

PGMA39-PIPGMA1000 diblock copolymer nanoparticles to afford molecularly-dissolved 

PGMA1039 homopolymer chains.  

Deprotection of the IPGMA residues was also examined under milder conditions. A 20 % w/w 

aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles was adjusted to pH 2 using HCl and 

heated to 70 °C. As expected, the rate of acid hydrolysis was significantly slower but 

nevertheless 93 % deprotection was achieved within 10 h (see Figure 3.11). This presents a 

facile deprotection method for such polymers where the reaction conditions can be made less 

harsh, albeit at the expense of longer reaction times. 
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Figure 3.11. Conversion against time curves determined for the acid hydrolysis of a 20% w/w 

aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles at 70 °C by 1H NMR spectroscopy: 

(a) at pH 1 (red squares) and pH 2 (blue diamonds). 

 

One-pot polymerisation and deprotection protocol 

Given that the RAFT aqueous emulsion polymerisation and subsequent acid hydrolysis are 

both performed in aqueous solution at 70 °C, the feasibility of developing a convenient one-

pot polymerisation and deprotection route to high molecular weight PGMA homopolymers was 

examined, as outlined in Figure 3.12. Thus, IPGMA was polymerised using the same PGMA39 

macro-CTA targeting a DPn of 1000 for the PIPGMA. After 6 h, an aliquot of the resulting 

turbid dispersion was extracted for analysis by 1H NMR, and DLS. The former technique 

indicated more than 99% conversion and the latter suggested the presence of relatively uniform 

nanoparticles (338 nm, polydispersity = 0.053). DMF GPC analysis indicated an Mn of 128,000 

and an Mw/Mn of 1.37, which indicates a somewhat broader molecular weight distribution than 

that reported in Table 3.1 (see entry 11) but still suggests reasonable RAFT control. This hot 

20 % w/w aqueous dispersion was then exposed to air and immediately adjusted to pH 1 using 

HCl. The reaction temperature was maintained at 70 °C for a further 3 h before taking an aliquot 

from the resulting transparent solution for analysis. 1H NMR spectroscopy indicated more than 

99 % acetal deprotection, while both DLS studies and visual inspection confirmed loss of the 

original nanoparticles (see Figure 3.9, 3.10 and Figure 3.12, respectively). Finally, DMF GPC 

analysis of the final water-soluble PGMA1039 homopolymer obtained after an overall reaction 

time of 9 h at 70 °C had an Mn of 154 000 and an Mw/Mn of 1.42. 
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Figure 3.12. A one-pot wholly aqueous synthetic protocol for the preparation of high molecular 

weight PGMA starting from a PGMA39 macro-CTA at 20% w/w solids. First, RAFT aqueous 

emulsion polymerisation of IPGMA is conducted at 70 °C to produce PGMA39-PIPGMA1000 

nanoparticles at pH 4 and then acid hydrolysis of the IPGMA residues is conducted at the same 

temperature at pH 1. The latter deprotection reaction leads to nanoparticle dissolution and the 

formation of a transparent aqueous solution comprising water-soluble PGMA1039 chains. 

 

Advantages over conventional solution polymerisation 

As described above, a wholly aqueous two-step one-pot synthetic route to high molecular 

weight water-soluble PGMA has been developed. At this point, it is pertinent to ask whether 

this strategy offers any useful advantage(s) over the RAFT aqueous solution polymerisation of 

GMA. Thus, the RAFT aqueous solution polymerisation of GMA was conducted using the 

same GMA concentration (16 % w/w solids) as that achieved after acid hydrolysis of the 

PGMA39-PIPGMA1000 nanoparticles. To circumvent its limited water solubility, the CPDB 

RAFT agent was first dissolved in GMA monomer prior to addition of water and ACVA to 

make up the initial reaction solution. Aliquots were periodically taken for 1H NMR and DMF 

GPC analysis to determine the kinetics of GMA polymerisation and hence enable a direct 

comparison to be made with the overall time scale required for the two-step one-pot protocol 

utilising the precursor PGMA39-PIPGMA1000 nanoparticles (see Figure 3.13). 
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Figure 3.13. Conversion vs. time plots obtained for (a) PGMA39-PIPGMA1000 nanoparticles prepared 

by RAFT aqueous emulsion polymerisation of IPGMA (red squares) and (b) PGMA1000 prepared via 

RAFT aqueous solution polymerisation of GMA (black diamonds). Both syntheses were conducted at 

70 °C using identical molar concentrations of monomer (either IPGMA or GMA); this corresponds to 

16 % w/w solids for the PGMA1000 chains and 20% w/w solids for the PGMA39-PIPGMA1000. The loss 

of the acetone protecting group during acid hydrolysis of the IPGMA residues in the latter synthesis 

accounts for the difference in solids content.  

 

The RAFT solution polymerisation of GMA (targeting PGMA1000) proceeded to 81 % 

conversion within 5 h at 70 °C, whereas the RAFT emulsion polymerisation of IPGMA 

(targeting PGMA39-PIPGMA1000) attained 97 % conversion within 2 h at the same temperature. 

It is well-known that emulsion polymerisations typically proceed significantly faster than the 

equivalent solution polymerisation.80,91 This rate acceleration is attributed to 

compartmentalisation, which reduces the instantaneous number of propagating polymer 

radicals per growing nanoparticle and hence lowers the rate of termination relative to that of 

propagation.74,75 This homopolymer had an Mw/Mn of 1.27 at 81 % conversion (see Figure 

3.14), which is somewhat higher than that achieved for the final PGMA1039 hompolymer 

obtained via the RAFT aqueous emulsion polymerisation of IPGMA (Mw/Mn = 1.20 at 97 % 

conversion). 
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Figure 3.14. Evolution of Mn and Mw/Mn with monomer conversion as determined by DMF GPC for 

the RAFT aqueous solution homopolymerisation of GMA at 70 °C when targeting a PGMA DP of 

1000 at 16% w/w solids. 

 

Importantly, the overall time scale required for the synthesis of PGMA1039 chains using the 

two-step one-pot synthesis protocol is significantly shorter than that required for the RAFT 

aqueous solution polymerisation of GMA. Assuming that first-order rate kinetics holds for this 

solution polymerisation (which is the best case scenario), a further 5.5 h at 70 °C would be 

required to achieve 97 % conversion. Thus it is clear that significantly higher final monomer 

conversions can be achieved using the former route within shorter overall reaction times. 

Finally, rheological studies were performed to compare the viscosity of the aqueous solution 

of PGMA1000 to that of the aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles. In 

addition, the final water-soluble PGMA1039 homopolymer obtained after acid hydrolysis of the 

PGMA39-PIPGMA1000 nanoparticles was also examined (see Figure 3.15).  
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Figure 3.15. Viscosity vs. shear rate curves obtained for: (a) a 16% w/w aqueous solution of PGMA1000 

prepared via RAFT solution polymerisation of GMA (blue diamonds); (b) a 20% w/w aqueous 

dispersion of PGMA39-PIPGMA1000 nanoparticles prepared via RAFT emulsion polymerisation of 

IPGMA (red squares); (c) a 16% w/w aqueous solution of PGMA1039 obtained after acid hydrolysis of 

a 20% w/w aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles (black triangles). Rheological 

measurements were performed at 20 °C and the differing solids concentrations correspond to 

approximately equimolar polymer concentrations.  

 

The 20 % w/w aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles exhibits a 

significantly lower viscosity than either of the two PGMA homopolymer solutions across the 

entire range of shear rates investigated (101-103 s-1). Interestingly, an approximately Newtonian 

response is displayed by both these water-soluble homopolymers under these conditions, 

whereas shear-thinning behaviour might have been expected.92,93 This could be simply because 

the range of shear rates examined in the present study is too narrow. Alternatively, it may 

indicate extensive inter-chain interactions (e.g. hydrogen bonding). In addition, the upturn 

observed at low shear rates for the PGMA39-PIPGMA1000 dispersion suggests weakly 

interacting nanoparticles. In summary, the one-pot synthesis of high molecular weight water-
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soluble PGMA via precursor PGMA-PIPGMA nanoparticles can be conducted with faster 

kinetics, higher final monomer conversions and lower viscosities than those achieved during 

the RAFT aqueous solution polymerisation of GMA. This provides a further example of the 

advantages offered by PISA formulations compared to conventional polymer syntheses 

conducted in homogeneous solution. 

 

Conclusions   

RAFT emulsion polymerisation of IPGMA at 70 °C affords well-defined PGMA39-PIPGMAx 

diblock copolymer spherical nanoparticles at 20% w/w solids. High final monomer conversions 

(at least 97%) could be reproducibly obtained when targeting PIPGMA block DPs up to 1000. 

A monotonic increase in both Mn and mean particle diameter was observed up to this critical 

value, with relatively low dispersities (Mw/Mn < 1.29) being maintained. However, 

irreproducible results were obtained when targeting DPs of 1500 or 2000, so a target DP of 

1000 appears to represent an upper limit, at least for this specific PISA formulation. Acid 

hydrolysis of the aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles at 70 °C converts 

almost all (> 98%) of the hydrophobic IPGMA residues into hydrophilic GMA residues within 

2 h at pH 1. This leads to nanoparticle dissolution and the formation of an aqueous solution of 

PGMA1039 homopolymer.  

Furthermore, an optimised one-pot protocol was developed whereby a highly viscous aqueous 

solution of PGMA1039 can be prepared at 20 % w/w solids within 9 h via the PGMA39-

PIPGMA1000 nanoparticles, which act as a low-viscosity precursor. Importantly, the relatively 

fast kinetics achieved during the RAFT emulsion polymerisation of IPGMA means that the 

overall time scale for this one-pot synthesis is significantly shorter than that required for the 

synthesis of PGMA1039 via RAFT aqueous solution polymerisation, despite the requirement for 

post-polymerisation deprotection of the IPGMA residues. Moreover, the viscosity of an 

aqueous dispersion of PGMA39-PIPGMA1000 nanoparticles at 20 % w/w solids is significantly 

lower than that of PGMA1000 prepared via RAFT aqueous solution polymerisation. In 

summary, we report a new wholly aqueous synthetic route to relatively high molecular weight 

PGMA via RAFT aqueous emulsion polymerisation that offers significant advantages in terms 

of both overall kinetics and lower viscosity compared to the RAFT aqueous solution 

polymerisation of GMA. 
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Introduction 

One of GEO’s potential customers has expressed an interest in high molecular weight PGMA 

for use in the form of an aqueous proprietary cleaning formulation. Unfortunately, it is not 

possible for GEO to simply homopolymerise low diester content GMA derived from the acidic 

deprotection of IPGMA because this route infringes on an existing patent.1 Previously, GEO 

has circumvented this problem by manufacturing GMA by the same route, but polymerising 

this monomer in aqueous solution. This alternative route produced an aqueous solution of 

PGMA that met the customer’s requirements but nevertheless suffers from inherent limitations 

associated with the polymerisation conditions. More specifically, the aqueous solution 

polymerisation of GMA via conventional free radical polymerisation is relatively slow and 

hence suffers from significant residual monomer: up to 5% GMA remains unreacted after 5 h 

at 70 °C, with < 1 % levels typically requiring significantly longer reaction times of up to 24 

h. In addition, GMA polymerisations conducted above 10% w/w solids result in extremely 

viscous solutions that are relatively difficult to handle when manufacturing on the multi-kilo 

scale. Perhaps most importantly, this route still requires acid hydrolysis of IPGMA to afford 

GMA, with this deprotection reaction being conducted for approximately 48 h at 20 °C to 

minimise side reactions (e.g. diester formation).1 If high molecular weight PGMA is targeted, 

then minimising the diester content of the GMA precursor is essential, otherwise intermolecular 

cross-linking occurs to produce insoluble material. Unfortunately, this deprotection step 

represents a severe manufacturing bottleneck which means that GMA is much more expensive 

than IPGMA (see later). 

Given the above technical problems, we sought to develop a new, preferably more cost-

effective, synthetic route to high molecular weight PGMA. In Chapter 3, the RAFT aqueous 

emulsion polymerisation of IPGMA is outlined.2 Importantly, the resulting PIPGMA latex 

particles can be readily converted into water-soluble PGMA chains via acid hydrolysis. 

Moreover, a one-pot protocol was developed that enabled relatively low-dispersity PGMA1000 

(Mw/Mn ~ 1.42) to be conveniently prepared within 8 h at 70 °C. However, given the intrinsic 

colour, relatively high cost and malodour associated with RAFT agents it is unlikely that RAFT 

polymerisation chemistry would be considered acceptable for the intended cleaning 

formulation application. Bearing such limitations in mind, the aqueous emulsion 

polymerisation of IPGMA using conventional free radical polymerisation is explored in the 

present Chapter. If successful, the resulting PIPGMA latex particles could be converted on 
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demand into water-soluble PGMA without requiring the synthesis of the relatively expensive 

GMA monomer. Moreover, using conventional aqueous emulsion polymerisation confers 

important additional benefits such as a much faster rate of polymerisation than solution 

polymerisation, significantly lower levels of residual monomer and convenient access to high 

molecular weight polymer.3-6 Furthermore, such heterogeneous polymerisations afford low-

viscosity dispersions, which can be readily handled at scale prior to deprotection via acid 

hydrolysis. When performed on a multi-tonne scale, a monomer-starved protocol is typically 

used when conducting aqueous emulsion polymerisations.3, 7 This approach provides optimal 

control over the reaction exotherm and enables the efficient dissipation of excess heat. 

Moreover, such syntheses can be performed at up to 50% w/w solids, which would constitute 

a significant improvement on the 10% w/w concentration currently used by GEO for the free 

radical aqueous solution polymerisation of GMA (see above). 

Thus, the aqueous emulsion polymerisation of IPGMA via conventional free radical chemistry 

was explored during a six-month placement at GEO. This formulation involved the use of 

sodium dodecyl sulfate (SDS) as an anionic surfactant, ACVA as a water-soluble free radical 

initiator, IPGMA and water (see Scheme 4.1). 

 

 

Scheme 4.1. Synthesis of high molecular weight PGMA by (i) the aqueous emulsion polymerisation of 

IPGMA using an ACVA azo initiator at 70 °C to produce surfactant-stabilised PIPGMA latex, followed 

by (ii) acidic hydrolysis of the acetal residues using HCl at the same temperature, which leads to 

dissolution of the intermediate PIPGMA latex particles.  
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Experimental 

Materials 

Glycerol monomethacrylate (GMA, 99.8 %), and isopropylideneglycerol methacrylate 

(IPGMA, 97.8 %) were donated by GEO Specialty Chemicals (Hythe, UK) and used without 

further purification. 4,4′-Azobis(4-cyanopentanoic acid) (ACVA, 99 %) and sodium dodecyl 

sulfate (SDS, 98 %) were purchased from Sigma-Aldrich (UK) and used as received. 

Deuterated DMF and methanol were purchased from Goss Scientific Instruments Ltd. (Crewe, 

UK). All other solvents were purchased from Fisher Scientific (Loughborough, UK) and used 

as received. Deionised water was used for all experiments.  

Aqueous emulsion polymerisation of IPGMA at pH 3.5 (native solution pH) 

A 500 mL round-bottomed flask was charged with IPGMA (5.00 g), deionised water (100.0 

g), SDS (0.500 g) and 4,4’-azobis(4-cyanopentanoic acid) (ACVA; 50.0 mg). This reaction 

solution was deoxygenated using a N2 gas sparge for 30 min while immersed in an ice bath. 

The flask was transferred to a 70°C oil bath and stirred under N2 for 24 h. Then the flask was 

allowed to cool to room temperature and exposed to air to quench the polymerisation. This 

protocol afforded a transparent, viscous solution. 

Aqueous emulsion polymerisation of IPGMA at pH 6-7 

A 500 mL round-bottomed flask was charged with IPGMA (5.00 g), deionised water (100.0 

g), SDS (0.500 g) and 4,4’-azobis(4-cyanopentanoic acid) (ACVA; 50.0 mg). This reaction 

solution was adjusted to pH 7 by addition of 1 M NaOH prior to deoxygenation using a N2 gas 

sparge for 30 min while immersed in an ice bath. The flask was transferred to an oil bath set at 

70°C and stirred under N2 for 24 h. Then the flask was allowed to cool to room temperature 

and the aqueous dispersion was exposed to air to quench the polymerisation. This protocol 

afforded a milky-white dispersion.  

Acid hydrolysis of PIPGMA latexes to afford water-soluble PGMA chains 

The above-prepared PIPGMA aqueous dispersion (20.0 g) was adjusted to pH 1 by adding 

concentrated HCl. A condenser was added to the flask, which was then submerged in an oil 

bath set at 70 °C. The clear viscous liquid obtained after 2 h was allowed to cool to room 

temperature. Solution pH, gravimetry (for solids content) and viscosity measurements were 

performed at GEO, while samples were further analysed at Sheffield University using 1H NMR 

spectroscopy, DMF GPC and DLS (see Table 4.2). 
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Monomer-starved aqueous emulsion polymerisation of IPGMA 

SDS (9.375 g), ACVA (3.75 g), deionised water (656.25 g) and 1 M NaOH (approx 7.5 mL) 

were added to a multi-neck 2L round-bottomed flask and the resulting alkaline aqueous 

surfactant solution was sparged with nitrogen gas for 30 min, with care being taken to avoid 

excessive foaming. In a separate flask, IPGMA (90.0 g) was sparged with nitrogen gas for 30 

min. Then, a 100 mL syringe was carefully degassed with nitrogen and used to carefully 

withdraw the degassed IPGMA, without introducing oxygen. This syringe was placed into a 

syringe pump unit, which was then connected to the 2L reaction flask. The reaction solution in 

this flask was heated to 70 °C and IPGMA was added via syringe at a constant rate of 28 mL 

per hour over a 3 h period. Once all the IPGMA (84 mL) had been added, the polymerisation 

was maintained at 70 °C for a further 2 h to give a total reaction time of 5 h. After this period, 

the polymerisation was quenched by exposing the hot reaction solution to air before allowing 

it to cool to 20 °C. 

Kinetic studies of the batch polymerisation of IPGMA 

A 100 mL round-bottomed flask was charged with IPGMA (9.00 g), SDS (0.9375 g), ACVA 

(0.375 g) and deionised water (65.6 g). The resulting aqueous emulsion was adjusted to pH 7 

by adding 1 M NaOH (approx 0.75 mL) and degassed via nitrogen sparge for 30 min. The 

nitrogen sparge was changed to headspace and an aliquot (approx 1.0 mL) was withdrawn to 

represent the initial solution. The flask was submerged into an oil bath set at 70 °C and further 

aliquots were withdrawn by syringe at 20 min intervals. These extracted samples were analysed 

by 1H NMR spectroscopy to determine the monomer conversion, by DLS to monitor the in situ 

particle growth and by DMF GPC to examine the evolution in molecular weight. After 5 h, the 

polymerisation was quenched by exposing the hot reaction solution to air before allowing it to 

cool to 20 °C.  
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Effect of varying the ACVA initiator concentration during the monomer-starved aqueous 

emulsion polymerisation of IPGMA 

The above protocol for the monomer-starved aqueous emulsion polymerisation of IPGMA was 

repeated varying amounts of ACVA (0.1875 to 3.75 g, corresponding to ACVA concentrations 

of 0.024 % to 0.5 % w/w).  

Effect of varying the SDS concentration during the monomer-starved aqueous emulsion 

polymerisation of IPGMA 

The above protocol for the monomer-starved aqueous emulsion polymerisation of IPGMA was 

repeated using a fixed mass of ACVA (0.1875 g, corresponding to a constant ACVA 

concentration of 0.024 % w/w) and varying amounts of SDS (0.4688 to 9.375 g), which 

correspond to SDS concentrations of 0.06 % to 1.2 % w/w. 

Characterisation Techniques 

NMR Spectroscopy. All 1H NMR spectra were recorded in either deuterated methanol (for 

PGMA) or deuterated DMF (for PIPGMA) using a 400 MHz Bruker Avance-400 spectrometer 

(64 scans averaged per spectrum). 

Gel Permeation Chromatography (GPC). Polymer molecular weights and dispersities were 

determined using an Agilent 1260 Infinity GPC system equipped with both refractive index 

and UV-visible detectors. Two Agilent PL gel 5 μm Mixed-C columns and a guard column 

were connected in series and maintained at 60 °C. HPLC-grade DMF containing 10 mM LiBr 

was used as an eluent and the flow rate was set at 1.0 mL min−1 with DMSO being used as a 

flow-rate marker. The refractive index detector was used for calculation of molecular weights 

and dispersities using a series of ten near-monodisperse poly(methyl methacrylate) calibration 

standards (with Mn values ranging from 625 to 2,200,000 g mol−1).  

 

Transmission Electron Microscopy (TEM). As-prepared aqueous PIPGMA dispersions were 

diluted at 20 °C to generate 0.20 % w/w dispersions. Copper/palladium TEM grids (Agar 

Scientific, UK) were coated in-house to produce a thin film of amorphous carbon. These grids 

were then treated with a plasma glow discharge for 30 seconds to create a hydrophilic surface. 

Each aqueous dispersion (12 μL; 0.20 % w/w) was placed on a freshly-treated grid for 1 min 

and then blotted with filter paper to remove excess solution. To stain the deposited latex 

particles, an aqueous solution of uranyl formate (9 μL; 0.75% w/w) was placed on the sample-

loaded grid via micropipette for 20 s and then carefully blotted to remove excess stain. Each 
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grid was then carefully dried using a vacuum hose. Imaging was performed using a FEI Tecnai 

Spirit TEM instrument equipped with a Gatan 1kMS600CW CCD camera operating at 120 kV.  

 

Gravimetry. Aqueous dispersions of PIPGMA latex particles (approx. 2.0 g) were placed in 

vials and allowed to dry at 60 °C within a Heraeus Instruments Vacutherm Oven coupled with 

a Vacuubrand Hybrid Vacuum Pump at a pressure of less than 50 mmHg. Samples were dried 

to constant weight prior to calculating monomer conversions. 

 

Viscosity. Viscosities were determined using internally-calibrated U-tube viscometers 

immersed in a water/monoethylene glycol (MEG) bath at 25 °C. Each solution viscosity was 

an average of three independent measurements. 

 

Solution pH. This was determined by immersing a calibrated Metrohm 744 pH meter directly 

into the aqueous polymer solution. 

 

Results and Discussion 

Interestingly, performing the aqueous emulsion polymerisation of IPGMA at pH 3.5 and 10 % 

w/w unexpectedly afforded a transparent, viscous solution, as opposed to the milky-white low-

viscosity latex dispersion that had been expected based on the data reported in Chapter 3. This 

is because the ACVA initiator ensured that the resulting solution was sufficiently acidic (pH 

3.5) that in situ deprotection of the initially-formed water-insoluble PIPGMA chains occurred 

over 24 h at 70 °C to afford high molecular weight water-soluble PGMA chains (see scheme 

4.2.). These experiments were also performed at varying solids concentrations and the results 

are summarised below (see entries 1-4 in Table 4.1). For the sake of comparison, PGMA was 

also produced via aqueous solution polymerisation of GMA using the same ACVA initiator at 

70 °C for 5 h using the in-house protocol developed by GEO (see entries 5-8). 
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Scheme 4.2. Synthesis of high molecular weight PGMA by the aqueous emulsion polymerisation of 

IPGMA with in situ acidic hydrolysis of the acetal residues at 70 °C for 24 h at pH 3.5.  

 

Table 4.1. Summary of the effect of varying the monomer concentration on the final monomer 

conversion, solution viscosity and molecular weight data obtained for two series of PGMA 

homopolymers produced by either the aqueous emulsion polymerisation of IPGMA with tandem 

deprotection of the resulting PIPGMA (entries 1-4) or the aqueous solution polymerisation of GMA 

(entries 5-8). Solution polymerisations were conducted for 5 h at 70 °C, whereas emulsion 

polymerisations were run for 24 h at the same temperature.  

 

* This experiment was conducted for a shorter reaction time of 4 h at 70 °C. 

 

Each final aqueous solution obtained from the heterogeneous polymerisations had a similar pH 

of around 3.7 - 3.9, as a result of the weakly acidic ACVA initiator. All polymerisations 

proceeded to high monomer conversions as judged by 1H NMR spectroscopy and gravimetry, 

with the latter technique suffering from random errors as high as 8 %. Significantly higher 

viscosities were obtained for syntheses conducted at higher polymer concentrations. In general, 

the water-soluble PGMA chains obtained via aqueous emulsion polymerisation of IPGMA 
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with tandem deprotection of the PIPGMA residues exhibited higher viscosities than those 

produced via the aqueous solution polymerisation of GMA. This is not unexpected given that 

emulsion polymerisation usually favours the generation of higher molecular weight chains.3,4 

1H NMR studies conducted in d7-DMF confirmed that well-defined PGMA chains with no 

detectable IPGMA repeat units could be obtained via aqueous emulsion polymerisation of 

IPGMA (Figure 4.1).  

 

Figure 4.1. 1H NMR spectrum recorded in d7-DMF for the product obtained after the aqueous emulsion 

polymerisation of IPGMA followed by in situ acidic hydrolysis of the resulting PIPGMA chains.  There 

is little or no evidence for any IPGMA signals in this spectrum (these signals come at 1.6 ppm – orange 

circle), suggesting a very high degree of acid hydrolysis and hence the formation of PGMA 

homopolymer. 

 

DMF GPC studies indicated Mn values of around 250,000 g mol-1 and Mw values in excess of 

1,000,000 g mol-1. According to GEO, nominal Mw values should exceed 100,000 g mol-1 for 

the intended cleaning formulation application, so these data fulfil this specification. However, 

visual inspection of the final aqueous solution indicated the presence of a gel fraction for all 

PGMA homopolymers obtained via the aqueous emulsion polymerisation of IPGMA. 

Interestingly, this gelation problem was also observed for PGMA homopolymers prepared at 

higher concentrations (> 10 % w/w solids) via aqueous solution polymerisation when using the 

GEO in-house protocol. This method presents a highly convenient route to high molecular 
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weight PGMA but suffers from an extensive reaction time (24 h) and the presence of a gel 

fraction. 

In order to reduce the long reaction times and simultaneously minimise the gel fraction, these 

aqueous emulsion polymerisation syntheses were repeated with the solution pH being adjusted 

to 7 by addition of 0.1 M NaOH prior to polymerisation. In such experiments, polymerisations 

were stirred for only 5 h at 70 °C before quenching, followed by acid hydrolysis at pH 1 for 2 

h at the same temperature. A summary of the solution pH, gravimetry and viscosity 

measurements performed at GEO and 1H NMR, DMF GPC and DLS analyses conducted at U. 

Sheffield is shown in Table 4.2 below. 

 

Table 4.2. Effect of varying the IPGMA concentration on the final monomer conversion, solution 

viscosity, molecular weight and particle size data obtained for various PIPGMA latexes produced by 

free radical emulsion polymerisation of IPGMA (after deprotection of the resulting PIPGMA, where 

appropriate). Entries 1, 3, 5 and 7 correspond to the aqueous emulsion polymerisation of IPGMA 

conducted at approximately pH 7 for 5 h at 70 °C. Entries 2, 4, 6 and 8 correspond to the same PIPGMA 

latexes after their deprotection at pH 1 for 2.5 h at 70 °C to afford water-soluble PGMA chains. Entry 

9 is a control experiment involving the aqueous solution polymerisation of GMA at 70 °C for 5 h at 

around neutral pH. 

 

 

All polymerisations proceeded to high monomer conversions as judged by 1H NMR 

spectroscopy (see Figure 4.3) and gravimetry. The resulting milky-white PIPGMA latex 

dispersions exhibited relatively low viscosities but highly viscous transparent solutions were 

obtained after acidic deprotection of the IPGMA residues. 1H NMR studies confirmed that 

there was no residual IPGMA content for entries 5-8, which suggests the formation of well-

defined PGMA chains. 
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Figure 4.3. 1H NMR spectra showing (a) PIPGMA chains obtained at very high IPGMA conversion 

after the conventional aqueous emulsion polymerisation of IPGMA at pH 7 (no detectable IPGMA 

monomer signals at 5.7 and 6.2 ppm) and (b) the water-soluble PGMA obtained after acidic hydrolysis 

of the PIPGMA latex, showing little or no remaining IPGMA residues.  
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DMF GPC studies indicated Mn values of around 800,000 g mol-1 and Mw values in excess of 

2,000,000 g mol-1. The unexpected increase in these Mn values after deprotection is the result 

of a GPC artefact, as discussed in Chapter 3. However, Mw/Mn values remained similar after 

deprotection, indicating preservation of the original molecular weight distribution. Visual 

inspection confirmed that all polymerisations - either directly or after deprotection - afforded 

transparent, homogeneous solutions. These results (particularly the molecular weight data and 

the lack of a gel fraction) are superior to those obtained using the one-pot ‘emulsion 

polymerisation with tandem deprotection’ protocol conducted at pH 3.5 and may well 

warrant further scale-up studies in due course. 

The two-step ‘aqueous emulsion polymerisation followed by acid hydrolysis’ synthesis (see 

entry 3 in Table 4.2) and the aqueous solution polymerisation of GMA (control reaction; see 

entry 6 in Table 4.1) were repeated on a 1.5 kg scale and analysed in the same way as the earlier 

corresponding syntheses performed on a smaller scale. The results obtained for these additional 

experiments are summarised in Table 4.3. 

 

Table 4.3. Summary of the analysis of PGMA homopolymers produced by (i) the aqueous emulsion 

polymerisation of IPGMA conducted for 5 h at 70 °C with subsequent acid hydrolysis performed for 2 

h at 70 °C (entries 1-3) and (ii) the aqueous solution polymerisation of GMA conducted at 

approximately pH 2 for 5 h at 70 °C (entry 4). The ACVA initiator concentrations are 1: 2: 4 relative to 

entry 4 for entries 1-3, respectively. Viscosities were determined for the final deprotected water-soluble 

PGMA chains, whereas Mn and Mw/Mn values were determined for the PIPGMA precursor.  

 

The PGMA homopolymer produced by the aqueous solution polymerisation route (entry 4 in 

Table 4.3) afforded a clear, slightly orange solution with very similar physical properties to the 

corresponding homopolymer prepared on a smaller scale (see entry 9 in Table 4.2). The scaled-

up aqueous emulsion polymerisation of IPGMA (entry 1) gave a very high monomer 

conversion but a relatively broad molecular weight distribution (Mn = 516,000 g mol-1; Mw/Mn 

= 8.41 for the precursor PIPGMA latexes). Unfortunately, deprotection of this PIPGMA 

precursor yielded a rather hazy viscous gel. This is consistent with the relatively high Mw (> 4 
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million) but may also indicate some degree of cross-linking. In order to reduce the molecular 

weight and viscosity of this polymer, the synthesis was repeated using twice the original 

initiator concentration (see entry 2 in Table 4.3). In principle, this adjustment should reduce 

the polymer molecular weight and hence lower the solution viscosity. However, DMF GPC 

analysis indicated a similarly high Mw value and acid hydrolysis again afforded a hazy gel. 

This synthetic protocol was then conducted using an initiator concentration four times higher 

than that used originally (entry 3). In this latter case, deprotection of the IPGMA residues was 

conducted under somewhat milder conditions (pH 1, 20 °C for 90 h). The final PGMA 

hompolymer produced using this modified method was less hazy and had a lower solution 

viscosity but still remained difficult to handle and dilute in aqueous solution.  

An alternative method for reducing molecular weight of polymers during synthesis is to utilise 

monomer-starved conditions.3, 7 The lower instantaneous concentration of the IPGMA 

monomer leads to an overall reduction in the polymer molecular weight.8 A series of scaled-

up syntheses of the aqueous emulsion polymerisation of IPGMA were conducted by feeding 

this monomer into the reaction flask at various rates of addition. Table 4.4 summarises the data 

obtained for this series of experiments. 

 

Table 4.4. Summary of the effect of varying the rate of monomer addition during the aqueous emulsion 

polymerisation of IPGMA under monomer-starved conditions (and subsequent deprotection of the 

resulting PIPGMA latexes to afford water-soluble PGMA homopolymers).  Entries 1, 3, 5, 7 and 9 

indicate characterisation data obtained for the intermediate PIPGMA latexes, whereas entries 2, 4, 5, 8 

and 10 indicate characterisation data obtained for the final PGMA homopolymer after subsequent acid 

hydrolysis. Each IPGMA polymerisation was run for 5 h at 70 °C (including the monomer addition 

time). All deprotection reactions were run at approximately pH 1  for 2 h at 70 °C.  

 

  



Chapter Four - Synthesis of high molecular weight poly(glycerol monomethacrylate) via 

conventional aqueous emulsion polymerisation of isopropylideneglycerol methacrylate 

___________________________________________________________________________ 

135 

 

In principle, a faster rate of monomer addition should produce longer polymer chains and hence 

increase the solution viscosity. Indeed, quadrupling the rate of addition from 21 mL h-1 to 84 

mL h-1 results in an increase in both molecular weight as judged by DMF GPC and in solution 

viscosity for the final water-soluble PGMA homopolymer (from 39.6 CSt to 350 CSt). One 

notable exception to this is the polymer produced with an addition rate of 42 mLh-1. This 

polymer has an extremely high molecular weight and low dispersity (see Figure 4.4). This 

particular experiment warrants further investigation to see if it can be replicated. 

 

Figure 4.4. DMF GPC trace of a PGMA homopolymer produced after the monomer-starved aqueous 

emulsion polymerisation of IPGMA (42 mL h-1, pH 7, 70 °C, 5 h) and subsequent acid hydrolysis of 

the resulting PIPGMA latex (pH 1, 70 °C, 2 h). 

 

Thus, this provides a convenient means of controlling the polymer molecular weight in such 

heterogeneous polymerisations. It is also noteworthy that larger PIPGMA latexes are obtained 

when using higher rates of monomer addition (see Figure 4.5). Importantly, very high IPGMA 

conversion was achieved for each polymerisation at 70 °C, even for (post-addition) reaction 

times as short as 1 h. This is consistent with classical studies of the kinetics of aqueous emulsion 

polymerisation.5, 7, 9  
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Figure 4.5. TEM images of PIPGMA latexes produced by the monomer-starved aqueous emulsion 

polymerisation of IPGMA. Conditions: (a) Table 4.4 entry 7, 12.5 % solids, 70 °C, 5 h, 56 mL h-1 (b) 

Table 4.4 entry 9, 12.5 % solids, 70 °C, 5 h, 84 mL h-1 

 

Determining polymerisation kinetics for such reactions is important to determine reaction time-

scales. However, monitoring the rate of polymerisation under such monomer-starved 

polymerisations is complicated by the constant addition of fresh monomer. Therefore, to 

examine the kinetics of such reactions, the batch emulsion polymerisation of IPGMA was 

performed at 70 °C, and small aliquots (1 mL) were periodically withdrawn at various time 

points. The resulting monomer conversion vs. time curve and evolution in DLS particle size 

over time curve are shown in Figure 4.6. 

 

Figure 4.6. Monomer conversion vs. time curve (as judged by 1H NMR spectroscopy) and the evolution 

of intensity-average particle diameter over time (as judged by DLS) for the batch aqueous emulsion 

polymerisation of IPGMA at 70 °C. Conditions: Initial pH 7, 12.5% solids.  
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As expected, the polymerisation of IPGMA under such conditions is extremely rapid, with 

more than 95 % conversion being achieved within 20 min and more than 99 % conversion 

within 1 h. Indeed, this polymerisation proceeds at such a fast rate that 35 % conversion was 

achieved within the short time period required to extract the first aliquot. Such fast kinetics 

provide some scope to reduce the relatively high initiator concentration utilised in this 

experiment, which will in turn lead to a higher polymer molecular weight. Of course, varying 

the rate of monomer addition may be important to compensate for any reduction in initiator 

concentration. 

A series of experiments were performed whereby the IPGMA monomer was added over a 3 h 

period at a rate of 56 mL h-1. The initiator concentration was systematically reduced while 

keeping the quantities of all other reactants constant. The results are summarised in Table 4.5. 

 

Table 4.5. Summary of the final monomer conversions, solution viscosities, molecular weight 

distribution data and DLS particle size distributions (for both the initial PIPGMA latexes and the 

corresponding water-soluble PGMA homopolymers obtained via acid hydrolysis) obtained for the 

aqueous emulsion polymerisation of IPGMA performed under monomer-starved conditions at a rate of 

IPGMA addition of 56 mL h-1 for 1.5 h while varying the ACVA initiator concentration. All IPGMA 

polymerisations were run for 5 h at 70 °C (including the monomer addition time) and the ACVA 

concentration used for entry 1 was 0.50 % w/w. Acid hydrolyses were performed over 2 h at 70 °C. 

 

 

Despite the reduction in initiator concentration, all IPGMA polymerisations proceeded to very 

high conversion within 5 h as judged by 1H NMR spectroscopy and gravimetry. However, 

reducing the initiator concentration increases the molecular weight of the PIPGMA precursor 

and hence the solution viscosity of the final PGMA aqueous solution. Fortunately, this can be 

offset (if desired) by lowering the rate of monomer addition (see Table 4.4). One additional 
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benefit is the reduction in colour achieved when reducing the initiator concentration to 5 % of 

the original amount (or 0.024 % w/w). Based on this data set, the initiator concentration was 

kept constant at 0.024 % w/w and the SDS surfactant concentration was optimised. The results 

are summarised in Table 4.6.   

 

Table 4.6. Summary of the final monomer conversions, solution viscosities, molecular weight 

distribution data and DLS intensity-average diameters and polydispersities (for both the initial PIPGMA 

latex dispersions and the corresponding water-soluble PGMA homopolymers obtained via acid 

hydrolysis) achieved for the aqueous emulsion polymerisation of IPGMA performed under monomer-

starved conditions at a rate of IPGMA addition of 56 mL h-1 for 1.5 h while varying the SDS surfactant 

concentration. All IPGMA polymerisations were run at 70 °C for a total of 5 h (including the monomer 

addition time) and the SDS concentration used for entry 1 was 1.2 % w/w. All deprotection reactions 

were performed over 2 h at 70 °C. 

 

 

Adjusting the surfactant concentration appears to have little effect on either the IPGMA 

monomer conversion or the aqueous solution viscosity of the final PGMA homopolymer. 

However, the aqueous dispersions of PIPGMA latex became distinctly more turbid when using 

less surfactant, which suggests a significant increase in particle size. DLS analysis confirms 

that there is indeed a systematic increase in particle size on lowering the SDS concentration, 

as expected (see Figure 4.7). Similar observations have been reported in the literature.10 Given 

that the colloidal stability of such latexes was not compromised under such conditions, the 

lowest surfactant concentration (0.06 % w/w) was used for the final set of experiments. 
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Figure 4.7. DLS particle size distributions obtained for the aqueous emulsion polymerisation of 

IPGMA at 70 °C performed using SDS concentrations ranging from 0.06 % w/w to 1.2 % w/w. 

Conditions: Initial pH 7, 12.5 % solids.  

 

It is well-known in the literature that emulsion polymerisations can be performed at up to 50 

% solids, especially when conducted under monomer-starved conditions.5, 11-12 If this is the 

case, it is worth investigating whether the resulting low-viscosity intermediate latexes can be 

subsequently diluted prior to deprotection via acid hydrolysis to produce final PGMA 

homopolymers with similar physical properties (i.e. solution viscosity and molecular weight). 

To examine this possibility, aqueous dispersions of PIPGMA latex were prepared at 12.5, 21.5, 

35.4 and 50 % w/w solids using a constant total monomer addition time of 1.5 h. These aqueous 

dispersions were subsequently diluted before deprotection via acid hydrolysis and the results 

are summarised in Table 4.7.  
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Table 4.7. Summary of the final monomer conversions, solution viscosities and DLS particle size 

distributions (for both the initial four PIPGMA latex dispersions and the three corresponding water-

soluble PGMA homopolymers obtained via acid hydrolysis) achieved for the aqueous emulsion 

polymerisation of IPGMA performed under monomer-starved conditions with total IPGMA addition 

over 1.5 h while varying the IPGMA concentration. All IPGMA polymerisations were run at 70 °C for 

a total of 5 h (including the monomer addition time) and all deprotection reactions were performed over 

2 h at 70 °C. In all cases, the ACVA and SDS concentrations were 0.024 % w/w and 0.06 % w/w, 

respectively. 

 

 

Firstly, high monomer conversions were obtained in all cases as judged by gravimetry. Low-

viscosity, milky-white homogeneous dispersions were obtained at up to 35.4 % w/w, which 

appeared to be very similar in appearance to the PIPGMA latexes prepared at lower 

concentrations. However, this emulsion polymerisation formulation began to show signs of 

failure when conducted at 50 % w/w solids. More specifically, an insoluble ‘skin’ formed on 

the top of the polymerising mixture. Thus this concentration appears to represent an upper limit 

for the aqueous emulsion polymerisation of IPGMA, although it is possible that more efficient 

stirring might eliminate ‘skin’ formation. For all other emulsion polymerisation syntheses, the 

PIPGMA latex viscosity remained relatively low. In contrast, the aqueous solution 

polymerisation of GMA performed at the equivalent polymer concentration invariably resulted 

in gelation. Acid hydrolysis of the 21.5 % w/w PIPGMA latex was conducted at its initial 

concentration and also after dilution to 12.5 % w/w. Accounting for the reduction in mass 

arising from the loss of the acetone protecting group, these experiments should afford final 

PGMA homopolymer solutions of 17.2 and 10 % w/w, respectively. While deprotection of the 

12.5 % w/w latex afforded a significantly lower aqueous solution viscosity than that of the 21.5 

% w/w latex (which formed a gel), it was still much higher than the solution viscosity obtained 
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when deprotecting the latex prepared directly at 12.5% w/w (see entry 1 in Table 4.7). Bearing 

in mind the high viscosity of this product, the planned deprotection reactions for the 35.4% and 

50 % latexes were aborted. In order to increase the final solids concentration while maintaining 

a constant total monomer addition time, the rate of monomer addition had to be increased. It 

seems likely that this increase in the rate of monomer addition is responsible for the higher 

solution viscosity observed for the final PGMA homopolymer. In order to examine this 

hypothesis, the aqueous emulsion polymerisation of IPGMA should be performed at 50 % w/w 

solids using a rate of monomer addition of 56 mL h-1 for a total reaction time of 6 h. However, 

such additional experiments are beyond the scope of the current study. 

 

Conclusions 

In summary, the aqueous emulsion polymerisation of IPGMA proceeds to high conversion 

within 24 h at 70 °C using an ACVA initiator and SDS as an anionic surfactant pH 6-7. This 

protocol affords relatively small latex particles with an intensity-average diameter of 83 - 105 

nm, as judged by DLS studies.. Subsequent acidification of such latex dispersions leads to in 

situ acid hydrolysis on heating (pH 1, 70 °C for 2 h) to afford an aqueous transparent viscous 

solution of water-soluble PGMA. DMF GPC analysis confirms the formation of relatively 

polydisperse high molecular weight polymer chains (Mn = 700,000 to 1,000,000 gmol-1; Mw/Mn 

= 3.2 to 5.6), while 1H NMR spectroscopy studies indicate very high levels of acetone 

deprotection (> 99 %). However, visual inspection of such formulations indicated a significant 

gel fraction in many cases. It is also noteworthy that if the initial aqueous emulsion is not 

neutralised using NaOH, the weakly acidic ACVA initiator leads to a native solution of pH 3.5. 

Perhaps surprisingly, this is sufficient to cause deprotection of the IPGMA residues to occur 

during the emulsion polymerisation at 70 °C. Thus the product obtained under such acidic 

conditions is the desired high molecular weight water-soluble PGMA chains in the form of a 

transparent, highly viscous aqueous solution, rather than a milky-white dispersion of the 

intermediate PIPGMA latex particles. Unfortunately, the current protocol for this reaction 

requires a very long reaction time (24 h) and gives rise to some inhomogeneity in the final 

homopolymer solution. However, this highly convenient one-pot synthesis still warrants 

further investigation.  

Using a monomer-starved protocol eliminated the problem of gel formation and also afforded 

somewhat better control over the molecular weight distribution. For example, under optimised 
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conditions it was possible to obtain an Mn value in excess of one million with an Mw/Mn below 

2.0 (see entry 6 in Table 4.4). However, the reproducibility of such syntheses remains to be 

established. 

Preliminary experiments suggest that systematic reduction of the initiator concentration leads 

to higher molecular weight polymers (and hence a corresponding increase in solution viscosity) 

but with relatively little effect on the mean latex diameter. On the other hand, reducing the rate 

of monomer addition produced significantly lower molecular weight PGMA chains. 

As expected, lowering the surfactant concentration by a factor of twenty led to the formation 

of larger latex particles. However, this parameter appears to have minimal effect on the 

molecular weight of the final PGMA homopolymer.  

According to GEO scientists, the manufacture of IPGMA is an order of magnitude cheaper 

than that of GMA. Thus, aqueous emulsion polymerisation of the former monomer represents 

a highly attractive, atom-efficient, one-pot synthetic route to high molecular weight PGMA 

homopolymer at up to 20% w/w solids. In principle, this new formulation offers substantial 

advantages in term of overall cost, handling and throughput compared to the aqueous solution 

polymerisation of GMA protocol that is currently performed by GEO. 

 

Future Work 

One interesting question for the one-pot synthetic protocol performed at pH 3.5 is whether 

deprotection occurs during or after the IPGMA polymerisation. To address this question, 

IPGMA could be dispersed as a 10 % SDS-stabilised aqueous emulsion in the absence of any 

ACVA initiator. This emulsion could be adjusted to pH 3.5 and then heated to 70 °C. Periodic 

sampling of this emulsion should establish the rate of conversion of IPGMA to GMA and hence 

indicate whether this deprotection occurs on the same time scale as the IPGMA polymerisation, 

which is essentially complete within 1 h (albeit at pH 7). 

Performing the emulsion polymerisation of IPGMA under monomer-starved conditions avoids 

the undesirable gel fraction associated with the early batch polymerisation syntheses. It would 

be interesting to examine whether the same approach could be applied to the one-pot synthesis 

of PGMA from IPGMA at pH 3.5. 

Further optimisation of the aqueous emulsion polymerisation of IPGMA is desirable in terms 

of the initiator and surfactant concentrations, solution pH, polymerisation temperature and also 

the rate of monomer addition. The final polymer properties are most likely influenced by each 
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of these parameters, so identifying an appropriate compromise is important. Moreover, it would 

be important to establish reproducibility once suitable optimal conditions have been identified. 

Only at this point should scale-up syntheses be explored. 

Adjusting the SDS concentration employed for the aqueous emulsion polymerisation of 

IPGMA offers a convenient means of targeting polymer latexes of varying mean particle 

diameter. In view of this particle size control, it would be interesting to examine the effect of 

particle size on the rate of acid hydrolysis. If acid hydrolysis proceeds via surface erosion, then 

smaller latex particles (with a higher specific surface area per unit mass) should be converted 

into water-soluble PGMA chains more quickly. On the other hand, if mineral acid diffuses 

freely within the precursor latex particles, then perhaps the rate of acid hydrolysis should be 

more or less independent of the initial latex dimensions. 

In principle, the aqueous emulsion polymerisation of IPGMA can be conducted at up to 50% 

w/w solids while maintaining a relatively low dispersion viscosity at around neutral pH. 

Subsequently, such concentrated dispersions can be diluted to ~10 % w/w prior to acid 

hydrolysis to afford aqueous solutions of high molecular weight PGMA as desired. However, 

further experiments need to be conducted under monomer-starved conditions to establish the 

effective upper limit solids for this formulation. The resulting PGMA chains should be 

analysed by DMF GPC to ensure that more intensive reaction concentrations do not adversely 

affect their molecular weight distribution (and hence their solution viscosity) or lead to larger 

gel fractions. 

If such high molecular weight PGMA homopolymers were to be used in cleaning formulations, 

there is a potential opportunity to replace the SDS surfactant with whatever ionic or non-ionic 

surfactants are used in the commercial cleaning formulation itself. This should ensure that the 

polymer synthesis was fully compatible with this commercial product. In principle, the IPGMA 

polymerisation (and its subsequent deprotection) could become an initial step when producing 

such cleaning formulations.  
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The work carried out in this chapter was at least 90 % completed by C. P. Jesson  

 

The rest of the work in this chapter was carried out by Dr. N. J. Warren  
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Introduction 

Aldehydes are highly versatile functional groups that can react with various reagents. Some 

common examples are reduction of aldehydes to give primary alcohols, oxidation of aldehydes 

to give carboxylic acids, nucleophilic attack, Schiff-base reactions with amines to give imines 

or reactions with cis-diols to give (hemi)acetals.1-2 

 

 

Figure 5.1. Examples of common reactions of aldehydes1-2 

 

Given this chemical diversity, the design of aldehyde-functional polymers should be of 

significant interest. Indeed, there are many examples of hydrophobic aldehydic vinyl 

monomers, but examples of water-soluble aldehyde-functional monomers are rather rare. There 

is good literature precedent to suggest that the terminal cis-diol group in water-miscible 

monomers such as GMA could be readily converted into an aldehyde using a selective oxidant 
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such as sodium periodate.3 Preliminary data obtained by a former Armes group post-doc (Dr. 

N. J. Warren) indicated that this oxidative transformation could be achieved for PGMA but the 

resulting homopolymer was no longer water-soluble (and appeared to be chemically cross-

linked). In this context, it is well known that monomers containing oligo(ethylene glycol) 

(OEG) side-chains such as OEGMA are water-soluble. Within the last five years or so, GEO 

has augmented their monomer palette by designing a new methacrylic monomer, GEO5MA. 

This hybrid monomer comprises (on average) five EG units separating the methacrylate 

backbone unit from the cis-diol end-group. Thus, GEO5MA combines the structural features 

found in GMA and OEGMA (see Figure 5.2 for the chemical structures of these three 

monomers). The physicochemical properties of GEO5MA and its corresponding homopolymer 

are as yet unexplored, although the latter is expected to be water-soluble. Moreover, the 

additional OEG side-chain may enable the same periodate transformation to be applied to 

GEO5MA with retention of its water solubility (unlike GMA). If this hypothesis is correct, this 

would constitute a rare example of a water-soluble aldehydic vinyl monomer. In principle, this 

could provide access to a wide range of aldehyde-functionalised water-soluble polymers, block 

copolymer nanoparticles and polymer brushes. 

 

 

Figure 5.2. Chemical structures for three GEO monomers: GMA, OEGMA and GEO5MA. 



Chapter Five – Synthesis and characterisation of aldehyde-functional homopolymers, block 

copolymers and brushes 

___________________________________________________________________________ 

148 

 

Thus, the synthesis of GEO5MA was conducted on a kilo scale during a six-month internship 

at GEO Specialty Chemicals. This monomer was then polymerised by RAFT solution 

polymerisation before exploring the effect of sodium periodate on the corresponding 

homopolymer. Preliminary periodate oxidation studies were also conducted on the GEO5MA-

based products. 

 

Experimental 

Materials 

Glycerol monomethacrylate (GMA, 99.8 %), methyl methacrylate (MMA), isopropylidene 

glycerol pentaethylene glycol ether (IPG+5EO), 4-methoxyphenol (MEHQ) and titanate 

catalyst were provided by GEO Specialty Chemicals (Hythe, UK) and were used without 

further purification. 4,4′-Azobis(4-cyanopentanoic acid) (ACVA, 99 %), sodium periodate 

(NaIO4), hydrochloric acid (HCl), ascorbic acid, hydrogen peroxide solution (H2O2, 30 %), 

(3-aminopropyl)triethoxysilane (ATPES, 99 %), α-bromoisobutyryl bromide (BiBB, 98%), 

Copper (II) Chloride (Cu(II)Cl2, 99.9 %), 2, 2’-Bipyridine (bpy, 99 %) and ascorbic acid  were 

purchased from Sigma-Aldrich (UK) and were used as received. Deuterated DMF and 

methanol were purchased from Goss Scientific Instruments Ltd. (Crewe, UK). All other 

solvents and Decon90 were purchased from Fisher Scientific (Loughborough, UK) and were 

used as received. Silicon wafers were purchased from Pi-Kem. Deionised water was used for 

all experiments.  

 

Transesterification of IPG + 5EO 

A 5 L transesterification rig was charged with isopropylidene glycerol pentaethylene glycol 

ether (IPG+5EO) (1500 g), MMA (2300 g, 22.97 mol) and MEHQ (1.3 g, 10.4 mmol). The 

reaction mixture was subsequently heated to 115 °C with an air sparge at a constant rate of 300 

mL min-1. Water/MMA distillate was periodically removed from the still head until the 

headspace reached a constant temperature (~100 °C) after 2 h. The reactor was periodically 

topped up with MMA to maintain a constant reaction volume. Titanate catalyst (2.0 g) was 

added by syringe and transesterification commenced. The reaction was run for 2 h under partial 

take-off conditions. At this point, the head temperature reached 95 °C and the reaction was 
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switched to ‘run and bump’ conditions. This means the still head was allowed to fill for a period 

of time before draining in order to concentrate methanol in the distillate. The still head was 

drained every 20 min for 2 h, after which transesterification was deemed complete. The 

reaction mixture was allowed to cool overnight. The following day, MMA was stripped from 

the same rig at 80 °C under vacuum for 2 h. Deionised water (400 g) was added to deactivate 

the titanate catalyst and allowed to react for 1 h at 80 °C. Then the precipitate was removed by 

filtration and the water was stripped under vacuum at 80 °C for 2 h. The resulting colourless 

liquid (IPGEO5MA, 1500 g) had a water content of 0.01 % w/w and an OH number of 2.63 

mg KOH g-1. If full conversion were achieved and no water was present an OH number of 0 

mgKOH g-1 would be expected, this measured value indicates high conversion for this reaction.  

Acidic Deprotection of IPGEO5MA  

IPGEO5MA (1500 g) was treated with a resin (Ambersep 900 OH) (150 g) to remove MEHQ 

inhibitor. The reaction solution was stirred for 20 min at 20 °C, then the resin was removed by 

filtration. The residual level of MEHQ was determined to be 25 ppm using UV-visible 

absorption spectroscopy and this was subsequently topped up to 100 ppm by addition of fresh 

MEHQ (0.115 g, 0.92 mmol). Deionised water (300 g) and concentrated HCl (11 g) were added 

to the IPGEO5MA in a 3 L flask. This reaction mixture was stirred for 48 h using a 300 mL 

min-1 air sparge, while water was periodically topped up to maintain a constant reaction 

volume. The resulting homogeneous solution was neutralised using an ion exchange resin (150 

g), which was then removed by filtration. Finally, water was removed from the reaction 

solution at 50 °C under vacuum for 4 h prior to analysis. The resulting yellowish liquid had a 

water content of 0.3 % w/w and an OH number of 289 mg KOH g-1. If full conversion were 

achieved and no water was present an OH number of 294 mg KOH g-1 would be expected, this 

measured value indicates high conversion for this reaction. 

Oxidative cleavage of cis-diol group using sodium periodate 

The reaction of GEO5MA with NaIO4 was performed at 10 % solids as follows: GEO5MA 

(1.00 g, 2.6 mmol) was diluted with D2O (9.0 g) to give a 10 % monomer solution. NaIO4 (0.56 

g, 2.6 mmol) was added and the solution was stirred for 16 h. The product was analysed by 1H 

NMR spectroscopy, which indicated that more than 99 % conversion had been achieved. This 

was determined by comparing the integral of new aldehyde and hydrated aldehyde signals at 
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9.5 and 5.1 ppm respectively with the vinyl protons at 5.7 and 6.1 ppm which should remain 

constant. Purification of the resulting aldehyde-functional monomer was attempted by 

extraction into diethyl ether. This produced a yellow oil and removed some of dimethacrylate 

impurities. However, the isolated yield was rather low (~ 10 %). 

Synthesis of PGEO5MA brushes from planar silicon wafers using ARGET ATRP 

Silicon wafers were cut and prepared as reported in the literature.4 The resulting wafers were 

then immersed in a 1 % solution of APTES in toluene for 1 h. The APTES-treated wafers were 

immersed in solutions of fresh toluene, 1:1 toluene/ethanol and fresh ethanol and sonicated for 

15 min each using an ultrasonic bath.  Finally, wafers were annealed for 30 min under vacuum 

at 120 °C before being sonicated in a 10 % aqueous surfactant solution (Decon90). Finally, the 

wafers were rinsed with water and IPA before being dried using a stream of N2 gas. Wafers 

were then functionalised with ATRP initiator sites by immersion in a 0.1 M solution of BiBB 

in dichloromethane overnight, before being rinsed with this solvent and dried using a stream 

of N2 gas.  

Stock solutions of ATRP catalyst comprising Cu(II)Cl2 (29.2 mg, 0.22 mmol) and bpy ligand 

(77.6 mg, 0.50 mmol) in water (10 mL) and reducing agent (100 mg ascorbic acid in 10 mL 

water) were made up. GEO5MA (3.00 g, 7.9 mmol) was dissolved in water (8.0 mL) and 1.0 

mL of the catalyst stock solution plus 0.10 mL of the reducing agent stock solution were added 

to this aqueous monomer solution. The resulting reaction solution changed colour from brown 

to blue, indicating formation of the active Cu(I) ATRP catalyst. Silicon wafers were carefully 

immersed within this reaction solution for desired time periods. After a given reaction time, 

wafers were removed using tweezers, washed with ethanol and dried using a stream of N2 gas. 

The resulting PGEO5MA brushes were analysed by ellipsometry and FT-IR spectroscopy.  

 

Characterisation Techniques 

1H NMR Spectroscopy. All spectra were recorded in either deuterated methanol or D2O using 

a 400 MHz Bruker Avance-400 spectrometer (64 scans averaged per spectrum). 

Gel Permeation Chromatography (GPC). Molecular weight distributions were assessed using 

an Agilent 1260 Infinity GPC system equipped with both refractive index and UV-visible 
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detectors. Two Agilent PL gel 5 μm Mixed-C columns and a guard column were connected in 

series and maintained at 60 °C. HPLC-grade DMF containing 10 mM LiBr was used as an 

eluent and the flow rate was set at 1.0 mL min−1 with DMSO being used as a flow-rate marker. 

The refractive index detector was used to calculate molecular weights and dispersities using a 

series of ten near-monodisperse poly(methyl methacrylate) calibration standards (with Mn 

values ranging from 625 to 2,200,000 g mol−1).  

 

Transmission Electron Microscopy (TEM). As-prepared aqueous PGEO5MA-PHPMA 

dispersions were diluted at 20 °C to generate 0.20 % w/w dispersions. Copper/palladium TEM 

grids (Agar Scientific, UK) were coated in-house to produce a thin film of amorphous carbon. 

These grids were then treated with a plasma glow-discharge for 30 seconds to create a 

hydrophilic surface. Each aqueous dispersion (12 μL; 0.20 % w/w) was placed on a freshly-

treated grid for 1 min and then blotted with filter paper to remove excess solution. To stain the 

deposited latex particles, an aqueous solution of uranyl formate (9 μL; 0.75% w/w) was placed 

on the sample-loaded grid via micropipette for 20 s and then carefully blotted to remove excess 

stain. Each grid was then carefully dried using a vacuum hose. Imaging was performed using 

a FEI Tecnai Spirit TEM instrument equipped with a Gatan 1kMS600CW CCD camera 

operating at 120 kV.  

 

Viscosity and pH. Solution viscosities were determined using internally-calibrated U-tube 

viscometers immersed in an aqueous ethylene glycol bath at 25 °C. Each solution viscosity was 

calculated by averaging three independent measurements. Solution pH was determined by 

immersing a calibrated Metrohm 744 pH meter directly into the aqueous polymer solution. 

 

OH Number and Water Content. OH numbers were determined by titration according to ASTM 

E 326 on a Mettler Toledo T70 Titroprocessor. Water contents were determined by titration 

according to ASTM E 203 on a Metrohm 787 KF Titrator. 

 

MeHQ Content. The MEHQ content was determined as per ASTM D 3125 using a Thermo 

Scientific Evolution 220 UV-VIS Spectrophotometer 
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FT-IR Spectroscopy. FT-IR spectra were recorded for solid samples using a Thermo Scientific 

Nicolet iS10 FT-IR spectrometer by passing the beam directly through the silicon wafer and 

polymer brush. Each spectrum was averaged over 500 scans at a resolution of 4 cm−1 

 

Contact Angles. Contact angle of deionized water drops were measured using a Ramé-Hart 

model 100- 00 contact angle goniometer. 

 

Ellipsometry. Ellipsometric studies were conducted using an alpha-SE ellipsometer (J. A. 

Woollam Co., Lincoln, NE, USA) equipped with a He−Ne laser (λ = 633 nm) at an incident 

angle (Φ) of 70° from the normal. Ellipsometric thicknesses were calculated for polymer 

brushes grown from planar silicon wafers. Measurements were conducted from 300 to 700 nm, 

and modelling was performed using completeEASE software provided by the instrument 

manufacturer. 

 

 

Results and Discussion 

The synthesis of GEO5MA is a multi-step process starting from isopropylidene glycerol (IPG). 

Protecting group chemistry is essential to prevent the formation of di- or tri-methacrylate side-

products. IPG was used as an initiator to oligomerise EO using an in-house method at 125 °C 

under pressure of 5.5 bar to afford isopropylidene glycerol pentaethylene glycol ether 

(IPG+5EO). This intermediate product was characterised by OH number and viscosity 

measurements. 

IPG+5EO was then subjected to transesterification with methyl methacrylate (MMA) (see 

Scheme 5.1). A typical transesterification rig was set up as shown in Figure 5.3. The reactor 

was charged with IPG+5EO, MMA and MEHQ inhibitor (1000 ppm), then heated up to 115 

°C to remove water (which is detrimental to the catalyst). Water and MMA have boiling points 

of 100 °C and 101 °C respectively, but an MMA/water mixture forms a low-boiling azeotrope. 

The distillate was periodically removed until the pot temperature reached a constant 

temperature of around 100 °C. At this point, the titanium catalyst was added and 

transesterification commenced. 
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Figure 5.3. Schematic representation of a typical transesterification rig5 

 

As transesterification continued, methanol and MMA were distilled into the top of the 

apparatus and periodically removed. Methanol has a boiling point of 65 °C. This is significantly 

lower than that of MMA, therefore the progress of the transesterification reaction can be 

monitored by measuring the temperature at the head of the distillation column. MMA was 

topped up periodically to account for that removed by distillation. Once the head temperature 

had reached close to 100 °C and remained constant, this indicated the end of the reaction. 
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Scheme 5.1. Transesterification of IPG + 5EO with MMA to give IPGEO5MA using a titanate catalyst 

 

A vacuum was applied to the rig in order to remove excess MMA from the pot. Once the MMA 

had been removed, the reactor was charged with water. The titanate catalyst reacts rapidly with 

water to form a precipitate. The reaction mixture was cooled and passed through a filter to 

remove insoluble catalyst residues. Finally, the product was stripped at 80 °C to remove 

unreacted water. 

The resulting IPGEO5MA intermediate was analysed for its water content and OH number. If 

all product had reacted, a final OH number of zero would be expected, but small amounts of 

water lead to higher than expected values. The actual water content was 0.01 % w/w and the 

OH number was determined to be 2.63 mg KOH g-1. This non-zero OH number is fully 

consistent with the low water content, so the transesterification was deemed to be complete.  

This IPGEO5MA was treated with Ambersep 900 OH resin for 20 min to reduce its inhibitor 

concentration to 100 ppm, as confirmed by UV-vis. Water and acid were added to facilitate the 

hydrolysis of the acetal group (see Scheme 5.2). The initially inhomogeneous reaction mixture 

was stirred for 48 h at 20 °C with an air sparge, while water was periodically topped up to allow 

for evaporation. After 48 h, a homogeneous aqueous solution was obtained, indicating the 

formation of a water-miscible product. The solution was neutralised using an Amberlyst A24 
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ion exchange resin and water was subsequently removed under vacuum. The OH number and 

water content of the product was analysed. If the reaction had gone to completion and no 

residual water remained, an OH number of 295 mg KOH g-1 would be expected. An OH number 

of 289 mg KOH/g was observed with a water content of 0.3 % w/w. This suggested a high 

conversion of IPGEO5MA to GEO5MA. 

 

 

Scheme 5.2. Acidic hydrolysis of IPGEO5MA at 20 °C for 48 h to afford GEO5MA 

 

The GEO5MA monomer was subsequently analysed by 1H NMR spectroscopy. The assigned 

spectrum shown in Figure 5.4b is consistent with that expected for GEO5MA, confirming that 

deprotection via acid hydrolysis had proceeded to high conversion (no IPG signals were 

observed at 1-2 ppm, see Figure 5.4b). 
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Figure 5.4. (a) 1H NMR spectrum of IPGEO5MA in CD3OD and (b) 1H NMR spectrum of GEO5MA 

in CD3OD confirming no visible IPG impurities.  
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Previous work within the Armes group 

A former group member (Dr. N. J. Warren) began to explore the reaction of sodium periodate 

with cis-diols to form aldehydes after noting that the analogous chemistry had been previously 

utilised to selectively cleave poly(vinyl alcohol) chains.6 In principle, this chemistry offers an 

excellent opportunity to prepare new aldehydic vinyl monomers starting from either GMA or 

GEO5MA. Accordingly, GMA was reacted with one equivalent of NaIO4 in D2O at a 

concentration of 20 g dm-3 (see Figure 5.5). The reaction solution was analysed by 1H NMR to 

confirm product formation and determine the overall conversion.  

 

 

Figure 5.5. 1H NMR spectra recorded in D2O showing the reaction of GMA with NaIO4 to give a 

(hydrated) aldehyde product. 

 

Periodate oxidation proceeded smoothly at 20 °C over the course of 20 h. In aqueous solution, 

aldehydes undergo a reversible reaction to form a gem-diol.1-2, 7 The final NMR spectrum 

indicated the formation of 2 % of the target aldehyde and 71 % of its hydrated gem-diol form. 

It is well-known that aldehydes and ketones undergo a pH-reversible reaction with cis-diols to 

form acetal linkages.1-2, 7 Thus, an additional signal at 8.1 ppm was attributed to dimethacrylate 

formation arising from acetal formation (see Scheme 5.3); this side-product was present at a 

level of approximately 1 mol % relative to the final product.  
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Scheme 5.3. Formation of a dimethacrylate side-product by the pH-reversible reaction of GMA with 

ethanal methacrylate 

 

The same periodate oxidation reaction was used to derivatise a PGMA macro-CTA (for 

characterisation see Chapter 2, Figure 2.1) with a DPn of 50. This water-soluble precursor was 

treated with either 0.1 or 1.0 equivalent of NaIO4 in D2O at a concentration of 20 g dm-3. In 

both cases, a precipitate was formed within 20 h at 20 °C. This phase separation was attributed 

to the formation of a cross-linked water-insoluble product via the same chemistry that led to 

the production of the dimethacrylate side-product (see above). Dissolution of this precipitate 

was achieved by adjusting the solution pH to 3 using DCl/D2O. 1H NMR spectroscopy studies 

confirmed the formation of the hydrated gem-diol product (see Figure 5.6). 

 

 

Figure 5.6. 1H NMR spectra recorded in DCl/D2O for PGMA50 treated with either zero, 0.1 or 1.0 

equivalents of NaIO4. Conditions: 22 °C, 22 h.  
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In order to functionalise these aldehydic monomer/polymers with nucleophiles, it may be 

necessary to convert them into their more reactive aldehyde form. Removing water from the 

system should drive the equilibrium from the hydrated gem-diol towards the aldehyde. As such, 

the product was purified by dialysis and freeze-dried. However, attempts to dissolve this 

product in D2O, CD3OD or CDCl3 proved unsuccessful, suggesting a high degree of 

crosslinking via acetal formation. 

 

Periodate oxidation of GEO5MA monomer and PGEO5MA homopolymer 

Given that PGMA became water-insoluble after treatment with sodium periodate, the same 

reaction was performed on GEO5MA to see whether the additional OEG moiety enabled 

aqueous solubility to be retained. Thus, a 20 g dm-3 solution of GEO5MA in D2O was treated 

with one equivalent of NaIO4. The reaction mixture was stirred at 20 °C for 20 h before being 

analysed by 1H NMR spectroscopy. A relatively high conversion was observed under these 

conditions, with 88 % hydrated gem-diol and 3 % unhydrated aldehyde being observed (see 

Figure 5.7). Interestingly, unlike the reaction of GMA monomer with NaIO4, no dimethacrylate 

side-products were detected. 

 

 

Figure 5.7. 1H NMR spectra recorded for GEO5MA in D2O before and after treatment with NaIO4. 

Conditions: one equivalent of NaIO4, 22 °C, 22 h  
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The same reaction was repeated using a PGEO5MA21 macro-CTA. This precursor was treated 

with either 0.1 or 1 equivalent of NaIO4 in D2O at a polymer concentration of 20 g dm-3. In 

both cases, the derivatised polymer remained water-soluble but a colour change from pink to 

orange was observed. This almost certainly indicates concomitant oxidation of the RAFT end-

group. Each reaction yielded both hydrated gem-diol and unhydrated aldehyde products, but 

acetal crosslinks were observed when using a higher concentration of NaIO4 (see Figure 5.8). 

Importantly, this does not seem to be the case when using 2.1 equivalents of NaIO4.  

 

 

Figure 5.8. 1H NMR spectra recorded for the oxidation of PGEO5MA21 using either 2.1 or 21 

equivalents of NaIO4. Conditions: 20 g dm-3, 22 °C, 16 h, D2O.  The PGEO5MA21 spectrum was 

recorded in CD3OD whereas the spectra recorded after the oxidation reactions were recorded in D2O. 

 

There have been numerous literature reports of the synthesis of diblock copolymer 

nanoparticles via the RAFT aqueous dispersion polymerisation of HPMA.8-10 For example, 

when using PGMA as the water-soluble stabiliser block, either spheres worms or vesicles can 

be produced by adjusting the DP of the PHPMA block and the copolymer concentration.9, 11-13 

In principle, water-soluble GEO5MA should also act as a suitable steric stabiliser in place of 

PGMA and also allow the formation of diblock copolymer nanoparticles. Thus, a phase 

diagram was constructed by chain-extending PGEO5MA21 using varying amounts of HPMA 

over a range of copolymer concentrations, with the post mortem copolymer morphology being 

determined by TEM (see Figure 5.9).  
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Figure 5.9. Phase diagram for PGEO5MA21-PHPMAx diblock copolymer nanoparticles formed via 

RAFT aqueous dispersion polymerisation of HPMA using a PGEO5MA21 macro-CTA. Conditions: 70 

°C, 5 h. Copolymer morphologies were assigned by TEM studies. Three representative TEM images 

for spherical, worm-like and vesicular particles are shown below the phase diagram. 

 

In principle, functional nanoparticles with aldehyde groups expressed at the surface of the 

nanoparticles could be readily labelled with a fluorescent dye or used for protein conjugation 

reactions.14-15 Accordingly, PGEO5MA21-PHPMAx spheres (x = 150) and vesicles (x = 300) 

were derivatised in turn using 0.1 equivalents of NaIO4 per cis-diol group at 10 % w/w solids. 

In each case, 1H NMR spectroscopy studies confirmed the presence of aldehyde groups and 

the nanoparticles appeared to remain colloidally stable (as judged by visual inspection).  

In many cases, converting 10 % of the initial cis-diols to aldehyde groups may be sufficient. 

Nevertheless, it would be interesting to target an aldehyde-functional water-soluble polymer 

containing the maximum aldehyde content. However, performing this derivatisation leads to 

low levels of acetal crosslinking. In principle, an alternative route to the desired product would 

be to synthesise the corresponding water-soluble aldehyde monomer and subsequently perform 
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the corresponding RAFT solution polymerisation. Accordingly, GEO5MA was treated with an 

equimolar amount of NaIO4 at a monomer concentration of 10 % w/w (see Figure 5.10). 

 

 

Figure 5.10. 1H NMR spectrum recorded in D2O for the aldehyde-functionalised GEO5MA monomer 

formed from the reaction of GEO5MA with one equivalent of NaIO4 conducted in D2O. Conditions: 10 

% w/w, 22 °C, 16 h. 

 

Under these conditions the periodate oxidation reaction proceeds very efficiently, with more 

than 95 % gem-diol and 4 % aldehyde being formed. Unfortunately, the higher concentration 

also led to the formation of approximately 0.5 mol % of the acetal-bridged dimethacrylate. 

Extraction with ether was used to isolate the desired product prior to freeze-drying, affording 

a yellow oil. Pleasingly, this purification protocol reduced the dimethacrylate side-product to 

almost undetectable levels. However, only a rather low purified yield (~10 %) of the desired 

aldehyde-functional vinyl monomer was obtained (approx. 0.1 g from 1.0 g of GEO5MA). 

Nevertheless, this oxidation reaction was repeated on a larger scale in order to obtain enough 

aldehyde-functional GEO5MA to perform a polymerisation. In this case, 10 g of GEO5MA 

yielded 0.75 g of the desired product. Unfortunately, time constraints prevented investigation 

of the RAFT solution polymerisation of this aldehyde-functionalised GEO5MA monomer. 

However, subsequent research within the Armes group undertaken by a PhD student (Emma 
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Brotherton) has confirmed that this is indeed a valid route to well-defined aldehyde-functional 

water-soluble polymers. 

 

Growth of PGEO5MA brushes from planar silicon wafers using ARGET ATRP 

A further promising research avenue is aldehyde-functional polymer brushes. The growth of 

many methacrylic polymer brushes from planar silicon wafers is well-established via surface 

ATRP.16-17 In principle, aldehyde-functional polymer brushes could be prepared either (i) by 

directly polymerising the aldehyde-functional monomer or (ii) by first growing PGEO5MA 

brushes followed by their selective oxidation via immersion in an aqueous solution of sodium 

periodate.  

In this thesis, the second route was briefly explored. First, silicon wafers were cut using a 

diamond-tipped knife and placed into individual vials. The vials were then submerged in 

piranha solution (7 parts 98 % H2SO4 solution: 3 parts 30 % H2O2 solution) for 45 min, before 

thoroughly washing the vials and tubes (ten times) with distilled water. This cleaning is 

essential to remove any organic impurities which may impact further surface functionalisation 

and brush growth. Following this protocol, the slides were then immersed in RCA solution (5 

parts distilled water : 1 part 30 % H2O2 solution : 1 part 35 % NH3)  and heated at 370 °C for 

30 min. This treatment removed any excess piranha solution and also activated the surface. The 

slides were allowed to cool for 1 h before being washed seven times with distilled water and 

then stored in a clean oven at 120 °C overnight.4 

The following morning, the slides were wrapped in foil and allowed to cool slowly. This 

precaution is essential to prevent dust contamination of the wafer surface. The resulting clean 

wafers were immersed in a 1 % APTES solution in toluene for 1 h. The siloxane groups on the 

APTES react with the silanol groups on the wafer to form a thin layer of primary amine surface 

groups (see Scheme 4a). The slides were then sonicated in toluene, a 1:1 solution of toluene 

and ethanol and finally ethanol for 15 min each. This treatment has been carefully optimised 

to produce approximately one monolayer of ATPES at the silicon wafer surface. The APTES-

treated slides were annealed in a vacuum oven for 30 min at 120 °C before being sonicated 

using an aqueous surfactant solution (Decon 90). Finally the wafers were rinsed with distilled 

water and IPA before being dried using a stream of nitrogen gas.  

According to the literature, an APTES monolayer should give a water contact angle of 45°.18 

Contact angle measurements on the APTES-treated wafers prepared in this Thesis gave an 
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average value of 35°, indicating a reasonable monolayer. The wafers were then functionalised 

with 2-Bromoisobutyryl Bromide (BiBB) initiator by immersing them in a 0.1 M BiBB 

solution in dichloromethane for 16 h at 20 °C. The BiBB reacts with the pendant amine groups 

to produce pendant amide-based ATRP initiators on the wafer surface (see Scheme 5.4a). 

 

 

Scheme 5.4. (a) Functionalisation of surface silanol groups on a planar silicon wafer with APTES and 

BiBB in order to form surface initiator sites. (b) ARGET ATRP of GEO5MA from such initiator sites 

on a planar silicon wafer to grow PGEO5MA brushes. 

 

Four individual wafers were subsequently placed into vials containing GEO5MA monomer 

(3.0 g), CuCl2 (2.92 mg), 2,2’-bipyridine (7.76 mg), ascorbic acid (1.0 mg) and water (9.1 mL). 

PGEO5MA brushes were grown from these surface initiator groups via ARGET ATRP (see 

Scheme 5.4b). Each slide was removed from the solution at different time points (10 min, 30 

min, 1 h or 2 h) in order to monitor the rate of growth from the surface. The resulting 

PGEO5MA brush-coated wafers and one unfunctionalised wafer were then analysed by 

ellipsometry and FT-IR spectroscopy. 

Assuming a refractive index of 1.35 for the PGEO5MA brush, the ellipsometry data confirmed 

an increase in brush thickness with time up to 60 nm (see Figure 5.11a). In each case the model 

was a good fit to the data with MSE (mean squared error) values less than 1 and the surface 

roughness was measured at less than 5 nm. The IR spectra showed no discernible difference 

between brushes of different thicknesses but did reveal the presence of ester carbonyl bands at 

1740 cm-1 and also C-O linkages at lower wavenumbers (see Figure 5.11). These preliminary 

results confirm that it is possible to grow relatively thick PGEO5MA brushes from the surface 

of silicon wafers. 
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Unfortunately, time constraints did not allow periodate oxidation of the PGEO5MA brushes 

grown from planar silicon wafers. In principle, this should be readily achieved simply by 

immersing the brush layer in an aqueous periodate solution for a given time, followed by 

rinsing with deionised water to remove excess periodate (and formaldehyde by-product). The 

success of this surface modification reaction could be studied by FT-IR spectroscopy and X-

ray photoelectron spectroscopy (XPS). In the latter case, the surface aldehyde groups could be 

reacted with 2,2,2-trifluoroethylamine to produce a Schiff base, thus introducing a convenient 

F1s label for quantification purposes. 

 

 

Figure 5.11. (a) Ellipsometric analysis of an ARGET ATRP-synthesised PGEO5MA brush of 60 nm 

dry thickness fitted using completeEASE software. The inset graph shows the monotonic evolution of 

dry brush thickness with polymerisation time. (b) Fourier transform infra-red spectrum recorded for a 

PGEO5MA brush of 39 nm dry thickness after subtraction of a background spectrum recorded for the 

pristine planar silicon wafer. Weak ester carbonyl (C=O) and C-O bands and a strong C-O ether band 

are observed at 1740 cm-1, 1450 cm-1 and 1100 cm-1, respectively, confirming the presence of 

PGEO5MA chains at the silicon wafer surface. 
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Conclusions 

A new water-soluble methacrylic monomer (GEO5MA) with a hybrid chemical structure lying 

between that of GMA and OEGMA was synthesised on a kilo scale during my six-month 

secondment at GEO Specialty Chemicals. This monomer is water-soluble in all proportions 

and is readily polymerised by RAFT solution polymerisation to afford a low-dispersity 

homopolymer precursor. 

In principle, treating either GMA or GEO5MA with an aqueous solution of sodium periodate 

enables the selective oxidative cleavage of the cis-diol unit under mild conditions (20 °C, pH 

6-7) to afford the corresponding aldehyde-functional methacrylic monomers. In practice, 

treating GMA with NaIO4 in D2O gave a hydrated gem-diol product in high yield but also 

produced low levels of an acetal-bridged dimethacrylate impurity. When applied to a water-

soluble PGMA precursor, this chemistry produced an insoluble precipitate that could be 

solubilised via treatment with HCl. The oligo(ethylene glycol) groups in GEO5MA ensured 

that this monomer and its corresponding homopolymer remained water-soluble. Moreover, no 

detectable dimethacrylate side product was formed when this derivatisation was conducted at 

relatively low concentration. However, the side-product for both such monomer syntheses is 

formaldehyde, which is a known carcinogen. 

As expected, PGEO5MA acted as an effective steric stabiliser for diblock copolymer 

nanoparticles produced by the RAFT aqueous dispersion polymerisation of HPMA. By varying 

the copolymer concentration and the PHPMA block DP, either spheres, worms or vesicles 

could be reproducibly targeted. By determining the copolymer morphology by TEM, a 

preliminary phase diagram could be constructed. Finally, 10 % w/w copolymer dispersions of 

either spheres or vesicles were treated with 0.1 equivalents of NaIO4 and the desired aldehyde 

groups were detected by 1H NMR spectroscopy.  

GEO5MA monomer could be treated with equimolar quantities of sodium periodate at 

concentrations as high as 10 % w/w. The resulting aldehyde-functionalised product contained 

dimethacrylate impurities but these could be significantly reduced by ether extraction, with 

freeze-drying yielding the final purified aldehyde-functional methacrylic monomer.  

Finally, GEO5MA can be polymerised from planar silicon wafers via ARGET ATRP to 

produce PGEO5MA brushes. FT-IR spectroscopy studies confirmed the presence of 

PGEO5MA chains at the silicon wafer surface while ellipsometry confirmed that these brushes 

were relatively thick (up to 60 nm).  
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Future Work 

Promising proof-of-concept experiments have been conducted, but substantial further studies 

are now required to establish the true scope and limitations of this new route to aldehyde-

functional monomers, water-soluble homopolymers and nanoparticles. For example, the 

periodate oxidation reaction requires further optimisation with regard to the reagent 

concentration, temperature, solution pH, reaction time and molar ratio of reactants. Ideally, 

such studies will enable suitable conditions to be identified that enable minimisation, and 

hopefully elimination, of the formation of acetal-bridged dimethacrylate impurity. 

It would be interesting to prepare a series of diblock copolymer nanoparticles containing 

surface aldehyde groups in aqueous solution. Such nanoparticles could be conjugated to various 

dyes or proteins. In principle, such nanoparticles could be prepared by first synthesising and 

then polymerising an aldehyde-functional GEO5MA monomer. Alternatively, aqueous 

dispersions of PGEO5MA-stabilised nanoparticles could be directly treated with (sub-

)stoichiometric quantities of NaIO4. The first route may lead to crosslinking via the aldehyde 

groups. Moreover, periodate functionalization of the PGEO5MA precursor is likely to lead to 

premature oxidative destruction of the RAFT end-group. Thus periodate treatment of the 

sterically-stabilised nanoparticles with NaIO4 may be the best option, possibly immediately 

after their aqueous PISA synthesis. If desired, using a slight excess of periodate could also 

remove the RAFT end-groups, which would provide an alternative approach to the H2O2 

protocol developed in Chapter 2. In principle, the kinetics and extent of such periodate end-

group removal could also be monitored by UV spectroscopy. 

Being able to synthesise and purify the aldehyde-functionalised GEO5MA-based monomer 

should enable the preparation of new aldehyde-functionalised water-soluble homopolymers, 

statistical copolymers or block copolymers. Although the periodate oxidation of GEO5MA 

appears to work efficiently, further optimisation is desirable in terms of reaction time, 

temperature, pH and monomer concentration. Particular attention should be paid to the 

purification/work-up protocol as the current method only yields approximately 10 % of the 

desired product.  

PGEO5MA brushes can be grown directly from planar silicon wafers, although this protocol 

requires further optimisation. In principle, selective oxidation of the cis-diol groups within such 

brushes should be readily achieved simply by dipping the brush-functionalised silicon wafer 

into an aqueous solution of sodium periodate, followed by removal of the silicon wafer after a 
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desired reaction time and copious rinsing with deionised water. In this context, it would be 

interesting to see whether such brushes could be first collapsed by addition of a water-miscible 

poor solvent (or an appropriate salt) and then reacted with sodium periodate to afford aldehyde-

functionalised brushes that bear aldehyde groups only at their near-surface.19 Such brush 

derivatisation should be amenable to monitoring by ellipsometry, FT-IR spectroscopy and/or 

X-ray photoelectron spectroscopy (XPS). A further possibility would be to grow aldehyde-

functionalised GEO5MA monomer directly from such wafers. This method may enable the 

spatial placement of aldehyde groups within brush layers but would require further 

optimisation of the synthesis of the aldehyde-based methacrylic monomer. 
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Conclusions and Prospect 

The radical nature of RAFT polymerisation means that it is exceptionally tolerant of monomer 

functionality.1-3 Moreover, such polymerisations can be conducted in various media.1-3 Thus, 

RAFT-mediated PISA is a powerful technique for the reproducible synthesis of a wide range 

of diblock copolymer nano-objects simply by varying the target diblock composition and 

copolymer concentration.4-5 In recent years, considerable effort has been devoted to developing 

functional nanoparticles for various applications. For example, PGMA-PHPMA worm gels are 

promising media for the long-term storage of human stem cells without loss of pluripotency or 

for 3D cell culture.6-7 Similarly, stimulus-responsive diblock copolymer vesicles can be used 

to encapsulate model payloads (e.g. silica nanoparticles or globular proteins) during PISA and 

release such payloads on demand (e.g. on adjusting the temperature or solution pH).8 However, 

the colour and malodour of the RAFT chain-ends are a potential barrier for such biomedical 

applications, not least because their hydrolytic instability may compromise biocompatibility 

over long time scales (weeks).9 Many studies have shown that RAFT end-groups can be readily 

removed from soluble polymer chains.10 However, removing RAFT end-groups from diblock 

copolymer nanoparticles is much less well-researched, although some encouraging results have 

been obtained using ozone by Zard and co-workers.11 For most PISA syntheses, the 

organosulfur RAFT end-groups are located within the nanoparticle cores. Thus, any reagent 

used to remove such groups must be able to diffuse into the nanoparticles to access the RAFT 

end-groups. In Chapter 2, hydrogen peroxide is demonstrated to be an effective reagent for the 

effective removal of RAFT end-groups from PGMA-PHPMA spheres, worms or vesicles in 

aqueous media. In principle, various alternative reagents such as amines or excess free radical 

initiators can also be used to remove such end-groups. However, in practice only hydrogen 

peroxide enables the physical properties of the nanoparticles to be retained. This is a 

particularly important consideration for PGMA-PHPMA worms because their rheological 

behaviour is rather sensitive to such chemical derivatisation. The hydrated nature of the core-

forming PHPMA block enables rapid diffusion of the hydrogen peroxide and RAFT chain-end 

removal can be readily achieved in the case of dithiobenzoate RAFT end-groups. Perhaps 

surprisingly, the rate of end-group removal appears to be independent of either the size or 

morphology of the PGMA-PHPMA nanoparticles. However, a rather slower rate of end-group 

removal is observed for PGMA-PBzMA nanoparticles, which is attributed to the significantly 

greater hydrophobic character of the PBzMA chains. Moreover, the rate of removal of 

trithiocarbonate-based end-groups is significantly slower than for the equivalent 
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dithiobenzoate-based end-groups. This is consistent with the greater hydrolytic stability for the 

former RAFT end-groups.12 One important aspect of this RAFT end-group removal study is 

the development of a robust protocol for monitoring the extent of end-group removal based on 

UV GPC. This technique is much more reliable than UV spectroscopy because the 

chromatographic fractionation that is achieved between the copolymer chains and the small 

molecule by-products ensures that any UV-active by-products such as benzoic acid do not 

interfere with the UV signal corresponding to the RAFT groups on the as-yet unreacted 

copolymer chains. This analytical protocol is recommended for monitoring the kinetics of 

removal of all RAFT end-groups, whether from soluble chains or from nanoparticles. 

 

Recent work within the Armes group has established an effective method for the removal of 

trithiocarbonate end-groups from diblock copolymer nanoparticles prepared in n-tetradecane.13 

Importantly, the UV GPC protocol developed in this Thesis was used to confirm essentially 

complete end-group removal within 3 h by addition of excess initiator (lauroyl peroxide) at 70 

°C. Under such conditions, the PTFEMA-based nanoparticle cores are appreciably solvated, 

which aids ingress of the initiator-derived radicals. Similarly, in unpublished work by Penfold 

and co-workers trithiocarbonate end-groups have been removed from aqueous dispersions of 

PEG-PHPMA worms via reaction with excess water-soluble azo initiator at 70 °C. In this case, 

hydrogen peroxide cannot be used for end-group removal because this reagent degrades the 

PEG block. Nevertheless, UV GPC again proved to be an extremely useful analytical technique 

for verifying that a high degree of end-group removal can be achieved within short reaction 

times. These two examples suggest that the UV GPC protocol developed in this Thesis is likely 

to become the preferred technique for monitoring the rate of RAFT end-group removal. In 

summary, removing RAFT chain-ends directly from diblock copolymer nano-objects without 

affecting the physical properties of the original particles remains an important research topic 

because such chemical derivatisation is likely to be desirable for the majority of potential 

commercial applications. 

 

In principle, the marked rate acceleration that occurs after micellar nucleation suggest that 

PISA should offer a decisive advantage for the efficient production of high molecular weight 

copolymer chains in the form of low-viscosity nanoparticles. Indeed, there are several reports 

in the PISA literature of copolymer molecular weights of up to 106 g mol-1 (DP ~ 10,000).14 

PISA requires a soluble block and an insoluble block. It is rather obvious that these conflicting 
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requirements cannot be achieved by the same block, i.e. by a homopolymer. Instead, a diblock 

copolymer architecture is essential. However, if highly asymmetric diblock copolymers are 

targeted then the volume fraction of stabiliser block can be minimised. For example, 

Cunningham and co-workers used a relatively short PGMA block (DP = 63) to grow relatively 

long PNMEP chains (DP = 5000).15 By generating the PNMEP chains above their LCST, 

sterically stabilised nanoparticles are formed at 70 °C that dissolve to form water-soluble 

diblock copolymer chains. Although these copolymer chains are certainly PNMEP-rich, they 

are not true homopolymers. Chapter 3 takes advantage of protecting group chemistry to 

produce high molecular weight PGMA homopolymer via sterically stabilised diblock 

copolymer nanoparticles prepared in water.  More specifically, RAFT emulsion polymerisation 

of IPGMA at 70 °C affords well-defined, low-viscosity PGMA39-PIPGMAx spheres at 20 % 

w/w solids. The hydrophobic PIPGMA block is then deprotected on addition of mineral acid 

at 70 °C to afford a PGMA homopolymer with a molecular weight of up to 250 kg mol-1. By 

utilising the much faster kinetics offered by RAFT emulsion polymerisation, a significantly 

shorter overall reaction time can be achieved for this wholly aqueous two-step one-pot protocol 

compared to that achieved via RAFT aqueous solution polymerisation of GMA. 

 

As noted above, RAFT polymerisation is not more widely used in industry because of the 

intrinsic colour and malodour of RAFT agents, as well as their relatively high cost. Thus 

conventional aqueous emulsion polymerisation is explored in Chapter 4 as a synthetic route to 

high molecular weight PIPGMA (and hence PGMA). This approach is utilises an anionic 

surfactant to stabilise the growing PIPGMA latex particles rather than the PGMA block 

employed in Chapter 3. Conventional free radical polymerisation of IPGMA under emulsion 

conditions enables high molecular weight PIPGMA precursor chains to be obtained (Mw > 700 

kg mol-1), albeit with reduced control over the molecular weight distribution. Utilising a 

monomer-starved protocol eliminated the initial problem of gel fractions observed for ‘one-

shot’ batch formulations. The precursor PIPGMA latexes remained in their low-viscosity 

particulate form if stored at around pH 6-7. Deprotection was achieved under acidic conditions 

to yield a highly viscous aqueous solution of PGMA chains. Optimisation of the reaction 

conditions enabled access to PGMA molecular weights of more than 106 g mol-1 with 

reasonably good control over the molecular weight distribution (Mw/Mn < 2.0). Nevertheless, 

this promising formulation would probably benefit from further optimisation in terms of 

monomer, initiator and surfactant concentrations, reaction time, rate of monomer addition, 
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solution pH and reaction temperature. In particular, the possibility of performing such aqueous 

emulsion polymerisations at higher concentration (up to 40-50 % w/w) would make for a more 

intensive process. If successful, such concentrated latexes should offer significant cost and time 

savings and could be diluted as required prior to acid deprotection. High molecular weight 

water-soluble polymers have many commercial applications. For example, one potential 

customer for the industrial sponsor of this PhD project (GEO Speciality Chemicals) has 

expressed an interest in using high molecular weight PGMA in one of its proprietary cleaning 

products, which contains a substantial quantity of free surfactant(s). For such formulations, it 

would be interesting to explore using the desired surfactant(s) instead of SDS for the emulsion 

polymerisation of PIPGMA. Thus, any excess surfactant that is not adsorbed during the latex 

synthesis would ultimately contribute to the final commercial product, hence minimising  waste 

and eliminating the need to remove excess SDS from the highly viscous water-soluble PGMA 

chains.  

 

Finally, an interesting water-miscible methacrylic monomer (GEO5MA) has been prepared on 

a 1.2 kg scale during a six-month secondment at GEO Specialty Chemicals, as outlined in 

Chapter 5. This monomer, which had been previously synthesised within GEO but never 

commercialised, can be considered as a hybrid of two other GEO monomers, GMA and 

OEGMA. A series of PGEO5MA homopolymers were prepared via RAFT ethanolic solution 

polymerisation and subsequently utilised as a steric stabiliser for the RAFT aqueous dispersion 

polymerisation of HPMA. This new PISA formulation yielded spheres, worms or vesicles, 

depending on the target DP of the PHPMA block. Moreover, the pendant cis-diol moieties on 

the PGEO5MA precursor can be rapidly and selectively oxidised using sodium periodate in 

aqueous solution at ambient temperature to yield a new aldehyde-functional water-soluble 

homopolymer, for which there are remarkably few such examples in the literature. In contrast, 

if PGMA is treated with the same oxidant under the same conditions, only an insoluble 

crosslinked product is obtained. In this case, loss of the cis-diol units leads to progressively 

less hydrophilic (and ultimately water-insoluble) chains, with cross-linking occurring at 

intermediate conversions owing to hemiacetal formation between the aldehyde groups and the 

remaining cis-diol groups. Thus, the retention of water-solubility for the periodate 

derivatisation of PGEO5MA is related to the additional hydrophilic character conferred by the 

five ethylene oxide units in each monomer repeat unit. In principle, this same selective 

oxidation protocol can be applied to PGEO5MA-PHPMA nano-objects to yield aldehyde-



Chapter Six - Conclusions and Prospect 

___________________________________________________________________________ 

 

175 

 

functional spheres, worms or vesicles. Moreover, GEO5MA monomer can be converted into a 

new water-miscible aldehyde-functional methacrylic monomer, but in this case a more efficient 

purification protocol is required for this small molecule reaction. Clearly, further studies are 

warranted to establish the scope and limitations of this convenient new route to aldehyde-

functional monomers, water-soluble homopolymers and nanoparticles. For example, aldehyde 

groups offer tremendous potential for further reaction with amines via Schiff base chemistry,16-

17 which should be useful for protein functionalisation and/or dye conjugation directly in 

aqueous solution. Of particular interest is the growth of PGEO5MA brushes from planar 

surfaces (e.g. silicon wafers) via ARGET ATRP.18 In principle, such brushes could be readily 

converted into aldehyde-functional brushes simply by immersion in an aqueous solution of 

sodium periodate, followed by copious washing to remove excess oxidant (and the toxic 

formaldehyde by-product). In principle, such brushes could be easily decorated with various 

enzymes for surface catalytic reactions. If the purification/isolation of the aldehydic 

methacrylic monomer can be optimised, then its surface polymerisation from silicon wafers 

would produce polymer brushes with maximum aldehyde functionality (i.e. one aldehyde 

group per monomer repeat unit). In either case, XPS should be a useful surface analytical 

technique for brush characterisation, particularly if the aldehyde groups can be reacted with 

2,2,2-trifluoroethylamine to produce a convenient and highly specific spectroscopic label. 
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Figure 7.1. Analysis of aliquots extracted during the PISA synthesis of PGMA39-PIPGMA1000 

via RAFT emulsion polymerisation of IPGMA at 70 °C showing: (a) the development of the 

intensity-average size distribution during the polymerization and (b) representative DLS 

correlograms indicating good monodipsersity of samples. Conditions: 20 % w/w solids; ACVA 

initiator; macro-CTA/ACVA molar ratio = 4.0. 
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Figure 7.2. (a) Representative DLS intensity-average size distributions for a series of PGMA39-

PIPGMAX spherical nanoparticles prepared via RAFT aqueous emulsion polymerisation of 

IPGMA at 70 °C (see Table 3.1). (b) Representative correlogram for such DLS distributions 

showing good monodispersity. 

 

 


