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Abstract 

The overall aim of this thesis was to study the effects of a simulator’s motion 

system on vestibular motion cueing fidelity in different contexts, evaluated in terms 

of drivers’ perception and behaviour, in low and high road friction conditions. The 

effects of manipulating the motion cueing algorithm (MCA), was found to be a 

function of the vehicle motion in a manoeuvre, and significant effects were 

observed.  

The applicability of simulators for the assessment of vehicle driven attribute 

qualities such as ride, steering and handling were studied by manipulating vehicle 

ride height (RH). The differences between the RHs were subjectively 

distinguishable by the drivers in the simulator. Incongruities between the subjective 

preferences and objective performances were observed in both of the independent 

comparisons of the MCAs and RHs.  

The effects of motion platform (MP) workspace size were found to be dependent on 

the manoeuvres and road friction level. In the low-friction condition, with the 

increase of MP size, two opposite effects were observed on drivers’ preferences 

and their performances, depending on the manoeuvre. In high-friction, in most of 

the handling and steering qualities, a direct relation was found between the MP size 

and appropriate vehicle RH. 

Furthermore, the optimal tuning of the MCAs and optimisation of the MP workspace 

size was introduced. A conservative motion cueing fidelity criteria was defined. A 

multi-layered optimisation method was developed that uses the optimal setting of 

the MCA, to address the MP translational workspace size, and to meet the fidelity 

criteria; applicable for different manoeuvres. This method was tested on the drivers’ 

performance data collected from the experiments in the simulator. 
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1 Introduction 

1.1 Background 

Driving simulators have been used for research on driver behaviour, impairment, 

road safety and infrastructure design, and vehicle design purposes. Compared to 

real driving, simulators facilitate a safer, repeatable, more versatile and less costly 

environment. They provide safe and repeatable measurements of driver behaviour 

in potentially risky conditions that are unethical and illegal to assess in the real 

world e.g. fatigue, subordinate or incidental secondary tasks, near-miss car crashes 

or alcohol and drug intake. Besides, they can be used in clinical research with 

patients with performance decline, neurodegenerative disorders and chronic effects 

of medications (Fisher, D.L. et al., 2011). However, the training contribution of 

driving simulators is lower compared to aviation, rail and maritime transports where 

the vehicles are more costly than simulators.   

The advantage of easy manipulation of driving scenarios and environmental 

variables such as road surface, signage, traffic, weather for a particular behaviour 

investigation or road and traffic design, are listed for the transport research 

applications (Carsten and Jamson, 2011). In general, among the advantages of 

simulators are controllability, reproducibility, and standardization, ease of data 

collection, encountering dangerous driving conditions without risk, and opportunity 

for feedback and instruction and among the disadvantages are limited physical, 

perceptual, and behavioural fidelity, shortage of research validity of simulation, and 

simulator discomfort (De Winter et al., 2012). 

Driving involves a wide range of activity in the human body often classified as 

sensation, perception of self-motion followed by decision making and behaviour. 

Various internal sensory modalities of eyes (visual motion), vestibular (inertial 

motion), ears (aural), joints, muscles, haptic (proprioceptive receptors) receive 

signals (cues), which then are integrated through a neural multisensory combination 

process that contributes to motion perception (Hosman et al., 2011). Next, human 

decision making takes place based on the acquired perception and results in 

behavioural performance. Simulator subsystems including the visual, vestibular, 

auditory and proprioceptive (haptic) sensory generator and display devices together 

with vehicle model, computers and electronics, cabs and controls are designed to 

replicate the real world cues in a virtual environment (Allen et al., 2011).  

One-to-one replication of the real world cues is not feasible in simulators, because 

of practical, technological and financial hindrances, and reportedly not always 
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necessary. The extent of similarity between the real and virtual environments has 

been referred to as simulator fidelity. Fidelity is typically evaluated subjectively at 

the perceptual level and objectively at the sensory and behavioural levels. To elicit 

a realistic driving experience, i.e. high fidelity, cues similar to real the world need to 

be represented in simulators, in addition to the similarity of driver’s performance in 

both environments.  

Although simulators provide most of the visual cues available in real driving, 

representation of vestibular cues has always been challenging (Kemeny and 

Panerai, 2003). Moreover, studies done in large simulators have shown that 

vestibular motion cues that are objectively closer to the actual vehicle motion (one 

to one) in a given driving task are not always perceived as more realistic (Berthoz et 

al., 2013). From a motion perspective, simulators are divided into static and 

dynamic types. Static simulators represent motion through a visual cueing system, 

whereas in a dynamic simulator both visual and vestibular (inertial) motion cues are 

available.  

Preliminary studies indicating the importance of vestibular motion cueing in 

simulators began by comparing the effect of static and dynamic motion 

configurations on drivers’ perception and performance. Repa et al. (1981) reported 

that the presence of motion tends to reduce path keeping errors and driver control 

activity; roll and yaw motions influence driver vehicle performance; and they 

emphasized the need for motion in more extreme manoeuvres. Reymond et al. 

(1999) showed lateral acceleration has a significant effect on drivers’ speed choice 

strategy on curved roads. Evaluating two driving tasks, Siegler et al. (2001) showed 

in a stopping task that the presence of motion in a simulator helps to avoid reaching 

too high and unrealistic decelerations and decrease in behaviour adaptation. In a 

cornering task, the availability of lateral motion influences the driver’s choice of 

trajectory; and longitudinal motion cue decreases linear velocity. 

The representation of vestibular motion cues in dynamic driving simulators is a 

function of four main components. These are the vehicle model, motion platform 

dynamics, motion cueing algorithm (MCA) and data transport time delay 

(computations, digital/analogue conversions, transmissions). Having an accurate 

vehicle model in hand leaves the motion platform and motion cueing algorithm 

characteristics as remaining variables affecting the motion cueing fidelity of a 

driving simulator, while the transport delay is usually dependent on both of the 

variables.  

The motion platform typically is the costliest component of simulators. It is a 

mechanical system (robot manipulator) of which the physical actuators generate 

motions. These are available in various shapes and characteristics, among them 
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the synergistic 6 degrees of freedom (DoF) hexapod-type optionally integrated with 

sliding rail to provide larger translational motion workspace is commonly used for 

research applications. There is a large variation in workspaces of both the hexapod 

and sliding rail used in the simulators and the lack of a general conclusion on what 

size is really needed to have high fidelity motion cueing in simulators.  

The MCA is designed to represent the vehicle’s motions in the motion platform 

while keeping the motion platform within its physically limited envelope; there are 

many approaches to achieve it. Many MCAs are developed in literature from 

classic, the most typical, to adaptive, optimal and more recently model predictive 

control (MPC) models with mixed results about which one provides higher fidelity. 

Other than the diversity in model types, there is a challenge of tuning (selecting 

parameters) the MCAs which has a major impact on their performance, as another 

source affecting the fidelity.  

Driven attributes of a vehicle include properties such as steering feel, handling, and 

ride qualities. The current main approach to test these qualities require costly 

physical prototypes, and the testing itself is time-consuming, with associated risks 

of less accurate evaluations since drivers are not comparing alternative designs in 

close temporal proximity. Tests in the simulator do not require physical prototypes, 

and arbitrary changes to vehicle designs can be applied without time delays. 

However, the applicability of the simulators for evaluation of the vehicle qualities is 

sparsely investigated, and the effect that motion cueing of the simulator might have 

on these tests is not known.  

1.2 Thesis aim and objective 

The perception of self-motion and behaviour of a driver in a simulator is affected by 

a simulator’s subsystems and their limited capability to stimulate drivers’ sensory 

modules which has the potential to influence the fidelity of the simulators. The 

required characteristics of each of the subsystems to achieve a desired level of 

fidelity is an extensively broad question and often there is no clear answer. Thus, 

the scope of this research focuses only on the subsystems that affect vestibular 

motion cueing.       

The overall aim of the effect of simulator motion system on motion cueing fidelity 

has been pursued throughout this thesis in different contexts and evaluated in 

terms of drivers’ perception, and behaviour performance. Typically, higher 

capabilities of the motion system present higher fidelity in simulators, however 

bearing in mind that one could optimally cut costs of purchasing a motion platform 

considerably by not building it too large and using a more sophisticated MCA.  
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In this regard, the effects of manipulating the two most influential motion cueing 

components of the simulators are studied in this thesis, those are the motion cueing 

algorithm, and motion platform workspace size. The probable effect that the MP 

size might have on the MCA performance, is also evaluated. The evaluations are 

done specifically for vehicle testing in low-friction winter conditions, and low and 

high motion demanding manoeuvres.  

Furthermore, to evaluate the applicability of simulators for assessments of the 

vehicle driven attribute properties, a variation to the vehicle ride height is studied. 

The probable effect that the motion platform size might have on the assessments, is 

also evaluated. The evaluations are done for a high-friction public road routinely 

used for testing vehicle prototypes. 

In the conventional vehicle design process, prototypes need to meet certain design 

criteria in both high-friction and low-friction road conditions. This is essential for car 

manufacturers, who export their products to countries of different climates. 

Similarly, the routinely carried out testing of vehicle designs by Jaguar Land Rover 

(JLR) includes both of the road friction conditions.  

Hence, as an overarching aim of Programme for Simulation Innovation (PSi) Theme 

3 projects, throughout this thesis, two experiments were designed and conducted in 

the simulator to study the effects of the simulator motion system in a low road 

friction condition, and aspects of vehicle design in a high road friction condition, to 

find out if professional drivers find the driving simulator to be a realistic and reliable 

tool for the evaluations. 

Although the road friction effect is not the main focus in this thesis, and separate 

main aims of the effect of motion cueing algorithm and vehicle driven attributes are 

studied respectively in low and high road friction conditions, there is a mutual aim of 

motion platform workspace size in both of the experiments, which is evaluated and 

compared in both friction conditions.  

The assessments are based on the subjective perception and performance of 

professional drivers who typically evaluate the vehicle designs and often have 

higher demands. Hence, the conclusions from the experiments are more applicable 

for the vehicle design process, and requirements for the simulator motion system 

might be lower for other research applications with normal drivers. 

Due to the significant effect of MCA parameters on the motion cueing, optimal 

tuning of the MCA parameters is introduced that minimises motion errors and 

exploits the motion platform capability. These optimal settings are further used, 

together with appropriate fidelity criteria, and a multi-layered optimisation method to 
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address the motion platform translational workspace requirement, to achieve a 

certain level of perceptual fidelity, and lowering the costs of procurement.  

1.3 Thesis structure 

Following the research challenges identified in this chapter, in Chapter 2 human 

perception and performance during driving and attempts to model them are 

reviewed, mainly to select the appropriate models for MCA development and 

drivers’ objective performance analysis. In Chapter 3, simulator subsystems are 

introduced, including the motion cueing system employed in the experiments. 

Moreover, various fidelity criteria available in the literature are reviewed with an 

emphasis on motion cueing fidelity. In Chapter 4 the MCAs of reportedly higher 

fidelity are developed and adapted specifically for the motion platform and following 

experiments. In Chapter 5 an experiment is reported which evaluates the MCA and 

motion platform size effects, while in Chapter 6 an experiment is reported to 

evaluate vehicle ride height and motion platform size effects; both are based on 

measurements of perception and performance of drivers. In Chapter 7 the effect of 

the MCA tuning parameters is introduced, and optimal settings of the algorithms are 

extracted. In Chapter 8 using the obtained tuning parameters, fidelity criteria, and 

optimisation method, the motion platform workspace is optimised to achieve an 

acceptable level of perceptual fidelity. In Chapter 9 summary of all findings is 

represented followed by conclusions.  
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2 Driver Perception and Performance 

2.1 Introduction 

Driving is one of the human sensorimotor activities that involve the perception of 

stimuli from environment and response with physical behaviour. Knowledge of the 

human sensory systems in addition to that of the vehicle dynamics is necessary for 

a complete understanding of human-vehicle interactions. Vehicle development 

process still relies on expensive and time-consuming pilot/driver subjective 

evaluations of a prototype. Through a deeper understanding of human-vehicle 

interaction, driver models have been developed to help the process of design and 

evaluations of vehicle systems (Nash et al., 2016).  

The human sensory systems (modules) have a significant role in self-motion 

perception and performance, and the visual and vestibular signals are the two most 

influential cues in the perception process. Fetsch et al. (2009) showed that rapid 

and unpredictable change of sensory information, affects its reliability; considering 

this uncertainty, the integration of multiple sensory signals in the brain is still 

unclear. They considered a psychophysical approach together with Bayesian 

probability theory that the integration of the cues was done by weighting them in 

proportion to their reliability. They found that monkeys similar to human, also 

“dynamically reweight visual and vestibular cues in proportion to their reliability”. 

However, some of the subjects tended to overweight vestibular cues. 

Nash et al. (2016) described the process of sensory, perceptual and control 

behaviour of a human to the input stimulus. Briefly, when a sensory module is 

excited by a stimulus, it produces chemical signals, which are then transmitted 

through nerves as electrical impulses by neuron firing. The physical and 

biochemical limitations accompanying the process are listed to be time delays of 

sensorimotor systems, noises in receptor and neuromuscular systems, errors in the 

internal model of the brain and spontaneous firing of neurons, in addition to the 

certain threshold of perception of stimuli. All reflecting that the accurate 

measurement of stimuli and execution of an ideal response is not always performed 

by a human (Fernandez and Goldberg, 1971). The sensory signals are processed 

in the sensory cortex of the brain, where the information is extracted from encoded 

signals. The information from different sensors are integrated, forming a 

representation of the surrounding environment and leading to perception; then 

using an internal model of the body and the surrounding environment, the physical 

response is planned. Signals are then generated in the motor cortex to activate the 

muscles, which are further tuned using feedback signals from the sensory modules 

(Kandel et al., 2000). Finally, signals are transmitted through motor neurons to 
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activate muscle fibres to contract; this process is a function of the dynamic 

properties of the muscle. 

Although the complete human sensory, perceptual and behaviour is a complex 

process, “for purpose of driver/pilot modelling it is not necessary or feasible to 

model all aspects” (Nash et al., 2016). The driver uses the sensory information to 

infer the state of the vehicle and its environment. While driving, the visual cues are 

used by the driver in detecting the upcoming road geometry and objects, and 

relative motion of the vehicle to the surroundings. This information is then combined 

with the vestibular motion cues, which sense the angular velocities and translation 

linear accelerations of the driver’s head. These, in addition to information from other 

sensory modules, lead to the perception and behaviour of the driver.  

A hypothetical block diagram of a model of driver controlling vehicle direction and 

speed is shown in Figure 2-1, which is inspired by (Donges, 1978). It is explained 

that the upcoming road geometry is previewed through the driver’s visual system, 

and using an ‘internal model of the vehicle dynamics’, the driver plans the desired 

trajectory and speed profile to generate the required feedforward control actions 

(steering wheel angle and pedal forces). At the same time, the vehicle motion 

relative to the planned profiles is sensed by the driver, who generates the feedback 

control actions to reduce the effect of disturbances. However, in this model, the 

vehicle motion feedback is not directly used for generating the feedforward control 

actions, but rather it helps to correct the imperfections such as disturbances.  

 

Figure 2-1. Model of tasks carried out while driving, (Nash et al., 2016)    

The overall goal of drivers in steering control is to follow a target path and not 

surpass the road boundaries, with the choice of trajectory and speed depending on 

the situation. In normal driving, the driver compromise between factors such as 

journey time, safety, comfort, and control effort (Odhams and Cole, 2004), minimise 
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the lateral acceleration in corners (Reymond et al., 2001), anticipation in entering 

and cutting through the inside of a curve to keep maximum curvature of the car as 

low as possible (Boer, 1996). However, in motor racing, drivers aim to maximise the 

lateral acceleration by higher speeds to minimise the lap time (Timings and Cole, 

2014). In traffic situations, the steering and pedal controls might be affected by 

other cars, to maintain a safe distance with the front car (Boer, 1999).  

The first attempts at modelling human control behaviour of longitudinal, lateral, 

heading of vehicles began in the early years of human-machine and aircraft pilot 

studies. Those often considered the human-vehicle interactions as a driver/pilot a 

controller of car/aeroplane a dynamic plant. A review on control aspects of a human 

driver in path-following, obstacle avoidance, headway control and related models is 

available in (Macadam, 2003).  

In the majority of driver models, drivers aim to minimise a tracking error within a 

finite interval of the future path ahead. Tracking errors can be due to a single or 

combination of different variables such as lateral deviation, heading angle and are 

usually the result of the difference between previewed and desired path using a 

prediction of vehicle motion. Optimal control models suggest that humans act to 

minimise a cost function, consisting of tracking and steering control errors. It is still 

not fully understood whether the nervous system has such internal models, or uses 

other mechanisms to achieve the optimality (Markkula et al., 2014). In the next 

sections a review of the efforts in understanding and modelling the human sensory 

dynamics, and human-vehicle interactions is presented. 

2.2 Perception of self-motion 

Self-motion perception is the process of inferring the movements of one’s body in 

space, normally through movements of the eyes relative to fixed surroundings or 

illusory by moving surroundings relative to fixed eyes known as vection. It involves 

a relative body motion e.g. moving hands or feet relative to body, mostly supported 

by the proprioceptive and visual systems; as well as motion of the complete body 

(posture control) that includes the head, e.g. movement of the whole body in a dark 

room where there is no visual cue, supported by the proprioceptive and vestibular 

modules. Due to the different characteristics of the visual and vestibular systems, 

motion perception using the visual system is a slower process compared to the 

vestibular system (Zacharias and Young, 1981). Besides, vestibular cues dominate 

the sensation of cues at higher frequencies and visual system at lower frequencies, 

and both are augmented to provide a wideband sensation system.  
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Vehicle displacement, velocity and acceleration motion in space could be described 

in three translational surge (longitudinal), sway (lateral), heave (vertical) and three 

rotational (angular) roll, pitch, yaw local coordinate directions. Motion perception 

regarding position and velocity takes place by the visual system, while acceleration 

via the vestibular system (Gordon, D.A., 1965; Mark et al., 2006). Through the 

vestibulo-ocular reflex (an eye movement that compensates for head movement 

using vestibular information) the vestibular motion cues also have an impact on the 

visual motion perception. However, the focus of this thesis is only on the motion 

cueing subsystems in the simulator that affects vestibular motion perception.  

In case of absence or disagreement of either the visual and vestibular cues, there 

might arise conflict introducing illusions or motion sickness. An example is circular 

vection, where the subject sits upright, fixed to the earth and visual field rotates 

inducing conflict. In this case, the visual system perceives the rotation while the 

vestibular system does not. Although there is no vestibular motion, the subject 

eventually feels himself rotating at a constant speed. This type of motion 

perception, takes longer than normal where both visual and vestibular cues are 

available (Brandt et al., 1973; Zacharias and Young, 1981). Similar conflicts happen 

in simulators when the visual and vestibular motion cues do not match, and in 

extreme cases, motion sickness may occur with symptoms of dizziness, fatigue and 

nausea.  

 Visual perception 

The contribution of the visual sensory system to motion perception has been the 

subject of research in different fields of biology, neuroscience and psychology. The 

visual system works by measuring the movement of objects relative to the 

environment and movement of the environment relative to the eye; this 

measurement is derived from the displacement of the image on the retina. During 

driving, the visual system detects upcoming road geometry and assesses vehicle 

motion relative to the surrounding environment. There is still much to learn about 

how neural signals received by the retina from a visual scene are interpreted; 

however, as mentioned earlier not all aspects need to be modelled to study visual 

perception while driving (Nash et al., 2016). 

In order to perceive depth and construct a 3D interpretation of the environment 

(together called stereopsis), the human brain uses the information obtained from 

two eyes; this is referred to as binocular vision. Optic flow and disparity were 

suggested to have the main effect on visual perception (Gibson, 1950). Binocular 

disparity is the difference in the retinal image location of an object seen by the left 

and right eyes. Each eye has a slightly different view of the world, and the visual 

cortex of the brain uses the binocular disparity to extract depth information from the 
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2D retinal images. The disparity has been shown to have an effect over distances 

of up to 30 metres (Knapp, 2003). Optic flow refers to the dynamic patterns of 

motion of points in a visual scene (e.g. objects, surfaces, and edges flowing over 

the retina) caused by relative movement between observer and scene. 

In straight road driving, the driver uses patterns from a point directly in front, called 

the focus of radial outflow (FRO). In rotational motion, the patterns are curved, and 

there is no FRO; however, the point in front may still be used to determine the 

heading. Both have been found to have a role in the control of vehicle heading 

(Gibson, 1950) and collision detection (Reymond et al., 2001). Gordon, D.A. (1965) 

proposed that humans measure the rate of changes of the vectors between the 

observer and scene. Moreover, it was found that contrary to the motion parallax, 

these velocity vector patterns in curved trajectories did not reveal distance, and 

angular acceleration is not directly sensed by the visual system. Through 

measurements of visual sensory thresholds at different frequencies of stimulus, a 

low-pass characteristic was observed for the visual sensory dynamics for both 

surge and sway motions (Riemersma, 1981; Bigler, 2013). 

The driver previews the road geometry ahead to control the vehicle. To pinpoint 

where drivers look, many studies have been conducted on drivers’ eye behaviour, 

and various points on the road reported to be used by drivers. For instance, it has 

been shown that drivers use the ‘tangent point’ on the inside of the road (Boer, 

1996), where the distance to the ‘tangent point’ and the car’s heading relative to the 

tangent point vector are intermittently used to update the steering angle. Sharp et 

al. (2000); Sharp and Valtetsiotis (2001) used a multi-point preview controller, 

based on the idea that the drivers figure a ‘multi-point image of the road geometry’ 

ahead of the vehicle in their memory. In a review of two-point and multi-point visual 

models, Steen et al. (2011) showed that the Donges (1978) two-point preview 

model was the most realistic visual behaviour model. They also reported that the 

two-point model outperformed in the parameter identification process. 

Donges (1978) introduced, modelled and identified the two levels of control in a 

steering task. In feedforward control (anticipatory), the visual system assesses the 

instantaneous and future course of the road to allow the driver to generate the 

feedforward open-loop control inputs to the vehicle. This information is called 

‘guidance information’ because the driver uses it for guiding the vehicle along its 

desired path (e.g., in a target-following task). In feedback control (compensatory), 

the instantaneous deviations between the vehicle’s actual path and its desired path 

are detected using static and dynamic cues in the visual field to allow the driver to 

perform closed-loop feedback control of the vehicle. This subset of information is 

called ‘stabilisation information’ because the driver uses the visual cues to stabilise 
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vehicle motions (e.g., in a disturbance rejection task). Disturbances might originate 

from wind gusts, road surface undulations, nonlinearities in vehicle dynamics or the 

driver’s constraints and nonlinearities. 

Driving simulators provide “most, but not all, of the real world visual cues” (Kemeny 

and Panerai, 2003). It is explained that in simulators, the speed evaluation is 

acquired by self-motion perception from the direction of an object in space relative 

to observer rather than the eyes i.e. egocentric direction and optic flow. The optic 

flow from the movement of images of objects in the scene is available. However, 

binocular cues and motion parallax (the distance and difference in the observable 

position of an object from two different lines of sight) are often absent. Providing 

these cues increases the cost and complexity of image generation and display 

equipment and requires integration of head-tracking devices. 

 Vestibular perception 

The vestibular sensory organ located in the inner ear is considered to be the body’s 

motion sensor. It is embedded in the temporal bone alongside the cochlea (which is 

responsible for hearing). It provides information about the maintenance of visual 

and postural stability and perception of motion and orientation. The inner ear 

vestibular organ contains otoliths (OTO) that sense translational motions and 

semicircular canals (SCC) that sense rotational motions, as illustrated in Figure 2-2. 

The vestibular systems of humans and primates have been investigated to discover 

their response to different stimuli, through different methods such as measuring 

vestibulo-ocular reflex, and electrical signals in the brain. 

 

Figure 2-2. Vestibular system, semicircular canals (left), and utricle and 
saccule of the otolith (right), from Encyclopaedia Britannica 

2.2.2.1 Otolith  

Otoliths consist of a set of two sensory receptors known as maculae. They lie at the 

point where the three semicircular canal ducts converge, within bulb-shaped 
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expansions called the utricle and saccule. The macula in the utricle is oriented 

horizontally and is sensitive to the planar longitudinal and lateral motions, while the 

macula in the saccule is oriented vertically and is sensitive to vertical motion. At the 

base of the macula, hair cells project into a gelatinous substrate on top of which sits 

a blanket of granular crystal particles referred to as statoconia. During translational 

motions in the plane of the macula, the inertia of these particles and the substrate 

cause the hair cells to be deflected in the direction opposite to the movement and 

excitation of the sensory cells. 

Experiments have been conducted to measure the ability of subjects to perceive a 

variety of linear motions, and mathematical models have been developed relating 

the subjective perception of motion to their objective values. Meiry (1966) showed 

that humans perceive velocity in translational motions, and in experiments, 

subjective responses to the perception of the direction of longitudinal motion were 

measured. The input stimulus was sinusoidal acceleration, which allowed the 

researchers to study the phase dependency on the frequency of the stimulus. A 

linear transfer function model was developed, shown here as Eq. 2.1. The long time 

𝑇𝐿 and short time 𝑇𝑆 constants had values of 10 and 0.66 s, respectively. There was 

no amplitude measurement, so 𝐾 was unspecified.    

 𝐺(𝑆) =
𝑣𝑝

𝑎𝑎
=

𝐾

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.1 

Three years later, Peters (1969) suggested that in the Meiry’s (1968) experiment 

subjects had perceived acceleration, not velocity. Research by other authors 

indicated that subjective perception of acceleration does not diminish with time but 

has a steady-state component. This argument was supported by the equivalence 

between the perceived acceleration due to linear motion or tilting. In the response 

of the Meiry’s (1968) model to step input acceleration decayed to zero; however, 

there is no decay to zero in perceived tilt for a step input tilt angle. Thus, the model 

was updated so that the output was the perceived acceleration 𝑎𝑝 rather than 

velocity 𝑣𝑝. 

Young and Meiry (1968) introduced a revised model later. A neural processing 

(lead) term was added to the afferent output to describe the displacement of 

statoconia, and the long time constant 𝑇𝐿 was shortened to 5.33 s. Therefore, the 

model was able to consider both perceived linear acceleration and tilt angle to input 

linear acceleration. Moreover, the authors mentioned that the model could be 

applied to specific force sensation, and noted that over typical normal head motions 

(i.e., a frequency range of 0.19 to 1.5 𝑟𝑎𝑑/𝑠), the model acts as a velocity 

transducer and has a static sensitivity gain 𝐾 of 0.4 (see Eq. 2.2). In this model, 

time constants 𝑇𝑎, 𝑇𝐿 and 𝑇𝑆 had values of 13.2, 5.33 and 0.66 s, and gain 𝐾 had a 
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value of 0.4. This model, with the identified parameters, is essentially a low-pass 

filter. 

 𝐺(𝑆) =
𝑓𝑝

𝑓𝑎
= 𝐾

(1 + 𝑇𝑎𝑆)

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.2 

Considering the difference between the transduction and sensation in the otolith, 

Ormsby (1974) developed a linear perceptual model. The otolith dynamics model 

used cascaded transducer and estimator models that combined the mechanical and 

afferent firing rate (AFR) dynamics of otoliths to input specific force. Then, a steady-

state optimal processor linked the AFR to the perceived specific force. This is 

shown in simplified form in Eq. 2.3. The model parameters of 𝐵𝐾°, 𝐴, 𝐵, (𝐵 + 𝐶)
𝐴

𝐵
, 

𝐹, and 𝐺 had values of 0.911, 0.2, 91.1, 0.0988, 0.133, and 1.95 respectively. 

  𝐺(𝑆) =
𝑓𝑝
𝑓𝑎
= 𝐵𝐾°

(𝑆 +
(𝐵 + 𝐶)𝐴

𝐵
)

(𝑆 + 𝐹)(𝑆 + 𝐺)
 2.3 

Regardless of the more descriptive nature of the model in Eq. 2.3, it yielded results 

similar to those of the Young and Meiry (1968) model in Eq. 2.2 with the 

interchangeable time constants 𝑇𝑎, 𝑇𝐿 and 𝑇𝑆 having values of 10.13, 7.52 and 0.51 

s and gain 𝐾 having a value of 0.35. Ormsby’s (1974) model was reported to differ 

by about 30% from the values proposed by Young and Meiry; however, it resolved 

the inconsistency between high bandwidth transducer dynamics and low bandwidth 

perceptual dynamics and also showed that transduction and estimation were best 

treated as two separate processes (Asadi et al., 2016). 

Fernandez and Goldberg (1976) measured the afferent firing rate of both regular 

and irregular otolith neurons in squirrel monkeys’ brains at various amplitudes and 

frequencies of sinusoidal input accelerations. The response of regular units proved 

to be more tonic (adapting slowly to a stimulus and producing action over the 

duration of the stimulus) with mostly less than two times gain increase when the 

frequency was increased; a small phase lead and lag was observed at low and high 

frequencies respectively. Irregular units’ response was more phasic (with rapid 

adaptation to a stimulus and action diminishing very quickly), with 20 times gain 

increase and a 20 to 40 degree phase lead, in the same frequency spectrum.  

The authors fit a transfer function (Eq. 2.4) to the results that included three terms. 

a velocity sensitive operator 𝐺𝑉 with a fractional exponent that provides most of the 

phase lead and the gain increase in irregular units. A low frequency adaptation 

operator 𝐺𝐴 contributing to the phase leads and gain increase at low frequencies. 

Finally, a first order lag operator 𝐺𝑀 that reflects the mechanics of otolith of high 

frequency phase lag in regular units and attenuates phase lead of irregular units 

from velocity-sensitive operators at high frequencies. All of the parameters of the 
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proposed transfer function—𝑘𝑣, 𝑘𝐴, 𝜏𝑀, 𝜏𝐴, and 𝜏𝑀—were identified for both regular 

and irregular units, with values of 0.188-0.44, 1.2-1.9, 40, 69-101 s, and 16-9 ms 

respectively. 

 

𝐺(𝑆) =
𝐴𝐹𝑅

𝑓𝑎
= 𝐺𝑉𝐺𝐴𝐺𝑀 =

(1 + 𝑘𝐴𝜏𝐴𝑆)(1 + 𝑘𝑣(𝜏𝑣𝑆)
𝑘𝑣)

(1 + 𝜏𝐴𝑆)(1 + 𝜏𝑀𝑆)
 

𝐺𝑉 = 1 + 𝑘𝑣(𝜏𝑣𝑆)
𝑘𝑣 , 𝐺𝐴 =

(1 + 𝑘𝐴𝜏𝐴𝑆)

(1 + 𝜏𝐴𝑆)
, 𝐺𝑀 =

1

(1 + 𝜏𝑀𝑆)
 

2.4 

The fractional exponent term in the transfer function of Eq. 2.4, made it practically 

difficult to implement it in motion cueing algorithm (MCA) development. Therefore, 

Hosman (1996) provided a model (Eq. 2.5) that was a simplification of the model 

Hosman and van der Vaart (1978) originally proposed. It was similar to the models 

of Young and Meiry (1968) and Ormsby (1974) but with different parameters 

relating the perceived specific force to actual input specific force. Hosman (1996) 

chose the time 𝑇𝑆 to be equal to 𝜏𝑀 the time constant of otolith mechanics for 

regular units (Fernandez and Goldberg, 1976). The model parameter time 

constants 𝑇𝑎, 𝑇𝐿 and 𝑇𝑆 had values of 1, 0.5 and 0.016 s, and gain 𝐾 had a value of 

0.4. 

 𝐺(𝑆) =
𝑓𝑝

𝑓𝑎
= 0.4

(1 + 𝑆)

(1 + 0.5𝑆)(1 + 0.016𝑆)
 2.5 

In a review of otolith models, Telban and Cardullo (2005) used the lead 𝑇𝑎 and long 

𝑇𝐿 time constants reported by Ormsby (1974); Jones et al. (1964) with values of 10 

and 5 s and the short time constant 𝑇𝑆 reported by Hosman (1996) with a value of 

0.016, which resulted in the transfer function in Eq. 2.6. The time domain step 

response (onset time, steady-state response) of this model is shown to fit between 

the step responses of otolith models of regular and irregular unit parameters by 

Fernandez and Goldberg (1976). 

 𝐺(𝑆) =
𝑓𝑝
𝑓𝑎
= 0.4

(1 + 10𝑆)

(1 + 5𝑆)(1 + 0.016𝑆)
 2.6 

The parameters of otolith models reviewed in this section are presented in Table 

2-1, and the Bode1 plot of frequency response of the models is shown in Figure 2-3. 

The midrange frequencies between 0.1 and 10 𝑟𝑎𝑑/𝑠 are the most important in 

driving, and it can be observed that the otoliths have a proportional response to 

accelerations in this frequency range (Nash et al., 2016). Moreover, there is a 

perception threshold of the otolith system that is a function of input frequency and 

                                                

1 A graph of the frequency response of a system. It is usually a combination 
of Bode magnitude and phase plots, expressing the magnitude and phase shift 
of the frequency response respectively 

https://en.wikipedia.org/wiki/Plot_(graphics)
https://en.wikipedia.org/wiki/Plot_(graphics)
https://en.wikipedia.org/wiki/Frequency_response
https://en.wikipedia.org/wiki/Frequency_response
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amplitude, and varies between the passive (open-loop) and active (close-loop) 

driving. It is usually modelled as a nonlinear dead-zone block cascaded between 

the transfer functions, makes it unappropriated for direct use in MCAs with linear 

plant models.  

Table 2-1. Otolith model parameters  

Otolith model by 𝐾 𝑇𝑎 𝑇𝐿 𝑇𝑆 

Young and Meiry 0.4 13.2 5.33 0.66 

Ormsby 0.35 10.12 7.52 0.51 

Hosman 0.4 1 0.5 0.016 

Telban and Cardullo 0.4 10 5 0.016 

 

Figure 2-3. Bode frequency response of otolith models 

Asadi et al. (2016) reviewed otolith models and showed that the Telban and 

Cardullo (2005) model acts as a reliable specific force sensor in the range of normal 

head movements. Telban and Cardullo (2005) used a combination of model 

parameters from other authors (long and lead time constants from (Ormsby, 1974) 

and gain from (Hosman, 1996)) and has shown the model to be suitable for use in 

MCA models. In Chapter 4, the otolith model used in the development of the model 

predictive control MCA is based on the model of Telban and Cardullo (2005) 

presented in Eq. 2.6. 
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2.2.2.2 Semicircular canal 

Semicircular canals consist of a set of three perpendicular elliptical cavities (canals) 

that are filled with a viscous endolymph fluid (see Figure 2-2). At the endpoint of 

each canal, there is a bulb-shaped expansion called an ampulla, which contains the 

crista. The crista contains sensory hair bundles extending into a gelatinous mass 

called the cupula. The cupula forms a seal in the ampulla that resists circulation of 

endolymph fluid. When the head undergoes angular motion in the plane axis of the 

canals, the inertia force of fluid causes deflection of the cupula in the opposite 

direction of head movement, which causes displacement of hair bundles and 

excitation of sensory cells (Telban and Cardullo, 2005). 

In early attempts to characterise the dynamics of semicircular canals, Steinhausen 

(1933) observed vestibular induced eye movements in the pike fish, and developed 

a linear second-order model and selected appropriate parameters to explain cupula 

dynamics. He showed that following a step angular velocity input, the cupula 

deflects by a rapid rise and then gradually decays back to its rest position, which 

was reflected in his model. A more formulised model was introduced by van 

Egmond et al. (1949) as a torsion-pendulum with a high degree of damping, which 

related the cupula-endolymph deflection 𝛿 to head angular velocity using Eq. 2.7. It 

was explained that there is always a slight leaking between the cupula and ampulla 

that causes the deviation between the actual and model SCC responses. 

 𝐺(𝑆) =
𝛿

𝜔
=

𝐾𝑆

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.7 

Based on a psychophysical testing method, they measured the verbal response of 

subjects regarding the duration of sensation after various input stimuli. Subjects 

were placed on a rotating chair and torsion swing in darkness. The researchers 

identified the time constants 𝑇𝐿 and 𝑇𝑆 to be 10 and 0.1s, respectively, also included 

a long time constant 𝑇𝐿 as a gain; that introduced the first angular velocity sensation 

model in the form of Eq. 2.8.  

 𝐺(𝑆) =
𝜔𝑝

𝜔𝑎
=

𝑇𝐿𝑆

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.8 

For several years, researchers conducted studies to verify and expand this model. 

Meiry (1966) showed that his data was consistent with the model for yaw axis 

rotation and proposed a long time 𝑇𝐿 of 7 s. In another study, Jones et al. (1964) 

evaluated the model parameter long time 𝑇𝐿 in three rotational axes using two 

methods: a) subjective sensation, using a velocity step input stimulus and elapsed 

time to sensation decay as the measured response; and b) nystagmus slow phase 

velocity, measuring vestibular induced eye movement. Values for 𝑇𝐿 for a and b 



17 
 

tests for different rotational axes were reported as follows: roll, 6.1 ± 1.2 and 4 ± 

0.4; pitch, 5.3 ± 0.7 and 6.6 ± 0.7; and yaw, 10.2 ± 1.8 and 15.6 ± 1.2 s. 

The response of the torsion-pendulum model (Eq. 2.8) to step angular velocity 

decays to zero, and the response to step angular acceleration is a steady sensation 

of rotation. This contradicted the actual measurements by Young (1969), in which 

the sensation of step velocity includes an overshoot, and step acceleration 

eventually decays to zero sensation. Young (1969) proposed an adaptation term to 

be added to the model to include the washout of human response to steady-state 

rotational acceleration, which was cascaded to the torsion-pendulum model in its 

linearized form as shown in Eq. 2.9. Parameter values of 𝑇𝑎, 𝑇𝐿 and 𝑇𝑆 were 30, 16 

and 0.04 s, respectively. They also proposed a dual channel model that took into 

consideration the reported inconsistency between nystagmus and subjective 

response measures. 

 𝐺(𝑆) =
𝜔𝑝

𝜔𝑎
=

𝑇𝑎𝑆

(1 + 𝑇𝑎𝑆)

𝑇𝐿𝑆

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.9 

Using direct measurements of the response of the afferent nerves in the 

semicircular canals of squirrel monkeys to angular acceleration inputs, Fernandez 

and Goldberg (1971) developed a model that consisted of the dynamic 

characteristics of Steinhausen (1933), an adaptation and lead terms. The lead term 

was found to be needed to generate the high-frequency deviation from the torsion-

pendulum model and to including the gain and phase lead. According to Zacharias 

(1978), who reported from other studies, there is evidence of lead sensitivity in 

processing angular velocity information that was observed from gain rise at high 

frequencies; requiring the addition of lead term (1 + 𝑇𝐿𝑑𝑆), with 𝑇𝐿𝑑 having the 

values from 17 to 50 ms (Fernandez and Goldberg, 1976) and 60 ms (Ormsby, 

1974). Using the experimental data on AFR of squirrel monkeys, the parameters 𝑇𝑎, 

𝑇𝐿, 𝑇𝑆, and 𝑇𝐿𝑑 for Eq. 2.10 were determined to be 80, 5.7, 0.003 and 0.049 s, 

respectively. The parameter 𝑇𝑆 was determined from properties of the endolymph 

and was noted to be 0.005 s for humans. 

 𝐺(𝑆) =
𝐴𝐹𝑅

𝑎𝑎
=

𝑇𝑎𝑆

(1 + 𝑇𝑎𝑆)

(1 + 𝑇𝐿𝑑𝑆)

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.10 

A more detailed model was proposed by Ormsby (1974), consisting of the transfer 

functions for transduction, filtering and cross-coupling. The most important part of 

the model was the transduction; other parts could be omitted in normal conditions 

or did not have a significant effect. In the transduction part of the model, the 

adaptation and lead terms were cascaded to the torsion-pendulum model of Young 

(1969), as in Eq. 2.11. The perceived angular velocity was proportional to the AFR. 
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Values for the parameters 𝑇𝑎, 𝑇𝐿, 𝑇𝑆, and 𝑇𝐿𝑑 were 30, 18, 0.005, and 0.01 s. 

respectively. 

 𝐺(𝑆) =
𝐴𝐹𝑅

𝜔𝑎
= (1 + 𝑇𝐿𝑑𝑆)

𝑇𝑎𝑆

(1 + 𝑇𝑎𝑆)

(1 + 𝑇𝐿𝑆)

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.11 

This model was simplified by removing the adaptation and gain sensitivity terms, 

resulting in Eq. 2.12 (Hosman and van der Vaart, 1978). It was argued that the 

adaptation term is important for low frequency stimulus, and it is outside the 

frequency range of a pilot tracking task (Hosman, 1996). Also, if neglecting the high 

frequency vibrations of the motion platform, the lead term could be omitted for MCA 

modelling purposes. The parameters of the model were identified through 

measurements of pilots’ of angular acceleration threshold on a dynamic simulator 

motion platform. The model parameters of 𝑇𝐿, 𝑇𝑆, and 𝑇𝐿𝑑 were 5.9, 0.005, 0.1 s. 

 𝐺(𝑆) =
𝜔𝑝

𝜔𝑎
=

(1 + 𝑇𝐿𝑑𝑆)

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.12 

In a review of the models in the literature, Telban and Cardullo (2005) suggested a 

transfer function that was noted to be suitable for angular velocity perception of 

input stimulus, and applicable to MCA models. The transfer function Eq. 2.13 

resulted from cascading the torsion-pendulum model with the adaptation and lead 

terms. The model parameter values of 𝑇𝑎, 𝑇𝐿, 𝑇𝑆, and 𝑇𝐿𝑑 for the roll, pitch and yaw 

rotational directions were determined to be 80, 5.73, 0.005, and 0.06 s. 

 𝐺(𝑆) =
𝜔𝑝

𝜔𝑎
=

𝑇𝐿𝑇𝑎𝑆
2(1 + 𝑇𝐿𝑑𝑆)

(1 + 𝑇𝑎𝑆)(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.13 

It was reported that the short time 𝑇𝑆 caused instability of the transfer function 

model. Moreover, it was noted that if the MCA time step is equal to the lead time, 

then both the lead and short time constants could be omitted to avoid the instability, 

resulting in a reduced order model as shown in Eq. 2.14. However, because the 

numerator and denominator are of the same order, this model is not a strictly proper 

transfer function and therefore, is not appropriate for MCA development, as 

discussed in Chapter 4. 

 𝐺(𝑆) =
𝜔𝑝
𝜔𝑎

=
𝑇𝐿𝑇𝑎𝑆

2

(1 + 𝑇𝑎𝑆)(1 + 𝑇𝐿𝑆)
 2.14 

In another study, Zacharias (1978) removed the lead term from the model of Young 

(1969); the model was a cascade of an overdamped torsion-pendulum model 

together with a threshold of perceiving the velocity and an adaptation term that 

reflected the washout of human response to steady-state rotational acceleration 

input Eq.2.15. Parameter values of 𝑇𝑎, 𝑇𝐿, and 𝑇𝑆 were determined to be 30, 30, and 

30 s for roll; 6.1, 5.3, and 10.2 s for pitch; and 0.1, 0.1, and 0.1 s for yaw, 

respectively. 
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 𝐺(𝑆) =
𝜔𝑝

𝜔𝑎
=

𝑇𝑎𝑆

(1 + 𝑇𝑎𝑆)

𝑇𝐿𝑆

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 2.15 

The parameters of SCC models reviewed in this section are presented in Table 2-2, 

and the Bode plot of frequency response of the models is shown in Figure 2-4. In 

the midrange frequencies between 0.1 and 10 𝑟𝑎𝑑/𝑠𝑒𝑐 are the most important 

(Nash et al., 2016). It is observable in Figure 2-4 that the SCC transfer functions 

have characteristics of an integrator; for this reason, Telban and Cardullo (2005) 

suggested that the SCC is a sensor of velocity rather than acceleration. Similar to 

otoliths, there is a perception threshold of the semicircular canals which is a 

function of input frequency and amplitude, and it varies between the passive (open-

loop) and active (close-loop) driving. It is usually modelled as a nonlinear dead-

zone block cascaded between the transfer functions, that makes it unappropriated 

for direct use in MCAs with linear plant models. 

Table 2-2. Semicircular canal model parameters, roll direction 

Semicircular canal model 𝑇𝑎 𝑇𝐿 𝑇𝑆 𝑇𝐿𝑑 

Egmond - 10 0.1 - 

Young and Meiry 30 16 0.04 - 

Fernandez and Goldberg 80 5.7 0.003 0.049 

Ormsby 30 18 0.005 0.01 

Zacharias 30 6.1 0.1 - 

Hosman 80 5.9 0.005 (0.11) 

Telban and Cardullo 80 5.73 (0.005) (0.06) 

 

Figure 2-4. Bode frequency response of semicircular canal models 
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Asadi et al. (2017) reviewed the SCC models and showed that the Telban and 

Cardullo (2005) model acts as a reliable angular velocity sensor in the range of 

normal head movements. However, because their transfer function is not strictly 

proper, it was not possible to use it for the formulation of the model predictive 

control MCA in Chapter 4. The SCC model of Zacharias (1978) was an appropriate 

candidate that included the torsion-pendulum model, an adaptation and a lead term 

(see Eq. 2.15). This model has been used in MCA models in many studies, such as 

(Reid and Nahon, 1985; Augusto and Loureiro, 2009; Garrett and Best, 2013). 

Consequently, this semicircular canal model is used in the development of the MCA 

in Chapter 4. 

2.3 Driver performance in vehicle 

Blending engineering, psychological and physiological views about driver 

behaviour, and its analysis and modelling, McRuer et al. (1977) explained the 

driving task to be a “hierarchy of navigation, guidance and control phases 

conducted simultaneously with visual search, recognition and monitoring 

operations”. Navigation is the overall selection of a route, guidance is the selection, 

decision and path definition, and control is the process of affecting the guidance by 

actuating the steering wheel to follow the desired path. 

To better understand, analyse and improve the man-machine system of driver and 

automobile, driver models have been developing in the literature. The introduction 

of more advanced systems controlling the dynamics and stability of the vehicle, and 

driver assistance systems, have led to greater demand for a sophisticated driver 

model. To mimic the drivers’ performance, the driver models required to include 

general driver skill as well as characteristics such as information sensation, 

perception and processing of various cues, preview, prediction/anticipation, and 

adaptation/learning (Plöchl and Edelmann, 2007). Furthermore, characteristics of 

drivers such as experience and age are needed to be included, as well as factors 

such as concentration and fatigue. Similarities and differences between models 

stem from various mathematical approaches used to realise demands, and 

emphasis on different aspects depending on an application. 

It is possible to categorise the models based on the mathematical methods used, 

including control theory (e.g., optimal, adaptive control, identification theory), fuzzy 

logic, and neural network. These mathematical methods also have been used to 

describe the pilot control behaviour.  The driver models could also be categorised 

based on their application; however, this gets complicated because a model might 

have several applications. Categorising driver models based on their applications 

usually involves investigating either the vehicle (e.g., design of vehicle components 
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and dynamics); the driver (e.g., driver behaviour, path and speed planning); both 

driver and vehicle; accident analysis/prevention, learning, and active safety; or the 

environment/traffic (e.g., traffic flow, influence of driver in simulator or traffic) (Plöchl 

and Edelmann, 2007). Some of the well-known models that are reviewed in that 

survey are represented here. 

Driver models have also been incorporated into advanced driver assistance 

systems (ADAS) in vehicles. Some examples include coupling sensing information 

with accurate lane changing prediction models, preventing accidents by warning the 

driver of potential danger ahead of time or determining the driver’s state such as 

attention level and driving competence. Furthermore, the information gained from 

driver models about drivers’ objectives such as destination and road preferences, 

helps in the development of travel assistance systems and services (AbuAli and 

Abou-zeid, 2016). 

The preliminary models were developed to control lateral vehicle dynamics. The 

longitudinal dynamics were often simple, such as following a given speed profile 

independent of the driver’s steering task (Hoffmann, 1976). Among the first efforts, 

Kondo (1953) proposed a model based on the idea that drivers steer in such a way 

that a point a certain distance along the vehicle centre axis ahead coincides with 

the sight point, which is the preview distance 𝐿 ahead on the reference course (see 

Figure 2-5). On the actual road, surroundings and traffic conditions are changing 

and the driver's sight point moves constantly. Many studies have been conducted to 

measure the driver’s sight point, its distance, direction, and other variables. 

The model can be illustrated by a cascaded control loop where the steering strategy 

is the driver’s attempt to reduce the Δ𝑦𝑝 at a distance 𝐿 ahead of the vehicle with 

current lateral deviation of 𝑦𝑝. The equation 𝑃(𝑠) = 𝑒𝑇𝑝𝑠 represents the preview 

strategy of the driver for the desired path 𝑦𝑑 with input path 𝑦0, preview time 𝑇𝑝 =

𝐿 𝑣⁄ , vehicle longitudinal speed 𝑣, and yaw angle 𝜓, where 𝐻(𝑠) = 𝐾 is the control 

character of the driver, 𝐺(𝑠) the vehicle and 𝐵(𝑠) = 𝑒𝑇𝑝𝑠 the feedback function. With 

some simplifications in the transfer functions, this yields the steering angle model in 

Eq. 2.16. Kondo and Ajimine (1968) developed the model further to include linear 

feedback on the deviation of the yaw angle, course angle and lateral position 

deviation, and this became a baseline for the enhancements of later models. 

 𝛿𝑠 = 𝐾𝑒
𝑇𝑝𝑠𝑦   for desired 𝑦0 = 0  2.16 
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Figure 2-5. Kondo’s shaft model and basic driver control loop, (Kondo, 1953) 
cited in (Plöchl and Edelmann, 2007) 

The studies on pilot behaviour in controlling the aircraft have also been used in 

modelling driver behaviour in different tasks. The quasi-linear models known as 

‘cross-over model’ by McRuer and Graham (1965) was successfully applied to 

model the human driver; however, it was limited, and parameters may depend on 

the type of input signal. For instance, when this model is used for driver-vehicle 

assessments at low frequencies, an increased gain and phase shift must be 

considered (Weir and DiMarco, 1978). The foundation of this model is in regulatory 

tasks, such as travelling in a straight line under cross-wind disturbance, and efforts 

to refine the model for more general applications seem to have been marginally 

effective (Sharp et al., 2000). 

According to McRuer et al. (1977), for each specific driving manoeuvre, various 

compensatory, pursuit and precognitive levels of human behaviour are involved and 

need to be considered to model the driver as a controller. Pursuit structure 

describes the steering control with preview task, such as in lane change 

manoeuvre. Precognitive structure is present at the most skilled tasks, such as 

rapid lane change and obstacle avoidance. In these models, compensatory 

feedback from the lateral position deviation Δ𝑦 with respect to a reference position, 

yaw angle error Δ𝜓, road curvature 𝜌𝑟
∗, vehicle speed 𝑢, and filtered white noise 𝑛 

were available. 𝑇𝐿 is the preview time. The pursuit model was formulated as follow: 

 

 𝛿𝑠 = 𝑌𝑦𝑌𝜓Δ𝑦 + 𝑌𝜓Δ𝜓 +
𝐾𝑐
𝐾𝜓

𝑌𝜓𝑟𝑐 + 𝑛 

𝑌𝜓 = 𝐾𝜓(𝑇𝐿𝑠 + 1)𝑒
−𝜏𝑟𝑠 , 𝑌𝑦 = 𝐾𝑦 , 𝑟𝑐 = 𝜌𝑟

∗𝑢 

2.17 
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This model is often referred to as the System Technology Inc. (STI) pursuit or 

compensatory driver model. It was further refined by integrating the preview and 

choosing different points on the road as well as redefining some of the parameters 

above to be applicable to the assessment of potential roadway accident scenarios 

(Reid, 1983). In this context, he laid out criteria for a successful driver model:  

a. It needs to model a potentially dangerous driving scenario 

b. It has sufficient detail to acquire meaningful results  

c. Its structure should not be too difficult to implement 

d. There should be a set of parameter selection rules covering the model 

parameters 

e. It should have been validated against other results  

Donges (1978) proposed another model for lateral vehicle control based on the 

duality of information presented to the driver by the forward view of the road. It 

included two layers of open-loop anticipatory and closed-loop compensatory 

control. The open-loop control represents guidance and involves the perception of 

current and future courses provided by the forward view of the road, and the 

anticipatory response to it. The closed-loop control represents stability for a 

successful feedforward anticipatory layer that compensates for deviations from the 

forcing function. This model compares the actual and desired path curvature using 

path curve error, heading error and lateral deviation. The parameters of these 

layers were estimated using measured data about road curvature and driver 

steering wheel angle by minimising a quadratic criterion, and they could be chosen 

to meet the requirements of a crossover model. 

This model was further extended to include a third level that takes local deviations 

into account (Plöchl and Lugner, 1999). Local control is activated in critical 

situations when other levels fail, replacing them for a short period to reduce the 

local deviation directly. In another modification, the essential nonlinearities of 

vehicle handling behaviour were brought into the model by changes to the driver’s 

internal model of the vehicle. This model could handle higher lateral acceleration 

with good tracking behaviour (Edelmann et al., 2007). 

A so-called preview/prediction driver model was developed based on optimal 

control theory utilising a preview control strategy for regulation or tracking tasks. 

This type of control strategy is used during a path-following task in which drivers 

look ahead to follow the desired path and to stabilise and control the vehicle. 

Humans are capable of controlling and adapting to various dynamic systems (e.g., 

bicycles, cars), but some training is required to give the operator an understanding 

of vehicle response to control inputs. A certain amount of this is usually learned 

through open-loop responses for repeated scenarios, and the remainder comes 

from strengthening the operator’s feel of vehicle response to control input in a 
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closed-loop for regulation/pursuit needs. The model had a state-space formulation 

including the input steering angle 𝛿𝑠 constant input over preview interval, and output 

lateral displacement of vehicle centre of mass. The objective cost function included 

the path error between the desired and actual lateral positions (Macadam, 1981). 

The main weakness of this model was the need to presume a constant control input 

over preview time (Guo and Guan, 1993). Markkula et al. (2014) in a comparison of 

few models in low-friction collision avoidance scenarios listed the ‘vehicle-

independent parameters’ and ‘reasonable fit of collision avoidance steering’ among 

the advantageous of this model; whereas its reliance on ‘the desired path to 

achieve fit of collision avoidance steering’ and rather ‘poor fit of stabilisation 

steering’ (behaviour after unexpected or expected near-collision) as the drawbacks 

of this model. 

Sharp et al. (2000) introduced the multi-point preview model. The structure of this 

model was a nonlinear derivation from discrete linear optimal preview control theory 

and was shown to be robust against changes in the vehicle dynamics. The control 

law was obtained from multiple points defined along the actual trajectory of the 

vehicle. From a current point 𝑠, the driver monitors the path ahead by projecting an 

optical lever 𝐿 forward up to a distance allowed by preview time 𝑇𝑝. A set of 𝑛 points 

𝑙1, 𝑙2, … , 𝑙𝑛 is then fixed on the optical lever. Corresponding points of 𝑟1, 𝑟2, … , 𝑟𝑛 are 

available on the desired path, and the driver experiences the deviation angle 𝑒 

between points on both paths. The length of the optical lever is 𝐿 = 𝑇𝑝𝑣𝑥 that is, 

preview time multiplied by vehicle longitudinal velocity, see Figure 2-6. 

 

Figure 2-6. Driver model scheme proposed by (Sharp et al., 2000) 

The distances between the points on each of the paths are equal to corresponding 

differences in the other path (i.e., 𝑙𝑖𝑙𝑖+1̅̅ ̅̅ ̅̅ ̅ = 𝑟𝑖𝑟𝑖+1̅̅ ̅̅ ̅̅ ̅ ) because the points on the desired 
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path are not perpendicular to the points on the optical lever. The first point 

coincides with the current position of the vehicle’s centre of gravity, and 𝑒1 

represents the vehicle’s lateral offset from the current intended position on the path. 

In addition to 𝑒1, the difference between the vehicle yaw angle and the tangent 

angle of the intended path at 𝑟1, 𝑒𝜓 = (𝜓 − 𝜃𝑑) is another state feedback used for 

steering control. The steering angle then is calculated as the combination of the 

errors and control gains 𝐾𝜓, 𝐾1, … , 𝐾𝑛. 

  𝛿𝑠 = 𝐾𝜓𝑒𝜓 + 𝐾1𝑒1 +∑𝐾𝑖𝑒𝑖

𝑛

𝑖=2

 2.18 

There were separate uncoupled controllers for longitudinal and lateral vehicle 

motions. Besides, human specifications were not included, as is common among 

velocity tracking controllers. The lateral model was further developed to identify the 

preview control parameters using a linear quadratic regulator (LQR) (Sharp and 

Valtetsiotis, 2001). The researchers also transformed the reference frame of the 

preview control from a fixed frame to the moving frame of the driver, which is the 

case in reality. The models using the optimal control theory are quite similar to each 

other, differing in the performance criterion used (e.g., absolute or relative lateral 

path, yaw angle information, preview horizon, and the duration that steering angle 

can change within the preview horizon) (Plöchl and Edelmann, 2007). 

In a comparison between the driver models for the problem of path-following control 

with preview, the two approaches of predictive control theory and LQ control theory 

were tested using the same state-space model of vehicle dynamics (Cole et al., 

2006). It was found that two transformations were needed to convert preview 

information from the ground to the vehicle frame, and another to combine the lateral 

and yaw preview information. Using long preview and control horizons, it was found 

that the state and preview gains were identical for the predictive controls, receding 

horizon LQ control and infinite horizon LQ control. In another comparison in a 

collision-avoidance scenario, Markkula et al. (2014) found that Macadam’s 

predictive controller and Sharp’s LQR controller yield different control gains in the 

same condition. The benefits of Sharp’s model are reasonable fits for both collision 

avoidance steering and stabilisation steering, while reliance on the desired path 

construct and a large number of parameters are drawbacks. 

Nonlinear control methods have been used for driver modelling. The nonlinear 

dynamics of the vehicle was taken into account in an effective path control driver 

model (Mayr and Freund, 1992). In another study, using the two-layer driver model, 

in the anticipatory level a nonlinear optimal control problem for a reduced vehicle 

dynamic was solved to find near optimal setpoint for the full model. In the 

stabilisation level, a nonlinear poison controller was available to track the setpoints 
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with full vehicle dynamics (Bulirsch et al., 2003). Nash and Cole (2018) also used 

the nonlinear control model to include the nonlinearity of tyre model in extreme 

manoeuvres. Fuzzy logic control (FLC) Zadeh (1965) is another nonlinear method 

that is said to be similar to human thinking and compromise in the process of 

decision making, that has been used for driver modelling (Ghazi Zadeh et al., 

1997). A fuzzy rule-based neural network model was used to obtain individuals’ 

driving rules from their trajectories (Chong et al., 2013). It included driver behaviour 

in longitudinal and lateral actions and in car-following and critical safety events. 

In other studies, to develop behavioural models during car following manoeuvre for 

applications in the simulator and real world, (Naseri et al., 2015) emphasised on the 

importance of psychological than control-engineering point of view. They gathered 

data of drivers’ behaviour in different scenarios and estimated the parameters of the 

proposed model. (Naseri et al., 2017) presented model for virtual vehicle during 

lane changing and line changing manoeuvres. Their algorithm included two steps of 

decision making and manoeuvre. It consecutively considered, deciding on when to 

initiate the lane change, choosing a target lane and if there is sufficient gap to do 

the manoeuvre, creating a desired path using a path-following algorithm, and 

including a collision avoidance algorithm to avoid crashed as the path is followed. 

They validated their model with drivers’ behaviour in few lane change scenarios.   

Although a large amount of research has been dedicated to understanding human 

perception, cognition and behaviour in various control tasks from biological and 

neuroscience perspectives, most of the described models did not take into account 

human sensory dynamics (Nash et al., 2016). During most sensorimotor tasks, a 

human develops an internal model of their surroundings that integrates the 

information from different sensory modules in a statistically optimal fashion to plan 

an appropriate control action. The cognitive processing of these sensory signals is 

delayed due to the latency of sensors, nerve conduction and neural processes. 

There is also a sensory perception threshold, and stimuli with amplitudes or 

frequencies below this threshold are not perceived. The thresholds have been 

found to be higher during an active control task involving multi-sensory input 

compared to passive unimodal control tasks (Nash and Cole, 2018). 

Nash and Cole (2016) developed a model that incorporated the limitations of 

sensory dynamics and used the common assumption of the optimal models that the 

driver steers close to optimally based on his or her sensory limitations. He noted 

that pitch tracking tasks for pilots are very similar to drivers’ steering tasks, and 

therefore the model was validated by the data in a study of pilot control behaviour in 

a flight simulator (Zaal et al., 2009). Reportedly, the model can predict human 

control behaviour accurately during a target-following and disturbance-rejection 
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task. The linear models are applicable for normal driving conditions, but in extreme 

manoeuvres in which the operating point of the vehicle changes rapidly and the 

friction limits of the tyres are reached, a different model was needed to cope with 

nonlinear vehicle dynamics (Nash and Cole, 2018). To this end, they further 

developed steering control model to include human sensory dynamics together with 

control of a vehicle with nonlinear tyres. 

 

Figure 2-7. The overall structure of the driver model, (Nash and Cole, 2018) 

The model of Nash and Cole (2018) was based on an idea introduced by Donges 

(1978), that vehicle steering control can be represented by combining target-

following and disturbance-rejection tasks. In the target-following task, the driver 

must follow a target path while responding to disturbances on lateral and angular 

velocities of the vehicle. Because the driver previews the upcoming target path to 

plan the steering control, it is usually a feedforward control. The disturbance-

rejection task is feedback control because the driver cannot perceive the 

disturbance until after it has occurred. The linear part of the model uses the optimal 

control theory (LQR) to represent the driver’s steering behaviour.  

It consisted of three components: a plant, a controller and a state estimator, as 

illustrated in Figure 2-7. The dynamics of vehicle and driver are described in the 

plant, which is perturbed by the target and disturbance white noise 𝑤𝑘 , 𝑤𝑣 , 𝑤𝜔 and 

process noise 𝑤. The plant output 𝑦 represents the output of the driver’s sensory 

modules, which are perturbed by measurement noise 𝑣. The state estimator 

calculates an estimate of plant states 𝑥 using the internal model of the plant. Finally, 

the controller uses the estimated states and the internal model to calculate the 

optimal plant input 𝛿. The cost function includes the tracking error 𝑒 and plant input 

𝛿 terms to minimise. The described components were further extended to control a 

vehicle with nonlinear tyres, albeit with many simplifications. Sensory dynamics 

reportedly affected the control performance and stability of the driver-vehicle 

system, especially when there is disturbance or driver noise. 
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Markkula et al. (2018d) explained that this model seems sophisticated because it 

considers different aspects of human perception and behaviour; however, further 

experiments are needed for validation. Moreover, behaviour adaptation and a 

mechanism for identifying the reliability of the sensory signals were missing. In 

another experiment involving a vehicle steering task, an identification method was 

used to find the parameters of the model, using the data from driving simulator 

experiment with no motion scaling. Results supported the hypothesis that driver 

steering control can be predicted using driver models. The identified parameters 

were said to be physically plausible compared with values from the literature, and 

identified delays were longer for vestibular than visual delays, supporting the 

literature (Nash and Cole, 2019). 

For modelling the driver’s steering, it has been shown to be more appropriate to use 

the steering rate or individual steering adjustments than the steering angle 

(Markkula et al., 2014). Moreover, the concept of the internal vehicle model may be 

less useful in non-routine situations such as near-crashes, where the driver’s 

behaviour can better be described as a direct response to salient perceptual cues. 

The latter idea has been further supported by modelling the steering rates or 

adjustments as delayed linearly scaled version of the yaw rate error (Markkula, 

2015). The desired path yaw rate error (DPYRE) model was developed by him 

based on these ideas, and the concept of the desired path (similarly used in some 

of the models introduces earlier in this section). This model is a few-parameter 

driver model that maps vehicle world states to driver control actions. It uses three 

parameters of delay time, preview time and gain and the desired path to predict 

driver behaviour (steering rate):  

 �̇�𝑠(𝑡) = −𝐾𝜔𝑒𝑟𝑟(𝑡 − 𝑇𝑅) 2.19 

Where �̇�𝑠 is the rate of change of the steering wheel angle, 𝐾 is a gain constant, the 

yaw rate error 𝜔𝑒𝑟𝑟 = 𝜔 − 𝜔
∗ is the deviation between current yaw rate 𝜔 and 

desired yaw rate 𝜔∗, and 𝑇𝑅 is a response delay. In Eq. 2.19, �̇�𝑠 is obtained by 

looking ahead a preview time 𝑇𝑃 on the desired path to determine a desired vehicle 

position at that point in time, and then determine the desired yaw rate 𝜔∗ as the 

yaw rate that would take the vehicle to that desired vehicle position in the time 𝑇𝑃, if 

starting from the current vehicle position and heading.  

The first parameter to fit is the preview time 𝑇𝑝; however, it has been shown that 

using a task-dependent fixed preview time did not affect the model fits much 

(Markkula et al., 2016). To fit the model parameters, a brute force grid search was 

used for all nonlinear parameters (e.g. 𝑇𝑅), and for each tested combination of 

these nonlinear parameters, all linear parameters (e.g. 𝐾) were estimated using 

least squares fitting. The goodness of fit of the best-fitting parameterisations was 
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expressed as 𝑅2 (𝑅2 = 1 means that the model explains 100% of the variance in 

the data, 𝑅2 = 0 means that the model is no better than approximating the data by 

using its observed average). 

This type of model is neutral on whether or not drivers directly perceive or mentally 

represent actual and desired yaw rates. It is compatible with the idea that drivers 

simply have access to sensory cues and neural pathways that allow them to act as 

if they directly perceived and represented these kinds of quantities (Markkula, 

2015). In the same review, the validity of driver models for evaluation of driver 

behaviour is studied. Different levels of behaviour validity were defined, and it was 

shown that the DPYRE model could be employed as a task-general driver model for 

evaluations. This model was compared to a modified model of Gordon, T. and 

Magnuski (2006) and performed much better. It does not explicitly represent the 

sensory or neuromuscular dynamics but has proved to be sufficient for behaviour 

evaluations; moreover, its parameters are easily identified in an open-loop fitting 

method. It is shown that how steering torque and motion cues affect the DPYRE 

model’s parameters (Markkula et al., 2016; Markkula et al., 2018b). 

Another type of model has been developed with an emphasis on the intermittency 

of human control. A brief review of this method is presented in (Markkula et al., 

2018a). It is based on the idea that humans make use of intermittent adjustments 

and are not always continuously active in sensorimotor control, and it originated 

from observations of operator handle position in a gun aiming task (Tustin, 1947). 

Other examples are human behaviour tests from saccadic eye movements and 

inverted pendulum balancing. The control intermittency arises due to the minimum 

‘refractory time’ that must pass between consecutive control activities and/or the 

minimum control error threshold that must be reached before control is applied. 

Using these assumptions, task-specific intermittent control models have been 

proposed (Meyer et al., 1988; Gawthrop et al., 2014). 

Markkula et al. (2018a) provided an alternative computational framework for 

intermittent control by using the basic concepts developed earlier by the same 

author (Markkula, 2014; Markkula, 2015). This alternative framework differed from 

other intermittent control models, because it included a classical control theory 

rather than the typically used optimal control. It also connected three well-

established concepts of neuroscience: implementation of intermittent control by the 

nervous system using a combination of motor primitives, prediction of sensory 

outcomes of motor actions, and evidence accumulation of prediction errors. These 

had not been reported before. 

In this framework, Markkula et al. (2018c) showed that an estimate of currently 

needed control adjustment ∆𝛿 is continuously calculated and is compared to the 
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prediction of the same control adjustment to find a prediction error. This error is 

then fed with a gain 𝑘 into an evidence accumulation step where it is integrated 

over time to a certain threshold; this step mimics the neurobiological decision-

making mechanism to decide when a control adjustment is required. When the 

decision threshold is reached, a steering adjustment is initiated, a prediction is 

made of how the control adjustment ∆𝛿 will be affected, and the evidence 

accumulation integrator resets to zero. The steering adjustment is applied in form of 

a motor primitive, with a fixed-duration stepwise movement and total amplitude from 

current ∆𝛿 prediction error. The prediction is also applied in the form of a primitive 

stereotyped response, mimicking the neurobiological collar discharge. 

 ∆𝛿 = −𝐾�̂�𝑒𝑟𝑟 = −𝐾(�̂� − �̂�
∗) 2.20 

�̂�∗ and �̂� are the desired and actual vehicle yaw rate perceived by the driver, and 𝐾 

is response gain. �̂�∗ is defined as the yaw rate that would take the vehicle to the 

desired path in a preview time 𝑇𝑝. The preview time for the slalom task was found to 

be between 1.4 and 2.2 s. 

The above model was further developed to include multi-sensory integration and 

behavioural adaptation (Markkula et al., 2018d). In this model, the dynamics of the 

vestibular system are not explicitly modelled, and multi-sensory integration is 

modelled as operating directly on external stimulus, where the estimate of yaw rate 

is the summation of the otolith and SCC models. 

 �̂�  = 𝑊𝑣𝑖𝑠�̂�𝑣𝑖𝑠 +𝑊𝑣𝑒𝑠�̂�𝑣𝑒𝑠 

�̂�  = 𝑊𝑣𝑖𝑠(𝜔𝑣𝑖𝑠 + 𝑣𝑣𝑖𝑠) +𝑊𝑣𝑒𝑠(𝜔𝑣𝑒𝑠 + 𝑣𝑣𝑒𝑠) 
2.21 

Here, 𝜔𝑣𝑖𝑠 = 𝜔, 𝜔𝑣𝑒𝑠 = 𝜔𝑏𝑜𝑑𝑦 = 𝛼𝜔, the 𝜔𝑏𝑜𝑑𝑦 is the actual rotation of the driver’s 

body, 𝛼 is the motion scaling, 𝜔 is the yaw rate of the simulated vehicle, and 𝑣𝑣𝑖𝑠 

and 𝑣𝑣𝑒𝑠 are the Gaussian white noise. Then the weights are calculated with optimal 

cue integration theory cited in (Fetsch et al., 2013), where 𝑟𝑣𝑖𝑠 and 𝑟𝑣𝑒𝑠 are the 

sensory reliabilities. 

 𝑊𝑣𝑖𝑠 =
𝑟𝑣𝑖𝑠

𝑟𝑣𝑖𝑠 + 𝑟𝑣𝑒𝑠
, 𝑊𝑣𝑒𝑠 =

𝑟𝑣𝑒𝑠
𝑟𝑣𝑒𝑠 + 𝑟𝑣𝑖𝑠

 2.22 

Overall, as can be observed in the blue dashed lines of Figure 2-8 the driver’s 

behaviour is the neural outputs from their sensory modules that are transformed 

into an estimate of yaw rate, considering the predictions of past steering input. Then 

integrated the yaw rate as estimated in Eq. 2.21 and 2.22, compared to a visually 

estimated desired yaw rate, and the required steering adjustment is calculated by 

Eq 2.20.  
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Figure 2-8. Schematic representation of the diver steering model, (Markkula et 
al., 2018c).  

Behaviour adaptation was also available in this model that considers, adapting 

steering gain 𝐾, adapting effort by changing the gain 𝑘 in the evidence 

accumulation, sensory cue reweighting and reinterpreting down-scaled vestibular 

cues. These four adaptations take place separately or together in the form of a cost 

function in Eq. 2.23 to be minimised.   

 𝐽𝑡𝑜𝑡 = 𝑘𝑝𝑎𝑡ℎ𝐽𝑝𝑎𝑡ℎ + 𝑘𝑠𝑡𝑒𝑒𝑟𝐽𝑠𝑡𝑒𝑒𝑟 

𝐽𝑡𝑜𝑡 = 𝑘𝑝𝑎𝑡ℎ
1

𝑁
∑(𝑦𝑘 − 𝑦𝑘

∗)2
𝑁

𝑘=1

+ 𝑘𝑠𝑡𝑒𝑒𝑟
1

𝑇
∑𝑔𝑖

2

𝑛

𝑖=1

 
2.23 

𝑇 is simulation time, with 𝑁 discrete samples, that 𝑛 discrete steering adjustments 

with amplitude 𝑔𝑖 are applied. 𝑦𝑘 and 𝑦𝑘
∗ are the lateral position of the vehicle and 

the desired path. 

The empirical data on driver behaviour was applied to the down-scaled motion of a 

slalom driving task to validate this model (Markkula et al., 2018c). Reportedly, 

removing motion cues resulted in a decrease in task performance and an increase 

in steering effort; however, after adaptation, performance and effort improved and 

decreased, respectively. They explained that drivers make direct use of the motion 

information to shape their steering to reach an intended target, inferred from the 

fact that drivers underestimate the yaw rate due to the down-scaled vestibular 

motion cue, and used this underestimation in shaping their behaviour. Driver 

adaptation to repeated task exposures was shown to be a single gain or 

combination of increased gains in evidence accumulation, steering response, or 

sensory cue reweighting.  

Moreover, the model showed a local sub-unity optimum motion for task 

performance, and it was concluded that a full reinterpretation of the vestibular cues 
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may not have occurred. The optimal performance for a sub-unity gain was 

explained by the driver benefitting from slightly underestimating the yaw rate, which 

allowed the phase of the vehicle trajectory to align better with the desired path. In 

similar findings, the reasons are explained to be related to imperfections and false 

cues of the motion system at large scales, inability to maintain the coherence 

between the visual and vestibular cues (Berthoz et al., 2013), or difficulty in exerting 

accurate steering control in higher and more uncomfortable accelerations (Savona 

et al., 2014).  

The optimum motion scaling was also observed in the subjective ratings of various 

motion scaling, and not necessarily matched the same scaling of optimal 

performance; Berthoz et al. (2013) also made a similar subjective observation. 

Moreover, as the yaw rate underestimation does not rely on control intermittency, 

the analysis was done using the DPYRE model and reportedly found that most of 

the results were reproduced. Differences in the steering effort were due to missing 

components in the simpler model. Among the reviewed driver models it was shown 

that the DPYRE model could be employed as a task-general driver model for 

evaluations. Although, it does not explicitly represent the sensory or neuromuscular 

dynamics but has been validated to be sufficient for behaviour evaluations. 

Moreover, its parameters are easily identified in an open-loop fitting method. 

Therefore, for the analysis of the drivers’ performance in the experiments described 

in Chapter 5 and 6, the DPYRE model is used.    
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3 Motion Cueing in High-Performance Simulators  

3.1 Driving simulator subsystems  

Driving simulator development started in the late 1950s and has been supported for 

over five decades by advances in mechanics, electronics, computers and display 

technologies. The major elements of a dynamic driving simulator include visual, 

motion, auditory and proprioceptive cueing systems, in addition to the vehicle 

dynamics model, cab and control, electronics, measurement, data processing and 

storage. Cueing systems stimulate the driver sensory modalities as a consequence 

of driver’s control input in a closed-loop form i.e. steering wheel, accelerator and 

brake pedals, and gear. Vestibular motion and proprioceptive steering and pedal 

cues are the results of vehicle dynamic response to driver’s control inputs and 

environmental disturbance inputs e.g. wind gust. Visual and auditory cues result 

from the same driver-vehicle interaction in addition to the information in the driving 

scenario e.g. traffic, pedestrians. Figure 3-1 shows the main subsystems of 

simulators and how drivers interact with them. In the following sections, the role of 

each of the components is described based on (Jamson, 2010). 

 

Figure 3-1. Dynamic driving simulator subsystems (driver in the loop) 

Scene environment, is the structured database of the virtual scene that includes 

the model of the roadway and roadside objects e.g. buildings, trees, traffic, 

pedestrians. It consists of descriptions of objects regarding their geometry and 

graphics, as well as spatial and temporal information about their coordinates. 

Scenario control, is defined as the process of choreographing an event within the 

virtual environment, such as a traffic scenario. It modifies the scene environment to 

add all the items such as other cars, pedestrians based on a model of their 

behaviour. According to Bailey et al. (1999) the Logical Road Network (LRN) is 

usually used in scenario control to make decisions about prioritising and overtaking 

of the vehicles.   
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Image generation and projection display, is the computational process of 

rendering the visual cues with respect to the driver eye point. It uses the data from 

the scene environment including the static items stored in the database and moving 

items updated by the scenario control to process concerning the driver’s eye point. 

Other visual effects such as lighting and weather condition can also be added in 

this module. These are then sent to the projection displays where the images are 

“blended and colour balanced to create a wide field of view”. This is done either in a 

single channel projected on a flat surface that often provides a narrow field of view 

or by using multi visual channels that have a wider field of view, using the cylindrical 

or spherical screens. In recent years the application of virtual reality (VR) in driving 

simulators have emerged, using head mounted displays (HMD) which eliminates 

the need for projectors. However, they still have problems with graphic resolution 

and narrow field of view (FOV) that might be solved in the near future.   

Sound processing and speakers, sounds from inside the vehicle e.g. 

aerodynamic noise, engine noise, and outside e.g. traffic are recorded and 

synthesised in advance of the simulation. Those are then modified considering the 

current vehicle state e.g. vehicle and engine speed with respect to the acoustic field 

of the vehicle cab. The tuned sounds are then played to the driver through a 

surround sound system.  

Control loading and equipment, the steering feedback to the driver in the 

simulator or real world, gives the sense of force (torque) during the touch (haptic), 

that also includes high frequency vibrations. It is a rich source of information and 

together with the feedback from the pedals and gear helps the driver in lateral 

control of the vehicle, and to understand various qualities of the vehicle such as 

steering and handling. In the simulator, the control feedback through the steering 

and foot pedals is calculated by the vehicle dynamic model from the tyre-road 

interface and vehicle state. 

Motion cueing algorithm and motion platform, the physical apparatus 

representing the vehicle motions, to help provide a realistic impression and avoiding 

the mismatch between the visual and motion cues. Motion platforms (MP) have a 

limited workspace (motion envelope), hence a motion cueing algorithm (MCA) is 

also available to overcome this problem by maximising the usage of the motion 

platform while respecting its constraints. These are reviewed the next sections.  

Vehicle dynamic model, analyses the vehicle’s response to the driver’s control 

inputs and simulates the dynamic response of the vehicle on the road as it is in the 

real world. Then the vehicle states are sent to the cueing systems and scenario 

control.  
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Operating environment, dynamic simulators often consist of a full or cut down real 

vehicle cockpit. Dashboard instruments are usually available to give drivers the 

indications of the vehicle status e.g. speed, and engine revs. In more expensive 

dynamic simulators that benefit from a motion platform, the whole cab fits within an 

isolated operating environment that is attached to the motion platform. The closed 

operating environment helps to avoid unwanted noises, also the inside of it is often 

used to project the images of visual cues.     

The University of Leeds Driving Simulator (UoLDS) is made of a series of 

components shown in Figure 3-2. The central subsystem is the scenario control that 

reads the previously constructed offline scene environment, the position of the 

objects and the initial position of the vehicle. In the scenario control, the driver’s 

control inputs are fed to the vehicle dynamics model, and it continuously calculates 

the vehicle motions felt by the driver which are then supplied to the visual and 

motion systems. Moreover, simultaneously additional feedback to the driver is 

supplied by updating the vehicle sounds, dashboard instruments and the torque felt 

through the steering wheel.  

 

Figure 3-2. UoLDS simulator subsystem communications, (Markkula et al., 
2016) 

The motion system maps the motions supplied by the dynamic model to the MCA 

and MP. This is achieved through a designated classic MCA and 6 DoF hexapod 

which can supply surge, sway, heave, roll, pitch and yaw movements mounted on a 

sliding rail (XY table) that can replicate more of the surge and sway motions of the 

vehicle. Within UoLDS, the visual system is updated at the standard 60Hz to ensure 

a flicker-free display, with the state of the vehicle updated at a similar rate. The 

vehicle model (SimPack) is updated four times faster than this at 240Hz. 
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UoLDS supplies the steering wheel position, read from the vehicle cab via a CAN 

Bus, to the vehicle model, which in turn returns a steering wheel torque value based 

on the combination of steering wheel position, road wheel angle, vehicle speed and 

wheel/surface friction and elevation change. The raw steering torque value is 

corrected internally for torque phasing due to a universal joint introduced into the 

mechanical linkage of steering system on UoLDS and scaled to adjust for 

transmission losses in the torque motor itself. The system can deliver a closed-loop 

torque of up to 8 Nm (effectively 5 Nm after losses) and an open-loop torque of up 

to 35 Nm and can switch between these two modes depending upon the torque 

demanded. For scenarios within this study, the torque was supplied solely through 

the closed-loop system (Markkula et al., 2016). 

Visual and motion cueing system 

Visual cues have a major contribution to the perception of the environment, and 

with driving being primarily a visual task it has always been the primary focus of 

developments in the simulators. The presence of visual cues is crucial for drivers to 

estimate vehicle speed, distance to objects, to control heading and lateral motion of 

the vehicle. Challenges such as field of view (FOV), perceived resolution, transport 

delays, frequency of update, and depth perception are the main reasons for a 

degraded visual cue. Degraded quality of motion cues might be due to MP 

envelope and velocity constraints, small signal bandwidth and roughness. In control 

characteristics, those include the steering torque and damping, and brake pedal 

stiffness.  

Early driving simulators used analogue electronics and the visual cues was 

represented through calligraphic displays, model boards or films. The introduction 

of the digital electronics provided a big step forward to developments of primitive 

low count flat-coloured polygons in early graphic cards, to shaded polygons in 

graphic cards with garoix shading, into today’s technology of texturing the high-

count polygons of common graphic cards. With those analogue electronics, the 

processing delay was not an issue but became a problem with early digital 

computers and graphic systems that provide a complex visual field for car driving 

and resulted in artefacts in operators control tasks. The delay problem led to 

developments of compensation techniques in digital processors and image 

generators to minimise the delay. More recently the increase in the capability of PC-

based CPUs and GPUs have proliferated the development and application of 

driving simulation. The graphics processing units (GPU) have made real-time fast 

graphic rendering at a reasonable price. First single-chip GPU started with Texas 

Instruments Graphics Architecture (TIGA), then developed to 3DFX standard 

continued to the today’s NVIDIA, ATI and Intel chips. Simultaneously the display 
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system and projectors’ colour, pixel resolution, contrast and brightness were also 

being improved (Allen et al., 2011).  

The motivation for investigations in motion cueing was to improve the realism and 

avoid the mismatch between the visual and vestibular cues, that in extreme cases 

were reported to cause motion sickness. Moreover, the sensation of forces in 

driving experience also provides critical information to drivers to improve their 

control. In the experiments comparing the static no motion and dynamic motion 

simulators, it has been consistently shown that the presence of motion increases 

the driving experience realism. Moreover, it affects the drivers’ performance, such 

as decreasing the steering rates with an increase of the motion feedback to drivers 

(Berthoz et al., 2013).  

The devolvement of the motion systems for driving simulators was originally 

inspired by the ones developed for the flight simulation. However, more varieties of 

MP designs have been used in driving simulators due to the differences in vehicle 

motions between the flight and ground vehicles. In the next section, those are 

briefly introduced.  

3.2 Motion platforms 

Simulators motion platform (MP) is a mechanical device (a robot manipulator) that 

has actuators to generate motions in different directions. The dependency of motion 

cueing fidelity to the motion platform characteristics has shaped simulators from a 

simple set of pedals to simulators using actual car cabs strapped to a moving 

motion system (Allen et al., 2011). Hundreds of simulators in various designs have 

been developed, however there is still no solid conclusion available on which 

motion platform design and characteristics suit best for the demands of a realistic 

driving experience; “every proud owner of a motion simulator claims to have the 

best simulator suitable for its purpose” (Slob, 2008).  

Although for high motion demanding driving manoeuvres one to one representation 

of the motion cue is not feasible in most of the available motion platforms, the 

studies of restricted small demanding manoeuvres have reported that the one to 

one motion does not necessarily elicit a realistic driving experience (Berthoz et al., 

2013). The problem originates from many sources, among the prominent ones are 

the  

• Diversity of motion cueing characteristics of simulators and absence of a 

comprehensive database to compare them 

• Lack of a general measurement tool, and benchmark for assessment of the 

simulator fidelity 
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Blana (1996) reviewed and categorised the available simulators in that period of 

time. Simulators were classified according to their manufacturing costs to three low, 

medium and high cost driving simulators. Low cost simulators term was used due to 

arrival and usage of PCs and inexpensive graphic displays that can provide 

reasonable cueing of visual, auditory and control feelings. Medium cost simulators 

had advanced imaging techniques, large projection screens and complete vehicle 

cab and its normal controls. Both low and medium simulators had either no or trivial 

motion system available for users. High cost simulators included high degree (e.g. 

360) of the visual field of view and motion systems of a hexapod with or without 

small translational base motion. In another study characteristics, functionality, 

limitations and application of 20 contemporary simulators were reviewed and 

discussed (Weir and Clark, 1995). The mid-level simulators defined to have a large 

display with computer graphics, with vehicle cab and interactive control (e.g. 

steering) either with or without motion system. 

The first driving simulator with dynamic motion platform in Europe was developed in 

1970 by Volkswagen. It had a single screen in front of the driver without vehicle cab 

with 3 rotational DoF (roll, pitch and yaw) motion platform with limited movements. 

In 1984 Institut für Kraftfahrvehsen und Kolbenmaschinen (IKK) in Hamburg 

mounted Volkswagen Golf cabin on a sliding rail allowing a lateral motion for driver 

see Figure 3-3. Throughout 90’s many car manufacturers and research institutes 

started using simulators with motion systems, such as Ford, General Motors, 

Mazda, Nissan, BMW, Renault, Modular Automobile Road Simulator (MARS), 

Swedish National Road and Transport Research Institute (VTI), U.K.’s Transport 

Research Laboratory (TRL), Japan Automobile Research Institute (JARI), 

University of Iowa Driving Simulator (IDS) (Slob, 2008; Jamson, 2010). 

  

Figure 3-3. IKK driving simulator (left), VTI 𝚰𝚰 (right) (Nordmark et al., 1984) 
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 Hexapod and sliding rail platforms 

A very commonly used type of MPs is a parallel robot manipulator that is called 

Hexapod or Stewart platform. This mechanism was first developed by Eric Gough in 

1948 for the purpose of testing tires. Later, Stewart (1965) reintroduced the parallel 

6 degrees of freedom (DoF) system that included upper and lower plates and 6 

actuators. He explained its design capability to carry large payloads which drew 

attention in flight simulation for pilot training purposes. The Stewart platform 

benefits from the fact that the moving mass of the platform itself is contained within 

the actuators that allows room for more weight on the payload. However, it has very 

limited displacement and complex workspace due to the cross-coupling of its DoFs. 

Other low payload and large displacement designs tried to overcome this problem 

by decoupling the longitudinal and lateral motions, although the low payload limits 

the availability of full car cab. Large payload and large displacement designs make 

for the least compromise but also the highest costs (Greenberg and Blommer, 

2011). 

It was from 1985 that Daimler-Benz employed the Stewart platform and introduced 

the 6 DoF motion platform in driving simulators (Drosdol and Panik, 1985), see 

Figure 3-4. Later in 1994 they added a sliding rail to the platform for lateral motion 

cueing (Käding and Hoffmeyer, 1995a). They revealed their latest driving simulator 

in 2010 that claimed: “with this configuration we are confident to reach nearly 90 % 

of the requirements needed for car and truck development with acceptable 

technical and financial efforts” (Zeeb, 2010). 

  

Figure 3-4. Daimler-Benz driving simulators 1985 (left) (Drosdol and Panik, 
1985), 2010 (right) (Zeeb, 2010) 

Nevertheless, the presence of the hexapod platform had brought a big improvement 

in motion cueing of simulators, but due to limited workspace of the mechanism, not 

much of real vehicle’s translational accelerations could be represented. It was 

toward the end of 90’s that the performance capability of electrically driven 
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actuators in manipulators became equivalent to previously used hydraulic 

actuators, and MPs with higher capabilities were introduced. A major development 

was the sliding rails that produced the large translational motions in both X and Y 

(Surge and Sway) directions, which was optionally integrated by the hexapod.  

In 1998 National Advanced Driving Simulator (NADS1) was released at University 

of Iowa, that was most advanced driving simulator (Clark, A. et al., 2001), see 

Figure 3-5. In this simulator, a hexapod was mounted on the sliding rails giving 

more flexibility in representing X, Y translational motions, a turntable that was 

placed on top plate of hexapod that brought more freedom in yaw direction since 

the yaw motion in hexapods is restricted due to cross-coupling of actuator links.  

  

Figure 3-5. Iowa Driving Simulator 1992 (left) (Freeman et al., 1995) and, 
National Advanced Driving Simulator 2001 (right) (Clark, A. et al., 

2001) 

Using the hexapod mounted on the sliding rail became a common reliable design of 

motion platforms in 2000’s, and different size and characteristics of them were 

employed; such as the, Renault’s (Ultimate), University of Leeds Driving Simulator 

(UoLDS), Toyota driving simulator (TDS), Swedish Road and Transport Research 

Institute (VTI), see Figure 3-6. The UoLDS motion platform characteristics is 

presented in Table 3-1.  
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Figure 3-6. University of Leeds Driving Simulator (UoLDS) 2007 (top left) 
(Jamson, 2010), Toyota Driving simulator (TDS) 2007 (top right) 
(Greenberg and Blommer, 2011), VTI 𝚰𝑽 2011 (bottom left) (Fischer 
et al., 2011), Renault Ultimate (bottom right) (Dagdelen et al., 2004) 

Table 3-1. UoLDS motion characteristics, (Jamson, 2010) 

 
Excursion 

𝒎 , 𝒅𝒆𝒈° 

Velocity 

𝒎 𝒔⁄ , 𝒅𝒆𝒈° 𝒔⁄  

Acceleration 

𝒎 𝒔𝟐⁄ , 𝒅𝒆𝒈° 𝒔𝟐⁄  

Bandwidth  

(Hz) 

-3 dB 

Magnitude 

90 

Phase lag 

H
e

x
a

p
o

d
 

Surge −0.40/+0.30 −0.82/+0.82 −6.6/+6.6 5.9 7.8 

Sway −0.32/+0.32 −0.82/+0.82 −6.9/+6.9 5.3 7.2 

Heave −0.26/+0.24 −0.82/+0.82 −6.2/+6.2 9.0 9.5 

Roll −21/+21 −41.3/+41.3 −321/+321 7.8 5.7 

Pitch −20/+22 −40.7/+40.7 −310/+310 9.5 6.1 

Yaw −23/+23 −53.3/+53.3 −362/+362 8.1 6.2 

R
a

il
  

Surge −2.61/+2.59 −2.1/+2.1 −5.1/+5.1 5.6 5.3 

Sway −2.5/+2.5 −3.1/+3.1 −5.4/+5.4 5.2 7.1 
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 High bandwidth platforms 

There are other types of driving simulators that does have limited workspace 

however very high bandwidth and low latency due to their lightweight. The Vehicle 

Dynamics Simulator (VDS) of McLaren Applied Technologies (MTS) featured a 

compact, lightweight and low-friction 6 DoF MP with linear electric motors. Their 

motion platform design does not include a hexapod that eliminates its cross-

coupling problem. Although its motion envelope is small to medium, the bandwidth 

is very high that has made it favourable to the race drivers. It is claimed the fidelity 

is very high and the ride and handling aspects of the car are easily evaluated, high 

enough that 95% of car setup in F1 can be done before the real car goes to a real 

track. Moreover, it is integrated with the driver in the loop (DIL) technology that 

allows drivers to give subjective feedback about the vehicle components and 

systems in advance of physical prototyping. Its design makes integration of the 

Hardware-in-the-Loop (HIL) and Advanced Driver Assistance Systems (ADAS) 

technologies easier, see Figure 3-7. 

 

Figure 3-7. Vehicle Dynamics Simulator (VDS) of McLaren Applied 
Technologies (MTS), 2017 

The Advanced Vehicle Driving Simulator (aVDS) of AB Dynamics, developed by 

Williams Advanced Engineering, featured a low-friction 6 DoF MP with linear 

electric motors. They employed wedge actuator modules mounted on two parallel 

rails, replacing the conventional hexapod and providing larger workspace. The 

latency of their system is low ranging from 4 to 10 ms, and the bandwidth is quite 

high ranging from 15 to 50 Hz, in various direction. It is also able to carry designed 

to carry a nearly large payload of 500 Kg capacity. It is also integrated with the 

driver in the loop (DIL) and applicable for the Advanced Driver Assistance Systems 

(ADAS) testing technologies, see Figure 3-8.  
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Figure 3-8. Advanced Vehicle Driving Simulator (aVDS) of AB Dynamics 

 Alternative platforms 

In meanwhile, few alternative mechanisms also emerged other than the regular 

usage of the hexapod and the sliding rail. DESoriëntatie DEMONstrator Amst 

(DESDEMONA) is a serial manipulator that has the ability of unlimited roll, pitch and 

yaw rotations. Its design inherited from centrifugal flight simulators (mainly used for 

High-G2 training of pilots), which made the simulator more applicable for military 

fight jet simulations, however it is also used for driving simulation. The rotational 

mechanism is placed on a 2 metre vertical (heave) linear track. The whole structure 

moves horizontally (translational motion) on a 4 metre radius centrifuge arm, which 

this arm rotates around a fixed yaw axis. From unique capabilities of this motion 

system is its ability to generate sustained accelerations up to 3g, applicable for 

evasive manoeuvres (Mayrhofer, 2009), see Figure 3-9. 

  

Figure 3-9. DESDEMONA 2007 flight and driving simulator (Mayrhofer, 2009) 

                                                

2 High-G training is for aviators and astronauts who are subject to high levels of 
acceleration (G). It is designed to prevent a g-induced loss of consciousness, a 
situation when g-force (the g-force acceleration is the cause of an object's 
acceleration in relation to free-fall due to weight of the object) moves the blood 
away from the brain to the extent that consciousness is lost 
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Another mechanism, employed in flight and driving simulations is a six-joint serial 

robot, which was originally designed for use in industries, e.g. to pick and place 

items in an assembly. Max Planck Institute (MPI) introduced their simulator using 

this mechanism called CyberMotion simulator. They added a single direction sliding 

rail to for more translational motion, and an extra rotational joint motion to its end 

effector (cabin). The latter was added for the motions in both backward and forward 

directions. In comparison to Stewart platform (without rail) this mechanism has 

advantages of larger workspace specially in yaw direction, higher dexterity and 

ability to render centrifugal accelerations (Nieuwenhuizen and Bulthoff, 2013).  

  

Figure 3-10. MPI CyberMotion Simulator (left) and its 8 axes (right) 
(Nieuwenhuizen and Bulthoff, 2013) 

Another exotic driving simulator is Atlas Motion System (ATMOS) represented by 

Heinz Nixdorf Institute of the University of Paderborn which was developed by 

Rheinmetall Defence Electronics GmbH in 2009 (Hassan, 2014). This was 

designed with the aim of a task-based reconfigurable driving simulator. The motion 

platform has 5 DoF with that consists of two dynamical parts. The first part has 2 

DoF and is used to simulate the horizontal translational motions. It has the 10 and 

13.5 degrees of roll and pitch available to be used for tilts motion. Four linear 

actuators are used to generate the motions in the longitudinal and lateral directions. 

The second part is the shaker system, which has 3 DoF to simulate the roll and 

pitch and heave motions of the vehicle. The shaker is driven by a three crank 

mechanism and using three electrical motors. 
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Figure 3-11. Atlas Motion System (ATMOS) driving simulator 2009 (Hassan, 
2014)  

There are also conceptual driving simulator designs. Drive and control company 

Bosch – Rexroth has been manufacturing simulators since 1989. They started with 

flight simulators and their work extended to cabin crew trainers and the more 

advanced and sophisticated driving simulators. In a project sponsored by this 

company Slob et al. (2009) tried to mechanically design a motion system with the 

aim of higher fidelity of motion cueing. In this design of simulator motion platform is 

driven and supported by wheels for planar surge and sway translational and yaw 

rotational motions and driven by three crank mechanisms for roll and pitch 

rotational motions and heave translational motion (Slob, 2008), see Figure 3-12. 

  

Figure 3-12. Assembled motion system (left), rotational mechanism (right) 
(Slob, 2008) 

Various types of motion platforms that have been used in flight and driving 

simulators are presented in this section, it was tried to gather information about 

characteristic of all, which are presented in tables in Appendix A. A commonly used 

is the hexapod with or without base motion (sliding rail); among of all, it is not clear 

what size of sliding rail is sufficient to generate acceptable fidelity of motion cueing. 
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Moreover, recently the small workspace motion platforms are employed that 

reportedly are applicable for vehicle design purposes. Although, clearly this type of 

simulators only produces very high frequencies of vehicle motion, this range of high 

frequencies might be of importance to professional drivers in the vehicle design 

process. In this thesis due to proven research reliability and availability of the 

apparatus, the focus is on the commonly used hexapod mounted on sliding rail, and 

exploration of its characteristics and requirements.   

There are other factors such as platform performance latency, smoothness and 

vibrations that have impact on the fidelity, but there is no information available to 

compare among simulators. In addition to ambiguity of motion platform 

characteristics and their fidelities, varieties of MCAs and custom tunings makes it 

even more complicated to draw a conclusion on adequate characteristics of a 

motion platform. In the next chapters, it is attempted to some extent enlightening 

the ambiguity by experimenting the differences between the MCAs, illustrating the 

effect of tuning MCA parameters and the optimal way of tuning them, and finally 

addressing the requirements for the sliding rail workspace size.  

3.3 Motion cueing algorithms 

 Introduction  

Several subsystems are designated in the simulators to generate the vestibular 

motion cues. It is the motion system task to mimic the real world vehicle motion 

cues to the user to help elicit a realistic impression of driving. However due to 

limited physical capabilities of a motion platform (MP), another subsystem is 

designed in the motion system named as Motion Cueing Algorithm (MCA), Motion 

Driving Algorithms (MDA) or Motion Cueing Strategy (MCS) in the literature. The 

MCA is designed for representing the displacements, velocity and mainly 

accelerations of the real vehicle to drivers while keeping the MP within its physically 

limited envelope (also named excursion and workspace). These objectives have 

motivated researchers to use various approaches utilising various control methods 

from Linear, Adaptive to Optimal and Predictive strategies. Here most commonly 

used types of MCAs are introduced and discussed. Moreover, the various 

characteristics and structures of MP make it more complicated to decide what are 

the requirements of MCA and MP with an acceptable level of fidelity. 

The vehicle accelerations in each direction in space can be divided into transient 

(short-lived) and sustained (long-lived). Transient accelerations occur and 

disappear in a short period of time thus have higher frequencies. These can be 

reproduced quite accurately in most of the dynamic simulators at the onset of a 



47 
 

manoeuvre, due to their limited required MP excursions. The main issue in 

simulators is the representation of sustained accelerations that remain for longer 

periods of time, include lower frequencies and require large MP excursions. The 

sustained motions are mainly supported in surge, sway and yaw directions, 

however driving a car with variable speed uphill or downhill produces sustained 

heave acceleration as well. Unlike flight simulators, there is no sustain roll and pitch 

accelerations in driving simulators. 

Almost no motion platform translational workspace can handle the long-lived 

translational accelerations of a vehicle due to great demand of motion envelop that 

far exceeds a conventional one. Therefore, another technique called tilt-

coordination is often used to represent low frequency accelerations. In this 

technique, the whole human body including the head is rotated that aligns the 

gravity vector on the vestibular system and produces an impression of a 

translational acceleration, without letting the driver perceive the rotation. This is 

feasible by rotating under SCC rotation perception threshold, in addition to 

simultaneous coordination of other visual, haptic and aural cues. 

The lower tilt angle, angular velocity and acceleration limits the build-up of tilt 

acceleration at the expense of more motion error, and vice versa. Although it is 

desirable to have less restricted tilt settings to achieve lower motion error, at the 

same time, the tilt rotations need to be limited to avoid to be noticed by the driver. In 

other words, there is a trade-off between “the prompt/over-tilt response against the 

lagged/correct-tilt” (Jamson, 2010). Hence, the selection of an appropriate tilt 

setting requires considerations about the rotational motion perception through the 

semicircular canals (SCC). In the SCC model of Meiry (1966), the rotational 

acceleration threshold was of 8 𝑑𝑒𝑔/𝑠2 for 0.2 seconds, and 0.3 𝑑𝑒𝑔/𝑠2 for 10 

seconds of excitations. There have been many studies aiming to address an 

appropriate trade-off, reviewed in the next chapters. 

The tilting point or motion reference point is the centre of rotation around which the 

simulator is tilted. Depending on whether the location of the tilt point is located 

above or below the driver’s head, during the tilt, additional velocity and acceleration 

are generated respectively in same or opposite (false cue) direction of the desired 

tilt acceleration. Ideally this point needs to be located on the driver’s head vestibular 

system positions to avoid any of the additional motions, however it requires greater 

actuator strokes of a hexapod MP. Therefore, in a conventional hexapods MP, this 

point is often located at the upper plane below the cabin to allow more workspace 

for motions in other direction. 

In studies comparing the tilt point location, in longitudinal braking and lateral 

steering control driving tasks, drivers were unable to distinguish the change of tilt 
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point location from drivers head to a lower point, although the higher position did 

result smoother braking (Jamson, 2010). In another study by the subjective 

evaluations, the change of tilt point location was found to have a minor effect, with 

slight improvement when it was located higher than drivers head (Fischer and 

Werneke, 2008).  

 Nonlinear scaling of vehicle motion 

The limitations of the MP usually require the vehicle motions to be scaled down 

either before or within the MCA structure. Linear scaling is often used in classic 

algorithms that attenuates the acceleration signal with the same amplitude to 

bringing the max/min of the signal within the working range of motion platform. This 

might make the signal in situations of low amplitudes not perceivable any more, 

where the motion platforms are usually capable of cueing. On the other hand, in 

situations of the signals of high amplitude, the scaling might still be high and cause 

large excursions. The solution over this was introduced by using nonlinear scaling 

(Telban and Cardullo, 2005). In this method, the signal of low amplitude is 

represented nearly one to one and a higher amplitude is more scaled down to fit 

within the limits of MP.  

A commonly used nonlinear method is the third order polynomial scaling, however 

selecting its coefficient parameters is a complicated process and the wrong choice 

may cause perceptible distortion and a local minimum during large-range 

monotonic signal scaling (Chao et al., 2014). In the same paper, few of the 

nonlinear methods are reviewed, and they introduced a modified third order 

polynomial scaling that addresses selecting optimal parameters that guarantee the 

stability and avoiding the local minimum, described below. The third-order 

polynomial equation is   

 𝑦 = 𝑐3𝑥
3 + 𝑐2𝑥

2 + 𝑐1𝑥
1 + 𝑐0 3.1 

Defining the 𝑥𝑚 and 𝑦𝑚 as expected maximum input and output are known in priory 

to simulation, the 𝜆0 and 𝜆1 are the slope of scaling at 𝑥 = 0 and 𝑥 = 𝑥𝑚 of input 

acceleration, the four characteristics for the nonlinear gain are 

{

𝑥 = 0 → 𝑦 = 0
𝑥 = 𝑥𝑚 → 𝑦 = 𝑦𝑚

�́�𝑥=0 = 𝜆0 
�́�𝑥=𝑥𝑚 = 𝜆1 

 

The coefficients of the third order polynomial are calculated as  

 

{
 

 
𝑐0 = 0
𝑐1 = 𝜆0

𝑐3 = 𝑥𝑚
−2(3𝑦𝑚 − 2𝜆0𝑥𝑚 − 𝜆1𝑥𝑚)

𝑐4 = 𝑥𝑚
−3(𝜆0𝑥𝑚 − 2𝑦𝑚 + 𝜆1𝑥𝑚)

 3.2 
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Choosing the 𝜆0 and 𝜆1 are usually based on subjective discrimination during the 

simulations and there are no solid guidelines for selecting them, and wrong choice 

of them may lead to local minima. In the introduced third order polynomial equation 

the scaling scope 𝐶 is defined as 𝑥𝑚 𝑦𝑚⁄  and when it is in a stable region the local 

minima is avoided. To be within the stability region it is proven that the parameters 

𝜆0 and 𝜆1 needs to be chosen to ensure the scaling scope 𝐶 lies within the stable 

region. The choice of maximum scaling scope 𝐶𝑚 and the choice of 𝜆0 and 𝜆1 as 

Eq. 3.3 guarantees and maximises the stable region, which is called the optimal 

parameter configuration scaling (OPCS).  

 

𝐶 =
𝑥𝑚
𝑦𝑚

 

𝐶𝑚 =
3

(√𝜆1 −√𝜆1 2⁄ )
2
+ 3𝜆0 4⁄

 

To make 𝐶 ≤ 𝐶𝑚 the 𝜆 is selected as 

{
𝜆0 =

4

𝐶

𝜆1 =
𝜆0
4

 

3.3 

The nonlinear scaling is used for the MPC model in the experiment designed in 

Chapter 6, and the classic and MPC models in Chapter 5 used linear scaling.    

 

 Classic algorithm 

The most commonly used MCA in dynamic simulators is the classical algorithm that 

also called washout filters, originated back to outspread works toward the end of 

the 1960s in flight simulations as a solution for compromising between one to one 

acceleration representation and MP constraints. It was initially developed by 

considering which motion cues are more important to pilots and which are 

attainable by motion system, and finally addressing mathematical model for motion 

cueing (Conrad and Schmidt, 1969; Conrad and Schmidt, 1970; Conrad et al., 

1973). They extended their model to multi DoF which became the baseline for the 

motion cueing in flight simulators called the classic MCAs. Their method was about 

the onset of a cue, plus the representing the acceleration feeling though tilt co-

ordination. Reid and Nahon (1985) further updated the model and made a 

comparison among MCAs which became the definition of the classical MCA, 

which is the most widely used today. A review of its concept and parameters is 

available in (Grant and Reid, 1997), and (Romano et al., 2017) introduced an 

updated layout of the MCA for the driving simulators. 
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Model structure 

A general simplified schematic structure of the classic algorithm is presented in 

Figure 3-13. It is often a combination of scale-factors, high and low-pass filters, 

limiters and coordinate transformation. The input to the MCA is vehicle motions, 

while the output of it is the desired motion platform set points. The scale-factors 

reduce the acceleration output magnitude represented in comparison to the input 

from the vehicle motions. While the input vehicle acceleration passes through the 

high-pass filter the transient part of acceleration is separated to be represented by 

MP translational movements (linear motion). The sustained is separated by low-

pass filter which is transformed to tilt coordination and is added to the rotational 

channel to be represented by MP rotational movements. Unlike the flight simulators 

in driving simulators due to limited degrees of rotations in manoeuvres, the 

rotational channel could be replaced by simple direct feeding of vehicle rotations. 

 

Figure 3-13. Classic motion cueing algorithm, (Jamson, 2010) 

The MCA response is usually evaluated in the time and frequency domain, see 

Figure 3-14. The top picture is the time domain response, considering a step 

acceleration input, the transient motion is separated by high-pass filtering, due to 

limited MP translational envelope, not all the acceleration could be generated 

through this onset cue (blue line). The scale-factor and the filter cut-off frequency(s) 

are selected considering the MP constraints before the start of the simulation. The 

tilt coordination through the low-pass filtering separates the sustained motion (red 

line) and compensates for the remainder of motion that was not represented by the 

onset cue. The slow build-up of tilt acceleration is due to rotating under SCC 

angular velocity and acceleration perception thresholds, requiring a longer time to 

compensate. The scale-factor and the filter cut-off frequency(s) of the low-pass filter 

define the tilting constraints. The black line is the total motion that the driver 

experiences that is the summation of both translational and tilting acceleration. 
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Clearly, there is missing acceleration compared to input because of the mentioned 

MP and tilting limitations.  

Similarly, in the bottom picture, the response of low and high-pass filters and their 

combination is shown in the frequency domain. In the phase and gain plots, the 

black lines show the summation of both filters, as it is observable that is not flat 

zero line, reflecting the phase and magnitude distortion between the input and 

output accelerations. The distortion can be improved by decreasing the high-pass 

filter or increasing the low-pass filter’s cut-off frequencies, that results in larger MP 

excursion and rapid tilt angular velocity and acceleration, respectively. 

Consequently, the limited motion envelope of the MP and under threshold tilting 

causes the time domain amplitude or frequency domain phase and gain distortions 

between the vehicle motion in the simulator and real world.  

 

 

Figure 3-14. MCA step response, time domain (top) and frequency domain 

(bottom) 
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Selecting the MCA parameters (tuning it) has significant impact on the motion 

cueing fidelity of the simulator, those should be picked to have minimum errors 

between the MCA input (real vehicle motions) and MCA output (simulator motion 

platform set-points), while at the same time respecting the motion platform 

envelope and tilting constraints. The errors are usually minimised in the time 

domain i.e. amplitude error, and/or frequency domain i.e. gain and phase errors. 

The inevitable errors cause the discrepancy between the visual and motion cues 

which is undesirable. The question rises here that ‘what is the maximum 

discrepancy to have acceptable fidelity?’, that has been the subject of studies to 

address the maximum undetectable distortions between the visual and motion cues 

in flight and driving simulators, and to find out how it affects the drivers’ perception 

and behaviour, this is further discussed in sections 3.4. Later in Chapter 8 the effect 

of the MCA parameters is thoroughly reviewed. 

The classic MCA is always tuned for the worst-case scenario of vehicle motion 

inputs and considering the MP limits. This results in minimum exploitation of MP 

workspace during low to average amplitudes of vehicle motion inputs, that is being 

considered as the biggest disadvantage of this algorithm. However, it is possible to 

slightly improve the performance of the classic MCA per case by pre-tuning its 

parameters for a specific vehicle motion in a manoeuvre. In addition to above, the 

tuning is always a complicated procedure because several criteria (described 

earlier in this section) need to be met at the same time that takes loads of effort to 

find precise parameters manually. The explained issues were the motivation for 

developing an automated approach to finding the best classic MCA tuning 

parameter settings for a specific MP and manoeuvre that minimises motion 

discrepancy and meets the fidelity requirements, as well as considering the motion 

platform constraints, that is introduced in Chapter 5 and further used in Chapter 8. 

 Model predictive control algorithm  

Over the past few decades, the model predictive control (MPC) has been receiving 

increasing attention from researchers in a variety of industries and academic 

communities. Richalet et al. (1978) first developed it, and its effectiveness when 

applied to large scale chemical process industry was proven. Furthermore, since 

then it has been used in various control engineering applications such as chemical 

plants, power systems, electronics, robotics oil refineries, supply chain 

management, stochastic control, problems in economic and finances. Wang, L. 

(2009) has mentioned four aspects that make this control method more attractive  

• Design formulation that provides the intuitive understanding and parameter 

tuning of a multivariable control system framework 

• Ability to handle soft and hard constraints on control variables  

• Online optimisation process 
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• The simplicity of the design framework in handling complex problems. 

In industrial process control applications, the MPC is more advanced control 

technique than standard proportional–integral–derivative (PID) control mainly 

because it can deal routinely with equipment and safety constraints, intuitive 

understanding and tuning makes it superior to conventional advance linear control 

(Maciejowski, 2002).  

Using long enough prediction horizon, the predictive control is similar to the linear 

quadratic regulator (LQR) in both continues and discrete time models. The 

difference between them is that predictive control uses a moving time horizon 

window whilst LQR uses a fixed window. The moving horizon window adds the 

ability of real-time optimisation with hard constraints on plant variables to predict the 

control inputs. Having a large prediction horizon raise the numerical complexity 

problem, that also requires either the plant model to be asymptotically stable or 

using exponential weights in the cost function for transformation from unstable to 

stable; using the later also guarantees the closed-loop stability (Wang, L., 2009).  

Dagdelen et al. (2004); Dagdelen et al. (2009); Augusto and Loureiro (2009) first 

successfully employed the model predictive control as MCA in simulators. Which 

further extended on its mathematical implicit/explicit solution techniques (Fang and 

Kemeny, 2012a) and stability analysis (Fang and Kemeny, 2016). Using this 

method as MCA, in addition to its common advantage of respecting the constraints 

on both inputs and outputs in a real-time optimisation problem, brought the 

capability of integrating human perception and motion platform models to calculate 

the optimal solutions. As a result, in this method, the motion platform constraints 

and human perception are always respected, and exploitation of workspace is 

maximised during simulations.  

Due to the parallel architecture of the hexapod platform and strong coupling 

between one DoF and others, the motion workspace is a complex function of all six 

Cartesian DoF. In actuator space, however, the workspace is completely 

uncoupled; the six actuator limits are independent of each other that eases applying 

the constraints on actuator physical limits and avoids actuator limiting. Garrett and 

Best (2013) used this approach, that integrated a plant kinematic model of hexapod 

represented in actuator space system. 

Model structure 

The general objective of model predictive control is to compute future manipulated 

control variable 𝑢 to optimise the future plant output behaviour 𝑦 within a limited 

time window. Discrete-time output reference tracking is a common framework of 

MPC, an optimisation problem is solved over the prediction horizon 𝐻𝑝 to optimally 
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calculate a control input action 𝑢 over a control horizon 𝐻𝑢 (𝐻𝑢 ≤ 𝐻𝑝) by minimising 

a cost function and satisfying constraints. There are different variables known as 

output or measured, input or manipulated and state variables, and all could be 

constrained. The plant output variable needs to track a given reference input signal, 

the manipulated variables are the plant control inputs, and the latter is the plant 

model states.    

At time 𝑘 a measure of current plant output 𝑦(𝑘) and reference input 𝑟(𝑡|𝑘) where 

𝑡 ≥ 𝑘 is available. A predictive controller has an internal state estimator model of 

the plant which predicts the behaviour of plant states from current time 𝑘 over the 

prediction horizon 𝑦(𝑘 + 𝑖|𝑘), 𝑖 = 0,1,… ,𝐻𝑝. The predicted output behaviour 

depends on the control input trajectory 𝑢(𝑘 + 𝑖|𝑘)  𝑖 = 0,1, … ,𝐻𝑝 − 1 which is 

calculated by minimising a cost function that includes the tracking error Eq. 3.4 and 

control input, while respecting constraints. Once the optimal input sequence 

�̂�(𝑘 + 𝑖|𝑘) is computed, the control input at the current time step is selected as its 

first value 𝑢(𝑘) = �̂�(𝑘|𝑘). At the next time step 𝑘 + 1, a new output 𝑦(𝑘 + 1) is 

measured and the process is iterated similarly. Since at each time step, the 

prediction horizon is shifted to look 𝐻𝑝 time steps ahead, this procedure is known as 

‘receding horizon’. The principles are graphically shown in Figure 3-15. 

 𝑒(𝑘 + 𝑖|𝑘) = 𝑟(𝑘 + 𝑖|𝑘) − 𝑦(𝑘 + 𝑖|𝑘)   3.4 

 

Figure 3-15. Schematic representation of MPC principle, Wikipedia. 

3.3.4.1 Plant model  

Different approaches have been proposed for MPC model structures in the 

literature. During the years finite impulse response (FIR), step-response, transfer 

function and state-space models have been used to represent the plant. The first 

three type models are usable only for stable systems and require large model 

orders (Wang, L., 2009). The FIR models were appealing to process engineers 
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because they give a description of process time delay, response time and gain. 

Transfer functions are a better tool and give a clearer description of process 

dynamics but gets tangled for the large MIMO systems. The simplicity of the design 

framework of state-space models specially to represent MIMO systems, direct link 

to linear quadratic regulators and accessible state variables, have given growing 

popularity to it in control theory applications. Therefore, the state-space model was 

chosen to be used in this thesis.  

Provided formulation of the MPC for the remainder of the sections is based on 

(Wang, L., 2009), and MCA formulations are mainly inspired by (Augusto and 

Loureiro, 2009; Maran, 2013; Garrett and Best, 2013). A linear discrete state-space 

model of a strictly proper MIMO system is in the form of Eq. 3.5. In the ‘receding 

horizon’ control, current information of the plant is used for prediction and control. 

Hence the control inputs do not have a direct effect on the plant outputs, that 

requires the plant model to be strictly proper (𝐷𝑚 = 0). In this equation there are 𝑚 

number of control input or manipulated variables (𝑢), 𝑞 number of plant outputs 

variables (𝑦), and 𝑛 number of state variables vector (𝑥𝑚).  

 
𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑚x𝑚(𝑘) 
3.5 

The MPC formulation used here considers optimisation of input difference 

∆𝑢𝑚(𝑘) = 𝑢𝑚(𝑘) − 𝑢𝑚(𝑘 − 1), which also gives the advantage of the flexibility of 

adjusting the maximum changes of the control input in a time step. Taking the 

difference of the above equation new state-space equation can be written    

 

∆𝑥𝑚(𝑘 + 1) = 𝐴𝑚∆𝑥𝑚(𝑘) + 𝐵𝑚∆𝑢(𝑘) 

∆𝑦(𝑘) = 𝐶𝑚∆x𝑚(𝑘) or 

∆𝑦(𝑘 + 1) = 𝐶𝑚∆x𝑚(𝑘 + 1) 

Where 

∆𝑥𝑚(𝑘 + 1) = 𝑥𝑚(𝑘 + 1) − 𝑥𝑚(𝑘) 

∆𝑥𝑚(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝑚(𝑘 − 1) 

∆𝑢𝑚(𝑘) = 𝑢𝑚(𝑘) − 𝑢𝑚(𝑘 − 1) 

∆𝑦(𝑘) = 𝑦𝑚(𝑘) − 𝑦𝑚(𝑘 − 1) 

 

To relate the states ∆𝑥𝑚(𝑘) to output 𝑦(𝑘), the substitution of the above equations 

is needed  

 𝑦(𝑘 + 1) − 𝑦(𝑘) = 𝐶𝑚𝐴𝑚∆x𝑚(𝑘) + 𝐶𝑚𝐵𝑚∆𝑢(𝑘)  

A new augmented state variable vector is defined 
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 𝑥(𝑘) = [∆x𝑚(𝑘)
𝑇 𝑦(𝑘)𝑇]𝑇  

Obtaining the augmented state-space model of  

 

𝑥(𝑘 + 1) = [
𝐴𝑚 𝑜𝑚

𝑇

𝐶𝑚𝐴𝑚 𝐼𝑞×𝑞
] 𝑥(𝑘) + [

𝐵𝑚
𝐶𝑚𝐵𝑚

] ∆𝑢𝑚(𝑘) 

𝑦(𝑘) = [𝑜𝑚 𝐼𝑞×𝑞]𝑥(𝑘) 

3.6 

Where the 𝐼𝑞×𝑞 is the identity matrix with 𝑞 × 𝑞 dimension, 𝑜𝑚 is 𝑞 × 𝑛 zero 

matrices. The dimensions of 𝐴𝑚, 𝐵𝑚 and 𝐶𝑚 are 𝑛 × 𝑛, 𝑛 ×𝑚 and 𝑞 × 𝑛 

respectively.  

3.3.4.2 Quadratic Programming 

Quadratic programming (QP) is a method of solving mathematical optimisation 

problems where the quadratic function of variables has to be minimised with linear 

constraints on those variables. QP in its standard form has been widely studied, 

and various solution methods have been developed with cons and pros considering 

the characteristics of the optimisation problem (Wang, Y. and Boyd, 2010). In this 

thesis since the MPC problem has quadratic cost function, and constraints are 

linear, thus was feasible to convert it to a QP one.  

A classic formulation of QP optimisation problem that has a quadratic function to be 

minimised, and constraints are linear, is usually as 

 
min𝑓(𝑥) =

1

2
𝑥𝑇𝐻𝑥 + 𝑥𝑇𝑐 

𝐴𝑥 ≤ 𝑏 

3.7 

𝑥, 𝑐, 𝑏 ∈ ℝ𝑛 and 𝐻,𝐴 ∈ ℝ𝑛×𝑛. 𝐻 is Hessian symmetric matrix. If 𝐻 is positive 

semidefinite then function 𝑓 is convex, then if there exists a feasible solution 𝑥∗ and 

𝑓 has a lower bound in the feasible region, there exists a global solution. If 𝐻 is 

positive definite and there exists a feasible solution 𝑥∗ then it is the global minimum, 

according to Boyd and Vandenberghe (2004) cited in (Maran, 2013). It is 

conventional and useful to reformulate the cost function to use ∆𝑈 as the solution 

vector 𝑥 to be minimised. 

Introducing the constraints increases the complexity of finding the solution and 

cannot be solved analytically, hence numerical solutions have to be used to a QP 

problem, and appropriate solver is required. Moreover, in real-time applications, the 

high control frequency update (usually between 50 and 150 Hz) requires the solver 

to be fast and efficient. The solvers are mainly divided into offline and online 

algorithms. There have been many techniques introduced to decrease the 

computational efforts and solve the QP problem at higher rates. It has been shown 

that by reordering the variables, the complexity of MPC becomes linear rather than 
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cubic. Another method of reducing the complexity is by reformulating it in terms of 

control input, together with a move blocking strategy where the input is assumed to 

be constant or fixed portion of the horizon. The hot-start is another strategy, that 

uses the results solved in previous steps to find the better starting points for current 

step (Wang, Y. and Boyd, 2010).    

In offline solvers, the control law is precomputed considering all possible instances 

of the problem, and in during online process controller works similar to picking up 

from a lookup table. The explicit MPC is a widely used example (Bemporad et al., 

2002), where the optimisation step is computed offline before the online process. In 

this method, the constraints are used to partition the model in polyhedral critical 

regions, and in these regions, the optimal control law is an affine function of the 

states. In the offline process these are calculated, and related parameters are 

stored, and during the online process the region which current state belongs to is 

evaluated, and corresponding affine control law is applied. Thus, there is a lower 

online computational process. The problem with this method is that the 

computational burden grows exponentially with the size of the problem and number 

of constraints hence it is efficient only in low dimension problems, few constraints 

and short time horizon. Moreover, this method does not allow the time-varying 

systems, constraints and cost function, that makes the online tuning difficult, which 

is applicable in driver in the loop tuning of the MCA parameters (Maran, 2013).  

The online QP solvers mainly divided into main categories of ‘Interior Point’ and 

‘Active Set’ methods. In the Interior Point method, the convexity of the cost function 

is exploited, and the complexity is polynomial. They lack the ‘hot-start strategy’ that 

reduces the computational burden. The primal barrier interior point method was 

updated using a collection of methods to find the high quality control using the sub-

optimal solution for each step, that is claimed to increase the calculation speed up 

to 100 times faster than a general optimisation method (Wang, Y. and Boyd, 2010). 

The Active Set method is inspired by the explicit approach, to find the current 

critical region however without pre-computations. Similar to the explicit method 

inside the critical regions the solutions are an affine function of the states. In this 

method, the polynomial complexity (worst case) is not always achieved and a hot 

start strategy is available.  

In the MPC model used here the default QP solver designated in MATLAB 2016a, 

MPC Toolbox, which is a modified version of Active Set method. This decision was 

made base on the tens of offline motion cueing simulations in worse-case 

scenarios. Testing for input/output signal rate transition, surge/pitch, sway/roll and 

heave/yaw controllers separately executing on 4 cores of a dual Xeon CPU 16-core 

Concurrent iHawk hardware platform running the real-time derivative of the RedHat 
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Linux operating system, that could afford the calculation efforts. After many test 

runs and time measurements, it was observed that using the originally designated 

QP solver of the KWIK algorithm provides satisfactory performance for real-time 

motion cueing.   

The formulation of the objective function and the inequality and equality constraints 

used in Matlab MPC quadratic programming solver based on the KWIK algorithm 

(Schmid and Biegler, 1994) has the form of  

 

min𝑓(𝑥) =
1

2
𝑥𝑇𝐻𝑥 + 𝑥𝑇𝑐 

𝐴𝑥 ≤ 𝑏 

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞 

3.8 

This solver algorithm uses the reduced hessian successive quadratic programming 

(SQP), which is shown to be suitable for large scale optimisation problems. In the 

pre-processing phase, linear feasibility of the nonlinear programming formulation is 

being solved, which is then served to determine an initial consistency to select a 

non-singular set of basic variables and to identify dependency between the equality 

constraints. This algorithm QPKWIK was an improvement to the dual active set 

method of Goldfarb and Idnani (1983). It uses the inverse Cholesky factor of the 

Hessian matrix at each time step that reduces the computational complexity. It has 

the ability to determine a search direction when infeasible QP subproblems are 

encountered by relaxing the quality constraints (Schmid and Biegler, 1994).  

“This solver requires the Hessian to be positive definite. In the first control step, 

KWIK uses a cold start, and the initial guess is from the unconstraint solution. If 𝑥 

satisfies the constraints it is the optimal solution 𝑥∗ and stops. Otherwise, at least 

one of the linear inequalities constraints must be satisfied as equality, then an 

efficient, numerically robust strategy is used by the solver to determine the active 

constraint set satisfying the standard optimisation conditions. In the next control 

steps, a warm start is used. In this case, the active constraint set determined at the 

previous control step becomes the initial guess for the next” (MathWorks, 2016a).  

3.3.4.3 Cost function 

The next step of the design of a predictive control system is calculating plant output 

with future control input, within an optimisation window. Here the current time is 𝑘𝑖 

and length of optimisation window is 𝑁𝑝 number of samples i.e. the prediction 

horizon. Assuming at sampling time 𝑘𝑖 the state variable vector 𝑥(𝑘𝑖) is available 

from the measurement. The future control trajectory is 

∆𝑢(𝑘𝑖)
𝑇 , ∆𝑢(𝑘𝑖 + 1)

𝑇 , … ,  ∆𝑢(𝑘𝑖 +𝑁𝑐 − 1)
𝑇 
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Where 𝑁𝑐 is control horizon number of samples, that defines the number of 

parameters to capture future control trajectory. Given the 𝑥(𝑘𝑖) the future state 

variables are predicted for the length of optimisation window 𝑁𝑝. The control 

horizon 𝑁𝑐 is always chosen to be smaller or equal the prediction horizon 𝑁𝑝.   

𝑥(𝑘𝑖 + 1|𝑘𝑖),
𝑇 𝑥(𝑘𝑖 + 2|𝑘𝑖)

𝑇 , … , 𝑥(𝑘𝑖 +𝑁𝑝|𝑘𝑖)
𝑇
 

For the state-space representation of the plant, the future state variables sequence 

corresponding the future control input is 

𝑥(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖) 

𝑥(𝑘𝑖 + 2|𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 1|𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) 

           = 𝐴2𝑥(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) 

⋮ 

𝑥(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 +𝑁𝑐 − 1)  

From the predicted state variables, the predicted output variables become 

𝑦(𝑘𝑖 + 1|𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖) 

𝑦(𝑘𝑖 + 2|𝑘𝑖) = 𝐶𝐴
2𝑥(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖 + 1) 

⋮ 

𝑦(𝑘𝑖 +𝑁𝑝|𝑘𝑖) = 𝐶𝐴
𝑁𝑝𝑥(𝑘𝑖) + 𝐶𝐴

𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯

+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)  

Defining new vectors in terms of current state variable 𝑥(𝑘𝑖) and future control 

parameter ∆𝑢(𝑘𝑖 + 𝑗), 𝑗 = 0,1, … ,𝑁𝑐 − 1. 

 
∆𝑈 = [∆𝑢(𝑘𝑖)

𝑇 ∆𝑢(𝑘𝑖 + 1)
𝑇 … ∆𝑢(𝑘𝑖 +𝑁𝑐 − 1)

𝑇]𝑇 

𝑌 = [𝑦(𝑘𝑖 + 1|𝑘𝑖)
𝑇 𝑦(𝑘𝑖 + 2|𝑘𝑖)

𝑇 … 𝑦(𝑘𝑖 +𝑁𝑝|𝑘𝑖)
𝑇
]
𝑇

 
3.9 

Representing the above equations in compact matrix form as 

 

𝑌 = 𝐹𝑥(𝑘𝑖) + Φ∆𝑈 

𝐹 =

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

, Φ =

[
 
 
 
 
𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑁𝑝−1 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 ⋯ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

 
3.10 

The objective of the predictive controller is to find the best control parameter vector 

∆𝑈 to minimise the error between the predicted output and the reference signal 

𝑟(𝑘𝑖) at sample time 𝑘𝑖 within a prediction horizon, reflected in the cost function 𝐽. 

The 𝑟(𝑘𝑖) could be constant or variable which is discussed in next section. 
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𝐽 = (𝑅𝑠 − 𝑌)
𝑇𝑄(𝑅𝑠 − 𝑌) + 𝑈

𝑇𝑆𝑈 + ∆𝑈𝑇𝑅∆𝑈 

Where 

𝑅𝑠 = 𝑁𝑝

{
 
 

 
 

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

𝑟(𝑘𝑖) 

3.11 

The first term is to minimise the error between the reference input and predicted 

output, while the second and third terms reflect the consideration about the size of 

control variable 𝑈 and its rate of change ∆𝑈 to be as small as possible.  The 

𝑄, 𝑆, 𝑅 ≥ 0 are the block diagonal weight matrices, assigning zero or higher values 

to them comparably is interpreted as importance of minimising each term, 

substituting Eq. 3.10 in the Eq. 3.11 it becomes  

𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖) − Φ∆𝑈)
𝑇𝑄(𝑅𝑠 − 𝐹𝑥(𝑘𝑖) − Φ∆𝑈) + 𝑈

𝑇𝑆𝑈 + ∆𝑈𝑇𝑅∆𝑈 

The input sequences of 𝑈 is related to ∆𝑈 as 

[
 
 
 
 

𝑢(𝑘𝑖)

𝑢(𝑘𝑖 + 1)

𝑢(𝑘𝑖 + 2)
⋮

𝑢(𝑘𝑖 + 𝑁𝑐 − 1)]
 
 
 
 

=

[
 
 
 
 
𝑢(𝑘𝑖 − 1)

𝑢(𝑘𝑖 − 1)

𝑢(𝑘𝑖 − 1)
⋮

𝑢(𝑘𝑖 − 1)]
 
 
 
 

+

[
 
 
 
 
𝐼 0 0 … 0
𝐼 𝐼 0 0
𝐼
⋮
𝐼

𝐼

𝐼

𝐼 0

… 𝐼 𝐼 ]
 
 
 
 

[
 
 
 
 

∆𝑢(𝑘𝑖)

∆𝑢(𝑘𝑖 + 1)

∆𝑢(𝑘𝑖 + 2)
⋮

∆𝑢(𝑘𝑖 +𝑁𝑐 − 1)]
 
 
 
 

 

 
or 

𝑈 = 𝑈𝑖 + 𝑇∆𝑈 
3.12 

With further simplifications on the cost function and substitution of the above results 

in Eq. 3.13 

𝐽 = ∆𝑈𝑇(Φ𝑇𝑄Φ+ 𝑅 + 𝑇𝑇𝑆𝑇)∆𝑈 + 2∆𝑈𝑇(Φ𝑇𝑄(𝐹𝑥(𝑘𝑖) − 𝑅𝑠) + 𝑇
𝑇𝑆𝑈𝑖) 3.13 

Defining matrices of Eq. 3.14 the above equation takes the form of a QP problem 

cost function of 3.15 with ∆𝑈 being the variable to minimise 

 
𝐻 = 2(Φ𝑇𝑄Φ+ 𝑅 + 𝑇𝑇𝑆𝑇) 

𝑐 = 2(Φ𝑇𝑄(𝐹𝑥(𝑘𝑖) − 𝑅𝑠) + 𝑇
𝑇𝑆𝑈𝑖) 

3.14 

The cost function becomes 

 𝐽(∆𝑈) =
1

2
∆𝑈𝑇𝐻∆𝑈 + ∆𝑈𝑇𝑐 3.15 

The matrix 𝐻 is the Hessian matrix and is assumed to be positive definite. Since the 

cost function is quadratic and constraints are linear inequalities, the predictive 

control problem is finding an optimal solution ∆𝑈 to a standard quadratic 

programming problem.  
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3.3.4.4 Reference input  

As it is shown in the Eq. 3.11 the reference input signal 𝑅𝑠 is a data vector to the 

length of prediction horizon 𝐻𝑝 that contains the set-point information required for 

tracking the output variables of the plant in the objective function. In a typical MPC 

framework, a constant look-ahead approach is used where the reference input is 

constant over the prediction horizon time steps. On the other hand, a variable look-

ahead approach uses a variable reference input within the prediction horizon. 

Although using the constant reference input still is reliable for many applications 

with low frequencies changes of input signal, where there is high frequency of 

changes in signal it might lead to poor tracking performance of controller, this is 

explained in Chapter 7. As a result, having precise estimation of future reference 

input improves the performance of controller; however, a reliable prediction of 

reference input is not always available. 

In the application of MCA, the prediction of future reference input gets more 

complicated in the presence of the unpredictable behaviour of the human in the 

loop. A simple method to overcome this is by using the recorded repetitive patterns 

of drivers, however only professional can keep a high level of repeatability, and low 

skilled drivers have more unpredictable behaviour (Bruschetta et al., 2017). A 

solution was proposed by them to have a switching strategy between constant and 

variable look-ahead strategies for drivers with different skills. In their approach 

when the expected behaviour of a driver is available in the database, the look-

ahead is activated otherwise non-look-ahead is used. Moreover, it is mentioned that 

using the information of the future vehicle trajectories may lead to an effective 

prepositioning of the motion platform.  

3.3.4.5 Constraints 

In control problems, there are always concerns over the physical limitation of plant 

e.g. actuator kinematic and dynamic. Constrained formulation of control strategy 

has the advantage of finding a reliable optimal control sequence during a real-time 

simulation. Being real-time allows calculating the optimal solution considering the 

current state of the problem rather than a priory to start of simulation as offline 

optimal control methods. The constraints are divided to hard and soft constraints, 

Hard constraints are the ones that QP solution must satisfy to avoid leading to an 

infeasible solution, and soft constraints are the one that controller may violate in 

case of producing an optimal value for a manipulated variable. In standard 

applications of MPC, there are three major types of constraints on variables, being 

either soft or hard constraints, those are 
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• Control variables 𝑢(𝑘), most commonly encountered constraints, usually are 

hard constraints. In case it is the only constraint it does not lead to 

infeasibility 

• Rate of change of control variables ∆𝑢(𝑘), to cope with the cases where the 

rate of changes of control amplitude is restricted, are often soft constraints. 

Having constraints both on control and its rate of changes may lead to 

infeasibility  

• Output 𝑦(𝑘) or state variable 𝑥(𝑘), specifying the range for the plant output. 

Usually are soft constraints, if there are constraints on control input or rate 

of change.  

Computational complexity may lead to the infeasibility of finding a solution and 

relaxation of some of the hard constraints might be needed in the design process. 

However, the soft constraints can be violated and do not lead to infeasibility.  

For multi-input multi-output models, constraints are specified for each input and 

output independently. The upper and lower limits for each of the control signals, 

rate of changes of control signals and output and state variables are defined as Eq. 

3.16, 

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥  

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑡) ≤ ∆𝑢𝑚𝑎𝑥 

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑡) ≤ 𝑦𝑚𝑎𝑥 

3.16 

The next step is to translate the constraints into linear inequalities and relate them 

to the predictive control model, that needs to parametrise the constrained variables 

in terms of the vector ∆𝑈 same as used in the design of predictive control model. 

The vector ∆𝑈 is often called the decision variable. The constraints are taken to 

account for each of the moving horizon window sample time, and to reduce the 

computations it is possible to choose smaller number of samples. For instance at 

the sample time 𝑘𝑖 the rate of changes of the control signal on the first three 

samples are  

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖) ≤ ∆𝑢𝑚𝑎𝑥 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 + 1) ≤ ∆𝑢𝑚𝑎𝑥 

⋮ 

To relate the constraints in the cost function 𝐽, as required by the quadratic 

programming formulation, the constraints need to be decomposed into two 

inequalities reflecting the lower and upper limits.  
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[
 
 
 
 
 
 
 
𝐼 0 … 0
0 𝐼 0
⋮ ⋱ ⋮
0 0 𝐼
−𝐼 0 … 0
0 −𝐼 0
⋮ ⋱ ⋮
0 0 … −𝐼]

 
 
 
 
 
 
 

[
 
 
 
 

∆𝑢(𝑘𝑖)

∆𝑢(𝑘𝑖 + 1)

∆𝑢(𝑘𝑖 + 2)
⋮

∆𝑢(𝑘𝑖 +𝑁𝑐)]
 
 
 
 

≤

[
 
 
 
 
 
 
 
∆𝑢𝑚𝑎𝑥
∆𝑢𝑚𝑎𝑥
⋮

∆𝑢𝑚𝑎𝑥
−∆𝑢𝑚𝑖𝑛
−∆𝑢𝑚𝑖𝑛

⋮
−∆𝑢min ]

 
 
 
 
 
 
 

 

or 

𝑀1∆𝑈 ≤ 𝑁1 

Constraints on manipulated control variable 𝑢(𝑡) in Eq. 3.16 are expressed in terms 

of ∆𝑈 using the Eq. 3.12. 

[
 
 
 
 
 
 
 
𝐼 0 … 0
𝐼 𝐼 0
⋮ ⋱ ⋮
𝐼 𝐼 𝐼
−𝐼 0 … 0
−𝐼 −𝐼 0
⋮ ⋱ ⋮
−𝐼 −𝐼 … −𝐼]

 
 
 
 
 
 
 

[
 
 
 
 

∆𝑢(𝑘𝑖)

∆𝑢(𝑘𝑖 + 1)

∆𝑢(𝑘𝑖 + 2)
⋮

∆𝑢(𝑘𝑖 +𝑁𝑐)]
 
 
 
 

≤

[
 
 
 
 
 
 
 
 
𝑢𝑚𝑎𝑥 − 𝑢(𝑘𝑖 − 1)

𝑢𝑚𝑎𝑥 − 𝑢(𝑘𝑖 − 1)
⋮

𝑢𝑚𝑎𝑥 − 𝑢(𝑘𝑖 − 1)

−𝑢𝑚𝑖𝑛 + 𝑢(𝑘𝑖 − 1)

−𝑢𝑚𝑖𝑛 + 𝑢(𝑘𝑖 − 1)
⋮

−𝑢𝑚𝑖𝑛 + 𝑢(𝑘𝑖 − 1)]
 
 
 
 
 
 
 
 

 

or 

𝑀2∆𝑈 ≤ 𝑁2 

The output constraints are expressed in terms of ∆𝑈 using equations 3.10 and 3.16. 

𝑦𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 is of size 𝑁𝑝. 𝑛𝑜𝑢𝑡. 

𝑦𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘𝑖) + Φ∆𝑈 ≤ 𝑦𝑚𝑎𝑥 

[
Φ
−Φ

]∆𝑈 ≤ [
𝑦𝑚𝑎𝑥 − 𝐹𝑥(𝑘𝑖)

−𝑦𝑚𝑖𝑛 + 𝐹𝑥(𝑘𝑖)
] 

or 

𝑀3∆𝑈 ≤ 𝑁3 

Finally, the model predictive control in presence of constraints can be expressed in 

a Quadratic Programming problem where the sequence vector ∆𝑈 has to be 

calculated that minimises the cost function 𝐽 and satisfying the inequality constraints 

for a QP problem as  

 [

𝑀1
𝑀2
𝑀3

] ∆𝑈 ≤ [

𝑁1
𝑁2
𝑁3

] 3.17 

Matrix 𝑀 shows the constraints, its number of rows equals the number of 

constraints and columns equals the dimension of ∆𝑈. Number of constraints when 

those are fully imposed is equal to 4 ×𝑚 × 𝑁𝑐 + 2 × 𝑞 × 𝑁𝑝. Where 𝑚 is the number 

of inputs and 𝑞 is the number of outputs.   
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 Adaptive algorithm  

Parrish et al. (1975) first introduced this algorithm, where adaptive filters were 

employed to represent the translational or rotational motions somewhat similar 

to the structure of the classic algorithm, and filter parameters were updated 

during the real-time simulations through an optimisation problem. In a quadratic 

cost function, angular velocity and translational acceleration errors between 

desired vehicle input and motion platform’s motion were minimised, it also 

included displacement and velocity errors of motion platform from their neutral 

points. 

Nahon et al. (1992) described that in this method, smaller inputs were 

attenuated less than larger ones since they are less likely to result in large 

simulator displacements. Thus, false cueing should be reduced, and better use 

made of the MP capabilities. However the issue accompanying this method was 

the instabilities of the model (Fang and Kemeny, 2012b), and in case of large 

inputs, it became under-damped leading to oscillatory response and large false 

cues.  

Nahon et al. (1992) developed a hybrid model at the University of Toronto 

Institute for Aerospace Studies (UTIAS) which was a combination of classical 

and adaptive algorithms. They used higher-order cost function with more 

variables and weights to find out the adaptive filter parameters. The terms in the 

cost function penalise acceleration and roll rate motion errors, simulator 

velocity, position, roll rate and roll. Moreover, there were other terms included to 

return the adaptive parameters to their original reference values. 

Actuator State Based Adaptive algorithm (ASBA) was developed to use MP’s 

actuator states in the cost function instead of the Cartesian based motion states 

(Grant and Naseri, 2005). The ASBA algorithm works similar to the hybrid (UTIAS) 

algorithm in cases for a single DoF manoeuvre. For higher DoF manoeuvres, 

however, the ASBA avoids actuator limiting in cases where the UTIAS algorithm 

results in one or more actuators limiting. They found improved stability and 

adaptation compared to the previous UTIAS hybrid adaptive algorithm. 

In a study done by Colombet et al. (2008) the results of an experiment carried out at 

Renault, to measure drivers’ ability to follow a car in three motion system 

configurations of static, dynamic (Renault CARDS) with a classical motion cueing 

algorithm (Reid and Nahon, 1986a), and an adaptive motion cueing algorithm 

(Parrish et al., 1975). They concluded that drivers subjectively preferred dynamical 

sessions, but the effect of the algorithms on their tracking performance was not 

significant. In offline comparisons between the classical and adaptive and optimal 
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MCAs, it was reported the classic choice in fare of easy tuning of the classic 

(Nehaoua et al., 2008). However, in both studies, the motion platforms had very 

small workspace that might have made the algorithms indistinguishable to drivers 

and in offline comparisons. 

 Optimal algorithm 

This method is similar to the adaptive algorithm in terms of solving an optimisation 

problem to find filter parameters; however, the structure of this algorithm is not 

based on the classic algorithm as in the adaptive. The optimal term is used since 

this method is using the mathematical logics and expressions such as Linear-

Quadratic Regulator (LQR) for the cost function and Riccati equation that are used 

in optimal control theory for controlling systems at minimum cost. This method is 

available in both online and offline optimisation, in offline the filter parameters are 

optimized and implemented once before the beginning of the simulation, and in 

online filter parameters are updating during the simulation that needs the Riccati 

equation to be solved in real-time. 

The first effort of using this method for MCA in simulators could be referred to 

(Kurosaki, 1978). He used state-space linear optimal control theory, to the design of 

washout filters for NASA's vertical motion simulator and his method was restricted 

to be offline. The vestibular system and motion platform dynamics were not 

included in the optimisation. In another study, a simple model for the motion 

platform was included, but still offline, with no vestibular model (Sturgeon, 1981).  

Most of the literature refer that optimal control approach for cueing algorithm was 

first introduced by Sivan et al. (1982), however it is better to say it was the first 

model that included human vestibular model, in a cost function to minimise of error 

between pilot in simulator and aeroplane, although that algorithm was still offline. 

They claimed that washout filters derived from the optimal control problem have the 

same order as the conventional filters. Moreover, the optimal filters can be tuned by 

to satisfy a variety of additional conditions such as different travel lengths of the 

simulator, flight trajectories, and emphasises on motion cues. However, Telban et 

al. (2002) reported that using this algorithm yields higher order filters, and reported 

of its poor performance in tracking changes to aircraft inputs in comparison to 

adaptive method.  

Telban et al. (2002); Telban and Cardullo (2005) combined both adaptive and linear 

optimal algorithm and introduced an approach for motion cueing that would benefit 

from both methods resulting in nonlinear cueing filters. They included improved 

visual-vestibular motion perception model and a neurocomputing approach was 

used to solve the Riccati equation in real-time. They expressed the cost function 
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with a parameter called 𝛼 varied with respect to input vehicle motion, to adjust for 

faster control action and stabilising the system. It was a nonlinear time-varying 

algorithm producing small cues for a longer duration and washing out larger cues 

more quickly. 

Reid and Nahon (1985); Reid and Nahon (1986a) developed the three classic, 

adaptive and optimal algorithms. The four no-motion, classic, adaptive and optimal 

motion cases were compared among pilots in a commercial jet transport simulators 

(Reid and Nahon, 1986b; Reid and Nahon, 1988). Their results showed a little 

effect of algorithm type on the performance and control activity; however, those 

subjectively differed to drivers to perceive the simulation environment. The adaptive 

algorithm was generally preferred the best and no-motion the worst. In 

complementary work, Nahon and Reid (1990) showed that all the three algorithms 

could be adjusted to give a good performance in terms of pilots ratings, where the 

optimal fared the worst and adaptive method the best. The author mentioned the 

adaptive has the most potential for further improvement because of its nonlinear 

nature. Moreover, it was concluded that the classic was the best of ease of 

adjustment and implementation, where opposite was true for optimal and it may not 

worth the effort for adjustments.   

In the VIRTEX simulator at Ford Motor company, few of the MCAs were compared 

evaluating the algorithm and parameter tuning effects (Grant et al., 2003; Grant et 

al., 2009). A lane position algorithm that used the lateral vehicle position to 

generate the motion in the simulator, a well-tuned classic and three other general-

purpose classic algorithms that were not specifically tuned for the manoeuvre. 

Parameters of the classic for the three sets were selected to have different ratios of 

specific force error to roll rate error. It was found that well-tuned classic and lane 

position algorithm had same level of fidelity, while the general-purpose classic did 

not reach the same fidelity with identical scaling. No effect was found on the trade-

off between the specific force and angular rate errors. They also found that drivers 

performed better with lane position algorithm than a well-tuned classic algorithm. 

Reportedly, an increase of motion scaling from 0.3 to 0.5 improved the performance 

and increased the subjective fidelity.  

To eliminate the false cues in sustained accelerations represented by tilt 

coordination, and the interaction between tilt coordination and turntable motion, 

(Romano, 1999) developed a new algorithm that was based on the concept of 

Overtilt. A method of tilting that generated a negative acceleration to stop the 

simulator and drive it back to the centre position faster than other washout 

algorithms. Furthermore, to reduce the MP excursions a third order minimum time 

control method was developed that included a prepositioning of the motion platform, 
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used predicted acceleration information and dynamic adjustments to the tilt rate 

limiting. He showed this algorithm provides better lateral specific force and yaw 

angular velocity cues than the classic algorithm. Moreover, he showed both the 

third order minimum time controller and the LQGR controller, increased MCA 

performance over the classical. 

Romano (2003) developed a nonlinear tilt coordination algorithm was that replaced 

the conventional filters of the classic algorithm, and the tilt channel was controlled 

by a linear Gaussian regulator (LQGR) to control the tilt rate and motion platform 

position. Besides, nonlinear feedback was used to reduce the linear acceleration to 

a be controllable by the tilt channel. It was shown the improvement of performance 

compared to classic for deceleration manoeuvres, also compared to the classic it 

required much fewer filter and control parameters 

An experiment conducted in the Ride Motion Simulator (RMS) of US Army Tank 

Automotive Research, Development and Engineering Centre (TARDEC), 

comparing two RideCue and OverTilt Track algorithms to a default algorithm of the 

motion platform and a no motion case. The comparisons were done in the context 

of vehicle handling of heavy off-road vehicles. The RideCue algorithm used a swing 

motion concept, and OverTIlt Track used a pre-positioning for tilt adjustments. Their 

results showed that the presence of motion contributed to the performance in 

controlling their steering inputs. Subjectively drivers were influenced by the 

presence of motion and realism of control induced motions (Romano et al., 2016).   

3.4 Fidelity definitions and assessment methods 

Different definitions have been proposed for the fidelity of simulators, but it is most 

commonly described as the degree to which the real and virtual environments 

match from driver/pilot realism experience and behavioural performance. Due to 

limited knowledge about human motion perception and control behaviour, and the 

diversity of simulator cueing systems, introducing a benchmark for simulator visual 

and motion system requirements to achieve an adequate level of fidelity has been 

always a difficult problem. It gets even more challenging because of the 

dependency on vehicle specifications, driving task, and individual driver 

preferences.  

Preliminary studies about fidelity definitions began in the flight simulation industry. 

Among the first efforts, the validity of the different subsystems was considered to 

find the areas of the deficient fidelity; this gave rise to questions about the 

appropriate subjective and objective metrics, the computer image generation 

system, visual field of view, computational delay and actuator dynamics (Sinacori, 
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1978). Many of these deficiencies has been reduced by technology improvements; 

however, the ambiguity about the fidelity level needed for specific applications of 

the simulator e.g. training or research, and the simulator subsystem requirements to 

meet the fidelity remains unaddressed.  

AGARD (1980) studied the cause of deficiencies in fidelity, for training purpose. The 

cues were divided to equipment and environmental cues and introduced the 

concept of perceptual fidelity i.e. a psychological/physiological viewpoint with which 

the trainee subjectively perceives the simulator and objective fidelity an engineering 

viewpoint in which simulator equipment and environmental can reproduce the cues 

compared to real aircraft. They considered for each of the cues how much 

subjective and objective fidelity is required to achieve satisfactory training, and to 

provide cost versus training information for procurement purposes. It was 

concluded that there are four major steps in the development of simulator facilities, 

those were to analyse the training requirement and objectives, define methods and 

facilities to perform the training, develop simulator hardware and validate the 

simulator. Many of the deficiencies in the above steps were related to simulator 

technology limitations and how the cueing fidelity impacts on the training 

effectiveness and only a few recommendations for improvements were provided.  

Pool (2012) gathered the fidelity definitions and produced a schematic 

representation of fidelity definitions for skill-based manual closed-loop control tasks 

in real and virtual flight, see Figure 3-16. In his definition, the aircraft model fidelity 

is considered separately, and objective fidelity is determined by the quality of the 

simulator cueing systems. Addressing the simulator cueing system only based on 

objective fidelity does not consider the limitations of human perception, and results 

in more expensive hardware to achieve high fidelity.  

In contrast to the objective fidelity, perceptual fidelity is operator centred and high 

perceptual fidelity is defined as the indistinguishable perception of cue stimuli in a 

real and virtual environment. It is possible to use human sensory-perception models 

to objectively quantify the fidelity. Although the human sensory is adequately 

understood and modelled, there is a limited understanding of how the sensory 

outputs are integrated as perception in the brain, which makes using this approach 

debatable. Perceptual fidelity is often evaluated subjectively by pilots evaluating 

simulation realism, using fidelity questionnaires. Although this type of fidelity 

evaluation might be biased by individual preferences and expectations, and result in 

unrepeatable, contradictory and inconclusive results, it is still the main human 

centred approach used to evaluate the realism.  

Error fidelity is defined as the measurement of error in vehicle response between 

the real-virtual environment and is the direct result of operator perception and 
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control performance. The issue with this method is that in various cueing conditions, 

the participants might adapt their behavioural control performance to them. Hence 

these metrics may not capture the full effect of cueing variations. Behavioural 

fidelity is the comparison of the behaviour performance in the simulator to real flight. 

It can be quantified objectively using metrics or driver/pilot behaviour models, it is 

also possible to have qualitative subjective assessments on drivers’ behaviours. 

However, finding the appropriate behavioural metrics or driver models for the 

evaluations is a challenging task, a review of models for objective behaviours was 

presented in Chapter 2.  

 

Figure 3-16. Flight simulator fidelity evaluated at mechanical, perceptual and 
behavioural levels, (Pool, 2012) 

Greenberg and Blommer (2011) defined physical fidelity of driving simulators and 

introduced a four step framework that examined the type of errors and distortions 

that might occur at each stage of the cue representation process, those are 

modelling, real-time or sampling, cue generation, and presentation errors.  

• Modelling errors included the powertrain and handling response of the 

modelled vehicle.  

• Real-time or sampling error might be present in three ways of:  

o Quantification error e.g. finite precision in measuring the steering 

wheel angle.  

o Estimation error e.g. steering wheel velocity is usually approximated 

and not measured directly or the reference input to the MPC motion 

cueing algorithm needs predictions of future which is not usually 

available.  

o Temporal error e.g. the update rate and delays that are present in 

different components of simulator such as computational delays in 

visual simulations or in optimal MCAs.  
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• Cue-generation error, that occurs for transforming the model output to 

simulator specific commands. As an example, the static simulators the 

motion command is multiplied by zero and down-scaled in dynamic 

simulators.  

• Presentation error, that is corresponding to the hardware constraints that 

may not simulate the commanded signal, such as limited bandwidth of 

motion platform, and resonances in the visual scene.  

In addition to the above Greenberg and Blommer (2011) has also explained that 

there are other problems that might affect fidelity. These include the problem of 

extrapolation that refers to using the simulator for applications that they are not 

designed for e.g. simulating a specific manoeuvre that is out of the scope of 

simulator’s operating regime. The problem of experimental artefacts may also lead 

to a reduction in fidelity. These are the factors occurring unwantedly and under 

effects the main simulation purpose, e.g. problem with vehicle model deviating the 

car’s lateral position from centre line during a roadway design experiment. These 

artefacts may happen in any of the visual, motion and control cueing systems. 

Although the various subsystems of a simulator as a whole affect fidelity, 

consideration of every single component and reviewing its effect is of the focus of 

many separate research studies. In this thesis, the focus is on the vestibular motion 

fidelity in driving simulators. Motion cueing fidelity could be explained by the extent 

of motion error, which is the difference in position, velocity and acceleration 

between the real and simulated vehicle. The position and velocity are generally 

perceived through the human visual system and represented by the simulator visual 

cueing system, and acceleration is perceived through the human vestibular and 

proprioceptive systems which the simulator MP reproduces.  

Having a very large motion platform reduces the motion error; however, the 

purchase costs increase as the increases. For this reason, there is a trade-off 

between the MP workspace size and the resulting fidelity of motion cueing. The 

motion cueing fidelity criteria in the literature are often defined based on the 

undetectable amount of the motion errors by drivers/pilots, which is a threshold of 

an imperfect match between the motion and visual cues. In other words, the 

threshold of the discrepancy between the motion and visual cues, which is still 

perceived by drivers to be synchronised. These regions of synchronisation that are 

believed to be acceptable, and are commonly named as fidelity corridors, fidelity 

boundaries, coherent zones. 

Fidelity corridors have been defined using both open and closed-loop methods. In 

the closed-loop case, drivers’ subjective and objective behaviour data are 

measured during active driving (driver/pilot controls vehicle) and correlated to the 

motion error to draw the fidelity corridors. The open-loop method uses passive 
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driving (where the driver is not controlling the vehicle; i.e. in practice a passenger) 

to draw the fidelity corridors. 

Moreover, motion error is usually evaluated in the time domain looking at amplitude 

error, or frequency domain using gain and phase errors. In the closed-loop time 

domain, a European collaborative project Berthoz et al. (2013) studied large driving 

simulators and have shown that motion that is objectively closer to the actual 

vehicle motion (one to one) in a given driving task is not always perceived as more 

realistic. They considered a slalom driving task, and prior research has consistently 

shown that down-scaled motion between 0.4 and 0.75 of full motion comes out as 

more realistic i.e. higher fidelity. 

F16 pilots took part in a passive open-loop evaluation of motion scaling effect 

during a take-off run of a civil aircraft. The motion scaling for the surge translational 

and pitch tilting was systematically varied between 0 and 1, while the cut-off 

frequency of the filters was adjusted that keep the excursion of MP at a constant 

level in all cases. Their preferred scale-factor was about the 0.2, and unity scale-

factor were too powerful to be realistic. It was suggested that the visual-vestibular 

mismatch is a result of an underestimation of visual cues that is found as an over-

estimation of vestibular cues (Groen et al., 2001). 

Human is proven to be sensitive not only to the acceleration but also to the jerk 

(derivative of acceleration) (Hosman and Stassen, 1999). The essential consistency 

between the visual and vestibular cues was studied considering the discrepancy 

between the level of the jerk and associated visual cues, that found the unity scale-

factor is perceived to be too strong. A scale-factor with value around 0.7 was 

suggested to be acceptable for perception in a typical motion platform (Reid and 

Nahon, 1988).  

In the early attempts of drawing the fidelity corridor in the frequency domain for 

research helicopter simulators, a minimum undetectable distortion between the 

visual and motion cues was examined in open-loop experiments. Only four phase 

and gain test points were examined for a tracking task with a frequency of 1 rad/s 

where the vestibular system has the highest perception gain (Sinacori, 1977), see 

the Figure 3-17 dashed line. Later, using the same approach, Schroeder (1999) 

postulated those results with more test points and further modified the fidelity 

borders, see Figure 3-17 solid line. It is observable that both authors predicted that 

a gain of 0.4 and a maximum phase error of 60 degrees will produce medium 

fidelity of motion cues. However, the accuracy of the three sections of low, medium 

and high fidelity is still open to debate. 
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In another closed-loop study of target following and disturbance rejecting tasks 

considering the effect of only roll motion in simulator compared to the real world, 

few different motion scenarios were examined on their subjective and performance 

effects. An optimal first order washout filter with 0.5 to 0.7 of amplitude reduction 

was introduced to have the acceptable motion fidelity (Jex et al., 1978).  

 

Figure 3-17. Sinacori (dashed line) and Schroeder (solid line) fidelity corridors 
for translational motion at 1 rad/s, (Schroeder, 1999). 

It is possible to assess motion fidelity in a more objective way in order to be 

independent of the simulation scenario. A procedure was introduced to measure the 

performance of the simulator motion systems by AGARD (1977). Among all 

commonly used definitions for describing a motion system, they used five terms to 

define the motion system quality and limitations. The excursion limits, describing 

function, linearity and acceleration noises that were measured by the sinusoidal 

inputs of varying frequencies and amplitudes; the dynamic threshold measurements 

that were measured by input step acceleration; and the hysteresis by measurement 

of displacement using low frequency sinusoidal input.  

This procedure was used to measure the motion performance of the VIRTTEX MP 

and to identify the cause of the poor performance. They found large bandwidth of 

the motion system, large cross-talking between the DoF, and nonlinearities in large 

velocities and accelerations indicating the need for further improvement to MCA to 

consider the observed characteristics (Grant et al., 2001). The excursion limit is 

among the measurement metrics that could be expressed by the signal-to-noise 

ratio (SNR) contours over a variety of frequencies and velocities i.e. a useful way of 

defining the operational and system limits of the MP. It is a diagram of velocity 

versus frequency plotted on a logarithmic scale, see Figure 3-18.  
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Figure 3-18. Signal-to-noise-ratio (SNR) contour for the VIRTEX simulator, 
(Grant et al., 2001)  

In more recent studies Hosman and Advani (2016) used an objective motion cueing 

test (OMCT) method to evaluate the motion cueing of ten flight simulators believed 

to have acceptable fidelities to draw the fidelity corridors (named fidelity zones). In 

their method, no participants were involved and only objective measurements of the 

frequency response of the complete motion cueing system including the MCA and 

MP using a range of sinusoidal inputs were used to draw phase and gain Bode 

plots, as shown in Figure 3-19. The dashed lines present the fidelity corridors that 

are two standard deviations away from the mean value among all ten simulator 

tests. Fischer et al. (2016) adapted this method and tested in two driving simulators, 

and their performance result approximately fit in the OMCT phase and gain 

corridors. However, they discussed that for the method to be applicable in driving 

simulator evaluations, some modifications are needed such as higher input gains to 

raise the signal to noise ratio that allows clearer results, also higher logging 

frequency enhance the method for analysis of higher frequencies. Comparing the 

Sinacori with the OMCT it is visible that the gain of 0.4 and phase of 60 degrees is 

well within the OMCT fidelity zone. 
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Figure 3-19. Fidelity corridors for longitudinal (top) and lateral (bottom) 
directions, (Hosman and Advani, 2016) 

In similar research, amplitude and phase coherence zones were defined as motion 

cue gain and phase attenuation that although not being a perfect match to the 

visual cue, is still perceived by drivers to be coherent that was first introduced by 

van der Steen (1998) and later experimented by Valente Pais et al. (2010); Valente 

Pais (2013). It has been shown that amplitude coherence is a function of magnitude 

and frequency of a visual cue, whereas the phase coherence was argued to be not 

(however further investigation was needed). To define the corridors, the open-loop 

evaluations were used where participants were asked to determine ‘what is the 

strongest and weakest inertial motion amplitude that still matches the visual cue 

amplitude’. The experiments included flying manoeuvres and driving tasks. The 

ratio of vestibular amplitude to visual amplitude was defined as gain of mean 

coherence (GMC) and found to be decreasing with increasing stimulus amplitude, 

at low amplitude subjects found to be preferring larger vestibular motions than 

visual and vice versa in high amplitudes.   

The amplitude coherence zone for the lateral (sway) motions is represented in 

Figure 3-20. It shows the amplitude coherence zones as coloured bars for two 

visual acceleration amplitudes of 0.5 and 1 𝑚 s2⁄  in three frequencies of 2, 3, 5 

𝑟𝑎𝑑 s⁄  on the horizontal axis, and motion gain on the vertical axis. The range of bars 

shows the zones of acceptable coherence between visual and motion cues. The 
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trends in the data show that both the upper and lower threshold gains decrease 

slightly with increasing frequency, and the gains are lower for the higher amplitude 

of the visual cue. It is noticeable that the mean minimum amplitude coherence zone 

of all frequencies is about 0.5 for 0.5 𝑚 s2⁄ , and about 0.4 for 1 𝑚 s2⁄ . The phase 

coherence was found not to be affected by either the amplitude or the frequency of 

the stimulus, and 19 degrees of phase-error is reported for mean yaw and pitch 

DoFs of all frequencies. 

The accelerations available in driving tasks are usually higher than the 1 𝑚 s2⁄  

although that was the maximum amplitude evaluated in this study, requiring the 

minimum gain corridor of 0.4, which might be lower for higher acceleration 

demanding tasks. Moreover, the phase corridor is only available for the yaw DoF, 

requiring the maximum phase error of 19 degrees which might be different for other 

translational and rotational DoFs.  

 

Figure 3-20. Coherence zones represented for sway motion. The horizontal 
black lines span different measurements made at the same visual 
amplitude (Valente Pais, 2013). 

In similar research to the coherence zone, the participants were asked to select the 

appropriate vestibular motion to match the visual motion. They picked higher 

amplitude when reducing the vestibular motion from high to low than when 

increasing the motion from low to high (Correia Grácio et al., 2010). They later 

defined the optimal zone, an area between these upper and lower amplitudes and 

found that it lies within the coherence zone. Similar to the coherence zone the ratio 

of vestibular amplitude to visual amplitude was defined as gain of mean optimal 

(GMO) and found to be decreasing with the increase of amplitude and frequency, 

however opposed to the coherence zone the width of the optimal zone found to be 

not varying with the amplitude or frequency (Correia Grácio et al., 2013). Moreover, 

they found a strong dependency of the GMP to the quality of the visual cue (Correia 

Grácio et al., 2014).  
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A review of the studies on addressing the motion cueing fidelity corridors was 

presented in this section. There are many other aspects that make a general 

conclusion about the fidelity corridor debatable, such as being widespread around 

flight and driving simulators, defined for specific driving or flying manoeuvres that 

might be different for others, the difference in apparatus they have used including 

various visual and motion cueing systems. However, these are still the most reliable 

studies available today and many have postulated them in various applications. 

Later in Chapter 8, these fidelity corridors are used to address the MP workspace 

requirements.  

In this thesis, the fidelity of a simulator is referred to the similarity between real and 

simulated driving in terms of drivers’ subjective perception in the driving experience. 

It is a direct consequence of representation of visual, vestibular, proprioceptive and 

aural cues; however, the focus of interest is on the vestibular motion effect. The 

objective evaluations focus on data measurement and exploration of a 

phenomenon that might be a cause of motion cueing variations e.g. vehicle 

acceleration, steering wheel profiles and other metrics to analyse and compare.  

Furthermore, the knowledge about acceptable motion fidelity corridors helps to find 

the best MCA tuning parameter settings for a specific MP. Since the MCA 

parameter values could be selected to minimise the motion discrepancy and 

respect the motion platform constraints. Nevertheless, available research provides 

the information on fidelity corridors, an automatic procedure for addressing MCA 

parameters was still a challenge; it was the motivation to develop an optimisation 

tool (Sadraei et al., 2016). The idea behind this was to find the classical MCA 

parameters through a mathematical optimisation method that minimises the motion 

error while considering both the fidelity corridor, and the constraints of the MP. On 

the other hand, using the fidelity corridors it is possible to address the MP 

workspace requirement to achieve an acceptable level of the fidelity, described in 

Chapter 8. 
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4 Motion Cueing in University of Leeds Driving Simulator 

4.1 Classic algorithm for UoLDS  

In this section, the classic motion cueing algorithm is developed based on the 

principles of the algorithm described in the previous chapter, and inspirations from 

the UoLDS originally designed classic MCA, to be used in the UoLDS apparatus. 

The main purpose is to prepare the model for the experiment described later in 

Chapter 5, that compares the classic and MPC algorithms. This model has two 

similar channels for representing the motion in surge/pitch and sway/roll and one 

channel for representing the motion in heave/yaw direction, see Figure 4-1. In the 

next sections, different components of the model are reviewed.  

 

Figure 4-1. Schematic representation of the classic model structure for 
surge/pitch and sway/roll motion cueing channels 

 Coordinate transformation 

In Figure 4-1 there are the coordinate transformations to have accurate motions 

with respect driver’s head and then aligning the set-points in the MP coordinate 

system. 

Coordinate transformation 𝐿1, transforms vehicle translational motions (vehicle 

model output) from driver’s head frame to simulator moving frame (Eq. 4.1). Where 

𝑣ℎ, 𝑎ℎ, 𝜔ℎ and 𝛼ℎ are the translational and angular velocities and accelerations of 

the vehicle in driver’s head frame, 𝑟𝑠−ℎ is the constant vector from simulator moving 

frame to driver’s head in the simulator, the 𝑣𝑠 and 𝑎𝑠 are the translational velocity 

and acceleration of the vehicle in the simulator moving frame, see Figure 4-2.  
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 𝐿1 ∶  {
𝑣𝑠 = 𝑣ℎ +𝜔ℎ × 𝑟𝑠−ℎ

𝑎𝑠 = 𝑎ℎ +𝜔ℎ × (𝜔ℎ × 𝑟𝑠−ℎ) + 𝛼ℎ × 𝑟𝑠−ℎ
  4.1 

 

 

Figure 4-2. Overview of reference frames, side view 

Coordinate transformation 𝐿2, transforms the motions from simulator moving frame 

to tilt coordination frame. It takes into account the current rotations of simulator 

moving frame (roll 𝜙, pitch 𝜃, yaw 𝜓) due to vehicle’s roll, pitch and yaw, to rotate 

the translational accelerations from the moving frame to tilt frame. Having the MCA 

work in the tilt coordination frame brings an advantage of better control over 

translational motion scaling, and the tilt parameters i.e. maximum tilt angle, angular 

velocity and acceleration. Both guarantees the right feeling of motion to the drivers. 

However, it causes the output MP translational set-points of the rail and hexapod to 

be in the tilt frame, while those required to be in the inertial frame. This is a minor 

issue since the vehicle roll and pitch angles are small, and it is an acceptable 

approximation between the frames. Furthermore, working in tilt coordination frame 

keeps the model to be a second order system and avoids the need for a feedback 

closed-loop that is available in formulating the MCAs in the inertial frame; which 

changes the model to a fourth order system, and requires more care for selecting 

the filter parameters and stability. 

An intrinsic Tait–Bryan angles with a sequence of elementary rotations of 𝑅𝑥, 𝑅𝑦 

and 𝑅𝑧 was chosen for this transformation, which first rotates around the z-axis by 

𝜓 degree second rotates around new y′ by 𝜃 degree and third rotates around the 

new x″ by 𝜙 degree. 

𝑎𝑡 = 𝐿2𝑎𝑠                                                           

𝑅𝑥 = [
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

]𝑅𝑦 = [
cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
]𝑅𝑧 = [

cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] 

𝐿2 = 𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓) 

4.2 
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𝐿2 = [

cos 𝜃 cos𝜓 −cos𝜃 sin𝜓 sin 𝜃
sin𝜙 sin𝜃 cos𝜓 + cos𝜙 sin𝜓 −sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓 −sin𝜙 cos 𝜃
−cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓 cos𝜙 sin𝜃 sin𝜓 + sin𝜙 cos𝜓 cos𝜙 cos 𝜃

] 

To transfer the angular velocity of the vehicle 𝜔 to the rate of changes of Euler 

angles �̇� in simulator inertial frame. It is possible to relate them using above rotation 

matrices; the first Euler angle undergoes two rotations, the second angle one 

rotation and the third no rotation that results in Eq. 4.3.  

 

𝜔 = [
𝑝
𝑞
𝑟
] , 𝑒 = [

𝜙
𝜃
𝜓
] 

𝜔 = 𝑅𝑥𝑅𝑦 [
0
0
�̇�
] + 𝑅𝑥 [

0
�̇�
0
] + [

�̇�
0
0

] 

𝜔 = [
1 0 sin 𝜃
0 cos𝜙 −sin𝜙 cos𝜃
0 sin𝜙 cos𝜙 cos 𝜃

] �̇� 

Taking the inverse 

�̇� = [

1 sin𝜙 tan𝜃 − cos𝜙 tan𝜃
0 cos𝜙 sin𝜙
0 − sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

]𝜔 

4.3 

Coordinate transformation 𝐿3, extracts the rotational angles due to simulator tilting 

and yaw cueing to Euler Angles of MP inertial frame (MP rotational set-points 

required to be in Euler Angles). It is afterwards summed with the vehicle’s roll and 

pitch motions directly fed from vehicle model (already in Euler angles) then set 

points are commanded for rotational motions. Although the Euler angles cannot be 

simply summed up, due to the small roll and pitch it is an acceptable approximation. 

Using the transformation matrix 𝐿2 and name it 𝑅 (for sub indexing) where 𝑅 = 𝐿2 

then the Euler angles are obtained as Eq. 4.4.  

 𝐿3 ∶  

{
 
 
 
 

 
 
 
 𝜃 = tan−1 (

𝑅32
𝑅33

)

𝜙 = tan−1

(

 −
𝑅31

√𝑅11
2 + 𝑅21

2

)

  

𝜓 = tan−1 (
𝑅21
𝑅11

) 

  4.4 

 Tilt coordination  

To represent the acceleration felt through the tilting the gravity vector needs to be 

aligned to the driver’s head vestibular system reference frame. Using the rotation 

matrix in Eq. 4.2, the gravity vector is transformed to the simulator tilt coordination 

frame as  
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�⃗� = 𝑅𝑥(𝜙)𝑅𝑦(𝜃) [
0
0
𝑔
] =  [

𝑔 sin𝜃
−𝑔 cos𝜃 sin𝜙
𝑔 cos 𝜃 cos𝜙

] 

In order to do linear frequency analysis, the �⃗� vector is linearized in small roll 𝜃 and 

pitch 𝜙 degrees, where the gravity vector becomes  

 𝑎𝑡𝑖𝑙𝑡 = �⃗� =  [

𝑔𝜃
−𝑔𝜙
𝑔
] 4.5 

The usual method to apply the limitations on tilt angular velocity and acceleration is 

by adding a second order low-pass filter and changing its cut-off frequency and 

damping ration to get to the desired tilt setting. However, the choices are limited to 

be a function of the cut-off frequency and damping ratio considering the stability of 

the response, further discussed in Chapter 7. To have a broad range of tilt setting it 

is possible to introduce nonlinearity by adding rate limiters. In the model used for 

the experiment in Chapter 5 the tilting channel includes is a series of a gain and 

saturator to limit the maximum tilt angle 𝜃𝑚𝑎𝑥 , a first order low-pass filter with cut-

off frequency 𝜔𝑙𝑝2, a rate limiter to apply the tilting angular velocity limit �̇�𝑚𝑎𝑥, a first 

order high-pass filter, second rate limiter to apply the tilting angular acceleration 

limit �̈�𝑚𝑎𝑥, and an integrator, all in a sequence. Cascade of the above filters and 

integrator (excluding the limiters) results in a second order lowpass filter, where 

there is a nonlinear process taking place on the signal.    

 Complete plant model  

Further down in Figure 4-1 within the green dashed line, there are three rows 

including block diagrams of scale-factors, high-pass and low-pass filters, saturation, 

rate limiters and integrators, there are other gains for unit transformation and gravity 

vector available in the model which are not shown here. The main difference with 

simple classic algorithms is where the higher third order high-pass filters were used 

for the onset cues of the hexapod and sliding rail, and a second order low-pass 

filter. The first two rows are generating the transient linear motions for hexapod and 

sliding rail MPs, and the third row generates the sustained acceleration through tilt 

coordination, which is then summed with the vehicle’s pitch or roll angles to send as 

set-points to MP. The saturator limits the maximum tilt angle and the two rate limiter 

is limiting both angular velocity and acceleration of tilting.  

Considering longitudinal (surge) vehicle acceleration as input, the transient part of 

accelerations with a higher frequency is generated by rail and hexapod translational 

manipulations, in row one and two. It needs to be mentioned that the low-pass filter 

in the sliding rail row is designated to create a bandpass filter that overlaps with the 

high-pass filter of the hexapod in the first line, this helps to avoid representing the 

same range of frequencies twice by both rails and hexapod. In the third row, the 
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sustained acceleration that has lower frequencies and separated by low-pass filter 

is then represented through tilt coordination by hexapod rotational manipulation.  

The sliding rail, hexapod translational position and rotational degrees are related to 

the input vehicle acceleration in the simulator tilt frame, by multiplication of the gain 

and transfer functions as Eq. 4.6. 

Hexapod  

 

𝑥ℎ𝑒𝑥
𝑎𝑡

=
𝑘1𝐺ℎ𝑝1𝐺ℎ𝑝2

𝑠2
= 𝑘1

𝑠

(𝑠 + 𝜔ℎ𝑝1)

𝑠2

(𝑠2 + 2ζ𝜔ℎ𝑝2𝑠 + 𝜔ℎ𝑝2
2 )

1

𝑠2
 

𝜃𝑦𝑎𝑤

𝜔𝑡
=
𝑘1𝐺ℎ𝑝1𝐺ℎ𝑝2

𝑠
= 𝑘1

𝑠

(𝑠 + 𝜔ℎ𝑝1)

𝑠2

(𝑠2 + 2ζ𝜔ℎ𝑝2𝑠 + 𝜔ℎ𝑝2
2 )

1

𝑠
 

 

𝑥𝑟𝑎𝑖𝑙
𝑎𝑡

=
𝑘1𝐺ℎ𝑝1𝐺ℎ𝑝2𝐺𝑙𝑝2

𝑠2
 

= 𝑘1
𝑠

(𝑠 + 𝜔ℎ𝑝1)

𝑠2

(𝑠2 + 2ζ𝜔ℎ𝑝2𝑠 + 𝜔ℎ𝑝2
2 )

𝜔𝑙𝑝2
2

(𝑠2 + 2ζ𝜔𝑙𝑝2𝑠 + 𝜔𝑙𝑝2
2 )

1

𝑠2
 

4.6 

 

Sliding rail 

 

Summation of the accelerations in the three rows gives us the total acceleration that 

driver senses in the simulator. In each row, the parameters are listed in Table 4-1 

and Table 4-2, as explained before the process of selecting them is mainly a trade-

off between the maximum representation of motion cues in time and/or frequency 

domain, and considering the MP envelope and capability constraints. The 

frequency response of the algorithm of the separate hexapod and rail translational, 

tilt motions and summation of all to a set of parameters is presented in Figure 4-3.   

Table 4-1. Classic MCA parameters for surge/pitch and sway/roll channels 

 Parameters 

Hexapod 

Translation 

• Scale-factor, 𝑘ℎ𝑒𝑥,𝑡𝑟 

• First order high-pass filter, cut-off frequency 𝜔ℎ𝑝1  

• Second order high-pass filter, cut-off frequency 𝜔ℎ𝑝2  

Sliding rail 

Translation 

• Scale-factor, 𝑘𝑟𝑎𝑖𝑙,𝑡𝑟 

• First order high-pass filter, cut-off frequency 𝜔ℎ𝑝1  

• Second order high-pass filter, cut-off frequency 𝜔ℎ𝑝2 

• Second order low-pass filter, cut-off frequency 𝜔𝑙𝑝2 

Hexapod Tilt 

Coordination 

• Scale-factor, 𝑘ℎ𝑒𝑥,𝑡𝑙 

• Second order low-pass filter, cut-off frequency 𝜔𝑙𝑝2 

• Tilt angle 𝜃𝑚𝑎𝑥 , angular velocity �̇�𝑚𝑎𝑥, acceleration �̈�𝑚𝑎𝑥 
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Table 4-2. Classic MCA parameters for heave/yaw channel 

 Parameters 

Hexapod 

Rotation 

• Scale-factor gain, 𝑘2 

• First order high-pass filter, cut-off frequency 𝜔ℎ𝑝1  

• Second order high-pass filter, cut-off frequency 𝜔ℎ𝑝2  

 

 

Figure 4-3. Frequency response of the classic algorithm,                        
hexapod translation 𝒌𝒉𝒆𝒙,𝒕𝒓 = 𝟎. 𝟓,𝝎𝒉𝒑𝟏 = 𝟏. 𝟓𝟏,𝝎𝒉𝒑𝟐 = 𝟐. 𝟑𝟓,            

rail translation 𝒌𝒓𝒂𝒊𝒍,𝒕𝒓 = 𝟎. 𝟓,𝝎𝒉𝒑𝟏 = 𝟎. 𝟐𝟔,𝝎𝒉𝒑𝟐 = 𝟎. 𝟑𝟓,𝝎𝒍𝒑𝟐 = 𝟏𝟏,                  

Tilt  𝝎𝒍𝒑𝟐 = 𝟑  

It needs to be mentioned that the classic algorithm is only used in the experiment of 

Chapter 5, wherein those driving manoeuvres the roll and pitch angles of vehicle do 

not exceed more than 4 degrees, hence there was no need for motion cueing in 

these directions and they were fed directly to MP. This is unlike the flight simulators 

where the roll, pitch and heave are always of large values and need motion control 

Similarly, and the driving tasks were on the flat ground and the heave motion of 

vehicle always between ±0.1 meters and fits within the UoLDS MP workspace, 

hence was directly fed to MP. 

4.2 MPC algorithm for UoLDS 

In this section, the MPC motion cueing algorithm is developed based on the 

principles of the algorithm described in Chapter 3, to be used in the UoLDS 

apparatus. The main purpose is to prepare the model for the experiments described 

later in Chapter 5 and 6. This model has two similar channels for representing the 

motion in surge/pitch and sway/roll and one channel for representing the motion in 
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heave/yaw direction, see Figure 4-4. The equations are derived for each of the 

channels separately, however, are presented only for surge/pitch in the next 

sections.  

 

Figure 4-4. Schematic representation of MPC model structure for surge/pitch 
motion cueing channel 

 Coordinate transformation 

On top of Figure 4-4 there are the coordinate transformations to have accurate 

motions with respect driver’s head reference frame, and then aligning the motions 

in the MP coordinate system set-points. The full description is provided in section 

4.1.1.  

 State-space realisation of the vestibular model 

The perception models were reviewed in Chapter 2. To be able to use them in MPC 

formulation those needed to be converted in state-space form. The transfer function 

model for the otoliths is the one proposed by Telban and Cardullo (2005). They 

have used a combination of the model parameters from other authors i.e. long and 

lead time constants from (Ormsby, 1974) and gain from (Hosman, 1996) model, 

and have shown the model to be suitable for application in MCA models. The 

semicircular canals model used here were the ones being proposed by Zacharias 

(1978) from a review of the literature of vestibular motion sensation and to be 

applicable for MCA, that has been repeatedly used in many studies (Reid and 

Nahon, 1985; Augusto and Loureiro, 2009; Garrett and Best, 2013). The same 

transfer functions are used for all surge, sway and heave channels.  
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The semicircular canal transfer function where �̂� and 𝜔, in general, are the 

perceived and input vehicle angular velocities in roll (𝑝), pitch (𝑞), and yaw (𝑟) 

directions 

𝐺𝑠𝑐𝑐 =
�̂�

𝜔
=

𝑇𝑎𝑆

(1 + 𝑇𝑎𝑆)

𝑇𝐿𝑆

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 

The state-space realisation of the transfer function is  

 

𝑥𝑠𝑐𝑐(𝑘 + 1) = 𝐴𝑠𝑐𝑐𝑥𝑠𝑐𝑐(𝑘) + 𝐵𝑠𝑐𝑐𝑢𝑠𝑐𝑐(𝑘) 

𝑦𝑠𝑐𝑐(𝑘) = 𝐶𝑠𝑐𝑐x𝑠𝑐𝑐(𝑘) 

Where 

𝐴𝑠𝑐𝑐 = [
−(

1

𝑇𝑎
+

1

𝑇𝑆
+

1

𝑇𝐿
) − (

1

𝑇𝑎𝑇𝐿
+

1

𝑇𝑎𝑇𝑆
+

1

𝑇𝑆𝑇𝐿
) −

1

𝑇𝑎𝑇𝑆𝑇𝐿

1 0 0
0 1 0

]    

𝐵𝑠𝑐𝑐 = [
1
0
0
] , 𝐶𝑠𝑐𝑐 = [

1

𝑇𝑆
0 0] ,  𝐷𝑠𝑐𝑐 = [0] 

4.7 

In the design of the heave/yaw channel, the reference inputs of the vehicle 

rotational velocities are transformed to the simulator inertial frame Euler angular 

rates using the Eq. 4.3. Therefore, the control input and output for yaw tracking 

variables are in the simulator inertial frame. However, the vehicle translational 

heave motion is in simulator tilt frame, as of other translational channels.  

𝑢𝑠𝑐𝑐 = �̇�𝜙,𝜃,𝜓 , 𝑦𝑠𝑐𝑐 = �̂̇�𝜙,𝜃,𝜓  

The otolith transfer function where �̂� and 𝑎, in general, are the perceived and input 

vehicle accelerations is  

𝐺𝑜𝑡𝑜(𝑠) =
�̂� 

𝑎
=

𝐾(1 + 𝑇𝛼𝑆)

(1 + 𝑇𝐿𝑆)(1 + 𝑇𝑆𝑆)
 

The state-space realisation of the transfer function is  

 

𝑥𝑜𝑡𝑜(𝑘 + 1) = 𝐴𝑜𝑡𝑜𝑥𝑜𝑡𝑜(𝑘) + 𝐵𝑜𝑡𝑜𝑢𝑜𝑡𝑜(𝑘) 

𝑦𝑜𝑡𝑜(𝑘) = 𝐶𝑜𝑡𝑜x𝑜𝑡𝑜(𝑘) 

where 

𝐴𝑜𝑡𝑜 = [
−(

1

𝑇𝑆
+

1

𝑇𝐿
) −

1

𝑇𝑆𝑇𝐿

1 0
]   𝐵𝑜𝑡𝑜 = [

1
0
] 

𝐶𝑜𝑡𝑜 = [
𝐾𝑇𝑎

𝑇𝑆𝑇𝐿

𝐾

𝑇𝑆𝑇𝐿
]   𝐷𝑜𝑡𝑜 = [0] 

4.8 

The reference inputs of the vehicle translational accelerations are transformed from 

simulator moving frame to the simulator tilt frame using the Eq. 4.2. Therefore, the 

control input and output tracking variables are in the simulator tilt frame. 
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𝑢𝑜𝑡𝑜 = 𝑎𝑡     𝑦𝑜𝑡𝑜 = �̂�𝑡 

The vestibular model parameters are presented in Table 4-3.  

Table 4-3. Vestibular parameters used in models, from  

 𝐾 𝑇𝑎 𝑇𝑆 𝑇𝐿 

Otolith 

(Telban and Cardullo, 2005) 
0.4 10 5 0.016 

Semicircular canal 

(Reid and Nahon, 1985) 
- 30 0.1 10.2 

To take advantage of imposing constraints on position and velocity of the MP and 

applying weights in the cost function it is required to have them explicitly available 

as output variables. This is possible by including the integrators in the plant model. 

By augmenting an integrator into the semicircular canal the state-space model 

updates to 

 

𝐴𝑠𝑐𝑐 =

[
 
 
 
 − (

1

𝑇𝑎
+

1

𝑇𝑆
+

1

𝑇𝐿
) −(

1

𝑇𝑎𝑇𝐿
+

1

𝑇𝑎𝑇𝑆
+

1

𝑇𝑆𝑇𝐿
) −

1

𝑇𝑎𝑇𝑆𝑇𝐿
0

1 0 0 0
0 1 0 0
0 0 0 0]

 
 
 
 

   

𝐵𝑠𝑐𝑐 = [

1
0
0
1

] , 𝐶𝑠𝑐𝑐 = [
1

𝑇𝑆
0 0 0

0 0 0 1
], 𝐷𝑠𝑐𝑐 = [

0
0
] 

4.9 

Recalling the fact that the vehicle angular velocity in roll and pitch directions are 

directly fed to motion platform, and there was no need for motion control in those 

directions. Therefore, the control input 𝑢𝑠𝑐𝑐 is the angular velocity �̇� in yaw direction; 

the state vector 𝑥𝑠𝑐𝑐 includes 𝑥1, 𝑥2 and 𝑥3 the otolith states and output yaw 

degree 𝜓; the output vector 𝑦𝑠𝑐𝑐 includes the �̂̇�𝜓 perceived output yaw angular 

velocity and degree 𝜓.   

𝑢𝑠𝑐𝑐 = �̇�𝜓 , 𝑥𝑠𝑐𝑐 = [

𝑥1
𝑥2
𝑥3
𝜓

] , 𝑦𝑠𝑐𝑐 = [
�̂̇�𝜓
𝜓
] 

By augmenting two integrators into the otolith state-space model it becomes  

 

𝐴𝑜𝑡𝑜 =

[
 
 
 
 −(

1

𝑇𝑆
+

1

𝑇𝐿
) −

1

𝑇𝑆𝑇𝐿
0 0

1 0 0 0
0 0 0 1
0 0 0 0]

 
 
 
 

   𝐵𝑜𝑡𝑜 = [

1
0
0
1

] 

𝐶𝑜𝑡𝑜 = [

𝐾𝑇𝑎

𝑇𝑆𝑇𝐿

𝐾

𝑇𝑆𝑇𝐿
0 0

0 0 0 1
0 0 1 0

]   𝐷𝑜𝑡𝑜 = [
0
0
0
] 

4.10 
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The control input 𝑢𝑜𝑡𝑜 is the vehicle input acceleration in a single direction of x, y, z; 

the state vector 𝑥𝑜𝑡𝑜 includes 𝑥1 and 𝑥2 the otolith states and output position 𝑝𝑥,𝑦,𝑧 

and velocity 𝑣𝑥,𝑦,𝑧; the output vector 𝑦𝑜𝑡𝑜 includes the �̂�𝑥,𝑦,𝑧 perceived acceleration, 

velocity 𝑣𝑥,𝑦,𝑧 and position 𝑝𝑥,𝑦,𝑧 of the motion platform in a direction.   

𝑢𝑜𝑡𝑜 = 𝑎𝑥,𝑦,𝑧 , 𝑥𝑜𝑡𝑜 = [

𝑥1
𝑥2
𝑝𝑥,𝑦,𝑧
𝑣𝑥,𝑦,𝑧

] , 𝑦𝑜𝑡𝑜 = [

�̂�𝑥,𝑦,𝑧
𝑣𝑥,𝑦,𝑧
𝑝𝑥,𝑦,𝑧

]  

 Tilt coordination 

To represent the acceleration felt through the tilting the gravity vector needs to be 

aligned to the driver’s head vestibular system reference frame. Using the rotation 

matrix in Eq. 4.2, the gravity vector is transformed to the simulator tilt coordination 

frame as  

�⃗� = 𝑅𝑥(𝜙)𝑅𝑦(𝜃) [
0
0
𝑔
] =  [

𝑔 sin𝜃
−𝑔 cos𝜃 sin𝜙
𝑔 cos 𝜃 cos𝜙

] 

By linearization in small roll 𝜃 and pitch 𝜙 degrees the gravity vector becomes  

𝑎𝑡𝑖𝑙𝑡 = �⃗� =  [

𝑔𝜃
−𝑔𝜙
𝑔
] 

Assuming the tilting as the acceleration that the driver is feeling, then similar to the 

linear translation acceleration it is passed to the vestibular otolith model to have the 

perceived tilting acceleration. It is also required for tracking of the model’s reference 

input vehicle acceleration, which is already a perceived linear acceleration. In this 

regard, the state-space model is updated as 

 

𝑥𝑡𝑖𝑙𝑡(𝑘 + 1) = 𝐴𝑡𝑖𝑙𝑡𝑥𝑡𝑖𝑙𝑡(𝑘) + 𝐵𝑡𝑖𝑙𝑡𝑢𝑡𝑖𝑙𝑡(𝑘) 

𝑦𝑡𝑖𝑙𝑡(𝑘) = 𝐶𝑡𝑖𝑙𝑡x𝑡𝑖𝑙𝑡(𝑘) 

where 

𝐴𝑡𝑖𝑙𝑡 = [
−(

1

𝑇𝑆
+

1

𝑇𝐿
) −

1

𝑇𝑆𝑇𝐿

1 0
]   𝐵𝑡𝑖𝑙𝑡 = [

𝑔
0
] 

𝐶𝑡𝑖𝑙𝑡 = [
𝐾𝑇𝑎

𝑇𝑆𝑇𝐿

𝐾

𝑇𝑆𝑇𝐿
]      𝐷𝑡𝑖𝑙𝑡 = [

0
0
] 

4.11 

To have control over the tilting angular velocity and acceleration the MPC plant 

model is designed in a way that the control input 𝑢𝑡𝑖𝑙𝑡 is an angular velocity, 

therefore imposing constraints on the control variable 𝑢𝑡𝑖𝑙𝑡 and its rate of changes 

∆𝑢𝑡𝑖𝑙𝑡 is actually the constraints on the tilting angular velocity and acceleration. 

Moreover, there is an integrator in the tilting plant model that produces the tilting 

degrees as another output of the model, which prepares the ability to have the 
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constraints on maximum titling degree or maximum amount of acceleration 

represented to drivers through tilting. The updated tilting model becomes  

 

𝐴𝑡𝑖𝑙𝑡 = [
−(

1

𝑇𝑆
+

1

𝑇𝐿
) −

1

𝑇𝑆𝑇𝐿
𝑔

1 0 0
0 0 0

]    𝐵𝑡𝑖𝑙𝑡 = [
0
0
1
] 

𝐶𝑡𝑖𝑙𝑡 = [
𝐾𝑇𝑎

𝑇𝑆𝑇𝐿

𝐾

𝑇𝑆𝑇𝐿
0

0 0 1
]    𝐷𝑡𝑖𝑙𝑡 = [0] 

where 

𝑢𝑡𝑖𝑙𝑡 = �̇�  , 𝑦𝑡𝑖𝑙𝑡 = [
�̂�𝑡𝑖𝑙𝑡
𝜃𝑡𝑖𝑙𝑡

] 

4.12 

In the above equation �̇� is the tilt pitch angular velocity, and �̂�𝑡𝑖𝑙𝑡 is the perceived 

longitudinal acceleration through tilting and 𝜃𝑡𝑖𝑙𝑡 is the tilt pitch attitude. 

 Complete plant model  

Further down in Figure 4-4 within the green dashed line, the plant model for 

surge/pitch channel is shown. There are three rows including block diagrams of 

vestibular model and integrators; there are few other gains for unit transformation 

and gravity vector available in the model which are not shown here. The first two 

rows are generating the transient linear motions by hexapod and sliding rail MPs, 

and the third row generates the sustained acceleration through tilt coordination. 

Moreover, there is a summation that adds the three perceived accelerations as 

another output of the plant, that is the total acceleration driver is sensing in the 

simulator.  

 �̂�𝑡𝑜𝑡𝑎𝑙 = �̂�𝑟𝑎𝑖𝑙 + �̂�ℎ𝑒𝑥 + �̂�𝑡𝑖𝑙𝑡 4.13 

Therefore, the plant model used here has three control inputs and nine outputs 

corresponding to the hexapod and rail translations and hexapod tilting and 

summation of all. The combined plant model is 

 

𝑥𝑚𝑝𝑐(𝑘 + 1) = 𝐴𝑚𝑝𝑐𝑥𝑚𝑝𝑐(𝑘) + 𝐵𝑚𝑝𝑐𝑢𝑚𝑝𝑐(𝑘) 

𝑦𝑚𝑝𝑐(𝑘) = 𝐶𝑚𝑝𝑐x𝑚𝑝𝑐(𝑘) 

where 

𝐴𝑚𝑝𝑐 = [

𝐴𝑜𝑡𝑜 0 0
0 𝐴𝑜𝑡𝑜 0
0 0 𝐴𝑡𝑖𝑙𝑡

]

11×11

    𝐵𝑚𝑝𝑐 = [

𝐵𝑜𝑡𝑜 0 0
0 𝐵𝑜𝑡𝑜 0
0 0 𝐵𝑡𝑖𝑙𝑡

]

11×3

     

𝐶𝑚𝑝𝑐 = [

𝐶𝑜𝑡𝑜 0 0
0 𝐶𝑜𝑡𝑜 0
0 0 𝐶𝑡𝑖𝑙𝑡
𝐶𝑜𝑡𝑜
∗ 𝐶𝑜𝑡𝑜

∗ 𝐶𝑡𝑖𝑙𝑡
∗

]

9∗11

    𝐷𝑚𝑝𝑐 = [0]9∗3 

4.14 
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𝐶𝑜𝑡𝑜
∗  and 𝐶𝑡𝑖𝑙𝑡

∗  are the row vectors extracted from the first row of their 

belonging matrices. 

   𝑢𝑚𝑝𝑐 = [

𝑢𝑟𝑎𝑖𝑙
𝑢ℎ𝑒𝑥
𝑢𝑡𝑖𝑙𝑡

] ,  𝑥𝑚𝑝𝑐 = [

𝑥𝑜𝑡𝑜
𝑥𝑜𝑡𝑜
𝑥𝑡𝑖𝑙𝑡

] =

[
 
 
 
 
 
 
 
 
 
 
𝑥1_𝑟𝑎𝑖𝑙
𝑥2_𝑟𝑎𝑖𝑙
𝑝𝑟𝑎𝑖𝑙
𝑣𝑟𝑎𝑖𝑙
𝑥1_ℎ𝑒𝑥
𝑥2_ℎ𝑒𝑥
𝑝ℎ𝑒𝑥
𝑣ℎ𝑒𝑥
𝑥1_𝑡𝑖𝑙𝑡
𝑥2_𝑡𝑖𝑙𝑡
𝜃𝑡𝑖𝑙𝑡 ]

 
 
 
 
 
 
 
 
 
 

 ,  𝑦𝑚𝑝𝑐 =

[
 
 
 
 
 
 
 
 
�̂�𝑟𝑎𝑖𝑙
𝑣𝑟𝑎𝑖𝑙
𝑝𝑟𝑎𝑖𝑙
�̂�ℎ𝑒𝑥
𝑣ℎ𝑒𝑥
𝑝ℎ𝑒𝑥
�̂�𝑡𝑖𝑙𝑡
𝜃𝑡𝑖𝑙𝑡
�̂�𝑡𝑜𝑡𝑎𝑙]

 
 
 
 
 
 
 
 

 

The state vector (manipulated variables) of the plant 𝑥𝑚𝑝𝑐 consist of the states of 

the otolith model 𝑥1, 𝑥2 that available in the rail, hexapod and tilt; the position and 

velocity states of the rail 𝑝𝑟𝑎𝑖𝑙, 𝑣𝑟𝑎𝑖𝑙 and hexapod 𝑝ℎ𝑒𝑥, 𝑣ℎ𝑒𝑥; the tilt pitch angle 𝜃𝑡𝑖𝑙𝑡. 

Output vector (tracking variables) consist of perceived acceleration, velocity and 

position represented by the rail �̂�𝑟𝑎𝑖𝑙, 𝑣𝑟𝑎𝑖𝑙, 𝑝𝑟𝑎𝑖𝑙  and hexapod �̂�ℎ𝑒𝑥, 𝑣ℎ𝑒𝑥, 𝑝ℎ𝑒𝑥; 

perceived acceleration represented through tilting �̂�𝑡𝑖𝑙𝑡 and tilting degree 𝜃𝑡𝑖𝑙𝑡; and 

total perceived acceleration �̂�𝑡𝑜𝑡𝑎𝑙.  

At every time sample, current and future reference input samples (over the 

prediction horizon 𝐻𝑝) are fed to the controller for tracking the output variables. The 

controller calculates a set of control inputs to minimise the error between the 

estimated values of all output variables and the provided references. Hence in this 

application, the perceived accelerations of the rail �̂�𝑟𝑎𝑖𝑙, hexapod �̂�ℎ𝑒𝑥, tilting �̂�𝑡𝑖𝑙𝑡 all 

together with the �̂�𝑡𝑜𝑡𝑎𝑙 are tracking the perceived input acceleration 𝑎�̂�. Those are 

the errors to be minimised in the cost function. The remainder of the output 

variables are set to be tracking zero that helps to bring the motion platforms back to 

their neutral position when there is no input acceleration to be tracked; it is also 

possible to do this by weighting the control inputs, this is similar to washout in the 

classic algorithm.   

The constraints could be set on 𝑢𝑟𝑎𝑖𝑙 and 𝑢ℎ𝑒𝑥 that defines the maximum 

acceleration that a motion platform is capable of, are soft constraints; on 𝑢𝑡𝑖𝑙𝑡 and 

∆𝑢𝑡𝑖𝑙𝑡 that defines tilt angular velocity and acceleration, hard constraints. The 

constraints are being set on the output variables including maximum velocity to be 

within motion platform capability, soft constraint; and maximum position considering 

the workspace excursion limits, hard constraints for both rail 𝑣𝑟𝑎𝑖𝑙 and 𝑝𝑟𝑎𝑖𝑙  and 

hexapod 𝑣ℎ𝑒𝑥 and 𝑝ℎ𝑒𝑥; on 𝜃𝑡𝑖𝑙𝑡 that defines the maximum tilt degree that hexapod 

is allowed to rotate, hard constraint. Since there were hard constraints on output 

variables of rail and hexapod translational motions, their input acceleration was not 
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constrained to avoid any infeasibility, although those are weighted to avoid big 

changes. Thus, the whole vector of constrained variables is  

[𝑢𝑡𝑖𝑙𝑡 ∆𝑢𝑡𝑖𝑙𝑡 | 𝑣𝑟𝑎𝑖𝑙 𝑝𝑟𝑎𝑖𝑙 𝑣ℎ𝑒𝑥 𝑝ℎ𝑒𝑥 𝜃𝑡𝑖𝑙𝑡] 

In the cost function Eq. 3.15, weights define the relationship between and within 

each of the manipulated or output tracking variables. They are applied to output 

variables in matrix 𝑄, manipulates variables in matrix 𝑆 and rate of changes of 

manipulated variables in matrix 𝑅. In this formulation the matrices 𝑄9×9, 𝑆3×3 and 

𝑅3×3 are diagonal matrices. Weighting in the matrix 𝑄 defines how the tracking of 

the perceived accelerations to input vehicle acceleration is important compared to 

MP velocity and position, or between the acceleration generated by rail �̂�𝑟𝑎𝑖𝑙 and by 

hexapod �̂�ℎ𝑒𝑥. The weighting on the velocity and position variables guarantee that 

the platform returns to neutral states. Weights on the control input manipulated 

variables 𝑆 and its rate of changes 𝑅 prevents big changes of control input. 

Parameters available for tuning in each channel are listed in Table 4-5 and Table 

4-4.  

Table 4-4. MPC parameters for heave/yaw channel 

 Parameters 

Hexapod 

Translation 

• Acceleration tracking weight, 𝑤ℎ1  

• Velocity tracking weight, 𝑤ℎ2  

• Position tracking weight, 𝑤ℎ3 + constraint  

Hexapod 

Rotation 

• Velocity tracking weight, 𝑤ℎ1  

• Position tracking weight, 𝑤ℎ2 + constraint 

Table 4-5. MPC parameters for surge/pitch and sway/roll channels 

 Parameters 

 
• Prediction horizon 𝐻𝑝 

• Control horizon 𝐻𝑢 

Hexapod 

Translation 

• Acceleration tracking weight, 𝑤ℎ1  

• Velocity tracking weight, 𝑤ℎ2  

• Position tracking weight, 𝑤ℎ3 + constraint 

Sliding rail 

Translation 

• Acceleration tracking weight, 𝑤𝑟1  

• Velocity tracking weight, 𝑤𝑟2  

• Position tracking weight, 𝑤𝑟3 + constraint 

Hexapod Tilt 

Coordination 

• Tilt angular velocity constraint,  �̇�𝑚𝑎𝑥 

• Tilt angular acceleration constraint,  �̈�𝑚𝑎𝑥 

• Acceleration tracking weight, 𝑤𝑡1  

• Position tracking weight, 𝑤𝑡2 + constraint 𝜃𝑚𝑎𝑥 

Total • All acceleration tracking weight, 𝑤𝑎  
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The parameter values are selected for the experiments in Chapter 5 and 6, based 

on a logical concept of weighting the states and outputs which are dependent on 

the plant structure, all together needed tens of offline simulation trials and simulator 

testing to pick up best candidates. Exploration of weight effects on motion cueing 

response is thoroughly described in Chapter 7. 
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5 Assessment of Low-Friction Motion Cueing 

5.1 Introduction  

The emphasises on the flight and driving simulators field of research on the effect of 

motion cueing has developed to a state that has risen the ambiguity of how the 

characteristics of dynamic simulators motion cueing subsystems affect the fidelity, 

and sparsely there is a standardised technique available correlating them to the 

fidelity level. To this end in this chapter, an experiment is described where the main 

components of the simulator motion cueing system are manipulated as independent 

variables and evaluated in different driving tasks. Those are motion cueing 

algorithms (MCA) and motion platform (MP) size. The evaluations are based on the 

subjective perception of the driving experience in various motion configurations, 

and exploration of the effect of the changes on their performance.  

The evaluations are done specifically for vehicle testing in low-friction winter 

conditions, such as routinely carried out by Jaguar Land Rover (JLR) in the 

northern parts of Sweden. Among the few driving task candidates, two tasks were 

selected and replicated in the driving simulator (Markkula et al., 2016). The reason 

was to cover the probable effect that driving manoeuvres might have in the 

evaluations. A more restricted, less motion demanding driving task was selected, 

where the lateral vehicle motion is mainly excited in a single frequency. 

Furthermore, a test track type manoeuvre that demands higher motion and includes 

a variety of frequencies for lateral motions was selected. Each of the tasks required 

closed-loop driver control using multiple perceptual stimuli.  

It has been reported that the MCA has effects on drivers’ subjective preferences. 

The effect might be due to the type of MCA used or their tuning setting. Among the 

first comparisons between the classic and model predictive control (MPC) 

algorithms (Dagdelen et al., 2009; Augusto and Loureiro, 2009) it was reported that 

drivers subjectively preferred the MPC over classic. Similar subjective preference of 

MPC over classic has been reported in (Fang and Kemeny, 2012b; Fang and 

Kemeny, 2012a; Fang and Kemeny, 2014). In driver in the loop evaluation between 

MCAs, drivers rated MPC higher than classic in linear and non-linear handling 

regimes (Garrett and Best, 2013). Although there is research available evaluating 

the effect of MCAs on the subjective perception of realism, there is little research 

available that has considered the effect on objective behaviour. Thus, as the first 

aim of this study, two MPC and classic type of MCAs are selected to perform a 

motion cueing fidelity comparison among them.  
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It has been reported that motion has effects on drivers’ subjective preferences and 

objective performance. Lakerveld et al. (2016) investigated the yaw and sway 

motion effect on drivers’ performance, they reported that the sway motion improved 

disturbance-rejection performance, and yaw motion reduced control activity. 

Moreover, in extreme scenarios such as slalom, motion feedback improved the 

driver’s performance. Feenstra et al. (2010) showed that steering corrections i.e. 

number of steering wheel reversals and relatively high-frequency corrections were 

reduced when the magnitude of motion cue was increased.  

It has been consistently shown that for specific tasks where driving simulator’s MP 

is capable of representing the full motion to drivers, down-scaled motion between 

0.4 and 0.75 of full motion is considered as more realistic i.e. higher fidelity; also 

vehicle control gets more demanding with larger motion scales (Berthoz et al., 

2013; Savona et al., 2014). It might suggest that drivers seek to avoid a large 

motion to decrease their control effort. This has prompted to have the MP size as 

another aim of this study. Thus, as the second aim of this study three sizes of MP 

workspace are considered to perform a motion cueing fidelity comparison among 

them. The MCA comparisons (first aim) took place in each of the MP sizes, to find 

out probable interactions between MP sizes and MCAs.  

In summary in this chapter, the variations in simulator motion cueing subsystems 

that have the most effect on motion cueing fidelity are assessed considering the 

manipulations to MCAs and MPs, and different driving tasks. For evaluations, the 

measurements include drivers’ subjective ratings and their objective behaviour. The 

following sections elaborate more on, how an experiment was designed that could 

address comparison between the simulator motion configurations, the research 

questions and hypotheses are defined. Finally, the analysis of results is presented 

to answer the research questions followed by discussion and conclusion.   

5.2 Experimental design  

The two independent variables for this study were the MCA with two levels (MPC 

and classic) and MP size with three levels (small, medium and large). At each of the 

six (2x3) combinations of these independent variables, subjective ratings and 

drivers’ objective performance were collected. To increase the power of the effect of 

experimental manipulations and limited availability in the number of professional 

drivers participating in this study, a repeated measure experiment design was used 

where the same participants took part in all combinations of the independent 

variables. It was a balanced design where there is an equal number of observations 

for each of the treatments. The differences between the MCAs were more subtle 

compared to the MP sizes, as a result, the experiment was designed in a nested 



93 
 

way that the comparisons between MCAs to be of primary focus for drivers and the 

MPs as the secondary focus. This helps the drivers to emphasise on distinguishing 

between the MCAs in each MP size, while next they evaluate the MP sizes.    

Eight test drivers from JLR attended University of Leeds Driving Simulator (UoLDS) 

and drove a Jaguar XF car on low friction snow condition in both slalom task (SLM) 

and Land Rover handling track (LHT) and completed a questionnaire about quality 

of their drive on overall assessment, motion cueing and vehicle assessment, also 

their objective performance were collected. They were familiar with real world 

testing of the vehicle in similar low-friction winter condition and driving tasks. 

The experiment had each of the drivers accomplish first the slalom and second the 

LHT driving tasks. They were consecutively presented with the six motion 

configurations corresponding to the permutations of three MP sizes and two MCAs. 

Drivers were presented with three pairs of motion configurations to make a 

comparison between them: 

• Small-MPC (S-M) and small-classic (S-C) 

• Medium-MPC (M-M) and medium-classic (M-C) 

• Large-MPC (L-M) and large-classic (L-C) 

This allowed examining how drivers perceived the effects of MCA and MP on 

fidelity and the extent to which the drivers agreed with each other’s ratings. For both 

of the tasks, the above pairs were presented to four drivers in 1-2-3 (small-medium-

large) group order and for the other four in 3-2-1 (large-medium-small) group order, 

drivers were randomly assigned to be in each group. The order of the MCAs within 

each of the above pairs was counter-balanced per driver, meaning that in each pair 

some drivers might start with the classic and some with the MPC. The full 

counterbalancing table for all drivers is provided in Appendix B.  

5.3 Dependent variables  

In this section, to allow the formulation of research questions and hypotheses, the 

subjective and objective behaviour metrics are explained. Further details about how 

the metrics are applied to the collected data are provided in section 5.10.  

 Subjective measures 

In order to evaluate the simulator motion cueing fidelity among the motion 

configurations, a subjective questionnaire was designed. The participated drivers 

were all professionals that had the experience of driving the same car for the same 

driving tasks in the real world. As a result, the question anchors were selected with 

the range of realistic/unrealistic to have a comparison between real and virtual 

driving experience. 
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The idea behind selecting the questions originated to cover different aspects. From 

general impressions of realism to the ones related to simulator motion 

characteristics, as well as those that matter in real world vehicle evaluations. This 

led to prepare the questions in three categories of overall assessments, motion 

cueing and vehicle assessment, with each consisting of three more detailed 

questions, see Table 5-1. 

Table 5-1. Simulator subjective questions 

Question 

Category & 

Number 

Question Rating Anchors 

Overall 

Assessment 

1 
How realistic was the overall experience in 

the simulator compared to reality 
unrealistic/realistic 

2 

Do you think that these simulator 

configurations would be useful for testing 

and comparing vehicle designs 

not useful/useful 

3 How easy was it to perform the task difficult/easy 

 

Motion 

Cueing 

4 I felt motion in general was unrealistic/realistic 

5 
I felt longitudinal acceleration/deceleration 

and pitch were 
unrealistic/realistic 

6 
I felt lateral acceleration/deceleration and 

roll were 
unrealistic/realistic 

 

 

Vehicle 

Assessment 

7 

How confident were you in assessing the 

available grip and the limit of the vehicle's 

ability 

unrealistic/realistic 

8 I felt under/oversteering was unrealistic/realistic 

9 I felt time delay of vehicle response was unrealistic/realistic 

The overall assessment questions were designed to evaluate how the motion 

configurations might influence the overall driving experience between real and 

virtual environments, questions 1 and 3, and whether the drivers get the impression 

of the simulator as a reliable tool for testing vehicle designs, question 2. 

The motion cueing questions were of special importance to us in this experiment. 

Question 4 was included to look at general realism of perception that drivers would 



95 
 

have at each configuration. Moreover, the different MCAs and MPs were expected 

to mainly affect the surge (longitudinal) and sway (lateral) motions, therefore 

questions 5 and 6 were included to acquire more specific ratings in each direction.  

The vehicle assessment questions were chosen based on JLR test drivers’ specific 

attribute language to describe the various characteristics of a vehicle, including the 

ride, steering and handling qualities (Jamson et al., 2014a). However, the main 

focus of this study was not to address exactly these qualities, but more of a glimpse 

to see whether motion configurations might influence them. In Chapter 6 these 

driven attribute qualities are further studied. 

 Objective measures 

During the theme 3 of PSi project, the objective measurement methods have been 

developed for assessing the fidelity of driving simulators. The foundation of this 

research approach, as laid out in previous project deliverables (Jamson et al., 2013; 

Jamson et al., 2014a; Jamson et al., 2014b; Jamson et al., 2015) is the 

performance of correlation studies, using behavioural metrics in a so-called “Utility 

Triplet” to compare test results obtained in a real vehicle with those obtained in 

simulators with different capabilities. According to Markkula et al. (2016); Romano 

et al. (2019) the utility triplet was proven to be a useful structured approach for this 

type of behavioural fidelity assessment.  

The utility triplet includes three major categories: aggregated performance, time 

series and driver model which are explained below (Boer et al., 2014), see Table 

5-2.  

• Aggregate performance 
Performance in relation to the task specification. “This includes spatial and temporal 

proximity to constraints as well as completion time. Focus is placed on accuracy or 

the degree to which the task was performed”.  

 

• Time series 
Profile of the vehicle states and driver control actions, as a function of time and 

distance depending on what is most meaningful for comparison per 

task/manoeuvre. Focus is placed on vehicle response rather than control actions. 

 

• Driver model 
Model that characterises the driver as a controller. The structure and coefficients of 

the model reflect the driver-vehicle interactions.  

The aggregate performance metrics reflects the performance of a driver in terms of 

general qualities of driving, and it is related to the driving task definition. As it is 

shown in Table 5-2, the lap time is the completion time of a driving task, and 

interpretation of its values depend on the experiment design. The speed variability 

is the variation of speeds that driver has throughout the driving task.  
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In the driving task where the drivers are asked to adapt their speed as fast (LHT 

task described later), lower lap time shows improved performance in a successful 

attempt. In general, lower speed variation is considered to be a better performance. 

However, higher speed variation might be indicative of better performance if it 

happens together with lower lap time in a successful attempt.  

In the driving task where the drivers are asked to keep a constant speed (SLM task 

described later), the lower lap time in a successful attempt shows improved 

performance; because during the experiment, they might need to reduce their 

speed to complete the task that results in higher lap time. The lower speed variation 

shows better performance since drivers were asked to keep a constant speed.  

The lateral position deviation is the maximum deviation of the vehicles lateral 

position from a trajectory. Here average trajectory of all drivers and motion 

configurations is used; hence the lower value always shows a better relative 

performance.    

Several objective metrics were candidates for the time series metrics, to account for 

aspects of behaviour not covered by the aggregate performance and driver model 

metrics. Among the time series metrics, the number of steering reversals has been 

emphasised to be an appropriate measure of drivers control activity (Anon, 2015), 

that means reduced steering reversal rate shows a more relaxed style of driving. 

The steering reversal rate was selected to be 1 °/s and 10 °/s to capture small and 

large steering adjustments (Markkula et al., 2016). The other time series metrics 

are related to the maximum vehicle motions in different longitudinal, lateral and yaw 

directions. 

The driver model metrics were given by the driver model, which is the desired path 

yaw rate error (DPYRE) model described in section 2.3. This model uses three 

parameters (delay time, preview time and gain) and the desired path to predict the 

driver behaviour (steering rate). For the desired path, the average trajectory of all 

drivers was used in each of the driving tasks. It has been shown that using a task-

dependent fixed preview time did not affect the model fits much (Markkula et al., 

2016). After a preliminary analysis of the data collected in this experiment, no effect 

of preview time was found, hence a fixed value of 𝑇𝑝 = 1.7 s was selected for SLM, 

and 𝑇𝑝 = 3 s was selected for LHT.  
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Table 5-2. Utility triplet used for objective behaviour analysis  

Land Rover Handling Track (LHT) Slalom (SLM) 

Aggregate performance 

• Lap time 

• Skid/spin outs 

• Speed variability  

• Lateral position deviation 

• Lap time 

• Skid/spin outs + Cones knocked 

over 

• Speed variability 

Time series 

• Maximum longitudinal velocity  

• Maximum lateral velocity (absolute value) 

• Maximum longitudinal acceleration  

• Maximum lateral acceleration (absolute value) 

• Maximum yaw rate (absolute value) 

• Steering wheel reversal rate (1 degree) 

• Steering wheel reversal rate (10 degree) 

Driver model (DRYPE) 

• Response delay time 𝑇𝑅 

• Steering gain 𝐾 

5.4 Experiment configurations 

Regarding the aim of this study the interest was to evaluate the drivers’ 

subjective fidelity and objective behaviour in various MP sizes and MCAs, it was 

decided to select three different sizes of the MP workspace, and do the 

comparison between the two MPC and classic MCAs in each of the MP sizes. 

 Motion platforms 

The UoLDS hexapod manipulator has relatively limited translational motion 

workspace which is about 0.6 meter for surge and sway directions, the reason is 

the availability of sliding rail that adds 5 metres to it resulting in 5.6 metres of 

workspace envelope in both directions. There are 23 degrees of yaw motions 

available, however, in simultaneous excursions in all DoFs it goes down to 15 

degrees. Looking at vehicle roll and pitch motions (less than 4 degrees), 

assures that the hexapod workspace can sufficiently represent in them. In this 

study to reduce the variability between motion configurations, the MP envelope 

in heave, roll, pitch and yaw were identical but varied in surge and sway 

workspace size provided by the sliding rail, see Table 5-3. Hence, the only 

difference between the MP configurations are 

• Hexapod & ±0.5 (m) of rail surge and sway, i.e. small 

• Hexapod & ±1.5 (m) of rail surge and sway, i.e. medium 

• Hexapod & ±2.5 (m) of rail surge and sway, i.e. large 
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Table 5-3. Motion platform specifications configured in this experiment 

 Hexapod Sliding rail 

Surge 

(m) 

Sway 

(m) 

Heave 

(m) 

Roll 

(deg) 

Pitch 

(deg) 

Yaw 

(deg) 

Surge 

(m) 

Sway 

(m) 

Small ±0.1 ±0.1 ±0.1 ±10 ±10 ±15 ±0.5 ±0.5 

Medium ±0.1 ±0.1 ±0.1 ±10 ±10 ±15 ±1.5 ±1.5 

Large ±0.1 ±0.1 ±0.1 ±10 ±10 ±15 ±2.5 ±2.5 

The hexapod’s full capability is always used in all three configurations. The small 

motion platform was chosen to have similar total workspace envelope as the JLR 

Cruden simulator motion platform, which is a 6 DoF hexapod without sliding rails, 

and higher frequency bandwidth (Brems et al., 2015) than the UoLDS motion 

platform mainly due to lighter weight of the system. Another difference between 

the UoLDS and JLR simulator is the steering wheel force feedback. The UoLDS 

has a TRW electric power-assisted steering (EPAS) system, mounted at the base 

of the original steering column of the cockpit vehicle, whereas the JLR simulator 

has the Cruden control loading, providing torque directly at the handwheel.  

 Motion cueing algorithms  

As it was explained in Chapter 4, the MCAs with full 6 DoFs usually includes three 

separate channels that each couple a rotational motion to translational motion, 

conventionally the channels are surge/pitch, sway/roll and heave/yaw.  

The classic algorithm is tuned for the worst-case scenario of vehicle motion inputs 

in a manoeuvre. The tuning is always a complicated procedure because several 

criteria need to be met at the same time. In this regard, an automatic procedure for 

finding optimal parameters for the classic MCA was developed (Sadraei et al., 

2016). It was an optimisation method that minimised the motion errors in time and 

frequency domain to meet the fidelity criteria and respect the MP workspace 

constraints. The MCA parameter settings in this experiment were based the on 

same optimisation method, although extended to include the tilt coordination, see 

more details in Chapter 8. The optimisation variables included only the MCA high-

pass filter cut-off frequencies using the fixed scale-factors, and fixed parameters for 

tilting.  

The tuning of the MPC algorithm is slightly simpler process compared to classic 

since the MP workspace constraints are always respected by the controller. 

However there more tuning parameters compared to classic, those are the 

prediction and control horizons, and depending on the model structure there are 

weights on the control input, states and output variables, all play a critical role in the 

response of the model. The tuning of the MCA parameter settings in this 
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experiment was based on guides about tuning process by Augusto and Loureiro 

(2009); Maran (2013), in addition to observations of tens of offline simulation trial 

and error to pick up best set of parameters.  

The offline objective analysis to compare the motion cueing response between the 

experimental configurations was not a straight forward task; especially in 

manoeuvres including a variety of curves and straight lines that included a wide 

range of frequencies and amplitudes. Moreover, the frequency response of the 

MPC algorithm was not available by the time of designing this experiment. 

Therefore, the main comparisons were feasible and carried out only in the time 

domain, even though it provided limited information about the comparison between 

the experimental configurations.  

The main measure for the comparisons was the root mean square (RMS) of the 

difference between the vehicle motion (before scaling) and MCA output 

acceleration (including scaling) and if the simulator MP workspace is exploited 

properly to vehicle motion input, provided in Table 5-4. As it is observable in classic, 

sometimes the workspace is not as exploited as MPC that might have been a 

reason for the RMS to be higher. Further tuning of the classic that includes the tilt 

coordination (introduced in Chapter 7 and 8) might result in better exploitation of 

workspace and reduction in RMS value, although it is also dependant on the 

individual performance of drivers during a manoeuvre. To validate the 

appropriateness of the experiment configurations, the simulator technicians, staff 

members, and professional drivers performed piloting and described their motion 

experience to approve if the tunings for both classic and MPC were comparable.  

Table 5-4. Motion configurations acceleration and excursion differences 

Motion 

Platform 

Motion 

Cueing 

Algorithm 

Slalom (SLM) 
Land Rover Handling 

(LHT) 

RMS 

(𝑎𝑖 − 𝑎𝑠) 

Max 

excursion 

RMS 

(𝑎𝑖 − 𝑎𝑠) 

Max 

excursion 

X Y X Y X Y X Y 

Small 
Classic 0.40 0.76 0.48 0.43 0.93 1.38 0.36 0.39 

MPC 0.25 1.06 0.44 0.5 1.08 1.27 0.49 0.49 

Medium 
Classic 0.36 0.52 1.21 1.29 0.89 1.35 1.11 1.29 

MPC 0.24 0.95 1.45 1.50 0.97 1.23 1.44 1.09 

Large 
Classic 0.31 0.48 1.93 2.22 0.88 1.34 2.38 2.28 

MPC 0.21 0.54 2.44 2.50 0.91 1.14 2.17 1.83 
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In the tuning process of the MPC algorithm for lateral motion of the slalom task, it 

was observed of its poor performance when the constant look-ahead information is 

available and the prediction horizon is long. That was further investigated to the 

only sinusoidal inputs, and a similar response was observed. To reduce the effect 

the prediction horizon was decreased for the lateral motion compared to the 

longitudinal motion, although the horizon could not be decreased freely due to 

stability of the system. Despite the improvements, when it was compared to classic, 

the response was still worse. The response of the MPC and classic to different 

inputs are presented in Chapter 7. This was the main reason for hypothesising the 

preferences of drivers for classic over MPC in slalom manoeuvre, described in next 

section.  

The selection of tilt setting has a major effect on the perception and performance of 

the drivers in simulators. The studies on the trade-off between slow/prompt build-up 

of tilting and corresponding high/low motion errors have shown mixed results. It has 

been shown that the simulation of linear self-motion became more realistic with the 

presence of tilt, as long as the tilt rate remained under the angular velocity 

perception threshold of 3 𝑑𝑒𝑔/𝑠 (Groen and Bles, 2004). Moreover, the choice of tilt 

setting has been reported to be more critical with the increase of frequency vehicle 

motion in a manoeuvre. Comparison between the tilt rate of 3 (limited) and 30 

(unlimited) 𝑑𝑒𝑔/𝑠 with focus on the perceived longitudinal acceleration during an 

emergency brake, showed the subjective preference of the unlimited tilting over the 

limited (Fischer and Werneke, 2008). Grant et al. (2009) observed contrary results 

in a study comparing a few different MCA parameter settings, including the high 

and low tilt rate in a lane change task. It was reported that drivers’ performance and 

their subjective ratings were improved in the low tilt rate setting.   

In a subjective comparison between ranges of tilt parameters for the slalom driving 

task a tilt rate of 6 𝑑𝑒𝑔/𝑠 and 8 𝑑𝑒𝑔/𝑠2 was found to be an acceptable set of 

parameters (Colombet et al., 2016). Jamson (2010), evaluated the effect of 

simulator motion cueing subsystems on human perception and behaviour in 

different driving tasks. It was concluded that the drivers’ “performance varied little 

between sub-threshold and more rapid tilt when the sliding rail was activated”. 

However, while the rail was inactive, the drivers’ performance was better with 

higher tilt rate; that means the translational motion availability allows a slower tilt, 

which provides both improved driving task performance and perceived realism. 

Considering the range of tilt-coordination parameters used in the literature, in this 

experiment after many trial and pilot studies the settings of the Table 5-5 were 

found to be appropriate, see Appendix D. The classic and MPC tuning parameter 
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values for the translational motion channels, for the three MP sizes and driving 

tasks are listed in Appendix B. 

Table 5-5. Tilt rotational parameters used in this study 

Angular Velocity Threshold Rotational Acceleration Threshold  

4  𝑑𝑒𝑔/𝑠 4  𝑑𝑒𝑔/𝑠2 

5.5 Research questions and hypotheses 

The overall aim of this study was to investigate how variations in simulator motion 

cueing components affect drivers’ subjective ratings of simulator fidelity and their 

objective behaviour. Motion cueing configurations are selected including various 

MCAs and MPs and they are evaluated for different driving tasks. The fidelity 

assessments are based on the variations in drivers subjective ratings, and 

exploration of their objective behavioural performance. Two research questions are 

defined, as associated with these aims: 

Research question 1 – How do the different MCAs affect the drivers’ 

subjective ratings of simulator fidelity and their objective behaviour? 

Within each MP configurations, pairwise comparison of MCAs takes place; the 

fidelity is assessed by subjective questionnaires and also objectively quantified 

using the utility triplet. 

The hypothesis is: For the subjective ratings, in all the three MP sizes higher 

simulator fidelity is expected to be with MPC in LHT and classic in SLM. This is due 

to the poor performance of MPC in evasive manoeuvres when there is no variable 

look-ahead information available. It is expected to see the results in the ‘overall 

assessment’ and ‘motion cueing’ group of questions. For the objective evaluations, 

no specific hypotheses are formulated in relation to this research question.     

Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of simulator fidelity and their objective behaviour? 

Within each of the MCAs, comparison between the MP configurations takes place; 

fidelity is assessed by subjective questionnaires and also objectively quantified 

using the utility triplet. 

The hypothesis is: For the subjective evaluations, in both of the MCAs highest 

simulator fidelity is expected to be with medium MP for SLM task, this is due to the 

similar results in literature showing a scaled motion between 0.4 and 0.75 of full 

motion is considered as more realistic and it lies in the medium MP size of this 

experiment. It is expected to see the results in ‘overall assessment’ and ‘motion 

cueing’ group of questions; no hypothesis formulated for LHT. In objective 
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evaluations of LHT and SLM tasks, for the aggregated performance no hypothesis 

is formulated; for the time series with the increase of MP size a decrease in values 

of drivers steering reversal rate metrics is expected, as a measure of control 

activity; for the driver model with the increase of MP size larger control delays are 

expected, which might require smaller control gains in compensation.  

5.6 Driving tasks  

The driving tasks selected for this experiment are among the usual JLR low friction 

vehicle testing tasks, also the drivers participated in this experiment are all familiar 

with them in the real world. As part of the PSi Theme 3 project, the same driving 

tasks were replicated in the simulator virtual environment. The test tracks are at 

Jaguar Land Rover Revi Test Centre, formed on the frozen Lake Hornavan close to 

Arjeplog in Northern Sweden, shown in Figure 5-1. Revi consists of a number of 

prepared ice tracks, each suitable for specific driving tasks.  

 

Figure 5-1. The JLR Revi test centre 

The driving tasks were designed and documented during an experimental 

refinement stage at the Revi test centre. This period resulted in the selection of 

eight distinct tasks, each designed to require closed-loop driver control using 

multiple perceptual stimuli (Markkula et al., 2016). To the scope of this project, two 

tasks that had been considered in real world vehicle testing are replicated in the 

driving simulator and used in this study, below is the description of the tasks. 

 Land Rover Handling Track (LHT) 

The LHT is the outer line of track number 3 in Figure 5-1. This track included 

multiple turns and straight lines sections of packed snow. The drivers start driving 

clockwise after the entry gate (two cones on long straight line near the sharp turn) 

and negotiate to exit gate (two cones on the middle of the long straight line near the 
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sharp turn). In this task, drivers were instructed to select third gear and adapt speed 

so as not to lose control.  

  

  

Figure 5-2. Simulated LHT course 

 Slalom (SLM) 

The slalom takes place on the packed snow at the south end of the track marked 2 

in Figure 5-1. After the entry gate (two cones 5m apart), there were eight cones to 

negotiate, each spaced by 25m which replicates a 0.2Hz sinusoidal trajectory while 

negotiating the cones. The task involved rapidly steering the vehicle from its initial 

lane to a parallel lane around each cone without striking any. The slalom required 

drivers to perform at 45 km/h throughout in manual transmission selected in second 

gear; they were also asked to always prioritise safe and successful driving as 

during real world vehicle evaluations. 
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Figure 5-3. Simulated Slalom Layout 

5.7 Drivers 

Nine drivers were involved in the study, all JLR employees with considerable 

experience in winter vehicle testing. One of the drivers got motion sick after 

finishing the first Slalom task, consequently in total full data for eight of the drivers 

were used in the analysis.   

The low number of participants was due to JLR personnel availability constraints. 

There were not as many particular drivers that could do similar tests, and these 

number of professional drivers are representative of the small pool of the number of 

drivers available that had experience in winter vehicle testing.  

Moreover, the focus of the project was about the applicability of simulator for 

vehicle design in low-friction winter condition, and normal drivers could not be 

employed since the normal drivers’ perception and performance might differ. 

Furthermore, compromise on the statistical power of the experiment was worth, to 

keep the samples as homogenous as possible by keeping the age band in 35-45 

and use drivers with similar experience and skills. 

5.8 Test vehicle  

A model of the dynamics for the Jaguar XF car was executed in real-time mode 

using the multi-body simulation system SimPack, executing on 8 cores of a dual 

Xeon CPU 16-core Concurrent iHawk hardware platform running the RedHawk 

real-time derivative of the RedHat Linux operating system. The Jaguar XF model 

has been developed and extensively validated by JLR with real world data. The 

distribution of longitudinal speed and yaw rate to steering wheel angle, measured in 

the lane change, slalom and circular curve across many drivers and repetitions in 

both reality and simulator were compared. Despite the observed differences, the 

vehicle yaw rate response was well captured by the SimPack model in most of the 

tests. Observed differences between the real and model vehicle model response, 

was explained to be due to high variability of surface and unpredictability in reality 
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than in the simulator, and accuracy of tyre model in certain regimes (Markkula et 

al., 2016).  

SimPack incorporates the implementation of a tyre model to represent the 

interaction that occurs between a vehicle’s road wheels and the surface of the road. 

For these experiments, the well-known Delft tyre model was used. The model 

provides support for both non-uniform surface height and friction profiles through 

the use of two mesh based curve regular grids (CRG). These two grids 

implemented to a resolution of 50 cm in both X and Y, define values representing 

the surface elevation and friction (μ value) with a constant value of 0.35 friction at 

each point on the surface.  

  

Figure 5-4. Graphical representation of the SimPack multi-body model of the 
Jaguar XF vehicle dynamics 

5.9 Experiment procedure 

The JLR test drivers attended the UoLDS in pairs per day. Drivers were sent 

briefing documents and the questionnaire a few days before arriving at the 

University of Leeds. On arrival, the drivers were talked through the briefing material 

on the simulator operation (safety, consent forms), see Appendix B, and they 

signed a consent form. In the next step, they familiarised themselves with UoLDS, 

driving on a simulated UK rural road to make them accustomed to the simulator 

vehicle cabin and the simulated motion, with default simulator motion cueing tuning 

introduced in (Markkula et al., 2016); they were asked to drive until they felt 

comfortable with the environment. Then before each of the driving tasks, the drivers 

familiarised themselves with the task with the MP off so that they would be familiar 

with the visual aspect of the tasks already on their first attempts.  

The drivers completed tasks in the simulator alternatively while the other had a 

break. It ensured that the time in the simulator without rest time was kept to a 

minimum in order to reduce the risk of experiencing simulator sickness. During the 

experiment, for each of the driving tasks, participants were given a subjective 

questionnaire including the nine questions. They used the same questionnaire for 

all six motion configurations.  
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Drivers were not given any information on the nature of the motion cueing they 

were being provided with, they only knew there were six different motion 

configurations for which they were to make three pairwise comparisons. As a result, 

each question is repeated three times in the questionnaire corresponding to three 

pairs.  A question example is shown in Figure 5-5; see Appendix B for the exact 

questionnaire used in the experiment. 

 

Figure 5-5. Example of subjective question and ratings. The drivers did mark 
each new test with A, B, C, …, in the order they experienced them 

The drivers made pairwise comparisons among configurations within each of the 

pairs and mark on the ratings, for the first configuration of the first pair they put 

letter A over each rating mark, and for the second configuration with B, then 

similarly for second and third pairs put crosses with C-D and E-F. For each 

configuration they had two attempts, after the first trial they fill up the questionnaire 

then driving the same configuration for second time complete/modify their answers. 

They were given a pencil and eraser that they can change the A-B or C-D or E-F 

positions after completing each of the trials and pairs. Moreover, after driving 

second and third pairs of configurations they could also modify A-B, C-D, E-F of the 

three pairs relative to each other. This would give them the flexibility to assess the 

configurations A to F all relative to each other, meaning that comparison among 

both the MCAs and MPs at the same time. 

While the drivers were performing a pairwise comparison which included 4 trials (2 

configurations * 2 trials) they stayed inside the simulator. They were allowed to 

have a break after each pairwise comparison, however most of the drivers were 
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able to do all the pairs consecutively. In total drivers had 12 trials for each of the 

driving tasks. 

5.10  Analyses and results 

   Overview and general approach 

In this section, an introduction about statistical methods required to analyse the 

data is presented. Most of the materials provided in this section are identical or 

summarised from the (Field, 2013), regarding this it is avoided to reference for the 

rest of this section.  

5.10.1.1 Hypothesis testing  

There are two hypotheses used in analysing the data. The hypothesis or prediction 

that comes from a theory is usually saying an effect will be present and it is called 

alternative or experimental hypothesis. There is another type of hypothesis opposite 

of alternative hypothesis that an effect is absent and it is called the null hypothesis.  

In this experiment null hypothesis is that the motion cueing algorithms or motion 

platform sizes are similar to drivers in terms of subjective preferences and objective 

performances, and the alternative hypothesis is they are distinct to drivers. The 

statistical significance between various configurations are evaluated, if there is a 

statistically significant difference between them then the null hypothesis is rejected 

and configurations are different, and the chance of obtaining data where subjective 

preferences of drivers or their objective performance over various configurations to 

be similar is very low.  

In this experiment, the type I error is finding a significant difference between motion 

configurations to drivers’ preferences and subjective ratings while there is no 

difference. Type II error would be not finding any significant difference between 

motion cueing configurations to drivers’ preferences and subjective ratings while 

there is a difference. 

5.10.1.2 Effect size and statistical power 

Just because a test statistic is significant does not mean that the effect it measures 

is meaningful or important. The solution to this is to measure the size of the effect it 

is known as effect size. An effect size is simply an objective and standardised 

measure of the magnitude (importance) of the observed effect. Most commonly 

used effect sizes are Cohen’s d, Pearson’s correlation coefficient r.  

Effect sizes are useful because they provide an objective measure of the 

importance of an effect. Many of the effect sizes have been proposed, among the 

common ones are the Cohen’s d and Pearson’s correlation coefficient 𝑟. The value 
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of Pearson’s coefficient lies between 0 (no effect) and 1 (perfect effect). Some 

widely used suggestions about the range of effects are: 

• 𝑟 = 0.1 , small effect. The effect explains 1% of the total variance  

• 𝑟 = 0.3 , medium effect. The effect explains 9% of the total variance  

• 𝑟 = 0.5 , large effect. The effect explains 25% of the total variance  

The effect size is linked to three statistical properties of sample size, probability 

level of an effect being statistically significant (p-value) that in psychology the value 

of 0.05 is used, and ability of a given statistical test to detect an effect assuming 

one exists in the population known as statistical power. The probability of a test 

detecting an effect if one exists is the opposite of not detecting that effect; therefore, 

the power of a test can be expressed as (1-β). Cohen (1992) suggested a β value 

of 0.2 then the probability to detect an effect is 0.8 if one genuinely exists.  

Relating four above variables of effect size, sample size, p-value and β-level it is 

possible to calculate the power of a test when the experiment is conducted, or 

calculating the sample size necessary to achieve a given level of power. In this 

study as there was a limited number of professional drivers available the power of 

the experiment is calculated using effect size, sample size and p-value.  

To calculate the power of a test, often as the experiment is conducted and the value 

of p is already selected, the effect size can be estimated based on the sample size 

that how many participants are used. These values can be used to calculate the 

value of 1-β the power of the test. If it turns out to be greater or equals 0.8 there will 

be confident about the sufficient power to detect effects that might have existed.  

p-value of 0.05 is usually considered as significance level threshold for outcome of 

test statistics, however there are references from Neyman and Pearson (1933) as 

well as from Fisher, R.A. (1992) that selecting the significance level has to be 

based on the research context and the choice on how strong the evidence needs to 

be. In this study due to exploratory use of ANOVA and the small number of samples 

the larger value of 0.1 is chosen, to be interpreted as nearly significant whilst the 

value of 0.05 is significant.  

As explained the four variables of effect size, sample size, significance p-value and 

statistical power 1-β are related. To calculated the statistical power of this 

experiment based on the choice of p-value to be 0.05, 0.1, sample size 𝑁 = 8, and 

effect sizes of 𝑟 = 0.1, 0.3, 0.58, 0.8, 1 the statistical power for this experiment is 

calculated using the G*Power software. If the statistical power is equal or greater 

than 0.8 there will be confident that there is sufficient power to detect any effect that 

might have existed. It is observable in Table 5-6 with this number of samples and 

significance level p = 0.05, to have a statistically powerful (1-β) ≥ 0.8 an effect size 
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of 𝑟 = 58 is required, while with p = 0.1 to have a statistically powerful (1-β) ≥ 0.8 

an effect size needs to be 𝑟 ≥ 0.48. 

Table 5-6. Statistical power table 

 Statistical 

Power at 

𝑟 = 0.1 

Statistical 

Power at 

𝑟 = 0.3 

Statistical 

Power at 

𝑟 = 0.58 

Statistical 

Power at 

𝑟 = 0.8 

Statistical 

Power at 

𝑟 = 1 

p = 0.05 0.08 0.19 0.80 0.97 0.997 

p = 0.1 0.14 0.31 0.90 0.992 0.999 

The range of effect sizes used in the analysis of results in the next sections is 

based on the widely used suggestions effect sizes of small 𝑟 = 0.1, medium 𝑟 = 0.3 

and large 𝑟 = 0.5, comparing this to Table 5-6, it is observable that to detect an 

effect with sufficient power at p = 0.1, a large effect size is required 𝑟 ≥ 0.48. 

5.10.1.3 Repeated Measure ANOVA 

Statistical procedures are usually divided into the parametric and non-parametric 

tests, each has assumptions to meet. Non-parametric tests also called distribution-

free tests because they assume data do not follow a specific distribution, this 

approach is usually used when data don’t meet the parametric test criteria. 

Parametric tests usually have assumptions that must be met for the test to be 

accurate. In this thesis, the parametric tests are used, after checking data to meet 

the criteria of the assumptions. 

The repeated measure is a term when the same participants participated in all 

conditions of an experiment. In repeated measure experiment design the scores 

taken under different experimental conditions are likely to be related because they 

come from the same participants. Another assumption to be made that the 

relationship between pairs of experimental conditions is similar, which is called 

sphericity or circularity.  

The sphericity refers to equality of variances of differences between treatment 

levels. It is possible to test the sphericity using the Maunchly’s test to test the 

hypothesis that the variances of differences between conditions are equal. If its test 

statistic is significant (less than 0.05) it should conclude that there are significant 

differenced therefore the condition of sphericity is not met, and vice versa, this is 

the main criteria needs to be met to show that the parametric test is applicable to 

analyse the data.  

In the repeated measure ANOVA the effect of an experiment is shown in the within-

participant variance rather than in between-group variance (as of independent 
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ANOVA). Similar to independent ANOVA for the repeated measure the F-ratio 

compares the size of variation due to experimental manipulation to the size of 

variation due to random factors.  

In this study to increase the appearance of the effect of experimental manipulations, 

a repeated measure design was used where the same participants were used in all 

conditions of an experiment. Thus, the independent variables are manipulated 

using the same participants. In other words, it is a within-subject or repeated 

measure design where the effects of experimental manipulation are more obvious 

than a between-subject or independent design.  

   Subjective evaluations 

In this section drivers’ rating on the questionnaires are presented and analysed. 

The cross points on the provided sheets were measured by ruler and imported as 

data files to MATLAB for further analysis.  

As it was described in section 5.3.1, the questions targeted three different qualities 

of the overall assessment, motion cueing and vehicle assessment, each include few 

questions. Due to the high number of questions, to analyse the result it was decided 

to group the questions belonging to each category. Rating values for the grouped 

questions were calculated from the average value of all questions belonging to that 

group. 

In order to group and report the questions, a reliability analysis was done on the 

ratings to find out the consistency of measures. Separate reliability analysis is done 

for every subscale of the overall assessment, motion cueing, and vehicle 

assessments. The Cronbach’s α and Cronbach’s α if item is deleted, showed high 

reliabilities thus it is was valid to group the questions, for the data of both LHT and 

SLM tasks. 

5.10.2.1  Land Rover Land Rover Handling Track (LHT) 

The results for LHT driving task of the grouped questions and six motion 

configurations are shown in a boxplot and bar charts in Figure 5-6. On the x-axis 

the characters stand for a motion configuration e.g. M-S stands for MPC algorithm 

and small motion platform. The effect sizes of Pearson’s correlation coefficient are 

shown in the lower part of the figure in the bar charts. For each of the MPs i.e. (S, 

M, L) there are 3 bar charts representing the effect sizes. Left red and right blue bar 

shows the effect size between two consecutive MPs (small to medium, medium to 

large, and large to small) in an MCA. As an example, for the overall assessment 

question and small (S) MP, the red bar shows effect size between small (S) and 

medium (M) MPs in MPC algorithm i.e. M-S and M-M, and the third blue bar does 

the same but for classic algorithm i.e. the effect size between small (S) and medium 
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(M) MPs in classic i.e. C-S and C-M. The second (middle) green bar shows the 

effect size between the classic and MPC MCAs within an MP. In this example, the 

green bar shows the effect size between classic and MPC in small (S) MP. It is the 

same for next (M) and (L) MPs. The horizontal dashed lines show the small, 

medium and large effect sizes.  

For the LHT driving task, the highest rated motion configuration in overall 

assessment question is the MPC MCA and large MP (M-L). It needs to be 

mentioned that the tuning for all the three settings of classic algorithm was done 

equally as it is described in section 5.4.2, It remained unclear why drivers rated C-L 

as low, the cause of dramatic change between the M-L and C-L in the figures, that 

is observable with large effect size (green bars) for all three questions. On the next 

figures and tables, it is tried to answer the research questions using the repeated 

measure ANOVA analysis, post hoc pairwise comparisons and effect sizes.    

 

Figure 5-6. Subjective rating boxplot, and effect size r-value bar graphs for 
grouped questions, LHT task. Red flat lines show median and black 

stars shows mean. 
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Table 5-7 Repeated measure ANOVA results for grouped question ratings, 
LHT task. F and P values are shown on each box corresponds to a 

factor and an output measure. Black highlighted boxes show 
where the p-value is less than 0.1 

 

The repeated measure ANOVA is done on the subjective ratings grouped 

questions. The main effect of MCAs and MPs and their interaction effect on the 

subjective ratings are shown in Table 5-7. First two left columns show the main 

effect and right column shows the interaction. The p-value and F-value of for each 

factor and output measure are shown in the corresponding boxes in the table. 

Where there is a significant effect 𝑝 ≤ 0.1 that box is highlighted black. To verify the 

main effects detailed ANOVA contrasts and post hoc test of Bonferroni pairwise 

comparison is done. 

Overall assessment grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effects of MP 𝜒2(2) = 2.29,  𝑝 = 0.32, and MCA. Therefore, there was no 

need for degrees of freedom corrections. 

There was a significant main effect of type of MCA on the overall assessment 

ratings, 𝐹(1,7) = 5.43, 𝑝 = 0.05, 𝑟 = 0.66. Pairwise comparison indicated significant 

𝑝 = 0.05 difference between MCAs. Contrasts revealed that ratings of MPC was 

significantly higher than classic.  

There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,14) = 5.16, 𝑝 = 0.06. This indicates that MP had different 

effects on people’s ratings depending on which type of MCA was used. To break 

down this interaction, contrasts were performed comparing all MP types to all MCA 

types, looking at the interaction graph Figure 5-7. These revealed nearly significant 

interactions when comparing classic to MPC for medium compared to large 

𝐹(1,7) = 3.53, 𝑝 = 0.1, 𝑟 = 0.58. This contrast did yield a large effect size. The 
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remaining contrast revealed no significant interaction term when comparing classic 

to MPC for small compared to medium 𝐹(1,7) = 0.28, 𝑝 = 0.61, 𝑟 = 0.19.  

 

Figure 5-7. Overall assessment grouped question ratings, LHT task 

Motion cueing grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effects of MP 𝜒2(2) = 0.79,  𝑝 = 0.5, and MCA. Therefore, there was no need 

for degrees of freedom corrections. 

There was a nearly significant main effect of type of MP on the motion cueing 

ratings, 𝐹(2,14) = 3.05, 𝑝 = 0.079. Pairwise comparison indicated nearly significant 

𝑝 = 0.08 difference of ratings between large and medium MPs. Contrasts revealed 

that ratings of large configuration, 𝐹(1,7) = 6.68, 𝑝 = 0.036, 𝑟 = 0.70 was 

significantly higher than medium.  

There was a significant main effect of type of MCA on the motion cueing ratings, 

𝐹(1,7) = 13.8, 𝑝 = 0.007, 𝑟 = 0.81. Pairwise comparison indicated significant 𝑝 =

0.007 difference between MCAs. Contrasts revealed that ratings of MPC was 

significantly higher than classic.  

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,14) = 5.16, 𝑝 = 0.02. This indicates that MP had different effects on 

people’s ratings depending on which type of MCA was used. To break down this 

interaction, contrasts were performed comparing all MP types to all MCA types, 

looking at the interaction graph Figure 5-8. These revealed significant interactions 

when comparing classic to MPC for medium compared to large 𝐹(1,7) = 5.7, 𝑝 =

0.048, 𝑟 = 0.67. This contrast did yield a large effect size. The remaining contrast 

revealed no significant interaction term when comparing classic to MPC for small 
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compared to medium 𝐹(1,7) = 0.12, 𝑝 = 0.73, 𝑟 = 0.13. However, this contrast did 

yield a small effect size. 

 

Figure 5-8. Motion cueing grouped question ratings, LHT task 

 

Vehicle assessment grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effects of MP 𝜒2(2) = 0.52,  𝑝 = 0.77, and MCA. Therefore, there was no 

need for degrees of freedom corrections. 

There was a nearly significant main effect of type of MCA on the vehicle 

assessment ratings, 𝐹(1,7) = 3.75, 𝑝 = 0.094, 𝑟 = 0.59. Pairwise comparison 

indicated nearly significant 𝑝 = 0.094 difference between MCAs. Contrasts revealed 

that rating of MPC was significantly higher than classic.  

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,14) = 6.82, 𝑝 = 0.008. This indicates that MP had different effects 

on people’s ratings depending on which type of MCA was used. To break down this 

interaction, contrasts were performed comparing all MP types to all MCA types, 

looking at the interaction graph Figure 5-9. These revealed significant interactions 

when comparing classic to MPC for medium compared to large 𝐹(1,7) = 11.5, 𝑝 =

0.011, 𝑟 = 0.79. This contrast did yield a large effect size. The remaining contrast 

revealed no significant interaction term when comparing classic to MPC for small 

compared to medium 𝐹(1,7) = 0.34, 𝑝 = 0.57, 𝑟 = 0.21.  
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Figure 5-9. Vehicle assessment grouped question ratings, LHT task 

Research question 1 – How do the different MCAs affect the drivers’ 

subjective ratings of simulator fidelity and their objective behaviour? 

The results for all three questions showed the significant or nearly significant effect 

of type of MCAs on subjective preferences, where overall the MPC was rated 

higher than classic. This is in line with the predicted hypothesis for LHT test at the 

beginning of the chapter. A post hoc pairwise comparison of MCAs in each MP 

sizes showed MPC was rated significantly 𝑝 < 0.02 higher than classic in large 

motion platform size for all three questions.  

The results are shown in Figure 5-10, in a way that compares the MCAs in each of 

the MP sizes. The r-values are calculated in each of the MPs representing the 

effect size of the difference between MCAs. In each of the MPs the green bar is 

effect size comparing classic and MPC. The outcome of the comparison between 

the classic and MPC in the small, medium and large MPs is presented in Table 5-8, 

colours show small, medium and large effect sizes in each comparison.  

It is observable for all the three grouped questions the classic comes out as slightly 

higher fidelity in small MP, whereas the MPC shows the higher fidelity in both 

medium and large MPs. The effect sizes are small for both small and medium MPs, 

indicating that small subjective fidelity difference between the MCAs; in other 

words, drivers see that MCAs are quite similar (slightly different) in both small and 

medium MPs. For large MP the effect size is large, indicating that there is a bigger 

subjective fidelity difference between the MCAs to drivers.  

In total it is difficult to conclude based on the effect sizes because r-values are not 

big enough, but it was observable that in small, medium and large MPs drivers 

preferred the classic, MPC and MPC respectively.  
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Figure 5-10. Subjective ratings for grouped questions, MCA comparison for 
three MP sizes. Effect size r-value bar graphs are shown for each 
MP, comparing MCAs, LHT task   

Table 5-8. Results of subjective ratings for MCA comparison in each MP size, 
LHT task 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

               MP size 

Questions 
Small Medium Large 

Overall assessment Classic MPC MPC 

Motion cueing Classic MPC MPC 

Vehicle assessment Classic MPC MPC 

 

Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of simulator fidelity and their objective behaviour? 

The results for the motion cueing question showed the nearly significant main effect 

of type of MPs on subjective preferences, where the large configuration was rated 

significantly higher than medium. This is in line with the predicted hypothesis for 

LHT test at the beginning of this chapter. A post hoc pairwise comparison of MPs in 
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each MCA showed medium was rated nearly significantly 𝑝 < 0.1 higher than small 

in MPC for the vehicle assessment question.  

The results are shown in Figure 5-11 in a way that compares the MPs in each of the 

MCAs. The r-values are calculated in each of the MCAs representing the effect size 

of the difference between MPs. In each of the MCAs the left red bar is effect size 

calculated comparing small to medium, middle green bar compares the medium to 

large and right blue bar compares the large to small. The outcome of the 

comparisons between the small, medium and large in the classic and MPC is 

presented in Table 5-9, colours show small, medium and large effect size in each 

comparison.  

It is observable for the MPC algorithm, in all three questions the medium to large 

MP comes out as higher fidelity with large effect size. In the classic algorithm, the 

medium MP shows the higher fidelity for all the three groups of questions with small 

to medium effect sizes. 

In MPC, the effect sizes are small between the medium and large MPs, indicating 

that small subjective fidelity difference between them, while there is large effect size 

between the medium and large compared to small MP. In other words, the medium 

and large MPs are quite similar (slightly different) to drivers and those are much 

different to small MP to drivers. In classic, the effect size is small between small 

and medium MPs, indicating that there is small subjective fidelity difference 

between them, while there is large effect size between the small and medium to 

large MP.  
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Figure 5-11. Subjective ratings for group questions, MP comparison for two 
MCAs. Effect size r-value bar graphs are shown for each MCA, 
comparing MPs, LHT task 

Table 5-9. Results of subjective ratings for MP size comparison in each MCA 
(all compared to small), LHT task 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

                      MCA 

  Questions 
MPC Classic 

Overall assessment Large Medium 

Motion cueing Large Medium 

Vehicle assessment Medium Medium 

The results for all three questions showed the significant interaction effect between 

the type of MP and the type of MCA used on subjective preferences. This indicates 

that MP had different effects on people’s ratings depending on which type of MCA 

was used. To break down this interaction, contrasts were performed comparing all 

MP types to all MCA types for each question. These revealed nearly significant and 

significant interactions when comparing classic to MPC for medium compared to 

large for the three questions. These contrasts did yield a large effect size.  

Looking at Figure 5-7 to Figure 5-9, in all the three group questions there was an 

increase in ratings from small to medium MPs for both classic and MPC. The 
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ratings increase very little from medium to large MP in MPC. Moreover, in the small 

the classic was always rated slightly higher, and in medium and large the MPC.   

5.10.2.2 Slalom (SLM) 

The results for SLM driving task of grouped questions and six motion configurations 

are shown in a boxplot and bar charts in Figure 5-12. On the x-axis the characters 

stand for a motion configuration e.g. M-S stands for MPC motion cueing algorithm 

and small motion platform. The effect sizes of Pearson’s correlation coefficient are 

shown in the lower part of the figure as bar charts. For each of the MPs i.e. (S, M, 

L) there are 3 bar charts representing the effect sizes. Left red and right blue bar 

shows the effect size between two consecutive MPs (small to medium, medium to 

large and large to small) in an MCA. As an example, for the overall assessment 

question and small (S) MP, the red bar shows effect size between small (S) and 

medium (M) MPs in MPC MCA i.e. M-S and M-M, and the third blue bar does the 

same but for classic i.e. the effect size between small (S) and medium (M) MPs in 

classic MCA i.e. C-S and C-M. The second (middle) green bar shows the effect size 

between the classic and MPC MCAs within an MP. In this example, the green bar 

shows the effect size between classic and MPC in small (S) MP. It is the same for 

next (M) and (L) MPs. The horizontal dashed lines show the small, medium and 

large effect sizes. 

For the SLM driving task, the highest rated configuration in overall assessment 

question is the classic MCA and small MP (C-S). On the next figures and tables, it 

is tried to answer the research questions using the repeated measure ANOVA 

analysis, post hoc pairwise comparisons and effect sizes.  
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Figure 5-12. Subjective rating boxplot, and effect size r-value bar graphs for 
grouped questions, SLM task. Red flat lines show median and 

black stars shows mean. 

Table 5-10. Repeated measure ANOVA results for grouped question ratings, 
SLM task. F and P values are shown on each box corresponds to a 

factor and an output measure. Black highlighted boxes show 
where the p-value is less than 0.1.   

 

Similar to the analysis done for the previous task, in this task the repeated measure 

ANOVA is done on the subjective ratings grouped questions. The main effect of 

MCAs and MPs and their interaction effect on the subjective ratings are shown in 

Table 5-10. First two left columns show the main effect and right column shows the 

interaction. The p-value and F-value of for each factor and output measure is 

shown in the corresponding point on the table. Where there is a significant effect 
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𝑝 ≤ 0.1 that box is highlighted black. To verify the main effects detailed ANOVA 

contrasts and post hoc test of Bonferroni pairwise comparison are done. 

Overall assessment grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effects of MP 𝜒2(2) = 1.62,  𝑝 = 0.44, and MCA. Therefore, there was no 

need for degrees of freedom corrections. 

There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,14) = 3.1, 𝑝 = 0.076. This indicates that MP had different 

effects on people’s ratings depending on which type of MCA was used. To break 

down this interaction, contrasts were performed comparing all MP types to all MCA 

types, looking at the interaction graph Figure 5-13. These revealed significant 

interactions when comparing classic to MPC for small compared to medium 

𝐹(1,7) = 6, 𝑝 = 0.04, 𝑟 = 0.68. This contrast did yield a large effect size. The 

remaining contrast revealed no significant interaction term when comparing classic 

to MPC for medium compared to large 𝐹(1,7) = 1.12, 𝑝 = 0.32, 𝑟 = 0.37.  

 

Figure 5-13. Overall assessment grouped question ratings, SLM task 

Vehicle assessment grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effects of MP 𝜒2(2) = 0.96,  𝑝 = 0.61, and MCA. Therefore, there was no 

need for degrees of freedom corrections. 

There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,14) = 2.81, 𝑝 = 0.09. This indicates that MP had different 

effects on people’s ratings depending on which type of MCA was used. To break 

down this interaction, contrasts were performed comparing all MP types to all MCA 

types, looking at the interaction graph Figure 5-14. These revealed significant 

interactions when comparing classic to MPC for small compared to medium 
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𝐹(1,7) = 9.4, 𝑝 = 0.018, 𝑟 = 0.75. This contrast did yield a large effect size. The 

remaining contrast revealed no significant interaction term when comparing classic 

to MPC for medium compared to large 𝐹(1,7) = 1.17, 𝑝 = 0.31, 𝑟 = 0.38.  

 

Figure 5-14. Vehicle assessment grouped question ratings, SLM task 

Research question 1 - How do the different MCAs affect the drivers’ 

subjective ratings of simulator fidelity and their objective behaviour? 

The results for all three questions did not show a significant effect of type of MCAs 

on subjective preferences. A post hoc pairwise comparison of MCAs in each MP 

sizes showed classic was rated significantly 𝑝 < 0.01 higher than MPC in small 

motion platform size for all three questions. This is in line with the predicted 

hypothesis for SLM test at the beginning of the chapter. 

The results are shown in Figure 5-15, in a way that compares the MCAs in each of 

the MP sizes. The r-values are calculated in each of the MPs representing the 

effect size of the difference between MCAs. In each of the MPs, the green bar is 

effect size comparing classic and MPC. The outcome of the comparison between 

the classic and MPC in the small, medium and large MPs is presented in Table 

5-11, colours show small, medium and large effect sizes in each comparison. 

It is observable for all the three grouped questions the classic comes out as higher 

fidelity in small and large MP, whereas the MPC shows the higher fidelity in medium 

MP. The effect sizes are large and medium for small and medium MPs, indicating 

that considerable subjective fidelity difference between the MCAs. In other words, 

drivers see that MCAs are different in both small and medium MPs. For large MP 

the effect sizes are small, indicating that there is smaller subjective fidelity 

difference between the MCAs to drivers. 

Interestingly the same table shows for all the three overall assessment, motion 

cueing and vehicle assessment questions the effect size is decreasing with the 
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increase of MP size, which means that the difference between MCAs is less 

distinctive with the increase of MP size. In total having big enough effect sizes, it 

can be concluded in small, medium and large MPs the drivers preferred the classic, 

MPC and classic respectively.  

  

 

Figure 5-15. Subjective ratings for grouped questions, MCA comparison for 
three MP sizes, SLM task. Effect size r-value bar graphs are shown 
for each MP, comparing MCAs, SLM task. 

Table 5-11. Results of subjective ratings for MCA comparison in each MP 
size, SLM task 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

               MP size 

Questions 
Small Medium Large 

Overall assessment Classic MPC Classic 

Motion cueing Classic MPC Classic 

Vehicle assessment Classic MPC Classic 
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Research question 2 - How do the different MPs affect the drivers’ subjective 

ratings of simulator fidelity and their objective behaviour? 

The results for all three questions did not show a significant effect of type of MPs on 

subjective preferences.  

The whole results are shown in Figure 5-16 in a way that compares the MPs in 

each of the MCAs. The r-values are calculated in each of the MCAs representing 

the effect size of the difference between MPs. In each of the MCAs the left red bar 

is effect size calculated comparing small to medium, middle green bar compares 

the medium to large and right blue bar compares the large to small. The outcome of 

the comparisons between the small, medium and large in the classic and MPC is 

presented in Table 5-12, colours show small, medium and large effect size in each 

comparison. 

It is observable for the MPC algorithm, in all three questions the medium MP comes 

out as higher fidelity with medium effect size. In the classic algorithm, the small MP 

shows the higher fidelity for all three questions with small and large effect sizes.  

In MPC, the effect sizes are medium between the medium to small and large MPs, 

indicating that considerable subjective fidelity difference between them; in other 

words, the medium MP is different to small and large MPs for drivers. In classic, the 

effect sizes are small between medium and large MPs, indicating that there is small 

subjective fidelity difference between them, while there is small to large effect sizes 

between the small to medium MP showing the preference of small to other MPs. In 

total having big enough effect sizes it can be concluded, in MPC the drivers 

preferred the medium MP and in classic they preferred the small MP.  
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Figure 5-16. Subjective ratings for group questions, MP comparison for two 
MCAs. Effect size r-value bar graphs are shown for each MCA, 
comparing MPs, SLM task. 

Table 5-12. Results of subjective ratings for MP size comparison in each MCA 
(all compared to large), SLM task 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

                      MCA 

  Questions 
MPC Classic 

Overall assessment Medium Small 

Motion cueing Medium Small 

Vehicle assessment Medium Small 

The results for the overall and vehicle questions showed the significant interaction 

effect between the type of MP and the type of MCA used on subjective preferences. 

This indicates that MP had different effects on people’s ratings depending on which 

type of MCA was used. To break down this interaction, contrasts were performed 

comparing all MP types to all MCA types for each question. These revealed 
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significant interactions when comparing classic to MPC for small compared to 

medium. These contrasts did yield a large effect size.  

Looking at Figure 5-13 and Figure 5-14, in both of the group questions the highest 

ratings in small and medium MPs are for classic and MPC respectively, due to 

medium and large effect sizes it is a conclusion. In large MP the classic was higher 

however because the effect size is small it is not possible to draw a solid conclusion 

that classic or MPC was rated higher in large MP. In classic, decrease in rating was 

observable from small to medium and large MPs, whereas in MPC it has increased 

from small to medium and decreased to large. 

  Objective evaluations  

Collected data include two runs for each of the motion configurations. This was to 

let the drivers acquire a full understanding of the motion characteristics of a 

configuration. Using both of the runs was shown to be advantageous in terms of 

adding power to the statistical analysis, although a check was needed to see if this 

introduced any noise to the analysis. To ensure the correctness of averaging both 

of the runs, a third time factor was added to the analysis. For all of the objective 

metrics described in the next sections, where there was a significant effect of MCA 

or MP, no significant effect of time factor was found. As a result, it was valid to 

average the data from both runs for further analysis.  

5.10.3.1 Land Rover Handling Track (LHT) 

Different sections of the driven road have different characteristics, therefore the 

whole track was split into sections and each section was analysed separately. Due 

to similarity in nature of many of the sections and to reduce the number of reporting 

results the sections throughout the LHT course was divided into straight lines, 

curves and inflection zone groups, then the curve group itself is divided into groups 

with smaller and greater than 180 degrees of turn. There are 10 sections in total. All 

the sections are shown in Figure 5-17, green dots show the entry of a section and 

red dots shows the exit of a section. Section 1 is the first curve were drivers start 

driving and it usually required lower speed to keep the safe control of the vehicle. 
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Figure 5-17. Land Rover Handling Track (LHT) course and sections 

To be able to group the sections initial analysis were performed. Comparing the 

results of the 10 separate sections with the corresponding grouped sections, 

showed similarity in the values; this indicated that it was acceptable to group the 

sections. The objective metrics of a group section is calculated from the average 

value of all sections belonging to that group as Table 5-13. 

Table 5-13. Group sections, LHT task 

Group section Section Numbers 

Straight lines 6, 10 

Curves >= 180 degrees of turn 1, 9 

Curves < 180 degrees of turn 3, 5, 7 

Inflection zones 2, 4, 8 

Whole track  

 

Aggregated performance  

The aggregated performance measures for LHT task consist of four metrics that 

was explained in section 5.3.2:  

• Lap time, duration of time that drivers completed the task  

• Spin/skid outs, number of trials that drivers span out and exceeded the 

roadsides  

• Speed variability, the standard deviation of drivers speed during the task 

• Lateral position deviation, maximum vehicle’s lateral distance from the 

average trajectory 
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Figure 5-18. Lap time, LHT 

In Figure 5-18 it is observable that the lap time has increased with the increase of 

MP size in both classic and MPC. In MPC the smallest MP has the shortest lap time 

and vice versa, in classic smallest lap time is in medium MP and it is similar to small 

MP. Having considerable effect sizes reveal that providing larger motion to drivers 

results in higher lap time to finish the driving task. However, there is no real world 

data available to make a comparison and decide on the best configuration.  

The higher lap time with the increase of MP size, in general, is indicating the 

deteriorated performance when drivers are asked to adapt their speed, although 

considering it with the decrease in the number of failures (described next) both 

reflect improved performance. In other words, increasing the MP size (presenting 

more motion to drivers) decreased the number of failures in fare of increasing their 

lap time. 

Comparing the MCAs in each MP size, the classic has lower lap time in small and 

medium MP while it is higher than MPC in large MP. Having medium to large effect 

sizes indicate that the drivers had mostly higher lap time driving the MPC 

configurations than classic. 
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Figure 5-19. Spin/skid outs, LHT 

From Figure 5-19, the number of failures decreased with increasing MP size for 

both MCAs, except for the medium to large in MPC, that stayed quite similar. It 

might be indicating that providing larger motion to drivers results in a smaller 

number of failures in performing the task, reflecting the improved performance of 

drivers. Comparing the MCAs in each MP size, the classic always has a lower 

number of failures than MPC in all three MPs. Considering this with lower lap time 

of classic both are reflecting better performance in the classic  

 

Figure 5-20. Speed variations, LHT 

From Figure 5-20, the speed variation decreased with increasing MP size for both 

MCAs, except for the medium to large in classic MCA. Having considerable large 

effect sizes reveal that providing larger motion to drivers results in less speed 

variation during driving, reflecting improved performance of drivers.  

Comparing the MCAs in each MP size, the classic has lower speed variation than 

MPC in small and medium MPs, and for large the classic is higher. Having large 
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effect sizes indicate that drivers had mostly larger speed variation driving the MPC 

configurations than classic, reflecting better performance in classic.   

 

Figure 5-21. Lateral position deviation, LHT 

From Figure 5-21, lateral position deviation decreased with increasing MP size for 

both MCAs, which means the small MP has the largest lateral position deviation 

and vice versa. Having considerable medium to large effect sizes reveals that 

providing larger motion to drivers results in less lateral position deviation during 

driving, reflecting the improved performance of drivers.  

Comparing the MCAs in each MP size, the classic has always lower lateral position 

deviation than MPC in all the MPs. Having large effect sizes indicate that drivers 

had always larger lateral position deviation driving the MPC configurations than 

classic, reflecting better performance in classic. 

 

Time series  

In this section, the results of repeated measure ANOVA and post hoc analysis on 

the time series metrics (explained in section 5.3.2) in each of the group sections are 

presented, and where there are significant or near significant results those are 

elaborated. Looking at Table 5-14 to Table 5-18 the columns (on x-axis) belong to 

independent variables and their interaction and each row belongs (on y-axis) to a 

dependent measured variable metric. The F and p values are shown on each box 

corresponding to a factor and an output measure. Black highlighted boxes show 

where the p-value is less than 0.1 that means there is a nearly significant 

difference.  

Curves greater than 180° 

In Table 5-14 the RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 
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Table 5-14. Repeated measure ANOVA time series metrics results of curve 
greater than 180° grouped sections, LHT task. 

 

For this grouped section boxes that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal velocity  

• Maximum lateral velocity (absolute value) 

• Steering wheel reversal rate (1 degree) 

• Steering wheel reversal rate (10 degree) 

For MCA comparison: 

• Driver model gain 

• Steering wheel reversal rate (10 degree) 

For MCA and MP interaction: 

• Maximum longitudinal acceleration 

• Steering wheel reversal rate (10 degree) 

 

Figure 5-22. Maximum longitudinal velocity, curves greater than 180° 
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There was a significant main effect of type of MP on the longitudinal velocity 

objective metric, 𝐹(2,12) = 4.6, 𝑝 = 0.02. Pairwise comparison indicated significant 

𝑝 = 0.08 difference between small and medium MPs. Contrasts revealed that 

longitudinal velocity in medium configuration, 𝐹(1,6) = 9.58, 𝑝 = 0.009, 𝑟 = 0.66 

was significantly higher than small.  

Looking at Figure 5-22 graphs and effect sizes the longitudinal velocity has 

increased with increasing MP size with small to medium effect size. There is a small 

effect size in difference between MCAs that has affected drivers’ performance quite 

similarly.  

 

Figure 5-23. Maximum lateral velocity, curves greater than 180° 

There was a significant main effect of type of MP on the lateral velocity objective 

metric, 𝐹(2,12) = 3.8, 𝑝 = 0.03. Contrasts revealed that lateral velocity in medium 

configuration was significantly higher than small 𝐹(1,6) = 3.9, 𝑝 = 0.07, 𝑟 = 0.49 as 

well as large  𝐹(1,6) = 3.75, 𝑝 = 0.07, 𝑟 = 0.48.  

Looking at Figure 5-23 graphs and effect sizes the lateral velocity has fluctuated 

with increasing MP size with medium effect size, where the medium has the largest 

values. There is a small effect size in difference between MCAs that has affected 

drivers’ performance quite similarly. 
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Figure 5-24. Steering reversal rate 1°, curves greater than 180° 

There was a nearly significant main effect of type of MP on the steering wheel 

reversal rate 1° metric, 𝐹(2,12) = 2.84, 𝑝 = 0.078. Contrasts revealed that steering 

reversal rate in medium configuration, 𝐹(1,6) = 4.72, 𝑝 = 0.05, 𝑟 = 0.53 was 

significantly lower than small.  

Looking at Figure 5-24 graphs and effect sizes the steering wheel reversal rate has 

decreased with increasing MP size with small to medium effect size that shows 

lower control activity and more relaxed style of driving i.e. improved performance. 

There is a small effect size in difference between MCAs that has affected drivers’ 

performance quite similarly. 

 

Figure 5-25. Steering reversal rate 10°, curves greater than 180° 

There was a significant main effect of type of MP on the steering wheel reversal 

rate 10° metric, 𝐹(2,12) = 13.79, 𝑝 = 0.0001. Contrasts revealed that steering 

reversal rate in medium configuration, 𝐹(1,6) = 26.79, 𝑝 = 0.0002, 𝑟 = 0.83 was 

significantly lower than small. Pairwise comparison indicated significant 𝑝 = 0.007 
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difference between small and medium, and 𝑝 = 0.0006 difference between small 

and large MPs.  

There was a nearly significant main effect of type of MCA on the steering wheel 

reversal rate, 𝐹(1,6) = 3.34, 𝑝 = 0.09, 𝑟 = 0.81. Contrasts revealed that MPC was 

significantly higher than classic. Pairwise comparison indicated a nearly significant 

effect 𝑝 = 0.09 MPC being higher than classic.   

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,12) = 3.93, 𝑝 = 0.03. This indicates that MP had different effects on 

people’s objective performance depending on which type of MCA was used. To 

break down this interaction, contrasts were performed comparing all MP types to all 

MCA types. These revealed significant interactions when comparing classic to MPC 

for small compared to medium 𝐹(1,6) = 5.59, 𝑝 = 0.035, 𝑟 = 0.56; also comparing 

classic to MPC for medium compared to large 𝐹(1,6) = 4.68, 𝑝 = 0.05, 𝑟 = 0.53. 

These contrasts did yield large effect sizes.  

Looking at Figure 5-25 graphs and effect sizes the steering wheel reversal rate has 

decreased with increasing MP size with medium to large effect size, that shows 

lower control activity and more relaxed style of driving i.e. improved performance. 

There is small to large effect sizes in difference between MCAs that has affected 

drivers’ performance differently, where MPC being higher than classic in small and 

large MPs, that shows higher control activity i.e. deteriorated performance. 

 

Figure 5-26. Driver model steering gain, curves greater than 180° 

There was a nearly significant main effect of type of MCA on the driver model 

steering gain, 𝐹(1,6) = 3.17, 𝑝 = 0.078, 𝑟 = 0.44. Contrasts revealed that MPC was 
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significantly higher than classic. Pairwise comparison indicated a nearly significant 

effect 𝑝 = 0.078, MPC being higher than classic.   

Looking at Figure 5-26 graphs and effect sizes the steering gain has decreased 

slightly with increasing MP size with small to large effect sizes that show lower 

control activity and more relaxed style of driving i.e. improved performance. There 

is small to medium effect sizes in difference between MCAs that has affected 

drivers’ performance differently, where MPC is higher than classic in all MPs, that 

shows higher control activity i.e. deteriorated performance.  

 

Figure 5-27. Longitudinal acceleration, LHT task 

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,12) = 4.05, 𝑝 = 0.03. This indicates that MP had different effects on 

people’s objective performance depending on which type of MCA was used. To 

break down this interaction, contrasts were performed comparing all MP types to all 

MCA types. These revealed significant interactions when comparing classic to MPC 

for small compared to medium 𝐹(1,6) = 4.46, 𝑝 = 0.056, 𝑟 = 0.52; also comparing 

classic to MPC for medium compared to large 𝐹(1,6) = 6.33, 𝑝 = 0.02, 𝑟 = 0.58. 

These contrasts did yield large effect sizes.  

Curves smaller than 180° 

In Table 5-15 the RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 
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Table 5-15. Repeated measure ANOVA time series metrics results of curve 
smaller than 180° grouped sections, LHT task.  

 

For this grouped section boxes that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal acceleration  

• Driver model gain 

• Steering wheel reversal rate (1 degree) 

• Steering wheel reversal rate (10 degree) 

For MCA comparison: 

• Maximum lateral velocity (absolute value) 

• Maximum yaw rate (absolute value) 

 

Figure 5-28. Maximum longitudinal acceleration, curves smaller than 180° 

There was a significant main effect of type of MP on the longitudinal acceleration 

objective metric, 𝐹(2,12) = 5.46, 𝑝 = 0.037. Pairwise comparison indicated 

significant 𝑝 = 0.088 difference between medium and large MPs. Contrasts 
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revealed that longitudinal acceleration in medium configuration, 𝐹(1,6) = 5.46, 𝑝 =

0.037, 𝑟 = 0.55 was significantly higher than large.  

Looking at Figure 5-28 graphs and effect sizes the longitudinal acceleration has 

slightly decreased with increasing MP size with small to medium effect size. There 

is a small effect size in the difference between MCAs in small and large MPs 

meaning they are quite similar. However, there is large effect size in medium, also 

pairwise comparison shows nearly significant difference 𝑝 = 0.06 between MCAs in 

the medium MP. 

 

Figure 5-29. Driver model steering gain, curves smaller than 180° 

There was a significant main effect of type of MP on the driver model steering gain 

objective metric, 𝐹(2,12) = 4.16, 𝑝 = 0.027. Pairwise comparison indicated nearly 

significant 𝑝 = 0.08 difference between small and medium MPs. Contrasts revealed 

that the steering gain in small configuration was significantly higher than medium 

𝐹(1,6) = 5.54, 𝑝 = 0.036, 𝑟 = 0.56.  

Looking at Figure 5-29 graphs and effect sizes the steering gain has decreased 

with increasing MP size with medium to large effect size, that shows lower control 

activity and more relaxed style of driving i.e. improved performance. There is a 

medium effect size in the difference between MCAs, MPC being higher than classic 

in small and medium MP, that shows higher control activity i.e. deteriorated 

performance. 
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Figure 5-30. Steering reversal rate 1°, curves smaller than 180° 

There was a nearly significant main effect of type of MP on the steering reversal 

rate, 𝐹(2,12) = 2.63, 𝑝 = 0.09. Contrasts revealed that the steering reversal rate in 

small configuration was only higher than medium 𝐹(1,6) = 1.85, 𝑝 = 0.19, 𝑟 = 0.36.  

Looking at Figure 5-30 graphs and effect sizes the steering gain has decreased 

with increasing MP size with medium to large effect size, that shows lower control 

activity and more relaxed style of driving i.e. improved performance. There is a 

medium effect size in difference between MCAs, MPC being higher than classic in 

small and large MP, that shows higher control activity i.e. deteriorated performance. 

 

Figure 5-31. Steering reversal rate 10°, curves smaller than 180° 

There was a significant main effect of type of MP on the steering reversal rate 

objective metric, 𝐹(2,12) = 7.4, 𝑝 = 0.002. Pairwise comparison indicated a 

significant difference between small, medium and large MPs. Contrasts revealed 

that the steering reversal rate in small configuration was significantly higher than 
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medium 𝐹(1,6) = 5.1, 𝑝 = 0.04, 𝑟 = 0.54, also medium configuration was 

significantly higher than large 𝐹(1,6) = 4.94, 𝑝 = 0.046, 𝑟 = 0.54.  

Looking at Figure 5-31 graphs and effect sizes the steering reversal rate has 

decreased with increasing MP size with medium to large effect size, that shows 

lower control activity and more relaxed style of driving i.e. improved performance. 

There is small to medium effect sizes in MCA differences, MPC being higher than 

classic in all MPs, that shows higher control activity i.e. deteriorated performance. 

 

Figure 5-32. Maximum lateral velocity, curves smaller than 180° 

There was a significant main effect of type of MCA on the lateral velocity, 𝐹(1,6) =

5.78, 𝑝 = 0.033, 𝑟 = 0.29. Contrasts revealed that MPC was significantly higher 

than classic. Pairwise comparison, 𝑝 = 0.03 MPC being higher than classic.   

Looking at Figure 5-32 graphs and effect sizes the lateral velocity has increased 

slightly with increasing MP size with small to medium effect sizes. There is small to 

medium effect sizes in difference between MCAs that has affected drivers’ 

performance differently, where MPC is higher than classic in all MPs. 

 

Figure 5-33. Maximum yaw rate, curves smaller than 180° 
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There was a significant main effect of type of MCA on the yaw rate, 𝐹(1,6) = 5.33, 

𝑝 = 0.039, 𝑟 = 0.55. Contrasts revealed that MPC was significantly higher than 

classic. Pairwise comparison indicated significance 𝑝 = 0.039, MPC being higher 

than classic.   

Looking at Figure 5-33graphs and effect sizes the yaw rate has stayed similar with 

increasing MP size with small effect sizes. There is small to large effect sizes in 

difference between MCAs that has affected drivers’ performance differently, where 

MPC was higher than classic in all MPs. 

Straight lines 

In Table 5-16 the RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-16. Repeated measure ANOVA time series metrics results of straight 
line grouped sections, LHT task. 

 

For this grouped section boxes that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal acceleration  

For MCA comparison: 

• Driver model gain 

• Steering wheel reversal rate (10 degree) 

For MCA and MP interaction: 

• Driver model gain 
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Figure 5-34. Maximum longitudinal acceleration, straight line 

There was a significant main effect of type of MP on the longitudinal acceleration 

objective metric, 𝐹(2,12) = 7.94, 𝑝 = 0.002. Pairwise comparison indicated 

significant 𝑝 = 0.088 difference between large to medium and small MPs. Contrasts 

revealed that longitudinal acceleration in medium configuration, 𝐹(1,6) = 9.62, 𝑝 =

0.011, 𝑟 = 0.7 was significantly higher than large.  

Looking at Figure 5-34 graphs and effect sizes the longitudinal acceleration has 

fluctuated but decreased with increasing MP size with small to large effect size. 

There is a small effect size in difference between MCAs in each MPs that has 

affected drivers’ performance quite similarly.  

 

Figure 5-35. Driver model steering gain, straight line 

There was a significant main effect of type of MCA on the driver model steering 

gain, 𝐹(1,6) = 4.5, 𝑝 = 0.05, 𝑟 = 0.56. Contrasts revealed that MPC was 
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significantly higher than classic. Pairwise comparison indicated significance 𝑝 =

0.05, MPC being higher than classic.   

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,12) = 4.77, 𝑝 = 0.02. This indicates that MP had different effects on 

people’s objective performance depending on which type of MCA was used. To 

break down this interaction, contrasts were performed comparing all MP types to all 

MCA types. These revealed significant interactions when comparing classic to MPC 

for small compared to medium 𝐹(1,6) = 5.9, 𝑝 = 0.036, 𝑟 = 0.61.  

Looking at Figure 5-35 graph and effect sizes driver model steering gain has slightly 

decreased with increasing MP size with small effect sizes, that shows lower control 

activity and more relaxed style of driving i.e. improved performance. There is small 

to large effect size in difference between MCAs that has affected drivers’ 

performance differently, where MPC is higher than classic in all MPs, that shows 

higher control activity i.e. deteriorated performance. 

 

Figure 5-36. Steering reversal rate 10°, straight line 

There was a significant main effect of type of MCA on the driver model steering 

gain, 𝐹(1,6) = 8.19, 𝑝 = 0.016, 𝑟 = 0.67. Contrasts revealed that MPC was 

significantly higher than classic. Pairwise comparison indicated significance 𝑝 =

0.016, MPC being higher than classic.   

Looking at Figure 5-36 graphs and effect sizes the steering reversal rate has 

decreased with increasing MP size with small to large effect sizes, that shows lower 

control activity and more relaxed style of driving i.e. improved performance. There 

is small to large effect sizes in difference between MCAs that has affected drivers’ 

performance differently, where MPC is higher than classic in all MPs, that shows 

higher control activity i.e. deteriorated performance.  
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Inflection zones 

In Table 5-17 the RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-17. Repeated measure ANOVA time series metrics results of inflection 
zones grouped sections, LHT task. 

 

For this grouped section boxes that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal acceleration  

• Steering wheel reversal rate (1 degree) 

For MCA and MP interaction: 

• Driver model delay time 

 

Figure 5-37. Longitudinal acceleration, inflection zone 

There was a significant main effect of type of MP on the longitudinal acceleration 

objective metric, 𝐹(2,12) = 4.88, 𝑝 = 0.01. Pairwise comparison indicated significant 
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𝑝 = 0.07 difference between large to medium and small MPs. Contrasts revealed 

that longitudinal acceleration in small configuration, 𝐹(1,6) = 3.84, 𝑝 = 0.07, 𝑟 =

0.49 was significantly higher than medium.  

Looking at Figure 5-37 graphs and effect sizes the longitudinal acceleration has 

decreased with increasing MP size with small to large effect sizes. There are small 

and medium effect sizes in the difference between MCAs in each MPs that has 

affected drivers’ performance quite similarly, where MPC is slightly higher in all 

MPs. 

 

Figure 5-38. Steering reversal rate 1°, inflection zone 

There was a significant main effect of type of MP on the steering reversal rate 

objective metric, 𝐹(2,12) = 6.04, 𝑝 = 0.007. Pairwise comparison indicated 

significant 𝑝 = 0.012 difference of objective performance between large to small 

MPs. Contrasts revealed that steering reversal rate in small configuration, 𝐹(1,6) =

3.94, 𝑝 = 0.07, 𝑟 = 0.49 was significantly higher than medium.  

Looking at Figure 5-38 graph and effect sizes the steering reversal rate has 

decreased with increasing MP size with medium to large effect sizes, that shows 

lower control activity and more relaxed style of driving i.e. improved performance.  

There are small and large effect sizes in the difference between MCAs in each MPs 

that has affected drivers’ performance quite similarly. However, MPC has shown 

higher steering reversal rate than classic in all MPs, also the detailed pair 

comparison showed in large the MPC is significantly higher than classic 𝑝 = 0.024, 

that shows higher control activity i.e. deteriorated performance. 
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Figure 5-39. Driver model delay time, inflection zone  

There was a significant interaction effect between the type of MP and the type of 

MCA used, 𝐹(2,12) = 2.97, 𝑝 = 0.069. This indicates that MP had different effects 

on drivers’ objective performance depending on which type of MCA was used. To 

break down this interaction, contrasts were performed comparing all MP types to all 

MCA types. These revealed significant interactions when comparing classic to MPC 

for medium compared to large 𝐹(1,6) = 7.9, 𝑝 = 0.015, 𝑟 = 0.63.  

 

Whole track  

In Table 5-18 RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-18. Repeated measure ANOVA time series metrics results of whole 
track, LHT task.  

 

For this grouped section points that show significant main or interaction effects on 

output measures include: 
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For MCA comparison: 

• Driver model steering gain  

For MCA and MP interaction: 

• Maximum yaw rate (absolute value) 

 

Figure 5-40. Driver model gain, whole track 

There was a significant main effect of type of MCA on the driver model gain, 

𝐹(1,6) = 4917.3, 𝑝 = 0.009, 𝑟 = 0.99. Contrasts revealed that MPC was significantly 

higher than classic. Pairwise comparison indicated significance 𝑝 = 0.009, MPC 

being higher than classic.   

Looking at Figure 5-40 graphs and effect sizes the driver model steering gain has 

slightly decreased with increasing MP size with small to large effect sizes, that 

shows lower control activity and more relaxed style of driving i.e. improved 

performance. There are small to large effect sizes in difference between MCAs that 

has affected drivers’ performance differently, where MPC is higher than classic, that 

shows higher control activity i.e. deteriorated performance. 

 

Figure 5-41. Maximum yaw rate, whole track 
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There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,4) = 10.7, 𝑝 = 0.085. This indicates that MP had different 

effects on drivers’ objective performance depending on which type of MCA was 

used. To break down this interaction, contrasts were performed comparing all MP 

types to all MCA types. These revealed nearly significant interactions when 

comparing classic to MPC for medium compared to large 𝐹(1,6) = 58.64.7, 𝑝 =

0.082, 𝑟 = 0.99.  

5.10.3.2 Slalom (SLM) 

Different sections of negotiating a path between cones in slalom driving task have 

different characteristics, therefore it was split into sections and each section was 

analysed separately. Due to similarity in nature of many of the sections and to 

reduce the number of reporting results the sections throughout the SLM course was 

divided into straight lines, peaks and inflection zone section groups. There are 14 

sections in total. All the sections are shown in Figure 5-42, green dots show the 

entry of a section and red dots shows the exit of a section. 

 

Figure 5-42. Slalom course and sections 

To be able to group the sections initial analysis were performed. Comparing the 

results of the 14 separate sections with the corresponding grouped sections, 

showed similarity in the values; this indicated that it was acceptable to group the 

sections. The objective metrics of a group section is calculated from the average 

value of all sections belonging to that group as Table 5-19. 
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Table 5-19. Group sections, SLM task 

Group section Section Numbers 

Straight lines 1 

Peak zones 4, 6, 8, 10, 12, 14 

Inflection zones 3, 5, 7, 9, 11, 13 

Whole track  

 

Aggregated performance  

The aggregated performance measures for SLM task consist of three metrics of:  

• Lap time, duration of time that drivers completed the task  

• Spin/skid outs and cone hits, trials that drivers span out and hit the cones 

• Speed variability, the standard deviation of drivers speed during the task 

 

Figure 5-43. Lap time, SLM 

From Figure 5-43 it is observable that the lap time has decreased with the increase 

of MP size. In MPC the largest MP has the smallest lap time and vice versa, in 

classic the lap time is similar between MPs. Having considerable effect sizes reveal 

that providing larger motion to drivers results in lower lap time to finish the driving 

task.  

The lower lap time with the increase of MP size might be indicative of improved 

performance when drivers are asked to keep a constant speed, although the 

number of failures is increased as well (described next) and improved performance 

may not be concluded.  

Comparing the MCAs in each MP size, the classic has lower lap time in small and 

medium MP while it is higher than MPC in large MP. Thus, drivers had mostly 
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higher lap time driving the MPC configurations than classic, reflecting better 

performance in classic. 

 

Figure 5-44. Spin/skid outs and cone hits, SLM 

From Figure 5-44, despite the small total number of failures, it has increased with 

increasing MP size in MPC but fluctuated for the classic. It might be indicating that 

providing larger motion to drivers results in a greater number of failures in 

performing the task, reflecting the deteriorated performance of drivers. 

 

Figure 5-45. Speed variations, SLM 

From Figure 5-45, the speed variation increased with increasing MP size in classic 

and fluctuated in MPC. Having considerable large effect sizes reveal that providing 

larger motion to drivers results in more speed variation during driving, reflecting the 

deteriorated performance of drivers.  

Comparing the MCAs in each MP size, the classic has lower speed variation than 

MPC in small and medium MPs, for large the classic is higher. Having large effect 

sizes indicate that drivers had mostly larger speed variation driving the MPC 

configurations than classic, reflecting better performance in classic.  
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Time series  

In this section, the results of repeated measure ANOVA and post hoc analysis on 

the time series metrics in each of the group sections are presented, and where 

there are significant or near significant results those are elaborated. Looking at  

Table 5-20 to Table 5-23 the columns (on x-axis) belong to independent variables 

and their interaction and each row (on y-axis) belong to a dependent measured 

variable metric. The F and p values are shown on each point corresponding to a 

factor and an output measure. Black highlighted point shows where the p-value is 

less than 0.1 that means there is a nearly significant difference.  

Straight lines 

In Table 5-20 the RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-20. Repeated measure ANOVA time series metrics results of straight 
lines grouped sections, SLM task. 

 

For this grouped section, there is no point that shows significant main or interaction 

effects on output measures. 

Peak zone  

In Table 5-21 RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 
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Table 5-21. Repeated measure ANOVA time series metrics results of peak 
zone grouped sections, SLM task. 

 

For this grouped section points that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal velocity  

• Maximum lateral velocity (absolute value) 

• Maximum yaw rate (absolute value) 

• Driver model delay time 

For MCA comparison: 

• Driver model delay time 

• Steering wheel reversal rate (1 degree) 

For MCA and MP interaction: 

• Steering wheel reversal rate (1 degree) 

 

Figure 5-46. Maximum longitudinal velocity, peak zones 
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There was a nearly significant main effect of type of MP on the longitudinal velocity 

objective metric, 𝐹(2,12) = 3.19, 𝑝 = 0.09. Contrasts revealed that longitudinal 

velocity in medium configuration, 𝐹(1,6) = 5.03, 𝑝 = 0.089, 𝑟 = 0.74 was 

significantly higher than small.  

Looking at Figure 5-46 graphs and effect sizes the longitudinal velocity has 

increased with increasing MP size with medium to large effect size. There is a small 

to large effect size in difference between MCAs that has affected drivers’ 

performance quite similarly.  

 

Figure 5-47. Maximum lateral velocity, peak zones 

There was a significant main effect of type of MP on the lateral velocity objective 

metric, 𝐹(2,12) = 5.79, 𝑝 = 0.027. Contrasts revealed that lateral velocity in medium 

configuration, 𝐹(1,6) = 5.96, 𝑝 = 0.07, 𝑟 = 0.77 was nearly significantly higher than 

large. Pairwise comparison indicated significant 𝑝 = 0.04 difference in the 

performance between large to small MPs. 

Looking at Figure 5-47 graphs and effect sizes the longitudinal velocity has 

decreased with increasing MP size with small to large effect size. There are small to 

large effect sizes in difference between MCAs that has affected drivers’ 

performance quite similarly.  
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Figure 5-48. Maximum yaw rate, peak zones 

There was a significant main effect of type of MP on the yaw rate objective metric, 

𝐹(2,12) = 6.57, 𝑝 = 0.02. Contrasts revealed that yaw rate in small configuration, 

𝐹(1,6) = 6.57, 𝑝 = 0.062, 𝑟 = 0.79 was nearly significantly higher than medium. 

Pairwise comparison indicated significant 𝑝 = 0.017 difference in the performance 

between large to small MPs. 

Looking at Figure 5-48 graphs and effect sizes the yaw rate has decreased with 

increasing MP size with small to large effect size. There is small to large effect size 

in difference between MCAs that has affected drivers’ performance quite similarly.  

 

Figure 5-49. Driver model delay time, peak zone 

There was a significant main effect of type of MP on the driver model delay time 

objective metric, 𝐹(2,12) = 7.45, 𝑝 = 0.014. Contrasts revealed that the delay time 

in small configuration, 𝐹(1,6) = 5.15, 𝑝 = 0.08, 𝑟 = 0.75 was nearly significantly 
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lower than medium. Pairwise comparison indicated significant 𝑝 = 0.0017 difference 

in the performance between large to small MPs. 

There was a significant main effect of type of MCA on the driver model delay time, 

𝐹(1,6) = 7.6, 𝑝 = 0.05, 𝑟 = 0.80. Contrasts revealed that classic was significantly 

higher than MPC. Pairwise comparison indicated significance 𝑝 = 0.05, classic 

being higher than MPC.   

Looking at Figure 5-49 graphs and effect sizes the driver model delay time has 

increased with increasing MP size with small to large effect sizes. There is a large 

effect size in difference between MCAs that has affected drivers’ performance 

differently, where classic is higher than MPC. 

 

Figure 5-50. Steering reversal rate 1°, peak zone 

There was a significant main effect of type of MCA on the steering wheel reversal 

rate, 𝐹(1,6) = 7.6, 𝑝 = 0.024, 𝑟 = 0.87. Contrasts revealed that MPC was 

significantly higher than classic. Pairwise comparison indicated significance 𝑝 =

0.024, MPC being higher than classic.   

There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,12) = 3.53, 𝑝 = 0.079. This indicates that MP had different 

effects on people’s objective performance depending on which type of MCA was 

used. To break down this interaction, contrasts were performed comparing all MP 

types to all MCA types. These revealed nearly significant interactions when 

comparing classic to MPC for small compared to medium 𝐹(1,6) = 7.9, 𝑝 = 0.1, 𝑟 =

0.72.  

Looking at Figure 5-50 graphs and effect sizes the steering reversal rate has 

fluctuated in MPC and slightly increased with increasing MP size with medium to 

large effect sizes. There is small to large effect size in difference between MCAs 
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that has affected drivers’ performance differently, where MPC is higher than classic, 

that shows higher control activity i.e. deteriorated performance. 

Inflection zone  

In Table 5-22 RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-22. Repeated measure ANOVA time series metrics results of inflection 
zone grouped sections, SLM task. 

 

For this grouped section points that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Driver model delay time 

For MCA comparison: 

• Maximum longitudinal acceleration  

• Driver model gain 

 

Figure 5-51. Maximum longitudinal acceleration, inflection zone 
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There was a nearly significant main effect of type of MCA on the longitudinal 

acceleration, 𝐹(1,6) = 4.8, 𝑝 = 0.09, 𝑟 = 0.74. Contrasts revealed that classic was 

significantly higher than MPC. Pairwise comparison indicated nearly significance 

𝑝 = 0.09, the classic being higher than MPC.   

Looking at Figure 5-51 graphs and effect sizes the longitudinal acceleration has 

stayed similar with increasing MP size with small to large effect sizes. There are 

small to large effect sizes in difference between MCAs that has affected drivers’ 

performance differently, where classic is higher than MPC. 

 

Figure 5-52. Driver model gain, inflection zone 

There was a significant main effect of type of MCA on the driver model gain, 

𝐹(1,6) = 9.24, 𝑝 = 0.038, 𝑟 = 0.83. Contrasts revealed that classic was significantly 

higher than MPC. Pairwise comparison significance also confirmed it 𝑝 = 0.038. 

Looking at Figure 5-52 graph and effect sizes the driver model gain has increased 

with increasing MP size with small to large effect sizes, that shows higher control 

activity and less relaxed style of driving i.e. deteriorate performance. There are 

medium to large effect sizes in difference between MCAs that has affected drivers’ 

performance differently, where classic is higher than MPC, that shows higher 

control activity i.e. deteriorated performance. 
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Figure 5-53. Driver model delay time, inflection zone 

There was a significant main effect of type of MP on the driver model delay time 

objective metric, 𝐹(2,12) = 4.42, 𝑝 = 0.05. Contrasts revealed that the delay time in 

small configuration, 𝐹(1,6) = 5.15, 𝑝 = 0.00003, 𝑟 = 0.99 was significantly lower 

than large. Pairwise comparison indicated significant 𝑝 = 0.0001 difference in the 

performance between large to small MPs. 

Looking at Figure 5-53 graphs and effect sizes the driver model delay has 

increased with increasing MP size with medium to large effect sizes. There are 

small to large effect sizes in difference between MCAs that has affected drivers’ 

performance quite similarly.  

Whole track  

In Table 5-23 RM ANOVA results of time series output measured metrics are 

shown for both MCA, MP configurations and their interactions. 

Table 5-23. Repeated measure ANOVA time series metrics results of whole 
track, SLM task.  
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For this grouped section points that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Maximum longitudinal velocity  

For MCA comparison: 

• Driver model steering gain  

For MCA and MP interaction: 

• Maximum lateral velocity (absolute value) 

 

Figure 5-54. Longitudinal velocity, whole track 

There was a nearly significant main effect of type of MP on the longitudinal velocity 

objective metric, 𝐹(2,12) = 4.04, 𝑝 = 0.06. Contrasts revealed that longitudinal 

velocity in medium configuration, 𝐹(1,6) = 2.6, 𝑝 = 0.1, 𝑟 = 0.63 was nearly 

significantly lower than large. Pairwise comparison indicated significant 𝑝 = 0.09 

difference in the performance between large to small MPs. 

Looking at Figure 5-54 graphs and effect sizes the longitudinal velocity has 

increased with increasing MP size with small to large effect sizes. There is small to 

medium effect size in difference between MCAs that has affected drivers’ 

performance quite similarly. 
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Figure 5-55. Driver model steering gain, whole track 

There was a significant main effect of type of MCA on the driver model steering 

gain, 𝐹(1,6) = 5.12, 𝑝 = 0.08, 𝑟 = 0.75. Contrasts revealed that MPC was 

significantly higher than classic. Pairwise comparison indicated significance 𝑝 =

0.08, MPC being higher than classic.   

Looking at Figure 5-55 graphs and effect sizes the driver model steering gain has 

increased with increasing MP size with small to large effect sizes, that shows higher 

control activity i.e. deteriorated performance. There is small to large effect size in 

difference between MCAs that has affected drivers’ performance differently, where 

MPC is higher than classic, that shows higher control activity i.e. deteriorated 

performance. 

 

Figure 5-56. Maximum lateral velocity, whole track 

There was a nearly significant interaction effect between the type of MP and the 

type of MCA used, 𝐹(2,12) = 5.8, 𝑝 = 0.027. This indicates that MP had different 

effects on drivers’ objective performance depending on which type of MCA was 
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used. To break down this interaction, contrasts were performed comparing all MP 

types to all MCA types. These revealed nearly significant interactions when 

comparing classic to MPC for medium compared to large 𝐹(1,6) = 5.07, 𝑝 = 0.08, 

𝑟 = 0.75. 

5.11 Discussion and conclusions 

Due to the major impact of motion cueing on simulator fidelity the current study was 

designed to address how the variations in simulator’s motion cueing subsystems 

affect the fidelity. To this end, the main components of the simulator motion system 

were chosen as variables to evaluate their effect on the simulator fidelity. Those 

were motion cueing algorithms (MCA) and motion platform (MP) workspace size. 

As the first aim of this study two MCAs with high previously reported fidelity were 

selected to be compared, those were classic and MPC; as the second aim of this 

study three sizes of MPs were considered to make comparison among them. 

Moreover, because of lacking previous research considering interacting effects that 

MP sizes might have on the MCAs fidelity assessments, the MCA comparisons (the 

first aim) took place in each of the MP sizes. Two driving tasks of Land Rover 

Handling Track (LHT) and Slalom (SLM) were selected to compare if there is 

relation between both aims and driving tasks. In this regard, two research questions 

were defined and evaluated through drivers’ subjective ratings of simulator fidelity 

and their objective performance. The permutation of MPs and MCAs created six 

motion configurations of small-MPC (S-M) and small-classic (S-C), medium-MPC 

(M-M), medium-classic (M-C), large-MPC (L-M) and large-classic (L-C), the 

experiment was designed to compare between them and address the research 

questions. The research questions and main findings of the experiment are 

presented below.  

Research question 1 – How do the different MCAs affect the drivers’ 

subjective ratings of simulator fidelity and their objective behaviour? 

I. Subjective fidelity results 

For the LHT task, the results of the repeated measure ANOVA for all three 

questions showed a significant or nearly significant effect of type of MCA on 

subjective preferences, where mostly the MPC was rated higher than the classic. 

This is in line with the predicted hypothesis for LHT test at the beginning of the 

chapter, that was expecting MPC to be the higher fidelity configuration in all the 

three MPs. 

Based on analysis of plots and effect sizes it was observed that for all the three 

grouped questions the classic was of slightly higher fidelity in small MP, whereas 
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the MPC was the higher fidelity in both medium and large MPs. The effect sizes 

were small for both small and medium MPs, indicating that small subjective fidelity 

difference between the MCAs. In other words, drivers see that MCAs are quite 

similar (slightly different) in both small and medium MPs. For large MP the effect 

size was large, indicative of bigger subjective fidelity difference between the MCAs 

to drivers, results are summarised in Table 5-24. 

For the SLM task results of repeated measure, ANOVA for all three questions did 

not show a significant effect of type of MCAs on subjective preferences. However, a 

post hoc pairwise comparison of MCAs in each MP sizes showed classic was rated 

significantly 𝑝 < 0.01 higher than MPC in small motion platform size for all three 

questions. The hypothesis was to expect classic to be the higher fidelity 

configuration in all the three MPs, however it was violated only for medium MP 

where the MPC showed higher fidelity.   

Based on analysis of plots and effect sizes for all the three grouped questions it 

was observable the classic was of higher fidelity in small and large MPs, whereas 

the MPC was the higher fidelity in medium MP. The effect sizes were large and 

medium for small and medium MPs, indicating that considerable subjective fidelity 

difference between the MCAs. In other words, drivers see the MCAs different in 

both the small and medium MPs. For large MP the effect sizes were small, 

indicating that there is smaller subjective fidelity difference between the MCAs to 

drivers. Moreover, the MCA comparisons get less distinct to drivers from with 

increasing MP size, results are summarised in Table 5-25.  

II. Objective behavioural results 

For LHT task in each MP size comparing the classic and MPC, see Table 5-24:  

Aggregated performance – for all the four lap time, number of failures, speed 

variation and lateral position deviation aggregated performance metrics, MPC has 

shown the higher values in small and medium MPs. In large MP MPC has shown 

higher values in lateral position deviation and number of failures, whereas classic 

had higher value of lap time and speed variation.   

Overall, in most of the comparisons between MCAs higher lap time, number of 

failures, speed variation and lateral position deviation was observed in MPC 

compared to classic, reflecting the deteriorated performance of drivers while 

experiencing the MPC algorithm, although they subjectively preferred it in some of 

the MP sizes. Time series – In the whole track and three of the grouped road 

sections of curves greater than 180°, curves smaller than 180°, and inflection 

zones, where there was a significant main effect of type of MCAs on most of the 

output measured metric, the MPC has shown higher values for the objective 
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metrics. Those included the steering wheel reversal rates, and driver model gain, 

that shows higher control activity, and reflecting the deteriorated performance. 

For SLM task in each MP size comparing the classic and MPC, see Table 5-25:  

Aggregated performance - for the lap time and speed variation aggregated 

performance metrics, MPC has shown the higher values in small and medium MPs, 

and classic in large. In the number of failures, it is of mixed results between MPs.  

Overall, in many of the comparisons between MCAs higher lap time, number of 

failures, speed variation was observed in MPC compared to classic, reflecting the 

deteriorated performance of drivers while experiencing the MPC algorithm. Time 

series - In the whole track and two of the grouped road sections of inflection zones 

and peak zones, where there was a significant main effect of type of MCAs on the 

output measured metric depending on the section, there were mixed results of MPC 

and classic. In inflection zone it is always the classic that has the highest value for 

the objective metrics, it is a mix of classic and MPC for the peak zones and MPC for 

the whole track. In total, it is more of mixed results depending on the sections.  
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Table 5-24. Summary of results, research question 1 (highest values), LHT 
task 

 Significant  

Overall 

Result  

Plot and effect size results 

Small Medium Large 
Su

b
je

ct
iv

e Overall Assessment MPC Classic MPC MPC 

Motion Cueing MPC Similar MPC MPC 

Vehicle Assessment MPC Classic MPC MPC 

O
b

je
ct

iv
e 

A
gg

re
ga

te
d

 
P

er
fo

rm
an

ce
 Lap Time  MPC MPC Classic 

Failure Number  MPC MPC MPC 

Speed Variation  MPC MPC Classic 

Lateral Deviation  MPC MPC MPC 

Ti
m

e 
Se

ri
es

 a
n

d
 d

ri
ve

r 
m

o
d

el
 

Curves ≥ 

180 

DRYPE Gain MPC MPC MPC MPC 

Rev Rate 10 MPC MPC MPC MPC 

Curves ≤ 

180 

Lat Velocity MPC MPC MPC Classic 

Yaw Rate MPC MPC MPC MPC 

Straight 

Line 

DRYPE Gain MPC MPC MPC MPC 

Rev Rate 10 MPC MPC MPC MPC 

Inflection 

Zone - 

Whole 

Track 
DRYPE Gain MPC MPC MPC MPC 
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Table 5-25. Summary of results, research question 1 (highest values), SLM 
task 

 Significant  

Overall 

Result  

Plot and effect size results 

Small Medium Large 
Su

b
je

ct
iv

e Overall Assessment - Classic MPC Classic 

Motion Cueing - Classic MPC Classic 

Vehicle Assessment - Classic MPC Classic 

O
b

je
ct

iv
e 

A
gg

re
ga

te
d

 
P

er
fo

rm
an

c

e
 

Lap Time  MPC MPC Classic 

Failure Number  Classic Same MPC 

Speed Variation  MPC MPC Classic 

Ti
m

e 
Se

ri
es

 a
n

d
 d

ri
ve

r 
m

o
d

el
 Straight 

Line 
- 

Peak Zone 
DRYPE Delay Classic Classic Classic Classic 

Rev Rate 1 MPC MPC Classic MPC 

Inflection 

Zone 

Long Acc Classic Classic Classic MPC 

DRYPE Gain Classic Classic Classic Classic 

Whole 

Track 
DRYPE Gain MPC MPC MPC MPC 

In summary, in the LHT task drivers mostly preferred the MPC over the classic, 

while in SLM the difference was not significant, although some preferences of the 

classic over MPC. Overall, in terms of aggregated performance measurements 

including the lap time, number of failures and speed variation, in most of the 

comparisons between MCAs, the deteriorated performance of drivers were 

observed in the MPC algorithm in both driving tasks. In the time series metrics, the 

differences between the MCAs were consistent in LHT and mixed in SLM task. In 

the LHT nearly in all of the measurement metrics, the MPC had higher values. It 

was comprised of the steering reversal rates and driver model steering gain i.e. the 

measurements over the drivers' control activity. It reflects more relaxed style of 

driving and improved performance in classic. 
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Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of simulator fidelity and their objective behaviour? 

I. Subjective fidelity results 

For the LHT task the results of repeated measure ANOVA for the motion cueing 

questions showed a significant or nearly significant effect of type of MPs on 

subjective preferences, where the large configuration was rated significantly higher 

than medium. Other questions did not show a significant effect of type of MPs on 

subjective preferences. However, a post hoc pairwise comparison of MPs in each 

MCA showed medium was rated nearly significantly 𝑝 < 0.1 higher than small in 

MPC for the vehicle assessment question.  

Based on analysis of plots and effect sizes it was observable for the MPC 

algorithm, in all three questions the medium to large MPs comes out as higher 

fidelity with large effect sizes. In the classic algorithm, the medium MP shows the 

higher fidelity for all the three groups of questions with small to large effect sizes. It 

is observable for the MPC algorithm, in all three questions the medium to large MP 

comes out as higher fidelity with large effect size. In the classic algorithm, the 

medium MP shows the higher fidelity for all the three groups of questions with small 

to medium effect sizes. 

In MPC, the effect sizes are small between the medium and large MPs, indicating 

that small subjective fidelity difference between them, while there is large effect size 

between the medium and large compared to small MP. In other words, the medium 

and large MPs are quite similar (slightly different) to drivers and those are much 

different to small MP to drivers. In classic, the effect size is small between small 

and medium MPs, indicating that there is small subjective fidelity difference 

between them, while there is large effect size between the small and medium to 

large MP.  

This might be indicating that for the LHT task drivers preferred larger motion 

configuration as the ratings were increasing with increasing MP size, results are 

summarised in Table 5-26.  

For the SLM task results of repeated measure ANOVA for all three questions did 

not show a significant effect of type of MPs on subjective preferences. Based on 

analysis of plots and effect sizes it was observable for the MPC algorithm, in all 

three questions the medium MP comes out as higher fidelity with medium effect 

size. In the classic algorithm, the small MP shows the higher fidelity for all three 

questions with small and large effect sizes. Having big enough effect sizes shows in 

MPC the drivers preferred the medium MP and in classic they preferred the small 

MP. This might be indicating that for the SLM task drivers preferred smaller motion 
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configuration as the ratings were fluctuating with increasing MP size, results are 

summarised in Table 5-27. 

II. Objective behavioural results 

For LHT task in each MCA comparing MP sizes, see Table 5-26:  

Aggregated performance - For the three, number of failures, speed variation and 

lateral position deviation aggregated performance metrics, small MP has shown the 

higher values in both MPC and classic MCAs and with the increase of MP size, 

these metrics have decreased. In the lap time large MP has shown highest value 

and with the increase of MP size it has increased.  

The higher lap time with the increase of MP size, in general, is indicative of 

deteriorated performance when drivers are asked to adapt their speed, although 

considering it with the decrease in number of failures, reflects improved 

performance. In other words, increasing the MP size (presenting more motion to 

drivers) decreased the number of failures in fare of increasing their lap time. At the 

same time, the lateral position deviation and speed variation were decreased with 

the increase of MP size, which shows improved performance of drivers.  

Time series - In the three grouped road sections of curves greater than 180°, 

curves smaller than 180°, and inflection zones, where there was a significant main 

effect of type of MPs on the output measured metric and there were no fluctuations, 

the small has shown higher values for the objective metrics, and with the increase 

of MP size these metrics have decreased. Those metrics include the steering 

reversal rates and driver model steering gain that were decreased with the increase 

of MP size, reflecting the lower control activity and more relaxed style of driving i.e. 

improved performance. The hypothesis was to expect decrease in the steering 

wheel reversal rate metrics with the increase of MP size, and the results have 

approved it. The delay time did only show an interaction of MP and MCA in only in 

one of the sections, although in all the sections it was slightly increased with the 

increase of MP. Our hypothesis was to see increase in delay time and decrease in 

gain, which this result approved it.  

For SLM task in each MCA comparing MP sizes, see Table 5-27: 

Aggregated performance - For the number of failures and speed variation 

aggregated performance metrics, small MP has shown the higher values in both 

MPC and classic MCAs i.e. with the increase of MP size these metrics have 

increased. For the lap time small has shown higher value, and with the increase of 

MP size it has decreased. 
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The lower lap time with the increase of MP size might be indicative of improved 

performance when drivers were asked to keep a constant speed, although the 

number of failures is increased as well, and improved performance may not be 

concluded. At the same time, the speed variation is increased with the increase of 

MP size, which also shows a deteriorated performance of drivers. Time series - In 

the whole track and two of the grouped road sections of inflection zones and peak 

zones, where there was a significant main effect of type of MPs on the output 

measured metric depending on the section. In inflection zone and whole track, the 

large MP has the highest value for the objective metric i.e. with the increase of MP 

size these metrics have increased. In the peak zone it is mix results. In total it is 

more of mixed results depending on the sections. The hypothesis was to expect 

decrease in the steering wheel reversal rate metric with the increase of MP size, 

however the result did not show significant effect for the steering rate reversal rate. 

For the driver model metrics in some sections the result for the delay time showed 

significant increase effect, however no significant effect for the gain was observed, 

only slight increase from the plots. The hypothesis was to see increase in delay 

time and decrease in gain, which this result has partially approved it.  
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Table 5-26. Summary of results, research question 2 (highest values), LHT 
task 

 Significant  

Overall 

Result  

Plot and effect size 

results 

Trend 

small to 

large 
MPC Classic 

Su
b

je
ct

iv
e Overall Assessment - L M Increase 

Motion Cueing L L M Increase 

Vehicle Assessment - M M Increase 

O
b

je
ct

iv
e 

A
gg

re
ga

te
d

 
P

er
fo

rm
an

ce
 Lap Time  L L Increase 

Failure Number  S S Decrease 

Speed Variation  S L Decrease 

Lateral Deviation  S S Decrease 

Ti
m

e 
Se

ri
es

 a
n

d
 d

ri
ve

r 
m

o
d

el
 

Curves ≥ 

180 

Long Vel L M L Increase 

Lat Vel M M M Fluctuate 

Rev Rate 1 S S S Decrease 

Rev Rate 10 S S S Decrease 

Curves ≤ 

180 

Long Acc S S S Decrease 

DRYPE Gain S S S Decrease 

Rev Rate 1 S S M Decrease 

Rev Rate 10 S S S Decrease 

Straight 

Line 
Long Acc M M M Fluctuate 

Inflection 

Zone 

Long Acc S S S Decrease 

Rev Rate 1 S S S Decrease 

Whole 

Track 
- 
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Table 5-27. Summary of results, research question 2 (highest values), SLM 
task 

 Significant  

Overall 

Result  

Plot and effect size 

results 

Trend 

small to 

large MPC Classic 

Su
b

je
ct

iv
e Overall Assessment - M S Fluctuate 

Motion Cueing - M S Fluctuate 

Vehicle Assessment - M S Fluctuate 

O
b

je
ct

iv
e 

A
gg

re
ga

te
d

 
P

er
fo

rm
an

c

e 

Lap Time  S S-L Decrease 

Failure Number  S S-L Increase 

Speed Variation  S L Increase 

Ti
m

e 
Se

ri
es

 a
n

d
 d

ri
ve

r 
m

o
d

el
 

Straight 

Line 
- 

Peak Zone 

Long Vel L L L Increase 

Lat Vel S S M Decrease 

Yaw Rate S S S Decrease 

DRYPEDelay L L L Increase 

Inflection 

Zone 
DRYPEDelay L L L Increase 

Whole 

Track 
Long Vel L L L Increase 

In summary, in the LHT task drivers mostly preferred the larger MP size, while in 

SLM they preferred smaller. Overall, in terms of aggregated performance 

measurements including the lap time, number of failures and speed variation; with 

the increase of MP size, two opposite effects were observed between the driving 

tasks. In LHT task the performance was improved, while in SLM it was deteriorated. 

In the time series metrics, the effect of the MP size was consistent in LHT and 

mixed in SLM task. In the LHT task nearly in all of the measurement metrics have 

decreased with the increase of MP size. It was comprised of the steering reversal 

rates and driver model steering gain i.e. the measurements over the drivers' control 

activity. It reflects a more relaxed style of driving and improved performance. On the 

other hand, in SLM no significant effect of MP size was observed on drivers’ control 

activity other than slight increase.  
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6 Assessment of High-Friction Motion Cueing 

6.1 Introduction  

Driven attributes of a vehicle include properties such as a vehicle’s steering feel, 

handling, and ride qualities. Currently, testing such properties is primarily performed 

on-road at car manufacturer companies, that is same for Jaguar Land Rover (JLR) 

with test drivers from the Vehicle Evaluations Team (VET) driving vehicle 

prototypes at various stages of development, subjectively judging their behaviour, 

and comparing across alternative designs. Typically, these design alternatives 

involve changes to the vehicle prototype that can require many hours of work at the 

workshop. In other words, the current main approach to driven attributes testing 

requires costly physical prototypes, and also the testing itself is time-consuming, 

with associated risks of less accurate evaluations since drivers are not comparing 

alternative designs in close temporal proximity (Markkula et al., 2017). Thus, there 

are good reasons to pursue simulator based testing of driven attributes. Tests in the 

simulator do not require physical prototypes, and arbitrary changes to vehicle 

designs can be applied without time delays.   

An important question that arises was whether drivers in the simulator were able to 

distinguish and make subjective assessments to changes of vehicle’s properties 

and how the changes affect their performance. At the JLR simulator, some 

validation tests along these lines have been carried out, confirming that test drivers 

are able to subjectively identify the general nature of a manipulation being applied 

to the simulated vehicle dynamics, and indeed have made similar judgement calls 

as in reality on some retrospective tuning exercises. In addition to this, in this 

experiment the aim was to take some steps further, to consider the effect that 

different motion configurations of a driving simulator might have on driven attributes 

assessments, by means of subjective and objective behaviour measurements.  

To this end, the first independent variable was the manipulations to the ride height 

(RH) of the air suspension of a Range Rover Velar prototype vehicle. It was 

identified as a manipulation that causes changes to the driven attributes of a 

subjectively comparable nature and magnitude to those involved in typical on-road 

driven attributes testing; could be relatively quickly applied to a real vehicle; would 

not be discernible to the drivers before starting to drive, and was readily available in 

existing vehicle dynamics models from the JLR Virtual Hub could be implemented 

in simulator. In addition to this, the other independent variable was the manipulation 

of simulator motion configuration including various motion platform (MP) sizes using 

a single motion cueing algorithm (MCA), similar to one of the aims studied in 

Chapter 5.  
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In related prior research works, there is a relatively sizable literature on the matter 

of correlating subjective driver assessments of driven attributes with objective 

metrics; see for example (Chen and Crolla, 1998; Rothhämel et al., 2011; Nybacka 

et al., 2014). In this work, the typical approach has been to carry out predefined test 

manoeuvres, e.g., with a steering robot, to quantify the vehicle’s response using 

various objective metrics, and then correlating these metrics against subjective 

ratings collected from drivers in the same vehicles. The overall impression from this 

literature is that the objective-subjective correlation of driven attributes is feasible in 

some cases but remains challenging, not least because drivers tend to differ in how 

they use the subjective rating scales; e.g., some drivers consistently provide higher 

or lower ratings than others (Chen and Crolla, 1998; Gil Gómez et al., 2015). A 

related set of literature focuses exclusively on objective metrics, and the study and 

optimisation of these, based on some criteria assumed to align with driver 

preferences, in purely virtual tests without any drivers involved (Rauh, 2003; 

Gonçalves and Ambrósio, 2005; Mohajer et al., 2017). 

The work referenced above is marginally relevant here but does not address driving 

simulators directly. Published studies of driven attributes evaluation between reality 

and simulators are rare. There is a brief mention in (Käding and Hoffmeyer, 1995b) 

of two projects investigating an all-wheel steering system in a double lane change 

manoeuvre, and an active suspension roll behaviour in curve driving, respectively, 

where test drivers reportedly expressed the same preferences both in real driving 

and in the Daimler-Benz motion-based driving simulator. Furthermore, Bertollini and 

Hogan (1999) compared drivers’ preferences of steering wheel torques between 

prior studies in real vehicles and their simulator based study, and found that the 

same general pattern occurred in both settings, of drivers preferring stiffer steering 

wheel response for increasing speeds. Interestingly, when they turned their 

simulator’s motion platform off, the pattern of increasing preferred stiffness 

disappeared above driving speeds of 40 km/h, suggesting an interaction between 

perceived lateral accelerations and steering feel preference. Overall, the present 

study seems very timely, since there is so little in the literature on the topic of 

simulator based testing of driven attributes. Moreover, there is no research 

identified considering the effect that simulator motion cueing capability might have 

on the evaluations of vehicle driven attributes.  

In summary, in this chapter driven attributes of a vehicle in the simulator are 

assessed considering the manipulations to the ride height of air suspension of a 

vehicle, together with manipulation to simulator motion platform size. The 

measurements include drivers’ subjective ratings and their objective behaviour. The 

following sections elaborate more on, how an experiment was designed that could 
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address comparison between vehicle ride height and simulator motion 

configurations, research questions and hypotheses are defined. Finally, the 

analysis of results is presented to answer the research questions followed by 

discussion and conclusion.  

6.2 Experimental design  

The two independent variables for this study were the ride height (RH) of air 

suspension with three levels (low, medium and high) and MP sizes with three levels 

(small, medium and large). At each of the nine (3x3) combinations of these 

independent variables, subjective ratings and drivers’ objective performance were 

collected. To increase the power of the effect of experimental manipulations, and 

limited availability in the number of professional drivers participating in this study, a 

repeated measure experiment design was used where the same participants took 

part in all combinations of the independent variables. It is a balanced design where 

there is an equal number of observations for each of the treatments. The 

differences between the RHs was more subtle compared to the MP sizes, as a 

result, the experiment was designed in a nested way that the comparisons between 

RHs to be of primary focus for drivers and the MPs as the secondary focus. This 

helps the drivers to emphasise in distinguishing between the RHs in each MP size, 

while next they evaluate the MP sizes.    

Six test drivers from JLR attended University of Leeds Driving Simulator (UoLDS) 

and drove a Range Rover Velar car on Gosport Lane (GSP), a public rural road 

near the JLR Gaydon site with normal high friction road condition. They completed 

two questionnaires about the quality of the driven attributes on the ride, handling 

and steering, and the realism of the driving experience, moreover, their objective 

performance were collected. They were familiar with real world testing of the vehicle 

in similar high-friction condition and driving task. 

The experiment had each of the drivers accomplish the Gosport lane driving task. 

They were consecutively presented nine motion configurations corresponding to the 

permutations of three RHs and three MP sizes. Drivers were presented with three 

sessions of motion platforms to make comparison among the ride height: 

• Small-low (S-L), small-medium (S-M), small-high (S-H) 

• Medium-low (M-L), medium-medium (M-M), medium-high (M-H) 

• Large-low (L-L), large-medium (L-M), large-high (L-H) 

This allowed examining how drivers perceived the effects of RH and MP on driven 

attributes quality, the fidelity and the extent to which the drivers agreed with each 

other’s ratings. The above sessions were presented to two of drivers in small-

medium-large MP group order, to two in large-medium-small order and to the other 
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two in medium-small-large order and drivers were randomly assigned to be in each 

group. The order of the RHs within each of the above MPs was counter-balanced 

per driver. The full counterbalancing table for all drivers is provided in Appendix C.  

6.3 Dependent variables  

In this section, to allow the formulation of research questions and hypotheses, the 

subjective and objective behaviour metrics are explained. Further details about how 

the metrics are applied to the collected data are provided in section 6.10.  

 Subjective measures  

A questionnaire was developed in collaboration with JLR to assess the driven 

attributes of the Range Rover Velar vehicle. This was based on the specific 

attribute language used by JLR engineers to describe the properties of a vehicle 

(described in an appendix to (Jamson et al., 2014a). The questionnaire items fell 

into three categories: i) ride, ii) steering and iii) handling. Two questions assessed 

the ride characteristics of the vehicle in terms of the low and high frequency 

movements of the vehicle. Six questions addressed the vehicle’s steering 

characteristics across a number of dimensions. Finally, five questions assessed the 

vehicle handling characteristics in terms of pitch, roll and understeer/oversteer 

during different manoeuvres. List of questions is shown in Table 6-1.  

The primary ride was the question assessing the low frequency vertical movements 

of the vehicle. Evaluate large amplitude (large and obvious, continuous road 

undulations) that cause suspension movement over a moderate range, up to the 

whole range of suspension travel. Similarly, the secondary ride was the vertical 

vibrations that are caused by the road texture and various road disturbances on flat 

(smooth and coarse) and/or rough roads. They are felt by the driver or passengers 

through the seat back and cushion, steering wheel, and floor pan. The low RH gives 

drivers a constrained and crashy feeling, while the high RH results in floaty and 

settled feeling.  

Controllability refers to the steering properties around the straight ahead and 

cornering tasks and how these characteristics work together to allow the driver 

precise and confident steering control. These properties are the vehicle reactions 

and torque feedback to small steering corrections that are required to keep the 

vehicle travelling in a straight path, as well as when turning the vehicle into a corner 

i.e. the steering adjustments required to keep the vehicle on the intended curvature. 

It also includes the steering properties that help the driver return to straight-ahead 

when exiting a corner. The steering properties consisted of questions about: 
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The window at high speed (over 30 mph), the steering angle range where there 

seems to be no motion response. Gain linearity away from centre, the ability of the 

vehicle to maintain a constant level of response gain. Efforts at low speed, general 

level of steering torque/forces for controlling the vehicle. Efforts at high speed, 

general level of steering torque/forces for controlling the vehicle. Efforts at mid-

corner general level of steering torque/forces for controlling the vehicle. Often low 

RH demands drivers of higher control activity and high RH results in more relaxed 

behaviour.   

Stability describes the ability of the vehicle to deliver a consistent, comfortable and 

predictable behaviour during straight line or negotiating a cornering manoeuvre. In 

addition to steady-state conditions, it also includes the vehicle's ability to accelerate 

& decelerate without an extraneous roll, pitch, yawing and lateral motions. The 

handling properties consisted of questions about:  

Pitch (longitudinal) acceleration/deceleration (Lift Squat), acceleration pitch/lift 

squat describes the degree of vehicle pitch during acceleration/deceleration phases 

of manoeuvre. Roll (lateral) acceleration/deceleration, acceleration roll describes 

the degree of vehicle roll during acceleration/deceleration in cornering phases of 

manoeuvre those include the transient, the degree of vehicle roll during small 

corrective steering inputs and the steady-state, the degree of vehicle roll for fixed-

level acceleration during cornering. Under/oversteering, level of the vehicle's 

under/oversteer behaviour over a range of corner radii and lateral acceleration 

while cornering. 

The weight distribution of the vehicle affects the handling. Lower RH brings the 

centre of gravity of the car lower that means less weight transfer during acceleration 

and braking, which makes the car more responsive by decreasing the body roll and 

pitch, while higher RH increased the body roll and pitch. If the centre of gravity is 

moved closer to the front axle the vehicle tends to understeer, and if the centre of 

gravity is toward back of the vehicle the rear axle tends to swing out that is to 

oversteer. The change of the RH in this experiment is done the same for the front 

and back axles of the vehicle, and it is not straight forward to conclude about the 

under/oversteer. However, the standard RH of the vehicle is usually designed to 

have the least under/oversteering. Furthermore, the low RH decreases the 

suspension travel, although maximises the downing force and tire grip. 
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Table 6-1. Driven attribute questions 

Category  Question Rating Anchors 

Ride 

1 Primary Ride  

Constrained, 

Trapped/ 

Free, Floaty 

2 Secondary Ride 

Crashy, Agitated, 

Tactile/Settled, 

Controlled, Calm 

 

Steering 

3 
Window at High Speed 

(over 30 mph) 
Narrow/Wide 

4 Gain Linearity Away From Centre Linear/Nonlinear 

5 Efforts at Low Speed Lower/Higher 

6 Efforts at High Speed Lower/Higher 

7 Efforts at Mid-Corner Lower/Higher 

 

 

Handling 

8 
Pitch (Longitudinal) 

Acceleration/Deceleration (Lift Squat)  
Less/More 

9 
Roll (Lateral) Acceleration/Deceleration 

(Transient) 
Less/More 

10 
Roll (Lateral) Acceleration/Deceleration 

(Steady-State) 
Less/More 

11 Under/Oversteering Under/oversteer 

A realism questionnaire was included in the experiment. The questionnaire 

assessed the realism of each simulator motion platform size configuration, a shorter 

version of what was evaluated in section 5.3.1. The questionnaire assessed the 

overall realism of the simulated driving task, how useful the drivers thought the 

simulator configuration would be for assessing vehicle driven attributes and how 

realistic the motion cueing was. List of questions is shown in Table 6-2. The full 

questionnaires used in the simulator data collection is provided in Appendix C. 
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Table 6-2. Simulator realism questions 

Question 

Category & 

Number 

Question Rating Anchors 

Overall 

Assessment 

1 
How realistic was the overall experience in 

the simulator compared to reality? 
Unrealistic/Realistic 

2 

Do you think that a driving simulator, in the 

configuration you just experienced would 

be useful for testing and comparing vehicle 

driven attributes? 

Not Useful/Useful 

3 How easy was it to perform the task Difficult/Easy 

 

Motion 

Cueing 

4 I felt the motion in general was Unrealistic/Realistic 

5 
I felt longitudinal acceleration/deceleration 

and pitch were 
Unrealistic/Realistic 

6 
I felt lateral acceleration/deceleration and 

roll were 
Unrealistic/Realistic 

7 I felt time delay of vehicle response was Unrealistic/Realistic 

 Objective measures  

The objective metrics used here is similar to what explained in the low-friction 

experiment in section 5.3.2 for the LHT task. The Utility Triplet behavioural metrics 

are used to compare test results. The utility triplet includes three major categories: 

aggregated performance, time series and driver model. 

6.4 Experiment configurations  

The aim of this study was to evaluate whether changes in the vehicle air 

suspension ride height and simulator motion platform size would affect the drivers’ 

subjective assessment of vehicle driven attributes and simulator fidelity, as well as 

drivers’ objective behaviour. Thus, three different sizes of the MP workspace was 

selected, and the comparison between the vehicle RHs took place in each of the 

MP sizes. 

 Motion platform 

Three motion platform configurations for the UoLDS were selected, which varied in 

the workspace size in surge and sway provided by the sliding rail, and maximum 

rotation angle of hexapod yaw. The motion envelope in heave, roll, and pitch was 

the same in the three configurations similar to the low-friction experiment, see 
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section 5.4.1. The three motion platform configurations are shown in Table 6-3; the 

difference between the MP configurations are 

• Hexapod ±5°   of yaw & ±0.5 (m) of rail surge and sway, i.e. small 

• Hexapod ±10° of yaw & ±1.5 (m) of rail surge and sway, i.e. medium 

• Hexapod ±15° of yaw & ±2.5 (m) of rail surge and sway, i.e. large 

Table 6-3. Motion platform specifications configured in this experiment 

 Hexapod Sliding rail 

Surge 
(m) 

Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

Surge 
(m) 

Sway 
(m) 

Small ±0.1 ±0.1 ±0.1 ±10 ±10 ±5 ±0.5 ±0.5 

Medium ±0.1 ±0.1 ±0.1 ±10 ±10 ±10 ±1.5 ±1.5 

Large ±0.1 ±0.1 ±0.1 ±10 ±10 ±15 ±2.5 ±2.5 

The results of the low-friction experiment in Chapter 5 in the comparisons between 

the classic and MPC algorithms for the large demanding manoeuvre of LHT 

showed that the model predictive control (MPC) algorithm was preferred by the 

drivers. Since the Gosport lane (GSP) driving task in this experiment is similar to 

LHT (low-friction experiment) in terms of demand for high motion and including 

various frequencies (curve radiuses), the MPC algorithm was selected for this 

study.  

The model structure is similar to the model used in the previous experiment 

described in section 5.4.2, although there are few differences. Nonlinear scaling of 

vehicle input motions was used in this experiment rather linear scaling, based on 

the method explained in section 3.3.2. The nonlinear scaling for the lateral motion 

of the vehicle is shown in Figure 6-1.  

It scales the input vehicle acceleration up to 8 𝑚/𝑠2 nonlinearly to three different 

final values of 2.5, 3.5 and 4.5 𝑚/𝑠2 corresponding to the small, medium and large 

MP workspace experiment conditions. It is observable that the low amplitude 

vehicle accelerations are down-scaled less than the high amplitudes. For the 

longitudinal vehicle motion, the final values of the scaling were set to same values 

of the lateral, although the maximum input acceleration was set to 9 𝑚/𝑠2, because 

of higher accelerations during accelerating and braking.  
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Figure 6-1. Nonlinear scaling of the vehicle lateral motion 

Moreover, since the manoeuvre was not on flat ground, there was motion control in 

heave direction coupled with yaw in a single channel of MCA. In three MP 

workspace size, the MCA was tuned in time domain analysis based on substantial 

number of offline trial and error, and observations of avoiding extreme false cues, 

while exploiting the MP workspace; in addition using to some guidelines about 

tuning process available in the literature (Augusto and Loureiro, 2009; Maran, 

2013).  

The main measure for the comparisons was the root mean square (RMS) of the 

difference between the vehicle motion and MCA output acceleration and if the 

simulator MP workspace is exploited properly, the motion response of various 

configurations is provided in Table 6-4. Few sets of candidates were pilot tested in 

the simulator, to select the best set of parameters. The parameter values for all 

motion channels, for the three MP sizes, are listed in Appendix C. 

Table 6-4. Motion configurations acceleration and excursion differences 

Motion 

Cueing 

Algorithm 

Motion 

Platform  

Gosport Lane (GSP) 

RMS 

(𝑎𝑖 − 𝑎𝑠) 

Max 

excursion 

X Y X Y 

MPC 

Small 2.45 2.83 0.49 0.49 

Medium 2.38 2.78 1.45 1.46 

Large 2.12 2.71 2.48 2.50 

Different tilt setting candidates were reviewed during the low-friction experiment 

design in sections 5.4.2. The parameters that were used in the low-friction 
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experiment found to be acceptable based on the drivers’ comments. Moreover, to 

keep the variability between the low and high friction experiments to a minimum, the 

same set of tilt settings was used in this experiment, see Table 5-5 and Appendix 

D.  

 Air suspension ride height  

The vehicle’s air suspension ride height was selected during real world piloting. It 

was configured by a JLR engineer to be set at three different ride heights at 8 mm 

intervals. This was done in ‘tight tolerance mode’, in which the suspension system 

aims to level the car to within ±3 mm of its target ride height. The ride heights will 

be referred to as Low  

• -8 mm compared to a standard ride height i.e. low 

•  0 mm compared to a standard ride height i.e. medium (normal) 

• +8 mm compared to a standard ride height i.e. high 

As mentioned in the introduction, according to a team expert from JLR who took 

part in the piloting of this study, the ±8 mm ride height manipulation had impacts on 

the driven attributes of a subjectively comparable nature and magnitude to those 

involved in typical on-road driven attributes testing. 

The same real world driving attributes testing person piloted the driving simulator 

setup and subjectively confirmed that the ride height manipulation had an impact 

also in the simulator. When subjected to blind testing of the Low and High ride 

heights, he was able to correctly identify them in 2 out of 3 pairwise comparisons. 

6.5 Research questions and hypotheses 

The overall aim of the present study was to investigate whether drivers can 

subjectively distinguish between the vehicle attributes and simulator fidelity to 

changes in the vehicle’s ride height and how the changes affect their objective 

behaviour. In addition to this, the other aim was to explore the effect that the 

simulator motion platform size might have on the subjective and objective 

assessments. As outlined in previous sections, objective performance and 

subjective data were collected in the simulator during the public road, driving a 

Range Rover Velar prototype at three different air suspension ride height settings, 

to answer two research questions, defined below.  

Research question 1 – How do the different RHs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

Within each MP configurations session, comparisons of RHs takes place; the driven 

attribute qualities and the simulator fidelity is assessed by two separate subjective 
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questionnaires and also drivers’ behaviour objectively quantified using the utility 

triplet. 

The hypothesis is: For the subjective evaluations, in all the three MP sizes for 

driven attribute qualities it is expected to see the ratings of medium RH to be closer 

to middle anchor i.e. appropriate for this vehicle. For the objective evaluations, no 

specific hypothesis is formulated in relation to this research question.     

Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

Within each of the RHs, comparison between the MP configurations takes place; 

the driven attribute qualities and the simulator fidelity is assessed by two separate 

subjective questionnaires and also drivers’ behaviour objectively quantified using 

the utility triplet. 

The hypothesis is: For the subjective evaluations, it is expected to see the highest 

simulator fidelity expected to be medium to large MP as it was observed for a large 

motion demanding manoeuvre in the low-friction experiment. For the objective 

evaluations, for the aggregated performance no hypothesis is formulated, for the 

time series task with the increase of MP size it is expected to see a decrease in 

values of drivers steering reversal rate metric, for the driver model with the increase 

of MP size it is expected larger control delays, which might require smaller control 

gains in compensation.  

6.6 Driving task  

Gosport Lane, shown in Figure 6-2, is a 60 mph narrow rural road including both 

straight segments and curves of varying radii. It is part of a public road circuit, 

starting and ending at the JLR Gaydon site, which is often used for assessment of 

vehicle driven attributes. 
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Figure 6-2. Map view of Gosport Lane. A still from the video logs of the real 
vehicle driving on Gosport Lane 

For implementation in the simulator, a LIDAR 3D scan of the public road circuit’s 

road surface was used, commissioned by JLR and also purchased separately by 

UoLDS. The UoLDS database was generated in-house at UoL and covered the 

Gosport Lane part of the circuit. The graphical representation, rendered within the 

simulator using the 3D graphics library OpenSceneGraph, was kept simple, mainly 

just reproducing the vision obstructions Figure 6-3.  

 

Figure 6-3. A snapshot of the UoLDS graphical representation of Gosport 
Lane. 

6.7 Drivers 

Six drivers, all JLR employees with experience of assessing vehicle driven 

attributes took part in UoLDS data collections. The low number of participants was 

due to JLR personnel availability constraints. There were not as many particular 

drivers that could do similar tests, and these number of professional drivers are 

actually representative of the small pool of the number of drivers available from the 

vehicle evaluation team.  
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Moreover, the focus of the project was about the applicability of simulator for 

vehicle design in high-friction condition, and normal drivers could not be employed 

since the normal drivers’ perception and performance might differ. Furthermore, the 

compromise on the statistical power of the experiment was worth, to keep the 

samples as homogenous as possible by keeping the age band in 35-45 and have 

drivers with a similar amount of experience and skills.  

6.8 Test vehicle  

A model of the dynamics for the Range Rover Velar prototype was implemented 

within the UoLDS environment. A SimPack multi-body simulation model for the 

dynamics of the Range Rover Velar vehicle was made available from the JLR 

Virtual Hub; see Figure 6-4. This model was executed on 8 cores of a dual Xeon 

CPU 16-core Concurrent iHawk hardware platform, running the real-time derivative 

of the RedHat Linux operating system. The vehicle model has been developed and 

extensively validated by JLR Virtual Hub Team. The yaw rate response gain of the 

vehicle model to steering input in 80-100 km/h speed range, for the three 

low/medium/high ride heights, have been validated between the reality and 

simulation. The observed differences were reported to be related to transient 

response in the simulator and were not an imperfection of the vehicle dynamics 

model (Markkula et al., 2017).   

The air suspension configuration ride heights were modelled by changing the 

corresponding parameter in the SimPack model. The model incorporated an 

implementation of the Delft tyre model to represent the interaction between the 

vehicle’s wheels and the LIDAR-scanned road surface, represented as a curve 

regular grid (CRG) at 30 cm resolution in both X and Y, with a constant 0.95 friction 

number. 

 

Figure 6-4. Graphical representation of the SimPack multi-body model of the 
Range Rover Velar vehicle dynamics 
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6.9 Experiment procedure 

The JLR test drivers attended the UoLDS in pairs per day. Drivers were sent 

briefing documents, the driven attributes questionnaire and realism questionnaire a 

few days before arriving at the University of Leeds. On arrival, the drivers were 

talked through the briefing material on the simulator operation (safety, consent 

forms), see Appendix C, and they signed a consent form. In the next step, 

participants completed a familiarisation drive in the simulator. This consisted of one 

out and back drive of the Gosport lane simulation. The air suspension ride height 

was set to medium height and the simulator motion configuration was medium. 

The drivers completed tasks in the simulator alternatively while the other had a 

break. This ensured that the time in the simulator without a rest was kept to a 

minimum in order to reduce the risk of experiencing simulator sickness. Each 

driving session took approximately 40 minutes to complete and consisted of 

completing the vehicle driven assessment (at Gosport Lane). Participants 

completed three test sessions in total, in which the simulator MP was varied small, 

medium and large. The drivers were instructed to “…drive through Gosport lane as 

you usually do for a car driver attribute quality assessment”. They were also asked 

to keep their speed under 60mph where possible and prioritise safe driving when 

making the vehicle assessments.  

Next the participants completed the first test session. As in the real world, they 

drove the simulated Range Rover Velar from the North start location on Gosport 

Lane to the South end of the track. Upon reaching the end of the track the screen 

faded out and drivers were asked to fill in the vehicle driven attributes 

questionnaire. The vehicle was then automatically rotated to face back along the 

track. They then drove from the end of the track back to the start, where they 

continued to fill out the driven attributes questionnaire. The drivers completed the 

task with each of the three air suspension configurations within a single session, 

after which the drivers swapped over. 

The questionnaire items asked participants to rate the three air suspension 

configurations relative to each other by placing a cross on a continuous line, with 

the centre point of the line representing feedback stating that the attribute in 

question was “appropriate for this vehicle”. For example, the first question, 

illustrated in Figure 6-5, asked participants to rate the suspension configurations in 

terms of the low frequency vertical movements, on a scale from “Constrained/ 

Trapped” to “Free/ Floaty”. Each rating was converted to a continuous score 

between 0 and 1. For example, a ranking of HML on the first question (i.e., if in 

Figure 6-5 the order of experiencing the ride heights were A=H, B=L, C=M) would 
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indicate that the participant considered the lowest ride height more “constrained” 

than the high ride height, and the high more “constrained” than the medium ride 

height. 

 

Figure 6-5. Example of driven attribute question and ratings. The drivers did 
mark each new test with A, B, …, H, in the order they experienced 
them. 

Drivers completed three sessions in total, in which the simulator motion platform 

configuration varied. Within each MP configuration, they tested all three air 

suspension configurations, giving a total of nine experimental trials. The order of the 

simulator motion platform configuration and ride height configuration was 

counterbalanced between participants, see Appendix C. Once the participants had 

completed each of the sessions, they filled out the realism questionnaires, see 

Figure 6-6.   

The questionnaire items asked participants to rate the three sessions relative to 

each other by placing a cross on a continuous line. For example, the first question, 

illustrated in Figure 6-6, asked participants to rate the MP configurations in terms of 

the overall experience, on a scale from “Unrealistic” to “Realistic”. For example, a 

ranking of 123 on the first question (i.e., if in Figure 6-5 the order of experiencing 

the ride heights were 1=S, 2=L, 3=M) would indicate that the participant considered 

the medium MP more “realistic” than the large, and the large more “realistic” than 

the small MP size. 
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Figure 6-6. Example of simulator realism question and ratings. The drivers did 
mark each new session with 1, 2, 3 in the order they experienced 
them. 

6.10  Analyses and results 

 Overview and general approach 

In this section the statistical tools that are used for analysis are the same as those 

introduced in section 5.10 that is summarised from the (Field, 2013), hence the 

explanation of them are omitted from this section. Those mainly include the simple 

descriptive statistics, hypothesis testing, effect size and statistical power, 

parametric tests for comparing means such as repeated measure ANOVA.  

To calculated the statistical power 1-β  of this experiment based on the choice of p-

value to be 0.05, 0.1, sample size 𝑁 = 6, and effect sizes of 𝑟 = 0.1, 0.3, 0.71, 0.8, 1 

the statistical power for this experiment is calculated using the G*Power software. If 

the statistical power is equal or greater than 0.8 there will be confident that there is 

sufficient power to detect any effect that might have existed. It is observable in 

Table 6-6 with this number of samples and significance level p = 0.05, to have a 

statistically powerful (1-β) ≥ 0.8 an effect size of 𝑟 = 0.71 is required, while with p =

0.1 to have a statistically powerful (1-β) ≥ 0.8 an effect size needs to be 𝑟 ≥ 0.59.  

Table 6-5. Statistical power table 

 Statistical 

Power at 

𝑟 = 0.1 

Statistical 

Power at 

𝑟 = 0.3 

Statistical 

Power at 

𝑟 = 0.71 

Statistical 

Power at 

𝑟 = 0.8 

Statistical 

Power at 

𝑟 = 1 

p = 0.05 0.07 0.22 0.80 0.87 0.97 

p = 0.1 0.13 0.36 0.91 0.95 0.99 

Comparing the statistical power Table 6-6 of this experiment to Table 5-6 of the 

low-friction experiment it is observable that to achieve a certain level of statistical 

power, a higher effect size is required. This is due to lower number of participants in 
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this experiment (6 drivers) compared to low-friction experiment (8 drivers), that 

requires a higher effect size. 

The range of effect sizes used in the analysis of results in the next sections is 

based on the widely used suggestions effect sizes of small 𝑟 = 0.1, medium 𝑟 = 0.3 

and large 𝑟 = 0.5, comparing this to Table 6-5, it is observable that to detect an 

effect with sufficient power at p = 0.1, higher than large effect size is required 𝑟 ≥

0.59.  

 Subjective evaluations 

In this section drivers’ rating of the vehicle attribute and realism questionnaires are 

presented and analysed. The cross points on the provided sheets were measured 

by ruler and imported as data files to MATLAB for further analysis. As it was 

described in section 6.3.1, the questions targeted three different qualities of ride 

steering and handling, each includes few questions. Due to the high number of 

questions, to analyse the result it was decided to group the questions belonging to 

each category. Rating values for the grouped questions were calculated from the 

average value of all questions belonging to that group. There were 11 questions in 

the vehicle attribute questionnaire.  

In order to group and report the questions, a reliability analysis was done on the 

ratings to find out the consistency of measures. Separate reliability analysis is done 

for every subscale of the ride, steering and handling of the questionnaire the 

Cronbach’s α and Cronbach’s α, if the item is deleted, indicate that: 

The steering and handling subscale of the questionnaire all had high reliabilities 

α~=0.7. However, the ride had very low reliability with negative α~=-0.06. Looking 

at the Cronbach’s α if the item is deleted for each of the subscales together with 

keeping the significant results separated showed it is best to group the questions as 

Ride 

• Q1 –  primary ride, Q2 – secondary ride (grouped) 

Steering  

• Q4 – gain linearity away from centre 

• Q3 –  window at high speed, Q5 – efforts at low speed, Q6 – efforts at high 

speed, Q7 – efforts at mid-corner (grouped) 

Handling  

• Q9 – roll transient 

• Q11 under/oversteer 

• Q8 – pitch, Q10 – roll steady-state (grouped) 

The results of grouped questions and nine motion configurations are shown in a 

boxplot and bar charts in Figure 6-7. On the x-axis the characters stand for a 
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motion configuration e.g. M-L stands for medium size motion platform and low ride 

height. The effect sizes of Pearson’s correlation coefficient are shown in the lower 

part of the figure as bar charts.  

For each of the MPs i.e. (S, M, L) there are 5 bar charts representing the effect 

sizes. Left red, middle black and right blue bars show the effect size between two 

consecutive MPs (small to medium, medium to large and large to small) in an RH. 

As an example, for the primary ride question and small (S) MP, the red bar shows 

effect size between small (S) and medium (M) MPs in low RH i.e. S-L and M-L, and 

the third black bar does the same but for medium RH i.e. the effect size between 

small (S) and medium (M) MPs in medium RH i.e. S-M and M-M, the fifth blue bar 

does the same but for high RH i.e. the effect size between small (S) and medium 

(M) MPs in High RH i.e. S-H and M-H. The second and fourth green bars show the 

effect size between the two consecutive RHs those are between (low to medium, 

medium to large) RHs in a MP. In this example, the second green bar shows the 

effect size between low and medium and the second between the medium and high 

RHs in small (S) MP. It is the same for next (M) and (L) MPs. The horizontal dashed 

lines show the small, medium and large effect sizes. For the remainder of this 

chapter, the effect sizes are presented in a similar style of bar charts.  

In ride group questions the rating that is the most near to the appropriate for this 

vehicle anchor (closer to middle dashed line i.e.0.5) is the medium MP and high RH 

(M-L) and the furthest from being appropriate is the small and medium (S-L); for 

steering gain linearity away from centre those are the small medium (S-M) and 

large low (L-L); for the steering window and efforts grouped those are quite similar 

however those are medium medium (M-M) and large low (L-L) respectively. In 

handling toll transient the small low (S-L) and medium high (M-L) are respectively 

the nearest and furthest from being appropriate for this vehicle; for the handling 

under/oversteering those are large medium (L-M) and large low (L-L); for handling 

roll and pitch grouped questions those are small medium (S-M) and small high (S-

H).  
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Figure 6-7. Subjective rating boxplot, and effect size r-value bar graphs for 
driven attribute grouped questions. Red flat lines show median and 

black stars show mean. 

There were 7 questions in the realism questionnaire. In order to group and report 

the questions similarly, a reliability analysis was done on the ratings to find out the 

consistency of measures. Separate reliability analysis is done for every subscale of 

overall realism and motion cueing of the questionnaire the Cronbach’s α and 

Cronbach’s α if the item is deleted indicate that: 

The overall realism and motion cueing subscale of the questionnaire all had high 

reliabilities α~=0.85, thus it was decided to group the 7 questions into the 2 
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subscales to report and analyse. In both overall realism and motion cueing grouped 

questions the rating that has the highest value and refers to the most realistic 

experience for drivers is the medium MP. 

 

Figure 6-8. Subjective rating boxplot, and effect size r-value bar graphs for 
realism questions.  

Table 6-6. Repeated measure ANOVA results for grouped question ratings. F 
and P values are shown on each point corresponding to a factor 

and an output measure. Black highlighted boxes shows where the 
p-value is less than 0.1.   

 

The repeated measure ANOVA is done on the driven attributes grouped questions. 

The main effect of RHs and MPs and their interaction effect on the subjective 

ratings are shown in Table 6-6. First, two left columns show the main effect and the 

right column shows the interaction. The p-value and F-value of for each factor and 

output measure is shown in the corresponding box on the table. Where there is a 

significant effect 𝑝 ≤ 0.1 that box is highlighted black. To verify the main effects 

detailed ANOVA contrasts and post hoc test of Bonferroni pairwise comparison are 

done. A similar analysis was done for the realism questionnaire considering only 
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effect of MP, however there wasn’t any significant or nearly significant result hence 

the table is omitted.  

Ride grouped question 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effect of MP 𝜒2(2) = 0.74,  𝑝 = 0.69. Therefore, there was no need for 

degrees of freedom corrections. 

There was a significant main effect of type of MP on the vehicle’s ride attribute 

quality, 𝐹(2,10) = 5.56, 𝑝 = 0.023. Pairwise comparison indicated nearly significant 

𝑝 = 0.08 difference of ratings between medium and large MPs to small. Contrasts 

revealed that ratings of medium and large configurations, 𝐹(1,5) = 7.77, 𝑝 = 0.038, 

𝑟 = 0.78;  𝐹(1,5) = 6.63, 𝑝 = 0.049, 𝑟 = 0.75  was significantly different than small, 

see Figure 6-9. For the interpretation of the effect sizes in the bar chart see the 

beginning of this section.  

From Figure 6-9, the low and medium RH were quite similar to the drivers, where 

they found them constrained and crashy, and they found high RH settled and floaty 

and appropriate for the vehicle, with small effect sizes. Moreover, this trend is 

observable in all the three MPs, and the medium MP size was found to be more 

appropriate with small to large effect sizes. 

 

Figure 6-9. Ride grouped questions ratings 

Steering – gain linearity away from centre  

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effect of RH 𝜒2(2) = 0.57,  𝑝 = 0.75. Therefore, there was no need for 

degrees of freedom corrections. 

There was a nearly significant main effect of type of RH on the vehicle’s steering 

gain away from centre attribute quality, 𝐹(2,10) = 3.34, 𝑝 = 0.077. Contrasts 
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revealed that ratings of low and high configurations, 𝐹(1,5) = 4.3, 𝑝 = 0.093, 𝑟 =

0.68;  𝐹(1,5) = 4.19, 𝑝 = 0.096, 𝑟 = 0.67  was nearly significant different than 

medium, see Figure 6-10.  

From Figure 6-10, the low and high RH were more nonlinear to drivers, and the 

medium RH was more linear and appropriate for the vehicle, with small to large 

effect sizes. Moreover, an inverse relation is observable between the MP size and 

RH with small to large effect sizes. 

 

Figure 6-10. Steering gain linearity away from centre ratings 

Handling - roll (lateral) acceleration/deceleration 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effect of RH 𝜒2(2) = 3.61,  𝑝 = 0.16. Therefore, there was no need for 

degrees of freedom corrections. 

There was a nearly significant main effect of type of RH on the vehicle’s handling  

roll acceleration/deceleration attribute quality, 𝐹(2,10) = 3.09, 𝑝 = 0.08. Pairwise 

comparison indicated significant 𝑝 = 0.01 difference of ratings between high and 

low RHs. Contrasts revealed that ratings of high configuration, 𝐹(1,5) = 23.11, 𝑝 =

0.004, 𝑟 = 0.9 was significantly different than low, see Figure 6-11.   

From Figure 6-11, it is observable that the drivers have found the transient roll 

acceleration/deceleration to be less to more from the low to high RHs, with small to 

medium effect sizes, which shows they could distinguish correctly. Moreover, an 

increase in the value of the measurement is observable with the increase of MP 

size for all the three RHs, with small to medium effect sizes. 
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Figure 6-11. Handling roll (lateral) acceleration/deceleration ratings 

 

Handling – under/oversteering 

Mauchly’s test indicated that the assumption of sphericity is not violated for the 

main effect of RH 𝜒2(2) = 2.01,  𝑝 = 0.36. Therefore, there was no need for 

degrees of freedom corrections. 

There was a significant main effect of type of RH on the vehicle’s handling  

under/over steering attribute quality, 𝐹(2,10) = 4.26, 𝑝 = 0.045. Pairwise 

comparison indicated significant 𝑝 = 0.01 difference of ratings between low and 

medium RHs. Contrasts revealed that ratings of low configuration, 𝐹(1,5) = 20.7, 

𝑝 = 0.006, 𝑟 = 0.89 was significantly different from the medium, see Figure 6-12.   

There was a significant interaction effect between the type of MP and the type of 

RH used, 𝐹(4,20) = 3.35, 𝑝 = 0.029. This indicates that MP had different effects on 

people’s ratings depending on which type of RH was used. To break down this 

interaction, contrasts were performed comparing all MP types to all RH types, 

looking at the interaction graph Figure 6-12. These revealed significant interactions 

when comparing low to medium RH for medium compared to large MP 𝐹(1,5) =

16.11, 𝑝 = 0.01, 𝑟 = 0.87. This contrast did yield a large effect size. The remaining 

contrasts revealed no significant interaction term.   

From Figure 6-12, the low and high RH were more oversteering to drivers, and the 

medium RH was more understeer and appropriate for the vehicle, with small to 

large effect sizes. Moreover, an opposite relation is observable between the MP 

size and RH, with small to large effect sizes. 
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Figure 6-12. Handling under/oversteering ratings 

 

Research question 1 – How do the different RHs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

The results for some of the six questions showed the significant or nearly significant 

effect of type of RHs on subjective ratings of driven attributes. In steering gain 

linearity away from centre, the low and high were nearly significant different to 

medium. In handling roll transient high and low were nearly significant different. In 

handling under/over steering the low and medium were significantly different. 
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Figure 6-13. Subjective ratings for grouped questions, RH comparison for 
three MP sizes. Effect size r-value bar graphs are shown for each 
MP, comparing RHs  

The results are shown in Figure 6-13, in a way that compares the RHs in each of 

the MP sizes. The r-values are calculated in each of the MPs representing the 

effect size of the difference between RHs. In each of the MPs the left red bar is 

effect size calculated comparing low to medium, middle black bar compares the 

medium to high and right blue bar compares the high to low. The outcome of the 

comparisons between the low, medium and high in each MP is presented in Table 

6-7 and Table 6-8 where the first table looks which RH is the most appropriate for 

the vehicle in a MP size and second table looks which RH is the worst match for the 



195 
 

vehicle in a MP size. Colours show small, medium and large effect size in each 

comparison.  

It is observable in Table 6-7 in all the three MP sizes, in the ride question, the high 

RH is the most appropriate for this vehicle, with small effect sizes. In steering gain 

linearity away from centre and handling under/over steering the medium RH is the 

best suited for the vehicle, with small to large effect sizes; This is in line with the 

predicted hypothesis. In handling roll transient question the low RH is the best 

suited for the vehicle, with small to large effect sizes. For the steering window and 

effort grouped question with increasing MP size drivers’ seemed to have chosen 

higher RH as more appropriate i.e. low, medium and high RH respectively in small, 

medium and large MPs. In handling grouped questions it is of mixed results in each 

of the MP sizes.   

Table 6-7. Results of the driven attribute questionnaire for RH comparison in 
each MP. Most near to appropriate for this vehicle (0.5 line) 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

MP 
Questions 

Small Medium Large 

Ride High High High 

Steering – Gain Medium Medium Medium 

Steering - Grouped Low Medium High 

Handling – Roll Tr Low Low Low 

Handling – U/Ostrn Medium Medium Medium 

Handling – Grouped Medium Low Low 

It is observable in Table 6-8 that in all the three MP sizes, in most of the attribute  

questions the high and low RH is rated the most unfitting for this vehicle (distant 

from 0.5) in small and large MPs with small to large effects sizes, in medium MP it 

is mix of both low and high RHs. This might indicate the effect that MP has on the 

ratings of RH. Moreover, looking at the same table, overall the unfitting RHs are 

mostly low and high that also indicates the drivers have selected the medium RH 

(the standard vehicle height) as more appropriate and were able to distinguish 

between the RH.   
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Table 6-8. Results of the driven attribute questionnaire for RH comparison in 
each MP. Most distant from appropriate for this vehicle (0.5 line) 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

MP 
Questions 

Small Medium Large 

Ride Low Low Low 

Steering – Gain High Low~high low 

Steering - Grouped High Low~high low 

Handling – Roll Tr High High High 

Handling – U/Ostrn High Low~high Low 

Handling – Grouped High medium~high Medium 

In total having big enough effect size, it is concludable that in steering and handling 

vehicle attribute qualities medium and rarely low RH as more appropriate for the 

vehicle in all three MPs. Moreover, drivers have chosen the low and high RH most 

of the times as the not appropriate for this vehicle (distant from 0.5) in all three MP 

sizes, that also indicates the medium RH is more appropriate for this vehicle in the 

majority of the times. That means there is an effect of MP size (i.e. the motion 

presented to drivers) on drivers’ choice of most suitable RH.   

Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

The results for one of the questions showed the significant effect of type of MPs on 

subjective ratings of driven attributes. In the ride question, the medium and large 

were significantly different from small.  

 

 

 

 

 



197 
 

  

  

  

Figure 6-14. Subjective ratings for grouped questions, MP comparison for 
three RHs. Effect size r-value bar graphs are shown for each RH, 
comparing MPs 

The results are shown in Figure 6-14, in a way that compares the MPs in each of 

the RHs. The r-values are calculated in each of the RHs representing the effect size 

of the difference between MP sizes. In each of the RHs the left red bar is effect size 

calculated comparing small to medium, middle black bar compares the medium to 

large and right blue bar compares the large to small. The outcome of the 

comparisons between the small, medium and large in each RH is presented in 

Table 6-9 and Table 6-10 where the first table looks which MP is the most 

appropriate for the vehicle in a RH and second table looks which MP is the worst 
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match for the vehicle in a RH. Colours show small, medium and large effect size in 

each comparison.  

It is observable in Table 6-9 in all the three RHs, in the ride question, the medium 

MP is rated as the most appropriate for this vehicle with medium to large effect 

sizes. In steering gain linearity away from centre, handling roll transient and 

handling under/oversteering the small and large MP is the most suitable 

respectively in low and high RHs, with small to large effect sizes. For the steering 

window and effort grouped question drivers seemed to have chosen larger MP with 

increasing RH as more appropriate i.e. small, medium and large MP respectively in 

low, medium and high RHs. In handling grouped question it is of mixed results in 

each of the RHs. It is well noticeable that in most of the steering and handling group 

of questions, in the low RH the small MP is rates as most appropriate for this 

vehicle, in high RH it is the large MP, and in medium RH it is mix of the three MPs; 

that might indicate the higher the RH is the larger MP is selected as more 

appropriate, and vice versa.  

Table 6-9. Results of the driven attribute questionnaire for MP comparison in 
each RH. Most near to appropriate for this vehicle (0.5 line) 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

                      RH 
  Questions 

Low Medium High 

Ride Medium Medium Medium 

Steering – Gain  Small Small Large 

Steering - Grouped Small Medium Large 

Handling – Roll Tr Small Small Small~Large 

Handling – U/Ostrn Small Large Large 

Handling – Grouped  Medium~large Small Large 

It is observable in Table 6-10 that in all RHs, in most of the attribute qualities the 

small and large MPs are rated the most unfitting for this vehicle (distant from 0.5) in 

low and high RHs respectively with small to large effects sizes, in medium MP it is a 

mix of the three MPs. It might show the effect that RH has on the ratings of MP, e.g. 

in the smaller MP rated to be unfitting for the evaluations of higher RH.  
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Table 6-10. Results of the driven attribute questionnaire for MP comparison in 
each RH. Most distant from appropriate for this vehicle (0.5 line) 

r-value < 0.3 0.3 ≤ r-value < 0.5 0.5 ≤ r-value 

                      RH 
  Questions 

Low Medium High 

Ride Small Small Small 

Steering – Gain  Large Medium~large Small 

Steering - Grouped Large Small Small 

Handling – Roll Tr Large Medium~large Small~med~large 

Handling – U/Ostrn Large Small~medium Small  

Handling – Grouped  Small~large large Small 

In total having big enough effect sizes, it is concludable in low and high RH drivers 

have chosen the small and large MP for most of the qualities as the most 

appropriate. Moreover, in low and high RH drivers have rated large and small MP 

as not fitting for this vehicle (distant from 0.5), in medium RH it is a mix of the three 

MPs. This shows there seems to be an effect of RH on drivers’ choice of more 

suitable MP size (i.e. the motion presented to drivers).  

The results from the realism questionnaire showed in both overall assessment and 

motion cueing grouped questions the medium MP had the highest rating (realistic) 

with small to large effect sizes. Meaning they have preferred the medium MP as 

being more realistic than small and large.  

 Objective evaluations  

Collected data include two runs for each of the motion configurations. This was to 

let the drivers acquire a full understanding of the motion characteristics of a 

configuration. Using both of the runs was shown to be advantageous in terms of 

adding power to the statistical analysis, although a check was needed to see if this 

introduced any noise to the analysis. To ensure the correctness of averaging both 

of the runs, a third time factor was added to the analysis. For all of the objective 

metrics described in the next sections, where there was a significant effect of RH or 

MP, no significant effect of time factor was found. As a result, it was valid to 

average the data from both runs for further analysis 

Different sections of the driven road have different characteristics. Therefore, the 

whole track was split into sections and each section was analysed separately. Due 

to similarity in nature of many of the sections and to reduce the number of reporting 

results the sections throughout the Gosport Lane was divided into straight lines and 

curves. There are 17 sections in total. All the sections are shown in Figure 6-15, 

green dots show the entry of a section and red dots shows the exit of a section. 
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Figure 6-15. Gosport lane course and sections 

To be able to group the sections initial analysis were performed. Comparing the 

result of the 17 separate sections with the corresponding grouped sections, showed 

similarity in the values; this indicated that it was acceptable to group the sections. 

The objective metrics of a group section is calculated from the average value of all 

sections belonging to that group as Table 6-11.  

Table 6-11. Group sections, LHT task 

Group section Section Numbers 

Straight lines 1, 3, 5, 7, 13, 15, 17 

Curves 2, 4, 6, 8, 9, 10, 11, 12, 14, 16 

Whole track  

 

Aggregated performance  

The aggregated performance measures consist of four metrics of:  

• Lap time, duration of time that drivers completed the task  

• Spin/skid outs, number of trials that drivers span out or exceeded the 

roadsides  

• Body slip angle that is the angle between vehicle forward orientation and 

direction of actual travel 

• Speed variability, standard deviation of drivers speed during the task 

• Lateral position deviation, maximum vehicle’s lateral distance from centre 

of the road 
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Figure 6-16. Lap time 

From Figure 6-16 it is observable that the lap time has increased with the increase 

of MP size in both medium and high RH, although it has fluctuated in low. In low the 

medium MP has the smallest lap time, in medium it is the small and in high it is the 

medium with little difference to small. Having considerable effect sizes reveal that 

providing larger motion to drivers results in higher lap time to finish the driving task. 

Comparing the RHs in each MP size, the high has the least lap time in small and 

low has the least lap time in medium and large MP.  

The lap time in the divided straight and curve sections showed: During straight lines 

there was a significant main effect of type of MP, 𝐹(2,10) = 3.48, 𝑝 = 0.048. 

Contrasts revealed that lap time in large configuration, 𝐹(1,5) = 5.38, 𝑝 = 0.04, 𝑟 =

0.57 was significantly higher than medium. Also, there was a nearly significant 

interaction effect between the type of MP and the type of RH used, 𝐹(4,20) = 2.38, 

𝑝 = 0.065. This indicates that MP had different effects on people’s performance 

depending on which type of RH was used. To break down this interaction, contrasts 

were performed comparing all MP types to all RH types. These revealed nearly 

significant interactions when comparing low to medium for small compared to 

medium 𝐹(1,5) = 5.59, 𝑝 = 0.09, 𝑟 = 0.48; significant comparing low to medium for 

medium compared to large 𝐹(1,5) = 5.96, 𝑝 = 0.03, 𝑟 = 0.53; significant comparing 

medium to high for medium compared to large 𝐹(1,5) = 6.93, 𝑝 = 0.023, 𝑟 = 0.62. 

During the curves, there was a significant main effect of type of MP, 𝐹(2,10) = 3.74, 

𝑝 = 0.039. Contrasts revealed that lap time in large configuration, 𝐹(1,5) = 7.46 𝑝 =

0.019, 𝑟 = 0.63 was significantly higher than medium. 

The higher lap time with the increase of MP size, in general, is indicating of 

deteriorated performance when drivers are asked to keep a constant speed, 

although considering it with the decrease in speed variation (described next) both 

reflect improved performance. In other words, increasing the MP size (presenting 
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more motion to drivers) decreased the speed variation in fare of increasing their lap 

time. 

 

Figure 6-17. Number of failures 

From Figure 6-17, the number of failures in total was too little to draw a conclusion. 

In medium MP size there were no failures. The high and medium had the greatest 

number of failures in small and large MPs.  

 

Figure 6-18. Speed variations 

From Figure 6-18, the speed variation slightly decreased with increasing MP size 

for medium and high, except for the small to medium in low RH. Although the effect 

sizes are small to medium, that might indicate providing larger motion to drivers 

results in less speed variation during driving, that reflects the improved performance 

with the increase of MP size. 

Comparing the RHs in each MP size, the low has slightly lower speed variation than 

medium and high all MPs. In medium MP all the three RHs are quite similar.  
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Figure 6-19. Lateral position deviation 

From Figure 6-19, lateral position deviation fluctuated but decreased overall with 

increasing MP size for all RHs, which means the small MP has the largest lateral 

position deviation and vice versa. Having considerable medium to large effect sizes 

reveals that providing larger motion to drivers results in less lateral position 

deviation during driving, reflecting the improved performance of drivers. 

Comparing the RHs in each MP size, the medium and high has always lower lateral 

position deviation than low in all the MPs. Having medium to large effect sizes 

indicate that drivers had always larger lateral position deviation driving the low 

configurations than medium and high. 

The lateral position deviation in the divided straight and curve sections showed: 

During straight lines, there was a significant main effect of type of MP, 𝐹(2,10) =

4.26, 𝑝 = 0.027. Contrasts revealed that lateral position deviation in small 

configuration was significantly higher than medium 𝐹(1,5) = 6.17, 𝑝 = 0.03, 𝑟 =

0.59 and large configurations, 𝐹(1,5) = 9.4, 𝑝 = 0.01, 𝑟 = 0.67. Moreover, there was 

a significant main effect of type of RH, 𝐹(2,10) = 5.8, 𝑝 = 0.009. Contrasts revealed 

that lateral position deviation in low configuration was significantly higher than 

medium 𝐹(1,5) = 6.67, 𝑝 = 0.025, 𝑟 = 0.61 large 𝐹(1,5) = 6.2, 𝑝 = 0.03, 𝑟 = 0.6. 

During curves, there was a significant main effect of type of MP, 𝐹(2,10) = 4.2, 𝑝 =

0.02. Contrasts revealed that lateral position deviation in small configuration was 

significantly higher than medium 𝐹(1,5) = 4.47, 𝑝 = 0.05, 𝑟 = 0.53 and large 

configurations, 𝐹(1,5) = 10.03, 𝑝 = 0.008, 𝑟 = 0.69. 

Time series  

In this section, the results of repeated measure ANOVA and post hoc analysis on 

the time series metrics in each of the group sections are presented, and where 

there are significant or near significant results those are elaborated. Looking at 
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Table 6-12, Table 6-13 and Table 6-14 the columns (on x-axis) belong to 

independent variables and their interaction and each row belongs (on y-axis) to a 

dependent measured variable metric. The F and p values are shown on each box 

corresponding to a factor and an output measure. Black highlighted boxes show 

where the p-value is less than 0.1 that means there is a significant difference.  

Curves 

In Table 6-12 the RM ANOVA results of time series output measured metrics are 

shown for both RH, MP configurations and their interactions. 

Table 6-12. Repeated measure ANOVA time series metrics results of curve 
grouped sections 

 

For this grouped section points that show significant main or interaction effects on 

output measures include: 

For MP comparison: 

• Driver model preview time  

For RH comparison: 

• Maximum longitudinal velocity 

• Steering wheel reversal rate (1 degree) 

• Steering wheel reversal rate (10 degree) 

For MP and RH interaction: 

• Maximum longitudinal acceleration 
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Figure 6-20. Driver model preview time, curves 

There was a significant main effect of type of MP on the DRYPE preview time 

objective metric, 𝐹(2,10) = 8.04, 𝑝 = 0.002. Pairwise comparison indicated 

significant and nearly significant 𝑝 = 0.0003, 𝑝 = 0.08 difference between small to 

medium and large MPs. Contrasts revealed that preview time in small configuration 

was significantly higher than large 𝐹(1,5) = 5.65, 𝑝 = 0.03, 𝑟 = 0.58 and medium  

𝐹(1,5) = 33.4, 𝑝 = 0.0001, 𝑟 = 0.86. 

Looking at Figure 6-20 graph and effect sizes the preview time has fluctuated but 

overall decreased with increasing MP size with medium to large effect sizes, in all 

the three RHs the highest value is at small MP. In small the low RH has the highest 

preview time although the three RHs are similar, in medium and large it is the high, 

with small to medium effect sizes.  

 

Figure 6-21. Maximum longitudinal velocity, curves 

There was a significant main effect of type of RH on the longitudinal velocity 

objective metric, 𝐹(2,10) = 2.81, 𝑝 = 0.08. Contrasts revealed that the velocity in 
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low configuration was nearly significantly higher than high 𝐹(1,5) = 3.62, 𝑝 = 0.08, 

𝑟 = 0.49. 

Looking at Figure 6-21 graphs and effect sizes the longitudinal velocity has 

fluctuated but overall decreased with increasing MP size with small to large effect 

sizes, in all the three RHs the lowest value is at large MP. In small, medium and 

large the low has the highest preview time with small to medium effect sizes. 

 

Figure 6-22. Steering wheel reversal rate 1°, curves 

There was a significant main effect of type of RH on the steering wheel reversal 

rate 1°objective metric, 𝐹(2,10) = 3.37, 𝑝 = 0.05. Contrasts revealed that the 

steering reversal rate in low configuration was significantly higher than high 

𝐹(1,5) = 9.85, 𝑝 = 0.009, 𝑟 = 0.68.  

Looking at Figure 6-22 graphs and effect sizes the steering wheel reversal rate has 

stayed similar with increasing MP size. In small, medium and large the low has the 

highest preview time, where the medium and high are similar with small to medium 

effect sizes, that shows higher control activity in low RH i.e. deteriorated 

performance. 

 

Figure 6-23. Steering wheel reversal rate 10°, curves 
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There was a nearly significant main effect of type of RH on the steering wheel 

reversal rate 10 degree objective metric, 𝐹(2,10) = 2.725, 𝑝 = 0.087. Contrasts 

revealed that the velocity in low configuration was significantly higher than medium 

𝐹(1,5) = 5.33, 𝑝 = 0.04, 𝑟 = 0.57.  

Looking at Figure 6-23 graphs and effect sizes the steering wheel reversal rate has 

stayed similar with increasing MP size in medium and low RH, while it has 

fluctuated in high. In small and large the low has the highest reversal rate, in the 

medium it is high with small to medium effect sizes, that shows mostly higher 

control activity in low RH i.e. deteriorated performance. 

 

Figure 6-24. Longitudinal acceleration, curves 

There was a significant interaction effect between the type of MP and the type of 

RH used, 𝐹(4,20) = 3.49, 𝑝 = 0.01. This indicates that MP had different effects on 

people’s performance depending on which type of RH was used. To break down 

this interaction, contrasts were performed comparing all MP types to all RH types. 

These revealed significant interactions when comparing low to medium for small 

compared to medium 𝐹(1,5) = 4.64, 𝑝 = 0.05, 𝑟 = 0.54; significant comparing 

medium to high for small compared to medium 𝐹(1,5) = 5.04, 𝑝 = 0.04, 𝑟 = 0.56; 

significant comparing low to medium for medium compared to large 𝐹(1,5) = 3.81, 

𝑝 = 0.076, 𝑟 = 0.5. 

Looking at Figure 6-24 graphs and effect sizes the longitudinal acceleration has 

fluctuated with increasing MP size with small to large effect sizes. In small, medium 

and high the highest value, is the high, low and medium with small to large effect 

sizes. 

Straight lines 

In Table 6-13 the RM ANOVA results of time series output measured metrics are 

shown for both RH, MP configurations and their interactions. 
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Table 6-13. Repeated measure ANOVA time series metrics results of straight 
line grouped sections 

 

For this grouped section points that show significant main or interaction effects on 

output measures include: 

For RH comparison: 

• Maximum yaw rate  

• Maximum body slip angle  

• Maximum longitudinal velocity  

• Maximum lateral acceleration 

• Steering wheel reversal rate (10 degree) 

For RH and MP interaction: 

• Steering wheel reversal rate (1 degree) 

 

Figure 6-25. Maximum yaw rate, straight lines 

There was a significant main effect of type of RH on the yaw rate objective metric, 

𝐹(2,10) = 4.75, 𝑝 = 0.019. Contrasts revealed that the yaw rate in low configuration 
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was significantly higher than medium 𝐹(1,5) = 5.49, 𝑝 = 0.038, 𝑟 = 0.57; nearly 

significantly higher than high 𝐹(1,5) = 4.25, 𝑝 = 0.06, 𝑟 = 0.52. 

Looking at Figure 6-25 graphs and effect sizes the yaw rate has stayed similar or 

slightly decreased with increasing MP size with small to medium effect sizes, in all 

the three RHs the lowest value is at medium MP. In small, medium and large the 

low has the highest value with small to large effect sizes. 

 

Figure 6-26. Maximum body slip angle, straight lines 

There was a nearly significant main effect of type of RH on the body slip angle 

objective metric, 𝐹(2,10) = 3, 𝑝 = 0.07. Contrasts revealed that the slip angle in low 

configuration was significantly higher than medium 𝐹(1,5) = 3.56, 𝑝 = 0.08, 𝑟 =

0.49 and high significantly higher than medium 𝐹(1,5) = 6.05, 𝑝 = 0.031, 𝑟 = 0.59. 

Looking at Figure 6-26 graphs and effect sizes the slip angle has stayed similar with 

increasing MP size with small to medium effect sizes, in all the three RHs the 

lowest value is at medium MP. In small, medium and large the low has the highest 

value with small to medium effect sizes. 

 

Figure 6-27. Maximum longitudinal acceleration, straight lines 
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There was a nearly significant main effect of type of RH on the maximum 

longitudinal acceleration objective metric, 𝐹(2,10) = 3,67, 𝑝 = 0.04. Contrasts 

revealed that the acceleration in low configuration was nearly significantly higher 

than medium 𝐹(1,5) = 3.64, 𝑝 = 0.08, 𝑟 = 0.49 and low significantly higher than 

high 𝐹(1,5) = 7.53, 𝑝 = 0.019, 𝑟 = 0.63. 

Looking at Figure 6-27 graphs and effect sizes the longitudinal acceleration has 

increased with increasing MP size with small to large effect sizes, in all the three 

RHs the lowest value is at small MP. In small, medium and large the low has the 

highest value with small to medium effect sizes. 

 

Figure 6-28. Maximum lateral acceleration, straight lines 

There was a significant main effect of type of RH on the maximum lateral 

acceleration objective metric, 𝐹(2,10) = 4.6, 𝑝 = 0.02. Contrasts revealed that the 

acceleration in low configuration was significantly higher than medium 𝐹(1,5) =

5.33, 𝑝 = 0.04, 𝑟 = 0.57 and low nearly significantly higher than high 𝐹(1,5) = 4.3, 

𝑝 = 0.06, 𝑟 = 0.53. 

Looking at Figure 6-28 graphs and effect sizes the lateral acceleration has 

decreased or stayed similar with increasing MP size with small to large effect sizes. 

In small, and large the low has the highest value with small to medium effect sizes. 
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Figure 6-29. Steering wheel reversal rate 10°, straight lines 

There was a significant main effect of type of RH on the steering wheel reversal 

rate  objective metric, 𝐹(2,10) = 3.4, 𝑝 = 0.05. Contrasts revealed that the 

acceleration in low configuration was nearly significantly higher than medium 

𝐹(1,5) = 4.31, 𝑝 = 0.06, 𝑟 = 0.53 and low significantly higher than large 𝐹(1,5) =

4.96, 𝑝 = 0.047, 𝑟 = 0.55. 

Looking at Figure 6-29 graph and effect sizes the longitudinal acceleration has 

slightly decreased or fluctuated with increasing MP size with small to large effect 

sizes, in all the three RHs the lowest value is at medium or large MP, that shows 

lower control activity and more relaxed style of driving with the increase of MP size 

i.e. improved performance. In small, medium and large the low has the highest 

value with small to medium effect sizes, that shows higher control activity in low RH 

i.e. deteriorated performance. 

 

Figure 6-30. Steering wheel reversal rate 1°, straight lines 

There was a significant interaction effect between the type of MP and the type of 

RH used, 𝐹(4,20) = 2.93, 𝑝 = 0.03. This indicates that MP had different effects on 
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people’s performance depending on which type of RH was used. To break down 

this interaction, contrasts were performed comparing all MP types to all RH types. 

These revealed significant interactions when comparing low to medium for medium 

compared to large 𝐹(1,5) = 5.43, 𝑝 = 0.039, 𝑟 = 0.57. 

Looking at Figure 6-30 graphs and effect sizes the steering wheel reversal rate 1 

degree has fluctuated with increasing MP size with small to medium effect sizes. In 

small, medium and large the highest value, is the low, medium and low with small to 

large effect sizes. 

Whole track 

In  Table 6-14 the RM ANOVA results of time series output measured metrics are 

shown for both RH, MP configurations and their interactions. 

Table 6-14. Repeated measure ANOVA time series metrics, whole track 

 

For the whole track boxes that show significant main or interaction effects on output 

measures include: 

For MP comparison: 

• Driver model gain 

For RH comparison: 

• Steering wheel reversal rate (1 degree) 

For RH and MP interaction: 

• Steering wheel reversal rate (1 degree) 
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Figure 6-31. Driver model steering gain, whole track 

There was a significant main effect of type of MP on the DRYPE steering gain 

objective metric, 𝐹(2,10) = 6.37, 𝑝 = 0.009. Contrasts revealed that the steering 

gain in small configuration was significantly higher than medium 𝐹(1,5) = 5.9, 𝑝 =

0.04, 𝑟 = 0.65, and large 𝐹(1,5) = 11.81, 𝑝 = 0.008, 𝑟 = 0.77. 

Looking at Figure 6-31 graphs and effect sizes the steering gain has decreased 

with increasing MP size with small to large effect sizes, in all the three RHs the 

highest value is at small MP, that shows lower control activity and more relaxed 

style of driving with the increase of MP size i.e. improved performance. In small, 

medium and large the low, medium and low has the highest values with small to 

medium effect sizes, that shows higher control activity in low RH i.e. deteriorated 

performance. 

 

Figure 6-32. Steering wheel reversal rate 1°, whole track 

There was a nearly significant main effect of type of RH on the steering wheel 

reversal rate objective metric, 𝐹(2,10) = 2.69, 𝑝 = 0.09. Contrasts revealed that the 
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steering gain in low configuration was significantly higher than high 𝐹(1,5) = 9.38, 

𝑝 = 0.01, 𝑟 = 0.73. 

There was a significant interaction effect between the type of MP and the type of 

RH used, 𝐹(4,20) = 4.34, 𝑝 = 0.006. This indicates that MP had different effects on 

people’s performance depending on which type of RH was used. To break down 

this interaction, contrasts were performed comparing all MP types to all RH types. 

These revealed significant interactions when comparing low to medium for small 

compared to medium 𝐹(1,5) = 5.43, 𝑝 = 0.039, 𝑟 = 0.57; comparing low to medium 

for medium compared to large 𝐹(1,8) = 8.05, 𝑝 = 0.02, 𝑟 = 0.57. 

Looking at Figure 6-32 graphs and effect sizes the steering wheel reversal rate 1 

degree has fluctuated with increasing MP size with small to large effect sizes. In 

small, medium and large the highest value, is the low, medium and low with small to 

large effect sizes, that shows higher control activity in low RH i.e. deteriorated 

performance. 

6.11 Discussion and conclusions 

The current study was designed to assess simulator based testing of vehicle driven 

attribute qualities those are the ride, steering and handling. Moreover, the effect 

that different motion configurations of a driving simulator might have on driven 

attributes assessments were considered. Evaluations were done to address how 

variations in vehicle properties affect drivers’ subjective ratings of driven attribute 

qualities, simulator fidelity and their objective behaviour. To this end, the first 

independent variable was the manipulations to the ride height (RH) of the air 

suspension of a Range Rover Velar prototype vehicle that was identified as a 

subjectively comparable manipulation that causes changes to the driven attributes. 

The other independent variable was the manipulation of simulator motion 

configuration including various motion platform (MP) workspace sizes.  

As the first target of this study, three RHs were selected to be compared, those 

were small, medium and high; as second target of this study three sizes of MPs 

were selected to make a comparison, those were the small, medium and high. 

Moreover, because of lacking previous research considering interacting effects that 

MP sizes might have on the RHs the RH comparisons (first target) took place in 

each of the MP sizes. Gosport lane a public road circuit, starting and ending at the 

JLR Gaydon site were selected and replicated in the simulator for the tests. 

Regarding these targets two research questions were defined and evaluated 

through drivers’ subjective ratings of driven attribute qualities, simulator fidelity and 

their objective behaviour performance. The permutation of MPs and RHs created 
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nine motion configurations of small-low (S-L), small-medium (S-M), small-high (S-

H), and medium-low (M-L), medium-medium (M-M), medium-high (M-H), large-low 

(L-L), large-medium (L-M) and large-high (L-H), the experiment was designed to 

compare between them and address the research questions. The research 

questions and the main results of the experiment are presented below.  

Research question 1 – How do the different RHs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

I. Subjective fidelity results 

The results of repeated measure ANOVA for some of the six grouped questions of 

driven attributes showed the significant or nearly significant effect of type of RHs on 

subjective ratings of driven attributes. In steering gain linearity away from centre, 

the low and high were nearly significant different to medium. In handling roll 

transient low and high were nearly significant different. In handling under/over 

steering the low and medium were significantly different. 

Based on analysis of plots and effect sizes it was observable that, In the ride 

question the low and medium RH were quite similar to drivers, where they found 

them constrained and crashy, and as it was expected they found high RH settled 

and floaty and appropriate for the vehicle. In the steering gain linearity attribute the 

low and high RH were more nonlinear to the drivers, and the medium RH was more 

linear and appropriate for the vehicle. In under/over steering quality the low and 

high RH were more oversteering to drivers, and the medium RH was the most 

appropriate for the vehicle. In the handling roll transient question the low to high RH 

was found to have less to more values respective, as it was expected. This shows 

drivers could distinguish correctly between RHs, although the low RH was selected 

as the most appropriate. In handling grouped questions it is of mixed results in each 

of the MP sizes.   

Although there were mixed results for the most appropriate RH in some of the 

attribute qualities, in most of the attribute questions the high and low RH were rated 

the most unfitting for this vehicle (distant from 0.5) in small and large MPs 

respectively, in medium MP it was mix of both low and high RHs. This might 

indicate the effect that MP has on the ratings of RH. Overall, the unfitting RHs were 

mostly low and high, where the lack of medium RH might imply the appropriateness 

of the medium RH, and that they were able to distinguish between the RHs, results 

are summarised in Table 6-15. 

II. Objective behavioural results 

In each MP size comparing the low, medium and high RHs, see Table 6-15:  
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Aggregated performance - for the lap time the highest value in small, medium and 

large MPs was mixed of with the low, medium and high RHs. For the speed 

variation, the differences between RHs were subtle although the medium had the 

highest value. In lateral position deviation metric, the low RH has shown the highest 

value in all MPs, reflecting the deteriorated performance of drivers while 

experiencing the low RH.   

Time series - in the straight lines and curves there was a significant main effect of 

type of RHs on some of the output measured metric. The results showed that in the 

majority of the times the low RH has the highest values in all MPs for all of the 

objective measures, which is an interesting finding. This consistency might indicate 

the results are independent of the road sections. Looking at the plots and effect 

sizes from the objective metrics similarly the low RH always had the highest value 

and was distinct to the medium and high RHs. Those included the steering wheel 

reversal rates, and driver model gain, that shows higher control activity, and 

reflecting the deteriorated performance. However, after the low, the second highest 

value has fluctuated between the medium and high depending on the metric. 
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Table 6-15. Summary of results, research question 1 (most appropriate for 
this vehicle in subjective and highest values in objective) 

Metrics 

Significant  

Overall 

Result  

Plot and effect size results 

Small Medium Large 
Su

b
je

ct
iv

e 

Ride - High High High 

Steering – gain linearity away Medium Medium Medium Medium 

Steering – window and effort - Low Medium High 

Handling – roll transient  Low Low Low Low 

Handling – under/over steering Medium Medium Medium Medium 

Handling – pitch and roll steady - Medium Low Low 

O
b

je
ct

iv
e 

A
gg

re
ga

te
d

 
P

er
fo

rm
an

ce
 Lap Time - Low Medium High 

Failure Number  M=H 0 High 

Speed variation - H~M Medium Medium 

Lateral Deviation Low Low Low Low 

Ti
m

e 
Se

ri
es

 

Curves 

Long Vel Low Low Low Low 

Rev Rate 1 Low Low Low Low 

Rev Rate 10 Low Low High Low 

Straight 

Lines 

Yaw Rate Low Low Low Low 

Slip Angle Low L~H Low Low 

Lat Acc Low Low Low Low 

Long Acc Low Low Low Low 

Rev Rate 10 Low Low L~M~H Low 

Whole 

Track 
Rev Rate 1 Low Low Medium Low 

In summary, the drivers were able to distinguish between the RHs in many of the 

vehicle attributes and rated them correctly. In brief, they evaluated correctly that the 

high RH was the most settled and floaty, low and high RH were nonlinear and 

oversteering and the medium RH was the most appropriate for the vehicle and 

handling transient roll of the vehicle had increased from low to high RH.  

In terms of aggregated performance measurements including the lap time, speed 

variation the differences between the RHs were subtle, and lateral position 

deviation was highest in low RH that solely indicates the deteriorated performance. 

In the time series metrics, the differences between the RHs were consistent. Nearly 

in all of the measurement metrics, the low RH had the highest values. Comprised of 
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the steering reversal rates and driver model steering gain i.e. the measurements 

over the drivers' control activity. It reflects the less relaxed style of driving and 

deteriorated performance in low RH. 

Research question 2 – How do the different MPs affect the drivers’ subjective 

ratings of driven attribute qualities, simulator fidelity and their objective 

behaviour? 

I. Subjective fidelity results 

The results of repeated measure ANOVA for ride question of driven attributes 

showed the significant effect of type of MPs on subjective ratings of driven 

attributes. In the ride question, the medium and large were significantly different to 

small. 

Based on analysis of plots and effect sizes it was observable that, in the ride 

question the medium MP was rated as the most appropriate for this vehicle. In 

steering gain linearity away from centre and handling roll transient, the mostly small 

was the most suitable. The drivers found the transient roll of the vehicle to be 

increasing with the increase of MP size. In handling under/oversteering mostly the 

large MP was suitable. For the steering window and effort grouped question drivers 

seemed to have chosen larger MP with increasing RH as more appropriate.  

It was noticeable that for most of the attributes especially handling 

under/oversteering, in the low RH, the small MP was rated as the most appropriate 

for this vehicle; in the high RH, it was the large MP; in the medium RH, it was a mix 

of the three MPs. This might indicate that for a higher RH a larger MP is more 

appropriate, and vice versa.  

In most of the attribute questions, the small and large MPs were rated the most 

unfitting for this vehicle (distant from 0.5) respectively in low and high RHs, in 

medium RH it was a mix of the three MPs. It might show the effect that RH has on 

the ratings of MP, where the smaller MP was rated to be unfitting for the 

evaluations of higher RH, and vice versa. Results are summarised in Table 6-16.  

II. Objective behavioural results 

In each RH comparing MP sizes, see Table 6-16:  

Aggregated performance - for the lap time the highest value was in the large MP in 

all RHs, and it has increased (although some time fluctuated) with the increase of 

MP size. In the speed variation and lateral position deviation metrics, mostly small 

MP has shown the highest values in all RHs, and values have decreased (although 

some time fluctuated) with increasing MP size. The decrease in both of the metrics 

reflects the improved performance of drivers with the increase of MP size. 
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Time series - in the curves there was a significant main effect of type of MPs on 

driver model preview time metric, the results showed that the small MP had the 

highest value in all RHs and it is decreased with increasing MP size. In the whole 

track, the driver model steering gain has decreased, that shows lower control 

activity and a more relaxed style of driving with the increase of MP size i.e. 

improved performance. 

Looking at the plots and effect sizes from the objective metrics with increasing MP 

size although there were fluctuations in some of the RHs but overall: in curves 

maximum longitudinal velocity and preview time have decreased, 1 and 10 degrees 

steering wheel reversal rate have stayed similar. In straight lines maximum yaw rate 

and body slip angle stayed similar, 1 and 10 degrees steering wheel reversal rate 

has slightly decreased or fluctuated that shows lower control activity and more 

relaxed style of driving with the increase of MP size i.e. improved performance, 

longitudinal accelerations have increased. Our hypothesis was to expect a 

decrease in amplitude of the steering control activity with the increase of MP size 

that is confirmed and violated in different road sections. 
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Table 6-16. Summary of results, research question 2 (most appropriate for 
this vehicle in subjective and highest values in objective) 

Metrics 

Significant  

Overall 

Result  

Plot and effect size results 

Low Medium High 
Su

b
je

ct
iv

e 

Ride Medium Medium Medium Medium 

Steering – gain linearity away - Small Small Large 

Steering – window and effort - Small Medium Large 

Handling – roll transient  - Small Small S~L 

Handling – under/over steering - Small Large Large 

Handling – pitch and roll steady - M~L Small Large 

Overall assessment - Medium 

Motion Cueing - Medium 

O
b

je
ct

iv
e A

gg
re

ga
te

d
 

P
er

fo
rm

an
ce

 Lap Time Large Large Large Large 

Failure Number  0 Small Large 

Speed variation - Small Small Medium 

Lateral Deviation Small Small Small Small 

Ti
m

e 
Se

ri
es

 Curves Preview time Small Small Small Small 

Straight 

Lines 
- 

Whole  

Track 
DRYPE Gain Small Small Small Small 

In summary, drivers preferred the medium MP as more realistic. The results from 

attribute questions showed in ride quality the medium MP was selected as the most 

appropriate. In most of the steering and handling group of questions, in the low RH, 

the small MP was rated as the most appropriate for this vehicle, and in the high RH, 

it was the large MP. This might indicate the higher the RH is the larger MP is 

selected as more appropriate, and vice versa.  

In terms of aggregated performance measurements, the speed variation and lateral 

position deviation were decreased with the increase of MP size, that indicates the 

improved performance. In the time series metrics, most of the measurements were 

slightly decreased or stayed similar to the increase of MP size. Consist of the 

steering reversal rates and driver model steering gain i.e. the measurements over 

the drivers' control activity. It reflects a more relaxed style of driving and improved 

performance with the increase of MP size. 
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7 Tuning Optimisation of Motion Cueing Algorithms  

7.1 Introduction 

The classic and model predictive control (MPC), motion cueing algorithm (MCA) 

models were developed and experimented in previous chapters. The selection of 

parameters of the MCAs is called tuning the algorithm, which is a trade-off between 

cue reproduction in terms of maximising correct (true) cues, and reducing false 

cues and missing cues, while keeping the motion commands within the envelope 

and capability constraints of the motion platform (MP). The significant and broad 

effect of the MCA parameters on the simulator motion cueing has been the subject 

of research to address the appropriate set of parameters.  

Reymond and Kemeny (2000) proposed nonlinear filters to reduce the shortcoming 

of the backlash generated in the high-pass filters of the classic MCA; although there 

is an ongoing debate about the propriety of the backlash motion on drivers’ 

perception. A generic algorithms (GA) optimisation method was used for tuning of 

the MCA with nonlinear filters (Asadi et al., 2015). In this optimisation approach, the 

vestibular model was included, while respecting the MP physical constraints. Based 

on the offline analysis it was shown the optimisation works to reduce the perceived 

artefacts, false cues and minimise the human perception error between vehicle and 

simulator.  

The similar approach of the GA optimisation was used finding the MPC model 

parameters to replace the manual tuning (Mohammadi et al., 2018). Optimisation 

considered the best control and prediction horizons to minimise of the costs of 

sensation error, displacement and the computational burden. They found a small 

control horizon and much larger prediction horizon as the optimal set of parameters. 

Although the reported tuning parameters in the literature gives an insight on 

appropriate parameter selection but those are mainly applicable for a specific type 

and structure of MCA and characteristics of MP.  

The effects of tuning of the MCAs was also observed during the design of the 

motion configurations of the aforementioned experiments in this thesis. The tuning 

settings used for the classic MCA in the experiment of Chapters 5 was based on 

optimisations, however only a few essential parameters of all were extracted using 

the optimisations, and the rest were fixed and chosen from offline trial and error 

observations. In the MPC model used in the experiment of Chapter 6, the 

parameters were selected based on offline trial and error observations and pilot 

tests. Hence, the question of what is the most appropriate tuning parameter setting 

was persistently available. It was the motivation to get a thorough understanding of 
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the effect of MCA parameters. In this chapter, the MCA parameters of classic and 

MPC and their motion cueing effect are reviewed.  

The MCA parameter tuning is a process that involves the driving tasks, vehicle 

dynamics, MCA and MP to come up with a set of parameters that minimises the 

motion cueing errors between the virtual and real world, also, to take into account 

human perception and/or behaviour. Experimental trial and error can be used to 

take the drivers’ subjective perception into account to find the appropriate MCA 

parameters. In this approach different set of parameter candidates are usually 

implemented in the simulator, and the drivers are asked about the realism of the 

settings to draw a conclusion. Although this method is still the most reliable one, it 

needs a lot of time and effort, and it may not lead to a solid conclusion because of 

individual preferences.   

Alternatively, the parameter settings can be found through offline mathematical 

analysis. This needs to prepare models of motion system components that have a 

significant role on motion cueing, together with the models of drivers’ perception 

and/or behaviour, and offline optimisation to find the appropriate MCA parameters. 

Although this method seems more feasible and less expensive to prepare, accurate 

models of the listed components are often not available. The main problem of this 

offline method is the lack of precise models for human perception and especially 

behaviour, that raise the question of how reliable the obtained parameters of this 

method are.  

Notwithstanding the limitations, the offline analysis is essential for tuning of the 

algorithms to help to minimise the motion errors between the vehicle and simulator, 

even without the human perception and behaviour models and only relying on the 

response of motion cueing components of the simulator. In addition to the need for 

optimal tuning of the MCA to achieve the highest performance efficiency, the 

knowledge about the appropriate tuning also helps to address the minimum MP 

workspace requirements. In Chapter 8, the optimal parameters for both of the 

classic and model predictive control (MPC) algorithms that are introduced in this 

chapter are used in an iterative optimisation to address MP workspace size.   

The motion errors between a real vehicle and simulators have been categorised to 

three types of false cues, scaling or missing cues and phase error cues (Grant and 

Reid, 1997). The false cues were defined to be a motion cue in the simulator in the 

opposite direction of vehicle, or motion in the simulator when there is none in the 

vehicle. Among the sources of false cues it has been listed to be from software or 

hardware limiting; returning to neutral position due to overshoot of high-pass filters 

to step-like input accelerations; tilt-coordination angular velocity, acceleration and 

remnant. The scaled or missing cues were the motion cues absent in simulator but 
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available in vehicle. It is described that the missing cues do not lead to the same 

reduction in perception as false cues. Among the sources of the missing cues are 

the missing or scaled motion cues. The phase error cues are phase lead and lag of 

MCA and MP response to input motion cues. 

In a similar context, for the rest of this chapter, a few measurement metrics are 

used in the analysis of the motion errors. The effect of motion scaling is considered 

as a within MCA parameter because the variation to the other MCA parameters is 

dependant to the scaling factor. The motion cueing errors are divided into true and 

false acceleration cues in the time domain and phase and gain errors in the 

frequency domain. The true cues 𝑇𝑟 is referred to the norm of the commanded 

simulator acceleration cues 𝑎𝑠 (MCA output) that appears in the same direction of 

input vehicle motion 𝑎𝑖 and having equal or smaller absolute values compared the 

input, Eq. 7.1. The 𝑠𝑔𝑛 is sign function.  

 
𝑇𝑟 = ‖𝑎𝑠(𝑖𝑛𝑑𝑇𝑟)‖2  

𝑖𝑛𝑑𝑇𝑟: 𝑠𝑔𝑛(𝑎𝑠) = 𝑠𝑔𝑛(𝑎𝐼) 𝑎𝑛𝑑 |𝑎𝑠| ≤ |𝑎𝑖| 
7.1 

The false cue is referred to the norm of the commanded simulator motion cues that 

appears in the opposite direction of input motion cue and/or in the same direction 

but have greater absolute values compared to input vehicle motion, Eq. 7.2.  

 

𝐹𝑠 = ‖𝑎𝑠(𝑖𝑛𝑑𝐹𝑠)‖2  

𝑖𝑛𝑑𝐹𝑠: {
𝑠𝑔𝑛(𝑎𝑠) ≠ 𝑠𝑔𝑛(𝑎𝐼)

𝑠𝑔𝑛(𝑎𝑠) = 𝑠𝑔𝑛(𝑎𝐼) 𝑎𝑛𝑑 |𝑎𝑠| > |𝑎𝑖|
 

7.2 

The phase error is referred to the norm of the phase distortion (degree) in the 

frequency response of the MCA in a range of frequencies, i.e. called frequency of 

interest 𝜔𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡. 

 𝑃ℎ𝑒𝑟𝑟 = ‖Phase(𝜔𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)‖2 7.3 

The gain error is referred to the norm of the gain attenuation (decibels dB) in the 

frequency response of MCA in range of frequency of interest 𝜔𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡  

 𝐺𝑛𝑒𝑟𝑟 = ‖Gain(𝜔𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)‖2 7.4 

To get a better understanding of these metrics, a time response plot of a second 

order high-pass filter as it is used in classic MCA, is shown in Figure 7-1. The input 

vehicle motion is a square acceleration that resembles quick acceleration and 

deceleration of a vehicle. The true 𝑇𝑟 and false 𝐹𝑠 cues are highlighted in blue and 

red marks on the output acceleration response of the high-pass filter, and norm of 

those values is shown in the bottom of the figure in bars. It needs to be mentioned 

that the definitions for true and false cues are valid only when the filters are critically 

damped or overdamped i.e. the damping ratio of the filters is equal or greater than 
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one ζ ≥ 1, because in underdamped situations there are other false cues that 

this definition does not capture. Additionally, the norm of frequency response gain 

𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors is shown in the same bar chart. The backlash motion 

is highlighted in red after 15 seconds here as a false cue, although there is still a 

debate if it is a false cue or not. 

 

Figure 7-1. Time response of second order high-pass filter with parameters of 

𝒌 = 𝟎. 𝟖 , 𝛇 = 𝟏, 𝝎𝒉𝒑 = 𝟏
𝒓𝒂𝒅

𝒔𝒆𝒄
, and the measurement metrics  

The frequency of interest is the range of frequencies that is of more importance to 

drivers, in affecting their perception and behaviour during driving. Although, in each 

of the manoeuvres a certain range of frequencies may have a more significant 

effect but the vestibular perception of translational motions is often considered to be 

more sensitive in the range of 𝜔𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = [0.1 10] 𝑟𝑎𝑑/𝑠 (Nash et al., 2016), also 

observable in the bode response of the otolith models in Figure 2-3, wherein this 

range of frequency has the highest magnitude. A frequency response Bode plot of a 

second order high-pass filter as it is used in classic MCA is shown in Figure 7-2, 

and the frequency of interest is highlighted in green. The norm of the gain and 

phase responses over the frequency of interest shows the phase 𝑃ℎ𝑒𝑟𝑟 and gain 

𝐺𝑛𝑒𝑟𝑟. 



225 
 

 

Figure 7-2. Bode plot of second order high-pass filter with parameters of 𝒌 =

𝟏 , 𝛇 = 𝟏, 𝝎𝒉𝒑 = 𝟏. 𝟓
𝒓𝒂𝒅

𝒔𝒆𝒄
, and frequencies of interest highlighted in 

green. 

For the rest of this chapter, the classic and model predictive control (MPC) 

developed in Chapter 3 and 4 are used, and the alternation effect of their 

parameters on the motion cueing response in simulators is reviewed. In each of the 

MCAs, it is tried to find the optimum parameters for the tilt, translational and 

tilt+translations separately to have general guidelines for different applications and 

dynamic simulators of all characteristics. For instance, in some applications, the 

tilting is deactivated, and only translational motion is available, or MPs, do not have 

a translational workspace and only rely on tilting. Moreover, while minimising the 

motion cueing errors, the parameters are further refined by linking them to the MP 

workspace size limits.    

7.2 Tuning of classic motion cueing algorithm 

A general schematic structure of the classic algorithm was presented in Figure 

3-13. It is often a combination of scale-factors, high and low-pass filters, limiters 

and coordinate transformation. The input to the MCA is vehicle motion, while the 

output of it is the desired motion platform set points. The scale-factors reduce the 

acceleration output magnitude in comparison to the input from the vehicle motions. 

While the input vehicle acceleration passes through the high-pass filter the transient 

part of acceleration is separated to be represented by MP translational movements. 

The sustained is separated by a low-pass filter which is transformed to tilt 

coordination that is added to the rotational channel to be represented by MP 

rotational movements.  
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The classic MCA is usually tuned for the worst-case scenario such that the MP 

does not exceed its envelope and capability while representing the maximum of 

vehicle motions to participants using offline analysis. The initial parameter 

candidates are further refined by based on the drivers’ subjective comments and 

their performances. Beginning with the translational motions of the MP in the surge, 

sway and heave directions, various first, second and third order high-pass filters 

have been employed in flight and driving simulators depending on the application, 

respectively shown in Eq.7.5, 7.6 and 7.7. Depending on the filter order, the scale-

factor 𝑘 and the high-pass filter parameters of cut-off frequency 𝜔 and damping 

ratio 𝜁 define the response of MCA to input vehicle motions.  

The first order high-pass filter mostly used in flight simulators for translational or 

rotational motion cueing, represented in Eq.7.5. It includes the equations in Laplace 

and time domain, and its frequency gain and phase responses. It is observable the 

variables of scale-factor 𝑘 and cut-off frequency of 𝜔ℎ𝑝1 defines the output 

acceleration 𝑎𝑠 rethe sponse of MCA to input vehicle acceleration 𝑎𝐼 of the vehicle. 

Reducing the cut-off frequency sustains the cue for a longer duration but it 

increases the required motion platform excursion. 

Based on the observation of longitudinal and lateral vehicle motions during in 

various manoeuvres, few different motion inputs were selected to find the first, 

second and third order high-pass filters’ response to them, those include step, 

square, triangle-square, sinusoids input accelerations and a vehicle lateral 

acceleration (during LHT manoeuvre described in Chapters 5), see Figure 7-3. In 

each of the inputs and filters the motion cueing metrics in Eq.7.1 to 7.4 are 

calculated and shown in bar charts under the figures. The same filter parameters 

are used for all conditions. As it is observable in the plots, there are few issues 

accompanying the first order filter. To a step input acceleration, the position 

excursion diverges to infinity, and compared to higher order filters requires larger 

excursions. Moreover, to input sinusoid accelerations it generates a DC gain offset 

that might require further adjustments in the model.  

First 

Order 

𝐺1𝑠𝑡(𝑠) =
𝑎𝑠
𝑎𝐼
= 𝑘𝐺ℎ𝑝1 = 𝑘

𝑠

(𝑠 + 𝜔ℎ𝑝1)
 

𝐺1𝑠𝑡(𝑡) =
𝑎𝑠
𝑎𝐼
= 𝛿(𝑡) − 𝜔ℎ𝑝1𝑒

−𝑡𝜔ℎ𝑝1  

|𝐺1𝑠𝑡| = 𝑘

(
𝜔
𝜔ℎ𝑝1

)

(1 + (
𝜔
𝜔ℎ𝑝1

)
2

)

1/2
 

∠𝐺1𝑠𝑡 =
𝜋

2
− tan−1 (

𝜔

𝜔ℎ𝑝1
) 

7.5 
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The second order high-pass filter, also known as washout filter, has been widely 

used in both flight and driving simulators for translational and rotational motion 

cueing, represented in Eq. 7.6. It is designed to return the motion platform to its 

neutral position in a range of normal input accelerations. It is observable that the 

variables of scale-factor 𝑘 and cut-off frequency of 𝜔ℎ𝑝2, and damping ratio ζ, define 

the time and frequency response of the MCA. Similar to the first order filter, 

reducing the cut-off frequency sustain the cue for a longer time, but it increases the 

required motion platform excursion. Decreasing the damping ratio sustains the cue 

for longer requiring larger excursion and reduces the effect of the washout. Since 

the washout moves the simulator in the opposite direction it is recommended to use 

lower damping ratios to avoid generating false cues. However, very low damping 

ratio also creates large overshoots and oscillatory response. The maximum 

excursion position of the second order filter to a step input goes to a fixed value of 

𝑘 𝜔ℎ𝑝2
2⁄  instead of zero.  

Second 

Order 

𝐺2𝑛𝑑(𝑠) =
𝑎𝑠
𝑎𝐼
= 𝑘𝐺ℎ𝑝2 = 𝑘

𝑠2

(𝑠2 + 2ζ𝜔ℎ𝑝2𝑠 + 𝜔ℎ𝑝2
2 )

 

𝐺2𝑛𝑑(𝑡) =
𝑎𝑠
𝑎𝐼
= 𝛿(𝑡) + (𝑡𝜔ℎ𝑝2

2 − 2𝜔ℎ𝑝2)𝑒
−𝑡𝜔ℎ𝑝2  

|𝐺2𝑛𝑑| = −𝑘

(
𝜔
𝜔ℎ𝑝2

)
2

1 + (
𝜔
𝜔ℎ𝑝2

)
2 

∠𝐺2𝑛𝑑 = 𝜋 − tan
−1

(

 
 

2
𝜔
𝜔ℎ𝑝2

1 − (
𝜔
𝜔ℎ𝑝2

)
2

)

 
 
  

7.6 

The third order high-pass filter has also been widely used in both flights and driving 

simulators for translational or rotational motion cueing, represented in Eq. 7.7. It is 

observable the variables of scale-factor 𝑘 and two cut-off frequency of 𝜔ℎ𝑝1 and 

𝜔ℎ𝑝2, and damping ratio ζ, define the output acceleration 𝑎𝑠 rethe sponse of MCA to 

input vehicle acceleration 𝑎𝐼 of the vehicle. Response of this filter is the combination 

of the response of the first and second order filters. Similar to the first and second 

order filters, reducing the cut-off frequency and damping ratio sustains the cue for a 

longer time, and it increases the required motion platform excursion. 

Third 

Order 

𝐺3𝑟𝑑(𝑠) =
𝑎𝑠
𝑎𝐼
= 𝑘𝐺ℎ𝑝1𝐺ℎ𝑝2 = 𝑘

𝑠

(𝑠 + 𝜔ℎ𝑝1)

𝑠2

(𝑠2 + 2ζ𝜔ℎ𝑝2𝑠 + 𝜔ℎ𝑝2
2 )

 

𝐺3𝑟𝑑(𝑡) =
𝑎𝑠
𝑎𝐼
= 𝛿(𝑡) −

𝜔ℎ𝑝1
3

(𝜔ℎ𝑝1 −𝜔ℎ𝑝2)
2 𝑒

−𝑡𝜔ℎ𝑝1  

7.7 
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+ (
−2𝜔ℎ𝑝2

3 + 3𝜔ℎ𝑝1𝜔ℎ𝑝2
2

(𝜔ℎ𝑝1 −𝜔ℎ𝑝2)
2 −

𝑡𝜔2
3

𝜔ℎ𝑝1 −𝜔ℎ𝑝2
)𝑒−𝑡𝜔ℎ𝑝2  

|𝐺3𝑟𝑑| = −𝑘

𝜔
𝜔ℎ𝑝1

(
𝜔
𝜔ℎ𝑝2

)
2

(1 + (
𝜔
𝜔ℎ𝑝1

)
2

)

1/2

(1 + (
𝜔
𝜔ℎ𝑝2

)
2

)

 

∠𝐺3𝑟𝑑 =
3𝜋

2
− tan−1 (

𝜔

𝜔ℎ𝑝1
) − tan−1

(

 
 

2
𝜔
𝜔ℎ𝑝2

1 − (
𝜔
𝜔ℎ𝑝2

)
2

)

 
 

 

Using the final value theorem, the steady-state response of the filters of reflecting 

the maximum excursion of the motion platform to various impulse, step and ramp 

inputs are shown in Table 7-1. The first order filter response to an impulse input 

reaches a steady-state value of 𝑘 𝜔ℎ𝑝1⁄ , and goes to infinity in case of the step and 

ramp input. The second order filter to an impulse input decays to zero that explains 

its washout behaviour, to a step input reaches to a steady-state value of 𝑘 𝜔ℎ𝑝2
2⁄  

and in a ramp to infinity. In the third order filter motion platform excursions decay to 

zero for impulse and step input and reaches to a steady-state value of 

𝑘 (𝜔ℎ𝑝1𝜔ℎ𝑝2
2 ) ⁄ . 

Table 7-1. Motion platform maximum excursion, using different order high-
pass filters and inputs 

Input 
Maximum position excursion 𝑥𝑠,𝑚𝑎𝑥 = 𝐺ℎ𝑝𝑎𝐼 

𝐺1𝑠𝑡 𝐺2𝑛𝑑 𝐺3𝑟𝑑 

Impulse  1 𝑘 𝜔ℎ𝑝1⁄  0 0 

Step 1/𝑠 ∞ 𝑘 𝜔ℎ𝑝2
2⁄  0 

Ramp 1/𝑠2 ∞ ∞ 𝑘 (𝜔ℎ𝑝1𝜔ℎ𝑝2
2 ) ⁄  

The second order low-pass filter is a most commonly used for tilt motion cueing in 

surge and sway directions, represented in Eq. 7.8. It is observable the variables of 

scale-factor 𝑘 and cut-off frequency of 𝜔𝑙𝑝2, and damping ratio ζ, define the output 

tilt feel of acceleration 𝑎𝑠 of MCA to input vehicle acceleration 𝑎𝐼 of the vehicle. 

Increasing the cut-off frequency and decreasing the damping ratio results in higher 

tilt angular velocity and acceleration that generates more accelerations to drivers, 

that might also violate tilting below the semicircular canal perception threshold.  

The scale-factor is usually selected considering the maximum amplitude of the input 

acceleration and an intended maximum tilt degree of the MP. The latter defines the 

amount of acceleration to be presented through tilting. Another way of organising 

the tilting channel is to use a saturator in advance of the low-pass filter to apply the 
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restrictions on the vehicle acceleration that passes through tilting based on an 

intended maximum tilt degree. It allows to select higher scale-factor compared to 

using only a gain; however, there will be a nonlinear behaviour in accelerations 

above the saturation limit (max tilt degree). In both cases, the cut-off frequency and 

damping ratio of the second order filter define the maximum angular velocity and 

acceleration of the tilting.  

Second 

Order 

𝐺𝑙𝑝(𝑠) =
𝑎𝑠
𝑎𝐼
= 𝑘𝐺𝑙𝑝2 = 𝑘

𝜔𝑙𝑝2
2

𝑠2 + 2ζ𝜔𝑙𝑝2𝑠 + 𝜔𝑙𝑝2
2  

𝐺𝑙𝑝(𝑡) =
𝑎𝑠
𝑎𝐼
= 𝑡𝜔𝑙𝑝2

2 𝑒−𝑡𝜔𝑙𝑝2 

|𝐺𝑙𝑝| = −𝑘
1

1 + (
𝜔
𝜔ℎ𝑝2

)
2 

∠𝐺𝑙𝑝 = 1 − tan
−1

(

 
 

2
𝜔
𝜔𝑙𝑝2

1 − (
𝜔
𝜔𝑙𝑝2

)
2

)

 
 

 

7.8 

Consequently, the acceleration generated by the tilting depends on the three 

variables of the maximum tilt angle 𝜃𝑚𝑎𝑥 (𝑑𝑒𝑔) which in the model used in this 

thesis is selected by the scale-factor and saturator parameters 𝑎𝑙𝑖𝑚, tilt angular 

velocity �̇�𝑚𝑎𝑥 (𝑑𝑒𝑔/𝑠), and tilt angular acceleration �̈�𝑚𝑎𝑥 (𝑑𝑒𝑔/𝑠2) both are defined 

by the low-pass filter cut-off frequency 𝜔𝑙𝑝 and damping ratio ζ. To a step input 

acceleration and ζ = 1, the maximum values of the tilting variables could be related 

to the cut-off frequency 𝜔𝑙𝑝 by Eq. 7.9. Using this range of the cut-off frequency in a 

damping ratio ζ = 1 guarantees that the tilt angular velocity and accelerations never 

exceed the desired values in any condition of vehicle motion, although these are 

conservative numbers, and usually more relaxed tilt settings are used in the 

literature.  

 

 𝜃𝑚𝑎𝑥𝜋𝑔

180
= 𝑎𝑙𝑖𝑚  →  𝑎𝑙𝑖𝑚 ≤

 𝜃𝑚𝑎𝑥𝜋𝑔

180
 

 �̇�𝑚𝑎𝑥𝜋𝑔

180
=
𝑎𝑙𝑖𝑚𝜔𝑙𝑝

𝑒𝑥𝑝
 →  𝜔𝑙𝑝 ≤

 �̇�𝑚𝑎𝑥𝜋𝑔𝑒𝑥𝑝

𝑎𝑙𝑖𝑚180
 

 �̈�𝑚𝑎𝑥𝜋𝑔

180
= 𝑎𝑙𝑖𝑚𝜔𝑙𝑝

2  →  𝜔𝑙𝑝 ≤ √
 �̈�𝑚𝑎𝑥𝜋𝑔

𝑎𝑙𝑖𝑚180
 

7.9 

Based on the pilot evaluations of different settings and filter orders of the classic 

algorithm in UTIAS flight simulator with position and acceleration limits of ±1.5 𝑚 

and 10 𝑚 𝑠2⁄ , Nahon and Reid (1990) reported settings for translational and tilting 

motions. A second order high-pass filter with damping ratio of 1 and cut-off 
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frequency of 2.5 and 4 𝑟𝑎𝑑/𝑠 in x and y directions. In addition to second order low-

pass filter with same damping ratio and 5 and 8 𝑟𝑎𝑑/𝑠 for tilt in x and y directions. 

These numbers have been used in many flight simulations studies later as a 

benchmark for comparisons, although it is valid only for a specific workspace size of 

MP.  
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Figure 7-3. Acceleration and position response of high-pass and low-pass 
filters to step, square, triangle-square, sinusoid and vehicle lateral 
acceleration inputs, 𝒌 = 𝟎. 𝟓, 𝜻 = 𝟏, 𝝎𝒉𝒑𝟏 = 𝟎. 𝟒, 𝝎𝒉𝒑𝟐 = 𝟎. 𝟒 𝒓𝒂𝒅/𝒔𝒆𝒄 

are the filter parameters   

The frequency response of the high-pass, low-pass filters and summation of both is 

shown in the Bode plot in Figure 7-4. The main difference between a first, second 

and third order filters in frequency domain is that the stopband roll-off (attenuation) 

of second and third order filters are respectively twice or three times the first order 

filter at 20dB/decade, in the operating frequency below the cut-off frequency. 

Similarly, the phase is distorted with twice or three times the first order filter at 90 

degrees. The second order low-pass filter has a similar response but attenuates the 

signal at higher frequencies than cut-off frequency and the phase distortion is 

negative. It is observable that in range of the frequency of interest  [0.1 10] 𝑟𝑎𝑑/𝑠 

the with same cut-off frequency the higher order filters generate more magnitude 

attenuation and phase distortion compared to lower order. However, the 

combination of the low and high-pass filters and by appropriate selection of the 

scale-factors and cut-off frequencies the higher order filters compensate for the 

more phase and gain distortions, besides it adds the washout capability that 

prepares more workspace for excursions.   
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Figure 7-4. Bode frequency response of the high-pass and low-pass filters        

In the previous section, the time and frequency response of the high-pass and low-

pass filters for a single cut-off frequency and scale-factor parameters were 

presented, and the proposed measurement metrics were calculated. In a broader 

perspective, it is essential to find out how the variations of the filter parameters 

could affect the metrics and to decide on the best set of parameters as an optimum 

solution(s). Therefore, in the next few sections, the effect of variation of the filter 

parameters on the measurement metrics are reviewed for the translational, tilting 

and total motions of the simulator.   

 Translational motions 

7.2.1.1 First order high-pass filter  

The time response of the first order filter to the input vehicle lateral acceleration in 

LHT manoeuvre (see Figure 7-3) in different scale-factor 𝑘 and cut-off frequencies 

𝜔ℎ𝑝1 is shown in Figure 7-5. Obviously, the minimum false cues and maximum true 

cues are at the 𝑘 = 1, 𝜔ℎ𝑝1 = 0 where there is no effect of high-pass filtering. 

Decreasing the scale-factor reduces the true and false accelerations overall and 

decreasing the frequency rises true cues and rises the false cues up to a certain 

point that falls afterwards. In most of the scale-factor and cut-off frequencies 

settings, the true acceleration is higher than the false acceleration, however, there 

is a small group of parameters were the opposite is true. The intersection of the true 

and false cue surfaces is shown in the right figure, the black line shows a border, 

where within a range of cut-off frequencies using a higher gain generates more 

false accelerations than true (on the top side of the borderline).  
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Figure 7-5. The time domain true and false output accelerations in a range of 
filter parameters, first order high-pass filter 

It is also necessary to include the corresponding MP excursions in each of the 

parameter settings, see Figure 7-6 top. The excursions for such a large demanding 

manoeuvre for minimum discrepancy setting 𝑘 = 1, 𝜔ℎ𝑝1 = 0 reaches to few 

hundreds of meters and not much of use to be presented. Therefore, a maximum 

excursion limit of ±2.5 meters (UoLDS workspace limit) was chosen and settings 

resulting in larger values of the excursion were omitted from the plots (bottom 

figures). Looking at the bottom figures the true and false acceleration surfaces are 

nearly parallel, that indicates in any of the settings there is a similar proportion of 

true and false motions. Therefore, the highest scale-factor of 𝑘ℎ𝑝 = 0.07 and cut-off 

frequency of 𝜔ℎ𝑝1 = 2.1 𝑟𝑎𝑑/𝑠 , produces the highest amount of motion.  
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Figure 7-6. The time domain true, false accelerations and position excursions 
in a range of filter parameters (top), and cropped out settings with 
excursions smaller than 2.5 (m) (bottom), first order high-pass filter 

The similar analysis was done using different motion inputs of step, triangle-square 

and it was observed that the surfaces of true and false motions change slightly with 

respect to the input acceleration profile and amplitude, hence it is difficult to find a 

generalised rule for an optimum set of parameters. The more reliable option is a 

similar analysis in the frequency domain based on the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 

error metrics. The first order filter frequency response of different gain 𝑘 and cut-off 

frequencies 𝜔ℎ𝑝1, and corresponding position excursions to the same input vehicle 

lateral acceleration is shown in Figure 7-7.  

Similarly, the minimum gain and phase errors are at the 𝑘 = 1, 𝜔ℎ𝑝1 = 0 where 

there is no effect of high-pass filtering. Decreasing of the scale-factor 𝑘 raises the 

gain error but has no effect on the phase error, and increasing the frequency raises 

both the gain and phase errors. The intersection of the two surfaces is shown in the 

same figure, the black line shows a border of parameter settings where both the 

gain and phase errors have the minimum values. On the sides of this border, either 

the phase and gain errors overweigh each other. The excursions for the manoeuvre 

with a maximum limit of ±2.5 meters were used to omit the settings that cause 
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larger excursions from the plot (bottom figures). Comparing the top and bottom 

figures only small set of parameters (a little of the borderline) remains applicable to 

fit within the MP envelope. 

 
 

 

 

Figure 7-7. The frequency domain gain, phase errors and position excursions 
in a range of filter parameters (top), and cropped out settings with 
excursions smaller than 2.5 (m) (bottom), first order high-pass filter 

The choice of an optimal setting in time and frequency domain depends on the 

required motion platform excursions to a vehicle input acceleration, and the 

workspace of a simulator motion platform. In this example of the vehicle lateral 

acceleration input, the time domain analysis of the first order high-pass filter 

showed a small scale-factor of 𝑘 = 0.07 and cut-off frequency of 𝜔ℎ𝑝1 = 2.1 𝑟𝑎𝑑/𝑠 

for optimal settings to maximise true against false cues. In the frequency domain to 

keep the gain and phase errors to a minimum, the small scale-factor of 𝑘ℎ𝑝 = 0.02 

and cut-off frequency of 𝜔ℎ𝑝 = 0.7 𝑟𝑎𝑑/𝑠 was found to be an optimal setting. The 

small scale-factor allows selecting the lower cut-off frequency that decreases the 

phase error.   

7.2.1.2 Second order high-pass filter 

Similar to the first order filter, the time response of the second order filter to the 

input vehicle lateral acceleration in LHT manoeuvre in different scale-factor 𝑘 and 
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cut-off frequencies 𝜔ℎ𝑝2 is shown in Figure 7-8, the damping ratio ζ = 1 throughout 

the analysis. The minimum false cues and maximum true cues are at the 𝑘 = 1, 

𝜔ℎ𝑝2 = 0 where there is no effect of high-pass filtering. Decreasing the scale-factor 

reduces the true and false accelerations overall and decreasing the frequency 

raised true cues and raises the false cues up to a certain point that decreases 

afterwards. The intersection of the two surfaces is shown in the same figure, the 

black line shows a border where the smaller scale-factor and cut-off frequencies 

generate more true accelerations than false (on the left side of the borderline). 

There is a range of settings where the amount of false cues is higher than the true 

cues (on the right side of the borderline). 

 
 

Figure 7-8. The time domain true and false output accelerations in a range of 
filter parameters, second order high-pass filter 

Taking into the considerations the corresponding MP excursions in each of the 

parameters settings is shown in Figure 7-9 top, and excursions greater than 2.5 

metres are omitted from the plots (bottom figures). Comparing Figure 7-8 to Figure 

7-9 only a small set of parameters (a little of the borderline) remains applicable to fit 

within the motion platform envelop that approximately requires a gain 𝑘 = 0.15, 

𝜔ℎ𝑝2 = 0.42 𝑟𝑎𝑑/𝑠. Although in this range there is larger true compared to false 

cues, but the amplitude of motion is small overall. Outside this region both of the 

false is greater than true, however, both have larger amount, with the maximum at 

𝑘 = 1, and 𝜔ℎ𝑝2 = 1.2 𝑟𝑎𝑑/𝑠. This might need further empirical tests in simulathe tor 

to define better settings. 
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Figure 7-9. The time domain true, false accelerations and position excursions 
in a range filter parameters (top), and cropped out settings with 
excursions smaller than 2.5 (m) (bottom), second order high-pass 
filter 

The result of the above analysis might vary slightly with respect to the input 

acceleration profile and amplitude. Moreover, the backlash effect introduced at the 

beginning of this chapter is counted as false cues, and removing that might 

increase the appropriate region of settings. Similar to the first order filter the 

analysis is carried out in the frequency domain based on the errors in the 

measurement metrics of gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟. The second order filter 

frequency response of different scale-factor 𝑘 and cut-off frequencies 𝜔ℎ𝑝2, and 

corresponding position excursions to the same input vehicle lateral acceleration is 

shown in Figure 7-10.  

Decreasing of the gain 𝑘 rises the gain error but has no effect on the phase error 

and increasing the frequency 𝜔ℎ𝑝2 = 0 raises both the gain and phase errors. The 

intersection of the two surfaces is shown in the same figure, the black line shows a 

border of parameter settings where both the gain and phase errors have the 

minimum values. On the sides of this border, either the phase and gain errors 

overweigh each other. The excursions for the manoeuvre with a maximum limit of 
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±2.5 meters were used to omit the settings that cause larger excursions from the 

plot (bottom figures). Comparing the top and bottom figures only small set of 

parameters (a little of the borderline) remains applicable to fit within the MP 

envelope. 

 
 

 
 

Figure 7-10. The frequency domain gain, phase errors and position 
excursions in a range of filter parameters (top), and cropped out 
settings with excursions smaller than 2.5 (m) (bottom), second 
order high-pass filter 

The choice of an optimal setting in time and frequency domain depends on the 

required excursions to a vehicle input acceleration, and the workspace of a 

simulator motion platform. In this example of the vehicle lateral acceleration input, 

the time domain analysis of the second order high-pass filter showed required a 

scale-factor of 𝑘 = 0.15 and cut-off frequency of 𝜔ℎ𝑝2 = 0.42 𝑟𝑎𝑑/𝑠 to maximise true 

against false cues in fare of a small amplitude of motion, and 𝑘 = 1 and 𝜔ℎ𝑝2 =

1.2 𝑟𝑎𝑑/𝑠 to have a large amplitude of motion. In the frequency domain to keep the 

gain and phase errors to a minimum, a very small scale-factor of 𝑘ℎ𝑝 = 0.037 and 

cut-off frequency of 𝜔ℎ𝑝 = 0.21 𝑟𝑎𝑑/𝑠 found to be an optimal setting.  

7.2.1.3 Third order high-pass filter  

The third order filter is the combination of the first and second order filter with 

parameters of scale-factor 𝑘 and cut-off frequencies of 𝜔ℎ𝑝1 and 𝜔ℎ𝑝2, the time 
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response to the input vehicle lateral acceleration in the LHT manoeuvre is shown in 

Figure 7-11 top. The minimum false cues and maximum true cues are near the 𝑘 =

0.96, 𝜔ℎ𝑝1 = 0, 𝜔ℎ𝑝2 = 0 where the effect of high-pass filtering is minimum. 

Decreasing the scale-factor reduces the true and false accelerations overall and 

decreasing the frequencies raises true cues and raises the false cues up to a 

certain point that falls afterwards (similar to the first and second order filters).  

A maximum excursion limit of ±2.5 meters (UoLDS workspace limit) was chosen 

and settings resulting in larger values of excursions were omitted from the plots, 

Figure 7-11 bottoms. The best parameters settings are where the true acceleration 

is maximum, and the false acceleration is minimum. However, it is difficult to find 

the best set of parameters that satisfy both of the criteria. Besides, these plots 

might slightly vary with respect to the input acceleration profile and amplitude.  

  

  

Figure 7-11. The time domain true and false output accelerations in a range of 
filter parameters (top), cropped out settings with excursions 
smaller than 2.5 (m) (bottom), third order high-pass filter 

The frequency response of the model to different scale-factor 𝑘 and cut-off 

frequencies 𝜔ℎ𝑝2, 𝜔ℎ𝑝2 parameters are measured by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 

𝑃ℎ𝑒𝑟𝑟 errors, shown in Figure 7-12. Similarly, the minimum gain and phase errors 

are at the 𝑘 = 1, 𝜔ℎ𝑝1 = 0, 𝜔ℎ𝑝2 = 0 where there is no effect of high-pass filtering. 

Decreasing the scale-factor 𝑘 raises the gain error but has no effect on the phase 
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error, and increasing the frequencies raises both the gain and phase errors. The 

parameter settings where both the normalised gain and phase errors have values 

greater than 0.5, and those exceed a maximum limit of ±2.5 metres excursion was 

omitted from the plot (middle figures) and presented in the same plot (bottom 

figure). The intersection of the two volumes of phase and gain errors shows using a 

scale-factor of 𝑘 < 0.2, and small cut-off frequency of 𝜔ℎ𝑝1 < 0.5 𝑟𝑎𝑑/𝑠 in a range of 

𝜔ℎ𝑝2 minimises both of the gain and phase errors and also respect the MP 

constraints, however small gain generates a small amount of motion overall. 

  

  

 

Figure 7-12. The frequency domain gain, phase errors in a range of filter 
parameters (top), cropped out settings with excursions greater 
than 2.5 (m) and errors greater than normalised value of 0.5 
(middle) and both in the same plot (bottom), third order high-pass 
filter 
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 Tilt motion 

7.2.2.1 Second order low-pass filter  

The low-pass filter is used to generate the sustained acceleration through tilting. 

The acceleration generated by the tilting depends on three variables of maximum 

tilt angle 𝜃𝑚𝑎𝑥 which is selected by a scale-factor and saturation parameter, tilt 

angular velocity �̇�𝑚𝑎𝑥, and tilt angular acceleration �̈�𝑚𝑎𝑥 both are defined by the 

low-pass filter cut-off frequency 𝜔𝑙𝑝 and damping ratio ζ. The time response of the 

second order low-pass filter with different cut-off frequencies 𝜔𝑙𝑝2 and damping 

ratio ζ to the vehicle lateral acceleration input is shown in Figure 7-13 left. The 

maximum accelerations represented through tilting is limited by a scale-factor 𝑘 =

0.5 and saturator to be 1 𝑚/𝑠2 or 5.84 𝑑𝑒𝑔, and the free variables are the filter 

parameters.  

The minimum false and true cues are at the 𝜔𝑙𝑝2 = 0. Increasing the cut-off 

frequency rise the true acceleration felt through tilting and raises false cue up to a 

certain point that slightly decreases afterwards. Increasing the damping ratio 

decreases both true and false accelerations slightly. On the right figure, increasing 

the cut-off frequency raises the resulting maximum tilting angular velocity and 

acceleration, while increasing the damping ration decreases them. By changing the 

two parameters the maximum tilt angular velocity and accelerations could be 

selected. However, it is noticeable not a full range of maximum tilt angular velocity 

and accelerations are achievable by the variations of the filter parameters and 

requires a nonlinear rate-limiting as described in Chapter 4.   

   

Figure 7-13. The time domain true and false output accelerations by tilting in 
a range of filter parameters (left) maximum angular velocity and 
accelerations (right), second order low-pass filter 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-14. Decreasing the gain 

𝜔𝑙𝑝2 raises both the gain and phase errors, and increasing the ζ slightly increases 
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the gain and decreases the phase errors. The minimum gain and phase errors are 

at the 𝜔𝑙𝑝2 = 0.01 (nearest value to zero used here), and ζ = 0.7 (min gain error, 

the smallest point used here) and 1.2 (min phase error, the largest point used here). 

To select the filter parameter values it usually needed to consider the desired 

angular velocity and acceleration, and often there is only a single set of parameters 

that meets the requirement and not much flexibility is available in compromising 

between the minimum phase and gain errors and the desired tilt setting.  

 

Figure 7-14. The frequency domain gain, phase errors in a range of filter 
parameters, second order low-pass filter 

 

 Translational and tilt motions  

In the previous sections, the effect of variation of the filter parameters on time and 

frequency response of different order high-pass filters for the translational motion 

and low-pass filter for the tilting motion was presented. For the high-pass filters 

where it was possible, the best set of parameters were introduced to minimise the 

time and frequency response errors while respecting the MP constraints, and for 

the low-pass filter, the selection of parameters is based on the tilt angular velocity 

and acceleration.  

In this section, the same time and frequency response of the combination of the 

third order high-pass filter and second order low-pass filter is reviewed. For the 

tilting motion, a single low-pass filter parameter with ζ = 1 and 𝜔𝑙𝑝2 = 1.5 are 

chosen to keep the tilt angular velocity and accelerations below the 3.22 𝑑𝑒𝑔/𝑠𝑒𝑐 

and 13.14 𝑑𝑒𝑔/𝑠𝑒𝑐2 respectively, see Appendix D. For the third order high-pass 

filter the three parameters of scale-factor 𝑘ℎ𝑝 and cut-off frequencies 𝜔ℎ𝑝1, 𝜔ℎ𝑝2 that 

are varied. The time response to the input vehicle lateral acceleration in the LHT 

manoeuvre is shown in Figure 7-15 top. Decreasing the scale-factor reduces the 
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true and false accelerations overall and decreasing the frequencies raises true and 

reduce the false cues. However, there is a mixed response of true and false 

accelerations in different area of the filter parameters.   

A maximum excursion limit of ±2.5 meters (UoLDS workspace limit) was chosen 

and settings resulting in larger values of excursions were omitted from the plots, 

Figure 7-15 bottom. The best parameters setting is where the true acceleration is 

maximum and the false acceleration is minimum. Although it is difficult to find the 

best set of parameters that satisfy both the criteria, it is observable the area with 

parameter setting scale-factor of 𝑘ℎ𝑝 < 0.2 and cut-off frequencies of 𝜔ℎ𝑝1 < 0.4,

𝜔ℎ𝑝2 < 0.3 have both the maximum true and minimum false accelerations. Besides, 

these plots might change with respect to the input acceleration profile and 

amplitude, and it is difficult to find a generalised rule for an optimum set of 

parameters.  

  

  

Figure 7-15. The time domain true and false output accelerations in a range of 
filter parameters (top), cropped out settings with excursions 
greater than 2.5 (m) (bottom), high-pass and low-pass filter 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-16 top. Similarly, the 

minimum gain and phase errors are at the 𝑘 = 1, 𝜔ℎ𝑝1 = 0, 𝜔ℎ𝑝2 = 0 where there is 

no effect of high-pass filtering. Decreasing the scale-factor 𝑘 raises the gain error 
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but has no effect on the phase error, and increasing the frequencies raise both the 

gain and phase errors. In the phase error figure, there is a sudden change of values 

that is due to the low-pass filter cut-off frequency 𝜔𝑙𝑝2 = 1.5 and the high-pass filter 

frequency values below that generated a significant phase distortion. The 

parameter settings where both the normalised gain and phase errors have values 

greater than 0.44 and where those exceed a maximum limit of ±2.5 meters 

excursion with was omitted from the plot (middle figures), and presented in the 

same plot (bottom figure). The intersections of the two volumes of phase and gain 

errors show using a 𝑘 = 0.36 − 0.61, 𝜔ℎ𝑝1 = 1.1 − 1.85, 𝜔ℎ𝑝2 = 0.2 − 0.5 𝑟𝑎𝑑/𝑠 

minimises both of the gain and phase errors respectively and also respect the MP 

constraints. Overall it is observable that using large 𝜔ℎ𝑝1 and smaller 𝜔ℎ𝑝2 results in 

lower gain and phase errors.  

  

  

 

Figure 7-16. The frequency domain gain, phase errors in a range of filter 
parameters (top), cropped out settings with excursions greater 
than 2.5 (m) and errors greater than normalised value of 0.4 
(middle) and both in same plot (bottom), high-pass and low-pass  
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7.3 Tuning of MPC motion cueing algorithm 

A general schematic structure of the MPC algorithm was presented in Figure 4-4. 

The input to the MCA is vehicle motion, while the output is the desired MP set 

points. The controller tries to find optimal solutions to minimise the error between 

the perceived input and simulator accelerations while keeping the motion platform 

within its constraints. In this model, there is no filter scale-factor and cut-off 

frequencies to be tuned as in the classic model, but there are weights on the control 

inputs and plant outputs tracking variables that balances between the signals, 

control and prediction horizons, in addition to constant and variable reference input 

that defines the generated profile of motion.  

There are separate channels to represent transient translational movements of MP, 

and the sustained motions by the tilt coordination through rotational movements. In 

the MPC algorithm the MP constraints e.g. the maximum envelope is always 

respected since those are defined explicitly in the model, however further tuning is 

required to choose the best set of MCA parameters to achieve optimum values of 

the measurement metrics, adding washout effect. These initial parameter 

candidates could be further refined based on the drivers’ subjective comments and 

their performance. The model used in this section for the offline tuning considers 

the translational motion of an MP together with tilt in a single direction of movement. 

Thus, there are two control inputs 𝑢 for translational and tilt motions and six plant 

output 𝑦 corresponding to the translational, tilt and summation of both. 

In the translational motions of the MP (e.g. sliding rail) in surge or sway directions, 

there are three weights on the plant output tracking variables i.e. acceleration 

tracking weight 𝑤𝑡𝑟,𝑎, velocity tracking weight 𝑤𝑡𝑟,𝑣 and position tracking weight 

𝑤𝑡𝑟,𝑝 and a single weight on the control input 𝑤𝑢,𝑡𝑟. The acceleration is tracking the 

reference input perceived acceleration while the velocity and position are tracking 

zero reference input that helps washout of the MP to its neutral of constant input 

accelerations where the MP workspace constraints are met. The washout effect 

could be done by weighting the control input acceleration 𝑤𝑢𝑟, however large 

weights on the control input cause a slow response of the controller. In the design 

of the MPC model used here, where there are constraints on the control input 𝑢 

then the weights do not have a significant effect, but in case of free constraints, the 

weights need to have a moderate value that keeps the controller to avoid large 

changes but also keeping it quick enough.  

In the tilt motion, there are, two weights on the plant output tracking variables i.e. 

acceleration tracking weight 𝑤𝑡𝑙,𝑎, and position tracking weight 𝑤𝑡𝑙,𝑝 and a single 

weight on the control input 𝑤𝑢,𝑡𝑙. The acceleration is tracking the reference input 
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perceived acceleration while the position is tracking zero reference input that brings 

the MP to neutral. There is also a weight on the summation of the translational and 

tilting acceleration that has a significant role in tracking perceived input 

acceleration, and balances between the two.   

Other important variables in the MPC algorithm are the prediction 𝐻𝑝 and control 

horizon 𝐻𝑢 that affect the generated motion profile remarkably. The larger values of 

both of the horizons lead to more optimal solutions at each time instance. However 

it also increases the computational efforts that might make it infeasible for real-time 

simulation, hence there is always a trade-off. There is another major issue in using 

the MPC algorithm as MCA, which is the reference input. The MPC model needs to 

have look-ahead information about the future of the reference input signal up to the 

prediction horizon. This information is often available in the MPC’s original 

applications such as the chemical and process industry, where the changes of the 

reference input are steady and mostly known by the designers. During driving, the 

vehicle motion as the reference input changes quickly and many of the occasions it 

is unpredictable, that’s even more complicated because it gets subjective since 

each driver has its own way of driving. The problem of precise look-ahead 

information arises from the fact that a large control and prediction horizon only lead 

to the optimal solution if the reference input is known up to the horizon otherwise it 

deteriorates the generated motion and smaller horizons are preferable.     

Translational, tilt and total accelerations generated in the response of MPC 

algorithm to various input accelerations is shown using a single set of weights of 

𝑤𝑡𝑟𝑎 = 3, 𝑤𝑡𝑟𝑣 = 1.5, 𝑤𝑡𝑟𝑝 = 1, 𝑤𝑡𝑙𝑎 = 3, 𝑤𝑡𝑙𝑝 = 1, 𝑤𝑡𝑜𝑡𝑎𝑙 = 5, and prediction 𝐻𝑝 = 1 

and control 𝐻𝑢 = 0.2 seconds horizons are shown in Figure 7-17. The other model 

parameters are selected to have 1 𝑚/𝑠2 or 5.84 𝑑𝑒𝑔 of tilting, and the tilt angular 

velocity and accelerations below the 4.3 𝑑𝑒𝑔/𝑠𝑒𝑐 and 23.5 𝑑𝑒𝑔/𝑠𝑒𝑐2, see Appendix 

D. The model sampling time is 50 Hz or 0.02 s.   
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Figure 7-17. Acceleration and position response of the MPC model, to step, 
square, triangle-square, sinusoid and vehicle lateral acceleration 
inputs, fixed look-ahead reference input 

Due to the nonlinear characteristics of the MPC algorithm, the calculation of exact 

frequency response of the model is not a straight forward task, therefore an 

estimation method is used to calculate the frequency response of the model and the 

measurement metrics. The frequency estimation considers the model’s 

translational, tilting and total acceleration response to sinusoid input accelerations 

of various frequencies defined in the range of the frequency of interest, those have 

an amplitude value of 2 𝑚/𝑠2. It estimates the amplitude attenuation and phase 

shifting of output sinusoids compared to inputs and draws the frequency response. 

The Bode plot of the translational, tilting and total output acceleration using the 

same set of parameters used earlier is shown in Figure 7-18.   

 

Figure 7-18. Bode frequency response of the MPC model    
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The other variables affecting the MPC response to vehicle motion is the prediction 

𝐻𝑝 and control 𝐻𝑢 horizons, in addition to whether there is look-ahead information 

of the reference input available or it is assumed constant over the prediction 

horizon. The prediction and control horizons affect the optimality of the control input 

solution and it often needs to be selected depending on the stability of the plant 

model. The meaningful optimisation problem requires a well-posed condition where 

there is a similarity between the open and closed-loop response of the system, as 

opposed to ill-posed condition. Using the low prediction horizon usually leads to 

poor predictions and does not deal with the non-min phase, unstable and oscillatory 

open-loop dynamics, however as it is described later this is true only if there is look-

ahead information of the reference input available.   

In case of stable open-loop dynamics of the system and small control horizon, if the 

prediction horizon is small then emphasis of the control response is more on the 

transient response than the steady-state, and its considered to be ill-posed, while if 

the prediction horizon is large there is more emphasis on the steady-state response 

than transient and could be considered as well-posed. Therefore, the prediction 

horizon is better to be long enough beyond the open-loop steady-state settling time 

of the plant model, although this might be in the order of few seconds that cannot 

be achieved by the controller due to computational burden. This is true with the 

settling time of the otolith models employed here, thus a mediocre value for the 

prediction horizon need to be selected. For such systems, increasing the weight on 

the control input decreases the control activity and it requires a large control horizon 

to get to the steady-state response.  

For the unstable open-loop dynamics, having large prediction and small control 

horizons results in divergent and meaningless predictions, and the same happens if 

the control horizon is larger than the prediction, hence for such systems both the 

control and prediction horizons need to be large. Therefore, it is best to start with 

the large prediction and control horizons and decrease them to get to the desired 

closed-loop response. For such systems, the weights on the control input need to 

be small and increasing the weight deteriorates the response.  

To get a better understanding of the effect of prediction 𝐻𝑝 and control 𝐻𝑢 horizons, 

and the fixed or variable look-ahead reference inputs, the response of the MPC 

model to various input accelerations is shown in Figure 7-19 to Figure 7-22. The 

remainder of the model parameters are selected to have reasonable values of 1 

𝑚/𝑠2 or 5.84 𝑑𝑒𝑔 of tilting, the tilt angular velocity and accelerations below the 

4.3 𝑑𝑒𝑔/𝑠𝑒𝑐 and 23.5 𝑑𝑒𝑔/𝑠𝑒𝑐2 (see Appendix D), and the weight factors of 𝑤𝑡𝑟_𝑎 =

5, 𝑤𝑡𝑟_𝑣 = 4, 𝑤𝑡𝑟_𝑝 = 2, 𝑤𝑡𝑙_𝑎 = 8, 𝑤𝑡𝑜𝑡𝑎𝑙_𝑎 = 10, 𝑤𝑡𝑙_𝑝 = 2. The model control 

sampling time is 50 Hz or 0.02 s, as a result, the horizons are multiplications of the 
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0.02 s e.g. 𝐻𝑝 = 100 is a 2 s of the prediction horizon. After many trial and errors, it 

was best decided to keep the control input 𝐻𝑢 to be 0.2 of the 𝐻𝑝 in all settings.  

The model response to step input acceleration is shown in Figure 7-19. the figures 

on the left show the translations, tilt and total acceleration that drivers perceive in 

the simulator while the look-ahead information is constant up to the prediction 

horizon. For the translational motion, in small horizons, there are the largest true 

and false accelerations where the false is greater than true cues. Increasing the 

horizons both of the true and false cues decrease, and true gets greater than false 

while having very large horizons deteriorates the response. The increase of 

horizons, slightly raises the gain and phase errors. A similar trend is observable for 

the total motion of true and false accelerations, while the gain error has fluctuated 

and phase is reduced, with the increase of horizons. For the tilt motion there is no 

significant change, where there is a slight increase in true cues and rise of phase 

error with the increase of horizons. The frequency analysis of other inputs 

described next figures is the same but repeated in the plots.  

The figures on the right show where there is variable look-ahead information 

available, the first thing is that the controller starts generating motion in advance of 

initiation of the input acceleration, that is counted as false cues in the measurement 

metrics. For the translational motion having small horizons, there are large false 

cues compared to true cues, an increase of horizons causes a slight raise of true 

and significant reduction of false cues. A similar trend is observable for the total 

motion. For the tilt motion, there are no significant changes, where there is a slight 

increase in false cues with the increase of horizons. The frequency analysis for the 

variable look-ahead information is not straight forward and is omitted from figures. 

From the above the observations the best setting is the 𝐻𝑝 = 60 and 𝐻𝑢 = 12 for 

both fixed and variable reference inputs, where the true cue goes greater than the 

false cue and there is acceptable amount of phase and gain errors.  
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Figure 7-19. Time response of the MPC model to step input in various 
prediction 𝑯𝒑 and control horizons 𝑯𝒖 in both constant (left) and 

variable reference look-ahead inputs (right) 

The model response to triangle-square input acceleration is shown in Figure 7-20. 

The figure on the left is constant look-ahead information. For the translational 

motion, in small horizons, the true and false accelerations are the largest where the 

false is greater than true cues. Increasing the horizons both of the true and false 

cues decrease and true gets greater than false, while having very large horizons it 

deteriorating the response. Similar trend is observable for the total motion. For the 
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tilt motion, there are no significant changes, where there is slight increase in true 

and false cues with the increase of horizons.  

The figure on the right there is variable look-ahead information available. For the 

translational motion having small horizons, there are large false cues compared to 

true cues, as the horizons increase there is a slight rise of true and decrease of the 

false cues. A similar trend is observable for the total motion. For the tilt motion with 

the increase of horizons, there is a small improvement of true and reductions of 

false cues. From the above observations, the best setting is the 𝐻𝑝 = 60 and 𝐻𝑢 =

12 for the fixed, where the true cue goes greater than the false cue and there is 

acceptable amount of phase and gain errors. For the variable reference inputs also 

this is an acceptable setting since the improvements are minor compared to the 

computational burden it adds. 

Similar response of the MPC model is observable to other square, sinusoid and 

vehicle motions inputs, where the varying extent of changes of the metrics is 

observable. Between the sinusoid (Figure 7-21) and vehicle motion (Figure 7-22) 

inputs with constant look-ahead, the large horizon worsens the translational motion 

to a larger extent in sinusoid compared to vehicle motion. It was the reason to 

reduce the horizons on the lateral motion cueing of the slalom task described in the 

low-friction experiment, see section 5.4.2. Moreover, comparing the MPC (Figure 

7-21) and classic (Figure 7-3) models response to a sinusoid input, it is observable 

of better performance of classic compared to the MPC; indicative of classic to be 

more appropriate for more evasive manoeuvres such as slalom. Need to be 

mention again that the weights and filter parameters have also had a major effect 

on the response of the MPC and classic algorithms respectively, which could lead 

to further improvements.    
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Figure 7-20. Time response of the MPC model to triangle-square input in 
various prediction 𝑯𝒑 and control horizons 𝑯𝒖 in both constant 

(left) and variable reference look-ahead inputs (right) 
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Figure 7-21. Time response of the MPC model to sinusoid input in various 
prediction 𝑯𝒑 and control horizons 𝑯𝒖 in both constant (left) and 

variable reference look-ahead inputs (right) 
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Figure 7-22. Time response of the MPC model to vehicle lateral acceleration 
input in various prediction 𝑯𝒑 and control horizons 𝑯𝒖 in both 

constant (left) and variable reference look-ahead inputs (right) 

In summary, it is concluded that, for the translational and total motion with the 

constant look-ahead information, increasing the horizons up to a level improves the 

response that balances between the true and false cues and reduces the phase 

errors, but having a very large horizon deteriorates the response significantly by 

generating very small true cues. In the tilt motion, there is always a slight increase 

for both true and false cues, with the increase of horizons, all shows that when the 

constant look-ahead information is available a very large prediction and control 
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horizons need to be avoided. For the translational and total motion with the variable 

look-ahead information, increasing the horizons improves the response in general. 

However, up to a level the improvements are more significant, which slightly 

improves with the further increase of horizons, bearing in mind the cost of 

computations. In the tilt motion, there is always a slight increase for the of true and 

decrease of the false cues with the increase of horizons, that shows improvement 

for tilt motion.  

The time and frequency response of the MPC model for a set of parameters were 

presented, and the proposed measurement metrics calculated. In a broader 

perspective, it is essential to find out how the variations of the parameters could 

affect the metrics and to decide on the best set of parameters as an optimal 

solution(s). Therefore, in the next few sections, the effect of variation of the model 

parameters on the measurement metrics are reviewed for the translational, tilting 

and total motions of the simulator.   

 Translational motion 

The translational motion generated by the MPC model is affected by the three 

weights of perceived acceleration tracking 𝑤𝑡𝑟,𝑎, velocity tracking 𝑤𝑡𝑟,𝑣 and position 

tracking 𝑤𝑡𝑟,𝑝 and a single weight on the control input 𝑤𝑢,𝑡𝑟, In the first step, the 

effect of weights are reviewed using fixed prediction 𝐻𝑝 = 0.6 and control horizon 

𝐻𝑢 = 0.1 seconds. The weight of the control input 𝑤𝑢,𝑡𝑟 = 1 found to be an 

appropriate value that keeps the control signal not reaching too high values and not 

slowing down the control response.  

The time response to the input vehicle lateral acceleration in the LHT manoeuvre is 

shown in Figure 7-23 top, and the settings of low true and high false cues are 

cropped out in the bottom figures. It is observable that increasing the 𝑤𝑡𝑟,𝑎 raises 

the true and false cues, while increasing the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 both reduce the true 

and false cues. Moreover, at a constant 𝑤𝑡𝑟,𝑎 there is a trade-off between the 𝑤𝑡𝑟,𝑝 

and 𝑤𝑡𝑟,𝑣, where in general having the 𝑤𝑡𝑟,𝑣 greater than 𝑤𝑡𝑟,𝑝 results in more true 

and less false cues. In the cropped out settings of the true cues, there seems to be 

a straight line describing the relation between the 𝑤𝑡𝑟,𝑎 with 𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑝 having 

two different slopes, representing the fact that the 𝑤𝑡𝑟,𝑎 needs to be higher than 

both 𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑝 to have high amount of true cues, although it increases the 

false cues as well.  

The best parameters settings are where the true acceleration is maximum and the 

false acceleration is minimum, from the plots a setting around the 𝑤𝑡𝑟,𝑎 = 8, 𝑤𝑡𝑟,𝑣 =

6 and 𝑤𝑡𝑟,𝑝 = 2 generates a good amount of true cues while it keeps false cues as 

little as possible. In the MPC model, the MP envelope is always respected, hence in 
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these figures the excursions are always below a maximum excursion limit of ±2.5 

meters (UoLDS workspace limit). However, these plots might slightly change to 

other vehicle acceleration inputs.  

 
 

  

Figure 7-23. The time domain true and false output accelerations in a range of 
weight factors (top), cropped out settings Tr>0.6 and Fs<0.2 
(bottom), MPC translational motion 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-24 top. It is observable that 

increasing the 𝑤𝑡𝑟,𝑎 reduces the gain error, while increasing the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 

could raise the gain and reduce the phase errors. Depending on the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 

values, the phase error shows raise with an increase of 𝑤𝑡𝑟,𝑎, and there seems to 

be a border of 𝑤𝑡𝑟,𝑣 ≥ 𝑤𝑡𝑟,𝑎 where the phase error is minimum. In the cropped out 

settings (middle figures) the minimum gain error is where the 𝑤𝑡𝑟,𝑝 is small and the 

𝑤𝑡𝑟,𝑣, 𝑤𝑡𝑟,𝑎 are relatively larger. At a particular 𝑤𝑡𝑟,𝑎, the 𝑤𝑡𝑟,𝑣 needs to have higher 

value than the 𝑤𝑡𝑟,𝑝 to achieve the minimum phase error. The intersection of the 

phase and gain error volumes is shown in the bottom figure suggests at a setting 

around the 𝑤𝑡𝑟,𝑎 = 8, 𝑤𝑡𝑟,𝑣 = 6 and 𝑤𝑡𝑟,𝑝 = 2 the phase and gain errors are at a 

reasonable value.  
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Figure 7-24. The frequency domain gain, phase errors in a range of weight 
factors (top), cropped out settings Gn<0.2 and Ph<0.3 (middle), and 
both in the same plot (bottom), MPC translational motion 

 

 Tilt motion 

The tilt motion generated by the MPC model is affected by the two weights of 

perceived acceleration tracking 𝑤𝑡𝑙,𝑎, and position tracking 𝑤𝑡𝑟,𝑝 and a single weight 

on the control input 𝑤𝑢,𝑡𝑙. Same as the classic MCA the acceleration generated by 

the tilting depends on three variables of maximum tilt angle 𝜃𝑚𝑎𝑥 which in the MPC 

model is defined by a constraint on the plant output tilt degree, tilt angular velocity 

�̇�𝑚𝑎𝑥, and tilt angular acceleration �̈�𝑚𝑎𝑥 both are defined by the constraints on the 

control input and its rate of changes. The tilt parameters are set to be same as 
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what was presented in the classic MCA, 𝜃𝑚𝑎𝑥 = 5.84 𝑑𝑒𝑔 or 1 𝑚/𝑠2, the tilt 

angular velocity �̇�𝑚𝑎𝑥 = 3.22 𝑑𝑒𝑔/𝑠𝑒𝑐 and accelerations �̈�𝑚𝑎𝑥 = 13.14 𝑑𝑒𝑔/𝑠𝑒𝑐
2, 

see Appendix D. 

The effect of weights on the output variables are reviewed using fixed prediction 

𝐻𝑝 = 0.6 and control horizon 𝐻𝑢 = 0.1 seconds. The weight on the control input 

𝑤𝑢,𝑡𝑟 = 1 found to be an appropriate value. The time response to the input vehicle 

lateral acceleration in the LHT manoeuvre is shown in Figure 7-25. It is observable 

that the true and false acceleration surfaces are separated and increasing the 𝑤𝑡𝑙,𝑎 

raises the true cues and slightly the false cues when the 𝑤𝑡𝑙,𝑝 ≠ 0, while decreasing 

the 𝑤𝑡𝑙,𝑝 raises the true and false cues. This indicates the 𝑤𝑡𝑙,𝑎 needs to be bigger 

than the 𝑤𝑡𝑙,𝑝, while the 𝑤𝑡𝑙,𝑝 ≠ 0 (this is required to tilting back the MP to a neutral 

position). In the MPC model, the tilt angular velocity and acceleration thresholds are 

always respected, hence in these figures, those are always below the maximum 

values.  

 

Figure 7-25. The time domain true and false output tilt acceleration felt 
through tilting in a range of weight factors, MPC tit motion 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-26. It is observable that 

increasing the 𝑤𝑡𝑙,𝑎 reduces the gain and raise the phase errors, while increasing 

the 𝑤𝑡𝑙,𝑝 raises the gain and reduces phase errors. The intersection borderline of 

the two surfaces (right figure) suggests that the weight values of 𝑤𝑡𝑙,𝑎 and 𝑤𝑡𝑙,𝑝  

where 𝑤𝑡𝑙,𝑎 being slightly bigger than 𝑤𝑡𝑙,𝑝 results to have minimum phase and gain 

errors.  
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Figure 7-26. The frequency domain gain, phase errors in a range of weight 
factors, MPC tit motion 

 

 Translational and tilt motions  

In the previous sections, the effect of variation of the weight factors on the time and 

frequency response of the translational and tilt motions were presented. For both 

the translational and tilt motions the best set of parameters were introduced to 

minimise the errors. In this section, the same time and frequency response of the 

combination of translational and tilt are reviewed. For the tilting motion, a single set 

of constraints are chosen to keep the tilt angular velocity and accelerations below 

the 3.22 𝑑𝑒𝑔/𝑠𝑒𝑐 and 13.14 𝑑𝑒𝑔/𝑠𝑒𝑐2 respectively, similar to what was used in 

tuning of the classic, see Appendix D. The weights on the control input variables 

are chosen to be 𝑤𝑡𝑟,𝑢 = 1, 𝑤𝑡𝑙,𝑢 = 1. The varying parameters, in this case, include 

two examinations of a) reviewing the effects of changing the weights on the 

acceleration tracking variables 𝑤𝑡𝑙,𝑎, 𝑤𝑡𝑟,𝑎 and 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 while keeping the other 

𝑤𝑡𝑙,𝑝 = 2, 𝑤𝑡𝑟,𝑣 = 4, 𝑤𝑡𝑟,𝑝 = 2 constant values, selected based on the appropriate 

values found in the previous sections b) reviewing the effect of changing the 

weights on the translational velocity and position tracking variables 𝑤𝑡𝑟,𝑣, 𝑤𝑡𝑟,𝑝 and 

total acceleration tracking 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 while keeping the other acceleration tracking 

variables 𝑤𝑡𝑟,𝑎 = 0, 𝑤𝑡𝑙,𝑎 = 0 to let the controller decide between the tilt and 

translational motions, and the tilt position tracking 𝑤𝑡𝑙,𝑝 = 2 constant value.  

The time response to the input vehicle lateral acceleration in the LHT manoeuvre 

for the first scenario is shown in Figure 7-27 top and the settings of low true and 

high false cues are cropped out in the bottom figures. Increasing all the three 

weights raises both of the true and false cues, where the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎 have 

more significant effects on increasing the true cues, and 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑟,𝑎 on 

increasing the false cues. In the cropped out settings, the maximum true cues are 

at the highest weight 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8 in a range of 𝑤𝑡𝑟,𝑎 being around 4 and the 𝑤𝑡𝑙,𝑎 =

8. That indicates having a large value for the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎, a nearly half as 

large value for the 𝑤𝑡𝑟,𝑎 generates most of the true accelerations. The maximum 
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false cues among the cropped out settings is at the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 2, 𝑤𝑡𝑟,𝑎 = 3 and 

𝑤𝑡𝑙,𝑎 = 4 while the tilt acceleration weight does not have a major effect. In the 

bottom figure, both of the cropped true and false cues are shown where that 

overlap shows an area of more optimal settings near the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 5, 𝑤𝑡𝑟,𝑎 = 3, 

𝑤𝑡𝑙,𝑎 = 8.  

 
 

  

 

Figure 7-27. The time domain true and false output accelerations in a range of 
weight factors (top), cropped out settings Tr>0.7 and Fs<0.5 
(middle) and both in the same plot (bottom), MPC translational and 
tilt motion 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-28 top. Increasing the 
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𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎 have a major impact on reducing the gain and phase errors, while 

increasing the 𝑤𝑡𝑟,𝑎 reduces the gain and phase errors only when the other weights 

are small. In the cropped out settings (bottom figure) the minimum gain error is at 

the highest weight for the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8 and the 𝑤𝑡𝑙,𝑎 = 8, being similar in a range of 

𝑤𝑡𝑟,𝑎. That indicates having a large value for the total and tilt accelerations 

generates the least gain error. Increasing 𝑤𝑡𝑙,𝑎 have a significant effect on reducing 

the phase errors especially in larger 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎. From the cropped phase figure there 

are some other settings near the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 𝑤𝑡𝑙,𝑎 = 1 and the 𝑤𝑡𝑟,𝑎 = 0 that have the 

lowest phase errors but in this area the gain error is no minimum. From these 

observations, it is concluded that having large weights on the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎, and 

small to medium weight on the 𝑤𝑡𝑟,𝑎 minimises the gain error and results in 

acceptable phase error.  

  

  

Figure 7-28. The frequency domain gain, phase errors in a range wright 
factors (top), cropped out settings Gn<0.2 and Ph<0.2 (middle), and 
both in same plot (bottom), MPC translational and tilt motion 

The time response to the input vehicle lateral acceleration for the second scenario 

is shown in Figure 7-29 top and the settings of low true and high false cues are 

cropped out in the bottom figures, that is similar to what is described in the only 

translational motion section. Increasing the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and decreasing the 𝑤𝑡𝑟,𝑣 

and 𝑤𝑡𝑟,𝑝 weights raises the true and false cues. In a constant 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 increase of 

the 𝑤𝑡𝑟,𝑝  have more significant effects on increasing the false cues than 𝑤𝑡𝑟,𝑣, 
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where the opposite is true for the true cues i.e. increase of the 𝑤𝑡𝑟,𝑣  have more 

significant effects on increasing the true cues than 𝑤𝑡𝑟,𝑝. In the cropped out 

settings, the maximum true cues are at the highest with weight 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8 and 

𝑤𝑡𝑟,𝑎 = 𝑤𝑡𝑟,𝑣 = 0 however this setting results in an oscillatory response of the MPC 

model and there is no washout to the neutral position of MP. There seems to be a 

straight line describing the relation between the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 with 𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑝 having 

two different slopes, representing the fact that the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 needs to be higher than 

both 𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑝 to have a higher amount of true cues. From both of the plots a 

setting around the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8, 𝑤𝑡𝑟,𝑣 = 6 and 𝑤𝑡𝑟,𝑝 = 2, generates a good amount of 

true cues while it keeps the false cues as little as possible.  

 
 

 
 

Figure 7-29. The time domain true and false output accelerations in a range of 
weight factors (top), cropped out settings Tr>0.6 and Fs<0.2 
(bottom), MPC translational and tilt motion 

The frequency response of the model to different parameter settings are measured 

by the gain 𝐺𝑛𝑒𝑟𝑟 and phase 𝑃ℎ𝑒𝑟𝑟 errors, see Figure 7-30 top. It is observable that 

increasing the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 reduces the gain error, while increasing the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 

raises the gain error. Depending on the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 values, the phase error 

shows raise with the increase of the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎, and decreases and fluctuates with the 

increase of 𝑤𝑡𝑟,𝑣, and increases with the increase of 𝑤𝑡𝑟,𝑝. In the cropped out 
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settings (bottom figures) having both 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑟,𝑝 large and 𝑤𝑡𝑟,𝑣 small values 

results in the worst phase error. Where the 𝑤𝑡𝑟,𝑝 is small (below 4) the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 could 

have the largest value together with medium 𝑤𝑡𝑟,𝑣. The area with both of gain errors 

to be minimum at expense of slightly more phase error seems to be around 

𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8, 𝑤𝑡𝑟,𝑣 = 8 and 𝑤𝑡𝑟,𝑝 = 1. Moreover, a setting of 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 4.5, 𝑤𝑡𝑟,𝑣 = 2 

and 𝑤𝑡𝑟,𝑝 = 1 minimises both of the gain and phase errors to an acceptable level. In 

total having a large value for the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎, medium value for the 𝑤𝑡𝑟,𝑣 and small 

value for the 𝑤𝑡𝑟,𝑝 is an appropriate choice for this scenario of tuning.  

  

 
 

Figure 7-30. The frequency domain gain, phase errors in a range wright 
factors (top), cropped out settings with Gn<0.4 and Ph<0.2 
(middle), and both in the same plot (bottom), MPC translational and 
tilt motion 

7.4 Discussion and conclusions 

In this chapter with the aim of a better understanding about the effect of MCA 

parameters on motion cueing, the classic and MPC models’ time and frequency 

domain responses were analysed to the variations of their parameters. Using the 

measurement metrics as tools of comparison, it has been tried to figuratively 

address the effect of the parameters on the motion cues that in fact are the 

commands to the simulator motion platform.  
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The translational, tilt and total motions were considered separately to find out the 

optimal parameter settings that balance between the measurement metrics. The 

separate analysis of translational and tilt was to provide general guidelines for 

tuning the MCAs, in case each is used independently for a simulation. The analysis 

merely looked at the input/output of the MCA response to find the optimal 

parameters. However, it is possible to further optimise the parameters by including 

vestibular perception models and thresholds in the analysis of the translational and 

tilt motions. 

For both classic and MPC algorithms, in the first step, the time and frequency 

response of models with a single set of parameters were presented, and the 

proposed measurement metrics were calculated to capture the effect of motion 

inputs such as step, square, triangle-square and sinusoid. Moreover, the choice of 

an optimal setting in time and frequency domain depends on the required motion 

platform excursions to a vehicle input acceleration. The maximum MP excursion 

±2.5 metre was included as another variable to select the best range of parameters 

in the classic algorithm.   

In the next step, the variation to the MCA parameters was reviewed, where the 

lateral motion of the vehicle during a large motion demanding manoeuvre (LHT) 

including many curves and straight lines obtained from the experiment described in 

Chapter 5 was used. It is possible to use the same approach of tuning for the 

motion of the vehicle in more restricted manoeuvres such as double lane change 

and slalom, as well as longitudinal motion of the vehicle in manoeuvres such as 

accelerating, braking and emergency braking. This might slightly change the range 

of the optimal parameters. 

In MPC it was concluded that, for the translational and total motion with the 

constant look-ahead information, increasing the horizons up to a level improves the 

response that balances between the true and false cues and reduces the phase 

errors, but having a very large horizon deteriorates the response significantly by 

generating very small true cues. In the tilt motion, there was always a slight 

increase for both true and false cues with the increase of horizons, all shows that 

when the constant look-ahead information is available a very large prediction and 

control horizons need to be avoided.  

For the translational and tilt motion with the variable look-ahead information, 

increasing the horizons improved the response in general. However, up to a level 

improvement is more significant, which slightly improves with the further increase of 

horizons, bearing in mind the addition to the cost of computations. In the tilt motion, 
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there was always a slight increase for the of true and decrease of the false cues 

with the increase of horizons, that shows improvement for tilt motion.  

 Classic parameters 

For the translational motion, the time domain analysis of the first order high-pass 

filter showed that a small scale-factor of 𝑘 = 0.07 and cut-off frequency of 𝜔ℎ𝑝1 =

2.1 𝑟𝑎𝑑/𝑠 was an optimal setting to maximise true against false cues. In the 

frequency domain, to keep the gain and phase errors to a minimum, a small scale-

factor of 𝑘ℎ𝑝 = 0.02 and cut-off frequency of 𝜔ℎ𝑝 = 0.7 𝑟𝑎𝑑/𝑠 was found to be an 

optimal setting.  

The time domain analysis of the second order high-pass filter showed that a small 

scale-factor of 𝑘 = 0.15 and cut-off frequency of 𝜔ℎ𝑝2 = 0.42 𝑟𝑎𝑑/𝑠 was needed to 

maximise true against false cues. In the frequency domain to keep the gain and 

phase errors to a minimum, a very small scale-factor of 𝑘ℎ𝑝 = 0.037 and cut-off 

frequency of 𝜔ℎ𝑝 = 0.21 𝑟𝑎𝑑/𝑠 was found to be an optimal setting. 

The frequency domain analysis of the third order high-pass filter showed that a 

scale-factor of 𝑘 < 0.2, and small cut-off frequency of 𝜔ℎ𝑝1 < 0.5 𝑟𝑎𝑑/𝑠 in a range of 

𝜔ℎ𝑝2 minimises both of the gain and phase errors. 

The small scale-factor of the high-pass filters obtained in both time and frequency 

analysis allows the selection of lower cut-off frequencies that decrease the phase 

error. Hence, a wider frequency range of vehicle motions could be represented to 

the drivers, although the small scale-factor decreases the amplitude of the motion. 

This needs further experimentation to find out if the drivers prefer the smaller scale-

factors, or they may find the larger scale-factor more realistic.  

The second order low-pass tilt filter parameters are often limited to a single set of 

parameters that meet the requirement of a desired angular velocity and 

acceleration. Thus, not much flexibility is available in compromising between the 

minimum phase and gain errors.  

The response of the combination of the third order high-pass filter with varying 

parameters and the second order low-pass filter with fixed parameters was 

reviewed. The low-pass filter parameters of ζ = 1 and 𝜔𝑙𝑝2 = 1.5 keeps the tilt 

angular velocity and accelerations below the 3.22 𝑑𝑒𝑔/𝑠𝑒𝑐 and 13.14 𝑑𝑒𝑔/𝑠𝑒𝑐2. In 

the time response, settings with a scale-factor of 𝑘ℎ𝑝 < 0.2 and cut-off frequencies 

of 𝜔ℎ𝑝1 < 0.4, 𝜔ℎ𝑝2 < 0.3 had the optimal true and false accelerations. The 

frequency response showed that a scale-factor of 𝑘 = 0.36 − 0.61, 𝜔ℎ𝑝1 = 1.1 −

1.85, 𝜔ℎ𝑝2 = 0.2 − 0.5 𝑟𝑎𝑑/𝑠 minimises both of the gain and phase errors 

respectively and also respects the MP constraints. Overall it was observable that 

using large 𝜔ℎ𝑝1 and smaller 𝜔ℎ𝑝2 results in lower gain and phase errors.  



267 
 

 MPC parameters 

In the translational motion, the time domain analysis of the weights on acceleration 

𝑤𝑡𝑟,𝑎, velocity 𝑤𝑡𝑟,𝑣 and position 𝑤𝑡𝑟,𝑝  output variables showed that in general 

having the 𝑤𝑡𝑟,𝑣 greater than 𝑤𝑡𝑟,𝑝 results in more true and less false cues. In the 

frequency domain to keep the gain and phase errors to a minimum, the 𝑤𝑡𝑟,𝑝 needs 

to be small and the 𝑤𝑡𝑟,𝑣, 𝑤𝑡𝑟,𝑎 relatively larger. A set of parameters of 𝑤𝑡𝑟,𝑎 = 8, 

𝑤𝑡𝑟,𝑣 = 6 and 𝑤𝑡𝑟,𝑝 = 2 found to maximise the true cues while it kept the false cues 

as little as possible, in this setting the phase and gain errors were at a reasonable 

value.  

The tilt motion response is affected by the two weights on the perceived 

acceleration tracking 𝑤𝑡𝑙,𝑎, and position tracking 𝑤𝑡𝑟,𝑝. The output tilt degree, 

angular velocity and acceleration, control and prediction horizon were fixed and 

defined by the constraints. The review of the effects of weights in time and 

frequency domain showed the 𝑤𝑡𝑙,𝑎 needs to be bigger than the 𝑤𝑡𝑙,𝑝, to have 

maximum true cues compared to false, and to have minimum gain and phase 

errors.  

The response of the combination of translational and tilt motions with fixed tilt 

angular velocity and accelerations below the 3.22 𝑑𝑒𝑔/𝑠𝑒𝑐 and 13.14 𝑑𝑒𝑔/𝑠𝑒𝑐2, was 

reviewed. The varying parameters, in this case, included two scenario examinations  

a) reviewing the effects of changing the weights on the acceleration tracking 

variables 𝑤𝑡𝑙,𝑎, 𝑤𝑡𝑟,𝑎 and 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 while keeping the other velocity and position 

weights 𝑤𝑡𝑙,𝑝 = 2, 𝑤𝑡𝑟,𝑣 = 4, 𝑤𝑡𝑟,𝑝 = 2 constant. 

The time response of the model showed having a large value for the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 

𝑤𝑡𝑙,𝑎, and a nearly half as large value for the 𝑤𝑡𝑟,𝑎 generates most of the true 

accelerations. The change of tilt acceleration weight 𝑤𝑡𝑙,𝑎 did not have a major 

effect. A set of optimal setting was near the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 5, 𝑤𝑡𝑟,𝑎 = 3, 𝑤𝑡𝑙,𝑎 = 8. The 

frequency response showed, increasing the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎 have a major impact 

on reducing the gain and phase errors, while increasing the 𝑤𝑡𝑟,𝑎 reduces the gain 

and phase errors only when the other weights are small. It was concluded that 

having large weights on the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 and 𝑤𝑡𝑙,𝑎, and small to medium weight on the 

𝑤𝑡𝑟,𝑎 minimises the gain error and results in acceptable phase error. 

b) reviewing the effect of changing the weights on the translational velocity and 

position tracking variables 𝑤𝑡𝑟,𝑣, 𝑤𝑡𝑟,𝑝 and total acceleration tracking 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 while 

keeping the other acceleration tracking variables 𝑤𝑡𝑟,𝑎 = 0, 𝑤𝑡𝑙,𝑎 = 0 to let the 

controller decide between the tilt and translational motions, and the tilt position 

tracking 𝑤𝑡𝑙,𝑝 = 2 constant. 
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The time response of the model showed the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 needs to be higher than both 

𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑝 to have a high amount of true cues. A set of optimal setting was near 

the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 8, 𝑤𝑡𝑟,𝑣 = 6 and 𝑤𝑡𝑟,𝑝 = 2, that generates a good amount of true cues 

while it keeps the false cues as little as possible. The frequency response showed, 

increasing the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 reduces the gain error, while increasing the 𝑤𝑡𝑟,𝑝 and 𝑤𝑡𝑟,𝑣 

raises the gain error. The phase error showed mixed dependency on the changes 

in 𝑤𝑡𝑟,𝑝, 𝑤𝑡𝑟,𝑣 and 𝑤𝑡𝑟,𝑎. It was concluded that having a large value for the 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎, 

medium value for the 𝑤𝑡𝑟,𝑣 and small value for the 𝑤𝑡𝑟,𝑝 is an appropriate choice for 

this scenario of tuning. 

All of these guidelines provided for tuning of the MCAs are based on the offline 

objective analysis of the MCAs response. Often there were more than an optimal 

solution, that maximised the true cues against false or minimised the gain and 

phase errors. Thus, the optimal candidate settings need further subjective 

evaluations by the drivers in the simulator.  

Moreover, the optimal settings were picked to have minimum errors between the 

MCA input (real vehicle motions) and MCA output (simulator motion platform set-

points), at the same time respecting the motion platform envelope and tilting 

constraints. It is possible to further tune the parameters using the vestibular 

perception model or driver behaviour models, that might vary the range of optimal 

settings.   

In addition to the MCA tuning effect and introducing the optimal set of parameters, 

these findings are used in the next chapter, together with the fidelity criteria to 

address the MP workspace requirement.  
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8 Workspace Optimisation of Motion Platforms 

8.1 Introduction 

A review of the available motion cueing fidelity criteria in the literature was 

presented in Chapter 3. Typically, small to moderate motion errors between the 

vestibular and visual cues that are perceived by drivers as synchronised are 

referred to as fidelity corridors. Despite the dependency of these fidelity criteria to 

specific studies in flight or driving simulators, they are the most reliable benchmarks 

available today. In this chapter, a combination of the fidelity criteria, together with 

the appropriate tuning of the MCAs described in the previous chapters are used to 

define the motion platform (MP) workspace requirements to achieve an acceptable 

level of fidelity. 

There have been efforts in the literature to address and design the MP workspace. 

Advani (1998) specified the optimal design of the hexapod architecture to be able to 

represent the aircraft motions. He took few steps of mapping the six-dimension 

predicted simulator motion trajectories into fifteen planar surfaces, approximating 

the trajectory boundaries in each planar surface by two-dimensional ellipses, 

forming a six-dimension hyper-ellipsoid representing the shape of the desired 

workspace, optimising the mechanism to fit the hyper-ellipsoid by specifying its 

design variables and constraints. The optimisation output may have led to few 

candidate architectures, those needed to meet a necessary dexterity, avoid 

configuration singularities and leg clearance. This approach could address the 6 

DoF workspace design of a hexapod by optimal positioning of its gimbal attachment 

points and reduce its cross-coupling problem during simultaneous excursions. 

However, the optimisation was only based on the aircraft motions and pilot 

perception and behaviour were not included. 

Advani et al. (2002) included a pilot-vehicle control model into the optimisation to 

incorporate both the visual and vestibular feedback. In a few design steps, the pilot 

model was adjusted to the given dynamics of the aircraft, the MCA parameters 

were set to restore the pilot control behaviour, and then using flight recorded data 

the required MP workspace was determined using the approach explained earlier, 

all in a closed-loop optimisation format. Although, this approach takes into the 

account the pilot perception and behaviour, this type of pilot models is only valid for 

flight tracking manoeuvres that often have sluggish nature, and not applicable in 

evasive driving manoeuvres. There have been improvements in the driver models 

to capture the driver behaviour as it was described in section 2.3. However, there is 

still a need for validation of their accuracy before using them in a closed-loop 

optimisation in design of MP workspace. Therefore, in this chapter, the focus is on 

addressing the MP workspace requirement only considering the human perception. 
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In the frequency domain analysis of motion errors, there are two main factors a) the 

amount of phase and gain distortions in each frequency between the vehicle and 

simulator motion and b) the frequency range of interest that is most perceived by 

human and is of more importance to be available in the simulator. The former is 

limited to be within the fidelity corridor width, and the latter frequency range for 

translational motions where the vestibular system tends to have the highest gain of 

perception is about 0.1 to 10 𝑟𝑎𝑑/𝑠 (Nash et al., 2016). Furthermore, to find the 

frequency of interest, the input vehicle acceleration amplitude and its power 

spectral density (PSD) are analysed. 

The data collected in the experiment described in Chapter 5 are used, where eight 

drivers performed a slalom (SLM) manoeuvre and drove through the so-called Land 

Rover handling track (LHT). In each of the tasks, the drivers were presented with 

six motion configurations corresponding to permutations of three small, medium, 

and large motion platform sizes and two classic and MPC motion cueing algorithms, 

in a counterbalanced order. They drove each of the configurations twice such that 

in total there were 8(drivers)*6(configuration)*2(repetition) equal to 96 data runs for 

each of the tasks.  

Excluding the drivers’ unsuccessful attempts, an example of simulated vehicle 

lateral acceleration profile and the maximum absolute amplitude of the acceleration 

among all runs is shown in Figure 8-1. To address the frequency of interest, the 

acceleration is passed through a vestibular otolith model presented in Eq. 2.6 and 

the power spectral density (PSD) of it is shown in Figure 8-2. The human 

perception threshold for translational accelerations is about 0.1 𝑚/𝑠2 or 10 ∗

log10 (
0.1

√2
)
2
= −23 db i.e. (the rms of a pure sine wave) shown as the black dotted 

line in the figure. The intersection of the perception threshold line with the perceived 

vehicle acceleration defines the frequency of interest, it is the point where the 

acceleration is not perceivable by a driver at any higher frequency. The maximum 

frequency of interest is calculated for all the data runs, see Figure 8-2 right. For the 

LHT task it is 6.35 𝑟𝑎𝑑/𝑠 and for SLM is 9.28 𝑟𝑎𝑑/𝑠.  

https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Sine_wave
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Figure 8-1. Vehicle model lateral acceleration, time series profile of an 
example run (left), and maximum amplitude of all runs with 95 
percent confidence interval (right), for both LHT and SLM tasks  

  

Figure 8-2. Perceived vehicle model lateral acceleration, power spectral 
density (left) of an example run, and maximum frequency of 
interest of all runs with 95 percent confidence interval (right),  for 
both LHT and SLM tasks.  

To define the fidelity corridor, the allowable gain and phase distortion is chosen 

based on the intersection of the represented fidelity criteria described in section 3.4, 

shown in Figure 8-3. Although the medium fidelity border of the Sinacori criteria (0.4 

(8 dB) of gain and 60 degrees of phase error) is measured for a single frequency of 

1 𝑟𝑎𝑑/𝑠, here it is assumed to be the same for all frequencies as the green lines. 

Figure 8-3 shows that it mostly fits within the range of the OMCT fidelity zone for 

both gain and phase criteria and it is a more conservative corridor in the middle 

range of frequencies compared to OMCT. For the phase at low frequencies, it is out 

of the range, however as it is described later this is not a problem for the 

optimisation because the tilt coordination response fits within the OMCT corridor. 

Consequently, the optimisation corridor is selected similar to Sinacori but expanded 
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in frequency as shown by the yellow line and is referred to the ‘Fidelity Corridor’ in 

the remainder of this chapter.  

The frequency range of interest is chosen as 0.1 to 6.35 𝑟𝑎𝑑/𝑠𝑟𝑎𝑑/𝑠 for LHT task, 

and 0.1 to 9.28 𝑟𝑎𝑑/𝑠𝑟𝑎𝑑/𝑠 for SLM task (see Figure 8-3), and outside these 

ranges the gain and phase requirements are relaxed considerably. This helps the 

optimisation problem described in the next section to focus on minimising error in 

the range of frequency of interest. From the optimisation fidelity corridors, it might 

be inferred that higher gains than 0 dB also meets the fidelity criteria, however the 

corridors are drawn axisymmetric around the zero y-axis only to minimise the errors 

to 0 dB of gain and 0 degrees of phase. This is due to the practicality to the 

symmetry of the exponential terms in the cost function Eq. 8.1, to have their 

minimum values at zero. Moreover, there is a term in the cost function to minimise 

the MP workspace size, hence there is no possibility to find an optimal solution to 

exceed the 0 dB gain, and at the same time require small MP workspace.  

  

Figure 8-3. Fidelity corridors defined by OMCT, Sinacori, coherent zone and 
the one used in optimisations for LHT task 

It is important that a motion platform be capable of representing both high and low 

frequency parts of the vehicle motions. The low frequency motions of the vehicle 

require larger MP workspace to generate the motions, which increases the costs of 

procurement significantly. The high frequency motions usually do not require large 

MP workspace but are as important especially to professional drivers to determine 

vehicle properties, and it is limited by the system bandwidth.  

8.2 Optimisation analysis and results  

The classic and MPC algorithms were introduced in Chapter 4 and their appropriate 

tuning parameters were extracted in Chapter 07 for tilt, translation and total 

motions, that minimised the frequency domain gain and phase errors and time 

domain true and false cues. In this chapter, the models of both MCAs for total tilt 

and translational motions are used in an optimisation procedure to address the 
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minimum workspace requirement of the MP. It is mutual between the MCAs that the 

low frequency large demanding motions are generated through tilting, and the high 

frequency smaller demanding motions are generated by the MP translational 

motions. 

The classic MCA model is a combination of the second or third order high-pass filter 

for generating the translational and second order low-pass filter for tilt motions. The 

tilts channel might include the rate limiters to be applicable for a wider range of tilt 

settings, though makes the model nonlinear. The acceleration generated by the MP 

translational motion depends on three parameters of filter gain 𝑘ℎ𝑝 and two cut-off 

frequencies 𝜔ℎ𝑝1, 𝜔ℎ𝑝2. For tilt motion, the tilt maximum angle 𝜃𝑚𝑎𝑥 is selected by a 

saturator 𝑎𝑙𝑖𝑚 and tilt angular velocity �̇�𝑚𝑎𝑥 and angular acceleration �̈�𝑚𝑎𝑥 are 

selected by the filter cut-off frequency 𝜔𝑙𝑝 and rate limiters, see section 4.1.2. 

The MPC model includes the translational, tilt and summation of both. The 

acceleration generated by the MP translation is affected by three weight factors on 

the control output tracking variables acceleration 𝑤𝑡𝑟,𝑎, velocity 𝑤𝑡𝑟,𝑣 and position 

𝑤𝑡𝑟,𝑝. The tilt feel of acceleration is affected by two weights on the plant output 

acceleration tracking variable 𝑤𝑡𝑙,𝑎, and position 𝑤𝑡𝑙,𝑝. Another weight affecting both 

is total acceleration tracking 𝑤𝑡𝑜𝑡𝑎𝑙,𝑎. Maximum tilt angle 𝜃𝑚𝑎𝑥 is defined by the 

constraint on output variable, tilt angular velocity �̇�𝑚𝑎𝑥 and angular acceleration 

�̈�𝑚𝑎𝑥 by the constraints on the control input variable, see sections 4.2.3.  

The selection of these parameters has a major impact on the motion cueing of the 

simulator, as described and reviewed in the previous chapter. Furthermore, an 

automatic procedure for finding optimal parameters for the classic MCA was 

developed (Sadraei et al., 2016). It was a mathematical optimisation method that 

minimised the motion errors while respecting the fidelity zones and the MP 

workspace constraints. In this tuning method the cost function of Eq. 8.1, minimised 

the acceleration error in time and frequency domain, as well as the MP excursions. 

𝑊0 to 𝑊3 are the weights of the cost function for time domain acceleration, gain and 

phase frequency domain and MP position errors.  

∑𝑤0(𝑎𝑠 − 𝑎𝑖)
2

𝑡𝑠𝑖𝑚

𝑡=0

  

+ ∑ 𝑒𝑥𝑝𝑤1(𝐺𝑎𝑖𝑛𝑛𝑜𝑤−𝐺𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑀𝑎𝑥) + 𝑒𝑥𝑝−𝑤1(𝐺𝑎𝑖𝑛𝑛𝑜𝑤−𝐺𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑀𝑖𝑛)

𝑓∈𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

 

+ ∑ 𝑒𝑥𝑝𝑤2(𝑃ℎ𝑎𝑠𝑒𝑛𝑜𝑤−𝑝ℎ𝑎𝑠𝑒𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑀𝑎𝑥) + 𝑒𝑥𝑝−𝑤2(𝑝ℎ𝑎𝑠𝑒𝑛𝑜𝑤−𝑝ℎ𝑎𝑠𝑒𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑀𝑖𝑛)

𝑓∈𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

 

+ ∑ 𝑒𝑥𝑝𝑤3(𝑀𝑃𝑃𝑜𝑠𝑛𝑜𝑤−𝑀𝑃𝑃𝑜𝑠𝑀𝑎𝑥) + 𝑒𝑥𝑝−𝑤3(𝑀𝑃𝑃𝑜𝑠𝑛𝑜𝑤−𝑀𝑃𝑃𝑜𝑠𝑀𝑖𝑛)

𝑓∈𝑓𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

 

8.1 
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A gradient-based method fmincon that is designed to work with the constrained 

nonlinear multivariable problems. Having the continues cost function and 

constraints this method was employed in the MATLAB/Simulink. The optimisation 

parameters were the MCA parameters for translational motions while minimising 

the objective function of Eq. 8.1 and respecting the bound constraints on the 

parameters. This methodology was initially used to address the MCA parameters 

for translational motions only. It was further extended to include tilt coordination, in 

addition to another layer of optimisation to define the minimum MP (sliding rail) 

workspace size (Sadraei et al., 2018). In this optimisation, an inner-loop runs the 

optimisation to find if MCA parameters exist that meet the requirement for time and 

frequency domain fidelity corridor for an MP size, and an outer-loop adds to the MP 

size in meters. If the inner-loop optimisation condition is met, that size of MP is 

chosen, otherwise the outer-loop adds another meter until the fidelity criteria is met, 

see Figure 8-4. 

 

Figure 8-4. Optimisation process 

This procedure was used to address the sliding rail size requirement for data of the 

low-friction experiment described in Chapter 5 The classic MCA model was a 

second order high-pass filter with inner-loop optimisation parameters of 𝑘ℎ𝑝 

and 𝜔ℎ𝑝2 for translational motion, and second order low-pass filter with fixed 

parameters of 𝑘𝑙𝑝 and 𝜔𝑙𝑝2 for the tilt motion. The tilt parameters play a critical role 

on how large the rail size should be, because the maximum tilt angle, angular 

velocity and acceleration limit the build-up of tilt acceleration which results in larger 

translational motion of the MP to compensate. At the same time, the rotational 

motions of tilting needed to be limited to avoid to be noticed by the driver. 

In this optimisation, the nonlinear rate limiters were not used, and the low-pass filter 

parameters were selected to constrain the tilt angular motions. The maximum tilt 
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angle that limits acceleration represented by tilting was constrained by a saturator. 

Various tilt settings that have been employed in the literature was reviewed in 

section 5.4.2. Among them two sets of parameters for tilting angular velocity and 

accelerations were chosen, see Table 8-1. These settings could be regarded as the 

range of tilt motions used in driving simulators in the literature and could be 

representative of the maximum and minimum of sliding rail size requirement. 

Moreover, linear tilting was used in the optimisations that only allows a certain 

choice of tilt setting, which was another reason for selecting the particular set of 

parameters, see section 7.2.2. In both of the settings, the maximum represented 

acceleration is 1 𝑚/𝑠2 at unity gain due to θmax of 6 𝑑𝑒𝑔, see Appendix D.  

Table 8-1. Tilt parameters used for optimisations 

Tilting parameters (A) : 𝛚𝐥𝐩 = 𝟐 
𝐫𝐚𝐝

𝐬⁄  (B) : 𝛚𝐥𝐩 = 𝟏. 𝟏𝟕 
𝐫𝐚𝐝

𝐬⁄  

𝛉𝐦𝐚𝐱 (𝒅𝒆𝒈) 6 6 

�̇�𝐦𝐚𝐱 (𝒅𝒆𝒈/𝒔) 4.3 2.51 

�̈�𝐦𝐚𝐱 (𝒅𝒆𝒈/𝒔𝟐) 23.5 8 

Data of all the runs of the experiment in the low-friction condition, excluding outliers 

were used in the optimisation to address the minimum rail size requirement among 

all drivers, experimental configurations and repetitions. In the optimisation process, 

the high-pass filter parameters were calculated once per run and for each tilt 

setting; such that the fidelity criteria was met and then the MP size was recorded. 

The results of the optimisations for the LHT task is shown in Figure 8-5, having a 

higher tilt limit corresponding to ωlp = 2 𝑟𝑎𝑑/𝑠 a rail size of 7 (±3.5) meters meets the 

fidelity requirement for most of the runs, while it goes up to 20 (±10) meter with the 

more restrictive, lower tilt limit corresponding to ωlp = 1.17  𝑟𝑎𝑑/𝑠. Similarly for the 

SLM task, the rail size required is in the range of 2 (±1) to 4 (±2) meters for the high 

and low tilt limits respectively, Figure 8-6. The obtained optimisation result shows 

the mean high-pass filter cut-off frequency 𝜔ℎ𝑝 is 0.57 to 0.98 𝑟𝑎𝑑/𝑠 and gain of 

0.83 to 0.9 for the low and high tilt limits in LHT task; and for SLM task the cut-off 

frequency of 0.41 to 0.69 𝑟𝑎𝑑/𝑠 and gain of 0.68 to 0.64 for the low and high tilt 

limits, see Figure 8-7. 
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Figure 8-5. Optimisation results for the LHT task with tilt setting high (left) 
and low (right). The bars show number of recorded runs that would 
require a given rail size. 

 

  

Figure 8-6. Optimisation results for the slalom task with tilt limits high (left) 

and low (right). The bars show the number of recorded runs that would 

require a given rail size. 

  

Figure 8-7. Optimisation results for frequency 𝛚𝐡𝐩 (left) and gain 𝐤𝐡𝐩 (right) 

range, for both driving tasks. 

In contrary to the described MP workspace optimisation considering the vehicle 

motion inputs (collected in the experiments) and utilising the classic MCA with linear 
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tilting, there are some challenges for a similar analysis using MPC algorithm and 

classic MCA with nonlinear tilting. Primarily, due to the nonlinearities in 

characteristics of the MPC algorithm and classic algorithm if the saturation, angular 

velocity and acceleration limiters are used for tilting; the calculation of exact linear 

frequency response of the models, and to respect the optimisation fidelity criteria is 

not possible. Therefore, an estimation method is needed to calculate the frequency 

response of the model. The frequency estimation used here considers the models’ 

translational, tilting and total acceleration response to sinusoid input accelerations 

of 20 various frequencies defined in the range of the frequency of interest, with an 

amplitude of 2.5 𝑚/𝑠2, see Figure 8-8. It estimates the amplitude attenuation and 

phase shifting of output sinusoids compared to inputs and draws the frequency 

response. 

 

Figure 8-8. Sinusoid input used to estimate the frequency response of the 
models 

Secondarily, using the frequency estimation makes it infeasible to simultaneously 

analyse the time and frequency response of the MCA, as required by the inner-loop 

optimisation of the workspace. This is due to the inequivalence between the time 

response of the MCAs to vehicle motion input and estimated frequency response to 

a sinusoid motion input. Principally, there is another limitation with the constrained 

MPC in calculating the required MP excursions in time domain to, because the 

maximum excursions are always respected by the controller constraints. To 

elaborate more about these limitations: 

In the optimisation of the classic model with linear tilting, the required MP 

excursions to a vehicle motion input is a function of its parameters, that makes it 

possible to make a joint frequency and time domain analysis of the model. For 

instance, in the optimisation inner-loop, it is possible to minimise the gain and 

phase errors of the linear frequency response to fit within the fidelity corridor while 
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minimising the MP excursion from the time domain analysis. Introducing the 

nonlinear tilting, although requires the frequency estimation that raise the second 

limitation of inequivalence between the time and frequency response, using an 

appropriate approximation by a sinusoid signal reduces of its extent. In the MPC 

model in addition to the second limitation, the MP excursions are always 

constrained by the controller while calculating the time domain response to the 

vehicle motion. Therefore, a joint analysis of frequency and time domain is more 

challenging that requires modifications to the optimisation process.  

To overcome these limitations and to be able to make a comparison between the 

frequency response and required MP excursions of the MPC and classic with 

nonlinear tilting algorithms. The sinusoid signal for the response estimation is used 

as the vehicle motion input to both the algorithms and the frequency response of 

the models and corresponding time domain MP excursions to the same input 

sinusoids are calculated. For both the models the same fixed set of tilt parameters 

are used in the optimisations, those are θmax = 6 𝑑𝑒𝑔,  θ̇max = 3 𝑑𝑒𝑔/𝑠𝑒𝑐, θ̈max =

10 𝑑𝑒𝑔/𝑠𝑒𝑐2 (see Appendix D), and tilt setting gain of 𝑘𝑙𝑝 = 1 and cut-off frequency 

𝜔𝑙𝑝 = 5 𝑟𝑎𝑑/𝑠 in the classic, and for the MPC the prediction and control horizon of 

𝐻𝑝 = 1.2 𝑠𝑒𝑐 and 𝐻𝑢 = 0.2 𝑠𝑒𝑐.  

Few modifications were made to the optimisations process, where the cost function 

Eq. 8.1 only includes the exponential terms for gain and phase errors for MPC in 

addition to the MP excursion term for classic. In the classic model, for a specific MP 

size, the inner-loop looks for the high-pass filter parameters of gain 𝑘ℎ𝑝 and two cut-

off frequencies 𝜔ℎ𝑝1, 𝜔ℎ𝑝2 to fit within the fidelity corridor, if it is true then that large 

MP workspace sufficiently meets the fidelity criteria, otherwise, the outer-loop adds 

to the size and looks for the parameters again.  

In the MPC model in the inner-loop, a fixed set of parameters is used, those 

parameters are found to be optimum based on the tuning of the algorithms 

described in Chapter 07 and the comparisons between a number of independent 

optimisation runs, those variables are 𝑤𝑡𝑟,𝑎 = 0, 𝑤𝑡𝑟,𝑣 = 3, 𝑤𝑡𝑟,𝑝 = 1, 𝑤𝑡𝑙,𝑎 = 0,  

𝑤𝑡𝑜𝑡𝑎𝑙,𝑎 = 10, 𝑤𝑡𝑙,𝑝 = 1, 𝐻𝑝 = 60, 𝐻𝑢 = 12. The main reason for using fixed 

parameters was the very long runtime of the MPC models, even in a single 

optimisation run. Therefore, for a specific size of the MP, the MPC model frequency 

response is calculated and if it meets the fidelity corridor then that is the sufficient 

MP workspace; otherwise, the outer-loop adds to the MP size.  

The required MP workspace for the classic MCA with nonlinear tilting to the input 

sinusoid motion with variable frequencies (see Figure 8-8) found to be of ±16 

meters with parameter values of gain 𝑘ℎ𝑝 = 0.584 and cut-off frequencies of 𝜔ℎ𝑝1 =

0.882 𝑟𝑎𝑑/𝑠 and 𝜔ℎ𝑝2 = 0.0549 𝑟𝑎𝑑/𝑠𝑒𝑐. For the MPC algorithm ±14 meters found 
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to be required to meet the fidelity criteria in a range of 0.15 to 10 𝑟𝑎𝑑/𝑠. These 

indicate the MPC algorithm requires slightly smaller MP workspace compared to 

classic to achieve the same level of fidelity.  

The frequency response of both of the algorithms is shown in Figure 8-9 and Figure 

8-10. The gain and phase response of the classic algorithm is steadier and flatter 

over the frequencies compared to MPC. However, the MPC performs better in the 

lower bound of the fidelity range around 0.15 𝑟𝑎𝑑/𝑠, and as a result, a smaller 

workspace size could meet the criteria. These results are based on the offline 

analysis, and the differences in the frequency response of the models may or may 

not be perceivable by the drivers, for instance the classic might feel better and 

worth the cost to build the larger simulator. Further subjective evaluations on the 

tuning of the parameters as it is described in Chapter 7 helps to validate the 

differences in model responses.    

        

Figure 8-9. The classic algorithm estimated frequency response, requiring 
±16 (m) of MP workspace   
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Figure 8-10. The MPC algorithm estimated frequency response, requiring  
±14 (m) of MP workspace 

In order to make MP workspace optimisation between the algorithms to the vehicle 

motion inputs, it might be possible to use the modified optimisation process, 

through modifications to the input sinusoid frequency estimation signal. Considering 

the vehicle motion PSD as it is shown in Figure 8-2, the sinusoid signal amplitudes 

in the range of frequency of interest could be modified to have amplitudes same as 

the vehicle motions, this makes the sinusoid input to be more representative of the 

vehicle motion, and to reduce the inequivalence between time and frequency 

response of the MCAs. Despite the observations, it worth to remind that the whole 

optimisation is still based on estimations and not exact linear frequency response of 

the MCAs. 

8.3 Conclusions and suggestions 

A driving simulator motion platform sizing method is developed and represented in 

this chapter. It is a specifically designed optimisation method that searches for 

minimum MP workspace size while keeping the motion cueing response within the 

fidelity corridor. Different motion fidelity criteria are reviewed, and a reasonable 

fidelity corridor is selected and used in the optimisations. The reliance on tilting for 

motion cueing plays a significant role in rail size requirement to compensate and 

keep the motion cueing within the fidelity corridors.  
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Two possible tilt parameter sets are selected which drive a minimum and maximum 

sliding rail size requirement. The method is tested for lateral motion of two low 

friction vehicle testing manoeuvres, considered by means of a large data set of 

recordings from professional drivers. For the Land Rover handling track, a rail size 

range of 7 (±3.5) to 20 (±10) meters is required to meet the fidelity corridor for 

lateral motion cueing. For the Slalom this range is between 2 (±1) to 3 (±1.5) 

meters. This method could also be used to address the workspace requirement in 

high- friction condition.  

To make a comparable frequency analysis between the MPC and classic algorithm 

with nonlinear tilting an estimation method using a sine wave of variable frequency 

was used that identified the models’ frequency response and the time domain MP 

excursions. It was found that using the optimal settings of both algorithms, the MPC 

could meet the fidelity criteria with ±14 meters of MP workspace, while the classic 

required ±16 meters. Although a comparable MP workspace optimisation using the 

frequency analysis between classic and MPC algorithms for the vehicle motions is 

not a straight forward task, it might be possible to make a comparison by modifying 

the input estimation signal to assimilate the vehicle motions. 

The focus here has been on lateral motion, however the motions in other DoFs that 

need to be generated by a simulator MP can be addressed with a similar 

optimisation method. Commonly, a hexapod is used to generate the rotational (roll, 

pitch and yaw) and vertical (heave) motions of the vehicle. In the driving simulation, 

roll, pitch, and heave are generally not a major concern. The collected data of 

various vehicle manoeuvres on the flat ground shows the roll and pitch motions of 

vehicle never exceed ±5 degrees, in addition to a tilt degree of ±8 degree for each 

direction, both resulting in ±13 which can be represented one to one by a typical 

hexapod. The vertical (heave) motion of the vehicles is in range of 16 cm on a flat 

surface and could be represented one to one by a normal hexapod. However, if 

there is a road with slope then the slope should be added to each of the directions 

and a hexapod with a larger workspace is needed for one to one motion cueing. 

With regards to yaw motion, depending on the driving manoeuvre 360 degrees of 

motion might be necessary for the one to one motion, which it is only feasible by 

including a turntable on top of a hexapod. However, for the yaw motion with 

acceptable fidelity, a similar optimisation process is then needed to find the 

minimum workspace requirement. This method can be used for the motion in any of 

the directions to fit within the fidelity corridor.  

Although this method is a reliable tool to address the workspace based on a fidelity 

criterion, more research is needed in driving simulators to define the appropriate 

fidelity corridors in each DoFs and their cross-couplings effects. Moreover, by using 
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a reliable and experimentally validated driving model it might be possible to further 

extend this method to consider the workspace sizing in drivers’ behaviour level.  

In general recommendations about buying a simulator motion platform, it is first 

needed to define the application. For instance, is it for research on human factors, 

vehicle design, training or gaming? In this thesis, the focus has been on the tuning 

of MCA and addressing the MP size to meet the demands of professional drivers 

during vehicle design. The professional drivers sensitive to the high frequency 

motions, and it is a rich source of information to them. This requires the MP to have 

high frequency bandwidth to cover high frequency of vehicle motions. On the other 

hand, the high bandwidth might be of lower importance for research applications on 

normal drivers, that might reduce the need for a high bandwidth system and 

changes the procurement costs. Increasing the bandwidth of the motion system is 

feasible by using higher capability actuators or building a lighter weight system.  
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9 Conclusion and Recommendations 

Driving involves a wide range of activities resulting from interactions between the 

driver, the surrounding environment and the vehicle. These are achieved based on 

sensation and perception of self-motion and translated into behaviour performance 

(Nash et al., 2016). In simulators, the cue generator subsystems and their 

associated components are designed to stimulate the human visual, vestibular, 

auditory and proprioceptive sensory systems, in order to replicate the real world 

cues and elicit a realistic driving experience in a virtual environment (Allen et al., 

2011). Due to practical, technological and financial hindrances, the one to one 

replication of real world cues is not feasible, and reportedly not always necessary.  

A compelling and realistic perceptual and performance experience of driving in 

simulators, i.e. high fidelity, not only requires the represented cues to be similar to 

the real world, but also they need to be coherent and proportionate to each other in 

a virtual environment (Sinacori, 1977; Valente Pais et al., 2010). Both visual and 

vestibular cues play a vital role in static and dynamic simulators (Hosman et al., 

2011). While the visual cues are always available, the vestibular cues require 

dynamic motion platforms which present challenges of a physical and financial 

nature (Kemeny and Panerai, 2003). The presence of vestibular motion in 

simulators has been emphasised due to the observations of improved perception 

and performance of drivers (Reymond et al., 1999; Siegler et al., 2001).  

The required characteristics of each of the subsystems of a simulator, to achieve a 

desired level of fidelity, is a broad question that involves a vast field of research 

(Greenberg and Blommer, 2011). In this thesis, the focus has been on vestibular 

motion cueing in the simulators and attempted to evaluate their effects on drivers 

perception and performance. In this regard, the effects of manipulating the two most 

influential motion cueing algorithms (MCA), and motion platform components in a 

simulators’ motion system has been studied. Furthermore, to evaluate the 

applicability of the simulators for assessment of a vehicle’s driven attribute 

properties, such as ride, steering feel and handling, the manipulation of the vehicle 

ride height was also studied in the simulator.  

The classic MCA was originally developed for flight simulation (Conrad and 

Schmidt, 1969), and with the updated structure, it has been shown to be applicable 

for driving simulation (Colombet et al., 2008). It is easy to implement and suitable to 

run with a high frequency of update in real-time applications. However, it is tuned 

for worst-case scenarios, thus the motion platform capability might not be fully 

exploited for small vehicle motion inputs. The classic MCA is reported to have 

acceptable performance in normal manoeuvres, in comparison to other MCAs 
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(Grant et al., 2009). Dagdelen et al. (2004); Dagdelen et al. (2009); Augusto and 

Loureiro (2009) employed model predictive control (MPC) as the MCA in driving 

simulators. It is a sub-optimal control algorithm, runs in real-time with lower update 

rates compared to the classic, and is quite complicated to implement. The main 

advantage of this algorithm is the calculation of optimal solutions while respecting 

the physical constraints of the motion platform. Although tuning of this model might 

seem to be a more rational process compared to the classic, there are more 

variables involved to be carefully selected.  

Motion platforms of various characteristics and workspace sizes have been 

employed in driving simulators. None of them can represent the one to one vehicle 

motions in high demanding manoeuvres. The evaluations of small demanding 

manoeuvres that fit one to one within the workspace consistently have shown a 

preference for down-scaled motion by drivers (Berthoz et al., 2013; Savona et al., 

2014). The reasons were said to be related to imperfections and false cues of the 

motion system at large scales, inability to maintain the coherence between the 

visual and vestibular cues, or difficulty in exerting accurate steering control in higher 

and more uncomfortable accelerations. Although this seems a surprising finding, it 

has been reported also in flight simulation studies. Groen et al. (2001) explained 

this as an underestimation of visual cues that leads to an over-estimation of 

vestibular cues.  

It was mentioned above that the visual and vestibular cues have to be coherent and 

proportionate and this might explain the down-scaled vestibular motion preference. 

Considering that the human eye sees real and virtual driving in different visual 

qualities, the human brain in the simulator expects to see the degraded visual cue 

to be proportionate to the degraded vestibular cue; this might hypothetically explain 

the down-scaled motion preferences. Although there is a measurement benchmark 

for the vestibular motion cues represented to the drivers in a simulator, the main 

challenge is the lack of a benchmark for the visual cue e.g. resolution.    

Consequently, to evaluate the vestibular motion cueing effects in a simulator, an 

experiment was designed where the MCA and motion platform size were the main 

manipulated components. The classic and MPC algorithms were compared, in 

addition to three motion platform workspace sizes. Moreover, to evaluate the 

vehicle attributes in the simulator, a second experiment was designed. Three 

different vehicle ride heights were compared, in addition to three motion platform 

workspace sizes. The evaluations were based on the subjective perception of the 

driving experience in various motion and vehicle configurations, and exploration of 

the effects of the changes on drivers’ performance. These aims were evaluated in 

different road friction conditions. 
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The significant and broad effect of MCA parameters on motion cueing has been 

emphasised in the literature (Reid and Nahon, 1986a; Grant and Reid, 1997), and 

was observed during the design of the experiments in this thesis. Therefore, the 

optimal tuning of the MCAs was also introduced. The time and frequency domain 

response of the MCAs were reviewed based on appropriate measurement metrics, 

and a generalised conservative fidelity criterion was defined. This information not 

only helps in fine tuning of the MCAs, but also it was used for the optimisation of the 

MP workspace. Using these extracted optimal MCA parameters, the fidelity criteria, 

and a multi-layered optimisation method, the required MP translational workspace 

was addressed for specific driving tasks.  

There have been other prerequisite steps taken to prepare for the experiments and 

optimisations. Among the major ones, it could be mentioned that the models of 

vestibular sensory dynamics and their frequency response was reviewed; for the 

purpose of MCA development and driver’s perception during driving. The latter 

helped for appropriate tuning of the MCAs, and optimal workspace sizing of the MP. 

Driver behaviour performance models was reviewed and a suitable one was 

selected for the analysis of drivers’ performance in the experiments. Furthermore, 

the motion cueing fidelity criteria was reviewed and a combination of all was 

selected as a conservative criterion, that was used for MP optimal workspace 

sizing. 

9.1 Summary of results  

 Assessment of low-friction motion cueing 

In the evaluations of motion cueing in low-friction driving conditions, the aim of the 

study was to compare between the classic and model predictive control MCAs, and 

three sizes of motion platform (MP) workspace, in the two driving tasks of Land 

Rover Handling Track (LHT) and Slalom (SLM). The comparisons included the 

subjective evaluation of the perceived realism consisting of overall, motion cueing 

and vehicle assessment questions. The objective measurements for exploration of 

driver’s performance, included metrics of aggregated performance, time series and 

driver model. The measurements were analysed using the descriptive and linear 

statistics models. 

Two research questions were defined and evaluated with respect to how the 

different 1) MCAs and 2) MPs affect the drivers’ subjective ratings of simulator 

fidelity and their objective behaviour. In this study the comparisons between the 

MCAs extended and carried out in different MP sizes, to find if there is an 

interaction effect between the MCA and MP size.  
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Motion cueing algorithm comparison 

In the study carried out, regarding the MCA comparison, the subjective fidelity 

analysis in the LHT task showed significant or nearly significant effects of the type 

of MCA, whereby mostly, the MPC was rated higher (preferred by drivers) than the 

classic in the three groups of questions, being aligned with the hypothesis and 

similar studies (Fang and Kemeny, 2012b; Garrett and Best, 2013). In the SLM 

task, there was no significant effect of the type of MCA, although a review of the 

effect sizes showed that the classic was rated higher in small and large MPs. Based 

on the effect sizes, with the increase of MP size the differences between the MCAs 

became more distinct to drivers in the large motion demanding task of LHT and less 

distinct in the SLM.  

The objective drivers’ performance analysis showed the aggregated performance 

measurements of lap time, number of failures, and speed variation in the LHT task, 

the MPC was found to have higher values in most of MP sizes i.e. worse 

performance of drivers in MPC; as opposes to the subjective preference of MPC 

over classic. In the time series and driver model metrics, interestingly the MPC 

always had higher values in the driver model gain and steering reversal rate which 

indicates more control activity while driving the MPC algorithm, reflecting the worse 

performance. For the SLM mix results was found.  

Motion platform comparison 

The subjective fidelity analysis in the LHT task in only the motion cueing group of 

questions showed the significant or nearly significant effect of size of MPs, where 

the large MP was rated significantly higher (preferred by drivers) than medium and 

small. The review of the effect sizes indicated preferences for the larger motion 

since the subjective ratings improved with the increase of MP size. For the SLM 

task, no significant effect of MP size was found, although the effect sizes showed 

small to medium MP sizes were preferred depending on the MCA, reflecting the 

smaller motion preferences by drivers. This is in line with the literature that has 

shown in the SLM task drivers preferred the down-scaled motion to between 0.4 

and 0.75 of full motion as more realistic (Berthoz et al., 2013; Savona et al., 2014). 

This range of preference could possibly be postulated to the LHT task where there 

is larger vehicle motion available and the larger MP size could represent the down-

scaled motion, which might explain the preference for the larger MP size in this 

experiment.  

The objective drivers’ performance analysis in LHT task showed the number of 

failures, speed variation and lateral position deviation aggregated performance 

metrics decreased, while the lap time increased with the increase of MP size, 
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reflecting improved performance. The time series and driver model metrics such as 

longitudinal acceleration, steering reversal rate, and driver model gain, decreased 

with the increase of MP size, reflecting the more relaxed style of driving and 

improved performance. This is aligned with the literature that has been reported of 

increasing of the motion reduce the steering control effort (Reymond et al., 1999; 

Siegler et al., 2001; Feenstra et al., 2010; Lakerveld et al., 2016). In the SLM task, 

the number of failures and speed variation metrics increased, while the lap time 

decreased with the increase of MP size, reflecting worsened performance. In the 

time series and driver model metrics, longitudinal velocity and driver model delay 

time increased with the increase of MP size, that confirmed the hypothesis, while 

the yaw rate showed a reduction in value. No significant changes were observed to 

the steering reversal rate, although it was anticipated as reported in the literature 

(Berthoz et al., 2013). 

In summary, the subjective evaluations showed that in the LHT task, drivers 

preferred the MPC algorithm and the larger MPs, whereas in the SLM task they 

preferred mostly the classic MCA and smaller MP. Moreover, the differences 

between the MCAs were more subtle in SLM than LHT, and the difference between 

MPs was more distinct to them. Interestingly, this inverse trend in subjective 

evaluations between the tasks is aligned with their results for the aggregated 

performance measurements, where an opposite effect of MP size was found 

between the two tasks i.e. the improved/worsened performance was observed with 

increasing MP size, respectively in LHT/SLM tasks.  

In the aggregated performance metrics, the MPC mostly showed significantly higher 

values in both tasks, reflecting the worse performance in driving the MPC algorithm. 

The increase of MP size in the LHT task showed a decrease in most of the time 

series and driver model metrics, reflecting the lower control activities and improved 

performance; whereas mixed results were observed in the SLM task. 

The subjective preference of the MPC over classic has been reported in the 

literature, although in this study it was only hypothesised to be observed only in the 

LHT task. Because, in the tuning process of the MPC algorithm for the SLM task, 

lower performance of the algorithm was observed. As it was explained in section 

5.4.2 and elaborated in section 7.3, the reason was the rapid sinusoidal type of 

changes in the vehicle lateral motion (the dominant vehicle motion) in SLM task. In 

such evasive vehicle motion inputs, the MPC controller’s performance is low when 

the prediction of the future reference signal is not available, and there are model 

stability concerns that limit the choice of the prediction horizon.  

The preference for the larger MP size in LHT and smaller in SLM task is in line with 

the available literature that the one-to-one representation of vestibular motion cues 
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is not always perceived as more realistic. As mentioned earlier in this chapter the 

visual and vestibular cues have to be coherent and proportionate and this might 

explain the down-scaled vestibular motion preference. In the LHT task with larger 

motion demand the down-scaled motion could be represented with larger MP size 

and in SLM with smaller. However, the precise value of down-scaling may also be 

dependant to the driving manoeuvre characteristics.  

The dependency of preference of MCAs to driving tasks, further explains the 

importance of tuning the algorithms. More specifically, the MPC algorithm 

performance could be slightly improved to the evasive vehicle motion inputs such 

as SLM, through optimal tuning of its parameters using the guidelines provided in 

Chapter 7. In such occasion, it may perform the same or better than the classic 

algorithm, that requires further investigations. In other words, the quality of the 

response of an algorithm is heavily dependent on its tuning, and an algorithm may 

show its eminence if and only if it is well-tuned.  

The driver objective performance metrics were selected from definitions available 

for normal drivers’ performance, although the drivers participated in this experiment 

were all professionals who had more racing driving style. This might explain the 

contradiction between their preference for a motion configuration and their worse 

performance. For instance, in case of a preferable motion configuration they had 

higher speed variability, lateral position deviations and steering control activity 

because they actually liked it, however it is counted as a worse performance.  

These findings are based on the evaluation in the low friction conditions which by 

nature is a more complex situation for drivers compared to high friction since it 

increases their mental workload that might be affecting their performance. For 

instance, during the SLM or LHT tasks not only they have to accomplish a 

demanding manoeuvre, but also not to lose the grip of tyres and spin-out which is 

not available in high-friction condition. Although this effect is minimised by using the 

experienced professional drivers, it may still be a potential influencing factor. In 

other words, there are more uncertainties and variabilities available to drivers’ 

preferences and performance in low friction testing. The experiment design of this 

study has the transferability to the high friction condition. Although, it is expected to 

obtain similar results in high friction condition, due to lower metal workload in high 

friction drivers’ preferences and performance might vary.  

 Assessment of high-friction motion cueing 

In the low-friction experiment, the evaluations were mainly focused on the effect of 

motion cueing components in the simulator. However, in this experiment as 

reported in Chapter 6, the focus of evaluations was on the motion cueing in addition 
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to the driven attribute qualities of the vehicle in the simulator. The aim of this study 

was to compare between three vehicle ride heights (RH), and three sizes of MP 

workspace, experimented in a high-friction driving condition in the Gosport lane 

(GSP), a public road circuit at JLR Gaydon site. The means for the comparisons 

included the subjective evaluations of the vehicle ride, steering and handling 

qualities, in addition to their perception of realism. The objective measures for 

exploration of driver’s objective performance were similar to the previous study. 

Regarding these aims, two research questions were defined and evaluated. How 

the different 1) RHs and 2) MPs affect the drivers’ subjective ratings of vehicle 

attribute qualities, simulator fidelity and their objective behaviour. The studies 

available in the literature about the study of the vehicle driven attribute evaluations 

in simulators are rare and there is no research identified considering the effect that 

simulator motion cueing might have on the evaluations of the attributes.  

Ride height comparison  

In the study carried out, regarding the RH comparison, the subjective analysis of 

driven attributes showed a significant or nearly significant effect of RHs in few of the 

steering and handling quality attributes. Drivers found medium (standard vehicle 

height), and in some of the qualities the low RHs more appropriate for the vehicle.  

The review of effect sizes for the most appropriated RH showed that in the ride 

question the low and medium RH were constrained and crashy, and high RH 

settled and floaty and appropriate for the vehicle. In the steering gain linearity 

attribute the low and high RH were more nonlinear to the drivers, and the medium 

RH was the most linear and appropriate for the vehicle. In under/over steering 

quality the low and high RH was more oversteering to drivers, and the medium RH 

was the most appropriate for the vehicle. In the handling roll transient question the 

low to high RH was found to have less to more values than appropriate, 

respectively. This shows drivers could distinguish correctly between RHs.  

Furthermore, the review of effect sizes for the most unappropriated RH showed that 

the low and high RHs were mostly selected as not appropriate for this vehicle; 

those were observed in large and small MPs respectively which might indicate the 

effect of MP size on drivers’ choice of more suitable RH. The absence of medium 

RH among them might imply the appropriateness of the medium RH, and that they 

were able to distinguish between the RHs.  

The objective drivers’ performance analysis for the aggregated performance 

measurements showed the difference between RHs were more subtle in speed 

variation. In lateral position deviation, the low RHs had the highest value in all MPs 
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that solely indicates the worst performance. The highest lap time in small, medium 

and large MPs was with the low, medium and high RHs.  

In the time series and driver model metrics, where there was a significant effect of 

RH on measurement metrics, the low RH was consistently found to have the 

highest value in all the metrics, being independent of the road sections and MP 

sizes. Comprised of the steering wheel reversal rates, and driver model gain, that 

shows highest control activity and the worst performance in low RH.  

Motion platform comparison 

The subjective ratings of the driven attributes only in the ride group of question 

showed a significant effect of the size of MPs, where the medium MP was the most 

appropriate.  

The review of effect sizes for the most appropriate MP showed that in most of the 

handling and steering attributes, the low RH the small MP was rated as the most 

appropriate for this vehicle, and in the high RH the large MP. It indicates the higher 

the RH is, the larger MP was selected as more appropriate, and vice versa. In 

detail, in the ride question, the medium MP was rated as the most floaty and settled 

and appropriate for this vehicle. In steering gain linearity away from centre, the 

small MP was the most suitable. In handling roll transient the small MP was most 

suitable, while with the increase of MP size drivers found the roll to be increasing. 

For the steering window and effort grouped question drivers seemed to have 

chosen larger MP with increasing RH as more appropriate. 

Furthermore, the inverse trend was observed for the most unappropriated MP in 

different RHs, where in the low and high RHs drivers have rated large and small 

MP, respectively as the most unappropriated. These show there might be an effect 

of RH on drivers’ choice of appropriate MP size. The subjective ratings of the 

drivers’ perception of realism of overall assessment and motion cueing, showed the 

medium MP as the most preferred by drivers.    

The objective drivers’ performance analysis showed for the speed variation and 

lateral position deviation aggregated performance metrics, values have decreased 

with the increase of MP size i.e. improved performance, and the lap time increased 

with the increase of MP size; however, for these metrics, some fluctuations were 

observed. In the time series metrics, no significant changes were observed to 

change of MP size and most of the measurements stayed similar or slightly 

decreased with the increase of MP size. The driver model metrics of preview time 

and gain parameters showed a decrease with the increase of MP size. This 

confirms the hypothesis of requiring smaller steering gain with the increase of MP 
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size. Moreover, the decrease in driver model steering gain reflects more relaxed 

style of driving and improved performance with the increase of MP size. 

In summary, the steering and handling subjective assessment of the driven attribute 

qualities by the drivers showed that the drivers found medium and low RH to be 

more appropriate for the vehicle. It was concluded that the small and large MPs 

provide more appropriate motions for the evaluations of the low and high RHs 

respectively. This indicates that there is an effect of MP on the RH, and the higher 

the RH is the larger MP is selected as more appropriate, and vice versa. The 

overall pattern of the aggregated performance showed in the low RH and small MP 

the drivers had the highest lateral position deviation, reflecting the worst 

performance. In all the time series and driver model metrics the low RH always had 

the highest value in all MP sizes and road sections, with significant effects; 

including the highest steering control activity, reflecting the worst performance in 

low RH. There were no significant changes in time series metrics observed with 

changes of MP size, and most of the metrics stayed similar or slightly decreased. 

Some of the driver model metrics showed a decrease with the increase of MP size, 

indicating the decrease in control activity, relaxed style of driving and improved 

performance with the increase of MP size.  

The subjective preference of the medium RH over low and high was hypothesised 

to be observed, as it is the standard vehicle RH. Although the drivers have selected 

the medium RH to be appropriate in most of steering and handling attributes, the 

observed choice of the low RH in some of the attributes might be explained by 

professional drivers’ desire for race style of driving, which is more eminent in low 

RH. The preference of the high RH in ride attribute might be because of drivers’ 

expectation from driving an SUV car (e.g. to be floatier and more settled), and/or 

the vehicle height point of the visual cueing was better at high RH configuration.  

The preference for the medium MP size means drivers found the motion in small 

and large MPs not to be suitable. The vehicle motion in the GSP task have high 

amplitudes and it was expected to see drivers mostly prefer the large MP. However, 

it is not straight forward to explain this as a cause of incoherence between the 

visual and vestibular cues, because the nonlinear scaling has been used in this 

study, but it is a potential cause. The other scenario might be related to the tuning 

of the MCA. The tunings for the three MP sizes were done identically; however, 

there might be a possibility for further improvement using the optimal tuning 

guidelines provided in Chapter 7. 

Another observation was the direct relationship between the MP size and choice of 

appropriate RH. In the lower RH, the smaller MP was selected as more appropriate, 

and vice versa. This could be explained by the low/high frequency of the vehicle 
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motions in high/low RH; especially in roll and pitch directions that also affect the 

perception of lateral and longitudinal motions. The drivers have correctly selected 

that the roll of the vehicle have increased with the increase of RH, and 

correspondingly the larger lateral motion may have been expected, where the larger 

MP could meet the desired lateral motion cue. This is an explanation for the 

observed relation between the MP and RH, although this relationship was observed 

in most of the driven attributes.  

In an effort to investigate the applicability of driving simulators for the virtual 

prototyping of vehicles, in this study, changes to the vehicle attributes from a single 

vehicle property adjustment were evaluated. The results showed drivers could 

distinguish between the vehicle configurations in the simulator, and their 

performance varied. However, the vehicle design consists of a range of 

components such as body shell, powertrain, transmission system, and more 

research is needed in each section to see if simulators are applicable for virtual 

prototyping. In fact, the current technology of dynamic simulators is applicable for 

evaluations of certain aspects of vehicle design but not all.  

Depending on the attribute that a vehicle designer wants to study, the simulator 

motion platform requirement varies. For instance, if the aim is to evaluate the 

vehicle ride attribute on road asphalts of different quality that create perceivable 

changes of vertical vibrations, the simulator could have a small translational motion 

envelope but high bandwidth to capture the differences. Of course, a simulator of 

large motion envelop but small bandwidth cannot capture the high frequency 

vehicle vibrations. Ideally a motion platform with both large motion envelope and 

high bandwidth could be employed for most of the vehicle design evaluations, 

however there is always a trade-off between the weight of the simulator (payload) 

and its bandwidth, and of course the pricing, as described in Chapter 3. 

 Comparison of low and high friction effects  

In regard to the motion cueing assessments between the low and high friction road 

conditions, there have been separate main aims of MCA and RH comparisons in 

each of the experiments. In addition to a common aim of MP size effect which was 

evaluated between the similar MP sizes in both road friction conditions. Similar 

MPC algorithm was used in both low and high friction experiments, while the 

vehicle motion scaling was linear and nonlinear respectively.  

To be able to compare the road friction effect on the evaluations the mutual aim of 

the effect of MP size is elaborated in this section. The subjective evaluations of 

perception of realism (fidelity) showed, in the low-friction condition in the LHT task, 

drivers preferred the medium to large MPs, whereas in the high-friction condition in 
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the GSP task they preferred the medium MP size; both of the driving tasks were 

similar in terms of presence of large vehicle motions. A reason for the preference of 

medium MP over the large in GSP task could be due to incoherence between the 

visual and vestibular cues in the large MP size. However, the nonlinear scaling 

makes it difficult to conclude.  

The increase of MP size in the low-friction condition in the LHT task reduced values 

of the aggregated performance metrics such as number of failures, speed variation, 

and lateral position deviation, and increased the lap time, reflecting improved 

performance. The time series and driver model metrics such as steering reversal 

rate, and driver model gain, decreased with the increase of MP size, reflecting a 

more relaxed style of driving and improved performance. 

The increase of MP size in the high-friction condition in the GSP task reduced 

values of the aggregated performance metrics such as speed variation, and lateral 

position deviation, and increased the lap time, reflecting improved performance.  

The time series metrics not significantly changed. The driver model gain parameter 

decreased, indicative of a more relaxed style of driving and improved performance 

with the increase of MP size.  

Comparing the drivers’ performance in both low and high friction experiments, 

despite the differences it is concludable that increase of MP size has quite a similar 

effect and have improved their performances when the driving tasks are of similar 

motion demand. 

The evaluation in the low road friction level by nature is more of a complex situation 

for drivers compared to high friction, and the mental workload is higher which might 

affect their performance. In other words, there are more uncertainties and variations 

available to drivers’ preferences and performance in low friction testing. The 

experiment designs of both low/high friction studies are transferable to each other. 

Although it is expected to obtain similar results in case of using same experiment 

design and drivers in a swapped road friction condition, due to higher metal 

workload in low friction drivers’ preferences and performance might vary slightly 

e.g. they may prefer the larger MP size in GSP with low friction condition.  

Furthermore, the experiments evaluated in this thesis had two different first aims, 

and their common aim (about the effect of MP size) was always a second factor. 

There were major differences between the studies, including the driving tasks, test 

vehicles and drivers, which brings a high degree of variability to the evaluations and 

makes it difficult to capture the effects of road friction level. Notwithstanding the 

differences, similar significant effects were observed on drivers’ performance, such 
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as improved performance with the increase of MP size in both low and high friction 

conditions.  

To merely study the effect of the road friction level on drivers’ preferences and 

performance, it is recommended to design a similar repeated measure experiment 

where the road friction level is the only independent variable. This will increase the 

appearance of the effect of manipulation on the road friction level. Use same driving 

task, test vehicle and drivers in both low and high road fiction conditions, to 

minimise the variability. Moreover, the subjective and objective measurement 

metrics could be selected among the ones employed in the experiments described 

in Chapter 5 and 6, to capture the desired qualities.   

 Optimisation of motion cueing algorithm and motion 

platform  

The tuning process of the MCAs in the experiments was based on optimisations or 

merely trial and errors. Emphasises on the significant effect of the MCA parameters 

on the motion cueing in the literature and observations during the experiment 

design, motivated for more detailed exploration of these effects. In Chapter 7 the 

classic and MPC model parameters were reviewed and their variations effects were 

measured in the time and frequency domain. The optimal settings that minimise the 

motion errors, were determined. The frequency analysis of the MPC algorithm was 

unique and it has never been reported before. These findings could be used as 

general rules for parameter selection of the MCAs of similar structure.  

The guidelines for the optimal settings in each of the MCAs were used for 

optimisations of the simulator MP translational motion workspace e.g. sliding rail 

size. In Chapter 8, the available information about the motion cueing fidelities was 

gathered from the literature and defined fidelity criteria. The optimal setting of the 

MCAs, in addition to a multi-layered optimisation method was employed to define 

the required MP workspace to meet the fidelity criteria. The analyses were in the 

time and frequency domain using the classic MCA, and the lateral motion of the 

vehicle considered by means of a large data set of recordings from professional 

drivers in the low-friction experiment.  

The tilting and its constraints played a major role in the required MP workspace to 

compensate. Two possible tilt parameter sets were selected based on the review of 

the literature about commonly used settings, and human perception thresholds 

which drove a minimum and maximum MP workspace requirement. The method 

was tested for the two vehicle testing manoeuvres. For the Land Rover handling 

track a rail size range of 7 (±3.5) to 20 (±10) meters of MP lateral workspace was 

required to meet the fidelity corridor. For the slalom, this range was between 2 (±1) 
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to 3 (±1.5) meters. Another possible scenario is to fix the MP workspace to certain 

values and address the tilt settings, to compensate for the remainder of motion. 

This might help to reduce the MP workspace size, although it will result in higher tilt 

degree, angular velocity and acceleration, which needs further studies since it may 

not be desirable on the part of the drivers.    

Zeeb (2010) explained that for slalom and lane change manoeuvres with no motion 

scaling, a lateral motion workspace of ±4 metres is required with an acceleration 

limit of 1g. The presented optimisation method could be used for the other 

translational and yaw rotation DoF of the vehicle motion, where there is always 

relatively large motion available. Few suggestions were provided, including that the 

roll and pitch of vehicle are usually in small magnitudes below 5 degrees, same is 

true for the heave motion of the vehicle which is in range of 16 cm on a flat surface, 

both could be represented directly by a normal hexapod.  

Moreover, to bring the chance of frequency domain comparison between the classic 

and MPC algorithms for the first time, a sinusoids signal input of different 

frequencies and amplitude of 2.5 𝑚/𝑠2 was used in the similar workspace 

optimisation method. The aim was to find out if the MPC algorithm exploits the MP 

workspace better than classic, and makes any reduction to the required MP size. It 

was found that to the same input motion, using optimal settings for both of the 

MCAs, and meeting the fidelity criteria in the frequency domain the MPC requires 

slightly less ±14 metres than classic ±16 metres to achieve a same level of motion 

cueing fidelity. It shows using the MPC with optimal tuning it is possible to achieve 

the same level of fidelity using slightly smaller MP workspace size.    

9.2 Contributions to knowledge  

The main contributions of this thesis can be summarised as follows: 

The subjective perception of drivers between the motion cueing algorithms (MCA) is 

found to be a function of the vehicle motion in a manoeuvre. The model predictive 

control algorithm (MPC) was preferred by drivers over the classic one in a large 

demanding manoeuvre with vehicle motion of a variety of frequencies. Drivers’ 

performance was worsened, and higher steering control activity was observed in 

MPC compared to classic, demonstrating the incongruity between the subjective 

preferences and objective performance. In a small demanding manoeuvre with 

nearly a single frequency, no significant difference was observed on the drivers’ 

preference and their performance, although the effect sizes showed preferences of 

the classic over MPC.         
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The differences between the vehicle ride heights (RH) were subjectively 

distinguishable by the drivers in the simulator, where they found standard and low 

RH more appropriate for the vehicle in terms of the steering and handling qualities 

of the vehicle. Drivers’ performance was found to be worse in the standard and low 

RH, and steering control activity was the highest in low vehicle RH in all motion 

platform sizes and road sections. This also shows the incongruity between the 

subjective preferences and objective performance; it might hypothetically be 

originated from the racing style of professional drivers that a preferable vehicle 

configuration has resulted in their higher speed variability, lateral position deviations 

and steering control activity i.e. worse performance. 

The effects of motion platform (MP) workspace size was found to be dependent on 

the driving task and road friction level. In low-friction condition, the increase of MP 

size was preferred/undesirable in the large/small motion demanding manoeuvre. 

Drivers’ performance improved/worsened, and the steering control activity 

reduced/unchanged in large/small motion demanding manoeuvres. In high-friction 

large motion demanding manoeuvre medium size was preferred in terms of overall 

realism. For most of the handling and steering quality attributes in the higher RH the 

larger MP was selected as more appropriate, and vice versa. Drivers’ performance 

improvement was observed, and implications of reduction of steering control 

activity. 

A tuning method was introduced for optimisation of the MPC and classic algorithms 

in both time and frequency domains. A conservative motion cueing fidelity criterion 

was defined based on the review of literature and data obtained from the 

experiments. A multi-layered optimisation method was developed that uses the 

optimal setting of the MCA, to address the MP translational workspace size to meet 

the fidelity criteria, applicable for various manoeuvres. It was found that to the same 

input motion using the MPC it is possible to achieve the same level of fidelity using 

slightly smaller MP workspace size.    

The main aims in this thesis were to study the effects of motion cueing, and design 

of a vehicle in simulator. Subsequently, the assessments were based on the 

perception and performance of professional drivers who typically evaluate the 

vehicle designs and often have higher standards. Thus, the presented conclusions 

are more applicable to the vehicle design process. It is well worth to conduct a 

similar experiment(s) and model optimisations with normal drivers and compare its 

outcomes. Availability of a higher number of normal drivers will help to draw more 

solid conclusions on differences between MCAs, vehicle RHs, and preferences of 

MP workspace size. It is possible to anticipate observing lower requirements for the 

simulator motion systems since normal drivers often have lower demands.  
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9.3 Study Limitations  

The major limitation of this study was the number of participants in both of the 

experiments. Although the participating drivers were all the professionals from 

related groups of the vehicle evaluation teams in JLR, there was a limitation on the 

available number of participants. Moreover, commuting times to/from JLR to Leeds 

and associated risks factors limited efficient available time for the experiments. A 

higher number of drivers could have strengthened the statistical power in the 

analysis of data; however, this issue has been tried to be addressed by analysis of 

the effect sizes.  

This thesis was mainly dedicated to considering the effect of the motion cueing in 

the simulators and its effects on subjective fidelity and exploration of the drivers’ 

performance. However, having real world equivalent data to compare the driver 

behaviour performance between the real and virtual environment could bring the 

possibility for further enhancement in the MCA tuning, and optimisation of the MP 

workspace size from the perceptual level to the behavioural level.  

In the described experiments the drivers’ perception of self-motion was restricted to 

the effects of the vestibular motion cues. However, due to visual-vestibular 

interactions, the visual cues also play an important role. Moreover, the other audio 

and haptic cues have an influence on drivers’ perception and performance that is 

worth to be investigated. To study the effects of these cues, more restricted driving 

tasks should be selected to maximise the appearance of the experimental 

manipulations, and appropriate measurement metrics should be employed.  

The introduced optimisation method for tuning of the model predictive control 

algorithm in the frequency domain requires several hours of offline simulations, it 

further intensifies in the multi-layered optimisation of the motion platform 

workspace. Therefore, it was needed to use a fixed set of optimal parameters for 

the inner-loop to reduce the computational burden.    

The introduced optimal tuning of the MCAs and MP workspace size did not 

consider the vehicle model and MP dynamics. The reason was to reduce the 

computation burden and unpredicted variability during the optimisations. 

Considering the dynamics could further optimise the MCA tunings and the MP 

workspace sizing. 

9.4 Potential for future work  

The introduced optimal tuning parameters for the MCAs showed the possibility of 

obtaining a few sets of optimal parameters that minimise the motion errors and 
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meet the fidelity criteria in the offline analysis. Despite being candidates from offline 

analysis, further experiments could be conducted to compare them based on 

drivers’ subjective perception and performance.  

There are other parameters in the MPC algorithm affecting the motion cueing, those 

are the prediction and control horizons, fixed or variable look-ahead information. 

Although the choice of these parameters is more restricted by the computational 

burden and estimation of reference input, it is worth having a similar offline analysis, 

and experiments to be able to address their effects and optimal values.   

The MP workspace optimisation could be employed as a generalised method for 

MP workspace sizing for the vehicle motions in any manoeuvre. It is possible to do 

a similar analysis for the data collected in the high-friction vehicle attribute 

evaluation experiment. 

The analysis of the optimal parameters for MCA and MP workspace size were 

based on using vehicle lateral motion during manoeuvres. However, the introduced 

methods are general and could be used for the longitudinal motion of the vehicle 

and might slightly vary the obtained results.   

The MP workspace optimisation considered the vehicle motion data from the 

performance of professional drivers, which meets the workspace requirement for 

the vehicle design purpose. Using data collected from normal drivers, same 

approach could be used to address the workspace size for other applications e.g. 

research or training.  

Further research in time and frequency domain for finding the motion cueing fidelity 

criteria in all degrees of freedom of vehicle motion is a valuable and essential need 

in driving simulators since it helps to define the MCA tuning and MP workspace 

more optimally. 

By developing and extending the experimental design and scenario it is possible to 

address other issues such as the drivers’ mental efforts, simulator sickness while 

evaluating their perception and behaviour.     

In the experiments, the effects of the vestibular motion cueing were studied in one 

UoLDS dynamic driving simulator. Transferability of the similar experiments in 

another simulator with different/similar visual and vestibular characteristics is a 

worthwhile future research topic. 
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Appendices 

A Motion platform characteristics of simulators 

Table 0-1. Daimler-Benz driving simulators motion characteristics (Zeeb, 
2010) 

 
Excursion 

𝒎 , 𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄  ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
 ,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

Hexapod 

Surge −1.3 +1.4⁄  ? −9.81 +9.81⁄  

Sway −1.3 +1.3⁄  ? −9.81 +9.81⁄  

Heave −1 +1⁄  ? −9.81 +9.81⁄  

Roll −20 +20⁄  −45 +45⁄  −120 +120⁄  

Pitch −19 +24⁄  −45 +45⁄  −120 +120⁄  

Yaw −38 +38⁄  −60 +60⁄  −120 +120⁄  

Sliding 

Rail 

Surge 

or 

Sway 

−7.5 +7.5⁄  −10 +10⁄  −9.81 +9.81⁄  

 

Table 0-2. VTI 𝚰𝑽 simulator motion characteristics (Fischer et al., 2011) 

 
Excursion 

𝒎 , 𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄ ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
 ,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

Hexapod 

Surge −0.408 +0.307⁄  −0.8 +0.8⁄  −6.5 +6.5⁄  

Sway −0.318 +0.318⁄  −0.8 +0.8⁄  −6.0 +6.0⁄  

Heave −0.264 +0.240⁄  −0.6 +0.6⁄  −6.0 +6.0⁄  

Roll −16.5 +16.5⁄  −40.0 +40.0⁄  −300 +300⁄  

Pitch −16.5 +16.5⁄  −40.0 +40.0⁄  −300 +300⁄  

Yaw −20.5 +20.5⁄  −50.0 +50.0⁄  −300 +300⁄  

Sliding 

Rail 

Surge −2.5 +2.5⁄  −2.0 +2.0⁄  −5.0 +5.0⁄  

Sway −2.3 +2.3⁄  −3.0 +3.0⁄  −5.0 +5.0⁄  
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Table 0-3. PSA Peugeot-Citroën motion characteristics (Chapron and Colinot 
2007) 

 
Excursion 

𝒎 , 𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄ ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

Hexapod 

Surge −0.408 +0.307⁄  −0.82 +0.82⁄  −6.6 +6.6⁄  

Sway −0.318 +0.318⁄  −0.82 +0.82⁄  −6.9 +6.9⁄  

Heave −0.264 +0.240⁄  −0.82 +0.82⁄  −6.2 +6.2⁄  

Roll −18 +21⁄  −41.3 +41.3⁄  −321 +321⁄  

Pitch −22 +22⁄  −40.7 +40.7⁄  −321 +321⁄  

Yaw −23 +23⁄  −53.3 +53.3⁄  −362 +362⁄  

Sliding 

Rail 

Surge −2.61 +2.59⁄  −2.1 +2.1⁄  −5.1 +5.1⁄  

Sway −2.50 +2.50⁄  −3.1 +3.1⁄  −5.4 +5.4⁄  

 

Table 0-4. NADS1 simulator motion characteristics (Clark, A.J. et al., 2001) 

 
Excursion 

𝒎,𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄ ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

Hexapod 

Surge −0.8 +0.8⁄  ? ? 

Sway −0.8 +0.8⁄  ? ? 

Heave −0.6 +0.6⁄  −1.5 +1.5⁄  −9.81 +9.81⁄  

Roll −25 +25⁄  −45 +45⁄  −120 +120⁄  

Pitch −25 +25⁄  −45 +45⁄  −120 +120⁄  

Yaw 

(including 

turntable) 

−390 +390⁄  −60 +60⁄  −120 +120⁄  

Sliding 

Rail 

Surge −9.75 +9.75⁄  −6.1 +6.1⁄  −6.082 +6.082⁄  

Sway −9.75 +9.75⁄  −6.1 +6.1⁄  −6.082 +6.082⁄  
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Table 0-5. Toyota Research Driving Simulator (TRDS) motion characteristics 
(Greenberg and Blommer, 2011) 

 
Excursion 

𝒎,𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄ ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

Hexapod 

Surge ? ? ? 

Sway ? ? ? 

Heave ? ? ? 

Roll −25 +25⁄  ? ? 

Pitch −25 +25⁄  ? ? 

Yaw 

(turntable) 
−330 +330⁄  ? ? 

Sliding 

Rail 

Surge −17.5 +17.5⁄  −6.1 +6.1⁄  −4.9 +4.9⁄  

Sway −10 +10⁄  −6.1 +6.1⁄  −4.9 +4.9⁄  

 

Table 0-6. DESDEMONA simulator motion characteristics 

 Excursion 

𝒎 

  𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄   

𝒅𝒆𝒈°
𝒔⁄  

Acceleration 
𝒎
𝒔𝟐⁄

 

𝒅𝒆𝒈°
𝒔𝟐
⁄  

Six DoF 

Serial 

Robot 

Heave −1 +1⁄  −2.2 +2.2⁄  −4.9 +4.9⁄  

Roll 𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 −180 +180⁄  −90 +90⁄  

Pitch 𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 −180 +180⁄  −90 +90⁄  

Yaw 𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 −180 +180⁄  −90 +90⁄  

Sliding 

Rail 

Main Arm 

(Rotational)  

𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 −155 +155⁄  −45.0 +45.0⁄  

Horizontal  

(Translational) 

−4 +4⁄  −3.2 +3.2⁄  −4.9 +4.9⁄  
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Table 0-7. MPI CyberMotion simulator motion characteristics (Nieuwenhuizen 
and Bülthoff, 2013) 

 Excursion 

𝒎,𝒅𝒆𝒈° 

Velocity 

𝒎
𝒔⁄ ,
𝒅𝒆𝒈°

𝒔⁄  

Acceleration 

𝒎
𝒔𝟐⁄
,
𝒅𝒆𝒈°

𝒔𝟐
⁄  

6 DoF 

Axis 1 𝑢𝑛𝑙𝑖𝑚𝑖𝑡𝑒𝑑 −68 +68⁄  −98 +98⁄  

Axis 2 −128 +48⁄  −57 +57⁄  −70 +70⁄  

Axis 3 −45 +92⁄  −69 +69⁄  −128 +128⁄  

Axis 4 −180 +180⁄  −76 +76⁄  −33 +33⁄  

Axis 5 −58 +58⁄  −76 +76⁄  −95 +95⁄  

Axis 6 −180 +180⁄  −120 +120⁄  −77 +77⁄  

Base 

and 

Cabin 

Motion 

Actuated 

Cabin  

−0.67 +0.67⁄  −0.5 +0.5⁄  ? 

Horizontal  

(Translational) 

−4.9 +4.9⁄  −1.5 +1.5⁄  ? 
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B Assessment of Low-Friction Motion Cueing Experiment 

Documents 

Briefing 
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Counter balancing table 

      Order 

 

Subject 

SLALOM LHT 

1 2 3 4 5 6 7 8 9 10 11 12 

MP Size MP Size MP Size MP Size MP Size MP Size 

MCA MCA MCA MCA MCA MCA MCA MCA MCA MCA MCA MCA 

1 S-M S-C M-M M-C L-C L-M S-C S-M M-M M-C L-C L-M 

2 S-M S-C M-C M-M L-C L-M S-C S-M M-M M-C L-M L-C 

3 S-C S-M M-M M-C L-C L-M S-M S-C M-M M-C L-C L-M 

4 S-M S-C M-M M-C L-C L-M S-M S-C M-C M-M L-C L-M 

5 L-C L-M M-M M-C S-M S-C L-M L-C M-C M-M S-C S-M 

6 L-M L-C M-C M-M S-C S-M L-M L-C M-M M-C S-C S-M 

7 L-M L-C M-C M-M S-M S-C L-M L-C M-C M-M S-C S-M 

8 L-C L-M M-C M-M S-M S-C L-M L-C M-M M-C S-C S-M 

 

MCA tuning parameter values  

Classic parameter values, SLM task, the slashesh are for surge/sway 

                                                                     MP size  

    Parameters 
Small Medium Large 

Input acceleration scaling 0.2 0.5 0.7 

Hexapod 

Translation 

cut-off frequency 𝜔ℎ𝑝1 (rad/s) 1.02/1.18 1.51/1.71 1.55/1.84 

cut-off frequency 𝜔ℎ𝑝2 (rad/s) 1.75/1.91 2.35/2.62 2.60/2.63 

Sliding rail 

Translation 

cut-off frequency 𝜔ℎ𝑝1 (rad/s) 0.22/0.16 0.26/0.11 0.31/0.06 

cut-off frequency 𝜔ℎ𝑝2 (rad/s) 0.31/0.18 0.35/0.15 0.46/0.09 

cut-off frequency 𝜔𝑙𝑝2 (rad/s) 11 11 11 

Hexapod Tilt 

Coordination 
cut-off frequency 𝜔𝑙𝑝2 (rad/s) 3 3 3 

 



328 
 

Classic parameter values, LHT task, the slashesh are for surge/sway 

                                                                     MP size  

    Parameters 
Small Medium Large 

Input acceleration scaling 0.15 0.3 0.5 

Hexapod 

Translation 

cut-off frequency 𝜔ℎ𝑝1 (rad/s) 0.94 1.17 1.68 

cut-off frequency 𝜔ℎ𝑝2 (rad/s) 1.61/1.43 2.06/1.83 2.53/2.38 

Sliding rail 

Translation 

cut-off frequency 𝜔ℎ𝑝1 (rad/s) 0.42/0.36 0.35/0.29 0.26/0.22 

cut-off frequency 𝜔ℎ𝑝2 (rad/s) 0.91/0.87 0.73/0.66 0.68/0.59 

cut-off frequency 𝜔𝑙𝑝2 (rad/s) 11 11 11 

Hexapod Tilt 

Coordination 
cut-off frequency 𝜔𝑙𝑝2 (rad/s) 3 3 3 

 

Classic parameter values, yaw channel, the slashesh are for SLM/LHT 

                                                                     MP size  

    Parameters 
Small Medium Large 

Hexapod 

Rotation 

cut-off frequency 𝜔ℎ𝑝1 (rad/s) 0.2/0.25 0.2/0.25 0.2/0.25 

cut-off frequency 𝜔ℎ𝑝2 (rad/s) 0.5/0.55 0.5/0.55 0.5/0.55 
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MPC paramter values, SLM task, the slashesh are for surge/sway 

                                                                     MP size  

    Parameters 
Small Medium Large 

Input acceleration scaling 0.2 0.5 0.7 

Prediction Horizon 1.6/0.83 s 1.6/0.83 s 1.6/0.83 s 

Control Horizon 0.16 s 0.16 s 0.16 s 

Hexapod 

Translation 

Acceleration tracking weight, 𝑤ℎ1 0 0 0 

Velocity tracking weight, 𝑤ℎ2 0.7/0.8 1.1/1.2 1.2/1.3 

Position tracking weight, 𝑤ℎ3 0.5/0.6 0.9/1 1/1.1 

Sliding rail 

Translation 

Acceleration tracking weight, 𝑤𝑟1 0 0 0 

Velocity tracking weight, 𝑤𝑟2 0.35 0.35 0.35 

Position tracking weight, 𝑤𝑟3 0.25 0.25 0.25 

Hexapod Tilt 

Coordination 

Acceleration tracking weight, 𝑤𝑡1 0.3 0.3 0.3 

Position tracking weight, 𝑤𝑡2 0.1 0.1 0.1 

Other 
Hexapod+Rail+Tilt summation 

acceleration tracking weight, 𝑤𝑎 
1.5 2 2.5 
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MPC paramter values, LHT task, the slashesh are for surge/sway 

                                                                     MP size  

    Parameters 
Small Medium Large 

Input acceleration scaling 0.15 0.3 0.5 

Prediction Horizon 2 s 2 s 2 s 

Control Horizon 0.16 s 0.16 s 0.16 s 

Hexapod 

Translation 

Acceleration tracking weight, 𝑤ℎ1 0 0 0 

Velocity tracking weight, 𝑤ℎ2 0.7/0.8 1/1.1 1.2/1.3 

Position tracking weight, 𝑤ℎ3 0.5/0.6 0.9/1 1/1.1 

Sliding rail 

Translation 

Acceleration tracking weight, 𝑤𝑟1 0 0 0 

Velocity tracking weight, 𝑤𝑟2 0.4 0.35 0.35 

Position tracking weight, 𝑤𝑟3 0.3 0.25 0.25 

Hexapod Tilt 

Coordination 

Acceleration tracking weight, 𝑤𝑡1 0.3 0.3 0.3 

Position tracking weight, 𝑤𝑡2 0.1 0.1 0.1 

Other 
Hexapod+Rail+Tilt summation 

acceleration tracking weight, 𝑤𝑎 
1.5 2 2.5 

 

MPC paramter values, yaw channel, the slashesh are for SLM/LHT tasks 

                                                                     MP size  

    Parameters 
Small Medium Large 

Prediction Horizon 0.41 s 0.41 s 0.41 s 

Control Horizon 0.16 s 0.16 s 0.16 s 

Hexapod 

Rotation 

Velocity tracking weight, 𝑤ℎ1 1 1 1 

Position tracking weight, 𝑤ℎ2 0.6/0.7 0.6/0.7 0.6/0.7 
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335 
 

 

 

 

 

 



336 
 

 

 

 

 

 



337 
 

 

 

 

 



338 
 

 

 

 

 

 



339 
 

 

 

 

 



340 
 

 

 

 

 

 

 



341 
 

 

 

 



342 
 

 

 

 

 

 

 



343 
 

Counter balancing table 

      Order 

 

Subject 

Gosport Lane 

1 2 3 4 5 6 7 8 9 

MP Size MP Size MP Size 

Height Height Height Height Height Height Height Height Height 

1 M-L M-H M-M S-H S-M S-L L-L L-M L-H 

2 L-H L-M L-L M-L M-M M-H S-L S-H S-M 

3 S-M S-H S-L L-L L-H L-M M-M M-H M-L 

4 L-M L-L L-H M-M M-H M-L S-H S-L S-M 

5 L-H L-L L-M M-M M-L M-H S-L S-M S-H 

6 M-H M-L M-M S-M S-L S-H L-M L-H L-L 

MCA tuning parameter values 

MPC paramter values, GSP task, the slashesh are for surge/sway 

                                                                     MP size  

    Parameters 
Small Medium Large 

Prediction Horizon 1.2 s 1.2 s 1.2 s 

Control Horizon 0.16 s 0.16 s 0.16 s 

Hexapod 

Translation 

Acceleration tracking weight, 𝑤ℎ1 0 0 0 

Velocity tracking weight, 𝑤ℎ2 1.4 1.4 1.4 

Position tracking weight, 𝑤ℎ3 1.2 1.2 1.2 

Sliding rail 

Translation 

Acceleration tracking weight, 𝑤𝑟1 0 0 0 

Velocity tracking weight, 𝑤𝑟2 0.6 0.35 0.35 

Position tracking weight, 𝑤𝑟3 0.55 0.25 0.25 

Hexapod Tilt 

Coordination 

Acceleration tracking weight, 𝑤𝑡1 0.3 0.3 0.3 

Position tracking weight, 𝑤𝑡2 0.1 0.1 0.1 

Other 
Hexapod+Rail+Tilt summation 

acceleration tracking weight, 𝑤𝑎 
1 1.5 2 
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MPC paramter values, GSP task, for Heave/Yaw channel 

                                                                     MP size  

    Parameters 
Small Medium Large 

Prediction Horizon 1.2 s 1.2 s 1.2 s 

Control Horizon 0.16 s 0.16 s 0.16 s 

Hexapod 

Rotation 

Velocity tracking weight, 𝑤ℎ1 1.5 1.5 1.5 

Position tracking weight, 𝑤ℎ2 0.7 0.7 0.7 

 Acceleration tracking weight, 𝑤ℎ1 1.5 1.5 1.5 

Hexapod 

Translation 
Velocity tracking weight, 𝑤ℎ2 0.5 0.5 0.5 

 Position tracking weight, 𝑤ℎ3 0.3 0.3 0.3 

 

D List of tilt settings used throughout the thesis  

 

 

 

Chapter 

Maximum 

Tilt Angle                 

𝜃𝑚𝑎𝑥 (𝑑𝑒𝑔)  

Tilt Angular 

Velocity 

�̇�𝑚𝑎𝑥 (𝑑𝑒𝑔 𝑠⁄ ) 

Tilt Angular 

Acceleration  

�̈�𝑚𝑎𝑥 (𝑑𝑒𝑔 𝑠2⁄ ) 

Experiment 1 5 6 4 4 

Experiment 2 6 6 4 4 

Tuning of MCA 

parameters 
7 6 

4.3 23.5 

3.22 13.14 

Workspace 

optimisation of MP 
8 6 

2.5/4.3 8/23.5 

3 10 

 

 


