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Abstract 

The Amazon rainforest is a vital biome that is of central importance for the 

provision of significant ecosystem services locally, regionally and globally. Brazil 

contains two-thirds of remaining Amazonian rainforests and is responsible for the 

majority of Amazonian forest loss. Over 0.7 million km2 of primary forest area in 

the Brazilian Amazon has been deforested, of which ~20% are under secondary 

forest regeneration. However, the fate of secondary forests and the extent of 

degradation of the remaining primary forests (referred to as old growth forests in 

this thesis) are still unclear. In this thesis, I present: (1) the first large-scale 

analysis of secondary forest loss over 14 years (2000-2014) using recently 

released high resolution (30 m) post-deforestation land use datasets 

(TERRACLASS); (2) a novel machine learning classification method to map 

tropical forest disturbances using multi-decadal Landsat time-series imagery; and 

(3) first estimates of the historical degradation of remaining old growth forests 

using this newly-developed classification method. Our results show an 

accelerated loss of secondary forests across the entire Brazilian Amazon over 

our study period, in contrast to primary forest loss. Over 2000-2014, the 

proportion of total forest loss accounted for by secondary forests rose from (37  

3) % in 2000 to (72  5) % in 2014. We developed a multi-decadal Landsat time-

series imagery and machine learning random forest classification algorithm, 

which we found to be an efficient and accurate approach to map tropical disturbed 

forests. This approach allows me to map the historical degradation of old growth 

forests from 1984 to 2014. Until 2014, over 246,845 km2 area of old-growth 

forests in the Brazilian Amazon (moist forest ecoregion) were degraded, 

accounted for approximately 10% of total area of old growth forests in the region. 

However, this approach may have underestimated the actual degradation of old 

growth forests as it did not detect the low intensity selective logging. In conclusion, 

the accelerated loss of secondary forests and extensive degradation of old growth 

forests in the Brazilian Amazon which we report have provided new insights into 

land use change dynamics in Amazonia. Both of these processes have important 
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implications for carbon storage and biodiversity and sustainable management of 

forest resources in the Brazilian Amazon.   
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Chapter 1  

Introduction   

1.1 Background  

Although tropical forests only cover 7% of Earth’s land surface, they are hotspots 

for global biodiversity and carbon storage and play an important role in supplying 

multiple ecosystem services (Foley et al., 2005). Several decades of research 

have revealed the significance of tropical forests in the global carbon cycle. There 

are 247 petagrams (Pg) of live biomass carbon stocks in tropical forests, with 78% 

stored in aboveground biomass (Saatchi et al., 2011). It is estimated that tropical 

forests were a carbon sink of 2.83 Pg C yr-1 from 1990 to 2007 (Pan et al., 2011).  

However, tropical forests have experienced significant degradation and 

deforestation (Chazdon, 2003), resulting in considerable carbon emissions. 

According to Hansen et al. (2013), 2.3 million km2 of forest have been lost globally 

over 2000-2012, with great forest loss in the Tropics, where annual forest loss 

area increased by 2101 km2 yr-1 between 2000 and 2012. These large areas of 

tropical forest deforestation resulted in 2.94 ± 0.47 Pg C yr-1 of emissions during 

1990-2007, accounting for 40% of the global fossil fuel emissions (Pan et al., 

2011). However, the effect of deforestation emissions is offset somewhat by the 

regrowth fluxes of secondary forests.  When these are considered, the net carbon 

fluxes from land use changes have been estimated to account for 12.5% of 

anthropogenic CO2 emissions from 1990 to 2010 (Houghton et al., 2012). Carbon 

emissions from deforestation and degradation are the second largest 

anthropogenic source of carbon dioxide to the atmosphere (Van der Werf et al., 

2009).  

Currently, a significant proportion of previously deforested tropical areas is under 

some form of secondary re-growth, although the magnitude of this effect remains 

unclear. For example, the tropical secondary forest sink was recently estimated 

to be 1.72 Pg C yr-1, up to 70% greater than that of intact tropical forests (Pan et 
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al., 2011). These numbers take into account both estimates of secondary forest 

area and their assumed carbon accumulation potential, which can be very high.  

For example, Poorter et al. (2016) estimated a net carbon uptake of 3.05 Mg C 

ha−1 yr−1 for Neotropical secondary forests, approximately 11 times the mean 

uptake rate reported for old-growth forests.  

On the other hand, secondary forests may also face repeated clearing and 

burning, which decreases their capability to absorb carbon (Zarin et al., 2005). 

Repeated cutting and burning of secondary forests has been found to reduce 

carbon accumulation rates of secondary forests by up to 50% (Zarin et al., 2005).  

However, this re-cutting frequency of secondary forests is not still not clear and 

studies of carbon fluxes in tropical forests rarely consider re-cutting of secondary 

forest.  

Additionally, our understanding of pan-tropical secondary forest change 

dynamics is hampered by the absence of precise information on their extent and 

successional status. Although there have been a number of studies attempting to 

use various remote sensing metrics to classify tropical forests into different age 

or successional stage classes, these have typically been at a local scale and 

have only considered one or two remote sensing metrics at a time. There are 

currently no existing products that provide accurate information on the pan-

tropical occurrence of secondary forests and their change dynamics. In the 

Brazilian Amazon, the TERRACLASS product (Almeida et al., 2016) developed 

by INPE (the Brazilian Space Institute), provides spatial maps of secondary 

forests with 30 meter resolution and these are now available for multiple years. 

Thus, it is possible to assess the large-scale temporal change dynamics of 

secondary forests in the Amazon for the first time.   

Spanning an area of ~7 million km2, the Amazon basin contains the world’s 

largest area of remaining tropical forests and provides a host of ecosystem 

services of importance globally, regionally and locally. Approximately two-thirds 

of remaining Amazonian forests are found in Brazil (Gloor et al., 2012; RAISG, 

2012; Grace, 2016), making the Brazilian Amazon the largest tropical forest area 

within a single country. Thus, accurate estimates of forest 
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deforestation/degradation and the fate of deforested areas (secondary forest 

dynamics) in the Brazilian Amazon are of paramount importance for 

understanding the broader Neo-tropical and global carbon cycle.  

Given the significant importance of the Brazilian Amazon, the National Institute 

for Space Research (INPE) in Brazil has developed several projects to monitor 

forest change in the region (Diniz et al., 2015; Almeida et al., 2016): (1) PRODES 

for monitoring deforestation since 1988; (2) DEGRAD for mapping degradation 

(2007-2016); (3) DETEX for selective logging detection (2009-2015); (4) 

TERRACLASS for mapping the fate of deforested areas (1991, 2000, 2004, 

2008-2014 bi-annually); (5) DETER-B for near real time deforestation and 

degradation monitoring. While there has been much analysis and discussion of 

PRODES data, the other more recent products (e.g. TERRACLASS) have been 

little explored to address questions of forest change dynamics.   

Brazilian Amazon rainforests play an important but poorly quantified role in the 

global carbon cycle due. Key gaps in our understanding include 1) the change 

dynamics of secondary forests and 2) historical degradation of the old growth 

forests. With the support of Google Earth Engine (GEE), we undertake the first 

large-scale assessment of the spatio-temporal dynamics of secondary forests in 

the Amazonia, and develop a novel machine learning method to map historical 

degradation over 30 years (1984-2014). These will enhance understanding of the 

spatio-temporal dynamics of tropical secondary forests and degradation of the 

old growth forests, and support Brazil reporting on land use, land use change and 

forestry (LULUCF) and provide baseline information important for Brazil to meet 

its Nationally Determined Contribution (NDC) as mandated by the Paris 

Agreement.  

1.2 Deforestation in the Brazilian Amazon 

Land use and land cover in the Amazonia have undergone considerable changes 

over the last few decades. These changes are believed to have had a strong 

impact on regional and global carbon and water balance, contributed to global 

climate change. Accounting for ~60% of the Amazon rainforests, the Brazilian 
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Amazon is responsible for majority of forest loss in the region (Kalamandeen et 

al., 2018).    

1.2.1 PRODES estimates of deforestation 

Deforestation in the Brazilian Amazon has been well mapped annually by the 

National Institute for Space Research (INPE) through the PRODES project since 

1988 (PRODES, 2018; Valeriano et al., 2004). PRODES uses satellite images 

from Landsat, CBERS (China-Brazil Earth Resources Satellite program) and IRS 

(the Indian Remote Sensing satellite program) to detect annual deforestation 

larger than 6.25 hectares. The detection process mainly depends on the visual 

interpretation of satellite composite image and the vegetation, soil, and shade 

fraction images generated from linear spectral mixing models (Valeriano et al., 

2004). 

Data from PRODES (Figure 1.1) show that annual deforestation area across the 

Brazilian Amazon fluctuated during the period of 1988-2018, with two peaks in 

1995 and 2004. The large deforestation rates reported in 1995 almost have been 

linked to the 1994 Real Plan for economic stabilization and to large-scale forest 

fires (Lele 2000).  After 1995, deforestation experienced a period of decease until 

1997. For the period of 2001-2004, the significant increase of deforestation is 

primarily attributed to conversion of forest to cropland due to the high price of 

soybean, resulting in the increase of deforestation area from 18165 km2 in 2001 

to 27772 km2 in 2004 (Morton et al., 2006) . From 2004 to 2014, there is a marked 

deforestation drop of 82% for the entire Brazilian Amazon and 91% for Mato 

Grosso. This is attributed to the implementation of a significant government 

program to combat illegal logging and forest fires in Amazonia, namely the 

PPCDAm program (The Action Plan for the Prevention and Control of 

Deforestation in the Legal Amazon) (Maia et al., 2011) and the Sustainable 

Amazon Plan PAS (2008) (CASTELO, 2015). PPCDAm was launched in 2004 to 

reduce deforestation rates and support sustainable development in Amazonia. In 

this period, the Brazilian government invested large sums of money to implement 

strategic actions related to land reform policy, improvement of deforestation 
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monitoring systems and the promotion of sustainable use of already deforested 

areas. All of these efforts together with international mechanisms such as the 

soybean (Gibbs et al., 2015; Rudorff et al., 2011) and beef moratoria (Gibbs et 

al., 2016; Massoca et al., 2017) made a considerable contribution to controlling 

deforestation in the Amazon.   

The deforestation rates in Brazilian Amazon have increased in recent years. The 

area of deforestation increased by 50% from 5,012 km2 in 2014 to 7,536 km2 in 

2018 (Figure 1.1). Furthermore, recent political changes in Brazil which focus less 

on the protection of the Amazon and more on its exploration have raised concerns 

that such increases may continue, at least in the near future.  

 

 

Figure 1.1 The area of annual deforestation of the Brazilian Amazon from PRODES project 

in INPE (National Institute for Space Research).  

 

1.2.2 Consequences of deforestation 

Continued deforestation in Amazonia has caused considerable impacts on the 

local and global climate (Houghton and Nassikas, 2017; Spracklen and Garcia‐

Carreras, 2015). In the last 60 years, the temperature in the Amazon has 
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increased by 1C with deforestation reaching 20% of its forested areas (Nobre et 

al., 2016). During the dry season, local warming from deforestation can reach up 

to 1.5°C (Baker and Spracklen, 2019). Also, deforestation could result in the 

significant reduction of rainfall. Deforestation up to 2010 has reduced annual 

mean rainfall across the Amazon basin by 1.8  0.3%, with a potential reduction 

of 8.1  1.4 % by 2050 (Spracklen and Garcia‐Carreras, 2015). Globally, 

deforestation in the Amazon was estimated to release carbon emissions of 0.18 

 0.07 Pg C yr-1 between 2000 and 2010, 79% of which were accounted for by 

the Brazilian Amazon (Song et al., 2015). Deforestation in the Brazilian Amazon 

contributed 17% of global land use carbon emissions in the 1990s and early 

2000s, reducing to 9% by 2010 as a result of the slow-down in deforestation 

(Aragao et al., 2014). 

1.3 Secondary forest regrowth 

A considerable fraction (~20%) of previously deforested land in the Brazilian 

Amazon is now under secondary regrowth (Almeida et al., 2016). Although they 

cannot fully compensate for the services provided by primary forests, these 

secondary forests play increasingly important roles in carbon sequestration and 

biodiversity maintenance in Amazonia. 

1.3.1 The definition of secondary forest 

In order to better quantify the extent and change dynamics of secondary forests, 

it is essential to first clearly define what is meant by a secondary forest. Although 

there are a large number of studies referring to secondary forests in the literature, 

there is considerable ambiguity regarding the use of the term “secondary forest”. 

Some regard secondary forests as regrowth after natural or human disturbances 

of original forests, while others only consider secondary forests as those that 

regrow following clear-felling for agriculture, pasture or other human activities 

(Guariguata and Ostertag, 2001). There is also disagreement with regards to the 

intensity of disturbance necessary for classification of secondary forests with 

some authors considering all disturbed forests to secondary, irrespective of the 
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degree of disturbance and others considering secondary forests to be vegetation 

regrowth on land which was totally cleared or where 90% of forest cover has been 

cleared (Chokkalingam and de Jong, 2001).  

By synthesizing current definitions of secondary forests, Chokkalingam and de 

Jong (2001) considered secondary forest as “forests regenerating largely through 

natural processes after significant human and/or natural disturbance of the 

original forest vegetation at a single point in time or over an extended period, and 

displaying a major difference in forest structure and/or canopy species 

composition with respect to nearby primary forests on similar sites”, with minimum 

criteria that “land ≥ 0.5 ha in area and width of more than 20 m, with > 10% crown 

cover of trees = 5 m in height”. This definition is based on clear and objective 

criteria and is quite flexible, making it widely applicable. 

Another accepted definition of secondary forests is from the International Tropical 

Timber Organisation (ITTO). They define secondary forests as “woody vegetation 

re-growing on land that was largely cleared of its original forest cover (i.e. carried 

less than 10% of the original forest cover). Secondary forests commonly develop 

naturally on land abandoned after shifting cultivation, settled agriculture, pasture, 

or failed tree plantations.” Also, secondary forests may be the result of natural 

forest regeneration after large natural disturbances such as wildfires, storms, 

landslides and floods (ITTO, 2002). From these two definitions, it is clear that 

causes of disturbance, intensity of these disturbances, vegetation development 

process should be considered when defining secondary forests. Both of these 

definitions emphasize severe natural disturbances and human-induced 

disturbances of original forests, as well as natural regeneration after 

disturbances.  

In this thesis, secondary forests refer to areas that have been previously 

deforested according to PRODES (regrowth on previously clear-cut areas >6.25 

ha) and converted to other land uses (e.g. pasture, agriculture and mining) but 

which have subsequently undergone a recovery process following abandonment. 
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1.3.2 Benefits of secondary forest 

Secondary forests have considerable carbon mitigation potential due to their 

rapid biomass recovery, although these rates can vary considerably. Across the 

first 20 years of secondary regrowth in the Eastern Amazon, biomass was found 

to recover at 1.2% per year, equivalent to a carbon uptake of 2.25 Mg ha-1 yr-1 

(Lennox et al., 2018). In a review of biomass recovery across the Neotropics, 

Poorter et al. (2016) estimated the annual net carbon uptake of secondary forests 

to be 3.05 Mg C ha−1 yr−1, 11 times uptake rates of old-growth forests and 2.3 

times uptake rates of selectively logged Amazonian forests.    

The carbon accumulation rates of secondary forests differ across successional 

stages, being highest in the early stages (Brown and Lugo, 1990; Xaud et al., 

2013). Based on a secondary forest growth model in central Amazonia, Neeff and 

dos Santos (2005) found that aboveground biomass (AGB) of secondary forests 

grows rapidly in the first 20 years, with the greatest growth rate at around 13 

years. This result is quite similar to that from a recent study from Bonner et al. 

(2013), who estimated that for secondary forests younger than 18 years old, the 

mean aboveground carbon accumulation rate is 3.5 Mg ha-1 yr-1, which on 

average was found to be 40% higher than secondary forests older than 18 years. 

In the Brazilian Amazon, it has been estimated that forest biomass recovers to 

approximately 70% of original biomass within 25 years and then takes another 

50 years to recover the remaining 30% (Houghton et al., 2000).   

Secondary forest carbon accumulation rates also vary substantially across 

various sites. For example, Poorter et al. (2016) found that after 20 years of 

recovery, secondary forest AGB accumulation differs from 20 to 225 Mg ha-1 

across 44 different study sites, equivalent to 25%-85% of old-growth forest AGB 

in the same site. A key factor explaining these differential recovery rates is 

background climate, as forests on drier sites were found to recover less quickly 

than those on wetter sites. 

Compared to the rapid biomass recovery of secondary forests, the biodiversity in 

tropical secondary forests recovers slower (Martin et al., 2013). While carbon 
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pools may take approximately 80 years to recover to similar levels as primary 

forests,  plant biodiversity and faunal biodiversity recovery take more than 100 

years and 150 years, respectively (Martin et al., 2013). However, secondary 

forests are still valuable for biodiversity conservation (Dent and Wright, 2009) and 

can support important ecosystem functions (Sayer et al., 2017). The avian 

phylogenetic diversity in secondary forests recovered to old-growth forest levels 

after 30 years (Edwards et al., 2017). A recent study (Lennox et al., 2018) showed 

a high degree of biodiversity resilience for secondary forests in the Brazilian 

Amazon. After over 40 years of regeneration, the secondary forests recovered 

88% of species richness and 85% species composition relative to the undisturbed 

primary forests.  

1.3.3 The current status of secondary forest 

During the last 100 years, tropical forests have been deforested and replaced by 

pastures, agriculture and regenerating forests at unprecedented rates. From 

1990 to 2000, 8.7 million hectares were deforested annually in tropics, including 

humid and dry forests, with a further 2.3 million hectares of humid forest being 

apparently degraded annually through fragmentation, logging or fires (Mayaux et 

al., 2005). During this period, secondary forests become increasingly important 

in tropical landscapes, through re-growth on abandoned land. Over 30 years ago, 

Brown and Lugo (1990) estimated that approximately 40% of total tropical forest 

area was secondary forest with a formation rate of 9 million hectares per year. 

Based on 23 local, national and regional studies, Asner et al. (2009) provide the 

first pantropical estimate of natural forest regeneration. They concluded that at 

least 1.2% of humid tropical forests were undergoing secondary succession for 

at least 10 years. However, this figure was corrected by Wright (2010) to be 11.8% 

because the Asner et al. (2009) study did not correct for the total area surveyed 

in the 23 studies. In 2015, the FAO global forest resources assessment reported 

that 76%, 59% and 51% of forest area in Africa, Asia and South America was 

secondary forest (FAO, 2015), but such estimates depend on bottom-up national 

statistics which bear very high levels of uncertainty and are based on unreported 

methodologies. Nonetheless, the vast discrepancies in total secondary forest 
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area reported across these studies, even on a year-to-year basis, highlight our 

very limiting understanding of this topic. Furthermore, analysis on spatio-temporal 

changes of the tropical secondary forests over significant areas simply do not 

exist.  

The recent development of the TERRACLASS products, however, allows for 

considerably greater analysis of the spatio-temporal change dynamics of 

secondary forests than has been possible thus far, at least for the Brazilian 

Amazon. TERRACLASS tracks the fate of deforested patches in Amazonia 

through visual interpretation of Landsat images, producing a post-deforestation 

land use classification of the Brazilian Amazon which at the time of our study was 

available over a 14-year time period (2000, 2004 and 2008-2014 biannually, 

https://www.terraclass.gov.br). TERRACLASS classifies previously deforested 

areas into one of twelve land use categories including pasture, annual crops, 

secondary vegetation and urban areas. It is extensively validated via field 

campaigns to determine the accuracy of classification. According to 

TERRACLASS, secondary forests comprised approximately 21% of previously 

deforested areas in the Brazilian Amazon in 2008 (Almeida et al., 2016).  

1.3.4 Re-cutting of secondary forest         

Although secondary forests have a substantial potential for offsetting carbon 

emissions, they can be repeatedly cleared and burned. It has been proposed that 

secondary forests in Brazilian Amazon are cut and burned on average every 5 

years (Aguiar et al., 2016), but Almeida (2009) points out that the half-life of the 

secondary forests varies across the basin, ranging from 3 to 21 years. Two recent 

studies (Tyukavina et al., 2017; Carvalho et al., 2019) have illustrated the 

fate/clearance of secondary forests, but neither of them have delivered a 

comprehensive analysis of the spatio-temporal change dynamics of secondary 

forests. Tyukavina et al. (2017) is a sampling-based analysis of deforestation 

(including secondary forest clearance) in the Brazilian Amazon, and Carvalho et 

al. (2019) is a localised study of nature dynamics of secondary forests in the state 

of Pará.   

https://www.terraclass.gov.br/
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1.3.5 Summary of knowledge gaps 

Despite the importance of secondary forests for carbon sequestration and 

biodiversity conservation in Amazonia, a historical lack of spatio-temporal data 

on secondary forest area has precluded evaluation of their large-scale dynamics. 

Although prior studies have pointed out the frequent re-cutting of secondary 

forests in the Brazilian Amazon, a comprehensive analysis of secondary forest 

loss and its evolution over time does not exist.     

1.4 Forest degradation in the Brazilian Amazon 

 Degradation of old growth forests is a fundamentally important, but poorly 

characterised, component of Amazonian ecosystems. Unlike deforestation, 

degradation in the Amazon does not entail a change in land use but rather, 

impoverishment of the state of old-growth forests. However, the tree cover losses 

and canopy gaps resulting from degradation can also affect carbon storage and 

local microenvironment of ecosystems, as well as often paving the way for clear-

felling. 

1.4.1 The definition of forest degradation 

Forest degradation, commonly defined as the reduction of the capacity of a forest 

to provide goods and services (Simula, 2009; Thompson et al., 2013), is 

characterised by the partial destruction of forest canopy.  In the Brazilian Amazon, 

national estimates of deforestation based on PRODES (INPE) consider only 

patches of forest that have been completely clear-felled following land use 

transitions to pasture or other non-forest land uses, and that have reached a 

minimum size threshold of 6.25 ha. Forests loss below that threshold or forest 

areas that have been degraded (e.g. burned) but not completely clear-felled is 

not included in PRODES deforestation mapping.  

Forest degradation in this thesis therefore encompasses degradation arising from 

multiple drivers of disturbances with a gradient of disturbance intensity. It includes 

small-scale clearings less than 6.25 ha, heavy disturbances associated with 
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mining and road constructions, as well as fire damage which can span a broad 

range of intensity from mega-fires to small-scale burnings. Forest degradation is 

not necessarily restricted to anthropogenic drivers but also include natural 

disturbances associated with river flooding and wind-throws, for example (Foley 

et al., 2007; Espírito-Santo et al., 2014; Espírito‐Santo et al., 2010). Following 

definition of forest degradation from IPCC (Intergovernmental Panel on Climate 

Change) (de Cambio Climático, 2003), normal forest management such as 

thinning and harvest (selective logging) were not considered as degradation in 

this thesis.    

1.4.2 Impacts of forest degradation 

Although degradation only involves removal of partial forest canopy, it can cause 

considerable damage. Degradation (e.g. selective logging, fire) can alter the 

structure and functioning of the old-growth forests (Struebig et al., 2013), leading 

to declines in biomass, losses of biodiversity (Barlow et al., 2016) and the 

reduction of productivity (Xaud et al., 2013).  

A large filed study across eastern Amazonia has found that, on average, forests 

experienced both logging and understory fires lost 40% of their aboveground 

carbon compared with the undisturbed forests (Berenguer et al., 2014). Even for 

the low-impact logging without any fire occurrence could also cause the loss of 

4-21% of initial forest aboveground carbon (Longo et al., 2016). Forest areas that 

burned by multiple times can lead to losses of their aboveground carbon by up to 

94% (Longo et al., 2016). A recent remote-sensing based pan-tropical study 

concluded that tropical forest was a significant carbon source between 2003 and 

2014, while 69% of carbon losses were due to forest degradation (Baccini et al., 

2017). Forest degradation also affects the biodiversity (Barlow and Peres, 2004a; 

Struebig et al., 2013). A study in Brazilian state of Pará showed that the 

anthropogenic disturbances (e.g. logging, fire) could double the biodiversity loss 

arising from deforestation and more negatively affect species with the higher 

conservation importance (Barlow et al., 2016)  
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Degradation may also change the local microclimate and fire regimes, increasing 

the probability of deforestation in the region. For example, selective logging 

increases fire occurrence by providing abundant fuel loads and forest edges 

which are more vulnerable to desiccation during prolonged periods of dry weather 

(Nepstad et al., 1999; Laurance et al., 1998; Barlow and Peres, 2004b; Alencar 

et al., 2004). Logging has increased the probability of deforestation in the region 

by up to 400% (Asner et al., 2006). Approximately 19  11% of previously logged 

forests were subsequently deforested within 3 years (Asner et al., 2005). 

Accidental fires have affected nearly 50% of remaining forests and caused more 

deforestation than has intentional clearings (Cochrane et al., 1999).     

Forest degradation induced by natural disturbances such as wind-throws 

(Negrón-Juárez et al., 2017) could also change the forest structure (Marra et al., 

2014), leading to an increase of tree mortality and significant loss of aboveground 

carbon (Espírito-Santo et al., 2014). The occurrence of blow‐ downs was found 

to be highly correlated with the frequency of heavy rainfall (Espírito‐Santo et al., 

2010), and the affected forest area by these natural disturbances could range 

from 0.01 ha up to 2,651 ha (Espírito-Santo et al., 2014). Negrón‐Juárez et al. 

(2010) demonstrated that a single squall line aligned with storms in 2005 over 

Manaus caused the tree mortality that was equivalent to 30% of the observed 

annual deforestation in the region.       

1.4.3 The current status of forest degradation 

Compared to the long-term deforestation monitoring (PRODES) of Brazilian 

Amazon, the detection of forest degradation is relatively new and less developed. 

The DEGRAD satellite monitoring programme developed by INPE (the Brazilian 

National Institute for Space Research), provided degradation data from 2007 to 

2016. The other programme – DETEX was for detecting selective logging but 

only last for 7 years (2009-2015).  

Over 2007-2016 period on average, 23,181 km2 yr-1 of forest were degraded due 

to either selective logging (DETEX) or other disturbance events (e.g. fire damage, 

DEGRAD), which is approximately the triple size area of the deforestation over 
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same period (7,502 km2 yr-1, PRODES). However, according to another ten-year 

report of degradation and deforestation in the Brazilian Amazon, the estimated 

area of degradation due to selective logging and forest fires during 2000-2010 

was 5,082 km2 yr-1, only equivalent to 30% of the area of deforestation over same 

time period (Souza Jr et al., 2013). From 2009 to 2010, the combined annual 

estimated areas of degradation from DEGRAD and DETEX were up to 382% 

higher than the estimates from Souza Jr et al. (2013) (Figure 1.2). Such divergent 

estimates of degradation may be due to the definition of degradation and the 

different mapping methods. The polygon-based visual interpretation (DEGRAD) 

approach is more likely to overestimate the degradation than the pixel-based 

decision tree classification (Souza Jr et al., 2013). This highlights the existing 

large uncertainties of area estimates of degradation for the region.             

To improve the degradation detection system in the Brazilian Amazon, the 

Amazon Regional Centre of INPE (INPE-CRA) has developed a project called 

DETER-B, the near real-time degradation and deforestation detection system in 

the Brazilian Amazon (Diniz et al., 2015). DETER-B is mainly based on the visual 

interpretation of AWFIS imagery (Advanced Wide Field Sensor, Indian Earth 

Observation satellite) at 56 m spatial resolution and 5 days of temporal resolution, 

complying with historical time-series images from Landsat, LISS (Linear Imaging 

Self Scanning Sensor, Indian Earth Observation satellite), and DMC (Disaster 

Monitoring Constellation satellite). DETER-B could effectively detect the clear-cut 

deforestation and the degradation resulting from selective logging, fire, and other 

moderate degradation events (Diniz et al., 2015). According to DETER-B, the 

degradation in the Brazilian Amazon had declined dramatically, from 28,798 km2 

yr-1 in 2015 to 4,953 km2 yr-1 in 2019. However, the accuracy of such estimates 

is unknown.    
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Figure 1.2 Degradation in the Brazilian Amazon.  

DEGRAD (2007-2016): degradation without selective logging. DETEX (2009-2015): selective 

logging. DETER-B (post 2015): including degradation, selective logging, burned areas. Souza Jr 

et al. (2013): degradation from selective logging and fires.    

 

1.4.4 Summary of knowledge gaps 

Decades of studies have sought to quantify forest degradation in Amazonia. 

However, these have been incomplete as they have focused on studying one 

driver of degradation in isolation (e.g. logging) or have been restricted to short 

timeframes. Thus, a fully comprehensive evaluation of the extent of historical 

forest degradation in Amazonia, still remains elusive.  In this thesis, I attempt to 

address this critical gap by explicitly estimating the area of old-growth forest in 

the Brazilian Amazon degraded between 1984 and 2014. 

1.5 Mapping secondary forest and degradation from space 

Although TERRACLASS (INPE project) provides detailed information on the 

spatial distribution of secondary forests in the Brazilian Amazon, it involves a 

huge effort based largely on visual interpretation and does not map the 

degradation of old growth forests.  There is thus an important need to develop 

approaches for detecting forest disturbance that can be applied over large areas 

which consider both regrowth dynamics and degradation of old-growth forests. 
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1.5.1 Classification of land use/land cover 

Remote sensing has played a key role in identifying land use/land cover changes 

(Table 1.1). Visual interpretation is the earliest and simplest method, but it is 

subjective and susceptible to interpreters’ experiences and knowledge level 

(Mohammady et al., 2015). Automatic classification methods, divided into 

supervised classification and unsupervised classification, are much more widely 

used (Long and Sriharan, 2004; Xia et al., 2014; Bayoudh et al., 2015). Both 

supervised and unsupervised classification are pixel-based classification 

techniques. The main difference between them relates to the use of training data. 

In supervised classification, a set pixels whose class is known (training sites) are 

required to generate representative parameters for each class of interest, that are 

used to train classifiers to classify all image pixels into relevant classes. 

Unsupervised classification, on the other hand, is an approach that groups image 

pixels into several classes through clustering algorithms without any 

foreknowledge of these classes (Liu, 2005). Besides pixel-based classification, 

object-based classification is also an efficient approach to extract land use/land 

cover information (Mallinis et al., 2008).  

Visual interpretation is a traditional approach that aims to interpret land cover 

information from satellite images on the basis of visual elements, such as shape, 

size, location, tone and texture, highly depending on interpreters’ knowledge and 

their interpretation experience (Ali, 1989). Tone refers to the relative brightness 

or colour of objects in an image. Texture refers to the arrangement and frequency 

of tonal variation in particular areas of an image. Although the interpretation result 

is time consuming and subjective, this method is widely used because it is flexible 

and easy to operate (Prasad et al., 2002; Stuart et al., 2006). Van den Broek et 

al. (2004) found that visual interpretation classification was more effective than 

automatic classification when using polarimetric SAR data. 

Supervised classification includes two phases: 1) the training phase, identifying 

a classification scheme based on spectral signatures of different bands obtained 

from training sites with known class labels; 2) the prediction phase, where the 
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classification scheme is applied to other sites without known class labels 

(Samaniego and Schulz, 2009). Several algorithms have been developed for 

supervised classification, such as Maximum Likelihood Classification (MLC) 

(Otukei and Blaschke, 2010), K Nearest Neighbourhoods (K-NN) (Samaniego 

and Schulz, 2009), Support Vector Machines (SVM) (Longepe et al., 2011), 

Logistic Discrimination (LD) classifier, decision trees (DTs) (Fu et al., 2010), fuzzy 

classifier (Sonmez and Onur, 2012). Marcal et al. (2005) found that SVM and LD 

were much better than MLC and K-NN in land use/land cover classification by 

comparing their classification accuracies based on a multispectral image from 

ASTER sensor. Shiraishi et al. (2014) compared five supervised classifiers in 

tropical land use/land cover classification, including Naïve Bayes, AdaBoost, 

multi-layer perceptron, random forest (RF), and support vector machine, and 

concluded that RF was a useful classifier for analysing ALOS-PALSAR mosaic 

data. Meanwhile others have concluded that decision tree-based algorithms 

provide higher classification accuracy than MLC and SVM (Otukei and Blaschke, 

2010).  

Compared with supervised classification, unsupervised classification is more time 

and cost efficient because for this method there is no need to choose specific 

training sites before classifying land covers (Mohammady et al., 2015). ISODATA 

is the most widely used variant of unsupervised classification, grouping pixels 

with similar spatial and spectral characteristics into relevant classes 

(Mohammady et al., 2015; Bakr et al., 2010).  

In contrast to pixel-based classification approaches, object-based classification 

first aggregates image pixels into spectrally homogenous image objects through 

an image segmentation algorithm and then classifies the individual objects into 

various classes.  

Because of various individual characteristics of these classification methods, 

many researchers choose more than one approach to produce more accurate 

classifications (Mohammady et al., 2015; Bakr et al., 2010; Long and Sriharan, 

2004). Mohammady et al. (2015) suggested unsupervised classification is 
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suitable for obtaining agriculture land use due to significant changes of spectral 

signatures of agriculture pixels among different agriculture types and seasons. 

 

Table 1.1 Main land use/land cover classification methods 

Methods Descriptions Characteristics 

 

Visual Interpretation 

Images are analysed by experienced 
interpreters, who base their analyses on the 
objects’ colours, spectral signatures, 
shapes, sizes and positions in relation to 
each other in the picture. 

 

High accuracy, 
reliable; 

Time 
consuming 

 

 

Spectra-
based 
Classification 

Supervised 
Classification 

(classes 
defined by 
user) 

Two steps: 1) training--use available known 
pixels to generate representative 
parameters for each class; 2) the classifier 
is then used to attach labels to all the image 
pixels according to the trained parameters 

Classifier--Maximum likelihood, K-nearest 
neighbour, 

                   Support vector machine,  

                   Principal Component Analysis, 

                   Artificial neural network 

 

 

 

 

 

Based on each 
pixels 

 

Unsupervised 
Classification 

(classes 
defined by 
computer) 

No training samples, set the number of 
classes and maximum iterations change 
threshold, then classify automatically 

Classifier---ISOSEG classifier and 
ISODATA classifier 

Decision Tree Classification Split a dataset into homogenous subgroups 
based on measured attributes. Based on 
attributes, create a decision tree which 
includes numbers of nodes and leaves. 
Each node represents a decision and each 
leaf represents a unique class. 

Could add  
external dataset 
(DEM data) 

Object Based Classification 

 

1) Create objects through segmentation 
and merging of images 

2) Create rules for each object based on 
spectral characteristics, texture, area, etc.  

3) According to these rules and objects, 
generate a classification map 

 

Including rule-based classification and 
example based classification 

 

 

Suitable for 
high resolution 
images 
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1.5.2 Secondary forest mapping 

Many studies have been dedicated to classifying secondary forests according to 

age or successional stage (Kimes et al., 1999; Nelson et al., 2000; Neeff et al., 

2006; Aguiar et al., 2016). In general, secondary forests are grouped into three 

stages: initial, intermediate and advanced successional stages (ITTO, 2002; Lu, 

2005; Lu et al., 2014a). In the initial stage, herbs, shrubs and climbers establish 

quickly after disturbances, becoming the dominant structural elements, as well as 

seedlings and saplings. Several years later, pioneer tree species emerge 

gradually which develop a canopy very quickly and dominate for 10-20 years in 

what is referred to as an intermediate successional stage. This stage is a mix of 

dense saplings and young trees with higher canopy than initial stage. Eventually, 

pioneer species are replaced by other already-established light-demanding 

species that take advantage of improved growth conditions and gradually 

become dominant. This stage is referred to as an advanced successional stage 

and may last for 75-100 years. In this stage, there is a clear stratification of forest 

stand structure (Lu, 2005). With the availability of remote sensing technologies, 

various methodologies of distinguishing the successions of secondary forest 

have been developed. 

1.5.2.1 Single-date data based approaches 

Scientists have made great efforts in mapping forest regenerating stages based 

on the single-date various types of remote sensing data, including Landsat 

imagery (Lu, 2005; Vieira et al., 2003; Carreiras et al., 2014), Synthetic Aperture 

Radar (SAR) data (Kuplich, 2006), SPOT HRV (Kimes et al., 1999), and 

CHRIS/PROBA Hyperspectral Images (Millan et al., 2015). Although using one 

type of remote sensing data (e.g. Landsat TM data or SAR data) is efficient in 

discriminating pasture and mature forest, data from more than one sensor is often 

combined to classify successional stages of secondary forest (Kuplich, 2006). 

For example, different bands from SAR and optical TM have been combined to 

increase the classification accuracy of forest succession (Kuplich, 2006). There 

are two ways to combine these multi-sensor data: one is based on incorporation 
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of one sensor’s data as extra bands added to multispectral imagery, the other is 

using data fusion techniques (Lu et al., 2011). The data fusion approach is an 

effective way for combining multi-sensor or multi-resolution data to enhance 

visual interpretation or quantitative analysis, generating a new dataset that 

contains improved information from both original datasets. The main data fusion 

methods consist of principal component analysis (PCA), wavelet-merging 

techniques (Wavelet), high pass filter resolution merging (HPF), and normalized 

multiplication (NMM). It has been found Wavelet multi-sensor fusion and HPF 

could increase 3.3%-5.7% classification accuracy by integrating Landsat TM and 

Radar Data, but PCA and NMM could decrease the classification accuracy (Lu et 

al., 2011). Carreiras et al. (2017) further demonstrated the use of combined 

Landsat spectral bands with ALOS PALSAR backscatter intensity to distinguish 

secondary regrowth forest and mature forest in three landscapes in Brazilian 

Amazon.  

The majority of classification algorithms widely used to classify secondary forests 

are based on the above land use and land cover classification methods, including 

parametric algorithm like maximum likelihood classifier-MLC, and non-parametric 

approaches such as artificial neural network-ANN (Kuplich, 2006), linear analysis 

(Kimes et al., 1999; Lu, 2005), K-nearest neighbour-KNN, support vector 

machine-SVM, classification tree analysis-CTA (Millan et al., 2015). Lu et al. 

(2014b) compared a range of classification methods and concluded that MLC and 

CTA were suitable for Landsat data and fusion images and KNN was the best 

choice for the combination of Landsat and PALSAR data as extra bands. For 

moist tropical regions, MLC based on fusion images was suggested for 

vegetation classification (Lu et al., 2014b). Using a decision tree approach and 

CHRIS/PROBA Hyperspectral Images, Millan et al. (2015) found that images 

from the dry season were generally better for mapping successional forests, but 

for early stages of succession, using wet season images provided higher map 

accuracy. Thus, the selection of classification algorithms depends on both study 

areas and available remote sensing data. 
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1.5.2.2 Classification based on vegetation indices 

Biophysical properties, such as tree height, diameter at breast height (DBH), tree 

density, leaf area index (LAI), vary within different secondary forest successions. 

A number of vegetation indices have been created based on different band 

combinations of remotely sensed data to measure differences in these 

biophysical properties, and have been used to identify secondary forests. The 

Normalised Difference Vegetation Index (NDVI) which uses a ratio between red 

and near-infrared bands is one of the most commonly used vegetation indices 

(VI) (Boyd et al., 1996; Zhao et al., 2009; Sader et al., 1989). NDVI values range 

from -1.0 to 1.0. In general, barren areas, sand, or snow show very low NDVI 

values (0.1 or less). Sparse vegetation such as shrubs and grasslands or 

senescing crops may result in moderate NDVI values (approximately 0.2 to 0.5). 

High NDVI values (approximately 0.6 to 0.9) correspond to dense vegetation 

which is at peak growth stage. Besides NDVI, several other vegetation indices 

are useful for mapping disturbed forests (Table 1.2, Table 1.3).  

Using vegetation indices is efficient for identifying younger secondary forests. 

Study from (Sader et al., 1989) indicated NDVI difference is not detectable for 

secondary forests older than 15–20 years. Also, most studies are achieved by 

the combination of several indices instead of using one index. For example, by 

assessing Landsat TM radiance data, Boyd et al. (1996) found middle and 

thermal infrared wavebands contained significant information for detecting re-

growing secondary forests in the Amazonia and demonstrated that secondary 

forests were more separable using a vegetation index acquired in the middle and 

thermal infrared wavebands than NDVI. A later study, which used both middle 

infrared band and NDVI to distinguish secondary forests, showed secondary 

forests at initial (3-6 years), intermediate (10-20 years), advanced (40-70 years) 

stages can be separated visually in a plot of NDVI and band 5 (middle infrared) 

reflectance (Vieira et al., 2003).  

Besides using vegetation indices, extracting image texture information based on 

these vegetation indices or various reflectance bands, has been shown to be a 

promising tool to discriminate secondary forests (da Silva et al., 2014). Image 
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texture refers to spatial arrangement and variation of image pixels. A large 

number of variables have been used to measure image texture, such as 

calculating the range, skewness of pixel values, and mean, variance, correlation, 

entropy variables derived from the grey-level co-occurrence matrix (GLCM) which 

consider spatial relations between groups of two neighbouring pixels. By 

calculating 40 texture variables based on red, near infrared bands, EVI and NDVI 

derived from a high-resolution satellite image (Quickbird), Gallardo-Cruz et al. 

(2012) demonstrated image texture could well predict vegetation attributes (e.g. 

basal area, canopy cover) and reflect the internal heterogeneity of successional 

vegetation at the proper scale.  Early work by Kimes et al. (1999), based on the 

time-series SPOT HRV data from 1986 to 1994, found that the use of texture 

information would highly increase secondary forest discrimination accuracy.   

 

Table 1.2 Main Vegetation Indices used to identify secondary forest succession 

Vegetation Index Type Formulation 

NDVI---Normalised Difference 
Vegetation Index 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) 

EVI--- Enhanced Vegetation 
Index 

𝐸𝑉𝐼 = 𝐺 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝑙𝑢𝑒 + 𝐿) 

(L is the canopy background adjustment, C1, C2 are the 
coefficients of the aerosol resistance term. For Landsat-
EVI algorithm: L=1, C1 = 6, C2 = 7.5, G (gain factor) = 2.5) 

SAVI --- Soil Adjusted Vegetation 
Index 

𝑆𝐴𝑉𝐼 = ((1 + 𝐿) ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑))/(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿) 

(L is a canopy background adjustment factor, L=0.5) 

SR---Simple Ratio  𝑆𝑅 = 𝑅𝑒𝑑/𝑁𝐼𝑅 

RB---Ratio based 𝑅𝐵 = 𝑇𝐼𝑅/(𝑅𝑒𝑑 + 𝑀𝐼𝑅) 

CD---Complex division 𝐶𝐷 = 𝑀𝐼𝑅/(𝑇𝐼𝑅 ∗ 𝑅𝑒𝑑 ∗ 𝑀𝐼𝑅) 

NBI---Normalized based index 𝑁𝐵𝐼 = (𝑀𝐼𝑅 − (𝑁𝐼𝑅 + 𝑅𝑒𝑑))/(𝑀𝐼𝑅 + (𝑁𝐼𝑅 + 𝑅𝑒𝑑)) 

IRI---Infrared Index (NDWI1640) 𝐼𝑅𝐼 = (𝑁𝐼𝑅 − 𝑀𝐼𝑅)/(𝑁𝐼𝑅 + 𝑀𝐼𝑅) 

MIRI---Mid-infrared index 
(NDWI2130, also known as 
Normalized Burn Ratio) 

𝑀𝐼𝑅𝐼 = (𝑀𝐼𝑅 − 𝑀𝐼𝑅2)/(𝑀𝐼𝑅 + 𝑀𝐼𝑅2) 
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Table 1.3 Landsat 5 TM and Landsat 7 ETM+ Spectral bands 

Bands Wavebands(microns) Useful for mapping 

Band 1_Blue 0.45-0.52 Bathymetric mapping, 
distinguishing soil from vegetation 
and deciduous from coniferous 
vegetation 

Band 2_Green 0.52-0.60 Emphasizes peak vegetation, 
which is useful for assessing plant 
vigor 

Band 3_Red 0.63-0.69 Discriminate vegetation slopes  

Band 4_Near Infrared (NIR) 0.77-0.90 Emphasizes biomass content of 
soil and shorelines 

Band 5_Middle Infrared (MIR) 

  

1.55-1.75 Discriminates moisture content of 
soil and vegetation; penetrates 
thin clouds 

Band 6_Thermal Infrared (TIR) 10.40-12.5 Thermal mapping and estimated 
soil moisture 

Band 7_ Middle Infrared (MIR2) 2.09-2.35 Hydrothermally altered rocks 
associated with mineral deposits 

Band 8_Panchromatic (Landsat 7 
only) 

0.52-0.90 15 m resolution, sharper image 
definition 

 

1.5.2.3 Old growth forest degradation mapping 

Compared to deforestation monitoring, measuring partial reduction of forest cover 

(i.e. degradation) from remote sensing is far more difficult. Prior studies in the 

Amazon have generally focused on mapping one or two types of degraded forests 

(Souza Jr et al., 2005a; Costa et al., 2019), mainly logged forests (Monteiro et 

al., 2003; Souza Jr et al., 2003) or burned forests (COCHRANE, 1998).  

The combination of linear spectral mixture models (Monteiro et al., 2003; Souza 

Jr et al., 2005b; Shimabukuro et al., 2019) and the decision tree classification 

was found to be one of the most efficient approaches to map forest degradation 

(Souza Jr et al., 2003). The soil fraction derived from the spectral mixture analysis 

were recognized as the spatial signature of mechanized logging activities, 

enhancing the detection of the log landings and logging roads (de Wasseige and 
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Defourny, 2004; Souza Jr and Barreto, 2000). And the non-photosynthetic 

vegetation fraction were useful for identifying the forest degradation caused by 

burn (COCHRANE, 1998; Shimabukuro et al., 2009). However, such an 

approach is better in detecting highly degraded forests that have been subject to 

recurrent logging and burning. For degraded forests with low canopy damage, 

Souza Jr et al. (2005a) proposed a Normalized Difference Fraction Index (NDFI) 

computed using the fraction images obtained from spectral mixture model 

(fraction of soil, fraction of non-photosynthetic vegetation and fraction of shade of 

green vegetation), which was subsequently used by other studies (Souza Jr et 

al., 2013; Daldegan et al., 2019). Yet, these enhanced techniques may still 

underestimate very small-scale logging disturbances because of the rapid 

recovery of logging gaps. Although Landsat could detect logging-induced canopy 

damage up to 3.5 years later, the majority of damaged canopies recovered within 

one year (Asner et al., 2004). Even for the very high resolution Ikonos images (1 

m pixel size), log landings opened by selective logging became ‘cryptic’ after two 

years (Souza and Roberts, 2005). Moreover, the expensive cost of acquiring 

these very high-resolution images has limited their usage.  

1.5.3 Summary of knowledge gaps 

Decades of research have sought to quantify secondary forests regrowth and 

forest degradation using remote sensing in Amazonia. Whether through visual 

interpretation, statistical models or machine learning algorithm, they have been 

limited as they have generally focused on local-to-regional scales or have been 

restricted to the short timespans. The majority of mapping approaches used thus 

far are based on single date satellite imagery, which are limited in the 

discriminatory power they can provide as they make no use of temporal 

disturbance/recovery signals which characterise secondary forests and old 

growth forest degradation. Thus, a temporal analysis may prove more useful in 

this regard. There is also a glaring need for a historical perspective on forest 

disturbance, which provides insights of the cumulative extent of degradation has 

affected on the Amazonian old growth forests over multi-decadal timescales. 
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1.6 Summary 

The deforestation of old growth forests in the Brazilian Amazon has been well 

mapped by PRODES (INPE project), but there are two forest change processes 

which have received much less attention, namely the spatiotemporal dynamics 

of secondary forests and the degradation of remaining old growth forests. The 

recently released TERRACLASS dataset makes it possible to evaluate the large-

scale spatio-temporal change dynamics of secondary forests at pan-Brazilian 

Amazon level. However, there is no available spatial distribution of degraded old 

growth forests in the Brazilian Amazon. The extent that the old growth forests 

have been historically degraded in the region is still unknown.  

Remote sensing is therefore needed to map the historical cumulative degradation 

of old growth forests. Prior approaches for degradation mapping have generally 

been based on the spectral information extracted from a single date satellite 

image, and have neglected the temporal features of the degradation process. 

Time-series based classification algorithm has been found to be very useful for 

mapping forest disturbances (White et al., 2017; Hirschmugl et al., 2017; 

Hermosilla et al., 2015; Kayastha et al., 2012; Huang et al., 2010; Kennedy et al., 

2010; Kennedy et al., 2007), but the majority of these time-series based 

approaches are based on a single time-series trajectory and have mainly been 

implemented at local scales in extratropical regions (e.g. Canada, U.S.).  

Mapping disturbed forest in this thesis therefore includes both secondary forests 

and degraded old growth forests. While the temporal spectral responses of 

secondary forests and degraded old-growth forests may be not exactly the same 

in terms of the timescales involved, they should exhibit similar overarching 

features (i.e. disturbance-induced declines in key metrics followed by recovery) 

which set them apart from intact forests. Based on this expectation, I provide a 

novel methodology that using long time-series Landsat images to map tropical 

secondary forests and degraded old growth forests, especially in the Brazilian 

Amazon.            
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1.7 Research aims and objectives 

The overall aim of the thesis is to evaluate the large-scale spatio-temporal change 

dynamics of secondary forests in the Brazilian Amazon over 14 years (2000-

2014), develop a novel approach to map tropical disturbed forests (secondary 

forests & degraded forests), and estimate the extent of old growth forest 

degradation for the Brazilian Amazon. Specifically:  

1) To understand spatio-temporal change dynamics of secondary forests across 

entire Brazilian Amazon from 2000 to 2014. 

2) To develop a novel remote-sensing methodology to map the extent of 

disturbed forests in Tropics, including secondary forests and degradation of 

old growth forests. 

3) To apply the above remote-sensing methodology to the entire Brazilian 

Amazon moist forest, provide the extent of historical degradation of old growth 

forests for the region. 

1.8 Thesis structure and publication status 

This thesis consists five chapters, including the general introduction, three data 

chapters presented as paper manuscripts, and the final discussion and 

conclusion.  

Chapter 1: Introduction. Literature review of the status of secondary forests and 

forest degradation in the Amazonia, and remote sensing approaches used for 

mapping the secondary forests and degradation. Summary of the knowledge 

gaps and the structure of the thesis.     

Chapter 2 (Paper I): Upturn in secondary forest clearing buffering primary 

forest loss in the Brazilian Amazon. Analysis of spatio-temporal change 

dynamics of secondary forests in the Brazilian Amazon over 14 years (2000-2014) 

using high-resolution land use dataset (TERRACLASS, 30 m pixel size), 

providing the first estimates of secondary forest loss for the region and the lost 
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carbon sequestration opportunity due to the clearance of secondary forests. This 

chapter is accepted by Nature Sustainability.  

Chapter 3 (Paper II): Mapping tropical disturbed forests using multi-decadal 

30 m optical satellite imagery. Developing a novel methodology to map the 

tropical disturbed forests (i.e. secondary forests and degraded old growth forests) 

using Landsat multiple time-series trajectories, and test this method in three 

different ecoregions (moist forest, seasonal forest and dry forest ecoregions) in 

the state of Mato Grosso (Brazil).  This chapter has been published in Remote 

Sensing of the Environment.  

Chapter 4 (Paper III): Historical degradation of the Brazilian Amazon. Scaling 

up the developed approach as in Chapter 3, using the same multi-decadal 30 m 

Landsat time-series images (1984-2014) and the same algorithm to classify moist 

primary forests (i.e. those which have not been deforested according to 

PRODES, referred as old growth forests in the thesis) into intact vs. degraded in 

2014. This chapter is being prepared for submission to either Geophysical 

Research Letters or Environmental Research Letters.  

Chapter 5: Discussion and Conclusion. The contributions of this work (thesis) 

to the relevant scientific research fields, the challenges of monitoring secondary 

forests and old growth forest degradation, and the potential future directions that 

could lead to a better understanding of such dynamic land uses in other 

tropical/global areas.  
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Abstract 

Primary forest deforestation in the Brazilian Amazon has declined considerably 

since 2004, but secondary forest loss has never been quantified. We use a 

recently-developed high-resolution land use dataset (TERRACLASS) to track 

secondary forests in the Brazilian Amazon over 14 years, providing the first 

estimates of secondary forest loss for the region. Secondary forest loss increased 

by (187   48) % from 2008 to 2014. Moreover, the proportion of total forest loss 

accounted for by secondary forests rose from (37   3) % in 2000 to (72  5) % 

in 2014. Recent acceleration in secondary forests loss occurred across the entire 

region and was not driven simply by increasing secondary forest area but likely a 

conscious preferential shift towards clearance of a little-protected forest resource. 

Our results suggest that secondary forests have eased deforestation pressure on 

primary forests. However, this has been at the expense of a lost carbon 

sequestration opportunity of 2.59-2.66 Pg C over our study period.  
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2.1 Introduction 

The Amazon rainforest provides significant ecosystem services locally, regionally 

and globally.  The biome’s forests are home to one-quarter of global biodiversity 

(Dirzo and Raven, 2003; Malhi et al., 2009), store in excess of 100 billion tonnes 

of carbon in their biomass (Baccini et al., 2012; Avitabile et al., 2016) and play a 

crucial role in the provision of rainfall in South America (Spracklen et al., 2012). 

Deforestation control is essential for maintaining the functional integrity of 

Amazon rainforests. In the Brazilian Amazon, which accounts for over two-thirds 

of Amazonian forests (RAISG, 2012), deforestation of primary forests fell by 82% 

from peak rates in 2004 to 2014 (PRODES, 2018). This substantial decline 

reflects the efficacy of Brazil’s PPCDAm Program (Maia et al., 2011) (The Action 

Plan for the Prevention and Control of Deforestation in the Legal Amazon), which 

was launched in 2004 to reduce deforestation rates and support sustainable 

development in Amazonia. This program resulted in the implementation of new 

policies, enhanced detection frameworks (Assunção et al., 2013) and control 

measures to curtail deforestation in the Brazilian Amazon, and international 

mechanisms such as the soybean (Gibbs et al., 2015; Rudorff et al., 2011) and 

beef moratoria (Gibbs et al., 2016; Massoca et al., 2017). However, these 

mechanisms do not protect secondary forests, defined here as re-growing forests 

on previously deforested land.   

Currently, secondary forests comprise approximately 21% of previously 

deforested areas in the Brazilian Amazon (Almeida et al., 2016). They can 

accumulate carbon very rapidly (Poorter et al., 2016), thereby providing a key 

pathway for Brazil to reduce net carbon emissions and mitigate climate change 

(Chazdon et al., 2016). At the same time, secondary forests are an important 

component of land management systems in the Brazilian Amazon, as their 

regrowth restores soil functioning, ensuring productivity of pastures and small-

scale agriculture (Kato et al., 2004). Despite the importance of secondary forests 

for conservation planning, environmental policy and land management in 

Amazonia, a historical lack of spatio-temporal data on secondary forest area has 

precluded evaluation of their large-scale dynamics. Although a recent localised 
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study (Carvalho et al., 2019) for the state of Pará illustrates the dynamic nature 

of secondary forests, a comprehensive analysis of secondary forest loss in 

Amazonia does not exist.    

Here we use a recently-developed 30 m land cover dataset for the Brazilian 

Amazon (TERRACLASS) (2018; Almeida et al., 2016), which provides 

unprecedented information on secondary forest occurrence over a 14-year period 

(2000-2014), to undertake the first large-scale assessment of the spatio-temporal 

dynamics of secondary forests in Amazonia. TERRACLASS takes the deforested 

areas from PRODES(PRODES, 2018) as an input layer and classifies each 

deforested patch into one of twelve different land covers (Table 2.1), including 

secondary forest. From TERRACLASS, we computed the areas of secondary 

and primary forest cleared annually, generated secondary forest loss by age 

structure and evaluated the fate (land cover type) of cleared secondary forests. 

To account for classification error in the TERRACLASS base map, we use a 

sampling-based approach combined with expert validation, following best 

practice in the field (Olofsson et al., 2014; Tyukavina et al., 2017). The summary 

forest loss estimates presented in the main text of this manuscript refer to 

sampling-based and not map-based estimates.  A comparison of sampling-based 

and map-based estimates is provided in the supplementary information 

(Appendix Table A.7).  

2.2 Results         

2.2.1 Spatio-temporal distribution of secondary forest loss 

Our results reveal two distinct phases of secondary forest loss in Amazonia. 

Between 2000-2008, we find a marked decline in secondary forest loss, mirroring 

the declines in primary forest loss seen over this period. However, we find that 

secondary forest loss between 2008-2014 increased sharply from approximately 

6,040 ± 1,417 km2 yr-1 to 10,757 ± 1,486 km2 yr-1, despite an apparent levelling 

off of primary forest loss over this period (Figure 2.1). This second period, 

therefore, was marked by an increase pressure on forest ecosystems, which was 

largely absorbed by intensified secondary forest loss. These large increases in 
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secondary forest loss translate into considerable overall increases (123 ± 21 %) 

in total (primary and secondary) forest loss between 2008-2010 and 2012-2014, 

reversing the downward trend in total forest loss up to 2008 (Figure 2.1). Over 

our study period, the proportion of total forest loss due to secondary forest 

clearance increased from 37 ± 3 % in 2000-2004 to 72 ± 5 % in 2012-2014 (Figure 

2.1). Map-based estimates of forest loss were very consistent with those derived 

from our sampling-based analysis and exhibited the same temporal pattern 

(Appendix Figure A.2). 

 

 

Figure 2.1 Sample-based estimates of annual primary and secondary forest loss in the 

Brazilian Amazon from 2000-2014.  

Total forest loss is the sum of primary and secondary forest loss. The uncertainties (grey shaded 

areas) denote standard errors from our sample-based validation (all intervals) as well as time-

interval corrections which account for missed secondary forest loss in 4-year intervals (2000-2004 

and 2004-2008 only). See Appendix Table A.7 for numerical values and comparison to map-

based estimates.  
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The preferential cutting of secondary forests was found to be geographically 

widespread. In 2000-2004, secondary forest loss mainly outstripped primary 

forest loss in the far northeast of the Brazilian Amazon (Figure 2.2) which has 

historically been subject to high primary forest deforestation, with little remaining 

primary forest (Appendix Figure A.4). By 2012-2014, however, secondary forest 

loss exceeded primary forest loss across almost all of the Brazilian Amazon 

(Figure 2.2).  

 

Figure 2.2 Spatio-temporal variation of secondary forest loss as fraction of total forest loss 

in the Brazilian Amazon. 

Darker blue (warmer orange) colours indicate areas where majority of forest loss occurred in 

primary (secondary) forests. The lighter grey colours represent areas with no recorded forest loss. 

Darker grey colours represent non-forest areas (e.g. savannas). Time interval corrections were 

applied in the first two intervals (i.e. 2000-2004, 2004-2008). See Appendix Figure A.3 for the 

spatial distribution of the absolute area of secondary forest loss. Analysis of spatial patterns was 

undertaken directly on the TERRACLASS wall-to-wall maps.     

 

We further examined the age structure of secondary forest loss. Within any given 

interval, we find that the percentage loss rate of secondary forests declines 

progressively with increasing secondary forest age (Appendix Table A.8). In the 

2012-2014 interval, for example, the percentage loss rate of the youngest 

secondary forest age category (0-2 years) was over five times greater than that 
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of the oldest age category (>12 years old).  Between 2008-2014, increases in 

secondary forest loss were observed across all age categories (Figure 2.3) but 

were particularly marked for young (0-4 years) secondary forests (Figure 2.3a). 

Over this time period, the annual percentage loss rates of young secondary 

forests increased by 250% from 6% in 2008-2010 to 21% in 2012-2014 (Figure 

2.3a, mean), compared to increases of 192% and  106% for intermediate (4-8 

years) and old (>8 years) secondary forests respectively (Figure 2.3 b-c).  

 

 

Figure 2.3 Distribution of percentage loss rate of secondary forests by age group (0-4 

years, 4-8 years and over 8 years).  
Annual percentage loss rates of secondary forests were computed for individual 0.1 grid cells, 

based on TERRACLASS maps. Grid cells without secondary forest loss were excluded. Panel a, 

10539 valid grid cells, 87% of which showed an increase in secondary forest loss rates; Panel b, 

10915 valid grid cells, 81% of which showed an increase in secondary forest loss rates; Panel c, 

11248 valid grid cells, 76% of which showed an increase in secondary forest loss rates. Solid 

lines depict density distributions of secondary forest loss rates across all valid grids. Dashed 

vertical lines denote mean values. Density, computed through R-‘stat_density’, was the 
kernel density estimate which is a non-parametric way to estimate the probability density 
function of a random variable. It’s a smoothed version of the histogram.    

 

2.2.2 Fate of secondary forest loss 

The vast majority (91%) of cleared secondary forests (almost identical for young, 

intermediate and old secondary forests) in the Brazilian Amazon over our study 

period became pastureland (Appendix Table A.9 Table A.10), mirroring the fate 

of deforested primary forests (Tyukavina et al., 2017). Pasture expansion from 

primary forest deforestation in Amazonia slowed considerably following the 
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establishment of the 2008 beef moratorium (Massoca et al., 2017), in which 

retailers pledged to stop purchasing meat produced on illegally deforested land. 

Since these measures were introduced, secondary forests have absorbed much 

more of the pasture expansion in the Brazilian Amazon, with conversion of 

secondary forest to pastureland increasing by 282% between 2008-2010 and 

2012-2014 (Appendix Table A.9). Conversely, about 90% of new secondary 

forests observed in TERRACLASS between 2008 and 2014 were previously 

identified as pasture (Appendix Table A.9). Although conversion of secondary 

forest to agricultural land increased by 106% between 2008-2010 and 2012-

2014, the absolute area of secondary forest converted to agricultural land in 

2012-2014 was >40 times lower than that converted to pastureland and only 

accounted for approximately 2% of the total cleared secondary forest area 

(Appendix Table A.9).  

Overall, our results point to an acceleration of the pasture-forest-pasture 

management system since the introduction of the beef moratorium. Post-

deforestation landscapes in the Brazilian Amazon are highly dynamic in nature.  

In these landscapes, secondary forests are often cut and usually burned, as part 

of the pasture cycle. Their regrowth on pasturelands improves soil integrity by 

replenishing nutrients, enhancing organic matter storage and improving the 

physical structure of soils, which can become heavily degraded following 

sustained pasture activity (Cordeiro et al., 2017). Our results suggest that the 

permanence time of secondary forests in these cycles has decreased 

substantially over time, as cutting rates have accelerated greatly but with no 

underlying trend over time in the fate of secondary forests. Whereas only 2.86 ± 

0.67 % of total secondary forest area was cut annually between 2008 and 2010, 

this increased to 7.43 ± 0.81 % in 2012-2014 (Appendix Table A.4Table A.6). 

2.2.3 Area of secondary forests 

The upturn in overall forest loss, including both primary and secondary forests, 

since 2008 indicates an enhanced demand for new pasture and agricultural 

lands. This enhanced demand has increasingly been met by secondary forests, 
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thus providing a buffer that has stalled deforestation of primary forests. Ultimately, 

however, the strength of this buffer depends on the area of secondary forest 

available. Between 2000-2010, the sampling-derived area of secondary forest 

increased by 34,183 ± 12,392 km2 (an overall change of 0.87 ± 0.29% in 

agreement with Aguiar et al. (2016)), but did not change significantly over the last 

two intervals (Appendix Table A.11). Moreover, the area of stable secondary 

forest (secondary forests which persisted over an entire TERRACLASS interval) 

increased progressively over time up to the last interval, when it declined for the 

first time (Appendix Table A.2-A.6). Future depletions in secondary forest area 

would likely lead to increasing pressure on primary forests as the available pool 

of easily accessible secondary forests for cutting is diminished. 

2.3 Discussion and Conclusion 

While primary forests have benefited from strong legal protection in the Brazilian 

Amazon, secondary forests have little protection status in Brazilian law. This 

partially stems from the lack of clear definitions for secondary forests themselves 

- e.g. the point in the recovery process where they effectively become ‘forests’. 

Pará is currently the only Brazilian state to adopt an explicit definition of 

secondary forests, where secondary forests are defined as those that have 

regenerated from previously cleared land and that can no longer be considered 

as fallow(Vieira et al., 2014).  The right to cut secondary forests in Pará is directly 

related to forest age, as state law(Pará State Government. INSTRUÇÃO 

NORMATIVA SEMA Nº 08, DE 28-10-2015, 2015) dictates that areas younger 

than five years can be cleared irrespective of their physical structure, whilst areas 

older than 20 years must be conserved.  Clearance of forests in intermediate 

stages of succession (5-20 years) follows basal area thresholds which vary 

according to background forest cover status. While such legislation is beneficial 

for ensuring the recovery of older forests, it encourages the cutting of secondary 

forests before they reach the age or basal area thresholds that would render their 

cutting illegal. In other Brazilian Amazon states, legislation governing the cutting 

of secondary forests has yet to be developed. This limited legal protection means 

that secondary forest loss is largely unregulated.   
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To formally test whether the increase in secondary forest loss over time can be 

explained purely by increasing availability of secondary forests relative to primary 

forests, we compared the observed secondary forest cutting to a null model which 

assumes a time-invariant preference for secondary forest clearance relative to 

primary forest clearance. We find that across the Brazilian Amazon, this null 

model predicted secondary forests losses well up to 2008-2010. In the last two 

intervals, however, the null model greatly underestimated secondary forest loss 

and its relative contribution to total forest loss (Figure 2.4). This recent rise in 

secondary forest clearance may reflect a conscious behavioural shift towards 

preferential cutting of secondary forests over primary forests - i.e. the increase in 

secondary forest loss in our statistical model would only be captured if the 

preference (bias) for cutting secondary forest relative to primary forest was 

allowed to increase over time.   

 

 

Figure 2.4 Comparison of secondary forest loss between actual estimates from 

TERRACLASS and null model predictions.  

The null model predicts secondary forest loss by sampling without replacement based on Fisher’s 

non-central hypergeometric distribution, given known available areas of primary and secondary 

forests in each interval and assuming a bias (odds ratio, estimated to be 13.69) for cutting 

secondary forests relative to primary forest computed for the first interval (2000-2004) and 

subsequently maintained across all intervals. Points on the null model curves are based on mean 

values from Fisher’s non-central hypergeometric distribution. See Appendix Table A.11 for 

numerical values.   

 

The large losses of secondary forests observed in this study have significant 

implications. On the one hand, their accelerated cutting has been important for 



 

 

 

49 

curbing losses of primary forests whose biodiversity value is irreplaceable 

(Gibson et al., 2011). The enhanced preference for cutting secondary forests 

instead of primary forests also reinforces the effectiveness of measures in place 

to inhibit primary forest loss.  On the other hand, secondary forests are 

themselves an important biodiversity reservoir in an increasingly fragmented 

landscape (Brockerhoff et al., 2008; Lennox et al., 2018), and if left to regrow, 

can act as substantial carbon sinks (Martin et al., 2013). Brazil has committed to 

restore 120,000 km2 of forest land by 2030 as part of its Nationally Determined 

Contribution (NDC) for the Paris Agreement(UNFCCC, 2015).  A cost-effective 

way to do this would be to allow part of its existing Amazonian secondary forest 

area to recover naturally. Over the 14-year period of our study, over 180,329  

11,760 km2 of secondary forests were cut, exceeding its total NDC commitment 

by over 60,329  11,760 km2. Applying a simple biomass accumulation model 

(see Methods), we estimate that this loss of secondary forests prevented the 

potential accumulation of 2.59-2.66 billion tonnes of carbon. This represents 

approximately 18 years of Brazil’s fossil fuel emissions, based on 2014 emissions 

(World Bank, 2014).   

Despite the accelerated rate of secondary forest loss, the Brazilian Amazon still 

has in excess of 235,718 ± 7,773 km2 of secondary forests. Managing this 

resource sustainably so as to maximise the conservation value of these forests, 

while not intensifying pressure on primary forests, requires an integrated strategy 

that includes active monitoring of secondary forests in Amazonia and 

strengthening of their governance. 
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2.4 Methods 

2.4.1 TERRACLASS 

We used the land use/land cover classification maps produced by the 

TERRACLASS Project(2018) (https://www.terraclass.gov.br) as the basis for all 

analyses of secondary forest dynamics. TERRACLASS maps post-deforestation 

land cover at 2 to 4 year intervals across the Brazilian Legal Amazon. We used 

all TERRACLASS maps available at the time of the study (2000, 2004, 2008, 

2010, 2012 and 2014).  TERRACLASS assigns areas designated as deforested 

by PRODES (primary forest deforestation monitoring program for the Brazilian 

Amazon) into one of twelve different land cover types (Table 2.1). In this study, 

we combined shrubby pasture and herbaceous pasture categories into a single 

pasture category and further combined perennial agriculture, semi-perennial 

agriculture and temporal agriculture into a single agriculture category. For areas 

not observed in a specific TERRACLASS year due to persistent cloud cover, we 

assume the same land use categories as for the preceding TERRACLASS map. 

Non-forest and hydrology categories were excluded from the study. 

TERRACLASS 2004-2014 products inherited historical PRODES misalignment 

issues(PRODES, 2017) which were subsequently corrected for TERRACLASS-

2000. To ensure consistency across all TERRACLASS products, we aligned the 

TERRACLASS-2000 to other TERRACLASS products using an image 

displacement algorithm in Google Earth Engine (See Appendix Figure A.1 for the 

example image for diaplacement correction).  

 

 

 

 

 

https://www.terraclass.gov.br/
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Table 2.1 TERRACLASS land use/cover classification categories.  

Land use categories Description Notes 

1. Primary forest 
Areas that have never been deforested, as 
mapped by PRODES. 

 

2. Secondary forest 
Areas that were clear-cut and are at an 
advanced stage of regeneration with trees 
and shrubs. 

 

3. Shrubby pasture 
Areas of productive pasture with grass 
coverage  between 50% and 80% and 20-
50% coverage of shrubby vegetation 

 

 

Combined as 
pasture 

 
4. Herbaceous pasture 

Productive pasture with 90-100% grass 
coverage. 

5. Perennial agriculture e.g. palm oil 
 

Combined as 
agriculture 

6. Semi-perennial 
agriculture 

e.g. sugarcane 

7. Temporal agriculture e.g. soybean 

8. Mining 
Areas of mineral extraction with the 
presence of bare soil and deforestation in 
the proximity of water bodies. 

 

 

9. Urban 
Population concentrations forming small 
inhabited places, villages and cities. 

 

10. Others 
Areas not encompassed by other categories 
such as rocky or mountain outcrops, river 
shores and sand banks. 

 

11. Deforestation 
Areas recently deforested with no defined 
land use at this stage. Mapped by PRODES 
as deforested in that year. 

 

12. Reforestation Human-cultivated forest (plantation).  

13. Non-observed area 

Areas not possible to be interpreted due to 
clouds or cloud shadows at the moment of 
the satellite overpass or recently burned 
areas. 

Assume same 
land use 
categories as 
previous year 

14. Non-forest e.g. Amazon savannas. Excluded from 
this study 15. Hydrology Water bodies. 

2.4.2 Estimates of forest loss 

We computed forest loss estimates from TERRACLASS in two ways:  1) simple 

wall-to-wall calculations based directly on the TERRACLASS map and 2) a 

sampling-based approach in which classification accuracy and the map areas of 

different land cover categories are used to construct forest loss estimates with 

appropriate error quantification19,31.  
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We estimated annual primary and secondary forest loss as well as secondary 

forest gain for five individual time intervals: 2000-2004, 2004-2008, 2008-2010, 

2010-2012, 2012-2014. Primary forest loss was considered as the land use 

change from primary forest to any non-primary forest categories (i.e. pasture, 

agriculture, secondary forest, urban, mining, others, and reforestation). 

Secondary forest loss was regarded as the land use change from secondary 

forest to other non-forest categories. Secondary forest was defined as being 

represented only by the ‘secondary forest’ class from TERRACLASS. No post-

hoc re-classification of any other land classes (e.g. shrubby pasture) as 

secondary forest was applied. Thus, all estimates of secondary forest area and 

loss reported in this study refer specifically to the ‘secondary forest’ category from 

TERRACLASS. Total forest loss was computed as the sum of primary forest loss 

and secondary forest loss. Secondary forest gain was defined as the regrowth of 

secondary forests following abandonment from other non-forest categories. Wall-

to-wall primary/secondary forest loss rates were constructed by summing the 

pixel areas of all pixels that were defined as primary/secondary forest at the 

beginning of a TERRACLASS interval but not these classes at the end of the 

interval.   

We used the map-based calculations to evaluate spatial patterns of 

secondary/primary forest loss. To do this, we applied a 0.1 degree grid over the 

Brazilian Amazon and computed the fraction of total forest loss accounted for by 

secondary forests within each grid cell.  

2.4.3 Sampling-based estimates.  

Our wall-to-wall calculations may be subject to biases related to TERRACLASS 

classification errors (Almeida et al., 2016). To account for this, we estimated 

forest loss by applying an unbiased estimator to a stratified sample of reference 

observations following best practice recommendations (Olofsson et al., 2014; 

Olofsson et al., 2013). For each TERRACLASS time interval (i.e. 2000-2004, 

2004-2008, 2008-2010, 2010-2012, 2012-2014), we used stratified random 

sampling to generate an independent set of samples, for subsequent visual 
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assessment by three experts. Sampling was stratified according to six land cover 

change categories: 1) stable primary forest, 2) primary forest loss, 3) stable 

secondary forest, 4) secondary forest loss, 5) secondary forest gain, and 6) stable 

others (e.g. pasture, agriculture, mining). The stable primary forest stratum 

occupied >70% of the study area (Appendix Table A.1). Given the very large area 

of this stratum, stable forest samples interpreted as change categories in the 

reference classification will carry a disproportional area weight and may 

considerably reduce the accuracy of estimates of change categories (Arévalo et 

al., 2019). To account for this, we introduced a buffer stratum (1 km) for stable 

primary forest areas surrounding areas of primary forest loss and partitioned our 

stable forest sample to account for stable forests inside and outside of this buffer 

(Arévalo et al., 2019). We calculated the total sample size n following Olofsson 

et al. (2014), as follows:  

𝑛 = (
∑(𝑤𝑖𝑆𝑖)

𝑆(�̂�)
)2                (eq. 2.1) 

where 𝑤𝑖 is the mapped proportion of area of stratum i, 𝑆(�̂�) is the standard error 

of the estimated overall accuracy that we would like to achieve (0.015), 𝑆𝑖 is the 

standard deviation of stratum i,  𝑆𝑖 =  √𝑈𝑖(1 − 𝑈𝑖)  where 𝑈𝑖  is the anticipated 

user’s accuracy of stratum i (0.70 for all strata in this study). This yielded a total 

of 933 sampled pixels for each time interval with 50-100 pixels allocated to the 

smaller strata and the remaining pixels proportionally allocated to other strata 

based on their area weights (𝑤𝑖 )(Olofsson et al., 2014; Arévalo et al., 2019) 

(Appendix Table A.1). All pixels were sampled so that they were at least 200 m 

away from the edge of an individual stratum to avoid potential misalignments 

between TERRACLASS and the reference images(PRODES, 2017).     

Reference classification for each sampled pixel was conducted through Collect 

Earth Online(Saah et al., 2019) by three experts through visual interpretation of 

annual Landsat composite images acquired during 1st July – 31st August and, 

when available, very high resolution imagery from Digital Globe and Google 

Earth. Information from time-series trajectories of Landsat spectral bands (red 

and short-wave infrared bands) and vegetation indices (NDVI-normalized 
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difference vegetation index, NDWI- normalized difference water index) were also 

utilized by the experts for the reference classification. Each sampled pixel was 

classified by the experts as stable forest, forest loss, forest gain or stable others, 

and flagged if no clear Landsat image was available.  Experts did not distinguish 

between stable primary forest and stable secondary forest or between primary 

forest loss or secondary forest loss as TERRACLASS only classifies land 

use/cover on historically deforested areas, so that misclassifications between 

primary and secondary forests are not technically possible in TERRACLASS. 

Initially, each expert assessed each reference pixel independently. Pixels with 

disagreement between experts were subsequently revisited until agreement was 

reached. Flagged pixels (with no clear Landsat imagery between 1st July and 31st 

August) were re-interpreted using Landsat composite imagery for the entire year 

or excluded if no clear reference image was available for that year.        

Area estimates of each individual reference class were based on the above 

reference data and sample classification protocol. Following Olofsson et al. 

(2014)(Olofsson et al., 2014), the estimated area of reference class k was 

computed as:  

�̂�𝑘 =  𝐴 ×  �̂� ∙𝑘                  (eq. 2.2) 

where A is the total area of the entire domain considered (3,924,375.63 km2), and 

�̂� ∙𝑘  is the proportion of area of class k as determined from the reference 

classification, which was computed as: 

�̂� ∙𝑘 = ∑ 𝑤𝑖
𝑛𝑖𝑘

𝑛𝑖

𝑞
𝑖=1                 (eq. 2.3) 

where q represents the number of mapped strata (i), 𝑤𝑖 is the proportion of area 

of each mapped stratum i, 𝑛𝑖𝑘 is the number of samples from mapped stratum i 

interpreted as reference class k, and 𝑛𝑖  is the total number of samples for 

mapped stratum i. 

The standard error for the proportion of area of reference class k was computed 

as(Olofsson et al., 2014):   
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𝑆(�̂�∙𝑘) = √∑
𝑤𝑖𝑝𝑖𝑘−𝑝𝑖𝑘

2

𝑛𝑖−1𝑖            (eq. 2.4) 

where �̂�𝑖𝑘  is the proportion of area from mapped stratum i interpreted as 

reference class k, �̂�𝑖𝑘 = 𝑤𝑖
𝑛𝑖𝑘

𝑛𝑖
 (refer to the above eq. (3)). 

The standard error of the estimated areas was then computed as: 

𝑆(�̂�𝑘) = 𝐴 ×  𝑆(�̂�∙𝑘)                (eq. 2.5) 

The summary forest loss estimates reported in the main text of this manuscript 

denote the sampling-based estimates �̂�𝑘 ± 𝑆(�̂�𝑘).  

2.4.4 Correcting for varying interval lengths 

The time structure of TERRACLASS products (2000, 2004, 2008, 2010 , 2012, 

2014), is such that the first two intervals used to compute forest loss span four 

years while the remaining intervals span two years. These differences in interval 

length do not affect calculation of primary forest loss but do have implications for 

secondary forest loss and gain due to the much more transient nature of 

secondary forests, which are often cleared within 2 years of regrowth. Thus, 4-

year intervals can miss the clearance of secondary forests that have established 

and been cut again within the interval. To account for this, we derived a correction 

factor α, where secondary forest loss/gain estimates for 4-year intervals were 

rescaled as: 

𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐴𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  × 𝛼             (eq. 2.6) 

where 𝐴𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  is the original, uncorrected loss/gain over 4-year 

TERRACLASS intervals (2000-2004, 2004-2008). We calculated 𝛼 as follows, 

based on available 2-year TERRACLASS intervals (2008-2014), which we then 

regrouped into 4-year intervals (e.g. 2008-2012, 2010-2014): 

𝛼 = (𝐵2𝑦𝑟(𝑖) + 𝐵2𝑦𝑟(𝑖𝑖))/𝐵4𝑦𝑟              (eq. 2.7) 
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where 𝐵4𝑦𝑟 is the secondary forest loss/gain over the regrouped 4-year interval 

and 𝐵2𝑦𝑟(𝑖)  and 𝐵2𝑦𝑟(𝑖𝑖) are secondary forest loss/gain for 1st and 2nd 2-year 

intervals respectively. We found that on average, 4-year intervals underestimated 

secondary forest loss by 16.84-26.52% and underestimated secondary forest 

gain by 10.31-24.61% relative to 2-year intervals.  

We applied the above underestimates of secondary forest loss/gain to provide 

revised best estimates (based on mean underestimates) of secondary forest 

loss/gain for 4-year intervals and used the full range of underestimates (minimum 

and maximum values) to provide uncertainty bounds on our re-scaled values.  

The interval length corrections were applied to both our map-based and 

sampling-based estimates for the 4-year intervals (i.e. 2000-2004, 2004-2008). 

For sample-based estimates, the total errors for the loss rates were computed by 

adding the sampling-derived errors in quadrature with the interval correction 

errors (only relevant for 4-year intervals).  

2.4.5 Determining secondary forest loss from different forest ages  

To calculate secondary forest loss for different forest age groups, we generated 

four age category maps for 2004, 2008, 2010 and 2012 by tracking individual 

secondary pixels in time back to their year of first emergence in the dataset 

(Appendix Table A.8). To account for the differences in forest area among 

different age groups, we report secondary forest losses as proportional loss rates 

whereby the annual secondary forest loss for individual age categories were 

divided by the corresponding total secondary forest area for that age category 

(Appendix Table A.8). The number of age categories that we considered 

increased over time for each map. For example, the secondary forest age map 

for 2004 only has two age categories (0-4, >4 years), while the secondary forest 

age map for 2012 contains five age categories (0-2, 2-4, 4-8, 8-12, >12 years). 

As it was not possible to compare the same age category across all intervals, we 

restricted our analysis of changes in forest loss by age category to two intervals 

(2008-2010 and 2012-2014) for which it was possible to compare identical age 

categories (0-4, 4-8, >8 years). For these two intervals, we computed the 
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percentage of secondary forest loss annually for each age categories (i.e. 0-4, 4-

8 and >8 years) within individual 0.1  0.1 grid cells and compared the pixel-

level forest loss distributions between both intervals.  

2.4.6 Null model analysis.  

To test whether the accelerated loss of secondary forest was driven simply by 

increases in secondary forest area relative to primary forest area over time, we 

compared TERRACLASS secondary forest loss estimates to predictions from a 

statistical null model based on Fisher’s non-central hypergeometric distribution, 

a modification of the hypergeometric distribution which allows the sampling 

probabilities of two binomially distributed variables to be adjusted according to an 

odds ratio. The odds ratio for cutting of secondary forests relative to primary 

forests was computed for the first TERRACLASS interval (2000-2004), based on 

the known total areas of both secondary and primary forest at the beginning of 

the interval from sample-based estimates (stable secondary forest + secondary 

forest loss within the interval) and the known secondary and total forest loss 

during the interval.  For the first interval (2000-2004), this odds ratio was found to 

be 13.69 (i.e. secondary forests were >13 times more likely to be cut than primary 

forests). We applied the null model to each TERRACLASS interval, considering 

interval-specific total forest loss and available primary and secondary forest areas 

but maintaining the same odds ratio for preferential cutting of secondary forests 

as in the first interval. The null model analysis was conducted in R using the 

‘BiasedUrn’ package. 

2.4.7 Calculating carbon sequestration forgone due to the clearance 

of secondary forest. 

To estimate the lost carbon sequestration potential arising from secondary forest 

cutting, we applied a Michaelis-Menten model commonly used in assessments of 

secondary biomass recovery (Batterman et al., 2013; Galbraith et al., 2019; 

Poorter et al., 2016). In this model, the amount of carbon sequestered in 

secondary forests at age 𝑡 is given by: 𝐶(𝑡) =  (𝐶𝑚𝑎𝑥 ∗ 𝑡) (𝛼50 + 𝑡)⁄ , where 𝐶𝑚𝑎𝑥  

is average old-growth carbon storage for Amazon forests (170.60 Mg C ha-1)30,  
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𝛼50 is the half-saturation content denoting the time taken to reach half of the 

maximum carbon sequestration (35 years) (Galbraith et al., 2019), and age 𝑡 is 

the average age of secondary forest when cleared. We estimated t as the area-

weighted mean age of secondary forest loss in the last time interval (Appendix 

Table A.8, 2012-2014 time interval), taking the midpoint of each age category to 

represent the actual age of the secondary forest when cut. For the oldest age 

category, we conducted a sensitivity analysis where the mean age varied from 

12-20 years. The final value of t used in the calculation above ranged from 5.50-

6.57 years, once the uncertainty associated with the midpoint of the oldest age 

category was accounted for. The lost carbon sequestration opportunity due to 

secondary forest cutting was calculated by subtracting the secondary forest 

carbon sequestration at average cutting age 𝑡 (𝐶(𝑡)) from its potential maximum 

carbon sequestration (𝐶𝑚𝑎𝑥) and scaling this by the total area of lost secondary 

forest over our study period (180,329  11,760 km2 from sample-based 

estimates). 
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Chapter 3   

Mapping tropical disturbed forests using multi-decadal 30 m 

optical satellite imagery (Paper Ⅱ) 

Wang, Y., Ziv, G., Adami, M., Mitchard, E., Batterman, S.A., Buermann, W., 

Marimon, B.S., Junior, B.H.M., Reis, S.M., Rodrigues, D. and Galbraith, D., 2019. 

Mapping tropical disturbed forests using multi-decadal 30 m optical satellite 

imagery. Remote sensing of environment, 221, pp.474-488. 

 

Abstract 

Tropical disturbed forests play an important role in global carbon sequestration 

due to their rapid post-disturbance biomass accumulation rates. However, the 

accurate estimation of the carbon sequestration capacity of disturbed forests is 

still challenging due to large uncertainties in their spatial distribution. Using 

Google Earth Engine (GEE), we developed a novel approach to map cumulative 

disturbed forest areas based on the 27-year time-series of Landsat surface 

reflectance imagery. This approach integrates single date features with temporal 

characteristics from six time-series trajectories (two Landsat shortwave infrared 

bands and four vegetation indices) using a random forest machine learning 

classification algorithm. We demonstrated the feasibility of this method to map 

disturbed forests in three different forest ecoregions (seasonal, moist and dry 

forest) in Mato Grosso, Brazil, and found that the overall mapping accuracy was 

high, ranging from 81.3% for moist forest to 86.1% for seasonal forest. According 

to our classification, dry forest ecoregion experienced the most severe 

disturbances with 41% of forests being disturbed by 2010, followed by seasonal 

forest and moist forest ecoregions. We further separated disturbed forests into 

degraded old-growth forests and post-deforestation regrowth forests based on an 

existing post-deforestation land use map (TerraClass) and found that the area of 

degraded old-growth forests was up to 62% larger than the extent of post-
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deforestation regrowth forests, with 18% of old-growth forests actually being 

degraded. Application of this new classification approach to other tropical areas 

will provide a better constraint on the spatial extent of disturbed forest areas in 

Tropics and ultimately towards a better understanding of their importance in the 

global carbon cycle.  
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3.1 Introduction 

As hotspots of global biodiversity and carbon storage, tropical forests play an 

important role in biodiversity conservation, climate change mitigation and the 

provision of multiple other ecosystem services (Foley et al., 2005). However, 

millions of hectares of tropical forests have been lost due to deforestation and 

degradation disturbances, resulting in estimated net carbon emissions of 1.4 ± 

0.5 Pg yr1 from 1990-2010 (Houghton, 2012). These emissions represent the 

second largest anthropogenic source of carbon dioxide to the atmosphere after 

burning of fossil fuels (van der Werf et al., 2009). In contrast, a significant 

proportion of previously disturbed tropical forests are regrowing, trapping some 

of the carbon we are adding to the atmosphere, and with the potential to 

sequester more in the future. The carbon sink due to tropical forest recovering 

from deforestation and logging has been reported to be up to 70% greater than 

that of intact tropical forests (Pan et al., 2011). However, our ability to accurately 

assess tropical carbon sources or sinks is hampered by the lack of precise 

information on the extent of disturbed forests in the tropics (Baccini et al., 2017). 

Remote sensing has played a key role in identifying forest disturbances and 

recovery, especially with the recent proliferation of high-resolution satellite data 

(Hansen et al., 2013). Several approaches have previously been used to map 

disturbed forests in tropical regions, including optical approaches based on 

moderate resolution MODIS imagery (Langner et al., 2007), high-resolution 

Landsat imagery (Vieira et al., 2003; Lu, 2005) and very high-resolution SPOT 

data (Kimes et al., 1999; Souza et al., 2003; Carreiras et al., 2014) , as well as 

Synthetic Aperture Radar (SAR) (Kuplich, 2006; Trisasongko, 2010) and Lidar-

based approaches (Andersen et al., 2014). However, the majority of these studies 

have focused on local scales and have been based on single date images. For 

example, Vieira et al. (2003) classified forests into young, intermediate, advanced 

and mature forests for one municipality in the state of Pará, using Landsat 

spectral information and vegetation indices, and found that combining Landsat 

shortwave infrared band (1.55-1.75 μm) with NDVI generated a better 

classification than using any individual band/index. Carreiras et al. (2017) further 
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demonstrated the use of combined Landsat spectral bands with ALOS PALSAR 

backscatter intensity to distinguish secondary regrowth forest and mature forest 

in three landscapes in Brazilian Amazon. Such multiple multi-sensor fusion 

approaches have yet to be applied over regional scales.  

Several regional satellite-based land cover classifications that include secondary 

regrowth and forest degradation have become available for Neotropical regions. 

Two prominent examples are the TerraClass post-deforestation land use/land 

cover classification (Almeida et al., 2016)  and the DEGRAD forest degradation 

product (INPE, 2007) , both of which were developed by Brazilian National 

Institute for Space Research (INPE) specifically for the Brazilian Amazon. In 

TerraClass, available since 2004, secondary regrowth forest is mapped on 

previously deforested areas larger than 6.25 ha using a semi-manual approach 

(Almeida et al., 2016). The DEGRAD product is produced mainly by visual 

interpretation of Landsat and CBERS satellite images from a single year and is 

annually available between 2007 and 2013 (INPE, 2007). Recently, another 

product, MapBiomas, has become available that provides annual national-level 

land cover and land use maps for Brazil (MapBiomas, 2015). MapBiomas, 

available from 2000 to 2016, classifies forest land cover as dense forest, open 

forest, secondary forest, degraded forest, flooded forest or mangrove, using an 

empirical decision tree classification algorithm based on single date spectral 

mixture analysis. All of those single date imagery based approaches are limited 

in the discriminatory power they can provide as they make no use of temporal 

degradation/recovery signals which characterise disturbed forests. Thus, none of 

the existing products fully exploits the potential of existing Landsat time-series 

data spanning multiple decades to provide reliable maps of both forest regrowth 

and degradation. Furthermore, none of these products captures historical (pre-

2000) disturbances. There is therefore a clear need for a product that provides a 

more comprehensive picture of historical disturbances over tropical regions.                

Methods that exploit temporal information in satellite data (e.g. threshold 

approaches, trajectory fitting or segmentation) have been found to be very useful 

for mapping forest disturbances (White et al., 2017; Hirschmugl et al., 2017; 
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Hermosilla et al., 2015; Kayastha et al., 2012; Huang et al., 2010; Kennedy et al., 

2010; Kennedy et al., 2007).  However, majority of these time-series based 

approaches are based on a single time-series trajectory and have mainly been 

implemented at local scales in extratropical regions (e.g. Canada, U.S.). For 

example, the recently developed LandTrendr (Kennedy et al., 2010), Vegetation 

Change Tracker (Huang et al., 2010) and patch-based VeRDET (Vegetation 

Regeneration and Disturbance Estimates through Time) (Hughes et al., 2017) 

algorithms have all only been extensively tested in the United States. A recent 

inter-comparison of disturbance detection algorithms for US forests found that 

different time-series analysis algorithms are sensitive to different disturbance 

patterns, with little agreement among these disturbance detection results (Cohen 

et al., 2017). Thus, when applying these algorithms elsewhere, local calibration 

and further secondary classification are needed to improve the algorithm’s 

classification performance (Cohen et al., 2018). Machine learning approaches (i.e. 

random forest) offer the potential to harness the differential sensitivities of 

different time-series once provided with an appropriate training dataset, but have 

rarely been coupled with multiple time-series trajectories in Tropics.        

In this study, we develop a novel Landsat multiple time-series based classification 

methodology to map cumulative disturbed forest areas in Tropics, which exploits 

the power of 1) time-series images relative to single date images, 2) an ensemble 

of reflectance bands/indices trajectories relative to single trajectories, and 3) 

machine learning algorithms which enhances classification power by harnessing 

the differential sensitivities of different time-series. The ‘disturbed forests’ in this 

study include both degraded old growth forests and post-deforestation regrowth 

forests. The former are characterised by a reduction of forest canopy cover (e.g. 

selective logging, windfall, fire) but have not been clearfelled and thus have not 

been included in deforestation estimates. The latter refer to areas that have been 

previously deforested (clearfelled) and converted to other land uses (e.g. pasture, 

agriculture and mining) but which have subsequently undergone a recovery 

process following abandonment. Our approach integrates information from six 

different time-series trajectories (Landsat 5/7 short-wave infrared band 5, band 7, 

NDVI, SAVI, NDWI2130, NDWI1640), extracting both statistical and temporal 
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characteristics from each trajectory which then serve as inputs for random forest 

classification. It not only captures disturbances occurring within study period 

(1984-2010), but also areas disturbed prior to 1984 which thereafter have 

exhibited clear recovery patterns. Here, we apply this method to three forest 

ecoregions (seasonal, moist and dry forests) in the Brazilian state of Mato Grosso.  

3.2 Study Area 

Our study area (Figure 3.1), the state of Mato Grosso, is located in the southern 

edge of Brazilian Legal Amazon. Mato Grosso is the third largest state in Brazil, 

covering a total area of 903,357 km2. According to the Terrestrial Ecoregions of 

the World (TEOW) from World Wildlife Fund (WWF), 43% of Mato Grosso area 

is covered by Cerrado (tropical savanna), 27% by seasonal forest, 18% by moist 

forest, 6% by dry forest and 6% by Pantanal (tropical wetlands) (Olson et al., 

2001). In Mato Grosso, 139,917 km2 have been deforested since 1988 

(PRODES, 2018) amounting to 26.5 % of the state’s intact forest in that year 

(Skole and Tucker, 1993), most of which has been converted into pasture and 

agricultural land use due to demand for beef and soy beans (Barona et al., 2010). 

According to TerraClass (Almeida et al., 2016), herbaceous pasture and shrubby 

pasture cover 61.4% of the total deforested areas in Mato Grosso while 19.2% of 

deforested areas are under secondary regrowth (including secondary vegetation 

and regeneration with pasture). The combination of extensive disturbances and 

significant amount of remaining intact forest makes Mato Grosso an ideal testbed 

for the application of our newly developed disturbed forests mapping approach 

(see section 3).    

As indicated, TerraClass is a project that maps land use/land cover on previous 

deforested areas provided by PRODES (Program for Deforestation Monitoring, 

PRODES, 2018)  at approximately bi-annual intervals across the Brazilian Legal 

Amazon (Almeida et al., 2016). TerraClass classifies previously deforested areas 

into 12 land use categories including pasture, annual crops, secondary 

vegetation and urban areas. It is extensively validated via field campaigns to 

determine the accuracy of classification. These have been conducted across 
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different Amazonian regions, including the state of Mato Grosso. This is the best 

available information on the distribution of secondary forests in any region of the 

Tropics. However, TerraClass involves a huge effort based largely on visual 

interpretation and does not map degradation. 

The aim of this study is to propose a Landsat multiple time-series based approach 

in Tropics to 1) improve the efficiency/cost-effectiveness of mapping disturbed 

forests vs. intact forests, facilitating future TerraClass efforts, 2) map degraded 

old-growth forests (outside of TerraClass), and 3) eventually enable mapping of 

disturbed forests over domains for which no reliable data on forest disturbance 

exist. Only forest areas are considered in this study. To make sure all non-forest 

areas are excluded, we created a forest cover mask by merging TerraClass-2010 

old-growth forest, secondary vegetation and pasture with regeneration categories 

(Figure 3.1). The latter category effectively captures the beginning of the 

regenerative process containing shrubs and early successional vegetation 

(Almeida et al., 2016).             
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Old-growth forest 

 

Secondary vegetation 

 

Pasture with regeneration 

Figure 3.1 TerraClass classification map for 2010.  

Pasture with regeration in TerraClass is treated as young secondary vegetation. Later, we merged 

old-growth forest, secondary vegetation and pasture with regeneration into the forest cover mask 

as the forest boundary. The study area encompasses three WWF forest ecoregions (moist, 

seasonal and dry forest).  

 

3.3 Methodology and dataset 

The whole approach was developed in Google Earth Engine (GEE) (Gorelick et 

al., 2017). GEE is a cloud-based geospatial processing platform which consists 

of over 40 years of historical and current Earth observation imagery, making pixel-

based land use and land cover classification feasible across large regions 

through its inbuilt machine learning algorithms. The overall methodology (Figure 

3.2) consisted of building Landsat multiple (six) annual time-series trajectories, 
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calculating trajectory metrics (eleven metrics divided into four groups, Table 3.2), 

generating a training and validation database, applying a machine learning 

random forest classification algorithm and validating the disturbed forests vs. 

intact forests classification map, all of which were coded and processed in GEE. 

We subsequently used the post-deforestation regrowth forest mask generated 

from TerraClass-2010 to separate the disturbed forests identified through our 

classification map into post-deforestation regrowth forests and degraded forests 

(Table 3.1). Finally, we performed a relative important analysis of trajectories and 

trajectory metrics used in the random forest classification to evaluate the extent 

to which the full suite of all trajectories/metrics enhanced discriminatory power 

relative to a single trajectory or individual group of trajectory metrics. To do this, 

ten separate classifications were performed whereby our classification procedure 

was repeated for each individual trajectory separately (but using all four groups 

of trajectory metrics), or separately for individual groups of trajectory metrics (but 

using all six trajectories).   
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Figure 3.2 Classification Methodology for discrimination of disturbed forests and intact 

forests. 

Trajectory metrics (x11) (Table 2): 
Min, Max, Range, Mean, Standard 
Deviation, C.V., Skewness, Kurtosis, Slope, 
Max-slope, year-2010 value 

Majority filter: remove isolated disturbed 
pixels  

Classification map of disturbed vs. intact forests 

Time-series trajectories (x6):  
► B5 (SWIR1640nm);     ► B7 (SWIR2130nm); 
►NDVI = (NIR – RED) / (NIR + RED) 
►NDWI2130 = (NIR – SWIR2130nm) / (NIR + 
SWIR2130nm) 
►NDWI1640 = (NIR – SWIR1640nm) / (NIR + 
SWIR1640nm) 
►SAVI = 1.5 * ((NIR – RED) / (NIR + RED + 
0.5)) 
 

►Intact forest:  
Overlay old-growth forest from I, and 

masksⅡ, Ⅲ, Ⅳ   

►Disturbed forest: 
Overlay secondary vegetation & 

regeneration with pasture fromⅠ, and 

maskⅡ, Ⅳ 

  

Training and validation dataset: 
10,000 sampled points (5,000 
intact /5,000 disturbed) for each 
forest ecoregion  
 

Water mask: JRC yearly water classification 

Mask clouds, shadows  

Random Forest classifier (RF) 

Input data: 11metrics x 6 trajectories  
   = 66 variables 

Random sampling 

Ⅰ TerraClass-2010 

Ⅱ USGS global tree cover > 75% 

Ⅲ Hansen GFC >75% 

Ⅳ GlobeLand30 - Forest 

Landsat 5/7 Surface 
Reflectance 
(1984-2010) 

TerraClass forest mask  

Final classification map (intact forest, post-
deforestation regrowth forest, degraded forest) 

10-fold Cross validation 

Separate disturbed forests into degraded and 
post-deforestation regrowth forests  

TerraClass post-deforestation 
regrowth forest mask (Table 3.1) 
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Table 3.1 Classification categories for forested land cover types used in this study. 

Categories Description 

Total area Total area of each ecoregion 

Forest cover Forest mask from TerraClass classification for the year of 2010, 
combining TerraClass categories of old-growth forest, secondary 
vegetation and regeneration with pasture. 

Intact forest Forests that have never been experienced any detectable disturbances 
during 1984-2010. Classified from this study. 

Disturbed forest Cumulative disturbed forest areas during 1984-2010. Classified from this 
study. Further separated into Post-deforestation regrowth forest & 
Degraded forest.  

Post-deforestation 
regrowth forest 

Areas that have been previously deforested (clearfelled) and converted 
to other land uses (e.g. pasture, agriculture and mining) but which have 
subsequently undergone a recovery process following abandonment. 
Secondary vegetaion or regeneration with pasture in TerraClass-2010. 

Degraded forest Degraded old-growth forests. Characterised by a reduction of forest 
canopy cover (e.g. selective logging, windfall, fire) but have not been 
clearfelled and thus have not been included in deforestation estimates. 

 

 

3.3.1 Time-series trajectories 

3.3.1.1 Landsat surface reflectance dataset 

We used Landsat atmospherically corrected surface reflectance (SR) products 

(30 m resolution) (Masek et al., 2006; USGS, 2018) to generate annual time-

series trajectories. All Landsat-5 Thematic Mapper (TM) surface reflectance 

images aquired during the period of 1984-2010 were used except for 2001 and 

2002. In 2001, most images had striping artifacts limiting their use, while in 2002, 

images from Landsat 5 only covered 61% of our study area. For these reasons, 

we used Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images, which are 

compatible in their spectral characteristics (Home et al., 2013; Claverie et al., 

2015), for these two years. In terms of spectral bands, we chose spectral bands 

3 (red, 0.52 - 0.60 µm) which is sensitive to the amount of chlorophyll, 4 (near-

infrared, 0.76 - 0.90 µm) which is related to leaf cellular structure, 5 (shortwave-

infrared, 1.55 - 1.75 µm) and 7 (shortwave-infrared, 2.08 - 2.35 µm) which relate 

to leaf water content (Nelson et al., 2000). To minimize the influence of variable 
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extent of rivers on the classification, we excluded water bodies in our analysis 

using the Joint Research Center (JRC) Yearly Water Classification History v1.0 

product. This dataset contains maps of the location and temporal distribution of 

surface water from 1984 to 2015 at annual resolution, generated using more than 

three million scenes from Landsat 5, 7 and 8 (Pekel et al., 2016). 

3.3.1.2 Generating time-series trajectories 

We processed 11,483 images in total for our entire study period (1984-2010), 

ranging from 257 to 715 annual images depending on data availablity, with annual 

spatial coverage of 99% of our study area (see Appendix Table B.1). Five steps 

were involved to process the Landsat SR data and produce time-series image 

stacks for 1984-2010. First, areas covered by clouds and cloud shadows were 

removed based on the pixel quality and radiometric saturation attributes of the 

Landsat surface reflectance product. Second, original surface reflectance (16-bit 

signed integer) values were converted to 0-1 range values by multiplying by the 

scale factor of 0.0001. Third, four vegetation indices (VIs) were calculated 

including the Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI2130  , NDWI1640 ) (Chen et al., 2005) and Soil-

Adjusted Vegetation Index (SAVI) (Huete, 1988). Fourth, to minimise the 

influence of cloud contamination and improve the quality of input data, we 

selected the maximum value of individual VIs for each year (Maxwell and 

Sylvester, 2012). For time-series of reflectance from spectral bands 5 and 7, 

median values were calculated for each year. In the final step, we used the JRC 

Yearly Water Classification History v1.0 product to mask water areas (Pekel et 

al., 2016). After processing, annual time-series trajectories (1984-2010) of 

Landsat SR spectral band 5 (1.55 - 1.75 µm), band 7 (2.08 - 2.35 µm), NDVI, 

NDWI2130, NDWI1640 and SAVI were used for the classification of disturbed forests 

and intact forests.  
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3.3.2 Trajectory metrics 

We calculated eleven metrics divided into four groups (Table 3.2) for each of the 

six spectral trajectories to act as inputs for random forest algorithm (see section 

3.4), based on a priori expectations of divergence between intact and disturbed 

forests. Each of these 11 metrics may capture information that is linked to a 

particular disturbance type. For example, the coefficient of variation (C.V.) shows 

the extent of variability in relation to the mean. Forests which have experienced 

large disturbances would be expected to have higher C.V. than undisturbed intact 

forests. We further hypothesized that time-series trajectories of intact forest would 

follow a normal distribution, while those of disturbed forest would tend not to and 

be much more likely to exhibit greater skewness and kurtosis. Finally, trends 

(based on linear regressions) were also estimated from the time-series 

trajectories. We hypothesized that disturbance events would likely result in either 

decreasing (deforestation/degradation) or increasing (regrowth) trends over time, 

and thus expected that the regression slopes of disturbed pixels would be much 

smaller/greater than undisturbed pixels where we expected that the slope value 

is close to zero. It has been found that regrowth secondary forests in Amazonia 

are cut and burned on average every 5 years (Aguiar et al., 2016). Thus, we also 

considered the maximum absolute regression slopes derived from individual 5-

year windows within the 1984-2010 study period. 

Figure 3.3 demonstrates differences in trajectories and trajectory metrics 

between intact and disturbed forest pixels. For intact forests (undisturbed during 

1984-2010), we expected trajectories to fluctuate, but to follow a normal 

distribution pattern, while trajectories of disturbed forests were expected to exhibit 

more pronounced decrease and increase patterns. Trajectories of disturbed 

forest pixels’ can follow various patterns, depending on whether they have been 

disturbed once (Figure 3.3 Disturbed B) or multiple times (Figure 3.3 Disturbed 

A) within the study period (1984-2010) or disturbed before 1984 but following a 

clear recovery pattern within study period (Figure 3.3 Disturbed C).  
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Table 3.2. Metrics for each time-series trajectory and related main GEE algorithms.  

The metrics were divided into location, scale, temporal and single year groups which were further 

used for metric important analysis (see section 4.4).    

Group Name Description Main GEE algorithm 

Location 
metrics 

Min  Minimum of time-series ee.Reducer.min() 

Max Maximum of time-series ee.Reducer.max() 

Range The range between maximum and 
minimum of time-series 

Code equation ‘max-min’ 

Mean The mean of time-series ee.Reducer.mean() 

Scale 
metrics 

StdDev Standard deviation of time-series ee.Reducer.stdDev() 

C.V. Coefficient of variation of time-
series 

Code equation ‘stdDev/mean’ 

Kurtosis Dispersion measure related to the 
tails of Normality distribution test 
(D'Agostino, 1970, see methods) 

Code equations based on the 
reference  

Skewness Symmetry measure related to 
Normality distribution test 
(D'Agostino, 1970, see methods) 

Code equations based on the 
reference 

Temporal 
metrics  

Slope Linear regression slope of total 
time-series 

ee.Reducer.linearFit() 

Max-slope Maximum linear regression slope 
of every 5-year window 

Function of 5-year window; 
ee.Reducer.linearFit(); 
ee.Reducer.max() 

Single year  Year-
2010 

Time-series trajectory value at 
year 2010  

‘FilterMetadata’ equals 2010 
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Figure 3.3 Examples (NDWI2130) of time-series trajectories for illustrative intact forest pixel 

and disturbed forest pixels.  

Values of trajectory scale and temporal metrics extracted from each trajectory (Table 3.2) are 

shown to the right of the graph. Metrics of max, min and year-2010 value are shown on the 

trajectory with the mean marked on y axis. 

 

3.3.3 Sampling design 

We used GEE random sampling to generate a set of spatially representative 

points of disturbed and intact forests for classification training and validation 

based on TerraClass-2010 map of old-growth forest, secondary vegetation and 

pasture with regeneration, USGS (United States Geological Survey) 30 m Global 

Tree Cover 2010 (Hansen et al., 2013), the Hansen Global Forest Change (GFC) 

product (Hansen et al., 2013), and 30 m Global Land Cover 2010 (GlobeLand30-

2010) produced by National Geomatics Centre of China (Chen et al., 2015). Since 

TerraClass uses deforestation vector data from PRODES (PRODES, 2018) as 

input data to map subsequent land use/covers (Almeida et al., 2016), it inherited 
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PRODES historical misalignment issues. To better align TerraClass with GFC 

products, we registered the TerraClass-2010 classification map using the GEE 

image displacement algorithm by calculating the displacement between 

TerraClass-2010 forest mask and GFC forest mask (Hansen et al., 2013).  

For intact forests, points were randomly sampled from areas that met the 

following conditions: i) classified as old-growth forest in TerraClass-2010; ii) tree 

canopy cover > 75% in GFC in 2000 and no forest loss during 2000-2010; iii) tree 

cover >75% in USGS 30 m Global Tree Cover 2010; and, iv) classified as forest 

in GlobeLand30-2010. Similarly, disturbed forest pixels were sampled from areas 

that satisfied the following conditions: i) classified as secondary vegetation or 

regeneration with pasture in TerraClass-2010; ii) tree cover > 75% in USGS 30 

m Global Tree Cover 2010; iii) classified as forest in GlobeLand30-2010. To 

reduce the influence of unwanted positional errors among these land cover 

products and avoid edge effects, we required that both intact forest and disturbed 

forest sampled points were located at least 100m away from the patch boundary. 

For each forest ecoregion (moist/seasonal/dry forest), 10000 points (5000 intact 

and 5000 disturbed) were randomly sampled, respectively. In total, we sampled 

30000 intact and disturbed points across the study area as the training and 

validation database.    

3.3.4 Random forest classifier  

Mapping of disturbed forests was performed by using the GEE Random Forest 

classifier algorithm, which has been recently successfully applied to cropland 

mapping (Xiong et al., 2017; Shelestov et al., 2017), oil palm plantation detection 

(Lee et al., 2016), mapping urban settlement and population (Patel et al., 2015) 

and soil mapping (Padarian et al., 2015). Random Forest (RF) classification is a 

relatively well-known supervised machine leaning algorithm that iteratively 

produces an ensemble of decision tree classifications by using corresponding 

randomly selected subsets of the training dataset (Breiman, 2001). It grows 

classification trees by splitting each node using a random selection subset of 

input variables, which reduces overfitting and yields a more robust classification 
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compared to other classifiers (Breiman, 2001). RF uses a voting system to 

classify data and the final classification category for each pixel is determined by 

the plurality vote of all trees generated to build the forest.  

We used 66 variables comprising 11 metrics (Table 3.2) for each of the six time-

series trajectories as input predictors for the RF classification. RF classifications 

were applied in moist, seasonal and dry forest ecoregions, respectively. All 

classifications were based on the outputs of 500 decision trees (See Appendix 

Figure B.1). Each tree split was based on eight variables randomly selected from 

all 66 input variables, which was the default configuration for the GEE random 

forest classifier. After constructing our disturbed forest classification, we 

performed a post-classification filtering to reduce noise and remove spurious 

classification artefacts by applying a 90m x 90m majority filter.  

3.3.5 Classification validation 

To evaluate how well our classification performed, we used ten-fold cross-

validation (Schaffer, 1993; Kohavi, 1995) based on above randomly sampled 

database (See section 3.3, i.e. 10000 points for each forest ecoregion), which 

randomly partitions our sampled database into ten equal sized subsets. Of the 

ten subsets, a single subset (1000 points) was retained as the validation data for 

testing the classification algorithm, and the remaining nine subsets (9000 points) 

were used as training data for RF classifier. The cross-validation process was  

repeated ten times. The final accuracy estimation was determined by the average 

of ten-fold results. The accuracy matrix included overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA) and Kappa statistic (Kohavi, 

1995).  

For an additional independent confirmation for our Landsat optical sensor based 

classification of disturbed forests vs. intact forests, we used another microwave 

radar based satellite product, ALOS/PALSAR 25 m spatial resolution mosaic 

imagery, as visual interpretation. ALOS PALSAR imagery consists of dual 

polarization HH (transmission of horizontal wave and reception of horizontal 

component) and HV (horizontal transmission and vertical reception), but it has 
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been shown that the polarization mode HV is more effective in deforestation 

detection than HH polarization (Motohka et al., 2014), which corresponds with 

findings of close relations between HV backscatter and vegetation structural 

properties (e.g. forest height, forest cover) (Joshi et al., 2015). Thus, we visually 

compared the 2007-2010 ALOS/PALSAR HV backscatter change with our final 

classification results.  

SAR data are stored as digital number (DN) in unsigned 16 bit and typified by a 

high degree of speckles in the image (random ‘salt and pepper’ noise). To reduce 

noise and improve image interpretability, a multi-temporal speckle filter (7×7) 

(Lee, 1980; Lopes et al., 1990) was implemented in GEE and applied to 2007-

2010 PALSAR images, without significant loss of spatial resolution. Filtered 

ALOS/PALSAR HV backscatter DN values were converted to sigma-naught (𝜎0) 

in decibel (dB) units using the following equation:  

𝜎0 = 10 ∗ 𝑙𝑜𝑔10(𝐷𝑁2) − 83                  (eq. 3.1) 

𝜎0is generally negative and can vary from -35 dB in very low backscatter areas 

(degraded/deforested area), up to 0 dB for extremely high backscatter (dense 

forest area). For visual interpretation, we expected a decrease or an increase in  

𝜎0 in forest areas that have been recently disturbed or are recovering from past 

disturbances (Joshi et al., 2015). However, we also expected that many disturbed 

areas in our classification would not be captured by PALSAR due to its short time 

period (2007-2010).  
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3.4 Results 

3.4.1 Classification results 

As represented in Figure 3.2, the new developed disturbed forests vs. intact 

forests classification approach was applied to three different ecoregions in Mato 

Grosso. The final classification map (Figure 3.4) was generated by training the 

random forest classifier individually for each ecoregion on the entire sampled 

database. Our classification results representative of the year 2010 show that 

disturbed forests (both post-deforestation regrowth forests and degraded forests) 

were widely spread across Mato Grosso, but were most prevalent along rivers 

and next to non-forest areas (Figure 3.4). Forests in Mato Grosso covered a total 

area of 295,383 km2 in 2010 (Table 3.3), accounting for about 63% of the total 

study area. Our results show that, until 2010, 25% of the total forested area was 

disturbed (Table 3.3). Forest cover percentage varied considerably across 

ecoregions, ranging from 37% in dry forest to 74% in moist forest (Table 3.3). Dry 

forest experienced the most severe disturbances with 41% of forest cover 

classified as disturbed, followed by seasonal forest and moist forest where 

disturbed forests accounted for 28% and 20% of forest cover, respectively (Table 

3.3). 

We further separated disturbed forests identified through our classification map 

into post-deforestation regrowth forests and degraded forests. It shows that the 

area of degraded forests was up to 62% larger than the area of post-deforestation 

regrowth forests across ecoregions, with degraded forests and post-deforestation 

regrowth forests covering a total area of 47,039 km2 and 28,246 km2, respectively 

(Table 3.4). By comparing degraded forests and old-growth forests classified in 

TerraClass for the year of 2010, we found that 18% of areas identified as old-

growth forests in TerraClass were actually degraded forests, ranging from 15% 

to 27% across various ecoregions (Table 3.4).  
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Figure 3.4 Classification map of intact forest, post-deforestation regrowth and degraded 

forest representative of the year 2010.  

Non-forest areas include areas under anthropogenic use or natural savannahs/wetlands. Small 

areas 1 to 3 represent three focal regions within individual ecoregions, for which subsequent fine-

scale visual interpretation confirmation were performed (Figure 3.5, Figure 3.6, Figure 3.7). 
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Table 3.3 Areal extent (km2) of intact forest and historically disturbed forest representative 

of 2010. 

 Moist forest Seasonal 
forest 

Dry forest Total 

Total area 170,154 245,514 54,454 470,122 

Forest cover  

(% of total area) 

125,474 

(73.74%) 

149,571 

(60.92%) 

20,338 

(37.35%) 

295,383 

(62.83%) 

     

Intact forest  

(% of forest cover) 

100,050 

(79.74%) 

107,991 

(72.20%) 

12,058 

(59.29%) 

220,099 

(74.51%) 

Disturbed forest  

(% of forest cover) 

25,424 
(20.26%) 

41,581   
(27.80%) 

8,280    
(40.71%) 

75,285   
(25.49%) 

 

Table 3.4 Areal extent (km2) of post-deforestation regrowth forest and degraded forest 

representative of 2010.  

 Moist forest Seasonal 
forest 

Dry forest Total 

Post-deforestation 
regrowth 

(% of disturbed forest) 

8,188 

(32.21%) 

15,950 

(38.36%) 

4,108 

(49.62%) 

28,246 

(37.52%) 

Degraded forest  

(% of disturbed forest) 

17,236 

(67.79%) 

25,631 

(61.64%) 

4,171 

(50.38%) 

47,039 

(62.48%) 

     

TerraClass old-growth 
forest           

116,226 131,703 15,622 263,551  

% of degraded forest 
within  

TerraClass 

14.83% 19.46% 26.70% 17.85% 

 

3.4.2 Ten-fold cross validation 

Ten-fold cross validation was used as the main validation of our disturbed forests 

and intact forests classification map, with accuracy matrices provided in Table 

3.5. Overall, all the classification accuracies were above 80% with Kappa 

agreements above 62%. Across ecoregions, the overall accuracy was the highest 

in seasonal forest at 86.1%, with a producer’s accuracy of 88.9% for intact forests 
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and 83.3% for disturbed forests. In moist forest and dry forest regions, the overall 

accuracies were lower at 81.3% and 82.6%, respectively.  

Table 3.5 Ten-fold cross validation accuracy based on sampled points from our study.  

Regions Overall 
accuracy  

Producer’s accuracy User’s accuracy Kappa 
statistic 

  Intact 
forest 

Disturbed 
forest 

Intact 
forest 

Disturbed 
forest 

 

Moist forest 0.813 0.888 0.737 0.772 0.867 0.625 

Seasonal 
forest 

0.861 0.889 0.833 0.842 0.882 0.722 

Dry forest 0.826 0.856 0.797 0.809 0.846 0.653 

 

3.4.3 High-resolution image interpretation  

To further validate our classification, we consider in detail one landscape within 

each biome, comparing our results to radar and other very high-resolution data. 

Examples in Figure 3.5-3.7 allow for visual comparison of our classification in 

selected focal areas within each forest ecoregion with corresponding ALOS 

PALSAR HV backscatter (𝜎0) temporal (2007-2010) change composite images 

and very high-resolution (5 m) RapidEye true-colour composite images (Team, 

2017). Overall, this comparison at local scales shows a very good visual 

agreement between our classification and the PALSAR temporal change as well 

as with RapidEye images across ecoregions (Figure 3.5-3.7), especially those 

logging roads shown in Figure 3.6. As expected, there were some mismatches 

between our classification and the temporal change in PALSAR HV 𝜎0, such as 

several disturbed areas from our classification not appearing in PALSAR 

temporal change image. This is likely due to PALSAR images only being available 

from 2007 and thus not capturing much forests disturbed before 2007.  
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Figure 3.5 Moist forest focal region (area 1 in Figure 3.4).  

A) Detailed classification map. B) Forest masked ALOS PALSAR HV σ0 temporal change, pink 

represents increase of σ0, green represents decrease of σ0 between 2007-2010, grey represents 

little/no change between 2007-2010, white areas are non-forest. C) RapidEye true-colour 

composite image (See Appendix Figure B.2 for better visualization).  
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Figure 3.6 Seasonal forest focal region (area 2 in Figure 3.4). 

 A) Detailed classification map. B) Forest masked ALOS PALSAR HV σ0 temporal change, pink 

represents increase of σ0, green represents decrease of σ0 between 2007-2010, grey represents 

little/no change between 2007-2010, white areas are non-forest. C) RapidEye true-colour 

composite image (See Appendix Figure B.3 for better visualization). 
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Figure 3.7 Dry forest focal region (area 3 in Figure 3.4 ).  

A) Detailed classification map. B) ALOS PALSAR HV σ0 temporal change, pink represents 

increase of σ0, green represents decrease of σ0 between 2007-2010, grey represents little/no 

change between 2007-2010, white areas are non-forest. C) RapidEye true-colour composite 

image (See Appendix Figure B.4 in supplementary information for better visualization). 
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3.4.4 Importance of individual trajectories and metrics  

The relative importance of individual trajectories in our classification was 

measured by the percentage of overall accuracy change (% OAC) when running 

our classification for a single trajectory (but using all four groups of trajectory 

metrics) relative to our full suite multi-trajectory classification (Table 3.5). The 

larger the overall accuracy change, the less important an individual trajectory is 

in distinguishing the differences between disturbed forests and intact forests. All 

of the single time-series trajectories based classifications had much lower (3-15% 

across ecoregions) overall classification accuracy than our full suite classification 

(Figure 3.8). In moist forest and dry forest ecoregions, Landsat shortwave 

spectral band 5 and 7 were the most important trajectories for distinguishing 

disturbed forests and intact forests, decreasing %OAC the least relative to our 

full suite classification. However, in the seasonal forest ecoregion, NDWI 

trajectories were the most important, decreasing the overall accuracy the least, 

followed by spectral band 7.  

The important of specific groups of trajectory metrics (Table 3.2) was determined 

in an analogous manner to the importance of specific trajectories. Importance 

patterns for groups of metrics were similar across ecoregions (Figure 3.8B), with 

location metrics being the most important in distinguishing disturbed and intact 

forests, followed by temporal metrics, scale metrics and single year (2010) values. 

However, single year (2010) values alone were found to have much less 

discriminatory power than other metrics, resulting in much lower (up to 20%) 

classification accuracy relative to our full suite classification with all groups of 

metrics included (Figure 3.8B). 
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Figure 3.8 The percentage of overall accuracy change (% OAC) when running our 

classification procedure for individual trajectories separately (but using all four 

groups of trajectory metrics) or separately for individual groups of trajectory 

metrics (but using all six trajectories) relative to our full suite classification with 

all trajectories/metrics included (Table 3.3-3.5).  

The larger the absolute % OAC, the less important the particular trajectory (or the group of 

trajectory metrics) is.     

 

3.4.5 Comparing with other products 

We compared our classification of disturbed forests in Mato Grosso with other 

relevant products which have recently become available (Figure 3.9). These 

include the MapBiomas land use/cover products (2000-2010) and the Latin 

American secondary forest map recently produced by Chazdon et al. (2016). The 

latter was derived from the map of Neotropical forest aboveground biomass of 

Baccini et al. (2012) for 2008. To ensure comparability in time, we only compared 

disturbed forests from our classification against the area of secondary forests < 
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24 years old from Chazdon et al. (2016). To compare against MapBiomas 

products (2000-2010), we reclassified open forest, degraded forest, secondary 

forest, and flooded forest categories from MapBiomas-2010 map into one 

disturbed forest class. Areas classified as non-dense forest in 2000-2009 

MapBiomass products but classified as dense forest in 2010 were also 

considered as disturbed forests. 

Our estimate of disturbed forest area in Mato Grosso was three times larger than 

disturbed forests from MapBiomas with corresponding spatial distribution shown 

in Figure 3.9 (A&B). The biggest classification differences was located in moist 

forest ecoregion, followed by seasonal forest and dry forest. The difference 

relative to MapBiomas may be due to the use of different classification methods 

(single date based classification) and the limited time period (2000-2010) for 

MapBiomas. However, secondary forest area estimates from Chazdon et al. 

(2016) were approximately three times greater than the disturbed area from our 

classification (Figure 3.9C), increasing to four times greater in the dry forest 

biome. This may be due to the coarse resolution (500 m) of forest age map, the 

misclassification of some anthropogenic land use areas as forest or to errors 

arising from interpreting the age from the forest biomass map (Chazdon et al., 

2016).  

The large discrepancies of estimated disturbed forests among those products 

highlight the importance of using high-resolution time-series images and the 

consideration of historical disturbances when mapping secondary forest regrowth 

and forest degradation. By excluding pre-2000 historical disturbances and 

ignoring time-series spectral characteristics, MapBiomas significantly 

underestimate the area of disturbed forests (Figure 3.9B), and correspondingly 

may underestimate the impacts of disturbance on tropical biodiversity and carbon 

cycles.         
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Figure 3.9 Comparison of our classification with MapBiomas land use/cover 2000-2010, 

and Chadzon et al. 2008 secondary forest age map.  

Values represent the percentage of the area of disturbed forests within each grid cell (10*10km). 

White areas (within study area) represent no disturbed pixels were identified within that grid cell. 

The disturbed areas are 75285 km2, 24577 km2, 246829 km2 for figure panel A, B, C, respectively.  
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3.5 Discussion 

In this study, we developed a new time-series approach in GEE to map disturbed 

forests (both forest degradation and post-deforestation regrowth) and intact 

forests. This approach incorporates random forest machine learning algorithm 

with multiple Landsat time-series trajectories, which enhances classification 

power by harnessing differential sensitivities of different time-series. It is flexible 

with respect to the disturbance patterns it captures. It detects three different 

disturbances trends (Figure 3.3): 1) single disturbance – time-series have a 

decrease then increase pattern; 2) multiple disturbances – time-series have 

multiple increase and decrease signatures pattern; 3) recovery on previous 

disturbed areas – time-series only have an increase pattern. For example, in this 

study, it not only maps areas that disturbed and recovering during time-series 

period (1984-2010), but also captures areas that disturbed before 1984 but 

following a recovery process after 1984, making our approach more valuable and 

suitable for distinguishing disturbed forests and intact forests.  

Application of our approach in moist/seasonal/dry ecoregions in Mato Gross 

resulted in high overall classification accuracy, ranging from 81.3% to 86.1% 

across ecoregions. On one hand, the misclassification of disturbed forests as 

intact forests may relate to the fast recovery process of secondary regrowth 

forests whose structural and spectral characteristics could be similar to intact 

forests after 20-40 years recovery (Aide et al., 2000; Poorter et al., 2016). The 

degraded old-growth forests recover at even faster rates. For example, it has 

been shown that about 50% of the canopy opening caused by selective logging 

becomes closed within one year of regrowth (Asner et al., 2004), making it harder 

to capture such quick recovery process from remote sensing perspectives. On 

the other hand, the misclassification of intact forests as disturbed might be 

because of our sampling of intact forests points which may still include few 

disturbed old-growth forests, as TerraClass does not map degraded forests. 

Furthermore, the variation of classification accuracy across ecoregions might be 

due to the differences of land-use history, land use intensity, severity of 

disturbance events, soil fertility and texture (Chazdon, 2003) and water 
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availability (Poorter et al., 2016), which are highly associated with post-

disturbance recovery processes and the structure of regrowth forests. 

By separating disturbed forests into post-deforestation regrowth forests and 

degraded forests, we found that approximately two-thirds of disturbed forests 

were degraded forests, highlighting the importance of effective systems for 

detecting these. Forest monitoring system should not only focus on clear-cut 

forest deforestation and recovery, but also degraded forests which may release 

more than double the amount of carbon than released by deforestation (Baccini 

et al., 2017). Interestingly, our classification clearly captured straight-line patterns 

of disturbed forests, which also present a consistent agreement with both 

PALSAR HV backscatter intensity change and RapidEye very high resolution 

images (Figure 3.6). Further development of our methodology may provide new 

opportunities to map selective logging activities at a large regional scale.   

The methodology developed in this study dramatically exploits the power of 

multiple long-term Landsat time-series in the discrimination of disturbed vs. intact 

forests with support of GEE’s massive storage and calculation capability. Unlike 

previously published single time-series trajectory based approaches (e.g. 

LandTrendr, VCT, VeRDET) (Cohen et al., 2017), this approach incorporates six 

different time-series trajectories which generates a much higher classification 

accuracy than single-trajectory based classification (Figure 3.8A). Also, this 

approach integrates single year features with scale, location and temporal 

characteristics derived from time-series trajectories, which significantly enhanced 

the discriminatory power. Single year features were found to be the least powerful 

(up to 20% less) for discriminating disturbed pixels compared to the combined 

use of single year features and other time-series features (Figure 3.8B). Thus, 

combination of single year and time-series features represents a significant 

advance on widespread single-year approaches to map previously disturbed 

forests. 
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3.6 Conclusion 

Our study explored the feasibility of using multiple long time-series Landsat 

surface reflectance data to map tropical historically disturbed forests as far back 

as 1984. Using a case study of Mato Grosso moist, seasonal and dry forests, we 

found that this methodology has high potential in mapping various forested land 

cover types related to disturbances with an overall accuracy of up to 86.1%. The 

classification approach developed in this study is capable of capturing not only 

forest regrowth from forest deforestation (clear-cut), but also forest degradation 

(partially cut) due to selective logging or other small scale disturbances. Based 

on TerraClass-2010 forest mask, until 2010, 41% dry forest in Mato Grosso were 

disturbed, with 28% and 20% of seasonal forest and moist forest disturbed, 

respectively. By comparing classification from this study with TerraClass-2010 

land cover map, we found that up to 18% of area classified as old-growth forest 

in TerraClass was actually degraded forests, highlighting the importance of 

including degradation monitoring alongside clear felling monitoring .  

Our study clearly demonstrates the potential of extensive time-series of satellite 

imagery to map historical forest disturbances and recovery processes. More 

specifically, the discrimination of disturbed forests (both degraded forest and 

post-deforestation regrowth forest) vs. intact forests was enhanced by 

simultaneously combining a suite of single date features and time-series 

characteristics derived from multiple time series of spectral bands and vegetation 

indices. Our approach is readily applicable to other larger tropical areas, making 

pan-tropical mapping of forest disturbances and regrowth a highly tangible 

prospect.  
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Chapter 4  

Historical Degradation of the Brazilian Amazon (Paper Ⅲ) 

Wang, Y., Ziv, G., Adami, M., and Galbraith, D., 2019. Historical Degradation of 

the Brazilian Amazon. This chapter is being prepared for submission to either 

Geophysical Research Letters or Environmental Research Letters.  

 

Abstract 

The 5-fold decline of deforestation in the Brazilian Amazon between 2004 and 

2012 is a modern-day environmental success story. Since 1988, Brazil’s 

PRODES system has monitored Amazonian deforestation and provided annual 

estimates of forest loss in the region. In PRODES, patches are considered to be 

deforested if they have been clear-felled and their total area is at least 6.25 ha. 

However, these estimates do not consider forest areas that have been degraded, 

i.e. that have not been totally clear-felled or where forest loss is below the 

minimum area threshold for deforestation. Indeed, information on degradation in 

Amazonia is largely restricted to the very recent period (post 2007) or to localised 

areas.  Here, we use multi-decadal Landsat time-series images to provide a 

comprehensive assessment of historical old growth forest degradation across the 

Brazilian Amazon over 30 years (1984-2014). Our classification algorithm 

explicitly considered spatial variation in spectral characteristics across the region. 

Our classification resulted in very accurate detection of degradation arising from 

fire, road constructions and small-scale clearings. Our results show that, until 

2014, over 246,845 km2 area of old-growth forests in the Brazilian Amazon (moist 

forest ecoregion) were degraded, equivalent to an annual degradation area of 

8,228 km2 yr-1. The cumulative area of degradation in the Brazilian Amazon 

accounted for approximately 10% of total area of old growth forests, 59% of which 

occurred within a distance of 500 m from the forest edge.  Degradation patterns 

varied by state but were highest in Tocantins, where ~55% of old growth forests 
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experienced some form of historical degradation. Although these numbers are 

considerable, they are still likely to represent a conservative estimate, as our 

approach did not detect low intensity degradation linked to selective logging or 

defaunation and does not include areas that had been degraded prior to 1984. 
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4.1 Introduction  

Covering an area of 5.5 million km2, Amazon rainforests are a vitally important 

component of the Earth System. They are home to one-quarter of global 

biodiversity (Malhi et al., 2009; Dirzo and Raven, 2003), providing a host of goods 

and services to society, and have acted as a strong carbon sink over decades 

(Brienen et al., 2015; Phillips et al., 2008). Brazil contains approximately 64% of 

remaining Amazonian forests (RAISG, 2012) and is responsible for the majority 

of Amazon forest loss (Kalamandeen et al., 2018). Deforestation in the Brazilian 

Amazon has reduced considerably over the last 15 years, falling from 28,000 km2 

yr-1 in 2004 to a mean rate of 6,000 km2 yr-1 between 2012 and 2017 (PRODES, 

2018), due largely to the success of the PPCDAM project (Maia et al., 2011; 

Assunção et al., 2013), which introduced new detection and monitoring systems 

designed to curb forest loss.  

National estimates of deforestation based on PRODES consider only patches of 

forest that have been completely clear-felled and that have attained a minimum 

size threshold of 6.25 ha.  They do not include forests loss below that threshold 

or forest areas that have been degraded but not completely clear-felled. The term 

‘forest degradation’ encompasses degradation arising from multiple drivers, 

representing a gradient of disturbance intensity. It includes heavy disturbance 

associated with road construction and mining, as well as fire damage which can 

span a broad range of intensity from mega-fires to small-scale burnings. Normal 

forest management such as thinning and harvest (selective logging) were not 

considered as degradation in this study (de Cambio Climático, 2003). Forest 

degradation need not necessarily be restricted to anthropogenic drivers but may 

also include natural disturbance associated with windstorm events, for example 

(Foley et al., 2007; Espírito-Santo et al., 2014; Espírito‐Santo et al., 2010). 

Since the early 2000’s several studies have sought to quantify forest degradation 

in Amazonia.  However, these have been incomplete as they have focused on 

studying one driver of degradation in isolation (e.g. logging), have been restricted 

to short timeframes or have omitted smaller degradation events. For example, 
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INPE’s DETER B system, based on CBERS-4 and AWiFS data has provided 

information on degradation of primary forests in Amazonia for patches > 3 ha in 

size since 2015 (Diniz et al., 2015).  Prior to this the DEGRAD mapped 

degradation from 2007 (INPE, 2007-2016) and DETEX detected selective logging 

from 2009 (INPE, 2009-2015), but only for a short time period. However, despite 

their undoubted value, these systems provide only a snapshot of degradation in 

Amazonia as they do not consider forests degraded prior to 2007 or patches 

below the designated area thresholds. Other studies have used higher-resolution 

Landsat data but these have also been limited in scope. For example, Asner et 

al. (2005) used the CLAS algorithm, based on linear spectral mixture models, to 

map the extent of selective logging over a three-year period (2000-2002), while 

Souza-Junior et al. (2014) used an analogous approach, also based on Landsat 

data, to map fire and logging degradation from 2000-2010. More recently, other 

studies mapping degradation have also been undertaken but these have largely 

been limited in spatial scale (Hethcoat et al., 2019; Hasan et al., 2019; Bullock et 

al., 2018). Thus, a fully comprehensive evaluation of the extent of forest 

degradation in Amazonia, still remains elusive. 

Quantifying forest degradation is critically important, given its importance for 

carbon and biodiversity storage. Forest degradation can result in considerable 

losses of carbon, the magnitude and permanence of which depends on the 

underlying nature and intensity of the degradation. For example, low-impact 

logging without fire has been shown to result in the loss of 4-21% of aboveground 

carbon, while multiple burning can lead to losses of up to 94% of their 

aboveground carbon (Longo et al., 2016). Another large field study in eastern 

Amazonia found that on average, forests that experienced both logging and 

understory fires stored 40% less aboveground carbon than undisturbed forests 

(Berenguer et al., 2014). A recent pan-tropical study, based on the comparison 

of two remote-sensing derived biomass maps, concluded that tropical forests 

acted as a significant net carbon source between 2003 and 2014, with 69% of 

the carbon losses due to the degradation (Baccini et al., 2017). However, this 

was deduced from biomass maps, with no actual determination of degradation 

occurrence per se. Forest degradation can also markedly affect biodiversity 
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storage. In a seminal study, Barlow et al. (2016) showed that forest degradation 

from fire and logging could double the biodiversity loss arising from deforestation 

at a landscape-level. Thus, an accurate quantification of degradation extent is 

critical for accurate projections of the impact of anthropogenic change on forest 

biodiversity.   

The emergence of Google Earth Engine as a processing platform that can exploit 

the power of cloud computing to simultaneously process multiple remote sensing 

data streams has revolutionised the study of land use change. In Chapter 3, I 

developed a new GEE-based algorithm whereby a random forest classifier, 

trained with TERRACLASS data, took multiple remote-sensing time series as 

inputs to classify forests as either disturbed or undisturbed in the state of Mato 

Grosso (Wang et al., 2019).  Here we extend this approach to the entire Brazilian 

Amazon (moist forest ecoregion, Dinerstein et al., 2017), using the same multi-

decadal 30 m Landsat time-series images (1984-2014) as in Chapter 3 and 

applying the same algorithm to classify moist primary forests (i.e. those which 

have not been deforested according to PRODES) as intact vs. degraded in 2014. 

Our approach captures degradation events which occurred at any point in the 

1984-2014 time series in order to address our focal question for this chapter: How 

much of the extant primary forest in Amazonia has previously been degraded? 

4.2 Data and Methods 

Our approach to mapping historical degradation in this study involved two main 

steps: 1) classifying forests as either disturbed or intact using multi-decadal 

Landsat time-series, following the method developed by Wang et al. (2019) 

(Chapter 3) and 2) applying the PRODES old growth forest mask to the 

classification from the first step, thus eliminating previously deforested areas from 

our analysis. We refine this approach in this chapter to map degradation across 

the moist forest ecoregion in the Brazilian Amazon domain (Figure 4.1). The moist 

forest ecoregion follows the RESOLVE global terrestrial ecoregions dataset 

updated in 2017 (Dinerstein et al., 2017, http://ecoregions2017.appspot.com/), 

where the dry forests, floodplain, and savanna are excluded in this study.     
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4.2.1 Landsat time-series trajectories 

We combined Landsat 5, 7 and 8 surface reflectance datasets to generate annual 

time-series trajectories from 1984 to 2014. Imagery from Landsat-5 Thematic 

Mapper (TM) sensor and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 

sensor are compatible in their spectral characteristics for time-series studies 

(Claverie et al., 2015).  However, reflective wavelength differences between 

Landsat-7 ETM+ and Landsat-8 Operational Land Manager (OLI) mean that 

transformations are required to ensure temporal continuity between both sensors.  

All Landsat-8 spectral reflectance and vegetation indices  were calibrated using 

the transformation functions from Roy et al. (2016). Appendix Figure C.1 shows 

the details of Landsat dataset used in this study.   

Using Landsat 5-8 datasets, we generated six different time-series trajectories, 

including Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI2130, NDWI1640), Soil-Adjusted Vegetation Index (SAVI), and 

short-wave spectral bands (Band 5 and band 7 for Landsat-5/7, Band 6 and Band 

7 for Landsat-8) (Wang et al., 2019). For each of the six time-series trajectories, 

eleven metrics were computed which describe statistical and temporal features 

of the time series (minimum, maximum, range, mean, standard deviation, 

coefficient of variation, kurtosis, skewness, full time-series slope, maximum slope 

of 5-year intervals, and 2014  values) (Wang et al., 2019). In total, 66 metrics (six 

time-series trajectories  11 metrics) were used as inputs for random forest 

classification of intact and disturbed forests.    
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Figure 4.1 Methodological flow chart.  
The key elements different from Chapter 3 were highlighted as bold.   

Trajectory metrics (x11): min, max, range, 
mean, standard deviation, c.v., skewness, 
kurtosis, slope, max-slope, year-2014 value 

majority filter: remove isolated pixels  
  

30 classifications of disturbed vs. intact forests 

Time-series trajectories (x6):  
►Bands: SWIR1640nm & SWIR2130nm; 
►NDVI = (NIR – RED)/(NIR + RED) 
►NDWI2130=(NIR–SWIR2130nm)/(NIR+SWIR2130nm) 
►NDWI1640=(NIR–SWIR1640nm)/(NIR+SWIR1640nm) 
►SAVI = 1.5( ((NIR – RED)/(NIR + RED + 0.5)) 

 

►Intact forest mask (exclude 300m 
edge):  
1-old-growth forest; 2 with no forest loss 
(3); outside 4 & 5; 1 km away from 6.      

►Disturbed forest mask (exclude 100m 
edge): 1-secondary forest, 7-at least one 
year is not forest. 
  

4,000 points for each sub-region 
(2,000 intact/2,000 disturbed)  

mask clouds, shadows  

Random Forest  Classifier : 30 times 

Input data:11metrics  6 trajectories  
   = 66 variables 

stratified sampling 

1. TerraClass-2014 
2. Primary forest-2001 (Turubanova 
et al. 2018)  
3. Hansen GFC forest loss 2002-2014 
4. DEGRAD 2007-2013 
5. DETEX 2009-2014 
6. JRC water occurrence 1984-2014 
7. TerraClass (1991-2012) 
 

Landsat 5/7/8 Surface 
Reflectance 
(1984-2014) 

Classification (500 m) of Disturbed vs. Intact forests  

ROC curve: cut-off 
threshold for low 

fraction disturbance 

Reduce resolution (500 m) - fraction of Disturbed 
forests vs. Intact forest 

PRODES old growth forest mask 

composite 

R
e
m

o
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e
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e
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70% points for 

training  

30% points for 
validation 

Disturbed: pixels classified as disturbed over 30 times, 

otherwise considered as Intact (30 m  30 m) 

remove low fraction 
disturbance 

Classification (500 m) of Degraded old growth 
forest vs. Intact forests 

TerraClass forest mask 
  

Inventory plots (Long et al. 
2016) 
Samples (Tyukavina et al. 
2017) 
 

validation 
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4.2.2 Training and validation dataset 

We used stratified random sampling algorithm to generate a set of spatially 

representative points of intact and disturbed forests, 70% of which used to train 

the random forest classification with 30% remaining points as for validation. For 

this exercise, intact forest pixels were required to satisfy 5 criteria: (1) defined as 

old growth forest in TERRACLASS-2014 (Almeida et al., 2016,  

https://www.terraclass.gov.br); (2) defined in (Turubanova et al., 2018) as primary 

forest, with no subsequent forest loss  until 2014 reported in the University of 

Maryland Global Forest Cover product (Hansen et al., 2013); (3) be located at 

least 1 km away from any water body over 1984-2014 (Pekel et al., 2016); (4) not 

have been designated as degraded since 2007 by the INPE-based DEGRAD 

(INPE, 2007) and DETEX (INPE, 2009) products; (5) be located at least 300 m 

away from the edge of any pixels that meet above all criteria (1)-(4), this is to 

remove the boundary pixels. Disturbed pixels used for training and validation 

were required to: (1) be classified as secondary forest in TERRACLASS 2014; 

(2) at least one year be not forest in TERRACLASS 1991, 2000, 2004, 2008, 

2010, 2012; (3) be located at least 100 m away from the edge of any pixels that 

meet above all criteria (1)-(2).   

To account for spatial variation in spectral reflectance across the Brazilian 

Amazon, we divided our study area (moist forest ecoregion) into 34 sub-regions 

(Figure 4.2) for running the following classification algorithm. Each sub-region 

was further divided into 9 smaller grids (1o  1o) for stratified sampling to ensure 

a spatially even distribution of sampled points (Figure 4.2). Within each 1o  1o 

grid, 500 pixels (30  30 m) were sampled individually for each stratum (i.e. intact 

forest, disturbed forest). In total, 4,500 intact and 4,500 disturbed pixels were 

sampled for each individual sub-region, of which 2,000 intact and 2,000 disturbed 

pixels were subsequently randomly selected as final training and validation 

dataset. We used 70% of the final training and validation dataset to train the 

classifier and the remaining 30% served as validation points.       
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Figure 4.2 Study area.  

Sub-regions for classification algorithm, sampling grids, and the distribution of sampled points as 

training and validation for random forest classifier. 

 

4.2.3 Classification of intact vs. disturbed forests   

We used random forest classification to distinguish between disturbed forests 

and intact forests based on the forest mask (primary and secondary forests) from 

TERRACLASS-2014. The random forest classifier was run individually for each 

sub-region, using 200 trees and a bagging fraction of 0.632. Due to the high 

frequency of cloud occurrence in the Amazon, clouds and cloud shadow effects 

still exist for certain years even after cloud masking and compositing processes. 

To reduce the influence of clouds on our classification, we ran the random forest 

classifier 30 times for each sub-region, removing one year of data at a time from 

1984 to 2013 in each iteration. If the pixel was classified as ‘disturbed’ across all 

30 classification iterations, the pixel was considered ‘disturbed’. A post-
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classification noise filter (33 pixels, majority rule) was subsequently applied to 

remove single isolated pixels.   

4.2.4 Classification aggregation 

Considering the inherent edge effects of forest disturbances (Harper et al., 2005; 

dos Santos et al., 2015) and for comparability with other products, we aggregated 

the original classification (3030 m) into a coarser classification map (500500 

m) and reclassified the aggregated pixel as being either disturbed or intact. To do 

this, we computed the fraction of the larger grid cell occupied by disturbed 3030 

m pixels as classified by our algorithm, and related these to a sub-region specific 

disturbance cut-off threshold, below which the aggregated pixel was classified as 

intact and above which it was classified as disturbed.  The cut-off threshold was 

computed using ROC (receiver operating characteristic) curves and was found to 

vary considerably across individual sub-regions, ranging from 0.02 to 0.16 

(Appendix Figure C.3). ROC curves were constructed based on the training 

points used to train the original classifier (~1400 intact points and 1400 disturbed 

points in each sub-region), by plotting the true positive rate (TPR, also known as 

sensitivity) against the false positive rate (FPR, fall-out) at various threshold 

settings. The true positive rate (TPR) is the probability of intact points classified 

as ‘intact’. The false positive rate (FP) is the probability of disturbed points 

classified as ‘intact’. The best cut-off is % disturbance value where the true 

positive rates are highest and false positive rates are lowest. The final 

classification map (500500 m) of intact forests and disturbed forests was 

validated using the remaining 30% of previously sampled pixels which were not 

used for training the machine learning classification algorithm.  

4.2.5 Mapping degradation and validation 

Our algorithm detects both secondary forests re-growing on previously clear-

felled land and degraded old-growth forests, not classed as deforested by 

PRODES.  To quantify degradation in old-growth forests, including both natural 

and anthropogenic disturbances except for selective logging (see Introduction on 
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page 102 for the definition in detail), we applied the 2014 primary (old growth) 

mask from PRODES, which excludes all deforested areas identified up to that 

year.   

To validate actual degraded old-growth forests, we used forest status (intact and 

degraded) derived from 153 inventory plots across the Brazilian Amazon 

published by Longo et al. (2016). Of 153 inventory plots, 85 were intact forests 

and 68 had been degraded by burning that occurred from 1987 to 2013.  

Additionally, to test the ability of our algorithm to capture different types of 

degradation, we compared our results to the results of 283 visually interpreted 

samples indicating various forms of degradation, from Tyukavina et al. (2017). 

These samples were visually interpreted by two experts using annual Landsat 

composite images during 1990-2013 and, when available, high-resolution 

imagery from Google Earth (Tyukavina et al., 2017). The samples cover ten 

different types of degradation events including both anthropogenic and natural 

disturbances. Of 283 samples, the majority experienced small-scale clearing 

(117), fire (61) or logging (72), and the remaining 33 samples were related to road 

construction, wind blowdowns, river flooding and other disturbances. The spatial 

distribution of the inventory plots and the samples are shown in Appendix Figure 

C.2.  

 

4.3 Results 

4.3.1 Overall disturbance classification accuracy    

Our localised classification algorithm yielded very high overall accuracies, in 

relation to the validation datasets outlined in section 4.2.2, across all 34 sub-

regions. The overall accuracies were all over 0.94, with the kappa statistics 

ranging from 0.88 to 0.99 (Figure 4.3). The producer’s accuracies of both intact 

forests and disturbed forests were high, with ranges of 0.95-1.00 and 0.92-1.0, 

respectively, same as the user’s accuracies.      
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Figure 4.3 The accuracy of the classification of intact forests vs. disturbed forests.  

Across all sub-regions, the overall accuracy: 0.9857; kappa: 0.9713; producer’s accuracy: 0.9845 

(disturbed forest), 0.9868 (intact forest); user’s accuracy: 0.9867 (disturbed forest), 0.9846 (intact 

forest).  Validation data for the disturbed forest stratum were based on TERRACLASS secondary 

forests (Section 4.2.2: Training and validation dataset).   

 

4.3.2 Accuracy of degraded old growth forests vs. intact forests 

As our overall disturbance accuracy assessment presented above is restricted to 

secondary forests and does not specifically encompass degraded old-growth 

forests, we further validated our classification of degraded old growth forests and 

intact forests using the available inventory plots (Longo et al., 2016) and visual 

interpretation samples (Tyukavina et al., 2017). We find that all intact forest 

inventory plots according to Longo et al. (2016) were classified as intact forests, 

thus our producer’s accuracy for intact forests was 100% (Table 4.1). 

Furthermore, our classification algorithm effectively detected degradation 

resulting from fire (over 73% accuracy), and from combined fire and conventional 

logging (74%) (Table 4.1). When compared to degradation data from Tyukavina 

et al. (2017), we also find that our algorithm captured more intense degradation 

arising from anthropogenic activities such as road construction (70%), mining 

(100%), dam constructions (100%), and small-scale clearings (80%) (Table 4.1). 

However, our algorithm performed less well at detecting natural disturbances 

such as wind blowdowns (33%) or river flooding (50%) and could not adequately 

detect logging, especially reduced impact logging. Thus, our classification 
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algorithm captured the more important and more intense degradation types very 

well but not lower intensity degradation.   

Table 4.1 Validation of intact forests and degraded old growth forests, and the type of 

degradation. 

Inventory Plots (Longo et al. 2016) 
Intact forest 
(map) 

Degraded 
(map) 

Total 
plots 

Producer’s 
accuracy 

Intact forest 85 0 85 1.00 

Burning 11 30 41 0.73 

Conventional logging & Burning 7 20 27 0.74 

Samples (Tyukavina et al. 2017) 
Intact forest 
(map) 

Degraded 
(map) 

Total 
samples 

Producer’s 
accuracy 

Burning 19 42 61 0.69 

Logging 54 18 72 0.25 

Small-scale clearing 23 94 117 0.80 

Mining 0 1 1 1.00 

Road 3 7 10 0.70 

Dam 0 2 2 1.00 

Wind 8 4 12 0.33 

River 0 3 6 0.50 

Other nature disturbances 0 2 2 1.00 

 

4.3.3 Distribution of old growth forest degradation.  

Although degradation of old-growth forests is widespread across the entire 

Brazilian Amazon (Figure 4.4), the majority of degraded areas occur along rivers 

and near deforested areas. In the eastern Brazilian Amazon, large areas of old 

growth forest are heavily degraded with little intact forest remaining. Small focal 

areas of degradation can be seen in the north and northwest of the Amazon, 

where deforestation rates are much lower than in the southern and eastern 

sections of the Brazilian Amazon. These may potentially result from large wind 

blow-down and high frequency convective storms that are more marked in this 

region than in others (Araujo et al., 2017; Negron-Juarez et al., 2018; Espírito-

Santo et al., 2014). 
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Our results (Table 4.2) show that within the moist forest ecoregion of the Brazilian 

Amazon, about 246,845 km2 of old growth forests were degraded between 1984 

and 2014, with the annual degradation rate of 8,228 km2 yr-1. The state of Pará 

contributed up to 39% of the total area of degradation, following by the state of 

Amazonas (22%). However, when compared with the total area of old growth 

forests, degraded forests in Pará only accounted for 13% of total old growth forest 

area, and only 4.56% for the state of Amazonas. Tocantins experienced the most 

severe relative degradation, and was the only state where the area of degraded 

old-growth forest exceeded the area of intact forests. Other states with large 

relative areas of degraded primary forest include Maranhão (40%), Rondônia 

(21%) and Mato Grosso (18%). 

 

 

Figure 4.4 Classification (500 m  500 m) of degraded old growth forests vs. intact forest 

for the year 2014 in the Brazilian moist forest ecoregion.  

Degraded old growth forests represent cumulative area of degradation over the period of 1984-

2014. Others include secondary forests and non-forest areas.     
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Table 4.2 The area (km2) of intact forest and degraded old growth forests in Brazilian 

Amazon (moist forest ecoregion) in 2014.  

The degraded old growth forests account for the cumulative degradation occurred from 1984 to 

2014. 

States 
Intact forest 

(A) 
Degraded 
forest (B) 

B/(A+B) B/sum(B) 
Degradati
on (yr-1) 

Degradation 
within 500m 
to the edge 

Tocantins 578.04 715.24 55.30% 0.29% 23.84 93% 

Maranhão 13,812.24 9,113.06 39.75% 3.69% 303.77 84% 

Rondônia 89,189.30 24,326.25 21.43% 9.85% 810.88 82% 

Mato 
Grosso 

93,638.13 21,228.90 18.48% 8.60% 707.63 73% 

Acre 103,259.43 18,095.75 14.91% 7.33% 603.19 45% 

Pará 664,901.90 96,020.37 12.62% 38.90% 3,200.38 63% 

Roraima 116,233.28 14,625.91 11.18% 5.93% 487.53 33% 

Amapa 94,223.47 7,548.03 7.42% 3.06% 251.60 43% 

Amazonas 1,154,159.01 55,171.15 4.56% 22.35% 1,839.04 47% 

Brazilian 
Amazon 

2,329,994.80 246,844.67 9.58%  8,228.16 59% 

 

4.3.4 Linkage between degradation and deforestation.     

We find that deforestation and degradation are generally closely linked. As seen 

in Figure 4.4, there is a clear spatial association between the intensity of 

degradation and deforestation. Relative degradation is also highest in the states 

that have lost more of their old-growth forest cover (Figure 4.5). Further insights 

into the anthropogenic contribution to degradation can be gleaned by considering 

the distance of a degradation event to a forest edge, which in most cases is a 

deforested patch, but can also be a natural edge such as a river.  We find that 

across the Brazilian Amazon, over 80% of our mapped degradation pixels were 

within 2.8 km distance to the forest edge (Figure 4.6) and that 59% of degradation 

took place within 500 m of the forest edge. Moreover, the proportion of the 

degradation occurring within 500 m of the forest edge increased in line with the 

state-level old-growth forest degradation status.  For example, in the heavily 

degraded states of Tocantins and Maranhão, 93% and 84% respectively of 

degradation occurred within 500 m of the forest edge, while in states with low 

relative degradation such as Amapá and Amazonas, <50% of total degradation 
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occurred within 50% of the forest edge, implying a potentially greater contribution 

of natural disturbances in driving degradation in these states.   

 

 

Figure 4.5 The relationship between our mapped degradation and deforestation by states.  

The degradation (%) is the proportion of total degradation relative to the area of old growth forests 

(Table 4.2, column ‘B/(A+B)’). The deforestation (%) represents the proportion of total 

deforestation until 2014, computed as ‘(total deforested area) / (total deforested area + area of 

old growth forest)’. The shaded grey indicates OLS (ordinary least squares) linear regression with 

the line as best fit (adjusted R2 = 0.9264). 
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Figure 4.6 The distance of degraded old growth forest to old growth forest edge. 

In the Brazilian Amazon moist forest ecoregion (BLA), 59% of the degraded areas were within 

500 m distance to the forest edge.  

 

 

 

4.4 Conclusion and Discussion 

This study is the first to consider cumulative historical degradation over a multi-

decadal timeframe (i.e.  31 years, 1984-2014) in the Brazilian Amazon. Over this 

timeframe, we find that 246,845 km2 (9.58%) of old-growth moist forest in the 

Brazilian Amazon experienced some form of degradation. This amounts to an 

annual degradation rate of 8,228 km2 yr-1 over the timeframe of our study. This 

estimate is comparable with the sum area of degradation from DEGRAD (2007-

2014, 5835 km2 yr-1) and selective logging from DETEX (2009-2014, 4153 km2 yr-

1), for the same domain as our study area. This estimate is also within the range 

of degradation rates reported in other studies.  For example, Souza Jr et al. 

(2013) report degradation rates of 5,081 km2 yr-1 between 2001-2010, Nepstad 

et al. (1999) estimate degradation rates of 10,000-15,000 km2 yr-1 in the 1990’s. 

In the state of Rondônia, we estimated an average degradation rate of 811 km2 
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yr-1 which is also comparable to estimates (< 1000 km2 yr-1) from a recent study 

(Bullock et al., 2018).   

We also spatially compared our classification of degraded old growth and intact 

forests (Figure 4.4) with an aboveground carbon density loss map from Baccini 

et al. (2017) (Figure 4.6). For comparison, we applied the same old growth forest 

mask to the carbon density loss map. In their study, Baccini et al. (2017) 

considered any forest that lost biomass to be degraded. Assuming this definition 

of degradation, over 479,000 km2 area of old growth forests were degraded 

during 2003-2014. This is equivalent to an annual degradation rate of 43,553 km2 

yr-1, approximately 4.5 times larger than our estimates. Moreover, there are 

considerable spatial differences between our map and the map derived from 

Baccini et al. (2017).  Most notably, the Baccini et al. (2017) map reports large 

degradation in areas of the Northern Amazon with little history of deforestation 

(e.g. northwest Amazonas), which our classification suggests is not the case.  
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Figure 4.7 Carbon density loss (Baccini et al., 2017) of old growth forests in the Brazilian 

Amazon.  

Between 2003 and 2014, approximately 479,081 km2 area of old growth forests had carbon loss, 

which was equivalent to the annual loss area of 43,553 km2 yr-1.   

 

Despite being in broad agreement with other reported degradation rates in the 

Brazilian Amazon, there are several reasons to suggest that our figures are 

conservative and underestimate the full extent of historical degradation in the 

Brazilian Amazon.  First, our algorithm does not consider old-growth forest 

degradation prior to 1984.  Second, although our classification algorithm 

effectively detected degradation resulting from more intensive anthropogenic 

disturbances (e.g. fire, road construction, small-scale clearing) with high 

accuracies, it did not capture low-intensity degradation such as that associated 

with selective logging.  This form of degradation is believed to be extensive 

across the Amazon.  For example, Asner et al. (2005) reported logged areas in 

the Brazilian Amazon of between 12,000-19,000 km2 yr-1.  Third, our algorithm 

was such that the random forest classifier was run 30 times, removing one year 
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of data from time-series trajectories in each iteration. The final ‘disturbed’ pixels 

were pixels that were identified as ‘disturbed’ by all the 30 random forest 

classifiers. Although this approach minimise background noise, it potentially 

neglects disturbances which are followed by very fast recovery, i.e. within two 

years.  

Our study provides a unique historical perspective on degradation in Amazonia.  

However, it does not provide information in trends in degradation over time, as 

our algorithm was not designed to produce annual estimates. A future next step 

therefore is to study the temporal evolution of degradation in the Amazon and the 

extent to which this relates to trends in deforestation.  Over the timeframe of our 

study, approximately 445,000 km2 of forest in the Brazilian Amazon was clear-

felled (including drier forests excluded from our analysis). Our study reveals a 

very close relationship between deforestation and degradation. However, it is not 

clear how this coupling has changed over time. While deforestation rates in the 

Amazon have fallen over time, the temporal pattern of degradation is unknown. 

However, to fully characterize degradation in the Brazilian Amazon, we will have 

to develop our algorithm to better detect selective logging. This may be possible 

through linear spectral mixture models, as used in the current version of DETER-

B (Diniz et al., 2015), which does have the capacity to capture logging activities.  

 

 

 

 

 

 

 

 



 

 

 

121 

References 

Almeida, C.A.d. et al. 2016. High spatial resolution land use and land cover 
mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and 
MODIS data. Acta Amazonica. 46(3), pp.291-302. 

Araujo, R.F. et al. 2017. Regional distribution of large blowdown patches across 
Amazonia in 2005 caused by a single convective squall line. Geophysical 
Research Letters. 44(15), pp.7793-7798. 

Asner, G.P. et al. 2005. Selective logging in the Brazilian Amazon. science. 
310(5747), pp.480-482. 

Assunção, J. et al. 2013. DETERring deforestation in the Brazilian Amazon: 
environmental monitoring and law enforcement. Climate Policy Initiative. 
pp.1-36. 

Baccini, A. et al. 2017. Tropical forests are a net carbon source based on 
aboveground measurements of gain and loss. Science. 358(6360), 
pp.230-234. 

Barlow, J. et al. 2016. Anthropogenic disturbance in tropical forests can double 
biodiversity loss from deforestation. Nature. 535(7610), p144. 

Berenguer, E. et al. 2014. A large‐scale field assessment of carbon stocks in 
human‐modified tropical forests. Global change biology. 20(12), pp.3713-
3726. 

Brienen, R.J. et al. 2015. Long-term decline of the Amazon carbon sink. Nature. 
519(7543), p344. 

Bullock, E.L. et al. 2018. Monitoring tropical forest degradation using spectral 
unmixing and Landsat time series analysis. Remote Sensing of 
Environment. p110968. 

Claverie, M. et al. 2015. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ 
surface reflectance products. Remote Sensing of Environment. 169, 
pp.390-403. 

de Cambio Climático, P.I. 2003. Definitions and Methodological Options to 
Inventory Emissions from Direct Human-Induced Degradation of Forests 
and Devegetation of Other Vegetation Types [Penman, J. y colaboradores 
(directores de la publicación)]. The Institutefor Global Environmental 
Strategies (IGES), Japón. 

Dinerstein, E. et al. 2017. An ecoregion-based approach to protecting half the 
terrestrial realm. BioScience. 67(6), pp.534-545. 



 

 

 

122 

Diniz, C.G. et al. 2015. DETER-B: The new Amazon near real-time deforestation 
detection system. Ieee journal of selected topics in applied earth 
observations and remote sensing. 8(7), pp.3619-3628. 

Dirzo, R. and Raven, P.H. 2003. Global state of biodiversity and loss. Annual 
review of Environment and Resources. 28. 

dos Santos, M.N. et al. 2015. Lidar-based assessment of forest edge effects 
across a degraded landscape in the Brazilian Amazon. In: Embrapa 
Territorial-Artigo em anais de congresso (ALICE): In: CONFERENCE ON 
LIDAR APPLICATIONS FOR ASSESSING AND MANAGING 
FOREST …. 

Espírito-Santo, F.D. et al. 2014. Size and frequency of natural forest disturbances 
and the Amazon forest carbon balance. Nature communications. 5, p3434. 

Espírito‐Santo, F.D. et al. 2010. Storm intensity and old‐growth forest 
disturbances in the Amazon region. Geophysical Research Letters. 
37(11). 

Foley, J.A. et al. 2007. Amazonia revealed: forest degradation and loss of 
ecosystem goods and services in the Amazon Basin. Frontiers in Ecology 
and the Environment. 5(1), pp.25-32. 

Hansen, M.C. et al. 2013. High-Resolution Global Maps of 21st-Century Forest 
Cover Change. Science. 342(6160), pp.850-853. 

Harper, K.A. et al. 2005. Edge influence on forest structure and composition in 
fragmented landscapes. Conservation biology. 19(3), pp.768-782. 

Hasan, A.F. et al. 2019. Cumulative disturbances to assess forest degradation 
using spectral unmixing in the north‐eastern Amazon. Applied Vegetation 
Science. 

Hethcoat, M.G. et al. 2019. A machine learning approach to map tropical selective 
logging. Remote sensing of environment. 221, pp.569-582. 

INPE. 2007. DEGRAD-Mapping of Forest Degradation in the Brazilian Amazon 
(2007-2016). 
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/degrad. 
Brazilian National Institute for Space Research. 

INPE. 2009. DETEX project for mapping selective logging (2009-2015) by INPE 
(Brazilian National Institute for Space Research) 
http://www.dpi.inpe.br/arquivos_pime/DETEX_BR163_Claudio.pdf. 

Kalamandeen, M. et al. 2018. Pervasive rise of small-scale deforestation in 
Amazonia. Scientific reports. 8(1), p1600. 

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/degrad
http://www.dpi.inpe.br/arquivos_pime/DETEX_BR163_Claudio.pdf


 

 

 

123 

Longo, M. et al. 2016. Aboveground biomass variability across intact and 
degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles. 
30(11), pp.1639-1660. 

Maia, H. et al. 2011. Avaliação do Plano de Ação para Prevenção e Controle do 
Desmatamento na Amazônia Legal: PPCDAm: 2007-2010. 

Malhi, Y. et al. 2009. Exploring the likelihood and mechanism of a climate-
change-induced dieback of the Amazon rainforest. Proceedings of the 
National Academy of Sciences. 106(49), pp.20610-20615. 

Negron-Juarez, R.I. et al. 2018. Vulnerability of Amazon forests to storm-driven 
tree mortality. Environmental Research Letters. 13(5), p054021. 

Nepstad, D.C. et al. 1999. Large-scale impoverishment of Amazonian forests by 
logging and fire. Nature. 398(6727), p505. 

Pekel, J.-F. et al. 2016. High-resolution mapping of global surface water and its 
long-term changes. Nature. 540(7633), p418. 

Phillips, O.L. et al. 2008. The changing Amazon forest. Philosophical 
Transactions of the Royal Society B: Biological Sciences. 363(1498), 
pp.1819-1827. 

PRODES, p. 2018. Projecto Prodes: Monitoramento de Floresta Amazonica 
Brasileira por satelite.  http://www.obt.inpe.br/prodes/index.php. Instituto 
Nacional de Pesquisas Espaciais  

RAISG. 2012. Amazonia under Pressure. p10. 

Roy, D.P. et al. 2016. Characterization of Landsat-7 to Landsat-8 reflective 
wavelength and normalized difference vegetation index continuity. 
Remote sensing of Environment. 185, pp.57-70. 

Souza Jr, C. et al. 2013. Ten-year Landsat classification of deforestation and 
forest degradation in the Brazilian Amazon. Remote Sensing. 5(11), 
pp.5493-5513. 

Turubanova, S. et al. 2018. Ongoing primary forest loss in Brazil, Democratic 
Republic of the Congo, and Indonesia. Environmental Research Letters. 
13(7), p074028. 

Tyukavina, A. et al. 2017. Types and rates of forest disturbance in Brazilian Legal 
Amazon, 2000–2013. Science advances. 3(4), pe1601047. 

Wang, Y. et al. 2019. Mapping tropical disturbed forests using multi-decadal 30 
m optical satellite imagery. Remote sensing of environment. 221, pp.474-
488. 

 

http://www.obt.inpe.br/prodes/index.php


 

 

 

124 



 

 

 

125 

Chapter 5  

Conclusion and Discussion 

5.1 Discussion 

This thesis has conducted a comprehensive analysis of the fate of previously 

deforested lands in the Brazilian Amazon and historical forest degradation in the 

region. This work is the first to provide spatiotemporal information on the 

dynamics of secondary forests across the entire Brazilian Amazon and to map 

cumulative degradation of old-growth forests over a multi-decadal timeframe. 

Both of these findings contribute directly towards a better understanding of forest 

dynamics in Amazonia.              

5.1.1 Summary of thesis findings 

In Chapter 2, I used the 30-meter resolution TERRACLASS time-series dataset 

(i.e. 2000, 2004, 2008, 2010, 2012, 2014) to track the fate of secondary forests 

in the Brazilian Amazon over 14 years, providing the first estimates of secondary 

forest loss for the region. Secondary forest loss was quantified using a sampling-

based approach, combined with visual interpretation of 4,665 points randomly 

sampled from TERRACLASS classification maps. This analysis revealed two 

distinct phases of secondary forest loss in Amazonia: 1) a marked decline in 

secondary forest loss between 2000-2008 in line with decline in primary forest 

loss and 2) a rapid increase of secondary forest loss between 2008-2014, despite 

stabilization of primary forest loss. Overall, the proportion of total forest loss 

accounted for by secondary forests rose from 373% in 2000 to 725% in 2014. 

This phenomenon occurred across the entire Brazilian Amazon and was not 

driven simply by increasing secondary forest area but instead reflects a 

conscious preferential shift from cutting primary forests to the clearance of 

secondary forests. However, the total loss of secondary forests from 2000 to 2014 

has cost a carbon sequestration opportunity of 2.59-2.66 Pg C, which is 

equivalent approximately 18 years of Brazil’s fossil fuel emissions (Bank, 2014)  
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In Chapter 3, with the support of Google Earth Engine (GEE) and the availability 

of multi-decadal Landsat imagery, I developed a novel methodology, based on 

integration of multiple time series of vegetation indices and reflectance data from 

specific Landsat bands, which is able to map forest disturbance using a machine 

learning classification algorithm. This approach not only correctly classified areas 

of secondary forest, as confirmed by TERRACLASS, but also was capable of 

detecting forest degradation in old-growth forests. This approach was tested in 

three different ecoregions (moist forest, seasonal forest and dry forest 

ecoregions) of Mato Grosso state with high overall accuracies of up to 86%.  

In Chapter 4, I extended the above approach to a larger scale, using the same 

multi-decadal 30 m Landsat time-series images (1984-2014) as in Chapter 3 and 

applying the same algorithm to classify moist old growth forests (i.e. those which 

have not been deforested according to PRODES) as intact vs. degraded in 2014. 

The classification resulted in very accurate detection of degradation arising from 

fire, road construction, small-scale clearings and natural disturbances such as 

river flooding and wind-throws. The results show that, until 2014, over 246,845 

km2 area of old-growth forests in the Brazilian Amazon (moist forest ecoregion) 

were degraded, accounting for 9.58% of total area of old growth forests. Across 

states, the intensity of degradation was found to be very closely linked to the 

deforestation in the region since the relative degradation was also higher in the 

states that have lost more of their old-growth forest cover. Furthermore, almost 

60% of degradation occurred within 500 m distance to the forest edge. This 

further confirmed the considerable contributions of anthropogenic drivers to the 

area of degradation in the Brazilian Amazon. However, further research is 

needed to better quantify the individual contributions of anthropogenic and 

natural disturbances to degradation in Amazonia.          
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5.1.2 Findings in a broader context of forest monitoring 

My results from Chapter 2 suggest that the accelerated loss of secondary forests 

in the Brazilian Amazon reflects a preferential behaviour shift from the 

deforestation of primary forests to the clearance of secondary forests in the 

region. This result suggests that despite demand for new pastureland (the main 

fate of deforested primary and secondary forests in the Amazon), farmers chose 

to intensify cutting of secondary forests rather than increase the deforestation of 

primary forests. While this points to the effectiveness of policies designed to 

curtail deforestation, it also raises awareness of the need for policies to allow 

regeneration of forests on previously deforested lands.  

However, some key gaps in our knowledge remain. First and foremost, there is 

currently no accurate spatial distribution of secondary forests outside of the 

Brazilian Amazon, as provided by TERRACLASS. However, it may be possible 

to use the available secondary forest information from the Brazilian Amazon to 

train some remote sensing based machine learning algorithms and apply them to 

other tropical regions where no secondary forest information available.  

Additionally, there would be great value in expanding the PRODES and 

TERRACLASS methodologies to other South American countries, so that 

deforestation and re-growth statistics can be produced in a consistent manner 

across the entire Amazon.  

In Chapter 2, I developed a method that is able to use the time-series Landsat 

spectral information of secondary forests to train a machine learning (i.e. random 

forest) classification algorithm to detect the old-growth forest degradation. This 

method could potentially be extended to a larger context towards a pan-tropical 

or global level of degradation mapping, given the availability of adequate training 

data.  

The recent published land use and land cover dataset from MAPBIOMAS 

(https://mapbiomas.org/en) contains the annual land use and land cover 

classification map since 1985, but the feasibility of using this dataset to quantify 

secondary forest loss and historical degradation is unclear. First, the land use 

https://mapbiomas.org/en)
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information for secondary forest and degradation is limited since MAPBIOMAS 

provides five collections and only collection 2.0, which is available since 2000, 

includes the land use categories of secondary forest and degradation. Second, 

the classification of MAPBIOMAS for each year is independent and does not 

consider the time-series spectral characteristics. This might not affect the 

classification between forest and non-forest land uses (e.g. agriculture), but 

would potentially underestimate secondary forest and degradation because of 

their rapid recovery processes. It also results in temporal inconsistencies.  Thus, 

I believe that MAPBIOMASS dataset would definitely contribute the 

understanding of land use and land cover changes in Amazonia, but, in its current 

configuration, probably not for the dynamics of secondary forest and historical 

degradation.  

Currently, DETER-B (INPE-CRA, regional centre Amazon) provides real-time 

deforestation and degradation alerts for the Brazilian Environment Agency 

(Ibama) to work upon. It detects both clear-cut deforestation and degradation 

arising from fire, selective logging, mining and other disturbances, and has acted 

as an effective forest monitoring system for the region (Assunção et al., 2013). 

However, DETER-B is based on the visual interpretation of 56 m resolution 

satellite images, thus is limited for identifying the small-scale disturbances (<1 

ha), and it’s less cost-effective comparing with the machine learning classification 

algorithms. However, the spectral mixture modelling which DETER-B is based 

upon is capable of detecting selective logging. Future lines of work for further 

developing the algorithm developed for this thesis might be to 1) include image 

fractions (e.g. soil and vegetation) in our classification algorithm to better map 

lower-intensity disturbances and 2) revise the algorithm to enable annual 

detection of degradation and thus track trends in degradation over time. 

For secondary forests monitoring, TERRACLASS is currently the only project in 

Brazil that provides the information on the fate of previously deforested lands, 

which includes secondary forests. So far, TERRACLASS has produced the land 

use/land cover classification of post-primary forest deforestation areas over 24 

years (i.e. 1990, 2000, 2004, 2008-2014 bi-annually). However, TERRACLASS 
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involves a huge effort based largely on the visual interpretation of satellite 

imagery, and there is still no near-real time monitoring system for secondary 

forests as DETER-B only detect the deforestation and degradation occurred in 

primary forests. Given existing TERRACLASS products, it may be possible to 

train a classifier in Google Earth Engine that can produce annual estimates of 

secondary forest loss for a fraction of the total effort that goes into producing 

existing TERRACLASS products. My thesis also contributes directly to 

TERRACLASS efforts by providing a robust classification error analysis of 

TERRACLASS, which the product had not been subjected to thus far.  

5.1.3 The implication of findings  

The accelerated loss of secondary forests and historical degradation of old 

growth forests reported in this thesis have significant implications.  

First, our results have direct implications for policy commitments that the Brazilian 

government has agreed to. Brazil has committed to restore 120,000 km2 of forest 

land by 2030 as part of its Nationally Determined Contribution (NDC) for the Paris 

Agreement (UNFCCC, 2015). A cost-effective way to achieve this would be to 

allow part of its existing Amazonian secondary forest area (235,718 ± 7,773 km2) 

to recover naturally. However, over 180,329  11,760 km2 of secondary forests 

were cut over a 14-year period (2000-2014).   If the accelerated loss of secondary 

forests continues, meeting the NDC goal would be a challenge.  My findings 

suggest that an appropriate monitoring and management system for secondary 

forests in the region is necessary.      

Moreover, primary forest from PRODES has been heavily degraded. This thesis 

estimated that, until 2014, approximately 10% of the old growth forests (i.e. 

primary forest in PRODES) in the Brazilian Amazon were actually degraded, with 

an average of 8,228 km2 affected annually. Although still conservative, these 

estimates highlight the further extent to which forests in the Brazilian Amazon are 

affected by human activity beyond deforestation.  Many forests reported as 

degraded actually go on to be deforested.  Thus, much of the degradation can in 
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fact be considered as ‘committed’ deforestation, after clearance coalesce into the 

minimum patch size threshold considered by PRODES.   

5.1.4 Advances of future remote sensing prospects 

Remote-sensing based machine learning is very useful to map forest 

disturbances, but the lack of available ground-truth data has hampered its further 

application over larger areas. However, visual interpretation could potentially be 

used as a substitute for ground-true data, especially with the development of 

interpretation tools such as TimeSync, Collect Earth (CE) and Google Earth. The 

recent released web-based visual validation tool - Collect Earth Online (CEO) is 

easier and more user-friendly than Collect Earth desktop version, which also has 

linked to all the remote sensing data from Google Earth Engine (GEE) and the 

Very High Resolution (VHR) from Digital Globe and Bing Aerial. VHR images and 

the enhanced web-based technology have opened up new possibilities for the 

role of visual interpretation in forest observation (Schepaschenko et al., 2019).  

Landsat imagery has become freely accessible since 2008 and considerably 

improved the science and operational applications (Zhu et al., 2019). With the 

new data becoming free available from Senntinel-2 (10-60 m resolution), the 

combination of Landsat-8, Sentinel-2A, and Sentinel-2B provides a global median 

average revisit interval of 2.9 days (Li and Roy, 2017). This opens up the new 

possibility of mapping highly dynamic forest disturbances especially low intensity 

selective logging and very small-scale clearings. The coming launch of Landsat-

9 and Landsat-10 (Wulder et al., 2019) will further expand the advantages of 

using remote sensing technology for earth observations. 

Unlike optical satellite images, remote sensing using laser Lidar or Radar has the 

advantage of being unaffected by the presence of clouds, but has been limited 

by the small areas of data coverage. However, the new released and free 

available GEDI Lidar data (Global Ecosystem Dynamics Investigation project) 

which provides global precise measurements of the 3D structure of forest canopy 

will greatly advance our ability to characterize forest disturbances, carbon cycling 

and biodiversity dynamics. And from 2022, a radar satellite (BIOMASS, satellite 



 

 

 

131 

planned for launch by the European Space Agency) will also begin providing 3D 

data on forest structure and forest biomass at the global level.     

The cloud-based geospatial analysis platform - Google Earth Engine (GEE) has 

made the planetary-scale remote sensing analysis much easier and faster 

(Gorelick et al., 2017) (). GEE consists of a multi-petabyte analysis-ready data 

catalog housing a large repository of publicly available geospatial datasets which 

includes observations from a variety of satellites and environmental and climate 

variables. All the analysis conducted in this thesis were through GEE. Using GEE 

allows me to process all the 30-m original TERRACLASS classification data 

across entire Brazilian Amazon, and map the forest disturbances through 

machine learning and 31-years Landsat images in the region. Now with the new 

added higher resolution (10 m) Sentinel-2 images and radar data in GEE, 

monitoring land use and land cover change through GEE would be a highly 

promising prospect.      

5.2 Conclusion  

Besides deforestation of primary forests in the Amazon, the clearance of 

secondary forests and old growth forest degradation have posed additional 

challenges to the region, which have been much less researched. The 

accelerated increase of secondary forest loss in the Brazilian Amazon has 

considerably exceeded deforestation of primary forest since 2008, accounting for 

approximately (72  5) % of the total forest loss between 2012-2014. From 2000 

to 2014, about 180,329  11,760 km2 area of secondary forests was cleared, 

causing a lost carbon sequestration opportunity of up to 2.66 Pg C which is 

equivalent to 18 years of Brazil’s fossil fuel emissions. Degradation of old growth 

forests has contributed another 8,228 km2 yr-1 area of damage to the region, 

resulting in up to 10% of the old growth forests being degraded until 2014. Our 

work provides baseline numbers for the formal inclusion of these processes in 

estimates of the carbon balance of the Brazilian Amazon and for conservation 

and land use planning. 
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Despite the accelerated secondary forest loss and considerable forest 

degradation, until 2014, the Brazilian Amazon still has in excess of 235,718 ± 

7,773 km2 of secondary forests and over 2.3 million km2 of intact forests. Manging 

these resources sustainably so as to maximise and maintain their conservation 

value is crucial to the local, regional and global ecosystems. This will entail 

ensuring the continued functionality of efforts to curb deforestation of primary 

forests (PRODES, DETER-B) but also a coordinated system for monitoring and 

managing secondary forests.  
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Appendix A  

Supplementary information for Chapter 2 (Paper I) 

 

 

 

 

  

Figure A.1 Example of misalignment between TERRACLASS-2000 and 2004 and 

comparison of before and after application of displacement algorithm.  

The left panel demonstrates the misalignment between TERRACLASS-2000 and subsequent 

TERRACLASS years (2004-2014) and right panel demonstrates the correction of the 

misalignment following application of the ‘displacement’ algorithm in Google Earth Engine to 

register TERRACLASS-2000 to TERRACLASS-2004.    
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Figure A.2 Map-based estimates of annual primary and secondary forest loss in the 

Brazilian Amazon from 2000-2014.  

Total forest loss is the sum of primary and secondary forest loss. Time-interval corrections were 

applied to account for missed secondary forest loss in 4-year intervals (i.e. 2000-2004, 2004-

2008). Error bars for the first two intervals denote the error associated with the interval correction. 

 

 

 

Figure A.3 Spatial distribution of the area of secondary forest loss in the Brazilian Amazon 

from 2000 to 2014.  

Lighter grey represents no secondary forest loss. Darker grey represents non-forest areas (e.g. 

savannas). Time interval corrections were applied in the first two intervals (i.e. 2000-2004, 2004-

2008).
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Figure A.4 Distribution of secondary forest area as fraction of total forest area.  

Lighter grey represents areas that have no secondary forests. Darker grey represents non-forest 

areas (e.g. savannas).     
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Table A.1 Strata names, strata weights (wi) and sample sizes (ni) used for sample-based 

estimation of forest loss rates.  

In total, 933 pixels (30 m) were sampled for each time interval. For the two-year intervals (i.e. 

2008-2010, 2010-2012, 2012-2014), 50 and 75 points were allocated to the smaller 

strata(Olofsson et al., 2014; Arévalo et al., 2019), and the remaining sample points were allocated 

proportionally to the strata of stable primary forest and stable others. For the four-year intervals 

(i.e. 2000-2004, 2004-2008), because of the increase in the proportions of each strata, 75 and 

100 points were allocated to the smaller strata, and the remaining sample points were allocated 

to the stable primary forest stratum. 

Strata 
2000-2004 2004-2008 2008-2010 2010-2012 2012-2014 

wi ni wi ni wi ni wi ni wi ni 

Stable primary 
forest (outside 
buffer) 

0.7004 433 0.7056 433 0.7624 537 0.7721 538 0.7448 538 

Primary forest 
loss 

0.0256 75 0.0151 75 0.0037 50 0.0023 50 0.0029 50 

Stable 
secondary 
forest 

0.0269 75 0.0341 75 0.0500 75 0.0510 75 0.0461 75 

Secondary 
forest loss 

0.0143 75 0.0080 75 0.0034 50 0.0054 50 0.0130 50 

Secondary 
forest gain 

0.0097 75 0.0156 75 0.0061 50 0.0076 50 0.0112 50 

Stable Others 0.1046 100 0.1234 100 0.1367 96 0.1358 95 0.1319 95 

Stable primary 
forest (within 
buffer) 

0.1184 100 0.0982 100 0.0377 75 0.0257 75 0.0502 75 
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Table A.2 Error matrix of sample-based estimates for period 2000-2004.  

18 sampled points were excluded due to being mosaic pixels for which it was not possible to 

determine a specific land cover or for which no clear satellite imagery available.   

𝒏𝒊𝒌 Reference 
Producer’s 
accuracy Mapped 

Stable 
PF 

PF 
loss 

Stable 
SF 

SF 
loss 

SF 
gain 

Stable 
others 

ni wi 

Stable PF 433 0 0 0 0 0 433 0.7004 1.00 

PF loss 5 70 0 0 0 0 75 0.0256 0.93 

Stable SF 0 0 71 3 0 0 74 0.0269 0.96 

SF loss 0 0 11 49 0 5 65 0.0143 0.75 

SF gain 0 0 29 2 38 4 73 0.0097 0.52 

Stable 
others 

0 0 3 0 0 93 96 0.1046 0.97 

Buffer-
(stable PF) 

96 2 0 0 0 1 99 0.1184 0.97 

User’s 
accuracy 

0.81 0.97 0.62 0.91 1.0 0.90 
 

 
Overall 
accuracy: 
0.8240 

Error Matrix populated by estimated proportions of area using (eq. 2.3) in methods, standard error 
(eq. 2.4) and area estimates (eq. 2.4 – 2.5). Our total study area A = 3924375.63 km2.  

�̂�𝒊𝒌 Reference 

Mapped  Stable PF PF loss Stable SF SF loss SF gain 
Stable 
others 

Stable PF 0.7004 0 0 0 0 0 

PF loss 0.0017 0.0239 0 0 0 0 

Stable SF 0 0 0.0258 0.0011 0 0 

SF loss 0 0 0.0024 0.0108 0 0.0011 

SF gain 0 0 0.0039 0.0003 0.0050 0.0005 

Stable others 0 0 0.0033 0 0 0.1013 

Buffer-(stable PF) 0.1149 0.0024 0 0 0 0.0012 

Sum (�̂�.𝒌) 0.8170 0.0263 0.0354 0.0121 0.0050 0.1042 

𝑺(�̂�.𝒌) 0.0022 0.0018 0.0022 0.0010 0.0006 0.0023 

Estimated areas (km2) 

(�̂�𝑘 ± 𝑆(�̂�𝑘))  
3206236.88 
±8559.74 

103153.68
±7219.74 

138729.18
±8448.97 

47677.65
±3952.95 

19809.99
±2240.58 

408768.26 
±8960.23 

Annual loss/gain  (km2 
yr-1) 

 
25788.42 
±1804.94 

 
11919.41
±988.24 

4952.50 
±560.14 
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Table A.3 Error matrix of sample-based estimates for period 2004-2008.  

16 sampled points were excluded due to being mosaic pixels for which it was not possible to 

determine a specific land cover or for which no clear satellite imagery available.   

𝒏𝒊𝒌 Reference 
Producer’s 
accuracy Mapped Stable PF 

PF 
loss 

Stable 
SF 

SF 
loss 

SF 
gain 

Stable 
others 

ni wi 

Stable PF 433 0 0 0 0 0 433 0.7056 1.00 

PF loss 2 70 0 0 1 2 75 0.0151 0.93 

Stable SF 0 0 74 0 1 0 75 0.0341 0.99 

SF loss 0 0 6 51 4 11 72 0.0080 0.71 

SF gain 0 0 25 3 31 3 62 0.0156 0.50 

Stable 
others 

0 0 2 3 1 94 100 0.1234 0.94 

Buffer-
(stable 
PF) 

100 0 0 0 0 0 100 0.0982 1.00 

User’s 
accuracy 

0.81 1.00 0.69 0.89 0.82 0.85 
 

 
Overall 
accuracy: 
0.8211 

Error Matrix populated by estimated proportions of area using (eq. 2.3) in methods, standard error 
(eq. 2.4) and area estimates (eq. 2.4 – 2.5). Our total study area A = 3924375.63 km2.  

�̂�𝒊𝒌 Reference 

Mapped  Stable PF PF loss Stable SF SF loss SF gain 
Stable 
others 

Stable PF 0.7056 0 0 0 0 0 

PF loss 0.0004 0.0141 0 0 0.0002 0.0004 

Stable SF 0 0 0.0337 0 0.0005 0 

SF loss 0 0 0.0007 0.0057 0.0004 0.0012 

SF gain 0 0 0.0063 0.0008 0.0078 0.0008 

Stable others 0 0 0.0025 0.0037 0.0012 0.1160 

Buffer-(stable PF) 0.0982 0 0 0 0 0 

Sum (�̂�.𝒌) 0.8042 0.0141 0.0431 0.0101 0.0101 0.1183 

𝑺(�̂�.𝒌) 0.0003 0.0004 0.0021 0.0022 0.0017 0.0030 

Estimated areas 

(km2)    (�̂�𝑘 ± 𝑆(�̂�𝑘))  
3156115.72 
±1106.56 

55145.78 
±1713.30 

169126.88
±8089.54 

39770.72
±8637.66 

39767.36
±6583.01 

464449.17 
±11806.66 

Annual loss/gain     
(km2 yr-1) 

 
13786.45 
±428.32 

 
9942.68 
±2159.41 

9941.84 
±1645.75 
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Table A.4 Error matrix of sample-based estimates for period 2008-2010.  

10 sampled points were excluded due to being mosaic pixels for which it was not possible to 

determine a specific land cover or for which no clear satellite imagery available.   

𝒏𝒊𝒌 Reference 
Producer’s 
accuracy Mapped Stable PF 

PF 
loss 

Stable 
SF 

SF 
loss 

SF 
gain 

Stable 
others 

ni wi 

Stable PF 537 0 0 0 0 0 537 0.7624 1.00 

PF loss 10 32 0 0 0 7 49 0.0037 0.65 

Stable SF 0 0 72 1 0 0 73 0.0500 0.99 

SF loss 0 0 10 34 2 3 49 0.0034 0.69 

SF gain 0 0 5 0 33 6 44 0.0061 0.75 

Stable 
others 

0 0 0 0 0 96 96 0.1367 1.00 

Buffer-
(stable 
PF) 

75 0 0 0 0 0 75 0.0377 1.00 

User’s 
accuracy 

0.86 1.00 0.83 0.97 0.94 0.86 
 

 
Overall 
accuracy: 
0.8711 

Error Matrix populated by estimated proportions of area using (eq. 2.3) in methods, standard error 
(eq. 2.4) and area estimates (eq. 2.4 – 2.5). Our total study area A = 3924375.63 km2.  

�̂�𝒊𝒌 Reference 

Mapped  Stable PF PF loss Stable SF SF loss SF gain 
Stable 
others 

Stable PF 0.7624 0 0 0 0 0 

PF loss 0.0007 0.0024 0 0 0 0.0005 

Stable SF 0 0 0.0493 0.0007 0 0 

SF loss 0 0 0.0007 0.0024 0.0001 0.0002 

SF gain 0 0 0.0007 0 0.0046 0.0008 

Stable others 0 0 0 0 0 0.1367 

Buffer-(stable PF) 0.0377 0 0 0 0 0 

Sum (�̂�.𝒌) 0.8009 0.0024 0.0507 0.0031 0.0047 0.1382 

𝑺(�̂�.𝒌) 0.0002 0.0003 0.0008 0.0007 0.0004 0.0004 

Estimated areas (km2)    

(�̂�𝑘 ± 𝑆(�̂�𝑘))  
3143093.86 
±836.59 

9391.80  
±988.05 

198967.89
±3028.68 

12080.85
±2834.33 

18425.74
±1620.44 

542415.49 
±1517.38 

Annual loss/gain     
(km2 yr-1) 

 
4695.90 
±494.02 

 
6040.43 
±1417.17 

9212.87 
±810.22 
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Table A.5 Error matrix of sample-based estimates for period 2010-2012.  

11 sampled points were excluded due to being mosaic pixels for which it was not possible to 

determine a specific land cover or for which no clear satellite imagery available.   

𝒏𝒊𝒌 Reference 
Producer’s 
accuracy Mapped Stable PF 

PF 
loss 

Stable 
SF 

SF 
loss 

SF 
gain 

Stable 
others 

ni wi 

Stable PF 538 0 0 0 0 0 538 0.7721 1.00 

PF loss 2 45 0 0 0 2 49 0.0023 0.92 

Stable SF 0 0 74 1 0 0 75 0.0510 0.99 

SF loss 0 0 5 41 0 2 48 0.0054 0.85 

SF gain 0 0 10 1 24 7 42 0.0076 0.57 

Stable 
others 

0 0 1 0 0 94 95 0.1358 0.99 

Buffer-
(stable 
PF) 

75 0 0 0 0 0 75 0.0257 1.00 

User’s 
accuracy 

0.87 1.00 0.82 0.95 1.00 0.90 
 

 
Overall 
accuracy: 
0.8850 

Error Matrix populated by estimated proportions of area using (eq. 2.3) in methods, standard error 
(eq. 2.4) and area estimates (eq. 2.4 – 2.5). Our total study area A = 3924375.63 km2.  

�̂�𝒊𝒌 Reference 

Mapped  Stable PF PF loss Stable SF SF loss SF gain 
Stable 
others 

Stable PF 0.7721 0 0 0 0 0 

PF loss 0.0001 0.0021 0 0 0 0.0001 

Stable SF 0 0 0.0503 0.0007 0 0 

SF loss 0 0 0.0006 0.0046 0 0.0002 

SF gain 0 0 0.0018 0.0002 0.0044 0.0013 

Stable others 0 0 0.0014 0 0 0.1343 

Buffer-(stable PF) 0.0257 0 0 0 0 0 

Sum (�̂�.𝒌) 0.7979 0.0021 0.0541 0.0055 0.0044 0.1359 

𝑺(�̂�.𝒌) 0.0001 0.0001 0.0017 0.0008 0.0006 0.0015 

Estimated areas (km2)    

(�̂�𝑘 ± 𝑆(�̂�𝑘))  
3131395.29 
±260.93 

8390.71 
±361.08 

212502.79
±6591.65 

21514.88
±2971.53 

17125.08
±2316.17 

533446.88 
±5911.69 

Annual loss/gain     
(km2 yr-1) 

 
4195.36 
±180.54 

 
10757.44 
±1485.76 

8562.54 
±1158.09 
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Table A.6 Error matrix of sample-based estimates for period 2012-2014.  

10 sampled points were excluded due to being mosaic pixels for which it was not possible to 

determine a specific land cover or for which no clear satellite imagery available.   

𝒏𝒊𝒌 Reference 
Producer’s 
accuracy Mapped Stable PF 

PF 
loss 

Stable 
SF 

SF 
loss 

SF 
gain 

Stable 
others 

ni wi 

Stable PF 538 0 0 0 0 0 538 0.7448 1.00 

PF loss 3 47 0 0 0 0 50 0.0029 0.94 

Stable SF 0 0 73 0 0 1 74 0.0461 0.99 

SF loss 0 0 7 30 3 4 44 0.0130 0.68 

SF gain 0 0 7 0 36 4 47 0.0112 0.77 

Stable 
others 

0 0 1 0 0 94 95 0.1319 0.99 

Buffer-
(stable 
PF) 

74 1 0 0 0 0 75 0.0502 0.99 

User’s 
accuracy 

0.87 0.98 0.83 1.00 0.92 0.91 
 

 
Overall 
accuracy: 
0.8862 

Error Matrix populated by estimated proportions of area using (eq. 2.3) in methods, standard error 
(eq. 2.4) and area estimates (eq. 2.4 – 2.5). Our total study area A = 3924375.63 km2.  

�̂�𝒊𝒌 Reference 

Mapped  Stable PF PF loss Stable SF SF loss SF gain Stable others 

Stable PF 0.7448 0 0 0 0 0 

PF loss 0.0002 0.0027 0 0 0 0 

Stable SF 0 0 0.0455 0 0 0.0006 

SF loss 0 0 0.0021 0.0088 0.0009 0.0012 

SF gain 0 0 0.0017 0 0.0086 0.0010 

Stable others 0 0 0.0014 0 0 0.1305 

Buffer-(stable PF) 0.0495 0.0007 0 0 0 0 

Sum (�̂�.𝒌) 0.7945 0.0034 0.0506 0.0088 0.0095 0.1333 

𝑺(�̂�.𝒌) 0.0007 0.0007 0.0018 0.0009 0.0009 0.0017 

Estimated areas 

(km2)    ( �̂�𝑘 ±

𝑆(�̂�𝑘))  

3117832.68 
±2652.18 

13189.70 
±2652.18 

198522.48
±7003.04 

34655.61
±3610.30 

37195.03
±3372.57 

522980.14 
±6626.40 

Annual loss/gain     
(km2 yr-1) 

 
6594.85 
±1326.09 

 
17327.81 
±1805.15 

18597.51 
±1686.28 
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Table A.7 Comparison of sample-based estimates with map-based estimates of annual 

forest loss of primary forest vs. secondary forest over 2000-2014 across the 

Brazilian Amazon.  

Errors on map-based estimates are only from time interval corrections. Errors on sample-based 

estimates include both standard errors and interval corrections. Interval corrections were only 

applied to the four-year intervals (i.e. 2000-2004, 2004-2008) for secondary forest loss and gain. 

Time 
interval 

 Secondary forest 
loss (km2 yr-1)  

Primary forest loss 
(km2 yr-1)  

Total 
forest loss 
(km2 yr-1)  

Secondary forest 
loss as fraction of 
total forest loss 

2000-
2004 

sample 15276.44±1366.77 25788.42±1804.94 41064.86 
± 2264.04 

0.37 ± 0.03 

 map 18002.70±1112.67 25115.20 43117.90 
± 1112.67 

0.42 ± 0.04 

2004-
2008 

sample 12742.98±2298.56 13786.45 ± 428.32 26529.43 
± 2338.13 

0.48 ± 0.05 

 map 10080.21±623.02 14771.19 24851.40 
± 623.02 

0.42 ± 0.04 

2008-
2010 

sample 6040.43 ± 1417.17 4695.90 ± 494.02 10736.33 
± 1500.80 

0.56 ± 0.06 

 map 6768.77 7190.60 13959.37 0.48 

2010-
2012 

sample 10757.44±1485.76 4195.36 ± 180.54 14952.80 
± 1496.69 

0.72 ± 0.03 

 map 10613.72 4568.28 15182.00 0.70 

2012-
2014 

sample 17327.81±1805.15 6594.85 ± 1326.09 23922.66 
± 2239.89 

0.72 ± 0.05 

 map 25414.12 5619.72 31033.84 0.82 
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Table A.8 Secondary forest (SF) standing area, area loss rates and proportional loss rates 

by age group.  

The numbers in brackets denote time interval corrections for 2004-2008. Secondary forest loss 

for interval 2000-2004 was not included as it is not possible to discriminate ages for the first 

census interval (2000-2004).  

Time 
interval 

TERRACLASS (TC) based 
SF age definition 

SF Age at 
start of 
interval 
(years) 

SF area at 
start of 
interval 
(km2) 

SF loss 

 (km2 yr-1)  

SF loss rates      
(% yr-1) 

2004-
2008 

Non-SF in TC-2000, but SF 
in TC-2004. 

0-4 59833.11 
4837.83   

± 299.01 
 8.09 ± 0.50 

SF in TC-2000-2004. > 4 105553.86 
5242.38    

± 324.01 
4.97 ± 0.31 

 Sum 165386.97 
10080.21     
± 623.02      

6.09 ± 0.38 

2008-
2010 

Non-SF in TC-2004, but SF 
in TC-2008. 

0-4 75795.34 2972.55 3.92 

Non-SF in TC-2000, but SF 
in TC-2004-2008. 

4-8 44734.28 1560.80 3.49 

SF in TC-2000-2004-2008. > 8 89192.43 2235.42 2.51 

 Sum 209722.05 6768.77      3.23  

2010-
2012 

Non-SF in TC-2008, but SF 
in TC-2010. 

0-2 25260.17 1915.38 7.58 

Non-SF in TC-2004, but SF 
in TC-2008-2010. 

2-6 69850.24 4474.60 6.41 

Non-SF in TC-2000, but SF 
in TC-2004-2008-2010. 

6-10 41612.69 2389.07 5.74 

SF in TC-2000-2004-2008-
2010. 

>10 84821.59 1834.68 2.17 

 Sum 221444.68 10613.72    4.79     

2012-
2014 

Non-SF in TC-2010, but SF 
in TC-2012. 

0-2 31484.28 7299.95 23.19 

Non-SF in TC-2008, but SF 
in TC-2010-2012. 

2-4 21429.42 3329.72 15.54 

Non-SF in TC-2004, but SF 
in TC-2008-2010-2012. 

4-8 60901.03 7954.88 13.06 

Non-SF in TC-2000, but SF 
in TC-2004-2008-2010-
2012. 

8-12 36834.55 3542.58 9.62 

SF in TC-2000-2004-2008-
2010-2012. 

>12 81052.23 3286.98 4.06 

 Sum 231701.52 25414.12  10.97  
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Table A.9 Map-based estimates of the fate of annual secondary forest loss over 2000-2014 

across the Brazilian Amazon.  

Time interval corrections were applied for 2000-2004 and 2004-2008 intervals. 

Secondary forest loss by post-land uses (km2 yr-1) 

 2000-2004 2004-2008 2008-2010 2010-2012 2012-2014 

Pasture 17189.74±1062.43  9589.58 ± 592.69  6190.98 9676.41 23655.65 

Agriculture 382.62 ± 23.65 334.50 ± 20.67 265.86 286.25 548.18 

Mining 15.42 ± 0.95 21.79 ± 1.35 14.28 50.27 92.09 

Urban 43.28 ± 2.68     52.89 ± 3.27 24.49 53.05 63.15 

Reforestation 66.38 ± 4.10     55.41 ± 3.42 167.64 56.91 129.05  

Others 305.25 ± 18.87 26.04 ± 1.61 105.52 490.82 925.99 

sumLoss 18002.70±1112.67  10080.21±623.02 6768.77 10613.72 25414.12 

Secondary forest gain by previous land uses (km2 yr-1) 

 2000-2004 2004-2008 2008-2010 2010-2012 2012-2014 

Pasture 11140.78 ± 965.10 16678.67±1444.83 11560.42 13956.75 20606.90 

Agriculture 36.58 ± 3.17 48.63 ± 4.21 17.64 77.59 64.41 

Mining 89.96 ± 7.79 37.90 ± 3.28 0.97 24.28 57.77 

Urban 38.71 ± 3.35 7.18 ± 0.62 0.38 0.21 0.60 

Others 117.81 ± 10.21 386.71 ± 33.50 45.48 123.47 527.48 

Deforestation 165.53 ± 14.34 1501.18 ± 130.04 270.72 693.98 578.30 

Primary forest 6646.12 ± 575.74 4451.56 ± 385.63 714.63 757.70 1053.18 

Reforestation 24.90 ± 2.16 20.04 ± 1.74 19.85 108.16 182.39 

sumGain 18260.39±1581.85 23131.88±2003.86 12630.09 15742.14 23071.02 

Net change = sumGain – sumLoss  

 2000-2004 2004-2008 2008-2010 2010-2012 2012-2014 

Net change 
(mean) 

257.69 13051.67 5861.32 5128.42 -2343.09 
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Table A.10 Map-based estimates of the fate of annual secondary forest loss by age 

categories across the Brazilian Amazon.    

Area (km2 yr-1) 

2008-2010 2012-2014 

0-4 years 
 4-8 
years 

>8 years 0-4 years 4-8 years >8 years 

Pasture 2668.91 1437.74 2084.32 10184.10 7344.87 6126.68 

Agriculture 195.35 33.20 37.31 151.15 214.16 182.87 

Mining 2.74 3.62 7.92 23.33 28.87 39.89 

Urban 4.58 6.70 13.20 16.99 8.00 38.15 

Reforestation 70.56 52.49 44.59 57.35 35.99 35.72 

Others 30.41 27.04 48.07 196.74 322.99 406.26 

sumLoss 2972.55 1560.80 2235.42 10629.67 7954.88 6829.57 
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Table A.11 Annual secondary forest loss predicted by null model analysis.  

The null model assumes biased sampling without replacement given the available areas of 

secondary/primary forests, the total forest loss and the preferential bias towards cutting 

secondary forest instead of primary forests. The available areas of secondary/primary forests at 

the beginning of each interval were computed by the sum of stable secondary forest and the 

secondary forest loss within each interval. The preferential bias was derived from the first interval 

(2000-2004). The lower bounds of secondary forest loss for the null model were based on the 

lower total forest loss and lower available forest areas as derived from the sampling-based 

estimates. The upper bounds of secondary forest loss for the null model were based on the higher 

total forest loss and higher available forest areas as derived from the sampling-based estimates.   

Time 
interval 

Primary 
forest area 
at start of 
interval 
(km2) 

Secondary 
forest area 
at start of 
interval 
(km2) 

Total 
forest loss      
(km2/inter

val) 

Secondary forest 
loss (km2 yr-1) 

(null model) 

Secondary forest 
loss as fraction of 

total forest loss 
(null model) 

2000-
2004 

3309390.56 

±11197.94 

199834.95 

±10063.51 

164259.45
±9056.15 

15276.46 

(14098.65-16475.60) 

0.372 

(0.363-0.380) 

2004-
2008 

3211261.50 

±2039.57 

220098.79 

±12246.41 

106117.68
±9352.50 

11435.21 

(10173.76-12729.97) 

0.431 

(0.421-0.441) 

2008-
2010 

3152485.67 

±1294.65 

211048.74 

±4148.05 

21472.65 

±3001.61 

5013.76 

(4281.95-5755.09) 

0.467 

(0.464-0.470) 

2010-
2012 

3139786.01 

±445.49 

234017.67 

±7230.48 

29905.59 

±2993.39 

7328.26 

(6507.11-10287.68) 

0.490 

(0.484-0.496) 

2012-
2014 

3131022.37 

±3750.75 

233178.09 

±7878.88 

47845.31 

±4479.77 

11503.93 

(10287.68-12743.17) 

0.481 

(0.474-0.487) 
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Appendix B  

Supplementary information for Chapter 3 (Paper II) 

 

 

 

 

Table B.1 Annual number of Landsat surface reflectance (SR) images used in this study.  

In total, there are 11483 images. For 2001 and 2002, images were from Landsat-7, otherwise 

from Landsat-5.   

Year Image 
No. 

Coverage 
of study 
area (%) 

Year Image 
No. 

Coverage 
of study 
area (%) 

Year Image 
No. 

Coverage 
of study 
area (%) 

1984 261 99.74 1993 468 99.87 2002 715 99.93 

1985 257 99.61 1994 298 99.81 2003 303 99.79 

1986 381 99.87 1995 325 99.92 2004 583 99.91 

1987 407 99.90 1996 483 99.89 2005 536 99.96 

1988 384 99.89 1997 295 99.73 2006 529 99.83 

1989 331 99.81 1998 303 99.87 2007 498 99.88 

1990 386 99.79 1999 399 99.90 2008 543 99.86 

1991 368 99.97 2000 467 99.84 2009 551 99.86 

1992 308 99.86 2001 641 99.85 2010 463 99.90 
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Figure B.1 The change of random forest classification errors with the number of trees.  

Black: overall classification out of bag (OOB) error; Red: classification error for intact forests; 

Green: classification error for disturbed forests. For classification in this study, we used 500 trees. 
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Figure B.2 RapidEye true-colour composite image (Team, 2016) for high resolution image 

interpretation validation of our classification map corresponding to area 1 

(Moist forest) in Figure 3.5.  
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Figure B.3 RapidEye true-colour composite image (Team, 2016) for high resolution image 

interpretation validation of our classification map corresponding to area 2 

(Seasonal forest) in Figure 3.6.  
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Figure B.4 RapidEye true-colour composite image (Team, 2016) for high resolution image 

interpretation validation of classification map corresponding to area 3 (Dry 

forest) in Figure 3.7.  
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Besides ten-fold cross validation, we also validated our classification with 31 

ground-truth intact forest plots and 91 high-resolution imagery validated disturbed 

forest points, a subset of which were subsequently validated in the field. Intact 

forest points are old-growth forest plots linked to the PPBIO ( Brazilian Program 

for Biodiversity Research) (Pezzini et al., 2012) and PELD “Cerrado-Amazon 

Forest Transition: ecological and socio-environmental bases for Conservation” 

forest plot network. For disturbed forest points, we used the SPOT-validated 

points of secondary vegetation and regeneration with pasture from TerraClass, 

which were generated from SPOT-5 High Geometric Resolution (2.5m spatial 

resolution) data in “panchromatic” mode (Almeida et al., 2016). Both intact forest 

points and SPOT-validated points are not included in developing TerraClass itself. 

The distribution of these additional validation data for each ecoregion and 

valiation results are shown in Appendix Figure B.5 and AppendixTable B.2. 
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Figure B.5 Study area and additional validation points. 

Intact forest plots (18 for seasonal forest and 13 for moist forest) are from Biodiversity 

Research(PPBio) Information System (Pezzini et al., 2012)  and other field sites. TerraClass 

SPOT points (59 for seasonal forest and 32 for moist forest) are validated points of secondary 

vegetation and regeneration with pasture that were used for TerraClass products validation. 

Some points overlap due to the coarse visualization scale.  

 

 

Table B.2 Further point-scale validation accuracy based on the additional intact forest 

points and SPOT validated disturbed forest points. 

Refer to points in Figure B.5, which were not used to produce the classification map. 

Regions Overall 
accuracy 

Producer’s accuracy User’s accuracy Kappa 
statistic 

  Intact 
forests 

Disturbed 
forests 

Intact 
forests 

Disturbed 
forests 

 

Moist forest 0.956 1.0 0.938 0.867 1.0 0.897 

Seasonal forest 0.909 0.881 1.0 1.0 0.72 0.776 

Dry forest --- --- --- --- --- --- 
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Appendix C  

Supplementary information for Chapter 4 (Paper III) 

 

 

 

 

 

 

Figure C.1 Landsat surface reflectance dataset. 

Landsat-5 images in 2001 contain striping artifacts and have low coverage of the study area in 

2002. Landsat-7 contain data gaps across imagery scenes since its Scan Line Corrector (SLC) 

failed in 2003. However, Landsat-7 is the only dataset available in 2012. Sensor calibration was 

applied between Landdsat-8 and Landsat-5/7 (Roy et al., 2016).     

 

Landsat-5 TM

Landsat-7 ETM+

Landsat-8 OLI
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Figure C.2 The distribution of primary forest disturbance samples from Tyukavina et al. 

(2017) and the inventory plots from Longo et al. (2016).   

 

 

 

Figure C.3 ROC curve (receiver operating characteristic curve) best cut-off thresholds for 

classification aggregation.  

The thresholds were estimated based on the classification training points (about 1,400 intact 

points and 1,400 disturbed points) from stratified random sampling.   
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