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Abstract 

 

Functional losses associated with hand impairments have led to the growing development of hand 

exoskeletons. The main challenges are to develop the exoskeletons that work according to the 

user’s motion intention, which can be done by utilizing the electromyogram signals generated by 

forearm muscles contributed from the movement and/or grasping abilities of the hand. In this 

research, modelling and EMG based control of hand exoskeletons with the aim to assist stroke 

survivors in regaining their hand strength and functionality, and improve their quality of life is 

presented.  

The exoskeleton model was developed within the virtual environment; a software platform 

where design and control performances can be evaluated prior to expensive experimental trials 

that can save the resources and cost-effective. Besides, it can also simplify the modelling process 

for the exoskeleton hand that is complex and highly articulated.  Its inverse kinematic task is 

complex to solve analytically, and its numerical calculation often entails difficulties. The 

conceptual design was done in Solidworks tool and was imported to the SimMechanics program 

scheme that enables interconnection between physical components with geometric and kinematic 

relationships of the robot in the form of interconnected blocks. This integration allows verification 

of the model and facilitates the design process of the controller that was executed in MATLAB 

environment. 

A hierarchical controller was employed to control the exoskeleton hand which comprises of 

three-level controllers; the perception layer (high-level control), the transition layer (mid-level 

control), and the execution layer (low-level control). In the highest level, the kinematic estimation 

of the hand was computed based on the established relationship between forearm electromyogram 

signals with various finger pinches, handgrip forces, and wrist positions. A feed-forward artificial 

neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) with subtractive 

clustering were used to establish the relationship and compute the hand kinematics estimations.  

All methods were trained and tested using EMG data collected non-invasively using multi-channel 
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EMG sensors from eight healthy subjects. The contractions of the muscles were detected from 

several forearm (flexion and extensor) muscles, and the data were processed through several 

pattern recognition steps, before being mapped to various pinching forces and angular joints. Time-

domain features; root mean square (RMS), integrated EMG (IEMG), mean absolute value (MAV), 

and waveform length (WL) was chosen to extract useful information hidden in the EMG signals 

collected.  

The experimental results show separable classes of features with WL features produced a more 

significant result. Additionally, the feed-forward ANN provides better joint angles estimation with 

a correlation coefficient of 0.95±0.04 and root mean square error lesser than 3%, when compared 

to the ANFIS model. This result suggests that ANN with WL features provides a viable and 

effective myoelectric control and demonstrates a potential control input, which was then applied 

to the finite state controller in the mid-level control and the PID controller in the low-level control 

for continuous control of the hand exoskeleton. 
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INTRODUCTION 

‘Stroke can be a hopeless experience for a while.’ 

Mark Flood, a 14-years old stroke survivor 

1.1 Background and Motivation 

Hand plays a vital role in a human’s life by offering physical interaction and grasping capabilities. 

The design of a human hand is indeed a miraculous creation. It comprises a palm with five fingers 

and is connected to the forearm by a wrist joint. Its movement and sleight are unique and cannot 

be found in any other creature on the planet making the hand a valuable body part for the human.  

A deficit in hand function due to hand impairment will significantly affect and degrade one’s life, 

not only financially but also in living a quality life. Hand impairment is referred to any loss or 

deviation in hand function, which includes amputation, sensory and motion impairment (Swanson 

et al., 1987) that can occur due to several factors such as birth defect, ageing factors, disease (Poole 

et al., 2013), injury (Barr et al., 2004; Farzad et al., 2015; Trybus et al., 2006), and stroke (Armagan 

et al., 2003; Pretti Raghavan, 2007; Xu et al., 2015). Stroke is a sudden illness that happens when 

there is a disruption to the flow of blood to the brain. There are two types of stroke; Ischaemic 

stroke occurs when a blockage cuts the blood supply to the brain, and Haemorrhagic stroke that is 

caused when a blood vessel is set off within or on the surface of the brain (NHS Healthcare Trust, 

2014).  

Worldwide, stroke is the third leading cause of disability with 15 million people experiencing 

stroke every year (Johnson et al., 2016)  and it is the most common neurological disease in Western 

countries (Carolei et al., 2002). According to the UK Stroke Association released statistics in 
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February 2018, there are more than 100, 000 strokes happen every year (approximately one stroke 

every 5 minutes) with over 1.2 million stroke survivors living in the UK. In the next 20 years 

(between 2015 to 2035), the rate of people aged 45 years old and over experiencing first-time 

stroke are expected to increase by 59% causing a rise in the estimation on the number of stroke 

survivors to increase by 123% (The Stroke Association, 2018b). The commonly effects of stroke 

are physical; the survivors of stroke can experience muscle weakness, muscle tightness, or difficult 

movement coordination, usually on one side of their body (hemiparesis). These effects may be 

incorporated with memory problems making it difficult to move some parts of the body and 

causing the survivors to struggle in performing Activities of Daily Living (ADL). In most stroke 

cases, the hand is one of the vulnerable members of the body that has a high chance of suffering; 

over 75% of stroke survivors experience upper limb weakness that includes limited hand and wrist 

movement (The Stroke Association, 2018a). 

The hand impairment following stroke can be cured through treatment and rehabilitation, but 

the amount of recovery varies among individuals, depending on many factors; the type of 

impairment, the amount of damage to the brain cells, etc (Franck et al., 2017). Most survivors 

make a significant improvement in the first few months, but the recovery usually slows down and 

can continue for a long time. The treatment and rehabilitation can be challenging especially in 

determining which impairment needs to be treated and how it can be treated. According to  

Raghavan (2015), the impairment is commonly not static causing the nature of the impairment to 

change as the motor recovery proceeds. Moreover, the impairment can multiply by time, i.e., hand 

weakness may occur immediately after the stroke, and remain unresolved when spasticity sets in 

a few weeks or months later. In some cases, the hand function is not fully restored even after an 

intensive rehabilitation. According to Heo et al., (2012) only 5% to 20% of hemiplegic stroke 

survivors complete functional recovery after the intensive rehabilitation, meanwhile 66% have not 

regained the hand functions when measured 6 months after stroke. The prolonged recovery process 

restricts survivors’ daily activities, affects social integration, decreases productivity, and leads to 

economic burdens (Bertani et al., 2017). This has led to the emergence of technology-assisted 

devices such as exoskeletons as a solution to assist the survivors to regain the functionality of their 

hands and to restore their quality of life.  
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1.2 A Solution for Hand Impairment: Exoskeletons 

The innovative advances in the field of robotic technologies alongside the challenging hand 

impairment recovery process and its enormous impact on the survivors have steered to a rapid 

increase in the interest for development of assistive robotics: the exoskeletons. An exoskeleton is 

a novel man-machine intelligent system that is wearable and powered by a system of motors with 

corresponding joints and links that allow limb movement, increase in strength and endurance. It 

can be classified into three groups; empowering exoskeleton which extends the strength of human 

beyond its natural ability while maintaining human control of the robot, orthotic exoskeleton 

whose mechanical structure maps onto the anatomy of the human limb with a purpose to restore 

lost or weak functions, and prosthetic exoskeleton which substitutes the lost limb after amputation 

(Pons et al., 2008).  

Depending on its purpose, the orthotic exoskeleton can be further divided into three subclasses: 

augmentative, rehabilitative or assistive systems that can be mapped into human limb functionality 

such as upper-limb, lower-limb, and full body exoskeleton. The augmentative exoskeletons are 

explicitly designed to enhance the ability of the human hand for professional use and work as 

muscle strengthening systems that can help to reduce fatigue and injury due to repetitive tasks. On 

the other hand, the rehabilitation exoskeletons are proposed to provide guided movement, 

repetitive training and support to the wearer in restoring the lost function of limbs while assistive 

exoskeletons are intended to provide physical support to activities of daily living for the physically 

weak wearer (Viteckova et al., 2018). In the context of this research, an upper-limb orthotic 

exoskeleton is designed and developed as an assistive device that can provide practical assistance 

to the hand that is not fully paralyzed (weak).  

Exoskeletons have been studied since the 1960s for industrial and medical applications. The 

first whole-body exoskeleton robot; Hardiman, was built during 1965 and 1971 by General Electric 

in conjunction with the United State military, actuated and supposed to be driven by a human 

operator from the inside of the robot. The Hardiman I arm system consists of eight powered joints, 

where six joints are bilateral servo-controlled while two joints are rate controlled using velocity 

valve. The operator makes contact with the system at three points; the hand, the wrist, and the 

upper forearm. The system, however, is not overall successful due to several limitations and 
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stability issues (General Electric Company, 1969; Gopura et al., 2011). Since then, research on 

upper-limb exoskeletons for restoring and improving deficit in hand functions have continued. 

Recently, several commercially available hand exoskeletons have been designed, such as, the 

MyoPro, Power Assist Glove, Carbonhand, AMADEO, Hand of Hope, InMotion HAND, 

InMotion WRIST, Exohand, Ironhand and RoboGlove (Exoskeleton Report, 2018). Amongst 

these, the MyoPro, the Power Assist Glove and the Carbonhand (Figure 1.1) work as assistive 

devices, while the others are designed to work as rehabilitative and augmentative devices. 

Appendix A presents a comparison table between devices; their functions, basic features, 

supported movement and cost. 

 

(a)  

 

           (b) 

 

             (c) 

Figure 1.1: Commercially available assistive exoskeleton hands; (a) MyoPro, (b) Power Assist 

Glove, (c) Carbonhand from Exoskeleton Report (2018)  

MyoPro is a powered orthosis originally designed by MIT with Harvard Medical School to 

restore arms and hand functions for upper-limb impairment survivors (Myomo Inc, 2015). It is a 

portable and lightweight arm brace that enables elbow flexion/extension with grasping function 

and works based on user motion intention.  The user initiates the movement through their muscles 

that generate myoelectric signals, which are amplified by the brace and converted into desired 

motion. It is currently the only marketed device that can restore the individual’s ability to perform 

activities of daily living. The MyoPro is available in three models using the same brace design 

with different functionality; Motion E for the powered elbow with static wrist support, Motion W 

for the powered elbow with multi-articulating wrist and Motion G for powered elbow with multi-

articulating wrist and a powered 3-jaw-chuck grasp (MyoMo Inc and Compliance Solutions Ltd, 

2017). The only drawback of the device is on its brace structure that provides significant support 
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only for the arm and elbow movements with limited wrist and hand function. Even though there 

are three models offered to match patient-specific needs, none of the models offers the full range 

of motion and degrees of freedom for the fingers that are crucial to fully regain the hand function 

and mobility. 

The other assistive orthosis devices are the Power Assist Glove and Carbonhand that are 

designed to compensate for weak grasping by employing the soft exoskeletons technology; made 

from soft materials, light in weight, inflatable membrane, etc. The Power Assist Glove is 

developed by Daiya Industry to facilitate people who experience reduced hand functionality. It 

consists of a glove with three fingers compartment (with the middle, ring and pinky fingers merged 

together), sensors, pneumatic artificial muscles and a controller that is linked to the compressed 

gas canister. The glove is inflated to provide gasping assistant to the user (Kadowaki et al., 2011; 

Marinov, 2015; Noritsugu et al., 2008).  

Similarly, the carbonhand is designed to work as an assistive device to counteract weak 

grasping. It was developed and launched in 2017 by Bioservo Technologies using soft extra muscle 

(SEM) technology; comprises of soft extra muscle glove and a control unit with touch sensors 

mounted at the fingertip of the gloves. Artificial tendons are sewed into the glove alongside the 

length of the fingers (for the thumb, middle and ring fingers). The glove mimics human hand 

anatomy and strengthens the handgrip by adding extra force and endurance through the application 

of artificial tendons. When the weak hand grasps the object, the touch sensor will signal the control 

unit to pull the tendon and increase the gripping force in proportion to the strength supplied by the 

user making it easy for the user to control it.  

Both devices have been clinically tested and proved useful in providing assistant for the 

physically weak users. The main limitation of inflatable technology, however, is lacking of 

structural support as the components that are used to provide movement forces are also responsible 

for supporting the weakened body parts. Despite its advantages in providing comfort, and 

customizable to wear longer, the inflatable membrane has no external rigid frame causing the 

excessive force to be absorbed by the user and adds more strain to the weak muscles. 
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1.3 Main Challenges 

The significance of this research lies in the assistive hand exoskeletons over the past decade. 

Despite many types of research that have been carried out on exoskeletons, both in academic and 

industrial settings with various levels of success, there are still issues that prevent them from being 

widely commercialized. The existing hand exoskeletons face numerous challenges concerning 

both hardware and software, which include but are not limited to safety and efficacy, mechanical 

system, human-machine interface/control, device performance evaluation, and cost-effectiveness. 

Ideally, the exoskeleton hand should be designed to provide safe and seamless integration with 

the user without restricting motion. It is crucial to consider the user's motion capabilities as a range 

of motion of their hand might reduce with stiffening joints depending on their type of impairments. 

Over-restricting movement provides limited hand functions while under-restricting movement can 

cause hyperextension joints with potential injuries. Moreover, the biomechanics and anatomy of 

human hand should be carefully studied and followed in designing the exoskeleton frame as 

misalignment between human and exoskeleton joints can generate motions that may be harmful to 

the user, especially for the joints. There are several techniques used to minimize the effect of joint 

misalignment; hyperstaticity was formulated to prevent undesired forces (Jarrasse and Morel, 

2012), self-adjusted joints (Cempini et al., 2013), optimal joint offset (Esmaeili et al., 2011), 

minimal attachment points (Lambercy et al., 2013), and complex mechanisms (Li et al., 2017). 

The exoskeleton hand should also be designed to be portable, light in weight and power 

independent. The recent technological advances in robotic hardware have enabled and offered 

much smaller and more powerful mechanical components; the sensors, actuators, power 

transmission, and power supply, etc. According to Gopura et al.  (2016), analysis of mechanical 

design is essential in developing an exoskeleton and it plays a significant role to achieve the 

efficacy function of the robot and provides comfort to the user. To make the portable design 

feasible, small actuators with efficient power transmission and lighter materials for the frame 

should be considered as it can reduce the power consumption to overcome the power supply 

limitation.  
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Aside from the safety, efficacy, and hardware development issues, human-machine 

interface/control that considers intelligence in controlling the exoskeleton appears to be the 

additional challenge. Comparing the control design of an exoskeleton with traditional robot shows 

a whole diversity as the human operator is not only the commander of the system but also as part 

of the control loop itself. This is known as ‘human-in-the-loop.’ The human operator mainly makes 

the decisions, and the exoskeleton implements the tasks. In controlling the exoskeleton robot, the 

principal criterion is to work according to the user’s motion intention. The robot should be able to 

adequately recognize the wearer actions and intentions to assist them properly. Novak and Riener 

(2015), have surveyed sensor fusion methods in wearable robots and have reported a drawback in 

exoskeletons in obtaining the information related to the wearer’s intentions. Numerous sensors and 

inference methods have been used with more advanced sensor fusion algorithms to provide optimal 

assistance and robust reaction to the changes in the user’s motion intention such as sensor fusion 

based on EMG signals or electrical brain activity, mechanical sensor fusion and EMG-mechanical 

sensor fusion.     

Another major challenge is device performance evaluation, due to limited accessibility to 

exoskeletons in clinical settings, partly because of the cost and high level of training that is required 

to supervise the users. Alternatively, the device performance is evaluated either in physical labs 

using prototype with able-bodied users or using software simulation that is cost effective as it can 

provide effective integration between the exoskeleton and human and eliminates the design flaws 

without actual prototypes.  

Finally, the elevated cost in developing exoskeletons cause a significant challenge to 

commercialize the robots. Technically, advanced technology is always associated with high price 

as it involves specialized hardware and materials, complex testing and performance validation. 

This process would increase the efficacy of the function making the device more reliable but often 

sacrifice the target market for the exoskeletons.  
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1.4 Aim and Objectives 

This research embarks on the modelling and control of upper limb exoskeletons for hand 

impairments based on forearm EMG signals. Hierarchical control with user motion intention is 

proposed to help individuals with hand impairments to perform finger pinching and hand grasping 

at various wrist positions. It involves experimental work (for EMG data collection) and simulations 

(for the theoretical works, control design, and performance validation). The objectives of the 

research are as follows: 

i. To design and model an exoskeleton hand that includes fingers and wrist movements in 

simulated environment. 

ii. To establish the relationships between forearm EMG signals, finger pinches and handgrip 

forces and various wrist positions and use these relationships to predict handgrip forces 

exerted and joint angles computed when forearm EMG signals are used as input. 

iii. To design a hierarchical controller for the exoskeleton hand based on the established 

relationships. 

iv. To evaluate and validate overall system performance. 

 1.5 Research Contributions and Publications 

The research contributions can be highlighted as follows: 

Fully actuated fingers and wrist design of the exoskeleton hand. The physical design of the 

exoskeleton hand is done in Simulink environment before conversion to SimMechanics. The hand 

comprises of five fully actuated fingers following the bony segment of human fingers and a one-

degree of freedom wrist. Often, the exoskeleton hand is designed as underactuated system, which 

makes it difficult to resemble the actual human movement in terms of system mechanics and 

controllability. Moreover, the virtual hand design simplifies the modelling and mathematical 

representation of the real system and facilitates the verification of a controller designed for the 

exoskeleton hand. Furthermore, it is more accessible as it integrates all components; the 

hierarchical controller and the testbed/plant, in the same simulation environment.  
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Design of experimental set-up for EMG data collection. A new experimental set-up is designed 

for EMG data collection to study inter-relation between EMG signals, various finger pinch/hand 

grasps, and different wrist movements. The experimental procedure considers a broad data 

collection process; skin preparation, muscle selection, and extraction of EMG signals on forearm 

muscles contributing to the finger pinching and hand grasping forces at various wrist movements. 

To the author’s knowledge, there is no experimental procedure found in the literature that studies 

such inter-relation and used establish the relationship as a control input to control the exoskeleton 

hand.    

Myoelectric control of the exoskeleton hand. The myoelectric control approach is introduced to 

establish the inter-relation between EMG signals, various finger pinches/handgrip forces, and wrist 

movements. It involves several sensor fusion stages to extract useful information from forearm 

EMG signals; data segmentation, filtration, normalization, and feature extraction process. This 

approach plays a vital role in decision making pertaining to the interpretation of the user’s 

intentions that are useful for effective human-machine interaction. 

Finger and wrist joints position estimation based on forearm EMG signals and finger 

pinches/grasping forces. The proposed myoelectric control approaches have successfully 

established the inter-relation between EMG signals at various finger pinches/handgrip forces and 

wrist movements. Over the years, many have successfully studied and performed a pattern 

recognition scheme for the classification of hand gestures with decoding accuracies of above 95%. 

However, the applicability of this scheme is limited to be used in controlled laboratory condition 

only. Moreover, the human hand is highly articulated with a wide range of degree of freedom. 

Therefore, its movements are not limited only to discrete gestures but more to continuous and 

coordinated gestures allowing various and complex movements. Artificial neural network (ANN) 

and adaptive neural fuzzy inference system (ANFIS) are employed to map the EMG signals and 

finger pinch/grasping forces with various finger and wrist joints positions. It is crucial in providing 

accurate control input to the controller so that when muscles are flexed/extended, the hand moves 

predictably and resembles movement and/or grasping abilities of the real human hand. 
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Novel control design for finger pinching, hand grasping and wrist motion of the exoskeleton 

hand. Hierarchical control framework that incorporates the environment in which the human and 

exoskeleton move as part of its control design considerations is proposed. It comprises a three-

level control scheme with specific control functions; high-level, mid-level and low-level control. 

The high-level recognises the user’s intention based on the established inter-relation while the mid-

level is the transition layer that interprets the directions from user defined the input to the specific 

actuation/movement that activates low-level control, which contains the feedback loop that 

computes the error for each particular control action. The transitions layer utilises a finite state 

controller to switch between finger pinching and hand grasping controller with specific wrist 

motions depending on the user-defined input send from the high-level controller. To the author’s 

knowledge, there is no control design found in the literature to accomplish the control tasks of 

exoskeleton hand using the same methods. 

The research publications are:   

i. Assessment strategy of human upper forearm inter-relation and muscle fatigue. 

Proceedings of CLAWAR 2017: 20th International Conference on Climbing and Walking 

Robots and the Support Technologies for Mobile Machines, Porto, Portugal, 11-13 

September 2017. 

ii. Electromyography assessment of forearm muscles: towards the control of exoskeleton 

hand. Proceedings of 5th International Conference on Control, Decision, and Information 

Technologies, Thessaloniki, Greece, April 2018. 

iii. Study on effect of two adjacent muscles of flexor & extensor of finger pinch & 

handgrip force. Proceedings of 5th International Conference on Control, Decision, and 

Information Technologies, Thessaloniki, Greece, April 2018. 
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1.6 Thesis Outline  

The thesis is arranged and structured as follows: 

Chapter 1: This chapter presents an overview of the research focus on the myoelectric modelling 

and control of an exoskeleton hand as an assistive device for individuals that suffered from hand 

impairment; specifically, stroke survivors. An exoskeleton is expected to assist survivors to regain 

their abilities in performing necessary daily activities and indirectly restore their quality of life. It 

started with a brief discussion about research background and motivation, followed by the solution 

to hand impairments and its design challenges. Based on the challenges, aim and objectives of the 

research are formulated. The chapter also highlights the research contributions together with the 

list of research publications.  

Chapter 2: This chapter presents literature review conducted covering the broad aspects of design 

considerations for the exoskeleton hand; design of exoskeleton hand, issues related to myoelectric 

control, myoelectric modelling, control design and performance evaluation for the exoskeleton 

hand. It also summarizes the key research questions and the approaches adopted in this research. 

Chapter 3: In this chapter, the design of the exoskeleton hand is presented in two design 

environments, namely Solidworks and SimMehanics. It provides details of the conceptual model 

of the exoskeleton hand in Solidworks and the steps for importing the model to SimMechanics 

program scheme. The results from this chapter, which are illustrated in the form of interconnected 

blocks, are then used in Simulink to represent the test bed of this research for testing the 

performance of the controller designed for the whole system. 

Chapter 4: This chapter presents the data collection and pattern recognition process of forearm 

electromyography signals. It covers the muscles selection and experimental procedure for EMG 

data collection. Moreover, it discusses the pattern recognition process which involves several 

steps; signal conditioning, data segmentation, and features extraction. The features considered are 

time domain features such as root mean square, mean absolute value, integrated EMG and 

wavelength. The chapter explains the process carried out for EMG signal collection so as to be 

fully utilized for the next steps; finger and wrist joints estimations and control design. 
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Chapter 5: In this chapter, myoelectric modelling for the exoskeleton hand is presented. It starts 

with an introduction of possible method to establish inter-relation between the forearm EMG 

signals with various handgrip strengths and joint/wrist positions. The focus is on machine learning 

methods; ANN and ANFIS modelling. The structure and simulation results for each method are 

discussed. 

Chapter 6: This chapter presents the design and control framework for the exoskeleton hand. The 

control framework is divided into three main levels; high-level, mid-level and low level control. 

Moreover, it discusses the integration process between each level and how the control is switched 

between finger movement to wrist movement and vice versa. This chapter presents and discusses 

the performance analysis of the developed controller. 

Chapter 7: This chapter present the main conclusions drawn from the research carried out. The 

overall research contributions that have been successfully achieved are hihglighted. The chapter 

further provides recommendations for future work. 
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LITERATURE REVIEW 

It is the absence of facts that frightens people: the gap you open, into which they pour their 

fears, fantasies, and desires.’ 

2.1 Introduction 

In this research, hand exoskeleton is designed, modelled and controlled based on user motion 

intention incorporated in forearm EMG signals. A literature review has been conducted to examine 

the previous design approaches and associated issues. Each of the design decisions and 

requirements provides challenges that need to be considered to design more reliable and efficient 

hand exoskeleton. The review is divided into few sub-sections; the hand exoskeletons, forearm 

electromyogram signals, dynamic modelling (fingers and wrist kinematics estimations), and 

control design, validation and performance evaluation for the exoskeleton hand. Based on the 

strengths and limitations discussed, several key research questions are formulated, and appropriate 

approaches/methodologies are selected to provide holistic design considerations and 

implementations. 

2.2 Exoskeleton Hand 

A considerable amount of literature has been published on the design and development of orthotic 

exoskeleton hand for assistive and rehabilitation purposes. Table 2.1 presented the previous 

research work related to this development. Each of the research work is evaluated, synthesised and 

analysed based on various criteria; supported movements, degrees of freedom, modelling, control 

methods, type of applications and special features.  
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Table 2.1: Previous work related to the development of the exoskeleton hand 

References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Systems assisting wrist movements 

Gopura  

and Kiguchi 

(2008) 

 

 

Wrist – 

flexion/exten

sion, 

ulnar/radial, 

pronation/su

pination,  

3 DOF Muscle 

modelling 

EMG signal and 

forearm torque, a 

fuzzy controller 

 

Wearable 

orthosis; 

Assistive 

device 

 

Three 

muscles; 

healthy 

subject  

Sasaki et al., 

(2005), 

ASSIST  

 

Wrist – 

flexion  

 

1 DOF 

 

Not specified Joint angle, EMG 

signal, Pressure 

control system.  

 

Wearable 

orthosis; 

power 

assistance 

 

One muscle; 

flexor carpi 

ulnaris. 

healthy 

subject 

Hu et al., 

(2009) 

 

Wrist – 

flexion and 

extension 

1 DOF 

 

Not specified Surface EMG,  Stationary 

system; 

rehabilitation 

device 

Four muscles; 

(BIC), (TRI), 

(FCR), and 

(ECR). Post-

stroke 

subjects 

Song et al., 

(2007), 

PolyJbot.  

 

Wrist – 

flexion and 

extension 

1 DOF 

 

Muscle 

modelling 

Surface EMG, 

joint angle and 

torque, PID 

controller 

Stationary 

system; 

rehabilitation 

device 

Two muscles. 

Post-stroke 

subjects 

 Systems assisting finger(s) movements 

Cesqui et al., 

(2013)  

1 finger 3 DOF Dynamics 

modeling 

Emg, pattern 

recognition and 

learning 

Wearable 

orthosis;  

Not specified 

Yamada et 

al., (2001), 

SkilMate 

Glove-type 

hand 

3 DOF Not specified Position control 

mode 

Portable 

system 

(orthosis) 

Not specified 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Shields et 

al., (1997) 

Active 

flexion for 

thumb, index 

and middle 

fingers  

3 DOF Not specified Programmable 

microcontroller 

(PWM driven) 

Portable 

system 

(orthosis) 

Not specified 

Martinez et 

al., (2009) 

and  (2010) 

Flexion and 

extension for 

thumb, index 

and middle 

fingers  

3 DOF Not specified Digital control 

system (under 

development) 

Portable 

system 

(orthosis) 

Not specified 

 

Ho et al., 

(2011), 

Hand of 

Hope, 

Rehab-

Robotics 

Flexion for 

each fingers 

5 DOF Not specified sEMG Portable 

system 

(orthosis); 

physical 

therapy 

Commercial 

system 

Baker et al., 

(2011), 

OHAE 

Extension 

for thumb, 

index and 

middle 

fingers 

3 DOF Not specified C-Stamp (coded 

in C) 

Portable 

system 

(orthosis) 

Finger 

tracking for 

back-

drivability 

Kline et al., 

(2005)   

Extension 

for all 

fingers 

1 DOF Not specified Joint angles, 

sEMG 

Wearable 

glove; 

physical 

therapy 

Stroke 

subjects 

Chen et al.,  

(2009)    

Independent 

linear 

movement 

of each 

finger 

5 DOF Not specified Fingers positions 

and forces, 

sEMG 

Stationary 

system; 

physical 

therapy 

Not specified 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Broaden 

Horizons, 

Inc. (2010), 

Power 

Grip, 

Grasping 

using thumb 

with index 

and middle 

fingers   

(joined 

together) 

2 DOF Not specified Switches 

or sEMG 

Wearable 

orthosis; 

grasp 

assistance 

Commercial 

system 

Lucas et al.,  

(2004) 

Flexion and 

passive 

extension of 

an index 

finger  

1 DOF Not specified sEMG Wearable 

orthosis; 

grasp 

assistance 

Not specified 

Mulas et al., 

(2005)  

Flexion and 

extension for 

thumb and 

flexion for 

other fingers 

2 DOF Not specified sEMG, pulleys 

position 

Wearable 

orthosis; 

physical 

therapy 

Not specified 

Tong et al.,  

(2010) 

Flexion for 

each finger 

10 

DOF 

Not specified sEMG  Wearable 

orthosis; 

physical 

therapy 

Not specified 

Fleischer et 

al.,  (2009) 

TU Berlin 

Hand 

Exoskeleton,  

flexion and 

abduction of 

all major 

joints of 

each finger 

20 

DOF 

Joint angles, 

end-point 

force, 

sEMG 

Joint angles, 

end-point force, 

sEMG 

Wearable 

orthosis; 

physical 

therapy 

 

Not specified 

Brokaw et 

al., (2011) 

HandSome 

4 bar linkage 

for thumb 

and fingers 

4 DOF Kinematics 

trajectory 

Not specified Wearable 

orthosis; 

rehabilitation 

device 

Not specified 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Engeberg et 

al., (2013)  

4 fingers 12 

DOF 

Dynamics 

modeling 

Human model 

reference 

adaptive 

controller 

(HMRAC) 

compared with 

Sliding mode 

control; force and 

position control 

Prosthetic 

hand;  

EMG data 

collected from 

amputee and  

nonamputee 

Wang et al., 

(2011), ATX 

exoskeleton 

1 finger 5 

active,

3 

passive 

DOF 

Kinematics 

trajectory 

Real time control Wearable 

orthosis; 

rehabilitation 

device 

Not specified 

Worsnopp et 

al., (2007) 

AFX 

exoskeleton 

1 finger 3DOF Kinematics 

trajectory 

Force and 

position input, 

PID controller  

Wearable 

orthosis; 

rehabilitation 

device 

Not specified 

Wei et al.,  

(2013) 

5 fingers 14 

DOF 

Force 

simulation 

analysis 

Motor controller Wearable 

orthosis; 

rehabilitation 

device 

Haptic device 

(phantom 

premium) 

 

Iqbal et al., 

(2010; 

2014), 

HEXOSYS 

2 finger; 

thumb and 

index finger.  

 

6DOF Kinematic and 

dynamic 

modeling 

Minimum jerk 

trajectory 

generation, DSP 

(56F807) based 

controller;  

position control  

Wearable 

orthosis; 

rehabilitation 

device 

Multi-

objective 

optimisation 

strategy 

Peerdeman 

et al.,  (2010) 

5 fingers - 

flexion 

 

14 

DOF 

Ellipsoidal 

representation 

of the 

phalanges. 

EMG input, state 

machine to 

describe the hand 

behaviour  

Prosthesis; 

amputee, 

simulation 

Pre-shaping 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Yang et al., 

(2016)   

5 fingers 14 

DOF 

Kinematic and 

dynamic 

modeling 

Microcontroller 

as a pulse 

generator; 

forward, reverse, 

fast forward and 

fast reverse pulse 

signals. 

Wearable 

orthosis; 

rehabilitation 

device 

New jointless 

tendon-driven 

exoskeleton 

Wang et al., 

(2010)  

1 finger; 

index finger 

3DOF Dynamic 

modeling 

A resistance 

compensation 

control; real time 

controller that 

sample the angle 

and force data in 

real-time 

Wearable 

orthosis; 

rehabilitation 

device 

Not specified 

Yu et al., 

(2011) 

1 finger 3 DOF Kinematics and 

dynamics 

modeling 

Position and 

force input, force 

compensation 

algorithm (active) 

(Passive mode) 

using PID 

Wearable 

orthosis; 

rehabilitation 

device 

Not specified 

Gilardi et al., 

(2009; 2010) 

1 artificial 

finger 

4 

DOF;   

 

Kinematic and 

dynamic 

modelling 

Microcontroller 

(PWM-PD) 

feedback 

controller and a 

minimum 

jerk trajectory 

feedforward 

controller 

Prosthesis; new 

biomimetic 

tendon-driven 

actuation 

system 

J. Iqbal et al., 

(2010; 2011)  

1 index 

finger 

3DOF Kinematics and 

dynamic 

modelling 

Grasping force as 

input, 

optimization 

using Monte 

Carlo method 

Wearable 

orthosis; 

rehabilitation 

device 

Not specified 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Systems assisting wrist and finger(s) movements 

Hasegawa et 

al., (2011; 

2008) 

5 fingers 

with a wrist, 

flexion and 

extension, 

adduction 

and 

abduction 

11 

DOF 

Surface EMG bioelectric 

potential-based 

switching control 

Portable 

system 

(orthosis) 

Not specified 

Koeneman 

et al., (2004) 

Hand 

Mentor™, 

Kinematic 

Muscles, 

Inc.;  

Extension 

for wrist and 

4 fingers 

(except the 

thumb)  

1 DOF Not stated Wrist angle, 

flexion torque 

Wearable 

orthosis; 

physical 

therapy 

Commercial 

system 

Takahashi et 

al., (2008), 

HWARD, 

Flexion and 

extension for 

wrist, thumb, 

and joined 

four medial 

finger  

 

3 DOF Not stated Joint angles 

and torques 

Stationary 

system 

(with desktop 

mounted 

orthosis); 

physical 

therapy 

Not specified 

S. Ates et al., 

(2014; 2013, 

2014, 2015, 

2017) 

 

Extension 

assistance 

for wrist and 

fingers, 

abduction 

and 

adduction for 

the thumb 

6 DOF Dynamics 

modelling; 

estimation of 

the angle based 

on readings 

from bending 

sensors 

attached at 

each finger 

Microcontroller 

to interface 

sensors with the 

dedicated PC to 

guide the user to 

play the 

therapeutic game  

Wearable 

orthosis; 

rehabilitation 

device 

Working 

prototype; 

Interactive 

game 
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References, 

System 

Name 

Supported 

Movements 

DOF Modelling Main Control 

Input, Control 

Method 

Type; Field 

of 

Application 

Stage of 

development; 

Special 

Feature 

Rose et al., 

(2015) and 

Pezent et al., 

(2017)  

READAPT 

Flexion, 

extension, 

radial, and 

ulnar 

movements 

for wrist 

attached to 

Maestro 

hand 

exoskeleton 

12 

DOF 

Kinematic 

coupling 

analysis 

Critically damped 

PD controller 

Wearable 

orthosis; 

rehabilitation 

device 

Donning and 

doffing for 

impaired 

subject; 

OpenWrist 

features 

Based on the literature review conducted, the orthotic exoskeleton hand generally comprises a 

rigid molded basic structure with actuators and sensors that support specific movements. Table 2.1 

categorises the exoskeleton hand into three classes; system assisting wrist movement, system 

assisting finger(s) movement and system assisting wrist and finger(s) movement. Gopura et al. 

(2008)  have proposed 3 DOF EMG based controlled exoskeleton robot that permits wrist 

ulnar/radial, flexion/extension and forearm pronation/supination motions (Figure 2.1(a)).  

 

   

(a) Gopura et al. (2008) (b) Baker et al. (2011) (c) Hasegawa et al. (2011)  

Figure 2.1: The exoskeleton hand systems: (a) Assisting wrist movement, (b) Assisting 

finger(s) movement, and (c) Assisting wrist and finger(s) movement 
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The hardware of the exoskeleton is adaptable to the human wrist regarding segmental lengths, 

number of DOF, the range of motion and its centre of rotation. Surface EMG and hand 

force/forearm torque are used as the input control parameters for the fuzzy controller. The fuzzy-

neuro controller managed to implement a smooth natural and flexible wrist motion assistance.  

Baker et al. (2011) developed an orthotic hand assistive exoskeleton (OHAE) that reduces the 

muscular force needed to pinch or grasp (Figure 2.1 (b)). It has three actuated fingers: the thumb, 

middle, and index fingers, that are driven by cables attached to a glove. The device is portable, 

easily manufactured and consists of four major sub-systems. FSR sensor is installed at the 

corresponding fingertip to trigger the actuating motors to retract or extend, reducing the amount 

of muscular energy utilized.  Peerdeman et al. (2010) have presented a model of myoelectric hand 

prosthesis based on the biomechanical structure of human hand that is served as a testbed for the 

development of control systems based on electromyography (EMG) input. The grasp selection and 

execution is control based on the myoelectric signals that are acquired and classified before being 

fed to the model to control the motions that virtually represent the prosthetic hand. The model is 

validated using two different grasping types on a simple object, demonstrating reshaping of the 

hand and flexion of the fingers and thumb. The results show the exact finger movement. However, 

the dynamic analysis for the finger extension is not included in this research and is left as future 

work. Iqbal et al. (2010) proposed a novel design of a thumb exoskeleton system for rehabilitation. 

The optimisation of the device was achieved through natural finger workspace and capabilities. 

The procedure includes analysis of daily hand life common activities. The optimization results 

show adequate functionality of thumb exoskeleton with adequate ergonomics.  

Hasegawa et al. (2011; 2008)  have introduced a five-fingered assistive hand that supports 

human hand and wrist activities (Figure 2.1 (c)). It has 11 DOF: eight active joints and three 

passive joints. A cable-driven mechanism mimicking human finger motion has been adopted eith 

each of the joints controlled independently. The movement of the device is controlled based on the 

user’s bioelectric potential. The grasping force is estimated from the bioelectric potential measured 

by surface electrodes on the lumbrical muscles. The performance of the device has been validated 

through experiments and show that the exoskeleton allows pinch of a small object and augments 

grasping force for heavy work.  
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In 2013, Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) 

project conducted by research collaboration (between researchers from Netherland, USA, UK, 

Italy and Germany) has introduced a new hand and wrist exoskeleton design named as SCRIPT 

Passive Orthosis (SPO). The SPO is an interactive hand and wrist orthosis that provides adaptable 

extension assistance, interfaced with motivational games for post-stroke rehabilitation. It 

comprises of an off-the-shelf mobile arm support with hand plate and digit caps, wrist-torque 

transfer mechanism, torque generation mechanism, and is equipped with various sensors; IMU, 

flex sensor, and potentiometer (Amirabdollahian et al., 2014; Ates et al., 2013, 2015). The 

prototype has been evaluated in many clinical setting (three clinical sites; United Kingdom, 

Netherlands, and Italy) by therapists and has been extensively used by post-stroke patients at home 

(Amirabdollahian et al., 2014; Ates et al., 2017). The main limitation of the developed exoskeleton, 

however, is the absence of controller that can actively generate or control the movements to 

provide automatic assistance orthosis for stroke survivors.  

Considering the strengths and limitations, it can be concluded that in developing competent 

assistive device, seamless integration with the user by considering intelligent control as part of the 

human machine interface; specifically, the user motion intention is a primary concern. Advanced 

hands-free human machine interface with intention-driven control approach is favorable when 

compared to traditional user interfaces (ie joysticks, keyboards, GUI etc) because it can control 

the exoskeleton hand naturally in predictable way, making it more reliable and efficient in 

communicating with the user and in providing assistance. It is important to improve the quality of 

support for basic ADL to avoid dissatisfaction among the users that may lead to the discontinuation 

of the device shortly after use. The realization of user motion intention can be achieved by 

employing mechanical sensor or biomechanical sensing method like EMG signals. Huo et al. 

(2010, 2015) proposed intentional reaching direction (IRD) method to quantitatively describe the 

user motion intention for a 3 DOF power-assist upper-limb exoskeleton. The device was embedded 

with multiple force sensing resistors with two modeling modes; static force model for the relaxed 

state and hybrid model for motion state. The motion intention of the user was estimated online 

using Kalman Filter and a mode transition detector with admittance control strategy. The method 

was tested on healthy subjects and offered satisfactory results.  However, according to Kiguchi et 

al. (2007) to activate the exoskeleton robot according to the user motion intention, a force sensor 

based control can be employed for user without limb problem while for those who are not strong 
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enough to move their limb, EMG-based control with the EMG signals from certain muscles can 

be adopted to activate the system accordingly.  

Meng et al. (2017) conducted a survey on the existing surface EMG control strategies employed 

in controlling wearable hand exoskeleton for rehabilitation and categorized the control methods 

according to control input, control architecture and algorithm, and control output. Based on the 

survey, it can be concluded that different exoskeletons would have different surface EMG control 

methods depending on their operating principles. DiCocco et al. (2004) developed a lightweight 

orthotic (Figure 2.2(a)) control based on EMG signals and compared several control strategies for 

the device. Natural reaching and pinching sequence control strategies were designed using binary 

control (a simple on/off control states), continuous variable control (a proportional controller based 

on filtered EMG signals) and natural reaching algorithm (tested only on contralateral arm), with 

conclusion that binary control provides faster interaction with objects while variable control 

provides more controlled interactions. They concluded that the system is effective in enabling 

pinching movements to those who suffered from hand mobility. However, only index-thumb finger 

pinch was studied in the research.  

Wege and Zimmermann (2007) had developed an exoskeleton hand comprised of four fingers 

(with four joints for each finger) for rehabilitation following hand injuries or stroke. The device 

(Figure 2.2(b)) was controlled using sliding mode position control integrated with several sensors; 

hall sensors to measure the joint angles, optical encoders to measure angles of the motor axes, 

force sensor to measure the force between the user and the device, and EMG sensor to measure 

the muscle contractions. According to them, the user intention recognition via force sensors is 

often impossible to distinguish between the forces exerted by the user or environment, and human-

machine interaction is less efficient. Thus, EMG signals were acquired and blind source separation 

was applied to avoid signals overlapping and variations in the different muscles. However, due to 

several limitations of the experimental setup, the results yielded were not accurate. Non-

distinguishable overlapping movements were detected due to the natural effect of two adjacent 

muscles (flexor and extensor) and the co-activation of neighboring muscles.  
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(a) DiCicco et al., (2004) (b) Wege and Zimmerman, (2007) 

Figure 2.2: The sEMG based controlled exoskeleton hand (a) from Carnegie Mellon 

University (b) from Technische University of Berlin 

Besides seamless human machine interaction, another significant challenge is to develop an 

exoskeleton hand that can emulate the function and movement of actual human hand. Design 

optimization in virtual environments that consider the biomechanical conditions and human factors 

in a systematic manner can benefit the device development process not only in terms of safety and 

efficacy measures, but also in terms of cost effectiveness and mechanical/hardware system 

selection for the exoskeleton hand. Virtual environment such as SimMechanics, Visual Nastran 

and AnyBody software provide useful design and significant testing platform for complex systems 

like exoskeleton hand where researchers can simulate the conceptual and detailed design, test their 

controllers and validate their functionality without constructing the actual prototype. Miranda-

Linares et al. (2015) developed a humanoid and lower-limb exoskeleton model, tested the finite 

state controller and tested the functionality of the exoskeleton in SimWise, virtual environment 

platform. The model was assembled and coupled with appropriate kinematics characteristics, 

which was then computed and integrated with the controller to validate the overall system 

performance.  The visualization of motion for both (the humanoid and exoskeleton) interacting 

with external forces and disturbances yielded satisfactory and realistic results.  
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2.3 Forearm Electromyogram Signals 

The electromyogram signal (or also known as myoelectric signal) is a summation of Motor Unit 

Action Potential (MUAP), a tiny voltage generated from the contraction of activated muscle fibres 

by motor neurons. There are many muscle fibres within human forearm muscles, which acts 

individually and add up to a larger unit each time the hand flexes or extends. During hand gripping, 

when the person intends to exert more hand grip force, the strength of muscle contraction is 

increased by central nervous system in two ways; increasing the number of motor units activated 

(spatial recruitment) and increasing the firing rate (frequency) at which individual motor units’ fire 

(temporal recruitment). The electrical signals obtained from muscle are displayed on oscilloscope 

as common practice since 1922. However due to the random and stochastic nature of the EMG 

signals, there is limited information that could be extracted from the oscilloscope readings. 

According to De Luca, (1979) the EMG signal is an exceedingly complicated signal which is 

affected by the anatomical and physiological properties of muscles. Thus, it is crucial to process 

the signal before utilizing in the research. Konrad (2006), defined EMG as an experimental 

technique concerned with the development, recording and analysis of myoelectric signals. The 

structure of the EMG can be identified and analysed in few processes named as pattern recognition 

process. According to Lalitharatne et al, (2014) there are four steps to recognize the pattern of 

EMG signals: acquiring the data, segmenting the data, extracting the features from the recorded 

data and mapping the data into classes. Each steps involves several methods or techniques (Figure 

2.3). The pattern recognition step has been employed by other researchers with several 

modifications on the methods or techniques used to improve the efficiency of the myoelectric 

control scheme. 

According to Khushaba et al. (2010, 2011), it is crucial to produce a highly discriminative 

feature set that can well recognise different finger movements to facilitate the implementation of 

myoelectric control scheme for the hand prosthesis. They have investigated forearm sEMG signals 

from nine subjects performing 10 classes of individual and combined fingers movements, and 

extracted and projected various feature sets using several time domain methods; waveform length, 

zero crossing, slope-sign changes, skewness, root-mean-square, mean absolute value, integral 

absolute value, and autoregression features. They have proposed an accurate and efficient feature 
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projection method based on Fuzzy Neighborhood Preserving Analysis (FNPA) showing practical 

results indicating a significant classification with average accuracy of 91%. In 2012, they have 

further studied and proposed a combined feature selection and projection method denoted as 

Mutual Components Analysis (MCA). They have compared the performance of the MCA with 

traditional Principle Components Analysis (PCA), Linear Discriminant Analysis (LDA) and 

Uncorrelated Linear Discriminant Analysis (ULDA). Later in the same year, they have extended 

the research and proposed Bayesian data fusion post-processing approach as part of the 

classification method and managed to maximise the probability of correct classification with 

average accuracy of 90% (Khushaba et al., 2012; Khushaba and Kodagoda, 2012). The approaches 

used are similar to that used by other researchers but with extensive explanation on the selection 

of features.  

 

Figure 2.3: EMG pattern recognition process; adopted and modified from Lalitharatne et al, 

(2014) 
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Phinyomark et al. (2012) suggested that careful selection of features is important  for successful 

analysis of the EMG signals and their classification to avoid producing feature sets that contain a 

number of redundant features. They have studied most complete and up-to-date thirty-seven time-

domain and frequency-domain features and indicated that some of the time-domain features are 

redundant while the frequency-domain features performance in class separability is not suitable 

for EMG signal recognition. Based on mathematical properties, the time-domain features can be 

grouped into 4 main types; energy and complexity information method, frequency information 

method, prediction model method and time-dependence method. They have further extended the 

research and investigated the behavior of fifty time-domain and frequency-domain features to 

classify 10 upper limb motions using forearm EMG signals. The result shows that the sample 

entropy (SampEn) outperformed other features when compared using LDA classifier. 

(Phinyomark et al., 2013, 2014).  

Khezri and Jahed (2011) have designed a multistep-based sEMG pattern-recognition system for 

identifying the hand motion commands for rehabilitation purposes. They adopted an adaptive 

neuro–fuzzy inference system (ANFIS) to classify and recognize six classes of hand movements. 

A hybrid back propagation and least-mean-square algorithm was used to train the fuzzy system 

while a subtractive-clustering algorithm was utilized to optimise the number of fuzzy rule. The 

proposed recognition scheme yields satisfactory result in identifying complex hand movements.  

Mohideen et al. (2012; 2011) have constructed an EMG circuit to pre-process the EMG signals 

extracted from forearm muscle to study the relationship between EMG from forearm muscle and 

hand grip strength. It amplified, filtered, and rectified the raw signals to acquire linear enveloped 

signals through electronic instrumentation. They also included feature extraction and mapping for 

the extracted signals in their research. The developed circuit yielded satisfactory result. There are 

several research works conducted similar to this work. Cesqui et al. (2013) have investigated the 

use of EMG signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. The 

classical approach for EMG based pattern recognition is explored to study its relevance in 

predicting patients’ intention while attempting to generate goal-directed movement. Nine right-

handed healthy subjects and seven right-handed stroke survivors were used as the test subjects. 

The results were satisfactory for the EMG detection but showed that the EMG pattern recognition 

might not be practical to interpret the normal and abnormal muscle patterns.  
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2.4 Dynamic Modeling based on Forearm EMG Signals for Exoskeleton Hand Control 

In biomechanics, the use of surface EMG has dominated three applications, one of which is its 

relationship to the force produced by a muscle. Thus, this section will explore the recent 

developments in establishing the relationship between EMG signal, generated by muscles at 

different hand grip forces and wrist joint angles. The results of forearm muscle activity include the 

finger(s) and wrist flexion or extension. In controlling the movements of the exoskeleton hand, 

information relating handgrip force and wrist joint angles to forearm muscle activity is useful to 

be used as part of the control algorithm. There are several research works that have been conducted 

to investigate these relationships. Sidek et al. (2012) has studied the relationship between muscular 

effort of the flexor muscles in the forearm and hand grip strength. EMG signals were measured 

using constructed electronic circuit from the subject while applying minimum, intermediate and 

maximum hand grips on a hand gripper. The results have shown that EMG frequency from the 

Flexor Digitorum Superficialis (FDS) increases with increased handgrip strength. This information 

relating EMG from flexor muscles to hand grip strength is useful for use in hand rehabilitation 

devices to estimate suitable resistance to be provided to patients during rehabilitation routines. 

Similarly, Haarlar et al. (2016), Khushaba et al. (2012), Suresh et al. (2011), Lucas et al. (2004), 

and Zardoshti-Kermani (1995) have investigated the same inter-relation between EMG and hand 

grip force.  

Gopura et al. (2008) has studied the relationship between muscle activation levels with wrist 

position. They have implemented natural and flexible wrist motion assistance by employing fuzzy-

neuro control based on EMG signals measured from various flexor, extensor, supinator and 

pronator muscles. Change in muscle activation levels in accordance with the angles of wrist 

motions is analysed and this information is used to formulate fuzzy rules of the fuzzy controller. 

The authors pointed out the difficulty of discriminating wrist motions based on the EMG activity 

of the subject’s forearms as some muscles are used not only for one type of motion but also for 

multiple motions. Similarly, Sasaki et al. (2005) have developed an active support splint driven by 

pneumatic soft actuator (ASSIST) for bending motion assist at a wrist. The effectiveness of the 

device is evaluated by measuring the bending angle of the wrist without human muscular force. 

EMG signal is measured at a flexor carpi ulnaris; one of the muscles used in bending a wrist. The 
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amplitude of the EMG signal decreases significantly in the cases with or without ASSIST showing 

that the burden for the muscle can be decreased by the generated torque from ASSIST. This 

relationship is important in proving that with proper analysis of EMG, the bending motion of the 

wrist can be realized even without human muscular force.  

Hu et al. (2009) also investigated the motor functional recovery process in chronic stroke during 

robot-assisted wrist training. 20 training sessions that involved wrist tracking using an interactive 

rehabilitation robot have been conducted utilizing EMG activation levels from four muscles: 

biceps brachii (BIC), triceps brachii (TRI, lateral head), flexor carpiradialis (FCR), and extensor 

carpiradialis (ECR) to monitor the neuromuscular changes during the training course. The 

quantitative changes in EMG activation level for individual subjects suggested that most of the 

subjects had decreased EMG activity and reduced muscle co-contraction in the related muscles by 

simple pre- and post-training tests. On the other hand, Song et al. (2007) designed a horizontal 

robotic system that is myoelectrically control to assist wrist movement for the post-stroke patient. 

The subject’s intention measured based on the EMG signals collected from the FCR and ECR 

muscles are used to control the wrist flexion or extension. The neuromuscular changes during the 

wrist training course from BIC, TRI, FCR and ECR muscles are monitored where most of the 

muscles had decreased EMG activity and reduced muscle co-contraction with the increase of 

assistance, which reflected that less effort was needed for the subject to flex or extend the wrist.  

All the aforementioned studies that have attempted to establish the relationship between EMG 

signals, various hand grip strength, and finger and wrist position, have not dealt with the intricate 

dynamics modelling of the hand.  Researchers have not treated the transformation process between 

muscle activation dynamics into forces and joint movement estimations in much detail. According 

to Buchanan et al. (2004) the biomechanics of human movement can be fundamentally studied 

using two approaches; forward dynamics and inverse dynamics, and can be used to estimate the 

joint moments during movements. In forward dynamics approach, neural command that specifies 

magnitude of muscle activation based on forearm EMG signals is used as the control input. The 

magnitudes of EMG signals change with respect to the neural command and vary depending on 

many factors; e.g. the muscle itself, the gain of amplifiers, the types of electrode used etc. Thus, 

the EMG signals need to transform into a parameter called as muscle activation, which will 

produce an output in terms of time varying value with a magnitude between 0 and 1. This can be 
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done by normalising the raw data. The muscle activation can then be mapped into joint angle for 

wrist and respective fingers. To better understand the continuous kinematics estimation and 

dynamic modelling of the hand, extensive literature review was conducted covering a range of 

statistical approaches that can be used in estimating the relationships among the aforesaid 

variables.  Table 2.2 presents the related work found in the literature for joint angle estimation of 

the hand based on EMG signals. 

Table 2.2: Previous work done related to the dynamic modelling of the hand 

References Subjects, 

number of 

electrodes 

Movement, DOF/, 

muscles 

Features 

extraction 

method 

Estimation 

method 

Performance 

Indicator 

Ngeo et al., 

(2012, 2013; 

2014) 

10 able bodied 

subject, 8 bipolar 

electrodes 

Multiple finger 

flexion and 

extension, muscles; 

APL, FCR, FDS, 

FDP, ED, EI, ECU,  

EMG-to-muscle 

activation, time 

domain features; 

MAV, WL, WA 

and VAR 

ANN and 

Gaussian 

Process (GP) 

for joint angle 

estimation 

RMS error and 

mean 

correlation 

coefficient  

Shrirao et 

al., (2009) 

15 able bodied 

subject, 2 

electrodes 

Flexion and 

extension of an 

index finger; EDS 

muscle 

Normalised 

RMS value 

ANN for 

finger joint 

angle 

estimation 

RMS error 

Worden et 

al., (2018) 

NinaPro database, 

40 subjects, 12 

electrodes 

Flexion of the 

fingers and thumb, 

extensor, flexor, 

triceps and biceps 

muscles 

MAV, WL, 

RMS, FILT 

Multivariate 

Bayesian 

mixture of 

expert for 

finger force 

regression 

Normalised 

RMS error 

Hahne et al., 

(2014) 

10 able bodied 

subject, 192 

electrodes 

Flexion, extension, 

radial, ulnar of the 

wrist. 

Variance  LR, ME, 

MLP, KRR 

RMS and 

standard 

deviation 

Muceli et 

al.,(2012) 

6 able-bodied, 64 

electrodes 

Flexion, extension, 

radial, ulnar of the 

wrist, pronation and 

supination of the 

forearm, flexor and 

extensor muscles 

Linear envelope ANN for wrist 

kinematics 

estimation 

Mean relative 

error 
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Ngeo et al. (2014) presented a simultaneous and multi finger kinematics estimation method 

based on surface EMG. The forearm EMG signals together with the finger kinematics of 10 able-

bodied subjects were used to model the EMG-to-muscle activation features that also parameterize 

the electromechanical delay. A model free approach for each joint was used to estimate the 

complex finger kinematics. Machine learning regression techniques, the ANN and GP regressor 

employed have shown viable estimation results with ANN outperforming the GP. The authors 

claimed that the proposed muscle activation has successfully improved the estimation accuracies. 

However, the results are based on data that is analysed separately between subjects. Similarly, 

Shrirao et al. (2009) investigated a technique to predict the finger joint angle from the surface 

EMG measurements of the extensor muscle using neural network models. The sEMG and joint 

angle measurement for flexion and extension of an index finger were recorded simultaneously at 

three different speeds; fast, mid and low. The results yielded smaller RMS error for fast speed as 

compared to the low speed finger extension.  

Hahne et al. (2014) presented an independent, simultaneous and proportional myoelectric 

control for 2 DOF wrist prosthesis by using linear and nonlinear regression methods; linear 

regression (LR), mixture of linear experts (ME), multilayer perceptron (MLP) and kernel-ridge 

regression (KRR). Similarly, Muceli et al. (2012) used artificial neural network to estimate wrist 

and hand kinematics. The result yielded a viable solution that provides practical control for 

multiple DOFs.  

2.5 Issues of Control Design for Exoskeleton Hand 

In general, employing EMG signals as part of control strategies will improve control 

performance as the signals contain important information related to user motion prediction. 

However, most common controller uses binary methods which open or close, to actuate the 

gripping motion of the hand. Similar research has been done using the same control methods by 

Cesqui et al. (2013), Peerdeman et al.  (2010), et al., Iqbal et al. (2010) and Hasegawa et al. (2014). 

Working with surface EMG signals as control input, the control method adopted should be able to 

cope with the time varying properties of muscle-joint dynamics, subject and day variations, muscle 

fatigue etc. It is difficult to obtain similar surface EMG signals on same subject at the same muscle 
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movement as the signals are affected by the physical and physiological condition of muscle 

contractions. Therefore, adaptation to this condition is crucial. Adaptation can be introduced either 

in classifying the control input (users’ intended motion) in pattern recognition process or in 

designing the control scheme for the exoskeleton hand.  

Meng et al. (2014) proposed an active interaction control method for 6 DOF parallel robot-

assisted lower-limb rehabilitation. The interaction control integrates two components: EMG-

triggered assistance and the adaptive impedance control scheme. The movement intention and the 

robot assistance are predicted and triggered through this integration. The robot velocity during the 

exercise is influenced by the adaptation of impedance controller, the user’s muscle activity level 

is evaluated online and the recovery condition is adapted to the robot impedance. The robot can be 

driven by the proposed method with a distinct increased in the muscle activity levels between 

active mode and EMG-triggered mode. 

 Chen et al. (2011) presented a hybrid control strategy for a five-finger 14 DOF robotic 

hand. The authors explored several controllers using adaptive neuro-fuzzy interference system 

(ANFIS) and fuzzy logic (soft control techniques) and proportional-derivative (PD) controller 

(hard control techniques). The inverse kinematics of the three-link fingers is computed using 

ANFIS while fuzzy logic is used to tune the PD parameters with 2 input layers using 7 triangular 

membership function and 49 fuzzy rules. The FL-tuned PD controller exhibit superior performance 

in comparison to the PD, PID and FL controllers alone. 

2.6 Issues of Performance Analysis for Exoskeleton Hand 

The performance of the control design should be evaluated to analyse the effectiveness of proposed 

control techniques. There are many ways to analyse the performance of each proposed 

methods/techniques regardless of the area of study; features extraction, joint angle estimation, and 

control methods. Nonetheless, only several researchers have discussed methods adopted for the 

performance analysis. Meng et al. (2014) analysed the performance of the proposed control method 

(active interaction controller) by comparing the differences in muscle activity levels between the 

proposed and traditional methods. The RMS values were compared and the results showed that 

the proposed method yields higher values compared to the traditional control method. Similarly, 
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Ngeo et al. (2014) used Normalised Root-Mean-Square Error (NRMSE) and Pearson Correlation 

Coefficient or known as R-value index to measure the performance of methods employed in 

extracting the useful information from the EMG as well as the methods used to estimate the 

complex finger kinematics. They used 3-way ANOVA test with Tukey-Kramers post-hoc 

comparison test to decide the best methods used in joint estimation between subjects, DOF and the 

features used. On the other hand, Kang et al. (2014) analysed the stability of their proposed 

controller (adaptive PID neural network) using Lyapunov method. According to the Lyapunov 

method, when ∆𝑉(𝑘) ≤ 0, in any sampling period, where V(k) is Lyopunov function, the closed 

loop system is stable.  

2.7 Summary 

This chapter has presented the research background, a detailed review of the design and 

development of the orthotic exoskeleton hand for assistive and rehabilitation purposes, the 

electromyogram control techniques, and the dynamic modelling of the exoskeleton hand. The 

methodology used to develop the exoskeleton hand alongside its main challenges were studied and 

discussed.  

Despite the fact that there is extensive research focusing on the design and development of 

exoskeleton hand, more dexterous and combined fingers and wrist control especially for seamless 

human-machine interaction has not received the same amount of attention. Previously published 

studies show that the current control schemes employed in controlling the available multiple DOF 

exoskeleton hands cannot fully utilise the hand function because there are fewer control inputs 

than the joints that need to be controlled. The most significant step to facilitate an effective control 

scheme is to extract the useful information within EMG signals to produce high-quality feature 

sets with significant separability of classes for each finger and wrist movements.  

The pattern recognition based control or known as myoelectric control approach is commonly 

employed in previous research to process and fully utilised the collected EMG data which includes 

data acquisition, data segmentation, feature extraction and classification. Such approach, however, 

has failed to efficiently control the exoskeleton hand as direct control using classification 

commonly process only a single movement at a time, even with extended classification that is able 
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to process more than one class, some movement limitation might have applied (i.e. two joint 

commonly cannot be controlled independently if two functions are activated in parallel). 

Therefore, independent proportional control using regression method to establish the relationship 

between EMG signal generated by muscles at different handgrip forces and wrist joint angles is 

needed. Unlike classifier, regressor estimates continuous joint angle values for each DOF of 

fingers and wrist, allowing an independent, simultaneous and proportional estimation that can 

facilitate a fluent and natural control for the exoskeleton hand.  

In this research, the pattern-recognition process is modified by replacing the classifier with 

supervised learning method. A feed-forward artificial neural network (ANN) and adaptive neuro-

fuzzy inference system (ANFIS) with subtractive clustering are adopted to establish the 

relationship between forearm electromyogram signals with various finger pinches, handgrip 

forces, and wrist positions. The in-grip joint angles and handgrip forces were predicted to provide 

the spectrum of grips, rather than a discrete set for continuous control of the exoskeleton hand.  

This chapter portrayed the upmost important platform for this research since it provides the 

required steps to develop the exoskeleton hand efficiently. The detailed methodologies together 

with their findings were discussed in the next following chapters; chapter 3 for the design and 

modelling of the exoskeleton hand in the virtual environment, chapter 4 for the forearm EMG 

signal analysis, chapter 5 for the dynamic modelling of the hand and chapter 6 for the design and 

control framework.  
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SYSTEM MODELLING AND DESIGN 

‘Hand is a miraculous creation that no sleek is the same.’ 

3.1 Introduction 

This chapter presents the modelling and design process for the exoskeleton hand. The key is to 

understand the human hand anatomy, biomechanics and measurements to ensure safe operation 

and useful function of the device. The human hand is highly articulated with various range of 

motion (ROM) and it sizes or dimensions vary among individuals. Deep understanding of the hand 

structure is crucial in obtaining practical design and model of the exoskeleton so that to resemble 

the actual human hand and provide proper movements/functions. The model is developed based 

on a systematic knowledge of the human hand following standard anthropometric hand 

measurements for women.  

Technically, a mathematical model of the hand is complex and difficult to derive, and it often 

requires assumptions and linearisation to be made especially in modelling the nonlinearities 

associated with the system, making the modelling process tedious and complicated. Some of the 

assumptions and linearisation may neglect the essential features of the hand and restrain its full 

functionality when implemented in the real system. Moreover, simplified mathematical model is 

not sufficient to investigate the overall system performance, and it leads to the deficiency in 

validation of the control algorithm. Thus, in this research, physical modelling software; 

SimMechanics embedded with Solidworks design tool is chosen over the complex and lengthy 

formulations of mathematical equations to aid the designing and modelling process for the 

exoskeleton.  
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Solidworks is used to design and assemble the exoskeleton, and this is then imported to the 

SimMechanics software that is compatible and allows verification of the model in MATLAB. The 

SimMechanics program enables mechanical systems modelling, motions simulation, parts and 

structures editing, parameters optimization and further analysis within the Simulink environment. 

The physical model of the exoskeleton hand developed is used as a simulation platform (testbed) 

to facilitate the validation of the joints angle estimations, control algorithm, and overall system 

performance before real embodiment is done. It will help to reduce the research cost, require less 

testing and shorten the time to commercialise the exoskeleton.  

The chapter is structured as follows; it starts with a description of human hand anatomy and 

biomechanics, followed by the anthropometric hand measurements for women, the design of 

exoskeleton hand in Solidworks, modelling of the exoskeleton hand in SimMechanics 

environments and ended with a summary.  

3.2 Hand Anatomy and Biomechanics 

In general, human upper extremity consists of four segments; shoulder, arm, forearm, and hand, 

and is characterised based on its mobility and ability to grasp/manipulate. The hand is composed 

of five fingers; four medial fingers (index, middle, ring, and pinky fingers) and a thumb, palm, 

dorsum of hand and wrist. The skeleton of a human hand (Figure 3.1) is consists of 27 bones, 

which can be divided into three groups: 8 carpal bones that make up the wrist, 5 metacarpal bones 

as the root of the hand, and 14 phalanges for the fingers. The phalanges are divided into three 

intercalated bony segments: distal, intermediate, and proximal phalanges. The distal phalange is 

located at the fingertip, connected to the proximal phalange that is located at the base of the finger 

through an intermediate phalange. The proximal phalange is also connected to the metacarpal 

bones in the palm.  

Anatomically, each of the phalanges is connected through finger joints: metacarpophalangeal 

(MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints. The MCP joint of 

the hand has two degrees of freedom (DOF) (adduction/abduction and flexion/extension) while 

the PIP and DIP joints both are single DOF (flexion/extension). The PIP and DIP joints are 

interdependent as the DIP joint is a passive DOF that is driven by the rotation at the PIP. Hence, 
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each natural finger can be considered as a 4 DOF mechanism with three active and one passive 

joint (Gilardi et al., 2010; Gopura et al., 2011; Moore et al., 2014)  

 

Figure 3.1: Sketch for bones and joints of a human hand 

3.3 Anthropometric Hand Measurements for Women 

There is a large amount of variation in the dimensional features; size and shape of the human hand 

between and within individuals and populations. Commonly, the hand length is about one-tenth of 

the individual’s height and one-quarter the length of their upper extremities. The assessment of the 

physical dimensions of the hand is obtained based on anthropometric measurements. 

Anthropometry, which refers to the measurement of the human body, where data about the 

distribution of body dimensions in populations is studied and analysed, can provide crucial 

information for exoskeletons design. In the context of this research, several anthropometry on 

women hand measurements, performed by other researchers (Cakit et al., 2014; Esmaeili et al., 

2011; Jee et al., 2016; Kong and Kim, 2015; McLain, 2010; Nag et al., 2003)   were studied and 

employed to ascertain human-machine compatibility and accurate size of exoskeleton.   

During the measurement process, the hand is positioned in a straight and flat position instead 

of in a relaxed position. The dimensions of the flat side are significantly longer than in the relaxed 



38 

 

hand; there is a possible unconscious tendency to curl the hand. The measurements for finger, 

hand, palm, wrist breadth and hand depth were recorded using several appropriate measurement 

tools; electronic digital calliper, finger circumference gauge, and digital measurement tape based 

on the hand measurement diagram in Figure 3.2. The diagram illustrates three different hand 

positions; straight and flat, maximum reach and finger grip, for the right hand of a woman. The 

definitions for hand dimensions and biomechanics measurements of the diagram are as listed in 

Table 3.1:  

  

Figure 3.2: Hand measurement diagram (unit is in cm unless otherwise specified) 
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Table 3.1: Hand dimension and biomechanics measurement definition 

Hand Dimension Definition 

Hand length The distance from distal wrist crease baseline to the top of 

the middle finger measured alongside the axis of the hand. 

Hand width The breadth of hand measured across the palm; from one 

side to the other side of the hand with all fingers closed 

together. 

Hand depth The diameter between anterior to posterior of the hand held 

in a position with palm facing down; fingers are closed 

together with the thumb held against the side of the hand. 

Wrist breadth The breadth of the wrist measured alongside the distal 

wrist crease baseline of the hand from the ulnar to the 

radius side. 

Biomechanics Measurement Definition 

Flexion/extension for each digit  The angle between two phalanges when the respective 

joint of the finger are moved through the entire range of 

motion (flexion/extension).  

Wrist angle The angle between metacarpal bones to the neutral line 

(hand is in a straight and flat position) when the radiocarpal 

joint is moved from full flexion to full extension. 

 

Based on the selected literature (McLain, 2010; Nag et al., 2003), there are thirty-seven essential 

hand dimensions for women from different ethnicity considered in this research, as listed in Table 

3.2. All these dimensions were selected as most of the measurements are relevant to the design of 

the hand exoskeleton and cover a wide range of hand parts (the bony segment of fingers and wrist), 

functionality and range of motion which are essentials and important to produce an exoskeleton 

that emulates the real human hand. Moreover, the dimensions have been measured and studied in 
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different women population. The dimensions are in terms of range (minimum and maximum 

measurements, except for British women data) within sufficient sample size.   

Table 3.2: Comparison of selected hand dimensions  

Population Asian  American British 

Sample Size 95 300 5.1 

Hand length 13.5-19.0 14.9-21.5 17.43 

Hand width 4.7-8.0 6.6-9.8 7.72 

Hand depth 1.6-2.8 - 2.57 

Wrist breadth 3.6-6.2 4.6-7 5.16 

Digit 1 distal phalanx link length - 2.2-4.1 - 

Digit 1 proximal phalanx link length - 1-2.9 - 

Digit 1 tip to finger crotch length 4.4-7.4 4.9-8 - 

Digit 1 tip to wrist crease length      - 10.3-15.4 - 

Digit 1 interphalangeal breadth 1.0-2.4 1.7-2.5 - 

Digit 2 distal phalanx link length - 1.9-3.2 - 

Digit 2 intermediate phalanx link length - 1.4-2.8 - 

Digit 2 proximal phalanx link length - 4.1-8 - 

Digit 2 tip to finger crotch length 5.0-7.9 5.6-8.4 7.83 

Digit 2 tip to wrist crease length      - 14.0-20.3 - 

Digit 2 distal interphalangeal breadth 0.6-1.4 1.4-2.3 - 

Digit 2 proximal interphalangeal breadth 0.8-1.7 1.6-2.4 - 

Digit 3 distal phalanx link length - 2.1-3.4 - 

Digit 3 intermediate phalanx link length - 1.7-3.6 - 

Digit 3 proximal phalanx link length - 3.7-7 - 

Digit 3 tip to finger crotch length 5.7-8.8 6.2-9.6 7.7 

Digit 3 tip to wrist crease length      - 14-21.3 - 

Digit 3 distal interphalangeal breadth 0.6-1.5 1.4-2.1 1.49 

Digit 3 proximal interphalangeal breadth 0.75-1.7 1.6-2.4 1.75 

Digit 4 distal phalanx link length - 1.9-3.3 - 

Digit 4 intermediate phalanx link length - 1.6-3.5 - 
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3.4 Design of the Exoskeleton Hand using Solidwork  

The conceptual design of the exoskeleton hand is completed using SolidWorks tools. SolidWorks 

is a solid modelling software that facilitates products design in 3D; the sketch is done in 2D 

profiles, featured into 3D to produce the solid shape. Technically, a broad range of computer-aided 

design (CAD) software with specialised programs is available for practical design purposes such 

as SolidWorks, AutoCAD, CATIA etc. SolidWorks is chosen over others for its functionality to 

employ a parametric feature-based approach in modelling the part that allows editing of the design 

to be done at any stage in the design process and its compatibility to be embedded with 

SimMechanics in Matlab.  

In designing the prototype hand, few essential design criteria were considered to achieve the 

most effective hand design that emulates the actual human hand. First, the hand anatomical and 

Digit 4 proximal phalanx link length - 3.7-6 - 

Digit 4 tip to finger crotch length 5.2-8.0 5.5-9 8.62 

Digit 4 tip to wrist crease length      - 13.8-20.3 - 

Digit 4 distal interphalangeal breadth - 1.5-2.3 - 

Digit 4 proximal interphalangeal breadth - 1.3-2.1 - 

Digit 5 distal phalanx link length - 1.6-3.0 - 

Digit 5 intermediate phalanx link length - 1.0-2.4 - 

Digit 5 proximal phalanx link length - 2.8-4.9 - 

Digit 5 tip to finger crotch length 3.9-6.6 4.1-7.3 5.67 

Digit 5 tip to wrist crease length      - 11.4-18 - 

Digit 5 distal interphalangeal breadth - 1.2-1.9 - 

Digit 5 proximal interphalangeal breadth - 1.3-2.0 - 

 

Legend: 

o The units for all measurements are in centimetre (cm). 

o The (-) indicates that data is not available in the literature selected.  

o The numbering of the digit is 1 to 5 representing the thumb, index, middle, ring, and 

pinky fingers respectively. 
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biomechanical abilities were established. The designed hand as illustrated in Figure 3.3, consists 

of five fingers attached to a palm that is connected to a wrist with a proper choice of DOF; total 

15 DOF with 14 DOF at the fingers and 1 DOF at the wrist joint.  

 

Figure 3.3: The exoskeleton hand in SolidWorks 

The bony segments of the human hand are closely followed in designing the exoskeleton, with 

exceptions in the palm and the wrist. The design of index, middle, ring and pinky fingers contain 

three intercalated body segments: proximal, middle and distal phalanges (Figure 3.4a), while the 

thumb contains only two intercalated body segments: proximal and distal phalanges (Figure 3.4b). 

The palm is designed without metacarpal shaft which makes it fixed, while the wrist is designed 

without carpal bone which allows only flexion and extension movements. 

  

Figure 3.4: The exoskeleton fingers: (a) Design for the index, middle, ring and little fingers, (b) 

Design for the thumb 

(B) 

(A

) 

(a) (b) 
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The dimensions and specifications of the exoskeleton hand are shown in Table 3.3. Due to the 

limitation in the literature, the dimensions were chosen for the range that could cater the Asian and 

American women hand measurements. Small tolerances were considered in each link to allow 

room for the frame in case additional comfort material should be added to make it more 

comfortable to be worn in future.  

Table 3.3: Dimensions and specifications of the hand exoskeleton 

Hand measurements 

Hand length 19 

Hand width 7.5 / 9.5 (with the thumb) 

Hand depth 3.5 

Wrist breadth 6 

 Digit 1  Digit 2  Digit 3 Digit 4 Digit 5 

Distal phalanx link length 2.5 2.5 2.5 2.5 2.0 

Intermediate phalanx link length - 2.5 2.8 2.5 2.0 

Proximal phalanx link length 3.0 4.0 4.0 4 3.0 

Tip to finger crotch length 5.5 9 9.3 9 7.0 

Tip to wrist crease length      11.5 16.5 19 19 17 

Distal interphalangeal breadth - 1.7 1.7 1.7 1.7 

Proximal interphalangeal breadth - 2.0 2.0 2.0 2.0 

Interphalangeal breadth 2.0 - - - - 

 

Legend: 

o The unit for all measurements are in centimetre (cm). 

o The (-) is indicating that data is not relevant to the digit.  

o The numbering of the digit is 1 to 5 representing the thumb, index, middle, ring, and 

pinky fingers respectively. 

The hand compatibility was targeted to ensure that the designed hand is capable of exerting and 

assisting daily hand motions. The fingers were designed to trace out a path in space that closely 

resembles the path of natural fingers during a normal grasp. The natural range of motion and ratio 

of tip force exerted upon an object are also considered in the design. Additionally, the hand was 

designed to be directly driven at each joint to achieve the actual performance of the human hand 
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and to avoid the underactuation problems especially difficulties in path tracking of each fingers 

during hand grasping.  

In order to develop better representation of the system, a few assumptions were made to further 

define the exoskeleton hand model. These are as follows: 

1. All the joints (DIP, PIP, and MCP joints) are assumed to have 1 DOF, allowing only 

flexion/extension. 

2. All the joint angles (DIP, PIP and MCP joints) for each finger are based on Lee et al. 

(2014), for rectangular object power grip with a grip diameter of 25 cm (the diameter of 

hand dynamometer). 

3. During the finger pinch, the force is exerted at the middle pulp of distal phalanx and all 

external forces are assumed as single unit. 

4. All the joint actuators receive forces as input and render angles as the output (adopting 

admittance control theory). 

Even though careful measurement has been considered in designing the exoskeleton hand, there 

are several issues associated with the kinematic compatibility of the exoskeleton with human hand 

making human-exoskeleton attachment difficult.  The designed exoskeleton has rigid structure that 

hinders a full kinematic compatibility when attached to the human joints. It is very challenging to 

model and replicate the biological joints of human hand using only a single DOF. In order to cope 

with this issue, a passive joint should be introduced for joint supporting more than one dominant 

joint and suitable linkages should be designed to avoid possible collision between the device and 

the anatomical hand.   

3.5 Modelling of the Exoskeleton Hand using SimMechanics  

Physical modelling is frequently preferred over traditional method in product development due to 

the nonlinear factors and complex restrictions associated with the intricate system like the 

exoskeleton hand. It involves the employment of simulation-driven product development software 

such as Simscape Multibody, Visual Nastran, SimWise, etc, to validate the mechanical design 

before committing to make a real/physical prototype. Designers are allowed to model, simulate 
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and visualise the system behaviour under real-application operating conditions and rapidly refine 

the design without needing to produce multiple physical prototypes for testing purposes.  

In this research, the first generation of Simscape Multibody (or previously known as 

SimMechanics) was chosen for the system modelling as it can be interfaced seamlessly with 

Simulink block diagram; an existing toolbox in Matlab which is used as a plug-in for GUI-based 

simulation environment. The combination of SimMechanics and Simulink form an efficient tool 

for simulating rigid-body mechanical systems especially for control design and performance 

validation.  

The geometric Solidworks assembly of the hand is transformed into a physical model in 

SimMechanics, where the standard Newtonian dynamics of forces and torques is employed to 

model and simulate the design of the exoskeleton hand and its motions. It enables interconnection 

between physical components with geometric and kinematic relationships of the hand in the form 

of interconnected blocks. This integration allows verification of the model, whether it corresponds 

to the actual human hand and whether it behaves according to the presumptions and set 

requirements (Fedák et al., 2014). Two major steps are involved in the transformation process; 

exporting the Solidworks assembly into ‘.xml’ file and importing the file to create a SimMechanics 

model (Figure 3.5).  

 

Figure 3.5: Transformation process; from conceptual design in Solidworks into the exoskeleton 

hand model computed in the Simulink environment  
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Technically, the SimMechanics link plug-in creates the physical modelling file by converting the 

assembly’s parts into bodies and maps the constraints between parts into joints. The procedure 

used for the integration is as follows: 

1) First, the SimMechanics link plug-in is downloaded and installed. The plug-in provides the 

primary interface for exporting the Solidwork assemblies into SimMechanics software.  

2) To install the plug-in, MATLAB need to run as administrator and use the ‘install_addon’ 

command prompt. 

3) Command prompt ‘smlink_linksw’ is entered in MATLAB to add SimMechanics as a 

Solidworks plugin to the windows registry. 

4) Then, the plug-in is enabled in the Solidwork application; the SimMechanics checkbox is 

selected in the add-ins command window and will appear in the menu bar when the 

assembly is started. 

5) The assembly design of the exoskeleton hand is loaded and exported to the SimMechanics 

link first generation. The file is saved and the ‘.xml’ file is generated. 

6) Finally, the Solidworks 3D design is automatically converted into a SimMechanics model 

and imported to MATLAB using the ‘smimport’ command prompt. 

The computed exoskeleton hand model is made up of bodies with geometric and mass 

information composed of a palm, connected to five fingers and a wrist. It is populated by body 

parts that are connected to joints corresponding to the assembly parts and constraints saved in the 

physical modelling file. More intuitive and precise specifications for the body parts and joints of 

the hand model are discussed in the next sub-section. 

3.5.1 Body and Joint Specifications 

In general, most of the Solidworks-based models have the same properties and standard features; 

exactly one ground block that is connected to machine environment block, fundamental root that 

is represented as ground connected to root weld and root body, joints with degree of freedom 

containing the right joint primitives between two bodies, and weld parts to represent fixed joints. 

The imported model also contains the system parameters such as masses of the bodies, the tensor 

of inertia, and graphics.  
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Similarly, the exoskeleton hand model comprises several parts denoted by the body and joint 

blocks; the body blocks depict the respective body segments (the phalanxes of the fingers, the palm 

and the forearm), while the revolute joints represent the constraints used to assemble two parts 

with a single DoF. For motion analysis, each joint is actuated and the motion is sensed using the 

interfaces that transform the signal between SimMechanics and Simulink environments and vice 

versa. The joint actuator block applies the desired torque to the link/body through the revolute joint 

block, and the joint sensor block detected the position of the link/body. The joint actuator takes 

either force or motion as the input and outputs a similar parameter through sensing process carried 

out by the joint sensor. The block types and their functions are listed as in Table 3.4. 

Table 3.4: Description of the block parameters and their functions employed in the exoskeleton 

hand model 

Group Block Type Block Name Functions 

B
o
d
ie

s 

 

Body block Represents the user-defined rigid body with mass, 

frames, coordinate origin, inertia and geometry.  

 

Machine 

environment 

Categories the mechanical simulation environment 

for the machine to which the block is connected; 

gravity, constraint, tolerances, etc.  

 

Ground Fixes one side of a joint to a location in the World 

coordinate system. 

Jo
in

ts
  

Revolute 

joint 

 

Allows one rotational degree of freedom; the 

follower body rotates about a single rotational axis 

relative to the base through collocated coordinate 

system origins.  

 

Weld joint Represents zero DoF and cannot be actuated but 

sensor ports can be added to it.  
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S
en

so
r 

an
d
 A

ct
u
at

o
r 

 

 

Joint sensor 

 

Measures the motion (position, velocity and 

acceleration) as well as computed and reaction 

force/torque of a primitive joint. It needs to be 

connected to a joint block (output). 

 

Joint 

actuator 

Actuates a primitive joint using generalised 

force/torque desired motion signals (position, 

velocity and acceleration). It needs to be connected 

to a joint block (input). 

 

For a better relation of the mapping process, the program scheme for four medial fingers after 

importing together with the corresponding Solidworks parts is illustrated in Figure 3.7. The finger 

consists of three phalanxes connected by constraints, which are converted into three body parts by 

revolute joints. 

 

Figure 3.6: The SimMechanics block diagram for four medial fingers (index, middle, ring, and 

pinky fingers) that are mapped to the respective Solidworks-based assembly parts and constraints 

The SimMechanics scheme in Figure 3.7 shows the basic configuration of the exoskeleton hand 

after importing the physical modelling file to Simulink; the palm body block is firmly connected 

to ground and machine environment block at one side and connected to the five fingers and a wrist 

at the other side.   
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Figure 3.7: The SimMechanics scheme for the exoskeleton hand 
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3.5.2 Physical Model Visualization and Motion Analysis 

The physical model contains a visualization mode; a customized graphics figure window, that is 

enabled when the simulation is started. It includes the graphical appearance of the exoskeleton 

hand that resembles the Solidworks assembly with negligible differences, like the colors and 

graphics quality (Figure 3.8). The visualization contains graphic toolbar features that cater for 

various display and animation functions such as various viewpoint (isometric, top, etc.), zoom-in 

and zoom-out, record simulation animation etc. One of the useful features is the simulation time 

feature that can be slowed down or accelerated, and useful for accurate rapid dynamics system 

observation and motion analysis.   

 

Figure 3.8: The SimMechanics visualization window displaying the exoskeleton hand model 

In SimMechanics, Newtons Law is employed to analyse the motion for either forward or inverse 

dynamics. In forward dynamics, a set of forces or torques are applied to accelerate the bodies of a 

mechanical system which will be integrated twice by SimMechanics to yield the motion 

parameters; velocities and positions as functions of time. In contrast, the inverse dynamics analyses 

the given motions and differentiates them twice to calculate the forces and torques needed to 

accelerate the system. Depending on the topology of the system used, both cases can be analysed 
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in SimMechanics by selecting the appropriate analysis mode; forward dynamics, trimming, inverse 

dynamics and kinematics. 

The motion of the exoskeleton hand model is analyzed using forward dynamics, which takes 

joint angles as the control parameters and senses the orientation of the hand end effectors and the 

torque computed. The joint actuator block operates in the generalized forces mode for actuation 

and the mode of calculation in the machine environment block is set to the forward dynamics 

mode. The sensors are connected to the respective joints to determine the torques computed that 

are necessary to perform the defined angular orientation of the hand end effectors. This setting is 

vital to help verify and validate the EMG based controller designed for the exoskeleton hand.  

3.6 Summary 

This chapter has described the exoskeleton hand developed in the SimMechanics software as the 

system model to provide testing platform for the EMG based controller developed in this research. 

The human anatomy and its biomechanics have been studied and referred in designing the 

exoskeleton hand in Solidworks following the anthropometric data of women hands. The design 

has been imported to SimMechanics for modelling process. All necessary descriptions regarding 

the measurements, body and joint specification including the limitation when attaching the hand 

to anatomical human hand are discussed. The testbed of this research is complete, the simulation 

diagram of the designed exoskeleton hand shows a satisfactory result and ready to be used for 

testing and validating the EMG based controller developed in the next chapters. 
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FOREARM ELECTROMYOGRAPHY SIGNALS ANALYSIS 

 

4.1 Introduction 

In defining the user motion intention, the forearm EMG signals need to be properly analysed to 

extract useful information and for use as control input for the overall system control. This chapter 

explains the signal analysis that includes detection and processing techniques for the forearm EMG 

signals collected from seven muscles contributed to finger pinches and hand grasping at various 

wrist positions. The EMG datasets utilised in this research are collected after obtaining research 

ethical approval from the Ethical Committee of University of Sheffield, United Kingdom. The 

purpose of collecting the forearm EMG signals is to investigate the inter-relation between EMG 

signals with various finger pinches and handgrip forces at different wrist angles. A series of 

experiments were designed to collect the data. The collected data were processed in four steps; (1) 

normalisation step using maximum activation levels (peak amplitude) during maximum voluntary 

contractions, (2) filtering step using band-pass filter, (3) data segmentation step where the data is 

segmented using overlapping segmentation, and (4) feature extraction step using four time-domain 

features analysis. In investigating the inter-relation between EMG signals, handgrip force and wrist 

angles, the muscle excitation and finger pinching/hand grasping forces at different finger/wrist 

angles are simultaneously measured. Figure 4.1 illustrates the block diagram for the experimental 

set-up for EMG signals detection process before the data is sent for signal processing.   
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Figure 4.1: Block diagram for the experimental set-up 

4.2 EMG Data Collection 

The data collection procedure starts with the identification of relevant forearm muscles that are 

responsible for various hand movements. Here, the anatomy of human hand is extensively studied 

to select the prominent muscles where the muscles are identified and the procedure to locate the 

exact position of the muscles are recorded for inclusion in the experimental procedure 

documentations. After completing the muscle selections, the experimental set-up is done before 

the experimental procedure for data collection is carried out. 

In collecting the data, eight subjects were randomly selected; male and female aged between 

30 – 40 years old. The subjects chosen were normally limbed without any neuro-muscular 

problems. They were briefed (orally or using a visual aid, ie recorded video) and provided with 

informed consent prior to the study (please refer to Appendix B for the documentation used in the 

data collection).  

The data is collected from healthy subjects to generalise the inter-individual differences to assist 

the design, testing and validation of the proposed control framework. Commonly, the muscle 

weaknesses of stroke survivors are contributed from the interruption of the corticospinal tract and 

muscle atrophy. The EMG features collected from the stroke survivals contains inter-individual 

differences contributed from the disturbed motor control and needs to be examined and analysed 
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individually based on subjects. It makes the analysis to be tedious and complicates the research. 

Besides, limited access to stroke survivals will slow down the research progress.  

4.2.1 Muscle Selection Procedures 

According to Heo et al. (2012), combination and coordination action of both extrinsic and intrinsic 

musculature contribute to dexterous movement of the hand. The extrinsic muscles are originated 

from the arm and forearm while the intrinsic muscles are located entirely within the hand. In order 

to establish the relationship between forearm EMG signals, handgrip force/joint and wrist angles, 

the EMG data are collected from the muscles, which show higher levels of muscular activity only. 

In collecting the data, muscles, which show higher performance during an isometric contraction, 

are considered and differentiated from muscles that show lower performance. Along the forearm, 

the muscles that are coordinated for hand gripping are also involved in the flexion and extension 

of the fingers and the wrist. Some flexor muscles flex the fingers towards the palm of the hand 

and/or flex the wrist towards the anterior of the forearm. They are located within forearm posterior 

and anterior compartments. In the posterior compartment, the muscles are commonly known as 

extensor muscles while they are known as flexor muscles in the anterior compartment.  Based on 

the actions intended to be tested seven potential muscles (Figure 4.2 and Figure 4.3) were selected 

for further investigation. 

 

Figure 4.2 Sketch for anterior compartment of a human forearm with location of 

muscles under consideration: FDS, FDP, FPL and FCR 
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Figure 4.3: Sketch for posterior view of a human forearm with location of muscles 

under consideration: ED, EPB and ECRL 

Among those muscles, five extrinsic muscles contribute to the flexion and extension of the four 

medial fingers and the thumb while another two muscles are responsible for the wrist movements. 

The list of muscles and their characteristics are shown in Table 4.1. (Moore et al., 2014) 

Table 4.1: Muscles under consideration with their characteristics 

No Muscle Distal Attachment Forearm 

Location 

Main Actions 

1 Flexor 

Digitorum 

Superficialis 

(FDS) 

Middle phalanges 

of medial four 

digits 

Anterior Flexes middle and proximal 

phalanges at PIP and MCP 

joints of medial 4 digits. 

2 Flexor 

Digitorum 

Profundus 

(FDP) 

Distal phalanges 

of medial four 

digits 

Anterior Flexes distal phalanges at DIP 

joints of medial four digits; 

assists the hand flexion. 

3 Extensor 

Digitorum 

(ED) 

Extensor 

expansion of 

medial four digits 

Posterior Extends MCP and 

interphalangeal joints of medial 

four digits and extends hand at 

wrist joint 
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4 Flexor Pollicis 

Longus (FPL) 

Distal phalanx of 

first digit 

Anterior Flexes phalanx of first digit 

(thumb). 

5 Extensor 

Pollicis Brevis 

(EPB)  

Proximal phalanx 

of first digit 

Posterior Extend proximal phalanx of 

first digit (thumb) at MCP joint. 

6 Flexor Carpi 

Radialis (FCR) 

Base of 2nd 

metacarpal bone 

Anterior Flexes and abducts hand at 

wrist. 

7 Extensor Carpi 

Radialis 

Longus 

(ECRL) 

Base of 2nd 

metacarpal bone 

Posterior Extends and abducts hand at 

wrist. 

In general, the estimation of muscle excitation can be done by analysing the amplitude of the 

EMG signals generated. More motor units and higher firing rates are needed in order to maintain 

or increase the pinching/gripping forces. The quality and accuracy of the EMG signals collected 

were improved by ensuring accurate electrodes placement for each muscle under consideration for 

specific movement. The subjects were instructed to perform several tests to detect the right location 

of each muscle as described based on Moore et al. (2014) and listed as in Table 4.2.  

Table 4.2: Muscles identification test and location for electrode placement 

No Muscle Test Location 

1 Flexor 

Digitorum 

Superficialis 

(FDS) 

Forearm in supination, one finger is 

flexed at the PIP joint, while the 

DIP are kept extended against 

resistance and the other three 

fingers are held extended to 

inactivate the FDP. 

Middle of the forearm, index 

fingers flexed towards biceps 

tendon, just medial to the 

finger. 



57 

 

2 Flexor 

Digitorum 

Profundus (FDP) 

Forearm in supination, the PIP 

joint, and middle phalanx are held 

in the extended position while the 

person attempts to flex the DIP 

joint against resistance. 

Lower 1/3 of the forearm and 

two fingerbreadths, volar to the 

ulna. 

3 Extensor 

Digitorum (ED) 

Forearm in pronation, the fingers 

are extended at MCP joints while 

pressure is exerted at the PIP joints 

by attempting to flex them. 

Upper 1/3 of the forearm 

between radius and ulna. 

4 Flexor Pollicis 

Longus (FPL) 

Forearm in supination, the 

proximal phalanx of the thumb is 

held, and distal phalanx is flexed 

against resistance. 

Middle of the forearm, volar to 

the radius. 

5 Extensor Pollicis 

Brevis (EPB)  

Forearm in pronation, the thumb is 

extended at the MCP joint against 

resistance. 

Lower 1/3 of the forearm 

between radius and ulna. 

6 Flexor Carpi 

Radialis (FCR) 

The wrist is flexed against 

resistance. 

Three or four fingerbreadths 

away from the midpoint of a 

line connecting the medial 

epicondyle and biceps tendon. 

7 Extensor Carpi 

Radialis Longus 

(ECRL) 

The wrist is extended and abducted 

with the forearm pronated 

Two fingerbreadths away from 

lateral epicondyle.  
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4.2.2 Experiment Set-up 

Following completion of muscle selection procedure, pre-task procedure is carried out where the 

general information about each subject is recorded; weight, height, age and hand length. Then, the 

subjects are seated on an armchair, with their forearm supported and fixed at one position to avoid 

the effect of different limb movements on the generated EMG signals. The muscle excitation and 

finger pinch force are simultaneously measured using multi-channel EMG sensors and a hand 

dynamometer by Vernier (HD-BTA). The hand dynamometer is a strain gauge based isometric 

force sensor that amplifies handgrip force applied to its pressure pads and converts the force value 

into a corresponding voltage value.  

The experiment set-up is based on surface EMG technique that measures the muscle activity 

noninvasively and does not involve any extensive medical procedure. The electrodes are placed 

on the skin and do not penetrate the skin surface. Unlike needle electromyography, the protocol 

can be easily carried out, especially for home based assistive and rehabilitative devices.    

Before placing the electrodes, the areas of the skin are scrubbed with a paper towel to remove 

skin oil and moisture. (Detailed skin preparation procedure will only be carried out if necessary). 

The electrode patches (Kendall 5400 Diagnostic Tab Electrodes) will be used for the data 

collection. These are specifically designed for most diagnostic applications. No extensive skin 

preparation procedure will be needed since the electrodes include:  

i. Conductive adhesive hydrogel to provide firm adhesion, repositionability and low 

impedance for clear, reliable tracing as well as minimizing adhesive residue to facilitate 

subject clean up. 

ii. Different adhesive levels to accommodate different skin types, applications and 

monitoring situations 

iii.  Laminated Carbon Vinyl to provide conformability to the skin, torsion relief and 

radiolucency 

iv. Silver/Silver Chloride (Ag/AgCl) sensing element to assist in making the electrode 

defibrillation recoverable. 
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Electrode patches are then placed on the selected forearm muscle on subject’s dominant hand 

and connected to the LabQuest mini data acquisition through the interfacing wire (3channels; red, 

green and black wire with alligator clip). The red (or positive) alligator clip is connected to the 

electrode patch that measures the muscle activation while the green (or negative) alligator clip is 

connected to the other electrode patch on the same muscle with 24mm spacing between the 

electrodes. The black (or reference) alligator clip is connected to electrode patch that is placed at 

the reference point (near to bone). Next, the hand dynamometer is connected to the LabQuest mini 

data acquisition and it is connected to a laptop (battery powered). Finally, Logger Lite software is 

launched, the hand dynamometer is calibrated and data is recorded. The sampling rate is 2 kHz 

(2000 data values collected in 10 sec). The experimental set-up in Figure 4.4 illustrated the 

experimental set-up for the data collection. The equipment and material used in the experimental 

set-up are listed in Table 4.3. 

 

 
 

Figure 4.4: Experimental set-up for EMG and hand grip force measurement 
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Table 4.3: List of research equipment and material 

No. Equipment/Material Unit Function 

1. LabQuest Mini data acquisitions with a 

computer (battery powered) 

1 unit Acquiring EMG signals 

2. Logger Lite data-collection software 1 unit Recording EMG signals 

3. EMG sensor 2 unit Measuring the EMG signals 

4. Interfacing wires 2 unit Measuring the EMG signals 

5. hand dynamometer 1 unit Measuring hand grip force 

6. Angular scale 1 unit Measuring wrist angle 

7. Kendall 5400 diagnostic tab electrodes 100 unit Detecting the EMG signals  

8. Alcohol prep pad 100 unit Skin preparation 

9. Wet tissues 3 packs Skin preparation 

10. Paper towel 1 roll Skin preparation 

4.2.3 Experimental Procedures for Data Collection 

The purpose of the data collection is to investigate the inter-relation between EMG signals with 

various finger pinches and hand grip forces at different wrist angles. This will be used for signal 

processing and joint angle estimations for use as control input for controlling the exoskeleton hand. 

The EMG signals are extracted from forearm and upper arm muscles using surface electrodes, thus 

non-invasive. The EMG data collection is carried-out with two experimental procedures; 

extraction of EMG signals contributing to the finger(s) pinching and extraction of EMG signals 

contributing to the hand grasping at various wrist movements. The first part of the experiment 

involves five classes of finger pinches; finger at rest (FR), index to thumb finger pinch (FP1), 
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middle to thumb finger pinch (FP2), ring to thumb finger pinch (FP3), and pinky to thumb finger 

pinch (FP4) as illustrated in Figure 4.5.  25 classes of datasets will be collected at different finger 

pinch strengths (20, 40, 60, 80, and 100% of MVC). The data will be collected for 5 datasets at 

each session.  

 

Figure 4.5: Fingers pinch muscle contractions of forearm with 4 groups of movement and 

angles: (a) index to thumb finger pinch, (b) middle to thumb finger pinch, (c) ring to thumb  

finger pinch and (d) pinky to thumb finger pinch 

The experimental procedure is as follows: 

1. Subjects are instructed to pinch the hand dynamometer for 5 seconds using different finger 

groups (index finger pinch, middle finger pinch, ring finger pinch and little finger pinch) 

with maximum pinch strength. 2 seconds rest sessions are incorporated within each pinch 

to prevent muscle fatigue. The maximum finger pinch strengths for each finger group are 

recorded and considered as subject’s maximum activation level (peak-amplitude) during 

maximum voluntary contraction (MVC). 

2. Electrode patches are placed on the selected forearm muscles. Then, the subjects are 

instructed to pinch the hand dynamometer for 10 seconds using index to thumb finger pinch 

with various pinching strengths (20, 40, 60, 80, and 100% of MVC). 5 seconds rest sessions 

are incorporated within each pinching to prevent muscle fatigue. The raw EMG signals 

extracted are recorded in Logger Lite software.  
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3. Next, step 2 is repeated for different finger pinches. 

4. Finally, steps 1 to 3 are repeated four times with different pinching time (for approximately 

10-15 second or until fatigue) with rest intervals (5 seconds). 

The second part of the experiment involves six classes of movements; hand rest and hand grasping 

at three different wrist positions which are 45-degree flexion, at neutral and at 45-degree extension, 

as illustrated in Figure 4.6. Prismatic power grip (adducted thumb) is used as the grasping pattern. 

30 classes of datasets will be collected at different hand grip strengths (20, 40, 60, 80, and 100% 

of MVC) at various wrist positions. Details of the experimental procedure are as follows: 

1. Subjects are instructed to grasp the hand dynamometer for 5 seconds with maximum hand 

grip strength. 2 seconds rest sessions are incorporated after each grasp. The maximum hand 

grip strengths are recorded and considered as subject’s maximum activation level (peak-

amplitude) during maximum voluntary contraction (MVC). 

2. Electrode patches are placed on the selected forearm muscles. Then, the subjects are 

instructed to grasp the hand dynamometer for 10 seconds using different hand grip strengths 

(20, 40, 60, 80, and 100% of MVC) at neutral (90o of wrist angle). 5 seconds rest sessions 

are incorporated after each grasping. The raw EMG signals extracted are recorded in Logger 

Lite software.  

3. Next, step 2 is repeated for different wrist positions (at 45-degree flexion and at 45-degree 

extension). 

4. Finally, steps 1 to 3 are repeated four times with different grasping time (for approximately 

10-15 second or until fatigue) with rest intervals (for 5 seconds). 

4.3 Processing Techniques for the Forearm Electromyogram Signals 

The structure of the EMG based control method can be categorized as pattern-recognition or non-

pattern recognition based. Non-pattern recognition normally consists of a simple structure with 

only few processing techniques.  The data acquisition of the forearm EMG signals is carried out 

with a sampling frequency of 2 kHz obeying the Nyquist sampling theorem, which suggests that 

the sampling frequency should be at least twice the highest frequency contained in the signal. The 

usable energy of the surface EMG signal is limited to 0 to 500 Hz frequency range, with the 

dominant energy being in the 50-150 Hz range. In this research, the collected data is processed in 
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four steps; normalisation step using maximum activation levels (peak amplitude) during maximum 

voluntary contractions, filtering step using band-pass filter, data segmentation step where the data 

is segmented using overlapping segmentation, and feature extraction step using four time-domain 

features analysis. 

Technically, the amplitude and frequency characteristics of the raw EMG signals are highly 

variable and sensitive. Luca (1979) and Konrad (2006) have provided a detailed discussion on how 

the raw EMG signals can vary when recorded between same and/or different subjects at same 

and/or different times. It includes and is not limited to extrinsic factors like electrode configuration 

and placement, muscle selections, skin preparation, temperature, etc., and intrinsic factors like 

physiological and anatomical factors of the muscles, fiber type compositions, etc. These factors 

affect the raw EMG signals collected causing difficulties to describe its level of amplitude without 

any reference value. 

The normalisation procedure was first introduced by Eberhart, Inman and Breslar in 1954, and 

refers to the conversion of the signal to a standard scale. It provides a relative measure of muscle 

activation and compares it to the reference value. It is usually performed by dividing the EMG 

signals during a task with a reference amplitude value (the maximum peak value) obtained from 

the same muscle. The reference value should be chosen in the sense that it allows comparisons 

between individuals and/or between muscles. In general, the accepted methods to obtain the 

normalisation reference value include; maximum activation levels (peak amplitude) during 

maximum voluntary contractions (MVC), peak or mean activation level during specific tasks, 

activation level during submaximal isometric contractions and peak-to-peak amplitude of the 

maximum M-wave. However, no method has been declared as the best method for the 

normalisation of the EMG raw data (Halaki and Gi, 2012). 

In this research, maximum activation level (peak amplitude) during MVC is employed to 

normalise the EMG signals recorded from seven forearm muscles during manual muscle test. 

(Please refer to section 4.2.1 for detailed information about the selected muscles and their 

functions). The test involved isometric finger pinches and handgrip forces at different wrist 

position and grip strength (20 to 100% grip strength). Each subject was asked to pinch and grasp 

the hand dynamometer for 10 seconds producing maximum forces with 5 seconds rest in between 
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for three trials. The maximum forces were recorded and used in the experimental procedure for 

the data collection. (Please refer to the experimental procedure explained in section 4.2.3 for 

detailed information about how the MVC forces are utilized). The MVC tests were performed for 

each investigated muscle separately using multi-channel EMG devices.  

The EMG signals collected are rectified and filtered before defining the maximum amplitude 

indicating the maximum voluntary contraction of the specific muscles. The maximum value 

obtained during the test is used as the reference value for normalising the EMG signals from the 

muscles of interest. The EMG signal during a task is then divided with the reference value obtained 

from the same muscle of interest using 

normalisation =
amplitude value

reference value
 × 100% 

(4.1) 

Normalisation is important to accurately interpret the muscle excitation and is very useful to 

highlight the statistical significant differences between the classes of the data collected especially 

when used with standard hypothesis testing like t-test, Anova test, etc. 

After normalisation is done, the data is filtered using second-order bandpass filter (20 Hz – 450 

Hz) before segmentation using overlapping segmentation technique with 256 ms window size and 

128 ms window increment in MATLAB environment. The overlapping method has advantages 

over disjoint segmentation as it increases the processing time and provides better classification 

performance. The number of training samples is estimated as 

𝑁𝑜 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝐷𝑎𝑡𝑎 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡
+ 1 

(4.2) 

Next, feature extraction method is carried out. It plays a critical role in extracting useful 

information hidden in the forearm EMG signals by transforming the raw data into a reduced 

representation of features vector. It is also essential in removing the unwanted signal part and 

interferences. Based on studies conducted by Phinyomark et al. (2012), time domain features; 

mean absolute value (MAV), integrated EMG (IEMG) and waveform length (WL), that belong to 

energy and complexity information together with frequency information method groups are 
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selected for used in this research to avoid redundancy and because it yields better performance 

when compared to others. Moreover, due to normality, root mean square (RMS) feature is 

considered to be part of the analysis. All of these features were also chosen due to their 

computational simplicity.  

The Root Mean Square (RMS) is widely adopted for feature extraction. It is modelled as 

amplitude modulated Gaussian random process. It is related to the constant force and non-fatiguing 

contraction of the EMG signal (Phinyomark et al., 2013) and can be defined as 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

(4.3) 

where, N represents the total number of samples considered, and x the signal sample amplitude. 

Mean Absolute Value (MAV) is the average of the absolute value of EMG signal measured for 

certain duration of time. It is an easy way for detection of muscle contraction levels and is one of 

the most popular used in EMG signal analysis. MAV feature can be defined as 

𝑀𝐴𝑉 = (
1

𝑁
) ∑ |𝑥𝑖|

𝑁

𝑖=1
  

Integrated EMG (IEMG) refers to the absolute summation of the EMG signal amplitude that 

represent the EMG signal sequence firing point. The absolute summation is normally analysed 

over a window length of EMG samples. The IEMG can be define as 

𝐼𝐸𝑀𝐺 =  ∑|𝑥𝑖|

𝑁

𝑖=1

  

Wave length (WL) is the accumulative length of the EMG waveform over the time segment 

and can be considered as extended version of the integrated EMG. It is defined as 

𝑊𝐿 = ∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑁−1

𝑖=1
  
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4.4 Results and Analysis 

Results obtained at each analysis stage are presented in this section. An example of raw EMG data 

collected based on different handgrip strength showing the muscle excitation is presented. This is 

followed by normalisation results, features extracted for finger movements with its analysis and 

finally the features extracted for wrist movements with its analysis.  

4.4.1 Samples for Raw and Normalised EMG Signals  

The effectiveness of muscle selected and accuracy of raw EMG signal collected are evaluated by 

analysing the change in signal amplitude towards different finger pinch and handgrip strength. 

Figure 4.6 illustrates the raw EMG signal collected at different handgrip strengths (20, 40, 60, 80 

and 100% of MVC) for FDS muscle at neutral wrist position. It reveals that the amplitude increases 

proportionally with increase in the handgrip strength. Based on the EMG trace, the signal envelope 

of EMG activities show many spikes indicating the brain activity to electrically activate or excite 

the muscle to produce the desired handgrip strength. In the case of fatigue, the envelope of the 

muscle will increase even though the force actually decreases indicating that the brain is driving 

the muscle harder and harder but the muscle fatigue makes it weaker. Also noted in the trace is the 

AC line interference, which contains noises that need to be pre-processed, and can be avoided by 

conducting the data collection in a room that is away from large electrical devices and power cords.  

 

Figure 4.6: The raw EMG collected at different handgrip strength (20, 40, 60, and 80% of 

MVC) for FDS muscle at neutral wrist position 
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The scatter plots of the raw EMG data with and without normalisation are illustrated in Figure 

4.7 and Figure 4.8.  The raw EMG data is collected at 20% of MVC of pinching strength that is 

contributed from three muscles responsible for the flexion and extension of four medial fingers; 

FDS, FDP and EDC muscles. The Figure 4.7 shows that without normalisation, the data between 

classes of movement indicated as index to thumb finger pinch (FP1), middle to thumb finger 

pinch (FP2), ring to thumb finger pinch (FP3), and pinky to thumb finger pinch (FP4) were 

overlapping except for finger at rest (FR).  

 

Figure 4.7: The raw EMG signals contributed to the movement of four medial finger without 

normalisation 

Meanwhile, the distribution of the data in the projected space with normalisation shows a 

significant separatability between classes. Minimum overlapping between classes is observed 

with a higher value range for features at finger rest, as illustrated in Figure 4.8. The FR class 

gets higher value range due to normalisation that divides the amplitude of the EMG signal during 

a task (finger at rest), with reference value represented by the maximum amplitude during the 

maximum voluntary contraction of the same task. At rest, the finger is static, causing the muscle 

contraction to be negligible regardless of the percentage of MVC. Therefore, the amplitude is 

expected to be small throughout the task causing the normalisation to yield bigger feature value 

as compared to other classes. 
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Figure 4.8: The raw EMG signals contributed to the movement of four medial finger with 

normalisation 

 

4.4.2 Features for Finger Movement 

The scatter plots of the four time-domain features (RMS, MAV, IEMG and WL features) extracted 

at 20% of MVC pinching strength for four medial fingers and a thumb are shown in Figure 4.9 and 

Figure 4.10. (Please refer to Appendix C and Appendix D for more samples of results). Five classes 

of movement were studied and analysed; finger rest (FR), index to thumb finger pinch (FP1), 

middle to thumb finger pinch (FP2), ring to thumb finger pinch (FP3), and pinky to thumb finger 

pinch (FP4). Based on the obtained results, all features were examined to find the optimal feature 

that will be used in joint angle estimations. Similar discriminative patterns were obtained by RMS, 

MAV and IEMG feature values extracted for four medial fingers with poor class separability as 

shown in Figure 4.9 (a), (b) and (c). The scatter of feature values obtained by WL showed good 

class separability with minimum overlapping between classes. 

Patterns orders observed for all four features were similar with arrangement of feature values 

(from smallest to the largest value) as FP3, FP1, FP2, FP4 and FR as shown in Figures 4.10(a) to 

4.10(d). However, the scatter plot for WL showed better class separability when compared to the 

other three classes. Similar patterns were also observed for features extracted at 40% of MVC 

pinching strength for four medial fingers and a thumb as shown in Figure 4.11 and Figure 4.12. 
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Figure 4.9: Features extracted (from FDS, FDP and EDC muscles) at 20% of MVC finger 

pinch strength for four medial fingers (a) RMS (b) MAV (c) IEMG (d) WL  

 

Figure 4.10: Features extracted (from FPL and EPB muscles) at 20% of MVC finger pinch 

strength for a thumb (a) RMS (b) MAV (c) IEMG (d) WL 
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Figure 4.11: Features extracted (from FDS, FDP and EDC muscles) at 40% of MVC finger 

pinch strength for four medial fingers (a) RMS (b) MAV (c) IEMG (d) WL  

 

Figure 4.12: Features extracted (from FPL and EPB muscles) at 40% of MVC finger pinch 

strength for a thumb (a) RMS (b) MAV (c) IEMG (d) WL 
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4.4.3 Features for Wrist Movement 

Six classes of hand movement at various wrist positions were studied and analysed; hand open at 

neutral (HON), hand grasping at neutral (HGN), hand open at 45-degree wrist flexion (HOF), hand 

grasping at 45-degree wrist flexion (HGF), hand open at 45-degree wrist extension (HOE), and 

hand grasping at 45-degree wrist extension (HGE). The scatter plots of the four time-domain 

features (RMS, MAV, IEMG and WL features) extracted at 20% of MVC grasping strength 

(prismatic power grips) at different wrist positions are shown in Figures 4.13, 4.14 and 4.15. 

(Please refer to Appendix F and Appendix G for more samples of results). Likewise, all features 

were examined to find the optimal feature that will be used in joint angle estimations.  

In all scatter plots, the features at hand open (slight differences were noted between classes for 

hand open at neutral, flexion and extension wrist positions) yielded higher value features as 

compared to hand close. Similar to the finger movement analysis, the distribution of data in the 

projected space shows higher value range due to normalisation that divides the amplitude of the 

EMG signal during a task (hand open), with reference value represented by the maximum 

amplitude during the maximum voluntary contraction of the same task. When the hand is open, 

the muscle contraction is negligible regardless of the percentage of MVC as there are no muscle 

activities involved (no hand movement). Therefore, the amplitude is expected to be small 

throughout the task causing the normalisation to yield bigger feature value as compared to other 

classes. 

Figure 4.13 shows the discriminative patterns for time domain features extracted from the 

flexion-extension muscles; FCR and ECRL muscles that are responsible for the flexion and 

extension of the wrist. Based on the obtained results, the scatter plot for WL feature showed good 

performance with small variation between features within the same class of movements whereas 

the RMS, MAV and IEMG features presented similar pattern with poor class separability.  
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Figure 4.13: Features extracted from flexion-extension muscles (ECRL and FCR muscles) at 

20% of MVC for handgrip strength at wrist positions with prismatic power grip (adducted 

thumb) 

The same observation was obtained for flexion muscles (the FDS and FCR muscles) plot and 

extension muscles (the EDC and ECRL muscles) plot as illustrated in Figures 4.14 and 4.15 

respectively. The same findings were obtained by Phinyomark et. al (2012) in their research that 

studied thirty-seven time-domain and frequency-domain features for six classes of movement, 

namely hand open, hand close, wrist extension, wrist flexion, forearm pronation and forearm 

supination. The WL feature was recommended for use as the optimal feature representing the time-

domain feature group employing MAV, RMS IEMG and several more features.  
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Figure 4.14: Features extracted from flexion muscles (FDS and FCR muscles) at 20% of MVC 

for handgrip strength at wrist positions with prismatic power grip (adducted thumb) 

In terms of pattern orders, different results are expected to have slight change in the pattern 

orders between the flexion-extension movements depending on the prominent muscles used. Based 

in the obtained results, the pattern orders observed in flexion muscles plots for all four features 

were similar with arrangement of feature values (from smallest to the largest value) as HGN, HGF, 

HGE, HOF, HOE, and HON. However, the scatter plot for WL showed better class separability 

when compared with the other three classes. Slight change was observed in the pattern orders for 

extension muscles plot with arrangement of feature values (from smallest to the largest value) as 

HGF, HGN, HGE, HOE, HOF, and HON as shown in Figure 4.15. 
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Figure 4.15: Features extracted from extension muscles (EDC and ECRL muscles) at 20% of 

MVC for handgrip strength at wrist positions with prismatic power grip (adducted thumb) 

4.4.4 Performance Analysis for Feature Selections 

The performance of the RMS, MAV, IEMG and WL features are analysed and the best features at 

different percentage of MVC with significant class separability is selected for joint angles 

estimation. Visual observation together with two statistical approaches were employed in the 

analysis; the standard deviation is used to select the data with appropriate finger pinches and 

handgrip strength, while the ANOVA test is used to select the best features with significant class 

separability. The standard deviation is computed to measure the variation of the feature values 

between different finger pinches and handgrip strength (at 20%, 40%, 60%, 80% and 100% of 

MVC). Features with lower standard deviation value show that most of the feature values are very 

close to the average in a specific feature vector. Predicting the handgrip force would require all of 

the data to be analysed, but not for joint angle estimations where specific percentage of MVC 

should be sufficient as the same method can be easily replicate to analyse different dataset in 

future.  
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Table 4.4 shows the standard deviation computed for the index to thumb finger pinches at 

different percentage of MVC for 5 different muscles. Smaller deviation is observed for the features 

that belong to the 20% of MVC classes as highlighted in bold. This suggests that the features in 

this class are recommended to be further analysed to choose the optimal feature for use in 

finger/wrist joint angle estimation. Please refer to Appendix E for more sample data (different 

finger pinches). 

Table 4.4: The standard deviation computed for the index to thumb pinch (FP1)  

Feature Muscles Standard deviation values 

20% of 

MVC 

40% of 

MVC 

60% of 

MVC 

80% of 

MVC 

100% of 

MVC 

RMS 

FDS 0.0115 0.0062 0.0139 0.0197 0.0187 

FDP 0.0047 0.0092 0.0213 0.0204 0.0229 

EDC 0.0076 0.0107 0.0139 0.0156 0.0207 

FPL 0.0032 0.0060 0.0066 0.0207 0.0368 

EPB 0.0165 0.0165 0.0181 0.0194 0.0182 

MAV 

FDS 0.0074 0.0052 0.0095 0.0144 0.0126 

FDP 0.0039 0.0072 0.0171 0.0170 0.0184 

EDC 0.0063 0.0078 0.0104 0.0123 0.0132 

FPL 0.0027 0.0050 0.0058 0.0153 0.0302 

EPB 0.0137 0.0135 0.0143 0.0151 0.0145 

IEMG 

FDS 1.9009 1.3236 2.4298 3.6853 3.2184 

FDP 0.9890 1.8378 4.3677 4.3563 4.7075 

EDC 1.6203 2.0040 2.6676 3.1512 3.3872 

FPL 0.6793 1.2706 1.4800 3.9162 7.7377 

EPB 3.5056 3.4676 3.6596 3.8666 3.7036 

WL 

FDS 0.0841 0.1002 0.1818 0.2846 0.2821 

FDP 0.0412 0.1333 0.3260 0.3779 0.4293 

EDC 0.1080 0.1227 0.1959 0.2718 0.3126 

FPL 0.0542 0.1047 0.1292 0.2369 0.5166 

EPB 0.2269 0.1888 0.2234 0.3330 0.3068 
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ANOVA is utilized to demonstrate the statistical significance of the features with the most 

separable classes. It is a hypothesis test to compare the means of more than two populations. One-

way ANOVA with a single factor is designed completely randomized by setting the null (Ho) and 

the alternative (Ha) hypothesis as 

Ho : µ1 = µ2 = µ3 = µ4 (4.7) 

Ha : At least two treatment means differ (4.8) 

The test statistic (F) was then calculated using 

𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(4.9) 

In designing the ANOVA, the dependent variable is set to be the EMG features generated, in 

this case the four treatments are RMS, MAV, IEMG and WL methods, while the finger pinch is 

set as the independent variable with ‘FR’, ‘FP1’, ‘FP2’, ‘FP3’, and ‘FP4’ as the level of 

independence variables. Table 4.5 shows the summary for ANOVA test between the four 

treatments; the time domain EMG features with α=0.05 for each finger pattern. The summary 

includes the number of data, sum, average and variance for each data groups that are used in the 

analysis.   

Table 4.5: The summary of data used in the ANOVA test 

Finger Pinch Pattern Groups Count Sum Average Variance 

Finger at rest 

 (FR) 

RMS features 390 108.58 0.28 0.01 

MAV features 390 92.76 0.24 0.01 

IEMG features 390 23746.91 60.89 741.44 

WL features 390 1454.87 3.73 2.64 

Index to thumb finger 

pinch 

 (FP1) 

RMS features 390 27.60 0.07 0.00 

MAV features 390 23.09 0.06 0.00 

IEMG features 390 5910.96 15.16 75.16 

WL features 390 325.83 0.84 0.18 

Middle to thumb finger 

pinch 

 (FP2) 

RMS features 390 31.79 0.08 0.00 

MAV features 390 26.13 0.07 0.00 

IEMG features 390 6689.71 17.15 19.14 

WL features 390 377.19 0.97 0.04 
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Ring to thumb finger 

pinch 

 (FP3) 

RMS features 390 24.16 0.06 0.00 

MAV features 390 20.11 0.05 0.00 

IEMG features 390 5147.07 13.20 40.94 

WL features 390 287.86 0.74 0.12 

Pinky to thumb finger 

pinch 

 (FP4) 

RMS features 390 25.93 0.07 0.00 

MAV features 390 21.43 0.05 0.00 

IEMG features 390 5487.30 14.07 49.39 

WL features 390 320.78 0.82 0.11 

Table 4.6 show the results for the ANOVA test. Based on the table, the generated F value for 

each finger pattern are higher than F critical and considering the α=0.05 that were set for each 

finger pattern, it can be concluded that the p-value generated are lower than the set p-value (p < 

0.05). Therefore, it can be concluded that the null hypothesis (no difference) for the assumption of 

homogeneity of variance can be rejected and that there is a significant difference between the two 

treatment groups.  

Table 4.6: The results for ANOVA test 

Finger Pinch 

Pattern 

Source of 

Variation SS df MS F 

P-

value 

F 

crit 

Finger at rest 

 (FR) 

Between 

Groups 1037751 3 345917.1 1859.5 

1E-

262 2.61 

Within Groups 289456.2 1556 186.0    

Total 1327207 1559         

Index to thumb  

finger pinch 

(FP1) 

Between 

Groups 64522.72 3 21507.6 1141.8 

8.15E

-239 2.61 

Within Groups 29309.28 1556 18.8    

Total 93832 1559         

Middle to 

thumb  

finger pinch 

(FP2) 

Between 

Groups 82577.98 3 27526.0 5739.9 

6.3E-

233 2.61 

Within Groups 7461.856 1556 4.8    

Total 90039.84 1559         

Ring to thumb  

finger pinch 

(FP3) 

Between 

Groups 48899.45 3 16299.8 1588.1 

1.1E-

205 2.61 

Within Groups 15970.59 1556 10.3    

Total 64870.04 1559         

Pinky to thumb  

finger pinch 

(FP4) 

Between 

Groups 55494.61 3 18498.2 1494.7 

1.7E-

237 2.61 

Within Groups 19256.42 1556 12.4    

Total 74751.03 1559         
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Even though the null hypothesis is rejected, it is difficult to determine which group of treatments 

that have means that are significantly different from each other. If based on ANOVA test alone, 

the results computed a general statement without clearly highlighting the significant features that 

can be used for further analysis. Therefore, a statistical test is computed to determine which 

pairwise group of features are significant. Tukey-Kramer test compares the means of each 

treatment and identifies any significant differences between the group of treatments. The Tukey-

Kramer procedure was performed for six-factor levels to select the best features amongst four 

features and the result is shown in Table 4.7. The wavelength feature pair shows significantly 

different means (when WL feature paired with any features, the means are significantly different), 

which suggest to be the dominant or the best feature.  

Table 4.7: Tukey-Kramer significance test 

Finger 

Pinch 

Pattern Comparison 

Absolute 

Difference 

Critical 

range Results 

Finger at 

rest 

 (FR) 

WL to RMS 3.450 2.510 Means significantly different 

WL to MAV 3.490 2.510 Means significantly different 

WL to IEMG 57.16 2.510 Means significantly different 

RMS to MAV 0.040 2.510 Not significantly different 

RMS to IEMG 60.61 2.510 Means significantly different 

MAV to IEMG 60.65 2.510 Means significantly different 

Index to 

thumb  

finger pinch 

(FP1) 

WL to RMS 0.765 0.798 Not significantly different 

WL to MAV 0.776 0.798 Not significantly different 

WL to IEMG 14.321 0.798 Means significantly different 

RMS to MAV 0.079 0.798 Not significantly different 

RMS to IEMG 0.035 0.798 Not significantly different 

MAV to IEMG 0.044 0.798 Not significantly different 

Middle to 

thumb  

finger pinch 

(FP2) 

WL to RMS 0.8856 0.403 Means significantly different 

WL to MAV 0.9001 0.403 Means significantly different 

WL to IEMG 16.1860 0.403 Means significantly different 

RMS to MAV 0.0145 0.403 Not significantly different 

RMS to IEMG 17.0716 0.403 Means significantly different 

MAV to IEMG 17.0861 0.403 Means significantly different 

The multi-comparison test was conducted on all grip pattern, but only three finger pinches were 

included in the table as the results were repeated (similar for the other grip pattern). Overall, based 

on the visual observation and the significance test results, separable classes of features were 

noticed with WL as the method produced more significant features when compared to RMS, MAV 
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and IEMG methods. In particular, it shows that WL features appear to be the best sensing technique 

to represent the intention of the user. Thus, the WL features were chosen in classifying the control 

input.  

4.5 Summary 

This chapter has described the methods used in analysing the forearm EMG signals. The 

procedures for EMG data collection, data processing and analysis using appropriate techniques 

have been described for producing reliable feature datasets that can be used as the input for joint 

angle estimations. The features extracted have significantly presented separable classes and range 

that can be used as user defined input signals. Based on the visual observation, the standard 

deviation value, and the ANOVA test conducted, wavelength feature for 20% of MVC is 

recommended to be used as the representative feature and is expected to provide better estimation. 

It has significant class separation with small standard deviation that offer reliable and continuous 

input for the supervised learning methods employed in the next chapter. As previously stated, 

predicting the handgrip forces would require all of the data (every % of MVC) to be analysed but 

since this work only focussed on predicting the grip pattern, specific range of datasets are 

sufficient.  
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MODELLING FRAMEWORK FOR JOINT ANGLE ESTIMATION 

 

5.1 Introduction 

Over the years, pattern recognition schemes have been extensively studied and applied to 

classification of hand gestures with decoding accuracies of above 90% (refer to section 2.3 for 

details). However, the applicability of this scheme is limited and can be used in controlled 

laboratory condition only. This control strategy normally uses a sequential process that activates 

only a single class of movement at a time, which is inadequate to actuate and control the 

exoskeleton hand to resemble the actual human hand. Besides, the human hand is highly articulated 

with a wide range of degrees of freedom. Therefore, its movements are not limited only to discrete 

gestures but more to continuous and coordinated gestures allowing various and complex 

movements. The issues pertaining to the pattern classification control approach has led to the 

development of proportional myoelectric control strategy with growing attention to the joint angles 

estimation for exoskeleton hand. The major differences between classification and regression 

method is that the regressor provides continuous estimated joint angle values for each DOF, 

allowing an independent, simultaneous and proportional estimation to be computed which 

facilitate a fluent and natural control (provided that good regression performance is viable).  

The regression model has been used and proven useful in modelling and providing valuable 

predictions for decades. It can model the relationship between one or more independent variables 

(the input of the model) and a dependent variable (the predicted variables).  However, in predicting 

the joint angles estimation based on EMG signals, supervised learning method is preferred over 

the traditional regression due to the EMG signal characteristics that is highly nonlinear and 
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nonparametric causing fitting the data to the regression equation difficult and weighty. The 

supervised learning method is adopted for its flexibility to adapt itself to the shape of the EMG 

data and model the complex relationship between the forearm EMG signals, various finger 

pinches/hand grasping and various finger/wrist joint angles.  

The modelling framework for the joint angle estimation for the exoskeleton hand is discussed 

in this chapter. The proportional joint angles estimation based on forearm EMG signals recorded 

during various finger and wrist movements is explored utilizing two supervised learning 

approaches, namely an artificial neural network (ANN), and an adaptive neuro-fuzzy inference 

system (ANFIS) with subtractive clustering. All methods are trained and tested using the features 

selected as discussed in Chapter 4. The models developed for each finger/wrist are validated using 

the validation data set collected from normally limbed subjects.  

5.2 Artificial Neural Network Model 

Artificial Neural Networks (ANN) are renowned for function fit problems and have been 

extensively used for classification and regression of surface EMG signals. ANN is a computational 

model developed for information processing inspired by biological neural systems. Human brain 

comprises of biological neurons that are interconnected to one another, enabling signals 

transmission and acting as a tool that will process information of biological senses. The similar 

concept is adopted in the ANN model that consists of layers of nodes known as artificial neurons 

that have the characteristics of transmission and reception of information. The artificial neuron 

will receive a signal and process it before signals an additional artificial neuron connected to it. It 

plays an essential role in defining the function and operation of the network.  

The connections of neurons in the network will form a layer patter and determine the type of 

the ANN architecture; either feed-forward or feedback neural network. The example of a feed-

forward neural network model as illustrated in Figure 5.1 comprises an input layer that is connected 

to a hidden layer and an output layer by a set of connection weights. It does not have a feedback 

link and allows the signals to move in one direction only. Hence, the output of each layer will not 

affect the previous layer. 



82 

 

 

Figure 5.1: The example of a feed-forward neural network with 3 input neurons, 3 hidden 

neurons and one output neuron 

In general, the feed-forward network often has one or more hidden layers (sigmoid neurons) 

followed by an output layer (linear neuron). The multiple layers of tangent-sigmoid neurons allow 

the network to learn nonlinear relationships between the input and output vectors while the linear 

output layer is used to approximate the function in solving the nonlinear regression problems.  

The mathematical model of the network can be represented as follows: 

𝑢𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖𝑗

𝑅

𝑖=1

 

(5.1) 

𝑦𝑗 = ∑ 𝑤𝑗𝑢𝑗 + 𝑏𝑗

𝑆

𝑗=1

 

(5.2) 

where R is the number of inputs, S is the number of the hidden neurons, u(j) is the output value of 

the hidden neurons and y(j) is the output of the adder function neuron model with x(i) as the ith 

input, w(ij) and w(j) as the weight variables, and b(ij) and b(j) as the bias variables. 
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5.2.1 Feed-forward Neural Network with Backpropagation Algorithm 

In this research, a multilayer feed-forward neural network is employed to deal with the complicated 

relationship between surface EMG and finger/wrist joint angles. In designing the network, the first 

step is to choose an appropriate learning process. There are two types of learning process that are 

commonly used; supervised and unsupervised learning. It depends on the information provided by 

the network. The supervised learning requires sample patterns that are labelled while the 

unsupervised learning works oppositely. 

In this work, supervised learning is used by providing the network with sample of pattern of the 

selected time-domain features that has been categorised and labelled. Each pattern is fed to the 

network with a known output; the respective finger/wrist joint angles. The signal will be passed to 

the neurons and will continue to spread out along the network until it reaches the end layer of the 

neurons in the output layer before generating the output pattern and compared it with the desired 

output.  In case of any error signals generated during the process, the network weights will be 

modified to correct the learning so that the actual output will be in accordance as the desired output.  

Next, the learning algorithm or learning rule that is used to train the network is selected. A 

Levenberg-Marquardt backpropagation algorithm is used to train the neural network until it can 

approximate a function by associating the elements in the input matrices (time-domain features) 

with elements in the target matrices (finger/wrist joint angles). The Levenberg-Marquardt 

algorithm will adjust the weight and bias variables while the backpropagation algorithm will 

compute the Jacobian matrix of the performance function that will update the weights and biases, 

which are used by the network to further estimate the respective finger/wrist joint angles. Finally, 

the network is assessed to check the learning capacity, the required training sample and the learning 

time required to complete the estimations. The architecture of the proposed feed-forward neuron 

network training is illustrated in Figure 5.2. 
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Figure 5.2: The proposed feed-forward neural network with Levenberg-Marquardt backpropagation algorithm for finger/wrist joint 

angle estimations. The number of input changes depend on the respective output estimation (either finger or wrist joint angles) 
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5.2.2 Modelling of the Finger Joint Angle 

In modelling the four medial fingers and the thumb, two separate ANN models are used where 

each model is studied, trained and tested with different input data sets that are mapped to specific 

joint angle as the output. The joint angles measurement used are based on the flexion and extension 

of resting fingers presented by Lee et al. (2014), as mentioned in section 3.3.  

The four medial fingers are modelled based on the WL features for five classes of finger 

movements (extracted from FDS, FDP, and EDC muscles at 20% of MVC pinching strength) that 

are mapped with the joint angles (DIP, PIP and MCP joints) for specific finger (index, middle, ring 

and pinky fingers). Whereas, the thumb is modelled based on the WL features extracted from FPL 

and EPB muscles for similar classes of movement that is mapped to the joint angles (DIP and MCP 

joints) of the thumb. Each network is modelled based on the EMG data collected from a single and 

multi-subjects and is trained with different number of hidden neurons depending on the complexity 

of the input.  

Each input samples (the WL features for four medial finger and the thumb for either single or 

multi-subjects) were randomly divided between three sample groups; training dataset, validation 

dataset, and testing dataset. 70% of the input samples are used as training dataset to fit the 

parameters of the model where the model is trained using the chosen learning method. While, 30% 

of the input samples are equally divided and are used as validation and testing datasets. The 

validation dataset is used by the fitted model to predict the desired output and to measure the 

network generalization so that the training can be stopped if the generalization stops improving. 

The testing dataset is used to evaluate the network performance.  

At first, WL features extracted from individual subject are presented to the network as the input 

dataset with desired target data. The network architecture for individual joint angle model consists 

of three-layer network; an input layer with three neurons, a tangent-sigmoid hidden layer with ten 

neurons and a pure linear output layer with one neuron. Figure 5.3 to Figure 5.5 show the prediction 

results for the mapping between WL features for five classes of movement with the DIP, PIP, and 

MCP joint angles.  
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Figure 5.3: Prediction results for the DIP joint angle model (a) modelling dataset (b) validation 

datasets  

 

Figure 5.4: Prediction results for the PIP joint angle model (a) modelling dataset (b) validation 

datasets  

 

Figure 5.5: Prediction results for the MCP joint angle model (a) modelling dataset (b) 

validation datasets 
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Figure 5.3 shows four prediction groups for both modelling and validations dataset indicating 

that there is overlapping in predicting the DIP joint angle for two finger movements whereas Figure 

5.4 and Figure 5.5 show five prediction groups that represents PIP and MCP joint estimations for 

five finger movements. Based on the obtained results, the DIP, PIP and MCP joint models 

produced acceptable mean square error (MSE) and correlation coefficient values (R) indicating 

small variation between the actual and estimated samples. 

The DIP joint model produced MSE of 1.038 and correlation coefficient of 0.997 for training 

datasets and MSE of 1.552 and correlation coefficient of 0.995 for validation datasets. Meanwhile 

the PIP joint and MCP joint produced MSE of 1.517 and 1.554, and correlation coefficient of 0.995 

and 0.994 for training datasets and MSE of 2.160 and 1.513, and correlation coefficient of 0.991 

and 0.998 for validation datasets respectively. The performance index of each model is presented 

in Table 5.1. 

Table 5.1: Performance index for the four medial finger joint models of a single subject 

Test 

subjects 

Joint 

angle 

Datasets No of 

hidden 

layer 

Mean Square 

Error (MSE) 

Correlation 

Coefficient Value Type No. of 

sample 

Single 

subject 

 

DIP 

joint  

Training 272 10 1.038 0.997 

Validation  59 1.552 0.995 

Testing 59 6.671 0.998 

PIP 

joint  

Training 272 10 1.517 0.995 

Validation  59 2.160 0.991 

Testing 59 1.255 0.998 

MCP 

joint  

Training 272 10 1.554 0.994 

Validation  59 1.513 0.998 

Testing 59 5.890 0.997 

Similar method was repeated using input dataset for multi-subjects to model the four medial 

fingers. The larger input samples are used to produce adaptation on the overall joint angle 

estimation network. The architecture of the neural network consists of three-layer network; an 

input layer with three neurons, a tangent-sigmoid hidden layer with ten neurons and a pure linear 

output layer with one neuron.The network for PIP joint angle was adjusted by adding more hidden 

layers to yield smaller MSE. The example of prediction results for training and validation datasets 

are shown in Figure 5.6.  The joint angle estimations for the DIP, PIP, and MCP joints are 
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combined using a single ANN network. Overall, the DIP model yielded smaller MSE for training 

and validation datasets, while PIP and MCP models produced acceptable MSE values. The 

performance index of the model is presented in Table 5.2.  

 

Figure 5.6: Prediction results for the DIP, PIP and MCP joint angle model for multi-subjects 

(a) modelling dataset (b) validation datasets 

Table 5.2: Performance index for the four medial finger joint models of multi-subjects 

Test 

subjects 

Joint 

angle 

Datasets No of 

hidden 

layer 

Mean 

Square Error 

(MSE) 

Correlation 

Coefficient 

Value 

Type No. of 

sample 

Multi 

subjects 

DIP joint  

Training 1638 10 0.322 0.990 

Validation  351 0.335 0.998 

Testing 351 0.561 0.994 

PIP joint 

Training 1638 10 2.884 0.903 

Validation  351 3.498 0.988 

Testing 351 2.384 0.923 

PIP joint 

Training 1638 15 2.615 0.914 

Validation  351 2.345 0.909 

Testing 351 2.982 0.903 

MCP joint  

Training 1638 10 1.673 0.935 

Validation  351 1.712 0.940 

Testing 351 3.005 0.988 

DIP, PIP 

& MCP 

joint  

Training 1638 10 1.997 0.993 

Validation  351 2.196 0.992 

Testing 351 1.740 0.994 
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5.2.3 Modelling of the Wrist Joint Angle 

Modelling the wrist joint angle requires only a single ANN model that takes four inputs and two 

outputs. The input samples are the WL features extracted from FCR, FDS, ECRL and EDC 

muscles at 20% of MVC grasping strength at different wrist positions; neutral, flexion and 

extension. It is mapped to the grasping and wrist joint angles based on the flexion and extension 

of resting wrist presented by Lee et al. (2014). The network architecture for the wrist joint angle 

model consists of three-layer network; an input layer with four neurons, a tangent-sigmoid hidden 

layer with ten neurons and a pure linear output layer with two neuron. 

Figure 5.7 and Figure 5.8 presented the prediction results for the wrist joint angles for six class 

of movements; hand open at wrist neutral, wrist flexion and wrist extension, and hand grasping at 

wrist neutral, wrist flexion and wrist extension. The obtained results shows similar pattern for both 

modelling and validation datasets with six prediction groups.  

 

Figure 5.7: Prediction results for the wrist joint angle model for single subject (a) modelling 

dataset (b) validation datasets 
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Figure 5.8: Prediction results for the wrist joint angle model for multi-subject (a) modelling 

dataset (b) validation datasets 

The performance index of each model is presented in Table 5.3. The joint model for single 

subject produced MSE of 7.82 and correlation coefficient of 0.94 for training datasets and MSE of 

1.552 and correlation coefficient of 0.995 for validation datasets. Meanwhile, for multi-subjects, 

the MSE are 15.11 and 13.12, with correlation coefficient of 9.90 and 9.91 for training and 

validation datasets respectively. The MSE value for modelling and validation datasets of multi-

subjects was higher compared to single subject. It seems possible that these results are due to the 

pattern of the input dataset that resulted from the overlapping and poor class separability within 

the WL features.  

Table 5.3: Performance index for the wrist angle model of single and multi-subjects 

Test subjects Datasets No of 

hidden 

layer 

Mean 

Square 

Error 

(MSE) 

Correlation 

Coefficient 

Value 

Type No. of 

sample 

Single subject Training 328 15 7.82 9.94 

Validation  70 1.39 9.99 

Testing 70 1.67 9.98 

Multi subjects Training 1966 20 15.11 9.90 

Validation  421 13.12 9.91 

Testing 421 19.26 9.98 
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5.3 Artificial Neural Fuzzy Inference System Models 

Fuzzy inference systems are known for their ability to deal with ill-defined and nonlinear system 

that is difficult to model and solve analytically using conventional mathematical tools. A fuzzy 

inference system (FIS) consists of interpretable linguistic rule base (fuzzy if-then rule), fuzzy set 

membership functions, and fuzzy logic operators that can qualitatively model human knowledge 

and reasoning processes into decision-making. The fuzzy inference process involves three basic 

steps; fuzzification that translates crisp inputs into a truth table, rule evaluation that computes 

output truth-value and defuzzification that transfers the truth values into crisp output.  

The functional block of FIS is illustrated in Figure 5.9. It comprises of five functional blocks, 

namely rule base, database, decision-making unit, fuzzification and defuzzification interface units. 

The rule base contains fuzzy if-then rules, and is often associated with the database, which defines 

the membership functions of fuzzy sets used in the fuzzy rules. Both are referred to as knowledge 

base and are very important for the decision-making.  

 

Figure 5.9: The fuzzy inference system  

In this work, the fuzzy rule is extracted based on sugeno-type fuzzy model that determines the 

output as a constant or linear term (normally the output is determines as a fuzzy set). First, the 

decision points are found based on the WL features selected from the respective muscles. Then, 

the ranges used to distinguish every level of the input data are defined. Finally, the fuzzy rule 

extracted by sorting the data points based on their importance is done. The number of rules set for 

each model is depends on the number of inputs and the number of linguistic variables assigned to 

each input. The standard fuzzy-if-then rules are applied (for example, the two fuzzy rules): 
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If x is A1 and y is B1, then f1 = a1x + b1y + c1. 

If x is A2 and y is B2, then f2 = a2x + b2y + c2. 

where x and y are the inputs with membership functions defined as A1, A2, B1, B2, while a1, a2, b1, 

b2, c1, c2, are the output parameters. 

In the FIS model, there is no defined method to acquire the knowledge to build the fuzzy rule, 

and tuning the parameters in the membership functions is often challenging and requires a lot of 

effort. To address this limitation, ANN that has a higher learning capability is combined with the 

FIS to automatically adjust the membership functions and reduce the error in formulating the fuzzy 

rules so that the readability and learning ability can be effectively achieved in parallel. The 

combination of the ANN and fuzzy logic forms neuro-fuzzy system or simply called as ANFIS 

and it was first introduced by Jang (1993). 

The basic architecture of ANFIS consists of 5 layers with specific node types; a square 

(adaptive) node has parameter while circle (fixed node) has none, as illustrated in Figure 5.10. 

 

Figure 5.10: (a) Type-3 fuzzy reasoning and (b) Equivalent ANFIS (Jang, 1993) 

 



93 

 

Details of the layers are as follows:  

Layer 1 - The fuzzification layer. Each node in this layer is an adaptive node, and adapts to 

a function parameter (premise parameters). Its output is in terms of membership 

value that is given by the input of the membership functions. 

Layer 2 - The rule layer. Each node in this layer is a fixed node, and provides firing strength 

of the rule. Each node multiplies the incoming signal in producing the output.  

Layer 3 - The normalisation layer. Each node in this layer is a fixed node, and works as 

normalised firing strength node that calculates the ratio of the rule’s firing strength 

to the sum of all rule’s firing strengths.  

Layer 4 - The defuzzification layer. Each node in this layer is an adaptive node, and adapts 

to a function parameter (consequent parameters). It provides a product operation 

between the normalised firing strength and the corresponding rule. 

Layer 5 - The output layer. Each node in this layer is fixed node, and sums up all the 

incoming inputs. 

5.3.1 ANFIS with Hybrid Learning and Subtractive Clustering  

In this work, the ANFIS architecture employed for finger/wrist joint angle estimation is based 

on an adaptive network that uses supervised learning that adopts Takagi-Sugeno fuzzy model. The 

output of each rule is a linear combination of the inputs and a constant term that is weighted 

average to produce the final output. The adaptive learning is based on a hybrid back propagation 

and least-mean-square algorithm. Through the learning process, the parameters in the membership 

functions are changed and adjusted using a gradient vector that measures how well the FIS is 

modelling the input/output data based on the given parameters. Here, the hybrid-learning algorithm 

is applied to optimize and adjust the parameters to reduce the error. The hybrid algorithm is chosen 

to overcome the drawback of back propagation that has slow convergence with tendency of being 

stuck in local minima during the training process.  

To further improve the ANFIS model, clustering technique is used to optimize the fuzzy data 

sets.  In the fuzzy system, each data point has a certain membership grade associated with specific 
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patterns that can provide a concise representation of behaviour or characteristics. Partitioning the 

input datasets into a degree of membership functions usually requires experience and takes a long 

time. It can be achieved by applying clustering techniques to improve the performance and 

interpretability of the fuzzy model as well as reduce the development time. Fuzzy clustering will 

divide the data space into fuzzy clusters that represent a particular system behaviour to determine 

its membership function.  

In this research, a subtractive clustering technique is used to automatically determined and 

optimise the fuzzy sets. It is an unsupervised clustering technique that requires no pre-defined 

reference for the vectors. The subtractive clustering is applied to a Takagi-Sugeno FIS model and 

resolves the growing dimension issues by using a data point (instead of grid point as used in grid 

partition method) as a potential centre of the cluster. It is able to yield a quick cluster estimation 

and is more consistent than the fuzzy C-Means clustering method. 

The applied subtractive clustering method is based on the method proposed by Chiu (1994). 

Considering a collection of n wavelength feature points {wl1, wl2,…,wln} in an M dimensional 

space. Each data point is assumed to be normalised in each dimension making the coordinate 

ranges in each dimension to be equal. Considering each data point as a potential cluster centre, a 

density measure of data point wli is defined as: 

𝑃𝑖 = ∑ 𝑒𝑥𝑝 [−
‖𝑤𝑙𝑖 − 𝑤𝑙𝑗‖

2

(
𝑟𝑎

2 )
2 ]

𝑛

𝑗=1

 (5.3) 

where ra is a neighborhood radius in which data outside this radius will have little influence on the 

potential data. The data point with the highest potential is selected as the first potential cluster with 

wlci as the location of the first cluster and Pci as the potential value.  The potential value is revised 

and defined as: 

𝑃𝑖 = 𝑃𝑖 − 𝑃𝑐𝑖
∗𝑒𝑥𝑝 [−

‖𝑤𝑙𝑖 − 𝑤𝑙𝑗‖
2

(
𝑟𝑏

2 )
2 ] (5.4) 

where rb is a neighborhood radius that has measureable reduction in density. The process is 

repeated until Pck < εPci with ε as a small fraction. 
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5.3.2 Modelling of the Finger Joint Angle 

In modelling the finger joint angle,  three ANFIS models were independently trained, validated 

and tested for each finger joints; the DIP, PIP, and MCP joints. The fuzzy rules employed were 

based on the input data that were substantively clustered using subtractive clustering technique. 

Each model consists of five fuzzy rules with three inputs and a single output, which are: 

If in1 is in cluster1 and in2 in cluster1 and in3 is in cluster1, then Out1 is outputcluster1. 

If in1 is in cluster2 and in2 in cluster2 and in3 is in cluster2, then Out2 is outputcluster2. 

If in1 is in cluster3 and in2 in cluster3 and in3 is in cluster3, then Out3 is outputcluster3. 

If in1 is in cluster4 and in2 in cluster4 and in3 is in cluster4, then Out4 is outputcluster4. 

If in1 is in cluster5 and in2 in cluster5 and in3 is in cluster5, then Out5 is outputcluster5. 

where in1, in2 and in3 are the inputs (WL features extracted fron FDS, FDP and EDC muscles 

respectively), while cluster1, cluster2, cluster3, cluster4, cluster5 are the membership functions 

based on the finger pinches FR, FP1, FP2, FP3, and FP4. The out1, out2, out3, out4, out5 are the 

output with parameters that were clustered based on the joint angles for respective joint and finger 

pinches (ie DIP joint for FR1, FP1, FP2, FP3 and FP4). 

The prediction results for the DIP, PIP and MCP joints angle using ANFIS subtractive 

clustering model are shown in Figures 5.11 to Figure 5.13. As noted in the Figure 5.11, the DIP 

joint estimations produced acceptable prediction errors when tested using different target datasets. 

The DIP joint angle ranges between 8 to 12 degrees with overlapping joint angle output denoted 

at 10 degree for FP1 and FP2 (as highlighted in the dotted-line box). Meanwhile, based on Figure 

5.12 and Figure 5.13, the PIP and MCP joint estimations produced acceptable prediction errors 

when tested using different target datasets.   

The results confirmed that with proper input datasets, the ANFIS models are capable of 

predicting the respective joint angles for different finger movements. The overlapping between 

FP1 and FP2 can be avoided if more distinguished joint angle are used to define the output range 
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for different finger pinches. Biologically, the DIP, PIP and MCP joint angles between four medial 

fingers during finger pinching and/or hand grasping are quite similar, therefore, precise 

measurements are needed. 

 

Figure 5.11: The prediction results for DIP joint estimations using ANFIS subtractive 

clustering model 

 

Figure 5.12: The prediction results for PIP joint estimations using ANFIS subtractive 

clustering model 
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Figure 5.13: The prediction results for MCP joint estimations using ANFIS subtractive 

clustering model 

 

5.3.3 Modelling of the Wrist Joint Angle 

A similar method was employed to model the wrist joint angles. A single ANFIS model was 

trained, validated, and tested based on the input data that were clustered following to the defined 

hand grasping movements; hand open and hand grasping at different wrist positions (neutral, 

flexion and extension). The fuzzy rule used are based on the WL features extracted from four 

muscles (FDS, FCR, EDC and ECRL muscles) at 20% of MVC of handgrip strength that is mapped 

to a single output, the wrist joint angles. Each input and output are clustered in six clusters. The 

fuzzy rule employed are as follows: 

If in1 is in cluster1 and in2 in cluster1 and in3 is in cluster1 and in4 is in cluster1, 

then Out1 is outputcluster1. 

If in1 is in cluster2 and in2 in cluster2 and in3 is in cluster2 and in4 is in cluster2, 

then Out2 is outputcluster2. 
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If in1 is in cluster3 and in2 in cluster3 and in3 is in cluster3 and in4 is in cluster3, 

then Out3 is outputcluster3. 

If in1 is in cluster4 and in2 in cluster4 and in3 is in cluster4 and in4 is in cluster4, 

then Out4 is outputcluster4. 

If in1 is in cluster5 and in2 in cluster5 and in3 is in cluster5 and in4 is in cluster5, 

then Out5 is outputcluster5. 

If in1 is in cluster6 and in2 in cluster6 and in3 is in cluster6 and in4 is in cluster6, 

then Out6 is outputcluster6. 

The prediction results for wrist joint angle using ANFIS subtractive clustering model are shown 

in Figures 5.14. Overall, prediction results for wrist joint angle model yielded slightly larger error 

as compared to prediction results for the finger joint angle model. Based on the results, the 

estimations were overlapping with most of the input data were interpolated to be at neutral wrist 

position.  

Technically, ANFIS is capable in providing precise prediction if proper input data is provided 

to the model. This suggests that the WL features provided as the input datasets to model the wrist 

joint angles contained overlapping classes, perhaps due to repetitive muscles that were selected; 

FDS with FCR and EDC with ECRL. Since both flexor and extensor muscles are responsible for 

wrist movement, reducing the input data into only WL features extracted from FCR and ECRL 

muscles will improve the model performance.    
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Figure 5.14: The prediction results for wrist joint estimations using ANFIS subtractive 

clustering model 

5.4 Validation of the Joint Angle Estimations 

The ANN models developed are used in the validation of the finger and wrist angle estimations. It 

is selected based on the regression value and the MSE value computed for ANN model that is 

better when compared to the ANFIS with subtractive clustering model.  (Please refer to Appendix 

H and Appendix I for more samples of results for ANN and ANFIS model validations). 

5.4.1 Validation for the Finger Joint Angle 

Several datasets comprising of WL features from the single and multi-subjects are used as the input 

to the ANN model. Figure 5.15 to Figure 5.17 show the corresponding DIP, PIP and MCP joint 

angle estimated by the neural network for the four medial fingers. The performances of each of the 

neural networks are evaluated by calculating the Mean Absolute Error (MAE) between the output 

values estimated by the neural network with the desired values. It can be concluded that the neural 

networks used estimated the joint angles for the fingers with acceptable MAE values. 
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Figure 5.15: The DIP joint angle estimated from the ANN model for four medial fingers based 

on wavelength features at 20% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 

 

Figure 5.16: The PIP joint angle estimated from the ANN model for four medial fingers based 

on wavelength features at 20% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 
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Figure 5.17: The MCP joint angle estimated from the ANN model for four medial fingers based 

on wavelength features at 20% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 

5.4.2 Validation for the Wrist Joint Angle 

Figure 5.18 and Figure 5.19 show the validation results for the hand grasping and wrist angle 

estimations using the ANN model. The obtained results show significant differences between each 

class of movements especially for wrist flexion and extension with prismatic power grip. The 

validation was done using input data for single and multi-subjects.   

 

Figure 5.18: The grasping and wrist angles estimated from the ANN model based on 

wavelength features at 20% MVC using target data for a single subject 
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Figure 5.19: The grasping and wrist angles estimated from the ANN model based on 

wavelength features at 20% MVC using target data for multi-subject 

5.5 Summary 

The experimental results show that the feed-forward ANN provides better joint angle estimation 

with a correlation coefficient of 0.98±0.008 and mean square error less than 3%, when compared 

to the ANFIS model with subtractive clustering. This result suggests that ANN with WL features 

provides a viable and effective estimation for finger joint kinematics and demonstrates a potential 

control strategy, which can be applied for continuous control of robotic devices. The estimation 

results obtained for each joint angle will be used to design a finite state controller for the overall 

control of exoskeleton hand in chapter 6.  
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DESIGN AND CONTROL FRAMEWORK FOR EXOSKELETON HAND 

 

6.1 Introduction 

In this chapter, the control framework for the exoskeleton hand is presented by employing the 

results of the estimations obtained in the previous chapter. The control framework includes an 

EMG based controller that takes into account the user motion intention as part of the control input 

in designing the overall control scheme. The earliest myoelectric controller was applied around 

the 1950s to 1960s using simple algorithms based on the comparison between EMG amplitude to 

a threshold. The technique is inherently limited. Therefore, in the 1960s, pattern recognition based 

classification techniques were introduced and attracted the interest of researchers working on 

controlling artificial limbs with performance accuracies greater than 90%. The approach is based 

on the assumption that the EMG signal patterns are distinguishable and repeatable among different 

muscles activation. However, this control approach is not applicable in clinical practice and seems 

to be only successful in the scientific papers.  

The main issues with the myoelectric control based on pattern recognition are due to the discrete 

approximation making the control scheme sequential without a direct proportional control that 

substantially differs from the natural control of the human hand. The human hand requires 

continuous control and coordination of multiple degrees of freedom across several joints. Its 

movements are generally simultaneous with proportional articulation. However, the proportional 

control degrades the accuracy of the classification and is usually implemented after classifications 

are made. Thus, control methods that realise continuous and proportional control of multiple DOF 

should be implemented and realised to control the exoskeleton hand. 
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In this research, a hierarchical control based strategy is designed to control the exoskeleton 

hand. Technically, in developing a complex system, the hierarchical control scheme is often 

introduced to organise and divide the design task as a hierarchy. The higher level of control 

requires longer execution time and process while the lower layer computes the direct control 

command based on decisions made by the higher level. The framework of the proposed control 

method is discussed in the following section, followed by the results and performance analysis of 

the controller.   

6.2 Exoskeleton Hand Control Framework 

A three-level hierarchical control framework is employed to control the exoskeleton hand. The 

proposed framework was inspired by and extended from the control strategies for lower limb 

prosthesis introduced by Tucker et al. (2015) and Varol et al. (2010). It comprises high-level 

control, mid-level control and low-level control, as shown in Figure 6.1.  

 

Figure 6.1: Hierarchical control framework for the exoskeleton hand 

The hand movement is originated from the user motion intentions whose physiological state 

and desire can be traced and interpreted. In the high-level control (the perception level), the user 

motion is perceived and estimated by the activity recognition mode, which comprises the 
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processing techniques for the EMG signals together with the supervised learning algorithm which 

translates the muscle excitation into kinematics estimations of the hand, as shown in Figure 6.2. It 

distinguishes different movements like finger pinches, hand grasping, flexion and extension of the 

wrist and switches to appropriate mid-level controller. 

 

Figure 6.2: The activity mode intent recogniser 

The mid-level controller (the transition level) translates the activity mode decisions from the 

high-level control to the desired device states for the low-level control to track. It generates the 

angle references for the joint using a finite state machine (FSM) controller that modulates the 

impedance of the joints depending on the phase of activity. The desired state control action is 

passed to the low-level controller (the execution level), which executes the control command and 

signals the actuators to produce the desired hand movement. It computes the error with respect to 

the current state.  

6.3 Hierarchical Control of the Exoskeleton Hand 

The control framework proposed in this research is executed and validated using the exoskeleton 

hand designed in Chapter 3. Figure 6.3 shows a block diagram of the overall control of the 

exoskeleton hand in Simulink; the graphical programming environment that offers an integration 

platform with the MATLAB software, developed by MathWorks. The controller integrates the 

joint angles estimated by the ANN models based on the WL features with the finite state machine 

that switches among the controller mode and the closed-loop proportional integral derivative (PID) 
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control position controllers that compensate for the error computed by the actuators of the 

exoskeleton hand developed in SimMechanics.  

 

Figure 6.3: Block diagram of overall system controller showing the integration of the proposed 

hierarchical control framework for the exoskeleton hand; the perception level, the transition 

level and the execution level. 

6.3.1 Finite State Machine Controller 

The finite state machine (FSM) is the most popular mid-level controller used in lower limb 

exoskeletons (Miranda-Linares et al., 2015), upper limb exoskeleton and many others (Tucker et 

al., 2015), preferably due to its sequential operation. FSM is a computational model of sequential 

behaviour of a system and is commonly used to represent an execution flow for the system. It is 

defined by its states, its initial condition and the conditions of each state transition. The FSM 

comprises a set of pre-defined states with transition states in between; the state is a status of the 

system waiting to execute the transition that contains the corresponding outputs/actions when a 

condition is fulfilled.  

In this research, the mid-level control is designed using two FSM models that are used to control 

the finger pinching and hand grasping at different wrist positions. States were defined based on 

the classification of the movements similar to the classification made during the features extraction 
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process. Figure 6.4 shows the FSM diagram developed to control the finger pinches for the 

exoskeleton hand.  

 

Figure 6.4: Finite state controller for finger pinches  

For finger pinches, the FSM was built using five states with ten transitions, which include finger 

at rest, index to thumb finger pinch, middle to thumb finger pinch, ring to thumb finger pinch and 

pinky to thumb finger pinch.  The five states are represented by the set, S={0,1,2,3,4}. The 

transitions between each states are triggered by three input functions generated continuously by 

high-level controller. The input set are: I={DIPangle, PIPangle, MCPangle}. Meanwhile, three outputs 

are generated for each finger pinches making the output set to be: O={DIPindex, PIPindex, MCPindex, 

DIPmiddle, PIPmiddle, MCPmiddle, DIPring, PIPring, MCPring, DIPpinky, PIPpinky, MCPpinky}. Each state 

with its input sets and output functions are as follows: 

State 0: Finger at rest. This is the initial state in which all fingers are at resting positions 

(0 degree for all joints). The next state is activated when the DIP, PIP and MCP joint 

angles change to the value set for FP1.  

State 1: Index to thumb finger pinch. In this state, the DIP, PIP and MCP joint angles are 

estimated to be the angles for index finger (FP1). Other fingers are not activated. The 

next state is activated when the DIP, PIP and MCP joint angles change to the value set 

for FP2. 
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State 2: Middle to thumb finger pinch. Similar to the previous state, the DIP, PIP and 

MCP joint angles are estimated to be the angles for middle finger (FP2). Other fingers 

are not activated. The next state is activated when the DIP, PIP and MCP joint angles 

change to the value set for FP3. 

State 3: Ring to thumb finger pinch. This state triggered when the DIP, PIP and MCP 

joint angles are estimated to be the angles for ring finger (FP3). Other fingers are not 

activated. The next state is activated when the DIP, PIP and MCP joint angles change to 

the value set for FP4. 

State 4: Pinky to thumb finger pinch. In this state, the DIP, PIP and MCP joint angles are 

estimated to be the angles for pinky finger (FP4). Other fingers are not activated. 

The corresponding input set and output functions for each states are described in Table 6.1. 

Table 6.1: The state with input set and output function for finger pinches 

States/phases State transitions Output/Actions 

Finger at rest (FR) Finger pinch is off; 

DIP = 0; PIP=0; MCP=0; 

 

All finger pinches is 0 

Index to thumb finger pinch 

(FP1) 

Finger pinch is on;  

8.5 < DIP >10.5; 

20.5< PIP > 26.5;  

24.5< MCP > 28; 

 

Index finger = [10;26;27]; 

Others is 0 

Middle to thumb finger 

pinch (FP1) 

Finger pinch is on; 

 8.5 < DIP >10.5; 

26.5< PIP > 32;  

24< MCP > 30.5; 

 

Middle finger = [10;27;32]; 

Others is 0 

Ring to thumb finger pinch 

(FP1) 

Finger pinch is on;  

8.5 < DIP >11.5; 

30< PIP > 32.5;  

24 < MCP > 29; 

Ring finger = [8;24;32]; 

Others is 0 

Pinky to thumb finger pinch 

(FP1) 

Finger pinch is on;  

11 < DIP >12.5; 

29< PIP > 35; 

 29< MCP > 30.5; 

Pinky finger = [12;34;29]; 

Others is 0 
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The finite state machine controller for wrist movements is based on the hand grasping at 

different wrist positions (neutral, flexion and extension) as illustrated in Figure 6.5. It was built 

with six states and 12 states transitions, represented by the set, S={0,1,2,3,4,5}. The transitions 

between each states are triggered by five input functions generated continuously by high-level 

controller. The input set are: I={Wristangle, Handgripstrength}. Meanwhile, two outputs are generated 

are set to be: O={Wrist, Handgrasp}.  

 

Figure 6.5: Finite state controller for wrist movements  

Based on Figure 6.5, each state with its input sets and output functions are as follows: 

State 0: Hand open at neutral. This is the initial state in which all fingers and wrist are at 

resting positions (0 degree for all joint angles). The next state is activated when the 

handgrip is triggered while the wrist angle is set to be 0 degree. This is based on the 

predicted angles measured in high-level controller. 

State 1: Hand grip at neutral. In this state, the handgrip is triggered at neutral wrist 

positions. Other states are not activated. The hand will be closed at 0-degree wrist 

position. The next state is activated when hand open at wrist flexion is triggered. 
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State 2: Hand open at flexion. This state is triggered when the wrist angle is estimated to 

be at 45-degree wrist flexion for hand open.  The next state is activated when the 

handgrip is activated at similar wrist angle.  

State 3: Hand grip at flexion. In this state, the handgrip is triggered at flexion wrist 

position. Other states are not activated. The hand will be closed and flexed to 45-degree. 

The next state is activated when hand open at wrist extension is triggered. 

State 4: Hand open at extension. This is the state is in which the hand is open at 45-

degree extension.  The next state is activated when the handgrip is activated at similar 

wrist angle.  

State 5: Hand open at flexion. In this state, the handgrip is triggered at extension wrist 

position. Other states are not activated. The hand will be closed and extended to 45-

degree.  

The corresponding input set and output functions for each states are described in Table 6.2. 

 

Table 6.2: The state with input set and output function for wrist movements 

States/phases State transitions Output/Actions 

Hand open at neutral  Hand grasping is off; 

-2 < wrist < 2; 

Handgrasp = 0; 

Wrist = 0 

Hand grip at neutral  Hand grasping is on;  

-2 < wrist < 2; 

Handgrasp = 20; 

Wrist = 0 

Hand open at flexion  Hand grasping is off; 

wrist > 40; 

Handgrasp = 0; 

Wrist = +45 

Hand grip at flexion  Hand grasping is on;  

wrist > 40; 

Handgrasp = 20; 

Wrist = +45 

Hand open at extension  Hand grasping is off; 

wrist < - 40 

Handgrasp = 0; 

Wrist = -45 

Hand grip at extension  Hand grasping is on;  

wrist < - 40; 

Handgrasp = 20; 

Wrist = -45 
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Based on the data in Table 6.1, the state transition is defined based on the ANN model as shown 

in Figure 6.6. The estimated angle for DIP, PIP, and MCP joints for each respective finger joint is 

used as the condition that is needed to be fulfilled before executing the output or action.  

 

Figure 6.6: The reference trajectories divided by states based on the estimated DIP, PIP and 

MCP joint angles. (As for the legend; blue line is the DIP joint angle, yellow line is the PIP 

joint angle, while red line is the MCP joint angle ) 

The obtained results produced joint angle references for each respective finger joints with 

acceptable activation periods. A trapezoidal type of signal was observed for each finger pinches 

with different activation periods for each movement due to the variations in the input data set as 

shown in Figure 6.7.  
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Figure 6.7: The angle references computed by the FSM controller. 

6.3.2 PID controller 

The computed reference angles are fed to the closed-loop PID controller to compute the desired 

finger pinches. The exoskeleton hand is assumed to operate with 100% control command with no 

control input from the human user. The composition of the human hand mass is approximated and 

incorporated in the exoskeleton model. The exoskeleton hand is designed with full actuation with 

the intension to produce hand functionality that can emulate the actual human hand. Each of the 

joints is controlled by separate actuators requiring independent PID controller for each joint. This 

however has caused the system to be complex, and increase the computational load and time.  

Figure 6.8 and Figure 6.9 show the computed joint angles and torque for index to thumb finger 

pinch (FP1). The control parameters for the PID were manually tuned to produce the desired 

control response. Initially, all control parameters were set to zero. Then, the proportional (P) gain 
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was increased followed by the derivative (D) gain and integral (I) gain. The I gain was adjusted to 

obtain ess=0. It is noted in Figure 6.7, there were small overshoot and undershoot in the control 

response computed for each joint angle. Therefore, the integral gain was reduced while the 

derivative gain was adjusted.  

 

Figure 6.8: The joint angle and torque computed for index finger with the control parameters 

Kp=0.5, Kd=0.02, Ki=1.5. 

 

Figure 6.9: The joint angle and torque computed for index finger with adjusted control 

parameters Kp=0.5, Kd=0.01, Ki=1. 
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6.5 Summary 

This chapter has presented the control framework that integrates all methods described in this 

research. The proposed framework comprises a 3-level control hierarchy that computes different 

outputs or control actions. The results have been validated and good results have been achieved. 

The results produced by the mid-level and low-level control are analysed in terms of variations 

between the input and the output trajectories. Root mean square error (RMSE) is computed for 

both mid-level and low-level control while the control response in terms of steady state error and 

percentage of overshoot is evaluated for the low-level control. It can be concluded that the 

proposed control design is viable and sufficient to be used in controlling the exoskeleton hand. 
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CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 

 

7.1 Discussion 

A literature review has been carried out to study the development of exoskeleton hand and its’ 

challenges. Gaps have been identified regarding the development of exoskeleton hand in virtual 

environments for early design assessments. It was found that most of the publications on the 

development of the exoskeleton hand described the construction of the mechanical prototype with 

only a few described the use of virtual environments. The recent advancement in computational 

tools allow the integration of complex physical and mathematical systems to be carried out in 

simulations. The geometric Solidworks assembly of the exoskeleton hand is transformed into a 

physical model in SimMechanics.  

The exoskeleton model scheme presented acceptable prototype animation with several 

limitations. The design structure is designed with the palm that is tied to the ground and attached 

to a forearm that was freely moved. Technically, this design structure is not following the 

biological hand movements as supposedly, the forearm is designed as the distal body to the wrist 

joint and tied to the ground. Even though the simulation model of the exoskeleton hand is not quite 

right, it still able to produce acceptable results for early control design assessments. Additionally, 

the designed exoskeleton has a rigid structure (with parallel joints) that hinders a full kinematic 

compatibility when attached to the human joints. It is difficult to model the biological joints of the 

hand making human-exoskeleton attachment difficult. This can be improved by introducing 

‘circuitous joint’ that coincides the joint axes between the human and the exoskeleton by extending 

the link length of the finger in proportion to the joint angular displacement.   
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It was also found that the most significant step in developing the exoskeleton hand is to design 

an effective control scheme that includes the user motion intention as part of the control input. It 

can be done by extracting the useful information within EMG signals to produce high-quality 

feature sets with significant separability of classes for each finger and wrist movements. Previously 

published studies show that the current EMG based control schemes employed in controlling the 

available multiple DOF exoskeleton hands cannot fully utilise the hand function because there are 

fewer control inputs than the joints that need to be controlled. It is based on pattern recognition 

that is sequential with limited robustness as it can process only a single movement at a time. The 

proportional controller is normally applied after classification is done to avoid degradation in the 

classification performances. Therefore, in this research, the relationship between the forearm EMG 

signals with various finger pinches and handgrip strength at different wrist positions were 

established by using nonlinear regression methods.  

The EMG data collected were pre-processed and the features were extracted. These steps are 

crucial and not only significant in extracting useful information, but also essential to be used in 

removing the unwanted signal part and interferences. The time domain features extracted produced 

significant class separability when normalised as presented in Chapter 4. Since the EMG data 

collected were extensively analysed, the remaining normalised and non-normalised features 

extraction results for different percentage of maximum voluntary contraction were included in the 

Appendixes.  

The EMG pattern-recognition process is modified by replacing the classifier with supervised 

learning method; a feed-forward artificial neural network (ANN) and adaptive neuro-fuzzy 

inference system (ANFIS) with subtractive clustering. The learning method are used to predict the 

finger and wrist joint angles based on the extracted EMG features. The results show that the ANN 

model provides superior joint angle estimations when compared to the ANFIS model. Even though 

the EMG signals are proportional to the handgrip force, the estimations for the force is not included 

in this research work. Instead, the handgrip force was recorded and used only to analyse the 

maximum voluntary contraction of the finger pinches and hand grasping at different wrist 

positions.  
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To integrate all components together, hierarchical control comprising three-level controllers is 

proposed as the overall control scheme for the exoskeleton hand. In the high-level control, user 

defined motion intention based on forearm EMG signals is used as control input where the 

kinematic estimation of the hand is computed based on the established relationship. Finite state 

machine controller is designed in the transition layer between high level and low-level control to 

govern and join the fingers and wrist controls together before any movement is executed by the 

low-level control using the classical control approach, the PID controller. Technically, the high-

level controller is used to predict the finger and wrist joint angles and provides continuous 

isometric grip pattern. Therefore, employing the FSM controller as the mid-level control will limits 

the predictions to a discrete set of grip patterns. It is a compromised that was made for the purposes 

of demonstrating and analysing the overall control performance. Due to that, the low-level control 

was tested using the FSM results yielded for the finger pinches only.  

7.2 Conclusion 

This research has embarked on the modelling and EMG based control of an exoskeleton hand to 

provide excellent assistance to the stroke survivors in accomplishing simple daily hand functions. 

Being able to accomplish these basic tasks, which are often less appreciated by healthy individuals, 

can significantly improve their quality of life. The research starts with the designing method used 

to produce the exoskeleton hand model in a virtual environment to avoid complex and challenging 

mathematical computation of the system modelling. Besides, the virtual model can save the 

development cost and provides a reliable testing platform with the exoskeleton hand. 

The design exoskeleton hand is done by following the anatomy and biomechanics of the human 

hand closely. Anthropometry measurement of the human hand is compared and referred for the 

measurement of the exoskeleton hand. The simulation diagram of the designed exoskeleton hand 

shows a satisfactory result with a few joint movement restrictions that can be improved in the 

future.  

In defining user motion intention, the EMG data collected is processed and analysed to produce 

a functional time domain features that is useful to study the muscle excitation and to establish the 

relationship between EMG signals, finger pinch/hand grip strength and different wrist positions. 
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Valuable WL features are produced and proven efficient to be used in estimating the respective 

joint angles through the implementation of ANN model. The performance of the ANN and ANFIS 

modelling are compared, and the ANN model is concluded to be superior to the ANFIS model.  

The hierarchical control framework employing the results from all stage of research together 

yielded a viable and effective control approach for controlling the exoskeleton hand. The control 

design was validated, and its control performances were analysed. Several statistical approaches 

were used to measure the accuracy of the results obtained in the respective stage such as the one-

way ANOVA with Turkey Kramers test, the RMSE and the MSE, the regression value and the 

standard control response; steady-state error and percentage of overshoot. 

Overall, based on all the aforementioned simulation results, it can be concluded that the 

modelling and EMG based controller for exoskeleton hand is successfully achieved with several 

limitations. The proposed supervised learning methods are capable in providing joint angle 

estimations that can be used to continuously predict the isometric grip pattern. The proposed 

control framework can be easily replicate to integrate and control the fingers and wrist movements 

of the exoskeleton hand.  

7.3 Recommendations for Future Work 

Despite all the careful evaluations and efforts that had been done to efficiently model and control 

the exoskeleton hand, there are a few suggestions for improvement that can be done to improve 

the control performance of the exoskeleton hand further. The suggestions are as follows: 

1. Based on the exoskeleton model scheme, the palm is designed as the body distal to the 

wrist and is tied to the ground. It is attached to the forearm that is freely moved with a 

single DOF joint represented as the wrist. The designed structure is due to the amendment 

made in the scope of this research that only considered the wrist structure to be included 

after the model is complete. It need to be improvise by changing the forearm to be the distal 

body to the wrist. 
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2. The joint finger estimation is done based on the time domain features that are not suitable 

for non-stationary datasets. Therefore, it is useful to study another type of features like 

frequency domain or time-frequency domain features. 

3. The mid-level control is independently designed between finger pinches and wrist position. 

Integrating these two controllers would be beneficial for the overall control of the 

exoskeleton hand. 

4. Based on the research conducted, it is difficult to achieve robust control solely using EMG 

signals. Thus, the use of other sensor fusion together with the EMG signal seems necessary. 

For example, embedding the force measurement using a mechanical sensor together with 

the EMG signal as part of control input in predicting the intention of the user might improve 

the performance and adaptability for the exoskeleton hand control. It is also useful if 

adaptive control can be designed in case of any interruption in acquiring the EMG signals.  

5. Cross-validation to randomly produce the training and testing datasets. 

6. The control of the exoskeleton hand was done by assuming that the exoskeleton hand 

provides 100% assistance, which may not always be true. Analysing the control 

performance at different assistive percentages would increase the efficiency of the overall 

control. 

7. Feedback sensor for safety. In the development of the exoskeleton hand control scheme, 

there is no proprioceptive feedback provided to observe the performance of the grasping 

task that are carried out automatically. In the case of unsuccessful event, the only available 

feedback is based on user’s direct vision to reset or stop the controller. Therefore, including 

the feedback sensor as part of the control design will increase the safety measures for the 

users. 
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Appendix A: The commercially available exoskeleton hand 

Characteristics Assistive Device(s) 
 

 

   

Device Name MyoPro Daiya Glove Carbonhand  

(or also known as SEM Glove) 

Company MyoMo Inc (2015) Daiya Industry (2013) Bioservo Technologies (2015) 

Functions Powered orthosis that work as a mobile 

assistive device.  

A pneumatic power assist glove 

that employed the soft exoskeleton 

technology. 

A soft powered glove use to assist 

individuals with weaken hand 

strength.  

Basic Features Portable and lightweight arm brace, a 

powered elbow orthosis with surface 

electromyography (EMG) sensors, a 

static or manually set multi-articulating 

wrist (MAW), and a powered 3-jaw-

chuck grasp. 

It consists a glove with three 

fingers compartment (with pink, 

ring and middle finger merged 

together), sensors, and a controller 

that link compressed gas canister. 

A lightweight glove with sensors, a 

pouch with a controller and batteries 

and a connection system. 

Supported 

Movement 

Elbow flexion/extension, wrist 

flexion/extension and 

supination/pronation, and hand 

grasping.  

Support bending and stretching of 

fingers. 

Cover full degrees of freedom for 

the hand. 

Approximate 

Cost 

$13,400  or $ 150 per 1 hour session. 250, 000 yen £4730 or €6000 
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Characteristics Rehabilitation Device(s) 

 

 

 

 
 

Device Name AMADEO Hand of Hope InMotion Hand InMotion WRIST 

Company Tyromotion (2018) Rehab-Robotics (2015) Bionik Labs (2010a) Bionik Labs (2010b) 

Functions Rehabilitation device 

using powered end 

effector exoskeleton.  

Neuromuscular 

rehabilitation of the hand 

and forearm with 

biofeedback system. 

Rehabilitation device that 

provides intensive 

sensorimotor grasp and 

release hand therapy. 

Rehabilitation device that 

provides intensive 

sensorimotor wrist and forearm 

therapy 

Basic Features Adjustable hand-arm 

support, electrically 

driven mechanism, 

integrated biofeedback, a 

control and operating unit 

(all-in-one PC). 

Hand brace with two surface 

sensors attached to the 

extensor and flexor muscle 

of the arm associated with 

real-time interactive games. 

Contoured finger and 

thumb grips with 

adjustable-length forearm 

rest. 

Robotic arm with 3 active 

degrees-of-freedom. 

Adjustable-height robot and 

workstation. 

 

Supported 

Movement 

Assistive and interactive 

therapies for flexion and 

extension movements of 

the finger and thumb. 

Full range of motion for 

fingers, hand opening and 

grasping. 

Grasp and release 

exercises combined with 

reaching movements 

Wrist abduction/adduction, 

wrist flexion/extension 

Forearm pronation/supination 

Wrist and forearm combination 

 

Approximate 

Cost 

Overall cost is not stated. 

$ 300 per 1-hour session. 

€ 20, 000 Not stated $ 10, 000 + 
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Characteristics    Augmentative Device (s) 

 

 

   

Device Name ExoHand Ironhand RoboGlove 

Company The Festo Group (2012) Bioservo Technologies General Motors and NASA 

Functions An augmentative exoskeleton that 

works as a master-slave system to 

tele-operate a robotic hand. 

A soft powered glove for 

professional use that reduce fatigue 

and injury due to repetitive tasks. It 

employed soft extra muscle 

technology that can augment the 

user’s finger force. 

A force multiplying and motor 

assisted glove designed to help 

reducing the grasping force needed 

by the factory workers; either for 

extended time or for repetitive work. 

Basic Features Consists of eight double-action 

pneumatic actuators, potentiometer 

and pressure sensors which provide 

force amplification and force feedback 

to the overall system. 

Consists of a glove that covers all 

fingers, equipped with sensors and 

servomotor, and a power unit.  

Consists of a glove that covers all 

fingers, equipped with actuators and 

artificial tendons that mimic the 

muscles of the human hand. 

Supported 

Movement 

Covers full degrees of freedom for the 

hand and provide diverse techniques 

for grasping and objects handling. 

Covers full degrees of freedom for 

the hand. 

Covers full degrees of freedom for 

the hand. 

Approximate 

Cost 

Not stated. Not stated. Not stated. 
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Appendix B: Documentation for EMG data collection 
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Appendix C: Time domain features without normalisation for finger movements 

 

Figure C.1: Features extracted (from FDS, FDP and EDC muscles) at 20% of MVC finger pinch strength for 

four medial fingers 

 

Figure C.2: Features extracted (from FDS, FDP and EDC muscles) at 40% of MVC finger pinch strength for 

four medial fingers 
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Figure C.3: Features extracted (from FDS, FDP and EDC muscles) at 60% of MVC finger pinch strength for 

four medial fingers 

 

Figure C.4: Features extracted (from FDS, FDP and EDC muscles) at 80% of MVC finger pinch strength for 

four medial fingers 
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Figure C.5: Features extracted (from FDS, FDP and EDC muscles) at 100% of MVC finger pinch strength 

for four medial fingers 
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Appendix D: Time domain features with normalisation for finger movements 

 

Figure D.1: Extracted features from FDS, FDP and EDC muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for index to thumb finger pinch (FP1) 

 

Figure D.2: Extracted features from FPL and EPB muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for index to thumb finger pinch (FP1). The FPL and 

EPB muscles are contributed to the thumb movement 
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Figure D.3: Extracted features from FDS, FDP and EDC muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for middle to thumb finger pinch (FP2)  

 

Figure D.4: Extracted features from FPL and EPB muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for middle to thumb finger pinch (FP2). The FPL and 

EPB muscles are contributed to the thumb movement 
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Figure D.5: Extracted features from FDS, FDP and EDC muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for ring to thumb finger pinch (FP3)  

 

Figure D.6: Extracted features from FPL and EPB muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for ring to thumb finger pinch (FP3). The FPL and EPB 

muscles are contributed to the thumb movement 
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Figure D.7: Extracted features from FDS, FDP and EDC muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for middle to thumb finger pinch (FP4). Each of the 

MVC percentage of normalised EMG is corresponding to the same MVC percentage of finger 

pinch strength 

 

Figure D.8: Extracted features from FPL and EPB muscles based on normalised EMG at 

different % of MVC (from 20 to 100%) for pinky to thumb finger pinch (FP4). The FPL and 

EPB muscles are contributed to the thumb movement 



143 

 

Appendix E: The standard deviation computed for the features contributed to the finger movement 

Task/Motion Feature Muscles Standard deviation values 

20% of 

MVC 

40% of 

MVC 

60% of 

MVC 

80% of 

MVC 

100% of 

MVC 

Index to 

thumb pinch 

(FP1) 

RMS 

FDS 0.0115 0.0062 0.0139 0.0197 0.0187 

FDP 0.0047 0.0092 0.0213 0.0204 0.0229 

EDC 0.0076 0.0107 0.0139 0.0156 0.0207 

FPL 0.0032 0.0060 0.0066 0.0207 0.0368 

EPB 0.0165 0.0165 0.0181 0.0194 0.0182 

MAV 

FDS 0.0074 0.0052 0.0095 0.0144 0.0126 

FDP 0.0039 0.0072 0.0171 0.0170 0.0184 

EDC 0.0063 0.0078 0.0104 0.0123 0.0132 

FPL 0.0027 0.0050 0.0058 0.0153 0.0302 

EPB 0.0137 0.0135 0.0143 0.0151 0.0145 

IEMG 

FDS 1.9009 1.3236 2.4298 3.6853 3.2184 

FDP 0.9890 1.8378 4.3677 4.3563 4.7075 

EDC 1.6203 2.0040 2.6676 3.1512 3.3872 

FPL 0.6793 1.2706 1.4800 3.9162 7.7377 

EPB 3.5056 3.4676 3.6596 3.8666 3.7036 

WL 

FDS 0.0841 0.1002 0.1818 0.2846 0.2821 

FDP 0.0412 0.1333 0.3260 0.3779 0.4293 

EDC 0.1080 0.1227 0.1959 0.2718 0.3126 

FPL 0.0542 0.1047 0.1292 0.2369 0.5166 

EPB 0.2269 0.1888 0.2234 0.3330 0.3068 

Middle to 

thumb pinch 

(FP2) 

RMS 

FDS 0.0091 0.0101 0.0159 0.0252 0.0246 

FDP 0.0090 0.0111 0.0200 0.0294 0.0320 

EDC 0.0091 0.0121 0.0130 0.0148 0.0231 

FPL 0.0069 0.0087 0.0154 0.0162 0.0258 

EPB 0.0161 0.0149 0.0147 0.0239 0.0287 

MAV 

FDS 0.0071 0.0077 0.0119 0.0192 0.0185 

FDP 0.0075 0.0089 0.0166 0.0233 0.0266 

EDC 0.0067 0.0085 0.0100 0.0100 0.0172 

FPL 0.0058 0.0075 0.0116 0.0130 0.0193 

EPB 0.0132 0.0123 0.0123 0.0191 0.0228 

IEMG 

FDS 1.8250 1.9749 3.0393 4.9260 4.7476 

FDP 1.9132 2.2746 4.2600 5.9703 6.8085 

EDC 1.7202 2.1676 2.5483 2.5584 4.4001 

FPL 1.4930 1.9093 2.9594 3.3289 4.9462 

EPB 3.3757 3.1557 3.1477 4.8895 5.8478 

WL 

FDS 0.1442 0.1456 0.1569 0.2096 0.3567 

FDP 0.1021 0.1344 0.2121 0.3871 0.4195 

EDC 0.1354 0.1248 0.1728 0.1950 0.3644 

FPL 0.1147 0.1491 0.2125 0.1978 0.3210 

EPB 0.2459 0.2248 0.2172 0.3369 0.4751 
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Ring to 

thumb pinch 

(FP3) 

RMS 

FDS 0.0072 0.0118 0.0220 0.0211 0.0212 

FDP 0.0142 0.0105 0.0280 0.0195 0.0223 

EDC 0.0091 0.0111 0.0184 0.0212 0.0218 

FPL 0.0039 0.0046 0.0087 0.0325 0.0303 

EPB 0.0069 0.0063 0.0216 0.0198 0.0140 

MAV 

FDS 0.0051 0.0078 0.0159 0.0135 0.0143 

FDP 0.0111 0.0084 0.0225 0.0169 0.0177 

EDC 0.0067 0.0089 0.0152 0.0173 0.0168 

FPL 0.0031 0.0039 0.0072 0.0257 0.0242 

EPB 0.0061 0.0050 0.0161 0.0160 0.0105 

IEMG 

FDS 1.2963 1.9928 4.0616 3.4631 3.6512 

FDP 2.8531 2.1411 5.7603 4.3180 4.5383 

EDC 1.7265 2.2873 3.9001 4.4165 4.2915 

FPL 0.7976 1.0059 1.8337 6.5775 6.2014 

EPB 1.5529 1.2924 4.1122 4.0973 2.6843 

WL 

FDS 0.1010 0.1125 0.3148 0.2784 0.2464 

FDP 0.1279 0.1295 0.5273 0.4909 0.3505 

EDC 0.1277 0.1360 0.2852 0.3460 0.3070 

FPL 0.0505 0.0681 0.1250 0.4060 0.3686 

EPB 0.1182 0.1228 0.3041 0.2737 0.2025 

Pinky to 

thumb pinch 

(FP4) 

RMS 

FDS 0.0087 0.0076 0.0091 0.0171 0.0225 

FDP 0.0130 0.0089 0.0146 0.0301 0.0358 

EDC 0.0152 0.0163 0.0144 0.0307 0.0289 

FPL 0.0127 0.0119 0.0135 0.0205 0.0209 

EPB 0.0143 0.0125 0.0162 0.0170 0.0198 

MAV 

FDS 0.0066 0.0061 0.0072 0.0131 0.0170 

FDP 0.0094 0.0074 0.0115 0.0239 0.0303 

EDC 0.0106 0.0110 0.0106 0.0224 0.0208 

FPL 0.0111 0.0096 0.0118 0.0164 0.0174 

EPB 0.0120 0.0100 0.0130 0.0143 0.0155 

IEMG 

FDS 1.6870 1.5582 1.8425 3.3516 4.3475 

FDP 2.4160 1.8845 2.9350 6.1216 7.7495 

EDC 2.7197 2.8119 2.7108 5.7441 5.3296 

FPL 2.8343 2.4678 3.0190 4.1962 4.4567 

EPB 3.0817 2.5504 3.3324 3.6652 3.9655 

WL 

FDS 0.1192 0.0899 0.1377 0.1967 0.2480 

FDP 0.2317 0.1074 0.2005 0.4907 0.7308 

EDC 0.1881 0.1484 0.1689 0.4005 0.4329 

FPL 0.2073 0.1984 0.2995 0.3355 0.3572 

EPB 0.2400 0.1986 0.1943 0.2577 0.2943 
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Appendix F: Time domain features without normalisation for wrist movements 

 

Figure F.1: Features extracted from flexor muscles (FDS and FCR muscles) at 60% of MVC 

finger pinch strength for various wrist positions 

 

Figure F.2: Features extracted from extensor muscles (EDC and ECRL muscles) at 60% of MVC 

finger pinch strength for various wrist positions 
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Figure F.3: Features extracted from flexor muscles (FDS and FCR muscles) at 60% of MVC 

finger pinch strength for various wrist positions (with filter) 

 

Figure F.4: Features extracted from extensor muscles (EDC and ECRL muscles) at 60% of MVC 

finger pinch strength for various wrist positions (with filter) 
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Figure F.5: Features extracted (from EDC, ECRL and FCR muscles) at 60% of MVC finger 

pinch strength for various wrist positions (without filter) 

 

Figure F.6: Features extracted (from EDC, ECRL and FCR muscles) at 60% of MVC finger 

pinch strength for various wrist positions (with filter) 
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Appendix G: Time domain features with normalisation for wrist movements 

 

Figure G.1: Features extracted from flexion muscles (FDS and FCR muscles) at 40% of MVC 

for handgrip strength at wrist positions with prismatic power grip (adducted thumb)  

 

Figure G.2: Features extracted from extension muscles (EDC and ECRL muscles) at 40% of 

MVC for handgrip strength at wrist positions with prismatic power grip (adducted thumb)  
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Figure G.3: Features extracted from flexion-extension muscles (ECRL and FCR muscles) at 40% 

of MVC for handgrip strength at wrist positions with prismatic power grip (adducted thumb)  
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Appendix H: Validation of finger joint angle estimations based on ANN model  

 

Table H.1: Performance index for joint finger estimation using the ANN.  

Finger 

Joint 

Features & 

% MVC 

Neural Network Results 

Training Testing 

Input Hidden 

layer 

Output MSE Regression MSE Regression 

MCP Wave 

length for 

20% 

3 25 1 22.198 0.910 21.775 0.917 

PIP 3 25 1 26.085 0.909 24.470 0.906 

DIP 3 10 1 3.529 0.894 3.842 0.883 

MCP 
Wave length 

for 40% 

3 20 1 12.486 0.949 14.316 0.950 

PIP 3 15 1 13.925 0.953 13.447 0.954 

DIP 3 10 1 1.909 0.945 1.703 0.951 

MCP 
Wave length 

for 60% 

3 15 1 8.851 0.966 6.704 0.971 

PIP 3 15 1 8.628 0.972 6.889 0.977 

DIP 3 10 1 1.302 0.962 1.018 0.974 

MCP 
Wave length 

for 80% 

3 15 1 7.824 0.970 3.391 0.988 

PIP 3 15 1 9.12 0.968 8.471 0.972 

DIP 3 10 1 1.55 0.955 1.88 0.943 

MCP 
Wave length 

for 100% 

3 20 1 8.780 0.966 5.663 0.977 

PIP 3 15 1 12.053 0.961 10.325 0.962 

DIP 3 10 1 1.569 0.945 1.430 0.955 
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Figure H.1: Joint angle estimated from the Neural Network for four medial fingers based on 

wavelength features at 20% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 

 

 

Figure H.2: Joint angle estimated from the Neural Network for four medial fingers based on 

wavelength features at 40% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 
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Figure H.3: Joint angle estimated from the Neural Network for four medial fingers based on 

wavelength features at 60% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 

 

Figure H.4: Joint angle estimated from the Neural Network for four medial fingers based on 

wavelength features at 80% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 
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Figure H.5: Joint angle estimated from the Neural Network for four medial fingers based on 

wavelength features at 100% MVC for different finger pinches (FR, FP1, FP2, FP3, & FP4) 
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Appendix I: Validation of finger joint angle estimations based on ANFIS model 

Table I.1: Performance index for joint finger estimation using the ANFIS  

Joint FE methods & % 

MVC 

Results 

Grid Partition Clustering 

MAE MSE RMSE Correlation MAE MSE RMSE Correlation 

MCP Wave length for 

20% 

3.9833 26.5224 5.1500 0.9113 2.5152 11.1402 3.3377 0.9596 

PIP 3.4462 21.7194 4.6604 0.9371 3.0527 15.1898 3.8974 0.9509 

DIP 1.3626 3.1855 1.7848 0.9167 1.1125 1.9365 1.3916 0.9450 

MCP Wave length for 

40% 

4.0123 27.3700 5.2316 0.9094 2.4282 12.5302 3.5398 0.9632 

PIP 3.1467 22.9175 4.7872 0.9293 2.2381 13.2285 3.6371 0.9645 

DIP 1.4067 4.3216 2.0788 0.8864 0.9289 1.9025 1.3793 0.9501 

MCP Wave length for 

60% 

3.5627 23.5748 4.8554 0.9168 2.5912 13.0490 3.6123 0.9659 

PIP 3.2527 22.3284 4.7253 0.9259 3.1136 16.8805 4.1086 0.9587 

DIP 1.3703 4.2457 2.0605 0.8816 1.1403 2.2305 1.4935 0.9523 

MCP Wave length for 

80% 

3.3476 18.1560 4.2610 0.9409 2.0426 6.7332 2.5948 0.9815 

PIP 3.5682 21.5475 4.6419 0.9347 3.4551 16.1666 4.0208 0.9554 

DIP 1.2533 3.2517 1.8032 0.9146 0.7883 1.0737 1.0362 0.9701 

MCP Wave length for 

100% 

2.7961 14.3170 3.7838 0.9489 2.3147 11.4363 3.3818 0.9638 

PIP 3.8038 22.9109 4.7865 0.9365 3.6279 21.9981 4.6902 0.9489 

DIP 1.2159 2.8101 1.6763 0.9215 0.9094 1.7301 1.3153 0.9510 
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Figure I.1: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 20% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 

 

Figure I.2: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 40% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 
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Figure I.3: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 60% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 

 

Figure I.4: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 80% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 
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Figure I.5: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 100% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 

 

Figure I.6: Joint angle estimated from the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 

four medial fingers based on wavelength features at 60% MVC for different finger pinches (FR, 

FP1, FP2, FP3, & FP4) 


