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Abstract

Despite several recent advances, most of the electroencephalogram

(EEG)-based brain-computer interface (BCI) applications are still

limited to the laboratory due to their long calibration time. Due to

considerable inter-subject/inter-session and intra-session variations, a

time-consuming and fatiguing calibration phase is typically conducted

at the beginning of each new session to acquire sufficient labelled train-

ing data to train the subject-specific BCI model.

This thesis focuses on developing reliable machine learning algorithms

and approaches that reduce BCI calibration time while keeping accu-

racy in an acceptable range. Calibration time could be reduced via

transfer learning approaches where data from other sessions or sub-

jects are mined and used to compensate for the lack of labelled data

from the current user or session. In BCI, transfer learning can be

applied on either raw EEG, feature or classification domains.

In this thesis, firstly, a novel weighted transfer learning approach is

proposed in the classification domain to improve the MI-based BCI

performance when only few subject-specific trials are available for

training.

Transfer learning techniques should be applied in a different domain

before the classification domain to improve the classification accuracy

for subjects whom their subject-specific features for different classes

are not separable. Thus, secondly, this thesis proposes a novel regu-

larized common spatial patterns framework based on dynamic time

warping and transfer learning (DTW-R-CSP) in raw EEG and feature

domains.

In previous transfer learning approaches, it is hypothesised that there

are enough labelled trials available from the previous subjects or ses-

sions. However, in the case when there are no labelled trials available

v



from other subjects or sessions, domain adaptation transfer learning

could potentially mitigate problems of having small training size by

reducing variations between the testing and training trials. Thus, to

deal with non-stationarity between training and testing trials, a novel

ensemble adaptation framework with temporal alignment is proposed.
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Chapter 1

Introduction

Brain-computer interface (BCI) provides a direct communication between a per-

son’s brain and an electronic device without the need for any muscle control [1,2].

The first BCI research has been proposed in 1973 [3]. It is shocking to know that

the field of BCI has been in research for more than fifty years now, even though not

many people outside academic life realize it is any more than a mystery. Till now

most of the BCI applications and especially non-invasive ones (e.g. EEG-BCIs)

are still limited to the laboratories. Although, these applications are working well

in labs but bringing them to daily real-life scenarios is challenging. There are two

critical questions here. What is the importance of developing a BCI system that

can be used in real-life applications?and how can we move towards this step?

It is easy to answer the first question. For people with various neurological

conditions, it is not easy to communicate with the world. For those people, it

would be acceptable if they were granted a reliable communication method with

minimum movements that they can afford such as eye-tracking applications [4,5],

movement-based systems [6], and smart typing systems which are used by many

disabled people in communications [7]. Even so, there remain patients, for whom

none of this is applicable such as Amyotrophic Lateral Sclerosis (ALS) patients

who can not afford any form of muscle activity [8]. For these people, the BCI sys-

tem is the only way to express themselves. Moreover, there are other applications

of BCI such as: BCI- based rehabilitation applications, BCI-based games, secu-

rity and authentications, educational, and smart environment [9]. Thus, accurate,

reliable and efficient brain-based communication is highly demanded.

My research aims to answer the second question partially. As in order to use

BCI on daily basis out of the laboratory, many challenges need to be addressed.

Generally, in BCI, EEG is the most widely used brain signals since it is measured

non-invasively with a high temporal resolution [2,10]. Different neurophysiological

patterns of EEG have been used to operate BCIs, such as steady state visual
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1. INTRODUCTION

evoked potentials, P300, readiness potentials and motor imagery [11]. Among

them motor imagery (MI) has attracted increased attention, as unlike many other

types of BCI, MI-based BCI does not require any external stimuli and can be used

in a self-paced way which is closer to a natural and intuitive control [12]. One

of the major limitations of EEG-BCI, specially Motor imagery-based BCI, is its

long calibration time. The BCI system has to learn the user’s brain patterns and

calibrate the system accordingly for every new session. Due to inter-sessions/inter-

subjects and intra-session variations in the properties of brain signals, a large

amount of training data needs to be collected at the beginning of each session

to calibrate the parameters of the BCI system for the target user. Typically, this

calibration phase could take up to 20 - 30 minutes for each new session, which

is time-consuming, fatiguing, and leaving a reduced amount of time for real BCI

interactions [13,14].

The reasons for having a long calibration could be as follows: First, EEG

signals are high dimensional and very noisy. Therefore, it is hard to estimate

probability distributions of the features, especially when few trials are avail-

able for training, of high dimensional noisy EEG signals where outliers will have

tremendously adverse effects. Second, EEG signals are highly non-stationary. This

non-stationarity could be caused by many factors such as the users’ mental and

psychological states variations, fatigue and miss-concentration; also it may be

affected by various measurements circumstances. Therefore, the classifier usually

performs poorly on a new session data if trained using the features extracted from

data of the previous sessions recorded on another day. Third, uniqueness of brain

patterns for every person. Typically, there is a great change of the properties of

EEG signals when transferring from one subject to another subject. Thus, it is

not straightforward to calibrate BCI model for a new subject from EEG data

collected from previous subjects or sessions.

One promising approach to deal with the problem of long calibration time can

be transfer learning, where data from different users or sessions can be used to

compensate the lack of labelled data from the new BCI user [15]. Transfer learning

is a machine learning technique used to improve the accuracy of a model trained

from one domain by transferring useful information from other domains [16].

When there is a limited supply of training data from the target domain, and

it is not easy to collect more, the need for transfer learning appears. Transfer
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1.1 Motivation

learning has been successfully applied in different machine learning applications

such as text, image, and human activity classification [16]. However, in BCI this

is relatively a new field of research that needs to be further explored. Transfer

learning aims at learning characteristics that are consistent across sessions and

subjects and at the same time adjusting those characteristics to the available

target subject’s few training trials. For BCI, transfer learning can be applied on

either raw data, feature or classification domains.

1.1 Motivation

BCI research area has gained more interest in the last decade. However, many

challenges need to be addressed to develop accurate and reliable BCI systems that

can be used in a daily basis. These challenges could be considered at different

levels, e.g., at the neuroscience level [17,18], by finding more reliable neurophysi-

ological markers, at the human level by developing more advanced and successful

user training techniques [19, 20], or at the signal processing level to build more

robust approaches which could be calibrated with the least possible data.

The main motivation of this thesis is providing novel transfer learning-based

machine learning approaches leading to a better BCI system with less calibration

time and improved accuracy.

To have a practical and reliable BCI system for daily use basis, the robustness

and the precision of the designed BCI systems have to be particularly considered

and improved. Moreover a BCI system with much shorter calibration time is

required. For this purpose, this thesis focuses on proposing transfer learning ap-

proaches, with the goal of making EEG-based BCI system more accurate and

reliable using less calibration data. These improvements will consequently lead

to a more intuitive and pleasing interface. This thesis focuses on motor imagery-

based BCIs, however, the proposed approaches can be potentially applied to other

types of EEG-based systems.

1.2 Aims and objectives

This thesis aims to improve the usability of BCI as a future technology by reduc-

ing its calibration time. Fig.1 summarizes the aim, the related challenges, and
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1. INTRODUCTION

Figure 1.1: The aim, challenges, and objectives that have been addressed in this

thesis

the objectives that have been addressed in this research. As there is typically

a trade-off between calibration time and performance of the system, my goal is

to reduce this calibration time as much as possible without losing performance

and even with improving it. Calibration time could be reduced by either mini-

mizing inter-session/subject or intra-session non-sataionarity through developing

novel transfer learning algorithms. Using transfer learning, previously recorded

data are mined, processed and reused to improve the BCI model trained for new

subjects, hopefully resulting in a reduction of calibration time for new subjects

and increasing the accuracy of the system.

To achieve the aim of this project, the following objectives are addressed:

• Developing novel transfer learning algorithms on classification domain to im-

prove the MI-based BCI performance when only a few subject-specific trials

are available for training by reusing the classifiers parameters learnt from

other subjects or sessions to aid better classification of the target subject

new data.

• Developing novel transfer learning algorithms on feature space to improve fea-

ture extraction/selection. The proposed algorithms will explore the common
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information across subjects/sessions to find more robust features that can

enhance the model trained by a small training data.

• Developing novel transfer learning algorithms that can be applied on raw

EEG directly where data from other subjects/session are transformed to be

similar to the few available trials from the target subject. These trials can

be used for training a better model for the target subject.

• Developing novel domain adaption transfer learning algorithm to reduce cali-

bration time when there are no available trials from other other subjects or

sessions through dealing with non-stationarties that happen over the time

between training and testing trials.

The developed algorithms are carefully analyzed and their performance is evalu-

ated across different groups of users. The advantages and disadvantages of these

algorithms are discussed in terms of accuracy and computational time and their

complementary benefits are considered.

1.3 Thesis overview

This manuscript describes the work carried out in order to address the mentioned

objectives. The detailed contents are listed as follows:

In chapter 2, a general introduction to the field of BCI research is given. The

reviewed topics include the available techniques for brain activity measurement,

different types of brain signals that can be used in BCI-based applications. It

also describe how useful features can be extracted from these neurophysiologi-

cal signals using signal processing methods and then how these features can be

converted to become control commands for an external device. After that a gen-

eral introduction to the field of transfer learning is given. The reviewed topics

for transfer learning start with transfer learning definition. Then, the available

categories for transfer (inductive transfer learning, transductive transfer learning,

and unsupervised transfer learning) are described. After that, transfer learning

approaches and categorises are explained. Afterward, the transfer learning meth-

ods applied on BCI are reviewed. Then, the challenges and limitations of the

available transfer learning approaches in BCI are discussed and some possible fu-

ture research directions are suggested. Finally, dynamic time warping definition
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and how it can be used to reduce temporal variations between time domain sig-

nals are explained followed by a discussion on how it can be applied to improve

BCI performance.

In chapter 3, four weighted multi-task transfer learning algorithms are pro-

posed in the classification domain to reduce the calibration time without sacrific-

ing the classification accuracy of the BCI system. The classification parameters

of multiple subjects are learnt jointly such that the average errors as well as

dissimilarities between the parameters of the different classifiers get minimized.

Dissimilarity is minimized by giving higher weights to previous subject’s data

that are more similar to the target subject’s data and less weights to data that

are less similar. Two versions of weighted multitask learning are proposed, namely

supervised and unsupervised.

Chapter 4 introduces the proposed weighted transfer learning algorithms in

the classification domain when only few subject-specific trials are available for

training. In the proposed approach, the classification parameters of each avail-

able subject with relatively large number of trials are calculated independently

by minimizing the subject-specific classification error. Then, the classification pa-

rameters of the new target subject with few labelled trials are calculated such that

not only the classification error is minimized but, also the classification parame-

ters of this target subject get as close as possible to the classification parameters

of other existing subjects. To further improve the proposed transfer learning ap-

proach, different weights are assigned to the previous subjects based on their

similarities with the new subject in terms of feature distributions.

Chapter 5 proposes a novel dynamic time warping-based transfer learning for

improving common spatial patterns in BCI. Common spatial patterns (CSP) is

a popular algorithm for motor imagery EEG feature extraction in the context of

brain-computer interfaces (BCIs). However, CSP is computed using sample-based

covariance-matrix estimation. Hence, its performance deteriorates if the number

of training trials is small. To address this problem, this chapter proposes a novel

regularized covariance estimation framework for CSP (i.e. DTW-RCSP) based on

dynamic time warping (DTW) and transfer learning. The proposed framework

combines the subject-specific covariance matrix estimated using the few available

trials from the new subject, with a novel DTW-based transferred covariance ma-

trix estimated using previous subjects trials. In the proposed DTW-based trans-
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ferred covariance matrix, the available labelled trials from the previous subjects

are temporally aligned to the average of the few available trials of the new subject

from the same class using DTW. This alignment aims to reduce temporal vari-

ations and non-stationarities between previous subjects trials and the available

few trials from the new subjects. Moreover, to tackle the problem of regulariza-

tion parameter selection when only few trials are available for training, an online

method is proposed, where the best regularization parameter is selected based on

the confidence scores of the trained classifier on upcoming first few labelled test-

ing trials. Impressively, our results show that successful BCI interactions could

be achieved with a calibration session as small as only one trial per class.

In chapter 6, a novel domain adaptation transfer learning framework is pro-

posed to reduce calibration by minimizing temporal intra- and inter-session non-

stationarity when there are only few trials available for training for the target

subject and no trials are available from other subjects or sessions. The proposed

framework composed of two main parts, training and testing parts. In training

part, a novel dynamic time warping (DTW)-based approach to improve common

spatial patterns (CSP) covariance matrix estimation and hence improve feature

extraction is proposed. The proposed approach reduces within class temporal

variations and non-stationarity by aligning the training trials to the average of

the trials from the same class. Using DTW, the available trials from the same

class get as close as possible to the mean of this class and also to each other.

The new aligned trials are used to calculate the CSP covariance matrices. How-

ever, it is found that even using the proposed robust CSP-based DTW to achieve

significant improvement for feature extraction does not guarantee a perfect BCI

system. The problem might be related to the testing trials, especially, when the

BCI users start to feel fatigued or being distracted. Thus, in the testing part,

DTW is used to reduce the dissimilarity between testing and training trials and

then an ensemble decision making is used to predict the test trials labels with

the option of rejecting them.

Chapter 7 summarizes the main conclusions reached and contributions achieved

through this thesis. Suggestions for the further research work and potential ap-

plication areas are also proposed.
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1.4 Publications based on this thesis

1- A conference paper was published about improving control of EMG-based as-

sistive device by applying the learnt transfer learning techniques.

Azab, A. M., Arvanch, M., and Mihaylova, L. S., ”Estimation of joint angle based

on surface Electromyogram signals recorded at different load levels”. In the pro-

ceedings of the 39th IEEE Annual International Conference of the Engineering

in Medicine and Biology Society (EMBC), 2017 (pp. 2538-2541).

2- A book chapter about transfer learning in brain computer interface was pub-

lished based on the review in chapter2.

Azab, A. M., Toth, J., Mihaylova, L. S., and Arvaneh, M., ”A review on trans-

fer learning approaches in braincomputer interface”. In Signal Processing and

Machine Learning for Brain-Machine Interfaces 2018 (pp. 81-101). Institution of

Engineering and Technology

3- A conference paper was published on what proposed in chapter 3 is published

Azab, A. M., Mihaylova, L. S., and Arvaneh, M., ”Weighted Multi-task Learning

in Classification Domain for Improving Brain-Computer Interface”. In the pro-

ceedings of the IEEE International Conference on Systems, Man, and Cybernetics

(SMC), Miyazaki, Japan, 2018, pp. 1093-1098.

4- A journal article based on what proposed in chapter 4 was published in IEEE

Transactions on Neural Systems and Rehabilitation Engineering.

Azab, A. M., Mihaylova, L. S., Ang, K. K., and Arvaneh, M., ”Weighted Transfer

Learning for Improving Motor Imagery-Based BrainComputer Interface”. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7),

1352-1359.

5- A journal article based on what proposed in chapter 5 has been submitted to

the Journal of Neural Engineering Engineering.

Azab, A. M., Mihaylova, L. S., H. Ahmadi and Arvaneh, M., ”Dynamic Time

Warping-based Transfer Learning for Improving Common Spatial Patterns in

Brain-computer Interface”.

6- A conference paper was published on what proposed in chapter 6.

Azab, A. M., Mihaylova, L. S., H. Ahmadi and Arvaneh, M., ”Robust Com-

mon Spatial Patterns Estimation Using Dynamic Time Warping to Improve BCI

Systems”. In the proceedings of IEEE International Conference on Acoustics,
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Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp.

3897-3901.
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Chapter 2

Introduction to Transfer learning in Brain-Computer

Interfaces

2.1 Introduction

A Human Computer Interaction (HCI) which using a mouse or keyboard as an

interface to communicate between human and computer is very common [21].

Unfortunately, disabled people who are unable to generate the necessary muscular

movements cannot use these standard HCIs. So, in order to help people, Brain-

Computer Interfaces (BCIs) needed to be developed. A brain-computer interface

(BCI) is a device that allows communication without muscular movement. People

can communicate via thoughts only. As BCIs do not require movement, they may

be the only possible communication system for users with severe disabilities who

cannot speak or use mice, keyboards, or other interfaces [22]. The majority of BCI

studies focus on how to help disabled people interacting. However, some studies

have initiated BCI-based games for healthy people [23], and other research groups

are developing or discussing BCIs for other applications [9].

It is hoped that using BCI applications lead to improve the quality of life of

people severe motor disabilities as well as healthy people. BCIs can be a way to

improve or recover the mobility of patients with severe motor disorders, e.g. amy-

otrophic lateral sclerosis (ALS), brain-stem stroke, cerebral palsy or spinal cord

injury [24]. A wheelchair can be controlled with motor imagery [25], a P300-speller

leads to word spelling [26], and also can be used to control a house environment;

opening windows, turning off lights, etc [27, 28]. Recently, BCI has been stud-

ied to be used for stroke rehabilitation in order to restore the impaired motor

function [29]. Moreover, BCI/neurofeedback systems have been recently studied

to enhance central nervous system (CNS) functions such as perception, action,

cognition, or emotion [30, 31]. Although, there are many BCI applications, there

are many challenges need to be addressed to bring these applications to real life
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situations. The future may have options to bypass injured sections of the spinal

cord, allowing normal movement of the disabled limbs with only the motor im-

agery based BCI [32], or BCIs can be used for human-machine collaboration, or

early disease prediction.

Despite several recent advances, most of the BCI applications are still limited

to the laboratory due to their long calibration time. As the literature shows

[33–35], due to considerable inter-subjects/sessions or intra-session variations, a

reliable machine learning model that performs well across all sessions and subjects

has not been feasible yet. Thus, developing reliable methods and approaches

that reduce calibration time while keeping accuracy in an acceptable range is

highly desirable in BCI research [13,34,36]. One potential approach to reduce the

calibration time is transfer learning, where data from other sessions or subjects

are mined and used to compensate the lack of labelled data from the current

target user [37,38].

This chapter is a comprehensive overview of brain-computer interfaces and

transfer learning in BCI. First, a general introduction to the field of BCI research

is given. The reviewed topics include the main components of a BCI system main,

types of BCIs, the available techniques for brain activity measurement (where

EEG is empathised as it will be the core techniques in this thesis), different EEG

signal types that can be used in BCI-based applications, and BCI challenges.

After-that, transfer learning definitions, techniques, and transfer learning appli-

cations in BCI are presented. Finally, the transfer learning challenges in BCI are

discussed.

2.2 BCI system components

The whole block diagram of a BCI system is shown Fig.2.1. The BCI system’s

input is the user brain signals. BCI outputs can be letter or icon selection on

a computer screen to improve communication, a wheelchair control, neuropros-

thesis guided by functional electrical stimulation (FES) to improve rehabilitation

and motor restoration etc [39–42]. In order to translate the input into command

signals to control the output device, each BCI uses its’ specific algorithms. The

main components of a BCI system are as follows:

1. Data acquisition unit: This part record brain activities using different types of
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2.2 BCI system components

Figure 2.1: BCI system components

sensors. The recorded brain signals serve as BCI inputs after amplification and

digitization.

2. Preprocessing unit: This unit reduces noise and artifacts present in the brain

signals.

3. Feature extraction: This part generates features related to the underlying neu-

rological states using the pre-processed signals . These features are used by BCI

to control the output device.

4. Classification unit: Classification part is used to identify the user’s intention

from the extracted features.

5. Output device: This could be a wheelchair, a computer, or a prosthesis device

etc. The classifier’s output is used as a command to control the output device.

6. Feedback: BCI should be a closed loop system, where the system output can

be shown to the user can after processing the brain signals. This feedback can

be in visual, auditory or tactile form. Using this feedback help the user to better

control his brain activities which probably will enhance the BCI performance.
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2.3 Types of BCIs

Brain computer interface types can be categorized from different points of view

for example (i) exogenous or endogenous, (ii) synchronous (cue-paced) or asyn-

chronous (self-paced), and (iii) invasive or non-invasive [43]. From the point of

view of signal acquisition, the electrical activity within a persons brain can be

detected by a number of methods. For example the acquisition method can be

categorized in two main approached,

• Invasive BCI

• Non Invasive BCI

2.3.1 Invasive measurements

Brain signals are recorded by implanting electrode arrays into the patients cortical

tissues, recording extra-cellular voltages from neurons. Two techniques are used

to record brain signals invasively included Intracortical neural recordings, and

Electrocorticography (ECoG). This recording has high spatial resolution, which

require a large amount of small electrodes to be implanted inside the brain. But

this method is prone to failure when brain tissue reacts with the implants and so it

is not suitable for long-time performance stability [44]. In addition a requirement

for a highly skilled surgical team to attach the acquisition device, and also it’s

high cost.

2.3.2 Non-invasive measurements

Non-invasive BCI, is a technique that measuring signals from the surface of the

skull. The main advantage that there is no surgery to implant the electrodes, but

at the same time it has the disadvantage of signals being deformed and deflected

by the bone tissues of the skull, creating noise and making it harder for a computer

to interpret [22]. The non-invasive techniques are preferred in the BCI systems

than invasive measurement techniques [45]. There are different non-invasive BCI

techniques as follows:

• Electroencephalography (EEG)
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• Functional Near Infra-red Spectroscopy (fNIRS)

• Functional Magnetic Resonance Imaging (fMRI)

• Magnetoencephalography (MEG)

• Positron Emission Tomography (PET)

Among all these different techniques, EEG signals are widely used in BCI ap-

plications. EEG recording is easy, portable, safe, relatively low cost. Also it has

high temporal resolution and can provide many degrees of freedom when used

as a control signals [46]. So more information about EEG will be detailed in the

next section.

2.4 Electroencephalography (EEG)

The ability of disabled and paralyzed people to communicate again with local

environment and make contact with other people can be achieved, by acquiring

signals from the scalp surface in a non-invasive way. These signals are in the

magnitude of micro-volts and can be detected by very sensitive electrodes which

is part of an equipment called an electroencephalograph, which was discovered

and developed by Hans Berger a German psychiatrist in 1928 [47]. He announced

how to read and interpret person’s thoughts by analyzing the EEG waveforms

with mathematical processing.

EEG is the measure of the electrical activity of billions of neurons in our

brain when they communicate with each other, and this communication is done

by generation and propagation of action potentials. These action potentials in-

duce current, and create an electric field that can be measured by the surface

electrodes. These potential differences are measured outside the skull, represent-

ing the synchronous activity of these neurons [48].

EEG recording system contains electrodes, amplification stage, analogue to

digital converter, and a device to record the signal. These signals were acquired

using the electrodes, then amplification of the analog signal to increase the signals

amplitude in a way that the A/D converter can convert it accurately [43].

There are two types of electrodes which are used to detect EEG: wet electrodes

and dry electrodes. When wet electrodes are used, a conductive gel is applied for
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better transmission of charge between scalp and electrode. In comparison to dry

electrodes, which don’t use a gel, wet electrodes are less pleasant for the user due

to the sticky properties and the long application process to be fixed [49].

The electrodes are placed on the head at fixed locations according to the

international 10-20 system, based on standard locations of the skull [50]. The

signals recorded by the electrodes are called brain waves. Each person has it’s

unique EEG signals, but it can be changed according to age, sensory stimuli,

brain disease and the mental state of the person. These brain waves divided into

four categories, based on their frequency content [43,51].

• Delta waves (<4 Hz): high amplitude waves seen in babies and in adults during

deep sleep or as movement artifacts.

• Theta waves (> 4 and < 8 Hz): more common in children and very rare

in normal awake adults. Sometimes seen in adults when concentrating or

during cognitive process.

• Alpha waves (> 8 and < 12 Hz): relatively regular, rhythmic, low-amplitude

waves when in a relaxed state. It is also related to memory brain functions,

visual processing and mental effort.

• Beta waves (> 12 and 6 30 Hz): less regular than alpha waves and occur when

mentally alert, focusing on a problem or visual stimulus.

•Gamma waves (> 30 and< 100 Hz): can be obtained during deep concentration

and during certain motor functions or perceptions. Gamma waves are not

commonly used in BCI systems, because it easily can be affected by artifacts

from electromyography (EMG) or electrooculography (EOG).

EEG is a non-invasive way to detect the electrical activity of brain with

high temporal resolution, being in the millisecond range, which make it the best

method for real-time applications. However, it is still has some drawbacks as EEG

has a poor spatial resolution due to the space between the electrodes and the neu-

rons [52]. This leads to that the measured signal is the result of the activity of

thousands of neurons, making it hard to distinguish exactly where the activity

came from. Moreover, during acquisition of EEG there is a high probability to

pick other signals from other sources rather than the brain, called artifacts. These
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may arise from power line signals (50 or 60 Hz), eye blinking, muscle movement,

chewing or heartbeats [53,54].

2.5 Types of EEG signals for controlling BCI

There are different types of EEG signals that can be used in BCI depending on

the task that the system will do. These signals can be divided into two main

categories [55].

• Evoked signals

• Spontaneous signals

2.5.1 Evoked Potentials

A visual evoked potential (VEP) is initialized using a visual inspiration, such as

an alternating pattern on a screen. Recording and observation of responses are

done using electrodes placed on the back of skull during EEG recording. The

recorded responses usually originate from the occipital cortex, where the brain

involved should receives and interprets the visual signals [56].

With comparison to other sources for BCI (e.g. motor imagery, and slow

cortical potentials), VEP based BCIs offer higher information transfer rates with

shorter calibration time, less number of electrodes, and low cost [57, 58]. There

some limitations for using VEP as a control signal such as: visual fatigue, false

positive, and some possibility of causing a seizure [59]. The steady state evoked

potentials (SSEP) and P300 [55] are two well-known signals belonging to evoked

potentials.

Steady state evoked potentials (SSEP)

SSEP appear as brain potentials when a periodic stimulus is perceived by the

subject such as a flickering picture or a sound modulated in amplitude. SSEP are

defined as an increase in the power of the EEG signals in the frequencies being

equal to the stimulation frequency or being equal to its harmonics and/or sub-

harmonics [20, 23]. In an SSEP-based BCI application, there are several stimuli

simultaneously flickering at different frequencies. Each stimulus is corresponding
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to a task. To activate a task, the user should draw his continual attention to the

corresponding stimulus [60].

P300

This signal is a positive wave peak at around 300 ms after task-relevant stimulus.

This signal is evoked by different paradigms,the frequency of stimulus occurrence

and task relevance are the major factors that influence it. This signal has been

shown to be stable in locked-in patients. This finding makes it possible to be

used as a control signal for locked-in patients [61]. One of the major application

of P300 in BCI is The P300-speller which is used for spelling words or sentences

by flashing rows and columns on a screen [62].

2.5.2 Spontaneous signals

Sensorimotor rhythms are the most commonly used signals among all the spon-

taneous signals. However, other neurophysiological signals are also used in BCI

such as slow cortical potentials. These signal types require a sufficient amount

of training work before operation of the BCI. During the training phase, the

brain signals are recorded while the user is performing mental tasks (e.g. motor

imagery).

Slow Cortical Potentials (SCPs)

”SCPs are shifts in the depolarization level of the upper cortical dendrites which

are caused by intracortical and thalamocortical afferent inflow to neocortical lay-

ers” [63]. There are two types of SCPs. Negative SCPs which are the summation

of synchronized ultra slow excitatory postsynaptic potentials from the apical den-

drites. SCPs positive type results from synchronized inflow reduction to the apical

dendrites or may be caused by inhibitory activity or by excitatory outflow from

the cell bodies. Behavioral and cognitive performance are improved after increas-

ing the negativity of the SCP is learnt by subjects, while cognitive behavioral

performance is reduced during positive cortical potentials [63].
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Sensorimotor Rhythms (Motor Imagery)

Sensorimotor rhythms are EEG rhythms that change with movement or the

imagination of movement and do not require any specific stimuli for their oc-

currence [64]. When planning for movement, this leads to two actions: amplitude

modulation, named event-related de-synchronisation (ERD), after that ampli-

tude enhancement, which is called event-related synchronisation (ERS). In the

mu band, the de-synchronisation starts 2.5 seconds before movement-onset, peaks

after movement-onset and recovers back to baseline within a few seconds [64]. In

the beta band, the de-synchronisation is only short-lasting, followed by synchro-

nisation reaching it’s maximum in first second after the movement. In the gamma

band, synchronisation reaches a maximum right before movement-onset, but these

gamma oscillations are rarely found in the human EEG [65].

Sensorimotor rhythms (motor imagery) have been investigated extensively in

BCI research [66,67]. Motor imagery has attracted increased attention, as unlike

many other types of BCI, MI-based BCI does not require any external stimuli

and can be used in a self-paced way which is closer to a natural and intuitive

control [12]. Thus, motor imagery will be the main paradigm in this thesis.

2.6 BCI systems difficulties

2.6.1 Synchronizations

Most BCI studies are cue-paced systems, which means that the time intervals in

which communication will be possible, is paced by the BCI system [68]. The EEG-

signal can be analysed in predefined time windows, but this severely limits the

autonomy of the user, allowing only one thought per time window. Asynchronous

BCIs on the other hand, allow the user to communicate at any time, like real

time life situations, but this requires continuous analysis, and classification which

is a very challenging task [69].

2.6.2 Inter-subject variability

This is one of the most important issues that have been studied in the last few

years, as not everyone has the exact same brain, or has the same capability
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to develop thoughts. Thus, BCI performance depends on the user. A number

of algorithms have been developed so that the BCI can automatically detect its’

current user and adapt parameters to maximise BCI system performance, making

it faster to initialize the BCI [70].

2.6.3 Inter-sessions non-sataionarity

As EEG signals differ from person to another, it also can differ from session to

session for the same person. Variations may occur, due to fatigue, task involve-

ment, changes in motivation, or may be due to a slightly different placing of the

cap.

Due to inter-sessions non-sataionarity, a long calibration time is needed before

each use of the BCI system [13]. This leads the necessary for a large amount of

EEG training trials for each subject to be collected for each session to train the

classifier. Acquiring these EEG trials are a time consuming and a stressful job for

anyone who needs to use the BCI system. So, calibration period reduction has a

significant effect to achieve daily life BCI systems applications.

2.6.4 Intra-session non-stationarity

Using large training data sets does not guarantee a good BCI performance as

testing trials might be very different from training trials. This problem is more

pronounced especially when the BCI user starts feeling fatigued or is distracted

[71].

2.6.5 Noise and outliers

High dimensionality of brain signals leads to that brain states related components

are often revealed by the background noises. Also outlires due to muscles or

eyes movements during recording process. To predict brain states accurately, a

large number of training trials are required for feature extraction and classifier

training. Besides, when only few data trials are available for training, it is hard

to estimate the classifier parameters. As, noises and outliers will negatively affect

the extracted features.
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2.7 Transfer learning

In order to use BCI on daily basis out of the laboratory, many challenges need to

be addressed. One of the main problems is the need for recalibrating the system

for every new session/subject. Using machine learning methods for every new

session, the BCI system has to learn the user’s brain patterns and calibrate the

system accordingly. Typically, the calibration could take up to 20 - 30 minutes

for each new session, which is an exhausting and tiring amount of time that the

patient has to undergo before the system is fully functional [13,14].

The reasons for having a long calibration in EEG-based BCI can be as follows:

The first reason is the high dimensionality of EEG signals which are very noisy as

well [72]. In order to predict the right brain states, features need to be extracted

from the training EEG data to train the classifier. It is hard to estimate probabil-

ity distributions of the features from a few trials of high dimensional noisy EEG

signals where outliers will have tremendously adverse effects. Second, EEG signals

are highly non-stationary [73]. Many factors lead to this non-stationarity such

as the variations of users’ mental and psychological states, miss-concentration

and fatigue; also it may be affected by various measurements circumstances, i.e.

changes in the impedance of the electrodes due to sweating [74]. So, the classi-

fier trained on the features extracted from data of the previous sessions usually

performs poorly on a new session data. Third, each person has unique brain pat-

terns. The properties of EEG signals typically change when transferring from one

subject to another subject. Thus, it is not straightforward to calibrate BCI model

for a new subject from EEG data collected from previous subjects.

In order to address the mentioned problem, recent studies try to reduce cali-

bration time based on different methods and algorithms while keeping accuracy

in an acceptable range [13, 70, 75, 76]. One promising approach to deal with this

problem can be transfer learning, where data from different users or sessions can

be used to compensate the lack of labelled data [15].

Transfer learning is a machine learning technique used to improve the accuracy

of classifier trained from one domain by transferring useful information from

other domains. Machine learning methods have granted remarkable success within

different engineering research fields. However, most machine learning methods

work well only when data for training and testing purposes is extracted from
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the same feature space with a fixed distribution. Hence, if any changes happen

to this distribution, most statistical models need to be reassembled by collecting

new data for training. In many daily life applications, it is expensive and time-

consuming to recollect the required data for retraining the model each time we

need to use the system. Moreover, in some scenarios, we have access to insufficient

labelled data. In such cases, transfer learning between task domains would be a

potential solution to reduce the model recalibration efforts. Transfer learning has

been successfully applied in different machine learning applications such as text,

image, and human activity classification. For brain-computer interface this is

relatively a new field of research that needs to be further explored.

2.7.1 History of transfer learning

Machine learning algorithms predict labels of newly coming data by using mod-

els that are learnt using available labelled (supervised learning) or unlabelled

training data (unsupervised learning) [77]. Also if there are few labelled samples

and a large number of unlabelled samples, semi-supervised techniques can be

applied [78]. Most of the machine learning algorithms assume that the labelled

and unlabelled data have the same distribution, whereas transfer learning allows

the domains, tasks, and distributions used in training and testing to be different,

which is more related to real-world situations.

The fundamental motivation for transfer learning in the machine learning

research was firstly discussed in a Learning to Learn NIPS-95 workshop [79].

Since then much more attention has been paid to transfer learning. In 2005, the

Broad Agency Announcement (BAA) of Information Processing Technology Of-

fice (IPTO) set a formal definition for transfer learning as: ”the ability of a system

to recognise and apply knowledge and skills learnt from previous tasks to novel

tasks” [37]. Here, the goal of transfer learning is finding usable information in dif-

ferent tasks of different sources and using it to better deal with the target task.

Thus, transfer learning is different from multitask learning where both learnings

of the source and target tasks happen at the same time.

Transfer learning approaches have been applied efficiently and successfully

in many real-world applications, such as learning text data between different

domains [80], image classification problem [81], Wifi localization [82], computer-

aided design (CAD) applications [82], and cross-language classification [83]. Also,
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transfer learning techniques were applied in some biomedical engineering studies

such as human activity, muscle fatigue, drug efficacy, and human activity classi-

fication [84].

Transfer learning solutions have been first implemented for multi-language

processing and image processing classifications, the majority of these transfer

learning algorithms could be applied to the different application rather than the

one it was implemented for. This property opens the door for transfer learning to

be used in other different areas such as attentiveness of drivers, analysing social

media reactions, atmospherics data classification [85].

One of the promising applications of transfer learning could be BCI to enhance

the overall system accuracy and reduce calibration time. Different studies have

tried to apply different transfer learning types in BCI. These studies will be

explained in detail.

2.7.2 Transfer learning definition

A domain D is defined by its feature space X and its marginal probability distri-

bution P (X), where X = {x1; ...; xn} ∈ X. Subsequently, given a specific domain,

D = {X, P (X)}, its’ task consists of two terms: a label space Y and an objective

classification function f(.) (denoted by T = {Y, f(.)}), which can be learnt using

available training data. Thus for a pair of {xi, yi}, where xi ∈ X and yi ∈ Y,

classification of the labels of new trials is done using f(.).

Generally, when there are two different domains, they have either different

feature space, different marginal probability distributions or both. Similarly, two

different tasks have either different label space, different classification function

or both. In this chapter for simplicity, source domain and target domain will be

referred as DS, and DT respectively.

Definition 2.7.1 ”Given DS, TS, DT , and TT , transfer learning aims to help

improve the learning of the target classification function fT (.) in DT using the

knowledge in DS and TS, where DS 6= DT or TS 6= TT”. As DS 6= DT means

PS(X) 6= PT (X) or/and XS 6= XT . Also, TS 6= TT means YS 6= YT or/and

PS(Y|X) 6= PT (Y|X)” [37].

When using transfer learning, we need to know which types of knowledge we

need to transfer and which types we should not transfer. Moreover, it is important
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to know how and when to transfer them. To address these questions, different

types of transfer learning categories and approaches have been proposed in the

literature. We will discuss a number of them in the following sub-sections.

2.7.3 Transfer learning categories

Based on the relationship between source and target domains and tasks, transfer

leaning can be divided into three main categories. These categories are:

• Inductive transfer learning

• Transductive transfer learning

• Unsupervised transfer learning

Inductive transfer learning

The purpose of inductive transfer learning algorithms is to improve estimation

of the target classification function fT (.) in target domain when the target and

source tasks are different (TT 6= TS). It does not matter if the source and target

domains are the same or not [37]. It is noted that in the inductive transfer learning,

we assume some target domain labels are available to train fT (.).

Subsequently, depending on the availability of labelled and unlabelled trials

from the source domain, two types of the inductive transfer learning are shown

here:

• A large amount of source domain labelled data are available. This case is the

most common type of the inductive transfer learning. It is noted that the

multitask learning setting also deals with the same situation (i.e. having a

large amount of source domain labelled data available). However, in multi-

task learning, the learning of both target and source tasks are done at the

same time while in the inductive transfer learning the target task is learnt

based on knowledge transferred from the source task [86].

• There are no labels available in the source domain. Here, it is similar to the

self-taught learning [87].
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Transductive transfer learning

The goal of transductive transfer learning algorithms is to improve estimation of

the target classification function fT (.) in the target domain when the target and

source tasks are similar, but the target and source domains are different [37]. It

is noted that in the transductive transfer learning we assume no or few labelled

trials are available in the target domain whereas a large amount of labelled trials

are available in the source domain.

Subsequently, due to different situations between the source and target do-

mains, transductive transfer learning techniques can be divided into two situa-

tions:

• When the feature spaces are different between both the target and source

domains, i.e. XS 6= XT . This is also called heterogeneous transfer learn-

ing [88].

• When both the source and target domains have the same features space,

XS = XT , but the features have different marginal probability distributions,

PS(X) 6= PT (X). This kind of transfer learning is related to domain adap-

tation such as covariate shift method [89]. This is also called homogeneous

transfer learning [88].

Unsupervised transfer learning

This type of transfer learning tries to solve the learning problem when there are no

labelled trials available in both the source and target domains during training.

In the unsupervised transfer learning, while both the source and target tasks

are different, there is a relation between them. Unsupervised transfer learning

algorithms can be applied to problems involving clustering and dimensionality

reduction [37].

2.8 Transfer learning approaches

Based on the type of information that needs to be transferred, the transfer learn-

ing algorithms can be categorised into four different approaches, explained as

follows:
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2.8.1 Instance-based transfer learning

This approach is based on the assumption that the entire source domain cannot

be used directly. However, some parts of the source domain data can be reused

for learning the target domain function. The estimation of the target classifica-

tion function is improved by combining the few target labelled data with some

instances from the source domain where re-weighted is done if needed [84]. The

well-known techniques using this approach are instance re-weighting and impor-

tance sampling [37,90].

2.8.2 Feature-representation transfer learning

This approach focuses on improving the construction of the feature space for the

target domain using the data from the source domains, such that the performance

of the target task is improved by minimising the classification errors.

Depending on the amount of labelled data available in the source domain,

the feature-representation transfer learning can be either supervised or unsuper-

vised [37]. The feature-representation transfer learning can also be formulated

in two different types, namely asymmetric and symmetric feature-based transfer

learning. The former aims to transform the source features of the source domain in

a way to be closer to the target domain. The latest tries to discover the underlying

representative structures between both domains to find common latent features

that have a same marginal distribution across the source and target domain [88].

2.8.3 Classifier-based transfer learning

This approach focuses on improving the construction of the classification func-

tion (classifier) of the target domain using the classification functions of source

domain subjects/sessions. Parameter-based transfer learning assumes that some

parameters and prior distributions are shared between the individual functions of

the source and target tasks. So these shared parameters or priors can be trans-

ferred to the target classification function such that the classification errors are

reduced. As an example, classifier-based transfer learning can be done by com-

bining multiple source classifiers (ensemble learners) to form an improved target

classifier [91].
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2.8.4 Relational-based transfer learning

Different from other approaches, this approach deals with problems that the

source and target data are not independent and identically distributed (non-

i.i.d) and can be presented in many relations. So, this approach aims to find

the relational patterns between the source and target domains, and then transfer

the knowledge in the source domain to the target domain based on statistical

relational learning techniques [92].

2.9 Transfer learning methods used in BCI

As stated before, BCI applications are obstructed by the long calibration time

required at the beginning of each session. Transfer learning is a promising ap-

proach that can potentially avoid this limitation. Transfer learning can transfer

information from different domains (raw data, features, or classification domain)

to compensate the lack of labelled data from the subject.

Typically in BCI, two types of information could be transferred; i.e. either

discriminative or stationary [93]. Transferring discriminative information aims at

constructing more discriminative systems (e.g. by focusing on features, classifier,

filters, etc). This approach has been successfully applied to scenarios where the

available data samples are few to avoid over-fitting and when the source and

target domains are very similar. However, this approach may fail when the target

and source domains are not very similar. In this case, transferring stationary

information which aims at constructing more invariant systems is more successful

as it focuses on common information across domains [94].

In this section, we will review the transfer learning methods applied on BCI

from point of view of transfer learning approaches mentioned in section 2.8.

2.9.1 Instance-based transfer learning in BCI

Two well-known techniques using this approach in BCI: importance sampling,

where certain values of the input variables have more impact on the parame-

ter being estimated than others and instance re-weighting which aims to weight

certain parts of the source domains to be reused in the target domain [37,90].
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Importance sampling instance-based transfer learning

In [95] a method called Bagged importance-weighted LDA (Bagged IWLDA)

based on covariate shift adaptation has been proposed to reduce non-stationarities

between sessions. Covariate shift adaptation is used to overcome the problem

of the supervised learning process which requires a big amount of labelled test

samples under the assumption that training and test samples follow the same

distribution [96]. However, this basic assumption is mostly violated in real life

applications for BCI. Indeed covariate shift adaptation is applied under more

realistic assumption where the training and testing samples have different distri-

butions, and at the same time, the conditional distribution of output labels are

unchanged. So in [95] a random subset was chosen from the available data to

train the classifier. The proposed IWLDA classifier was presented to be an ex-

tension of LDA classifier based on the concept of importance sampling as under

covariate shift normal LDA is not stable. Importance was calculated as the ratio

between the test and training input densities. Then the proposed classifier was

learnt using what was randomly chosen as a training subset. N repetitions of this

step were held to compute N number of IWLDA classifiers. In the end, the final

predictor was obtained based on the average of these N classifiers.

Another approach based on the principle of covariate shift adaptation has

been proposed in [97] to reduce non-stationarity between sessions. Marginalized

stacked denoising autoencoder (mSDAs) was used to calculate the importance

weights. The calculated importance weights were used in the learning algorithm

to minimise the mismatch between different sessions. The authors assumed, by

proposing this algorithm, to overcome the limitation of traditional techniques that

were used to calculate the importance weights (i.e.Kernel Mean Matching (KMM)

[96], Kullback-Leibler Importance Estimation Procedure [96] and Unconstrained

Least Squares Importance Fitting [98]). These methods were used to calculate the

importance weights under the assumption that training and testing data must be

available, which is not a practical assumption.

The authors of [99] have proposed a method of transferring selective instances

based on an improved active transfer learning (ATL) algorithm. Active learning

(AL) is used to find the most informative samples to be chosen for labelling so

that a higher performance learning process can be achieved with less labelling

effort. For example, if there are two classes, A and B, with unknown distributions
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and a few labelled trials and a large amount of unlabelled trials are available

from each class. AL task here is how to select the most informative unlabelled

samples (say two) to be labelled and added to the training data to enhance the

classifier training process. There are different method that can be used for this

purpose (i.e. least confident, margin and entropy, query by committee, expected

error reduction, variance reduction, and density weighted method [100]). AL was

used previously in BCI to select the most informative samples from the unlabelled

target domain samples to be labelled and added to the classifier training data [55].

In this research, active learning was applied to the source domain labelled samples

to choose the samples that were close to target domain labelled samples, and could

be added to the training domain.

The authors proposed two algorithms, the first algorithm they proposed was

called selective instance transfer with active learning (SITAL), which aimed to

enhance the accuracy of direct transfer learning problem that could lead to a nega-

tive transfer. The negative transfer happens when the source and target data have

great dissimilarity. So, to find data in source subjects domain that is similar to the

target domain data, a similarity finding solution was added with trials that are

correctly classified using the new subject-specific classifier. This subject-specific

classifier was trained using the few trials available in the target domain, were se-

lected for instance transfer. They also proposed another algorithm called selective

informative instance transfer with active learning (SIITAL). Active learning was

used not only to select the most informative samples, after selection of correctly

classified trials from other subjects (in SITAL), but also it checked the normalised

entropy of the selected samples and chose samples with higher entropy from these

selected trials for instance transfer.

Results showed that SITAL and SIITAL almost had gained slightly higher

classification accuracy compared to baseline approaches for some subjects, but not

for all subjects when fewer samples were available for training. These algorithms

have some drawbacks which might be due to the class imbalance problem during

random selection of instances to be labelled in SITAL and SIITAL. That might be

because the criteria of instances selection by informativeness when using SIITAL

reduced the number of functioning trials for some subjects.

Recently, a domain adaptation with source selection framework has been pro-

posed in MI-BCI system. A deep network is trained using EEG from the target
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subject and some selected other subjects. These subjects are selected based on

how their EEG characteristics are similar to the new subject characteristics using

power spectral density in resting-state EEG signals [101].

Re-weighting instance-based transfer learning

There is no obvious re-weighting instance-based transfer learning application in

BCI, that select some subsets from the source domain data and re-weight them

to be used in the target domain, till now based on our knowledge. But there is

one application which applied this approach but for the whole available source

domain data.

Transfer learning in [71] was used to reduce non-stationarity between sessions

in BCI, where a data space adaptation technique has been proposed to linearly

transform the EEG data from the target space to the training space in a way

to minimise the distribution difference between the two spaces. Two versions of

the EEG data space adaptation were proposed using the Kullback-Leibler (KL)

divergence, based on the availability of labels in the testing session: when labelled

data were available it was called the supervised version, and when labelled data

were not available it was called the unsupervised version. The results showed

that concerning classification accuracy, the proposed algorithm for both versions

significantly outperformed the results without adaptation even when applied for

subjects with poor BCI performance.

2.9.2 Feature-representation transfer learning in BCI

As mentioned before, feature-representation transfer learning focuses on improv-

ing the construction of feature space using some knowledge from source domains.

Multiple BCI transfer learning studies used spatial filters to learn the new feature

representation. There are different algorithms to compute spatial features; among

them, Common Spatial Patterns (CSP) is the most commonly used algorithm for

extracting discriminative features from EEG signals. However, when there are

only a few trials available for training, CSP tends to over-fit. So, different im-

proved approaches for CSP were proposed to overcome this limitation. So from

this point, we can categorise feature-representation transfer learning in BCI into

two main subcategories based on which method is used to extract the information
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to be transferred. One category deals with approaches using CSP to extract fea-

tures and the other category include other methods that can be used to extract

EEG features. However, before going through these application an overview of

CSP will be introduced.

Common spatial patterns (CSP)

CSP linearly transforms the data from the original EEG channels into new chan-

nels to better differentiate between two conditions by maximizing the variance

of one condition while minimizing it for the other [102]. The CSP filters are

calculated based on assigning new weights for each channel depending on the

projection matrix. This projection matrix will have as many filters as the number

of channels where each filter carries the weights to make linear combinations of

the original EEG channels to decide which EEG channels carry the most useful

information. The first half of the projection matrix will maximize the variance

for class one and minimize it for class two, while the second half of the projec-

tion matrix will maximize the variance for class two and minimize it for class

one under the assumption that the signal is band-pass filtered [103]. Based on

the number of features needed a number filter pairs are selected. The following

equations show how feature extraction based on CSP works.

Let us consider, Xi ⊂ RV×h is the ith band passed trial, where V is the

number of channels and h is the number of EEG samples respectively. Whereas,

W ⊂ RV×V is the projection matrix of CSP, and Zi ∈ Rh×V is the trial after

spatial filtration which is calculated as follows:

Zi = XT
i W. (2.1)

Let C1 ⊂ RV×V and C2 ⊂ RV×V be covariance matrices of the two classes for

EEG signal X and can be computed by [102]:

C(c) =
1

nc

nc∑
i=1

Xi ×XT
i , c ∈ [1, 2] (2.2)

where nc is the total number of trials for class c. The CSP matrix W can be

computed by:

C1 ×W = (C1 + C2)×WD, (2.3)
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where, eigenvalues for C1 formed the D diagonal matrix. Normally, classification

is done using m pairs of filters from W. In this chapter, we use the first three

and the last three rows of W which will be named W∗ ⊂ RV×2m to acquire the

spatial filtered signal Z∗i ⊂ Rh×2m [102].

Z∗i = XT
i W∗. (2.4)

Thereafter, the most relevant features are extracted so the feature vector fi ⊂ R2m

can be computed by calculating logarithm of variance of Z∗i [102].

fi = log(var(Z∗i )). (2.5)

These features are used as the input to train the classifier, and hence the trained

classifier is used to estimate the labels of unlabelled trials.

CSP-based feature-representation transfer learning

This category can be implicitly divided also into two subcategories based on

how transfer learning is applied. For some application modification on how CSP

covariance matrix is estimated and for other applications, the modification can

be done within the CSP optimisation function or the algorithm.

In [104], Lotte et al. used data from other subjects to improve CSP and Linear

Discriminant Analysis (LDA) algorithms. More precisely, it has been proposed

that using the data from a subset of source subjects could lead to improve the

estimation of CSP covariance matrix and the proposed covariance matrix Ĉt was

computed as follows:

Ĉt = Ct + λ(
1

|St(Ω)|
∑

i∈St(Ω)

Ci), (2.6)

where Ct denotes the estimated covariance matrix using the target subject’s data;

Ω is the set of subjects with previously collected trials, λ is the regularization

parameter (0 < λ < 1) which was calculated heuristically, St(Ω) is a subset of

subjects from Ω, and Ci is the estimated covariance matrix calculated using data

from the subject i. This regularisation aimed to obtain a more stable covariance

matrix estimation using covariance matrices of a subset of other available subjects.

This subset of available subjects was selected using a sequential algorithm and

based on their performance for labelling of the available few trials in the target
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domain. The results showed that the proposed covariance matrices led to enhance

the classification accuracy when few trials were available from the target subject.

Authors of [105] have proposed a CSP algorithm for subject-to-subject trans-

fer using a linear combination of covariance matrices of the source and target

subjects to estimate a composite covariance matrix. Consequently, the composite

CSP could transfer discriminative information from other domains to overcome

the CSP limitation when only few samples are available for training. The com-

posite covariance matrix was calculated using one of the two following proposed

methods: Method 1 focused more on covariance matrices calculated using the

data from subjects who had large number of trials, where a tuning parameter

biased the estimates towards the source domains. Method 2 calculated covari-

ance matrices using subjects’ data which were similar to the target domain data,

where similarity was calculated using KL-divergence. The general formula to cal-

culate the composite covariance matrix Ĉk
c for subject k for both methods was

as follows:

Ĉk
c = (1− λ)wkkC

k
c + λ

K∑
j 6=k

wjkC
j
c, (2.7)

Where λ (0 < λ < 1) is the tuning parameter which controls the importance

of the covariance matrix from the new subject related to covariance matrices of

other subjects. K is the total number of available subjects. For each c ∈ {+,−},
Ck,orj

c is the covariance matrix for subject k, orj and class c. Weights for method

1 were computed as follows:

wjk =


Nk

c∑K
j 6=k Nj

c
for j = k

Nj
c∑K

j 6=k Nj
c

for j 6= k
, (2.8)

where Nx
c is the total number of trials belonging to class c and subject x. Weights

for method 2 were calculated as follows:

wjk =

{
1 for j = k

ajk for j 6= k
, (2.9)

Where ajk are weights for subjects have similar characteristics and can be com-

puted by calculating KL divergence between subjects k and j.

Delvaminck et al. have modified CSP objective function by constructing a

shared spatial filter between different subjects by dividing the subject’s spatial
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filter ws into a global part and a subject-specific part [106].

ws = w0 + vs, (2.10)

where w0 ∈ Rd represented the global spatial filter which was shared and learnt

over all subjects and vs ∈Rd represented the subject-specific part of the filter. The

number channels was denoted by d. An optimisation framework was described to

couple these two parts using a regularised parameters that were used to make a

trade-off between these two parts.

max
w0,vs

S∑
s=1

wT
s Σ

(1)
s ws

wT
s Σ

(2)
s ws + λ1||w0||2 + λ2||vs||2

, (2.11)

where Σ
(1)
s and Σ

(2)
s are the covariance matrices of the trials for the available

two classes 1 and 2 respectively for subject s. The parameters λ1 and λ2 are a

trade-off between the global and the specific parts of the filter, by choosing one

of them high and the other one is zero, this leads to force the filter to be specific

or more global.

Samek et al. [93] has proposed an extension for CSP using the same idea

described above by dividing CSP into two parts. The proposed algorithm was

called stationary subspace CSP (ssCSP) where stationary information across

multi-subjects instead of discriminative information was transferred by learn-

ing a stationary subspace. At first common invariant information between the

available subjects were extracted, for each subject eigenvectors decomposition

of the difference between the test and training session covariance matrices was

computed. Then for each subject, a predefined number of eigenvectors with the

largest absolute values were selected; subsequently, all vectors from all subjects

were aggregated in one matrix. After that principal component analysis (PCA)

was used to reduce the dimensionality of this matrix and extract the most com-

mon non-stationarities directions. Finally, in order to construct invariant features

for the new subject, CSP filters of this subject were regularised towards the or-

thogonal complement of the most common non-stationary directions extracted in

the previous step. The proposed algorithm is promising when there is a significant

change between the training and test data, as it was suggested to reduce the shift

between the training and test data.
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Also, Samek et al. has introduced a general spatial filter computation frame-

work based on divergence maximisation (divCSP) in [107]. They showed that

CSP algorithm could be solved as a divergence maximisation optimisation func-

tion. The authors proved that the CSP filters project data to a subspace with

the maximum discrepancy, measured by symmetric KL divergence. So instead of

calculating spatial filters using CSP, they obtained another solution based on KL

divergence by solving the following regularised objective function which consists

of two parts, the CSP term and regularisation term.

`(V) = (1− λ)DKL(VTΣ1V)||(VTΣ2V )− λ∆, (2.12)

where λ is the regularisation parameter which is used to make a trade-off

between the two parts, and it was obtained here by cross-validation. DKL is the

symmetric KL divergence between the whitened covariance matrices of data from

the two classes for the new subject. Σ1 andΣ2 are covariance matrices of data

from the two classes for the new subject. ∆ is the regularisation term and can be

computed by:

∆ = − 1

K

K∑
k=1

DKL(VTΣk
1V)||(VTΣk

2V), (2.13)

where K is the number of the available subjects. Using this approach, information

from other subjects were used. Whereby, by introducing regularisation into the

optimisation function solution, it led to the design of a novel spatial filtering

algorithm. Thus, by jointly optimising the divergence problems of different users,

a subject-independent feature space could be extracted.

Non CSP-based feature-representation transfer learning

There are some other feature-representation-transfer applications where informa-

tion can be transferred using different strategies, such as transfer stationary in-

formation using PCA based covariate shift adaptation as in [108]. Authors aimed

to minimise the non-stationaries effect by proposing a new covariate shift adapta-

tion method based on PCA. The most important non-stationary principal com-

ponents were extracted and normalised by shifting a window over the data to

reduce the effect of non-stationarity. Each feature normalisation was done indi-

vidually rather than normalising the combination of all features. This method is

beneficial when the number of dimensions is more than the number of trials and
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enhance the accuracy of CSP-based methods that work with stationary informa-

tion. There are different applications using covariate shift for transfer learning

proposed in [109,110].

Another method also has been presented called a non-negative matrix factori-

sation (NMF). This method was shown to be useful in capturing discriminative

information without using the concept of cross-validation in motor imagery EEG

tasks [111]. However, direct application of NMF to EEG data of different sub-

jects captures only intra-subject variations. In [112] authors applied NMF in a

way called group non-negative matrix factorisation (GNMF) where discriminative

information was transferred from multiple subjects. Given EEG data measured

from several subjects under the same conditions, the goal was to estimate com-

mon task-related bases in a linear model capturing intra-subject variations and

at the same time inter-subject variations.

2.9.3 Classifier-based transfer learning in BCI

Classifier-based transfer learning in BCI can be divided into two subcategories:

domain adaptation and ensemble learning of classifiers. In domain adaptation,

source domains classifiers are reused by adjusting classifier parameters concerning

the target domain. Commonality between the source and target domains are

compulsory to apply this type of transfer learning. This domain adaptation is

commonly used to transfer the discriminative and stationary information between

sessions. In the ensemble learning of classifiers, different classifiers trained from

different source domains are combined to acquire better classification accuracy of

the target domain samples [15].

Domain adaptation in classifiers

In order to solve the problem of EEG non-stationarity between sessions, Bam-

dadian et al. have proposed an algorithm named an adaptive extreme learning

machine (ELM) [113]. At first, the ELM algorithm was trained using previous

sessions EEG data trials, and then the trained ELM classifier was used to label

test session data. Then these labelled data trials from test session were added to

the training set to be used in the training process of the final ELM classifier.
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A domain adaptation algorithm called domain adaptation support vector ma-

chine (DASVM) has been proposed in [114]. This algorithm was detailed in three

steps: 1) using source domain to initialise the discriminative function; 2) replace

samples from source domain with samples from target domain to adjust the dis-

criminative function; 3) final discriminative function was learnt using only data

from the target domain. Samples replacement were determined based on different

settings that can be found in [114].

Ensemble learning of classifier

An example of ensemble leaning of the classifier has been proposed in [36] as a

framework for subject transfer. This framework consisted of three parts: 1) two

sparse filter sets called robust filter bank and adaptive filter bank were learnt

for each subject using the subject’s CSP filter bank; 2) two classifiers models

were trained for each subject based on these two filter banks; 3) finally, a two-

level ensemble strategy was applied to integrate all classifiers from the robust

ensemble models and adaptive ensemble models into one robust ensemble learner

and one adaptive ensemble learner. Then at the second level these two learners

were combined into one final ensemble classifier using a tuning parameter for

controlling the balance between adaptiveness and robustness.

When the test sample xi was to be classified, the robust models of all subjects

Mrj(j = 1, ....., K+1) were used to construct a robust ensemble learner as follows:

RE(xi) =
K+1∑
j

Wrj ×Mrj(xi), (2.14)

where RE(xi) denotes the robust ensemble result of test sample xi, Mrj(xi) is

the result of the robust model of subject j and Wrj is the weight of the model

Mrj. The adaptive ensemble learner was computed using the following equation:

AE(xi) =
K+1∑
j

Waj ×Maj(xi), (2.15)

where AE(xi) denotes the adaptive ensemble result of test sample xi and Maj(xi)

is the result of the adaptive model of subject j. Maj(j = 1, ....., K + 1) are the

adaptive models of all subjects.
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A dynamic ensemble strategy based on the classification consistency with the

neighbourhood structure of the test example surrounded by subject j samples

was applied to assign different weights for distinct test samples. Then the final

ensemble learner was defined as follows:

E(xi) = (1− λ)RE(xi) + λAE(xi), (2.16)

where λ ∈ [0, 1] represents the tuning parameter which was calculated by cross

validation.

The authors of [55] have proposed a novel application of transfer learning (TL)

for online calibration of a single-trial error related potential (ERP) classifier.

First, labelled training trials from the new subject only were used to train a

support vector machines (SVM) classifier. Then, data available from each other

subject was combined with the few labelled trials available from the new subject

to train an SVM classifier for each subject. After that, the final classifier Cnew

was constructed by combining classifiers from all these subjects as follows:

Cnew = Ci +
M∑

m=1

Cm ∗ am, (2.17)

where the subject-specific classifier of the new subject, Ci, had a unit weight, and

the weight of the classifier of each subject m, Cm was assumed to be the average

of the cross-validation accuracy am which is how accurately the few available

trials of the testing subject were labelled. This iteration was repeated ten times,

and each time two new labelled trials from the target domain were added to the

training domain. Selection of these two trials was done either randomly or using

AL. The authors attempted to enhance the classification accuracy by integrating

AL with TL. They selected some unlabelled samples from the target domain to be

labelled and added to the training domain and they named this algorithm ATL.

The data instances that had the greatest amount of uncertainty were selected to

be the most informative, as these samples had the most disagreement within the

trained classifiers [55]. Results of the proposed methods, when compared with

two baseline approaches using SVM classifier showed that TL and ATL almost

outperformed baseline approaches when there were few trials available for training

from the new subject. ATL mostly outperformed TL, and this could be because
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during TL the random selection of trials may lead to class trials imbalance when

there are only a few labelled trials available.

In [115] the same authors again have proposed another ensemble classifier

approach named weighted adaptation regularisation (wAR), which used data

from other subjects to reduce the amount of labelled data required in the of-

fline single-trial classification of ERPs. The proposed model explicitly handles

class-imbalance problems which are common in many real-world BCI applica-

tions. They also aimed to reduce the computational cost of wAR by proposing a

source domain selection (SDS) approach which selects the closest source domains

(i.e. existing subjects) to the target domain. Thus, SDS was performed to select

the closest source domains, and then wAR was applied on selected source domain

separately to obtain the best classifier parameters for that specific source domain.

The final classification was a weighted average of these individual classifiers, with

the weight being calculated based on the training accuracy of the corresponding

wAR.

Besides, an adaptive accuracy-weighted ensemble (AAWE) approach has been

proposed in [116] to allow tracking of non-stationarities in EEG signals using data

from other subjects. AAWE combines different individual classifiers, and each

classifier trained using data recorded from each individual subject, the weight

given to each classifier was initialised based on the accuracy of classifying cal-

ibration data for the new subject. After that, the weights were updated using

ensemble learning within feedback phase, when there were no true class labels

available in the classification domain.

Another approach used multi-task techniques to transfer information between

session or subjects was proposed in [54]. In this algorithm, a parametric proba-

bilistic approach that used shared priors was employed to calculate the classifi-

cation parameters of a new session/subject by defining the relation between this

session/subject parameters and the shared priors of available sessions/subjects.

These shared parameters were used to compute the classifier parameters of a new

subject when there were only a few trials available from this subject.

This algorithm works as follows: s = {1, ....., S} is the multiple subjects or

recording sessions with ns trials.The class label of a new trial can be predicted

by

yi+1
s = sign(wT

s xi+1
s ), (2.18)
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where ws is the classification parameter being used to predict the class label

for subject/session s trials, xi+1 denotes the feature vector extracted from new

trial of subject s. yi+1
s presents the classes, for example: the left or right hand

movement motor imagery is performed in trial i at session/subject s is presented

by yisε{−1, 1}. So using the available data sets and labels, the objective is to

determine the best ws which lead to the best labels classification of the trials for

each subject/session such that the number of errors in this dataset Ds is reduced.

The authors claimed that for a BCI problem, each subject/session is treated

as one task, where (µ,Σ) shared structure can be presented respectively by the

mean vector and covariance matrix of W where W = {w1, .......,ws}. So the

goal of this model is how to calculate these shared parameters from all the tasks

jointly in a way that these ws reduce the error and also are close together, and

this can be achieved by solving the following optimisation problem:

minLP (W;Ds, µ,Σ, λ) = min(1/λ)
∑
s

||(Xsws − ys)||2 +
∑
s

Ω(ws;µ,Σ) + C,

(2.19)

where the first term of this optimisation problem is the sum of the losses from

each task, and by minimising it all sessions are ensured to be well fitted together.

The divergence of each task model from shared structures is controlled using the

second term. Finally, by solving this optimisation problem with respect to W and

holding (µ,Σ) fixed this yields the following equation to update ws :

ws = ((1/λ)ΣXT
s Xs + I)((1/λ)ΣXT

s ys + µ) (2.20)

For fixed W, solving the optimisation problem yields the update equations of µ

and Σ, which as also how the multi-task algorithm works until finding the new

subject classification parameter [86].

In [117], a method for unsupervised transfer learning named spectral transfer

using information geometry (STIG) was proposed. This process aimed to rank

and combine unlabelled classifications from individual different subjects ensemble

classifiers. Authors claimed that the proposed method significantly outperformed

the existing techniques of classifying ERPs when few trials are available for train-

ing.

The within-session and subjects differences can be understood as geomet-

ric transformations of the covariance matrices using the Riemannian framework.
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Riemannian geometry presents an optimum method for looking over the trans-

fer learning problem because of the affine invariance property of the Riemannian

distance and mean.

In [118] authors aimed to make EEG data of different subjects/session com-

parable by the affining transform of the spatial covariance matrices of the EEG

signals of every session/subject. Authors assumed that covariance matrices shifts

concerning a reference (resting) state could happen due to different source config-

urations and electrode positions. Using a reference covariance matrix, the covari-

ance matrices of every session/subject were placed with respect to the reference,

so that only the displacement with respect to the reference state was observed

when there was a new task. For every session, there was a reference matrix esti-

mation, but different subjects. Then, a congruent transformation was performed

using the available data and this reference matrix. Although, there were differ-

ent reference matrices within sessions and subjects, but the reference matrix was

chosen accurately, different sessions/subjects data could be compared.

The proposed procedure was tested in a classification problem, where data

from different sessions (subjects) were used to estimate the class parameters that

needed to classify new trials.

2.9.4 Unsupervised transfer learning

Unsupervised adaptive transfer learning approach has been proposed in [119].

This approach provided robust class separation in the feature space of the target

subject by learning steady state visually evoked potentials (SSVEP) templates for

this subject which led to enhanced classification accuracy. By using an extended

version of Canonical correlation analysis (CCA) called Adaptive Combined-CCA

(Adaptive-C3A) that used a set of reference signals consisting of sinuses and

cosines at the fundamental and harmonic frequencies of the SSVEP stimuli to

define linear multivariate projections in EEG data. After that a simple matching

classifier template was selected to predict the target class label by allocating the

frequency label to the EEG segment which best coincided with the corresponding

template frequency.

Recently, a novel approach has been proposed in the Euclidean space where

EEG trials from different subjects are aligned to make them more similar, and
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hence improve the learning performance for a new subject. Results on two pub-

licly available MI datasets showed the effectiveness of the purposed approach for

some subjects. However, there are some limitations due the dataset shift among

different subjects which need to be compensated [120].

2.10 Challenges and discussion

Through this chapter, most of the state of the art BCI-based transfer learning

algorithms have been reviewed. However, it is very difficult to define a domi-

nant algorithm that can be used in all scenarios. There is a lack of compre-

hensive comparisons between previously proposed transfer learning algorithms

in the field of MI-BCI even either within the same domain or across domains.

Previously proposed algorithms are different in the signal processing techniques,

feature extraction methods, data sets used, or the number of trials used for trans-

fer learning. Thus, in order to conduct comparative analysis or meta analysis to

choose the best transfer learning based BCI algorithm, a huge number of pa-

rameters need to be considered. These parameters include settings related to the

acquisition system such as: the amplifier model, cap model, type of electrodes,

recorded channels, and analyzed channels. It also should include dataset and its

related settings such as: number of subjects, subjects gender, subjects age, right

handed or left handed, motor imagery task description, number of trials, feature

extraction methods, feature selection, classifiers, results and analysis. Therefore,

it would be very beneficial for the BCI community to conduct a systematic com-

parison between different transfer learning algorithms on the same datasets in

the near future.

Although several studies focused on transfer learning in BCI, there are still

many open questions that need further investigation. These include what to trans-

fer, when to transfer and how to transfer. Current studies focused on transferring

either discriminative or nonstartionary information. However, how to identify

them are not reliably investigated across all subjects. Future studies are needed

to better identify these subsets of information. Moreover, finding the subsets of

information that satisfy both being stationary and discriminative would lead to

better results. In addition, exploring information that more specifically reflect

the mental activity performed by the user might better address the problem.
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Last but not least, identifying different clusters of previous subjects and using

only a subset that is similar to the target subject might be useful in improving

transfer learning in BCI. Below, we will further discuss the limitations of different

transfer learning approaches in BCI.

2.10.1 Instance-based transfer learning in BCI

Instance-based transfer learning is still a developing research area; different as-

pects need to be further investigated. For example, data from some subjects that

are similar to the target subject can be chosen instead of using all the available

data from all subjects. Selection of subjects and trials can be made based on

the few trials available from the target subject. There is a need for algorithms

that can accurately identify which parts of information should be transferred and

what is the most suitable approach to transfer them, and how to re-weight these

selected data if required. In addition transfer learning algorithms should be able

to properly deal with the unbalanced class trials, as in a real scenarios the user

should not be stressed to perform equal balanced class actions.

2.10.2 Feature-representation transfer learning in BCI

From what was described previously it is shown that existing traditional CSP-

based methods calculate covariance matrices on a subject-specific basis. When

there are only a few trials for training available, the performance of CSP meth-

ods on a subject-specific basis is degraded as the estimated covariance matrices

are over-fitted. Different modifications were applied to traditional CSP algorithm

to overcome this limitation as stated before. However, there are still some sub-

jects that may not gain from these modifications. Moreover, finding the optimum

regularisation parameter is still a challenge. Fo many cases, the regularisation

parameter is calculated using cross validations over a number pre-defined values

which requires a long computational time. For some other cases, the regularisation

parameter is calculated empirically which is not optimum.

2.10.3 Classifier-based transfer learning in BCI

Since classifier-based transfer learning is just focused on construction of the clas-

sifier, it might not be useful for subjects who have non-separable features, as
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changing the parameters of the classifiers does not add any separability to the

feature space. Thus, classifier-based transfer learning might be better to be cou-

pled with either instance-based or feature-based transfer learning approaches in

order to be useful for all subjects including those with initially poor BCI perfor-

mance.

2.11 Summary

Within this chapter a general introduction to the brain computer interface and

transfer learning in BCI was described. First, a general introduction to the field

of BCI research was given. The reviewed topics include BCI system main com-

ponents, types of BCIs, the available techniques for brain activity measurement,

where EEG was empathised as it will be the core techniques in this thesis, differ-

ent EEG signal types that can be used in BCI-based applications, and then BCI

challenges. Moreover, transfer learning definitions and techniques were explained.

Then, some of the available transfer learning applications in the brain-computer

interface were explored to better identify the suitable approaches that can be

used to reduce calibration time and at the same time increase the accuracy of the

BCI-based system. These approaches could be summarised as follows:

• Transfer learning algorithms on classification domain that reuse classifiers

learnt from other domains to aid better classification of new data.

• Transfer learning algorithms on feature space to improve feature extraction/selection.

The investigated algorithms explore the common information across sub-

jects/sessions to find more robust features that can enhance the model

trained by a small training data.

• Transfer learning algorithms that can be applied on raw EEG directly to mine

and reuse certain parts of data from other subjects/session for training a

better model for a new subject.

Finally, the challenges and limitations of the available transfer learning approaches

in BCI were discussed and some possible research directions were suggested.
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Chapter 3

Weighted Multi-Task Learning in Classification Domain For

Improving Brain-computer Interface

3.1 Introduction

A major challenge in brain-computer interface (BCI) is that everyone has unique

brain signals [14]. Using machine learning techniques, BCI has to learn the user’s

brain signals, but this training takes time. In order to accurately classify the

thoughts, the BCI system needs a calibration session to adapt its parameters

to the user’s signals. Generally for MI-based BCIs, this calibration session could

take up to 20 - 30 minutes for each new session, which is an exhausting and

tiring amount of time that the user has to undergo before the system is fully

functional [65]. There are different reasons for having such a long calibration ses-

sion, 20-30 minutes, in MI-based BCI. As mentioned before this can be because

of the high dimensionality of EEG signals which are very noisy as well or/and

because of highly non-stationarity of EEG signals. In the case when there are only

few training trials available, it is hard to estimate probability distributions for

high dimensional noisy EEG signals specially if these few trials contains outliers.

Moreover, due to non-stationarity of EEG the classifier which uses the features

extracted from previous sessions data usually performs poorly on the new session.

Though, to mitigate the mentioned problem, recent studies try to reduce the cal-

ibration time based on different methods while keeping accuracy in an acceptable

range [65,70,75,76].

Achieving zero calibration time is the optimum case for a real time BCI system

that can be used in daily life tasks. The main objective of this thesis is to reduce

the calibration time to be as minimal as possible, for example: 10 training trials

which are 2-3 minutes or even less. Transfer learning techniques can be used to

reduce the calibration time. In BCI, there are some studies that applied transfer

learning-based approaches on raw EEG [121], feature extraction [70,93,105] and
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classification domains [75, 86] and represent some improvements in reduction of

calibration time.

Recently, a multi-task learning-based algorithm on the classification domain

has been proposed to reduce calibration time in BCI for a new subject [86, 122].

Multitask learning is a sub-field of transfer learning where multiple classifica-

tion tasks are learnt jointly. The classification parameters of multiple subjects

are learnt jointly such that the average errors as well as dissimilarities between

the parameters of the different classifiers get minimized. However, the proposed

algorithm did not consider the similarity/dissimilarities between the data from

the new subjects and the existing data from other subjects during the learn-

ing process. To address this problem and improve the BCI classifier trained for

a new subject, this chapter proposes a novel weighed multi-task learning algo-

rithm,where previously recorded data are mined, processed and reused in a way

that higher weights are given to the data that are more similar to the new data

and less weights to data that are less similar. A new similarity measure based on

the kullback-leibler divergence (KL) is used to measure similarity between two

feature spaces obtained using CSP. Two versions of weighted multitask learn-

ing are proposed, namely supervised and unsupervised. The proposed algorithms

are evaluated using BCI Competition IV dataset 2a which was recorded from 9

subjects during a motor imagery paradigm. The experimental results showed that

our proposed algorithms outperform the baseline algorithms not only by reducing

the calibration time but also by enhancing the classification accuracy for some

subjects.

The rest of this chapter is structured as follows. Section 3.2 introduces the

baseline algorithms used throughout this chapter, then the proposed weighted

multi-task model is presented. After describing the dataset used to evaluate the

models in Section 3.3, Section 3.4 covers the results and discussions. Finally, Sec-

tion 3.5 concludes this work with a short summary and future work suggestions.
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3.2 Methodology

3.2.1 Baseline algorithms

Two main baseline training algorithms will be explained in this subsection. The

first algorithm is the commonly used subject-specific BCI training model where

the support vector machines (SVM) classifier is trained independent from other

subjects using features extracted from the common spatial patterns (CSP) al-

gorithm for the target subject. The second baseline algorithm is the standard

multi-task learning-based classification algorithm. CSP algorithm has been cho-

sen as it is the most commonly used subject specific algorithm in BCI. Although,

filter-bank CSP algorithm has been used in several BCI applications, it tends

to overfit when the available subject specific training trials are few. We have

applied filter-bank CSP on the subjects of 2a BCI Competition IV 2008 when

only 5 trials per class were used for training. We found that there was a huge

loss in classification accuracy compared to CSP. The second baseline algorithm

is the standard multi-task learning-based classification algorithm. This algorithm

has two versions, the first one is the linear regression-based multi-task linear

proposed in [86] and the second one is the logistic regression-based multi-task

proposed in [123]. These multi-task algorithms have been chosen as baseline al-

gorithms as it is the closest algorithms to the proposed algorithms in this chapter

and the only multi-task algorithms applied on MI-BCI.

Subject Specific Classification (SS)

In this algorithm, subject-specific training trials with known labels are used to

train an SVM classifier based on CSP features. The classical motor imagery-

based BCI subject-specific model, used in this thesis, consists of the following

parts: bad trials removal, band-pass filtering, common spatial filtering, extraction

of log band power features and SVM classifier. These parts are described as

follows: First, a threshold test is applied to remove bad trials due to blinks or any

unintended motion, then a band pass filter within the band 8 to 30 Hz is used on

EEG data to remove brain activities that are out of the range known for motor

imagery [104,124,125]. Next, CSP, the commonly used spatial filtering algorithm

in EEG, is applied for spatial filtering [103,126]. The importance of spatial filtering

arises due to the poor spatial resolution of EEG measurements. CSP linearly
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transforms the data from the original EEG-channels into new channels to better

differentiate between two conditions by maximizing the variance of one condition

while minimizing it for the other condition [102]. Thereafter, normalized log band

power of CSP filtered EEG signals are extracted as features. Finally, the extracted

features are used to train a SVM classifier. This trained classifier is used to classify

the labels of the test trials.

Multi-Task Learning-based Classification Algorithm- Linear Model (MLLin)

Alamgir et al. have proposed a framework for multi-task learning in BCI [86]. In

this framework, each BCI subject/session was defined as one task. A parametric

probabilistic approach that uses shared priors was employed to calculate classifi-

cation parameters of a new subject by defining the relation between this subject’s

parameters and shared priors from the available subjects/sessions [86,122].

This algorithm works as follows: s ∈ {1, ....., S} is the multiple subjects or

recording sessions. For each subject/session, the ns EEG trials are presented as

ds = (xi
s, y

i
s)

ns
i=1

, where xi denotes the feature vector extracted from the ith trial of

subject s, and yis presents the class label of the ith trial. Thus, X={x1, ...,xns} is

the feature matrix for each subject/session with labels presented as yisε{−1, 1}.
By assuming the classification model as a linear model with a noise term η

which is distributed as ∼ N(0, σ2), the label of any trial can be modelled as

yis = wT
s xi

s + η, (3.1)

where the classification parameters ws refers to the individual features weights

being used to classify the class labels of the trials belonging to the subject/session

s. Thus, when a new test trial, xi+1
s , arrives for the subject/session s, the class

label can be classified by

yi+1
s = sign(wT

s xi+1
s ). (3.2)

Typically, when there is no prior information available about the distribution

of the model’s parameters, using the available labelled trials in the dataset, the

objective is to determine the best ws that minimizes the classification error in

the dataset ds. The loss function for calculating ws can be defined using negative
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log-likelihood as follows:

L1(ws) = min
ws

[1/σ2

ns∑
i=1

(yis −wT
s xi

s)
2] (3.3)

When prior information about ws is available and assumed to be Gaussian dis-

tributed with N(µ, Σ), a regularization term R can be added to the loss function

leading to reduce the complexity of the system and hence to prevent over-fitting.

Thus, R is defined as:

R(ws;µ,Σ) = (1/2)([(ws − µ)TΣ−1(ws − µ)] + log|Σ|); (3.4)

From this point of view the authors in [122] assumed that for a BCI problem,

each subject/session is treated as one task, where the shared structure, µ and Σ

can be presented respectively by the mean vector and covariance matrix of W

where W = {w1, .......,wS}. This model calculates these shared parameters from

all the tasks jointly in a way that the ws calculated for different subjects reduce

the total classification error and also are close together, and this can be achieved

by solving the following optimization problem:

L2(W) = min
W

[1/σ2
∑
s

||(Xsws − ys)||2 +
∑
s

R]. (3.5)

Finally, solving this optimization problem with respect to W and holding µ and

Σ fixed yields the following equation:

ws = ((1/σ2)ΣXT
s Xs + I)((1/σ2)ΣXT

s ys + µ) (3.6)

For fixed W, solving the optimization problem yields to identify the update equa-

tions of µ and Σ as the following equations. Thus, optimum ws can be calculated

in an iterative manner by iteratively updating ws and (µ∗ and Σ∗) until conver-

gence. Finally, σ2 is calculated using cross validation.

µ∗ = (1/S)
∑
s

ws (3.7)

Σ∗ =

∑
s(ws − µ)(ws − µ)T

Tr(
∑

s(ws − µ)(ws − µ)T )
+ εI (3.8)
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Multi-Task Learning-based Classification Algorithm- Logistic Model

(MLLog)

The authors of [123] modified the previously presented MLLin algorithm by using

logistic regression instead of linear regression. Assumptions on the distribution of

the dependent variables in logistic regression model could be more suitable for a

binary classification problem than those in linear regression [127].

The MLLog algorithm aims at minimizing the following optimization problem:

L3(W) = min
W
−
∑
s

ns∑
i=1

H(ws, yi,xi) +
∑
s

R, (3.9)

where H is the point wise cross-error function, and R is the regularization term

as defined in (3.4). By calculating the optimum ws in (3.9), the classification of

the labels of a given trial is then calculated as:

P (yis|xi
s) =

1

1 + exp(−wT
s xi

s)
. (3.10)

Similar to MLLin, L3 should be minimized with respect to W in order to

obtain the parameters of the classifiers across subject. However, unlike the MLLin

algorithm, there is no closed form solution for ws in this optimization problem.

However, gradient based optimization procedures [128] could be applied to obtain

the optimal ws given the shared parameters (µ,Σ). Following the same steps that

were presented in the MLLin algorithm, the shared parameters were calculated

using standard Gaussian sample statistics from the optimal weights ws as in (3.7,

3.8) respectively. Iterative optimization should be then applied to update ws and

µ and Σ iteratively until convergence.

3.2.2 Proposed weighted multi-task algorithm (WML)

The MLLin and MLLog algorithms treat all the subjects similarly so that the

similarities/dissimilarities between the new subject and previous subjects are not

considered in the learning process. The proposed WML algorithm addresses this

limitation by giving each subject a different weight based on how the features

distribution of this subject/session is close to the features distribution of the

new subject. Thus, instead of updating shared parameters by giving the same
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weights to all subjects/sessions, they are weighted by taking into account simi-

larities/dissimilarities of each subject with the new subject.

Fig.3.1 presents the proposed WML algorithm used to calculate the classifi-

cation parameters of the new subject. As shown in Fig.3.1 the proposed WML

algorithm consists of two parts. In the first part, the best W = {w1, ...,ws} for

the previous subjects are calculated in away that the total classification error is

reduced for these subjects and at the same time their classification parameters

are close to their weighted average which is calculated by assigning weights to

the subjects based on their similarities to the new subject. In the second part,

weighted shared priors (µw,Σw) obtained from the previous part are used with

the new subject few trials to obtain this new subject classifier parameters. Opti-

mum wnew is calculated in an iterative manner aiming to reduce the classification

accuracy error for the new subject while the defined regularization makes it close

to the weighted shared priors.

There are two main differences between the proposed weighted algorithms and

the baseline multitask algorithms. Firstly, three different methods for covariance

matrix calculation are examined, and a comparison between these methods is

held to choose the best method based on the best classification accuracy results.

The first method to calculate a covariance matrix is referred to as cov1(size) and

calculated as below:

Σ =

∑
s(ws − µ)(ws − µ)T

size((ws − µ)(ws − µ)T )
+ εI. (3.11)

The second method, called cov2 (trace), is calculated as:

Σ =

∑
s(ws − µ)(ws − µ)T

Trace((ws − µ)(ws − µ)T )
+ εI, (3.12)

and the third method is called cov3 (diagonal) and its equation is as follows:

Σ =
diag

∑
s(ws − µ)(ws − µ)T

Trace(
∑

s(ws − µ)(ws − µ)T )
+ εI, (3.13)

where size refers to the total number of elements in the covariance matrix, Trace

refers to the trace of the matrix, diag refers to the diagonal elements of the

matrix, and ε = 0.0001 is used to ensure the stability of the equation when the

first part of the equations gets equal to zero, i.e to prevent creation of singular

(non-invertible) covariance matrix
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Algorithm 1: The proposed weighted multi-task algorithm

1 part 1

Input : d = {d1, ....., dS}, σ2, KL weights(αs)

Output: µw,Σw

2 Set [µ,Σ] = [0, I]

3 Repeat

4 update W = {w1, ..,ws}
5 update µ using weights (3.16)

6 update Σ using weights (3.17:19)

7 Until convergence

8 return µw,Σw weighted shared priors

9 part 2

Input : dnew, σ2
new, µw,Σw

Output: wnew

10 Set [µ,Σ] = [µw,Σw]

11 Repeat

12 calculate wnew

13 Until convergence

14 return wnew

Figure 3.1: The proposed weighted multi-task algorithm, where σ2 and σ2
new are

selected using cross-validation
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The second main difference is the weight that is defined for each subject

to represent the similarity between this subject and the new subject. Kullback-

Leibler (KL) divergence is used to calculate these weights [71]. The KL divergence

between two gaussian distributions N0(µ0,Σ0) and N1(µ1,Σ1) has the following

closed form [129],

KL[N0||N1] = 0.5[(µ1 − µ0)TΣ−1
1 (µ1 − µ0)

+trace(Σ−1
1 Σ0)− ln

(
det(Σ0)

det(Σ1)

)
−K],

(3.14)

where det and k denote the determinant function and the dimensionality of the

data, respectively. Therefore, in the proposed weighted algorithm, (3.14) is used

to calculate the distance between the feature distributions of each subject and

the new subject. It is noted that we use CSP features in this study. CSP features

are normalized log variance of CSP-filtered EEG data, thus the assumption of

having Gaussian distribution can be valid.

If labelled trials from the new subject are available, supervised KL distance is

computed for each class and the total distance is the sum of the distances for the

two classes. When there are no labelled trials available for the new subject, the

KL distance between the two subjects is calculated without considering the class

labels and it is called unsupervised KL. Considering these two weighted distances,

the proposed algorithms can be supervised weighted multi-task (SMLLin, and

SMLLog) and unsupervised weighted multi-task (UMLLin, and UMLLog), where

Lin and Log are referring to the applied regression method. The weight between

the subject s and the new subject, αs, is calculated using the following equation:

αs =
(1/ ¯(KL[dt, ds] + ε)4)
m∑
i=1

(1/ ¯(KL[dt, di] + ε)4)
, (3.15)

where K̄L is the total divergence calculated using the features distributions of the

few available training trials of the target subject dt (i.e. 10, 20 or all trials per

class depending on how many trials are defined as available) and the available

trials from the previous subject/session ds. In (3.15), ε = 0.0001 is used to ensure

the stability of the equation when K̄L[dt, ds] gets equal to zero due to having two

compared distributions completely similar. Although, this is a very rare event, we
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must take into account the possibility of unseen events. Based on the obtained

weight for each subject, αs, the new equation to update the weighted µ is:

µw =
∑
s

αsws. (3.16)

Similarly, the weighted Σ is calculated using the following modified equations for

cov1 (size), cov2 (trace), and cov3 (diagonal) respectively:

Σw =

∑
s(αsws − µw)(αsws − µw)T

size((αsws − µw)(αsws − µw)T )
+ εI (3.17)

Σw =

∑
s(αsws − µw)(αsws − µw)T

Trace((αsws − µw)(αsws − µw)T )
+ εI (3.18)

Σw =
diag

∑
s(αsws − µw)(αsws − µw)T

Trace((αsws − µw)(αsws−µw)T)
+εI (3.19)

3.3 Experiments

In order to validate the proposed algorithms and compare them with the baseline

algorithms, all the algorithms were applied to dataset 2a BCI Competition IV

2008 [130]. This dataset consists of EEG data from 9 subjects performing 4 classes

of motor imagery task. In this chapter only data from right and left hand motor

imagery are used. Two sessions on different days were recorded for each subject.

Each session is comprised of 6 runs, each run consists of 12 trials for each class.

EEG signal was recorded using 22 electrodes. EEG signals were sampled at

250 Hz, and were bandpass-filtered between 0.5 Hz and 100 Hz. Moreover, a 50

Hz notch filter was applied to remove power line noise. In this chapter, 2 s window

of EEG data starting 0.5 s after the cue is used to calculate the features for each

trial. The proposed algorithms and the baseline algorithms were applied only on

the trials recorded on the second day by dividing it to two sessions one for training

(consists of the first 42 trials recorded per class) and one for testing (consists of

the last 30 trials recorded per class). This was done to establish a practical case

that new subject data is coming from the same session. Where, the BCI user

uses the first few trials, 2-3 minutes, to train the system before using it, which

is supposed to happen in daily life tasks. For the new subject, different training

sizes were examined (i.e. 10, 20 and 42 trials per class). In each multitask learning
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algorithm, the train data of each new subject and the other 8 other subjects were

used for calculating classification parameters.

3.4 Results and discussion

As mentioned before, in this section the multitask learning algorithms were ap-

plied based on three different covariance matrix calculation methods and two

regression approaches (i.e. Linear and Logistic). All algorithms were evaluated

using different number of training trials from new subjects (i.e 20, 40, all 84 trials

from both classes).

To identify the most effective method of calculating covariance matrices, first

a comparison between the three different covariance matrix calculation methods

was held across different number of training trials for new subjects, regression

approaches and all the applied multitask learning algorithms. Subsequently, a 3

(Number of trials)×6 (Algorithms)×3 (covariance calculation methods) repeated

measure ANOVA test was performed on the results followed by post-hoc analysis.

Fig. 3.2 compares the classification results obtained by the different methods

of calculating covariance matrices using 20 trials from the new subjects. These

results include the classification accuracies of all the different multitask learn-

ing algorithms in both linear and logistic approaches. According to the average

accuracies shown in the Fig. 3.2, cov3(diagonal) yielded higher classification ac-

curacies than cov1(size) and cov2(trace). Indeed, conducting a repeated ANOVA

test revealed that using different covariance matrix calculation methods had a

main effect on the classification accuracy results with (p = 0.009). Based on

the post-hoc analysis cov3(diagonal) significantly outperformed cov1(size) and

cov2(trace) with the p values equal to 0.03 and 0.025 respectively. Thus, for the

rest of this chapter, all the calculations and comparisons of multitask algorithms

will be done using only cov3(diagonal).

Another comparison between the linear regression and the logistic regression

approaches was conducted. As shown in Table 3.1, on average the logistic ap-

proach outperformed the linear approach in all the considered multitask learning

algorithms when 40 trials used from the new subjects for training. Although not

presented in the table, the results of using 20 or all the trials from new subjects
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Figure 3.2: Comparison between different covariance matrix calculation methods

when 20 trials from the new subjects are used for training. The average accu-

racy calculated include results obtained by MLLin, SMLLin, UMLLin, MLLog,

SMLLog, and UMLLog.

also showed that the logistic regression approach worked better than the linear

one for the majority of the subjects.

Finally, comprehensive comparisons were conducted based on the classification

results of the 7 algorithms (i.e. SS, MLLin, MLLog, proposed SMLLin, proposed

SMLLog, proposed UMLLin, and proposed UMLLog), followed by a 3 (Number

of trials)×7 (Algorithms) repeated measure ANOVA test.

Fig. 3.3 shows that all the proposed weighted multitask learning algorithms

outperformed the subject specific algorithm (SS) when there are only 20 trials

available for training from the new subjects. When the number of the training tri-

als from the new subject increased to 40 and all, still the majority of the proposed

weighted multitask learning algorithms out performed SS. Besides the proposed
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Figure 3.3: Comparison between the proposed algorithms (SMLLin, UMLLin,

SMLLog, and UMLLog) and the baseline algorithms (SS, MLLin, and MLLog)

using different number of trials for training (20, 40, and all trials) from new

subject based on the average accuracy calculated over the nine subjects for each

algorithm. UMLLog is the best algorithm when using any number of trials.

algorithms outperformed the baseline linear and logistic multi-task algorithms

when using 20, 40, and all trials from the new subjects for training.

Based on the statistical tests, neither MLLin and MLLog significantly outper-

formed the state of art SS algorithm nor any of the proposed algorithms. Impor-

tantly, the classification accuracy of the proposed UMLLog algorithm tended to be

significantly better than the SS algorithm results. Moreover, the proposed UML-

Log algorithm significantly outperformed the baseline MLLog algorithm with the

p value of 0.045, whereas SMLLog tended to be significantly better than MLLog

with the p value of 0.078. Interestingly, when using diagonal matrix calculation

method with the baseline logistic multi-task algorithm, the modified logistic algo-

rithm was significantly better than MLLog with P = 0.021. Moreover, statistical
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Table 3.1: Classification accuracies calculated using the baseline algorithms (SS,

MLLin, and MLLog) and the proposed algorithms (SMLLin, UMLLin, SMLLog,

and UMLLog) for each individual subject when there are 40 trials available for

training from the new subject, showing that logistic algorithms outperform linear

algorithms

Algorithm sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Avg.

SS 85 53 98 66 55 56 73 86 86 73

MLLin 85 52 97 57 52 55 67 97 60 69

SMLLin 72 58 98 63 55 53 70 98 78 72.6

UMLLin 72 57 98 63 55 53 70 95 87 72.2

MLLog 90 48 97 67 52 52 75 97 83 73.4

SMLLog 90 50 98 63 58 55 77 98 87 75.1

UMLLog 95 50 97 63 58 55 78 97 87 75.6

tests showed that using different number of trials did not have a main effect on

classification results. This finding strengthens the outcome of this work which is

reducing the calibration time without altering the overall accuracy of the system.

Fig. 3.4 and Fig. 3.5 show the classification results calculated for each sub-

ject using the proposed and baseline algorithms for linear and logistic approaches

respectively. The results were obtained when when 20 trials were available for

training from the new subject. As can be seen, besides reducing the calibration

time, the proposed algorithms outperformed the baseline algorithms for 7 sub-

jects out of 9 in linear regression case and for 5 subjects out of 9 in the logistic

regression.

In summary, average classification accuracy results suggest that the novel pro-

posed unsupervised weighted logistic multi-task learning algorithm (UMLLog)

outperformed all the other algorithms. The proposed UMLLog not only reduced

the required calibration time but also enhanced the average classification accu-

racy. Although, there is no significant difference between UMLLog and SMLLog,

it is preferable to use UMLLog as it doesn’t require the availability of labelled

trials from the BCI user.
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Figure 3.4: Comparison between the classification accuracies calculated using the

proposed weighted linear multi-task learning algorithms (SMLLin, and UMLLin)

and the baseline algorithms (SS, and MLLin) for all subjects individually when 20

trials are available for training from the new subjects. As can be seen in addition

to the calibration time reduction, 7 subjects out of 9 gained an increase in the

accuracy when the proposed algorithms are used.

3.5 Conclusion

The aim of this chapter was to develop novel weighted multi-task learning al-

gorithms to reduce the calibration time for MI-based BCI systems and at the

same time to enhance the overall accuracy of the system. Previous approaches

on multi-task learning in BCI ignored the similarity/dissimilarities between the

data from the new subjects and the existing data from other subjects during the

learning process. In this chapter, novel weighted multi-task learning algorithms

have been presented to address this problem. The main finding of this chapter

suggested that applying the proposed weighted multi-task learning algorithms in

classification domain led to reduce the calibration time and enhanced the average

classification accuracy of the MI BCI-based systems. However, multi-task learn-

ing requires a very high computational cost to learn the classification parameters
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Figure 3.5: Comparison between the classification accuracy calculated using the

proposed weighted logistic multi-task algorithms (SMLLog, and UMLLog) and

the baseline algorithms (SS, and MLLog) for all subjects individually when 20

trials are available for training from the new subjects. In addition to the calibra-

tion time reduction 5 subjects gain an increase in the accuracy when the proposed

algorithms are used

of the available subjects jointly. This computational cost will be even higher when

the number of subjects (tasks) increases. This limitation is going to be addressed

in chapter3 by applying transfer learning approaches on the classification domain

using different techniques.
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Chapter 4

Weighted Transfer Learning for Improving Motor

Imagery-based Brain-computer Interface

4.1 Introduction

As mentioned in the previous chapter, most of the MI-based BCI applications are

still limited to the laboratory due to their long calibration time. This calibration

phase is time consuming and fatiguing, leaving a reduced amount of time for real

BCI interactions [13]. Thus, developing reliable methods and approaches that

reduce calibration time while keeping accuracy in an acceptable range is highly

desirable in MI-based BCI research [13,34,36].

Applying transfer learning techniques could be a possible solution to reduce

the calibration, where data from other sessions or subjects are mined and used to

compensate the lack of labelled data from the current target user [38]. Indeed, how

to do transfer learning is not a trivial task, due to the non-stationarity inherent

in EEG signals [37,38].

In MI-based BCIs, transfer learning can be applied on either raw EEG, feature

or classification domains. Domain adaptation techniques [131–133] and ensemble

learning of classifiers [36,134] have been adapted in many existing MI-based BCI

transfer learning algorithms on the classification domain. In the domain adapta-

tion, the source domain classifier is used for a target domain while its parameters

are adjusted with respect to the target data. Different from the domain adap-

tation, ensemble learning of classifiers combines different classifiers trained from

different source domains to acquire better classification accuracy on the target

domain.

Recently an application of multi-task learning has been proposed in BCI

[86, 122] where the classification parameters of multiple subjects were learnt

jointly such that the average total errors as well as dissimilarities between the

parameters of the different classifiers were minimized. Despite success to some
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Figure 4.1: Simplified block diagrams for subject specific, Multi-task, and Transfer

learning algorithms

extent, the proposed algorithm does not consider similarities/dissimilarities be-

tween the data from the new subject and the existing data from other subjects

during the learning process. This issue has been considered in chapter2 by assign-

ing different weights to previous subjects’ data based on their similarities to the

new subject’s data. Moreover, multi-task learning algorithm is computationally

expensive as a big number of parameters need to be optimized simultaneously. As

shown in the block diagram of multi-task algorithm in Fig. 4.1 where the shared

parameters of different subjects (tasks) need to be optimized jointly at the same

time. This requires a huge computational time especially when the number of

subjects (tasks) increases. Thus, in this chapter, transfer learning techniques on

classification domain are applied to reduce computational time which lead to

reduce the total time that BCI system requires.

This chapter proposes a novel transfer learning approach in the classification

domain to improve the MI-based BCI performance when only a few subject-

specific trials are available for training. In the proposed approach, the classifi-

cation parameters (shared parameters) of each available subject with relatively

large number of trials are calculated independently by minimizing the subject-
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specific classification error as shown in the block diagram of transfer learning

algorithm in Fig. 4.1. To cope with the problem of having small train data for a

new subject, we hypothesize that there is some common information across the

subjects performing the same mental tasks (i.e. MI). Following this assumption,

the classification parameters of the new target subject with few labelled trials

are calculated such that not only the classification error is minimized but also

the classification parameters of this target subject get as close as possible to the

classification parameters of other existing subjects. This is achieved by adding a

regularization term into the classification objective function making a trade-off

between minimizing the classification error of the new subject and dissimilarities

with the classification parameters of previous users.

It is important to consider that the above-mentioned transfer learning ap-

proach may not be very precise for MI-based BCIs that use CSP features, since

using the subject-specific CSP for feature extraction leads to different feature

spaces for different subjects. To address this issue, we assume, with a fixed co-

ordinate of electrodes, these feature spaces are still relevant as EEG signals are

originated from roughly the same areas of the brain for the same motor imagery

task leading to nearly similar CSP weights for corresponding channels. Conse-

quently, to transfer the classification parameters across different CSP feature

spaces, we link the features of different subjects with the features of the target

subject through a new similarity measure obtained using KL divergence. There-

fore, the proposed transfer learning approach is further improved by assigning

different weights to the previous subjects based on the similarities between their

features and the features of the new subject.

The proposed approach is applied on a logistic regression classifier with and

without considering similarity weights. The proposed classifiers are evaluated us-

ing three datasets with large, moderate, and small number of subjects. The per-

formance of the proposed classifiers are also compared with the results of two

state-of-the-art algorithms.

Our results suggest that the proposed weighted transfer learning approach

could significantly reduce the required calibration time and also enhance the

average classification accuracy, particularly when there are enough previously

recorded EEG sessions available for transfer learning. Moreover, the obtained re-

sults showed that the proposed weighted transfer learning algorithms significantly
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outperformed the baseline algorithms.

The remainder of this chapter is structured as follows. Section 4.2, will describe

our proposed transfer learning approach. The experimental setup is shown in

Section 4.3. Evaluation results are analyzed in Section 4.4. Section 4.5 contains

the results discussion. Finally, conclusions are drawn in Section 4.6.

4.2 Methodology

In this chapter, we assume that multiple EEG sessions previously recorded from

different subjects or from the same subject are available. Given s ∈ {1, .....,m}

as one of the previously recorded sessions, the set of labelled EEG trials from

session s can be presented as ds =(xi
s, y

i
s)

ns
i=1

, where xi
s and yis respectively denote

the feature vector and the class label of the ith trial, and ns refers to the total

number of the trials. Thus, the feature matrix for the session s is presented

as Xs = [x1
s,x

2
s, ...,x

ns
s ], where Xs ∈ Rv×ns and v is the number of features per

trial. Subsequently, the label vector is presented as Ys = [y1
s , y

2
s , ..., y

ns
s ], where

yis ∈ {0, 1}.

This chapter assumes that previously recorded sessions have sufficiently large

numbers of labelled trials, whereas the new target subject has only few labelled

trials available. Typically, a classifier function, f(.), is trained using the available

subject-specific training features to classify the labels of the unlabelled trials.

However, when only few labelled trials are available for training, the estimation

of the joint distribution P (Xs,Ys) may not be sufficiently accurate. Hence, the

classifier function trained using few trials is often not optimal. This chapter pro-

poses a number of transfer learning algorithms to improve the estimation of the

classifier function of the new target subject using previously recorded EEG data.

Indeed, how to do transfer learning is not a trivial task, due to the non-stationarity

inherent in EEG signals P (Xs,Ys) 6=P (Xt,Yt), where t refers to the new target

subject.
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4.2.1 Proposed logistic regression-based transfer learning

algorithm (LTL)

A logistic regression model provides probabilistic predictions by transforming a

linear model through a logistic sigmoid function as [135]:

P (yis=1|xi
s; ws) =

1

1 + exp−(wT
s xi

s)
, (4.1)

where s denotes the session s, and ws∈Rv×1 refers to the classification parameters

being used to classify the class labels of the trials Xs. The obtained probabilistic

prediction is then used to classify the class label.

The proposed LTL algorithm consists of two main steps. In the first step, for

every previously recorded session, ∀ds∈{d1, d2, ..., dm}, the classification param-

eters, ws, are calculated using the following objective function [136]:

L1(ws) = min
ws

(
ns∑
i=1

H(ws; y
i
s,x

i
s) + λs||ws||22

)
, (4.2)

where H and ||.||2 denote the cross-entropy and 2-norm functions respectively. In

fact, in L1(ws), the cross entropy aims at finding ws that minimizes the error rate

while the 2-norm penalizes large values of ws to reduce the risk of over-fitting.

The subject-specific regularization parameter λs is used to control the degree

of penalization. Cross entropy function H is also called negative log-likelihood

where its minimization is equivalent to maximizing the log likelihood [137], as

follows [138]:

H(ws; x
i
s, y

i
s) = −yis logP (yis=1|xi

s; ws)− (1− yis)

log(1− P (yis=1|xi
s; ws)),

(4.3)

where P (yis=1|xi
s; ws) is calculated using (4.1). The objective function L1(ws)

does not have a closed form solution. However, it has a unique minimum that

can be found using simple and effective iterative approaches such as the gradient

descent or Newton’s methods [135].

Despite being sufficiently effective for sessions with large training data sizes,

the objective function L1(ws) may fail in estimating the classification parameters

of the new subject since few available subject-specific trials typically are not able

to accurately represent the distributions of the features. Thus, to estimate the
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classification parameters of the new subject, L1(ws) is modified such that not only

the error rate is minimized, but also the estimated classification parameters get

as close as possible to the classification parameters of the other existing sessions.

In other words, in addition to the discriminative parameters, we are interested in

parameters that are similar to the classification parameters of the other sessions

with this assumption that there is some common information across the sessions

performing the same mental tasks (i.e. motor imagery).

Given the above-mentioned assumption, after calculating the classification

parameters of the previously recorded sessions using (4.2), in the second step, the

classification parameters of the new target subject, wt, is calculated using the

following objective function:

L2(wt)=min
wt

(
nt∑
i=1

H(wt; y
i
t,x

i
t) + λtRTL(wt)

)
, (4.4)

where RTL is the regularization term penalizing dissimilarities between wt and the

previously calculated ws, ∀ds∈{d1, d2, ..., dm}. The regularization parameter λt is

making a trade-off between minimizing the error and dissimilarities between the

new target subject and previous sessions in terms of the classification parameters.

The term RTL is calculated by taking into account the prior distribution of the

existing classification parameters and comparing them with wt as [122]:

RTL(wt) = 0.5[(wt − µ)TΣ−1
TL(wt − µ) + log(|ΣTL|)], (4.5)

where µ and ΣTL are respectively calculated as follows:

µ = (1/m)
m∑
s=1

ws, (4.6)

ΣTL =
diag(

∑m
s=1(ws − µ)(ws − µ)T )

trace(
∑m

s=1(ws − µ)(ws − µ)T )
. (4.7)

As can be seen in 4.7, ΣTL∈Rv×v only includes the normalized diagonal elements

of the covariance matrix, where diag and trace give the diagonal elements and the

sum of the diagonal elements of a matrix, respectively. Indeed, in this study, only

diagonal elements are used to reduce the optimization complexity. Subsequently,

in (4.5), ΣTL is used to normalize the divergence of each parameter of wt from

the average of the corresponding parameters of the other classifier.

66



4.2 Methodology

4.2.2 Proposed weighted logistic regression-based trans-

fer learning algorithm

The proposed LTL algorithm attempts to improve the estimation of the classi-

fication parameters of a new subject by incorporating the data from previously

recorded sessions. However, it treats different feature spaces from the previous

sessions similarly, whereas the distribution of EEG signals can be different from

session to session and from subject to subject, leading to different subject-specific

CSP feature spaces. Thus, depending on the distributions of EEG signals, the

EEG features of the new subject might be similar to the EEG features of some of

the previously recorded sessions while very different from those of some others.

Thus, taking into account these differences might further improve the estimation

of the classification parameters for a new subject. To address this issue, in the

proposed weighted logistic regression-based transfer learning algorithm different

weights are allocated to the previously recorded sessions to represent similari-

ties between these sessions and the new subject in terms of distributions of the

features.

Kullback-Leibler (KL) divergence is frequently used in the literature to cal-

culate similarities between two sets of EEG features [129]. Since in MI-based

BCIs the features are typically normalized log-power of CSP filtered EEG data,

they are commonly assumed normally distributed [107]. Thus, in this chapter, the

KL divergence between two normal distributions are used to measure divergence

between EEG features.

Given two normal distributions presented as N0(µ0,Σ0) and N1(µ1,Σ1), the

KL divergence has the following closed form [129],

KL[N0||N1] = 0.5[(µ1 − µ0)TΣ−1
1 (µ1 − µ0)

+trace(Σ−1
1 Σ0)− ln

(
det(Σ0)

det(Σ1)

)
−K],

(4.8)

where det, T and K denote the determinant function, transpose of the matrix,

and the dimension of the data, respectively. In this chapter, the total divergence

between the features of two EEG sessions, K̄L, can be calculated in two ways,

namely supervised and unsupervised. In the supervised case, the total divergence

is calculated by averaging the KL divergences calculated for each class separately.

On the other hand, in the unsupervised case, the total divergence equals to the

67



4. WEIGHTED TRANSFER LEARNING FOR IMPROVING
MOTOR IMAGERY-BASED BRAIN-COMPUTER INTERFACE

KL divergence between the two sessions without considering the class labels.

Subsequently, the similarity weight αs between the feature sets of the target

subject dt and the feature sets of each of the previous sessions/subjects ds, is

calculated as:

αs =
(1/ ¯(KL[dt, ds] + ε)4)
m∑
i=1

(1/ ¯(KL[dt, di] + ε)4)
, (4.9)

where K̄L is the total divergence calculated using the features distributions of the

few available training trials of the target subject dt (i.e. 10, 20 or all trials per

class depending on how many trials are defined as available) and the available

trials from the previous subject/session ds. In (4.9), ε = 0.0001 is used to ensure

the stability of the equation when K̄L[dt, ds] gets equal to zero due to having two

compared distributions completely similar. Although, this is a very rare event,

we must take into account the possibility of unseen events. The power of 4 is

applied to the inverse of KL between the distribution of two feature sets to give

larger weights to more similar distributions and smaller weights to less similar

distributions. This results in an increased sparsity in the similarity weights αs.

Finally, the similarity weight, proposed in (4.9), is normalized by dividing it by

the sum of all similarity measurements between the feature sets of the new target

subject and all other available subjects.

The proposed weighted logistic regression-based transfer learning algorithm

has the same steps as the proposed LTL. However, instead of equal weights,

different weights are assigned to the previously recorded sessions using (4.9).

Accordingly, the new weighted µ is obtained as [139]

µw =
m∑
s=1

αsws. (4.10)

Likewise, the weighted ΣTL is calculated as

ΣTLw =
diag(

∑m
s=1(αsws − µw)(αsws − µw)T )

trace(
∑m

s=1(αsws − µw)(αsws − µw)T )
. (4.11)

Finally, RTL in (4.5) is calculated by replacing µ and ΣTL with µw and ΣTLw

respectively. Considering the two above-mentioned ways to calculate the similarity

weights, the proposed weighted algorithms are referred to as either supervised

weighted logistic regression-based transfer learning (S-wLTL) or unsupervised
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weighted logistic regression-based transfer learning (Us-wLTL) in the remaining

parts of this chapter.

4.3 Experiments

4.3.1 Data description

In order to evaluate the proposed algorithms, three datasets with different number

of subjects were used.

1-Dataset 1 [140]: EEG was collected from 19 healthy subjects using 27 chan-

nels. For each subject, EEG data were collected without feedback in two sessions

conducted on separate days. In this chapter, we used only motor imagery data

recorded in the first session. This was done to establish a practical case that new

subject data is coming from the same session. Where, the BCI user uses the first

few trials, 2-3 minutes, to train the system before using it, which is supposed to

happen in daily life tasks. This MI part of the dataset consisted of two runs of

EEG recording where the subjects were instructed to perform MI of the chosen

hand versus background rest condition. Each run comprised of 40 trials of MI

and 40 trials of background rest condition. Thus, in total, there were 160 trials

per subject recorded without feedback.

2-Dataset 2 (Dataset 2a from BCI Competition IV) [130, 141]: This dataset

consists of EEG data recorded from 9 subjects using 22 electrodes. During the

recording sessions, the subjects were instructed to perform one of the four fol-

lowing motor imagery tasks: left hand, right hand, foot or tongue. Two sessions

on different days were recorded for each subject with a total of 288 trials per

session. In this chapter, only data from right and left-hand motor imagery were

used. Moreover, only data recorded from the second day were used due to the

practical assumption that the training and the testing data of a new subject are

recorded on the same day.

3-Dataset 3 (Dataset IVa from BCI Competition III) [142]: This dataset in-

cludes EEG signals from five subjects. EEG was recorded using 118 electrodes. It

contains data from two classes of right hand and foot imagery. In total, there are

280 trials per subject all recorded on the same day without receiving feedback.
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4.3.2 Data processing

A single elliptic bandpass filter from 8 to 30 Hz was used for filtering the EEG

data as recommended in [104,124,125], since this single frequency band includes

the range of frequencies that are mainly involved in performing motor imagery.

Then, CSP were computed for each previous subject independently. Similarly, for

the new subject, the CSP filters were calculated only using the available subject-

specific training trials. After that, the spatially filtered signals were obtained using

the first and the last three spatial filters of CSP as recommended in [102]. Finally,

the normalized log band power of the spatially filtered signals were obtained as

the features.

For each subject of the three datasets the first 80 trials were considered as the

training set and the remaining trials were used as the testing set. To assess the

performance of the proposed transfer learning algorithms, three different num-

bers of training trials were examined for the new subjects; i.e. the first 10 and

20 training trials per class as well as all the training trials were used in order

to form the subject-specific training set. Besides, all the available training trials

of the other subjects from the same dataset were used for transfer learning. The

regularization parameters, λs and λt, were selected from 21 values which satisfy

ei, where i ∈ {−1,−0.9, ..., 0.9, 1}. 5-fold cross-validation was performed for each

subject using the available training trials to select the best regularization param-

eters. In this chapter, 2 s window of EEG data starting 0.5 s after the cue is used

to calculate the features for each trial.

The results of the proposed transfer learning algorithms were compared with

two baseline algorithms. The first algorithm is the commonly used subject-specific

(SS) BCI model where the support vector machine (SVM) classifier is trained

independent from other subjects using features extracted from CSP algorithm

similar to what suggested in [38, 143]. This algorithm is abbreviated as (SS) in

the rest of the chapter. logistic regression classifier was not included as a classifier

for the subject-specific baseline algorithm in this chapter as it performed signifi-

cantly worse than SVM classifier, specially when few subject-specific trials were

available for training. The second baseline algorithm is the multi-task learning-

based logistic regression classifier (Mt-L) proposed in [123]. This algorithm has

been applied on the classifier domain similar to the proposed transfer learning

algorithms.
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4.4 Results

Table 4.1 presents the classification results of the proposed transfer learning al-

gorithms (LTL, S-wLTL, and Us-wLTL) as well as the baseline algorithms (SS,

Mt-L) when the new subjects had only 10 trials per class for training. Based on

the results obtained from all the three datasets, the proposed LTL outperformed

the results of SS and Mt-L by an average of 1% and 0.8% respectively. Impor-

tantly, the proposed S-wLTL algorithm achieved the highest average results with

3.9% and 3.7% higher than SS and Mt-L respectively. On average S-wLTL per-

formed slightly better than Us-wLTL (0.2%). Looking deeper in Table I reveals

that in the dataset 1, where data from 18 subjects were used for transfer learn-

ing, the proposed S-wLTL outperformed the baseline algorithms SS, and Mt-L

by 5.4% and 5.8 % respectively. Whereas, the proposed Us-wLTL outperformed

SS and Mt-L by 4.7% and 5.1% respectively. Moreover, S-wLTL and Us-wLTL

improved the classification accuracy for 16 out of 19 subjects from this dataset.

Interestingly, for sub2, sub7 and sub15 the proposed S-wLTL yielded 15%, 13%,

and 24% improvements compared to the corresponding SS results. For the dataset

2, where data from 8 other subjects were used for transfer learning, the proposed

weighted transfer learning algorithms, S-wLTL and Us-wLTL, outperformed SS in

7 subjects out of 9 by an average of 5.2% and 4.6%. Compared to Mt-L, S-wLTL

and Us-wLTL outperformed in 7 subjects out of 9 by an average of 5.4% and

4.8% respectively. Interestingly, for sub1 and sub8, the proposed S-wLTL yielded

20% and 11% improvements compared to the corresponding SS results. Finally, in

the dataset 3, where data from only 4 subjects were available for transfer learn-

ing, still the proposed weighted algorithms (S-wLTL and Us-wLTL) improved

the results of SS in 4 out of the 5 subjects. Based on the average values, S-wLTL

outperformed SS by 1.1% and yielded similar results as Mt-L, whereas Us-wLTL

outperformed SS and Mt-L by an average of 1.9% and 0.8% respectively.

Fig. 4.2 presents the classification results of the different algorithms when 10,

20 and all subject-specific training trials per class were available from the new

target subject. As shown in Fig. 4.2(a) all the proposed transfer learning algo-

rithms outperformed SS and Mt-L algorithms when 10 and 20 trials per class were

available for training whereas, only S-wLTL outperformed the baseline algorithms

when all trials were available for training. Specifically, the improvement
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(a) 19 subjects dataset (b) 9 subjects dataset

(c) 5 subjects dataset

Figure 4.2: Comparison between the average classification accuracy calculated

using the proposed logistic transfer learning algorithms (LTL, S-wLTL, and Us-

wLTL) and the baseline algorithms (SS and Mt-L) when 10, 20, and all trials

per class were available for training from the new subjects. From left to right,

the sub-figures present the classification results of a) dataset 1, b) dataset 2,

and c) dataset 3 respectively. This figure shows that the proposed S-wLTL and

Us-wLTL algorithms outperformed the baseline algorithms, particularly when a

small number of subject-specific train trials from the target subject, and/or a

medium to large number of previously recorded sessions from different subjects

were available.

73



4. WEIGHTED TRANSFER LEARNING FOR IMPROVING
MOTOR IMAGERY-BASED BRAIN-COMPUTER INTERFACE

was more pronounced when only 10 subject-specific trials per class were available

for training. However, in Fig. 4.2(b) all the proposed transfer learning algorithms

outperformed SS and Mt-L algorithms across all the above-mentioned different

number of subject-specific training trials. Again, the improvement was more pro-

nounced when only 10 subject-specific trials were available. Interestingly, on av-

erage the proposed weighted transfer learning algorithms when only 10 trials per

class were available for training outperformed the subject-specific algorithm when

all trials were available for training. These outcomes support our aim to reduce

the calibration time and at the same time increase the classification accuracy.

Learning from few examples typically leads to an ill-posed optimization prob-

lem. That was why we applied transfer learning to overcome this problem when

only few trials were available for training. Since dataset 3 contains only data from

5 subjects, transfer learning had been done using only the available data from 4

subjects. As shown in Fig. 4.2(c), despite having such a small pool of data for

transfer learning, the proposed transfer learning algorithms still had superior re-

sults compared to the baseline algorithms when a few subject-specific trials were

available for training. When only 10 training trials per class were available from

the new subject, Us-wLTL outperformed baseline algorithms while S-wLTL out-

performed only the SS algorithm. Moreover, when 20 trials per class were available

for training from the new subject, both of the proposed S-wLTL and Us-wLTL

outperformed the baseline algorithms. Increasing the number of subject-specific

training trials from the new subject led to a decrease in the improvement, such

that the SS algorithm outperformed the proposed transfer learning algorithms

when all subject-specific trials (i.e. 80 trials) were available. Thus, with larger

amounts of target training data, transfer learning became ineffective.

Concerning statistical significance, the Shapiro-Wilk test was used to make

sure that our classification accuracy results were normally distributed. Based on

the Shapiro-Wilk test results, we rejected the alternative hypothesis and con-

cluded that our classification results came from a normal distribution and hence

ANOVA test could be used to compare the classification accuracy between dif-

ferent algorithms at a different number of trials. A 3 (Number of trials)×5 (Al-

gorithms) repeated measure ANOVA test was performed on the results of each

dataset separately followed by post-hoc analyses. For dataset 1 Statistical results

revealed that using different algorithms had a main effect on the classification

74



4.4 Results

Table 4.2: Overview of the results when 10 trials per class were available for

training from the new subject. Grouping was performed based on SS algorithm

classification error rate.

Error Rate [%] 0-10 10-30 >30

SS (Mean) 93.3 80 57.9

Mt-L (Mean) 87 81.7 56.4

S-wLTL(Mean) 94 85.8 62.2

Us-wLTL(Mean) 93.5 86 61.4

p− value(SS versus S-wLTL) 0.5 0.01 0.023

p− value(SS versus Us-wLTL) 0.5 0.003 0.038

p− value(Mt-L versus S-wLTL) 0.258 0.069 0.003

p− value(Mt-L versus Us-wLTL) 0.314 0.056 0.004

accuracy with (p=0.001). Based on the post-hoc analysis, S-wLTL (Us-wLTL)

significantly outperformed SS and Mt-L with the P values equal to 0.001 and

0.0001 (0.011 and 0.003) respectively. Similarly, for dataset 2, the use of different

algorithms also had a main effect on the classification accuracy with (P = 0.035).

Based on the post-hoc analysis, S-wLTL (Us-wLTL) significantly outperformed

SS and Mt-L with the P values equal to 0.031 and 0.025 (0.035 and 0.04) re-

spectively. Finally, for dataset 3, as expected, there was no significant difference

between any of the proposed and the baseline algorithms.

Another comparison was done where results from the three datasets were com-

bined together. A 3 (Number of trials)×5 (Algorithms) repeated measure ANOVA

test was conducted. Results showed that using different algorithms significantly

affected the classification accuracy with P=0.0001. Post-hoc multiple compar-

isons revealed that S-wLTL was significantly better than SS and Mt-L with P

values of 0.002 and 0.001 respectively. Besides, Us-wLTL was significantly better

than SS, and Mt-L with P -values of 0.032 and 0.01 respectively. Moreover, there

was no significant difference between Mt-L and SS.

To gain a better insight into the performance of the proposed weighted trans-

fer learning algorithms, the subjects from all datasets were categorized to three
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groups based on their error rates obtained using the SS algorithm. Table 4.2

presents the results when 10 subject-specific trials per class were available for

training. The first four rows of this table compare the average classification accu-

racies of the different groups obtained by the baseline algorithms (SS, and Mt-L)

and the proposed weighted transfer learning algorithms (S-wLTL, and Us-wLTL)

respectively. As shown in these four rows, both S-wLTL and Us-wLTL outper-

formed the baseline algorithms in all the three groups. Subsequently, the last four

rows show the statistical paired t-test results between the baseline and the pro-

posed weighted transfer learning algorithms for the different groups. As shown in

the fifth and sixth rows, the proposed weighted transfer learning algorithms were

more effective when the error rate obtained by the SS algorithm was medium and

high. On the other side, the subjects who performed well with the SS algorithm

benefited less from applying the proposed transfer learning approach. This makes

sense since these subjects already have well-separated features obtained using

the standard CSP filters and the subject-specific classifier. Thus, there is not

that much room for improvement of the performance for these subjects. In con-

trast, changing the classifier parameters through the proposed transfer learning

approach improved the accuracy of the subjects with poor and medium BCI per-

formance. Finally, the last two rows of Table II show that there was a significant

difference between Mt-L and the proposed algorithms for poor subject-specific

BCI performance and tends to be significant with medium performance subjects.

Again, there was no significant difference between Mt-L and any of the proposed

weighted algorithms at the low error rate.

4.5 Discussion

The KL divergence measurement requires estimation of the covariance matrices.

The estimation of the covariance matrices could be very inaccurate when only

few EEG trials are available [144] as those few trials may not well represent the

entire distribution of the data. Despite this limitation, our results showed that

even using a few trials from the target subjects the proposed KL-based weights

were successful in enhancing the classification accuracy. To further improve the

classification results, in the future work, we aim to improve the estimation of

the KL divergence in the proposed similarity weight formula by applying robust
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methods of estimating the covariance matrices (such as [145] where the negative

impact of having few trials are mitigated).

Another issue to discuss is the use of the power of 4 for KL in (9). In fact, in

(9), power 4 was applied on KL rather than power 1 to increase sparsity between

similarity weights and to give larger weights to subjects with similar feature

distributions and smaller weights to subjects with dissimilar features. In a number

of investigations using different values for power on the subjects from dataset 2,

we noticed when using the power of 1, fairly similar weights were obtained for

many different subjects. Subsequently, compared to LTL, the proposed Sw-LTL

algorithm with KL power of 1 did not yield better results. On the other hand, the

S-wLTL classification results were greatly enhanced when KL power was increased

to 4 in (9) and then decreased when increasing the power value more than 4. For

example, in dataset 2, when only 10 subject-specific trials per class were available,

the Sw-LTL algorithm with the KL power of 4 significantly outperformed the Sw-

LTL algorithm with the KL power of 1 by an average of 2.6% (p=0.0478). Future

work could be extended to estimate the optimum KL power for each subject

individually.

Regarding the calibration and computational complexity, the time required

for collecting the calibration trials was reduced from around 15 minutes when

using the trials of a full session to 2.83 minutes when using only 10 trials per

class for training. In order to compare the proposed algorithms and SS from the

computational time point of view, we need to note that the proposed algorithms

can be divided into two parts. The first part, where the classification parame-

ters of the previous subjects and share priors are calculated using equations (2)

to (7), can be done offline without using any data from the target subject. The

second part, where the classification parameters of the target subject are calcu-

lated using the few available trials of the target subject and the previous subjects

shared priors (i.e. µw,ΣTLw) needs to be done online. This part is the part that

should be compared to the SS algorithm in terms of computational time. This

computation time was considerably incomparable with the time needed for col-

lecting calibration trials. Using MATLAB 2016b and an Intel Core i5-6500 CPU

@ 3.20 GHz, the proposed algorithm required 0.14 sec more time for training the

classification model compared to the SS algorithm. Thus, in summary, compared
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Table 4.3: Comparison of classification accuracy between SS with subject specific

trials and SS using subject-specific trials and previously available trials from other

subjects without any meaningful transfer learning of subjects from dataset 2

Algorithm sub1 sub2 sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 average

SS(10 trials) 70 51 93 57 66 56 73 87 81 70.44

SS (10 trials)+previous

trials from other subjects 53 51 95 63 52 52 68 92 53 64.33

SS(20 trials) 85 53 98 66 55 56 73 86 86 73.11

SS (20 trials)+previous

trials from other subjects 67 45 73 60 53 53 57 95 83 65.11

to the SS algorithm, the proposed approach remarkably reduced the calibration

time, while it just required an added 0.14 S to train the classification model.

Another point to discuss if we directly combined the subject-specific trials and

previously available trials from other subjects without any meaningful transfer

learning to train the classifier. Table 4.3 shows the results of SS with subject

specific trials and SS using subject-specific trials and previously available trials

from other subjects at different number of trials. As can be seen, SS algorithm has

better results when there are 10 or 20 subject-specific trials per class available for

training compared to the classifiers trained using 10 or 20 subject-specific trials

per class combined with previously available trials. Since these results are far

worse than the SS results, we did not include them in the chapter even though they

use the same number of train trials as the proposed transfer learning use. Subject-

specific SS classifier results are better than results using subject-specific trials

with previous trials from other subjects to train the classifier without transfer

learning algorithms.

Finally, we have applied 5 fold cross-validation on the dataset with a small

number of subjects (i.e. dataset 3). Fig. 4.3b shows that using cross-validation,

the proposed weighted transfer learning algorithms outperformed the baseline

algorithms at all three different number of trials which was not the case with-

out applying cross-validation. Moreover, Fig. 4.3b also shows that increasing the

number of training trials leads to an increase in the classification accuracies of

SS, and the proposed S-wLTL and Us-wLTL algorithms. These findings were not

observed in Fig. 4.3a when the cross-validation was not applied. This might be
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(a) Without cross-validation

(b) With cross-validation

Figure 4.3: Comparison between the average classification accuracy of subjects

from dataset 3 calculated with 5 fold cross-validation and without cross validation
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due to the artifact of training or testing trials among other reasons such as user

fatigue.

Despite getting better results, we decided not to use cross-validation in calcu-

lating our classification results in the manuscript. The main reason behind this

decision was to make sure that our results are reflecting a real scenario. In a real

scenario, we do not have access to future trials to do cross-validation (worth to

say if we had, there was no need to do transfer learning). Our chapter targets

the scenarios where we have only a few training trials available from the target

subject where some of these trials might be possibly artifact corrupted. Testing

trials are coming in future after the training trials, and the training trials are the

first trials that the the user performs whatever their quality.

In summary, our results suggested that the proposed S-wLTL and Us-wLTL

could improve the classification accuracy particularly when a small subject-specific

training data was available. Importantly, when there were sufficient previously

recorded subjects/sessions available, the proposed S-wLTL and Us-wLTL algo-

rithms not only reduced the required calibration time but also enhanced the

classification accuracy for many subjects. The classification results obtained by

S-wLTL and Us-wLTL were on average very similar. Although, the main advan-

tage of Us-wLTL against S-wLTL was that Us-wLTL did not need any labelled

data for calculating the weights, it is not easy to define a dominant algorithm that

can be used in all situations. However, we can suggest that when only 10 trials

per class are available from the new BCI user and enough data from previous sub-

jects/sessions are available for transfer learning, e.g. as in dataset 1 and dataset

2, the proposed S-wLTL algorithm is preferred to be used. Contradictory, when

only 10 trials per class are available from the new BCI user and few data from

previous subjects/sessions are available for transfer learning, e.g. as in dataset 3,

the proposed Us-wLTL algorithm is preferred to be used.

4.6 Conclusion

This chapter proposed a novel weighted transfer learning approach on classifi-

cation domain to improve MI-based BCI systems. Our results suggested that

applying the proposed weighted transfer learning algorithms could lead to reduc-

ing the calibration time to 10 trials per class with significantly less sacrifice in
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the average accuracy of the MI-BCI systems. The results obtained showed that

the proposed weighted algorithms significantly outperformed the subject-specific

BCI algorithms and the multi-task learning algorithm.

The proposed transfer learning approach is not limited to the logistic regres-

sion classifier. It can be applied on any classifier with a mathematically defined

objective function. Moreover, in this chapter similarity weights were calculated

using KL-divergence as a similarity measurement. It is good to note that in the

future other similarity measures could be used and their performance could be

compared to what we proposed.

Interestingly, the proposed weighted transfer learning algorithms yielded a

remarkable increase in the classification accuracy for most of the subjects that

initially performed BCI with poor or medium accuracy. However, the observed

improvement for a few subjects with initially low BCI performance was not pro-

nounced. It was shown that changing the parameters of classifiers for these sub-

jects was not effective since their feature spaces for different classes were not

separable. These findings suggest that to increase the accuracy of these subjects

with poor subject-specific BCI, transfer learning approaches should be applied in

a different domain before the classification domain. Thus, in the next chapter we

will investigate the transfer learning in raw EEG and feature domains to address

these challenges.

81



4. WEIGHTED TRANSFER LEARNING FOR IMPROVING
MOTOR IMAGERY-BASED BRAIN-COMPUTER INTERFACE

82



Chapter 5

Dynamic Time Warping-based Transfer Learning for

Improving Common Spatial Patterns in Brain-computer

Interface

5.1 Introduction

Common spatial patterns (CSP) is a popular algorithm for motor imagery EEG

feature extraction in the context of brain-computer interfaces (BCIs). Despite

popularity and effectiveness of CSP, most of the CSP-based BCI applications are

still limited to the laboratory [33, 35]. This is due to the fact that CSP requires

estimation of the covariance matrices which could be very inaccurate when only

a few EEG trials are available for training leading to CSP overfitting [107,144].

For CSP to be usable in practice, it must be optimally robust across sessions

and subjects, and with less possible calibration times. These challenges could be

considered at different levels, e.g., at the neuroscience level, or at the human level,

or at the signal processing level. Regarding EEG signal processing, developing

reliable CSP-based algorithms that reduce calibration time without sacrificing

the classification accuracy is highly desirable in MI-based BCI research [13, 70].

One potential approach to reduce the calibration time is transfer learning [38].

To the best of our knowledge, none of previous studies considered the temporal

variations between EEG trials of a new subject and those of previous subjects

to reduce between-subjects non-stationarity during transfer learning. Moreover,

most of the proposed algorithms in the feature domain require calculating multiple

regularization parameters which is computationally expensive.

To deal with the previously mentioned, in the previous chapter, problem of

the subjects with initially low BCI performance who didn’t gain much benefit

from improving the classification parameters as their feature spaces for differ-

ent classes were not separable. This chapter proposes a novel transfer learning
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framework in raw EEG and feature domains, called DTW-based regularized CSP

(DTW-RCSP). At first, in the raw EEG domain, we transform previous subjects’

trials to be more similar to the target subject’s few training trials using a novel

alignment method in time domain based on DTW, and hence use these aligned

trials to form the transferred covariance matrix. Then, in the feature domain, we

propose a novel regularization between the subject-specific and the transferred co-

variance matrices to improve the CSP covariance matrix estimation. The output

of our proposed DTW-RCSP framework is a new regularized CSP matrix which

is a combination of the subject-specific covariance matrix and the transferred

covariance matrix from other subjects. Finally, to tackle the problem of regu-

larization parameter determination when very few training trials are available,

we propose an online method based on the upcoming first few labelled testing

trials, where some predefined regularization parameters are evaluated based on

the confidence scores of the trained classifier.

The proposed DTW-RCSP framework is evaluated across different number

of subject-specific training trials using three datasets with small, moderate, and

large number of subjects. The performance of the proposed DTW-RCSP is com-

pared against two state of the art algorithms, standard CSP and Composite

CSP (CCSP) [105]. Results show that DTW-RCSP significantly outperformed

the baseline algorithms in various testing scenarios, particularly, when only a few

trials are available for training. Impressively, our results show that successful BCI

interactions could be achieved with a calibration session as small as only one trial

per class.

5.2 Methodology

This section explains the proposed framework and the baseline algorithms.

5.2.1 Dynamic time warping-based transfer learning reg-

ularized CSP framework (DTW-RCSP)

This subsection presents our proposed transfer learning framework (DTW-RCSP)

to improve the CSP features of EEG signals, when few trials from the target

subject and a group of previously recorded trials from other subjects are available.
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In our proposed DTW-RCSP framework, the previously recorded EEG trials from

other subjects and sessions are pooled together as one single session s, and referred

to as the source domain. Subsequently, the source domain is presented as ds =

(Xi
s, y

i
s)

N
i=1

, where Xi
s and yis ∈ {−1, 1} respectively denote the EEG instance

matrix and the class label of the ith trial, and N refers to the number of the

trials. In each trial Xi
s ⊂ Rh×V , h is the number of EEG samples and V is the

number of channels. Similarly, the set of labelled trials of the target subject t is

denoted as dt =(Xi
t, y

i
t)

M
i=1

, where M is the number of the available subject-specific

trials.

Dynamic Time Warping-based Transfer Learning Regularized CSP Frame-

work (DTW-RCSP)

To improve CSP covariance matrix estimation when few trials are available for

training, regularization based transfer learning techniques could be used. Reg-

ularized CSP works by specifying a trade-off between the estimates obtained

using few target subject-specific trials and informative estimates obtained us-

ing previously recorded trials from other subjects/sessions [33]. In our proposed

DTW-RCSP framework, the average CSP covariance matrix ΣTLRc for each class

c is calculated as follows:

ΣTLRc = (1− r)ΣSSc + rΣDTWc , (5.1)

where r is the regularization parameter (06r61). ΣDTWc is the proposed DTW-

based transferred average covariance matrix of the aligned trials of class c from

other subjects which will be explained in 5.2.1. ΣSSc is the average covariance

matrix of the few subject-specific trials of class c from the target subject. ΣSSc is

calculated as

ΣSSc =
1

mc

mc∑
i=1

Xi
t
>Xi

t

tr(Xi
t
>Xi

t)
, (5.2)

where mc is the number of trials per class c, > is the matrix transpose function,

and tr is the trace function.

The regularization parameter r shrinks the subject-specific covariance matrix

towards the DTW-based transferred covariance matrix to neutralize the possi-

ble estimation bias due to the availability of few training trials from the target

subject. In fact, ΣDTWc represents the information on how the covariance matrix
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for the considered intellectual condition should typically be. Finally, the DTW-

RCSP filters WDTW-RCSP, replacing W mentioned in (5.2.1), are calculated by

maximizing the following objective function using joint diagonalization [125]:

WDTW-RCSP = arg max
W

W ΣTLR1W
>

W(ΣTLR1 + ΣTLR2)W
> . (5.3)

From (5.1), the classical CSP can be considered as a special case of DTW-RCSP

framework, when r=0.

Estimation of the Dynamic Time Warping Transferred Covariance Ma-

trix

DTW has been initially proposed to solve the time deformation problem between

two time series in speech recognition problems in a non-linear fashion. DTW

finds an optimal alignment between two given sequences under certain restrictions

to compensate the timing differences between them [146]. Subsequently, DTW

has been applied to other problems such as object recognition, motion analysis,

classification and clustering of time domain signals including EEG, and ECG

[147,148]. For EEG, DTW is typically used as a measure of dissimilarity between

two EEG segments after being optimally aligned. In our published paper, DTW

has been used to reduce subject-specific temporal variations between two EEG

segments [149].

In this thesis, DTW is used for the purpose of transfer learning. Unlike the

previous EEG-based studies, the goal is to align a collection of EEG trials from

other subjects or sessions to the average of the few available trials from the new

target subject. Thus, to calculate ΣDTWc , the DTW-based transferred average

covariance matrix, the following steps are taken.

First the average of the available few trials of the target subject from class c

is computed as follows:

X̄tc = (1/mc)
mc∑
i=1

Xi
t, (5.4)

where X̄tc and mc respectively refer to the average and the total number of the

target trials of class c.

Next, each trial from the source session gets aligned to the average of the

few target trials from the same class, X̄tc , using DTW. To align Xi
s ⊂Rh×V to
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X̄tc⊂Rh×V , we construct a distance matrix Dh×h, where D(a, b) is the Euclidean

distance between the EEG signals of two time instances of a and b from Xi
s and

X̄tc respectively,

D(a, b) =

√√√√ V∑
v=1

(Xi
s(a, v)− X̄tc(b, v))2. (5.5)

Thereafter, the elements of Xi
s and X̄tc are mapped through the matrix D by

finding an optimum warping path, whereby the cumulative distance between the

two above-mentioned EEG trials is minimized. Generally, a warping path, P,

defines a mapping between Xi
s and X̄tc , and its elements are presented as

P = [p(1), .., p(k), ..., p(K)] h ≤ K < 2h− 1 (5.6)

where p(k)=D(ak, bk). ak and bk belong to {1, 2, ..., h}, and remap the time in-

dices of Xi
s and X̄tc respectively. A warping path requires to be subject to the

following constraints:

1- Boundary conditions: p(1) = D(1, 1) and p(K) = D(h, h). In other words,

a1 =b1 = 1 and aK =bK =h.

2- Continuity and monotonicity: 0≤ ak−ak−1≤1 and 0≤ bk−bk−1≤1.

There are exponentially many warping paths that satisfy the above-mentioned

conditions. However, we are interested in the optimum warping path, P∗, which

has the shortest non-linear alignment between Xi
s and X̄tc , as

P∗ = arg min
P

(
1

K

√√√√ K∑
k=1

p(k)). (5.7)

where p has defined in 5.6. To reduce the computational time, P∗ can be found

using dynamic programming to evaluate the following recurrence [148], where the

cumulative distance γ(a, b) is defined as the distance between two time instances

a and b from Xi
s and X̄tc , D(a, b), and the minimum of the cumulative distances

of the adjacent elements:

γ(a,b)=D(a,b)+min[γ(a−1,b−1),γ(a−1,b),γ(a,b−1)] (5.8)

87



5. DYNAMIC TIME WARPING-BASED TRANSFER LEARNING
FOR IMPROVING COMMON SPATIAL PATTERNS IN
BRAIN-COMPUTER INTERFACE

Given P∗, Xi
s is aligned to X̄tc as:

Xi
saligned

=


Xi

s(a
∗
1, 1) Xi

s(a
∗
1, 2) · · · Xi

s(a
∗
1, V )

Xi
s(a
∗
2, 1) Xi

s(a
∗
2, 2) · · · Xi

s(a
∗
2, V )

...
. . .

...
Xi

s(a
∗
K , 1) Xi

s(a
∗
K , 2) · · · Xi

s(a
∗
K , V )

 (5.9)

where [a∗1, a
∗
2, ..., a

∗
K ] are the time indices of Xi

s forming the minimum warping

path P∗. These time instances are the instances that will make Xi
s to be as

much similar to X̄tc as possible given the above constraints. Subsequently the

covariance matrix of Xi
saligned

is calculated as follows:

Σi
saligned

=
(Xi

saligned
)>Xi

saligned

tr((Xi
saligned

)>Xi
saligned

)
. (5.10)

Finally, the proposed DTW-based transferred average covariance matrix of

the aligned trials from previous subjects/sessions for each class c is computed as

ΣDTWc = (1/nc)
nc∑
i=1

Σi
saligned

, (5.11)

where nc is the overall available trials of class c from other subjects/sessions.

Regularization Parameter Selection

Typically, regularization parameter is selected from a set of predefined values

by applying cross-validation on the training data [150]. However, cross-validation

becomes ineffective and in some cases impossible when we have very few training

trials available from the target subject. Here, we address the above-mentioned

challenge by selecting the best regularization value using the classifier scores (i.e

confidence scores) rather than the accuracy.

We propose using the classification scores to select the best regularization

value in two different ways, namely referred to as offline and online. The offline

method is applicable if we have sufficient training trials available from the new

target subject. The offline method applies cross-validation on the training trials

and selects the regularization value that yields the highest summation of classifi-

cation scores multiplied by the true class labels of the corresponding evaluation

target trials over the 10-fold validations. Please see our algorithm in Fig. 5.1 for

more details.
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In the online method, the few upcoming testing trials with known labels will

be used for selecting regularization value. Thus, among a set of predefined values,

the selected regularization value is the one which yields the highest summation

of the classification scores multiplied by the true classification labels of the up-

coming few testing trials. Fig. 5.2 provides more details on the proposed online

regularization parameter selection method. The proposed online method can be

used for any available number of training trials, while the proposed offline method

is not applicable if less than K training trials are available from the new target

subject where K is the number of cross-validation folds.

5.3 Experiments

5.3.1 Data description

In order to evaluate the proposed transfer learning framework, three datasets

with 5, 9 and 17 subjects were used.

1) Dataset IVa from BCI Competition III (small dataset) [142]: This dataset in-

cludes EEG signals from five subjects who performed right hand and foot motor

imagery. EEG was recorded using 118 electrodes. In this thesis, we use only data

from the 22 electrodes similar to those used in the next dataset to reduce the

complexity and computational time of calculating DTW. In total, there are 280

trials per subject all recorded on the same day.

2) Dataset 2a from BCI Competition IV (medium dataset) [130]: This dataset

consists of EEG data recorded from 9 subjects using 22 electrodes. During the

recording sessions, the subjects were instructed to perform one of the four follow-

ing motor imagery tasks: left hand, right hand, foot or tongue. Two sessions on

different days were recorded for each subject with a total of 288 trials per session.

In this thesis, only data from right and left-hand motor imagery were used (i.e.

144 trials). Moreover, only data recorded from the second day were used due to

the practical assumption that the training and the testing data of a new subject

are recorded at the same day.

3) Dataset from [140] (large dataset): EEG was collected from 19 healthy subjects

using 27 channels. For each subject, EEG data were collected without feedback
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Algorithm 2: Offline method

Input: ΣDTWc , ΣSSc for each class c, A predefined values of r, K

cross-validation folds, and neva evaluation trials from the target

subject

Output: Regularization parameter r∗

1 for r = r1 to rA do

2 for k = 1 : K do

3 for c do

4 calculate ΣTLRc using (1)

5 calculate the corresponding DTW-RCSP features using (3)

6 train the classifier

7 for tr = 1 : neva do

8 calculate the classifier score CS for each tr

9 scoretr= CStr ∗ labeltr
10 scorek=

∑neva

tr=1 scoretr

11 scorer=
∑K

k=1 scorek

12 Score∗= arg max scorer

13 Return: r∗ assigned to the highest Score∗

Figure 5.1: The proposed offline method to select the regularization parameter

based on the confidence scores of the classifier on the training trials from the

target subject
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Algorithm 3: Online method

Input: ΣDTWc , ΣSSc for each class c, A predefined values of r, and T

upcoming labelled test trials from the target subject

Output: Regularization parameter r∗

1 for r = r1 to rA do

2 for c do

3 calculateΣTLRcusing (1)

4 calculate the corresponding DTW-RCSP features using (3)

5 train the classifier

6 for tr = 1 : T do

7 calculate the classifier score CS for each tr

8 scoretr= CStr ∗ labeltr
9 scorer=

∑T
t=1 scoretr

10 Score∗= arg max scorer

11 Return: r∗ assigned to the highest Score∗

Figure 5.2: The proposed online method to select the regularization parameter

based on the classifier confidence scores of the upcoming few labelled testing trials
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in two sessions conducted on separate days. Each session consisted of two runs

of EEG recording where the subjects were instructed to perform a chosen hand

MI versus background rest condition. Each run comprised of 40 trials of MI and

40 trials of background rest condition. Thus, in total, there were 160 trials per

subject recorded without feedback. In this chapter, we used data from subjects

who performed right hand motor imagery (17 subjects). We did that to ensure the

data used for transfer learning were neurologically relevant. Moreover, we used

only data recorded in the first session.

5.3.2 Data processing

A bandpass filter from 8 to 30 Hz was used for EEG data filtering, since the range

of frequencies that are mainly involved in performing motor imagery are included

in this single frequency band. After that, the spatially filtered signals were ob-

tained using the first and the last three spatial filters of CSP/CCSP/DTW-RCSP

as recommended in [102]. Thereafter, the normalized log band power of the spa-

tially filtered signals were obtained as the features. Finally, Linear support vector

machine (SVM) was used as the classifier.

For each subject, the investigated trials were divided into 3 sets, namely train-

ing, validation , and testing. The testing set consisted of the last 190 trials for

the small dataset, the last 50 trials for the medium dataset, and the last 70 tri-

als for the large dataset. For all datasets, the validation trials are the 10 trials

immediately before testing trials, and the training set consisted of the remaining

trials. Validation trials will be used in the proposed online method for selecting

the regularization parameter. To assess the proposed DTW-RCSP framework’s

performance, different scenarios have been considered when different numbers of

training trials from new target subjects were available. Besides, all the available

training trials of the other subjects from the same dataset were used for DTW-

based transfer learning covariance matrix estimation. The optimum regularization

parameter was selected from the predefined set of r ∈ {0, 0.1, · · · , 1}.
The three proposed transfer learning-based regularized CSP algorithms (namely

DTW-RCSP-CV, DTW-RCSP-Off, and DTW-RCSP-On) were evaluated. These

algorithms differ in terms of how the regularization parameter is selected. For

DTW-RCSP-CV, the optimum regularization parameter is selected using 10 fold

cross-validation on training data of the target subject based on the classification
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accuracy. For DTW-RCSP-Off and DTW-RCSP-On, the regularization param-

eter is selected using the proposed offline and online methods respectively. The

results of the proposed algorithms were compared with the results of two baseline

algorithms, i.e. the commonly used subject-specific CSP algorithm, and CCSP

(the first method proposed in [105]). The regularization parameter in CCSP is

selected using cross-validation for the available training trials from the target

user. In fact, if DTW alignment is omitted from the proposed DTW-RCSP-CV,

it gets identical with CCSP.

5.4 Results

The first part of this section presents the results when 5 or more trials per class

were available from the target subject. Thus 10-fold cross-validation and our

proposed offline method could be used to select the regularization parameter

using the available subject-specific training trials.

Fig. 5.3 compares the average classification accuracies of the baseline algo-

rithms (CSP, and CCSP) with the results of the proposed DTW-RCSP-CV,

DTW-RCSP-Off and Best-DTW-RCSP. Best-DTW-RCSP represents the clas-

sification accuracy if the best regularization parameter yielding the highest test

accuracy could have been selected from {0, 0.1, . . . , 1}. As shown in Fig. 5.3,

for all datasets the proposed DTW-RCSP-Off algorithm outperformed the CSP

and CCSP algorithms using most number of training trials. Interestingly, DTW-

RCSP-Off was more successful than DTW-RCSP-CV in selecting regularization

parameters yielding a higher average test classification accuracy.

Statistical paired t-tests revealed that for the large dataset using DTW-RCSP-

Off was significantly better than CSP when 10 trials were available for training

from the target subject (P = 0.04) and tended to be significantly better when 5

trials were available (P = 0.09). Besides, DTW-RCSP-Off was significantly better

than CCSP when 5 trials were available with P value equal to 0.015. Moreover,

DTW-RCSP-CV was significantly better than CCSP when 10 and 20 trials were

available with P values equal to 0.04 and 0.017 respectively. These statistical

results suggested that our proposed transfer learning algorithms performed sig-

nificantly better than the baseline algorithms if a large number of previously

recorded data from other subjects were available. Nevertheless, comparing the
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(a) (b)

(c) (d)

Figure 5.3: Comparison of the average classification results between the baseline

algorithms (CSP, and CCSP), the proposed DTW-RCSP-CV, and DTW-RCSP-

Off algorithms, and the DTW-RCSP results if the best regularization parameter

yielding the highest test classification accuracy was selected (i.e. best DTW-

RCSP). The classification results were calculated for different number of trials

available for training from the new target subject.
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Best-DTW-RCSP results with those obtained by DTW-RCSP-CV and DTW-

RCSP-Off revealed that if better regularization parameters could have been se-

lected, the proposed DTW-RCSP algorithm could yield much higher significant

improvements.

Although the proposed DTW-RCSP-Off algorithm improved the average clas-

sification accuracy, the Best-DTW-RCSP results showed that there was still room

for improvement. Moreover, DTW-RCSP-Off with 10-fold cross validation for se-

lecting the regularization parameter could not be viable if the number of the

available training trials from the target subject is less than 5 trials per class.

Therefore, in such cases our proposed DTW-RCSP-On could be used where the

first few testing trials (referred to as the validation set in this study) were em-

ployed to select the regularization parameter. Apart from the benefits mentioned

above, using the first few testing trials for selecting the regularization param-

eter could possibly reduce the negative impact of non-stationarity between the

training and testing trials.

Fig. 5.4 shows the results of DTW-RCSP-On. The average classification accu-

racy across all subjects from each dataset was reported when the subject-specific

training trials were as few as 1, 2, and 5 trials per class. The proposed DTW-

RCSP-On, when different number of testing trials were used to select the regu-

larization parameter, was compared to CSP and DTW-RCSP with (r = 1) (i.e.

only ΣDTW was used for obtaining features). It is shown that using the proposed

DTW-RCSP-On algorithm greatly improved the average classification accuracy.

Impressively, when only 1 subject-specific trial per class was available for training,

the proposed DTW-RCSP-On outperformed CSP by an average of 5.2%, 5.8%,

7.2%, 8.6%, and 9% for dataset1, 3.7%, 5.2%, 6.4%, 8.1%, and 8.7% for dataset

2, and 8.1%, 2.9%, 4.9%, 3.7%, and 4.2% for dataset 3 when using 2, 4, 6, 8,

and 10 validation trials for selecting the regularization parameter respectively.

Moreover, in case of having only either 1 or 2 subject-specific trials per class,

the classification results of DTW-RCSP with (r=1) outperformed CSP (i.e. only

data from other subjects after DTW alignments were used to obtain features).

Fig. 5.5 provides more insight into the results of the proposed DTW-RCSP-

On algorithm compared to CSP. As shown in Fig. 5.5, although for a few cases

the use of DTW-RCSP-On led to small deterioration in the accuracy, for the
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Figure 5.4: Comparing average classification results of the proposed DTW-RCSP-

On using 2, 4, 6, 8, and 10 validation trials to select the regularization parameter,

with those of DTW-RCSP with (r=1) and CSP when 1,2, and 5 trials per class

were available for training from the new target subject.
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majority of the subjects considerable improvements had been achieved. Indeed,

in many cases the improvement was as large as 20% to 35%.

Concerning statistical significance, A 6 (Number of trials= 1, 2, 5, 10, 20, and

40 trials per class)× 6 (Algorithms= CSP, DTW-RCSP-On (2,4,6,8,10)) repeated

measure ANOVA test was performed on the results of both datasets followed by

post-hoc analyses. For the large dataset, statistical results revealed that using

different algorithms had a main effect on the classification accuracy (P = 0.003).

Based on the post-hoc analysis, DTW-RCSP-On with different number of vali-

dation trials significantly outperformed CSP with P values equal to 0.001, 0.017,

0.046, 0.035, and 0.027 respectively for 2, 4, 6, 8, and 10 validation trials used

to select the regularization parameter. Interestingly, using the proposed DTW-

RCSP-On(2) was significantly better than using any other number of testing trials

(i.e. P values of 0.038, 0.05, 0.025, and 0.036 for 4, 6, 8, and 10 validation tri-

als). Similarly, for the medium dataset, the statistical results revealed that using

different algorithms had a main effect on the classification accuracy (P = 0.012).

Based on the post-hoc analysis, DTW-RCSP-On with 2, 4, 6, 8, and 10 validation

trials to select the regularization parameter significantly outperformed CSP with

P values equal to 0.043, 0.043, 0.028, 0.022, and 0.023 respectively. However,

using DTW-RCSP-On with 6, 8, or 10 testing trials to select the regulariza-

tion parameter were not significantly different. Finally, for the small dataset, the

statistical results revealed that using different number of trials had a main ef-

fect on the classification accuracy (P = 0.005). Based on the post-hoc analysis,

DTW-RCSP-On with 10 validation trials was significantly better other DTW-

RCSP-On with 2, 4, and 6 validation trials with P values equal to 0.016, 0.046,

and 0.046 respectively. Besides, using 40 trials per class for training were sig-

nificantly better that using any other number of training trials with P values

equal to 0.021, 0.017, 0.023, 0.024, and 0.044 respectively. This outcome showed

that when few subjects were available for transfer learning more training trials

were required form the new subject to better improve the classification accuracy.

Another comparison was held to make sure that adding the validation trials

used by DTW-RCSP-On for selecting the regularization parameter to the train-

ing trials of CSP would not achieve the same improvement as DTW-RCSP-On.

Fig. 5.6 compares the average classification results of the proposed DTW-RCSP-

On algorithm with the results of the CSP algorithm where the CSP was trained
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Classification accuracy comparison for each individual subject in both

datasets when 1, 2, and 5 trials were available for training from the new target sub-

ject. (a) CSP versus DTW-RCSP-On(2) for small dataset. (b) CSP versus DTW-

RCSP-On(6) for small dataset. (c) CSP versus DTW-RCSP-On(2) for medium

dataset. (d) CSP versus DTW-RCSP-On(6) for medium dataset. (e) CSP versus

DTW-RCSP-On(2) for large dataset. (f) CSP versus DTW-RCSP-On(6) for large

dataset. ”v” in DTW-RCSP-On(v) refers to the number of validation trials used

for selecting the regularization parameter.
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(a)

(b)

(c)

Figure 5.6: Comparison between DTW-RCSP-On(v) versus CSP trained with the

available training trials(t) plus the used number of the validation trials (v) when

1, 2, and 5 trials were available for training from the target subject.
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using the training trials plus the validation trials (i.e. CSP(t+v)). Interestingly,

Fig. 5.6 shows that in all cases, considered in this comparison, DTW-RCSP-On

outperformed the corresponding CSP(t+v).

A 2 (Algorithms= CSP(t+v), and DTW-RCSP-On) × 2 (Number of valida-

tion trials= 2, and 6)× 3 (Number of training trials per class= 1, 2, and 5))

repeated measure ANOVA tests were performed on the results of all datasets fol-

lowed by post-hoc analyses. For the large dataset, there was a main effect of using

different number of training trials with P = 0.024. Moreover, the ANOVA results

showed that our proposed DTW-RCSP-On tended to be significantly better than

CSP(t+v) with P = 0.059. Posthoc analyses revealed that using 5 training trials

per class were significantly better than using 1, and 2 trials with P values equal to

0.025 and 0.043 respectively. For the medium dataset using different algorithms,

different training trials and different validation trials had main effects on the re-

sults with P values 0.042, 0.034, and 0.013 respectively. Thus, we can conclude

that in the medium dataset our proposed DTW-RCSP-On was significantly bet-

ter than CSP(t+v) with p = 0.042. Posthoc analyses showed that using 5 training

trials per class were significantly better than 1, and 2 trials with P values equal

to 0.016 and 0.023 respectively, and using 6 validation trials were significantly

better than 2 with P = 0.034. Surprisingly, for the small dataset even only few

subjects were available for transfer learning there was a main effect of using dif-

ferent number of validation trials with P = 0.015. Moreover, the ANOVA tests

showed that our proposed DTW-RCSP-On tended to be significantly better than

CSP(t+v) with P = 0.08.

In summary, our results showed that the proposed DTW-RCSP based trans-

fer learning framework led to improved CSP features and hence improved BCI

systems, particularly when a small subject-specific training data were available.

5.5 Conclusion

This chapter proposed a novel DTW-based transfer learning framework on raw

EEG and feature domains to improve the CSP covariance matrix estimations and

hence enhance MI-based BCI systems. The proposed framework minimizes the

temporal variations between the EEG trials of other subjects and the few EEG

trials of the target subject using DTW. Then the temporally aligned trials of other
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subjects are mixed with the few subject-specific trials in the CSP framework using

a regularization parameter.

Our results suggested that applying the proposed DTW-based transfer learn-

ing framework reduced calibration of the MI-BCI systems. The results obtained

showed that our proposed framework significantly outperformed the subject-

specific CSP and CCSP algorithms in many different scenarios specially when

data from a large number of subjects were available for transfer learning.

The proposed framework uses only one regularization parameter which is not

computationally expensive compared to most of transfer learning-based regular-

ized CSP algorithms that use 2 regularization parameters. Besides, the proposed

online method required very slightly more computational time compared to CSP

when the same number of trials are used. Thus, with these two benefits and with

using only two validation trials the proposed DTW-RCSP-On could be potentially

used for online applications.

Interestingly, the proposed DTW-based transfer learning framework yielded

remarkable increase in the classification accuracy of majority of the participants

specially when only few trials were available for training from the target sub-

ject. However, the observed improvement for some subjects with initially poor

BCI performance was not pronounced. The possible reason might be having in-

separable EEG signals between two classes either during training session and

testing session or both. In the future, further investigation is needed to identify

these participants and exclude their data from being used for transfer learning.

In other case, if these subjects are the current users of the BCI system, some

human-training strategies should be identified and provided for them to improve

their BCI accuracy.
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Chapter 6

An Ensemble Framework with Temporal Alignment for

Improving BCI Performance in Small Sample Settings

6.1 Introduction

In previous chapters we proposed transfer learning approaches that use data from

other subjects/sessions to improve the subject-specific BCI model when few trials

are available for training from the current BCI user. However, if there are not

enough data from other sessions/subjects, transfer learning is not possible using

these previously proposed approaches. Thus, making BCI system robust using

just data available from the current subject is highly desirable.

To address these drawbacks, different algorithms have been proposed to im-

prove the CSP learning process. CSP improvement can be done either at CSP

optimization objective function level [33, 151, 152], or at covariance matrix esti-

mation level [104, 105, 153]. In this chapter, we are interested in improving CSP

covariance matrix estimation, as the first part of our proposed framework is deal-

ing with that problem. For example, previously, in [145], a modified version of

the CSP has been proposed. Minimum covariance determinant estimator was

used to obtain robust covariance estimates that replaced the classical covariance

estimates of CSP. In [153], a regularized CSP algorithm has been proposed to im-

prove the covariance matrix estimation using two regularization parameters. The

first regularization parameter used the generic learning principle to improve the

estimation stability by controlling the shrinkage of a subject-specific covariance

matrix towards a generic covariance matrix. The second regularization parame-

ter deals with with the limited availability of training trials by controlling the

shrinkage towards a scaled identity matrix.

Despite outperforming the classical CSP to some extent, most of the exist-

ing improved CSP algorithms are computationally expensive due to calculating
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a number of regularization parameters. Besides, none of them considers the tem-

poral variations between trials. Moreover, most of these algorithms focus only on

training data without considering the inter-session non-stationarity when trans-

ferring to test session. Particularly, it was found that even great improvement

for feature extraction using the available training data does not guarantee a per-

fect BCI system [154]. The problem might be related to the variation between

the distribution of training and testing trials. Testing trials could have severe

overlapping specially when the BCI user starts to feel fatigue or being distracted.

This chapter proposes a novel dynamic time warping (DTW)-based ensem-

ble framework to deal with intra- and inter-session non-stationarity in motor

imagery-based BCIs mainly when only a few trials are available for training and

there is no available trials from previous sessions or other subjects. Our proposed

framework is split into two parts. Firstly, DTW is used to improve CSP covari-

ance matrix estimation, and hence feature extraction. We hypothesize that the

alignment of EEG trials from the same class to their average might reduce within

class temporal variations and non-stationarity. Following the previous assump-

tion using DTW, the available trials from the same class get as close as possible

to the mean of its class and also to each other. The new aligned trials are used

to calculate the CSP covariance matrices. Secondly, DTW is used to reduce non-

stationarities between the upcoming testing trials and the average of each class of

the available few training trials. Aligning the upcoming test trial to the average of

the two classes of the training trials results in two new aligned trials. These two

trials are classified using the trained classifier individually. Then the ensemble

decision is used to accept the trials if the two predicted labels of these new trials

are the same, otherwise it will be rejected and the user will be asked to repeat

the task performed.

The proposed framework was evaluated using one of the publicly available

datasets with a moderate number of subjects. Performance of the proposed frame-

work was also compared with two baseline algorithms to show its significance.

The remainder of this chapter is organized as follows. In Section 6.2, we will

describe the proposed framework. Data description and results are discussed and

analyzed in Section 6.3. Finally, conclusions are drawn in Section 6.4.
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6.2 Methodology

This section explains the proposed framework. Fig. 6.1 shows the two parts of the

proposed framework. First part is the training of the proposed framework using

the available training trials from the user. Second part is dealing with the testing

trials where DTW and an ensemble decision criteria were used to evaluate the

quality of the new coming trial.

In this chapter, we assume that a number of labelled EEG trials are available

from each subject. The set of labelled EEG trials for each subject can be presented

as d=(Xi, yi)
f
i=1

, where f is the number of trials, and Xi and yi respectively denote

the instances matrix and the class label, yi ∈ {−1, 1}, of the ith trial. Each trial

is a subset of Rh×V , where h is the number of EEG samples and V is the number

of channels.

6.2.1 Part I: Robust DTW-based CSP training

Typically, the classifier is trained using the available labelled training features

to predict the labels of the unlabelled trials. The commonly used BCI model

uses CSP algorithm to extract features [33,124]. Hence, in order to overcome the

problem of non-robust CSP covariance matrices estimation, we use our proposed

DTW-CSP algorithm. Thus, in the first part of the proposed framework, our

novel DTW-CSP algorithm, explained in the previous chapter, aligns the available

trials from each class to be as much similar to their average. Performing the

proposed alignment leads to create new training trials that are less dissimilar

in temporal domain and hence improve CSP covariance matrix estimation. This

leads to improve CSP feature extraction.

6.2.2 Part II: Ensemble decision of the upcoming testing

trial

At this point, CSP features were calculated and the classifier was trained us-

ing previously obtained features after using DTW-CSP algorithm. Now for any

upcoming test trial XT, DTW is used to find a similarity matrix between this

test trial and the average signal of each class of the few available training trials

computed using 5.6. Then two warping paths for these two new aligned trials
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are calculated in a way to minimize the cost function 5.7 under the constraints

mentioned in discussed in 5.2.1.

Given the optimum warping path between the testing trial (T) and the average

of each class of the the available training trials, XT is aligned to X̄tc resulting

in Xc
T. Xc

T contains the time indices of XT forming the minimum warping path

between this testing trials and the average of the available training trials from

class c. These time instances are the instances that will make XT to be as much

similar to X̄tc as possible. Subsequently the covariance matrix of Xc
Taligned

is

calculated as follows:

Σc
Taligned

=
(Xc

Taligned
)>Xc

Taligned

tr((Xc
Taligned

)>Xc
Taligned

)
. (6.1)

These covariance matrices will be used to calculate CSP features. Then both

of the resulting features are classified using the trained classifier. If the output

label for the two new aligned trials is the same this testing trial is accepted and

classified accordingly. If the labels are different this trial is rejected and the user

is asked to repeat the action.

6.3 Experimental results

6.3.1 Data description

The proposed framework was compared to two algorithms. The first algorithms

is the state of the art BCI algorithm using CSP features. This algorithms will be

called (CSP) in the rest of this chapter. The second algorithm is the proposed

DTW-CSP algorithm, explained in the previous chapter.

The proposed framework and the baseline algorithms were applied to data set

2a BCI Competition IV 2008 [130]. This data set consists of EEG data from 9

subjects performing 4 classes of motor imagery task. In this thesis, as mentioned

before, only data from right and left hand motor imagery were used. Two sessions

on different days were recorded for each subject. Each session is comprised of 6

runs, each run consists of 12 trials for each class.

EEG signal was recorded using 22 electrodes. EEG signals were sampled at

250 Hz, and were bandpass-filtered between 0.5 Hz and 100 Hz. Moreover, a 50

Hz notch filter was applied to remove power line noise. The proposed framework
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Figure 6.2: Comparison of classification accuracy between classical CSP and

DTW-based CSP. Interestingly, it shows that the proposed DTW-CSP algorithm

outperform classical CSP for all subject except subject 7. Moreover on average

classification accuracy the proposed algorithm is better than normal CSP by al-

most 5%.

and the baseline algorithms were applied only on the trials recorded on the second

day by dividing it to two sessions, one for training (consists of the first 42 trials

recorded per class) and one for testing (consists of the last 30 trials recorded

per class). This was done to establish a practical case that new subject data is

coming from the same session. For the new subject, different training sizes were

examined (i.e. 5, 10, 20 and 42 trials per class).

6.3.2 Evaluation and discussion

For each subject, the CSP and the DTW-CSP filters were learnt on the available

training set. The log-variances of the spatially filtered EEG signal were then

used as the input features of a Support vector machines (SVM) classifier. The

classification accuracy was calculated based on how accurately the labels of testing

sessions trials are estimated. Fig.6.2 shows that, except subject 7, the DTW-CSP

algorithm outperformed classical CSP. The DTW-CSP algorithm outperformed
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CSP by about 4% to 10% for each subject. On average, classification accuracy

for all subject was increased from 78% to 83.3%. These results confirm that using

DTW reduces temporal variations and non-stationarities between trials within

the same class, and hence enhance the computed features. Particularly, with a

closer look at the results, DTW-CSP algorithm was more valuable for subjects

with poor and medium initial BCI performance (e.g.sub1, sub2, sub4, sub5, sub6)

than subjects with initially high performance, whose performances were slightly

changed. This finding makes sense as subjects with high initial accuracy already

have their features well separated.

Fig.6.3 shows some examples of the spatial filters obtained with classical CSP

and DTW-CSP algorithms for different subjects. Notably, these pictures show

that classical CSP filters appear with large weights in several unexpected loca-

tions from a neurophysiological point of view. On the other hand, DTW-CSP

filters were interestingly smoother and physiologically more relevant to the imag-

ined hand. Contrary to classical CSP, DTW-CSP filters weights were more related

to the expected motor cortex areas. This is another benefit of the DTW-CSP al-

gorithm as it does not only make the trials of the same class get closer but also

lead to filters that are neurophysiologically smoother and as such more illustrat-

able. Moreover, our approach requires much less computational time as there is

no need to calculate any regularization parameters either using cross-validation

or by optimizing objective functions which are computationally expensive.

The classification accuracy was calculated based on how accurately the labels

of testing sessions trials were estimated using three methods (CSP, DTW-CSP,

and the proposed framework and this will be called DTW-Ensemble Framework).

For each method we used different number of training trials.

Fig. 6.4 shows an example of one subject where great improvement in feature

extraction using the available training data does not guarantee having a good BCI

performance as testing trials might be very different from training trials due to

intersession non-stationarity inherent in EEG signals. Training trials features from

the two classes were completely separated, however, testing trials features from

the two classes were some how overlapped. This figure presents the importance of

using the second part of the proposed framework where ensemble decision criteria

that predicts the test trials labels with the option of rejecting them to improve

the BCI system accuracy was employed.
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Figure 6.3: Some examples of spatial filters obtained with classical CSP and

DTW-CSP algorithms for different subjects. Interestingly, DTW-CSP filters are

smoother and physiologically more relevant to the imagined hand. Contrary to

classical CSP, DTW-CSP filters weights are more related to the expected motor

cortex areas.

Fig. 6.5 shows that the proposed DTW-Ensemble Framework outperformed

the classical CSP and DTW-CSP algorithms using any number of training trials.

On average, classification accuracy for all subject was increased from 65.5% to

67.77%, 70% to 74.7%, 73.5% to 77.55%, 75.4 % to 79.1% when using 5, 10, 20,

and 40 trials for training, respectively.

Importantly, the proposed framework did not reject too many trials to improve

the classification accuracy. For some subjects, only 1 or 2 trials were rejected with

the maximum of 5 trials for the subjects with poor BCI performance. Interest-

ingly, using the proposed DTW-Ensemble Framework with 20 trials per class for

training outperformed the classical CSP with 40 trials per class for training. This

means that proposed framework not only reduced the calibration time but also

increased the classification accuracy. Moreover, this figure confirms that using

DTW reduced the temporal variations and non-statinarties between the trials

within the same class when only few trials are available to perform DTW, and

hence enhanced the computed features.

Concerning statistical significance, a 4 (Number of trials)×3 (Algorithms) re-

peated measure ANOVA test with a Greenhouse-Geisser correction revealed that

using different algorithms had a main effect on the classification accuracy with

(P = 0.021), Greenhouse-Geisser correction is used as sphericity assumed condi-
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Figure 6.4: This figure shows an example of training and testing feature distribu-

tion from both classes for subject 7. It is shown that the distribution of training

data from both classes are entirely separated. However, there is some overlapping

between testing trials distribution from class1 and class2

tion was violated. However, using different numbers of trials did not affect the

classification accuracy. Based on the post-hoc analysis, the proposed framework

significantly outperformed CSP and DTW-CSP with the P values equal to 0.006

and 0.046 respectively.

Table 1 shows the individual classification accuracy for each subject calculated

using the proposed DTW-Ensemble Framework, DTW-CSP, and CSP when 20

trials were used for training. It is shown that the DTW-Ensemble Framework

outperformed or had the similar results regards to classical CSP. The proposed

framework outperformed CSP by about 2% to 10% for different subjects. These

results confirmed that using DTW not only with training data but also with test-

ing data reduced the temporal variations and non-statinarties between training

trials within the same class and the training and testing trials. Using DTW be-

tween the average of each class from the training data and the upcoming testing

trials made this trial more similar to its related class and hence enhanced the
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Figure 6.5: Comparison of the classification accuracy between CSP, DTW-CSP,

and the proposed DTW-Ensemble Framework. Interestingly, it shows that the

proposed framework outperformed the baseline algorithms using any number of

training trials.

computed features. This led to improve the process of label estimation. Particu-

larly, with a closer look at the results, suggests that the proposed framework was

more valuable for subjects with poor and medium initial BCI performance (e.g.,

sub1, sub2, sub5, sub5, sub6, sub7, and sub8 ) than subjects with initially high

performance, whose performances were not changed. This finding makes sense as

subjects with high initial accuracy already had their features well separated.

Moreover, our framework doesn’t require any regularization parameters cal-

culations either using cross-validation or by optimizing objective functions which

are computationally expensive.

In summary, our results showed that the novel proposed DTW-Ensemble

Framework outperformed the baseline algorithms when only few trials were avail-

able for training. The proposed framework not only reduced the required cal-

ibration time but also enhanced the average classification accuracy. Moreover,

the proposed framework could be applied to any temporal domain based feature
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Table 6.1: Classification accuracies calculated using the baseline algorithms (CSP,

and DTW-CSP) and the proposed framework for each individual subject when

there were only 20 trials available for training per class from the user.

Algorithm s1 s2 s3 s4 s5 s6 s7 s8 s9 Avg.

CSP 85 53 98 67 55 57 73 87 87 73.55

DTW-CSP 88 55 98 67 50 60 73 88 87 74

DTW-Ensemble Framework 90 62 97 67 57 63 78 97 87 77.6

space and could be used to accept or reject the upcoming testing trials using any

ensemble learning algorithm.

6.4 Conclusions

This chapter proposed a novel DTW-Ensemble Framework to improve BCI sys-

tems. Our results suggest that using the proposed framework could lead to reduc-

ing the calibration time to 5 trials per class and at the same time enhancing the

average accuracy of the MI-BCI systems. Interestingly, The proposed framework

could be applicable not only to CSP but to any temporal domain based feature

space and able to be used to accept or reject the upcoming testing trials using

any ensemble learning algorithm. The results obtained show that the proposed

DTW-Ensemble Framework significantly outperformed the state of the art BCI

algorithm using CSP for any available number of the training trials.
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Chapter 7

Conclusion and Future Work

The work presented in this thesis aimed to make BCI more reliable as a daily use

system. Thus, this thesis focused on developing novel transfer learning approaches

to reduce calibration time of BCI with minimum accuracy loss or even improve

it. To achieve this objective two main challenges needed to be addressed based

on the available training data from the current user and previous sessions or

users. First, reducing inter-subjects/sessions non-satationarity. Second, reducing

intra-session non stationarity.

7.1 Conclusions

Through this thesis, we proposed the following novel transfer learning approaches

to address the previous issues and improve the usability of BCI:

1- A novel weighted multi-task algorithm on classification domain.

2- A novel weighted transfer learning algorithm on classification domain.

3- A novel DTW-RCSP based transfer learning framework on raw EEG and

feature domains.

4- A novel subject-specific DTW based CSP algorithm.

5- A novel domain adaptation framework based on DTW for Improving BCI

Performance in Small Sample Settings.

First, to achieve the objectives related to the first scenario, in chapter 3, we

proposed novel weighted multi-task transfer learning algorithms in the classifica-

tion domain to reduce the calibration time without sacrificing the classification

accuracy of the MI-BCI systems. Previously recorded data were mined, processed

and reused in a way that higher weights were given to the data that were more

similar to the new data and less weights to data that were less similar. Two ver-

sions of weighted multitask learning were proposed, namely supervised and unsu-

pervised. Results showed that the novel proposed unsupervised weighted logistic
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multi-task learning algorithm (UMLLog) outperformed all the other algorithms.

The proposed UMLLog not only reduced the required calibration time but also

enhanced the classification accuracy for most of the subjects.

Despite success to some extent, the proposed algorithms in chapter 3 were

computationally expensive as a big number of parameters needed to be opti-

mized simultaneously. To further improve the classification accuracy and reduce

the computational time of the BCI system, we proposed novel weighted transfer

learning algorithms in chapter 4. In the proposed algorithms, the classification

parameters of each of previous users with relatively large number of trials were

calculated independently in a way to minimize the subject-specific classification

error. Thereafter, the new user’s classification parameters were calculated in a

way that the classification error was minimized and at the same time got as

close as possible to the classification parameters of other existing subjects. A

regularization term was added into the classification objective function to make

a trade-off between minimizing the classification error of the new user and dis-

similarities with the classification parameters of previous users. The proposed

weighted transfer learning algorithms yielded a significant reduction in the cali-

bration time and a remarkable increase in the classification accuracy for most of

the subjects that initially performed BCI with poor or medium accuracy.

Our results in chapter 4 showed that the observed improvement for a few

subjects with initially low BCI performance was not pronounced. It seems that

estimating better classification parameters for those subjects was not sufficient

since their feature spaces for different classes were severely overlapped. Based on

these outcomes transfer learning approaches should be applied in a different do-

main before the classification domain. Therefore, in chapter 5, we proposed a novel

regularized covariance estimation framework for CSP (i.e. DTW-RCSP) based on

dynamic time warping (DTW) and transfer learning. DTW-RCSP framework re-

duced temporal non-stationarity between the few available trails from the current

user and the available trials from previous sessions or subjects and at the same

time improved the covariance matrix estimation of CSP to extract more robust

and relevant spatial filters. The proposed framework combined the subject-specific

covariance matrix estimated using the few available trials from the new subject,

with a novel DTW-based transferred covariance matrix estimated using previ-

ous subjects trials. In the proposed framework, the available labelled trials from
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the previous subjects were temporally aligned to the average of the few available

trials of the new subject from the same class using DTW to reduce temporal vari-

ations and non-stationarities. The regularization parameter was selected using a

novel method based on the confidence scores of the trained classifier on upcoming

first few labelled testing trials. The proposed framework was evaluated on three

datasets the classical CSP and CCSP. Results showed that DTW-RCSP signifi-

cantly outperformed the classical CSP in various testing scenarios, particularly,

when only a few trials were available for training. Impressively, our results showed

that successful BCI interactions could be achieved with a calibration session as

small as only one trial per class.

Finally, we observed that still the improvement for some users with initially

poor BCI performance was not significantly enhanced. Improving the features

extracted and hence improving the estimated classifier’s parameters for these

users were not effective, We found that unlike their training features their testing

features for different classes were not separable. Therefore, to achieve the objective

related to the second scenario, in chapter 6 a novel dynamic time warping (DTW)-

based ensemble framework to deal with intra- and inter-session non-stationarity in

motor imagery-based BCIs mainly when only a few trials are available for training

was proposed. The proposed framework consists of two parts. First, DTW was

used to make the CSP robust against intra-session variations when only a few

trials are available for training. Second, as a domain adaptation method, DTW

reduces the dissimilarity between testing and training trials. Finally, an ensemble

decision making is used to predict the test trials labels with the option of rejecting

them. The results showed that besides calibration time reduction, the average

classification accuracy was enhanced compared to the classical CSP

In summary, using the proposed algorithms we addressed the mentioned chal-

lenging issues, and consequently we achieved our objective to make BCI systems

more robust with less calibration time. These improvements along with improve-

ments at different levels such as the neuroscience level and the human level learn-

ing will lead to a more robust and efficient BCI technology capable enough for

daily use.
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7.2 Limitations and directions of future Work

The work presented in thesis can be potentially extended to address limitations

faced during this thesis, some other challenges in BCI or even other areas. Some

of these future extensions are listed below.

• Transfer learning algorithms proposed in this thesis were compared to CSP

as a subject specific algorithm and to the related transfer learning learning

algorithms as well. The CSP algorithm has been chosen as it is the most

commonly used subject specific algorithm in BCI. Although, filter-bank

CSP algorithm has been used in several BCI applications, it tends to overfit

when the available subject specific training trials are few. We have applied

filter-bank CSP on the subjects of 2a BCI Competition IV 2008 when only

5 trials per class were used for training. We found that there was a huge

loss in classification accuracy compared to CSP. However, in the future, a

benchmark of different algorithms related to the proposed algorithms need

to be addressed and compared with the proposed algorithms using the same

datasets.

• Transfer learning algorithms proposed in chapter 3 and 4 used KL diver-

gence for calculating similarity weights between the data from the new

subject and previous subjects or sessions. The effectiveness of the proposed

weighted transfer learning can be further improved by exploring new meth-

ods,e.g. Riemannian geometry, to measure the similarity weights between

the previous subjects/sessions data and the few trials from the new sub-

ject [155].

• Concerning DTW-R-CSP framework, our offline analyses showed that some

subjects could have achieved much more improvement in accuracy if a dif-

ferent regularization parameter could have been selected. Thus, it would be

interesting if another method could be explored to calculate the optimum

regularization parameter that can maximize the classification accuracy with

less number of trials and less computational time [156,157].

• The results presented in this thesis were obtained using offline analysis.

Although, these results were very promising, it is recommended to con-

duct online experiments to check the liability of proposed algorithms in
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real time scenarios. For example, it would be interesting to see if rejecting

some of testing trials using DTW-Ensemble framework during an online ex-

periment and asking the participant to repeat performing the mental tasks

would improve the human learning process in BCI [158, 159]. Moreover,

other methods for how to reject the bad testing trials need to be explored

and compared to the current method until find the best optimum method.

• In this thesis, we proposed 4 novel transfer learning frameworks and algo-

rithms to reduce the calibration time of MI-based BCI systems. The pro-

posed algorithms rely on different processing methods. Thus, the classifi-

cation results might be further improved, especially for subjects with poor

BCI performance, by combining these algorithms and frameworks in a com-

plementary way. Accordingly, different complementary combinations need

to be explored in order to design a more accurate and effective BCI with

minimum calibration time.

In addition to the above-mentioned future works, the following long-term exten-

sions might be of interest.

• Basically, zero calibration is the optimum case for a real time BCI sys-

tem that can be used in daily life tasks. Too frequent recalibrations might

negatively affect the learning process of the BCI user and make the user con-

fused regarding the received feedback. Thus, recalibration should be done

very carefully to prevent the BCI user from being confused. Moreover, some

research should be conducted at the human level by developing more ad-

vanced and successful user training techniques to better improve the BCI

user learning process. Modeling human learning using signal processing and

machine learning, and using those models to identify when recalibration is

needed would be a very interesting and important future study in BCI

community.

• It would be a promising idea to extend our proposed algorithms on other

neurophysiological signals, not only motor imagery. Beside reducing the cal-

ibration time, the accuracy and robustness of BCI needs to be improved, it

is highly desirable to apply and generalize the proposed algorithms to other

areas that are affected by noise and non-stationary data. Future research
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7. CONCLUSION AND FUTURE WORK

should focus on developing a novel general robust subject-independent BCI

framework that can be used for any subject with minimum calibration

time [160,161].

• Developing new transfer learning approaches to improve the performance of

BCI users especially the users doing poor BCI. As, discovered in the work

done through this research, after some time, for some subjects, brain signals

from different classes became overlapped. Thus, new training techniques and

new feedback types should be explored to achieve more accurate and robust

BCI performance with minimum training time [120,162].

• The discussions and analysis of the proposed algorithms and frameworks

presented in this study focused on EEG patterns from only two classes of

motor imagery tasks. It is highly desirable to develop algorithms that can

accurately classify a larger number of mental tasks (classes). More mental

tasks to be identified accurately means more commands for controlling a

device for communication by the BCI user. In future, EEG signals from

multi-class mental tasks have to be analyzed either by extending our pro-

posed algorithms to multi-class paradigms or developing new algorithms to

improve the accuracy and robustness of multi-class BCIs with minimum

calibration time [163–165].
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[13] M. Krauledat, M. Schröder, B. Blankertz, and K.-R. Müller, “Reducing

calibration time for brain-computer interfaces: A clustering approach,” in

Advances in Neural Information Processing Systems, 2007, pp. 753–760.

[14] J. d. R. Millán, R. Rupp, G. R. Müller-Putz, R. Murray-Smith,

C. Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kübler,
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