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Abstract 

 The Internet of Things (IoT), also called the Internet of Everything, is a new 

technology that has realised the paradigm of a global network of things capable of 

interacting with each other. IoT nodes can generate enormous amounts of data, 

perform certain analyses, and make decisions to provide efficient and smart 

services. These data are used to discover and resolve various issues and to provide 

value-added services to the users. The data analysis and decision making may be 

embedded into IoT devices to ensure that the decision-making takes place at the data 

source (i.e. the sensor node). 

 The IoT infrastructure is composed of numerous heterogeneous devices used and 

deployed by various applications and services. The recent IoT architectures are 

designed as service- or event-driven paradigms, and there is no unified IoT 

architecture to correlate and integrate the data from physical nodes and services. The 

proposed IoT solutions use private techniques and cause several problems related to 

technology compatibility, information sharing, service management, and network 

upgrading. All these obstructions are impeding the development of IoT. In order to 

integrate various resources and services into a comprehensive system, these is a 

need for an efficient architecture that hides such heterogeneity from higher-level 

applications, provides interoperability for information exchange with other IoT 

devices, and considers different service scenarios, application-based demands, and 

recent technologies. 

 Energy efficiency is considered a key enhancing factor in IoT where the sensing, 

processing, and communication of a huge number of IoT devices consume 

substantial amounts of energy. Energy consumption is considered to be a 

sustainability issue with respect to IoT devices, as these devices are powered by 

low-power sources or batteries, which impede the continuous operation of IoT 

systems. Recent proposals have increased the energy efficiency of processors and 

networks through a further development of energy-efficient paradigms.  

 In this thesis, these motivations were considered to propose and develop a 

framework for service embedding in IoT networks to enhance the network 

performance and reduce both the cost of devices and the power consumption. 
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Furthermore, a service-oriented architecture (SOA) was designed as viable 

middleware between a user’s applications and an IoT physical layer, and 

interoperability between heterogeneous IoT devices was achieved. This SOA 

enabled the abstraction of IoT device functions that could then be translated into 

basic services, which in turn could be composed of complex services and exploited 

to the upper application layer. 

 Energy efficiency was also considered a key enhancing factor in the proposed 

framework, as processing and communication power consumption is a sustainability 

issue in IoT systems. The objective of minimising the power consumption resulted 

in a framework that selected only low-power-consumption nodes and routes. The 

constraints introduced while minimising power consumption affected network-

related issues such as traffic latency because of mutually dependent factors 

including the traffic volume and the routes selected to consolidate the traffic and 

hence save power. The proposed framework also optimised the selection of the 

routes for the traffic between the source and the destination to enhance the 

optimality of power saving and latency minimisation. 

 Furthermore, we extended the proposed framework to include the fog and the 

cloud as on-demand access processing resources, as real-time services require a high 

processing speed and considerable data storage. We investigated the impact of the 

processing latency and the coexistence constraints of the processing and network 

power consumption. The cloud and the fog provided an ideal processing solution for 

IoT devices and services. 

 In IoT networks, a node can cause temporary outages. A smart building consists 

of interconnected sensors, controllers, and actuator devices. If a sensor of a 

monitoring and control system fails, the controller may receive an incorrect signal, 

which may result in the failure of the entire system. Hence, node and traffic 

resilience were investigated in this thesis. Furthermore, recent resilience schemes 

were evaluated in terms of their power consumption and mean traffic latency. As a 

result, in this thesis, a novel traffic resilience technique was developed to enhance 

network performance and reduce network power consumption. 
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Introduction 

The ubiquity and intelligence of the Internet of Things (IoT) in addition to the 

sensing/actuating abilities and wireless connectivity are becoming the cornerstone in 

the design and development of smart domains, such as smart buildings, smart 

transportation and smart cities. These smart domains are seamlessly and efficiently 

enhancing our daily lives. It is predicted that the number of IoT nodes will reach 50 

billion by the year 2020 [5]. This growth comes with challenges in terms of efficient 

utilisation of resources, power consumption, traffic congestion and security. 

The decentralised and heterogeneous properties of IoT devices capable of 

providing multiple functions require an efficient architecture that hides such 

heterogeneity from higher-level applications and provides interoperability for 

information exchange with other IoT devices [8]. The Service Oriented Architecture 

(SOA) is a new paradigm that focuses on the services to be supported instead of 

focusing on the network hardware components. It is therefore considered a viable 

middleware between users’ applications and the IoT physical layer and can support 

the interoperability between those heterogeneous IoT devices [9]. SOA enables the 

abstraction of IoT devices so upper application layers can embed virtual nodes of 

certain functions into IoT nodes with physical resources that support these functions 

to compose complex services.  The abstraction of IoT resources allows the 

virtualisation of multiple of these services over the same IoT resources [1], [2].  

In this thesis, we developed a framework for embedding services requested by the 

application layer into the substrate network wirelessly connected IoT nodes in smart 

buildings and smart cities domains. We focused on optimising the service 

embedding in IoT networks to improve energy efficiency and reduce the traffic 

latency. We formulated the IoT virtualisation problem using Mixed Integer Linear 

Programming (MILP). We also studied service embedding in IoT networks 

integrated with cloud and fog computing to meet the increasing needs of IoT 

applications that cannot be met by the limited processing and storage resources of 
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the IoT devices. Resilient IoT virtualisation is also considered together with its 

impact on power consumption and traffic mean latency.  

1.1  Research Objectives  

The research objectives of this thesis can be summarised as follows: 

1- To develop a framework for service embedding in IoT networks in a building 

setting and to study minimising the power consumption of the IoT nodes and 

the network and minimising the latency experienced by traffic.  

2- To study the integration of the IoT layer with the fog and the cloud to support 

services of high processing demands in a smart city setting. 

3- To study the embedding of delay-sensitive services in the IoT-fog-cloud 

integrated architecture. 

4- To investigate the impact of improved node and network resilience of service 

embedding in IoT networks in terms of power consumption and queuing 

latency. 

1.2  Original Contributions 

The main contributions of this thesis as the following: 

1- Mathematically modelled the problem of service embedding in IoT networks 

using MILP and evaluated the power consumption and queuing delay of 

service embedding considering a building setting. 

2- Developed a heuristic to verify the MILP model results and to support real 

time service embedding in IoT networks. 

3- Studied the impact of embedding in different geographical zones and studied 

geographical coexistence of virtual nodes paying attention to power 

consumption and queuing delay of IoT service embedding in the building 

setting. 
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4- Proposed an IoT-Fog-Cloud integrated architecture and modelled energy 

efficient service embedding in this architecture using MILP considering a 

smart city setting. 

5- Developed a MILP to optimise the embedding of resilient service in IoT 

networks and evaluated the power consumption and queuing delay resulting 

from different levels of node and network resilience. 

1.3  Related Publications 

The original contributions in this thesis are supported by the following publications: 

1- H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, 

"Energy efficient service embedding in IoT networks," in Wireless and 

Optical Communication Conference (WOCC), 2018 27th, 2018: IEEE, pp. 1-

5. 

2- H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, 

"Energy efficient service embedding in IoT over PON," accepted in 

21th International Conference of Transparent Optical Network (ICTON), 

July 2019.  

3- H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, 

"Resilient service embedding in IoT networks," submitted to IEEE Access. 

4- H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, 

"Service embedding in IoT networks," submitted to IEEE Access. 

5- Haider Al-Shammari, Taisir Elgorashi, Jaafar Elmirghani, "Service 

virtualisation in IoT: A survey", to be submitted to IEEE communication 

survey and tutorials. 
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1.4  Thesis Structure 

Following the introduction in Chapter 1, the rest of the thesis is organised as 

follows: 

- Chapter 2: This chapter provides a literature review of the evolution of the 

Internet of Things and the architectures proposed in the literature. It also 

explains the IoT elements and applications and recent challenges and 

solutions. 

- Chapter 3: This chapter presents a survey of service virtualisation in IoT. It 

reviews recent architectures for virtualization in IoT and summarises their 

advantages. The chapter reviews the challenges and open issues related to the 

service virtualisation in IoT.  

- Chapter 4: This chapter introduces a novel framework for embedding 

services into an IoT network in  smart buildings’ settings. A MILP model for 

minimising power consumption and traffic mean latency is developed. A 

heuristic is also developed to verify the model and provide real time 

solutions for the embedding problem. 

- Chapter 5: This chapter presents an extension of the IoT architecture 

presented in Chapter 4 where the IoT network is integrated with the cloud 

and fog to meet the growing demands of IoT applications in smart cities. The 

model also investigates the impact of processing splitting, processing 

latency, and coexistence constraints on the processing and network power 

consumption. 

- Chapter 6: This chapter introduces an extension to the same setting of 

Chapter 4 of resilient service embedding. We present a framework for energy 

efficient- low latency resilient service embedding in smart buildings. The 
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chapter investigates the different levels of node and traffic resilience and 

evaluates them in terms of power consumption and traffic mean latency.  

- Chapter 7:  In this chapter, the thesis conclusions are drawn, and the major 

contributions of this work are summarised. Future directions are also 

proposed. 
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 The Internet of Things 

2.1  Introduction 

The Internet of Things (IoT) is an innovative paradigm that exploits advanced 

wireless communications to interconnect different objects such as sensors, actuators, 

mobile phones, cars, etc. These objects communicate with each other to implement 

specific services [3]. Historically, the trend “Internet of Things” has been initiated 

by MIT Auto-ID centre in 1999 [4], [5]. The term “Internet” refers to a global 

network that interconnects all things, surrounding humans, using advanced 

communication technologies while the term “Things” refers to the physical object 

that has the ability to interact with each other and cooperate with their neighbours to 

perform common goals [3]. 

After 2005, IoT became one of the most important concepts globally and has 

driven many research areas according to the International Telecommunication Union 

(ITU) [4], [6], [7]. The IoT is considered an integrated part of the future Internet due 

to the growth in smart applications. Recent reports indicate that the expected number 

of connected IoT devices will reach approximately 50 billion by the year 2020 [8], 

[9]. The great number of interconnected devices increases the demands for planning 

and consideration of important factors such as addressing, mobility, reliability, 

coverage, link capacity, energy efficiency, and device cost [10], [11], [12], [13]. 

2.2  Evolution of the IoT 

Historically, the phrase "Internet of Things" or "IoT" was introduced in 1999 by 

Kevin Ashton the founder of the original MIT Auto-ID Centre [14], [15]. The 

concept of "Internet of Things" was officially announced in 2005 when the 

International Telecommunications Union published the first report on the “Internet 

of Things” [8]. 

Technically, the IoT has is based on a range of different emerging technologies as 

explained below:   
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2.2.1  Radio Frequency Identification (RFID) 

RFID is a non-contact communication technology for identification applications 

and services in which the reader receives data from the tagged objects through 

electromagnetic fields or static electronic coupling [16], [17]. RFID depends on two 

main parts: 

- An embedded tag attached to a person, product, materials or anything. 

The tag contains identification information. 

- The Reader, which produces a wireless signal at a specific frequency and 

range of power.  

 When the tag passes though or is near the reader, the tag receives the interrogator 

signals and sends an authentication response to the reader. There are also other tag 

and reader classifications according to the required level of security, cost, and size. 

An important type of RFID is Near Field Communication (NFC) based tags, which 

can provide contactless communication for cards and mobile phones [10], [18]. 

2.2.2  Wireless Sensors Network (WSN) 

This wireless network technology interconnects a huge number of distributed, 

possibly autonomous, sensors to monitor and control systems or the environment. 

The WSN combines advanced technologies such as information and communication 

technologies, integrated sensing and computation, [19]. WSNs are widely used 

because of their low-cost, energy efficiency, wide distribution, and self-organization 

properties [20]. WSNs play an important role in the evolution of the future Internet, 

providing sensing and actuation capabilities required by future applications [21]. 

WSNs play an important role in the IoT perception layer, where the WSN is 

responsible for sensing, monitoring, and tracking the status of the devices and the 

environments. In addition to sending the data to the control unit through the network 

[22]. 

2.2.3  Machine-to-Machine (M2M) Communication 

This is a communication mode that provides a connection between multiple-

systems and remote devices that directly exchange information. It also refers to 

communication that provides data to applications running in devices [23]. IoT uses 
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different communication modes such as Thing-to-Human communication, Human-

to-Thing communication, and Thing-to-Thing communication [24]. The idea of 

M2M communication has major advantages and enables the construction of 

comprehensive connections between machines and other entities [25].  

2.2.4  Cloud computing 

The cloud can provide computation and data storage services to the IoT layer and 

can provide other services according to network scale and application demand [18]. 

The integration of cloud computing and IoT has resulted in a range of new services 

witnessed recently such as: 

- Infrastructure as a Service (IaaS) [26]. 

- Platform as a Service (PaaS)[27].  

- Software as a Service (SaaS)[28].  

The researchers and stakeholders have increased their efforts directed towards the 

integration of cloud computing with IoT, to tackle the challenges associated with the 

huge data storage needed and the computing and processing required [29]. Due to 

the low cost, small size and low power consumption of IoT devices together with 

their limited data processing, storage, and traffic handling capabilities, IoT devices, 

are often supported by a coordinator that boosts their capabilities and provides 

additional functions. Cloud and Fog play important roles as main contributors to 

coordinate and provide data storage, resource management, service creation, service 

management, service discovery, and power management. The integration of IoT 

with Cloud leads to a new paradigm that can result in the success of IoT in terms of 

service provisioning, high-performance, reliability, ubiquity, and scalability. The 

cloud features can be provided with high elasticity and on-demand for efficient and 

scalable service provisioning [30], [31], [32], [33], [34], [35], [36], [37]. 

2.3  IoT Architecture 

There are a number of research efforts devoted to developing IoT prototype 

architectures [38], [39], [40], [41], [42]. In this section, we review two of the 

popular IoT architectures: 
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2.3.1 Three-layer architecture 

This architecture is considered as one of the most popular architectures. It is 

divided into the following three layers as shown in Figure 2-1 [8], [43], [44]:  

 

 

Figure 2-1: Three-layer IoT architecture 

 

- Application Layer: This layer is the highest layer. It manages different 

services and applications and provides information and functional access 

to relevant sensors with corresponding applications. It receives the 

transmitted data from the network layer and uses the data to provide the 

required services or applications [41]. Several applications are widely 

known in this layer such as smart city applications, smart grid, smart 

transportation, etc. 

- Network Layer: This layer is the most important layer in IoT 

architecture. It builds the network topology and routes the data and 

information produced by the IoT nodes. The network layer is responsible 
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for sending and receiving data between the applications and 

heterogeneous devices through interfaces. It uses a range of 

communication technologies and protocols. 

- Perception layer: This layer is known as the sensors layer or physical 

layer also. It is responsible for the interaction of physical devices such as 

sensors, actuators, etc. It collects and/or processes the state information 

of these devices and sends the information to the upper layers.  

2.3.1  Four Layer architecture 

The IoT architecture is usually characterised by the mentioned three layers 

paradigm in which the state information is collected by the perception layer and 

transmitted to the network layer which manages the connection and provides data to 

the application layer, where the latter provides the services [39]. The traditional 

three-layer architecture can be expanded by adding a new layer, namely the 

middleware layer (also known as a service layer or the interface layer). This results 

in the four-layer IoT architecture made up of the perception layer, network layer, 

middleware layer, and application layer. The new middleware layer can be defined 

as a software layer between the application and network layers. The middleware is 

essentially responsible for service programming. It provides an abstraction between 

IoT technologies and applications [45], [46], [47]. The middleware hides the details 

of different technologies and provides compatibility between applications and 

infrastructures [47]. The middleware allows the devices and applications to 

exchange information and share resources with each other. The middleware layer 

has many advantages [41], it: 

- Enables the co-existence of various applications seamlessly. 

- Enables various operating systems, platforms, and protocols. 

- Supports distributed computing and the interaction of services among 

heterogeneous networks, devices, and applications. 

- Solves incompatibility between standard interfaces, providing portability 

and standard protocols to enable interoperability and standardisation. 

- Enhances high-level interface stability for applications. The stable 

interfaces allow the applications to deploy the hardware and operating 

system independently.  
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These advantages make middleware an appropriate paradigm for the IoT, because 

of the huge number of decentralised and heterogeneous devices and networks that 

exist. Thus, there is a high need for integration and continuous updating to serve 

different applications. The IoT consists of a huge number of ubiquitous devices. 

These devices have many embedded components including sensors, actuators, and 

serve multiple applications using the architecture adopted [48]. The IoT devices 

have standards that enable them to collect specified data for identified things and 

processes, transmit the information, and perform actions without direct human 

intrusion. This process realises the interconnection paradigm between the physical 

world and cyber world [45], [46], [49], [50]. 

2.4  IoT Elements 

The IoT has the following key elements as shown in Figure 2-2 [51]: 

 

 

Figure 2-2: The key elements of the IoT 
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- Identification 

Identification is crucial for the IoT to name and match services with their 

demand [52]. Furthermore, in addressing the IoT objects it is important 

to differentiate between the object ID and its address [53]. The object ID 

refers to its name such as “T1” for a particular temperature sensor, while 

the object’s address refers to its address within a communications 

network [54]. 

- Sensing / Actuation: 

The main physical components in IoT nodes are sensors and actuators. 

The sensors can be defined as detectors for physical entities that read and 

collect information about specified things. Usually but not always, the 

sensors have low cost, low power consumption and limited processing 

ability, and have interfaces to communicate through specified 

communication channels. There are many types of sensors dedicated to 

sensing the physical environment and thus measure quantities such as 

temperature, acceleration, vibration, light, electromagnetic properties, 

humidity, and the positions of physical things. According to the sensed 

data, the sensors can be classified into two types as follows [53], [55], 

[56]: 

1- ID-Based sensors: This type of sensor detects things with identifiers, 

e.g. FRID tags. 

2- nID-Based sensors: This type of sensor measure physical attributes, 

e.g. temperature sensors.  

- Communication: 

Many communications Technologies support IoT devices to deliver their 

smart services. Examples of communication protocols used for the IoT 

are WiFi [31], Bluetooth [57], IEEE 802.15.4, and cellular Long-Term 

Evolution (LTE). These communication technologies have varying 

capabilities in terms of the data rates they can support, the distances they 

can span and the power they consume. [58], [59], [60]. 
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- Computation:  

 Computation is needed in general to process the data collected to 

enhance the performance of a physical system. The computation types 

can be classified as follows [30], [34], [61], [62]: 

1- Centralized Computation mode: 

This mode operates with the controller as an independent functional 

module with satisfactory computation and communication abilities. The 

sensors send the collected data to the controller. The controller applies 

control algorithms and assigns task orders to the actuators. The actuators 

receive the control orders and perform the required actions. 

2- Distributed Computation mode: 

This mode operates with the actuator and controller (processor) on the 

same device. The sensors collect data and send it to the corresponding 

controller/actuators. The controller applies control algorithms and 

performs the action required as an actuator. In other words, the controller 

and actuators are integrated in the same entity, and the sensed data are 

collected by actuators with control orders to act. 

- Services  

In general, the services provided by IoT have been deployed in many 

aspects of our life [32]. With the widespread use of wireless 

communication, the range of IoT applications has become much more 

comprehensive i.e. Building services, Power and cooling services, Safety 

services, Industrial automation services ...etc.  [34], [63], [64], [65], [66], 

[67].  

- Semantics  

In the IoT, semantics can be defined as the ability to construct knowledge 

by using different techniques to deploy smart services. The knowledge 

construction includes discovery and use of the resources, and modelling 

and analysis of the information, then making the logical decision to 

deploy smart services [68]. 
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2.5  IoT Applications 

There is a huge number of applications related to IoT and it is thus difficult to 

summarise all of them, consequently, this section summarises the recent IoT 

applications according to their domain [69]. In this section, we review a number of 

these applications according to their domain as follows: 

2.5.1  Personal appliances 

There are many applications that address personal requirements. The sensors are 

used in this case only by the person who directly owns the devices. Application in 

this area has been proposed for personal healthcare, support, navigation, and to 

analyse the person’s environment using surrounding sensors. Recently, the 

smartphones have been used as communication gateways to provide several 

connections including Wi-Fi and Bluetooth to connect sensors measuring 

environmental parameters [70]. The applications available use the operating systems 

of the smartphones. They sense and act on several parameters. These applications 

can be centralised in the cloud or decentralised in local devices [7]. With the 

development of IoT personal products, many industries provide innovative efficient 

low power solutions for wearables appliances, such as entertainment and fitness 

devices, smartwatches, location tracking devices. [10]. 

2.5.2  Home Automation 

The deployment of IoT in the form of connected home devices can create a home 

automation system, which allows the user to monitor, operate and control their 

homes using simple applications. The increasing number of home devices supported 

by IoT provides a global framework that can be used to develop home automation 

applications, enhance security level, and provide more new applications. Currently, 

there are many home automation applications, varying from enhancing security to 

reducing energy and maintenance costs. IoT operators can provide a wide range of 

IoT technologies for the control and monitoring of smart homes and buildings. The 

functions can include such access control, energy saving, and security [25], [71], 

[72], [73], [74], [75], [76]. 

http://www.ti.com/solution/in_home_display
http://www.ti.com/solution/hvac_heating_ventilating_and_air_conditioning
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2.5.3  Environment Applications 

There is a huge number of sensors embedded in the environment connected by 

IoT for enterprise applications. These sensors collect data from different zones, over 

some time to be analysed by specialists or released socially. The most common 

applications related to environmental monitoring, collect all information and 

forward it to data centres. Usually, these types of sensors are specialised and contain 

integral applications, factory configured to ensure security, functionality, and 

control. Wireless communication is driving environment applications by providing 

coverage and flexibility. There are many well-known environment applications; with 

additional applications planned in the future. There are however applications that 

have drawn attention, namely smart environment applications [17]. A smart 

environment can be realised by embedding sub-systems that can sense /act on one or 

more parts of the environment. These sub-systems are creating an urban 

environment, which exploits the benefits of IoT and realize it on the ground in the 

form of smart cities, smart agriculture and related [77], [78], [79].  

2.5.4  Medical and healthcare systems 

The IoT can be used to develop health monitoring systems to sense, monitor, 

analyse, and interact with the patients and provide communication to doctors. The 

IoT devices used vary from simple sensors to complex advanced devices [80]. These 

specific sensors can be installed in the area surrounding elder people or patients 

anywhere. The devices can include wearable small devices such as blood pressure 

monitors, heart rate monitors to advanced devices like pacemakers [18]. These 

devices will ensure appropriate treatment is being directed to assist the patients 

anytime and anywhere. Other medical applications involve using sensors to support 

a healthy living style.  The IoT devices used include wearable heart monitors, 

calorie counters, training observers...etc. [35], [81]. There are many additional 

medical and health applications that make use of IoT platforms to support and treat 

chronic patients and provide emergency support  [35], [36], [80], [82], [83], [84]. 

2.5.5  Manufacturing and Industry 

In the manufacturing and industry sectors, IoT applications provide the ability to 

monitor and control the product lines and devices. These applications are based on 

https://en.wikipedia.org/wiki/Internet_of_Things#cite_note-CoMAN-48
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sensing technologies to collect the information and analyse the status to enhance 

manufacturing performance.  

Advanced manufacturing systems operate with high precision demands for high-

quality production. Usually, the precision and quality monitoring operate based on 

sensors with accurate precision requirements. The real-time connections between the 

IoT devices generate feedback between quality monitoring systems and product line 

systems to enhance the performance. In advanced manufacturing applications, the 

sensors have interconnection with separate actuators or have built in the same 

actuator as a device. The interconnection of these devices is based on standards 

protocols. These protocols are specialized and are designed for such as 

heterogeneous manufacturing interfaces [85], [86]. 

2.5.6  Logistics and Supply Chain Management 

Logistics work requires the updating of reports of tracking; these reports include 

information about the time and location to control the tracking of shipments. Along 

with the IoT development, the logistic processes have massively developed to a self-

ruling process via IoT applications to satisfy the logistics demands. The IoT-based 

logistics applications have been developed to track the shipments in real-time and 

update the data. Another trend of the IoT-based system in the supply chain is the 

tags of barcode or RFID; the tag reader sends the data to the logistics data centre. 

The data is transmitted through many wireless communication technologies such as 

Wireless Sensor Networks (WSNs), GSM networks, etc. The IoT solutions in supply 

chain management are very hopeful since many of the operators have implemented 

comprehensive supply chain protocols. These protocols have been implemented 

according to the corresponding application, e.g. the store or supermarket chain 

management was implemented based on a standard related database, which provides 

convenience when dealing with a huge number of items, or “things” [87], [88], [89].  

2.5.7  Transportation 

Transportation is considered an indicator of the urbanism of the countries, such 

that the governments have conducted extensive research to solve transportation 

problems and propose further comfortable applications for their citizens [90]. The 

IoT produces various useful services and applications for transportation and road 
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monitoring; the IoT also collects required data about the road situations and traffic 

to find the route and clarify its properties, before then transferring such information 

into the smart phone's application. These applications support the driver in terms of 

selection of highways, traffic jam avoidance, and find an empty parking space, in 

addition to safety of the road [91], [90]. These IoT applications are not only 

important for road monitoring but are considered economic as they reduce fuel 

consumption and air pollution. Many of the governments have sponsored research 

studies on IoT traffic systems to monitor the performance of their transportation and 

invent smart roads [92], [60]. 

2.6  IoT challenges 

The information and communication technology (ICT) sector accounts for 5% of 

the worldwide electricity consumption [93]; this statistic is for operational 

consumption and does not consider the manufacturing. ICT power consumption 

includes the three main contributors: data centres, user equipment, and networking 

infrastructures. Cisco statistics reports have revealed that the global traffic will 

increase three times from 2015 to 2020, which requires a huge expansion of the 

networking infrastructure and capacity [94]; based on that, there are many 

challenges that can be identified in the deployment of the future internet. It is very 

difficult to draw the requirements and corresponding challenges for the complex 

system, such as innovation of the future internet, but we can categorise the future 

internet challenges into three areas: network, service, and contents. Most researchers 

discuss the economic aspect as an important challenge faced by the three mentioned 

areas. The innovation of the IoT is based on the simple premise of resource sharing 

and enhancing variant services, such that the IoT is becoming increasingly important 

when we are introducing or improving the paradigm of the future internet; indeed, 

the IoT is considered an important contributor in the design of the future internet 

[11], [95], [96]. Energy efficiency is considered one of the challenges in the IoT, 

alongside other challenges such as addressing, security, availability, reliability, 

mobility, performance…etc. Researchers are focusing on methodologies to 

maximise the utilisation of the IoT devices and minimise power consumption; in 

such as cases, the sensors will keep continuing operating for longer periods. This 

section highlights several challenges and the methodologies that have been proposed 
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for the IoT. These methodologies are considered as tools that assist IoT operators in 

enhancing IoT performance and Quality of Services (QoS) and reduce energy 

consumption [8], [39], [84], [97], [98]. 

2.6.1  Energy Efficiency Challenge and Solution for IoT networks 

The IoT has various emerging applications to enhance services and applications, 

but it is very important to take into consideration that the IoT refers to a network 

which includes intelligent devices, and which operates independently with its 

sensing, actuation, computation and communication abilities [99], [100]; therefore, 

the energy consumption is considered a crucial factor of the IoT network. The 

energy is important to maintain the lifetime of the network, while effective 

communication between the IoT devices is considered an essential factor for IoT 

networks. The energy efficiency of IoT devices and the network is directly related to 

operating lifetime. The majority of the IoT devices are operated on battery or low 

power sources. When the battery of the IoT device is drained of its energy, it is 

costly and difficult to replace the battery due to short intervals and the very large 

number (billions) of IoT devices. To solve this problem, the IoT devices should 

operate at the longest intervals with their battery lifetime [29], [93], [101]. Energy 

efficiency is also considered an important factor when we are talking about 

electricity production; most of the recent energy production is not produced by 

renewable resources and is considered the main source of pollution and global 

warming due to the emission of carbon dioxide materials [102]. There are many 

research studies on network architecture to enhance energy efficiency; most of this 

work has introduced relay nodes in the IoT network, improved routing, and 

enhanced network topologies, thus improving the lifetime and connectivity of the 

IoT network [103].  

2.6.1.1  Energy-efficient node selection 

The authors in [104] proposed a paradigm that places the relay node according to 

the traffic of the network, e.g. in a high traffic area, one relay node is assigned for 

one sensor, while in a low data traffic area one relay node is assigned for three 

sensors or more. In other words, the relay node is responsible for network routing; it 

optimises path selection from source to destination. The relay node finds the path by 

considering the outstanding energy of the node; this is because the IoT network is 
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composed of low power devices, so that if the neighbour node is inefficient 

regarding energy level, then the path will be changed, and hence the remaining 

energy is considered a critical factor to estimate an energy-efficient path. The 

combination of hierarchical placement of nodes and energy balanced routing 

increases the network lifetime. Another concept, introduced in [36], conducts 

service discovery (SD) protocol for the IoT network; this protocol is capable of 

being energy efficient and having a high hit rate. This protocol divides the IoT 

network into sub-areas, each of which has one node which acts as Cluster Head 

(CH). The protocol achieves a higher hit data rate by multi-hopping through 

neighbours’ CHs, or with area nodes routers that are adjusted according to the 

density of the smartphone distribution within the area. The large IoT network was 

divided into small areas, each consisting of some sensors and their elected CH. The 

highest level of the hierarchy consists of area routers that are responsible for 

multiple areas. To achieve the best hit rate, multi-hopping can be enabled either 

through neighbouring CHs or through area routers. Moreover, the duty cycles of the 

network nodes can be adjusted according to the smartphones’ density in each area. 

Frequent tests were conducted to evaluate the efficiency of this proposed protocol 

and it has achieved its objectives.  

2.6.1.2  Energy-efficient Cloud-based IoT Platforms 

The cloud operates as a platform for IoT applications, which is the main reason 

why the cloud reduces power consumption by applying efficient system 

components. Al-Azez, in [105], introduced a Mixed Integer Linear Programming 

(MILP) model that proposed an energy-efficient cloud computing platform for the 

IoT. Said model states that the IoT network consists of four layers: Application, 

Service, Network, Physical layer. The physical layer consists of IoT devices, e.g. 

sensors, while the networking elements are located within the upper three layers. 

The routing of IoT traffic is controlled by Virtual Machines (VMs); these VMs are 

hosted by distributed mini clouds and said clouds are located within the IoT 

networking nodes. The model of Al-Azez et al. has been developed to optimise the 

number and location of the mini clouds, with constraints of reducing the total power 

consumption of traffic aggregation and processing to the minimum value. The model 

results conduct the optimal allocation of mini clouds in the IoT network, with 
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energy-saving of up to 36% compared to single mini clouds located at the gateway 

layer. 

2.6.1.3  Energy-efficient sleeping time of the IoT 

The energy efficiency of the IoT network is proportional to the lifetime to keep 

operations of the network as stated in [37]; an energy-efficient proposal for the IoT 

is composed of three layers: sensing and control, information processing, and 

presentation. This proposal is based on a methodology that predicts the sleep 

interval of sensors; the prediction is made according to the remaining battery level, 

previous usage history, and quality of information demands. The predicted value can 

be used to increase the utilisation of cloud resources by providing required resources 

when the corresponding sensors’ nodes are in sleep mode. This methodology 

enhances the energy efficiency of all the IoT networks. In other words, this proposal 

swaps the sleeping IoT device with cloud resources, by predicting the maximum 

amount of data that can be required during the next process, and hence resources can 

be provided accordingly. 

Another concept related to the sleeping time of radio interfaces is using the 

methodology of discontinuous reception/transmission (DRX/DTX), in [7]; this 

methodology allows the IoT devices to turn off their radio interfaces and switch into 

sleep mode. With such as a method, the researcher draws attention to maintaining 

the performance during DRX/DTX intervals; in other words, how to operate 

DRX/DTX to optimise energy efficiency while keeping the same level of 

performance. The proposal of [38] has illustrated the ability to maximise the 

DRX/DTX sleep periods, with guaranteed QoS. The key efficiency idea of [38] is 

the optimisation concerning QoS parameters and DRX/DTX configurations. The 

proposal result conducts the energy saving with QoS parameters of traffic bitrate, 

packet delay, and packet loss rate. With the further conception of sleeping time, an 

advanced methodology has been proposed by [39]; this proposal puts forth a 

modified DRX mechanism including the Quick Sleeping Indication (QSI) – a simple 

and energy-efficient solution for low complexity and low mobility machine type 

communications.  
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2.6.1.4  Reduced Hardware Architecture for Energy-efficient IoT 

One of the methodologies used to minimise power consumption is reducing the 

hardware architecture of system-on-chip (SOC), in order to obtain a digital block 

design proposal for higher energy efficiency. The proposal of [40] has been 

demonstrated by synthesising into FPGA. The proposal results show that the 

proposal has achieved energy saving in the form of 24-15% of dynamic power 

reduction over the reference design. Lim et al., in [40], put forth a reduced digital 

hardware architecture SOC proposal in healthcare application, the main aim of 

which is to reduce the power consumption of the IoT sensor. The proposal results 

have achieved energy efficiency in comparison to the reference design, because of 

the removing of unnecessary peripherals from the module. The results have been 

estimated for the healthcare IoT node. The methodology of [40] demonstrates that 

unused components draw excessive power consumption.  

2.6.1.5  Energy-efficient IoT based on sensing data compression 

IoT has been considered as a strategic aspect that profits society in many 

applications, such as environment monitoring, smart traffic control, smart metering, 

etc. The IoT has led to a new trend, known as Smart Objects (SOs), which are 

defined as fundamental units of the IoT architecture; these SOs consist of sensors, 

which are interconnected to form wireless sensor networks (WSNs). 

 The authors in [106] reviewed and presented an optimization model that 

enhances traffic reliability and minimise the traffic power consumption of cloud-

based IoT networks. The proposed model used a standby route selection scheme 

(SBRS) to reliability by select alternative nodes in failure cases with minimum 

traffic power consumption. Second, we used a desired reliability level scheme 

(DRLS) that considering the desired reliability level and minimizing traffic power 

consumption. The authors also propose a reliability-based sub-channel scheme 

(RBS) to avoid mitigating interference in busy reliable routes. The authors also 

proposed a reliability-based data compression scheme (RBDS) to conquer the limits 

of the capacity of the links. The results display that the average power saving of 

57% in SBRS and 60% in RBDS compared to DRLS. 
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2.6.1.6  Energy-efficient IoT based on MAC Protocol 

The proposal of [42] works on the MAC protocol and has the ability to reduce 

power consumption in the IoT network. This proposal focuses on the power-

controlled sensor MAC protocol (PC-MAC), which is familiar with wireless sensor 

networks (WSN) requirements. PC-MAC has an ability to enhance the energy 

efficiency, due to decreasing the power of transmission and avoiding the collision. 

The mechanism of PC-MAC, as in [42], is to send frames with low transmission 

power levels instead of high levels. In addition to this, PC-MAC has the property of 

collision avoidance, which also means that it saves power and time by avoiding 

resending data. The proposal has been simulated in [42], and the results of said 

simulation indicate that PC-MAC protocol achieves a power saving of up to 50%-

96% compared to S-MAC. 

2.6.1.7  Energy-efficient IoT Data Transmission Scheme 

There are many approaches, e.g. that proposed by [43], to dealing with traffic 

parameters, such as fault detection and error correction schemes to obtain an energy- 

efficient IoT network. The proposal is based on an efficient cooperative spectrum 

sensing (CSS) scheme, which solves the spectrum scarcity and reduces the energy 

consumption of the IoT network. An important factor of CSS is decision 

transmission between the user and the fusion centre. The energy-efficient reliable 

decision transmission (ERDT) methodology is proposed to reduce both the packet 

error and packet loss of CSS; the ERDT model increases the probability of correct 

decision transmission by depending on logical AND/OR rules with variant cases 

such as bit error rate and/or packet loss. The model results of EDRT indicate an 

energy saving of approximately 50% when applying ERDT in CSS. 

2.6.2  Traffic delay Minimisation in IoT networks 

When a source node needs to send packets to the destination or sink node, all the 

nodes in its transmission range between the source and destination will forward the 

transmitting packets. In asynchronous sleep-wake cycling networks, the nodes are 

randomly asleep or awake due to the energy-saving and increasing lifetime 

concerns; the intermediate nodes can relay the packets only when they are in the 

active state. We draw all those optimisation results to the time domain since low-
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latency is the major objective of QoS for the recent routing algorithms, thus 

minimising end-to-end data delivery time; these routing algorithms have been based 

on the centralised and distributed routing algorithms: 

- The centralised routing algorithms: in this algorithm, each node has the 

global network information and forwards the packets accordingly, which 

assists relay node selection.  

- The distributed routing algorithms: in this algorithm, each node has local 

network information and selects the relay nodes accordingly.  

There exist a plethora of research studies that have examined how to optimise or 

reduce the traffic delay in the IoT networks; these studies have aimed to reduce the 

number of hop count, node’s delay, traffic media…etc. In the network design, the 

network is usually abstracted as a graph G = (V, E), where V stands for the vertex 

set or node, and E stands for edge or the communication link set of nodes. The 

optimisation framework then uses the objective function to obtain the target value.  

The authors in [107] presented an energy-centred and QoS-aware services 

selection algorithm (EQSA) for IoT services composition. They proposed a model 

that selects the services by using a lexicographic optimisation strategy and a QoS 

constraints relaxation technique. The authors in [108] surveyed the recent 

development of SOA models for IoT and reviewed their fundamental technologies. 

The authors in [109] proposed a reference architecture for the smart city based on 

SOA concepts by integrating IoT, Cloud and Edge technologies into existing city 

infrastructure.  

The authors in [110] surveyed the recent development of energy-efficient 

solutions for wireless sensors networks and reviewed some existing topologies that 

allow trade-offs between multiple requirements to be achieved for efficient and 

sustainable sensor networks. The authors in [111] presented a QoS message 

scheduling algorithm in IoT network-based SOA, which is more targeted towards 

service provisioning with the idea of service differentiation by classifying into high 

priority and best effort messages.  

 The authors in [112] surveyed the state of QoS methodologies in wireless 

terrestrial sensor networks to attain delay and reliability constraints in critical 
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applications. The authors emphasised the main challenges of implementing QoS 

protocols in WSN applications. 

The authors in [113] introduced the paradigm of the Fog-Radio Access Network 

(F-RAN); the F-RAN brings the potential to meet the requirements of ultra-low-

latency applications by distributing computing-intensive tasks to multiple F-RAN in 

the IoT nodes. The proposed paradigm migrates the efficient computing capability 

of the cloud to the edge of the network. The authors discussed the complex trade-off 

among performance, computing cost, and communication cost, with the results 

showing that ultra-low-latency services can be achieved by the F-RAN through a 

proper migration paradigm. 

The authors in [114] presented a paradigm that uses Software Defined 

Networking (SDN) technology to manage the end-to-end IoT nodes traffic. The 

authors implemented their paradigm by using SDN controller to identify the traffic 

latency by using a probe packet over each path in the network and measuring the 

delivery time of each path accordingly. The proposed paradigm has the ability to 

discover the changes in the network topology and path delay and reroute the traffic 

with the objective of delaying minimisation. The paradigm results showed a 

reduction in traffic latency by 63% compared with the traditional shortest path 

routing technique.  

2.6.3  Resilience Evaluation in IoT Networks 

The network performance may be affected by malicious activities, disruptive 

cyber-attacks, Denial of Service (DoS), or any other faults which can interrupt 

traffic communication links even with advanced networking solutions [115]. These 

bring significant risks for the normal operation and services of large-scale IoT 

networks. 

The IoT has reached a massive number of heterogeneous devices and thus is used 

in the deployment of a wide range of applications based on distributed open 

architecture [31], [56]. The researchers have proposed IoT architectures to solve the 

interoperability of heterogeneous systems; the proposed IoT architectures should be 

adapted for resilience to physical network disruption; it is also important to 

anticipate that many of the IoT device and links nodes will be prone to failure in the 
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probabilistic scheme at any time [116]. The resilient IoT architecture needs to 

support the semantic search, failure probability, data recovery and maintain the 

network dynamically and autonomously [117]. 

The rapid growth of the IoT applications in scale and scope produces several 

challenges regarding the IoT performance and dependence, one of which is  

emergent, where these devices are produced by different vendors to serve specific 

purposes, which produces a new challenge of heterogeneity [118]. Another 

challenge is the rapid growth of application demands; these applications involve a 

specific high level of security and resilience [119]. Another challenge is the growth 

in technology, which is illustrated by the vulnerabilities of the interconnectivity and 

interdependency of the devices. These challenges may lead to unexpected system 

failures caused by connecting IoT devices to the internet. 

The resilience has an extensive consideration in various engineering, scientific, 

and social scopes, as it also has a great magnitude in the ultra-large-scale systems 

[120]. Theoretically, there are many definitions of resilience; it can be defined as the 

capability of a system to accomplish its operation appropriately notwithstanding 

disruptions and to regain its performance after a temporary system failure. In the 

communication systems, the adverse disruption is prospective consideration, and it 

is expected that the communication systems will operate even under adverse 

disruption and rapidly recover to their full functional services [115], [118], [119], 

[121], [122].  

Generally, there are numerous definitions of resilience, but the most common 

defines resilience as the ability to operate and maintain the process with an 

acceptable level of service when facing various faults [123], while the network 

researchers in [124] defined the network resilience as the possibility of at least 

having a backup path within the minimum time interval, in case at least one node on 

the primary path has failed. In point of fact, the resilience concern aims to structure 

a system with fault-tolerance capabilities and implies an ability to restore from 

failure but does not mean that the system is very difficult to degrade [117].  

Precisely, network resilience has no metric value but can be estimated using the 

required time that the network takes to resume its normal operation after being 

subjected to disruption [125]. Consequently, it is complicated to estimate network 

resilience in terms of the quantitative value of network resilience [115]. Another key 
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aspect is the number of failed nodes that the network can endure while maintaining 

its performance levels [125]. This leads to a probabilistic approach that assumes the 

network can tolerate at most n failed nodes where 1 < n < k, which is called a k − 

connected network [115], [126]. The idiom of k-connected network denotes that the 

network is preserving its nodes’ connectivity after removing no more than k-1 nodes 

[127].  

As mentioned, the IoT networks can be considered as graph G = (V, E), where V 

stands for the vertex set, and E stands for edge set of nodes. The vertex presents the 

IoT nodes with specific sensing and processing capabilities, and the edge presents 

the links characterised by non-negative values called the weight, such as the power 

consumption, distance, delay, etc.  

The cardinality of the nodes and links in the network is indicated by |N| and |L|. 

The communication range of each node is indicated by RC(c), where RC(c) presents 

the maximum link’s distance that a node’s radio can reach. Practically, for any two 

distinct nodes N(c), N(d) ∈ P, where P is set of nodes,  the node N(c) can 

communicate with node N(d) if and only if the straight-line distance between these 

nodes is  |N(c) –N(d)| ≤ RC(c). Consequently, the neighbours sub-set of node N(c) is 

indicated by PN(c), where PN(c) can be defined as any nodes within the 

communication range of node N(c), and given by: 

PN (c) = N (d): |N (c) –N (d)| ≤ RC (c), N (d) ∈ P                                        (2.1) 

The number of neighbours of node N(c) is called the degree of N(c) and is 

denoted as D(c). The network degree is indicated by δ = min (D(c)) for all N(c) ∈ P. 

Mathematically, Menger’s theorem describes the relationship between nodes and 

links of the connected network by [123]: 

κ ≤ δ ≤=
2∙|E|

|V | 
                                                                                                  (2.2) 

The value of κ is considered an indicator of the resilience of the network; the high 

value of κ points to the high level of network resilience. There are many 

mechanisms which are used to provide resilience in routing protocols of IoT 

networks, such as the Routing Protocol for Low-Power and Lossy Networks (RPL), 

which has recently been standardised as a routing protocol for the IoT [128], [129], 
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[130]; the resilience is influenced by the reliability, availability, and dependability of 

the system. In the traffic routing protocols, a popular technique for link failure 

recovery is multipath routing, where a set of multiple paths between the source and 

destination are selected to ensure traffic delivery. These routing protocols have 

advantages of high resilience and bandwidth aggregation but at the expense of 

higher energy consumption and traffic generation [123].  

The resilience in the routing protocols can be classified into three types based on 

the pathfinding methodology; the first method is called proactive routing, where all 

paths are selected initially in the routing table, while the second method is called 

reactive routing, where all paths are selected on demand and updated in the routing 

table, and the last method is considered to be hybrid routing, which depends on both 

of the previous methods [124]. 

 

Figure 2-3: Multipath techniques. 

The multipath methods have mainly two techniques to create their multipath 

network, as shown in Figure 2-3.A; the first is Disjoint multipath, and in this 

technique, multiple paths are created as an alternative to the primary path with 

independent nodes/links with the primary path and with other alternate paths. 

Consequently, a failure in any or all nodes/links on the primary path does not affect 

any alternative paths. 

The second technique is braided multipath; in this technique, the alternative 

partially overlays with the primary path, as shown in Figure 2-3.B , and as a result, 

failure in any nodes on the primary path means that a new path discovery is 

required, which introduces an additional overhead [131], [132]. 
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2.6.3.1  Retransmission-based schemes 

This technique is based on setting up a multipath between the source and 

destination nodes; one of these paths is considered as the main or primary path to 

route the traffic between nodes, while the other paths are considered as alternative or 

backup paths; these paths are used to recover from the traffic failure of the primary 

path, and they are sustained by sending a “Keep-alive” signal continuously over 

them. When a primary path experiences failure, the intermediate node will send back 

the data packet to the source node and a failure report to the destination node. As a 

result, the source and destination nodes will remove the failed path information from 

the routing table and switch the traffic to the alternative path. Once the primary path 

is set up again, the routing table will add this path and the traffic will switch back on 

it. This technique has other effects on the network performance in terms of data 

delivery, recovery time and message overhead, memory constraint due to data 

caching at the source and intermediate nodes [121], [133]. 

 

2.6.3.2  Replication-based schemes 

This technique fulfils the resilience requirements of traffic by sending multiple 

copies of the same traffic data over selected multiple paths from the source node to 

the destination node; thus, traffic replications are not happening only at the source 

node but at every intermediate node in the network. This technique has the 

advantage of a high delivery ratio without packet caching in the memory, and there 

is no need for signalling of state maintenance between the source node and 

destination node, because even in the case of partial data packet loss, the destination 

node can recover the packet from the other copies of the packets. If the destination 

node receives two copies of the same packet, in this case, the elimination function 

will ignore the extra copy and keep only one copy to upper layers. In this way, said 

technique achieves high resilience in terms of data delivery time but at the expense 

of the high energy consumption that arises due to the traffic overhead at each node 

along with the network [134]. The replication technique has improved the packet 

delivery ratio. There are various approaches that have been implemented to improve 

the delivery ratio in the spatial domain by routing over multipath or using parallel 

transmissions i.e. Packet Replication Techniques (PRT) [135]. 
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2.7  Summary 

This chapter outlined the main concepts related to IoT. It provided a general 

overview of the evolution of IoT and presented a review of the recent IoT 

architecture classifications and the layered structure of each of these architecture 

classifications, along with the advantages of each layer and architecture. 

Furthermore, the main elements of IoT were reviewed, and a brief explanation 

was provided for each of these elements and its impact on an IoT system. There are 

a huge number of applications related to IoT, and it is difficult to summarise all of 

them; consequently, in this chapter, the recent IoT applications were summarised 

according to their domain, and the impact of IoT on these domains was highlighted. 

IoT is restricted by several challenges such as those related to addressing, 

security, energy efficiency, availability, reliability, mobility, and performance. 

Because IoT has limited power and processing resources, energy efficiency is 

considered one of its main challenges and thus, was addressed in this chapter. 

Although several solutions have been proposed for problems related to IoT, it is very 

difficult to draw the requirements and the corresponding challenges for a complex 

system such as IoT. This chapter presented a discussion of the important challenges 

of energy efficiency, traffic latency, and resilience faced by IoT networks. 
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Service Virtualisation in IoT networks 

3.1  Introduction  

Information technologists have defined ‘virtualisation’ as a framework or 

methodology of dividing the resources of an infrastructure into multiple execution 

environments to allow multiple service providers to use these resources seamlessly 

and efficiently, by using hardware and software partitioning, time-sharing, partial or 

complete machine simulation, emulation, quality of service, or other concepts or 

technologies [1], [2]. Virtualisation enables multiple independent users to use the 

physical computing resources efficiently, by abstracting them into logical units 

running multiple simultaneous applications [136]. It is a widespread concept in 

different fields. It combines various technologies for ‘virtualising everything’. To 

prevail in the invention race of virtualising everything, many of the leading IT 

companies are integrating the environment with software-enabled and internet-based 

businesses by relying on the competitive and economic impact of service 

virtualisation. Despite the significant prospects of service virtualisation, important 

challenges remain to be addressed to enable virtualisation deployment, e.g. technical 

problems such as interoperability in addition to network management and security, 

as well as non-technical issues such as protocol standardisation and governance 

regulations [137].  

Virtualisation is a promising technique of IoT deployments, as multiple 

applications will be implemented on the same virtualised IoT network [137], [105]. 

In this chapter, we present a review of the existing works on service virtualisation 

in IoT networks and discuss several important aspects of service virtualisation: 

overview, architectures, framework, motivations, performance metrics, and enabling 

technologies. Then, we explore some broader perspectives and challenges in 

realising service virtualisation. Finally, we review the existing leading projects and 

testbeds for virtualisation in IoT.  
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3.2  Definition of service virtualisation 

The word ‘virtual’ is expressed as an opposite of ‘real’ or can be defined in the 

dictionary form as an effect without a real-life appearance; accordingly, 

virtualisation has been applied in various domains and has been exploited in 

different trends [138]. Virtualisation uses the ubiquity and heterogeneity of IoT 

nodes to support a plurality of application domains. However, virtualisation in IoT 

networks has attracted significant and pertinent companies to research how 

numerous applications can use the same IoT infrastructure, which is known as 

service virtualisation [98], [139]. 

Information technologists have defined ‘service virtualisation’ as an operation of 

simulating and capturing the behaviour, data, and performance characteristics of a 

dependent system and deploying a virtual service that represents the dependent 

system without any constraints, thus allowing the applications to be delivered with 

fast performance, low cost, and high reliability. Service virtualisation involves 

combining new technologies and methodologies toward the trend of ‘virtualising 

everything’. Recently, software developers have bound the virtualisation technique 

with a developing software-enabled or internet-based product, and thus, it is applied 

across many industries. IoT virtualisation can be defined as a concept of building 

customised high-level IoT services dynamically by using real-time collected 

information from low-level IoT devices and creating a customised virtual service for 

the clients seamlessly and efficiently. Virtualised IoT services provide flexibility 

and scalability to build various scalable systems [140]. 

Concerning IoT, virtualisation can be defined more precisely as an evolving 

approach that enhances the aggregation of versatile heterogeneous devices, 

networks, and software platforms, thereby improving application development. 

Virtualisation in IoT finds an efficient embedded environment in sensor networks 

because of the sharing of resources, services, and the network. The goal of 

virtualisation in IoT is to implement a user’s applications to access the resources, i.e. 

sensor data, seamlessly and efficiently [47]. 

Technically, virtualisation involves integrating hardware and software on one 

platform, enabling the administration and sharing of resources. IoT virtualisation is 
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achieved by realising virtual objects into a real physical object in a framework 

enriched with the context by the related information. From the structural viewpoint, 

the applications and the end-users exploit the framework to provide high-level 

services [141]. The main advantages of virtualisation are significantly reducing the 

overall cost of equipment, decoupling functionalities from the infrastructure, 

facilitating the expansion of newer services and products, and enabling flexible 

management. IoT virtualisation motivates many applications such as smart city, 

healthcare, agriculture, industrial, and traffic monitoring [141], [142], [143]. 

3.3  Architecture of service virtualisation in IoT 

Most of the existing studies on virtualisation have focused on two approaches: 

The first is the vertical approach of the virtualisation of the IoT architecture. This 

orientation has been considered because of the decoupling of the service provider 

from the infrastructure provider. According to the virtualisation concept, the service 

is not concerned with the infrastructure and the infrastructure is not assigned to a 

specific service, the researchers have proposed several architectures that solve the 

virtualisation issues in IoT. 

The second approach is related to a horizontal architecture. This approach focuses 

on the concept of virtualisation types. Thus far, researchers have proposed node 

virtualisation and network virtualisation; these are also known as node-level and 

network-level virtualisation. 

Sensor-level or node-level virtualisation is the ability of multiple applications to 

use a single sensor node or a set for sensors nodes to execute their tasks [139], [143], 

while network-level virtualisation is the ability to allow multiple service providers to 

apply their multiple virtual networks to a networking environment in that, isolated 

from the others, each virtual network shares and utilises the resources of the 

infrastructure’s network managed by the infrastructure providers [1], [47]. 

Practically, there is no typical standard paradigm for service virtualisation in IoT 

because of the specific problems and issues related to the use of the IoT technology. 

Most of the virtualisation architectures are considered for specific applications. The 

common key of the characteristics approach is as follows: A virtualisation layer 
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between the service and the infrastructure layers allows multiple applications to use 

the sensor resources through policies specified by the infrastructure provider. 

3.3.1  Software-defined networking virtualisation in IoT  

Software-defined networking (SDN) is an emerging important technology in 

network design [144], [145], [146]. SDN is based on the concept of isolating the 

control plane from the data plane of the network platform by importing the SDN 

controller. This controller interacts with the IoT applications through an application 

programmable interface (API) [147], [148], [149], translating the application’s 

demands and making appropriate decisions in the network, as shown in Figure 3-1. 

On the other side, the SDN controller communicates with a lower layer presented by 

the network elements, i.e. switches and gateways; these switches and gateways 

forward data packets based on the SDN controller’s orders [24]. The SDN 

technology enhances the flexibility of traffic routing, load balancing, and capacity 

utilisation, consequently mitigating the encumbrance on the network’s elements and 

enhancing IoT networks [150]. Furthermore, the SDN controller applies service 

requirements to the network infrastructure, e.g. an acceptable delay, data rate, or 

packet loss, such that the SDN is considered an emerging virtualised IoT paradigm, 

orchestrating the configuration, management, provisioning, and control of traffic in 

the IoT networks  [24], [144], [148], [151], [152], [153], [154], [155], [156]. 
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Figure 3-1: SDN-layered IoT architecture[148] 

SDN has considerable advantages for the IoT network, such as centralised 

network management and data collection, and thus, can be applied as service 

virtualization technique to optimise the performance and security of IoT networks, 

another impact of real-time decisions based on the state and type of the received 

traffic [148], [149],  [150], [154], [157].  

3.3.2  Cognitive management virtualisation in IoT 

Several presented works on service virtualisation in IoT have proposed a 

cognitive management framework in their design. The cognitive management 

mechanism is based on virtualising a real-world object (RWO) to create a virtual 

object (VO) that provides a service to higher-level applications. The early stage of 

VO realisation was based on RFID in the last decade; recently, VOs have been 

combined to form a composite virtual object (CVO). The CVO is considered a 

cognitive mash-up of semantic interoperated VOs, thus providing their services to 
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the applications. The main aim of the cognitive management mechanism is self-

management, such as configuration, protection, learning, and optimisation, to adapt 

to the behaviour of the upper layer’s applications [141]. The cognitive management 

framework for IoT enables the RWO to dynamically represent the VOs, where a VO 

is considered a virtual representation of RWO that dynamically changes to meet the 

application requirements [158]. 

The concept of ‘cognition’ refers to the decision making on the framework’s 

stages regarding which entity should be (re)used to satisfy the application’s 

requirements. The common architecture for a cognitive management framework is 

composed mainly of three layers [30], [141], [158]: 

1- Service layer: This layer is considered the user interface; it is responsible for 

user authentication. This layer has another function, that of the translation of 

a user’s application into the corresponding requirements and policies. The 

translation mechanism is achieved by mapping the application requirements 

to request parameters such as specific functions and policies. Another 

function in this layer is situation acquisition, which is responsible for the 

situation parameters for the services; the situation parameters are combined 

with the service request to specify a service property such as reliability. 

2- CVO layer: Once the service layer generates a request and the situation 

parameters, the CVO layer searches for the available corresponding CVO 

that can be (re)used for the requested service. The CVO searching 

mechanism is achieved by request situation matching that compares the 

requirements with the corresponding parameters in the CVO registry and 

finds the appropriate CVO that meets the approximated satisfactory ratio. In 

case there is no matching CVO for the requested service, a CVO creation 

request is generated by the request situation matching to the decision-maker, 

and the decision-maker is responsible for composing the CVO from the VO 

registry. 

3- VO layer: This layer is responsible of the virtual representation of the RWO; 

the VO may be represented by one or more than one RWO. The VO is 

implemented by using web services and is responsible for the contextual 

information because of the communication with the RWO. Each VO can 

communicate with the corresponding RWO directly by using web services or 
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indirectly through interfaces or gateways by using various communication 

technology standards such as machine-to-machine (M2M) and universal plug 

and play (UPnP). The VO layer also has a VO registry that stores the 

semantic information about the VOs. The VO’s information, including the 

corresponding RWO, location, and function, in addition to the access right of 

the VO, has to be ready for the upper layer and the service provider at any 

time [62], [141], [158], [159] [160], [161], [162], [163].  

3.3.3  Container-based virtualisation 

Container-based virtualisation is considered a revolutionary technique in the field 

of IoT; this technique brings the advantages of light-weight virtualisation and 

management to smart objects. The container-based technique creates multiple user 

instances inside a specific partition of the physical objects [32], [142]. Container-

based virtualisation has several advantages over other virtualisation techniques, such 

as fast installation, construction, and initialisation of the virtual instances, in addition 

to the benefit of the small memory size for the virtual image requirements, which 

enables the physical node to virtualise more applications and services; therefore, the 

container-based technique is considered well matched for the IoT scenarios [164], 

[165]. This technique enables the operators and developers to efficiently run their 

applications in low-processing-capability devices, such as the IoT and single-board 

computers. Technically, the container-based technique has a distinct approach for 

virtualisation and isolation; this approach avoids generating a high overhead due to 

isolating the application’s process at the operating system level of the host [142]. 

 

Figure 3-2: Container-based virtualisation architecture 
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As shown in Figure 3-2, each container instance includes the application and the 

corresponding demands; it operates on its own user space on the host’s operating 

system, while the operating system is shared for all of the containers [32]. The 

container engine is responsible for the application container processing, such as 

construction, management, and removal. It can process multiple applications 

simultaneously and in an isolated manner. In this section, we review the recent 

works that have applied container-based virtualisation techniques in IoT networks 

[32], [142], [164], [165], [166], [167], [168]. 

3.3.4  Business model virtualisation 

The concept of virtualisation aims to separate service from infrastructure; the 

business model realises this and allows the use of the resources of the physical nodes 

by the user’s application through multiple service providers. This business model is 

considered a cost-efficient approach in wireless network virtualisation [47]. The 

present distinct architecture of business model virtualisation is layered by an 

application-level user (ALU), service providers (SPs), and an infrastructure provider 

(InP). All these layer entities are coordinated by business rules. The physical 

sensor’s nodes are demonstrated by the InPs; InPs are aggregated on the platform of 

the SPs, and the main function of the SPs is to abstract services with the 

corresponding InPs to respond to the ALU’s queries. The ALU enables the users to 

use the services provided by the collaborating SPs and InPs. The main advantage of 

business model virtualisation is the ability to effectively serve various applications 

enabled by the combination of multiple-service SPs and InPs. In this section, we 

review the recent works that have presented business model virtualisation 

architectures in IoT networks. Recently, a smart house application was presented 

that allows virtualisation in a sensor network to enhance flexibility and security; the 

proposed business model was evaluated by the simulation of two smart house 

application scenarios, and a comparison of the cost between the virtualisation and 

the traditional approaches [169], [170]. The proposed virtualisation architecture 

reduces the total cost compared with the traditional approach, which is composed of 

the individual nodes of both the smart house applications. 
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3.3.5  Service-oriented architecture-based virtualisation 

IoT provides several small services, thus offered by the smart nodes. To integrate 

these services and generate higher-level services, there is a need for an emergent 

architecture consisting of an elementary service. One of the well-defined 

architectures is the service-oriented architecture (SOA) [153]. It has the ability to 

integrate heterogeneous systems efficiently and support both node-level and 

network-level virtualisation in IoT [100]. The SOA supports a wide range of cloud 

computing paradigms such as infrastructure-as-a-service (IaaS), platform-as-a-

service (PaaS), and software-as-a-service (SaaS). In addition, service-oriented 

network virtualisation enables a network-as-a-service (NaaS) paradigm [153]. As an 

architecture, the SOA is based on the concept of defining each function as an 

independent service with an appropriate interface that can be orchestrated in the 

form of a business process  [48], [153]. Therefore, the SOA enables developers and 

organisations to construct, deploy, and integrate applications by using sets of 

reusable assets and services [108], [171]. The SOA paradigm is widely used for 

smart embedded devices. As a result of the convergence of the products and 

solutions, the integration with SOA will reduce the network overheads [108]. 

The SOA has the significant benefit of providing an interoperability paradigm 

with the concept of service composition as an essential constituent; service 

composition produces a composite service with functions that individuals cannot be 

provided by a single existing service [48], [108]. Additionally, the SOA supports 

both centralised and decentralised management approaches and allows the efficient 

reuse of both software and hardware [172]. Architecturally, the SOA is interposed 

between the application and the technical layers of the IoT in the form of 

middleware [47]. The middleware is generally composed of three sub-layers: the 

higher layer is the service composition layer that designs the workflow of the 

coordinated services in the form of a business process; the service management layer 

is responsible for the discovery, mapping, monitoring, and control of the service 

provided by the objects abstraction layer; and the objects abstraction layer associates 

objects with their corresponding functions [45], [173], [174], [175], [176], [177], 

[178], [179].  
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3.3.6  Uni-kernel virtualisation 

Uni-kernels are considered a lightweight virtualisation technique because of their 

small footprint and flexibility. This technique has single-purpose applications in IoT 

and cloud applications; it is sealed against any modification after deployment; in 

other words, a uni-kernel is applicable to a fixed application that does not allow for 

incoming services to its operating system [32]. The uni-kernel paradigm provides an 

interface for various HW platforms that allow the developers to implement 

pervasive solutions in different coding languages such as MirageOS [180], HaLVM, 

IncludeOS [181], and ClickOS [182]. The high level of security is considered the 

main privilege provided by the uni-kernels; uni-kernels and security are tightly 

merged against any attack to their applications. Therefore, because of their direct 

compliance with the entire process in the application layer, there is no uniform 

operating layer in the uni-kernel architecture. The uni-kernel has a similar OS to that 

of the container-based virtualisation, but the uni-kernel has a hypervisor layer that 

separates each application as a stand-alone entity with its corresponding 

characteristics, i.e. separate file systems, independent process space, and 

independent virtual network interfaces  [13], [32], [183]. 

3.3.7  Resource-oriented architecture virtualisation 

The resource-oriented architecture (ROA) is considered a middleware design that 

deals with the device as a resource rather than the service and provides direct 

accessibility through a web architecture, such as URI, HTTP, or REST. The ROA 

enables the users to access the resources directly and efficiently [47], [112], [177]. 

The ROA is widely used in node-level virtualisation because of its simplicity and 

low overhead for the constrained devices; the ROA is preferred in representational 

state transfer (REST) web services, where the system entities could be created, read, 

deleted, and updated by hosting a web service [67]. The REST is a globally accepted 

technology that supports IoT applications, and the REST proposal is based on the 

cooperation and sharing of resources. The REST provides a set of available 

predefined operations, where each operation is unique and limited to all the 

resources, which explains the interoperation between ROA and REST [137]. 

 Architecturally, the IoT devices, as resources, are communicable through a 

physical module and a standard common interface; this interface is a set of stateless 



- 40 - 

operations, such as REST in IoT web services. The system that complies with the 

REST standard is called the RESTful system [184]. The IoT resources are 

orchestrated by the provided RESTful application and accessed through uniform 

resource identifiers (URIs). Although the representation protocol stacks are complex 

to resource discovery, publication, invocation, etc., the ROA enables various 

representations of resources through various URIs  [46], [185]. The ROA supports 

the trend of the Web of Things (WoT) [57]. The WoT innovates new approaches for 

accessing smart devices through web-based approaches and using these devices in 

IoT applications[46],  [185], [186]. 

3.4  Advantages of virtualisation in IoT 

Virtualisation in the IoT network creates an environment of embedded sensor 

networks; thus, virtualisation is considered an emerging approach that aggregates 

multiple heterogeneous nodes, enhances software platforms, and innovates 

applications. 

3.4.1  New services to the cloud 

Virtualisation in IoT has led to new trends toward the coupling between IoT and 

cloud approaches, such as sensor-as-a-service (SenaaS). This approach enhances the 

efficient creation, management, discovery, and delivery of a node’s function [175]. 

Another trend envisioned by the virtualisation in IoT is sensing and actuation as a 

service (SAaaS) [187]. These trends are considered essential approaches towards 

infrastructure-as-a-service (IaaS), bringing flexibility and scalability to IoT and 

cloud applications [188]. 

3.4.2  Energy efficiency 

IoT nodes are based on low-power microcontroller and low-power wireless 

communication concepts with limited power resources such as small batteries. The 

low power or energy efficient solutions are considered the significant design and 

implementation factors. Recent virtualisation techniques have introduced new ways 

to reduce energy consumption through node selection, task scheduling, routing 

capability, and other energy-aware designs. Many researchers have used 

virtualisation approaches for minimising the power consumption of IoT networks or 
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using the IoT for reducing the power consumption of the current projects such as 

smart grids [105]. 

3.4.3  Reducing cost and hardware overhead 

Virtualisation is based on the sharing and re-use of resources so that the overall 

cost of hardware and management can be reduced because of the multi-use of the 

infrastructure with HW utilisation constraints [155]. Virtualisation has not only 

reduced the capital expenditure (CAPEX) of the infrastructure but also reduced the 

operational expenditure by reducing the traffic cost [143]. Virtualisation in IoT 

networks has simplified the complexity of any application, even the single-purpose 

ones, without overlying on an additional individual network, thus reducing the total 

cost and HW involvement [87], [148]. 

3.4.4  Flexibility 

Several researchers have presented virtualisation in IoT paradigms with a high 

level of flexibility and adaptability. This flexibility is simply defined as the system’s 

ability to adapt to any internal or external changes and not fail. Virtualisation in IoT 

provides a high level of flexibility to the service providers to deploy their 

applications [159]. Virtualisation in IoT enables a certain level of flexibility with 

traffic routing in the virtualised environment [145]. This flexibility is a significant 

parameter in the QoS of the network [49]. 

3.4.5  Availability 

Availability can be defined as the probability of the system to be available and 

ready for use. For IoT, availability is considered a strict demand, particularly for 

assisted living and healthcare applications [189], [190]. The most important property 

of virtualisation is that it can keep a virtualised service running even though the 

physical resource has to be upgraded or shutdown, by migrating the virtual service 

from the current physical resource to another one, and migrating it back when the 

original resource is ready [166]. Moreover, virtualisation has a monitoring function 

that checks the status of the virtual sensor and the corresponding sensor in the 

infrastructure [191].  
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3.4.6  Scalability 

Scalability in IoT can be defined as the ability of adding, upgrading, or removing 

nodes over time depending on the required system capacity. Virtualisation facilitates 

the addition of a new IoT node with its basic service to the network (i.e. add and 

register node into the cluster head) because of the ability of service discovery in the 

virtualisation. Therefore, the infrastructure can extend its ability to serve more 

applications requested by the service providers [166]. Scalability is not only limited 

to the infrastructure, but it has produced new types of service and service providers 

also due to supporting various user’s applications and service provision [30]. 

Scalability has been studied widely because of the limitation of the IoT 

infrastructure and the physical system to adapt to the service requirements [32]. 

3.4.7  Simplified managed services architecture 

The virtualisation concept is based on the decoupling of the service provider from 

the infrastructure provider, thus providing better opportunities for all providers to 

focus on their growth strategy, enhance service delivery, and satisfy customer 

requirements; consequently, virtualisation uses a trust-managed architecture for both 

the entities to serve all the applications and networks [33], [99], [100], [139]. 

3.4.8  Data fusion and aggregation 

The main objective of the IoT is to facilitate the interaction among smart objects 

and between users and smart objects. The IoT objects collect information for 

frequent use by specific applications. From the perspective of information 

technology, the virtualisation layer is not responsible only for the information and 

service provision to the user but also for the aggregation of data from the IoT nodes 

[47], [192]. The fusion of the information from the embedded IoT nodes can be used 

by various applications through context-aware virtualisation [159], [193]. This 

approach enables the reuse of information rather than that of the nodes; the 

information can be used, managed, combined, fused, and claimed to enhance the 

dynamicity and scalability of the applications [194]. 
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3.4.9  Load balancing 

Load balancing can be defined as the equalising of the workload among all the 

nodes and/or links in the network. The workload can be expressed in terms of the 

number of processes and processing time and is based on other measurements such 

as processing resources, architecture, and capacity. The virtualisation in IoT enables 

dynamic load balancing in the underlying physical infrastructure of the IoT 

resources [195]. Such virtualisation enhances smart routing of traffic in the IoT 

network because of the load balancing in the links based on their capacity utilisation 

[196], [197]. The virtualisation in IoT allows for various types of load balancing, 

such as network-based, inter-cluster-based, intra-cluster-based, sensor-based, and 

applications-based [47], [50]. 

3.4.10  Decoupling and isolation 

One of the essential virtualisation features is the decoupling of components, such 

as hardware devices, software modules, applications, communication radios, 

services, and networks, from one another. Virtualisation enables the logical isolation 

of these entities to enhance the development of each approach individually, in 

addition to increasing the security and adaptability levels. The isolation of the 

components (i.e. software from hardware) enables the software to evolve from the 

hardware independently. The same is true for the other components [198], [199]. 

3.4.11  Abstraction of heterogeneity 

IoT networks can contain a vast number of diverse objects/devices with various 

types of communication modules that support various users/stakeholders. To ensure 

a high level of integrity between the heterogeneous components of the IoT to 

produce an application properly, virtualisation allows the abstraction of the 

functionalities and the underlying infrastructure, and the abstraction feature of 

virtualization provides a solution for the technological heterogeneity to address the 

integration between the hardware and the software, and resolve the interoperability 

issue of the different stakeholders of IoT systems [141], [153], [194], [200]. 
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3.4.12  Reliability 

System reliability is considered an important factor in system performance and 

can be defined as the probability of producing the output correctly over time [201], 

[190]. In IoT networks, data reliability has considerable importance from aspects 

such as energy efficiency and availability [134]. Virtualisation techniques provide 

two approaches for data reliability: The first approach is based on the direct data 

transformation to the sensor’s nodes; this is considered to be a low-reliability-but-

energy-efficient approach. The second approach is based on the data transfer from a 

sensor to the sink node or a gateway as a powerful device in the network; this 

approach has higher reliability but consumes more energy because of the high 

network overhead [47] [112]. 

3.4.13  Application adaptability 

Adaptability can be defined as the ability of a system to efficiently and rapidly 

adjust to the circumstances by itself. An adaptive system is, therefore, an open 

system that can alter its behaviour according to changes in its environment or in 

parts of the system itself. The IoT provides the adaptability property to objects 

where smart interactions between objects that adapt to the current situation without 

any human involvement become the next logical step to people staying connected 

anytime and anywhere [18].  

The IoT has a vast range of applications such as smart home, smart city, 

healthcare, military, and traffic control. These applications have distinct demands 

such as those for more reliability, stability, availability, security, and/or real-time 

networks. Because of the variety of demands and the resource limitations of the IoT 

networks, it is quite possible that the performance of the various running 

applications cannot be accomplished seamlessly [19]. Virtualisation provides a 

comprehensive environment to the developers to deploy their applications. In 

addition, it provides the ability to run concurrent applications on multiple networks 

consisting of variable resources of constrained devices and a wide range of 

properties. Therefore, virtualisation can manage multi threads of adaptability to 

fulfil the application needs [8], [47], [69]. 
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3.5  Challenges and open issues of virtualisation in IoT 

networks  

Virtualisation in IoT networks has many challenges and open issues still pending. 

The following challenges need to be studied by researchers and considered to be 

future work directions. 

3.5.1  Security, privacy, and trust 

Security is considered an essential factor of virtualisation in IoT. In the virtual 

plan, an acceptable level of security is determined in the communication between 

the non-constrained virtual nodes in a virtual network; eventually, secure 

communication between the resource-constrained IoT nodes and non-constrained 

devices in a physical network remains a significant challenge. Several researchers 

have presented virtualisation techniques thus require low processing resources and 

intend to implement secure communication between sensors and between sensors 

and non-constrained devices through lightweight encryption. Two other challenges 

are the privacy of humans and the confidentiality of information; despite many 

privacy approaches recently applied, the pending challenge is to produce fast 

encryption, less power consumption, and an efficient privacy scheme for a 

virtualised environment[166]. 

3.5.2  Managing heterogeneity 

Virtualisation is responsible for the communication between the applications and 

the hardware with an efficient management of the services and the infrastructure. 

The considerable variety of service demands and infrastructure resources has 

resulted in the challenge of extreme heterogeneity. Despite the fact that the increase 

in the number of connected IoT devices has been properly studied in many research 

projects, the heterogeneity and its corresponding demands are still open questions, 

along with the introduction of a unified structure for all the platform types  [148], 

[202], [203]. 
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3.5.3  Orchestration and monitoring 

Virtualisation is not only responsible for virtualising a physical object with the 

virtual demands, but also responsible for the trade-off among the various QoS 

dimensions of the multiple applications. Therefore, virtualisation techniques attempt 

to control and monitor various QoS parameters and the available resources 

according to the trade-off policy between them. Moreover, virtualisation must fulfil 

the application demands collectively, which is considered one of the main 

challenges of virtualisation in IoT design. An example of the pending issues is to 

design an energy-aware system with QoS policies in one virtualization paradigm; 

this design must reduce the power consumption of the multiple physical resources 

and fulfil the virtual network’s demands. However, QoS should not be 

compromised. In addition to the mentioned challenges, other metrics pose additional 

challenges, such as the mobility of IoT nodes; this poses many challenges such as 

varying power consumption, QoS provision, clustering, and localisation [47]. 

3.5.4  Elasticity in service provisioning 

Service provisioning in virtualisation needs prior operations such as service 

discovery and publication processes. The IoT nodes are considered resource-

constrained devices; thus, the dynamic publication and discovery mechanisms are 

considered to be one of the virtualisation challenges in IoT networks [204]. 

3.5.5  Redundancy 

Redundancy can be defined practically as an implication of extra elements that 

are not involved in the available operations but are required in the event of a failure 

of other elements. The redundancy in virtualisation must be eliminated for limited 

operations in IoT networks such as localisation and clustering techniques for a 

virtualisation process, in addition to the efficient algorithms for delay tolerance, load 

balancing, and error minimisation for the virtualised services. All these operations 

increase the processing overhead. The conventional redundancy approaches will not 

be efficient in the virtualised IoT environment [139], [169], [205]. 
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3.5.6  Standards and regulations 

A standard can be defined as a supportive design for a wide range of applications 

that satisfies their requirements. The recent virtualisation in IoT techniques have 

their own individual standards that operate with various services and resources 

because of multiple modules. The service provider must follow the parametric 

standard format of the services and resources from distinct heterogeneous networks. 

The standards should be designed using multiple entities in the networks, which is 

considered a significant improvement [206], [207]. Such standardisation presents an 

open challenge for virtualisation in the IoT network because of the lack of uniform 

and consensus platforms for the software and the hardware, and the continuous 

growth of the IoT service and the increase in the resource heterogeneity. The 

virtualisation in IoT should standardise the widespread IoT networks by merging 

distinct nodes, providing mechanisms for data aggregation, and dealing with the 

integration problem of heterogeneity [145]. 

3.5.7  Data storage and processing capability 

The IoT nodes are considered tiny devices with small batteries, limited 

processing, and memory capabilities; thus, these nodes are prone to failures on their 

operations because of the software and/or the hardware. The open challenge for the 

developers is to design lightweight virtualisation with a minimal effect on network 

performance. Such virtualisation demands more memory for service discovery and 

monitoring, in addition to the decoupling between services and infrastructure at an 

optimum level with significant improvement for virtualisation in IoT networks 

[142], [207].  

3.5.8  Industrial readiness and prospects 

The IoT trend is considered a cornerstone of the future Internet and has had a 

significant impact in the industrial sector. Further, the emergent approach of 

virtualisation in IoT is in the face of the rapid development of communication 

technologies. One of the main challenges in the industrial sector is that IoT is 

developing faster than the standards and regulations, thus producing various 

approaches and paradigms, creating an intractable task exacerbated by the 

heterogeneity of the involved technologies. The industrial sector seeks to unify the 
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precision of the virtualisation techniques to deploy a wide range of IoT scenarios 

and to ensure the adaptation of the virtualisation of IoT with other network 

technologies [32]. 

3.5.9  Physical layer issues 

Virtualisation is based on the concept of exploiting the infrastructure presented 

by the physical network resources, physical resources are used by multiple service 

providers simultaneously and seamlessly, thus demanding well-defined interfaces to 

enable the interoperability between the infrastructure resources. These resources 

pose a few physical layer challenges such as function selection, generation of the 

carrier frequency, modulation and demodulation, encryption and decryption, data 

transmission and reception, radio interferences [208].  Another challenge is resource 

allocation. The virtualisation in the IoT network requires a dynamic allocation and 

discovery of the resources presented by the IoT nodes and links [139], [149].  

3.5.10  Framework management and protocol portability 

Virtualisation in IoT requires the execution of multiple tasks requested by at least 

one service provider in the infrastructure, but because of the wide diversity and 

heterogeneity of IoT approaches and with the absence of widely accepted standard 

protocols, many vendors have been encouraged to develop proprietary protocols to 

run inside their sensor networks. It is unrealistic to develop and support a protocol 

handler for every IoT scenario and its variations. This leads us to exploit methods 

that use less prior knowledge and to try to extract the model of the services 

automatically, adapting service virtualisation for IoT [206]. 

In this theses, we present a framework to solve management issues, orchestrating 

and monitoring, and redundancy challenges with contributions of enhancing the 

energy efficiency, traffic latency, and resilience.  

3.6  Summary 

Many researchers have provided solutions for IoT. These efforts have initiated 

platforms for designing, deploying, setting up, and then maintaining complex tasks 

to be used as testbeds. This review describes some of the most currently active and 
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meaningful service virtualisation techniques for IoT. Here, we discussed their 

architecture and characteristics. We found that service virtualisation is more 

heterogeneous and multi-purpose and has several advantages. It offers an increasing 

set of services for a large range of user applications and demands. We listed the 

widely used testbeds and awarded projects, which serve as tools for IoT 

developments and experimentation. 

The technological trend of service virtualisation is to integrate and modify the 

services in a new order; this has resulted in several challenges. These technological 

challenges and open issues have been summarised in this review. 
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Service Embedding in Smart Buildings with energy efficiency 

and latency minimisation 

4.1  Introduction 

The decentralised and heterogeneous properties of IoT devices require an 

efficient architecture that hides such heterogeneity from higher level applications 

and provides interoperability for information exchange with other IoT devices [8]. 

Service Oriented Architecture (SOA) is considered as a viable middleware between 

user’s applications and the IoT physical layer that support interoperability between 

those heterogeneous IoT devices [9]. This chapter aims to evaluate the energy 

efficiency and traffic latency of embedding service requests in IoT networks in 

building setting implemented following the SOA. Building a framework with SOA 

based middleware, enable both of node and network virtualization in addition to 

other advanced properties of SOA. 

 This chapter introduces a generic MILP model that has been developed to 

minimize the power consumption due to both processing and the traffic flow through 

the network. We apply this model to simulate a smart building setting. We formulate 

the problem of finding the optimal set of IoT nodes and links to embed BPs into the 

IoT layer considering three objective functions: 

i) minimising network and processing power consumption only 

ii) minimising mean traffic latency only 

iii) minimising a weighted combination of power consumption and traffic 

latency.  

This problem is formulated using Mixed Integer Liner Programming (MILP). 

4.2  Proposed Architecture 

In the smart building setting, many services employ IoT nodes such as: 
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- Security services employing motion detectors, RFID, display screens and 

alarms. 

- Energy saving services employing motion detection, temperature sensors 

- Fire protection services employing temperature sensors, smoke detectors, water 

sprinklers and alarms. 

- Entertainment services employing noise detectors, and temperature sensors. 

-  Administration services employing motion detectors, temperature sensors, door 

actuators, and alarms. 

 These services and other services can share the same sensing and actuating 

facilities like sensors for motion, temperature, sound, smoke detectors in addition to 

the processing modules of the IoT nodes.  The IoT can provide multiple services but 

it requires an efficient architecture that hides such heterogeneity from higher level 

services and provides interoperability for information exchange with other IoT 

devices. The SOA enables the abstraction of the IoT node functions to be translated 

into basic services which in turn can be composed into complex services and 

exploited by the upper application layer.  

 

Figure 4-1: SOA-based middleware architecture for the IoT. 
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Figure 4-1 depicts the SOA middleware for IoT which is composed of three sub-

layers [1], [2], [10]: 

- Objects abstraction layer that enables IoT devices to provide their functions as 

basic services to the upper layers, 

- Service management layer, which is responsible for dynamic object discovery, 

status monitoring available services of the IoT nodes. 

- Service composition layer which is where complex services are requested in the 

form of business processes (BPs). It describes the workflow of the connected 

basic services.  

We develop a framework to embed service requests into a substrate network of 

IoT nodes. These requests are implemented following the SOA in the form of a BP. 

A BP is a virtual topology that consists of virtual nodes and links. The virtual nodes 

encapsulate the requested processing demand, sensing/actuating functions. The 

virtual links carry traffic between virtual nodes. The embedding process maps the 

virtual nodes and virtual links of each BP into nodes and links of the IoT layer. 

Each BP is defined as a set of virtual nodes and links. Each virtual node has a 

function that requires processing and memory. Virtual nodes need to be embedded 

in a certain geographical zone. Virtual links carry traffic demands between virtual 

nodes. 

 

Figure 4-2: Block diagram of IoT Node. 
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Each IoT node is characterised by the following modules as shown in Figure 4-2: 

- A processing module hosting a CPU and RAM.  

- A network module hosting a wireless traffic transceiver (Tx/Rx circuit and a 

Tx power amplifier). 

- A function module that provides interfaces to a set of supported sensors and 

actuators.  

 

 

Figure 4-3: Service embedding layers in IoT networks. 

Figure 4-3 gives an example of embedding two BPs. The framework embeds the 

virtual nodes of BP1 (A1-A2-A3) in the physical IoT nodes (P1-P2-P7), 

respectively; and chooses the path (P1-P2-P5-P7) to link the embedding IoT nodes. 

Each virtual node is embedded into an IoT node that satisfies the virtual node’s 

requirements. An IoT node that embeds a certain virtual node of a certain BP can at 

the same time work as a relay node for the traffic associated with another BP. This is 

shown in the second embedding example where IoT node P5 which is an embedding 



- 54 - 

node for BP2 and at the same time works as a relay node for the traffic associated 

with BP1. 

We consider a typical IoT setting where the power consumption of IoT nodes is 

mainly attributed to the processing and network modules while the sensing and 

actuating modules are externally powered i.e. the alarm and door locker is supplied 

by external power lines and separated from the IoT node power supply. 

As the traffic between IoT nodes is routed via a multi-hop network, we consider 

the queuing and transmission latency which dominates over the propagation delay 

[1] as a network performance metric referred to it as traffic mean latency. 

4.3  A framework of service embedding in IoT networks 

To study the power consumption and traffic mean delay resulting from 

embedding BPs into the IoT network, we formulate the embedding problem as a 

MILP model with consideration of three different objective functions: 

- Minimising the total power consumption. 

- Minimising traffic mean latency. 

- Minimising both total power consumption and traffic mean latency in multi-

objective manner.  

4.3.1  Framework Definitions 

Before we give these objective functions and the constraint the embedding of 

BPs, we introduce the sets, parameters and variables used in the formulations: 

Sets 

𝐵 Set of business processes (BPs) in the virtual layer 

𝑉 Set of virtual nodes in each BP 

𝑉𝑁 𝑖𝑎 Set of neighbours of each virtual node in each BP (𝑖 ∈ 𝐵, 𝑎 ∈ 𝑉) 

P Set of IoT nodes in the physical layer 

𝑃𝑁𝑐  Set of neighbours of IoT nodes (𝑐 ∈ 𝑃) 

F Set of functions supported by IoT nodes 
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Z Set of zones in the IoT physical layer 

λ Set of arrival rates 

𝑊𝑗  Set of traffic mean latency per arrival rate (j ∈ λ) in ms per packet 

Parameters 

𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶 𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 1 If virtual node 𝑎 in BP 𝑖 requires the function 𝑛, 𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶 =

0 otherwise 

𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸 𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 requires zone 𝑧, 𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise 

𝑉𝑖𝑎
𝑀𝐶𝑈 Processing requirement of the virtual node 𝑎 in BP 𝑖 in MHz 

𝑉𝑖𝑎
𝑅𝐴𝑀 Memory requirement of the virtual node 𝑎 in BP 𝑖 in kB 

𝑉𝑖𝑎𝑏
𝑇𝑅𝐹𝐼𝐶 Traffic demand between the virtual node pair (𝑎, 𝑏) in 𝐵𝑃 𝑖 in kb/s 

𝑃𝑐𝑛
𝐹𝑈𝑁𝐶  𝑃𝑐𝑛

𝐹𝑈𝑁𝐶 = 1 If IoT node 𝑐 can provide the function 𝑛, 𝑃𝑐𝑛
𝐹𝑈𝑁𝐶 = 0 

otherwise. 

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸 𝑃𝑐𝑧

𝑍𝑂𝑁𝐸  = 1 If the IoT node 𝑐 is located in zone 𝑧, 𝑃𝑐𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise. 

𝑃𝑐
𝑀𝐶𝑈 Processing capability of the IoT node 𝑐 in MHz. 

𝑃𝑐
𝑅𝐴𝑀 Memory capability of the IoT node 𝑐 in kB. 

𝑃𝑒𝑓
𝐷𝐼𝑆𝑇 Distance between the neighbouring IoT node pair (𝑒, 𝑓) in meters. 

𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃 Idle processor power in each IoT node 𝑐 in mW. 

𝑃𝑐
𝑀𝐴𝑋𝐶𝑃 Maximum processor power consumption in each IoT node 𝑐 in mW. 

𝑃𝑐
𝐼𝐷𝐿𝐸𝑇𝑃 Idle network power consumption in each IoT node 𝑐 in mW. 

𝐸𝑒𝑓
𝑃𝐵𝑇 Energy per bit for each IoT link (𝑒, 𝑓) in mW/kbps. 

M Large number (= 108). 

𝑃𝑒
𝐶𝐴𝑃𝑇 Link capacity for each IoT node (𝑒) in kbps. 

𝐹𝑒𝑓
𝑇𝑅 Transmit amplifier factor for each IoT link (𝑒, 𝑓)  in mW/kbps/𝑚2. 

Variables 

𝐼𝑖𝑎𝑐
𝑁𝐸   𝐼𝑖𝑎𝑐

𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 has been embedded in IoT node 𝑐, 

𝐼𝑖𝑎𝑐
𝑁𝐸  = 0 otherwise. 

𝐼𝑖𝑎𝑐𝑛
𝐹  𝐼𝑖𝑎𝑐𝑛

𝐹𝐼 = 1 If IoT node 𝑐 has the function  𝑛 required by virtual node 𝑎 

in BP 𝑖, 𝐼𝑖𝑎𝑐𝑛
𝐹𝐼 = 0 otherwise. 

𝐼𝑖𝑎𝑐𝑧
𝑍  𝐼𝑖𝑎𝑐𝑧

𝑍𝐼 = 1 If IoT node 𝑐 is located in zone 𝑧 required by virtual node 𝑎 
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in BP 𝑖,𝐼𝑖𝑎𝑐𝑧
𝑍𝐼  = 0 otherwise. 

𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸  𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸 = 1 If the neighbouring virtual nodes (𝑎, 𝑏) in BP 𝑖 have been 

embedded in IoT nodes (𝑐, 𝑑), 𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 = 0 otherwise. 

𝑋𝑖𝑎𝑏𝑐𝑑
𝑋𝑂𝑅  Dummy binary variable 

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃 Embedded traffic demand between IoT nodes (𝑐, 𝑑) in kbps. 

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 Traffic between IoT nodes (𝑐, 𝑑) traversing the neighbouring IoT 

nodes (𝑒, 𝑓) in kbps. 

𝐼𝑐𝑑𝑒𝑓
𝑅  𝐼𝑐𝑑𝑒𝑓

𝑅 = 1 If the traffic demand between IoT nodes (𝑐, 𝑑) traverses 

neighbouring IoT nodes(𝑒, 𝑓), 𝐼𝑐𝑑𝑒𝑓
𝑅 = 0 otherwise. 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿 Traffic between neighbouring IoT nodes (𝑒, 𝑓) in kbps. 

𝑅𝑓
𝑇𝑅𝐹𝑁 Arrival rate of IoT nodes (𝑓) in kbps. 

𝐿𝐼𝑓 𝑗
Lmbda Lambda indicator for each IoT node  (𝑓) ;  (𝑗)𝐿𝐼𝑓 𝑗

Lmbda = 1 if the 

arrival rate is  (𝑗), it is 0 otherwise. 

𝑊𝑓
𝑁𝑂𝐷𝐸 Traffic mean latency for each node (𝑓). 

𝐼𝑐
𝑃𝑀

 
 𝐼𝑐

𝑃𝑀
 

= 1 If the processing module of IoT node 𝑐 is powered on, 

𝐼𝑐
𝑃𝑀 = 0 otherwise. 

𝐼𝑐
𝑇𝑀 𝐼𝑐

𝑇𝑀 = 1 If the network module of IoT node 𝑐 is powered on, 𝐼𝑐
𝑇𝑀 = 0 

otherwise. 

𝑇𝑃𝑃 Total processing power in the IoT network in mW. 

𝑇𝑁𝑃 Total network power in the IoT network in mW. 

𝑇𝐿 Total traffic mean latency in ms. 

 

4.3.2  Energy efficient service embedding 

This embedding scenario has an objective function whose goal is to minimise the 

total power consumption as follows: 

Objective: minimise TNP+TPP (4.1) 

where TPP is total processing power and given by: 
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𝑇𝑃𝑃 =  ∑  𝐼𝑐
𝑃𝑀 ∙ 𝑃𝑐

𝐼𝐷𝐿𝐸𝐶𝑃   

𝑐∈𝑃

+ ∑  ∑  ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑃𝑐

𝑀𝐴𝑋𝐶𝑃 ∙
𝑉𝑖𝑎

𝑀𝐶𝑈

𝑃𝑐
𝑀𝐶𝑈    

𝑎∈𝑉

 

𝑖∈𝐵𝑐∈𝑃

 

(4.2) 

 where 𝐼𝑐
𝑃𝑀is a binary variable that indicates the activity of the  processing module 

in IoT node c ,  𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃is the idle processing power parameter of IoT node c in mW, 

𝐼𝑖𝑎𝑐
𝑁𝐸   is a binary variable that indicates if a virtual node a in BP i has been embedded 

in IoT node c, 𝑃𝑐
𝑀𝐴𝑋𝐶𝑃 is a parameter that gives the maximum CPU power 

consumption in each IoT node c in mW, 𝑉𝑖𝑎
𝑀𝐶𝑈is a parameter whose value gives the 

processing requirement of the virtual node a in BP i in MHz, and 𝑃𝑐
𝑀𝐶𝑈is a 

parameter that specifies the processing capability of the IoT node c in MHz. The 

processing power consumption is considered to follow a liner profile versus the load 

with an idle power consumption.  The total traffic power of the network, TNP, and 

given by: 

𝑇𝑁𝑃 = ∑  𝐼𝑒
𝑇𝑀 ∙ 𝑃𝑒

𝐼𝐷𝐿𝐸𝑇𝑃

𝑒∈𝑃

 

+2 ∙ ∑  

𝑒∈𝑃

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐼𝐶 ∙ 𝐸𝑒𝑓

𝑃𝐵𝑇      

𝑓 ∈𝑃𝑁𝑒 

 

+ ∑  

𝑒∈𝑃

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐼𝐶 ∙ (𝑃𝑒𝑓

𝐷𝐼𝑆𝑇  )2  ∙   𝐹𝑒𝑓
𝑇𝑅   

𝑓 ∈𝑃𝑁𝑒 

 

(4.3) 

  where f is neighbour IoT node of e and is included in 𝑃𝑁𝑒 ,  𝑃𝑁𝑒  is the neighbours 

subset of IoT node e , 𝐼𝑒
𝑇𝑀 is a binary variable that indicates the activity of the 

network module in the IoT node, 𝑃𝑒
𝐼𝐷𝐿𝐸𝑇𝑃 is the idle network power parameter of 

IoT node e , 𝑅𝑒𝑓
𝑇𝑅𝐹𝐼𝐶 is a variable that specifies the traffic between neighbouring IoT 

nodes e and f in kbps, 𝐸𝑒𝑓
𝑃𝐵𝑇 is a parameter that gives the energy per bit for each IoT 

link e, f in mW/kbps, 𝑃𝑒𝑓
𝐷𝐼𝑆𝑇 is a parameter that specifies the distance between the 

neighbouring IoT nodes pair (e, f) in meters, and 𝐹𝑒𝑓
𝑇𝑅 is the transmit amplifier factor 

[18] for each IoT link e, f in mW/kbps/m2. 

 The network power consumption is a function of the traffic and distance between 

the source and destination nodes. The network power consumption of each link 

consists of the idle power, the power consumed per bit by the electronics in the 
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transmitter and the receiver, and the transmitter amplifier power consumption which 

is calculated based on the radio energy needed based on Friis free-space equation in 

our setting (note that higher propagation factors beyond Friis square law, e.g. cubic 

or higher, can be considered, and are a straight forward extension of our equations, 

but are not considered here) [64], [209].  

4.3.3  Low latency service embedding 

The second scenario in our framework is concerned with minimising the total 

traffic mean latency of the service embedding. The framework minimises the traffic 

mean latency in the IoT network using the following objective function: 

Objective: minimise TL (4.4) 

  

where TL 𝑃𝑇𝐿  is the total traffic mean latency in the network given by: 

𝑇𝐿 = ∑ 𝑊𝑓
𝑁𝑂𝐷𝐸

𝑓∈𝑃 

 (4.5) 

  Our network is modelled as an open Jackson network of multiple M/M/1 

queues where the utilisation is less than 1 at every queue [210]. For simplicity, we 

consider each node as M/M/1. The M/M/1 model refers to a system with a single 

server, where arrivals are determined by a Poisson process and job service times 

have an exponential distribution as shown in Figure 4-4. 

 

Figure 4-4: Single server queuing system. 

The mean latency is the average time that the packet takes to pass through queue 

and server, which is given by: 

𝑊𝑓
𝑁𝑂𝐷𝐸= 

1

(µ𝑓
𝑁𝑂𝐷𝐸−λ𝑓

𝑁𝑂𝐷𝐸)
                                                                        (4.6) 

https://en.wikipedia.org/wiki/M/M/1_model
https://en.wikipedia.org/wiki/M/M/1_model
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  The arrival rate represents the average rate of successful packets transfer to the 

node through physical links per time unit. Mathematically, the arrival rate is the 

summation of data rates delivered to the node in the network.  

In our framework, we considered that the service rate µ𝑓
𝑁𝑂𝐷𝐸 is fixed for each IoT 

nodes in the network. The service rate is the transmission rate of the network 

module. A variable, λ𝑓
𝑁𝑂𝐷𝐸 , is created to calculate the summation of packet arrival at 

each IoT device.  

Since we are using linear programming, equation (4. 6) must be converted to a 

linear format. To facilitate this, we use a lookup table indexed variable to calculate 

the traffic mean latency. The lookup table indexed-variables method depends on 

generating lambda indicator as a binary variable according to the traffic value of 

λ𝑓
𝑁𝑂𝐷𝐸 for each node. Based on this indicator, the traffic mean latency for IoT nodes 

is given as the value corresponding to the indicator in the lookup table. 

4.3.4  Energy efficient - Low latency service embedding 

In this scenario, we consider a multi-objective MILP model to optimise the 

service embedding in IoT networks to achieve a trade-off between minimising the 

power consumption and minimising the traffic mean latency. The objective function 

is given as: 

Objective: minimise α. TL + β. TNP  + γ. TPP   (4.7) 

  where  α , β  and γ  are weight factors with the following units 1/ms, 1/mW, 1/mW 

respectively used to emphasise the importance of the different components of the 

objective function. 

4.3.5  Framework Constraints 

The framework performs the embedding operation through two parts as follows: 

4.3.5.1  Embedding of virtual nodes 

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑐∈𝑃

 = 1        (4.8) 
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∀ 𝑖 ∈ 𝐵 , ∀ 𝑎 ∈ 𝑉  

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉

 ≤ 1         (4.9) 

∀ 𝑖 ∈ 𝐵 , ∀𝑐 ∈  𝑃  

  Constraint (4.8) ensures that each virtual node in a BP is embedded in a single IoT 

node only. Constraint (4.9) states that each IoT node is not allowed to host more 

than one virtual node in each BP. This is considered as a coexistence constraint that 

is not used in all scenarios such as controller node virtualisation.  

∑ ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

    ≥ 𝐼𝑐
𝑃𝑀 (4.10) 

∀ 𝑐 ∈ 𝑃  

∑ ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

 ≤ 𝐼𝑐
𝑃𝑀 ∙ 𝑀     (4.11) 

∀ 𝑐 ∈ 𝑃  

  Constraints (4.10) and (4.11) build (include / add) a processing module in IoT node 

𝑐 if that node is chosen for embedding at least one virtual node 𝑎 in BP 𝑖 or more, 

where M is a large enough unitless number to ensure that 𝐼𝑐
𝑃𝑀𝐼 = 1 when 

∑ ∑  𝑃𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵 is greater than zero. 

∑ ∑ 𝑉𝑖𝑎
𝑀𝐶𝑈 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

≤  𝑃𝑐
𝑀𝐶𝑈 (4.12) 

∀ c ∈ P  

∑ ∑ 𝑉𝑖𝑎
𝑅𝐴𝑀 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  

𝑎∈𝐿𝑖∈𝐵

≤  𝑃𝑐
𝑅𝐴𝑀                        (4.13) 

∀ c ∈ P  

  Constraints (4.12) and (4.13) represent the processing and memory capacity 

constraints, respectively. They ensure that the embedded processing and memory 

workloads in an IoT node do not exceed the MCU and memory capacities, 

respectively. 

𝐼𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 𝐼𝑖𝑎𝑐𝑛
𝐹   (4.14) 
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∀ i ∈ B ,  ∀ a ∈ L , ∀ c ∈ P, ∀ n ∈ F  

𝑃𝑐𝑛
𝐹𝑈𝑁𝐶>=𝐼𝑖𝑎𝑐𝑛

𝐹   (4.15) 

∀ i ∈ B ,  ∀ a ∈ L , ∀ c ∈ P, ∀ n ∈ F  

  Constraints (4.14) and (4.15) ensure that the required function of each virtual node 

in BP is provided by its hosting IoT node. 

  Constraints (4.16) and (4.17) ensure that the required zone of each virtual node in a 

BP is matched by the zone of the hosting IoT node.  

4.3.5.2   Embedding of virtual links 

𝐼𝑖𝑎𝑐
𝑁𝐸  + 𝐼𝑖𝑏𝑑

𝑁𝐸  = 𝑋𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 + 2 ∙ 𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸  (4.18) 

∀ 𝑖 ∈ 𝐵 , ∀𝑎 ∈ 𝑉, ∀𝑏 ∈ 𝑉𝑁 𝑖𝑎 ∶ 𝑎 ≠ 𝑏, ∀ 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑 

 Constraint (4.18) ensures that neighbouring virtual nodes 𝑎 and 𝑏 of 𝑖 in 𝐵 are 

also connected in the embedding IoT nodes 𝑐 and 𝑑. We achieve this by introducing 

a binary variable 𝑃𝑖𝑎𝑏𝑐𝑑
𝐿𝐸    which is only equal to 1 if 𝐼𝑖𝑎𝑐

𝑁𝐸  and 𝐼𝑖𝑏𝑑
𝑁𝐸   are exclusively 

equal to 1 otherwise it is zero, 𝑊𝑖𝑎𝑏𝑐𝑑
𝐿𝐸  is an auxiliary variable. 

∑  ∑  ∑  𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 ∙  𝑉𝑖𝑎𝑏

𝑇𝑅𝐹𝐼𝐶 =  𝑅𝑐𝑑
𝑇𝑅𝐹𝑃 

𝑏∈𝐿𝑁𝐵𝑖 𝑎 

 

𝑎∈𝐿𝑖∈𝐵

 (4.19) 

 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑  

  Constraint (4.19) generates the path’s traffic matrix resulting from embedding the 

virtual nodes 𝑎 and 𝑏  into the IoT nodes 𝑐 and 𝑑. 

∑ 𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸   

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑅𝑐𝑑𝑓𝑒
𝑅𝑂𝑈𝑇𝐸    {

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−𝑅𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 
(4.20) 

𝐼𝑖𝑎𝑐
𝑁𝐸  ∙  𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸 = 𝐼𝑖𝑎𝑐𝑧
𝑍   (4.16) 

∀𝑖 ∈ 𝐵, ∀𝑎 ∈ 𝑉, ∀𝑐 ∈ 𝑃, ∀𝑧 ∈ 𝑍  

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸 ≥ 𝐼𝑖𝑎𝑐𝑧

𝑍  (4.17) 

∀𝑖 ∈ 𝐵, ∀𝑎 ∈ 𝑉, ∀𝑐 ∈ 𝑃, ∀𝑧 ∈ 𝑍  
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∀ 𝑐, 𝑑, 𝑒 ∈  𝑃: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraint (4.20) represents the flow conservation constraint for the traffic flows in 

the IoT network. 

∑ ∑  𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 = 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿  

𝑑∈𝑃𝑐∈𝑃

  (4.21) 

∀ 𝑒 ∈ 𝑃 , ∀ 𝑓 ∈ 𝑃𝑁𝑒   

  Constraint (4.21) estimates link’s traffic between the neighbouring IoT nodes 𝑒 

and d. 

∑  

𝑓∈𝑃𝑁𝑒 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿 ≤ 𝑃𝑒

𝐶𝐴𝑃𝑇 (4.22) 

∀ 𝑒 ∈ 𝑃   

  Constraint (4.22) states that the total traffic flows of the IoT node 𝑒 should not 

exceed the node capacity i.e. 250 kbps. 

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 ≥  𝐼𝑐𝑑𝑒𝑓

𝑅  (4.23) 

∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃, ∀𝑓 ∈ 𝑃𝑁𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 ≤  𝐼𝑐𝑑𝑒𝑓

𝑅 ∙ 𝑀 (4.24) 

∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃, ∀𝑓 ∈ 𝑃𝑁𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  

  The constraints (4.23) and (4.24) build a path between the embedding IoT nodes 𝑐 

and 𝑑 through the neighbouring IoT nodes 𝑒 and 𝑓, where 𝐼𝑐𝑑𝑒𝑓
𝑅𝐼 = 1 if there is a 

traffic path between the IoT nodes 𝑐 and 𝑑 that passes through the neighbouring IoT 

nodes 𝑒 and 𝑓, where M is a large enough unitless number which ensure that 𝐼𝑐𝑑𝑒𝑓
𝑅  = 

1 when 𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸is greater than zero. 

∑  𝐼𝑐𝑑𝑒𝑓
𝑅  ≤ 1     

𝑓∈𝑃𝑁𝑒 

 (4.25) 

∀𝑐 ∈ 𝑃, ∀𝑑 ∈ 𝑃, ∀𝑒 ∈  𝑃  

  Constraint (4.25) ensures that traffic splitting is prevented for each path between 

the embedding IoT nodes 𝑐 and 𝑑, such that the maximum number of physical links 

between neighbouring IoT nodes e and f is one. 
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∑  

𝑐∈𝑃

∑ ∑  

𝑓 ∈𝑃𝑁𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅 ≥ 𝐼𝑒

𝑇𝑀

𝑑∈𝑃

 (4.26) 

∀ e ∈ P  

∑  

𝑐∈𝑃

∑ ∑  

𝑓 ∈𝑃𝑁𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅 ≤ 𝐼𝑒

𝑇𝑀

𝑑∈𝑃

∙ 𝑀 (4.27) 

∀ e ∈ P  

 

Constraints (426) and (4.27) build a network module in  IoT node 𝑒 if that IoT 

node is chosen to send/receive traffic at least for one link or more, where M is a 

large enough unitless number to ensure that 𝐼𝑒
𝑇𝑀𝐼=1 when  

∑  𝑐∈𝑃 ∑ ∑  𝑓 ∈𝑃𝑁𝐵𝑒 
 𝐼𝑐𝑑𝑒𝑓

𝑅
𝑑∈𝑃   is greater than zero. 

∑ 𝑅𝑒𝑓
𝑇𝑅𝐹𝐿 = 𝑅𝑓

𝑇𝑅𝐹𝑁

𝑒∈𝑃𝑁𝑓 

  (4.28) 

∀ 𝑓 ∈ 𝑃 : 𝑒 ≠f   

  Constraint (4.28) estimates the arrival traffic for each IoT node. 

∑ 𝐿𝐼𝑓  𝑗
𝐿𝑀𝐵𝐷𝐴 ∙ 𝑗 = 𝑅𝑓

𝑇𝑅𝐹𝑁

𝑗∈𝐽 

  (4.29) 

∀ 𝑓 ∈ 𝑃 : 𝑒 ≠f   

  Constraint (4.29) is an arrival rate indicator of arrival rate 𝑗 for each IoT node 𝑓 

∑ 𝐿𝐼𝑓 𝑗
𝐿𝑀𝐵𝐷𝐴 ≤ 1

𝑗∈𝐽 

  (4.30) 

∀ 𝑓 ∈ 𝑃    

  Constraint (4.30) ensures that each IoT node has no more than one arrival rate 

indicator. 

∑ 𝑊𝑗
𝐿𝐼𝑀𝐷𝐴 ∙ 𝐿𝐼𝑓 𝑗

𝐿𝑀𝐵𝐷𝐴 = 𝑊𝑓
𝑁𝑂𝐷𝐸

𝑗∈𝐽 

  (4.31) 

∀𝑓 ∈ 𝑃   
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  Constrain (4.31) estimates the mean traffic latency for each IoT (𝑓). 

 The MILP optimisation model was solved using CPLEX running on personal 

computer with processor core i5 -3.2 GHz and 16 GB RAM and on the university 

Polaris servers of 24 cores and 128GB. 

4.4  Results and evaluations  

To evaluate the performance of the proposed model and heuristic, we consider a 

smart building scheme (for example in an enterprise campus) where the physical 

layer is composed of 30 IoT nodes connected by 89 bidirectional wireless links. 

These IoT nodes are distributed across an area 500 m x 500 m and can carry various 

functions with the following assumptions: 

- There is a set of 9 distinct functions, 4 sensing functions, one control function 

and 4 actuating functions. Each IoT node can provide 2 sensing function, 2 

actuating functions, and one controlling function (present only in one type of 

processor). The virtual node of each BP requests one function only. 

- There is a set of five geographical zones that represent the sub-sections of the 

smart building (e.g. departments or sections in the enterprise campus). Each 

zone is equipped with six IoT nodes. All the functions and processor types 

exist in each zone. The virtual node requests an embedding location in one of 

these five zones. 

- The IoT nodes processing capability is uniformly distributed among five 

processing capacities (8, 16, 16, 25, 25, 48 MHz) representing microcontrollers 

as shown in Table 4-1. Each virtual node has a specific processing demand that 

varies between 4 and 30 MHz.  

- Each IoT node contains wireless transceiver modules [211]. The network 

modules used are low cost, low power, and are compatible with the ZigBee 

protocol stack for IoT networks [209]. The traffic demands of the virtual links 

vary from 50 to 200 packets per second with a packet size of 1 kb. 

- We study the embedding of 12 BPs arriving sequentially, two at a time.  Each 

BP has three virtual nodes (sensor, controller and actuator) connected 

sequentially. The sensor is connected to the controller and the controller is 

connected to the actuator. The sensor virtual node requests a specific sensing 

function, the control virtual node requires processing capacity and the actuator 
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virtual node requests a specific actuating function. The sensor and actuator 

virtual nodes of a BP need to be embedded in a specific zone while the 

controller virtual node can be embedded into any geographical zone. 

Table 4-1: Processing modules power specifications and power consumption in 

active mode[212] 

MCU Type MCU CLK RAM Idle Power Max. Power 

MSP430F1 8 MHz 64 kB 1 mW 8 mW 

MSP430FR5 16 MHz 64 kB 1 mW 14 mW 

MSP430FR6 16 MHz 128 kB 1 mW 20 mW 

MSP430F5 25 MHz 512 kB 1 mW 14 mW 

MSP432P4 48 MHz 256 kB 1 mW 16 mW 

 

We evaluate the power consumption and traffic mean latency resulting from 

embedding the BPs using the MILP model considering the three objective functions 

discussed in Section 4.3. 

4.4.1   Energy efficient service embedding 

In this section, we evaluate the results of embedding BPs in terms of power 

consumption and traffic mean latency under three scenarios with objective function 

used in (4.1). In the first scenario, referred to as energy-latency unaware service 

embedding (ELUSE), BPs are embedded in physical nodes and links that satisfy 

their requirements with no consideration of a certain objective function.  

In the second and third scenarios, the objective is to minimise the total power 

consumption. However, in the second scenario, referred to as re-provisioning, each 

time a new BPs arrives, previously embedded BPs are re-embedded while in the 

third scenario, referred to as sequential embedding, arriving BPs are embedded 

without interrupting the existing BPs. We also study the coexistence constraints of 

the embedding and their effects on the results of the energy efficient service 

embedding.   
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4.4.1.1  Service embedding on same geographical zone 

In this subsection, we considered that the sensor and actuator nodes of a BP need 

to be embedded in the same specific geographical zone. We also study embedding 

BPs with and without coexistence constraints. Under coexistence constrains, the 

virtual nodes of the BP cannot coexist in the same IoT node. The goal here is to 

improve the resilience of the BPs under single node failure.   

 

Figure 4-5: Power consumption of energy efficient service embedding in same 

zone without coexistence constraint. 

Figure 4-5 shows the total power consumption of embedding BPs in which the 

sensing and actuating nodes are to be embedded in the same zone. The results show 

that the energy efficient re-provisioning embedding scenario resulted in saving an 

average of 63% of the power consumption compared to the ELUSE scenario. Under 

energy efficient embedding, fewer IoT nodes and links are activated to embed BPs 

compared to embedding under the ELUSE scenario. As no coexistence constraints 

apply, all the virtual nodes of a BP can be embedded in a single IoT node confining 

the virtual links traffic within this node and reducing the number of activated IoT 

nodes. The saving achieved by the energy efficient embedding decreases to 58% 

under the sequential scenario as the sequential approach builds on existing 

embedding decisions that become suboptimal with the arrival of new BPs. The 

optimal use of resources under the re-provisioning scenario resources resulted in 

successfully embedding 12 BPs while only 8 BPs were successfully embedded 

under sequential embedding, that refers to the re-provisional scenario allocates the 
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virtual nodes in to the optimal physical resources from the whole network, while the 

sequential scenario allocates the incoming virtual nodes in to the remaining physical 

resources which is not satisfy the higher virtual demands such as in more than 8 

BP’s. 

Note that the power savings decrease as the number of embedded BPs increases. 

This is because the higher the load on the network the fewer the possible embedding 

solutions therefore narrowing the gap between energy efficient embedding and 

ELUSE.  

 

Figure 4-6: Power consumption of energy efficient service embedding in the 

same zone with coexistence constraint. 

Figure 4-6 shows the power consumption of embedding BPs in the same zone 

under coexistence constraints. The coexistence constraints reduce the power savings 

achieved by the energy efficient embedding scenarios to 36% and 29% for re-

provisioning and sequential embedding, respectively. This reduction in power 

savings is due to the need to activate more IoT nodes to meet the coexistence 

requirements and the traffic between these nodes.  
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Figure 4-7: Average traffic mean latency of energy efficient service embedding 

in same zone without coexistence constraint. 

The results in Figure 4-7display the average traffic mean latency resulting from 

embedding BPs without coexistence constraint. The re-provisioning embedding and 

the sequential embedding have reduced the average traffic mean latency by 62% and 

60% respectively compared with ELUSE scenario. This is because energy efficient 

embedding selects routes of minimum hops and consequently lower traffic mean 

latency compared to random routing in ELUSE. However, energy efficient 

embedding does not produce the minimum traffic mean latency (as we will see in 

Section 4.4.2) as energy efficient embedding tries to highly utilise the activated IoT 

nodes resulting in high traffic mean latency in these nodes. 
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Figure 4-8: Average traffic mean latency of energy efficient service embedding 

in same zone with coexistence constraint 

Similar trends to those in Figure 4-7 are observed in Figure 4-8 for the average 

traffic mean latency resulting from embedding with coexistence constraints, the 

results display that the re-provisional embedding and the sequential embedding have 

reduced the average traffic mean latency by 27% compared with the ELUSE 

scenario. Comparing Fig. 8 and Fig.7 shows that embedding BP on the same zone 

with coexistence constraint results in higher traffic mean latency compared to 

embedding without coexistence constraint. This is because without the coexistence 

constraint, the traffic of a BP can experience no traffic latency by embedding all the 

virtual nodes of the BP in a single IoT node. 

4.4.1.2  Service embedding across geographical zone 

The previous results display the power consumption and mean latency of 

embedding BPs where the sensor and actuator nodes need to be embedded in the 

same geographical zone. In this section we examine embedding BPs that require the 

sensor and actuator nodes to be embedded in distinct geographical zones. We study 

also the performance with and without coexistence constraints on the controller 

node. Under coexistence constrains, the controller cannot coexist in the same IoT 

node with the sensor or actuator node. 
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Figure 4-9: Power consumption of energy efficient service embedding across 

different zones without coexistence constraint. 

Figure 4-9 displays the power consumption of embedding BPs across different 

geographical zones without coexistence constraint. The power savings achieved by 

energy efficient embedding under the re-provisioning scenario and the sequential 

scenario when embedding across different zones are lower than those achieved for 

same zone embedding in Fig. 6. This is because energy efficient embedding in the 

distinct zones cannot select to embed the sensor and actuator in the same node 

although coexistence constraints do not apply. The power savings achieved by the 

energy efficient embedding scenarios are 42% and 22% for re-provisioning and 

sequential scenarios, respectively. 

The less efficient use of resources in embedding across zones reduces the number 

of BPs that can be embedded under the sequential scenario to 6 BPs, while the re-

provisioning embedding still succeeds to embed all the 12 BPs.   
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Figure 4-10: Power consumption of energy efficient service embedding across 

different zones with coexistence constraint. 

Figure 4-10 displays the power consumption of embedding BP’s into the physical 

IoT network with the coexistence constraint. The power savings achieved by the 

energy efficient embedding scenarios are reduced to 34% and 17% for re-

provisioning and sequential cases, respectively. This reduction is due to embedding 

of virtual nodes of a BP in different IoT nodes as explained above. 

 

Figure 4-11: Average latency of energy efficient service embedding across 

different zones without coexistence constraint. 
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Figure 4-11 displays the traffic mean latency resulting from embedding BPs 

across distinct zones without coexistence constraints. The re-provisioning and 

sequential embedding have reduced the average traffic mean latency by 32% and 

15% compared with ELUSE scenario. 

 

Figure 4-12: Average latency of energy efficient service embedding across 

different zones with coexistence constraint. 

Figure 4-12 displays the traffic mean latency resulting from embedding BPs 

across distinct zones without coexistence constraints. The re-provisioning and 

sequential embedding have reduced the average traffic mean latency to 22% and 

13% compared with ELUSE scenario.  

4.4.2  Low latency service embedding in IoT networks  

In this subsection, we evaluate the low traffic mean latency embedding of BPs 

across different zones with and without the coexistence constraint in terms of traffic 

latency and power consumption with objective function used in (4.4). 
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Figure 4-13: Average traffic mean latency of low latency service embedding 

across different zones without coexistence constraint. 

Figure 4-13 shows that the re-provisioning low latency embedding resulted in 

reducing the traffic latency by an average of 47% compared to the ELUSE scenario. 

The low latency embedding model optimises the selection of IoT nodes and 

distributes the traffic so the arrival rate at nodes and consequently the traffic latency 

is minimised. Under energy efficient embedding, fewer IoT nodes and links are 

activated to embed BPs compared to embedding under the ELUSE scenario.  

The traffic latency reduction achieved by the energy efficient embedding 

decreases to 20% under the sequential scenario as the sequential approach builds on 

existing embedding decisions as explained in Section 4.3.1. The optimal use of 

resources under the re-provisioning scenario resulted in successfully embedding 12 

BPs while only 6 BPs were successfully under the sequential embedding. 
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Figure 4-14: Average traffic mean latency of low latency service embedding 

across different zones with coexistence constraint. 

Figure 4-14 displays the traffic mean latency of low latency BPs embedding 

across different zones with coexistence constraint. Adding the coexistence constraint 

reduced the traffic latency achieved by the re-provisioning and sequential 

embedding to 34% and 19%, respectively compared to the ELUSE scenario as more 

traffic traverses the network due to the fact that multiple virtual nodes of the same 

BP cannot coexist on the same IoT node. 

 

Figure 4-15:  Power consumption of low latency service embedding across 

distinct zones without coexistence constraint. 
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The results in Figure 4-15 show the power consumption resulting from low 

latency embedding across distinct zones without coexistence constraint. Distributing 

the traffic to reduce the delay increased the power consumption by 28% compared to 

the energy efficient re-provisioning embedding in Fig. 9 as more nodes are 

activated. However, compared to the ELUSE scenario the power consumption is 

reduced by 18% and 10% under low latency re-provisioning and low latency 

sequential embedding, respectively.   

 

Figure 4-16: Power consumption of low latency service embedding across 

distinct zones with coexistence constraint. 

Under the coexistence constraint in Figure 4-16, the increase in power 

consumption resulting from low latency embedding compared to the energy efficient 

embedding increased the power consumption by 20% compared to the energy 

efficient re-provisioning embedding in Fig. 10. However, compared to the ELUSE 

scenario the power consumption is reduced by 14% under low latency re-

provisioning and sequential embedding.   

4.4.3  Energy efficient-Low latency service embedding in IoT 

networks  

Minimum power consumption is achieved by consolidating the embedding of 

virtual nodes in as few as possible energy efficient IoT nodes. On the other hand, 

minimum traffic mean latency is achieved by distributing the traffic into multiple 

paths to reduce the arrival rate at the individual IoT nodes. As explained in Section 
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4.3.4, the trade-off between minimising the power consumption and minimising the 

traffic mean latency is achieved through a multi-objective MILP model.  

We define a metric referred to as “embedding optimality” to compare the 

performance of the multi-objective embedding to single objective embedding. The 

embedding optimality is defined as follows:  

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦𝑄𝑜𝑆= 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑀𝑢𝑙𝑡𝑖−𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

𝑄𝑜𝑆

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑖𝑛𝑔𝑙𝑒−𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 
𝑄𝑜𝑆                                                                         

(4.32) 

 

 

           (A)                                                                  (B) 

Figure 4-17: Optimality of (a) power saving and (b) traffic mean latency of 

embedding in distinct zones with coexistence constraint. 

 

Figure 4-17 displays the power saving (Figure 4-17.A) and traffic mean latency 

(Figure 4-17.B) average optimality of energy efficient–low latency service 

embedding scenario across distinct zones with coexistence constraint under α = 30 , 

β = 1  and γ = 1  in the multi-objective function (equation (4.7)). Note that the 

numerical value of power consumption and traffic latency are comparable therefore 

the weight α is used to prioritise traffic latency, while the other two weights in 

equation (4.7) are set to one. We obtain equal optimality for power savings and 

mean traffic latency of 91% at α=30, i.e. this is the weight needed to achieve the 

trade-off.  
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Figure 4-18: Power consumption of embedding in distinct zones with 

coexistence constraint. 

 

Figure 4-19: Average traffic mean latency of embedding in distinct zones with 

coexistence constraint. 

Figure 4-18 and Figure 4-19 compare the power consumption and delay, 

respectively of the energy efficient–low latency service embedding scenario with 

𝛼 = 30 to those of the energy efficient service embedding and low latency service 

embedding scenarios. Note that the low latency scenario increases the power 

consumption by 20% compared to the energy efficient scenario (Figure 4-18) and 
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the energy efficient scenario increases the traffic mean delay by 22% compared to 

the low latency scenario (Figure 4-19). 

4.5  Real time service embedding heuristics 

We have developed service embedding heuristics for two purposes:  

i) For real time service embedding due to the high complexity of the MILP 

model 

ii) To validate the MILP results.  

The two heuristics are developed; real time energy efficient service embedding 

(RESE) heuristic and real time low latency service embedding (RLSE) heuristic.  

These heuristics can be applied for a general embedding scenario.  

4.5.1  Real time energy efficient service embedding heuristic 

The flowchart of the RESE heuristic is shown in Figure 4-20. The input to the 

heuristic is the IoT network topology and the BPs. The heuristic starts by sorting the 

IoT nodes according to the processing power efficiency in descending order and the 

BPs according to the processing demand of the controller node in ascending order. 

The heuristic picks a BP from the ordered list and embeds its nodes one by one 

considering the IoT node with the highest energy efficiency that satisfies the 

embedding requirements in terms of function, zone and coexistence. By doing so the 

heuristic tries to consolidate virtual nodes into the most energy efficient IoT node 

that meets its demand before activating another IoT node. The available processing 

capacity of the IoT nodes is updated after the embedding of a virtual node and 

another virtual node of the BP is selected to be embedded. After embedding all the 

virtual nodes of a BP, the traffic between the virtual nodes is routed based on finding 

shortest path routing [213]. This process is repeated for all BPs and the total power 

consumption (IoT nodes and network) and traffic mean latency resulting from 

embedding all the BPs are calculated.  

Figure 4-9 to Figure 4-12 show that the performance of the RESE heuristic 

approaches that of the sequential energy efficient MILP model for embedding across 
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different zones. Table 4-2 summarises the average performance gap between the 

RESE heuristic and the sequential model.  

Table 4-2: Power consumption gap between the RLSE heuristic and the sequential 

model. 

  2 BP's 4 BP's  6 BP's 

  

Sequential 

MILP 

Real time 

Heuristic 

Sequential 

MILP 

Real time 

Heuristic 

Sequential 

MILP 

Real time 

Heuristic 

Processing 

Power  35 23 48 44 96 56 

Network 

Power  420 684 672 736 987 1149 
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Route the traffic between the embedded virtual 

node of the BP s based on the  shortest path 

routing 

Select two IoT nodes thus embedded virtual 

nodes as source and destination

Update the node traffic capacity

Calculate the total processing and network 

power consumption 

Is this the

 last BP?

End

Yes

No

A

 

Figure 4-20: RESE Heuristic Flowchart. 

 

4.5.2  Real time low latency service embedding heuristic 

The RLSE heuristic reduces the traffic mean latency by setting a threshold on the 

node transmission capacity utilisation. When routing the traffic between virtual 

nodes of a BP, the heuristic does not exceed this threshold which grantees 

distributing the traffic over multiple links.  The flowchart of the RLSE heuristic is 

given in Fig.4-20. The threshold is set to 60% of the maximum node capacity. 

Different thresholds were examined, and this threshold value was identified as the 

maximum threshold before the latency per node starts increasing fast. 

Figure 4-13- Figure 4-16 show that the performance of the RESE heuristic 

approaches that of the sequential low latency MILP model for embedding across 
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different zones. Table 4-3 summarises the average performance gap between the 

RLSE heuristic and the sequential model.  

Table 4-3: Traffic mean latency gap between the RLSE heuristic and the sequential 

model 

  2 BP's 4 BP's  6 BP's 

  

Sequential 

MILP 

Real time 

Heuristic 

Sequential 

MILP 

Real time 

Heuristic 

Sequential 

MILP 

Real time 

Heuristic 

Traffic mean 

Latency  40 48 76 81 93 106 

 

4.6  Summary 

This chapter has investigated the power consumption and traffic mean latency of 

service embedding in the IoT network for a smart building setting and has 

introduced a framework for their minimisation. The services to be embedded are 

represented by a virtual topology (virtual nodes and links) following a business 

processes workflow dictated by the SOA paradigm. We developed a MILP 

framework and a real-time heuristic to optimise the selection of IoT nodes to embed 

the virtual nodes; and to route the traffic between virtual nodes considering three 

different objective functions: (i) minimising the total power consumption, (ii) 

minimising traffic mean latency, (iii) minimising both total power consumption and 

traffic mean latency in multi-objective manner.  

We considered embedding BPs where all the sensor and actuator nodes exist in 

the same geographical zone and also considered embedding across different zones. 

We also studied embedding with and without constraints on the coexistence of 

virtual nodes in the same IoT node. 

We used the MILP model to optimise the embedding in two scenarios: (i) re-

provisioning scenario where each time a new BPs arrives, previously embedded BPs 

are re-embedded, (ii) sequential embedding where arriving BPs are embedded 

without interrupting the existing BPs.  



- 83 - 

In the energy efficient service embedding scenario, the re-provisioning scenario 

produces higher average power saving compared with the sequential embedding 

scenario. In the low latency service embedding scenario, re-provisional embedding 

reduced the average traffic mean latency compared with the sequential embedding 

scenario.  The multi-objective optimisation shows that it is possible to optimise the 

embedding of BPs to achieve high optimality of 91% for both power savings and 

traffic latency.  
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  Energy-efficient Service Embedding in Smart 

Cities with Fog and Cloud processing and latency 

minimisation 

5.1  Introduction 

To reduce the cost, size and power consumption, the IoT devices have been 

designed with limited data processing, storage, and traffic capabilities. These 

limitations are considered as the main constraints and blockages in developing a 

complex service with high computation and traffic demands. To overcome this 

problem, there is a significant demand for integration between the IoT and 

systematic resources that complement the IoT components to satisfy the 

requirements of the services. The cloud and fog are the main contributors when it 

comes to coordinating and providing processing capability, data storage, and 

resource management. The integration paradigm of the IoT and cloud leads to the 

success of the IoT world in terms of service provision accomplished with high 

performance, reliability, and scalability.  

 This chapter introduces a generic MILP model that has been developed to 

minimize the power consumption due to both processing by hosting server/node, and 

the traffic flow through the wireless/optical network. The model selects the 

processing hosting server/node according to the job processing completion latency.   

We apply this model to simulate a smart city setting. We investigate the power 

consumption of services embedding a cloud and fog centric IoT paradigm and 

evaluate the impact of latency constraint on the total power consumption. The 

latency due to job processing completion is typically much higher than the latency 

due to link congestion. Also, the propagation latency considering the longest path 

the traffic will travel between the IoT nodes and the cloud is negligible compared to 

the job processing latency. Therefore, this chapter focuses on latency due to job 

processing completion. We formulate the problem of finding the optimal set of 

nodes and links to embed BPs in the network as a MILP model considering as an 

objective function the minimisation of network and processing power consumption, 

with latency constraints. 
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5.2  Proposed Architecture 

In the smart city, there are distinct applications that employ the same resources in 

the monitoring and controlling system. An example of such an application is traffic 

and security monitoring, where these services refer to a number of different 

paradigms for enhancing the operation of autonomous cars, traffic lighting, and 

monitoring the security condition of the road in the smart city scheme; the majority 

of these paradigms depend on IoT nodes and are thus embedded with different types 

of sensors and actuators (i.e. cameras, street’s display screens, traffic light controls). 

These devices need to continuously monitor and control several crucial factors, such 

as vehicle registration numbers, traffic congestion monitoring, and speed of 

vehicles, the existence of pedestrians around road crossings lines, climate situations, 

and securing public places from unauthorised intrusion.  

These kinds of services require higher processing and traffic demands than the 

services studied in Chapter 4; the control system should make the decision and 

execute different operations with high performance and efficiency to deliver 

different services, i.e. traffic lights control, road monitoring, accident alarms and 

information distribution, in an intelligent manner. Consequently, there is a 

significant demand for integration between the IoT and other technologies (i.e. cloud 

and fog computing) [214], [215], [63], [216]. The integration paradigm of the IoT 

and cloud leads to the success of the IoT world in terms of service provision 

accomplished with high performance, reliability, and scalability [217]. The cloud 

features are provided with high elasticity and on-demand resources for efficient and 

scalable service provision [30]. Although cloud computing is an emerging 

technology which processes content for distributed environments, the cloud’s 

property of centralised computing comes with a high traffic overhead, such as 

capacity and challenges linked to power consumption [218], [219]; hence, another 

paradigm called fog computing is being developed to meet these requirements [69].  

Fog computing is considered a cloud-derived solution and is based on the 

distribution of computing resources and services nearer to the endpoints of the 

network edge. The computing resources of the fog are in the local network, such that 

there is no need to send data to the cloud for processing and storage. Fog computing 

cannot be considered a system independent from the cloud, because the related 
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processing components in the fog and cloud need to exchange important updates and 

remain synchronised [34] . 

Besides the challenges of emerging computing technologies, there is another 

trend of development related to the network of a huge number of IoT nodes which 

generate a substantial amount of data (e.g. camera video streaming). There is a wide 

range of network technologies connecting IoT devices to the cloud/fog; these 

network technologies aggregate a huge amount of data traffic from vast individual 

sensor nodes with different traffic loads through the access network.  

 

Figure 5-1: Schematic access network structure. 

One of these energy-efficient paradigms is Fibre-Wireless (FiWi) networks [220]. 

As shown in Figure 5-1, the FiWi networks adopt optical networks like Passive 

Optical-fibre Networks (PONs) as their backhaul to provide high capacity and 

reliability [221], [222]; on the other side, the FiWi networks enhance the ubiquitous 

coverage, connectivity, and mobility of wireless networks and thus present the front 

end network like Wi-Fi. The structure of the FiWi networks can be summarised as 

shown in Fig. 1 by:  

- Optical Backbone of the FiWi, where the PON provides high link capacity 

by exploiting multiplexing techniques over optical fibre networks such as 

Time Division Multiplexing PON (TDM-PON)[223], [224], and Wavelength 

Division Multiplexing PON (WDM-PON)[225], [226], [227].  
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- Wireless Front End that provides a flexible connection with mobile and fixed 

end user or device by using Wi-Fi, and LTE [61], [2], [228]. 

In this chapter, we present an energy-efficient service embedding framework in 

IoT with cloud and fog processing by using MILP; the framework achieves energy-

efficient service embedding in cloud and fog centric IoT for different simultaneous 

services. We consider the event-driven SOA paradigm in our framework to provide 

service abstraction of basic services which can be broken down into complex 

services and exploited by the upper application layer [229], [214]. 
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Figure 5-2: Architecture of cloud centric IoT network. 

 Our framework considers an IoT, fog, and cloud setting in a smart city as shown 

in Figure 5-2. The IoT layer which consists of IoT nodes is connected to the Wi-Fi 

network through the Access Points (APs); each AP has been linked with an optical 

network with corresponding ONU through the optical line. The ONU’s provide the 
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linkage between the IoT network and the fog, and the OLT through the splitter. The 

OLT has an interface to the cloud through Ethernet switch, edge router, and core 

router, where the cloud is considered in our architecture as a core node and 

connected to access networks through a metro network consisting of an Ethernet 

switch, edge router, and core router. Besides, the service requests are represented in 

our framework by a set of BPs. 

5.3  The framework of energy-efficient service embedding in 

IoT with cloud and fog processing  

We formulate the embedding problem by developing a MILP model with which 

to select the optimal nodes for processing with the objective function of minimising 

total power consumption. 

5.3.1  Framework Definitions 

Before introducing the framework, we define the following sets, parameters, and 

variables: 

Sets 

𝐵                 Set of business processes (BPs) in the virtual layer 

𝑉                  Set of virtual nodes in each BP 

𝑉𝑁 𝑖𝑎         Set of neighbours of each virtual node in each BP (𝑖 ∈ 𝐵, 𝑎 ∈ 𝑉) 

P                 Set of IoT nodes in the physical layer 

𝑃𝑁𝑐           Set of neighbours of IoT nodes (𝑐 ∈ 𝑃) 

F                 Set of functions supported by IoT nodes 

Z                  Set of zones in the IoT physical layer 
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Parameters 

𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶           𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 1 If virtual node 𝑎 in BP 𝑖 requires the function 𝑛, 

𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶 = 0 otherwise 

𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸            𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 requires zone 𝑧, 𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise 

𝑉𝑖𝑎
𝑀𝐼       Processing requirement of the virtual node 𝑎 in BP 𝑖 in MIPS 

𝑉𝑖𝑎𝑏
𝑇𝑅𝐹𝐼𝐶      Traffic demand between the virtual node pair (𝑎, 𝑏) in 𝐵𝑃 𝑖 in 

kb/s 

𝑉𝑐
𝑃𝐿      Processing latency demand for processing node (𝑐) in ms 

𝑃𝑐𝑛
𝐹𝑈𝑁𝐶            𝑃𝑐𝑛

𝐹𝑈𝑁𝐶 = 1 If IoT node 𝑐 can provide the function 𝑛, 𝑃𝑐𝑛
𝐹𝑈𝑁𝐶 = 0 

otherwise 

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸           𝑃𝑐𝑧

𝑍𝑂𝑁𝐸  = 1 If the IoT node 𝑐 is located in zone 𝑧, 𝑃𝑐𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise 

𝑃𝑐
𝑀𝐼       Processing capability of the IoT node 𝑐 in MIPS 

𝑃𝑒𝑓
𝐷𝐼𝑆𝑇         Distance between the neighbouring IoT nodes pair (𝑒, 𝑓) in 

meters 

𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃         Idle MCU power in each node 𝑐 in mW 

𝑃𝑐
𝑀𝐴𝑋𝐶𝑃         Maximum processing power consumption of node 𝑐 in mW 

𝑃𝑐
𝐼𝐷𝐿𝐸𝑇𝑃         Idle network power consumption in each node 𝑐 in mW 

𝐸𝑒𝑓
𝑃𝐵𝑇         Energy per bit for each IoT link (𝑒, 𝑓) in mW/kbps 
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𝑃𝑐
𝑃𝑈𝐸 Power Usage Effectiveness for node 𝑐 

M Large number (= 108) 

N Maximum number of physical embedding node for each virtual 

node. 

𝑃𝑐
𝐶𝑃𝑇𝑌         Node traffic capacity for each IoT node (𝑐) in Mbps 

𝐹𝑒𝑓
𝑇𝑅         Transmit amplifier factor for each link (𝑒, 𝑓)  in pW/bps/𝑚2 

Variables 

𝐼𝑖𝑎𝑐
𝑁𝐸                      𝐼𝑖𝑎𝑐

𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 has been embedded in IoT 

node 𝑐, 𝐼𝑖𝑎𝑐
𝑁𝐸  = 0 otherwise 

𝐼𝑖𝑎𝑐
𝐹𝑃                      Utilization of virtual node 𝑎 in BP 𝑖 in the embedded in IoT 

node 𝑐. 

𝐼𝑖𝑎𝑐𝑛
𝐹                    𝐼𝑖𝑎𝑐𝑛

𝐹 = 1 If IoT node 𝑐 has the function  𝑛 required by virtual 

node 𝑎 in BP 𝑖, 𝐼𝑖𝑎𝑐𝑛
𝐹 = 0 otherwise 

𝐼𝑖𝑎𝑐𝑧
𝑍  𝐼𝑖𝑎𝑐𝑧

𝑍 = 1 If IoT node 𝑐 is located in zone 𝑧 required by virtual 

node 𝑎 in BP 𝑖,  

𝐼𝑖𝑎𝑐𝑧
𝑍  = 0 otherwise 

𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸                     𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸 = 1 If the neighbouring virtual nodes (𝑎, 𝑏) in BP 𝑖 have 

been embedded in IoT nodes (𝑐, 𝑑), 𝑉𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 = 0 otherwise 

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃                 Embedded traffic demand between IoT nodes (𝑐, 𝑑) in kbps 

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸                   Traffic between IoT nodes (𝑐, 𝑑) traversing the neighbouring IoT 

nodes (𝑒, 𝑓) in kbps 
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𝐼𝑐𝑑𝑒𝑓
𝑅                    𝐼𝑐𝑑𝑒𝑓

𝑅 = 1 If the traffic demand between IoT nodes (𝑐, 𝑑) 

traverses neighbouring IoT nodes (𝑒, 𝑓), 𝐼𝑐𝑑𝑒𝑓
𝑅 = 0 otherwise 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿 Traffic between neighbouring IoT nodes (𝑒, 𝑓) in Mbps 

𝐼𝑐
𝑃𝑀

 
 𝐼𝑐

𝑃𝑀
 

= 1 If the processing module of IoT node 𝑐 is powered on, 

𝐼𝑐
𝑃𝑀 = 0 otherwise 

𝐼𝑐
𝑇𝑀 𝐼𝑐

𝑇𝑀 = 1 If the network module of IoT node 𝑐 is powered on, 

𝐼𝑐
𝑇𝑀 = 0 otherwise 

𝑃𝑐
𝑃𝐿

 
 Processing latency in node c. 

𝑇𝑃𝑃 Total processing power in the network in mW 

𝑇𝑁𝑃 Total network power in the network in mW 

 

5.3.2  Framework objective function 

This embedding scenario has an objective function which minimises the total 

power consumption as follows: 

Objective: minimize TNP + TPP (5.1) 

  where TPP is total processing power for embedding without the processing 

splitting scenario, and is given by: 
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  where 𝑃𝑐
𝑃𝑈𝐸 is power usage effectiveness for each node, 𝐼𝑐

𝑃𝑀is a binary variable 

that indicates the active processing module in IoT node, 𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃is the idle 

processing power parameter of IoT node 𝑐 in mW, 𝐼𝑖𝑎𝑐
𝑁𝐸  is a binary variable which 

indicates that virtual node 𝑎 in BP 𝑖 has been embedded in IoT node 𝑐, 𝑃𝑐
𝑀𝐴𝑋𝐶𝑃 is 

the parameter of maximum processing power consumption for node 𝑐 in mW,  𝑉𝑖𝑎
𝑀𝐼 

is the parameter of processing requirement of the virtual node 𝑎 in BP 𝑖 in mega 

instruction per second, and 𝑃𝑐
𝑀𝐼 is the parameter of processing capacity of the node 𝑐 

in mega instruction per second.  

The TPP for embedding with the processing splitting scenario is given by: 

where 𝑃𝑖𝑎𝑐
𝐹𝑃  is the fraction variable which indicates that the utilisation of the virtual 

node 𝑎 in BP 𝑖 has been embedded in IoT node 𝑐. 

The network power consumption is given as:    

𝑇𝑁𝑃 = ∑ 𝑃𝑒
𝑃𝑈𝐸 ∙  𝐼𝑒

𝑇𝑀 ∙ 𝑃𝑒
𝐼𝐷𝐿𝐸𝑇𝑃

𝑒∈𝑃

 

+2 ∙ ∑  

𝑒∈𝑃

∑  𝑃𝑒
𝑃𝑈𝐸 ∙ 𝑅𝑒𝑓

𝑇𝑅𝐹𝐼𝐶 ∙ 𝐸𝑒𝑓
𝑃𝐵𝑇      

𝑓 ∈𝑃𝑁𝑒 

 

+ ∑  

𝑒∈𝑃

∑ 𝑃𝑒
𝑃𝑈𝐸 ∙  𝑅𝑒𝑓

𝑇𝑅𝐹𝐼𝐶 ∙ (𝑃𝑒𝑓
𝐷𝐼𝑆𝑇  )2  ∙   𝐹𝑒𝑓

𝑇𝑅   

𝑓 ∈𝑃𝑁𝑒 

 

  (5.4) 

 

𝑇𝑃𝑃 =  ∑  𝑃𝑐
𝑃𝑈𝐸 ∙ 𝐼𝑐

𝑃𝑀 ∙ 𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃

𝑐∈𝑃

+ ∑  ∑  ∑ 𝑃𝑐
𝑃𝑈𝐸 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  ∙ 𝑃𝑐
𝑀𝐴𝑋𝐶𝑃

𝑎∈𝑉

∙  
𝑉𝑖𝑎

𝑀𝐼

𝑃𝑐
𝑀𝐼

 

𝑖∈𝐵𝑐∈𝑃

   

(5.2) 

𝑃𝑇𝑃𝑃 =  ∑  𝑃𝑐
𝑃𝑈𝐸 ∙ 𝐼𝑐

𝑃𝑀 ∙ 𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃

𝑐∈𝑃

+ ∑  ∑  ∑ 𝑃𝑐
𝑃𝑈𝐸 ∙  𝐼𝑖𝑎𝑐

𝐹𝑃  ∙ 𝑃𝑐
𝑀𝐴𝑋𝐶𝑃

𝑎∈𝑉

 

𝑖∈𝐵𝑐∈𝑃

   

(5.3) 
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where 𝐼𝑒
𝑇𝑀is a binary variable that indicates the active network module in IoT 

node, 𝑃𝑒
𝐼𝐷𝐿𝐸𝑇𝑃is the idle network power parameter of IoT node 𝑒, 𝑅𝑒𝑓

𝑇𝑅𝐹𝐼𝐶is a variable 

that describes the traffic between neighbouring IoT nodes (𝑒, 𝑓) in Mbps, 𝐸𝑒𝑓
𝑃𝐵𝑇is the 

energy per bit for each IoT link (𝑒, 𝑓) in mW/Mbps, 𝑃𝑒𝑓
𝐷𝐼𝑆𝑇is the distance between 

the neighbouring IoT nodes pair (𝑒, 𝑓) in metres, and 𝐹𝑒𝑓
𝑇𝑅 is the transmit amplifier 

factor [64] for each IoT link (𝑒, 𝑓)  in mW/Mbps.𝑚2. 

5.3.3  Framework Constraints 

The framework performs the embedding operation through three parts as follows: 

5.3.3.1  Embedding of virtual nodes without processing splitting 

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑐∈𝑃

 = 1     (5.5) 

∀ 𝑖 ∈ 𝐵 , ∀ 𝑎 ∈ 𝑉  

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉

 ≤ 1      (5.6) 

∀ 𝑖 ∈ 𝐵 , ∀𝑐 ∈  𝑃  

  Constraints (5.5) and (5.6) ensure that each virtual node in a BP is embedded in a 

single IoT node only and state that each IoT node is not allowed to host more than 

one virtual node in each BP, where 𝑃𝑖𝑎𝑐
𝑁𝐸  is the binary variable which indicates that 

the virtual node 𝑎 in BP 𝑖 has been embedded in IoT node 𝑐.  

∑ ∑ 𝑉𝑖𝑎
𝑀𝐼 ∙  𝑃𝑖𝑎𝑐

𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

≤  𝑃𝑐
𝑀𝐼 (5.7) 

∀ c ∈ P  

  Constraint (5.7) represents the processing capacity constraint; it ensures that the 

embedded processing workloads in the physical node do not exceed the processing 

capacities. 

𝑃𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 𝑉𝑖𝑎𝑐𝑛
𝐹𝐼   (5.8) 
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𝑃𝑐𝑛
𝐹𝑈𝑁𝐶>=𝑉𝑖𝑎𝑐𝑛

𝐹𝐼   (5.9) 

∀ i ∈ B ,  ∀ a ∈ L , ∀ c ∈ P, ∀ n ∈ F  

  Constraints (5.8) and (5.9) ensure that the required function of each virtual node in 

BP is provided by its hosting IoT node. 

  Constraints (5.10) and (5.11) ensure that the required zone of each virtual node in 

BP is matched by the zone of the hosting IoT node. 

5.3.3.2  Embedding of virtual nodes with processing splitting 

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑐∈𝑃

≥ 1     (5.12) 

∀ 𝑖 ∈ 𝐵 , 𝑎 ∈ 𝑉  

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑐∈𝑃

 ≤ 𝑁    (5.13) 

∀ 𝑖 ∈ 𝐵 , 𝑎 ∈ 𝑉  

Constraint (5.12) ensures that each virtual node in a BP is embedded in at least 

one or more physical nodes, while constraint (5.13) ensures that each virtual node in 

a BP is embedded in no more than N physical nodes. 

∑ 𝑃𝑐
𝑀𝐼 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  

𝑐∈𝑃

≥  𝑉𝑖𝑎
𝑀𝐼 (5.14) 

∀ i ∈ B, a ∈ V  

  Constraint (5.14) is a processing constraint; it ensures that the embedded virtual 

nodes’ workloads in the physical node do not exceed the processing capacities. 

𝑃𝑖𝑎𝑐
𝑁𝐸  ∙  𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸 = 𝑉𝑖𝑎𝑐𝑧
𝑍𝐼   (5.10) 

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸 ≥ 𝑉𝑖𝑎𝑐𝑧

𝑍𝐼  (5.11) 

∀𝑖 ∈ 𝐵, ∀𝑎 ∈ 𝑉, ∀𝑐 ∈ 𝑃, ∀𝑧 ∈ 𝑍  
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∑ 𝑃𝑐
𝑀𝐼 ∙  𝐼𝑖𝑎𝑐

𝐹𝑃 

𝑐∈𝑃

=  𝑉𝑖𝑎
𝑀𝐼 (5.15) 

∀ i ∈ B, a ∈ V  

   Constraint (5.15) creates the fraction of processing of the embedded virtual nodes 

workloads in the physical node. 

𝐼𝑖𝑎𝑐
𝐹𝑃 ∙ 𝑉𝑖𝑎

𝑀𝐼 ≤ 𝐼𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑃𝑐

𝑀𝐼  (5.16) 

∀ i ∈ B, a ∈ V, c ∈ P  

  Constraint (5.16) ensures that the embedded virtual nodes’ workloads in the 

physical node do not exceed the processing capacities.  

∑ ∑  𝐼𝑖𝑎𝑐
𝐹𝑃  

𝑎∈𝑉𝑖∈𝐵

≤  1 (5.17) 

∀ c ∈ P  

  Constraints (5.17) ensures that the processing utilisation of each processing node is 

not more than 100%.   

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉

 ≤ 1      (5.18) 

∀ 𝑖 ∈ 𝐵 , ∀𝑐 ∈  𝑃  

  Constraint (5.18) states that each IoT node is not allowed to host more than one 

virtual node in each BP. This is considered as a coexistence constraint that is not 

used in all scenarios such as controller node virtualisation.  

∑ 𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑖∈𝐵

≥  𝐼𝑐
𝑃𝑀  (5.19) 

∑ 𝑃𝑖𝑎𝑐
𝑁𝐸  

𝑖∈𝐵

≤  𝐼𝑐
𝑃𝑀  ∙ 𝑀 (5.20) 

∀ c ∈ P, a=2  

  Constraint (5.19) and (5.20) create a binary variable as a node processing indicator 

that is equal to 1 when node c has embedded the processing of the controller virtual 

node. 
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Constraints (5.8 – 5.11) ensure that the required function and zone of each virtual 

node in BP is matched by the function and zone of the hosting IoT node. 

5.3.3.3  Embedding of virtual links 

𝐼𝑖𝑎𝑐
𝑁𝐸  + 𝐼𝑖𝑏𝑑

𝑁𝐸  = 𝑋𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 + 2 ∙ 𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸  (5.21) 

∀ 𝑖 ∈ 𝐵 , ∀𝑎 ∈ 𝑉, ∀𝑏 ∈ 𝑉𝑁 𝑖𝑎 ∶ 𝑎 ≠ 𝑏, ∀ 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑 

Constraint (5.21) generates a binary variable 𝑃𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 that indicates each 

neighbouring virtual nodes pair (𝑎 and 𝑏) in  BP 𝑖 which is also connected in the 

embedding IoT nodes (𝑐 and 𝑑), where 𝑋𝑖𝑎𝑏𝑐𝑑
𝐿𝐸  is an auxiliary variable. 

∑  ∑  ∑  𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 ∙  𝑉𝑖𝑎𝑏

𝑇𝑅𝐹𝐼𝐶 =  𝑅𝑐𝑑
𝑇𝑅𝐹𝑃 

𝑏∈𝐿𝑁𝐵𝑖 𝑎 

 

𝑎∈𝐿𝑖∈𝐵

 (5.22) 

∀ 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑  

  Constraint (5.22) generates the path’s traffic matrix 𝑅𝑐𝑑
𝑇𝑅𝐹𝑃, where 𝑉𝑖𝑎𝑏

𝑇𝑅𝐹𝐼𝐶 is the 

traffic demand between the virtual node pair (𝑎, 𝑏) in 𝐵𝑃 𝑖 in Mbps.  

∑ 𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸   

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑅𝑐𝑑𝑓𝑒
𝑅𝑂𝑈𝑇𝐸    {

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−𝑅𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 

(5.23) 

∀ 𝑐, 𝑑, 𝑒 ∈  𝑃: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraint (5.23) represents the flow conservation constraint for the traffic flows in 

the network. 

∑ ∑  𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 = 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿  

𝑑∈𝑃𝑐∈𝑃

  (5.24) 

∀ 𝑒 ∈ 𝑃 , ∀ 𝑓 ∈ 𝑃𝑁𝑒   

Constraint (5.24) generates the link’s traffic matrix between the neighbouring 

nodes 𝑒 and𝑓. 

∑  

𝑓∈𝑃𝑁𝑒 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿 ≤ 𝑃𝑒

𝐶𝑃𝑇𝑌 (5.25) 
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∀ 𝑒 ∈ 𝑃   

  Constraint (5.25) ensures that the total traffic flows of the IoT node 𝑒 do not 

exceed node capacity, i.e. 10 Mbps. 

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 ≥  𝐼𝑐𝑑𝑒𝑓

𝑅  (5.26) 

𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸 ≤  𝐼𝑐𝑑𝑒𝑓

𝑅 ∙ 𝑀 (5.27) 

∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃, ∀𝑓 ∈ 𝑃𝑁𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  

  Constraints (5.26) and (5.27) build a path between the embedding nodes 𝑐 and 𝑑 

through the neighbouring IoT nodes 𝑒 and𝑓, where 𝐼𝑐𝑑𝑒𝑓
𝑅 = 1 if there is a traffic path 

between the IoT nodes 𝑐 and 𝑑 which passes through the neighbouring IoT nodes 𝑒 

and𝑓, where M is a large enough unitless number to ensure that 𝑃𝑐𝑑𝑒𝑓
𝑅𝐼  = 1 when 

𝑃𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸is greater than zero. 

∑  𝐼𝑐𝑑𝑒𝑓
𝑅  ≤ 1     

𝑓∈𝑃𝑁𝑒 

 (5.28) 

∀𝑐 ∈ 𝑃, ∀𝑑 ∈ 𝑃, ∀𝑒 ∈  𝑃  

  Constraint (5.28) ensures that traffic splitting is prevented for each path between 

the embedding nodes 𝑐 and 𝑑, such that the maximum number of physical links 

between neighbouring IoT nodes e and f is one. 

∑  

𝑐∈𝑃

∑ ∑  

𝑓 ∈𝑃𝑁𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅 ≥ 𝐼𝑒

𝑇𝑀

𝑑∈𝑃

 (5.29) 

∑  

𝑐∈𝑃

∑ ∑  

𝑓 ∈𝑃𝑁𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅 ≤ 𝐼𝑒

𝑇𝑀

𝑑∈𝑃

∙ 𝑀 (5.30) 

∀ e ∈ P  
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Constraints (5.29) and (5.30) build a network node 𝑒 if that IoT node is chosen to 

send/receive traffic at least for one link or more , where M is a large enough unitless 

number to ensure that 𝐼𝑒
𝑇𝑀=1 when ∑  𝑐∈𝑃 ∑ ∑  𝑓 ∈𝑃𝑁𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅

𝑑∈𝑃   is greater than zero. 

The processing latency has been estimated in our framework based on the 

queuing theory. We considered three levels of delay-sensitive applications, where 

each level has a specific processing latency constraint.  

The model has a latency constraint where processing latency in node c should be 

less than the processing latency requested, as seen in the following: 

𝑉𝑐
𝑃𝐿  >= 

1

(µ𝑐
𝑁𝑂𝐷𝐸−λ𝑐

𝑁𝑂𝐷𝐸)
       (5.31) 

∀𝑐 ∈ 𝑃  

  Since we are using linear programming, (5.31) must be converted into a linear 

format; to facilitate that, we reverse the equation to estimate the mean latency in our 

framework.                                                                

𝑃𝑐
𝑃𝐿  = 𝑃𝑐

𝑃𝑀𝐼 − ∑  ∑  𝑃𝑖𝑎𝑐
𝐹𝑃  ∙ 𝑃𝑐

𝑃𝑀𝐼

𝑎∈𝑉

 

𝑖∈𝐵

 (5.32) 

𝑃𝑐
𝑃𝐿  ≥ 𝐼𝑐

𝑃  /𝑉𝑐
𝑃𝐿   (5.33) 

  Constraint (5.32) estimates the processing in node c where 𝑃𝑐
𝑃𝐿  is a variable which 

estimates the remaining processing capacity of node c, 𝐼𝑐
𝑃  indicates that node 𝑐 has 

embedded a virtual processing demand, and 𝑉𝑐
𝑃𝐿  is a parameter of processing 

latency demand per mega instruction for node 𝑐 in ms. 

5.4  Results and Evaluations 

The framework considers a smart city scenario where the physical layer is 

composed of 30 IoT nodes which are distributed across a city district of an area 

spanning 1 km  1 km. The following considerations are made:  

- Nodes with different processing capabilities are distributed in the physical 

network. The processing capabilities in three levels (IoT, fog, and cloud) in 
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terms of Mega Instructions per Second (MIPS) are shown in Table 5-1[78]. We 

considered the same type of server in both the fog and cloud, although a greater 

number of servers are utilised by the cloud. 

Table 5-1: Processing modules specifications and power consumption in active 

mode 

CPU Type CPU CLK MIPS Max Power  PUE Location 

IoT-with low processing 

capacity  
48 MHz  100 20 mW  

1 
IoT 

IoT-with higher processing 

capacity  
400 MHz 856 110 mW  

1 
IoT 

Fog 1.86 GHz 7500 40 W 1.3 Fog 

Cloud 1.86 GHz 7500 40 W  1.4 Cloud 

 

- The power consumption of the wireless network elements considered is 

composed of the power due to the idle mode, electronics, and transmitter power 

amplifier. In the optical network the corresponding energy per bit as shown in 

Table 5-2. 

Table 5-2: Network modules specifications and power consumption in active mode 

[230] 

Network elements  Energy per bit Capacity PUE Location 

Ethernet SW, Edge and core router 28 nJ/b 40 Gbps 1.5 Core network 

Optical Line Terminal 12 nJ/b 40 Gbps 1.5 Optical backbone 

Optical Network Unit 5 nJ/b 1 Gbps 1.5 Optical backbone 

Shared Wi-Fi Access Point  100 nJ/b 100 Mbps 1.5 Wireless front end 

 

- There is a set of seven different functions: three sensing functions (camera, 

climate sensor, and motion sensors), one control function and three actuation 

functions (alarms, display screens, and traffic lights). Each IoT node can 

provide four functions only from this set while the virtual node requests are for 

one function only. 

- The processing demand of the controller virtual node is 1000 MIPS.  

- The traffic demand of virtual links is 1 Mbps. 
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- The IoT nodes are connected to the AP via 10 Mbps transceiver modules with 

the IEEE 802.11 stack [231].  

- There is a set of five geographical zones that represent the sub-districts of the 

smart city. The IoT nodes are distributed randomly and uniformly over these 

zones and each virtual node requests a location in one of these five zones. 

- We have adopted a PUE of 1.3, 1.4 and 1.5 for the fog, cloud and network 

equipment respectively while considering the PUE of the IoT to be equal to 1.  

In this work, we considered the processing latency only as the traffic and 

propagation latency are very small compared to the processing latency.  

The processing latency on the physical node c is given by: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐
𝐿𝑎𝑡𝑒𝑛𝑐𝑦  

= 
1

(µ𝑐
𝑁𝑂𝐷𝐸−λ𝑐

𝑁𝑂𝐷𝐸)
       (5.34) 

∀𝑐 ∈ 𝑃  

  where  µ𝑐
𝑁𝑂𝐷𝐸 is the processing capacity of node c and λ𝑐

𝑁𝑂𝐷𝐸 is the processing 

demand that embedded on node c with given processing capacity for the cloud and 

IoT and the processing demands of 1000 MIPS for each BP: 

The average delay per MIPS in the cloud: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑙𝑜𝑢𝑑
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 1000 𝑀𝐼𝑃𝑆  

= 
1

(22500−1000)
  =46 µ second /MIPS 

  Hence the processing latency for 1000MIPS of one BP demands in the cloud server 

is 46 milli seconds. 

On the other hand, the processing latency for the same processing demand on the 

IoT after splitting of the processing between two IoT nodes: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐼𝑜𝑇
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 1000 𝑀𝐼𝑃𝑆  

= 
1

(856−500)
  =2.8 millisecond /MIPS 

Hence the processing latency for 1000 MIPS of one BP demand on the IoT nodes 

is 1.4 seconds. 
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The cloud and fog are higher than the IoT in processing capacity and power 

consumption due to the processing architecture. 

Distinctly the best placement for the processing demand from the point of view of 

power consumption is in the IoT node as thus reduce the network power 

consumption. The placement of processing in the IoT nodes is only possible if two 

conditions are met: 

- The processing latency requirement is met 

- The number of IoT nodes are enough meet the split processing demands for 

the given BPs. 

We studied the embedding of BPs with the objective of minimising power 

consumption and evaluated the impact of processing splitting and the coexistence 

constraint for the following three scenarios: 

- Scenario A, where the model ensures that the processing in any node happens 

with an average processing latency constraint of less than 1 second i.e. the 

security application that uses camera for face or plate number recognition 

[232].  

- In scenario B, the model ensures that the processing happens in any node with 

a constraint on average processing latency less than 2 seconds i.e. traffic light 

control and pedestrian traffic monitoring services [233]. 

- In scenario C, the model ensures that the processing happens in any node with 

a constraint on average processing latency less than 5 seconds i.e. car parking 

services [234]. 
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Figure 5-3: Power consumption of service embedding without processing 

splitting and with coexistence constraint. 

 

  Figure 5-3 shows the processing and network power consumption of three 

scenarios of service embedding without processing splitting capability and without 

coexistence constraint. The results show that the power consumed by the processing 

modules contributes approximately 73% (on average) of the total power 

consumption of the network for all scenarios. 

The results illustrate that the highest power consumption in all scenarios, which 

show that the whole processing has been placed in the fog and cloud servers to 

satisfy the processing latency constraint; consequently, this consumes higher 

processing and traffic power. 
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Figure 5-4: Power consumption of service embedding with processing splitting 

and with coexistence constraint. 

 

The results in Figure 5-4 illustrate the power consumption of service embedding 

scenarios with the ability of the processing splitting and coexistence constraint. The 

results also show that scenarios A and B have the same power consumption level 

compared with Fig. 5.3. 

Scenario C has an average power saving of 48% compared with scenarios A and 

B. The power saving results due to the ability to embed a part of processing 

demands in the IoT nodes, which means low processing and traffic power 

consumption with lower PUE values. 
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Figure 5-5: Power consumption of service embedding with processing splitting 

and without coexistence constraint. 

 

The results in Figure 5-5 display the power consumption of the service 

embedding with processing splitting without coexistence constraint. The results also 

show that scenarios A and B have the same power consumption level, while scenario 

C has an average power saving of 64% compared with scenarios A and B. The 

power saving here is due to the ability to embed the processing node in the same 

physical node of the sensor or actuator, and consequently there is no traffic between 

these nodes due to the embedding in the same node.  

The power saving is proportional to the processing latency constraint. The higher 

processing latency constraint has the impact of higher power saving as it grants 

more IoT nodes to embed the processing. As such, it is considered an energy-

efficient processor but has limited processing capacity compared with the fog and 

cloud. 

The processing in IoT nodes consumes a small amount of power due to the 

energy-efficient architectural processing of the IoT nodes. 

The PUE values related to the data centre’s equipment for the cloud and fog are 

considered as an important factor that consumes a greater amount of power than the 

IoT nodes. Another factor that effects the power consumption is the traffic modules 
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and equipment. The traffic from the IoT nodes and the cloud and fog needs to be 

routed through the wireless and PON and core network equipment.  

The coexistence constraint increases the power consumption. Under coexistence 

constraints, the virtual nodes of the BP cannot coexist in the same IoT node to 

improve the resilience of the BPs under single node failure of the framework. 

Indeed, without coexistence constraint, the model embeds the controller node either 

in the same node of the traffic generator (i.e. the sensor node) or the actuator node to 

reduce the traffic overhead and embeds the highest number of virtual nodes in the 

minimal number of IoT nodes. 

5.5  Summary 

This chapter has investigated the energy efficiency of service embedding in a 

smart city setting. We extended our IoT network architecture by using cloud and fog 

processing. We developed a MILP framework to optimise the allocation of the 

processing demands, which minimises the processing and network power 

consumption.  

We evaluated the total power consumption for three levels of processing latency 

constraints (i.e. different scenarios). The results show that the minimum power 

consumption is seen in the service embedding scenario with the highest processing 

latency constraint (i.e. in 5 seconds) compared with the service embedding scenario 

with the lowest processing latency constraint (1 second).  

We also investigated the impact of splitting the processing, on the power 

consumption. The results show that it is possible to save energy by processing 

splitting through optimising the traffic distribution in the IoT network while 

satisfying the service requirements. Finally, we investigated the impact of the 

coexistence constraint on reducing the power saving in service embedding in the 

processing splitting scenario. 
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Resilient Energy-Efficient Service Embedding in Smart 

Buildings with Latency Minimisation 

6.1  Introduction 

The IoT concept promises a countless number of services ranging from those in 

smart homes to the automation of industries and public utilities. However, the 

growth of these deployments has posed a significant challenge: how can we build 

such deployments in a highly resilient manner? The IoT nodes are possibly prone to 

unexpected failures and malicious attacks, i.e. various types of damage, unreliable 

wireless connections, limited transmission power, computing ability, and storage 

space. The IoT paradigm consists of a heterogeneous combination of Internet-

connected devices. Further, traffic routing in IoT networks mainly relies on Routing 

Protocol for Low-Power and Lossy Networks (RPL). The RPL has been designed to 

find a single route between the source and the destination nodes [235]. The RPL is 

considered an energy-efficient routing protocol but has an impact on the services 

delivered by the networks, such as intermittent node’s faults or dropped radio links 

due to energy saving or a change in the network connectivity in addition to the 

vulnerability of attacks[236]. 

This chapter introduces a generic MILP model that has been developed to 

minimize the power consumption due to both processing and the traffic flow through 

the network to minimize the end to end data delivery time with resilient embedding. 

We investigate various resilience schemes for IoT nodes and traffic and evaluate the 

performance and the implications of these schemes in smart building settings, such 

as the data delivery time and energy consumption. We formulate the problem of 

finding the optimal set of IoT nodes and links to embed BPs into the IoT layer as an 

optimisation problem, with an objective function that aims to minimise both the total 

power consumption and the traffic latency. 
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6.2   Proposed Architecture 

We developed a framework that enhances the resilience of a service embedding 

IoT network in the smart building setting proposed in Chapter 4. This framework 

aims to structure a network with an acceptable level of fault tolerance and implies an 

ability to restore from a node or link failure. 

Our framework is based on a probabilistic approach that assumes that the idiom 

of k-connected networks denotes that the network is preserving its node connectivity 

after the removal of no more than one node or link from the network. The 

framework proposes multilevel resilience schemes, where each probable type of 

failure (i.e. sensor, controller, or link failure) requires an appropriate level of failure 

recovery. We evaluated the proposed resilience levels by considering their impact on 

the end-to-end service delay and energy consumption. The proposed resilience 

levels are as follows: 

6.2.1  Resilient service embedding with node coexistence 

constraint. 

We considered the service embedding with a coexistence constraint as the basic 

level of resilience. This scheme is considered to be the basic solution for a network 

with a probable temporary failure, i.e. data collision or packet drop.  

This resilience scheme is based on a single path between the source and the 

destination nodes, where the source node is insured in terms of recovering the lost 

packets by retransmitting them till an acknowledgement is received from the 

destination node. This scheme has the disadvantages of additional transmission 

overhead, high network congestion, and poor effects on unreliable data transmission. 

6.2.2  Resilient service embedding with sensor–actuator node 

redundancy. 

To enhance the resilience of IoT networks, another solution has been proposed. It 

introduces redundant nodes and links for the sensor and actuator nodes. The 

redundancy scheme enhances the infrastructure’s resilience against  service failure 

or disruptive attacks. Network architectures with partial redundant components were 

used to investigate the addition of some nodes and links as redundant ones to 
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enhance the performance of the provisioned services. Consequently, we considered 

the redundant sensing and actuating nodes for accuracy and data fidelity in addition 

to the resilience concern. 

6.2.3  Resilient service embedding with all-node redundancy. 

In many services, resilience has significant importance, such as fire protection 

and security services in public buildings. As the cost of the service components (e.g. 

nodes and energy consumption) is a non-substantial concern, a new feasible scheme 

based on the allocation of redundant components for all the nodes enables end-to-

end traffic routing with multiple paths capability.  

6.2.4  Resilient service embedding with traffic redundancy. 

This scheme is related to traffic resilience and is based on setting up multiple 

paths between the source and the destination nodes. One of these paths is considered 

the main or primary path to route the traffic between the nodes, while one or more 

other paths are considered the alternative or backup paths. These paths are used to 

recover from a traffic failure of the primary path and are sustained by sending a 

‘Keep-alive’ signal continuously over them. When a primary path has a failure, the 

intermediate node will send back the data packet to the source node and send a 

failure report to the destination node. As a result, the source and the destination 

nodes will remove the failed path information from the routing table and switch the 

traffic to an alternative path. 

6.2.5  Resilient service embedding with traffic replication. 

This scheme fulfils the requirement of resilient traffic by sending multiple 

replicas of the data over selected multiple paths from the source node to the 

destination node. This technique has the advantages of a high packet delivery ratio 

with a low data delivery time, and there is no need for signalling the state 

maintenance between the source node and the destination node, because even in the 

case of a partial data packet loss, the destination node can recover the packet from 

the other copies of the packet. Replication has achieved high resilience but at the 

cost of high energy consumption that arises because of the traffic overhead at each 

node along with the network. 
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6.2.6  Resilient service embedding with traffic splitting. 

Here, we propose our novel technique by traffic splitting from the source node to 

the destination node in two paths, where each path will route 50% of the data traffic, 

and the ‘Keep-alive’ signal will be redirected on the same path; when a failure is 

encountered on one path, the source will resend the undelivered data, which will not 

exceed 50% of the original data, of the failed path on the second path; consequently, 

we will save both energy and delivery time. We proposed an equal rate of splitting 

(i.e. 50% and 50%) due to the consideration that all the network’s links have the 

same level of reliability and availability, such that, all the links have the same level 

of the priority to route the traffic of data. We propose the use of a braided multipath 

technique in our framework; in this technique, the alternative nodes partially overlay 

the nodes of the primary path to avoid service blockage. 

6.3  Framework of Resilient Energy-Efficient Service 

Embedding in IoT Networks 

In this section, we introduce the framework developed to embed services in IoT 

networks. This framework is based on a MILP optimisation model with the 

objective of minimising the total energy consumption and the traffic mean latency of 

the service embedding in IoT networks and enhancing the node/traffic resilience 

level.  

6.3.1  Framework definitions 

Before introducing the framework, we define the following sets, parameters, and 

variables: 

Sets 

𝐵                 Set of business processes (BPs) in the virtual layer 

𝑉                  Set of virtual nodes in each BP 

𝑉𝑁 𝑖𝑎         Set of neighbours of each virtual node in each BP (𝑖 ∈ 𝐵, 𝑎 ∈ 𝑉) 

P                 Set of IoT nodes in the physical layer 

𝑃𝑁𝑐           Set of neighbours of IoT nodes (𝑐 ∈ 𝑃) 
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F                 Set of functions supported by IoT nodes 

Z                  Set of zones in the IoT physical layer 

λ Set of arrival rates 

𝑊𝑗  Set of mean latency per arrival rate (j ∈ λ) in ms per packet 

Parameters 

𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶           𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 1 If virtual node 𝑎 in BP 𝑖 requires the function 𝑛, 

𝑉𝑖𝑎𝑛
𝐹𝑈𝑁𝐶 = 0 otherwise 

𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸            𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 requires zone 𝑧, 𝑉𝑖𝑎𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise 

𝑉𝑖𝑎
𝑀𝐶𝑈       Processing requirement of the virtual node 𝑎 in BP 𝑖 in MHz 

𝑉𝑖𝑎
𝑅𝐴𝑀      Memory requirement of the virtual node 𝑎 in BP 𝑖 in kB 

𝑉𝑖𝑎𝑏
𝑇𝑅𝐹𝐼𝐶      Traffic demand between the virtual node pair (𝑎, 𝑏) in 𝐵𝑃 𝑖 in kb/s 

𝑃𝑐𝑛
𝐹𝑈𝑁𝐶            𝑃𝑐𝑛

𝐹𝑈𝑁𝐶 = 1 If IoT node 𝑐 can provide the function 𝑛, 𝑃𝑐𝑛
𝐹𝑈𝑁𝐶 = 0 

otherwise. 

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸           𝑃𝑐𝑧

𝑍𝑂𝑁𝐸  = 1 If the IoT node 𝑐 is located in zone 𝑧, 𝑃𝑐𝑧
𝑍𝑂𝑁𝐸  =

0 otherwise. 

𝑃𝑐
𝑀𝐶𝑈       Processing capability of the IoT node 𝑐 in MHz. 

𝑃𝑐
𝑅𝐴𝑀       Memory capability of the IoT node 𝑐 in kB. 

𝑃𝑒𝑓
𝐷𝐼𝑆𝑇         Distance between the neighbouring IoT nodes pair (𝑒, 𝑓) in meters. 

𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃         Idle processor power in each IoT node 𝑐 in mW. 

𝑃𝑐
𝑀𝐴𝑋𝐶𝑃         Maximum processor power consumption in each IoT node 𝑐 in mW. 

𝑃𝑐
𝐼𝐷𝐿𝐸𝑇𝑃         Idle network power consumption in each IoT node 𝑐 in mW. 

𝐸𝑒𝑓
𝑃𝐵𝑇         Energy per bit for each IoT link (𝑒, 𝑓) in mW/kbps. 

M Large number (= 108). 

𝑃𝑒
𝐶𝐴𝑃𝑇         Link capacity for each IoT node (𝑒) in kbps. 

𝐹𝑒𝑓
𝑇𝑅         Transmit amplifier factor for each IoT link (𝑒, 𝑓)  in mW/kbps/𝑚2. 
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Variables 

𝐼𝑖𝑎𝑐
𝑁𝐸                      𝐼𝑖𝑎𝑐

𝑁𝐸   is node embedding indicator, 𝐼𝑖𝑎𝑐
𝑁𝐸  = 1 If virtual node 𝑎 in BP 𝑖 

has been embedded in IoT node 𝑐, 𝐼𝑖𝑎𝑐
𝑁𝐸  = 0 otherwise. 

𝐼𝑖𝑎𝑐𝑛
𝐹                    𝐼𝑖𝑎𝑐𝑛

𝐹  is function embedding indicator, 𝐼𝑖𝑎𝑐𝑛
𝐹 = 1 If IoT node 𝑐 has the 

function  𝑛 required by virtual node 𝑎 in BP 𝑖, 𝐼𝑖𝑎𝑐𝑛
𝐹 = 0 otherwise. 

𝐼𝑖𝑎𝑐𝑧
𝑍  𝐼𝑖𝑎𝑐𝑧

𝑍   is zone embedding indicator, If IoT node 𝑐 is located in zone 𝑧 

required by virtual node 𝑎 in BP 𝑖,𝐼𝑖𝑎𝑐𝑧
𝑍  = 0 otherwise. 

𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸                     𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸  is link embedding indicator, 𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 = 1If the neighbouring 

virtual nodes (𝑎, 𝑏) in BP 𝑖 have been embedded in IoT nodes (𝑐, 𝑑), 

𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 = 0 otherwise. 

𝑋𝑖𝑎𝑏𝑐𝑑
𝑋𝑂𝑅                     Dummy binary variable  

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃                 Embedded traffic demand between IoT nodes (𝑐, 𝑑) in kbps. 

𝑅1𝑐𝑑𝑒𝑓
𝑇𝑅                    Primary path between IoT nodes (𝑐, 𝑑) traversing the neighbouring 

IoT nodes (𝑒, 𝑓) in kbps. 

𝑅2𝑐𝑑𝑒𝑓
𝑇𝑅                    Secondary path between IoT nodes (𝑐, 𝑑) traversing the neighbouring 

IoT nodes (𝑒, 𝑓) in kbps. 

𝐼𝑐𝑑𝑒𝑓
𝑅1                   Primary path indicator, 𝐼𝑐𝑑𝑒𝑓

𝑅1 = 1 If the traffic demand between IoT 

nodes (𝑐, 𝑑) traverses neighbouring IoT nodes(𝑒, 𝑓), 𝐼𝑐𝑑𝑒𝑓
𝑅1 = 0 

otherwise. 

𝐼𝑐𝑑𝑒𝑓
𝑅2                    Secondary path indicator, 𝐼𝑐𝑑𝑒𝑓

𝑅2 = 1 If the traffic demand between 

IoT nodes (𝑐, 𝑑) traverses neighbouring IoT nodes(𝑒, 𝑓), 𝐼𝑐𝑑𝑒𝑓
𝑅2 = 0 

otherwise. 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿1 Traffic between neighbouring IoT nodes (𝑒, 𝑓) in kbps. 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿2 Traffic between neighbouring IoT nodes (𝑒, 𝑓) in kbps. 

𝑅𝑓
𝑇𝑅𝐹𝑁 Arrival rate of IoT nodes (𝑓) in kbps. 

𝐿𝐼𝑓 𝑗
Lmbda Lambda indicator for each IoT node  (𝑓) with correspondent arrival 

rate  (𝑗) then 𝐿𝐼𝑓 𝑗
Lmbda = 1, otherwise 0. 
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𝑊𝑓
𝑁𝑂𝐷𝐸 Traffic mean latency for each node (𝑓)in ms. 

𝐼𝑐
𝑃𝑀

 
 𝐼𝑐

𝑃𝑀
 

= 1 If the processing module indicator of IoT node 𝑐 is powered 

on, 𝑃𝑐
𝑃𝑀 = 0 otherwise. 

𝐼𝑐
𝑇𝑀                        𝐼𝑐

𝑇𝑀 = 1 If the network module indicator of IoT node 𝑐 is powered 

on, 𝐼𝑐
𝑇𝑀 = 0 otherwise. 

𝑇𝑃𝑃  Total processing power in the IoT network in mW. 

𝑇𝑁𝑃  Total network consumption in the IoT network in mW. 

𝑇𝐿  Total traffic mean latency in traffic the primary path in ms. 

 

6.3.2   Framework objective function 

The proposed framework minimises the power consumption and the queuing 

latency in an IoT network by using the following objective function: 

Objective: minimise 𝛼. 𝑇𝐿 + 𝛽. 𝑇𝑃𝑃  + 𝛾. 𝑇𝑁𝑃   (6.1) 

where α, β, and γ are the weight values thus used for magnitude and units. The 

framework selects the traffic value for each link in the network that preserves the 

low power consumption and the mean traffic latency at feasible values of the arrival 

rate. To enhance optimality for the power saving and latency minimisation, we used 

the weights values given in Chapter 4 (α = 30/ms, β = 1/mW, and γ = 1/mW). 

Here, the total traffic latency for the IoT nodes can be calculated as follows: 

𝑇𝐿 = ∑ 𝑊𝑓
𝑁𝑂𝐷𝐸

𝑓∈𝑃 

 
(6.2) 

where 𝑊𝑓
𝑁𝑂𝐷𝐸 represents the average waiting time of the packets waiting to be 

processed for each IoT node in milliseconds according to the queuing theory. 

TPP is the total processing power and can be calculated as follows: 
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𝑇𝑃𝑃 =  ∑  𝐼𝑐
𝑃𝑀 ∙ 𝑃𝑐

𝐼𝐷𝐿𝐸𝐶𝑃  

𝑐∈𝑃

+ ∑  ∑  ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑃𝑐

𝑀𝐴𝑋𝐶𝑃 ∙
𝑉𝑖𝑎

𝑀𝐶𝑈

𝑃𝑐
𝑀𝐶𝑈    

𝑎∈𝑉

 

𝑖∈𝐵𝑐∈𝑃

 

(6.3) 

where 𝐼𝑐
𝑃𝑀 is the binary variable that indicates an active processing module in IoT 

node c, 𝑃𝑐
𝐼𝐷𝐿𝐸𝐶𝑃 is the idle processing power parameter of IoT node c in milli watts, 

𝐼𝑖𝑎𝑐
𝑁𝐸  is a binary variable that indicates that virtual node a in BP i has been embedded 

in IoT node c, 𝑃𝑐
𝑀𝐴𝑋𝐶𝑃 is the parameter of maximum CPU power consumption in 

each IoT node c in milli watts, 𝑉𝑖𝑎
𝑀𝐶𝑈 is the parameter of the processing requirement 

of virtual node a in BP i in megahertz, and 𝑃𝑐
𝑀𝐶𝑈is the parameter of the processing 

capability of the IoT node c in megahertz. The processing power consumption is 

considered to follow a linear profile versus the load with idle power consumption.  

Here, the network power consumption in the IoT network can be expressed as 

follows:  

𝑇𝑁𝑃 = ∑  𝐼𝑒
𝑇𝑀 ∙ 𝑃𝑒

𝐼𝐷𝐿𝐸𝑇𝑃

𝑒∈𝑃

 

+2 ∙ ∑  

𝑒∈𝑃𝑁

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐿1 ∙ 𝐸𝑒𝑓

𝑃𝐵𝑇  + 2

𝑓 ∈𝑃𝐵𝑒 

∙ ∑  

𝑒∈𝑃𝑁

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐿2 ∙ 𝐸𝑒𝑓

𝑃𝐵𝑇      

𝑓 ∈𝑃𝐵𝑒 

    

+ ∑  

𝑒∈𝑃𝑁

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐿1 ∙ (𝑃𝑒𝑓

𝐷𝐼𝑆𝑇  )2  ∙   𝐹𝑒𝑓
𝑇𝑅

𝑓 ∈𝑃𝐵𝑒 

+ ∑  

𝑒∈𝑃𝑁

∑  𝑅𝑒𝑓
𝑇𝑅𝐹𝐿2 ∙ (𝑃𝑒𝑓

𝐷𝐼𝑆𝑇  )2  ∙   𝐹𝑒𝑓
𝑇𝑅   

𝑓 ∈𝑃𝐵𝑒 

  

(6.4) 

  where 𝐼𝑒
𝑇𝑀 is the binary variable that indicates an active network module in IoT 

node 𝑒, 𝑃𝑒
𝐼𝐷𝐿𝐸𝑇𝑃  is the idle network power parameter of IoT node 𝑒, 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿1 and 

𝑅𝑒𝑓
𝑇𝑅𝐹𝐿2 indicate the primary and alternative paths’ traffic between neighbouring IoT 

nodes (𝑒, 𝑓) in kb/s, 𝐸𝑒𝑓
𝑃𝐵𝑇 represents the energy per bit for each IoT link (𝑒, 𝑓) in 

milliwatts per kilobit per second, 𝑃𝑒𝑓
𝐷𝐼𝑆𝑇 denotes the distance between the 
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neighbouring IoT nodes pair (𝑒, 𝑓) in meters, and 𝐹𝑒𝑓
𝑇𝑅 represents the transmit 

amplifier factor [64] for each IoT link (𝑒, 𝑓) in milliwatts per kilobit per second per 

metre square. 

6.3.3  Framework constraints 

The proposed framework performs the embedding operation in two parts as 

follows: 

6.3.3.1  Embedding of virtual nodes 

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑐∈𝑃

 = 1        (6.5) 

∀ 𝑖 ∈ 𝐵 , ∀ 𝑎 ∈ 𝑉  

∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉

 ≤ 1         (6.6) 

∀ 𝑖 ∈ 𝐵 , ∀𝑐 ∈  𝑃  

  Constraint (6.5) ensures that each virtual node in a BP is embedded in a single IoT 

node only. Constraint (6.6) states that each IoT node is not allowed to host more 

than one virtual node in each BP. This is considered the coexistence constraint and 

is not used in all the scenarios, such as controller node virtualisation.  

∑ ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

    ≥ 𝐼𝑐
𝑃𝑀 (6.7) 

∀ 𝑐 ∈ 𝑃  

∑ ∑  𝐼𝑖𝑎𝑐
𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

 ≤ 𝐼𝑐
𝑃𝑀 ∙ 𝑀     (6.8) 

∀ 𝑐 ∈ 𝑃  

  Constraints (6.7) and (6.8) build the processing module of IoT node 𝑐 if this node 

is chosen for embedding at least one virtual node 𝑎 in BP 𝑖 or more, where M is a 

sufficiently large unitless number to ensure that 𝑃𝑐
𝑃𝑀𝐼 = 1 when ∑ ∑  𝑃𝑖𝑎𝑐

𝑁𝐸  𝑎∈𝑉𝑖∈𝐵  is 

greater than zero. 
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∑ ∑ 𝑉𝑖𝑎
𝑀𝐶𝑈 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  

𝑎∈𝑉𝑖∈𝐵

≤  𝑃𝑐
𝑀𝐶𝑈 (6.9) 

∀ c ∈ P  

∑ ∑ 𝑉𝑖𝑎
𝑅𝐴𝑀 ∙  𝐼𝑖𝑎𝑐

𝑁𝐸  

𝑎∈𝐿𝑖∈𝐵

≤  𝑃𝑐
𝑅𝐴𝑀                        (6.10) 

∀ c ∈ P  

 

Constraints (6.9) and (6.10) represent the MCU and the memory capacity 

constraints, respectively. They ensure that the embedded MCU and memory 

workloads in an IoT node do not exceed the processor and memory capacities, 

respectively. 

𝐼𝑖𝑎𝑐
𝑁𝐸  ∙ 𝑉𝑖𝑎𝑛

𝐹𝑈𝑁𝐶 = 𝐼𝑖𝑎𝑐𝑛
𝐹   (6.11) 

𝑃𝑐𝑛
𝐹𝑈𝑁𝐶>=𝐼𝑖𝑎𝑐𝑛

𝐹   (6.12) 

∀ i ∈ B ,  ∀ a ∈ L , ∀ c ∈ P, ∀ n ∈ F  

  Constraints (6.11) and (6.12) ensure that the required function of each virtual node 

in BP is provided by its hosting IoT node. 

Constraints (6.13) and (6.14) ensure that the required zone of each virtual node in 

BP is matched by the zone of the hosting IoT node.  

6.3.3.2  Embedding of virtual links 

𝐼𝑖𝑎𝑐
𝑁𝐸  + 𝐼𝑖𝑏𝑑

𝑁𝐸  = 𝑋𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 + 2 ∙ 𝐼𝑖𝑎𝑏𝑐𝑑

𝐿𝐸    (6.15) 

∀ 𝑖 ∈ 𝐵 , ∀𝑎 ∈ 𝑉, ∀𝑏 ∈ 𝑉𝑁 𝑖𝑎 ∶ 𝑎 ≠ 𝑏, ∀ 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑 

   Constraint (6.15) ensures that neighbouring virtual nodes 𝑎 and 𝑏 of 𝑖 in 𝐵 are 

also connected in embedding IoT nodes 𝑐 and 𝑑. We achieved this by introducing a 

𝐼𝑖𝑎𝑐
𝑁𝐸  ∙  𝑉𝑖𝑎𝑧

𝑍𝑂𝑁𝐸 = 𝐼𝑖𝑎𝑐𝑧
𝑍   (6.13) 

𝑃𝑐𝑧
𝑍𝑂𝑁𝐸 ≥ 𝐼𝑖𝑎𝑐𝑧

𝑍    (6.14) 

∀𝑖 ∈ 𝐵, ∀𝑎 ∈ 𝑉, ∀𝑐 ∈ 𝑃, ∀𝑧 ∈ 𝑍  
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binary variable 𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 , which is only equal to 1 if 𝐼𝑖𝑎𝑐

𝑁𝐸  and 𝐼𝑖𝑏𝑑
𝑁𝐸   are exclusively equal 

to 1; otherwise, it is zero, when 𝑋𝑖𝑎𝑏𝑐𝑑
𝐿𝐸  is a neglected variable. 

∑  ∑  ∑  𝐼𝑖𝑎𝑏𝑐𝑑
𝐿𝐸 ∙  𝑉𝑖𝑎𝑏

𝑇𝑅𝐹𝐼𝐶 =  𝑅𝑐𝑑
𝑇𝑅𝐹𝑃 

𝑏∈𝐿𝑁𝐵𝑖 𝑎 

 

𝑎∈𝐿𝑖∈𝐵

 
(6.16) 

 𝑐, 𝑑 ∈ 𝑃: 𝑐 ≠ 𝑑  

Constraint (6.16) generates the path’s traffic matrix resulting from embedding 

virtual nodes 𝑎 and 𝑏 into IoT nodes 𝑐 and 𝑑. 

6.3.3.3  Retransmission- and replication-based schemes 

In this scheme, the proposed framework finds two energy-efficient routes for the 

traffic between the embedded nodes, namely the primary and alternative routes. 

∑ 𝑅𝑐𝑑𝑒𝑓
𝑇𝑅1   

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑅𝑐𝑑𝑓𝑒
𝑇𝑅1    {

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−𝑅𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 
(6.17) 

∀ 𝑐, 𝑑, 𝑒 ∈  𝑃: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraint (6.17) represents the flow conservation constraint for the traffic flows in 

the IoT network. 

∑ ∑  𝑅𝑐𝑑𝑒𝑓
𝑇𝑅1 = 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿1 

𝑑∈𝑃𝑐∈𝑃

  (6.18) 

∀ 𝑒 ∈ 𝑃 , ∀ 𝑓 ∈ 𝑃𝑁𝑒   

  Constraint (6.18) generates a link’s traffic matrix between the neighbouring IoT 

nodes 𝑒 and 𝑓. 

𝑅𝑐𝑑𝑒𝑓
𝑇𝑅1 ≥  𝐼𝑐𝑑𝑒𝑓

𝑅1  (6.19) 

𝑅𝑐𝑑𝑒𝑓
𝑇𝑅1 ≤  𝐼𝑐𝑑𝑒𝑓

𝑅1 ∙ 𝑀 (6.20) 

∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃𝑁, ∀𝑓 ∈ 𝑃𝐵𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  
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  Constraints (6.19) and (6.20) build the primary path indicator between embedding 

IoT nodes 𝑐 and 𝑑 through neighbouring IoT nodes 𝑒 and 𝑓, where 𝐼𝑐𝑑𝑒𝑓
𝑅1 = 1 if there 

is a traffic path between IoT nodes 𝑐 and 𝑑 that passes through neighbouring IoT 

nodes 𝑒 and 𝑓, where M is a sufficiently large unitless number to ensure that 𝑅𝑐𝑑𝑒𝑓
𝑅1  = 

1 when 𝑅𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸1 is greater than zero. 

∑  𝐼𝑐𝑑𝑒𝑓
𝑅1  ≤ 1     

𝑓∈𝑃𝐵𝑒 

 (6.21) 

∀𝑐, 𝑑, 𝑒 ∈  𝑃𝑁 ∶ 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓   

  Constraint (6.21) ensures that traffic splitting is prevented for each path between 

embedding IoT nodes 𝑐 and 𝑑, such that the maximum number of physical links 

between neighbouring IoT nodes e and f is one. 

∑ 𝑅𝑐𝑑𝑒𝑓
𝑇𝑅2   

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑅𝑐𝑑𝑓𝑒
𝑇𝑅2    {

𝑅𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−𝑅𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 

(6.22) 

∀ 𝑐, 𝑑, 𝑒 ∈  𝑃𝑁: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraint (6.22) represents the flow conservation constraint for the alternative 

path’s traffic flows in the IoT network. 

∑ ∑  𝑅𝑐𝑑𝑒𝑓
𝑇𝑅2 = 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿2 

𝑑∈𝑃𝑐∈𝑃

 (6.23) 

∀ 𝑒 ∈ 𝑃𝑁 , ∀ 𝑓 ∈ 𝑃𝐵𝑒   

  Constraint (6.23) generates the alternative link’s traffic matrix between 

neighbouring IoT nodes 𝑒 and 𝑓. 

𝑅𝑐𝑑𝑒𝑓
𝑇𝑅2 ≥  𝐼𝑐𝑑𝑒𝑓

𝑅2  (6.24) 

𝑅𝑐𝑑𝑒𝑓
𝑇𝑅2 ≤  𝐼𝑐𝑑𝑒𝑓

𝑅2 ∙ 𝑀 (6.25) 
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∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃𝑁, ∀𝑓 ∈ 𝑃𝐵𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  

  Constraints (6.24) and (6.25) build the alternative path between embedding IoT 

nodes 𝑐 and 𝑑 through neighbouring IoT nodes 𝑒 and 𝑓, where 𝑅𝑐𝑑𝑒𝑓
𝑅2 = 1 if there is 

a traffic path between IoT nodes 𝑐 and 𝑑 that passes through neighbouring IoT 

nodes 𝑒 and 𝑓, where M is a sufficiently large unitless number to ensure that 𝐼𝑐𝑑𝑒𝑓
𝑅2  = 

1 when 𝑅𝑐𝑑𝑒𝑓
𝑇𝑅2  is greater than zero. 

∑  𝑅𝑐𝑑𝑒𝑓
𝑅2  ≤ 1     

𝑓∈𝑃𝐵𝑒 

 (6.26) 

∀𝑐, 𝑑, 𝑒 ∈  𝑃𝑁 ∶ 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓   

  Constraint (6.26) ensures that traffic splitting is prevented for each path between 

embedding IoT nodes 𝑐 and  𝑑, such that the maximum number of physical links 

between neighboring IoT nodes e and f is one. 

𝐼𝑐𝑑𝑒𝑓
𝑅1 + 𝐼𝑐𝑑𝑒𝑓

𝑅2 ≤ 1 (6.27) 

∀ 𝑐, 𝑑, 𝑒 ∈ 𝑃𝑁, ∀𝑓 ∈ 𝑃𝐵𝑒 : 𝑐 ≠ 𝑑 , 𝑒 ≠f  

  Constraint (6.27) ensures the traffic creation of two distinct paths between 

embedding IoT nodes 𝑐 and 𝑑 such that each path uses different physical links 

between neighbouring IoT nodes 𝑒 and 𝑓. 

∑  

𝑐∈𝑃𝑁

∑ ∑  

𝑓 ∈𝑃𝐵𝑒 

 𝐼𝑐𝑑𝑒𝑓
𝑅1 + 𝐼𝑐𝑑𝑒𝑓

𝑅2 ≥ 𝐼𝑒
𝑇𝑀

𝑑∈𝑃𝑁

     (6.28) 

∑  

𝑐∈𝑃𝑁

∑ ∑  

𝑓 ∈𝑃𝐵𝑒 

 𝑅𝑐𝑑𝑒𝑓
𝑅1 + 𝑅𝑐𝑑𝑒𝑓

𝑅2 ≤ 𝐼𝑒
𝑇𝑀

𝑑∈𝑃𝑁

∙ 𝑀 (6.29) 

𝑒 ∈  𝑃𝑁 ∶ 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraints (6.28) and (6.29) build a network module indicator of IoT node 𝑒 if 

this IoT node is chosen for send/receive traffic for at least one link or more, where 
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M is a sufficiently large unitless number to ensure that 𝐼𝑒
𝑇𝑀 = 1 when 

∑  𝑐∈𝑃𝑁 ∑ ∑  𝑓 ∈𝑃𝐵𝑒 
 𝐼𝑐𝑑𝑒𝑓

𝑅1 + 𝐼𝑐𝑑𝑒𝑓
𝑅2

𝑑∈𝑃𝑁   is greater than zero. 

∑ 𝑅𝑒𝑓
𝑇𝑅𝐹𝐿1 + 𝑅𝑒𝑓

𝑇𝑅𝐹𝐿2 = 𝑅𝑓
𝑇𝑅𝐹𝑁

 
𝑒∈𝑃𝑁𝑓 

  (6.30) 

∀ 𝑓 ∈ 𝑃 : 𝑒 ≠f   

 

Constraint (6.30) estimates the arrival traffic for each IoT node. 

∑ 𝑅𝑓
𝑇𝑅𝐹𝑁 ≤ 𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 

𝑓∈𝑃 

  (6.31) 

Constraint (6.31) states that the total traffic flow of the IoT node 𝑓 should not 

exceed the node capacity. 

∑ 𝐿𝐼𝑓  𝑗
𝐿𝑀𝐵𝐷𝐴 ∙ 𝑗 = 𝑅𝑓

𝑇𝑅𝐹𝑁

𝑗∈𝐽 

 (6.32) 

∀ 𝑓 ∈ 𝑃    

Constraint (6.32) determines the arrival rate for each IoT node. 

∑ 𝐿𝐼𝑓 𝑗
𝐿𝑀𝐵𝐷𝐴 ≤ 1

𝑗∈𝐽 

  (6.33) 

∀ 𝑓 ∈ 𝑃    

Constraint (6.33) ensures that each IoT node has no more than one arrival rate 

indicator. 

∑ 𝑊𝑗
𝐿𝑀𝐵𝐷𝐴 ∙ 𝐿𝐼𝑓 𝑗

𝐿𝑀𝐵𝐷𝐴 = 𝑊𝑓
𝑁𝑂𝐷𝐸

𝑗∈𝐽 

  (6.34) 
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∀𝑓 ∈ 𝑃   

  Constraint (6.34) estimates the traffic delay for each IoT node 𝑓  based on the 

product of the lambda indicator and the correspondent latency for this lambda 𝑗. 

6.3.3.4  Splitting-based schemes 

In this section, we propose a traffic splitting-based resilience scheme through the 

multiple paths concept to reduce the arrival rates through the intermediate nodes; 

doing so will consequently minimise the delivery time, in addition to enhancing the 

resilience of the IoT network. 

Source Node
Destination Node

Packet 4

Packet 3

Packet 2

Packet 1

Packet 4

Packet 3

Packet 2

Packet 1

Packet 2

Packet 1

Packet 4

Packet 3

Traffic Path B

Keep Alive B

Packet 4

Packet 3

Packet 2

Packet 1

 

Figure 6-1: Traffic Splitting Scheme 

The proposed framework splits the traffic between the source node splits and 

routes it into two paths (A and B), as shown in Figure 6-1. The source node sends 

one half of the traffic through path A and the other half through path B to the 

destination node, and the source node receives a ‘Keep-alive’ signal continuously 

from both paths (A and B). Once a failure occurs on one path, the source will not 

receive an acknowledgement from this path and will then switch the traffic to 

another path. 

Let us suppose that the source node has 100 packets to send to the destination 

node. The source node will select two paths and send 50 packets on each path to the 

destination node. In a probabilistic scenario in which one link has failed on the 

network, the source node will resend only 50 packets or less rather than resending 

all 100 packets as in retransmission. 
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In this scheme, the proposed framework finds the two energy-efficient routes for 

the traffic between the embedded nodes, namely the primary and the secondary 

routes. The main difference between this splitting scheme and the former schemes is 

the flow conservation constraints in (6.17) and (6.22). 

∑ 𝑃𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸1  

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑃𝑐𝑑𝑓𝑒
𝑅𝑂𝑈𝑇𝐸1    {

0.5 ∙  𝑃𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−0.5 ∙ 𝑃𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 

(6.35) 

∀ 𝑐, 𝑑, 𝑒 ∈  𝑃𝑁: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

∑ 𝑃𝑐𝑑𝑒𝑓
𝑅𝑂𝑈𝑇𝐸2  

𝑓∈𝑃𝑁𝑒 

− ∑ 𝑃𝑐𝑑𝑓𝑒
𝑅𝑂𝑈𝑇𝐸2    {

0.5 ∙ 𝑃𝑐𝑑
𝑇𝑅𝐹𝑃               𝑖𝑓𝑒 = 𝑐

−0.5 ∙ 𝑃𝑐𝑑
𝑇𝑅𝐹𝑃            𝑖𝑓 𝑒 = 𝑑

   0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         

𝑓∈𝑃𝑁𝑒 

 

(6.36) 

∀ 𝑐, 𝑑, 𝑒 ∈  𝑃𝑁: 𝑐 ≠ 𝑑 𝑎𝑛𝑑 𝑒 ≠ 𝑓  

  Constraints (6.35) and (6.36) represent the flow conservation constraints for the 

primary and secondary paths for the traffic splitting scheme. 

6.4  Results and Evaluation 

To evaluate the performance of the proposed model, we considered a smart 

building scheme (i.e. enterprise or university campus) where the physical layer is 

composed of 30 IoT nodes connected by 89 bidirectional wireless links. These IoT 

nodes are distributed across a campus within an area of 500 m × 500 m as described 

in Chapter 4. We evaluated the power consumption and the mean traffic latency 

resulting from the resilient service embedding across distinct zones with the 

coexistence constraint. The model considered the objective function discussed in 

Section 6.3.2 for energy efficient-low latency service embedding. The probabilistic 

model is based on k-connected nodes with the assumption that the network has the 

ability of failure recovery in the case of a link or node failure. We run our model for 

two resilience schemes: 
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6.4.1  Energy-efficient low-latency node-resilient service 

embedding 

For the node-resilient scheme, we run three resilience levels with the objective of 

minimising the total power consumption and the mean traffic latency: 

- Coexistence constraint node resilience (CCNR) 

- Partial redundancy node resilience (PRNR) 

- Full redundancy node resilience (FRNR) 

 

Figure 6-2: Power consumption of energy-efficient low-latency node-resilient 

service embedding. 

The results shown in Figure 6-2 display the total power consumption of CCNR, 

PRNR, and FRNR and compare them with the energy-latency-resilience unaware 

(ELRU) scenario. These results demonstrate that the CCNR scenario has an average 

power saving of 35% compared with the ELRU scenario. While the higher level of 

power consumption in the PRNR scenario has an average power saving of 10% 

compared with ELRU. 

The FRNR has higher power consumption than the other scenarios, and the 

average power consumption is 40% higher than that in the ELRU scenario. 

The increase in power consumption for each scenario is due to the embedding of 

the redundant nodes and the traffic among these nodes, but the node resilience level 
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is improved and the IoT network has the ability to maintain the service provisioning 

even with a failure in one node. 

6.4.2  Energy-efficient low-latency traffic-resilient service 

embedding 

For the traffic-resilient scheme, we run three resilience levels with the objective 

of minimising the total power consumption and the traffic mean latency: 

- Redundancy-based traffic resilience (RDTR) 

- Replication-based traffic resilience (RPTR) 

- Splitting-based traffic resilience (STR) 

 

Figure 6-3: Power consumption of traffic-resilient service embedding scenarios 

without failure. 

The results presented in Figure 6-3 display the power consumption of the traffic-

resilient service embedding for the RDTR, RPTR, and STR scenarios in the packet 

delivery case without a failure. These results demonstrated that RDTR has the 

lowest power consumption and an average power saving of 47% and 4% compared 

with RPTR and STR scenarios, respectively. Notice than in some cases (i.e. 3 BP’s 

embedding), the STR has consumed led power consumption compared with RDTR, 

that refers to ability to find energy efficient route for part of traffic (i.e. 50 % of the 

total traffic) more than the whole traffic in one energy efficient route. 
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Figure 6-4: Power consumption of traffic-resilient service embedding scenarios 

with failure. 

The results presented in Figure 6-4 display the power consumption of the traffic-

resilient service embedding for the RDTR, RPTR, and STR scenarios in the packet 

delivery case with one link failure. These results demonstrate that RDTR has the 

same power consumption as RPTR because of the data retransmission through the 

secondary path. The results also reveal that the STR has an average power saving of 

25% compared with the RDTR scenario. 

These results show that the proposed technique in the STR scenario has higher 

power consumption in a successful data delivery by 4% but 25% power savings in 

the case of one link failure. 
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Figure 6-5: Traffic mean latency of traffic resilient service embedding scenarios 

without failure. 

The results presented in Figure 6-5 display the mean network traffic latency of 

the service embedding scenarios. These results demonstrate that the STR reduces the 

average mean traffic latency by 37% compared with the RDTR and RPTR scenarios. 

The mean traffic latency minimisation in STR is due to the traffic splitting and 

hence the reduction in the arrival rate of the individual nodes. The traffic splitting 

technique offered better performance in terms of the end-to-end delay. 

The packet delivery ratio (PDR) reflects the network performance level, where 

better network performance resulted in a high packet delivery ratio. The packet 

delivery ratio is inversely proportional to the network size in IoT networks because 

the routing performance is better in a low-node-density network.  
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Figure 6-6: Power consumption of traffic-resilient service embedding scenarios 

for different PDR scenarios. 

The results shown in Figure 6-6 present a comparison of the total power 

consumption in the RDTR and STR scenarios for different PDR values[237]. These 

results demonstrate that the RDTR is an energy-efficient technique for high-

performance networks (i.e. PDR > 95%). However, the STR scenario produces 

higher power savings with lower PDR. The STR scenario exhibits power savings of 

10% compared with RDTR when PDR = 70%. These results help to compare the 

RDTR and the STR without the RPTR, where the RPTR has the highest power 

consumption in all the cases. 

6.5  Summary  

In this chapter, multilevel node and traffic resilience schemes for IoT networks 

were reviewed. A MILP model to enhance the resilience of services was developed. 

The node and traffic resilience were enhanced by using the proposed scheme and a 

model for an energy-efficient low-latency resilient service embedded in a smart 

building was developed. A range of node and traffic resilience levels were 

developed and their performance in terms of the mean traffic latency and power 

consumption were compared. A novel technique was also proposed based on traffic 

splitting to enhance the network resilience and performance by reducing the packet 

delivery time. Moreover, splitting techniques were evaluated using redundancy and 
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replication resilience techniques in terms of the total power consumption and the 

mean traffic latency for different values of PDR.  

The results showed that the STR scenario produced higher power savings with 

lower PDR: the STR scenario exhibited a power saving of 10% compared with the 

recent scheme of RDTR when PDR was equal 70%. The results also revealed that 

the STR reduced the average mean traffic latency by 37% compared with the RDTR 

and RPTR scenarios. The mean traffic latency minimisation in STR referred to the 

traffic splitting and reduced the arrival rate of the nodes. The traffic splitting 

technique also exhibited better performance in terms of the end-to-end delay. 
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Conclusions and Future Work 

7.1  Conclusions 

This section summarises the work that has been performed in the present thesis 

and states its original contributions. The IoT reveals a new era of internet of the 

future. Many services can be realised by having relevant standard architecture that 

fulfils the integration with the Internet. Despite great efforts having been made in the 

progress of standards, more is needed, especially in the areas of architecture and 

communications. In addition to all the predicted features which make up the IoT, 

there are several challenges that need to be addressed. Energy efficiency is one of 

the most important challenges in terms of general concerns and is a significant issue 

related to the IoT. The IoT is composed of a huge number of nodes that can be 

deployed indoors or outdoors to monitor relevant factors in their surrounding 

environments; most of these nodes are battery-powered, and this power limitation 

means that the IoT is liable to failure. Such failures cause service disruption and 

require frequent network maintenance, which raises the operational cost. To conquer 

this issue, researchers and stakeholders have put a great deal of effort into designing 

energy-efficient solutions to prolong the IoT network lifetime and enhance the 

performance of the IoT network. 

In this thesis, the aim was to contribute significantly to the advancement of IoT 

technology and to propose a viable architecture for service embedding in IoT 

networks that prolongs the lifetime of nodes while achieving the required services 

efficiently and which also enhances the QoS due to reducing data delivery time, and, 

finally, boosts the resilience of the services. 

 In Chapter 3, reviewed the current, known proposed architectures for the service 

virtualisation in IoT networks. We identified the performance metrics and cost. Most 

of the architectures, protocols and experimental work for service virtualisation 

architectures have been surveyed in Chapter 3. 
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In Chapter 4 we evaluated the energy consumption and latency of service 

embedding in a smart building. We developed a MILP model to embed a virtual 

topology in the form of BPs into the physical IoT network. Our developed model 

has three objective functions. The first objective is to minimise the network and 

processing power consumption. The results of the service embedding in the same 

zone without coexistence constraint illustrate higher power saving of 63% and 58% 

for the re-provisional and sequential embedding respectively. In contrast, service 

embedding in the same zone with coexistence constraint illustrate lower power 

saving of 36% and 29% for the re-provisional and sequential embedding 

respectively. 

For the service embedding scenario across different zones without coexistence 

constraint, the results illustrate average power saving of 42% and 22% for the re-

provisional and sequential embedding respectively. In contrast, the same embedding 

with coexistence constraint displays lower power saving of 34% and 17% for the re-

provisional and sequential embedding respectively. 

The second objective is to minimise the traffic latency in the network; the results 

of the service embedding across different zones without coexistence constraint 

illustrate average traffic latency minimisation of 47% and 20% for the re-provisional 

and sequential embedding respectively. In contrast, the same scenario with 

coexistence constraint displays average traffic latency minimisation of 34% and 

19% for the re-provisional and sequential embedding respectively. In all cases 

compared with the ELUSE scenario. 

The energy-efficient service embedding has highly utilised the energy-efficient 

routes in the physical network, which leads to higher arrival rates on the energy 

efficient nodes and consequently increases the traffic latency of these nodes. The 

traffic latency is an important performance parameter that reduces data delivery time 

and keeps the traffic in the network within normal utilisation. 

The third objective is to jointly minimise the power consumption and traffic 

latency. We investigated using weight values in the objective function the interplay 

between power and delay minimisation; and evaluated their impact on the optimality 

of power saving and traffic latency minimisation for service embedding across 

different zones with coexistence constraint. 
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In Chapter 5, we evaluated the power consumption of service embedding in a 

smart city setting. We proposed a physical IoT network integrated with cloud and 

fog as processing resources. We developed a MILP model to minimise the network 

and processing power consumption of the service embedding across different zones 

with and without coexistence constraint. In addition, we evaluated the processing 

and network power consumption with different processing latency demands. The 

results illustrate the highest power consumption with the lowest processing latency 

constraint. This is due to the embedding of the processing demand in the cloud to 

satisfy the lowest processing latency constraint. The embedding in the cloud results 

in higher processing due to the PUE value and traffic power consumption of the core 

network equipment.  

We also investigated the impact of processing splitting on the power consumption 

of service embedding. The results show that service embedding with processing 

splitting has power saving of 18% compared with service embedding without the 

processing splitting scenario under the same processing latency constraint. In 

addition, we investigated the impact of coexistence constraint on the power 

consumption of service embedding. The results illustrate that service embedding 

with processing splitting and without coexistence constraint has an average power 

saving of 48% compared with service embedding without processing splitting and 

with coexistence constraint.  

In Chapter 6 we enhanced the node and traffic resilience for the proposed 

architecture in Chapter 4. In chapter 6, we developed a model for an energy-efficient 

low latency resilient service embedding in a smart building. We evaluated a range of 

node and traffic resilience levels and compared their performance and cost in terms 

of traffic mean latency and power consumption. We also proposed a novel technique 

based on traffic splitting to enhance the network resilience and performance by 

reducing the packet delivery time. We evaluated splitting techniques using 

redundancy and replication resilience techniques in terms of total power 

consumption and traffic mean latency under different values of PDR.  
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7.2  Future Work 

In this section, we propose several possible directions for the topic of service 

embedding in IoT networks.  

7.2.1  Allocation of variable physical resources  

Our framework can be extended to allocate suitable resources (i.e. the IoT node) 

according to the virtual demands in the zones. This kind of optimisation will reduce 

the number of unused nodes and functions. 

7.2.2  High reliability and availability in service embedding 

Our framework can be extended to consider more performance metrics, such as 

node/links reliability and availability. This scheme can be studied by classifying the 

resources based on the reliability and availability into different levels and the model 

can either optimise the embedding or find an alternative solution to enhance the 

network performance. 

7.2.3  Prioritised service embedding 

Our framework can be extended to add another dimension for the service request, 

which presents the service priority to be embedded in the highest performance 

metrics or embedding without blockage. 

7.2.4  Energy-efficient solutions  

Our framework can be extended to add more parameters to the physical 

resources, such as remaining battery power, transmission range, and a number of 

neighbours. These parameters can be considered in our model to extend node 

lifetime. 

7.2.5  Minimising the model complexity 

One of the obstacles when using MILP is the processing overhead and 

requirements. As such, one future direction is to extend the consideration of the 

virtual demand and physical network by using other optimisation tools.
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List of Abbreviations 

3GPP 3rd Generation Partnership Project 

ALU Application Level User 

ARAT Active reader active tag  

ARPT Active reader passive tag  

BP Business Process 

CAPEX Capital expenditure 

CCNR Coexistence constraint node resilience  

CH Cluster Head 

CS Compressive Sensing  

CSS Cooperative spectrum sensing  

CVO Composite virtual object  

DoS Denial of Service  

DRLS Desired reliability level scheme 

DRX Discontinuous reception 

DTX Discontinuous transmission  

ERDT Energy-efficient reliable decision transmission  

ELUSE Energy-latency unaware service embedding 

FPGA Field Programmable Gate Arrays 

FRNR Full redundancy node resilience 

GSM Global System for Mobile Communications 

HTTP Hyper Text Transfer Protocol 

IaaS Infrastructure as a service 

ICT The information and Communication technology  

ID Identification 

IEEE Institute of Electrical and Electronics Engineers 

InP Infrastructure Provider 

IoT Internet of Things 

ITU International Telecommunication Union  

LTE  Long-Term Evolution 

M2M Machine to machine 

MAC Media access control 

MILP mixed integer linear programming  

MIT Massachusetts Institute of Technology 

NaaS Network as a Service  

NFC Near-field communication 

OPEX Operation Expenditure  

PaaS Platform as a service 

PRAT passive reader active tag 

PRNR Partial redundancy node resilience 

PRT Packet Replication Techniques 

QoS Quality of Service  

QSI Quick Sleeping Indication  
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RAN Radio Access Network 

RBDS Reliability-based data compression scheme 

RBS Reliability-based sub-channel scheme 

REST Representational State Transfer 

RESE Real time energy efficient service embedding  

RDTR Redundancy-based traffic resilience 

RLSE Real time low latency service embedding 

RFID Radio-frequency identification 

ROA Resource Oriented Architecture 

RPL Routing Protocol for Low-Power and Lossy Networks 

RPTR Replication-based traffic resilience 

RWO Real world object 

SaaS Software as a service 

SBRS Standby route selection scheme 

SD Service discovery 

SDN Software Defined Network 

SenaaS Sensor as a Service  

SOA Service Oriented Architecture  

SOC system-on-chip  

SP Service Provider 

STR Splitting-based traffic resilience 

URI Uniform resource identifiers  

VM Virtual Machine  

VO Virtual object  

WoT Web of Things  

WSN Wireless Sensor network 
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