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Abstract 

 

Chloroplast biogenesis requires coordinated expression of plastome and nuclear 

genes. The single-stranded DNA binding protein, WHIRLY1 (WHY1), which is 

localised in chloroplasts and nuclei has important but poorly characterised roles in 

this process. WHY1 functions in barley chloroplast development were assessed in 

the base, middle and tip sections of two RNAi-knockdown lines (W1-1 and W1-7) with 

less than 5% of the wild type protein. RNA-seq analysis revealed that transcripts 

encoding photosynthetic proteins were highly expressed in the embryos of the dry 

seeds of the W1-7 compared to the wild type. The greening of the developing leaves 

was delayed in the WHY1-deficient seedlings relative to the wild type, with slower 

pigment accumulation and attainment of photosynthetic capacity in the WHY1-

deficient leaves. However, the leaves of all lines reached a similar stage of 

chloroplast development at 14 days after germination. Transcript and metabolite 

profiling analysis showed changes in RNA and amino acid metabolism, TCA cycle, 

photosynthesis and photorespiration, particularly in the basal sections of the WHY1-

deficient leaves. The expression of the plastid-encoded ribosomal genes was greatly 

increased in the WHY1-deficient lines, including transcripts involved in RNA 

processing such as pentatricopeptide repeat proteins, redox-associated proteins and 

transcription factors of the MYB, bHLH and WRKY families. The levels of transcripts 

encoding FAR1, Val-tRNA synthetase and chloroplast 50S and 30S ribosomal 

subunits were significantly higher in the basal sections of the W1-7 leaves than the 

wild type. The WHY1-deficient leaves had twice the amount of plastid DNA as the 

wild type. Nevertheless, plastome-encoded transcripts and proteins were significantly 

lower than the wild type. Conversely, the levels of nuclear-encoded photosynthetic 

transcripts and proteins were significantly higher that the wild type. Developing 

WHY1-deficient leaves showed aberrant splicing of plastid ribosomal RNAs of 23S 

and 4.5 ribosomal RNAs. The Arabidopsis WHY1 protein interacted with the RH22, 

which is required for the splicing of chloroplast rRNAs. The LEA5 protein was also 

shown to interact with RH22 in the chloroplasts. WHY1 therefore has multiple roles 

in chloroplasts. In particular, plastid-encoded ribosomal transcripts are not effectively 

translated into ribosomal subunits in the absence of WHY1 during early leaf 

development. WHY1 is required for the transcription and translation of plastome 

genes that are required for the transition from plastids to chloroplasts in the 

developing barley leaf.  
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Chapter 1                                                

1.1  Introduction 

 

Plant cells are organised into compartments that have different functions, such 

as chloroplasts and mitochondria. The role of the chloroplast is to generate 

reducing power (e.g. for ferredoxins and nicotinamide adenine dinucleotide 

phosphate hydrogen (NADPH) and adenosine triphosphate (ATP), which are 

used to drive metabolism and maintain cell functions as well as to generate 

biomass for plant growth and development. Mitochondria use the carbon fixed in 

photosynthesis to generate energy through respiration. Chloroplasts and 

mitochondria are thus the two ‘energy converting’ organelles of the cells that 

house the processes that are essential to plant life such as photosynthesis and 

respiration. Photosynthesis supplies substrates for mitochondrial respiration, and 

mitochondrial metabolism is important in maintaining photosynthetic carbon 

assimilation. In addition, mitochondrial respiration can protect photosynthesis 

against light-induced damage, a process called photoinhibition by removing 

excess reducing equivalents produced by the chloroplasts (Blanco et al., 2014). 

These organelles are dependent on each other for the exchange of metabolites 

and energy (Blanco et al., 2014). Therefore, there is considerable metabolic 

communication between the mitochondria and chloroplasts.  

 

Chloroplasts and mitochondria are also able to sense specific environmental 

stresses that can affect their functional activities, passing this information to the 

nucleus in order to modulate nuclear gene expression (Barajas-López et al., 

2013). The signalling between the chloroplasts and mitochondria includes the 

metabolites and reactive oxygen species (ROS), as well as proteins, which are 

targeted at both compartments, depending on the stress condition (Suzuki et al., 

2012). Exposure to environmental stresses can cause the processes that 

facilitate energy conversion in chloroplasts and mitochondria to malfunction, 
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leading to the generation of ROS and other signals that are transmitted to the 

nucleus to regulate gene expression.  

 

1.2 The chloroplast  

 

Chloroplasts belong to the plastid family of organelles (Figure 1.1). They generate 

chemical energy and assimilate carbon through the process known as 

photosynthesis. They synthesise carbon skeletons that are used to produce 

carbohydrates, amino acids, lipids and a wide range of secondary compounds 

including phytohormones, and they store starch and oils (Sakamoto et al., 2008). 

In addition, plastids sense environmental changes and are highly responsive to 

light fluctuations and other cues, such as gravity, pathogen infection and stomatal 

opening and closure (Sakamoto et al., 2008).  

 

According to the endosymbiotic theory, chloroplasts are derived from an ancient 

cyanobacterium-like ancestor that was taken up by mitochondriate eukaryotic 

cells approximately 1 billion years ago (Zoschke and Bock, 2018). All plastids 

evolved from this single endosymbiotic event (Kovács-Bogdán et al., 2010). 

During endosymbiosis, most plastid genes were lost and transferred to the 

nucleus, undergoing a reduction in genome size (Bock and Timmis, 2008). As a 

result, today’s plastids contain about 3000 proteins; however, only 50–200 of 

these genes are encoded in the plastid genome, as most of them are nuclear-

encoded. The proteins are synthesised in the cytosol and post-translationally 

imported into the organelle (Leister, 2003, Martin et al., 2002). 

 

Plastid genes are important for plant viability because they encode multiple 

components required for photosynthesis apparatus, such as: the large subunit of 

ribulose bisphosphate carboxylase (RuBisCO) and subunits of the thylakoid 

protein complexes involved in the light reactions of photosystems I and II (PSI, 

PSII); the cytochrome b6f complex (Cyt b6f) and ATP synthase and chloroplast 
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gene expression systems, such as the bacterial-type ribonucleic acid (RNA) 

polymerase core subunits, rRNAs, tRNAs; and some ribosomal proteins (Allen et 

al., 2011, Green, 2011).  

 

 

 

 

 

 

 

Figure 1.1: Diagram illustrating basic chloroplast structure.  

The chloroplast structure consists of an outer membrane, intermembrane, inner 

membrane, stroma, thylakoid, ribosome, lamella and granum.  

 

1.2.1 Chloroplast functions 

 

Photosynthesis is often divided into two stages that are light-dependent (light 

reactions) and light-independent (dark reactions). The light-dependent reactions 

occur on the thylakoid membrane between PSII, Cyt b6f and PSI. Water is split 

into protons and electrons, and O2 is produced as a by-product in this 

photosynthetic electron-transfer reaction (Ruban, 2014). The protons and 

electrons are moving across the thylakoid membrane to produce ATP and 

NADPH (Ruban, 2014). The ATP and NADPH is later consumed in the light-

independent reaction that takes place in the chloroplast stroma, where CO2 is 

fixed by RuBisCO to generate sugars (Ruban, 2014). This carbohydrate is then 

exported to the cytosol or stored as starch. In addition, the core protein of PSII 

particularly DI protein is sensitive to light-induced damage (Theis and Schroda, 

2016). The light-induced damage of PSII leads to the reduction in the 

photosynthetic capacity known as photo-inhibition (Tyystjarvi, 2013). The PSII 
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repair processes and recovery from photo-inhibition requires disassembly of 

damaged D1 and fast cycles of D1 turn-over (Theis and Schroda, 2016).   

 

In addition to photosynthesis, chloroplasts are also involved in other metabolic 

processes such as amino acid biosynthesis, fatty acid biosynthesis, sulfur 

metabolism and also hormones synthesis such as abscisic acid, jasmonic acid 

and salicylic acid. Chloroplasts are also responsible for the synthesis of purine 

and pyrimidine bases, terpenoids, nitrogen and sulphur assimilation (Neuhaus 

and Emes, 2000). The chloroplast envelope contains metabolite transporter that 

help with the metabolic activities in chloroplasts and integrate with cellular 

compartments (Rolland et al., 2012). The interorganellar cooperation is 

necessary for lipid synthesis, photorespiration and other processes. Changes in 

biotic and abiotic stresses alter the redox status and excitation balance in PSI 

and PSII and affect light-harvesting complex II (LHCII) phosphorylation and 

antenna size in chloroplast (Bellafiore et al., 2005). Under severe stress such as 

high light, plants are unable to eliminate undesirable reactive oxygen species 

(ROS) due to the oxidation of proteins and lipids in PSII (Pospisil, 2016).  

 

1.3 Chloroplast biogenesis 

 

Chloroplast biogenesis is a light-triggered process that leads to the formation of 

fully-differentiated and photosynthetically-competent plastids. The chloroplast 

develops from small, undifferentiated, non-photosynthetic proplastids that are 

present in meristematic cells (Sakamoto et al., 2008). This process involves a 

rapid accumulation of chlorophyll and photosynthetic proteins (Harpster et al., 

1984). During the conversion of proplastids into chloroplasts, there is a 

concomitant increased in the transcription and translation of photosynthesis-

related proteins. Photosynthetic pigment–protein complexes are embedded in the 

thylakoid membranes, where they serve as highly developed sites for 

photosynthetic energy transduction, comprising PSI and PSII (Pribil et al., 2014). 
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Chloroplast biogenesis is tightly correlated with leaf development. In 

monocotyledonous plants, the leaves grow on a basal meristem. Hence, there is 

a developmental gradient of chloroplast biogenesis along the leaf blade (Pogson 

et al., 2015, Vothknecht and Westhoff, 2001). The base of the monocotyledonous 

leaf houses cells that contain proplastids, while the cells in the tips of the leaves 

house fully-developed chloroplasts (see Figure 1.2) (Vothknecht and Westhoff, 

2001). The development of chloroplasts is triggered by photomorphogenesis, a 

process that requires light. In addition, the cotyledons open due to the inhibition 

of hypocotyl growth (Waters and Langdale, 2009). 

 

 

 

 

 

 

 

Figure 1.2: General overview of chloroplast biogenesis.  

A) Chloroplast differentiation takes place at the base of the monocotyledonous leaves, 

where proplastids, located in meristematic cells, develop into photosynthetic green 

tissue. B) Proplastids (yellow dots) develop into photosynthetic chloroplasts (green dots). 

The nucleus is shown as an empty black circle. C) Later, prothylakoid vesicles (yellow) 

further develop into thylakoid vesicles (green). After Sun and Zerges (2015).  
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The establishment of functional chloroplasts is a complicated process, requiring 

the coordination in gene expression in both the nuclear and chloroplast genomes, 

followed by the assembly of proteins in response to developmental and 

environmental signals. Most chloroplast proteins are encoded by nuclear genes, 

translated in cytosol, and post-translationally imported into the stroma (Leister, 

2003). Some intermediate precursors are translocated into, or across, the 

thylakoid membrane (Di Cola et al., 2005).  

 

The establishment of functional chloroplasts requires the expression of plastid-

encoded photosynthetic genes. The initiation of chloroplast gene expression 

depends on the expression of nuclear-encoded factors, such as the RNA 

polymerase sigma factors (SIGs) and polymerase-associated proteins (PAPs) 

(Kindgren and Strand, 2015). In addition, the establishment of fully-functional 

chloroplasts requires the exchange of information between the plastid and 

nuclear genomes, the import of nuclear-encoded proteins and the establishment 

of thylakoid networks embedded with photosynthetic electron transport 

complexes (Vothknecht and Westhoff, 2001). 

 

Chloroplast gene expression and protein assembly requires components 

encoded by chloroplast genome and the nuclear genome (see Figure 1.3). Gene 

expression in the chloroplast and nucleus must be coordinated to achieve a 

balanced stoichiometric assembly (Nelson and Yocum, 2006). This requires 

extensive communication between the nucleus and chloroplast (Chan et al., 

2010). The plastid-nucleus communication includes the bi-directional signalling 

pathways. The anterograde pathway involves signals arising in the nucleus 

travelling to the plastid. Conversely, the retrograde signalling pathways involves 

signals generated in the chloroplasts/plastids travelling to the nucleus (Pogson et 

al., 2015). These communication pathways are important for the plant 

developmental processes under ambient and environmental stress conditions 

(Kacprzak et al., 2019).   
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Figure 1.3: Communication and transport between chloroplast and nucleus 

that is important in chloroplast biogenesis and development.  

The establishment of a functional chloroplast requires protein transcription, translation, 

import and turnover, as well as communication between the nucleus and chloroplasts. 

Orchestrated communication helps stoichiometric assembly between the nuclear- and 

plastid-encoded proteins with chlorophylls and carotenoids, which are important in 

reducing oxidative damage caused by photoreactive pigments. Moreover, the formation 

of thylakoids and the assembly of photosystems requires metabolite import and 

synthesis. This process required communication between the chloroplast and nucleus. 

After Pogson et al. (2015).  

  

The establishment of photosynthesis in Arabidopsis cells in culture is controlled 

by a two-phase process that allows coordination of the activities of the nuclear 

and plastid genomes (Dubreuil et al., 2018). The first step occurs when light 

initiates changes in gene expression and the cellular metabolite profile (Dubreuil 

et al., 2018). The second phase, which is initiated by the activation of the 

chloroplast functions as a result of changes in nuclear gene expression, is 

required for the transition into fully-functional chloroplasts (Dubreuil et al., 2018).   
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1.4 Chloroplast gene expression 

 

Due to the bacterial ancestry of chloroplasts, the plastids retain a prokaryotic-

gene expression apparatus, including polycistronic transcripts that undergo post-

transcriptional maturation steps, making chloroplast gene expression a 

complicated process (Yagi and Shiina, 2014). As a result of the polycistronic 

nature of primary transcripts, the control of chloroplast gene expression relies 

mainly on post-transcriptional regulation. The polycistronic RNAs are transcribed 

by plastid polymerases and undergo extensive post-transcriptional RNA 

processing, including 5’ and 3’ trimming, intercistronic cleavage, intron splicing 

and RNA editing, to produce mature, functional RNAs (Barkan, 2011, Börner et 

al., 2015, Stern et al., 2010, Lyska et al., 2013). Translation in plastids occurs on 

bacterial-type (70S ribosomes), using a set of tRNAs that are encoded by the 

plastid genome (Tiller and Bock, 2014, Sun and Zerges, 2015). The plastid 

ribosome consists of large (50S) and small (30S) multi-component ribosomal 

subunits (Yamaguchi and Subramanian, 2000). The summary of chloroplast 

transcription and maturation of chloroplast RNAs can be read here (see Figure 

1.4).  
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Figure 1.4: Overview of chloroplast transcription and maturation of 

chloroplast RNAs.  

In prokaryotes, chloroplast genes are organised in operons and transcribed as 

polycistronic RNAs that undergo several post-transcriptional maturation steps. 

Chloroplast transcription is carried out by plastid-encoded polymerases (PEPs), together 

with one or two nucleus-encoded polymerases (NEPs) because genes encoded in 

chloroplast genomes are not sufficient to regulate chloroplast gene expression. Several 

maturation steps are encoded by the primary transcript that includes 5’ and 3’ trimming, 

intercistronic cleavage, 5’ and 3’ end maturation, intron splicing and RNA editing to 

produce mature RNAs. To produce functional RNAs, nucleus-encoded proteins are 

required for the processing of plastid RNAs (blue/segmented circles). Translation occurs 

on bacterial-type (70S ribosomes), using a set of tRNAs encoded by the plastid genome. 

After Leister et al. (2017).  
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Further nucleus-encoded proteins required for 

processing plastid RNAs 
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PEP= plastid-encoded polymerases  SIGs= the nuclear-encoded sigma factors 
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Endonuclease 
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The rates of transcription and translation regulate the production and 

accumulation of photosynthetic proteins such as RuBisCO and the light 

harvesting and electron transfer components (Leister, 2003). Transcription is the 

first step in chloroplast gene expression. In higher plants, chloroplast genes are 

transcribed by two different RNA polymerases (see Figure 1.5). One is the 

nuclear-encoded plastid RNA polymerase (NEP), a single-subunit of the type T3-

T7 bacteriophage, encoded by the RPOT gene that is responsible for transcribing 

the housekeeping gene during early phase of plant development (Hedtke et al., 

1997). The second type of RNA polymerase is a bacterial-type multi-subunit 

enzyme called the plastid-encoded RNA polymerase (PEP), which is inherited 

from a cyanobacterial ancestor and transcribes the photosynthesis-related genes 

(Börner et al., 2015; Lerbs-Mache, 2011). In chloroplast gene expression, there 

is a shift in the primary RNA polymerase from NEP to PEP during chloroplast 

development (Díaz et al., 2018, Hernández-Verdeja and Strand, 2018). However, 

this process is not well understood. In green leaves, PEP is the major 

polymerases in the transcription machinery, and over 80% of plastid genes are 

transcribed by PEP (Zhelyazkova et al., 2012). The PEP subunits are encoded 

by the rpo plastid genes (rpoA, rpoB, rpoC1 and rpoC2) (Börner et al., 2015). 

PEP activity requires nuclear-encoded sigma factors for promoter specificity 

(Hanaoka et al., 2003). A large number of nuclear-encoded proteins have been 

found to be associated with the PEP subunits (Steiner et al., 2011). There is also 

a large number of PEP-associated proteins required in plastid transcription, 

suggesting that chloroplast gene expression mechanisms are complex (Kindgren 

and Strand, 2015). Chloroplast gene expression can be divided into three 

categories: i) photosynthesis-related genes transcribed by PEP; ii) housekeeping 

genes (clpP and the rrn operon) transcribed by both PEP and NEP; and iii) genes 

(accD and the rpoB operon) exclusively transcribed by NEP (Allison et al., 1996, 

Hajdukiewicz et al., 1997).   
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Figure 1.5: The transcriptional machinery in the higher plants. Chloroplast 

genes are transcribed by two different types of RNA polymerases  

PEP is a bacterial-type multi-subunit RNA polymerase, composed of four core enzymatic 

subunits α, β, β’, β’’ (blue) and a sigma subunit (red) that recognise bacterial σ70-type 

promoters with -10 and -35 consensus elements. There are six subgroups of plastid 

sigma factors (SIG1–SIG6) that recognise bacterial-type promoters in the plastid. NEP 

is involved in the transcription of housekeeping genes, such as rpo genes, for PEP core 

subunits and ribosomal protein-coding genes. The upstream regions of genes 

transcribed by NEP are known as Types Ia, Ib and II). Mainly, NEP promoters such as 

rpoB, rpoA, and accD share a core sequence, the YRTA motif (type-Ia), with transcription 

start sites (TSSs). The YRTA motif is also typical for type-Ib NEP promoters together 

with GAA-boxes. However, type-II NEP promoter mapped upstream of clpP gene lacks 

the YRTA motif. After Yagi and Shiina (2014).   
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1.5 Communication between the nucleus and organelles 

 

The majority of organellar proteins are nuclear-encoded. Hence, both the 

mitochondria and chloroplasts are dependent on the nucleus for the provision of 

structural and other proteins, requiring an extensive and complex organisation 

and co-ordination of processes involved in gene expression, translation and 

protein trafficking (Blanco et al., 2014). As mentioned previously, organelle-to-

nucleus (retrograde signalling) and nucleus-to-organelle (anterograde signalling) 

communication is required (see Figure 1.6). Retrograde signalling is a key to this 

coordination (Woodson and Chory, 2008). However, relatively little is known 

about the orchestration of the signals and pathways, involved in this 

communication. Several plastid signals have been identified, of which changes in 

the redox state of the chloroplasts and mitochondria leading to ROS accumulation 

are thought to be particularly important (Fernández and Strand, 2008). 

Mitochondrial retrograde regulation can be triggered by the disruption of 

respiratory electron transport leading to ROS accumulation (Ho et al., 2008). 

 

A number of new candidate signalling molecules have been identified in the 

chloroplast-to-nucleus retrograde pathway, including a number of metabolites. 

Arabidopsis mutants that over-express potential plastid signals, such as heme 

(Woodson et al., 2011), methylerythritol cyclodiphosphate (Xiao et al., 2012) and 

3’- phosphoadenosine 5’phosphate (Estavillo et al., 2011), had smaller rosette 

sizes and altered rosette morphologies. Many of these components have been 

identified in screens using carotenoid synthesis inhibitors like norflurazon, or 

plastid translation inhibitors like lincomycin that inhibits chloroplast development, 

producing a bleached phenotype. The genomes uncoupled (gun) mutants, which 

were isolated using such screens show higher nuclear gene expression, 

particularly genes encoding the light-harvesting chlorophyll a/b-binding proteins 

(Kacprzak et al., 2019). The biogenic pathway of retrograde signalling originates 

in the plastid early in chloroplast biogenesis (Kacprzak et al., 2019). In this 

pathway, loss of chloroplast functions leads to a reduced expression of nuclear 
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genes associated with photosynthesis and chloroplast development 

(Koussevitzky et al., 2007, Woodson et al., 2013).  

 

 

Figure 1.6: Summary of genome coordination with the nucleus and 

intracellular organelles.  

The chloroplasts and nucleus communicate with each other in order to maintain growth 

and adapt to environmental stresses. Signalling from the nucleus to the 

chloroplast/mitochondria is called anterograde signalling, and signalling from the 

chloroplast/mitochondria to the nucleus is known as retrograde signalling. Chloroplast-

mitochondrion cross-talk is signalling between these two organelles. After Woodson and 

Chory (2008).  
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1.6 The transport of proteins into organelles 

 

Chloroplasts and mitochondria are responsible for the ATP synthesis associated 

with photosynthesis and respiration, respectively. Since the vast majority of 

proteins found in the mitochondria and chloroplast are encoded by nuclear genes 

and synthesised as precursor forms on cytosolic ribosomes, some require 

specific targeting signals in the amino acid sequence to transport proteins into 

specific organelles. These processes share some similarities in the mitochondria 

and chloroplasts: i) the preproteins are bound to chaperones in order to prevent 

premature folding; ii) the targeting of proteins to both organelles requires specific 

signals, such as presequences or transit peptides; and iii) both organelles have 

special translocon complexes in their outer and inner membranes.  

 

1.6.1 The transport of proteins into mitochondria 

 

Baker's yeast (Saccharomyces cerevisiae) has been used extensively as a model 

organism for studying the principles of protein import into mitochondria (Dudek et 

al., 2013). However, the mechanisms discovered in S. cerevisiae were later found 

in most other higher eukaryotes. The majority of mitochondrial proteins are 

synthesised as precursor proteins in the cytosol. The import of these precursor 

proteins into the mitochondria occurs by post-translational mechanisms. 

However, there are exceptions in some proteins, such as Sod2 and fumarase, 

because they involve a co-translational import mechanism instead of a post-

translational mechanism (Luk et al., 2005, Yogev et al., 2007). 

 

The mitochondrial import signals are N-terminal extensions of the mature 

proteins, known as presequences (Dudek et al., 2013). These presequences are 

amphipathic α-helical segments with a net positive charge, and contain about 15 

to 55 amino acids. They are recognised by the translocase of the outer membrane 

(TOM) and translocase of the inner membrane (TIM) 23 complexes on the 

mitochondrial membrane. Thus, N-terminal presequences function as targeting 
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signals that interact with the mitochondrial import receptors, and direct the 

preproteins across the outer and inner membranes. The preproteins directed to 

the inner membrane contain a hydrophobic sorting signal that allows them to be 

inserted into the membrane (Schmidt et al., 2010). The translocation of 

preproteins into mitochondria requires ATP hydrolysis and an electrochemical H+ 

gradient across the inner membrane. Cytosolic chaperones are also important 

because they allow the precursor proteins to be targeted at the outer 

mitochondrial surface (Wiedemann et al., 2004) 

 

After the import, the N-terminal polypeptides are proteolytically removed by a 

mitochondrial-processing peptidase and other proteases (Mossmann et al., 2012, 

Taylor et al., 2001). In addition, some precursor proteins are synthesised without 

cleavable extensions. These internal targeting signals remain a part of the mature 

protein (Wiedemann et al., 2004). In all proteins directed to the outer membrane, 

intermembrane space and inner membrane, these precursor proteins contain the 

most internal targeting signals.   
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Figure 1.7: Protein import into mitochondria.  

Mitochondrial proteins are mainly synthesised in the cytosol. With the help of cytosolic 

chaperones, mitochondrial precursor proteins are moved to the TOM complex. 

Biogenesis β-barrel outer membrane proteins require the sorting and assembly 

machinery (SAM) complex. Preproteins targeted at the matrix depend on the 

presequence translocase (TIM23 complex) and its associated import presequence 

translocase-associated motor (PAM) complex) for their transport across the inner 

mitochondrial membrane. Carrier proteins are inserted into the inner membrane with the 

help of the carrier translocase (TIM22 complex). After Wiedemann et al. (2004). 

 

The TOM is important in the importation of all nucleus-encoded mitochondrial 

proteins (see Figure 1.7). This translocase carries preproteins with appropriate 

signal sequences into the intermembrane space. It also mediates the insertion of 

transmembrane proteins into the outer membrane. After passing through the 

TOM complexes, the precursor proteins follow different pathways to reach 

specific mitochondrial sub-compartments.  
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(i)  Transport pathways of outer membrane proteins 

Proteins of the outer mitochondrial membrane are synthesised as non-cleavable 

precursors that contain internal targeting signals (Schmidt et al., 2010). There are 

two types of membrane-integrated proteins in the outer membrane – α-helical 

proteins that are attached to the outer membrane by transmembrane α-helical 

segments, and pore-forming β-barrel proteins with transmembrane β-strands 

(Schmidt et al., 2010). The β-barrel membrane proteins were discovered in the 

outer membranes of bacteria, mitochondria and chloroplasts. In contrast, the 

mitochondrial inner membrane consists only of α-helical membrane proteins. The 

mitochondrial import pathway for β-barrel proteins involves the TOM complex, 

intermembrane space chaperones and the SAM complex of the outer membrane 

(Gentle et al., 2004, Kozjak et al., 2003, Wiedemann et al., 2004).  

 

(ii)  Presequence pathway to the matrix and inner membrane 

Preproteins with cleavable N-terminal presequences are allocated from TOM 

complexes to the presequence (TIM23) complex (Chacinska et al., 2009, Dolezal 

et al., 2006, Neupert and Herrmann, 2007). Subsequently, preproteins are either 

targeted at the inner membrane or the mitochondrial matrix. Preproteins imported 

into the matrix are translocated through a channel in the inner membrane with 

the help of the matrix-localised heat-shock protein 70 (mtHsp70), which is a core 

protein of the PAM complex. Most metabolic enzymes localised in the matrix are 

synthesised with such cleavable presequences (Schmidt et al., 2010). 

 

(iii)  Carrier pathway to the inner membrane 

Hydrophobic preproteins of the inner membrane, such as metabolite carriers 

(ADP and ATP) are imported via the TOM complex (Schmidt et al., 2010), the 

chaperone complexes of the intermembrane space and the carrier translocase 

(TIM22 complex), which then transfer them into the inner membrane (Koehler, 

2004, Rehling et al., 2003).  
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1.6.2 The transport of proteins into chloroplasts 

 

The majority of chloroplast proteins are synthesised as precursor proteins 

(preproteins) and imported into the organelles after translation on cytosolic 

ribosomes. They contain N-terminal transit peptides, which are important for 

transport to specific plastid sub-compartments (Bruce, 2000, Lee et al., 2008). 

The presequences or transit sequences are proteolytically removed after import 

(Soll, 2002). The transit sequence is important for organelle recognition and 

translocation initiation (Soll, 2002).  

 

The transit peptide contains about 13 to 146 amino acids (Zhang and Glaser, 

2002). Preproteins contain a cleavable transit peptide that is regulated by 

guanosine triphosphate (GTP)-binding (Soll, 2002) and by the receptor 

translocon on the outer envelope membrane that is known as the translocon outer 

membrane (TOC) complex (see Figure 1.8) (Kovács-Bogdán et al., 2010). Within 

the TOC complex, TOC 34 acts as an initial receptor for the preproteins. It is 

regulated by GTP-binding and phosphorylation (Kessler et al., 1994, Schleiff et 

al., 2002, Sveshnikova et al., 2000). These preproteins cross the outer envelope 

through an aqueous pore, and are imported into the translocon in the inner 

membrane of the chloroplast (TIC) complex (Soll and Schleiff, 2004). 

 

During the translocation process, the TOC and TIC translocons cooperate to 

facilitate the passage of polypeptides across both membranes (see Figure 1.8) 

(Kovács-Bogdán et al., 2010). A stromal-processing peptidase then cleaves the 

transit sequence to yield mature proteins (Soll, 2002). Although the protein-

targeting pathways into the mitochondria and chloroplasts share some 

similarities, there are some major differences between these processes. For 

example, mitochondria use the electrochemical hydrogen gradient and ATP 

generated by the respiratory electron transport chain for the translocation of 

preproteins into the mitochondrial matrix. However, the transport of plastid 

preproteins into the stroma is driven exclusively by the hydrolysis of GTP and 

ATP in the cytosol. Moreover, the transport of chloroplast peptides from the 
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stroma to other sub-compartments, such as the thylakoid and the lumen, requires 

a second targeting sequence, which is subsequently cleaved.  

 

Figure 1.8: Protein import into chloroplasts 

Nuclear-encoded chloroplastic proteins are synthesised on cytoplasmic ribosomes and 

then imported into the chloroplast with the help of molecular chaperones. Transit 

peptides with a specific binding site for the 14-3-3 dimers bind selectively to 

phosphorylated transit peptide with the help of Hsp70 chaperones. Another cytosolic 

complex (Hsp 90 and Hsp70) also had chaperons associated with preprotein. TOC34 

and TOC64 function as gates for the guidance and Hsp90-assisted complexes, 

respectively. TOC159 not only functions as a receptor in the outer envelope membrane 

but also as a GTP-driven motor that helps preproteins into the TOC-channel. The import 

channel of the TOC complex is formed by a β-barrel protein, TOC75. After being 

imported across the outer and inner envelope membranes of the chloroplasts, through 

the TOC and TIC complexes, the transit peptide is cleaved by zinc-binding 

metallopeptidase and the stromal processing peptidase after its import into the stroma, 

yielding the mature proteins. IMS – intermembrane space, Thyl – thylakoids. After 

Kovács-Bogdán et al. (2010).  
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1.6.3  Dual-targeted proteins 

 

Some proteins can be dual-targeted at two or more compartments. For example, 

glutathione reductase in Pisum sativum (pea) has been identified as a dual-

targeting protein to chloroplasts and mitochondria (Creissen et al., 1995). This 

study demonstrated that proteins can be imported into two organelles and that 

protein import is not limited to one specific location (Creissen et al., 1995). Other 

dual-targeted proteins in Arabidopsis and rice include methionine 

aminopeptidase, monodehydroascorbate reductase glutamyl-transfer RNA 

synthetase and tyrosyl-transfer RNA synthetase (Morgante et al., 2009). To date, 

more than 100 dual-targeted proteins have been identified in a variety of plants 

(Carrie et al., 2009a, Carrie and Small, 2013). In Arabidopsis, 72 proteins are 

dual-targeted (Carrie et al., 2009b, Carrie and Small, 2013). In addition, 500 

proteins containing ambiguous signals are predicted to be dual-targeted 

(Mitschke et al., 2009). The reason for dual-targeting remains unknown, but it is 

suggested to be necessary for the coordination of organellar functions in 

retrograde and anterograde signalling pathways (Carrie et al., 2009a).  
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1.7 Reactive oxygen species 

 

Plants metabolism is regulated to maintain an appropriate balance between 

energy production and consumption (Sharma et al., 2012). The steady-state of 

the cellular energy balance depends on a signalling network that links key 

processes such as photosynthesis, dark respiration and photorespiration with 

multiple points of reciprocal control (Foyer and Noctor, 2009, Suzuki et al., 2012). 

Many of the common forms of ROS such as superoxide anions (O2
•−), hydroxyl 

radicals (•OH) and hydrogen peroxide (H2O2) are produced by the partial 

reduction of atmospheric triplet oxygen (3O2). In addition, singlet oxygen (1O2) is 

produced by the direct transfer of energy from chlorophylls in PSII to ground state 

molecular oxygen (Foyer and Noctor, 2009). ROS are generated at many sites 

during steady-state cellular metabolism, particularly through photosynthesis and 

respiratory electron transport processes. ROS production is unavoidable in 

aerobic metabolism (Moller, 2001, Shapiguzov et al., 2012). The main sources of 

ROS in photosynthetic cells are the chloroplasts, peroxisomes and mitochondria 

(Pospisil, 2009, Foyer and Noctor, 2009). 

 

Despite very high rates of ROS production, these important metabolites do not 

normally accumulate in cells because of a very effective antioxidant network that 

rapidly metabolises ROS as soon as they are produced. However, increased 

ROS accumulation can be triggered by exposure to environmental stresses, such 

as drought, salinity, cold, metal toxicity and UV-B radiation (Gill and Tuteja, 2010). 

The accumulation of ROS triggers key cellular signalling pathways (Foyer and 

Noctor, 2009, Suzuki et al., 2012). The accumulation of ROS has the potential to 

cause damage to DNA, lipids and proteins generate further oxidative signals that 

can trigger cell suicide programs and programmed cell death. As mentioned 

previously, ROS are widely considered to participate in retrograde signal 

cascades (Chan et al., 2010).  
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1.8 WHIRLY1 protein 

 

The WHIRLY (WHY) proteins have putative DNA-binding domains consists of 6 

amino acids, Lys-Gly-Lys-Ala-Ala-Leu (KGKAAL), which allow them to bind 

single-stranded DNA (ssDNA-binding) (Desveaux et al., 2000). In general, 

ssDNA-binding proteins are involved in multiple cellular processes, such as DNA 

replication, repair and recombination (Cappadocia et al., 2010). The WHY 

ssDNA-binding protein name is derived from the whirligig-like appearance of the 

tetramers and specific to the plant kingdom (Desveaux et al., 2002, Desveaux et 

al., 2005). The tetrameric forms can further assemble into 24-oligomers upon 

binding to the thylakoid membrane (Cappadocia et al., 2010, Cappadocia et al., 

2012) 

 

WHY proteins were first described as transcriptional activators that bind to an 

elicitor response element in the promoter region of pathogenesis-related genes 

in the nucleus of potato (Despres et al., 1995, Desveaux et al., 2000). The DNA 

binding of WHY1 is induced by pathogen elicitors and salicylic acid (SA) 

(Desveaux et al., 2004). Elicitor-induced gene expression of the pathogenesis-

related nuclear gene (PR-10a) in potato is mediated by the transcriptional 

activator PBF-2, which has a DNA-binding component of 24 kDa (Despres et al., 

1995). This protein was therefore first called a nuclear factor (p24) (Desveaux et 

al., 2000). In addition to the role of the WHY1 protein as a transcriptional 

regulator, it maintains telomere homeostasis through the regulation of telomerase 

activity, as shown in a study of telomere length in Arabidopsis lines with altered 

levels of AtWHY1 expression (Yoo et al., 2007a).  

 

In all plants studied to date, there are at least two WHY proteins (WHY1 and 

WHY2) that are targeted at the mitochondria or plastids (Isemer et al., 2012b, 

Krause and Krupinska, 2009) depending on the plant species (Marechal et al., 

2009). For example, there are three WHY genes encoding WHY proteins in 

Arabidopsis (Desveaux et al., 2005). The AtWHY1 and AtWHY3 proteins have 
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77% and 82% sequence similarity, respectively, and are targeted at plastids, 

while AtWHY2 is targeted at mitochondria (Desveaux et al., 2005, Krause and 

Krupinska, 2009). In barley, there are two WHY proteins. WHY1 is targeted at the 

nucleus and chloroplasts and WHY2 is located in the mitochondria (Melonek et 

al., 2010). The functions of the WHY proteins might vary depending on the stage 

of plant development and their localisation within the cell.  
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WHY1 was first thought to be exclusively located in the nucleus (Desveaux et al., 

2000, Desveaux et al., 2004). However, it was later demonstrated that WHY1 is 

also located in the chloroplasts (Krause et al., 2005). WHY1 is thus dual-targeted 

at the plastids and nucleus of the same cell (Grabowski et al., 2008). The WHY1 

protein has the same molecular weight in the chloroplasts and nucleus, and is 

synthesised on the 80S ribosomes, imported to the chloroplasts and processed 

by a cleavage of N-terminal plastid transit peptide (Grabowski et al., 2008). 

Transplastomic studies using a recombinant form of WHY1 suggested that WHY1 

could move from chloroplasts to the nucleus (Isemer et al., 2012b, Foyer et al., 

2014) 

 

The chloroplast form of WHY1 is present in the nucleoids (Krause et al., 2005), 

as well as being linked to the thylakoid membranes (Grabowski et al., 2008). The 

WHY1 protein is located at the boundary between thylakoids and nucleoids in the 

chloroplasts (Foyer et al., 2014). It is possible that the WHY1 protein participates 

in chloroplast to nucleus signalling (see Figure 1.9). 

 

Figure 1.9: Schematic model of the WHY1-dependent perception and 

transduction of redox signals from chloroplast to nucleus.  

WHY1 forms 24-oligomers that form a bridge between the thylakoid and nucleoid under 

normal conditions. The redox state of the photosynthetic apparatus responds to extreme 

environmental conditions. After Foyer et al. (2014).   
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Arabidopsis mutants defective in WHY1 have a similar phenotype to the wild type 

(Yoo et al., 2007a). The seeds of why1 Arabidopsis mutants were shown to be 

less sensitive to salicylic acid (SA) and abscisic acid (ABA) than the wild type in 

germination assays (Isemer et al., 2012a). The Arabidopsis seeds were 

insensitive towards ABA when the WHY1 protein was expressed in the nuclei. In 

contrast, the seeds were sensitive towards ABA when the WHY1 protein was 

targeted to both plastids and nuclei (Isemer et al., 2012a). 

 

Plastid-targeted WHY proteins were important for genome stability in Arabidopsis 

(Marechal et al., 2009). A small percentage of Atwhy1 Atwhy3 double knockout 

mutants had altered chloroplast development (Marechal et al., 2009). There is a 

high level of variation in the mutant phenotypes observed in the double mutant 

line, with a small percentage exhibiting chlorosis, or yellow/white sectors on the 

leaves (Marechal et al., 2009). The WHY1 and WHY3 proteins are therefore 

considered to contribute to plastid genome stability by preventing illegitimate 

recombination (Marechal et al., 2009). Most of the Arabidopsis Atwhy1 Atwhy3 

mutants however, had similar phenotypes to the wild type (Cappadocia et al., 

2010, Marechal et al., 2009).  

 

Crossing the Arabidopsis Atwhy1 Atwhy3 double mutants, with a mutant impaired 

in DNA polymerase IB (pollB) (atwhy1 atwhy3 pollb-1) resulted in a severe yellow-

variegated phenotype (Lepage et al., 2013). The atwhy1 atwhy3 pollb-1 mutants 

had a higher level of illegitimate recombination between repeated sequences and 

high plastid genome instability compared to the wild type (Lepage et al., 2013). 

These findings suggested that the DNA polymerase IB and WHY proteins 

function synergistically to maintain plastid genome stability (Krupinska et al., 

2014). Moreover, the atwhy1 atwhy3 pollb-1 mutants exhibited a low level of 

photosynthetic electron transport efficiency than the wild type, and have high 

ROS levels (Lepage et al., 2013). The high level of ROS accumulation observed 

in these mutants links these proteins to chloroplast and nucleus signalling, and 

show its ability to tolerate oxidative stress, suggesting a role for WHY1 in DNA 

polymerase (Lepage et al., 2013). 
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The functions of WHY1 in chloroplasts have been analysed by mutants and 

transgenic plants lacking, or low in, WHY1 protein abundance. Maize knockout 

mutants (zmwhy1-1) have shown the most extreme phenotype (see Figure 1.10). 

Experiments with knockdown mutations of ZmWhy1, produced by transposon 

insertion, have shown impaired plastid gene expression, resulting in ivory or pale 

plant leaves that lack plastid ribosomes, thus suggesting a role of WHY1 in 

chloroplast RNA metabolism (Prikryl et al., 2008). Analysis of these mutants has 

shown that WHY1 is associated with both DNA and RNA in chloroplasts, and also 

co-immunoprecipitates with CRS1, a protein involved in the splicing of a specific 

set of chloroplast introns, suggesting that WHY1 may play an accessory function 

in intron splicing (Prikryl et al., 2008). Studies have also indicated that knockout 

and knockdown maize lines have similar amounts of cpDNA, suggesting that 

WHY1 is not needed for cpDNA replication (Prikryl et al., 2008).   

  

 

 

 

 

 

Figure 1.10: Comparison of the phenotype in wild and ZmWHY1 mutant 

seedlings lacking the WHY1 protein at 9 days old. 

The seedlings shown are homozygous for either the ZmWHY1-1 and ZmWHY1-2 allele, 

or are the heteroallelic progeny of a complementation cross. After Prikryl et al. (2008).   
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1.9 The WHY1 protein in barley  

 

In earlier studies, WHY1 was not found to associate with plastid nucleoids 

(Melonek et al., 2010). Later, it has been shown that WHY1 associates with 

chloroplast nucleoids in barley (Krupinska et al., 2014). The loss of the WHY1 

protein in this transgenic barley line increased the chloroplast copy number with 

an increased expression of an organellar DNA polymerase (Krupinska et al., 

2014). Analysis using nucleic acid staining has shown that a nucleoid population 

in chloroplasts of the W1-7 was more heterogeneous than in the wild type (see 

Figure 1.11) (Krupinska et al., 2014).  

Figure 1.11: Morphology and distribution of chloroplast nucleoids in leaves 

of WT and WHY1-deficient barley plants (W1-7).  

The DNA was stained using YO-PRO®-1 (green). Scale bar = 5 μm. After Krupinska et 

al. (2014).  

 

The barley WHY1 protein was shown to bind to one of the two ERE motifs on the 

HvS40 gene, suggesting that it might act as a promoter of this senescence-

associated gene (Krupinska et al., 2002, Krupinska et al., 2014). Experiments 

with the RNAi transgenic barley lines (W1-1, W1-7 and W1-9) that have very low 

levels of the WHY1 protein had much greater levels of transcripts encoding 

components of the thylakoid NADH complex, the chloroplast RNA polymerase 

(RPOC2, RPOB and RPOC1), the cytochrome b/f complex (PETA, PETD and 
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YCF5) and the chloroplast ribosomes (RPL20, RPL23.2, RPL33 and RPS2) was 

higher in the WHY1-deficient lines than the wild type (Comadira et al., 2015). The 

transgenic barley lines W1-1, W1-7 and W1-9 exhibited phenotypes similar to the 

wild type (see Figure 1.12), with comparable photosynthesis rates, although they 

contained significantly more chlorophyll and less sucrose than the wild type, while 

also exhibiting similar phenotypes to the wild type and having no effect on aphid 

infestation (Comadira et al., 2015).  

 

 

 

 

 

 

Figure 1.12: A comparison of phenotypes in the wild type and WHY1-

deficient barley lines (W1-1, W1-7 and W1-9).  

Representative appearance of lines 22 days after germination. (Comadira et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT     W1-1       W1-7             W1-9   
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The WHY protein functions are summarised in Table 1.1. 

Table 1.1: WHY protein functions  

Protein Function Reference  

StWHY1 
Solanum tuberosum 

Pathogen response 
ssDNA binding 
Transcriptional 
activator 

Despres et al. (1995) 
Desveaux et al. (2000) 
Desveaux et al. (2002) 

AtWHY1 
Arabidopsis thaliana 

SA-mediated 
pathogen response  
Regulator of telomere 
homeostasis  
Plastid genome 
stability  
Negative regulator of 
AtKP1  
Organelle genome 
repair  
ABA-sensitive in seed 
germination  
WRKY53 repressor, 
delays senescence  
Plastid DNA stability 
with polIB  
U-turn-like 
rearrangement 
suppression  

Desveaux et al. (2004) 
 
Yoo et al. (2007) 
 
Marechal et al. (2009) 
 
Xiong et al. (2009) 
 
Cappadocia et al. 
(2010) 
Isemer et al. (2012) 
 
Miao et al. (2013) 
 
Lepage et al. (2013) 
 
Zampini et al. (2015) 

ZmWHY1 
Zea mays 

Plastid biogenesis, 
Ribosomal RNA 
metabolism and RNA 
splicing 

Prikryl et al. (2008) 

HvWHY1 
Hordeum vulgare 

Plastid nucleoids 
compaction 
HvS40 promoter 
binding 
Redox sensor 
Leaf development 

Krupinska et al. (2014) 
 
Krupinska et al. (2014) 
 
Foyer et al. (2014) 
Unpublished work 
 
 

  



 
 

30 

 

1.10 Late embryogenesis abundant proteins  

 

Interest in the functions of late embryogenesis abundant 5 (LEA5) began when a 

PhD student in the lab, Daniel Shaw, undertook a tandem affinity purification 

(TAP) tagging study to identify proteins that interacted with LEA5 in the lab of 

Geert De Jaeger in the Department of Plant Systems Biology, VIB, Gent. These 

studies consistently showed that LEA5 interacted with chloroplast proteins. 

Moreover, chloroplast DEA (D/H)-box RNA helicase 22 (RH22) was identified as 

a LEA5-binding partner in all experiments. 

 

LEA proteins were first identified as proteins that were abundant in the later 

stages of seed development (Grzelczak et al., 1982). Later, LEA proteins were 

found to be expressed in many of the plant vegetative and reproductive tissues 

(Hundertmark and Hincha, 2008) and were found to be present in other 

organisms, such as eukaryotes and prokaryotes (Garay-Arroyo et al., 2000). 

Abiotic stresses, such as drought and cold, can induce LEA proteins 

(Thomashow, 1999). This suggests that the LEA proteins in transgenic plants 

provides resistance to extreme environmental stresses, such as drought, extreme 

cold and freezing. They are thought to act as molecular chaperones in order to 

protect the plant against the aggregation of protein under water stress (Goyal et 

al., 2005). In Arabidopsis, LEA proteins make up to 51 members of a family that 

can be further divided into nine different groups, with different constitutive and 

inducible expression patterns (Hundertmark and Hincha, 2008). These proteins 

are hydrophilic, mostly intrinsically disordered, proteins, which play major roles in 

stress tolerance. However, the functions of many of the 51 genes encoding LEA 

proteins in Arabidopsis remain uncharacterised.    

 

LEA5 (LEA38: At4g02380) is a member of the LEA-3 group in Arabidopsis. 

AtLEA5 protein is likely to be localised either in the plastids or the mitochondria 

(Hundertmark and Hincha, 2008). The expression of AtLEA5 shows a diurnal 

pattern of regulation that is abundant in the dark, but is suppressed in light (Mowla 
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et al., 2006). Canonical LEAs are normally expressed in seeds, but AtLEA5 is 

unique compared to the other LEA family members because it is expressed in the 

roots and reproductive organs (Mowla et al., 2006). Previously, LEA5 was known 

as a senescence-associated gene that was expressed transiently early in leaf 

senescence, as the leaves began to yellow, being induced by darkness (Weaver 

et al., 1998). There have been many reports on LEA5, including data from open-

access microarrays (Zimmermann et al., 2004), showing that other stresses, such 

as ozone-induced leaf senescence in Arabidopsis (Miller et al., 1999), cold (Seki 

et al., 2001), nitrogen deficiency (Wang et al., 2000) and pathogen attacks, 

including Colletotrichum higginsianum (Liu et al., 2007), increase LEA transcripts. 

Similarly, treatment with hormones, such as ethylene (Weaver et al., 1998) and 

jasmonate (Jung et al., 2007) and also sugar (Xiao et al., 2000) can induce LEA5 

expression. 

 

Arabidopsis genes associated with oxidative stress tolerance were identified 

using the complementation of an oxidant-sensitive yeast mutant (Δyap1) strain of 

Saccharomyces cerevisiae (Mowla et al., 2006). The expression of AtLEA5 

allows the yeast mutant strain (Δyap1) to grow in the presence of oxidants, such 

as H2O2, diamide, menadione and tert-butyl hydroperoxide light (Mowla et al., 

2006). This study suggests that LEA5 may play a role in the response to oxidative 

stress. AtLEA5 proteins were also found to be localised to mitochondria, using a 

yellow fluorescent protein (YFP) fusion (Salleh et al., 2012) and separately to the 

mitochondrial matrix, using a green fluorescent protein (Candat et al., 2014). This 

suggests that LEA5 may have a role in protecting mitochondrial functions that 

relate to respiration and oxidative stress tolerance or signalling in mitochondria in 

plants exposed to stress.  
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1.11 DEAD-box RNA helicase 22  

 

The plastid DEAD-box RNA helicase 22 (RH22) is a putative DEAD RNA helicase 

known as heavy seed 3 (HS3) (Kanai et al., 2013). RH22 is localised to plastids 

(Kanai et al., 2013) and is known to be a plastid-specific helicase (Chi et al., 

2012). Seedlings of Arabidopsis defective in RH22 exhibit a pale green 

phenotype in young seedlings, but later on, the mature leaves are similar to the 

wild type (Kanai et al., 2013). The level of RH22 expression is high in young 

seeds and seedlings, but not in the stems, rosette leaves or flowers (Kanai et al., 

2013). The plastid gene expression of rh22 mutant young seeds and seedlings 

differs from the wild type. The expression levels of the gene encoding the β-

subunit of carboxyltransferase, a component of acetyl-CoA carboxylase in 

plastids, is low in RH22 seeds. This β subunit of carboxyltransferase is required 

in fatty-acid biosynthesis for the conversion of acetyl-CoA to malonyl-CoA by 

acetyl-CoA carboxylase (Cahoon et al., 2007, Konishi et al., 1996, Ke et al., 2000, 

Sasaki and Nagano, 2004). RNA helicase is important in regulating a variety of 

plant growth and development stages through the regulation of RNA metabolism 

(Kanai et al., 2013). RH22 is also required for chloroplast ribosome biogenesis, 

where a knockdown of RH22 has resulted in a delayed-greening phenotype in 

Arabidopsis (Chi et al., 2012). RH22 has also been found to be involved in the 

biogenesis of 50S ribosomal subunits in Arabidopsis because the precursors of 

23S and 4.5 rRNA accumulated in rh22 mutants (Chi et al., 2012). 

 

A large number of RNA helicases have been identified to be localised in plastids, 

using proteome analysis (Zybailov et al., 2008). RNA helicases are important in 

the rearrangement of ribonucleoproteins and gene expression (Cruz et al., 1999). 

The Arabidopsis genome encodes more than 100 putative RNA helicases, some 

of which have been identified and characterised (Mingam et al., 2004; Umate et 

al., 2010). Plastids and mitochondria have their own genomes that are separated 

from the nuclear genome, and there are organelle-localised helicases encoded 

in the nuclear genome (Kanai et al., 2013). Other examples of RNA helicases are 

AtSUV3 and ISE1. Both are mitochondrial helicases, and have different functions. 
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AtSUV3 has ATP hydrolytic activity, while the loss of ISE1 leads to dysfunction in 

the mitochondria and plasmodesmata (Gagliardi et al., 1999, Stonebloom et al., 

2009). MH1 and PMH2 are linked to large RNA-containing complexes in the 

mitochondria (Matthes et al., 2007), and PMH2 is important for intron splicing in 

mitochondrial genes (Kohler et al., 2010). RH39 is a plastid-specific helicase 

required in the post-maturation processing of 23S rRNA in chloroplasts 

(Nishimura et al., 2010).   
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1.12 Hypothesis and project objectives 

 

WHY1 is a dually targeted protein that is localised in the chloroplasts and nucleus 

(Figure 1.13). This protein is therefore a candidate for the study of organelle 

communication with the nucleus, particularly during plant development and 

exposure to environmental stress. Chloroplast biogenesis requires the 

coordinated expression of plastome and nuclear genes. The switch from the 

nuclear-encoded RNA polymerase (NEP) to the plastid-encoded RNA 

polymerase (PEP) early in chloroplast development is essential for the 

establishment of photosynthesis. However, the mechanisms that facilitate this 

switch remain poorly understood. The hypothesis that forms the basis of this 

study is that WHY1 plays an important role in chloroplast development and that 

it interacts with other proteins in the chloroplast such as LEA5 to regulate 

plastome gene expression and translation. Since the precise functions of WHY1 

in chloroplast development are poorly understood, the following experiments 

were performed to characterise the function of WHY1 in barley leaf development. 

Earlier studies had revealed that LEA5 is not expressed in leaves in the light 

except under conditions of biotic or abiotic stress. This protein is localised in the 

mitochondria and is important in plant responses to oxidative and other stresses. 

However, its precise functions and mechanisms of action are unknown. A 

previous study using tandem affinity purification (TAP) tagging had revealed that 

LEA5 can interact with the chloroplast protein (RH22). A part of this study was 

therefore dedicated to the characterisation of LEA5 binding to RH22 in vivo using 

a split-YFP system. A preliminary hypothesis that was tested in the following 

studies was that both WHY1 and LEA5 bind to RH22 and that this binding is 

important in the regulation of the functions of these proteins in the chloroplasts. 

The specific objectives of this thesis were as follows: 

1) To investigate the differences in the transcript profiles of the embryos of 

the dry seeds of WHY1-deficient seedlings compared to the wild type. 

These studies aim to understand the function of WHY1 during seed 

germination. This analysis will provide a better understanding of early 

events that are important during the germination process. 
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2) To characterise the development of barley leaves that are deficient in 

WHY1 compared to the wild type in terms of biochemistry and physiology 

(chlorophyll content and protein content) as well transcriptome and 

metabolome profiles at early stages of seedling development, i.e. at 7 and 

14 days after germination. These studies aim to provide a better 

understanding on the roles of WHY1 in barley leaf development. 

3) To characterise LEA5 functions in Arabidopsis. Firstly, the subcellular 

localisation of the AtLEA5 protein was performed using transgenic lines 

expressing a LEA5-YFP fusion protein driven by the constitutive 35S 

promoter.  The second approach was to determine whether LEA5 binds to 

RH22 in a transient expression system. Arabidopsis leaf protoplasts were 

transfected with a range of constructs designed to interrogate the 

interactions between LEA5 with RH22.  

 

 

 

 

 

 

 

 

 

 

Figure 1.13: WHY1, RH22 and LEA5 localisation in the cell. 

The WHY1 is localised to chloroplast and nucleus in the same cell (Grabowski et al., 

2008), while the LEA5 protein is located in the mitochondria (Salleh et al., 2012) and the 

RH22 is located in the chloroplast (Chi et al., 2012).
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Chapter 2 . Materials and Methods 

 

2.1 Plant material and growth conditions 

 

2.1.1 Barley 

 

Wild type control seeds (Hordeum vulgare L.cv. Golden Promise) and two 

independent WHIRLY1 RNAi knockdown transgenic lines (W1-1 and W1-7) 

produced and characterised in a previous study by Dr Karin Krupinska (University 

of Kiel) were used in this study. 

 

2.1.2 Arabidopsis 

 

Wild type Arabidopsis, accession Columbia 0 (Col-0), widely available in this 

laboratory for protoplast transformation studies, was used unless stated. 

Arabidopsis expressing a LEA5-YFP fusion construct was provided by Dr Hilary 

Rogers (Cardiff University). Seeds of the T-DNA insertion line, DEA (D/H)-box 

RNA helicase 22 (RH-22), were obtained from Masatake Kanai (National Institute 

for Basic Biology, Japan).  
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2.1.3 Growth conditions  

 

Arabidopsis seeds expressing a LEA5-YFP fusion construct were surface-

sterilised by exposing the seeds to commercial bleach (100 ml) and 100% ethanol 

(3 ml) for 2 h. The seeds were then sown on Petri dishes containing 0.5% 

Murashige and Skoog (MS) basal salts, 1% agar, pH 5.7 and sealed with micro 

pore tape. They were then cold-stratified for 2 days at 4°C, after which they were 

placed in a controlled environment chamber for 5 days. The growth conditions 

were as follows: 20ºC/16ºC temperature regime corresponding to a 16 h light/8 h 

dark photoperiod with 250 μmol m-2s-1 irradiance and 60% relative humidity. All 

plants were grown under these conditions unless otherwise stated. 

 

Arabidopsis (Col-0) plants used in the protoplast study were placed into pots 

(5 cm x 5 cm) and after 10 days, were transplanted using forceps into a new 

medium potting tray (William Sinclair Horticulture Ltd, UK). The plants were grown 

for 3–5 weeks in a controlled environment chamber. 

 

The barley plants (1 per pot) were sown in compost pots (SHL professional 

potting compost) in a controlled environment chamber with a 16 h light/8 h dark 

photoperiod, with an irradiance of 250 μmol m-2s-1, 20ºC/16ºC day/night 

temperature regime and 60% relative humidity.  

 

2.1.3.1 Seed Production 

 

The barley plants were grown to maturity in compost in a 22°C greenhouse at the 

James Hutton Institute (Scotland) with supplementary lighting provided by high-

pressure sodium vapour lamps (Powertone SON-T AGRO 400W; Philips 

Electronics, UK) to maintain a 16 h light /8 h dark photoperiod.  
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2.2 Barley leaf sample preparation 

 

The wild type and transgenic barley (W1-1 and W1-7) seedlings were harvested 

at 7 days and 14 days after sowing. The first leaves of 7-day old and 14-day old 

seedlings were excised, weighed and divided into the following sections: base, 

middle and tip, as illustrated in Figure 2.1. The leaves were weighed into 100 mg 

fresh weight samples and ground in liquid nitrogen to be stored at −80°C until 

analysis. A minimum of three biological replicates were used in all experiments. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Experimental design used in the analysis of the WHY1-deficient 

lines and wild type barley seedlings.  

Barley plants were grown for 7 days and 14 days. The first leaves were excised and 

divided into three sections: base, mid and tip; the leaves were stored in −80°C until 

analysis.  

Tip 

 

 

Mid 

 

 

 

Base 

 

WT     W1-1                      W1-7 
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2.3 Leaf Pigments 

 

Base, middle and tip sections (100 mg fresh weight) of the first leaves of 7- and 

14-day old barley seedlings were ground in liquid nitrogen. Then, ice-cold 95% 

ethanol (1 ml) was added to the sample and the mixture was ground again. The 

extracts were later centrifuged (Centrifuge 5804R, Eppendorf, UK) at maximum 

speed of 14,000 × g for 10 min at 4ºC. The supernatant fractions were collected 

and used for pigment analysis. The absorbance values were determined at 

470 nm, 649 nm and 664 nm on a Fluostar Omega plate reader (BMG Labtech 

GmbH, Ortenberg, Germany) using a 95% ethanol solution as blank. Pigment 

content was determined according to the method of (Lichtenthaler, 1987) using 

equations: 

Chlorophyll a = 13.36 A664 − 5.19 A649 

Chlorophyll b = 27.43 A649 − 8.12 A664 

Total chlorophyll (a+b) = 5.24 A664 + 22.24 A649 

Carotene = (1000 A470 − 2.13 Ca − 97.64 Cb)/209 

 

2.4 Chlorophyll Fluorescence Measurements 

 

Chlorophyll fluorescence measurements were performed on the base, middle 

and tip sections of the first leaves of the barley seedlings, starting from the first 

day of leaves emerging at 3-day old until 10 days after sowing. Plants were 

adapted in the dark for an hour for the measurement of Fv’/Fm’. The chlorophyll 

fluorescence parameters were obtained using a Fluorimager imaging system with 

automated camera control and image processing scripts provided by the 

manufacturer (Technologica Ltd, Colchester, UK). Dolphin camera (Allied Vision 

Technologies, UK) was used to capture and process the chlorophyll fluorescence 

images. Fluorescence measurements were completed with the help of Dr Tracy 

Lawson (University of Essex).  
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2.4.1 Measurement of chlorophyll a fluorescence quenching 

parameters 

 

Chlorophyll a fluorescence parameters were measured on the base, middle and 

tip sections of the first leaves of 7- to 14-day old barley seedlings. The barley 

plants were kept in the dark for 1 hour. The ratio of dark adapted chlorophyll a 

fluorescence variable (Fv) to the maximal value of chlorophyll a fluorescence 

(Fm) was measured using Fluorometer (FP 100-SN-FP-680, Drasov, Czech 

Republic, http://www.psi.cz).   

 

2.5 Nucleic acid extraction 

 

2.5.1 DNA extraction 

 

DNA was extracted from the base, middle and tip sections of frozen first leaves 

of the barley seedlings (100 mg fresh weight per sample) using the DNeasy Plant 

Mini Kit (Qiagen, Manchester, UK). The samples were ground in liquid nitrogen 

in a pestle and mortar. Buffer AP1 (400 µl) and RNase A (4 μl) were added to the 

samples and the mixtures were incubated for 10 min at 65°C with 2 or 3 

inversions. Buffer P3 (130 µl) was then added and the mixtures were incubated 

for a further 5 min on ice. Samples were pipetted onto QIAshredder spin columns 

and collected by centrifugation at 20,000 × g for 2 min. Samples were transferred 

into new tubes without disturbing the pellets. Buffer AW1 (1.5 volume) was added 

to each sample and mixed well. The samples (650 µl) were transferred to DNeasy 

Mini spin columns with 2 ml collection tubes and centrifuged for 1 min at 

≥6000 × g. The flow-through was discarded and the spin columns were placed 

into new 2 ml collection tubes. Wash buffer (500 µl AW1) was added to each tube 

and centrifuged for 1 min at ≥6000 × g. The final wash buffer (500 µl AW2) was 

added to each tube and centrifuged for 2 min at 20,000 × g; this step was 

repeated twice. The spin columns were transferred to new 1.5 ml microcentrifuge 
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tubes and the DNA was eluted in AE buffer (100 µl) and incubated for 5 min at 

room temperature before centrifugation for 1 min at ≥ 6000 × g. The DNA was 

stored at −20°C for further analysis after quantification using Nanodrop (ND-1000 

Spectrophotometer, Labtech International, UK).  

 

2.5.2 RNA extraction  

 

RNA was extracted from the base, middle and tip sections of frozen first leaves 

of the barley seedlings (100 mg fresh weight per sample) using plant total RNA 

isolation kit (Sigma-Aldrich, Haverhill, United Kingdom). Samples were ground in 

liquid nitrogen with a pestle and mortar. The samples were then lysed in Lysis 

Solution (500 µl) and 2-mercaptoethanol (10 µl), vortexed vigorously following 

incubation at 56°C for 3–5 min, and centrifuged at 20,000 × g for 3 min to pellet 

cellular debris. The lysate supernatants were transferred into a filtration column 

with a 2-ml collection tube and centrifuged at 20,000 × g for 1 min to remove 

residual debris and collect the clarified flow-through lysate. A binding solution 

(500 µl) was added into the clarified lysate and mixed thoroughly by brief vortex. 

The mixture (700 µl) was added to a binding column in a 2-ml collection tube and 

centrifuged at 20,000 × g for 1 min to bind RNA. The flow-through was discarded. 

In each digestion, DNase I (10 µl) and DNase digestion buffer (70 µl) were 

combined and the mixture was added directly onto the centre of the filter inside 

the binding column. The sample was then incubated at room temperature for 

15 minutes. The bound RNA was washed with wash solution 1 (500 µl) and 

centrifuged at 20,000 × g for 1 min. Final wash solution 2 (500 µl) was added into 

the column and centrifuged at 20,000 × g for 30 s; this step was repeated twice. 

RNA was eluted in elution solution (50 µl) for 1 min and centrifuged at 20,000 × 

g for 1 min. The RNA was stored at −80°C for further analysis after quantification 

using a Nanodrop (ND-1000 Spectrophotometer, Labtech International, UK), via 

ratio of absorbance at 260 nm and 280 nm that is used to assess the purity of 

RNA. The ratio of absorbance at 260 nm and 230 nm is used as a secondary 

measurement for nucleic acid purity. The ratios of 260/230 of RNA were in the 

range of 2.0-2.2 and the ratio of 2.0 was considered pure for RNA. RNA quality 
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was also assessed by running the non-denaturing and glyoxal-denaturing 

agarose gel electrophoresis in which the ratio of the 28S and 18S rRNA bands 

were estimated of approximately 2:1. Moreover, the 2100 Bioanalyzer (Agilent 

Technologies) was used to estimate the RNA Integrity Number (RIN).  
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2.5.2.1 cDNA synthesis 

 

RNA (1 μg) was used to synthesise cDNA using QuantiTect® Reverse 

Transcriptase Kit (Qiagen, Manchester, UK) following the manufacturer’s 

protocol. gDNA Wipeout Buffer (2 µl) was added to the RNA sample and made 

up to a final volume of 14 µl with RNase-free water. Samples were incubated for 

2 min at 42°C and placed immediately on ice. Quantiscript Reverse Transcriptase 

(1 µl), 1X final concentration of Quantiscript RT Buffer (4 µl) and RT primer mix 

(1 µl) was added to each RNA sample. Reverse transcription was performed on 

a thermal cycler (Biorad, Hemel Hempstead, UK) as follows: 42°C for 30 min 

followed by 95°C for 3 min. For a negative reverse transcriptase control, a reverse 

transcription step was done in the absence of reverse transcriptase. This control 

was to check the amount of DNA contamination present in the RNA preparation. 

2.6 Quantitative Real-Time Reverse Transcription PCR (qRT-

PCR) 

 

cDNA synthesised using QuantiFast SYBR® Green PCR Kit (Qiagen, 

Manchester, UK) was quantified using Quantitative real-time PCR (qRT-PCR), 

using a C1000TM Thermal Cycler (BIO-RAD) real-time PCR system according to 

the manufacturer’s instructions. A PCR reaction mixture (20 μl) containing 2x 

QuantiFast® SYBR® Green PCR master mix (10 µl), 0.5 µM final concentration 

forward primer, 0.5 µM final concentration reverse primer, 10 ng of DNA and 

RNase-free water was prepared. Three biological replicates of each sample were 

used in all experiments. Low-profile 96-well plates (STARLAB, Milton Keynes, 

UK) were used in three technical replicates for each sample. The same master 

mix without cDNA was used as the negative control. The two-step cycling protocol 

was programmed as follows: initial denaturation at 95°C for 5 min followed by 40 

amplification cycles of 95°C for 10 s, 60°C for 30 s and 72°C for 30 s and a final 

extension step at 72°C for 5 minutes. Data analysis was performed using Delta-

delta CT method (Livak and Schmittgen, 2001). Relative expression was 
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normalised using actin11 and 16S rRNA. The second standard (GADPH) was 

used as a second internal control but was varied throughout the analysis.  
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Primers were designed using a primer designing tool, SDSC Biology WorkBench 

software (http://workbench.sdsc.edu/), which includes the prediction of the 

formation of the self-dimers, heterodimers and hair-pin structures 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). The cDNA 

sequence was obtained from the Plant Genome and Systems Biology database. 

The amplicon length was between 100–160 bp with melting temperature (Tm) of 

60–62°C and difference in Tm of primers pair was within 1°C. Primer length was 

approximately 22 bp and the GC content was set to ~50% as optimal. In most 

cases, the specific primers were spanning the region between CDS and 3' UTRs. 

Primer-BLAST was also used as a tool to confirm the primers specificity 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

Table 2.1 List of primer sequences used for qRT-PCR. 

Forward (Fwd) and reverse (Rev) primers are shown. *Primers were taken from 

Krupinska et al., (2014).  

 

Primer Sequence 5’- 3’ 

HvWHIRLY1* Fwd 5´-GATGGGAATGGTCGCTTTTT -3´ 

Rev 5´-CCATGATGTGCGGTATGATG -3´ 

Hv18S rRNA* Fwd 5´-CAGGTCCAGACATAGCAAGGATTGACAG-3´ 

Rev 5´-TAAGAAGCTAGCTGCGGAGGGATGG-3´ 

HvRbcS* Fwd 5´-CTACCACCGTCGCACCCTTCC-3´ 

Rev 5´-TGATCCTTCCGCCATTGCTGAC-3´ 

HvpsbA* Fwd 5´-CAGAAAAGCTTCCTTGACCA-3´ 

Rev 5´-CAATGGTGGTCCTTATGAGC-3´ 

HvpetD* Fwd 5´-GGGCGTTCTCTTAATGGTTT-3´ 

Rev 5´-AATGGGTAGTGTTGCTCCAA-3´ 

Hv16S 

 

rpoTp 

 

rps16 

 

Fwd 5’-TTAAGTATCCCGCCTGGGGAGT-3’ 

Rev 5’-TCTCTTTCAAAGAGGATTCGCGG-3’ 

Fwd 5’-TCCTGTTGATGGGAACTGTTGGT-3’ 

Rev 5’-GAGACAGCAGCATGAGGTGATGA-3’ 

Fwd 5’- TTCTACCGGGTGATGGCTGC-3’ 

Rev 5’- CTGGACCTTGCGACGAAACAT-3’ 

http://workbench.sdsc.edu/
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rpoC2 Fwd 5’- CCCGCGGTTTTGAAATAAGGA-3’ 

Rev 5’- TATGGCCGGTAGGAATTTGCC-3’ 

Hvactin11 Fwd 5’- CGACAATGGAACCGGAATG-3’ 

Rev 5’CCCTTGGCGCATCATCTC-3’ 

HvBeta-Tub Fwd 5’- CAAGGAGGTGGACGAGCAGATG-3’ 

Rev 5’- GACTTGACGTTGTTGGGGATCCA-3’ 

HvLHCB1 

 

Fwd 5’-CCCGAGACCTTTGCCAAGAA-3’ 

Rev 5’- CCCTCGCTGAAGATCTGGGA-3’ 

HvLHCB1.1 

 

Fwd 5’- GCAGAGCATCCTGGCCATCT-3’ 

Rev 5’-TCCTTGACCTTCAGCTCGGC-3’ 

HvLHCA4 

 

Fwd 5’- GGCAGGACATCAAGAACCCG-3’ 

Rev 5’- TGGCGAGCTCCTTCTCCTTG-3’ 

HvrbcL 

 

Fwd 5’-TTGGGTTCAAAGCCCTACGTGC-3’ 

Rev 5’-ACATCCCAATAAAGGACGGCCA-3’ 

AK25216 Fwd 5’- TTCTACCGGGTGATGGCTGC-3’ 

Rev 5’- CTGGACCTTGCGACGAAACAT-3’ 
MLOC_76327 

 

Fwd 5’- CCCGCGGTTTTGAAATAAGGA-3’ 

Rev 5’- TATGGCCGGTAGGAATTTGCC-3’ 

MLOC_58312 

 

Fwd 5’- GAGCCCTTGAAAAGCTTCGGA-3’ 

Rev 5’- CAAGCCTGGACTTGCGATGAT-3’ 

MLOC_59016 

 

Fwd 5’- CAACACCCGTTTCGTCGAGTC-3’ 

Rev 5’- CTGCAGCCCTCGCTTCATCTA-3’ 

MLOC_64606 

 

Fwd 5’- TTGGTGTGCCTTTGGTTCTTCA-3’ 

Rev 5’- GCCCAGTCCTCACGGTATTGA-3’ 

AK362199 

 

Fwd 5’- GGACTGCCTTGGGTTCGACTT-3’ 

Rev 5’- CTTTGGGTTGAGCCTGTGGTG-3’ 

MLOC_33258 Fwd 5’- TGAGAAGGCATGGTGGGACAT-3’ 

Rev 5’- TGCTCTCACTGCGTTGCGTAG-3’ 

MLOC_77244 

 

Fwd 5’- AAGACGGATGACAATAGCTTGGA-3’ 

Rev 5’- TACCATCTCCTCCCCCTGGAA-3’ 

 

 

  



 
 

47 

 

2.6.1 Determination of relative ptDNA levels 

 

qRT-PCR analysis on relative ptDNA levels was performed on DNA (see 2.5.1) 

using QuantiFast SYBR® Green PCR Kit (Qiagen, Manchester, UK) on a 

C1000TM Thermal Cycler (BIO-RAD) real-time PCR system according to the 

manufacturer’s instructions (see 2.6). Data was normalised to the 18S rDNA gene 

to determine relative ptDNA levels.  

 

2.7 Protein extract preparation 

 

2.7.1 Leaf protein extraction 

 

The leaf sections were ground in liquid nitrogen using chilled mortars and pestles 

(100 mg fresh weight per sample). Leaf samples were then extracted in 1X 

protein extraction buffer (Agrisera, Vannas, Sweden). Total soluble protein 

content was quantified in the supernatants after centrifugation for 3 min at 

10,000 × g using PierceTM bicinchonic acid (BCA) protein assay kit (Thermo 

Scientific, Rockford, USA). A freshly prepared reducing agent (5 mM dithiotreitol) 

was added to the protein prepared for loading. Leaf extract (10 µg of protein) was 

mixed into 1/3 the protein volume of 4X Laemmli sample buffer (Bio-Rad,CA, 

USA). The samples were incubated at 70°C for 5 min.  
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2.7.2 Western Blots 

 

Each sample was loaded onto a 4–20% Mini-PROTEAN® TGX™ protein gel (Bio-

Rad, Herefordshire, UK ), together with 5 µl of PageRuler™ Prestained Protein 

Ladder (Thermoscientific, Paisley, UK). The proteins were separated according 

to size using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) at 100 V for 60 min. Proteins were transferred to a nitrocellulose 

membrane (Trans-Blot® Turbo™ Midi Nitrocellulose) using the Trans-Blot Turbo 

System (Bio-Rad, UK) according to the manufacturer’s guidelines. The 

membrane was incubated in 5% skimmed milk in Tris-Buffered Tween (TBT: 20 

mM Tris-HCl, 150 mM NaCl, 0.1% (v/v) Tween®) for 60 min with shaking at room 

temperature. Then, the membrane was incubated with primary antibody in 5% 

skimmed milk in TBT for 2 h with shaking at room temperature and the blot was 

washed 3 times in 5 min in TBST. The nitrocellulose membranes were then 

incubated with secondary antibodies conjugated to horse-radish peroxidase 

(HRP) in 5% skimmed dried milk in TBST for 1 h with shaking at room 

temperature. Following incubation, the nitrocellulose membranes were again 

washed in TBST 6 times, 5 min each time. The proteins were visualised by 

washing the nitrocellulose membranes in chemiluminescent substrate 

(SuperSignal™ West Pico PLUS, Thermo Scientific, Leicestershire, UK) and 

recorded using an INGENIUS gel imager (Syngene, Cambridge, UK). All proteins 

apart from WHY1 were detected with rabbit polyclonal primary antibody 

(Agrisera) and secondary HRP-linked anti-rabbit (1:10000, Agrisera AS09 602). 

For immunological detection of WHY1, the antibodies were directed toward the 

synthetic peptide of recombinant HvWhy1 protein (PRQYDWARKQVF) in rabbits 

and antibodies were affinity-purified (Generon, UK). The specificity of 

immunodetection was validated using pre-immune sera.  
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2.8 Northern blot analysis  

 

Total RNA (5 µg) from the leaf section was denatured to an equal volume of 

NorthernMax® glyoxal dye (Ambion, MA USA), heated at 50°C for 30 min and 

chilled on ice. Samples were separated on a 1.2% agarose gel with 1X MOPS 

Buffer (0.2 M MOPS, 0.05 M sodium acetate, 0.01 M Na2EDTA pH 7.5) and run 

at 80 V until 2/3 of the gel. Picture of the gel was taken using INGENIUS gel 

imager (Syngene, Cambridge, UK). Gel was washed with deionised water and 

incubated in 75 mM NaOH for 20 min, followed by Tris/NaCl (0.5 M Tris-HCL pH 

7.0, 1.5 M NaCL) for 15 min and lastly, washed with 6X SSC (3 M NaCL, 0.3 M 

sodium citrate). The RNA was blotted onto a positively charged nylon membrane 

overnight and fixed by crosslinking. The membrane was then prehybridised with 

hybridisation buffer (ULTRAhyb® Ultrasensitive, AMBION, MA USA) for 30 min at 

42°C. The primers were designed spanning the region of 23S rRNA and 4.5S 

rRNA. The details of primer sequences (23S-4.5S rrn) are as follows: forward 

sequence (TTCAGAACGTCGTGAGACAGTTCGGTC) and reverse sequence 

(CAAATCGTTCGTTCGTTAGGATGCCTC). The hybrisation probes were 

amplified via PCR, using a master mix comprising the following (per reaction): 

cDNA (15 µl), forward primer and reverse primer (2 µl), and BioMix™ Red Mix 

(17 µl; Bioline, London, United Kingdom). PCR amplifications were run as 

described in Table 2.2 using a thermal cycler (BioRad, Hemel Hempostead, 

United Kingdom).  

 

 

 

 

 

 

 

 



 
 

50 

 

Table 2.2: PCR thermal-cycling conditions 

 

Step Temperature, 

°C 

Time Number of 

cycles 

Initial 

denaturation 

94 5 s 1 

Denaturation 94 15 s  

Annealing 60 15 s 38 

Extension 72 40 s  

Final extension 72 5 min 1 

 

PCR products were run on agarose gel at 60 V for 1 h and gel was excised as 

DNA fragments for the next step. Radiolabelled probes were prepared using DNA 

fragments (25 ng) excised from the agarose gel (PCR products) dissolved in 

distilled water (5-20 µl) by heating for 5 min in boiling water bath, then chilled on 

ice. DNA was mixed using Random Primers DNA Labelling System (Life 

Technologies, Paisley, UK) as per manufacturer’s instruction as follows: random 

primers buffer mixture (15 µl), dATP solution (2 µl), dGTP solution (2 µl), dTTP 

solution (2 µl), 32P-dCTP labelled probes (5 µl) (Pelkin Elmer, Bucks, UK), Klenow 

fragment (1 µl) and distilled water to total volume (49 µl). After 1h incubation at 

25°C, stop buffer (5 µl) was added to the probes. Hybridisation buffer 

(ULTRAhyb® Ultrasensitive Hybridization buffer, Thermo Scientific, Paisley, UK) 

was heated to 68°C. The blot was prehybridised for 30 min at 42°C to keep the 

membrane thoroughly wet. Double-stranded DNA probes were denatured before 

hybridisation. Probe (106 cpm/ml) was added to the prehybridised blot. Incubation 

with the membrane was carried out overnight at 48°C. The membrane was 

washed two times in 2X SSC with 0.1% SDS, followed by high-stringency 

washing in 0.1X SSC and 0.1% SDS at 48°C. Detection of signal was performed 

using x-ray film (FUJIFILM, Tokyo, Japan)  
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2.9 RNA extraction and sequencing 

 

Embryo extraction and RNA-seq analysis of excised embryos was carried out by 

Dorothee Wozny at the Max Planck Institute for Plant Breeding Research, 

Cologne, Germany. RNA was isolated from mature and dry seeds of the wild type 

and WHY1-deficient barley lines (W1-7) using RNA Qiagen Kit as per 

manufacturer’s protocol. Three biological replicates per genotype were used in 

RNA extraction. The total of 20 embryos were excised from mature barley seeds 

per genotype and was ground with sterile mortars and pestles. The RNA was 

extracted using the Qiagen RNAEasy® Mini Kit (50) following manufacturer´s 

instructions (Qiagen, Hilden, Germany). RNA was stored at −80°C after DNase 

treatment (Ambion, Carlsbad, USA). Quality of the RNA was evaluated before 

library preparation using Bioanalyzer (Agilent). Illumina TruSeq libraries were 

prepared using the manufacturer’s protocol (version 2, Illumina). Single-end 

sequencing was performed on the HiSeq 2000 (Illumina®) platform of the Max 

Planck Genome Centre, Cologne. For each library, a minimum of 15 million reads 

were generated by multiplexing eight libraries. Initial quality control of the raw 

reads was performed using the FastQC software. Reads were trimmed using the 

Trimmomatic platform, embedded within the Trinity pipeline (Grabherr et al., 

2011) using the following the default criteria: phred 33, leading and trailing 3, 

sliding window 4:15 and minimum read length 36. Sequence alignments were 

performed with Bowtie2 (version 2.1.0; http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) using a merged dataset of high 

confidence (HC) and low confidence (LC) predicted barley genes (The 

International Barley Genome Sequencing Consortium, 2012) as reference. 

SAMtools; version 1.2; http://www.htslib.org/ (Li et al., 2009) was used for BAM 

format conversion; sorting and indexing and read duplicate removal was 

conducted with the Picard command-line tool MarkDuplicate (version 1.110; 

https://broadinstitute.github.io/picard/command-line-overview.html). To correct 

misalignments, Genome Analysis ToolKit (GATK, version 3.1) re-aligner was 

used with the recommended settings. Trimmed Mean of M values (TMM) method 

was used to normalise library size. TMM factor was computed for each lane, with 

http://www.htslib.org/


 
 

52 

 

one lane being the reference sample and the others test samples. Normalised 

read counts were obtained by dividing raw read counts by the re-scaled 

normalisation factors. Variants were obtained via the GATK UnifiedGenotyper 

platform (minimum phred score of 30). The variants were refined using GATK 

Variant Filtration tool (Fisher Strand values FS >30.0; Qual By Depth values QD 

<2.0) to reduce false positive SNPs. Resulting SNP calls were kept for further 

analysis if they passed the filtration step and their read coverage exceeded four 

reads. Transcripts containing filtered homozygous SNPs were mapped to their 

respective positions along the barley POPSEQ map (Mascher et al., 2013) using 

R (https://www.r-project.org). For expression analysis, the reads were aligned to 

high confidence (HC) and low confidence (LC) gene sets (The International 

Barley Genome Sequencing Consortium, 2012) as described above and only in 

this case, the read duplicates were not removed from the BAM file. Raw counts 

were extracted from the BAM file using Salmon (Patro et al., 2017). Differentially 

expressed genes were those showing fold change of >2 and a false discovery 

rate (FDR) corrected p-value of 0.05 or less using the R bioconductor package 

limma-vroom (Ritchie et al., 2015). 

 

2.9.1 2.9.1 GO analysis 

 

The raw data processing procedures of RNAseq were done by Michael Wilson, 

University of Leeds, UK. An enhanced set of Genome Ontology terms for the 

IGSB v1 (2012) transcripts used for RNA seq mapping was created, by using GO 

annotations from IGSB v1, combined with GO annotations for IGSB v2 (2015) 

where mappings existed in uniport, enhanced by identifying missing transcripts 

using blastn from the BLAST+ package. GO slim terms were created using these 

full GO annotations using owltools (https://github.com/owlcollab/owltools) and 

goslim_plant (http://www.geneontology.org/ontology/subsets/goslim_plant.obo) 

from the GO Consortium. GO term enrichment was performed using TopGo 

(Alexa and Rahnenfuhrer, 2018) in R/Bioconductor (Huber et al., 2015). RNA seq 

reads are available in ArrayExpress Archive of Functional Genomics 
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Data(https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-

7015. 

2.10  Microarray processing and analysis 

 

Microarray processing was carried out by Jenny Morris at the James Hutton 

Institute, Dundee, Scotland. Data extraction, quality control analysis and initial 

statistical analysis were performed by Pete Hedley at the James Hutton Institute, 

Dundee. 

 

Base, mid and tip sections (see section 2.2) of the first leaves of 7-day old and 

14-day old barley seedlings were used for microarray analysis. The Qiagen® 

RNeasy Plant Mini Kit was used for total RNA extraction according to the 

manufacturer’s protocol (see section 2.5.2). Microarray processing was 

performed on leaf RNA extracts from four biological replicates per genotype (WT, 

W1-1 and W1-7) using a custom-designed barley Agilent microarray (MEXP-

2357; www.ebi.ac.uk/arrayexpress) which represents transcripts of the entire 

barley genome reference (as described in Comadira et al. (2015). The microarray 

contains approximately 61,000 60-mer probes derived from predicted barley 

transcripts and full-length cDNAs. The ‘One-Color Microarray-Based Gene 

Expression Analysis’ protocol (v. 6.5; Agilent Technologies) was used to run 

microarray processing. In brief, cDNA was transcribed into cRNA which was 

amplified, labelled with Cy3 dye, purified and hybridised to the array slides 

overnight (Figure 2.2). The next day, hybridised slides were washed twice and 

dried as recommended. The hybridised slides were scanned using a Agilent 

G2505B scanner at a resolution of 5 μm at 532 nm. 

 

Feature Extraction (FE) software (v. 10.7.3.1; Agilent Technologies) was used for 

quality control and data extraction using the default settings as recommended. 

Extracted data for each microarray was subsequently imported into GeneSpring 

GX (v. 7.3; Agilent Technologies) software for statistical analysis. Data 

http://www.ebi.ac.uk/arrayexpress
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normalisation was performed using default Agilent FE one-colour settings in 

GeneSpring and a filter function was used to remove inconsistent probe data, 

flagged as absent in two or more replicates per sample. Principal Component 

Analysis (PCA) was performed using default settings to identify relationships 

between replicate samples. Probes were identified as significantly changing 

between the WT and WHY1-deficient lines across leaf position using 2-way 

Analysis of Variance (ANOVA), with ‘genotype’ (WT, W1-1 and 1-7) and ‘position’ 

(base, mid, tip) as factors, and Bonferroni multiple-testing correction at a p-value 

≤0.05. Pairwise comparisons between WT and W1-7, for each leaf position, were 

performed using volcano plots, combining cut-offs of t-test p-value ≤0.05 and fold-

change ≥2x. Heatmaps were generated from selected genelists using the 

Genetree function in Genespring, with clustering based upon Pearson’s 

correlation and default parameters. 

 

 

Figure 2.2: A simple flowchart of sample preparation and array processing 

for microarray processing.   

Feature extraction

Scan

Wash

17-hour hybridisation

Preparation for hybridisation

cRNA purification*

cRNA synthesis, labelling and amplification*

cDNA synthesis*

Template Total RNA with Spike-In controls
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2.11 Metabolite analysis 

 

Metabolomics processing was carried out by Katie Schulz at the James Hutton 

Institute, Dundee. Data extraction and the initial statistical analysis were 

perfomed by Susan R. Verrall at the James Hutton Institute, Dundee. 

 

The base, middle and tip sections of frozen first leaves of the barley seedlings 

grown under normal conditions were weighed (>100 mg fresh weight per sample) 

and freeze-dried for 24 h. The samples were then lyophilised using a Gamma 1-

16 LSC freeze drier (Martin Christ Gefriertrocknungsanlagen GmbH, Germany) 

at a pressure of 0.7 mbar, with a shelf temperature of 25°C and a condenser 

temperature of −50°C. To extract and derivatise polar and non-polar metabolites 

from freeze-dried samples, sequential extraction with methanol, chloroform and 

water, and the presence of ribitol and nonadecanoic acid methyl ester as internal 

standards were used. Retention standards were added to aliquots of the 

derivatised polar and non-polar samples and later were measured by GC-MS. 

The protocol used for the extraction and analysis are described in detail below.  
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2.11.1 Extraction of polar and non-polar fractions 

 

Freeze-dried barley leaves were weighed out in a culture tube (150 × 16 mm). 

Extraction volumes were adjusted according to sample weight. Methanol (1.5 ml) 

was added to each sample, then tubes were capped and transferred to a vortex-

type shaker and shaken at 1500 revolutions min-1 at 30°C for 30 min in an 

incubator. Polar ribitol 2 g L-2 in water (50 μl) and non-polar nonadecanoic acid 

methyl ester 0.2 g L-2 in methanol (50 μl) internal standards were added to 

samples with 0.375 ml water. The samples were subjected to shaking for a further 

30 min at 1500 revolutions min-1 at 30°C. Chloroform (3 ml) was added and the 

mixtures were shaken at 2500 revolutions min-1 at 30°C for 30 min. Next, water 

(0.75 ml) was added to each mixture and the samples were vigorously shaken by 

hand. The polar and non-polar phases were separated by centrifugation at 1200 

g for 10 min. The polar (upper layer) and non-polar (lower layer) were transferred 

to amber vials using Pasteur pipettes and stored in −20°C until next day. 

 

2.11.2 Derivatisation of polar fraction 

 

The polar extracts were removed from freezer and left to warm to room 

temperature. The polar fractions (250 μl) were pipetted into culture tubes (100 × 

16 mm) which were transferred to a centrifugal extractions evaporator until dry. 

Methoxylamine hydrochloride (80 μl) (20 mg methoxylamine hydrochloride/ml 

anhydrous pyridine) were added to the dried polar fraction to oximate the carbonyl 

functional groups at 50°C for 4 h in an incubator. During incubation, the retention 

standard mixture (50 μl) (undecane, tridecane, hexadecane, eicosane, 

tetracosane, triacontane, tetratriacontane and octatriacontane) which were 

dissolved in isohexane were added to amber autosampler vials (300 μl fixed glass 

inserts with PTFE-coated snap caps) and the isohexane was allowed to 

evaporate from the vials at room temperature. After oximation, N-methyl, N-

trimethylsilyl trifluroacetamide (MSTFA) (80 μl) was added to samples, which 

were then incubated for 30 min at 37°C. Finally, the derivatised polar fractions 

(40 μl) and dry pyridine (40 μl) were added to the amber autosampler vials 
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containing the dried retention standards. The polar fraction was then ready for 

GC-MS analysis. 

 

2.11.3 Derivatisation of non-polar fraction 

 

The non-polar fraction was dried in a centrifugal evaporator for 30 min. Then, 

chloroform (1 ml) and1% methanolic sulphuric acid (2 ml) was added. The mixture 

was incubated at 50°C for 16 h to release free fatty acids. The tubes were then 

cooled down to room temperature. Aqueous sodium chloride (5 ml of 5% (w/v) ) 

and chloroform (3 ml) were added to each tube, which were then shaken 

vigorously to allow the polar and non-polar layers to settle. The top aqueous layer 

was discarded and aqueous potassium hydrogen carbonate (3 ml of 2% (w/v)) 

was added to the lower chloroform:methanol layer. Samples were vigorously 

shaken and then, the layers were allowed to settle. After settling, the upper layer 

was discarded again and the chloroform:methanol layer (lower layer) was 

pipetted through columns containing anhydrous sodium sulphate (3 cm). 

Columns were Pasteur pipettes plugged with cotton wool and prewashed with 

chloroform (4 ml) to remove all residual water. The columns were washed with 

extra chloroform (2 ml) that was collected with the fractions. The fractions were 

dried down in the centrifugal evaporator for 60 min. Next, chloroform (50 μl), 

anhydrous pyridine (10 μl) and MSTFA (40 μl ) were added and incubated at 37°C 

for 30 min in an incubator. Retention standard mixture (50 µl) was added into 

amber autosampler vials and the isohexane was allowed to evaporate from the 

vials at room temperature. Finally, the derivatised non-polar fraction (40 μl) and 

anhydrous pyridine (40 μl) were added to autosampler vials that had been 

prepared with retention time standards as described in 2.11.1 The non-polar 

fraction was then ready for analysis by GC-MS.  
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2.11.4 Sample analysis 

 

Samples were analysed using DSQ II Single Quadrupole GC-MS system 

(Thermo). The samples (1 μl) were injected with a split ratio of 40:1 into a 

programmable temperature vaporising injector according to the following 

conditions: injection temperature of 132°C for 1 min, transfer rate 14.5°C/s, 

transfer temperature 320°C for 1 min, clean rate 14.5°C/s and clean temperature 

400°C for 2 min. Analytes were chromatographed on a DB5-MSTM column (15 m 

× 0.25 mm × 0.25 μm; J&W, Folsom, USA) using helium at 1.5 ml/min in constant 

flow mode as the mobile phase. The temperature gradient was 100°C for 2.1 min, 

25°C /min to 320°C and isothermal for 3.5 min and the interface temperature was 

250°C. Mass data were attained at 70 eV electron impact ionisation conditions 

over a 35–900 a.m.u mass range at 6 scans per sec with a source temperature 

200°C and a solvent delay of 1.3 min. Acquisition rates were set to give 

approximately ten data points across a chromatographic peak. XcaliburTM v1.4 

and XcaliburTM v2.0.7 software packages were used to analyse the data. A 

processing method at James Hutton Institute was used to determine identities of 

each metabolite to the peaks. The software uses the retention times and masses 

of known standards. TheGenesis algorithm (part of the XcaliburTM package)was 

used to measure peak integration. The expected retention time for each peak 

was adjusted using the retention times of the retention standards. The integrated 

area of the annotated peaks was normalised against the integrated area of the 

respective fractions for internal standards, ribitol (polar) and nonadecanoic acid 

(non-polar). The peak area ratios were normalised based on a dry weight basis. 

Statistical analysis for metabolite data was performed by two-way analysis of 

variance (ANOVA) with a p-value of <0.05.  
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2.12  Subcellular localisation of LEA5.  

 

Subcellular localisation of LEA5 protein was predicted using MitoProt II (version 

1.101) Target P and IPSORT where the sequence of LEA5 proteins were used 

to predict LEA5 intracellular localisation.  

 

2.13  Protein-protein interaction analysis 

 

In this study, protein-protein interaction analysis was performed using 

Bimolecular fluorescence complementation (BiFC) assays. Full length LEA5 

(AtLEA5-nYFP or AtLEA5-cYFP), AtWHY1 (WHY1-nYFP and WHY1-cYFP) and 

full length DEA (D/H)-box RNA helicase cDNAs were cloned into the pDH51-GW-

YFPn vector and pDH51-GW-YFPc vectors, respectively with appropriate 

controls. These were expressed in Arabidopsis protoplast. YFP fluorescence was 

analysed 24 h after transfection using a confocal laser scanning microscope. 

 

Figure 2.3 : Schematic diagram of split YFP/BiFC analysis showing 

interaction of AtLEA5-YFP and DEA (D/H)-box RNA helicase 22 constructs.  

YFP is split into two non-fluorescent halves (N-terminal half (YFPn) and C-terminal half 

(YFPc)) which fuse to the protein of interest. The YFP molecule is reconstituted upon 

interaction between the two different protein halves when the molecules are excited with 

the correct wavelength.  
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2.13.1 Primer design of DEA (D/H)-box RNA helicase 

The primers used to amplify DEA (D/H)-box RNA helicase are shown in Table 

2.3. 

Table 2.3: PCR primers for DEA (D/H)-box RNA helicase 22.  

Kozak sequence (underlined) and DEA (D/H)-box RNA helicase sequences (bold). Four 

guanine (G) residues at the 5 end followed by attB1 site (italics). 

 

Primer  Sequence 

Fwd 

DEA (D/H)-box RNA 

helicase 22 

attB- 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTC

CACCATGATTCTCTCACGCTCTGTCTCC-3’ 

Rev 

DEA (D/H)-box RNA 

helicase 22 

attB- 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTC

ATA TCTCACAGCTTGAGGCTCCTC-3’ 
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2.13.2 LEA5 interactions with DEA (D/H)-box RNA helicase 22 

 

LEA5-pDONR201 plasmid used in the following studies was kindly provided by 

Daniel Shaw (Faculty of Biological Sciences, University of Leeds). With the help 

of Dr Christopher West (Faculty of Biological Sciences, University of Leeds), the 

full length DEA (D/H)-box RNA helicase cDNA was cloned into split YFP vectors 

(pDH51-GW-YFPn and pDH51-GW-YFPc) that contained an ampicillin 

resistance gene used for selection.  

 

 

 

 

 

Figure 2.4: Features of pDH51-GW-YFPn and pDH51-GW-YFPc plasmid.  

pDH51-based vectors; GW, gateway cassette with attR1 and attR2 recombination sites; 

cauliflower mosaic virus 35S promoter and terminator; Amp, ampicillin resistance; Cm, 

chloramphenical resistance; YFPN, N-terminus of Venus (aa 1-154); YFPC, C-terminus 

of Venus (aa 155-238). AM779183; AM779184. 

 

2.13.3 Construction of the LEA5-YFPc and LEA5-YFPn vectors 

 

The pDONR201+LEA5 plasmid was used in LR reaction with N9842 to produce 

LEA5-YFPc plasmid and used in LR reaction with N9843 to produce LEA5-YFPn 

plasmid. LR recombination reaction was performed according to the handbook 

manual (Thermofisher Gateway® Technology manual, Paisley, UK). A reaction 

volume containing 50-150 ng of the entry clone, 1 μl (150 ng/µl) of the destination 

vector and TE buffer (8 μl) pH 8.0 were mixed briefly. LR clonase™ II (2 µl) was 

added to each sample and mixed well by vortexing briefly twice. Then, the 

reaction was incubated at 25°C for 1 h. After that, proteinase K solution (1 µl) was 

added to terminate the reaction and incubated for 10 min at 37°C. The reaction 

was stored at −20°C prior to protoplast transfection.   

35Spro GW YFPn Ter 

35Spro GW YFPc Ter 
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2.13.3.1 Competent cells transformation 

 

Each LR reaction (1 µl) was transformed into DH5α competent cells (100 µl). The 

cells were incubated on ice for 10 min and swirled gently every 2 min. The cells 

were incubated on ice for 30 min and heat-shocked by incubation at 42°C for 

30 s. Next, the cells were incubated on ice for 2 min. After that, preheated SOC 

medium (0.9 ml) was added and incubated at 37°C for 1 h with shaking at 

200 rpm. Each transformation was plated (20 µl and 100 µl) onto selective plates 

with appropriate antibiotic selection and incubated at 37°C overnight. The next 

day, six colonies from each plate were selected. Colonies were inoculated in LB 

broth (2 ml) containing appropriate antibiotics of 50 μg/ml kanamycin and 100 

μg/ml ampicillin, incubated at 37°C with shaking at 200 rpm overnight. 

 

2.13.3.2 Plasmid extraction 

 

Overnight cultures (2 ml) incubated with vigorous shaking at 200 rpm at 37°C 

were used for plasmid purification using a Qiagen Plasmid Maxi Kit for large-scale 

plasmid extraction (up to 250 pg) (Qiagen, Manchester, UK).  

Table 2.4: List of plasmids used in protein-protein interaction studies using 
split-YPF. 

 

Name Selection Origin 

pGREEN-35S-LEA5-YFP Kan Salleh et al., 2012. 

35S-WHIRLY1-YFPn 

35S-WHIRLY1-YFPc 

Amp Barbara Karpinska, Faculty of 

Biological Sciences, University of 

Leeds. 

pGREEN::AOX::RFP Kan Estavillo et al., 2011. 

pGREEN::SSU::RFP Kan Estavillo et al., 2011. 
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2.13.4 Protoplast isolation 

 

Protoplasts were isolated according to protocol with minor modifications (Wu et 

al., 2009). Leaves (width: 2 cm, length: 5 cm) were collected from 3 to 5-week old 

plants grown under long photoperiod light conditions (see section 2.1.3). The 

upper epidermal leaves of Arabidopsis were placed by attaching a strip of Time 

tape (Time Med, Burr Ridge, IL), while the lower epidermal layer was affixed to a 

strip of Magic tape (3M, St. Paul, MN). The Magic tape was carefully peeled from 

the leaf to remove the lower epidermal layer. The peeled leaves (7 to 10 optimal-

light-growth leaves, about 1-2 g, up to 5 g) still attached to the Time tape was 

transferred to a Petri dish with enzyme solution (20 ml). The enzyme solution 

composition was as follows: (1% (w/v) cellulase 'Onozuka' R10 (Yakult, Tokyo, 

Japan), 0.25% (w/v) macerozyme 'Onozuka' R10 (Yakult), 0.4 M mannitol, 10 mM 

CaCl2, 20 mM KCl, 0.1% BSA and 20 mM MES, pH 5.7). The leaves were gently 

shaken (40 rpm) in light for 60 min until the protoplasts were released into the 

solution. The protoplasts were then centrifuged at 100 × g for 3 min in an 

Eppendorff A-4-44 rotor (Hamburg, Germany), washed with 50 ml pre-chilled 

modified W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose 

and 2 mM MES, pH 5.7) and incubated on ice for 30 min. During the incubation 

period, a sample of mesophyll protoplasts was viewed under a light microscope 

to capture the image and visually count for intact and round protoplasts. After 

30 min of the incubation period, the protoplasts were then centrifuged (100 × g 

for 3 min) and resuspended in modified MMg solution (0.4 M mannitol, 15 mM 

MgCl2 and 4 mM MES, pH 5.7) to a final concentration (2 to 5 × 105 cells/ml).  
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Table 2.5: List of plasmids used in protoplast transfection.  

Amino peptidase P2 (APP2-GFP) as chloroplast marker and amino peptidase P2 (APP1-

GFP) as cytosolic marker were used as positive control for localisation. The same halves 

of split-YFP (nYFP), in this case, LEA5-nYFP and DEA (D/H)-box RNA helicase 22-nYFP 

was fused and used as the negative control for split-YFP system.  

 

Positive 

control 

i) APP2-GFP (At3g05350) 

ii) APP1-GFP (At4g36760) 

Split-YFP i) LEA5-nYFP + DEA (D/H)-box RNA helicase 22-

cYFP 

ii) LEA5-cYFP + DEA (D/H)-box RNA helicase 22-

nYFP 

iii) WHIRLY1-nYFP + DEA (D/H)-box RNA helicase 

22-cYFP 

iv) WHIRLY1-cYFP + DEA (D/H)-box RNA helicase 

22-Nyfp 
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2.13.5 Protoplast Transfection Assays 

 

Transfection of protoplast was performed using the method described by (Yoo et 

al., 2007b), with minor modifications. Plasmid DNA (10 μg) was mixed gently with 

protoplasts (200 μl), and an equal volume of freshly prepared PEG was added 

(MW 4000; Fluka; 40 % (w/v)) containing 0.1 M CaCl2 and 0.2 M Mannitol. 

Samples were mixed and incubated at room temperature for 5 min and W5 

solution (3 ml) was added slowly; next, the solution was mixed and protoplasts 

pelleted (100 × g for 1 min). The supernatant fractions were removed and 

transformed protoplasts were resuspended gently in W5 solution (1 ml), then 

transferred to 6-well plates. The protoplasts were left at room temperature for 

16 h in the dark to allow transfection.  



 
 

66 

 

2.14  Imaging 

 

2.14.1 Light microscopy 

 

Protoplast solution (5 μl) was placed on a slide and covered using a cover slip for 

examination by light microscopy (Leica DM 2500). Images were captured using 

Nikon (D5000) and Nikon Camera Control Pro V.1 Software. 

 

2.14.2 Confocal Laser Scanning Microscopy 

 

2.14.2.1 Confocal microscopy of intact LEA5-YFP leaves  

 

YFP expression was recorded in at 5-day old Arabidopsis seedlings in the light 

period by Zeiss LSM700 inverted confocal microscopy (Faculty of Biological 

Sciences, University of Leeds). The YFP signal was detected using an excitation 

wavelength range of 488 nm and an emission wavelength of 530 nm. The 

chlorophyll auto-fluorescence was excited simultaneously with the 555 nm laser, 

emission was detected at 650–710 nm.  

 

2.14.2.2 Visualisation of interaction 

 

Protoplasts were observed using a LSM700 inverted confocal microscope using 

20X/0.8 PlanApochromat or 40X/1.2 WC-Apochromat in multi-track channel 

mode. Excitation wavelength was 488 nm and emission filter of YFP was 530 nm, 

with simultaneous excitation a band-pass of 650–710 nm for the detection of 

chloroplast auto-fluorescence. Image processing was performed using Zeiss 

ZEN 2011 (Black Edition) v7.1 and ImageJ v1.46r Translational research
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Chapter 3 . Characterisation of WHIRLY1-deficient barley seeds 

 

3.1 Introduction 

 

 

The WHY1 protein, which is localised in the chloroplasts and nucleus of the same 

cell, has been shown to play a number of diverse and important roles in the 

regulation of chloroplast nucleosome structure and nuclear (Grabowski et al., 

2008; Krupinska et al., 2014). WHY1 binds to both ssDNA and RNA and functions 

in intron splicing in maize chloroplasts (Prikryl et al., 2008). WHY1 is also 

associated with intron-containing RNA in barley chloroplasts (Melonek et al., 

2010). WHY proteins were first described as a nuclear transcriptional activator 

that binds to an elicitor response element in the promoter region of pathogenesis-

related genes in potato (Desveaux et al., 2000). In addition to pathogen-

responsive genes, WHY proteins also bind to promoter regions of several genes 

in the nucleus associated with senescence including WRKY53 (Miao et al., 2013) 

and HvS40 in barley (Krupinska et al., 2014). WHY proteins also regulate the 

length of telomeres (Yoo et al., 2007a) and bind to the distal element upstream 

of the kinesin gene (Xiong et al., 2009) which is necessary for repression of 

promoter activity fully and partially in the cotyledon and roots in Arabidopsis. Such 

findings suggest that WHY proteins have different functions at different 

developmental stages, depending on their intracellular localisation (Ren et al., 

2017). The regulated partitioning of WHY1 between chloroplasts and nuclei at 

different developmental stages has been shown to be phosphorylated by the 

MAP kinase, calcineurin B-Like-Interacting Protein Kinase14 (CIPK14) and 

transported into the nucleus (Ren et al., 2017). The WHY1 protein is localised in 

chloroplasts in young leaves but it accumulates more in the nuclei of senescence 

leaves (Ren et al., 2017). Overexpression of CIPK14 showed the stay-green 

phenotype, which was recovered by overexpression of plastid-form WHY1, 
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linking CIPK14 functions to senescence (Ren et al., 2017). In the chloroplasts 

and mitochondria, the WHY proteins function as anti-recombinant factors that are 

required for accurate DNA repair and the maintenance of organellar genome 

stability (Cappadocia et al., 2010, Lepage et al., 2013).  

 

A triple mutant (Atwhy1why3polIb-1) that lacks WHY1, WHY3 and type I 

chloroplast DNA polymerase 1B (Pol1B) exhibits a severe yellow-variegated 

phenotype (Lepage et al., 2013). This mutant had a lower photosynthetic electron 

transport efficiency and accumulates reactive oxygen species with altered 

expression of redox-regulated genes compared to the wild type (Lepage et al., 

2013). In the previous studies, the RNAi knockdown lines with less than 5% of 

wild type WHY1 protein (W1-1, W1-7 and W1-9) were shown to influence the 

expression of specific subsets of genes encoding chloroplast proteins 

(Comadiraet al., 2015). Several transcripts that encode chloroplast-localised 

proteins, such as ribosomal proteins, subunits of the RNA polymerase, and 

thylakoid nicotinamide adenine dinucleotide (reduced) and cytochrome b6/f 

complexes were much higher in the W1-7 barley leaves than the wild type, 

resulting in lower sensitivity of photosynthesis to low nitrogen (Comadira et al., 

2015). In chloroplasts, WHY1 is not only associated with nucleoids but also with 

the thylakoid membrane (Foyer et al., 2014, Huang et al., 2017). However, the 

mechanisms by which WHY1 influences chloroplast function and participates in 

chloroplast signalling remain poorly understood.  

 

Previously, it was shown that WHY1 overexpressing Arabidopsis seeds had an 

altered response to ABA during seed germination. In these experiments, the 

Arabidopsis why1 mutants had been transformed with constructs that allowed 

expression of WHY1 targeted to either the plastids or the nuclei (Isemer et al., 

2012a). The plastid-localised WHY1 enhanced the responsiveness of 

germination of the Arabidopsis seeds to ABA  (Isemer et al., 2012a). In contrast, 

when WHY1 was expressed only in the nuclei there was no change in the 

sensitivity of the seeds to ABA (Isemer et al., 2012a). The following studies were 

performed to determine whether the absence of WHY1 had an effect on the 
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transcriptome profile of the embryos of the dry seeds. This information would 

provide a better understanding of how transcripts encoding components of 

hormone signalling pathways were affected by the absence of WHY1. The 

embryos of the dry seeds of the W1-7 and the wild type were harvested and 

subjected to RNA-seq analysis. In this chapter, the characterisation of WHY1-

deficient barley seeds is described. These data are discussed both in terms of 

the effects of WHY1 deficiency in the mother plant, which determines the 

composition and abundance of transcripts in the embryo, and the effects of these 

changes on germination. These data lay the foundations for the subsequent 

studies on the functions of WHY1 during chloroplast biogenesis. The RNA-seq 

analysis was performed in collaboration with Professor Maarten Koorneef at the 

Max Planck Institute in Cologne, Germany. Data were analysed in collaboration 

with Dr Michael Wilson at the University of Leeds. In the following analysis, only 

transcripts that were differentially changed above the 1.5 fold cut-off threshold 

(p<0.05) were selected.  
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3.2 Results 

 

3.2.1 Characterisation of WHY1- deficient barley seeds 

 

3.2.1.1 Seedling phenotype of WHY1-deficient barley  

 

The first true leaves of the W1-7 showed a delayed in greening relative to the wild 

type, 4 days after germination (Figure 3.1).In contrast, the first true leaves of the 

W1-1 seedlings showed no phenotypic difference to the wild type, 4 days after 

germination (Figure 3.1).  

 

 

 

 

 

 

 

Figure 3.1:   Comparison of 4-day old seedlings of transgenic W1-1 and W1-
7 line phenotypes to the wild type.  

Seeds were kept at 4°C for 3 days before the seedlings were sown in pots in soil in 

controlled environment chambers with a 16h light/ 8h dark photoperiod, irradiance of 

200 μmol m-2s-1, 20°C/16°C day/night temperature regime and 60% relative humidity. 

(Scale bar =1 cm). 

  

  WT               W1-1                          W1-7 
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3.2.1.2 Seed germination 

 

Seeds germination were significantly lower in the W1-7 than the wild type at 24, 

48 and 72 hours after imbibition (Figure 3.2). Furthermore, seeds germination 

were also lower in the W1-1 relative to the wild type at 24, 48 and 72 hours after 

imbibition (Figure 3.2). In general, the WHY1-deficient barley lines had lower 

germination rates compared to the wild type at 24, 48 and 72 hours after 

imbibition (Figure 3.2).   

 

Figure 3.2: Germination characteristics of transgenic W1-1 and W1-7 lines 

to the wild type (WT).  

Percentage of seed germination in the wild type and WHY1-deficient barley seedlings 

(W1-1 and W1-7) during imbibition. Error bars illustrate standard deviation (n=60). 

Asterisks indicate significant differences between WHY1-deficient and wild type plants 

as estimated by the Student’s t-test (*p<0.05) and (**p<0.01).   
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3.2.1.3 Seed characteristics 

 

Seed size was compared in the WHY1-deficient barley seeds and the wild type. 

There were no significant differences in the WHY1-deficient barley seeds 

compared to the wild type in seed length (Table 3.1). However, the seed width 

was significantly lower in the W1-1 seeds compared to the wild type. In contrast, 

seed width of the W1-7 was similar to the wild type (Table 3.1). 

 

Table 3.1: Characteristics of seeds produced by WT, W1-1 and W1-7 barley.  

Seed length and width were determined as mean values of 15 seeds from each line. 

Values are reported as mean ± SE. Values are reported as mean ± SE. Values that were 

significantly different determined using the Student’s t-test are indicated by asterisks 

(****p<0.0001). 

 

 

 

  

Seeds Length (cm) (%) Width (cm) (%) 

WT 0.88 ±0.02 (100) 0.36±0.01 (100) 

W1-1 0.83±0.02 (94.60) 0.31±0.01****(85.60) 

W1-7 0.83±0.01 (94.70) 0.35±0.01(97.42) 
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3.2.1.4 Yield parameters in WHY1-deficient (line W1-7) and wild type 

barley plants 

 

Seeds of transgenic barley (Hordeum vulgare L. cv. Golden Promise) line W1-7, 

with RNAi knockdown of the WHY1 expression and wild type controls were 

obtained as described by Comadira et al. (2015). For the following analysis of 

yield parameters, only plants of the W1-7 line and the wild type were grown in 

compost to maturity in a standard heated greenhouse at the James Hutton 

Institute (Scotland) under a 16-h photoperiod regime at 22°C, where 

supplementary lighting was provided by high-pressure sodium vapour lamps. 

 

Seeds of the T4 generation of the WHY1-deficient (W1-7) plants were divided 

into 4 groups at random [W1-7(1), W1-7(2), W1-7(3) and W1-7(4)]. Up to 20 

plants were grown to maturity in each group together with the wild type. 

Measurements of number of tillers and total seed weight were performed once 

the seeds had matured. Some variations were observed in the data obtained from 

each set of W1-7 plants (Table 3.2).  For example, the W1-7(1), W1-7(2) and W1-

7(3) plants had the same number of tillers as the wild type. However, the W1-7(4) 

plants had significantly fewer tillers (Table 3.2). Total seed yield was also higher 

in the W1-7(2) and W1-7(3) lines than the W1-7(1), W1-7(4) and wild type plants 

(Table 3.2). However, the mean values of the combined W1-7(1), W1-7(2), W1-

7(3) and W1-7(4) data provide an accurate assessment of the W1-7 phenotype.  
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Table 3.2: : A comparison of yield parameters in the wild type barley and 

WHY1-deficient plants.  

Seeds from 4 different plants of the T4 generation transgenic line WHY1-7 (Comadira, 

2015) were grown to maturity. In each case, 30 plants were grown from seeds from 4 

plants. The number of fertile tillers were counted and total seed yield quantified in plants 

grown to maturity in controlled environment glasshouses. Data is presented as mean 

values ± SE (n=30). Values that were significantly different between wild type and W1-7 

plants as determined using the Student’s t-test are indicated by asterisks (*p<0.05) and 

(**p<0.01). 

 

 

  

 Wild type W1-7(1) W1-7(2) W1-7(3) W1-7(4) 

Number 

of fertile 

tillers 

17.25±3.09 15.74±0.76 

 

13.68±0.64 

 

 

13.50±0.58 12.21±0.67* 

Seed 

yield per 

fertile 

tiller (g) 

0.80±0.13 

 

1.07±0.06 

 

 

1.27±0.08* 

 

 

1.26±1.05** 

 

 

1.47±0.21 

 

Total 

seed 

yield (g) 

12.66±0.26 16.14±0.64* 

 

 

16.25±0.63* 

 

16.70±0.76 

 

 

15.43±0.67 
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Average data from all four WHY1-7 plants was compared to wild type barley 

plants grown under the same conditions (Table 3.3). Although the number of 

fertile tillers tended to be lower in the WHY1-7 plants, the values obtained were 

not significantly different to wild type. In contrast, total seed yield was significantly 

higher in the WHY1-7 plants than the wild type (Table 3.3). Seed yield per tiller 

was the same in both lines, as previously reported (Comadira et al., 2015). The 

data in Table 3.3 show a trend for higher seed yields per tiller in the W1-7 plants. 

The difference in the yield of the T4 generation in WHY1-deficient plants (Table 

3.3) is marked compared to the T3 generation plants (Comadira et al., 2015). The 

difference in yield of the W1-7 plants in the T3 and T4 generations could be due 

to the different soil quality, humidity, light and intensity. These results may be 

explained by generation to generation variations. Interestingly, seed yield of the 

4th generation plant was higher than the wild type. It may be deduced therefore 

that the WHY1-deficient plants have the potential to produce greater seed yields 

than the wild type. However, this analysis must be repeated in future generations 

to determine generic trends and need to be repeated in the W1-1 line as only W1-

7 line was available during this study. 

 

Table 3.3: A comparison of yield parameters in W1-7 and wild type barley.  

Plants were grown to maturity from seeds in controlled environment glasshouses. The 

number of fertile tillers were counted and total seed yield quantified. Data is presented 

as mean values ± SE (n=30). Values that were significantly different between wild type 

and W1-7 plants as determined using the Student’s t-test are indicated by asterisks 

(*p<0.05). 

 

 

 Wild type W1-7 

Number of fertile tillers 17.25 ± 3.09 13.82 ± 0.35 

Total seed yield (g) 12.66 ± 0.26 16.16 ± 0.34* 

Seed yield per fertile tiller 

(g) 

0.80 ± 0.13 1.26 ± 0.05 
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3.2.2 Functional categorisation of differentially-regulated transcripts  

 

Transcripts that were differentially altered in the embryos of the W1-7 seeds 

relative to the wild type using RNA-seq analysis were first analysed using gene 

ontology (GO) enrichment analysis. This is an efficient tool providing a first 

overview of the overrepresented functional gene groups. Genes related to 

enzyme activity, mostly hydrolytic activities, were significantly changed by the 

loss of WHY1 (Figure 3.3). In addition, transcripts encoding proteins associated 

with DNA/RNA binding and nucleotide binding were differentially changed in the 

W1-7 embryos relative to the wild type (Figure 3.3). Analysis of functional groups 

associated with biological processes shows an altered abundance of transcripts 

involved in metabolism, as well as responses to abiotic and biotic stresses (Figure 

3.4). A large number of differentially-expressed transcripts were targeted to either 

the nucleus or plastids (Figure 3.5). 
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Figure 3.3: Gene ontology enrichment analysis for transcripts that were increased in abundance.   

GO enrichment analysis was performed based on molecular function in the embryos of W1-7 barley seeds relative to the wild type.   
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Figure 3.4: Gene ontology enrichment analysis for transcripts that were increased in abundance.  

GO enrichment analysis was performed based on biological processes in the embryos of W1-7 barley seeds relative to the wild type.  
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Figure 3.5: Gene ontology enrichment analysis for transcripts that were increased in abundance.  

GO enrichment analysis was performed based on cellular localisation in the embryos of W1-7 barley seeds relative to the wild type.
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3.2.3 Transcripts that were increased in abundance in the embryos 

of the W1-7 barley seeds relative to the wild type 

 

The ten most abundant transcripts in embryos of the dry WHY1-deficient seeds 

are shown in Figure 3.6. Many of these transcripts are associated with plant 

adaptation to stressful environmental conditions. For example, transcripts 

encoding a disease resistance protein (AK361511) were abundant in the WHY1-

deficient embryos compared to the wild type (Figure 3.6). This finding is important 

because stress tolerance may be important both in seed storage and in 

germination (Sreenivasulu et al., 2008).  

 

Moreover, transcripts associated with the plant growth hormone gibberellic acid 

(MLOC_56462; gibberellin-20) were increased in the dry seeds of the WHY1-

deficient embryos compared to the wild type (Figure 3.6). Gibberellins are 

important phytohormones with key roles in seed maturation, germination and also 

post-germination growth (Sreenivasulu et al., 2008). This finding is consistent 

with the hypothesis that gibberellins are increased in the seed embryos (Bewley, 

1997).  

 

The levels of MLOC_67727 transcripts (encoding a leucine-rich repeat protein) 

were significantly increased in the dry seeds of WHY1-deficient embryos 

compared to the wild type (Figure 3.6). In Arabidopsis, this protein is required for 

growth and increased seed production (Shahollari et al., 2007). Such leucine-rich 

repeat proteins were shown to be involved in nitrogen reallocation in near-

isogenic barley lines under low nitrogen (Jukanti et al., 2008). 

 

Two transcripts that encode cysteine proteases (MLOC_76470 and AK248416) 

were also more abundant in the WHY1-deficient embryos compared to the wild 

type (Figure 3.6). Cysteine proteases are responsible for the mobilisation of seed 
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storage proteins upon germination (Malgorzata Grudkowska, 2004, Sreenivasulu 

et al., 2008).  

 

The abundance of the transcripts encoding a calcium-binding EF-hand family 

protein (MLOC_40019) were more abundant in the WHY1-deficient embryos 

relative to the wild type (Figure 3.6). The calcium-binding EF-hand family are 

central regulators of cellular calcium signalling pathways. Calcium is an important 

mediator of hormonal and environmental stress signals that underpin plant 

responses to biotic and abiotic threats. Changes in cytosolic calcium are also 

important in the regulation of developmental processes.  

 

The abundance of transcripts encoding a MYB family transcription factor, 

AK356219 was significantly higher in WHY1-deficient embryos relative to the wild 

type (Figure 3.6). This transcription factor has been reported to play a role in 

hormonal responses during seed development and germination. For example, 

gibberellin-regulated MYB transcription factors in barley are important in the 

expression of α-amylase in the aleurone in response to gibberellin signals (Gubler 

et al., 1995). 

 

DNA-related group proteins such as AAA-type ATPase family proteins 

(AK358288) were found to be highly expressed in WHY1-deficient embryos 

(Figure 3.6). DNA-related group proteins are involved in the protein degradation 

process. Nodulin (AK25271) transcripts were highly expressed in WHY1-deficient 

embryos (Figure 3.6). It has been reported that transgenic rice overexpressing 

an early nodulin gene had increased nitrogen-use efficiency (Bi et al., 2009).  
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Figure 3.6: Ten most abundant transcripts in the embryos of W1-7 barley 

seeds relative to the wild type. 

The relative expression (log2) fold change-range of genes annotated with the accession 

numbers and description, for all top 10 differentially regulated up-regulated transcripts. 

Differentially expressed genes were those showing fold changes of >1.5 and an FDR-

corrected p-value of 0.05 or less. 
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3.2.4 Transcripts that were highly decreased in abundance in the 

embryo of the W1-7 barley seeds relative to the wild type 

 

The ten transcripts showing lowest levels in embryos of the W1-7 seeds relative 

to the wild type are shown in Figure 3.7. Transcripts encoding expression of 

several retrotransposons (MLOC_3219, MLOC_41306, MLOC_79536 and 

MLOC_8485) were significantly decreased in the embryo of the W1-7 barley 

seeds relative to the wild type (Figure 3.7). Retrotransposons are regulatory 

components in plant and animal genomes. Retrotransposon function can be 

silenced by epigenetic processes and amplified by reverse transcription and 

reintegration into the genome (Cavrak et al., 2014). Retrotransposons are 

associated with repressive chromatin modifications in plants that are controlled 

by RNA-directed DNA methylation. However, retrotransposons can use several 

strategies to avoid this epigenetic silencing (Cavrak et al., 2014).  

 

Transcripts encoding putative histidine kinases that are involved in cell signalling 

(MLOC_32926 and MLOC_42368) were also significantly decreased in the 

WHY1-deficient embryos relative to the wild type (Figure 3.7). Plant histidine 

kinases are involved in signal transduction pathways associated with 

phytohormones such as ethylene and cytokinin as well as environmental stress 

responses. Histidine kinases are protein kinases that are responsible for 

intracellular signal transduction (Urao et al., 2001). In Arabidopsis, five two-

component histidine kinase-like proteins (ETR1, ETR2, EIN4, ERS1, and ERS2) 

function in ethylene perception. For example, CRE1 is a hybrid histidine kinase 

that functions as a cytokinin receptor. Together with CKI1 and CKI2, CRE1 is 

involved in cytokinin signal transduction (Urao et al., 2001).  

 

Transcripts encoding a FAR-RED IMPAIRED RESPONSE1 (FAR1) -like protein 

(MLOC_30557) were significantly decreased in the WHY1-deficient embryos 

relative to the wild type (Figure 3.7). FAR1 is a positive regulator of the 

phytochrome A pathway of ABA signalling in Arabidopsis that is important in 
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responses to abiotic stresses and is involved in stomatal opening (Tang et al., 

2013).  

 

A helicase transcript encoding a protein potentially involved in RNA processing 

(MLOC_77244) was significantly decreased in the WHY1-deficient embryos 

relative to the wild type (Figure 3.7). Helicases are important in plant stress 

responses, acting through effects on RNA metabolism (Kanai et al., 2013). 

 

 

 

 

 

 

 

 

Figure 3.7: Ten most decreased transcripts in the embryo of the W1-7 seeds 

relative to the wild type.  

The relative expression (log2) fold change-range of genes annotated with the accession 

numbers and description, for all top 10 differentially regulated down-regulated 

transcripts. Differentially expressed genes were those showing fold changes of >1.5 and 

an FDR-corrected p-value of 0.05 or less. 
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3.2.5 Transcripts associated with plastid biogenesis that are 

differentially-regulated in W1-7 seeds relative to the wild type 

 

A number of transcripts encoding nuclear-encoded photosynthetic proteins were 

significantly increased in the WHY1-deficient embryos relative to the wild type 

(Table 3.4). Transcripts encoding transcriptionally-active chromosome proteins 

(pTAC18 and pTAC7) and a sigma factor (SIG6), were more abundant in the 

WHY1-deficient embryos relative to the wild type. These transcripts are involved 

in the establishment of plastid transcription and translation systems. Transcripts 

encoding an RNA polymerase associated factor were significantly increased in 

the WHY1-deficient embryos relative to the wild type (Table 3.4). Transcripts 

encoding components of the photosynthetic complexes were significantly higher 

in the W1-7 embryos relative to the wild type, particularly the photosystem II 

(PsbR, PsbQ, PsbP, PsbR, Psb28, PsbW, PsbO, psbS, violaxanthin de-

epoxidase and LHCB7) and photosystem I (PsaH, PsaG, PsaF, PsaD and 

PsaG/PsaK) reaction centres (Table 3.4). Transcripts encoding components of 

the cyclic electron transport pathway (TMP14, TSP9, PIF1 and PGR5) were also 

higher in the W1-7 barley embryos relative to the wild type (Table 3.4). The levels 

of transcripts encoding the small subunit (RBCS) of ribulose-1, 5-bisphosphate 

carboxylase-oxygenase (AK248995.1, AK249082.1, AK369652 and 

AK249588.1) were also higher in the WHY1-deficient embryos relative to the wild 

type. Interestingly, only one plastid-encoded photosynthetic protein 

(MLOC_61558.1) was more abundant in the W1-7 embryos relative to the wild 

type (Table 3.4).   
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Table 3.4: Transcripts involved in plastid biogenesis and photosynthesis 

that were significantly changed in the W1-7 embryos relative to the wild 

type.  

The transcript abundance in the W1-7 embryos relative to the wild type were shown as 

in (log2FC). The differentially expressed genes were identified as those showing fold 

changes of >1.5 and FDR-corrected p-value of 0.05 or less.  

Description Accession Relative 

expression 

(log2FC) 

FDR (p-
value) 

 

Plastid transcriptionally 

active 18 (PTAC18) 

AK360045 1.9 0.0002442 

RNA polymerase sigma-70 

(SIG6) 

AK251756 3.7 4.03E-09 

Plastid transcriptionally 

active 7 (PTAC7) 

AK365977 2.1 1.25E-14 

50S ribosomal protein L35 AK358025 2.4 2.46E-10 

50S ribosomal protein L28 AK376786 2.2 1.79E-16 

50S ribosomal protein L13 MLOC_64398.1 2.4 5.46E-22 

50S ribosomal protein L12 AK370491 2.1 3.76E-12 

50S ribosomal protein L4 AK354785 2 2.59E-08 

50S ribosomal protein L17 MLOC_57719 1.8 1.95E-09 

50S ribosomal protein L11 AK375360 1.7 8.63E-09 

50S ribosomal protein L1 MLOC_59016.1 1.5 3.59E-24 

50S ribosomal protein L40 MLOC_67764.1 2.3 2.34E-10 

50S ribosomal protein L34 MLOC_14202.1 2.2 8.5E-09 

50S ribosomal protein L9 AK370836 2.2 1.44E-17 

30S ribosomal protein S20 MLOC_58312.1 1.6 6.1E-16 

30S ribosomal protein S16 AK252167.1 3.1 4.08E-10 

30S Ribosomal protein 

PSRP-3/Ycf65 

AK353736 2.7 1.09E-13 

Photosystem II (PSII)    

PsbR AK354522 5.4 0.0000693 

PsbQ MLOC_72691.1 2.5 1.48E-10 

PsbQ AK359673 2.5 1.48E-10 

PsbQ MLOC_17228.1 2.1 2.53E-25 

PsbP MLOC_54528.1 2.1 6.58E-12 
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PsbP MLOC_38413.2 1.8 1.79E-07 

 

PsbP MLOC_75514.2 1.6 0.0000197 

PsbR AK250934.1 5 0.0010443

19 

Psb28 MLOC_15730.2 4.2 6.37E-25 

PsbP AK365640 3.8 0.00009 

PsbW AK369292 2.9 1.6E-08 

 

PsbO MLOC_78630.1 2.7 1.71E-38 

psbS AK359183 2.8 0.0000132 

Violaxanthin de-epoxidase MLOC_61961.2 3.2 1.81E-09 

LHCB7 MLOC_60073.2 2.5 0.0002267

68 

Photosystem I (PSI)    

PsaH MLOC_53469.2 1.9 0.0010361

2 

PsaG MLOC_6738.1 1.7 1.64E-21 

PsaF MLOC_66074.2 5.4 0.0000689 

PsaD AK376369 4.8 0.0020634

55 

PsaG/PsaK AK362139 2.9 4.4E-10 

CET (Cyclic electron 

transport) 

   

TMP14 MLOC_54334.1 1.7 0.0104882

95 

TSP9 MLOC_67228.1 3.9 0.0000238 

PIF1 MLOC_23394.2 3.7 1.6E-09 

PGR5 MLOC_7826.2 3 0.0004660

4 

Stroma    

Ribulose bisphosphate 

carboxylase small 

AK248995.1 3.1 0.0000004

16 

Ribulose bisphosphate 

carboxylase large 

MLOC_61558.1 2.4 0.00001 

Ribulose bisphosphate 

carboxylase small 

AK249082.1 2.6 0.0000149 
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Ribulose bisphosphate 

carboxylase small 

AK369652 2.5 0.0000007

31 

Ribulose bisphosphate 

carboxylase small 

AK249588.1 2.3 0.0000016 
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3.2.6 Transcripts involved in RNA and DNA binding that are 

differentially changed in the WHY1-deficient embryos relative 

to the wild type 

 

The abundance of transcripts encoding several transcription factors was 

significantly changed in the WHY1-deficient embryos relative to the wild type. For 

example, MYB transcription factors and a basic helix-loop-helix (bHLH) were 

more abundant in the WHY1-deficient embryos compared to the wild type 

(Appendix A.1). Similarly, transcripts encoding several WRKY transcription 

factors were more abundant in the WHY1-deficient embryos relative to the wild 

type. Transcripts encoding zinc finger proteins that are involved in DNA binding 

were also more abundant in the absence of WHY1 (Appendix A.1). However, 

transcripts encoding WRKY40 (MLOC_10687) were significantly lower in the 

WHY1-deficient embryos relative to the wild type (see Appendix A.1). Only two 

transcripts encoding for zinc finger proteins were significantly lower in the WHY1-

deficient embryos (MLOC_61611 and MLOC_57307). As discussed above, 

FAR1 (MLOC_30557) transcripts were lower in the WHY1-deficient embryos 

relative to the wild type. Another transcript encoding FAR1 (MLOC_33258.3) was 

also lower in the WHY1-deficient embryos relative to the wild type (Appendix A.1). 

 

Transcripts encoding proteins involved in DNA binding such as basic leucine 

zipper (bZip) proteins were also higher in the WHY1-deficient embryos compared 

to the wild type. In addition, transcripts involved in RNA splicing and processing 

such as AK356654 and MLOC_16173 were significantly higher in the WHY1-

deficient embryos relative to the wild type (Appendix A.1). Other transcripts 

encoding proteins involved in telomere binding, DNA repair and chromatin 

organisation were higher in the WHY1-deficient embryos relative to the wild type. 

Only one transcript encoding a protein involved in DNA mismatch repair 

(MLOC_50820) was decreased in the absence of WHY1 (see Appendix A.1).   
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3.2.7 Changes in redox-related regulated transcripts in the WHY1-

deficient embryos 

 

Transcripts encoding enzymes involved in hydrogen peroxide metabolism such 

as ascorbate peroxidases (APX) and other peroxidases (Caverzan, 2012) were 

increased in WHY1-deficient embryos (Table 3.5). Similarly, the levels of 

transcripts encoding thioredoxins (TRX) and glutaredoxins (GRX) were higher in 

the WHY1 embryos (Table 3.5). A large number of transcripts encoding proteins 

involved in disease resistance such as nucleotide-binding site leucine-rich repeat 

(NBS-LRR) proteins were increased in abundance in WHY1-deficient embryos. 

In general, MYB transcription factor levels were increased in WHY1-deficient 

embryos. Moreover, transcripts encoding histones were also increased in WHY1-

deficient embryos (Table 3.5). 
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Table 3.5: Differentially expressed transcripts involved in redox processing 

and defence in the WHY1-deficient embryos relative to the wild type.  

The transcript abundance in the W1-7 embryos relative to the wild type are shown as in 

(log2FC). The differentially expressed genes were identified as those showing fold 

changes of >1.5 and FDR-corrected p-value of 0.05 or less.  

 

Description Accession Relative 

expression 

(log2FC) 

FDR (p-
value) 

 

Peroxidase 1 AK370705 4.0 0.0000129 

Peroxidase 52 MLOC_64966.1 5.1 3.62E-34 

Peroxidase 66 AK353768 3.0 1.95E-49 

Amine oxidase AK366005 2.1 0.0000121 

Peroxidase AK375268 4.2 4.93E-17 

Peroxidase 12 MLOC_54893.1 2.7 2.64E-09 

Ascorbate 

peroxidase 

MLOC_56459.2 2.5 2.92E-46 

Thioredoxin AK359722 3.8 3.66E-13 

TPX2 MLOC_55674.1 2.2 2.41E-08 

Thioredoxin-like fold MLOC_47648.1 2.2 5.41E-09 

Thioredoxin-like fold MLOC_15839.1 2.0 2.38E-34 

Thioredoxin-like fold AK376466 1.5 0.008132951 

Glutaredoxin MLOC_21098.1 1.5 0.0000335 

Glutaredoxin AK360350 2.9 0.0000574 

Myb transcription 

factor 

AK367954 4.8 0.002063455 

Myb domain protein MLOC_7426.1 4.0 6.73E-61 

Myb domain protein MLOC_52439.6 2.3 0.000374566 

MYB-related 

transcription factor 

MLOC_7981.1 2.1 0.0000357 

Myb family 

transcription factor 

MLOC_8187.2 1.7 3.05E-08 

Myb family 

transcription factor 

AK356219 6.6 6.14E-11 

Myb transcription 

factor 

MLOC_9835.2 -1.9 6.6E-56 
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Single myb histone 6 MLOC_34636.1 -1.9 0.0000181 

Myb family 

transcription factor 

MLOC_53628.1 -2.5 0.000991191 

Histone H4 AK377086 2 6.66E-13 

Histone H2A  AK373742 1.9 0.00000408 

Histone H2A  AK252540.1 1.9 0.00000032 

Histone H2A  AK373523 1.8 1.37E-09 

Histone H2A  MLOC_68568.1 1.7 1.44E-31 

Histone H2B AK251792.1 1.7 3.54E-08 

Histone H2A  MLOC_64906.1 1.6 0.000408853 

Histone H4  AK252102.1 1.5 0.000014 

Histone H2A  AK252601.1 4.4 1.84E-34 

Histone H2A  AK250752.1 4.5 1.66E-18 

Histone H1 MLOC_63569.1 3.7 2.87E-61 

Histone H2A  AK250581.1 3.4 1.19E-47 

Histone H2A  AK376310 3 0.0000363 

Histone H2A MLOC_43244.1 2.8 0.02224912 

Histone H2A AK369538 2.7 4.59E-10 

Histone H2B AK250385.1 2.6 1.13E-14 

Histone H3 AK358538 2.5 8.68E-31 

Histone H2A AK353773 2.5 5.52E-14 

Histone H2A AK251633.1 2.3 0.0000126 

Histone H3 AK375327 2.2 1.54E-38 

Histone H2A  AK374191 2.2 0.000000224 

Histone H3 AK353900 2.2 9.69E-14 

Histone H1  MLOC_74808.3 2.2 3.71E-110 

Single myb histone 6 MLOC_34636.1 -2 0.0000181 
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3.2.8 Changes in transcripts encoding pathogen-related proteins 

and cold and wound responses in the WHY1-deficient embryos 

relative to the wild type 

 

A large number of transcripts related to disease and stress responses were 

increased in abundance in the WHY1-deficient embryos relative to the wild type 

(Table 3.6). Of these, transcripts encoding proteins involved in pathogen, 

nematode and disease resistance, such as NBS-LRR proteins were significantly 

higher in the WHY1-deficient embryos (Table 3.6). NBS-LRR proteins have key 

functions in plant defence responses to pathogen attack (McHale et al., 2006). 

Some transcripts encoding wound-induced proteins were significantly higher in 

WHY1-deficient embryos relative to the wild type (Table 3.6). Additionally, two 

transcripts encoding cold response proteins were significantly higher in the 

WHY1-deficient embryos (Table 3.6). 
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Table 3.6: Change in abundance of transcripts involved in pathogen 

response and cold and wound response in WHY1-deficient embryos 

relative to the wild type.  

The transcript abundance in the W1-7 embryos relative to the wild type are shown as in 

(log2FC). The differentially expressed genes were identified as those showing fold 

changes of >1.5 and FDR-corrected p-value of 0.05 or less.  

Description  Accession  Relative 

expression 

(log2FC) 

FDR (p-

value) 

Pathogen-related protein         MLOC_79446.2 2.9 1.03E-11 

Pathogenesis-related MLOC_23000.1 2.7 3.57E-07 

 

NPR1 interactor         AK362984 3 7.79E-07 

 

Cold shock protein  MLOC_73670.1 3 0.00078022 

Wound induced protein  MLOC_65985.1 3 1.69E-61 

Wound induced protein  MLOC_4511.1 2 1.2E-10 

Universal stress protein MLOC_77034.3 1.5 1.56E-52 

Heavy metal transport MLOC_60983.1 2.8 0.000000125 

Heat stress transcription 

factor  

MLOC_11286.1 1.7 1.44E-23 

Heavy metal transport MLOC_22984.1 2.6 2.18E-14 

Heavy metal transport AK357922 2.2 1.43E-53 

Wound induced protein  MLOC_57090.1 5.3 2.14E-74 

Wound induced protein  MLOC_43430.2 4.7 5.41E-21 

Wound induced protein  AK376360 2.8 6.73E-69 

Wound induced protein  MLOC_64888.1 2.8 7.64E-60 

Wound induced protein  MLOC_76721.1 2.6 6.42E-50 

Wound induced protein  AK355456 2.2 2.57E-68 

Cold shock protein  MLOC_17065.1 2.5 8.65E-09 

Cold shock protein  MLOC_75604.1 2.5 0.000220579 

Pathogenesis-related AK369614 2 0.00000292 

Pathogenesis-related AK356356 1.7 1.04E-11 

Pathogenesis-related MLOC_72965.1 1.7 1.05E-13 

Pathogenesis-related AK371567 2.6 2.03E-18 

Disease resistance AK361511 7.2 9.84E-87 

Disease resistance MLOC_77921.1 1.5 0.0000624 
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Disease resistance AK370420 -1.6 0.000341971 

Disease resistance AK249642.1 -1.9 0.000000303 

Disease resistance MLOC_5504.3 -2 2.88E-11 

Disease resistance MLOC_78491.4 -2 9.8E-15 

Defend MLOC_19160.1 5.1 1.58E-30 

Nematode-resistance protein AK365897 2 6.07E-115 

Disease resistance MLOC_34953.1 -2.6 9.08E-08 

Disease resistance MLOC_75347.1 -3.3 0.000000298 

Disease resistance MLOC_79257.1 4.7 1.12E-09 

Disease resistance MLOC_18373.1 4 0.0000138 

Disease resistance MLOC_66163.1 2.7 9.08E-18 

NBS-LRR  MLOC_54830.2 2.4 0.000149577 

Disease resistance MLOC_4541.1 2.2 1.52E-08 

Disease resistance MLOC_70111.1 1.9 1.4E-16 

Disease resistance MLOC_60393.3 1.9 2.45E-12 

Disease resistance MLOC_43035.1 1.6 0.00000634 

Disease resistance MLOC_44924.2 1.6 0.004171635 

Disease resistance MLOC_52055.2 1.5 0.000614468 

Disease resistance MLOC_34954.1 -1.8 5.5E-20 

Disease resistance MLOC_24654.2 -3.4 2.17E-10 
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3.2.9 Transcripts encoding phytohormones -related pathways in the 

WHY1-deficient embryos relative to the wild type 

 

A number of transcripts encoding proteins involved in pathways associated with 

hormones such as gibberellins (GA), abscisic acid (ABA), ethylene and auxin 

were significantly higher in the WHY1-deficient embryos relative to the wild type 

(Table 3.7). For example, transcripts encoding 1-aminocyclopropane-1-

carboxylate oxidase (ACC oxidase) were significantly higher in the WHY1-

deficient embryos. ACC oxidase is a key precursor in the synthesis of ethylene 

(Van de Poel and Van Der Straeten, 2014). Transcripts encoding 9-cis-

epoxycarotenoid dioxygenase 1 (NCED) which cleaves 9-cis xanthophylls to 

xanthoxin in the ABA synthesis pathway (Tan et al., 2003) were significantly 

higher in the WHY1-deficient embryos relative to the wild type.  
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Table 3.7: Differentially expressed transcripts involved in phytohormones 

pathways in the WHY1-deficient embryos relative to the wild type.  

The transcript abundance in the W1-7 embryos relative to the wild type are shown as in 

(log2FC). The differentially expressed genes were identified as those showing fold 

changes of >1.5 and FDR-corrected p-value of 0.05 or less. 

Description  Accession  Relative 

expressio

n 

(log2FC) 

FDR (p-

value) 

Gibberellin-20 oxidase-2 MLOC_56462.1 8.7 1.22E-44 

Gibberellin-20 AK373555 5 3.92E-56 

Gibberellin-regulated protein 2 MLOC_68372.1 4.5 0.00808491

8 

Gibberellin receptor GID1L2 AK368846 4.4 1.7E-16 

Gibberellin-regulated protein 3 MLOC_62101.1 3.4 0.0000139 

Gibberellin receptor GID1L2 AK357963 3 8.95E-10 

Gibberellin 20 oxidase MLOC_16059.1 2.9 4.48E-16 

Gibberellin receptor GID1 AK356233 2.7 0.0000231 

Gibberellin receptor GID1L2 MLOC_72547.2 2.4 0.00064332

3 

Gibberellin 2-oxidase  AK373885 1.8 0.01171732

3 

Gibberellin-regulated protein AK358265 1.7 5.89E-10 

Gibberellin receptor GID1L2  AK363140 1.7 4.02E-17 

Gibberellin receptor GID1L2 MLOC_53106.1 1.7 9.89E-12 

Gibberellin receptor GID1L2 MLOC_59654.1 1.6 0.00247498

3 

Gibberellin receptor GID1 MLOC_70507.1 -1.6 0.00000497 

Gibberellin 2-oxidase MLOC_72016.2 6.3 2.16E-27 

Gibberellin-regulated protein 2 AK373320 5 0.00104431

9 

ABA-responsive protein-

related 

MLOC_11331.2 2.3 2.77E-25 

Abscisic acid receptor PYR1 MLOC_80832.1 1.5 0.0000425 

Abscisic acid receptor PYR1 MLOC_72289.1 2.4 1.01E-09 
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9-cis-epoxycarotenoid 

dioxygenase 1 (NCED) 

AK365103 3.3 6.4E-39 

1-aminocyclopropane-1-

carboxylate oxidase (acc) 

MLOC_61547.1 3.1 1.04E-13 

Ethylene-responsive 

transcription factor 

MLOC_59305.1 3.1 9.23E-19 

Ethylene responsive 

transcription factor 2b  

MLOC_51143.1 3 3.4E-61 

Ethylene-responsive 

transcription factor 

MLOC_6403.2 2.8 2.12E-23 

Ethylene responsive 

transcription factor 2a  

AK367525 2.7 0.00000492 

Ethylene-responsive 

transcription factor 

MLOC_7255.1 2.4 0.0000033 

Ethylene responsive 

transcription factor 2b  

MLOC_64636.1 2.1 1.21E-29 

Ethylene responsive 

transcription factor 2a  

AK374826 2 8.84E-25 

Ethylene-responsive 

transcription factor 1 

MLOC_3095.1 2 0.0000159 

Ethylene-responsive 

transcription factor 4  

AK354662 1.7 2.92E-52 

Ethylene responsive 

transcription factor 2b 

AK367417 4.7 2.37E-60 

Ethylene responsive 

transcription factor 2a 

AK356313 4.3 0.00000031

9 

Ethylene responsive 

transcription factor 2a 

AK248243.1 3.8 9.15E-08 

Auxin response factor MLOC_63261.1 1.5 0.00000060

5 

Auxin responsive  MLOC_58508.9 -1.5 0.00862812

2 

Auxin induced-like protein MLOC_18171.1 5.6 0.000018 

Auxin response factor AK374546 5.3 0.00013274

7 

Auxin responsive protein MLOC_75265.1 3.6 4.03E-09 
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Auxin responsive SAUR 

protein 

AK363815 3.1 0.00664549

9 

GH3 auxin-responsive MLOC_64672.1 2.6 2.68E-14 

Auxin response factor AK366601 2.2 0.00818563

6 

Auxin response factor MLOC_11014.7 2.2 0.00818563

6 

Auxin-responsive protein MLOC_56819.1 2.2 1.79E-17 

Auxin responsive SAUR 

protein 

MLOC_33053.1 2.1 0.00000045

9 

GH3 family protein MLOC_63528.1 1.9 1.56E-17 

Auxin responsive protein MLOC_36987.1 1.8 0.00000589 
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3.3 Discussion 

 

Germination is an important step in plant development. The embryos housed in 

the mature seeds require the right environment and conditions to grow. Nutrients 

stored in the seeds support seedling growth after germination. Germination was 

lower in both the W1-1 and W1-7 seeds that the wild type (Figure 3.2). However, 

after germination, the seedlings of all lines show a similar growth rate despite the 

lower seed germination properties (Figure 3.1). The WHY1 protein is required for 

seed germination but not the subsequent growth of the barley seedlings.  

 

Yield parameters were measured in the T4 generation of the W1-7 line and in the 

wild type barley plants, as described previously (Comadira, 2015). The W1-7 

plants had significantly fewer tillers than the wild type (see Table 3.3). However, 

the W1-7 plants produced more seeds and had significantly higher yields than 

the wild type (see Table 3.3). A previous report (Comadira et al., 2015) showed 

that seed yield per tiller was similar in both lines but data shown in Table 3.3 

reveals a higher seed yield per tiller in the W1-7 plants. The yield differences and 

changes in the shoot phenotypes of the T4 generation WHY1-deficient plants 

(Table 3.3) compared to the T3 generation plants (Comadira et al., 2015) is 

interesting. Seed yield in the 4th generation plants was higher than the wild type. 

The results obtained here may be explained by generation to generation 

variations. Thus, the WHY1-deficient plants are likely to produce greater seed 

yields than the wild type. However, this analysis must be confirmed in future 

generations to confirm this trend.  

 

The data reported in this chapter show significant differences in the embryo 

transcriptomes of the WHY1-deficient seeds relative to the wild type. In total, 

1292 transcripts were increased in abundance in the WHY1-deficient embryos 

relative to the wild type. In contrast, only 180 transcripts were significantly less 

abundant in the WHY1-deficient embryos relative to the wild type. These results 

suggest that WHY1 has important functions in barley that alter the programming 
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of the embryo and its preparation for germination. However, further experiments 

will be required to validate the expression levels of some of the transcripts that 

were changed in the WHY1-deficient embryos relative to the wild type using qRT-

PCR. 

 

Many nuclear-encoded transcripts involved in photosynthesis were increased in 

abundance in the WHY1-deficient seeds relative to the wild type. These 

transcripts encode key components of the photosynthetic complexes and the 

establishment of plastid transcription and translation systems (see section 3.2.5). 

Other transcripts that were increased in the WHY1-deficient embryos encode 

proteins associated with photosynthetic electron transport complexes, particularly 

photosystem (PS) II and components involved in cyclic electron transport (Table 

3.4). The level of transcripts encoding the small subunit (RBCS) of ribulose-1, 5-

bisphosphate carboxylase-oxygenase (Table 3.4) was increased in the WHY1-

deficient embryos relative to the wild type. The photosynthetic associated 

transcripts are present in the embryos of the dry seeds were laid down by the 

mother plant during seed production and maturation. Only one plastid-encoded 

transcript encoding a protein involved in photosynthesis (RBCL) was increased 

in abundance in the WHY1-deficient embryos relative to the wild type (Table 3.4). 

These findings suggest that the WHY1-deficient embryos are primed to establish 

photosynthesis more rapidly than the wild type. In addition, transcripts involved 

in photo-protective and antioxidant metabolism were more abundant in the 

WHY1-deficient embryos, suggesting that defence processes associated with 

photosynthesis are also primed by loss of WHY1 functions (see section 3.2.7). In 

addition, transcripts encoding proteins associated with redox metabolism were 

more abundant in WHY1-deficient embryos than the wild type, including 

ascorbate peroxidase (APX) and other peroxidases, thioredoxins (TRX) and 

glutaredoxins (GRX) (Table 3.5). These changes are interesting because they 

suggest that ROS levels are higher in the embyos deficient in the WHY1 protein. 

The reasons why ROS would be more abundant in WHY1-deficient embryos are 

unknown. However, it is also possible that the flowers and reproductive organs 

of the mother plants experienced a higher level of oxidation than the wild type 

during seed production resulting in a greater levels of antioxidant protection in the 
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WHY1-deficient embryos that would might provide a useful advantage during 

seed germination.  

 

The levels of transcription factor mRNAs, including MYB and WRKY were 

increased in the WHY1-deficient embryos relative to the wild type. A large number 

of zinc finger proteins that are involved in DNA binding were increased in the 

WHY-deficient embryos relative to the wild type (Appendix A.1). Transcripts 

encoding proteins involved in telomere binding, DNA repair, chromatin 

organisation and histones were also higher in the WHY1-deficient embryos. The 

WHY1 protein therefore has roles that affect the expression of these key 

regulators of plant growth, development and adaptation to environmental triggers. 

Moreover, transcripts encoding proteins involved in GA, ABA, ethylene and auxin 

metabolism were more abundant in the WHY1-deficient embryos relative to the 

wild type. For example, several transcripts associated with ABA pathways were 

more abundant in the WHY1-deficient embryos. It has previously been shown 

that ABA-mediated regulation of seed germination is altered in Arabidopsis why1 

mutants (Isemer et al., 2012a). Localisation of WHY1 in plastids was shown to 

increase sensitivity to ABA. These findings suggest that hormone signalling 

pathways associated with seed germination and seedling growth are also primed 

in response to the loss of WHY1 function. A number of transcripts containing cis 

elements that are recognised by GA and ABA and that encode hydrolases that 

act on proteins, lipids and sugars were more abundant in the WHY1 mutants 

(Table 3.7). Both GA and ABA play important roles in during seed maturation and 

germination. ABA is synthesised during seed maturation and dormancy and 

stored in the maternal tissue and embryo, and its levels decrease during 

imbibition (Jacobsen et al., 2002, Millar et al., 2006, Sreenivasulu et al., 2008). 

GA can be synthesised and stored in the embryo. The levels of GA are higher 

during imbibition and remains high during and after germination (Bewley, 1997). 

Hydrolases are required for the mobilisation of seed storage reserves during early 

seed germination. The level of transcripts encoding a cytochrome P450 

(MLOC_69871 was more abundant in the WHY1-deficient embryos relative to the 

wild type. This cytochrome P450 is involved in the GA synthesis pathway 

(Davidson et al., 2006). In addition, CYP707A encodes an ABA 8’-hydroxylase 
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that modulates tissue ABA content to control seed dormancy (Millar et al., 2006). 

Taken together, these results suggest that seed dormancy and germination are 

influenced by the loss of WHY1. Moreover, the observed changes in transcripts 

associated with redox processes and stress responses suggest that redox 

signalling and associated defences are primed by the loss of WHY1, increasing 

the fitness of WHY1-deficient seedlings at the earliest stages of development 

compared to the wild type. This analysis suggests that WHY1 regulates a range 

of fundamental processes in seeds such as embryogenesis, dormancy and 

germination.  
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Chapter 4 . The role of WHIRLY in the establishment of 

photosynthesis in barley leaves  

 

4.1 Introduction 

 

The WHY proteins are localised in the chloroplasts, mitochondria and nuclei 

(Krause et al., 2005, Grabowski et al., 2008). To date, in most plant species there 

are at least two WHY proteins, WHY1 and WHY2 that are known to be targeted 

to the mitochondria or plastids, respectively (Isemer et al., 2012b, Krause and 

Krupinska, 2009). In Arabidopsis, AtWHY1 and AtWHY3 are targeted to plastids 

and AtWHY2 is targeted to mitochondria (Krause et al., 2005, Krause and 

Krupinska, 2009). In contrast to Arabidopsis, there are two WHY proteins in 

barley; WHY1 is targeted in the nucleus and plastids (Melonek et al., 2010) and 

WHY2 is targeted to the mitochondria (Krause et al., 2005).  

 

WHY1 has been suggested to be important for anterograde and retrograde 

signalling during plant development and in environmental stress responses 

(Foyer et al., 2014). WHY1 binds to the chloroplast nucleoids and is essential for 

DNA maintenance and compactness (Krupinska et al., 2014). WHY1 can control 

the levels of transcripts of chloroplast-encoded genes (Comadira et al., 2015). 

However, there are inconsistencies in the literature concerning the phenotypes 

of WHY1 (why1) mutants in different plant species. Arabidopsis why1 mutants 

have similar phenotype to the wild type (Yoo et al., 2007a). However, a small 

percentage of the double-knockout why1why3 mutants have a variegated 

green/white/yellow leaf phenotype (Maréchal et al., 2009, Cappadocia et al., 

2010). In addition, crossing the why1why3 mutants with a mutant impaired in 

organelle DNA polymerase IB (pollB) (i.e. atwhy1 atwhy3 pollb-1 mutants), one 

of two type I chloroplast DNA polymerases, resulted in an extreme yellow-

variegated phenotype (Lepage et al., 2013). This triple mutant had a higher level 
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of illegitimate recombination between repeated sequences and greater plastid 

genome instability than the wild type (Lepage et al., 2013). The atwhy1 atwhy3 

pollb-1 mutants also showed down-regulated photosynthetic electron transport 

efficiencies with a higher level of ROS accumulations, suggesting an overlap of 

WHY1 protein and PolIB functions (Lepage, 2013). Moreover, maize WHY1 

knockout-mutants (zmwhy1-1) produced by transposon insertion tagging had 

albino phenotype due to defects in chloroplasts ribosome synthesis, which led to 

incorrect plastid biogenesis (Prikryl et al., 2008). This study reported that WHY1 

binds to both DNA and RNA in chloroplasts and it is required for the correct intron 

splicing of chloroplast ribosomal proteins (Prikryl et al., 2008). However, the 

knock-out and knock-down maize lines had equivalent amounts of chloroplast 

DNA and RNAs, suggesting that WHY1 is not required for chloroplast DNA 

replication or plastid transcription (Prikryl et al., 2008).  

 

The functions of WHY1 have been explored using transgenic barley lines with 

RNAi-mediated knock-down of the WHY1 gene. These lines have about 5% of 

the wild type WHY1 protein (Melonek et al., 2010, Krupinska et al., 2014). The 

RNA-interference knockdown barley lines (W1-1, W1-7 and W1-9) had reduced 

levels of WHY1 protein but no marked shoot phenotypes when grown under 

optimal conditions (Melonek et al., 2010, Krupinska et al., 2014). However, the 

mature leaves of the WHY1-deficient plants accumulated more chlorophyll but 

had less sucrose than the wild type (Comadira et al., 2015). Loss of WHY1 protein 

function influenced the expression of transcripts encoded by chloroplast genes 

such as ribosomal proteins, subunits of the RNA polymerase and the thylakoid 

NADH and cytochrome b6/f complexes (Comadira et al., 2015). However, these 

lines have not yet been fully characterised, particularly with regards to leaf 

development. The following studies were therefore undertaken to characterise 

the development of barley leaves that are deficient in WHY1 compared to the wild 

type. 
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4.2 Results  

 

4.2.1 Shoot phenotypes of WHY1-deficient barley  

 

The leaves of 7 day old W1-7 seedlings showed a delayed in greening in a strictly 

developmental manner from base, middle and leaf tip compared to the wild type 

(Figure 4.1). The delayed greening phenotype was observed in each new 

emerging leaf (Figure 4.1). However, the developed first leaves of W1-1 and W1-

7 appeared visually similar in colour as the wild type (Figure 4.2). 
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Figure 4.1: A comparison of shoot phenotypes of (A & B) 7-day old 

seedlings of transgenic W1-1 and W1-7 lines to the wild type (WT).  

Seeds were kept at 4°C for 3 days before the seedlings were sown in pots in soil in 

controlled environment chambers with a 16h light/ 8h dark photoperiod, irradiance of 

200 μmol m-2s-1, 20°C/16°C day/night temperature regime and 60% relative humidity. 

(Scale bar =1 cm).  

     WT                  W1-1                          W1-7 

              WT                        W1-1                  W1-7 

1st leaf A) 

B) 
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Figure 4.2: A comparison of shoot phenotypes of 14 day-old seedlings of 

transgenic W1-1 and W1-7 lines to the wild type (WT).  

Seeds were kept at 4°C for 3 days before the seedlings were sown in pots in soil in 

controlled environment chambers with a 16h light/8h dark photoperiod, irradiance of 

200 μmol m-2s-1, 20°C/16°C day/night temperature regime and 60% relative humidity. 

(Scale bar =1 cm).  

     WT                            W1-1                       W1-7 

        WT                           W1-1                                W1-7 
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4.2.1.1 Transcript level of WHY1 in RNAi barley lines  

 

Quantitative real-time PCR (qRT-PCR) was performed to measure the levels of 

WHY1 transcripts in the base, middle and tip regions of 7 day old barley 

seedlings. WHY1 transcripts were very low in all the leaf sections of the W1-1 

and W1-7 leaves at 7 days compared to the wild type (Figure 4.3 A). Similarly, 

WHY1 transcripts were much lower in all the leaf sections of the W1-1 and W1-7 

plants at 14 days compared to the wild type (Figure 4.3 B). While there were small 

differences in the levels of WHY1 transcripts in the baser and middle sections of 

the W1-1 and the W1-7 leaves, the abundance of these transcripts was very low 

in both lines compared to the wild type. It is therefore difficult to attribute 

phenotypic differences to the small differences in WHY1 transcripts between the 

W1-1 and W1-7 lines (Figure 4.3). Since transcript levels do not always have a 

direct relationship to protein levels, it is more realistic to relate changes in the 

phenotype to the abundance of the WHY1 protein in the different lines. The levels 

of WHY1 protein were lower in all the regions of the W1-7 leaves than the W1-1 

and wild type leaves, as is shown later in Figure 4.14. 
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Figure 4.3 : Relative abundance of transcripts encoding WHY1 in the base, 

middle (Mid) and tip sections of the first leaves of wild type (WT) , W1-1 and 

W1-7 seedlings of (A) 7 and 14 (B) days after germination.  

Data was normalised to ACTIN11. Data for the WT base was set to 1. The data for middle 

and tip are shown relative to the WT base. Values are represented as mean ± SE (n=6). 

Asterisks indicate significant differences between WHY1-deficient and wild type plants 

estimated by the Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  
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4.2.2 Leaf pigment content 

 

The base sections of the wild type barley leaves had significantly less chlorophyll 

than the middle and tip sections at 7 days old, consistent with the presence of 

greening plastids in the developing monocot leaves (Figure 4.4). The chlorophyll 

content of the base, middle and tip sections of the first leaves of the 7 day old 

was lower in the W1-1 and W1-7 seedlings than the wild type (Figure 4.4 A). The 

W1-7 leaves had the lowest levels of chlorophyll relative to the wild type 

seedlings. The W1-1 leaves had higher chlorophyll levels than the first leaves of 

the W1-7 seedlings but values were still significantly lower than the wild type 

seedlings (Figure 4.4 A). In general, the first leaves of the WHY1-deficient 

seedlings exhibited a gradual increase in the total chlorophyll content from the 

base, middle to the tip (Figure 4.4 A).  

 

The base sections of the wild type leaves at 14 days old had low levels of 

chlorophyll than the middle and tip sections of the leaves (Figure 4.4 B). The 

chlorophyll content of the base, middle and tip sections of the of the first leaves 

of the W1-1 and W1-7 seedlings were increased in the 14 day old seedlings 

compared to the values obtained with the 7 day old seedlings (Figure 4.4). 

However, the leaves of the W1-1 and W1-7 seedlings still had significantly lower 

chlorophyll levels than the wild type at 14 days old (Figure 4.4 B). The W1-7 

leaves had lower levels of chlorophyll than the W1-1 and to the wild type at 14 

days after germination (Figure 4.4 B). The total chlorophyll content increased 

from the base to the tip in the first leaves of WHY1-deficient barley seedlings 

(Figure 4.4 B). The chlorophyll contents tended to be lower in the 14 day old W1-

1 and W1-7 leaves than the wild type but these differences were much less 

marked than at 7 day old (Figure 4.4).  
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The base sections of 7 day old wild type barley leaves had significantly less 

carotenoid pigments than the middle and tip sections (Figure 4.5 A). The first 

leaves of the 7 day old W1-1 and W1-7 seedlings had lower carotenoid levels 

than the wild type leaves at the same age (Figure 4.5 A).  

 

The basal sections of the W1-1 and W1-7 leaves had lower carotenoid pigments 

than the comparable sections of the wild type leaves at 14 day old (Figure 4.5 B). 

Moreover, the middle and tip sections of the first leaves of both the W1-1 and 

W1-7 leaves had significantly lower carotenoid contents than the comparable 

sections of the wild type leaves (Figure 4.5 B).  
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Figure 4.4 : A comparison of the chlorophyll content of first leaves of (A) 7-

and (B) 14- day old of the wild type (WT), W1-1 and W1-7 barley seedlings.  

Data was expressed as mean values ± SE (n=9). Chl, chlorophyll; FW, fresh weight. 

Significant differences between the wild type, W1-1 and W1-7 were determined by the 

Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001). 
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Figure 4.5 : A comparison of carotenoid content in the first leaves of (A) 7- 

and (B) 14- day old of the wild type (WT), W1-1 and W1-7 barley seedlings. 

Data was expressed as mean values ± SE (n=9). Chl, chlorophyll; FW, fresh weight. 

Significant differences between the wild type, W1-1 and W1-7 was determined by the 

Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  
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4.2.2.1 Chlorophyll a fluorescence imaging 

 

The ratio of dark-adapted variable chlorophyll a fluorescence (Fv) to the maximal 

value of chlorophyll a fluorescence (Fm) was lower in the W1-7 leaves compared 

to the wild type (Figure 4.6). Thus, the onset of efficient photosynthesis was 

delayed in the W1-7 plants compared to the wild type. This data is consistent with 

the delayed greening observed in the W1-7 leaves (Figure 4.1). Interestingly, the 

Fv/Fm ratios were similar in the first leaves of the W1-7 and wild type leaves, 9 

days after germination, showing that the quantum yield of photosynthesis was 

similar in both lines at this stage (Figure 4.6). However, the developing second 

and third leaves had lower Fv/Fm ratios than comparable leaves of the wild type 

plants (Figure 4.6). The efficiency of photosynthesis was only about 60% of 

maximum in the base sections and about 80% in the tip sections of the developing 

W1-7 leaves compared to the wild type (Figure 4.6). This indicates that the 

efficiency of photosynthesis was slower to reach maximum values in the W1-7-

deficient leaves.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 : In vivo imaging of the Fv/Fm ratios of wild type and W1-7 

seedlings.  

Chlorophyll a fluorescence quenching measurements were made from the first day of 

leaf emergence (at 4 days old) up to 10 days after germination. Colour scale represents 

the values of Fv/Fm ratios.   
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4.2.2.2 Single time point measurements  

 

Fv/Fm ratios were measured in the base, middle and tip regions of wild type and 

W1-7 leaves of seedlings from day 5 up to day 14 after germination using a 

Fluoropen. The Fv/Fm ratios were significantly lower in the base, middle and tip 

regions of the W1-7 leaves than the equivalent leaf sections from the wild type 

seedlings for the first 10 days after germination (Figure 4.7). The Fv/Fm ratios 

were similar in the base, middle and tip sections of both genotypes after day 10 

(Figure 4.7). This data is consistent with results obtained by the imaging 

chlorophyll a fluorescence imaging (Figure 4.6).  
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Figure 4.7: A comparison of the dark-adapted Fv/Fm ratios in the (A) base, 

(B) middle (Mid) and (C) tip regions of the wild type (WT) and W1-7 

seedlings.  

Data was expressed as mean values ± SE (n=10). Significant differences between the 

wild type, W1-1 and W1-7 was determined using the Student’s t-test (*p<0.05; **p<0.01; 

***p<0.001 and ****p<0.0001).  
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4.2.3 Transcript abundance (plastid-encoded genes) 

 

Genes encoding photosynthetic proteins are found in the nuclear and plastid 

genomes. The coordinated expression of genes encoded by the plastome and 

the nuclear genome is required for the efficient assembly of the photosynthetic 

machinery and the operation of photosynthesis during chloroplast development.   

 

4.2.3.1 Plastid-encoded  

 

The abundance of both plastid-encoded and nuclear-encoded transcripts was 

assessed by qRT-PCR. A small number of important photosynthetic proteins, 

such as the D1 of photosystem (PS) II are encoded by the plastid genome. This 

protein is encoded by the PSBA gene. Similarly, the large subunit (RBCL) of 

ribulose-1, 5-bisphoshate carboxylase (RuBiSCO) is encoded by the plastid 

genome (Figure 4.8). The levels of RBCL and PSBA transcripts were significantly 

lower in the base, middle and tip sections of the first leaves of 7 day old of W1-1 

and W1-7 plants compared to the wild type leaves (Figure 4.8). However, the 

transcript levels of RBCL and PSBA were significantly higher in the base, middle 

and tip sections of the first leaves of W1-1 and W1-7 14-day old plants compared 

to the wild type (Figure 4.9). 

 

The levels of transcripts encoded by plastome genes such as MLOC_76327 were 

lower in all sections (base, middle and tip) of the first leaves of 7-day old W1-1 

and W1-7 seedlings compared to the wild type (Data in Appendix B.1). The 

transcript levels of PETD were significantly lower in the base and middle sections 

of the first leaves of W1-1 and W1-7 of 14-day old plants compared to the wild 

type (Appendix B.1). However, the abundance of PETD transcripts was higher in 

the tip sections of the W-1 leaves compared to the wild type. However, PETD 

transcript levels in the tip section of W1-7 leaves were similar to the wild type 

(Data in Appendix B.1).   
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Figure 4.8: Levels of transcripts encoded by plastid genes; (A) the large 

subunit of ribulose-1, 5-bisphosphate carboxylase (RBCL) and (B) the 

photosystem II, D1 protein (PSBA) in the base, middle (Mid) and tip sections 

of the first leaves of wild type (WT), W1-1 and W1-7 seedlings 7 days after 

germination.  

Data was normalised to the 16S. Data was set to 1 and W1-1 and W1-7 were compared 

to the wild type. Values are represented as mean ± SE (n=6). Asterisks indicate 

significant differences between WHY1- deficient and wild type plants as estimated by the 

Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  
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Figure 4.9: Levels of transcripts encoded by plastid genes. (A) The large 

subunit of ribulose-1, 5-bisphosphate carboxylase (RBCL) and B) the 

photosystem II, D1 protein (PSBA) in the base, middle (Mid) and tip sections 

of the first leaves of wild type (WT), W1-1 and W1-7 seedlings 14 days after 

germination.  

Data was normalised to the 16S. Data was set to 1 and W1-1 and W1-7 were compared 

to the wild type. Values are represented as mean ± SE (n=6). Asterisks indicate 

significant differences between WHY1- deficient and wild type plants as estimated by the 

Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  
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4.2.3.2 Plastid-encoded RNA polymerases (PEP) 

 

The levels of RPOC and RPS16 transcripts transcribed by the plastid-encoded 

polymerases (NEP) were significantly lower in the base, middle and tip sections 

of the first leaves of 7 day old W1-1 and W1-7 seedlings compared to the wild 

type (Figure 4.10). However, the abundance of RPOC and RPS16 transcripts 

were higher in the tip sections of the W1-1 leaves than the wild type at this stage 

(Figure 4.10).  
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Figure 4.10: Levels of ribosomal photosynthetic transcripts that are 

encoded by NEP-transcribed plastid genes. (A) RPOC and (B) RPS16 in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT), W1-

1 and W1-7 seedlings 7 days after germination.  

Data was normalised to the 16S. Data was set to 1 and W1-1 and W1-7 were compared 

to the wild type. Values are represented as mean ± SE (n=6). Asterisks indicate 

significant differences between WHY1-deficient and wild type plants as estimated by the 

Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  
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4.2.3.3 Nuclear-encoded transcripts  

 

In contrast to the levels of transcripts encoded by plastome genes, the levels of 

nuclear-encoded transcripts, which encode proteins targeted to the chloroplasts 

were similar or higher in the W1-1 and W1-7 leaves compared to the wild type at 

7 days and 14 days after germination. For example, the levels of transcripts 

encoding light-harvesting chlorophyll a/b binding proteins (LHCA, LHCB and 

LHCB1.1) were similar in the base, middle and tip sections of W1-1 leaves and 

the wild type (Figure 4.11). However, LHCA, LHCB and LHCB1.1 transcripts were 

higher in the base, middle and tip sections of the first leaves of 7 day old W1-7 

seedlings than equivalent sections in the wild type (Figure 4.11). 

 

The levels of a large number of nuclear-encoded photosynthetic transcripts 

(MLOC_58312, MLOC_64606, MLOC_33258, MLOC_77244, and MLOC_59016 

and AK362199) were similar in the base, middle and tip sections of the first leaves 

of 7 day old W1-1 seedlings relative to the wild type (Appendix B.2). However, 

the levels of these transcripts were significantly higher in the base, middle and tip 

sections of the W1-7 leaves compared to the wild type at 7 days after germination 

(Appendix B.2).  

 

The abundance of RBCS transcripts was similar in all sections of the first leaves 

of 7 day old wild type and W1-1 seedlings (Figure 4.12 A). However, RBCS 

transcripts were significantly higher in the middle and tip sections of the first 

leaves of the W1-7 plants compared to the wild type at 7 days of germination. In 

contrast, RBCS transcripts were significantly lower in the basal sections of the 

W1-7 leaves relative to the wild type (Figure 4.12 A).  

 

The levels of transcripts encoding the nuclear-encoded plastid targeted RNA 

polymerase (NEP: RPOTP) tended to be higher in all sections of the first leaves 

of 7 day old W1-1 seedlings and the wild type (Figure 4.12 B). However, the levels 

of RPOTP transcripts were significantly higher in all sections of the W1-7 
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seedlings than the wild type after 7 days of germination (Figure 4.12 B). The 

changes in the abundance of nuclear-encoded transcripts were much less 

marked in the W1-1 and W1-7 leaves compared to the wild type at 14 days after 

germination (Figure 4.13 and more details in Appendix B.2). 
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Figure 4.11: Levels of chloroplast-targeted transcripts encoded by nuclear 

genes. The light harvesting chlorophyll a/b binding complex. (A) LHCA (B) 

LHCB and (C) LHCB1.1 in the base, middle (Mid) and tip sections of the first 

leaves of wild type (WT), W1-1 and W1-7 seedlings 7 days after germination. 

Data was set to 1, and W1-1 and W1-7 were compared to the wild type. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1-deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001). 
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Figure 4.12: Levels of chloroplast-targeted transcripts encoded by nuclear 

genes. (A) The small subunit of ribulose-1, 5-bisphosphate carboxylase 

(RBCS) and (B) the nuclear-encoded, plastid targeted RNA polymerases 

(RpoTp) in the base, middle (Mid) and tip sections of the first leaves of wild 

type (WT), W1-1 and W1-7 seedlings 7 days after germination.  

Data was set to 1 and W1-1 and W1-7 were compared to the wild type. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1-deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001).  
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Figure 4.13: Levels of chloroplast-targeted transcripts encoded by nuclear 

genes. (A) The light harvesting chlorophyll a/b binding complex (LHCA), (B) 

the small subunit of ribulose-1, 5-bisphosphate carboxylase (RBCS) and (C) 

the nuclear-encoded photosynthetic transcripts (MLOC_59019) in the base, 

middle (Mid) and tip sections of the first leaves of wild type (WT), W1-1 and 

W1-7 seedlings 14 days after germination.  

Data was set to 1, and W1-1 and W1-7 were compared to the wild type. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1-deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001).  
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4.2.4 Protein accumulation 

 

The W1-1 and W1-7 seedlings had significantly more light harvesting proteins 

(LHCBII) in all leaf sections than the leaves of the wild type both at 7 and 14 day 

old (Figure 4.14). The levels of RBCL protein were decreased in all sections of 

the W1-1 and W1-7 leaves relative to the wild type at 7 days after germination 

(Figure 4.14 A). The decrease in the levels of the RBCL protein were similar to 

the observed changes in the abundance of the RBCS protein. While the levels of 

RBCL proteins were similar in the leaves of the W1-1 and W1-7 seedlings 

compared to the wild type at 14 days after germination (Figure 4.14.B), the 

abundance of RBCS proteins remained at low level in the W1-1 and W1-7 leaves 

compared to the wild type (Figure 4.14.B). The levels of D1 proteins and RPS1 

proteins were lower in all leaf sections of the W1-1 and W1-7 seedlings than the 

wild type leaves 7 days after germination (Figure 4.14 A). In contrast, the 

abundance of D1 protein was lower in the base and middle section of the W1-1 

and W1-7 leaves than the wild type at the 14 day old stage (Figure 4.14.B). The 

levels of RPS1 protein were similar in all the leaf sections of all genotypes at 14 

days after germination (Figure 4.14.B). The levels of WHY1 protein were lower in 

all regions of the leaves of 7 and 14 day old of W1-1 and W1-7 seedlings than 

the leaves of the wild type (Figure 4.14). However, the WHY1 protein levels were 

not in line with the transcript levels as mentioned in section 4.2.1.1.  
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Figure 4.14: Western blot analysis of total proteins in the base, middle (Mid) 

and tip sections of the first leaves of wild type (WT), W1-1 and W1-7 of 

seedlings at (A) 7 and (B) 14 days after germination.  

Proteins detected are two of the three different individual subtypes of chlorophyll a/b-

binding proteins (LHCB1 and LHCB2). LHCB1 is the most abundant form and is encoded 

by several nuclear genes. The small subunit of ribulose-1, 5-bisphosphate carboxylase 

(RBCS), chloroplast ribosomal protein S1 (RPS1), WHY1 (WHY1), the large subunit of 

RBC (RBCL) and the photosystem II, D1 protein.  
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4.2.5 Plastid DNA content 

 

qRT-PCR with specific primers for plastid genes (PETD and PSBA) and RBCS 

as reference for the nuclear genome were used to calculate the ratios of plastid 

DNA levels (ptDNA) to the nuclear levels (nDNA). The levels of PETD and PSBA 

genes (ptDNA contents) were significantly higher in all sections of the W1-7 

leaves of 7 day old seedlings than the wild type (Figure 4.15 A). The abundance 

of PETD and PSBA transcripts were also higher in all sections of the 14 day old 

W1-7 leaves than the wild type (Figure 4.15 B). The mature leaves of the W1-7 

at 3-week old seedlings had higher levels of ptDNA, as determined by the levels 

of PETD and PSBA transcripts than the wild type (Data shown in Appendix B.3). 

In contrast, the levels of PETD and PSBA transcripts were lower in the roots of 

7-day old W1-7 seedlings than the wild type (Data shown in Appendix B.3.1).  
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Figure 4.15: The ratios of plastid (pt) DNA levels to nuclear (n) levels 

(ptDNA/nDNA ratios) in the first leaves of wild type (WT), W1-1 and W1-7 

seedlings at (A) 7 days after germination and (B) WT and W1-7, 14 days after 

germination.  

Ratios were measured using specific primers to the plastome targets petD and psbA, 

with rbcS as a reference for the nuclear genome. Data was normalised to the 18S rDNA 

gene and values for the WT were set to 1. Values are represented as mean ± SE (n=6). 

Asterisks indicate significant differences between WHY1-deficient and wild type plants 

as estimated by the Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001).  

0

2

4

6

8

10

WT W1-1 W1-7 WT W1-1 W1-7 WT W1-1 W1-7

Base Mid Tip

R
a
ti

o

petD psbA

***

***

*

**** ****

***

****

****

****

****

0

2

4

6

8

10

12

WT W1-7 WT W1-7 WT W1-7

Base Mid Tip

R
a
ti

o

A 

B 

** 

**** 

**** 
**** 

**** 
**** 

**** 



 
 

131 

 

4.2.6 Chloroplast rRNA processing  

 

The knock-down of Arabidopsis RH22 leads to a delayed-greening phenotype 

with defects in plastid development (Appendix B). The RH22 phenotype is caused 

by aberrant splicing of rRNAs (23S rRNA and 4.5S rRNA) for the large subunit 

(50S) of the plastid ribosomes (Chi et al., 2012). Therefore, the accumulation and 

processing of chloroplast rRNAs was further examined by RNA gel blotting using 

probes spanning the 23S-4.5S region specific to individual rRNA bands in the 

base, middle and tip sections of the first leaves of wild type, W1-1 and W1-7 

seedlings 7 days after germination to answer the question whether WHY1 is 

required for chloroplast rRNA processing (Figure 4.16 A). Very low signals were 

observed for the base, middle and tip regions of the W1-7 leaves compared to 

the wild type and W1-1 leaves on glyoxal agarose gels with total RNA (Figure 

4.16 B). The probes detected equal amounts of 23S rRNA (1.1 kb) in the base, 

middle and tip regions of the wild type leaves with no detectable unprocessed 

precursor forms (Figure 4.16 C). However, there were differences in the 

accumulation of mature 23 S rRNA (1.1 kb) in the W1-1 and W1-7 seedlings 

relative to the wild type (Figure 4.16 C). Unprocessed precursor forms (3.1 kb) 

were detected in the W1-1 and W17 seedlings (Figure 4.16 C).   
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Figure 4.16:  Altered splicing of plastid ribosomal RNA spanning the 23S to 

the 4.5S region in the base, middle (Mid) and tip sections of the first leaves 

of wild type (WT), W1-1 and W1-7 seedlings 7 days after germination.  

(A) Diagram of the chloroplast rRNA operon and the locations of probes used for RNA 

gel-blot analysis spanning the 23S-4.5S regions (99142-99536 base pairs), (B) total RNA 

separated on a 1.2% denaturing glyoxal agarose gel stained with ethidium bromide, M- 

RiboRuller TM High Range RNA ladder, (C) northern blot hybridisation with a 32P-

fragment spanning 23S and 4.5S region and (D) 25S rRNA stained with ethidium 

bromide as a loading control.   
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4.3 Discussion  

 

The studies described in this chapter were performed to characterise the 

molecular phenotypes of WHY1-deficient (W1-1 and W1-7) leaves in relation to 

the wild type in seedlings grown for 7 and 14 days after germination. The leaves 

were separated into base, middle and tip sections because barley leaves, like 

those of other monocotyledonous plants, show a gradient in chloroplast 

development from the base to the tip. Taken together, the data presented here 

allow a number of conclusions to be drawn. 

 

4.3.1 WHY1 is required for chloroplast development in barley leaves 

 

Previous studies have reported that the leaves of the transgenic barley lines used 

in the present study have significantly more chlorophyll than the wild type at 21 

days after germination (Comadira et al., 2015). The data presented here shows 

that the emerging leaves of the W1-1 and W1-7 seedlings show delayed greening 

at earlier stages of development (7 and 14 days after germination) compared to 

the wild type (Figure 4.1 and Figure 4.2). Furthermore, the loss of WHY1 delayed 

leaf pigment accumulation in the WHY1-deficient seedlings in a development-

dependent manner (Figure 4.4 and Figure 4.5). These data suggest that the 

development of mature and fully functional chloroplast was delayed in WHY1-

deficient seedlings relative to the wild type (Figure 4.6). The maximal 

photochemical efficiency of PSII (determined by Fv/Fm ratios) was lower in the 

developing W1-7 leaves than the wild type (Figure 4.6). The Fv/Fm ratios in the 

W1-7 leaves gradually increased from the basal sections to the tip, but maximum 

values were achieved much later in the W1-7 leaves than the wild type (Figure 

4.6 & Figure 4.7). However, there was a limitation in measuring Fv/Fm ratios 

during this study, therefore, this experiment should be repeated in the W1-1 

leaves in the future. In addition, there is a gradient of development in 

monocotyledon leaves that starts in the leaf basal meristem region (Baumgartner 

et al., 1989, Hess et al., 1993). The findings reported here suggest that WHY1 is 

required for the timing of greening during barley leaf development, particularly at 
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the earliest stages of leaf development. Despite the delay in leaf greening, the 

WHY1-deficient lines produced high seed yield in the T4 generation (Chapter 3, 

Table 3.3). This observation suggests that the enhanced chlorophyll 

accumulation and stay green phenotype of the mature leaves induced by loss of 

WHY more than makes up for the delay in leaf development in terms of seed 

yield.   

 

4.3.2 WHY1 is essential for chloroplast to nucleus signalling 

 

Plastid transcription requires two different RNA polymerases that recognise 

distinct types of promoters: a nuclear-encoded plastid RNA polymerase (NEP) 

and the plastid-encoded RNA polymerase (PEP). A shift from NEP-mediated 

transcription to PEP-mediated transcription occurs early in chloroplast 

development. However, little is known about the mechanisms involved in this 

process. The studies reported here suggest that WHY1 is essential for both NEP 

and PEP activity during chloroplast development. Like all plastids, chloroplasts 

develop from proplastids that are present in the immature cells of plant 

meristems. The differentiation of proplastids into chloroplasts requires the 

establishment of the PEP complex. The PEP complex is a bacterial-type multi-

subunit enzyme involved in the transcription of photosynthesis-related genes. It 

is composed of a catalytic core comprised of plastid-encoded proteins (rpoA, 

rpoB, rpoC1 and rpoC2) and additional polymerase-associated proteins (PAP), 

including other nuclear-encoded polymerase-associated proteins and sigma 

factors (SIGs), which are required by PEP for promoter recognition (Dietz et al., 

2011). 

 

The loss of WHY1 causes differential effects on the levels of photosynthetic 

transcripts encoded by plastid and nuclear genes. The coordination of nuclear 

and plastid-encoded gene expression is disrupted in the absence of WHY1. In 

the present studies, the levels of NEP transcripts (Figure 4.11 & Figure 4.12) 

were higher in the developing W1-1 and W1-7 leaves than in the wild type, 

suggesting that NEP functions are limited in the absence of WHY1. In agreement 
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with this view, plastid-encoded RNA polymerases such as RPOC and RPS16, 

which are transcribed exclusively by NEP, were very low in WHY1-deficient lines 

relative to the wild type. This finding indicates that the loss of WHY1 disturbs 

NEP-dependent transcript accumulation (Figure 4.10). The leaves of the WHY1-

deficient lines showed decreased levels of PEP-associated transcripts such as 

PSBA and RBCL (Figure 4.8) in 7 day old seedlings. However, the levels of PEP-

associated transcripts were higher in the WHY1-deficient lines relative to the wild 

at 14 days old. These findings are in agreement with studies on other mutants 

that have high NEP transcript levels but low levels of PEP transcripts (Hess et 

al., 1994, Díaz et al., 2018).  

 

Evidence suggests that WHY proteins may be polymerase-associated proteins in 

Arabidopsis, allowing the possibility of a functional interaction between these 

proteins (Díaz et al., 2018). It has recently been suggested that a positive signal 

generated by PEP activity stimulates the expression of chloroplast genes in the 

nucleus and promotes photosynthesis associated nuclear genes expression 

(Díaz et al., 2018). Hence, the PEP complex connects the functional state of the 

chloroplast to the nucleus, synchronizing the expression of photosynthetic genes 

in the nuclear and chloroplast genomes during seedling development (Díaz et al., 

2018). The data presented here show that WHY1 is required for PEP activation 

and the establishment of functional chloroplasts and photosynthesis at the 

earliest leaf developmental stages. The establishment of successful chloroplast 

differentiation in WHY1-deficient seedlings is delayed because of the faltered or 

delayed switching from NEP to PEP.  

 

The loss of WHY1 differentially regulates the levels of proteins encoded by plastid 

and nuclear genes. The RuBiSCO is made up of 8 large subunits (RBCL) that are 

encoded by plastome genes and 8 small subunits (RBCS) that are encoded by 

nuclear genes. The abundance of both proteins was co-ordinated in the WHY1-

deficient lines. There was a decrease in the overall abundance of both RuBiSCO 

subunits in WHY1-deficient lines. It is probable that the RBCL protein was turned 

over rapidly in the absence of sufficient RBCS protein (Figure 4.14 A). The 
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WHY1-deficient lines have more light harvesting proteins than the wild type at 

both 7 and 14 days after germination (Figure 4.14). In contrast, photosynthetic 

proteins encoded by plastome genes such as RBCL, RPS1 and D1 (PSBA) were 

lower in WHY1-deficient lines than in the wild type at 7 days after germination 

(Figure 4.14). 

 

Previous studies have shown that an inhibition of either the transcription or 

translation of photosynthetic proteins elicits retrograde signalling from the 

chloroplasts to the nucleus to suppress the transcription and translation of LHCBII 

(Díaz et al., 2018). This finding provides further evidence that lack of WHY1 

disrupts the coordination of nuclear and plastid-encoded gene expression and 

protein synthesis. The decreases in plastid-encoded transcripts occurred despite 

the fact that the level of ptDNA was increased two to three-fold in the WHY1-

deficient lines compared to the wild type seedlings at 7, 14 and 21 days old 

(Figure 4.15). The increases in ptDNA copy numbers, which normally lead to the 

increase of the expression of plastid genes, have been reported previously 

(Grevich and Daniell, 2005). The decrease in the levels of ptDNA copy number 

was because of the mutation of either of the two closely related organelle-

localised DNA polymerases in Arabidopsis (Morley and Nielsen, 2016). 

Furthermore, it would be interesting to know the reason on the differences in the 

level of ptDNA in the WHY1-deficient lines compared to the wild type that could 

be due to the number of chloroplasts or the number of DNA per chloroplast. 

Therefore, this merits further consideration. It has been reported that ptDNA 

levels increase more than two-fold during chloroplast development in the barley 

leaves (Baumgartner et al., 1989). The data presented here confirm previous 

work showing that WHY1-deficient lines have a greater cpDNA copy number than 

the wild type (Krupinska et al., 2014). These findings suggest that WHY1 is 

involved in the repression of cpDNA replication during chloroplast development.  
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4.3.3 WHY1 is required for splicing in WHY1-deficient lines 

 

Chloroplast genes are transcribed as operons to produce mono- and poly-

cistronic RNAs. This process is regulated by the RNA metabolism complex that 

involves various types of RNA polymerases and extensive post-transcriptional 

RNA processing (Barkan, 2011). The ZmWhy1 knockdown maize mutants have 

a pale green phenotype leading to the hypothesis that the absence of a functional 

WHY1 protein may lead to ribosome deficiency. However, in contrast to the very 

high levels of ptDNA content in barley lines lacking WHY1, ptDNA levels in 

ZmWhy1 mutants did not change (Prikryl et al., 2008). The aberrant 23S and 4.5S 

rRNA processing observed in ZmWhy1 suggests that the chloroplast ribosomes 

are not functional in these mutants. The data presented here shows that the 

WHY1-deficient barley seedlings had defects in chloroplast ribosomal RNA 

(rRNA) accumulation. The 23S rRNA and 4.5S rRNA precursors for the large 

subunit (50S) of the plastid ribosomes accumulated in WHY1-deficient lines 

(Figure 4.16). Taken together, these data suggest that WHY1 is essential for 

chloroplast biogenesis in barley because it is required for the correct splicing of 

chloroplast ribosomal proteins.  

 

Arabidopsis mutants lacking the RH22 show altered splicing of chloroplast 

ribosomes (Chi et al., 2012, Kanai et al., 2013). The RH22 knockdown mutants 

accumulate 23S and 4.5S rRNAs, but not 16S rRNAs (Chi et al., 2012). These 

rRNAs are the precursors of 50S ribosomal subunits that regulate the RPL24 

protein that binds to the 23S subunit. The data presented in Chapter 7 shows that 

the WHY1 protein interacts with DEA (D/H)-box RNA 22 in Arabidopsis mesophyll 

protoplasts. The barley WHY1 protein may interact with RH22 in the same way it 

does in Arabidopsis and hence may have a function in the assembly of 

chloroplast ribosomes. 
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Chapter 5 . Transcript profile of the WHY1-deficient lines during 

chloroplast development  

 

5.1 Introduction 

 

Like all plastids, chloroplasts develop from proplastids that are present in the 

immature cells of plant meristems. Chloroplast biogenesis from proplastids 

requires coordination of the expression of both by nuclear and chloroplast genes, 

which is regulated by developmental and environmental signals (Kessler and 

Schnell, 2009). There are around 3000 proteins in the chloroplast, and most of 

these are encoded by the nucleus (Leister, 2003). Functional processes in 

chloroplast biogenesis include the import of nuclear-encoded proteins via the 

TOC and TIC complexes, protein assembly, thylakoid formation, pigment 

synthesis, plastid division and retrograde signalling (Pogson et al., 2015, Waters 

and Langdale, 2009). It is important for these processes to be synchronised, as 

any changes in chloroplast biogenesis can influence leaf development (Pogson 

et al., 2015). Transcriptome profiling has been used widely to study chloroplast 

development in a variety of plant species such as green curd cauliflower mutant 

(Zhou et al., 2011), albino wheat mutant (Shi et al., 2017) and peach (Chen et al., 

2018). These studies have shown that transcripts associated with chloroplasts 

increased in the cauliflower mutant with green curds to the white cauliflower 

(Zhou et al., 2011) and in albino wheat mutant (Shi et al., 2017).  

 

The analysis of the early stages of leaf development in the WHY1-deficient 

seedlings reported in Chapter 4 demonstrates a slower rate of pigment 

accumulation compared to the wild type. Thus, it is important to explore the 

transcript profiles of the WHY1-deficient barley leaves in order to gain a better 

understanding of the mechanisms by which the WHY1 protein regulates leaf 

development. In Chapter 2, it was shown that the loss of WHY1 had a marked 
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effect on the transcriptome profile of the embryos from dry seeds. RNA sequence 

comparisons of the transcript profiles revealed that the most abundant transcripts 

in the WHY1-deficient embryos relative to the wild type were related to plant 

hormone metabolism and adaptation to stress. 

 

Transcriptome analysis has previously been performed on the leaves of three 

RNAi-knockdown barley lines (W1-1, W1-7 and W1-9), which have very low 

levels of HvWHY1 expression under optimal or nitrogen-deficient conditions 

(Comadira et al., 2015). The transcript profile analysis of the WHY1-deficient 

leaves showed that genes encoding photosynthetic proteins were markedly 

changed relative to the wild type. The leaves of WHY1 had a much greater 

abundance of transcripts encoding the photosynthetic proteins such as thylakoid 

NADH complex, the chloroplast RNA polymerase, the cytochrome b/f complexes 

and chloroplast ribosomes than the wild type (Comadira et al., 2015). However, 

these analyses were performed on green leaves of plants harvested after the 14-

day seedling growth stage. In the present study, therefore, the transcript profile 

of leaves was characterised in the base, middle and tip sections of the first leaves 

of 7 and 14-day old WHY1-deficient and wild-type seedlings. The aim of this 

analysis was to identify: 

 

i) The significantly altered transcripts that were changed with respect to 

genotype, irrespective of where the leaf section, in 7 and 14 day old 

leaves; 

ii) The significantly altered transcripts that were changed with respect to leaf 

section (base, middle, tip), irrespective of genotype, in 7 and 14 day old 

seedlings; 

iii) The significantly altered transcripts dependent on both the leaf section 

and genotype in 7 day old leaves; 

iv) The developmental gradient of transcript changes along the leaves of the 

wild type at 7 days old; and 

v) The transcripts changed in the W1-7 relative to the wild type at 7 days 

old. 
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5.2 Results 

 

5.2.1 Genotype-dependent transcript changes in the WHY1-deficient 

barley leaves  

 

5.2.1.1 Ribosomal associated proteins 

 

Many transcripts encoding ribosomal proteins that are present in the plastid 

genome (plastome) were increased in the base, middle and tip sections of the 

W1-7 leaves compared to the W1-1 and wild type, 7 days after germination 

(Figure 5.1 A). In contrast, only four transcripts encoding ribosomal proteins that 

are nuclear-encoded but targeted to the chloroplasts were significantly changed 

in abundance at 14 days (Figure 5.2 A). Transcripts encoding ribosomal proteins 

encoded by the plastome were increased in the base, middle and tip sections of 

the W1-7 leaves compared to the W1-1 and wild type, 14 days after germination 

(Figure 5.2 A). 

 

A large number of transcripts encoding ribosomal proteins encoded in the nucleus 

were greatly increased in the base sections of the W1-7 leaves compared to the 

W1-1 and wild type, 7 days after germination (Figure 5.1 B). The levels of nuclear-

encoded ribosomal transcripts were lower in the middle and tip sections of the 

leaves of W1-1 and the wild type compared to the W1-7, 7 days after germination 

(Figure 5.1 B). In contrast, the levels of only one nuclear-encoded ribosomal 

protein transcript were significantly changed (MLOC_80636.2) with values that 

were higher in the base, middle and tip sections in the W1-7 leaves compared to 

the W1-1 and wild type at 14 days (Figure 5.2 B).  
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Figure 5.1: Heat map of transcript abundance of key transcripts associated 

with ribosomal proteins that encoded by the (A) chloroplasts and (B) nuclei 

in the W1-1, W1-7 and the wild type at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

ribosomal proteins is illustrated according to the scale bar shown. 
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Figure 5.2: Heat map of transcript abundance of key transcripts associated 

with ribosomal proteins encoded by the (A) chloroplasts and (B) nuclei at 

14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

ribosomal proteins is illustrated according to the scale bar shown. 
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5.2.1.2 Transcripts associated with photosynthesis  

 

No genotype-dependent transcripts associated with photosynthesis were 

changed in the WHY1-deficient barley seedlings at 7 days old. Moreover, only 

two transcripts were higher in the base and middle sections of the W1-1 and W1-

7 leaves compared to the wild type 14 days after germination and these encoded 

a chlorophyll A-B binding protein (Figure 5.3). The levels of transcripts encoding 

the chlorophyll A-B binding protein were similar in leaves tips in all the genotypes 

at 14 days old (Figure 5.3).  

 

 

 

Figure 5.3: Heat map of transcript abundance of key transcripts associated 

with photosynthesis at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

photosynthesis is illustrated according to the scale bar shown. 
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5.2.1.3 Transcripts associated with RNA metabolism 

 

The abundance of several transcripts encoding components associated with the 

RNA-binding proteins that are important in RNA processing in chloroplasts, such 

as the pentatricopeptide repeat (PPR) proteins, was higher in the base sections 

of the W1-7 leaves compared to the W1-1 and wild type, 7 days after germination 

(Figure 5.4 A). Many PPR transcripts were also higher in the middle and tip 

sections of the W1-7 leaves compared to the W1-1 and wild type at 7 days old 

(Figure 5.4 A). 

 

The levels of many transcripts encoding the DEAD-box ATP-dependent RNA 

helicase and chloroplast group IIA intron-splicing facilitator CRS1, which are 

involved in processing and splicing, were higher in the base, middle and tip 

sections of the W1-7 leaves than the W1-1 and wild type, 7 days after germination 

(Figure 5.4 B). At 14 days, all five transcripts encoding PPR proteins were higher 

in the base, middle and tip sections of the W1-7 leaves compared to the W1-1 

and wild type (Figure 5.5 A).  
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Figure 5.4: Heat map of transcript abundance of key transcripts associated 

with RNA metabolism such as the (A) PPR and (B) RNA helicases at 7 days 

old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with RNA 

metabolism is illustrated according to the scale bar shown. 
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Figure 5.5: Heat map of transcript abundance of key transcripts associated 

with RNA metabolism, such as (A) pentatricopeptide repeat and (B) RNA 

helicases at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with RNA 

metabolism is illustrated according to the scale bar shown. 
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5.2.1.4 Protein kinase associated transcripts  

 

The levels of transcripts encoding protein kinases (AK359767, AK356512, 

AK368106, MLOC_1961.1, MLOC_71301.2 and AK375444) were generally 

increased in the all the sections of the W1-7 leaves compared to the W-1 and wild 

type, 7 days after germination (Figure 5.6). Two transcripts encoding protein 

kinases (MLOC_60285.4 and MLOC_56354.3) were increased only in the base 

sections of the W1-7 leaves compared to the W-1 and wild type, 7 days after 

germination (Figure 5.6). The abundances of transcripts encoding a 

serine/theorine protein kinase (MLOC_4459.3), a cysteine-rich protein kinase 

(AK251994.1) and two other protein kinases (MLOC_4459.3 and AK362262) 

were similar in all the leaf sections of all of the genotypes 7 days after germination 

(Figure 5.6). At 14 days, the levels of all the identified transcripts encoding protein 

kinases were higher in the base, middle and tip sections of the W1-7 leaves 

compared to the W1-1 and wild type (Figure 5.7). However, one transcript 

(MLOC_69485.1) encoding an S-locus-like receptor protein kinase was lower in 

all the sections of W1-7 leaves compared to W1-1 and the wild type (Figure 5.7).  
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Figure 5.6: Heat map of transcript abundance of key transcripts associated 

with protein kinases at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

protein kinases is illustrated according to the scale bar shown. 
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Figure 5.7: Heat map of transcript abundance of key transcripts associated 

with protein kinases at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

protein kinases is illustrated according to the scale bar shown. 
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5.2.1.5 Transcripts associated with redox processes and hormone 

metabolism 

 

The abundance of most transcripts encoding thioredoxins and peroxidases 

(MLOC_68180.4, MLOC_46333.3, MLOC_49528.1 and AK365489) was higher 

in the base, middle and tip sections of the W1-7 leaves than the wild type and 

W1-1 leaves. A marked exception is transcript MLOC_21848.2 that had a lower 

abundance in all the sections of the W1-7 leaves, 7 days after germination (Figure 

5.8). Several transcripts encoding peroxidases (MLOC_55062.1, AK375268, 

AK360063 and MLOC_65226.3) were higher in the base, middle and tip sections 

of the W1-7 leaves than the wild type and W1-1 14 days after germination (Figure 

5.9). In addition, transcripts associated with phytohormones, such as ethylene, 

auxin, abscisic acid and gibberellins were changed in the WHY1-deficient lines 

relative to the wild type both at 7 and 14 day old (Appendix C.1).  
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Figure 5.8: Heat map of transcript abundance of key transcripts associated 

with redox processes at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with redox 

processes is illustrated according to the scale bar shown. 
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Figure 5.9: Heat map of transcript abundance of key transcripts associated 

with redox processes at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with redox 

processes is illustrated according to the scale bar shown. 
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5.2.1.6 Transcription factors 

 

A transcript encoding the transcription factor AK365452 was higher in all of the 

leaf regions of the wild type than the other lines both at 7 and 14 days after 

germination (Figure 5.10,Figure 5.11). A transcript encoding the WRKY family of 

transcription factor, AK370043, was lower in the base sections of the W1-7 leaves 

compared to the wild type and W1-1 at 7 days (Figure 5.10). In contrast, a 

transcript encoding the WRKY family of transcription factor MLOC_62725.1 was 

higher in the base sections of the W1-7 leaves compared to the wild type and 

W1-1 at 7 days (Figure 5.10). 

 

The abundance of transcripts encoding MYB transcription factors was similar in 

all the leaf sections in all genotypes at 7 days after germination (Figure 5.10). In 

contrast, the levels of transcripts encoding the ethylene-responsive transcription 

factor (MLOC_71804.1), and the RNA polymerase sigma factor 

(MLOC_59299.1), were higher in all sections of the W1-7 leaves compared to the 

wild type and W1-1, 7 days after germination (Figure 5.10). While the abundance 

of transcripts encoding the MYB family transcription factor (MLOC_37929.1) and 

WRKY47 (AK371133) was similar in the base sections of the leaves of the 

genotypes, both transcripts were significantly higher in the middle sections of the 

W1-7 leaves compared to W1-1 and the wild type 14 days after germination 

(Figure 5.11). In addition, the tip sections of the WHY1-deficient barley leaves 

had higher levels of these transcripts compared to the wild type at 14 days (Figure 

5.11).    
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Figure 5.10: Heat map of transcript abundance of key transcripts associated 

with transcription factors at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

transcription factors is illustrated according to the scale bar shown. 
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Figure 5.11: Heat map of transcript abundance of key transcripts associated 

with transcription factors at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

transcription factors is illustrated according to the scale bar shown. 
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5.2.2 Transcripts changes in the WHY1-deficient barley dependent on 

leaf region 

 

5.2.2.1 Ribosomal related transcripts  

 

The transcripts encoding ribosomal proteins encoded by the plastome were 

increased in the base, middle and tip sections of the W1-7 leaves compared to 

W-1 and the wild type at 7 days after germination (Figure 5.12 A). The levels of 

several nuclear-encoded ribosomal protein transcripts were higher in the base 

sections of the W1-7 leaves compared to the W1-1 and wild type at 7 days after 

germination (Figure 5.12 B). 

 

 

 

 

 

 

 

 

 

Figure 5.12:  Heat map of transcript abundance of key transcripts 

associated with ribosomal protein encoded by the (A) chloroplasts and (B) 

nuclei at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

ribosomal proteins is illustrated according to the scale bar shown. 
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5.2.2.2 Transcripts associated with photosynthesis  

 

The abundance of several transcripts encoding chlorophyll A-B binding proteins 

was increased in the base sections of the W1-1 and W1-7 leaves compared to 

the wild type 14 days after germination (Figure 5.13). The levels of these 

transcripts were also higher in the middle of the WHY1-deficient lines compared 

to the wild type 14 days after germination. Interestingly, the levels of transcripts 

encoding the chlorophyll A-B binding proteins were similar in the tips of all leaves 

of all genotypes 14 days after germination (Figure 5.13). 

 

 

 

 

 

 

 

Figure 5.13: Heat map of transcript abundance of key transcripts encoding 

light-harvesting chlorophyll A-B binding proteins at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with light-

harvesting chlorophyll A-B is illustrated according to the scale bar shown. 
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5.2.2.3 Transcripts associated with RNA metabolism 

 

The levels of transcripts encoding PPR proteins were higher in the base, middle 

and tip sections of the W1-7 leaves compared to W1-1 and the wild type 7 days 

after germination (Figure 5.14). The level of only one transcript encoding a PPR 

proteins (MLOC_75882.1) was similar in the base, middle and tip sections of the 

leaves of all genotypes (Figure 5.14). However, no differences in the levels of 

transcripts encoding PPR were found at 14 days.    

 

 

 

 

 

Figure 5.14: Heat map of transcript abundance of key transcripts associated 

with RNA metabolism, such as PPR, at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with RNA 

metabolism is illustrated according to the scale bar shown. 
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5.2.2.4 Protein kinases associated transcripts  

 

The levels of several transcripts related to protein kinases were higher in the base 

sections of all genotypes 7 days after germination (Figure 5.15). These transcripts 

may be important during leaf early development. In contrast, no differences in the 

levels of transcripts encoding protein kinases were found in the middle and tip 

sections of the leaves of all genotypes 7 days after germination (Figure 5.15). 

Two transcripts (AK355124 and AK248260.1) had similar levels in the base, 

middle and tip sections of the leaves of all genotypes 7 days after germination 

(Figure 5.15). 

 

The abundance of several transcripts encoding protein kinases were higher in the 

base sections of the leaves of all genotypes 14 days after germination (Figure 

5.16). In contrast, there were two transcripts encoding protein kinases 

(AK355413) and CAMK kinase (AK372880) that were significantly less abundant 

in the base sections of the leaves of all genotypes14 days after germination 

(Figure 5.16). The levels of transcripts encoding protein kinases were similar in 

the middle and tip sections of the leaves of all genotypes 14 days after 

germination, with the exception of two transcripts (AK355413 and AK372880) 

(Figure 5.16). 
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Figure 5.15: Heat map of transcript abundance of key transcripts associated 

with protein kinases at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

protein kinases is illustrated according to the scale bar shown. 
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Figure 5.16: Heat map of transcript abundance of key transcripts associated 

with protein kinases at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

protein kinases is illustrated according to the scale bar shown. 
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5.2.2.5 Transcripts associated with redox processes and hormone 

metabolism 

 

The abundances of several transcripts encoding proteins involved in redox 

processes, such as peroxidases, thioredoxins, glutaredoxins and ascorbate-

related enzymes were significantly higher in the base sections of the leaves of all 

genotypes 7 days after germination (Figure 5.17). However, the levels of these 

transcripts were significantly lower in the middle and tip sections of the leaves of 

all genotypes 7 days after germination (Figure 5.17). The levels of transcripts 

encoding proteins associated with redox processes were also significantly 

changed 14 days after germination (Figure 5.18). 

 

The levels of the transcripts encoding hormones, such as gibberellin, auxin and 

ethylene, were higher in the base sections of the leaves of all genotypes 7 days 

after germination (Appendix C.2). In contrast, the levels of these transcripts was 

significantly lower in the middle and tip sections of the leaves of all genotypes at 

this stage. The levels of the transcripts encoding hormones, such as gibberellin 

and auxin, were also significantly changed 14 days after germination (Appendix 

C.2.1). 
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Figure 5.17: Heat map of transcript abundance of key transcripts associated 

with redox processes at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with redox 

processes is illustrated according to the scale bar shown. 
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Figure 5.18: Heat map of transcript abundance of key transcripts associated 

with redox processes at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with redox 

processes is illustrated according to the scale bar shown. 
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5.2.2.6 Transcription factors 

 

The abundance of several transcripts encoding basic helix-loop-helix (BHLH) 

transcription factors was higher in the base sections of the leaves of all genotypes 

7 days after germination (Figure 5.19). Moreover, transcripts encoding a MYB 

family transcription factor were significantly increased in the base sections of the 

leaves of all genotypes 7 days after germination (Figure 5.19). However, the 

levels of these transcripts were lower in the middle and tip sections of the leaves 

of all genotypes than the basal sections.   

 

The abundance of the WRKY39 transcription factor was higher in the base 

sections of the leaves of all the genotypes 7 days after germination. However, 

the abundance of this transcript fell to very low levels in the middle and tip 

sections of the leaves of all genotypes. In contrast to other WRKY transcription 

factors, whose levels were higher in the base sections of the leaves of all the 

genotypes, the abundance of the WRKY6 transcription factor transcripts was 

similar in the base, middle and tip sections of the leaves of all genotypes 7 days 

after germination. (Figure 5.19).  

 

The levels of the transcripts encoding transcription factors such as bZIP, MYB, 

BHLH and WRKY were higher in the base sections of the leaves of all genotypes 

14 days after germination (Figure 5.20). The levels of transcripts encoding these 

transcription factors were similar in the middle and tip sections of the leaves of all 

genotypes 14 days after germination (Figure 5.20). 
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Figure 5.19: Heat map of transcript abundance of key transcripts associated 

with transcription factors at 7 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

transcription factors is illustrated according to the scale bar shown. 
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Figure 5.20: Heat map of transcript abundance of key transcripts associated 

with transcription factors at 14 days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

transcription factors is illustrated according to the scale bar shown. 
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5.2.3 Transcript changes in WHY1-deficient barley leaves dependent 

on genotype and leaf region 

 

The levels of several transcripts were changed in the WHY1-deficient barley 

seedlings, dependent on genotype and leaf region, 7 days after germination 

(Figure 5.21). Transcripts encoding valyl-tRNA synthetase were highest in the 

base sections of the W1-7 leaves relative to W1-1 and the wild type Figure 5.21. 

However, the levels of valyl-tRNA synthetase transcripts were similar to those in 

the middle and tip sections of the leaves of the wild type and WHY1-deficient 

barley (Figure 5.21). Analysis of wp1 mutants of Oryza sativa showed that the 

valyl-tRNA synthetase (OsValRS2) protein was targeted to the mitochondria and 

chloroplasts (Wang et al., 2016). This wp1 mutants had pale and albino 

phenotypes at the seedling stage with impaired chloroplast ribosomes biogenesis 

in the leaves, suggesting that OsValRS2 plays a role in chloroplast development 

and ribosome biogenesis (Wang et al., 2016). The levels of transcripts encoding 

DNA-directed RNA polymerase subunit alpha were higher in the base, middle 

and tip sections of the W1-7 leaves 7 days after germination (Figure 5.21). The 

abundance of a transcript encoding PPR (MLOC_67650.1) was higher in the 

base sections of the W1-7 leaves compared to these sections in the W1-1 and 

wild type leaves (Figure 5.21). However, the levels of this transcript were similar 

in the middle and tip sections of the leaves of all genotypes (Figure 5.21). The 

levels of transcripts encoding a basic helix-loop-helix (AK357521) protein were 

significantly lower in the middle and tip sections of the W1-7 leaves compared to 

W1-1 and the wild type (Figure 5.21).  

 

The abundance of a redox-associated transcript (MLOC_21848.2) was lower in 

the base sections of the W1-7 leaves relative to W1-1 and the wild type (Figure 

5.21). The levels of transcripts encoding this redox protein were similar in the 

middle and tip sections of the leaves of all the genotypes (Figure 5.21). A number 

of transcripts associated with photosynthesis were significantly lower in the base 

sections of the W1-7 leaves compared to W1-1 and wild type (Figure 5.21). The 

levels of a transcript encoding a chlorophyll A-B binding protein were similar in 
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the middle sections of the leaves of all the genotypes (Figure 5.21). However, the 

levels of this transcript were higher in the tip sections of the W1-7 leaves 

compared to W1-1 and wild type (Figure 5.21). 

 

Transcripts encoding a late embryogenesis abundant protein, related to the group 

3 classification of these proteins, were changed in the WHY1-deficient barley 

leaves, dependent on both genotype and leaf region, at 14 days after 

germination.  

 

 

 

 

 

Figure 5.21: Heat map of transcript abundance of key transcripts changes 

in the WHY1-deficient barley, dependent on genotype and leaf region at 7 

days old.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts is illustrated according 

to the scale bar shown. 
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5.2.4 Differentially expressed transcripts in the wild type and WHY1-

deficient barley 

 

A one-way ANOVA was used to analyse the differentially expressed genes in 

each of the genotypes, independently, across leaf development to understand 

better the differences in the leaf transcript profile between the WHY-deficient line 

and the wild type at 7 days after germination. In total, only 441 transcripts 

changed in the wild type (Figure 5.22). However, many more transcripts were 

changed in abundance with respect to the stage of leaf development i.e. the 

section of the leaf in the W1-1 and W1-7 mutants compared to the wild type 

(Figure 5.23).  

 

The total number of transcripts changed in W1-1 were 5555, with 6809 transcripts 

changed in W1-7 (Figure 5.22) relative to the wild type. Of these, 17 transcripts 

were unique to the wild type, while 36 were shared with the W1-1 barley leaves 

(Figure 5.22). A total of 1984 transcripts changed in W1-1, while 3166 were 

shared with W1-7 (Figure 5.22). A total of 3255 transcripts were changed 

exclusively in W1-7, with only 19 transcripts shared with wild type (Figure 5.22). 

In total, 369 transcripts were common to the wild type, W1-1 and W1-7 leaves 

(Figure 5.22).  

 

Transcriptome profile patterns that were characteristic of the base, middle and tip 

sections of the wild type leaves were identified at 7 days after germination (Figure 

5.23 A). In total, 441 transcripts were changed across the base, middle and tip 

sections of the wild type leaves (Figure 5.23 A). In contrast, 5555 transcripts were 

changed in the base, middle and tip sections of the W1-1 leaves, at 7 days after 

germination (Figure 5.23 B) while 6809 transcripts were changed across these 

sections in the W1-7 leaves (Figure 5.23 C). Highly distinctive patterns of 

transcripts were identified in the cluster analysis comparisons of the wild type, 

W1-1 and W1-7 leaves (Figure 5.23). However, the developmental patterns of 
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the transcript profiles in the W1-1 and W1-7 leaves were similar relative to the 

wild type (Figure 5.23).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: Transcript profile comparison of wild type, W1-1 and W1-7 

barley leaves during leaf development, 7 days after germination.  

Venn diagram illustrating the total number of differentially expressed transcripts in the 

wild type, W1-1 and W1-7, at 7 days after germination. The differentially expressed 

genes across the leaf development were analysed independently under each genotype, 

using one-way ANOVA. Significant differences were analysed using a moderated 

Student’s t-test, with a Benjamini–Hochberg multiple testing correction (p<0.05; fold 

change >2; Genespring 12, Agilent Technologies). 
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Figure 5.23: Comparison of the hierarchical clustering of differentially 

expressed transcripts in the (A) wild type, (B) W1-1 and (C) W1-7, in 7-day-

old seedlings.  

The differentially expressed genes in the base, middle and tip sections of the first leaves 

were analysed independently under each genotype, using one-way ANOVA. Significant 

differences were analysed using a moderated Student’s t-test, with a Benjamini–

Hochberg multiple testing correction (p<0.05; fold change >2; Genespring 12, Agilent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. The relative abundance of transcipts is illustrated according to the 

scale bar shown.   
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5.2.5 An overview of transcript changes in the wild type, W1-1 and 

W1-7 independently 

 

Developmental changes in the transcript profiles of the wild type, W1-1 and W1-

7 leaves were analysed using a one-way ANOVA. The levels of cell-wall-

associated transcripts were highest in the base sections of the wild type, W1-1 

and W1-7 leaves, as shown by over-representation analysis (ORA) and Wilcoxon 

analysis (Appendix D, Appendix E, Appendix F, Appendix G and Appendix H). In 

contrast, the levels of cell-wall-associated transcripts were lowest in the tip 

sections of the wild type, W1-1 and W1-7 leaves, as illustrated by ORA and 

Wilcoxon analysis (Appendix D, Appendix E, Appendix F, Appendix G and 

Appendix H).  
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5.2.6 Transcript changes in the W1-7 lines relative to the wild type 

 

Following the above analysis, particular focus was placed on characterising the 

changes in transcript abundance in the W1-7 leaves relative to the wild type 

because the differences in this line were much greater than those detected in 

W1-1 leaves. Transcript changes in the base, middle and tip sections of W1-7 

leaves relative to the wild type were analysed independently using a volcano plot 

(Figure 5.24 and Figure 5.25).  

 

5.2.6.1 Number of differentially expressed transcripts in W1-7 relative to 

the wild type  

 

In total, 325 the levels of transcripts were changed in the base sections of the 

W1-7 leaves relative to the wild type (Figure 5.24). Moreover, the levels of 3189 

transcripts were changed in the middle sections of the W1-7 leaves relative to the 

wild type, (Figure 5.24) with only 245 transcripts changed in abundance in the tip 

sections of the W1-7 leaves relative to the wild type (Figure 5.24). Many 

transcripts were expressed in a developmental manner in the base, middle and 

tip sections of the leaves of W1-7 relative to the wild type (Figure 5.25). In 

contrast, there were no differences in the base, middle and tip sections in W1-1 

leaves relative to the wild type, using a volcano plot (data in Appendix I). 
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Figure 5.24: Transcript profile comparison in the W1-7 lines relative to the 

wild-type barley leaves during leaf development, 7 days after germination.  

Venn diagram illustrating the total number of differentially abundant transcripts that 

changed in the base, middle and tip sections of W1-7 leaves relative to the wild type at 

7 days old. Pairwise comparisons between the wild type and W1-7, for each leaf position 

(base, middle and tip), were performed using volcano plots, with a Benjamini–Hochberg 

multiple testing correction (p<0.05; fold change >2; Genespring 12, Agilent 

Technologies). 
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Figure 5.25:  Comparison of hierarchical clustering of differentially 

expressed transcripts in W1-7 relative to the wild type in 7-day-old 

seedlings.  

The differentially expressed genes were analysed independently for each genotype, 

using one-way ANOVA. Significant differences were analysed using a moderated 

Student’s t-test, with a Benjamini–Hochberg multiple testing correction (p<0.05; fold 

change >2; Genespring 12, Agilent Technologies). Each column showed transcript 

abundance in the WT, W1-1 and W1-7 in all the leaf sections. The relative abundance of 

transcripts is illustrated according to the scale bar shown.   
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5.2.6.2 Transcripts associated with chloroplast ribosomal proteins 

 

Several of the transcripts associated with chloroplast ribosomal proteins were 

increased in abundance in the base sections of the W1-7 leaves compared to the 

wild type (Figure 5.26). The levels of transcripts encoding chloroplast ribosomal 

proteins were decreased in the tip sections of the wild type leaves compared to 

W1-7 leaves (Figure 5.26). Clear differences in the profiles of chloroplast 

ribosomal proteins were observed in the W1-7 leaves relative to the wild type 

(Figure 5.26). 

  

Figure 5.26: Comparison of heat maps of transcript abundance of key 

transcripts associated with the chloroplast ribosomal protein in W1-7 

relative to the wild type in 7-day-old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

chloroplast ribosomal proteins is illustrated according to the scale bar shown. 
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5.2.6.3 Transcripts associated with photosynthesis 

 

The abundance of many plastome-encoded transcripts, such as those encoding 

NAD(P)H, oxidoreductases, constituents of PSI and PSII and the ATP synthase 

was decreased in the wild type relative to W1-7 leaves (Figure 5.27 A). 

Interestingly, these transcripts were significantly higher in all leaf sections of the 

W1-7 leaves compared to the wild type with one exception (MLOC_34266.1) 

(Figure 5.27 A). In contrast, many of the photosynthesis-associated transcripts 

encoded by nuclear genes were lower in abundance in the tip sections of the wild 

type leaves compared to the W1-7 leaves (Figure 5.27 B). The level of transcripts 

associated with chloroplast-targeted proteins that are encoded by the nucleus 

were also significantly higher in all the sections of the W1-7 leaves compared to 

the wild type with one exception (MLOC_37052.1) (Figure 5.27 B).  

 

 

Figure 5.27: Comparison of heat maps of transcript abundance of key 

transcripts associated with photosynthesis that are (A) chloroplast 

encoded and (B) nucleus encoded in W1-7 relative to the wild type in 7-day-

old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

photosynthesis is illustrated according to the scale bar shown. 
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5.2.6.4 Transcripts associated with RNA processing 

 

Transcripts encoding plastid transcriptionally active 6, which is involved in plastid 

gene expression, were significantly higher in the base sections of the W1-7 

leaves than the wild type (Figure 5.28). The levels of DNA-directed RNA 

polymerase subunit beta were significantly higher in all sections of the W1-7 

leaves compared to the wild type, the values being highest in the base sections 

of the W1-7 leaves (Figure 5.28).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: Comparison of heat maps of transcript abundance of key 

transcripts associated with RNA processing in W1-7 relative to the wild type 

in 7-day old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with RNA 

processing is illustrated according to the scale bar shown. 
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5.2.6.5 Hormone-associated transcripts 

 

Large numbers of transcripts encoding hormone-associated proteins were 

significantly more abundant in the basal sections of the wild type and W1-7 leaves 

compared to other leaf regions (Figure 5.29). In contrast to the levels of 

transcripts encoding hormone-associated proteins in the basal sections in the 

wild type and W1-7, the levels of transcripts encoding auxin-related proteins were 

lowest in the tip sections of the wild type and W1-7 leaves (Figure 5.29).  

 

 

 

 

 

 

 

 

 

 

Figure 5.29: Comparison of heat maps of transcript abundance of key 

transcripts associated with hormones in W1-7 relative to the wild type in 7-

day-old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

hormones is illustrated according to the scale bar shown. 
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5.2.6.6 Light signalling and FAR-RED IMPAIRED RESPONSE 1 (FAR1)-

associated transcripts  

 

The levels of transcripts encoding a number of light signalling (MLOC_11221.1, 

MLOC_38189.2, MLOC_59573.1 and MLOC_56584.3) proteins were highest in 

the basal sections of the wild type and W1-7 leaves (Figure 5.30 A). The levels 

of these transcripts were significantly lower in the middle and tip sections of the 

W1-7 leaves than the wild type (Figure 5.30 A). Transcripts encoding an early 

light-induced protein (MLOC_78997.1) were significantly lower in all the leaf 

sections in the wild type compared to the W1-7 leaves (Figure 5.30 A). 

Interestingly, lower levels of light-associated transcripts (MLOC_65070.2 and 

MLOC_60978.1) were found in the basal sections of the wild type and W1-7 

leaves than other sections (Figure 5.30 A). The levels of these transcripts was 

highest in the middle and tip sections of the leaves of the wild type and W1-7 

leaves than the leaf bases (Figure 5.30 A). A transcript (MLOC_33258.3) 

encoding FAR1 was lower in all the sections of the wild type leaves than the W1-

7 leaves (Figure 5.30 B). Similarly, a transcript (MLOC_53882.4) encoding FAR1 

was also lower in all the leaf sections in the wild type than the W1-7 leaves (Figure 

5.30 B).  
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Figure 5.30: Comparison of heat maps of transcript abundance of key 

transcripts associated with a (A) light signalling and (B) a FAR1-like protein 

in W1-7 relative to the wild type in 7-day-old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with light 

signalling and a FAR1-like protein is illustrated according to the scale bar shown. 

 

5.2.6.7 Transcripts encoding transcription factors 

 

A large number of transcripts encoding transcription factors were changed in 

abundance in the W1-7 leaves relative to the wild type. For example, transcripts 

encoding the bZIP transcription factor MLOC_51623.1, the RNA polymerase 

sigma factor MLOC_59299.1 and the WRKY transcription factor 21 

(MLOC_44455.1) were significantly lower in the wild type than W1-7 leaves.  
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Figure 5.31: Comparison of heat maps of transcript abundance of key 

transcripts associated with transcription factors in W1-7 relative to the wild 

type in 7-day old seedlings.  

The differentially expressed transcripts were analysed using two-way analysis of 

variance (ANOVA), with the genotypes (WT, W1-1, W1-7) as factors, and a Bonferroni 

multiple-testing correction at a p-value of ≤0.05, FC>2 (Genespring12, Aligent 

Technologies). Each column showed transcript abundance in the WT, W1-1 and W1-7 

in all the leaf sections. Accession numbers were indicated together with a brief 

description of the gene lists. The relative abundance of transcripts associated with 

transcription factors is illustrated according to the scale bar shown. 
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5.3 Discussion 

 

The studies reported in this chapter revealed significant differences in the 

transcript profiles of the developing leaves of 7 and 14 day old WHY1-deficient 

barley seedlings relative to the wild type. These differences were most 

pronounced in the W1-7 leaves compared to the wild type. This analysis provides 

new insights into the functions of WHY1 in chloroplast development. 

 

The levels of transcripts encoding chloroplast 50S and 30S ribosomal subunits 

were higher in the basal sections of the W1-7 leaves than the wild type (Figure 

5.1 & Figure 5.12). Moreover, the expression of the plastid-encoded ribosomal 

transcripts was greatly increased in the WHY1-deficient lines. This finding 

suggests that chloroplast ribosome biogenesis is significantly changed in the 

basal regions of W1-7 leaves compared to the wild type. These data are also in 

agreement with the results presented in Chapter 4 showing that the splicing of 

plastid rRNAs of the 23S and 4.5 rRNAs was aberrant in the WHY1-deficient 

lines. Taken together, these findings demonstrate that in the absence of WHY1, 

the plastid-encoded ribosomal transcripts are not effectively translated into 

ribosomal subunits. The developing WHY1-deficient leaves lack the chloroplast 

ribosomes required to translate plastid-encoded transcripts such as those 

encoding photosynthetic proteins. There is also a lack of coordination in the 

expression of ribosomal genes in the nucleus and chloroplasts. 

 

Unlike the expression of plastome genes encoding photosynthetic proteins (see 

Chapter 4), the levels of transcripts associated with photosynthesis that are 

encoded by nuclear genes were generally higher in the WHY1-deficient lines than 

the wild type, especially during early chloroplast biogenesis (Figure 5.27). The 

greening of the chloroplasts was significantly delayed in the WHY1-deficient lines 

compared to the wild type. Hence, chloroplast biogenesis requires a functional 

WHY1. The high plastome copy number and increased abundance of nuclear 

transcripts encoding photosynthetic proteins were not sufficient to compensate 



 
 

185 

 

for the loss of WHY1. The levels of plastome-encoded transcripts were 

significantly lower in the WHY1-deficient lines than the wild type, with much lower 

levels of the encoded proteins, as discussed in Chapter 4. The lack of plastome-

encoded transcripts/proteins explains the delayed greening of the WHY1-

deficient leaves, despite the high expression of nuclear-encoded photosynthetic 

genes (Chapter 4).  

 

Moreover, the levels of many transcripts involved in RNA processing such as 

pentatricopeptide repeat (PPR) were increased in the W1-7 leaves relative to the 

wild type (Figure 5.28). PPR proteins are family of RNA-binding proteins that 

function in RNA processing in chloroplast gene expression (Stern et al., 2010, 

Shikanai and Fujii, 2013). Similarly, RNA helicases are involved in processes 

such as RNA synthesis, modification, cleavage and degradation as well as in 

ribosome biogenesis and translation initiation (Banroques et al., 2011, Linder and 

Jankowsky, 2011). The high levels of transcripts encoding such proteins in the 

WHY1-deficient leaves suggests that there is enhanced expression of all the 

genes associated RNA processing as well as those encoding chloroplast 

ribosomal subunits. The enhanced expression may be an attempt to compensate 

for low levels of chloroplast ribosomal proteins/translation.  

 

The levels of transcripts encoding protein kinases were increased in the WHY1-

deficient lines compared to the wild type (Figure 5.6 and Figure 5.15). For 

example, the levels of transcripts encoding protein kinase AK356512 were higher 

in the WHY1-deficient leaves than the wild type. This transcript shows homology 

to Arabidopsis (AT3G54090.1), which encodes a fructokinase-like protein. 

Members of the pfkB-carbohydrate kinase family are potential plastidial 

thioredoxin targets (Arsova et al., 2010). Arabidopsis knockout mutants displayed 

an albino phenotype and had impaired in chloroplast development, with defects 

in PEP-dependent transcription (Arsova et al., 2010). These data suggest that 

post-translational regulation via protein kinases may be important in the control 

of chloroplast development. 
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In addition, the levels of transcripts encoding FAR1-like proteins 

(MLOC_33258.3) were increased in the W1-7 relative to the wild type, particularly 

at 7 days after germination. The abundance of this transcript was lower in the 

embryos of the dry seeds of the WHY1-deficient than the wild type (Appendix 

A.1). The expression of FAR1-like proteins is important during the establishment 

of photosynthesis but it may not be required in the embryos. The levels of 

transcripts encoding FAR1-like proteins were also found to be increased in an 

earlier study of W1-7 leaves at 21 days old (Comadira et al., 2015). The FAR1 

gene encodes a transposase-derived transcription factor that activates the 

expression of FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE and 

modulate phytochrome A to promote chlorophyll biosynthesis and chloroplast 

division (Tang et al., 2012). The FAR1 transcription factor is also a positive 

regulator of ABA signalling in Arabidopsis (Tang et al., 2013). An increase in ABA 

sensitivity was observed during seed germination in lines expressing WHY1 in 

the plastids (Isemer et al., 2012a). The absence of WHY1 may result in an 

increase in light signalling pathways mediated by FAR1 that integrate light and 

ABA signalling (Tang et al., 2013) in the W1-7 leaves compared to the wild type 

(Figure 5.30 A).  

 

The leaf transcript profiling analysis also revealed that transcripts encoding a Val-

tRNA synthetase were significantly more abundant in the W1-7 leaves than the 

wild type (Figure 5.21). Previous studies have shown that rice Val-tRNA 

synthetase mutants called white panicle 1 (wp1) have pale or albino phenotypes, 

suggesting that the Val-tRNA synthetase plays important role in chloroplast 

development and chloroplast ribosome biogenesis (Wang et al., 2016). 

Furthermore, many others transcripts were changed in the WHY1-deficient 

leaves at earliest stages of leaf development. Of these, transcripts associated 

with redox processes such as thioredoxin, peroxidases and hormones 

metabolism were significantly more abundant in the WHY1-deficient lines than 

the wild type during early stages of leaf development. Similarly, transcripts 

encoding transcription factors of the MYB, bHLH and WRKY families were 

increased in the WHY1-deficient lines compared to the wild type. However, there 

was also a number of transcripts encoding MYB, bHLH and a few WRKY family 
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transcription factors that were decreased in the WHY1-deficient lines compared 

to the wild type. The observed changes in transcription factors and proteins 

involved redox processes and also transcriptions factors as well as proteins 

involved in defence in hormone signalling, metabolism and developmental 

processes demonstrate that a significant readjustment of gene expression is 

required in leaves lacking WHY1 during early leaf development and chloroplast 

biogenesis.   
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Chapter 6 . Metabolic leaf profile of the WHY1-deficient lines 

during chloroplast development 

 

6.1 Introduction 

  

During plant development, young leaves are metabolic sinks that require the 

import of nutrients to sustain their metabolism, growth and development. The leaf 

undergoes a transition from a metabolic sink to a source during development. 

Plants are photoautotrophs and maintain growth and development through 

photosynthesis, via the delivery of reduced carbon (C) compounds. The reduced 

C compounds produced by photosynthesis are reoxidised in respiration, 

producing energy and C skeletons for processes such as the incorporation of 

inorganic N into amino acids (Foyer et al., 2003). Signal transduction and the 

regulation of gene expression are required to regulate the transition of the 

emerging leaf from the sink state to a source with functional photosynthesis 

during development. This process also involves changes in the accumulation of 

metabolites which are connected to biochemical phenotypes (Satou et al., 2014).  

 

Metabolite profiling analysis can provide an understanding of gene functions. The 

metabolites produced in complex networks of biochemical pathways are 

classified either as primary metabolites (e.g. amino acids, sugars, sugar 

phosphates, and organic acids) or secondary metabolites (e.g. 

phenylpropanoids) that often have important functions in specific environmental 

conditions (Satou et al., 2014). Metabolite profiling provides a snap-shot of the 

metabolic status of an organ (Weckwerth, 2003, Saito and Matsuda, 2010). The 

biosynthesis of most amino acids begins in the chloroplasts, while most of the 

proteins involved in these metabolic pathways are encoded by nuclear genes and 

transported into the chloroplast (Satou et al., 2014). Leaf metabolic profiling 

approaches have been used in comparisons of albino and pale green Arabidopsis 
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mutants that showed increases in several amino acids such as glutamine, 

glutamate and asparagine as a result of altered levels of nuclear-encoded 

chloroplast proteins (Satou et al., 2014).  

 

Leaf metabolite profiles have previously been analysed in 17-day old WHY1-

deficient barley (W1-7) seedlings and the wild type (WT) the under optimal and 

limiting nitrogen nutrition (Comadira et al., 2015). The metabolite profiles of the 

W1-7 leaves were shown to be similar to the wild type but there was a significant 

difference in the levels of leaf sucrose. In addition, there were low levels of 

reducing sugars and tricarboxylic acid cycle intermediates but no differences in 

the leaf amino acid pools (Comadira et al., 2015). The aim of the studies reported 

in this chapter was to extend this analysis by examining the metabolite profiles of 

different leaf sections early in leaf development in the WHIRLY1-deficient barley 

(W1-1, W1-7) seedlings and the wild type (WT). Furthermore, these studies will 

allow an understanding of the changes in the metabolite pools that occur during 

chloroplast development. Therefore, WHY1 and wild type seedlings were grown 

for 7 and 14 days after germination. The metabolite profiles were determined in 

the base, middle (Mid) and tip sections of the first leaves.   
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6.2 Results 

 

6.2.1 Sample variation 

 

Principal component analysis (PCA) of the metabolic profile of the first leaves of 

WHY1-deficient lines showed a definitive separation from the wild type when 

comparing lines and leaf positions (Figure 6.1). When score 1 was plotted against 

score 2 in terms of genotype, the W1-7 had a clear separation from the W1-1 and 

the wild type (Figure 6.1). There was a clear separation in the leaf positions (base, 

middle and tip) of the first leaves of W1-7 compared to the wild type (Figure 6.1 

B). However, this was less apparent in the W1-1 compared to the wild type. 

Metabolites were also separated in leaf positions which was most clearly 

illustrated when score 2 was plotted against score 5 (Figure 6.1 B). 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Principal components analysis (PCA) of the metabolic profiles 

of the first leaves of W1-1, W1-1 and wild type (WT), 7 days after 

germination.  

The PCA analysis has been plotted against (A) genotypes and (B) leaf regions (base, 

middle and tip). (A) The line plot was separated according to genotypes (red: WT, blue: 

W1-1 and black: W1-7) and (B) the line plot that was separated according to leaf sections 

(red: base, blue: middle and black: tip). Scr: score. B: base, M: mid, T: tip.   

A 
B 



 
 

191 

 

6.2.2 Metabolite changes in the WHY1-deficient line relative to the 

wild type during leaf development at 7 days old.  

 

In total, there were 79 metabolites that were changed in young leaves of WHY1-

deficient lines both at 7- and 14-day old. These metabolites have been 

categorised in the following categories: amino acids, TCA cycle intermediates, 

sugars and fatty acids. The analysis illustrates an overview of changes in leaf 

metabolite profiles that that illustrating amino acids, TCA cycle intermediates, 

sugars and carboxylic acids (Figure 6.2).   
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   Base   Mid   Tip  

  WT W1-1 W1-7  WT W1-1 W1-7  WT W1-1 W1-7  

 Valine          

 Leucine          

 Isoleucine          

 Proline          

 Glycine          

 Serine          

 Threonine          

 b-Alanine          

 Methionine          

 Phenylalanine          

 Asparagine          

 Lysine          

 Tyrosine          

 Succinic acid          

 Fumaric acid          

 Malic acid          

 Oxoproline          

 Aspartic acid          

 Aminobutyric acid          

 Oxoproline          

 Threonic acid          

 Glutamic acid          

 Citric acid          

 Quinic acid          

 Fructose          

 Allantoin          

 Mannose           

 Galactose           

 Glucose           

 Mannitol          

 Inositol          

 Sucrose          
 

Figure 6.2: Heat map on the content of metabolites in the WHY1-deficient 

lines compared to the wild type, 7 days after germination.  

The values shown on the heat map represent the relative concentration of the mean of 

each compound (n=4), which is estimated as response ratios calculated by peaks areas 

normalised to the internal standards areas (ribitol and nonadecanoic acid methyl ester) 

for each metabolite acquired. Statistical analysis for metabolite data was determined 

using 1-way ANOVA and was set to p<0.05 to take into account of the greater variability 

within the metabolite dataset.   
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6.2.2.1 Amino acids  

 

The loss of WHY1 caused a large change in the amino acid profiles of the first 

leaves in WHY1-deficient leaves compared to the wild type. The levels of serine 

were significantly lower in the base and middle of the first leaves of W1-7 (Figure 

6.3 B). However, there were no differences in the levels of serine in the tip leaves 

of the W1-7 compared to the wild type and W1-1, 7 days after germination (Figure 

6.3 B). In contrast to the level of glycine, only the middle section of the first leaves 

of W1-1 had significantly higher levels of glycine compared to the W1-7 and wild 

type (Figure 6.3 A). The levels of glycine were all similar in the base and tip 

sections of the first leaves in all lines (Figure 6.3 A).The ratio of Gly/Ser was 

higher in the base, middle and tip sections of the first leaves in the W1-1 and W1-

7 7 leaves compared to the wild type at 7 days after germination (Figure 6.3 C). 

The levels of asparagine were similar in all leaves sections in the wild type, W1-

1 and W1-7 barley leaves (Figure 6.4 A). However, the levels of aspartate were 

lower in the base and middle sections of the W1-7 leaves compared to the wild 

type and W1-1 (Figure 6.4 B). In contrast, the levels of aspartate were not 

different in the tip sections in all the barley (Figure 6.4). The Asn/Asp ratio was 2 

times higher in the base section of the W1-7 leaves compared to the wild type 

and W1-1 (Figure 6.4). 

The levels of isoleucine, leucine and valine were significantly increased in the 

base sections of the first leaves of W1-7 compared to wild type and W1-1, 7 days 

after germination (Figure 6.5). The levels of valine were significantly increased in 

the tip leaves of W1-7 compared to the wild type (Figure 6.5 C). The levels of 

isoleucine and leucine were similar in the middle and tip sections of the first 

leaves of the W1-7 compared to wild type and W1-1, 7 days after germination 

(Figure 6.5 A & B). The levels of glutamate and phenylalanine were significantly 

lower in the middle section of the first leaves of the W1-7 compared to the wild 

type (Appendix J). In contrast, the levels of glutamate and phenylalanine were all 

similar in the base and tip in all lines (Appendix J). There were no differences in 

all leaf regions in all the lines in the levels of lysine, threonic acid, proline, β-

alanine and tyrosine (Appendix J).  
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Figure 6.3: The levels of amino acids (A) glycine, (B) serine and (C) glycine 

to serine ratio in the base, middle (Mid) and tip sections of the first leaves 

of wild type (WT) and W1-1 and W1-7 seedlings, 7 days after germination.  

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards (n=4). Significant differences (letters) were analysed using Tukey’s HSD test 

1-way ANOVA (p<0.05).  
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Figure 6.4: The levels of amino acids (A) asparagine, (B) aspartate and (C) 

the ratio of asparagine to aspartate in the base, middle (Mid) and tip 

sections of the first leaves of wild type (WT) and W1-1 and W1-7 seedlings, 

7 days after germination.  

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards. Significant differences (letters) were analysed using Tukey’s HSD test 1-way 

ANOVA (p<0.05).  
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Figure 6.5: The levels of amino acids (A) isoleucine (B) leucine and (C) 

valine in the base, middle (Mid) and tip sections of the first leaves of wild 

type (WT) and W1-1 and W1-7 seedlings, 7 days after germination.   

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards. Significant differences (letters) were analysed using Tukey’s HSD test 1-way 

ANOVA (p<0.05).  

R
e
la

ti
v
e
 c

o
n

c
e
n

tr
a
ti

o
n

 
R

e
la

ti
v
e
 c

o
n

c
e
n

tr
a
ti

o
n

 
R

e
la

ti
v
e
 c

o
n

c
e
n

tr
a
ti

o
n

 

A 

0.00

0.10

0.20

0.30

0.40

0.50

WT W1-1 W1-7 WT W1-1 W1-7 WT W1-1 W1-7

Base Mid Tip

 a  a 

  b 

  a a 

 a 

a a 

 a 

0.00

0.10

0.20

0.30

WT W1-1 W1-7 WT W1-1 W1-7 WT W1-1 W1-7

Base Mid Tip

  a ab   ab 

 ab 
ab ab 

ab 
b 

c 

0.0

0.4

0.8

1.2

WT W1-1 W1-7 WT W1-1 W1-7 WT W1-1 W1-7

Base Mid Tip

a 

ab ab ab abc 
bcd bcd 

cd 
  d 

B 

C 



 
 

197 

 

6.2.2.2  Carbohydrates  

 

The levels of fructose and sucrose were all similar in the first leaves of all leaf 

sections in all lines (Figure 6.6 A & B). The levels of glucose were also similar in 

the first leaves of all leaf sections in all lines (Figure 6.6 C). However, the level of 

glucose in the tip section of the first leaves of W1-7 was significantly lower 

compared to the wild type, 7 days after germination (Figure 6.6 C). In addition, 

the levels of galactose and inositol were all similar in the first leaves of all leaf 

sections in all lines, 7 days after germination (Appendix J). 
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Figure 6.6: The levels of amino acids (A) fructose, (B) sucrose and (C) 

glucose in the base, middle (Mid) and tip sections of the first leaves of wild 

type (WT) and W1-1 and W1-7 seedlings, 7 days after germination.   

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards. Significant differences (letters) were analysed using Tukey’s HSD test 1-way 

ANOVA (p<0.05).  
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6.2.2.3 TCA cycle intermediates 

 

The levels of a large number of TCA cycle intermediates such as malate and 

fumarate were significantly lower in the base sections of the first leaves of W1-7 

compared to the wild type and W1-1, 7 days after germination (Figure 6.7 A & B). 

The levels of malate and fumarate were lower in the middle sections of the first 

leaves of W1-7 compared to wild type and W1-1, 7 days after germination (Figure 

6.7 A& B). The level of succinate was significantly lower in the base section of 

the first leaves of W1-7 compared to the wild type and had no difference with W1-

1, 7 days after germination (Figure 6.7 C). The level of succinate was lower in the 

middle section of the first leaves of W1-7 compared to the wild type and W1-1, 7 

days after germination (Figure 6.7 C). Interestingly, the levels of malate, fumarate 

and succinate in the tip of WHY1-deficient leaves were higher than the wild type, 

7 days after germination (Figure 6.7). In contrast, the levels of citrate were all 

similar in all leaves sections in all lines, 7 days after germination (Appendix J).  
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Figure 6.7: The levels of (A) fumarate, (B) malate and (C) succinate in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT) and 

W1-1 and W1-7 seedlings, 7 days after germination.   

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards. Significant differences (letters) were analysed using Tukey’s HSD test 1-way 

ANOVA (p<0.05).  
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Figure 6.8: A comparison of the leaf metabolite profiles in the first leaves of 

the W1-7 compared to the wild type at 7-day old analysis, shown as a 

schematic of key metabolic pathways.  

The bar chart represents the relative concentration of each metabolite in the W1-7 and 

wild type (black bar= WT and white = W1-7 base). Relative concentration was the mean 

compound (n=4) and normalised to the internal standards. Significant differences 

(letters) were analysed using the Student’s t-test (p<0.05).   
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6.2.2.4 Fatty acids  

 

In general, the fatty acids contents of the first leaves in the W1-1 and W1-7 had 

no significant differences in all leaf sections compared to the wild type, 7 days 

after germination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: The levels of (A) pentadecanoic and (B) octadecenoic in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT) and 

W1-1 and W1-7 seedlings, 7 days after germination.   

Relative concentration was the mean compound (n=4) and normalised to the internal 

standards. Significant differences (letters) were analysed using Tukey’s HSD test 1-way 

ANOVA (p<0.05).   
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6.2.3 Metabolite changes in the WHY1-deficient line relative to the 

wild type during leaf development at 14 days old.  

 

The following experiments were performed to determine the levels of metabolite 

profiles of different leaf sections in the WHY1-deficient (W1-1, W1-7) seedlings 

and the wild type (WT) at 14 days old. However, only three biological replicates 

were used in this analysis as many samples for 14 days old analysis were 

degraded during the processing. 

 

6.2.3.1 Amino acids  

 

The level of glycine was significantly higher in the tip leaves of the first leaves of 

W1-7 compared to the wild type with no significant changes in other leaf sections 

in all lines, 14 days after germination (Figure 6.10). The ratio of Gly/Ser was also 

higher in the tip of W1-7 compared to wild type, 14 days after germination (Figure 

6.10). There were no significant differences in the levels of serine, isoleucine, 

leucine and valine in all the leaf sections of all lines, 14 days after germination 

(Figure 6.11).   
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Figure 6.10: The levels of (A) glycine, (B) serine and (C) ratio of gly/ser in 

the base, middle (Mid) and tip sections of the first leaves of wild type (WT) 

and W1-7 seedlings, 14 days after germination.   

Relative concentration was the mean compound (n=3) and normalised to the internal 

standards. Significant differences were analysed using Student’s t-test (p<0.05). 
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Figure 6.11: The levels of (A) isoleucine, (B) leucine and (C) valine in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT) and 

W1-7 seedlings, 14 days after germination.   

Relative concentration was the mean compound (n=3) and normalised to the internal 

standards. Significant differences were analysed using Student’s t-test (p<0.05).  
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6.2.3.2 Carbohydrates  

 

The levels of sucrose were similar in the base and tip sections of the first leaves 

of W1-7 but the middle section of the first leaves of W1-7 had lower level of 

sucrose compared to the wild type, 14 days after germination (Figure 6.12 A). 

However, the levels of fructose and glucose were lower in the base sections of 

the first leaves in the W1-7 compared to the wild type, 14 days after germination 

(Figure 6.12 B & C). Similar levels of fructose and glucose were observed in the 

middle sections of the first leaves both in W1-7 and wild type, 14 days after 

germination (Figure 6.12 B & C).However, the levels of fructose and glucose were 

higher in the tip section of the first leaves W1-7 compared to wild type, 14 days 

after germination (Figure 6.12 B & C). 
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Figure 6.12: The levels of amino acids (A) sucrose, (B) fructose and (C) 

glucose in the base, middle (Mid) and tip sections of the first leaves of wild 

type (WT) and W1-7 seedlings, 14 days after germination.  

Relative concentration was the mean compound (n=3) and normalised to the internal 

standards. Significant differences (letters) were analysed using Student’s t-test (p<0.05).  
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6.2.3.3 TCA cycle intermediate 

 

There were no differences in the levels of TCA cycle intermediates, such as 

fumarate, malate and succinates in all the leaf sections in all lines, 14 days after 

germination (Figure 6.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: The levels of (A) fumarate, (B) malate and (C) succinate in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT) and 

W1-7 seedlings, 14 days after germination.  

Relative concentration was the mean compound (n=3) and normalised to the internal 

standards. Significant differences (letters) were analysed using Student’s t-test (p<0.05).  
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6.3 Discussion  

 

The studies reported here have characterised the metabolite changes that 

occurred during barley leaf development, together with the effects of the loss of 

WHY1 on this process. The PCA analysis showed a clear separation in the data 

obtained from the W1-7 and wild type leaves (Figure 6.1). This analysis also 

showed that there were differences in the metabolite profiles of each of the leaf 

regions (base, middle and tip). However, these differences were less apparent in 

the W1-1 leaves than the W1-7 leaves compared to the wild type (Figure 6.1). 

These findings show that the loss of WHY1 protein has a marked effect on the 

developmental profile of leaf metabolites. 

  

The ratio of Gly/Ser can be used as a marker of photorespiration (Novitskaya et 

al., 2002). The data presented here showed that Gly/Ser ratios were higher in the 

first leaves of W1-1 and W1-7 than the wild type in 7-day old seedlings (Figure 

6.3 C). This suggests that photorespiration was increased by the loss of the 

WHY1 protein. An increase in photorespiration may favour ROS production in the 

peroxisomes in the leaves lacking of WHY1 protein. This is consistent with the 

results obtained in the transcriptomic profiling analysis (Chapter 5), which 

showed that transcripts associated with redox signalling were greatly increased 

in the WHY1-deficient lines. This may be related to the increase in mRNAs 

associated with photorespiration in the barley leaves lacking WHY1 protein. 

Moreover, the ratios of Gly/Ser and Asn/Asp have been used as markers of 

carbon and nitrogen status related to photosynthesis and respiration, respectively 

(Novitskaya et al., 2002). The Asn/Asp ratios were increased in the base sections 

of the W1-7 leaves of the 7-day old seedlings compared to the wild type (Figure 

6.4 C). Conversely, the Asn/Asp ratios were lower in the middle and tip sections 

of the first leaves in both of the W1-1 and W1-7 than the wild type (Figure 6.4 C). 

These results were also consistent with findings of the transcript profiling 

analysis, which showed that many transcripts associated with photosynthesis and 

photorespiration were higher in the WHY1-deficient leaves, particularly in the 

basal sections (Chapter 5). These findings also suggest that nitrogen-rich amino 
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acids accumulate in the basal regions of the W1-7 leaves, 7 days after 

germination. Furthermore, the basal sections of the W1-7 leaves have increased 

levels of branched-chain amino acids such as isoleucine, leucine and valine 

compared to the wild type in 7-day old seedlings (Figure 6.5). 

 

The levels of cycle intermediates such as fumarate, malate and succinate were 

significantly lower in the basal sections of the W1-7 leaves compared to the wild 

type in 7-day old seedlings (Figure 6.7). This finding is consistent with the results 

in Chapter 4 (Figure 4.6), in which the onset of efficient photosynthesis was 

delayed in W1-7 plants compared to the wild type during leaf development. An 

increased flux through the TCA cycle may be required to sustain leaf growth in 

the absence of functional photosynthesis. The loss of the WHY1 protein, 

therefore, has a strong effect on the leaf metabolite pools of the developing barley 

leaves, particularly regarding metabolites associated with respiratory metabolism 

and primary nitrogen assimilation. 

 

The lower levels of sucrose measured in the basal sections of the W1-7 leaves 

compared to the wild type in 7-day old seedlings (Figure 6.6 B) is consistent with 

a delayed onset of photosynthesis in the WHY1-deficient leaves (Figure 4.6). 

High sucrose levels are associated with the establishment of photosynthesis 

even in the basal sections of the wild type leaves. Lower levels of glucose were 

also measured in the basal sections of the W1-7 leaves (Figure 6.6 C). Glucose 

is generally produced by the invertase-mediated breakdown of sucrose to 

glucose and fructose. The increased levels of hexoses are probably required to 

sustain the increased flux through the TCA cycle particularly in the basal sections 

of the W1-7 leaves.  

 

There was also a marked difference in the levels of fructose and glucose in the 

tip sections of the wild type and W1-7 at 14 days after germination (Figure 6.12). 

The levels of fructose and glucose were higher both in both the wild type and W1-

7 leaves at 14 days compared to 7 days after germination. The greater hydrolysis 

of sucrose in the tips of the leaves may be due to senescence in the leaf tip 

(Pourtau et al., 2006). There were no significant differences in the levels of fatty 
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acids such as octadecenoic acid and pentadecanoic acid in any of the leaf 

regions in any line 7 days after germination. Similarly, there were no marked 

changes in the fatty acid levels of the W1-7 leaves compared to the wild type at 

14-day old. Thus, the absence of a functional WHY1 protein had less effects on 

the leaf metabolite profiles of 14 days leaves that the 7 leaves of 7-day old 

seedlings. This suggests that the leaves of all lines reached reach a similar 

metabolic status at 14 days. This finding is consistent with the measurements of 

other parameters that serve as markers for chloroplast development shown in 

Chapter 4. 
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Chapter 7 . LEA5 and WHIRLY1 interactions with DEA (D/H)-box 

RNA 22 in Arabidopsis 

 

7.1 Introduction  

 

Plants produce ROS as a product of primary metabolism and as specific signals 

that regulate plant growth and defence under optimal and stress conditions 

(Foyer and Noctor, 2009, Suzuki et al., 2012). Late embryogenesis abundant 

(LEA)-like protein 5, (LEA5 also called LEA38: At4g02380) is one of a number of 

proteins, whose expression is changed in plants following exposure to 

environmental stresses, phytohormones and ROS. The LEA5 protein, which is a 

member of the LEA-3 group of protein family, is unusual because other members 

of this family are not regulated in response to oxidative stress (Mowla et al., 

2006). LEA5 is constitutively expressed in roots but not in seeds. In leaves, LEA5 

transcripts exhibit a diurnal pattern of regulation, being low in the light and 

abundant in the dark. However, the expression of LEA5 is induced in leaves in 

the light following exposure to abiotic and biotic stresses, as well as oxidants and 

phytohormones (Salleh et al., 2012, Mowla et al., 2006). 

 

Constitutive overexpression of LEA5 increased root growth and shoot biomass, 

whereas both of these processes were decreased in anti-sense lines or lea5 

knockout mutants. In contrast, photosynthesis was more sensitive to drought in 

the overexpressing lines, suggesting that LEA5 protein modulates 

photosynthesis in plants exposed to stress (Mowla et al., 2006). While LEA5-YFP 

expression studies have shown that the LEA5 protein is localised in mitochondria 

(Salleh et al., 2012), tandem affinity purification (TAP) tagging studies suggested 

that the LEA5 protein is able to interact with chloroplast proteins (collaboration 

with Geert De Jaeger in the Department of Plant Systems Biology, VIB, Gent). 

The TAP analysis of protein-protein interactions showed that LEA5 interacted the 
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RH22 in the dark and in the light in all the samples analysed. This finding is 

interesting because LEA5 is predicted to contain a putative chloroplast transit 

peptide (Hundertmark and Hincha, 2008).  

 

RH22 is also called heavy seed (HS) 3 (At1g59990), which is localised to plastids, 

is involved in RNA processing and metabolism (Kanai et al., 2013). The loss of 

RH22 function is lethal (Chi et al., 2012). Moreover, the rh22 mutants exhibit 

defects in young seedlings. Knock-down mutants have a pale phenotype with 

defects in plastid development (Chi et al., 2012, Kanai et al., 2013). The rh22 

knock-down mutant phenotype is caused by aberrant processing of rRNAs (23S 

rRNA and 4.5S rRNA) for the large subunit (50S) of the plastid ribosome (Chi et 

al., 2012). These findings show that the RH22 is required for chloroplast ribosome 

assembly in Arabidopsis, with effects on the chloroplast, seed development and 

seedling growth (Chi et al., 2012, Kanai et al., 2013). 

 

In the following experiments, a split-yellow fluorescent protein (YFP) assay 

system was used to analyse protein-protein interactions. In split-YFP assays, the 

two non-fluorescent halves of the YFP are attached to target proteins and 

expressed in living cells. If the target proteins interact then the YFP halves come 

together to produce the fluorescent protein and fluorescence signal. As well as 

its applications in the study of protein-protein interactions, YFP methods can also 

be used to study the intracellular localisation of proteins (Horstman et al., 2014). 

Hence, split-YFP techniques have been widely used to study plant processes 

(Citovsky et al., 2006, Citovsky et al., 2008, Ohad et al., 2007, Waterworth et al., 

2015).  

 

The WHY1-deficient barley seedlings show a similar pattern of aberrant 

processing of the plastid rRNAs (23S rRNA and 4.5S rRNA) to that of mutants 

lacking a functional RH22. The WHY family are single-stranded DNA binding 

proteins (Desveaux et al., 2000). In Arabidopsis, WHY1 is targeted to the nucleus 

and chloroplasts, while WHY2 is located in the mitochondria (Krause et al., 2005). 

Similarly, in barley, WHY1 is localised in the nucleus and chloroplasts and WHY2 
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is found in the mitochondria (Melonek et al., 2010). This chapter reports the 

results of experiments designed to explore the binding of the LEA5 and WHY1 

proteins to RH22 in Arabidopsis.  

 

The following studies were undertaken to explore the intracellular localisation of 

the LEA5 protein using several different approaches. Firstly, the subcellular 

localisation of LEA5 was studied using transgenic Arabidopsis lines that had been 

transformed to express a LEA5-YFP fusion protein under the control of the 35S 

promoter. Secondly, transient expression of a LEA5-YFP protein in Arabidopsis 

leaf protoplasts was used to analyse the intracellular localisation of this protein. 

Thirdly, in vivo interactions between the RH22, LEA5 and WHY1 were 

characterised using the split-YFP approach. The specific aims of the study were 

as follows: 

 

1) To determine whether LEA5 is localised in chloroplasts using stable transgenic 

lines transformed expressing a LEA5-YFP fusion protein, together with transient 

expression of LEA5-YFP in Arabidopsis protoplasts.  

2) To confirm the interactions between LEA5 and RH22 proteins in chloroplasts. 

3) To examine interactions between WHY1 and RH22 in Arabidopsis 

chloroplasts. 
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7.2 Results 

 

7.2.1 Intracellular localisation of LEA5. 

 

Several approaches were used to elucidate the function of LEA5 in Arabidopsis. 

Firstly, various web-based prediction tools (TargetP, MitoProt and iPSORT) were 

used to determine the potential intracellular localisation of LEA5. The results of 

these studies are summarised in Table 7.1. 

 

Table 7.1 : Predicted intracellular localisation of LEA5 using web-based 

prediction tools.  

Values indicate the probability of mitochondrial and plastid localisation using different 

software programs (TargetP, MitoProt and iPSORT). 

 

Program Predicted target organelle 
Mitochondrion                                 Plastid 

TargetP 0.089 0.481 

MitoProt 0.9595 - 
iPSORT - Plastid signal peptide 

 

TargetP predicts the subcellular location of proteins based on the predicted 

presence of the N-terminal pre-sequences: chloroplast transit peptide (cTP), 

mitochondrial targeting peptide (mTP) or secretory pathway signal peptide (SP). 

In a similar manner, iPSORT predicts the subcellular localisation of N-terminal 

sorting signals, based on the presence of mitochondrial targeting peptide (mTP) 

or chloroplast transit peptide (cTP) sequences. In contrast, MitoProt calculates 

the N-terminal protein region that can support a mitochondrial targeting sequence 

and cleavage site. In all cases, the data is provided as probabilities. The location 

with the highest score is the most likely according to the software applied. The 

relationship between the scores for any one program may also indicate how 

certain the prediction is. For example, as shown in Table 7.1, TargetP value for 

plastids was 0.481 but only 0.089 for mitochondria. This data suggests that there 

is a high probability of targeting to plastids with a lower probability of targeting to 
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mitochondria. However, the MitoProt software predicted a high probability for 

mitochondrial localisation for LEA5 (0.9595). Meanwhile, iPSORT predicted 

subcellular localisation of LEA5 to be only in plastids. Taken together, these data 

suggest that LEA5 is targeted both to mitochondria and to plastids. However, the 

prediction programs only provide preliminary evidence of the potential 

intracellular localisation of LEA5. Therefore, transgenic A. thaliana lines 

expressing a LEA5-YFP fusion protein under the control of the 35S CaMV 

promoter were used to localise the LEA protein using confocal laser scanning 

microscopy (Mohd Salleh et al., 2011).  
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7.2.2 Studies on intact leaves from LEA5-YFP-expressing plants 

 

In the previous studies, a stable expression of LEA5-YFP showed that LEA5 

localises to the mitochondria (Mohd Salleh et al., 2012). In this experiment, the 

LEA5-YFP fusion protein was detected in the attached youngest leaves of 5-day 

old seedlings of the transgenic A. thaliana lines using a Zeiss LSM 700 inverted 

confocal microscope (Figure 7.1). The seedlings were collected from controlled 

environment chambers during the light period immediately prior to measurement. 

The chloroplast auto-fluorescence signal is shown in Figure 7.1a and the YFP 

signal, detected using an excitation wavelength of 488 nm and an emission 

wavelength of 505-530 nm, is shown in Figure 7.1b. The merged YFP and 

chlorophyll fluorescence signals shown in Figure 7.1 demonstrate that there is a 

high degree of overlap between the YFP and chlorophyll fluorescence signals, as 

indicated by the yellow areas in the Figure 7.1. However, the Arabidopsis seeds 

of LEA5 should be genotyped in the next experiment.  

 

a) Chlorophyll   b) YFP emission  c) Overlay 

fluorescence       

 

Figure 7.1: Intracellular localisation of LEA5.  

The chlorophyll fluorescence signal (a, red), the YFP signal (b, green) and the merged 

chlorophyll fluorescence and YFP signals (c; yellow). Scale bar = 10 µm.  
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7.2.3 Studies on intact protoplasts from LEA5-YFP-expressing 

leaves 

 

The localisation of the YFP tagged LEA protein was also determined in intact 

protoplasts, which were prepared from leaves of 3 week- old transgenic 

Arabidopsis plants expressing the LEA5-YFP construct. The YFP signal detected 

in protoplasts using a LSM510 META confocal microscope is shown in Figure 

7.2a. The corresponding chloroplast auto-fluorescence signal is shown in Figure 

7.2b and the merged YFP and chlorophyll fluorescence signals are shown in 

Figure 7.2c. The data shown in Figure 7.2 demonstrates an overlap between the 

YFP and chlorophyll fluorescence signals, as indicated by the yellow areas.       

 

a) YFP emission             b) Chlorophyll fluorescence     c) Overlay 

Figure 7.2: Confocal microscope images of intact protoplasts isolated from 

LEA5-YFP expressing leaves.  

The YFP signal (a, green), the chlorophyll florescent signal (b, red) and the merged YFP 

and chlorophyll fluorescent signals (c; yellow). Scale bar = 10 µm.   
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7.2.4 LEA5 localisation in the chloroplasts and mitochondria  

 

The intracellular localisation of the YFP-tagged protein was investigated in intact 

protoplasts, which were prepared from the full length of 35S-LEA5-YFP construct. 

In these experiments the mitochondria were identified by staining with Mitotracker 

Red CMXRos. The YFP signal of the protoplasts is shown in Figure 7.3a, the 

mitochondria-tracker signal is shown in Figure 7.3b and the corresponding 

chloroplast auto-fluorescence signal is shown Figure 7.3c. The merged YFP, 

mito-tracker and chlorophyll fluorescence signals are shown in Figure 7.3d. The 

data shown in Figure 7.3 demonstrate that LEA5 localises to both the 

mitochondria and chloroplasts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts expressing the full length 35S-LEA5-YFP.  

The YFP (a,green), the mito-tracker staining (b, blue), the chlorophyll fluorescence (c, 

red) and the overlay (a, green plus b, blue, plus c, red) in the same cell. Scale bar = 5 

µm.  

  

a) b) 

c) d) 
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The dual chloroplast and mitochondria localisation of the LEA5 protein was 

confirmed in intact protoplasts, which transiently expressed the 35S-LEA5-YFP 

construct, together with the targeting domain of the alternative oxidase1 (AOX1) 

bound to a red fluorescent protein (RFP) marker system. For the chloroplast 

localisation, the 35S-LEA5-YFP construct was expressed together with the 

targeting domain of the small subunit (SSU) of ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (RuBisCO).  

 

The YFP signal of the protoplasts is shown in Figure 7.4a, the signal from 

mitochondria is shown in Figure 7.4b and the merged YFP and mitochondria 

targeted signal are shown in Figure 7.4c. These data demonstrate that the full 

length of 35S-LEA5-YFP and mitochondria-targeted AOX-RFP co-localise to the 

mitochondria. 

  

a) YFP emission                  b) RFP emission                        c) Overlay 

Figure 7.4: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing 35S-LEA5-YFP and AOX-RFP.  

The YFP (a, green), the RFP (b, blue) and the overlay (a, red plus b, green) in the same 

cell at 40 lens. Scale bar = 10 µm. 
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Similarly, when the 35S-LEA5-YFP construct was expressed together with the 

SSU-RFP marker system, the 35S-LEA5-YFP and SSU-RFP co-localise to the 

chloroplast, as shown in Figure 7.5. The YFP signal of the protoplasts is shown 

in Figure 7.5a. The signal from the chloroplast is shown in Figure 7.5b and the 

merged YFP and chloroplast-targeted signals are shown in Figure 7.5c.  

a) YFP emission                  b) RFP emission                c) Overlay  

Figure 7.5: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing 35S-LEA5-YFP and SSU-RFP.  

The YFP (a, green), the RFP (b, green) and the overlay (a, red plus b, green) in the same 

cell at 40 lens. Scale bar = 10 µm.  
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7.2.5 Expression of the LEA5 protein in protoplasts 

 

The interactions between LEA5 and the RH22 were investigated using split-YFP 

probes in a transient expression system. Two other tagged proteins, amino 

peptidase P2 (APP2) GFP, which localises to chloroplasts, and amino peptidase 

P1 (APP1)-GFP, which localises to the cytosol, were used as controls. The LEA5 

and RH22 genes were first cloned into the pDH51-GW-YFPn and pDH51-GW-

YFPc vectors. Transient expression of the fusion protein using light microscope 

was monitored in intact A. thaliana protoplasts (Figure 7.6). 

 

 

 

 

 

 

 

Figure 7.6: Light microscope image of a typical leaf mesophyll protoplast 

preparation made from the leaves of 3 week old Arabidopsis seedlings.   
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The chlorophyll auto-fluorescence signal from the intact A. thaliana protoplasts is 

shown in Figure 7.7a left panel and the mito-tracker signal is shown Figure 7.7b 

middle panel. The merged chlorophyll auto fluorescence signal and mito-tracker 

signal is shown in Figure 7.7c right panel. The markers for the chloroplasts 

(chlorophyll fluorescence) and the mitochondria (mito-tracker) are distinct (Figure 

7.7c). 

 

a) Chlorophyll fluorescence    b) Mito-tracker      c) Overlay  
 

Figure 7.7: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts stained with Mitotracker Red CMXRos.  

The chlorophyll fluorescence (a, blue), the mito-tracker staining (b, red) and the overlay 

(c) in the same cell. Scale bar = 10 µm.   
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The chlorophyll fluorescence signal of protoplasts expressing the pDH51-GW-

YFPn and pDH51-GW-YFPc vectors are shown in Figure 7.8a. The YFP signal 

generated by the expression of LEA5-YFPn and LEA5-YFPc is shown Figure 7.8. 

The merged YFP and chlorophyll fluorescence signal generated by the 

expression of LEA5-YFPn and LEA5-YFPc is shown in Figure 7.8. There is no 

clear overlap between the YFP and chlorophyll fluorescence signals. 

 

a) Chlorophyll fluorescence  b) YFP emission  c) Overlay 

 

Figure 7.8: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing a) LEA5-YFPn with LEA5-YFPc.  

The chlorophyll fluorescence (a, red), the YFP (b, green) and the overlay (c) in the same 

cell. Scale bar = 10 µm.   
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7.2.6 Expression of the DEA (D/H)-box RNA helicase 22 protein in 

protoplasts 

 

The RH22 cDNA was cloned into the pDH51-GW-YFPn and pDH51-GW-YFPc 

vectors. Transient expression of the fusion protein in intact A. thaliana protoplasts 

was monitored using the Zeiss LSM700 inverted confocal microscopy. The 

chlorophyll fluorescence signal is shown in Figure 7.9a. The YFP signal 

generated by the expression of RH22-YFPn and RH22-YFPc is shown (Figure 

7.9b). The merged YFP and chlorophyll fluorescence signals are shown in Figure 

7.9c. There is a clear overlap between the YFP and chlorophyll fluorescence 

signals (Figure 7.9). 

 

a) Chlorophyll  

fluorescence  b) YFP emission  c) Overlay  

 

Figure 7.9: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing DEA (D/H)-box RNA helicase 22-YFPn 

and DEA (D/H)-box RNA helicase 22-YFPc. 

The chlorophyll fluorescence (a, red), the YFP (b, green) and the overlay (c) in the same 

cell. Scale bar = 10 µm.   
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7.2.7 Expression of the chloroplast (APP2-GFP) and cytosolic 

(APP1-GFP) marker proteins in A. thaliana mesophyll 

protoplasts 

 

The marker protein, APP2-GFP, which localises to the chloroplasts, was used as 

a control in these studies. The chlorophyll fluorescence signal from protoplasts 

expressing APP2-GFP is shown in Figure 7.10a. The APP2-GFP fluorescence is 

shown in Figure 7.10b. The merged GFP and chlorophyll fluorescence signal is 

shown in Figure 7.10c. There is an overlap between the GFP and chlorophyll 

fluorescence signals (Figure 7.10c). This is clearly visible at the periphery of the 

protoplasts. However, there are some yellow areas that indicate an overlap of the 

signals, even though it is known that APP2 localises to chloroplasts.  

 

a) Chlorophyll  

Fluorescence             b) GFP emission  c) Overlay 

 

Figure 7.10: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing amino peptidase P2 (APP2; At3g05350). 

The chlorophyll fluorescence (a, red), the GFP (b, green) and the overlay (c) in the same 

cell. Scale bar = 10 µm.   
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The second marker protein, APP1-GFP, which localises to the cytosol, was used 

as a second control in these studies. The chlorophyll fluorescence signal for 

protoplasts expressing APP1-GFP is shown Figure 7.11a. The APP2-GFP 

fluorescence signal is shown Figure 7.11b. The merged GFP and chlorophyll 

fluorescence signals are shown in Figure 7.11c. The data in Figure 7.11c shows 

that there is no overlap between the GFP and chlorophyll fluorescence signals. 

This finding was in line with our predictions because APP1 localises to the cytosol 

and not the chloroplasts. 

 

  a) Chlorophyll fluorescence  b) GFP emission  c) Overlay 

 

 

 

 

 

 

Figure 7.11: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing amino peptidase P1 (APP1; At4g36760). 

The chlorophyll fluorescence (a, red), GFP (b, green) and overlay (c) in the same cell. 

Scale bar = 5 µm. 

 

 

  

c) 
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7.2.8 Interactions of the LEA5 protein with RH22 

 

Interaction between LEA5 and chloroplast RH22 was investigated using the split-

YFP transient expression system. The chlorophyll fluorescence signal from intact 

A. thaliana mesophyll protoplasts transiently expressing LEA5-YFPn, together 

with RH22-YFPc is shown Figure 7.12a (upper panel). YFP signal generated by 

these protoplasts is shown in Figure 7.12b (upper panel). The data in Figure 

7.12c (upper panel) reveal an overlap between the YFP and chlorophyll 

fluorescence signals. The yellow signal observed in Figure 7.12c indicates that 

both LEA5 and RH22 interact in the chloroplasts. The detail of this interaction is 

also seen in Figure 7.12 (lower panel), which shows the same images at higher 

magnification.  



 
 

225 

 

a) Chlorophyll fluorescence  b) YFP emission  c) Overlay 

 

a) Chlorophyll fluorescence  b) YFP emission  c) Overlay 

 

Figure 7.12:  Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing LEA5-YFPn with DEA (D/H)-box RNA 

helicase 22-YFPc.  

Upper panel showed interactions at 20x magnification (upper panel). Scale bar = 10 µm. 

Lower panel showed interactions at 40 lens indicating chlorophyll fluorescence (a, red), 

YFP (b, green) and the overlay (c) in the same cell. Scale bar = 5 µm.  
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To confirm the interaction between LEA5 and RH22 in the chloroplasts, transient 

expression assays were performed using the LEA5-YFPc and RH22-YFPn 

probes (Figure 7.13). The chlorophyll fluorescence signal shown in Figure 7.13a 

and the YFP signal generated by the expression of LEA5-YFPc and RH22-YFPn 

shown in Figure 7.13b show a high degree of overlap (Figure 7.13c). This overlap 

can be seen more clearly in single protoplast images from this experiment (Figure 

7.14) 

a) Chlorophyll fluorescence  b) YFP emission  c) Overlay 

 

Figure 7.13: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing LEA5-YFPc with DEA (D/H)-box RNA 

helicase 22-YFPn using a 40 lens.  

The chlorophyll fluorescence (a, red), the YFP (b, green) and the overlay (c) in the same 

cell. Scale bar = 10 µm.  

 a) Chlorophyll fluorescence  b) YFP emission  c) Overlay 

 

Figure 7.14: Confocal microscopy images of a single intact A. thaliana 

mesophyll protoplast transiently expressing LEA5-YFPc with DEA (D/H)-

box RNA helicase 22-YFPn using 20 lens magnifications.  

Chlorophyll fluorescence (a, red), YFP (b, green) and the overlay (c). Scale bar = 5 µm.  
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7.2.9 Interactions of the WHY1 protein with RH22 

 

WHY1 was cloned into the pDH51-GW-YFPn and pDH51-GW-YFPc vectors. 

Transient expression of the fusion protein in intact protoplasts was monitored 

using confocal microscopy. The chlorophyll florescence signal from the intact A. 

thaliana mesophyll protoplasts transiently expressing WHY1-YFPn, together with 

RH22-YFPc is shown in Figure 7.15a (upper panel). The YFP signal generated 

in these protoplasts is shown in Figure 7.15b (upper panel). The data in Figure 

7.15c (upper panel) reveals an overlap between the YFP and chlorophyll 

fluorescence signals. The data shown in Figure 7.15 (upper panel) indicate that 

both LEA5 and RH22 interact in the chloroplasts. The detail of this overlap is 

further confirmed in Figure 7.15 (lower panel), which shows the interaction of 

WHY1-YFPc together with RH22-YFPn. The chlorophyll florescence signal is 

shown in Figure 7.15a (lower panel). The YFP signal generated by these 

protoplasts is shown in Figure 7.15b (lower panel). The data in Figure 7.15c 

(lower panel) reveal an overlap between the YFP and chlorophyll fluorescence 

signals in the chloroplasts.  
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a) Chlorophyll fluorescence   b) YFP emission  c) Overlay 

Figure 7.15: Confocal microscopy images of a single intact A. thaliana 

mesophyll protoplast transiently expressing AtWHY1YFPn with DEA (D/H)-

box RNA helicase 22-YFPc. 

Upper panel showed interactions at 40x magnification (upper panel). Scale bar = 10 µm. 

Lower panel showed interactions at 20 lens indicating chlorophyll fluorescence (a, red), 

YFP (b, green) and the overlay (c) in the same cell. Scale bar = 5 µm. 
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As a negative control, LEA5-YFPn was expressed in the same protoplasts as 

RH22-YFPn. In this case, no YFP signal was generated in the intact protoplasts 

(Figure 7.16a) although the chlorophyll fluorescence signal was clearly visible 

(Figure 7.16b).  

a) Chlorophyll fluorescence      b) YFP emission c) Overlay 

 

 

 

 

 

Figure 7.16: Confocal microscopy images of intact A. thaliana mesophyll 

protoplasts transiently expressing LEA5-YFPn with DEA (D/H)-box RNA 

helicase 22-YFPn. 

The chlorophyll fluorescence (a, red), YFP (b, no signal) and the overlay (c) in the 

same cell. Scale bar = 10 µm.  
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7.3 Discussion 

 

LEA5 was first identified in a screening for novel genes involved in oxidative 

stress tolerance (Mowla et al., 2006). This protein was shown to localise to the 

mitochondria of transformed Arabidopsis plants expressing a SAG21-YFP fusion 

protein driven by the CaMV 35S promoter (Salleh et al., 2012). In agreement with 

this study, LEA5 also named LEA38 by Candat et al. 2014 was one of three LEA3 

family proteins (LEA37, LEA38, and LEA41) that was found to be targeted to the 

mitochondria. 

 

The data obtained from available web-based prediction tools (Table 7.1) suggest 

the possibility that the LEA5 protein could also be targeted to plastids, but with a 

lower probability than targeting to mitochondria. Moreover, a previous PhD 

student, Daniel Shaw, undertook a tandem affinity purification (TAP) tagging 

study to identify proteins that interacted with LEA5 in the Geert De Jaeger lab, 

Department of Plant Systems Biology, VIB, Gent, Belgium. These studies 

consistently showed that LEA5 interacted with chloroplast proteins. The 

chloroplast RH22 was identified as a significant LEA5 binding partner in all 

experiments.  

 

RNA helicases are required for the rearrangement of ribonucleoproteins and the 

regulation of gene expression. The RH22 is required for the accumulation of 

mRNAs from plastid genes. The hs3-1 mutants that lack a functional of RH22 

protein exhibit defects in plastid development (Kanai et al., 2013). Two RNA 

polymerases, the plastid-encoded RNA polymerase (PEP) and the nuclear-

encoded RNA polymerase (NEP) are required for the transcription of chloroplast 

genes. The transcripts that were changed in abundance in hs3-1 mutants 

included both NEP- and PEP-dependent genes, suggesting that this helicase is 

involved in posttranscriptional regulation, that are distinct from NEP- or PEP-

dependent transcription (Kanai et al., 2013). Thus, if LEA5 binds to RH22, then it 

may regulate or influence the accumulation of chloroplast mRNAs. 
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In the study reported here, the intracellular location of LEA5 was first studied in 

leaves protoplasts from the same LEA5-YFP-expressing lines that had been used 

in an earlier study (Salleh et al., 2012). The images presented in Figure 7.1 and 

Figure 7.2 indicate that the LEA5-YFP fluorescence signal overlaps with the 

chlorophyll auto-fluorescence signal, suggesting that LEA5 can localise to 

plastids. Furthermore, the data presented in Figure 7.3 show that LEA5-YFP 

localises to both of the chloroplast and mitochondria. Further confirmation of the 

chloroplast localisation of LEA5 was carried out using 35S-LEA5-YFP plus SSU-

RFP. The data shown in Figure 7.5 indicate that 35S-LEA5-YFP localises in the 

chloroplasts together with SSU-RFP. In addition, the data shown in Figure 7.4 

indicate that 35S-LEA5-YFP and the mitochondria targeted alternative oxidase1 

(AOX-RFP) co-localise in the mitochondria. However, there is as yet no simple 

explanation for why the plastid localisation was not observed in earlier studies 

(Candat et al., 2014, Salleh et al., 2012). Previous studies showed that stable 

expression of LEA5-YFP localises only to the mitochondria (Salleh et al., 2012). 

However, in this study, LEA5 was shown to be localised in the chloroplasts of 

isolated protoplasts. Thus, LEA5 expression in chloroplasts may only be 

transient. The stability of the LEA5 protein in chloroplasts may be determined by 

many factors including the availability of binding partners.  In contrast, we may 

suppose that the LEA5 protein is much more stable in mitochondria as shown in 

a previous publication (Salleh et al., 2012). Therefore, further experiments, 

involving the uptake of LEA5 protein into chloroplasts and mitochondria should 

be performed.   

 

The split-YFP assay system can be used to study the intracellular location 

proteins. Experiments were performed using a split-YFP assay system to 

determine whether the LEA5 protein localises to the chloroplasts of protoplasts 

transiently expressing the two halves of the protein in pDH51-GW-YFPn and 

pDH51-GW-YFPc vectors (Figure 7.8). In this case, the merged YFP and 

chlorophyll fluorescence signals did not show any marked areas of overlap 

(Figure 7.8). However, a similar situation was observed when the marker protein 

APP2-GFP which localises to the chloroplasts, was used as a control. In this 

case, the chlorophyll fluorescence signal in protoplasts expressing APP2-GFP 
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showed little overlap with the GFP signal (Figure 7.10). In contrast, however, the 

YFP signal generated by the expression of RH 22-YFPn and RH22-YFPc showed 

good overlap with the chlorophyll fluorescence signal (Figure 7.9), as would be 

predicted from the known chloroplast location of this protein. 

 

The split-YFP assay system was also used to study the interactions between 

proteins in situ because both interacting partners have to be localised in the same 

compartment in order for interactions to occur. In this way, the interaction 

between LEA5 and chloroplast RH22 was demonstrated (Figure 7.12) using YFP 

fluorescence emission. There was an overlap between the YFP and chlorophyll 

fluorescence signals, showing that this interaction occurred in the chloroplasts 

(Figure 7.13 and Figure 7.14). However, as discussed above neither the LEA5 

protein nor the chloroplast APP2-GFP protein was found to localise to the 

chloroplasts in comparable experiments (Figure 7.13, Figure 7.14) suggesting 

that self-assembly between two halves of YFP is unlikely. However, further 

controls should be performed to confirm this point. For example, additional 

negative controls might involve a mutated version (Miller et al., 2015) of either the 

LEA protein or the RH22 protein in which the amino acids involved in binding 

have been mutated. Using such controls, it will be possible to estimate the 

appropriate signal-to- noise ratio in these split-YFP experiments and quantify the 

signals. Taken together, the results presented here show for the first time, the 

interaction between LEA5 and RH22 in the plastids This binding may play a 

crucial role in post-transcriptional regulation and gene expression under stress 

conditions. 

 

The binding of LEA5 to RH22 is interesting and merits further exploration. For 

example, the presence of the LEA5 protein in chloroplasts might be a response 

to stress, the subsequent interaction between LEA5 with RH22 leading to altered 

stability of chloroplast mRNAs. It is therefore important to establish whether the 

activity of the helicase, which is involved in plastid ribosome assembly and other 

aspects of RNA metabolism, is altered by LEA5-binding. A key question concerns 

the role of this interaction in plant response to stress. An interaction between the 
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chloroplast RH22 and WHY1 was demonstrated using the same split-YFP 

transient expression system (Figure 7.15). This interaction occurred in the 

chloroplasts (Figure 7.15). In addition, young hs3-1 seedlings exhibited a pale 

greening phenotype but older seedlings (20-day old) had a comparable 

phenotype to the wild type (Chi et al., 2012). This phenotype was very similar to 

the phenotype of WHY1-deficient barley seedlings. The leaves of 7-day old 

WHY1-deficient barley seedlings (W1-1, W1-7) showed a “delayed greening” 

phenotype (Figure 4.1), but at 14 days the developing leaves are similar to the 

wild type. The delay in greening phenotype at a young age both in mutants 

lacking the RH22 and WHY1-deficient barley seedlings is caused by the aberrant 

splicing of rRNAs (23S rRNA + 4.5S rRNA) for the large subunit (50S) of the 

plastid ribosome (Chi et al., 2012). The RH22 is required for the accumulation of 

plastid mRNAs during seed development and seedling growth, as well as 

ensuring seed oil biosynthesis by maintaining plastid mRNA levels (Kanai et al., 

2013). WHY1 may interact with RH22 to regulate its functions in RNA processing. 
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Chapter 8 . General discussion 

 

Crop production worldwide is inherently dependent on photosynthesis and the 

acclimation of the photosynthetic processes to changing environmental 

conditions. In this thesis, the development of photosynthesis in barley leaves was 

explored by focussing on the roles of WHY1 and LEA5 in the chloroplast. Using 

RNA-seq and microarrays, these studies have characterised the transcript 

profiles of the embryos of dry seeds and young leaves in the WHY1-deficient 

barley lines in comparison to the wild type. Moreover, the changes in gene 

expression profiles observed in the developing leaves were related to changes in 

the metabolite profiles and the abundance of pigments and specific proteins to 

gain deeper insights into the role of WHY1 in chloroplast development and 

chloroplast to nucleus signalling. In addition, the role of WHY1 in seed production 

was characterised. The binding of WHY1 to the RH22 was also characterised as 

was the binding of RH22 to the LEA5 protein. These studies allow deeper insights 

into the functions of these two proteins in chloroplasts. Several conclusions can 

be drawn from these studies, as discussed in detail below: 

 

8.1 WHY1 plays a key role in chloroplast development in barley 

leaves 

 

Transcripts encoding photosynthetic proteins were highly expressed even in the 

embryos of the dry seeds of the W1-7 lines. While leaf growth was similar to the 

wild type in the WHY1-deficient lines, WHY1-deficient barley leaves show a 

“delayed greening” phenotype in a strictly developmental manner. The delay in 

the establishment of photosynthesis was characterised by the slow accumulation 

of photosynthetic pigments, as well as a delayed accumulation of transcripts 

encoding photosynthetic proteins and in the levels of specific photosynthetic 

proteins. The delay in the establishment of photosynthesis was marked in 7-day 
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old leaves but less pronounced in leaves at 14 days. Therefore, the processes 

that require WHY1 occur early in chloroplast biogenesis but are less important at 

the later stages. These observations allow an analysis of WHY1 functions in the 

chloroplast. It is well-known that this protein binds to single-stranded DNA 

(Desveaux et al., 2000) and that it is required for the production of functional 

chloroplast ribosomes in maize leaves (Prikryl et al., 2008). The data presented 

here show that WHY1 is also required for the accumulation of chloroplast 

ribosomal proteins in barley leaves at the early stages of development. Moreover, 

the data presented show that WHY1 is required for the splicing of 23S rRNA and 

4.5S rRNA, which is necessary for the formation of 50S large subunit of the 

plastid ribosomes in barley as it is in maize. However, in contrast to the situation 

in maize, where the leaves never accumulate chlorophyll or functional 

chloroplasts, barley leaves are merely delayed in greening. Furthermore, the 

maize phenotype could be due at least in part to the nature of the transposon 

insertion. In contrast, the WHY1-deficient lines produced by RNAi are relatively 

free from such complications. In conclusion, these data show that WHY1 is 

required for the translation of transcripts produced in the plastids.  

 

Moreover, WHY1 is required for the transcription of chloroplast-encoded genes. 

Specifically, transcripts encoding key photosynthetic proteins such as D1 and the 

large subunit of RuBiSCO were much lower in the WHY1–deficient lines than the 

wild type. A key question concerns how WHY1 is able to exert such a strong 

influence over plastid transcription and translation. One possible answer is the 

observed binding of WHY1 to the RH22 protein in the chloroplasts. The 

Arabidopsis rh22 mutants exhibit a pale-green phenotype similar to the 

developing leaves in the WHY1-deficient lines (Kanai et al., 2013). Moreover, like 

the WHY1-deficient lines, the mature leaves of the rh22 mutants Arabidopsis 

were similar to the WT plants. Knock-down of RH22 leads to a delayed-greening 

phenotype with defects in plastid development resulting in the slow growth in 

seed development (Kanai et al., 2013). The rh22 phenotype is caused by aberrant 

splicing of 23S rRNA and 4.5S (Chi et al., 2012). Crucially, the data identified that 

WHY1 is a new protein that influences leaf development and chloroplast 

biogenesis in barley leaves, thus, it may function to integrate gene expression in 
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the chloroplasts and nucleus. Besides that, it can be a great tool to increase crop 

productivity as WHY1-deficient lines produced more seed yields in the T4 

generation despite deficient in photosynthesis as well as in photosynthesis. 

However, further experiments will be required to understand why WHY1-deficient 

lines produce more seed. For accuracy, seed  yields should be measured through 

successive  generations to make sure that the traits are accurately related to the 

presence of transgene and not to other factors that are associated with the 

transformation procedures, tissue culture etc that will alter fertility. The 

metabolomics profiling analysis revealed that many metabolites associated with 

sugar and respiratory metabolism, and nitrogen assimilation were changed in the 

absence of WHY1, particularly in the basal regions of the leaves. WHY1 is, 

therefore, an important regulator of metabolism during chloroplast development. 

Moreover, many chloroplast-targeted proteins, such as ribosomal proteins were 

affected by the loss of WHY1. The chloroplast ribosomal proteins are essential in 

the production key proteins required for the photosynthetic apparatus during early 

chloroplast development. Hence, the increased abundance of transcripts 

encoding these proteins may be an attempt to compensate for the failure to 

establish the photosynthetic apparatus in the absence of WHY1.  

 

It can be concluded that WHY has multiple functions in the chloroplasts and plays 

diverse roles in chloroplast transcription, translation, the regulation of DNA copy 

number and post-translational mechanisms, as well as RNA processing. The 

findings also suggest that the chloroplast development in the WHY1-deficient 

barley seedlings is postponed/delayed rather than prevented because mature 

chloroplasts gradually form as the WHY1-deficient leaves undergo development. 

It has also been demonstrated in this thesis that WHY1 plays a role in the 

coordination of nuclear and plastome gene expression related to the production 

of photosynthetic proteins during chloroplast biogenesis.  

 

In the future, it would be interesting to characterise the structure of the young 

leaves of the WHY1-deficient lines in comparison to the wild type. For example, 

leaf ultrastructure may be studied using transmission electron micrographs. It is 
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also important to study the number of plastids/chloroplasts per cell and the 

plastid/chloroplast size in the young leaves of the WHY1-deficient lines in 

comparison to the wild type. Moreover, it is crucial to characterise the proteins 

that interact with WHY1. Knowledge of the WHY1 binding partners and the 

sequences involved will greatly help understanding the functions of WHY1 

bindings in the chloroplast. This will be particularly interesting to study in the 

future. It would be also interesting to study how WHY1 binding to RH22 alters its 

processing activity and whether WHY1 barley protein interacts with barley RH22 

in the same way as in Arabidopsis. In addition, it will be interesting to characterise 

the high light responses of WHY1-deficient seedlings. WHY1 has been shown 

here to have a role in chloroplast development. Thus, it would be interesting to 

study how the responses to other factors that play key roles in chloroplast 

biogenesis are changed in the WHY1-deficient seedlings. Lincomycin (LINC) and 

other inhibitors such as norflurazon (NF) can be used to study chloroplast-to-

nucleus signalling pathways in the different lines. These inhibitors induce strong 

oxidation of the cytosol and nuclei, then the repression of nuclear gene 

expression form the basis of a screen, which revealed the plastid-localised 

GENOMES UNCOUPLED (GUN) pathway (Karpinska et al., 2017). The gun 

mutants retain nuclear gene expression of chloroplast-associated genes after the 

treatment with NF (Susek et al., 1993). The expression of nuclear-encoded 

PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES (PhANGs) such as 

genes encoding components of the photosynthetic electron transfer chain 

(LIGHT-HARVESTING CHLOROPHYLL A/B BINDING COMPLEX (LHC) or  is 

down-regulated when chloroplast biogenesis is disturbed (Hess et al., 1994, 

Ruckle et al., 2007, Susek et al., 1993). The loss of GUN1 protein functions during 

protein import in chloroplast cause uncouple PhANG expression from the 

developmental state of the plastids (Wu et al., 2019).  

 

In summary, the findings presented in this thesis have characterised chloroplast 

development in barley leaves and how it is controlled by WHY1. These results 

have increased our understanding of chloroplast development and the role of 

WHY1 in the coordination of nuclear and plastid-encoded photosynthetic genes. 

The new knowledge on WHY1 functions in the establishment of photosynthesis 
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in barley hence lays the foundations for further experiments seeking to explore 

chloroplast to nucleus retrograde signalling mechanisms under optimal and 

stress conditions. These findings also have wider implications because they will 

ultimately be useful to researchers seeking to improve crop production and 

resilience, as well as food security worldwide.   
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Figure 8.1: Summary of key findings that were achieved in the role of WHY1 

in chloroplasts.  

The WHY family is single-stranded DNA binding proteins and dually localised both to 

nucleus and chloroplast (Desveaux et al., 2000, Grabowski et al., 2008). In this thesis, it 

has been shown that WHY1 is required for chloroplast development in barley leaves. 

Moreover, WHY1 is required only at the early stages of developing leaf. The findings 

also demonstrated that WHY1 is necessary for a transition from proplastids to mature 

chloroplasts regulating nuclear and plastid-encoded gene expression and protein 

synthesis, which the levels of plastid transcripts and proteins were lower in the WHY1-

deficient lines. In contrast, the levels of nuclear-encoded chloroplasts transcripts and 

proteins were significantly higher in the WHY1-deficient leaves. In addition to WHY 

binding to the DNA in chloroplast nucleoids (Krupinska et al., 2014), this finding 

demonstrates that WHY1 protein interacts with RH22 and may regulate its functions in 

RNA processing. RH22 is required for the splicing of chloroplast ribosomal proteins (Chi 

et al., 2012). The WHY1-deficient barley seedlings showed aberrant splicing of 23S 

rRNA and 4.5S rRNA, hence, impairs chloroplast ribosome functions as well as the 

transcription of plastome genes. It also can be concluded that the loss of WHY1 functions 

disrupts chloroplast to nucleus signalling during barley leaf development.   
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8.2 The role of LEA5 in chloroplast development 

 

The aim of the studies on LEA5 was to identify interacting proteins. LEA5 was 

first identified as a protein induced by and confer tolerance to oxidative stress 

(Mowla et al., 2006). AtLEA5 is constitutively expressed in roots but not in leaves 

and seeds (Mowla et al., 2006). Interestingly, AtLEA5 transcripts exhibit a diurnal 

pattern of regulation, where transcripts abundant in the dark are repressed in the 

light. Expression of AtLEA5 in leaves is induced in leaves in the light by exposure 

to abiotic and biotic stresses, as well as by oxidants and phytohormones (Mowla 

et al., 2006, Salleh et al., 2012). Constitutive overexpression of AtLEA5 increased 

root growth and shoot biomass, whereas both of these processes were impaired 

in antisense lines or atlea5 knockout mutants (Salleh et al., 2012). While LEA5-

YFP expression studies localised LEA5 only to mitochondria (Mohd Salleh et al., 

2012), the analysis of protein-protein interactions using tandem affinity 

purification (TAP) showed that LEA5 interacts with proteins that are 

predominantly localised in chloroplasts, particularly the RH22, which is essential 

for RNA processing in plastids. RH22 is localised to plastids and is required for 

chloroplast development (Chi et al., 2012, Kanai et al., 2013). Using a split YFP 

approach, LEA5 was shown to interact with RH22 in chloroplasts, suggesting this 

protein has functions in chloroplasts, particularly in plants exposed to stress. The 

binding of LEA5 with RH22 may result in alterations of RH22 functions. This 

would only occur in the light when exposed to stress. Thus, LEA binding to RH22 

may regulate translation in the chloroplasts resulting in the downregulation of 

photosynthesis. This hypothesis should be tested in future work, for example, in 

the Arabidopsis lines constitutively overexpressing LEA5. Hence, LEA5 may play 

a specific role in the downregulation of photosynthesis in response to oxidative 

stress or drought stress (Mowla et al., 2006). This concept is consistent with the 

finding that under stress conditions, decreases in photosynthesis are often 

observed. Further studies are required to answer this question and also whether 

LEA5 is imported into chloroplasts. Moreover, the binding of LEA5 to RH22 

requires further exploration and characterisation, particularly with regards to the 
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effects of LEA5 on RNA processing in the chloroplasts and on translation in 

mitochondria and chloroplasts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Summary of key findings that were achieved in the role of LEA5 

in chloroplasts.  

The WHY1 protein is a dual location protein targeted in the plastids and nucleus of the 

same cell (Grabowski et al., 2008) and the RH22 protein is located in plastids (Kanai et 

al., 2013). The LEA5 protein is located in the mitochondria (Mohd Salleh et al., 2012). 

The data presented here show that by using split-YFP approach, the LEA5 interacted 

with RH22 in chloroplasts. This binding influences translation in the chloroplasts resulting 

in the downregulation of photosynthesis during stress. In addition, the Arabidopsis WHY1 

protein was also shown to interact with RH22 using split-YFP transient expression 

system thus may regulates its functions in RNA processing.  

 

RH22; LEA5; WHY1; PRG : photosynthetic related genes 
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Appendix A  

 

A.1 Transcripts that were involved RNA and DNA binding activities in the 

WHIRLY deficient embryos (W1-7) relative to the wild type.  

 

  

Description  Accession  Relative 
expression 
(log2FC) 

bHLH transcription factor AK368273 4.4 

Aquaporin 7 MLOC_13871.1 4.3 

Gnk2-homologous domain AK376143 4.5 

Leucine-rich repeat MLOC_71648.1 4.5 

DNA-binding WRKY AK367216 1.6 

WRKY transcription factor 32 MLOC_66134.2 3.1 

WRKY transcription factor 40  MLOC_10687.2 -1.7 

Myb transcription factor AK367954 4.8 

Myb domain protein MLOC_7426.1 4.0 

Myb domain protein MLOC_52439.6 2.3 

MYB-related transcription factor MLOC_7981.1 2.1 

Myb family transcription factor MLOC_8187.2 1.7 

Myb family transcription factor AK356219 6.6 

Myb transcription factor MLOC_9835.2 -1.9 

Single myb histone 6 MLOC_34636.1 -1.9 

Myb family transcription factor MLOC_53628.1 -2.5 
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Description  Accession  Relative 
expression 
(log2FC) 

Zinc finger protein MLOC_78744.1 6.2 

Zinc finger protein AK370626 6.5 

Zinc finger protein AK366628 5.5 

Zinc finger protein AK358990 4.6 

Zinc finger protein AK376150 2.2 

Zinc finger protein AK355626 2.1 

Zinc finger MLOC_2875.1 2.1 

Zinc finger MLOC_53961.1 2 

Zinc finger  MLOC_57429.1 2 

Zinc finger  AK369046 1.9 

Zinc finger MLOC_19593.3 1.8 

Zinc finger MLOC_55252.1 1.8 

Zinc finger protein  MLOC_50966.5 1.7 

Zinc finger AK362870 1.7 

Zinc finger MLOC_9929.1 1.7 

Zinc finger MLOC_74185.1 1.7 

Zinc finger AK355820 1.7 

Zinc finger AK362022 1.6 

Zinc finger  AK365791 1.6 

Ring finger family protein  AK366156 1.6 

Zinc finger protein  AK372198 1.6 

Zinc finger  MLOC_11609.3 1.6 

Zinc finger  AK359310 1.5 

Zinc finger  MLOC_61611.1 -1.7 

Zinc finger  MLOC_57307.2 -1.7 

FAR1-related sequence  MLOC_33258.3 -2.8 

FAR1-related sequence  MLOC_30557.1 -4.9 

Zinc finger  AK367522 5 

Zinc finger protein AK250895.1 4.7 
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Zinc finger protein AK376680 4.7 

Zinc finger protein AK358990 4.7 

Ring finger family protein  MLOC_6942.1 4.3 

Zinc finger  MLOC_61836.6 4 

Zinc finger  MLOC_65371.1 3.7 

Zinc finger  AK363655 3.7 

Zinc finger  AK370596 3.5 

Zinc finger  MLOC_75538.2 3.2 

Zinc finger  MLOC_40031.2 3.1 

GATA transcription factor 29  MLOC_15510.1 3 

Zinc finger  MLOC_58410.4 3 

Zinc finger  AK364624 3 

Ring finger family protein  MLOC_7401.1 3 

Zinc finger  MLOC_55203.2 2.9 

Ring finger family protein  MLOC_34316.2 2.9 

Zinc finger  MLOC_2619.1 2.8 

Zinc finger  AK375119 2.8 

Ring finger family protein  MLOC_54705.1 2.7 

Zinc finger  AK375174 2.7 

Zinc finger  MLOC_63032.1 2.5 

Zinc finger  MLOC_66027.1 2.4 

Zinc finger  MLOC_65351.2 2.4 

Zinc finger  MLOC_17636.1 2.4 

Zinc finger MLOC_54674.1 2.4 

Zinc finger MLOC_75092.2 2.4 

Ring finger family protein  MLOC_10290.2 2.3 

Ring finger family protein MLOC_2019.1 2.3 

Ring finger family protein  MLOC_32712.1 2.1 

BZIP transcription factor family protein MLOC_70302.1 5.1 

BZIP transcription factor family protein MLOC_72368.4 2.8 

BZIP transcription factor family protein AK370288 2.3 

BZIP transcription factor family protein AK373425 2 

Basic-leucine zipper (bZIP)  MLOC_51930.1 1.7 

Basic-leucine zipper (bZIP)  MLOC_71642.4 1.7 
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Basic-leucine zipper (bZIP)  MLOC_10399.1 1.6 

Basic-leucine zipper (bZIP)  MLOC_63436.1 2 

RNA splicing & processing 
  

Pre-mRNA-splicing factor 38 AK356654 1.8 

Pre-mRNA splicing factor ATP-dependent RNA 
helicase-like protein 

MLOC_16173.1 4 

Telemore binding, DNA repair, chromatin 
organisation  

  

Telomere-binding protein MLOC_57410.3 2.1 

Transcription factor BIM1 MLOC_62335.1 2.2 

Telomere-binding protein 1 AK376011 2 

base-excision DNA repair AK356205 1.5 

Replication protein A 32 kDa subunit  MLOC_81884.2 1.8 

DNA replication MLOC_10314.1 1.6 

DNA replication MLOC_67256.3 1.5 

DNA mismatch repair protein MLOC_50820.2 -2.5 
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Appendix B  

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of shoot phenotypes of the wild type Arabidopsis and rh22 at 

7 and 14-day old.    

Seeds were kept at 4ºC for 3 days before the seedlings were sown in pots in soil in 

controlled environment chambers with a 16h light/ 8h dark photoperiod, irradiance of 200 

μmol m-2s-1, 20ºC/16ºC day/night temperature regime and 60% relative humidity. (Scale 

bar =1 cm).  
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B.1 Plastid-encoded  

 

 

 

 

 

 

 

 

 

 

 

 

 

Levels of transcripts encoded by plastid genes; PETD and MLOC_76327 in 

the base, middle (Mid) and tip sections of the first leaves of wild type (WT), 

W1-1 and W1-7 seedlings 7 days after germination. Data was normalised to the 

16S. Data was set to 1 and W1-1 and W1-7 were compared to the wild type. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1- deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001). 
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B.2 Nuclear-encoded transcripts  

 

 

 

 

 

 

 

 

 

Levels of chloroplast-targeted transcripts encoded by nuclear genes; 

MLOC_58312 and MLOC_64606 in the base, middle (Mid) and tip sections 

of the first leaves of wild type (WT), W1-1 and W1-7 seedlings 7 days after 

germination. Data was set to 1, and W1-1 and W1-7 were compared to the wild type. 

Values are represented as mean ± SE (n=6). Asterisks indicate significant differences 

between WHY1-deficient and wild type plants as estimated by the Student’s t-test 

(*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001). 
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B.2 Nuclear- encoded transcripts  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Levels of chloroplast-targeted transcripts encoded by nuclear genes; 

MLOC_33258 and MLOC_59016 in the base, middle (Mid) and tip sections 

of the first leaves of wild type (WT), W1-1 and W1-7 seedlings 7 days after 

germination. Data was set to 1, and W1-1 and W1-7 were compared to the wild type. 

Values are represented as mean ± SE (n=6). Asterisks indicate significant differences 

between WHY1-deficient and wild type plants as estimated by the Student’s t-test 

(*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001). 
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B.2 Nuclear- encoded transcripts  

 

     

 

 

 

 

 

 

 

 

 

 

Levels of chloroplast-targeted transcripts encoded by nuclear genes; 

AK362199 in the base, middle (Mid) and tip sections of the first leaves of 

wild type (WT), W1-1 and W1-7 seedlings 7 days after germination. Data was 

set to 1, and W1-1 and W1-7 were compared to the wild type. Values are represented 

as mean ± SE (n=6). Asterisks indicate significant differences between WHY1-deficient 

and wild type plants as estimated by the Student’s t-test (*p<0.05; **p<0.01; ***p<0.001 

and ****p<0.0001). 
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B.2 Nuclear- encoded transcripts  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Levels of chloroplast-targeted transcripts encoded by nuclear genes; 

MLOC_58312 and LHCB1 in the base, middle (Mid) and tip sections of the 

first leaves of wild type (WT), W1-1 and W1-7 seedlings 14 days after 

germination. Data was set to 1, and W1-1 and W1-7 were compared to the wild type. 

Values are represented as mean ± SE (n=6). Asterisks indicate significant differences 

between WHY1-deficient and wild type plants as estimated by the Student’s t-test 

(*p<0.05; **p<0.01; ***p<0.001 and ****p<0.0001). 
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B.3 Plastid DNA content in mature leaves 

 

 

 

 

 

 

 

 

 

 

 

The ratios of plastid (pt) DNA levels to nuclear (n) levels (ptDNA/nDNA 

ratios) in the mature leaves of wild type, W1-1 and W1-7 seedlings at 21 

days after germination. Ratios were measured using specific primers to the plastome 

targets petD and psbA, with rbcS as a reference for the nuclear genome. Data was 

normalised to the 18S rDNA gene and values for the WT were set to 1. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1-deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001). 
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B.3.1 Plastid DNA content in root 

 

 

 

 

 

 

 

 

 

 

 

The ratios of plastid (pt) DNA levels to nuclear (n) levels (ptDNA/nDNA 

ratios) in the root of wild type, W1-1 and W1-7 seedlings at 7days after 

germination. Ratios were measured using specific primers to the plastome 

targets petD and psbA, with rbcS as a reference for the nuclear genome. Data was 

normalised to the 18S rDNA gene and values for the WT were set to 1. Values are 

represented as mean ± SE (n=6). Asterisks indicate significant differences between 

WHY1-deficient and wild type plants as estimated by the Student’s t-test (*p<0.05; 

**p<0.01; ***p<0.001 and ****p<0.0001). 
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Appendix C  

C.1 Transcripts associated with hormones according to genotype-

dependent transcripts  

 

Heat map of transcript abundance of key transcripts associated with 

hormones at 7 days old according to genotype-dependent transcripts. The 

differentially expressed transcripts were analysed using two-way ANOVA, with the leaf 

sections (base, middle and tip) as factors, and a Bonferroni multiple-testing correction at 

a p-value of ≤0.05, FC>2 (Genespring12, Aligent Technologies). 

 

 

 

Heat map of transcript abundance of key transcripts associated with 

hormones at 14 days old according to genotype-dependent transcripts. The 

differentially expressed transcripts were analysed using two-way ANOVA, with the leaf 

sections (base, middle and tip) as factors, and a Bonferroni multiple-testing correction at 

a p-value of ≤0.05, FC>2 (Genespring12, Aligent Technologies). 

 

 

 

 

 

 



 
 

254 

 

C.2 Transcripts associated with hormones dependent on leaf regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat map of transcript abundance of key transcripts associated with 

hormones at 7 days old dependent on leaf region. The differentially expressed 

transcripts were analysed using two-way ANOVA, with the leaf sections (base, middle 

and tip) as factors, and a Bonferroni multiple-testing correction at a p-value of ≤0.05, 

FC>2 (Genespring12, Aligent Technologies). 
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C.2.1 Transcripts associated with hormones dependent on leaf regions 

 

 

 

 

 

 

 

 

 

Heat map of transcript abundance of key transcripts associated with 

hormones at 14 days old dependent on leaf region. The differentially expressed 

transcripts were analysed using two-way ANOVA, with the leaf sections (base, middle 

and tip) as factors, and a Bonferroni multiple-testing correction at a p-value of ≤0.05, 

FC>2 (Genespring12, Aligent Technologies). 
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Appendix D  

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the wild type on 

MapMan according to ORA analysis.  

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the wild type at 7 

day old analysis on MapMan according to Wilcoxon analysis.  
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Appendix E  

 

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the W1-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the W1-1 at 7 day 

old analysis on MapMan according to ORA analysis.  
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Appendix F  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the W1-1 at 7 day 

old analysis on MapMan according to Wilcoxon analysis.  
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Appendix G  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the W1-7 at 7 day 

old analysis on MapMan according to ORA analysis.  
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Appendix H  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcript changes in the base, middle and tip leaves of the W1-7 at 7 day 

old analysis on MapMan according to Wilcoxon analysis. 
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Appendix I  

 

 

 

Number of differentially expressed transcripts in W1-1 relative to the wild 

type at 7 day old analysis was analysed using volcano plot.  
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Appendix J  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The levels of amino acids (A) glutamate, (B) lysine and (C) phenylalanine in 

the base, middle (Mid) and tip sections of the first leaves of wild type (WT) 

and W1-1 and W1-7 seedlings, 7 days after germination.  Relative concentration 

was the mean compound (n=4) and normalised to the internal standard (n=4). Significant 

differences (letters) were analysed using Tukey’s HSD test 1-way ANOVA (p<0.05).  
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The levels of amino acids (A) threonic acid, (B) proline and (C) tyrosine in 

the base, middle (Mid) and tip sections of the first leaves of wild type (WT) 

and W1-1 and W1-7 seedlings, 7 days after germination.  Relative concentration 

was the mean compound (n=4) and normalised to the internal standard (n=4). Significant 

differences (letters) were analysed using Tukey’s HSD test 1-way ANOVA (p<0.05). 
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The levels of amino acids (A) threonine, (B) b-alanine and (C) methionine in 

the base, middle (Mid) and tip sections of the first leaves of wild type (WT) 

and W1-1 and W1-7 seedlings, 7 days after germination.  Relative concentration 

was the mean compound (n=4) and normalised to the internal standard (n=4). Significant 

differences (letters) were analysed using Tukey’s HSD test 1-way ANOVA (p<0.05).  
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The levels of amino acids (A)galactose, (B) inositol and (C) citrate in the 

base, middle (Mid) and tip sections of the first leaves of wild type (WT) and 

W1-1 and W1-7 seedlings, 7 days after germination.  Relative concentration was 

the mean compound (n=4) and normalised to the internal standard (n=4). Significant 

differences (letters) were analysed using Tukey’s HSD test 1-way ANOVA (p<0.05
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